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ABSTRACT

OES-based Sensing for Plasma Processing in IC Manufacturing

by
Roawen Chen

Doctor of Philosophy in Engineering -
Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Costas J. Spanos, Chair

Commercial semiconductor technology is expected to reach the 0.18um device
generation using 300mm wafers by the year 2001. In order to meet this expectation, we
need better temporal and spatial process uniformity. This issue is particularly true for
plasma etching because it is often considered one of the most critical steps in the manufac-
turing of deep sub-micron IC devices. The need for better control suggests that we must
have a robust model-based controller'to ensure the IC manufacturers can meet ever tight-

ening specifications.

In this work we are developing a methodology for estimating etching performance
using real-time sensors. Specifically, the sensor readings collected throughout plasma
etching processes are used in combination with statistical techniques to model etch rate,
within-wafer uniformity, aspect-ratio dependent etching (ARDE), and critical dimension
(CD) reduction. Most of this effort has been devoted to developing reliable models that
relate process performances to signals acquired from optical emission spectroscopy
(OES), a sensor providing spatially resolved, in-situ, real-time readings without disturbing

the plasma or interfering with the process. Our study is based on the OES sensor systems



2
installed on various commercial plasma etchers including dielectric etchers (AMAT 5300

Centura), polysilicon etchers (Lam 4400 and 9400), and metal etchers (Lam 9600).

Another aspect of this work is to model the spatial variation of critical dimension
(CD) using the spatial and temporal information provided by the OES sensor. Both physi-
cal and statistical approaches are employed to extract the spatial and temporal variation
from the original OES sensor readings for each wafer at selected wavelengths. An addi-
tional goal of this work is to demonstrate a novel technique for monitoring the spatial CD
variation and detecting abnormal wafers using OES signals. This is accomplished by a sta-
tistic describing the temporal variation from the real-time OES signals collected from
three spatially resolved beams, and can be employed to indicate the nature of the CD spa-

tial non-uniformity.

Conventional endpoint detection techniques often provide temporally-resolved
information of the etch process, but without spatial resolution. With the emerging of the
300mm wafer production, the potential utility of a spatially-resolved endpoint detector is
expected to increase greatly. In this project we propose a novel spatially resolved sensor to
detect the endpoint and monitor spatial uniformity for a plasma etching process. A scan-
ning- spatially-resolved optical emission spec-:troscopy (SROES) system was built and
installed in the Berkeley Microfabrication Laboratory. This sensor system consists of a
stepper motor, controller, and a monochrometer, which provides an in-situ real-time moni-
toring of the etching endpoint spatially. The most interesting feature of collected plasma
spatial images is their temporal dependence. This information can be then used to detect
the spatially-resolved endpoints and monitor the etch uniformity. This concept also
extends to a scanning SROES system with a full spectral-range spectrometer. The results
suggest that full color plasma emission spatial profiles are useful for characterizing and
monitoring the plasma conditions. It is our expectation that these signals will play a useful

role in designing the next generation equipment controllers.
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Chapter 1

CHAPTER 1

Introduction

1.1. Motivation

Commercial semiconductor technology is expected to reach the 0.18um device
generation using 300mm wafers by th; year 2001 [1.1]. The fabrication of integrated cir-
cuits (ICs) is becoming very capital-intensive, and if the past exponéntial trend in fab cost
continues, the cost of a state-of-the-aﬁ facility for their manufacture is approaching US$3
billion by the year 2000 and US$10 billion by the year 2005 [1.2]. Moreover, a fab’s life
span is reducing over the past decade. In the mid-’80, a fab cost about $100 million and
had an expected life span of nearly ten years. Now we have $1 billion fabs with a life span
of only five years. The depreciation alone is approximately $4 million a week [1.3]. It is
expected that semiconductor industry can not afford to go on investing at these level while
remaining profitable. Thus, to offset this enormous investment, IC manufacturers must

achieve high yield, throughput and productivity quickly.
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Historically, the IC industry has reduced manufacturing cost by improving yields,
increasing wafer size, shrinking linewidths and improving equipment productivity. How-
ever, the cost of funding the transition to larger wafer size (e.g., > 300mm) and smaller lin-
ewidths (e.g., < 0.18um) is probably too high to justify the advantage of reducing the
- overall cost by increasing productivity. Moreover, a portion of the productivity improve-
ment due to larger wafer size is often offset by the increasing technological challenge for
achieving a good spatial uniformity. It has also been shown [1.3][1.4] that one area where

we have more room to improve is the area of equipment productivity (see Figure 1.1).

Additionally, it is extremely difficult to measure each wafer after each step in high
volume semiconductor factories, which produce chips with over 100 manufacturing steps
and high throughput. Present strategy is to measure and monitor wafers periodically after
changing the machine settings, however, at the penalty of cost and throughput. Although
this method gives an indication of how the machine is operating, it offers no guarantee that

the subsequent production wafers will be processed properly.

Feature Size
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Figure 1.1 Historical and perspective trend of productivity improvement (modified
from [1.4])
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Therefore, to achieve short cycle times and low-cost wﬁer fabrication, sensor-
aided manufacturing (SAM) of ICs is emerging as an approach to optimize the cost-effec-
tiveness of IC production [1.5]. One key SAM concept is to monitor the equipment and
wafer conditions in-situ to ensure that the semiconductor wafers are processed properly
during each step. The test wafers, machine calibration and maintenance can be thusl Jmini-

mized by the means of SAM so that the overall equipment effectiveness can be improved.

Plasma etching has been widely used in the manufacturing of sub-micron IC
devices, and it is also considered to be one of the yield limiters. In the past, empirical opti-
mization of plasma parameters has produced many successful etching and deposition “rec-
ipes”. A lot of effort has been spent developing reliable empirical models that relate the
response of process outputs (such as etch rate) to variations in input parameters (such as
pressure, RF power, or gas flow). These models are required by semiconductor manufac-
turers in order to predict etch behavior under an exhaustive set of operating conditions to
a high degree of precision. Traditionally, this approach has relied on statistical techniques
without detailed reference to plasma physics and microscopic etch mechanisms. By con-
trast, numerical simulations based on fpndamental physical theories have been used in aca-
demia, but these are computationally expensive and typically take too long for real-time
manufacturing applications. Also, these efforts have focused on explaining plasma param-

eters with little description of spatial and temporal etch performances.

Optical emission spectroscopy (OES) has been widely used in plasma assisted pro-
cess for in-situ process diagnostics and monitoring. Generally, a complete OES system
should be capable of resolving three components of plasma variability: spectral resolution
(i.e., chemical resolution), temporal resolution, and spatial resolution. However, the ideal
OES system with high spectral, temporal, and spatial resolutions is very expensive. There-

fore, the commercial OES system often gives up one of these information “dimensions” to
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reduce the cost. For example, the full-range OES commercial system only provides a lim-
ited spatial resolution. My research objective is to employ spatially-resolved optical emis-
sion spectroscopy (SROES) as a novel real-time fault detection tool for plasma etch. The
- OES sensor with spatial resolution has a unique advantage in plasma processing because it
provides in-situ spatial, temporal, and spectral information without disturbing the plasma
or interfering with the process. This study is based on the SROES sensor systems installed
on various commercial plasma etchers including polysilicon etchers (Lam 4400, 9400),
oxide etchers (AMAT 5300 Centura™) and metal etchers (Lam 9600 TCP™).

There are several important issues in implementing the OES system for in-situ pro-
cess monitoring and diagnosis. First, since a typical spectrum usually contains thousands
of wavelengths, an efficient way to compress and extract spectral information from OES
readings is vital to implement the OES system in an IC production environment. Secondly,
the information included in the temporal and spatial signatures of OES signals collected
from one wafer is difficult to interpret. Thirdly, the relation between the OES signals and
wafer characteristics is still under investigation (Note that the optical emission intensity of
discharge is only a direct indicator of plasma‘states, not wafer states). This thesis will try

to resolve these issues.

1.2. Thesis Organization

This thesis starts from a qualitative description of the plasma etch process and
mechanisms, plasma etcher designs, optical emission theory, optical emission spectros-
copy, and several statistical multivariate techniques in Chapter 2. Chapter 3 through Chap-
ter 5 develop the wafer-state prediction models using the spectral information provided by
the OES system. Several statistical data compression techniques are employed to filter out
the spectral information from a large number of spectral variables. The beauty of these
techniques is that they provide an efficient way to extract the important spectral informa-

tion without identifying the chemical species and their spectral signatures prior to the data
4
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analysis. In other words, we propose a novel way to explain the wafer-states by using sta-
tistical identification procedures. In addition, we interpret these results with the help of the
physical understanding of the process, and discuss the constraints while implementing
these wafer-state modeling techniques. Up to this point, no within-wafer temporal and spa-
tial information of OES signals is included in this framework. In Chapter 5, I start to esti-
mate and monitor the spatial variability of wafer-states using within-wafer temporal and
spatial information provided by a three-beam spatially-resolved OES system. Both physi-
cally based and statistically based approaches are employed to extract the spatial and tem-
poral variation from the original SROES sensor reading for each wafer. Chapter 6 develops
a novel scanning SROES system which significantly enhances the spatial resolution of
OES readings. Spatial information provided by this scanning SROES can be then used to
estimate the spatial variability of wafer-states and, most importantly, is used as a “spa-
tially-resolved endpoint detector” while observing the temporal dependence of the spatial
profiles of plasma emission. Finally, conclusions and future work related to this research

are given in Chapter 7.
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CHAPTER 2

Background

2.1. Previous Work

Sensor-aided statistical process control (SPC) is emerging as a novel technique for
monitoring, diagnosing, and modeling the plasma etch process in the modern semiconduc-
tor manufacturing environment. There are a number of sensors, either in commercialized
or still developing stage, which have been investigated by several research groups for
plasma etchers. For example, Lee and Spanos [2.1] [2.2] at the University of California,
Berkeley have demonstrated the feasibility of using the machine-state real-time sensor sig-
nals (e.g., power, pressure, and gas flow) to monitor the health of the commercial plasma

etcher in real-time and model the etch rates accurately.

Optical emission spectroscopy (OES) is probably the most widely used in-situ
sensor for plasma etching process. Nonetheless, its usage has been mainly limited to mon-
itoring a single wavelength of light emitted from a chemical species of interest such as etch
byproducts for endpoint detection or contamination control. For example, Selwyn at IBM

[2.3] has used optical emission (OE) to detect tool contamination and malfunction for
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plasma etching by monitoring emission from discharge-excited impurities. In addition to
species identification and endpoint control, a full spectral-range OES is also used as a
* promising tool to characterize the wafer or machine states. However, the most vital chal-
lenge is how to analyze a complex spectrum acquired by the multichannel OES rapidly and
" accurately. One solution is to analyze the OES data by multivariate statistical techniques.
Shadmehr et al at IBM [2.4] have proposed to use principal component analysis (PCA) and
neural networks (NN) to characterize the effects of machine parameters (e.g., pressure,
power, and gas mixture) on the optical emission and mass spectra of CHF3/O, plasma. Sim-
ilarly, Anderson et al at the University of New Mexico [2.5][2.6] have used OES to charac-
terize the oxide etch process. Their results show that the emission fingerprint, as determined
by the Chemometrics, correlate well with the oxide etch rate for the CF,/CHF; plasma.
Recently, White et al [2.7] at MIT have used some non-linear statistical techniques such as
nonlinear partial least squares (PLS) and multilayer perceptron (MLP) neural networks to
estimate the aluminum linewidth reductions at different sites on the wafer by combining the

spectra collected from different regions in plasma using spatially-resolved OES (SROES).

Although these techniques show a prpmising way to describe the wafer-to-wafer
behavior of equipment/wafer states, no real-time and only limited spatial information is
included in their frameworks. The typical approach of applying these sensor signals is to
model the wafer-state measurements from one selected site by one spectrum collected dur-
ing main etch period (thét is, one OES sample per wafer) [2.4][2.7], or to model the spatial
~ mean of the wafer-state measurements using the corresponding temporal average of sensor
signals acquired from one wafer [2.5][2.6]. Although these techniques can predict some of
the wafer-states (mostly etch rate) under certain circumstances, the temporal and spatial
information collected from sensors is mostly sacrificed in order to simplify the analysis.
Moreover, few explicit physical interpretations have been made to relate optical emission

intensities to equipment or wafer state, which limits the utility of these techniques.
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2.2. Plasma Etch Process

Plasma etching is considered a bottleneck process in integrated circuit (IC) manu-
facturing lines. It usually involves complex reactions/collisions of a large number of ener-
getic electrons, photos, ions and chemically reactive gas molecules. The success of a
plasma etch process is determined by some-complex tradeoffs in order to optimize each of
a long list of process parameters, including etch rate, selectivity, damage, residue, micro-
loading, and profile and linewidth control. Moreover, continued device scaling is making
plasma etch even more difficult to manage. In order to control this “mysterious” process,

comprehensive understandings of etch mechanisms and etcher designs are necessary.

2.2.1. Etch Mechanisms

There are four basic plasma etch mechanisms: sputtering, pure chemical etching,
ion energy driven etching, and ion inhibitor etching [2.8]. Sputtering is a process of remov-
ing the substrate material by purely physical processes, as illustrated in Figure 2.1. Since
sputter etching is purely physical and requires high ion energy and low pressure, it is the
least selective mechanism. Sputtering rates are generally low because the yield is typically
of order one atom per incident ion, regardless of the etched materials. However, sputtering

is the most anisotropic etch process.

Chemical etching is simply due to the fact that gas-phase etchant atoms or mole-
cules chemically react with the surface. Thus this process can be highly selective, and the
etch rate can be quite large because the flux of etchants to the substrate can be high in pro-
cessing discharges. However, the most important requirement for this kind of process is
that a volatile reaction by-product has to be formed. Moreover, chemical etching is usually

isotropic, which is undesirable for achieving good linewidth control.

Ion-enhanced energy-driven etching is a combined etching process with both
etchant atoms.(chemical etching) and energetic ions (ion-bombardment). Generally, the
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Figure 2.1 Four basic plasma etching mechanisms: (a) sputtering; (2) pure chemical
etching; (c) ion energy-driven etching; (d) ion-enhanced inhibitor etching [2.9]

etch rate of this etch process is much larger than that of either pure chemical etching or sput-
tering alone, since the impinging ions can damage the surface so that it increases the etchant
atom’s reactivity significantly. The etch product must be volatile, as for pure chemical etch-
ing. Because the energetic ions have a highly directional angular distribution when striking
the substrate, the etching can be highly anisotropic. However, ion-enhanced energy-driven
etching may have poor selectivity compared to pure chemical etching. Thus the trade-off

between anisotropy and selectivity is an important issue in designing this etch processes.

Ion-enhanced inhibitor etching, illustrated in Figure 2.1(d), is a conceptually more
different etch mechanism, compared with the previous etch mechanisms. The discharge
supplies etchants, energetic ions, and inhibitor precursor molecules that adsorb or deposit
on the substrate to form a protective layer of polymer film. The ion-bombarding flux pre-
vents the inhibitor layer from forming on horizontal surfaces so as to expose the surface to

the chemical etchant. Where the ion flux is low, such as on the vertical feature sidewalls,
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the inhibitors form a very thin film to protect the surface from the etchant, thereby making

the process anisotropic.

Although four etch mechanisms have been distinguished, their use for a particular
film etch often involves parallel or serial combinations of these mechanisms, as will be

noted for the Al etch in the next section.
2.2.2. Etching Processes

The materials that need to be etched in a typical silicon-based IC generally fall into
one of three areas: polysilicon, dielectrics or metals, each of which requires a dedicated
etch process and equipment set-up. The difficulties of each etch process are primarily
caused by the push to smaller features, but also by new transistor design, DRAM cell struc-
tures, isolation technologies, planarization and interconnecf schemes. Figure 2.2 illustrates
a typical cross-section of CMOS IC and its required etch processes. In the following sec-

tions, these three etch processes are described in detail.
2.2.2.1. Poly-Silicon Etching

Poly-Si can be etched in the chlorine discharge. For undoped poly-Si, the etch rate
is very slow unless undoped poly-Si is etched by Cl in the presence of energetic ion bom-
bardment. For heavily n-type doped poly-Si, it can be rapidly and spontaneously etched by
Cl atoms. Thus, etched features are often severely undercut. This can be prevented by side-
wall inhibitor chemistry. It is also important to note that Cl also attacks the doped poly-Si

but at a much slower rate [2.9].

There are several critical requirements for poly-silicon etching that must be

addressed. First, selectivity to the oxide is extremely important for poly-silicon etching,
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Figure 2.2 Typical cross-section for logic CMOS IC

because the etch must not punch through the thin gate oxide, keeping the oxide loss small,
even with a 50-100% overetch. Secondly, the gate profile control is also vital. The modern
gate design usually includes tungsten silicide over poly-Si application. This type of struc-
ture requires two different materials to be etched while maintaining all the important

parameters such as profile control, minimal undercutting, and selectivity between layers

and the substrate.

2.2.2.2. Oxide Etching

The etching of SiO, is different from poly-Si etching because the silicon-oxygen
bond is about twice as strong as the silicon-silicon bond that is broken in poly-Si etching.
Thus, to break the silicon-oxygen bond, ion and neutrals are directed at the wafer surface

with more than twice as much as power as in other types of etch systems. Although F atoms

1. The silicon-silicon bonding is 78 kcal/mole, whereas the silicon-oxygen bonding is 190 kcal/mole.
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are known to etch SiO,, the pure chemical etch rate based on F atoms is slow and therefore
impractical in a real etch system. As such, a more complex fluorocarbon etch chemistry is
commonly used for oxide etching. It is known that CF, radicals do not spontaneously etch
Si0, because these radicals do not dissociatively absorb in SiO,. Therefore, no pure chem-
ical etching of SiO, takes place in fluorocarbon plasma, and all observed SiO, etching is
ion-energy driven [2.8][2.9]. The SiO, etching is anisotropic, and the etch rate correlates
with the ion bombarding energy and is independent of the substrate temperature {2.8]. High
selectivity can be achieved for CF, radical etchants produced using unsaturated fluorocar-
bon feedstocks or by adding hydrogen to saturated feedstocks [2.8]. In both cases, the pro-
tective polymer layer is formed on the surfaces other than silicon oxide (the oxygen

released in the etching of SiO, prevents the formation of the polymer)[2.10].

In the area of oxide etching, the most demanding application is high aspect-ratio
contact/via etch (as shown in Figure 2.2). It is due to the fact that contacts have different
depths at a single masking layer, so the shallow contact clears first while the deep contact
continues to etch. Another challenge c;f oxide etching is to obtain high selectivities to the
photoresist masking layer as well as the underlying material once it is exposed. Because the
modern high-density plasma is very effective at dissociating the feedstock gases, which
creates excessive amounts of aggressive fluorine atoms, free fluorine tends to rapidly eat

away organic photoresist and thereby reduce the photoresist selectivity.

Another problem in oxide etch is the etch-stop, which means the etching action
slows or stops altogether for some unknown reasons [2.10]. This problem is even more
severe for very small and deep features. One hypothesis to explain etch-stop is that there is
an imbalance between polymer formation, passivation, and ion-bombardment processes

[2.10] so that the etch process stops due to the excess of polymer formation.
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2.2.2.3. Metal Etching

Today, metal etching still means mostly aluminum etching, although tungsten is
often used for contact and via fill. Aluminum etching is essentially a chemical-reaction
driven process [2.9][2.11]. However, since aluminum is not etched in fluorine atom plasma
(because aluminum fluoride is completely involatile), aluminum has to be etched in atomic
and molecular chlorine or bromine (both aluminum chlorides and aluminum bromides are
volatile). It is also important to note that ion bombardment has a limited effect on the alu-
minum etching rate because the spontaneous chemical attack is very fast [2.9]. Therefore,
the inhibitor chemistry is necessary for linewidth control in aluminum etching. In the case
of Cl,/BCl; etchant, the aluminum layer is etched by chlorine atoms and molecules while -
the addition of BClj; is used to provide the inhibitor chemistry that enhances the etch anisot-
ropy [2.9]. Moreover, since oxygen and water are desorbed on the surface of aluminum film
which will seriously interfere with the etching process, the addition of the BCl; can react
preferentially with HyO and O, in the process chamber, thereby providing reproducible
processing when added to Cl, [2.9]. As a resuit, plasmas based on BCl;/Cl, mixtures have
become the standard for aluminum etching [2.11]. After aluminum etching, a timed over-
etch process is usually performed to ensure the aluminum film has been cleared from the
wafer. The oxide loss due to the over-etch process is primarily driven by the ion-bombard-

ment mechanism [2.8].

One challenge with aluminum etching is that there are varying amounts of copper
added to the aluminum (to prevent the “spiking” effect). This makes etching more difficult
because copper chlorides have low volatility. Photoresist degradation is another problem in
chlorine-based plasma since the etch product, i.e., AlCl;, accelerates degradation of resist.

In addition, etch rate microloading (also known as aspect-ratio dependent etch) is of
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increasing importance in metal etch, especially for device geometries shrinking below half-
micron [2.12]. The Al etch rate microloading is a tradeoff against Al etch rate. In an etchant
deficient environment, Al etéh rate in the open area is slower than that in the dense area,
due to the chemical loading effect. When the etchant concentration is sufficient, the etch
rate in the open area is enhanced, while the etch rate in the dense area is limited by species

transportation.

Table 2.1 summarizes the typical feed gas and mechanisms for plasma etching var-

ious materials.

Table 2.1
Typical feed gas and mechanisms for plasma etch [2.9]
Materials Source | Additive Mechanism
Etched gas
Poly-Si Cl, None Chemical
(n-doped) CoFe Ion-inhibitor
SiO, CF, H, Ion-enhanced energy-
driven
Al q, . BCl, Ion-inhibitor

2.3. Plasma Etch Equipment

Today almost all commercial plasma etchers are single wafer systems, that is, the
system presents an identical environment to every wafer, compared with the batch wafer
systems in which the etch conditions are varied dependent on the wafer locations. Although
there are many variations of chamber configuration with major differences in electrode
structure for commercial single-wafer plasma etcher, two most commonly used plasma
reactors are introduced in this section: capacitive planar etcher and high-density discharge

etcher.
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2.3.1. Capacitive Planar Etcher

Capacitively driven RF discharge (also called RF diodes) etchers are commonly
. used for materials processing. The basic geometry consists of a vacuum chamber contain-
ing two planar electrodes separated by a spacing / and driven by an RF power source, as
illustrated in Figure 2.3 (a). When operated at low pressure, with the wafer placed on the
powered electrode for removing substrate materials, this reactor is commonly called reac-
tive ion etcher (RIE). In this case, the etching is a chemical process enhanced by energetic
ion bombardment of the substrate. Table 2.2 lists the typical range of parameters for a

capacitive RF discharge etcher.

However, the crucial limiting feature of capacitive RF discharge etcher is that the
ion-bombarding flux and bombarding energy cannot be varied independently. This is sim-
ilar to the lack of independent voltage and current control in semiconductor pn junction. To
accomplish the etching performance needed for the deep sub-micron devices, the ion-bom-
bardment energy has to be controllable independently of the ion/neutral flux [2.8], which

presents more options to the process engineérs to optimize the etching conditions. This

gas feed

|
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%

vacuum
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Figure 2.3 The illustrations of (a) capacitive RF discharges in plane parallel
geometry; (b) high-density inductively coupled plasma.[2.8]

(@) (b

16



Chapter 2

requirement leads to the development of high-density plasma etcher, as described in the

next section.
Table 2.2
Range of parameters for RIE and high-density discharge[2.8]
Parameter RIE High-Density
Pressure (mtorr) 10-1000 0.5-50
Power (W) 50-2000 100-5000
Frequency (MHz) 0.05-13.56 0-2450
Plasma Density (cm™) 10°-101! 10101012
Electron temperature (V) 1-5 2-7
Ion acceleration energy (V) 200-1000 20-500
Fractional ionization 10°6-10°3 10%10'!

2.3.2. High-Density Plasma Etcher

The low pressure plasma source is desirable in the modem etcher design because it
is difficult to diffuse etchants in and reaction byproducts out of openings that are smaller
than 0.25uum. The solution is to go to lower pressures where the mean free paths of gas ion
and molecules are longer, which also reduces scattering collisions that can cause low pro-
file control [2.13]. These needs led to the development of the new generation of high-den-
sity plasma source, which is capable of generating enough ions to achieve acceptable etch
rate at reduced pressure (high etch rate is important in single wafer systems for reasonable
* throughput). Nonetheless, as mentioned in the last section, the need of high-density plasma
etch is not only driven by a need to operate at lower pressure or with high ion density, but
rather the need to have independent control over the ion bombarding energy and the ion and
neutral density [2.8](2.10][2.13]. This “plasma decoupling” allows better control of the
various etch mechanisms (e.g., physical ion-bombardment and chemical etching) that com-

petes with each other in plasma etching.
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To achieve a high density plasma source, a common feature is that RF is coupled to
the plasma across a dielectric cylindrical wall, rather than by direct connection to an elec-
_ trode in the plasma [2.8], as for the RIE etcher. This noncapacitive power transfer is the key
- to achieving a high ion-density efficiently. To control the ion energy, the electrode on

which the wafer is placed can be independently driven by a capacitively coupled RF source.
Hence, an independent control of the ion/radical fluxes (through the source power) and the
ion-bombarding energy (through the wafer electrode bias power) is possible. There are
many different high-density plasma source designs in terms of the way by which power is
coupled to the plasma. The examples include electron cyclotron resonance (ECR), helical
resonator (HR), and inductive (or transformer) coupled plasma source (ICP or TCP)[2.8].
Among these different designs, ICP (or TCP) is the most commonly used high-density
plasma source in current fabrication lines. An inductive coupled plasma etcher is shown in
" Figure 2.3(b). In this case, plasma acts as a single-turn, lossy conductor that is coupled to a
multiturn nonresonant RF coil across the dielectric discharge chamber, where RF power is
inductively coupled to the plasma by transformer action. In contrast to ECR, a dc magnetic

field is not required in this efficient power coﬁpling design [2.8].

Despite the obvious needs for developing high-density plasma sources with low
pressure, high ion/radical fluxes, and controllable ion energies, there are many other issues
needed to be resolved. The first critical issue is to achieve the required process uniformity

over 200 to 300mm wafer diameters. In contrast to the nearly one-dimensional geometry of
a typical RIE etcher, high-density cylindrical sources can have length-to-diameter ratios of
order or exceeding unity [2.8]. Plasma formation in such geometries is inherently radically
nonuniform. The second critical issue is to achieve an efficient power-coupling across a
dielectric wall over a wide operating range of plasma parameters. The third issue is that the
degradation of and deposition on the wall can lead to irreproducible source behavior and

the need for frequent costly cleaning cycles. The forth issue is that the low-pressure opera-

18



Chapter 2

tion usually leads to severe pumping requirements for high etching rate, and thus to the

need for larger and costlier vacuum pumps.

For more detailed and quantitative description of these plasma etchers, one can
refer to Chapter 11 and 12 in the book of *“Principles of Plasma Discharges and Materials

Processing” by Lieberman and Lichtenberg [2.8].

2.4. In-Situ Sensors for the Etch Process

Barna et al. [2.14][2.15] state that any IC manufacturing tool requires three distinct
types of sensors to completely characterize the tool and its effect on the wafer: machine-
state (e.g., RF power, gas flow, pressure), process-state (e.g., plasma density, delivered
power), and wafer-state (e.g., etch rate, film thickness) sensors. Of these three sets,
machine-state parameters are the easiest to monitor and control. Usually, a closed-loop con-
troller continuously adjusts machine parameters to preset targets. These types of sensor
readings are available in most modem etchers. In contrast, process-state sensor parameters
are dependent on both machine-state parameters and uncontrolled perturbations in the sys-
tem. This type of sensor has to be in-situ, real-time and non-intrusive. Wafer-state sensors
are often the most direct way to monitor the effect of the process on the wafer. However,
due to the scarcity of in-situ and real-time wafer-state sensors, an ex-situ and post-process
approach is typically used in manufacturing sites. Consequently, such sensor data can only
be used to provide run-to-run control of the process. The typical approach being pursued
for in-situ control is to characterize the etch process using process state sensors, rather than
wafer-state sensors. A major roadblock to this type of real-time and in-situ control is the
complicated or sometimes, unclear relationship between process-state and wafer-state

parameters.

There are many different types of in-situ commercially available sensors that could

be used for monitoring the parameters specified in plasma etch [2.14], as listed in Table 2.3.
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Table 2.3
Commercially available sensors for plasma etch (modified from Ref.[2.14])
Monitoring Parameters Sensor Comments
Equipment state
Chamber/substrate temperature Thermocouple All these machine-state sensors
Pressure Ionization gauge are commonly installed on the
gaug commercial etchers by
Gas flow Mass flow controller equipment vendors
rf power and coil power rf sensors
bias voltage f sensors
Process state
Reactant concentration Optical emission Standard technique
Laser-induced fluorescence Not robust enough for production,
Mass spectroscopy Installation expensive
Endpoint detection Optical emission Routinely used
Residual gas analysis (RGA) Time delay, expensive
Ion density Langmuir probe Intrusive
rf plasma parameters 1/V/phase at multiple frequencies  Difficult to correlate to specific
machine/wafer/process states
Wafer temperature Thermocouple Wafer temperature inferred
Pyrometer Emissivity and light interference
Fluorescence Intrusive probe
Wafer state
Etch rate (thickness) Ellipsometer Widely implemented on R&D
Interferometer basis
Critical dimension (CD) Scatterometer Complex implementation

2.5. Optical Emission Spectroscopy

Optical emission spectroscopy (OES) is the most widely used optical analytical and

diagnostic instrument in plasma-assisted processing, where gas-phase species are promoted

to excited electronic states by collisions with energetic electrons. The emission processes

in OES is illustrated in Figure 2.4. It is important to note that only excited species in plasma

can be detected by OES, and thus the observed spectrum only gives information about the

excited-state density and does not directly reflect the ground-state population. The densities
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Figure 2.4 Schematic diagram of atomic emission spectrum

of excited-state species are typically < 107 of the ground state density [2.8][2.9]. Further-
more, while emission from specific intermediates and products may dominate optical emis-
sion spectra, emission from the chemically dominant species (e.g., etchant) and interesting
species (e.g., etch byproduct) may not be observable. Still, when such emission is present,
OES has proven to be a very powerful tool and is routinely used to monitor gas-phase pop-

ulation during process development and for endpoint detection during IC manufacturing.

2.5.1. Quantitative Description of Optical Emission

Based on the assumption that the excited state is formed solely by electron impact
excitation and that this excitation occurs in a single step from the ground state, and that

emission must occur once the state is excited, optical emission intensity is written [2.9] as

Ihy) = NPiinJ(Xij)K 2.1)

where i indicates the ground state, j indicates the excited state, 7~ij is the transition wave-

length between state i and state j, N is the ground state density, A ij is the Einstein emission
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probability, K is a correction factor which describes the effect of view volume and align-
ment, and P is the electron impact excitation function which represents the probability of
- exciting the state j by electron impact, starting from the ground state. P is a complex func-

 tion of electron temperature T,, and is given by [2.8]

P = [470}dv,0,(0,)0,f (v, T, m,) 22)
0

where v, is the electron velocity, 6, is the cross section for emission of a photon of wave-
length A due to electron impact excitement, and f, is the electron distribution function
which depends on electron temperature and electron density [2.8]. It is also important to
note that the electron temperature is a monotonically increasing function of 1/Pr, where Pr
is the pressure [2.8][2.9]. Among these variables in Eq.(2.1), only the ground state density
N and the electron impact excitation function P are dependent on the machine settings, and

only N is wavelength-independent.
2.5.2. OES Instrumentation

Optical emission spectroscopy involves the collection, spectral dispersion, and
detection of light. Typical experimental setups for OES are shown in Figure 2.5. Emission
from a specific volume in the plasma chamber is imaged onto the extrance slit of a spec-

trometer by a series of UV-grade fused-silica lens and optical fiber.

The light can be dispersed by a diffraction grating system. One common design for
grating spectrometer is Czerny-Turner arrangement [2.16], as shown in Figure 2.5. A
curved mirror images the source from the entrance slit onto a parallel beam that is directed

to the diffraction grating. A second curved mirror focuses that diffracted beam onto the exit
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Figure 2.5 Schematic illustration of the OES instrumentation

slit. The diffraction grating is commonly a square, of length L, with v grooves per millime-
ter that run normal to the plane of incidence of light. The groove density determines the

spectral dispersion, which is given by a grating equation [2.17]
mA= d(sin6,, - sin®;) (2.3)

where m is the diffraction order, d is the groove separation, and 0,, and 6; are the angles of
incidence and diffraction. The grooves are blazed to maximize first-order diffraction (m=1)

at a specified wavelength. The spectral resolution due to dispersion is given by [2.17]

w
AA= Wcos 0, 2.4)
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where w is the exit slit widths, and fis the spectrometer focal length which is the distance
from the exit plane to the last focusing mirror (also the distance from the entrance plane to
" the first focusing mirror). It is also important to note that the efficiency of a grating system
and optical fiber is a function of wavelength. Therefore, the optical emission intensity

detected by OES is rewritten as

I(\y) = NPAO(MpK @.5)

where O kij) is a correction factor to account for the apparatus collection efficiency at the

emission wavelength A;;.

The dispersed light can be detected by a parallel detector such as a photodiode array,
or a charged-coupled device (CCD) array detector. This technique can detect a wide spec-
tral range without scanning the grating, thereby achieving a rapid data acquisition. How-
ever, one potential disadvantage in using a paralle] detection scheme is relatively low
spectral resolution when a broad spectral region is being monitoring at one time. Array
detectors often have 1000 to 500 pixels limiting the spectral resolution of an OES system.
That is, the spectral resolution of OES system is often limited by the light detector, instead
of the grating’s groove density. For example, if the spectral range 250-750nm is monitored
with a 1000-channe] detector, the maximum resolution is about 0.5nm, which may not be
satisfactory to reveal enough etch information. The spectral resolution can be improved by

examining a smaller spectral range with the same detector, or using a high-density CCD

array [2.16].

2.5.3. Actinometry

As mentioned, the observed intensity of a spectral line is not comparable to a mea-

surement of the concentration of the chemical species associated with this spectral line.
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Therefore, actinometry [2.18] has been used to determine the quantitative concentration of
interesting species. Actinometry involves the addition of a known amount of a gas phase
species such as Ar to the discharge. The assumptions of actinometry are that the excited
state is formed only by single step electron excitation from the ground state, that the elec-
tron velocity dependence of the cross section for this excitation is similar to that of the spe-
cies of interest (see Eq. (2.2)), that the wavelengths of the two lines are similar, and that the
emission probabilities are truly constant. Under these circumstances, the variation of the
electron energy distribution function with features of the discharge like pressure and power
can be compensated by taking the ratio of emission of the discharges of interest, Z, to that

of the inert gas, M:

I, NP QupAZK Ny
Iy NP, O0MpAyK™ ~ Ny

(2.6)

If Nj, is known and I, and I, are measured, an absolute value of N can be determined. Even
if Cis not known, the relative variation of N with variation of discharge parameters can be

found.

2.6. Multivariate, Statistical Data Compression

Since typical sensor data sets contain many correlated variables (for example, one
spectrum contains about a thousand correlated variables), it is not practical to use all of
them directly. Therefore, several statistical data-compression and multivariate regression
techniques are presented here to extract valuable information from these multivariate

sensor signals and relate these reduced data set to the wafer states.
2.6.1. Principal Component Regression

A statistical method called Principal Component Analysis (PCA) is often used to

create a few statistically significant, uncorrelated weighted sums from the original corre-
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lated data [2.19]. PCA is used to explain most of the variance in the original data set by
“only a few principal components (PCs). PCA transforms the input variables to a set of
orthogonal variables known as principal components, which are linear combinations of the
original variables [2.19]. Specifically, PCA decomposes a matrix X (I X J), where there

are J measurements variables for I objects, into a series of R principal components

R
X=Yzp; Q.7
1

where p, is the loading vector and z, is a score vector (i.e., the coordinates in the trans-

formed space). Since the covariance matrix of the original input matrix X is symmentric, it
can be decomposed into X”X=pAp”, where the diagonal elements of the A are the eigen-
values which summarize the variances explained by the PCs, and the columns of p are the
eigenvectors of the covariance matrix of X. The coefficients of the original variable are the

eigenvectors p or loadings. The PCA transformation is often
Z=p'X (2.8)

where X has been scaled by subtracting from each column its mean and dividing by its
standard deviation. The transformed variables, Z, are the principal components of X or t-

scores. The ith principal component is

z;=p'x 2.9

The loading vectors p provide the directions with maximum variability. Typically, the first
few principal components can explain most of the variation of input data set (i.e., X). The
number of principal components retained in the model is sometimes determined by a
“scree” plot, which characterizes the proportion of total population variance explained by

the first R principal components where R is from 1 to the total number of observations.
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Another way to understand PCA is to illustrate it by a simple case, as shown in Figure 2.6.

The original axes x; and x, are transformed to a new orthogonal principal component axes
27 and z,. Because z; explains most of the variation, we can sometimes visualize all data

points are along one axis (i.e. in a one dimensional space).

A7

two dimensional space

—p X7

Figure 2.6 Principal component transformation in two dimensioned space (*
denotes data point)

Once this principal component analysis is complete, the reduced PC variables can
be used as the input matrix for regression. This is called Principal Component Regression

(PCR). An overview of these procedures is shown in Figure 2.7.
2.6.2. Partial Least Squares Regression

Like Principal Component Analysis, Partial Least Square Analysis (PLSA) is also
based on projecting the information in high-dimensional data spaces down onto low-
dimensional spaces, defined by a small number of eigenvectors, known as latent vari-
ables[2.20][2.21]. These new latent variables summarize much of the important informa-

tion contained in the original data set. However, in the PLSA algorithm, both the response
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Convert raw data to a two-dimensional
matrix (row=observations, column= variables),
X

Determine the covariance matrix of X,
XTX
Perform singular value decomposition for
XTX to determine eigenvector

Retain the most significant eigenvectors whose
scores can explain the most of the variation of
the original data set

Project centered data onto reduced set of
eigenvectors (Generally, the m dimensionaldata
are transformed to n dimensional space, m>>n)

Estimate the wafer output parameters using
the reduced data set

Figure 2.7 The algorithmic flow of Principal Component Regression

variables (Y) and input variables (X) are used. The scaled and mean-centered X and ¥ can

be decomposed as:

A
X=Ytp +E

a=1

28
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A
T
Y= Ytq,+F (2.11)

a=1

where ¢, is the latent vector, E and F are the residuals, and w, and g, are loading vectors
whose elements w,; and g,; express the contribution of each variable x; and y;, respec-

tively. A common PLSA algorithm is summarized below and illustrated in Figure 2.8:

Step 1: Set u equal to any column of ¥.

Step 2: Regress columns of X on u to get loadings: wl = uTXmuTy.

Step 3: Normalized w to unit length.
Step 4: Calculate scores ¢ = Xw/wlw.
Step 5: Regress the columns of Y on £ qT =lym's.

Step 6: Calculate the new score vector for ¥: u = Yq/q'q.

Step 7: Check convergence of u: if yes go to 8; if no goto 2
Step 8: Calculate X matrix loadings by regressing columns of X on £ pT =eTx1"s.

Step 9: Calculate residual matrices: E = X - tpT F=Y-tq7

The total number of PLS components (i.e., A) needed to extract the information
from X and Y is usually low (typically 2 to 5 in our application) and can be estimated by
cross-validation in order to prevent model overfitting. This is done by minimizing a crite-

rion called the prediction error sum of squares (PRESS) [2.22] defined as

PRESS = S (Y- ¥)° 2.12)

i=1

where m is the total number of variables used in the model. The first few dimensions are
usually the most important and dominate the model. Hence, the final model of Eq.(2.11)

can be expressed in terms of the X data as the regression model:
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Y=Xp+F (2.13)
- where the matrix of regression coefficients is given by:
B = wp'w)lg" (2.14)

where W, P, and Q are the matrices whose columns are the vectors w,, p, and q,;

a=1,2,...,A, as defined above.

Figure 2.8 PLSA iteration
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CHAPTER 3

Wafer-State Modeling Using OES for
Oxide Etch

3.1. Introduction

As indicated in Section 2.4, the lack of in-situ and real-time wafer-state sensors
leads to an effort of developing reliable models that relate the wafer-state measurements
(e.g., etch rate or etching uniformity) to variations in real-time process-state sensor read-
ings so that the process-state sensor can be used as a “counterpart” of the wafer-state sen-
sor. These models, so called Wafer-State Models, are needed in order to predict etch
behavior under a wide range of operating conditions to a high degree of precision. In this
chapter, we present a methodology to estimate several important post-etching wafer char-
acteristics for the interconnect dielectrical etching process using OES sensor readings (see
Figure 3.1). All data acquisitions, measurements, and wafer fabrication were performed

on state-of-the-art plasma etchers in a high-volume IC production site.
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One challenge worth noting is that the spectral data are difficult to interpret using
conventional multivariate linear regression because of the large number of variables
involved. Consequently, Principle Component Analysis (PCA) and, alternatively, Partial
Least Squares (PLS) have been employed to compress the spectral data, and then relate the

reduced data set to the etching performances.

Wafer State
Based Model

OES
Input Output Water
Settings Characteristics

Sou‘rce Power L EtchRate

Bias Power

Gas Flow — Uniformity
Temperature —» ARDE

Throttle -

Figure 3.1 Wafer state modeling scheme using OES sensor readings.

3.2. Experiment to Link OES Signals to Oxide Etch Variability

3.2.1. Data Acquisition

An SC Technologies optical emission spectrograph and controller were installed
on the Applied Materials 5300 Centura dielectric high-density plasma (HDP) etching
chamber at AMD’s Fab-25. An optical fiber was mounted on the reactor viewport and
directed toward the entrance slit of an image spectrograph, as illustrated in Figure 3.2. The
grating system dispersed the incident light and projected the spectrum onto a photodiode
sensor array. Because there are 501 pixels on the photodiode array, we had the capability

to monitor the intensities of 501 different wavelengths simultaneously during the etching
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process. The control of this system and the subsequent data conversion and analysis were
done on an IBM 486 PC and Sun SPARC-20 workstation, respectively. The S-plus com-
mercial software package was used for the statistical analysis. Since the intensity ratio
between the main C and F lines is strongly related to the etching performance [3.3], the
spectral data was acquired in the 200 to S00nm range in order to ensure that most of the
C,F, spectral features were monitored. In this study we used the 600 groove/mm grating

with a 0.6nm/pixel resolution and an acquisition time of less than one second per frame.

For each wafer, five spectral frames were collected throughout the 150 seconds of
the main etch step. The signals collected during the main etch step fluctuated whenever the
RF power was applied or removed. The unstable features caused by these transient effects
must be removed before any further statistical analysis. In this work, the OES data sets
were selected by choosing the third spectrum which was collected at about the 80th sec-
ond of processing for each wafer, that is, only one spectrum was used for each wafer (i.e.,

sampling rate is only one per wafer).

Roof Te}nperature (~270°C)

Source RF
2MHz

(~220°C)

®
©
@
©

| m SRR . v |

electrical chuck
-10°C

photodiode

array .

Figure 3.2 Schematic illustration of the experimental set-up on AMAT 5300 oxide
etcher
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Figure 3.3 Cross section of the test structure for a monitor wafer.

3.2.2. Experimental Design

A designed experiment was conducted in order to develop the wafer state models.
The experiment was a five-factor, 26-run central composite design, in addition to four cen-
ter points [3.4]; this is a resolution V design without blocking. The input variables in this

experimental design were source power (Watts), bias power (Watts), C,F¢ flow rate

(sccm), roof temperature (°C), and throttle opening ratio (%). The deviations from the cen-
ter values of the input settings used in this experiment were about +/- 15% (see Table 3.1).
The nominal values of input settings are thé typical recipe for interconnect dielectrical
etching. This range of input settings provides sufficient range of real-time data and output
wafer responses. Thirty §-inch monitor wafers used in this experiment were covered with
2.7um TEOS and 1.35um photoresist (see Figure 3.3) patterned and developed for narrow
line openings. In-line sensor data were captured during the processing of each wafer and
the responses were measured for each run. The output wafer measurements (i.e., the
responses of this experiment) were oxide etch rate, oxide etching uniformityl, aspect-ratio

dependent etching? (ARDE) near the center of the wafer, and ARDE near the edge of the

1. Within-wafer uniformity is defined as (Standard deviation of etch rate over 17 selected sites on wafer)/
(Average of etch rate over the 17 sites on wafer)x100.

2. Aspect-ratio dependent etching (ARDE) is determined from SEM picture readings and is defined as 100
x (Depth of contact hole - Depth of open area)/(Depth of contact hole)
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wafer. Film thickness was measured both pre- and post-etch on the Prometrix UV 1050 at

17 points on each wafer; etch rate and uniformity were calculated from these thickness
measurements. ARDE values were determined from SEM photographs. Due to some sen-

sor failures, only 29 out of 30 wafers were included in the analysis that follows.

Table 3.1
Change in Percent from Nominal
input Source Bias C,Fs flow Roof Throttle
(Watts) (Watts) rate

variables (sccm) | Temp (°C) | (Percent)
centralpoint | 2600 | 1600 30 | 270 65

change in
percent from | 1; 5¢, 12.5% 33.3% 3.7% 53.8%

norminal

3.3. Modeling Results

Since the typical OES data set‘_contains 501 correlated variables in each spectrum,
it is not practical to use all of them. One notable challenge is to decide which wavelengths
should be chosen to represent the entire set of OES variables. Several data filters are intro-
duced in this study. The easiest method is simply to filter the wavelengths based on spec-
tral identification prior to the data analysis. Additionally, Principal Component Analysis
(PCA) and Partial Least Squares (PLS) are two statistical multivariate data reduction tech-
niques for compressing a large number of variables down to a small number (<10) of
orthogonal variables, as described in Section 2.6. These reduced variables can be then
used as the input matrix for a regression model. Ordinary Least Squares Regression
[3.7][3.8] has been employed to relate the three reduced OES data sets to the etching per-
formance. All three methods have been applied in this study, and they will be discussed in
some detail next.
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3.3.1. Regression models using the intensities of the pre-selected wavelengths

A typical optical emission spectrum acquired from the Applied Materials 5300
with C,Fg etchant is shown in Figure 3.4, along with the corresponding chemical species
associated with chosen spectral lines. Only those spectral peaks associated with the impor-
tant plasma species are chosen as the input variables for regression modeling. An F-distri-
bution test is also employed in order to confirm whether these intensities vary significantly
during the experiment. This test compares the variance of the real-time signals collected
from the factorial experiment and those collected from the baseline runs (i.e., center points
of the DOE). Those variables that have a substantial variation relative to the baseline data
are considered to be sensitive to the equipment settings. More specifically, the F-statistic is

calculated by

g.
g
2
g8 SiF
EF *
Ci
g | C
3 CN or He s 2
[
J ‘\f:
.“-
o 4

2000 2500 3000 3500 4000 4500 5000
wavelength(Angstrom)

Figure 3.4 A typical spectrum collected from the Applied Materials 5300 during the
main etch (etchant is C,Fg) with spectral lines labeled with their corresponding

species.
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2
Satt’ Vall

2
Serr/ Verr

OVainsV¥eens (3. 1 )

where 5%, is the estimated variance of the signals collected during the factorial experi-
ment, 5%, is the estimated variance of the signals collected during the centerpoint runs, 0.
is the probability of type I error (i.e., the probability that a process producing acceptable
values of a particular quality characteristics will be rejected as performing unsatisfacto-
rily), v,y signifies the degrees of freedom in the factorial experiment, and v,,, signifies the
degree of freedom in the centerpoint runs. In our case, v, is 29 and v is 3. Those wave-

lengths having high F-test values are determined to have statistically significant variation.
Using this approach, we selected eight particular wavelengths representing the dominant

chemical species, listed in Table 3.2, as the input variables for building regression models.

Table summarizes the modeling results for different wafer responses. The results
reveal that OES signals have a strong correlation with oxide etch rate and uniformity
because of good R? values? (greater than 0.8), while the OES signals can only explain
50% of the variation in ARDE. Nonetheless, despite the high R? value, the models result-
ing from this method are not suitable for the purpose of prediction. This is because the
high degree of correlation among these i‘nput OES variables induced a multicollinearity
problem, and as a result, the prediction capability of the model could be very poor [3.5].
For example, Figure 10 displays typical wafer-to-wafer time series of intensities for three
different wavelengths (i.e. 251, 288 and 440nm). It apparently shows a strong correlation
among these three variables. As a result, in the model of oxide uniformity, the correlation
between coefficients of first and second variables is 0.8892, so they are almost coﬁelated.

Moreover, we only select eight wavelengths and ignore the rest of the OES variables in

3. The value of the R? statistic is a common measure for regression model goodness of fit. It is a measure of
the proportion of total variation explained by the regression model. A perfect model fit is indicated by an
R? statistic of 1. '
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Figure 3.5 Wafer-to-wafer plots of intensities for three different wavelengths
(upper: 251nm, middle: 288nm and bottom:440nm)

this OLSR modeling. This assumption might not be true and may result in incomplete
models. In order to overcome these problems, other statistical methods including PCR and

PLSR are used as alternatives.

Table 3.2
The distinct wavelengths selected for the ordinary least squares regression model.

wavelength(nm) I possible species I

248 CF

251.6 CF,
258 CF,
288 CF,
385 CN or He
437 C,
440 SiF
467 C,
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Table 3.3 ANOVA Tables of OLSR models for all responses

Response: Oxide Etch Rate

Source DOF SS MS F
Regression 8 38363120 | 4795390 | 18.11299
Residual 20 5294974 264749

R? = 0.88; Adjusted R? = 0.834

Response: Oxide Etch Uniformity

Source DOF SS MS F
Regression 8 9488443 | 11.86055 | 40.52149
Residual 20 5.85396 0.29270

R? =0.942; Adjusted R? = 0.92

Response: ARDE_Center

Source DOF SS MS F
Regression 8 6247.014 | 780.8767 | 3.234707
Residual 20 4828.115 | 241.4057

R? = 0.56; Adjusted R? = 0.392

Response: ARDE_Edge

§ource DOF SS MS F
Regression 8 | 2868347 | 358.5434 | 4.498748
Residual 20 - | 159397 [ 79.6985

R? = 0.643; Adjusted R? = 0.5072

a. This is a modified version of the R? statistic which considers the number of param-
eters of the model and is given by AdjR> = 1-[1 -Rz]#, where n is the

number of observations and p is the number of parameters.

3.3.2. Regression models using PCA reduced variables
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As detailed previously in Section 2.6, PCA reduces the dimensionality of the data
by projecting them onto a low-dimensional space and converting them into a uncorrelated
data set. One important task is to determine how many principal components (PCs) should

be retained in the model. An empirical method is to make a screeplot which indicates the
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0.828
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Figure 3.6 Scree piot oI tne principal COMpONENt analysis oI UL data (tne numoer
shown on the top of each bar indicates the cumulative summation of their explained
percentage of variations of total OES data)
percentage of variation explained by each principal component in the study [3.6]. We

found that seven PCs are adequate to explain 99.9% of process variation (see Figure 3.6.).

The loading plots of the first seven PCs (Figure 3.7) reveal that these PCs consist
mostly of contributions from only 10~20 spectral peaks. The rest of the wavelengths have
only negligible weights in the PCA modeling, which agrees with our previous observation
that only 10~20 spectral lines among the 501 monitored wavelengths can be related to the

variation of the process outputs.

Using the seven PCs with the largest eignvalues, the PCA models can explain 85%
and 95% of the variation in etch rate and uniformity, respectively. Also, an R? of 0.65 is
achieved for the ARDE models. Table 3.4 summaries the variability of the predictors (i.e.,
OES signals) and responses (i.e., wafer-state measurements) explained by the principal
components. The results reveal that the 2nd, 4th, and 7th PCs explain the most of variabil-
ities of oxide etch rate and uniformity. By contrast, the 2nd, 5th, and 6th PCs are more

related to ARDE. The loading plots (Figure 3.7) indicate that CF, lines, especially for

258nm and 288nm spectral lines, are more responsible features than SiF lines.

Since only a few PCs show a strong correlation with wafer states, one variable
selection technique based on the student-t test at the 0.05 significance level is conducted to

reduce the number of PCs used for principal component regression modeling. The results
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show that only 4, 5, 3, 5 PCs are sufficient to explain oxide etch rate, uniformity,

ARDE_center, and ARDE_edge, respectively. Table 3.5 summaries the ANOVA tables for

the models based on these selected PCs.

1stPC
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£ n, 1 i
3 8 & 3'} '?..V .ﬂ 'F' %
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Figure 3.7 The loading vectors of the first seven principal components
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Table 3.4

components (Bold: the PCs selected for PCR models)

Proportion of predictor and response variability explained by principal

X Y(etchrate) | Y(uniformity) | Y(ARDE_cen) | Y(ARDE_edg)
Explained by
Z; 82.8% 12.5% 15.6% 1.22% 3.3%
22 14.8% 55.1% 61.8% 40% 36%
23 1% 0.5% 0.65% 2% 5.8%
24 0.5% 9.4% 5.7% 0.5% 0.2%
25 0.4% 0.04% 5.5% 8.5% 8.5%
Z6 0.2% 1.3% 0.45% 9.1% 12.2%
27 0.2% 9.8% 6.45% 0.68% 11.2%
Unexplained | 0.1% 11.3% 3.7% 38% 25.8%
Table 3.5
The ANOVA Tables for PCR models of all responses.
Response: Oxide Etch Rate
Source DOF SS MS F
Regression 4 37918939 | 9479735 | 39.64236
Residual 25 5739155 239131
R? = 0.87; Adjusted R? = 0.85
Response: Oxide Etch Uniformity
Source DOF SS MS F
Regression 5 95.86826 | 19.17365 | 90.55085
Residual 24 487013 0.21174
R2=0.951; Adjusted R? = 0.94
Response: ARDE_Center
Source DOF SS MS F
I Regression 3 | 5421.432 | 1807.144 | 7.990983
Residual 26 5653.697 | 226.148
R? = 0.49; Adjusted R? = 0.43

44




Chapter 3

Response: ARDE_Edge

Source DOF SS MS F
Regression 5 3154.624 | 630.9248 | 11.09685
Residual 24 1307.692 | 56.8562

R? =0.71 Adjusted R? = 0.65

3.3.3. Regression models using PLS reduced variables

PLS can also reduce the number of terms in the final model. The main difference is
that while in PCA the transformation is only dependent on the variability in the input
matrix X (i.e., OES data), in PLS the transformation depends on both the input X and the
response Y (i.e., wafer state measurements). To determine the appropriate number of vari- -
ables to retain in the modeling, we minimize a criterion called prediction error sum of
square (PRESS) (see Eq.(2.12)). These minimized PRESS statistics indicate that 2-6 vari-
ables (dependent on the different wafer responses) are sufficient to describe the input data
and then used as the regressor for the wafer responses. Figure 3.8 shows the plots of
PRESS versus the number of variables used in PLSR models. Like PCA, the results of
PLS models exhibit good R? values.for oxide etch rate and uniformity, and only moderate

R? values for ARDE. Table 3.6 shows the ANOVA summaries of these PLSR models.
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Figure 3.8 The plots of PRESS for all wafer responses (a) oxide etch rate; (b)
uniformity; (c) ARDE at center; (d) ARDE at edge

Table 3.6
The ANOVA tables of PLSR models for all responses

Response: Oxide Etch Rate
Source DOF SS MS F
Regression 5 39026329 | 7805266 | 38.75869
Residual 23 4631765 201381
R? = 0.894; Adjusted R? = 0.872
Response: Oxide Etch Uniformity
Source DOF SS MS F
Regression 5 96.99312 | 19.39862 | 119.1285
Residual 23 3.74527 0.16284
R? =0.9628; Adjusted R? = 0.955
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Response: ARDE_Center

Source DOF SS MS F
Regression 2 4697.992 | 2348.996 9.577
Residual 27 6377.137 245.275

R? = 0.42; Adjusted R? = 0.38

Response: ARDE_Edge

Source DOF I SS I MS F

et — —— |
Regression 3 2849.2 949.7351 14.719

Residual 26 1613.11 64.5244

R? = 0.64; Adjusted R? = 0.6

A flow chart of the modeling scheme using the OES signals is illustrated in

Figure 3.9.

3.4. Discussion

1
As indicated in the previous sections, an OES sensor can capture the wafer-to-

wafer variations of the oxide etch rate and uniformity. This can be explained as follows:

oxide etch is essentially an ion-bombardment sputtering process, as mentioned in Chapter

Post-Measurement | output
Wafers ————, ing ProMetrix & SEM _:p_+

e o
Real-time - ution
Signals | \ f
PCA "
input
PLS

Figure 3.9 The flow chart of wafer state modeling
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2. The oxide etch rate is dependent on the ion bombarding activity, and thereby relates to
the ion energy (controlled by bias power) and ion flux (controlled by source power and gas
-flow). Because optical emission intensity of discharge is strongly related to source and
bias power levels as indicated in Section 2.5, OES sensor are capable to capture the

changes of ion-bombardment behaviors and thus explain oxide etch rate variations.

The overall limited success in predicting ARDE from OES signals might be due to
several reasons. First, ARDE is only measured at two separate sites on each wafer (one is
in the center and another is in the edge). It may be insufficient to represent the entire
wafer. Secondly, the ARDE measurements are conducted by an off-line cross-section
SEM micrographic readings, and thus may not be accurate. Thirdly, ARDE is not only
related to the ion energy/flux, but rather related to the polymer forming, and chamber wall
and roof temperatures (NOTE: polymer deposition is extremely sensitive to the wall/roof

temperatures [3.9]), which may not be revealed by the OES sensors.

Table 3.7 gives a comparison of all three data reduction and modeling methods. It
shows the number of variables used in each model and the performance of each model in

terms of adjusted R? values. This comparison reveals that performance of PLSR is similar

to that of PCR.

It is also important to examine the role of scaling in the OES data sets. Scaling usu-
ally plays a vital role for the data files with different scale or unit. However, in the OES
data file, most of the data (say, 60-70%) appear to be noise. Scaling, as a result, could give
equal weights to the noise features as that for meaningful spectral features, and thereby
degrade the R-square value of the model. For the good models with a high correlation
between response and OES data such as etch rate, the use of the scaled X matrix could
result in a worse R-square than unscaled X matrix does. For the models with low correla-

tion (R? <0.6), scaling does not show any significant effect on R-square.
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Table 3.7
Summary of the results of chamber state models.
Response: Oxide_ER Response: Oxide_Uniformity
Data reduc- # of R? | Adj.R? || Data reduc- # of R? | Adj.R?
tion method | input tion method | input
vari- ’ vari-
ables ables
———— =
Species 8 0.88 | 0.834 Species 8 094 | 092
Identification Identification
PCA 4 087 | 0.85 PCA 5 0951 094
PLS 5 09 | 0.872 PLS 5 096 | 0.955

tion method

Species

Response: ARDE at center
Data reduc-

Adj. R?

Data reduc-
tion method

Species

Response: ARDE at edge

Adj. R?

Identification Identification
PCA 3 0.49 0.43 PCA 5 0.74 0.66
PLS 2 042 | 038 PLS 3 0.64 0.6

3.5. Summary

Run-to-run chamber state modeling using real-time OES signals is effective in cap-

turing the process variation and explaining the final wafer characteristics, especially for

oxide etch rates and their within-wafer uniformity. In this chapter, three data reduction

techniques are compared. First, Ordinary Least Squares Regression is performed on wave-

lengths selected based on species identification. Two other modeling techniques, Principal

Component Analysis and Partial Least Squares were also introduced to eliminate the cor-

relation among input variables and reduce the input matrix size. The resulting models of

oxide etch rate and within-wafer uniformity were very good in the sense that 85% of the
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etch rate variation and more than 95% of uniformity variation were explained by these
models. However, only less than 60% of ARDE variation can be captured by OES signals,
which might be due to the inaccuracy of ARDE measurements or/and the insufficient
information collected by OES. No modeling technique is overwhelmingly better than the
others, in terms of their R? values. Nevertheless, PLSR generally involves a more complex

computation, and therefore is computationally expensive.
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CHAPTER 4

Wafer-State Modeling Using OES for
Metal Etch

4.1. Introduction

In this chapter we examine the optical emission spectra collected from a commer-
cial transformer coupled plasma (TCP) high-density plasma (HDP) metal etcher at Texas
Instruments (TT) under various machine input settings. Our goal is to describe the relation
between emission intensity variations and machine parameter variations and, most impor-
tantly, the relationship between emission variation and wafer state variation, as illustrated
in Figure 4.1. These optical emission spectra collected during aluminum etch and over etch
of the underlying oxide can be employed in combination with several statistical and phys-
ical techniques to model the wafer states such as etch rate and critical dimension (CD), and

machine states such as coil power and chamber pressure.

4.2. Experiment to Link OES Signals to Metal Etch Variability
This work was conducted on a commercial Lam 9600 TCP metal plasma etch tool

with BCl,/Cl, etchant. The experimental wafers have a 200A TiN/6000A Al-0.5%Cu/
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Machine-state
SEnsors

\/‘\/—\,_\’-T\ plasma etcher

Figure 4.1 An overview of this study.

Wafer-state

200A TiN/SiO, stack covered by patterned photoresist with 0.5um linewidth (see
Figure 4.2). The main etch process was tennipated by the intensity drop of the AlCI spec-
tral line (A=262nm) detected by an interference filter endpoint system, followed by a timed
over-etch process for the underlying TiN and SiO, layers. Several sensors were monitored
in this project, including machine-state sensors such as pressure, gas flow and power sen-
sors, and process-state sensors such as OES. The machine-state sensors were built into the
etcher tool to collect the available machine data at an acquisition rate of 1Hz during the
processing of each wafer. A Chromex spectrograph with a Princeton Instrument 1024 x
256 CCD camera was used in this study to obtain the temporally and spatially resolved pro-
cess-state information. Three optical fibers are connected between the reactor viewport and
the spectrograph. The spectrograph is set up to view the plasma across three distinct
regions arranged laterally above the wafer being etched. The spectrograph was configured
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Photoresist
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Figure 4.2 The TiN/Al-Cu/TiN/Oxide stact (a) before etch, and (b) after etch.

with a split grating, which enabled the entire spectrum to be imaged onto the CCD in two
separate stripes per beam. This split grating provides the desired bandwidth/resolution
combination without having to mechanically scan the grating. In this experiment, the spec-
tral data collection was performed at‘an acquisition rate of 0.33Hz (i.e., 3 second cycle
time). Each spectra has 2042 intensity values in the 245 to 520nm and 530nm to 800nm
range, corresponding to a spectral resolution of less than Inm. A typical optical emission
spectrum acquired from the etcher is shown in Figure 4.3, along with the corresponding
chemical species associated with chosen spectral lines.

Since one goal of this effort was to explain the plasma etch process for a wide vari-
ety of process conditions and across a wide range of setpoints, an experimental design was
created to span the range of setpoints of interest. A blocked, five-level central composite
experiment was conducted on 70 wafers for the five variables: TCP coil power (Watts), RF
bias power (Watts), pressure (mTorr), total gas flow (sccm), and C,/BClj ratio. The devi-

ation from the nominal values of the input settings used in this experiment was +/-
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Figure 4.3 The identification of the optical emission spectra collected from a Lam
9600 TCP metal etcher (etchant: Cl,/BCl,)

10~20%. Several wafer-state parameters were determined after the etch process: Electrical
critical dimension (CD) measurements were taken on a Tokyo Seimitsu tool for the alumi-
num linewidth after etch process (see Figure 4.4(a)). The oxide lost during the over-etch
process was determined by the difference in oxide thickness measured after oxide deposi-
. tion and after etch (see Figure 4.4(b)). As a result, oxide etch rate was calculated as the total
+ oxide loss divided by the oxide etch time (determined by the endpoint trajectory), from
which we determined the oxide etch rate. Both oxide loss and CD were measured for each
of the 32 dies on the wafer. Due to several sensor and measurement failures, only 51 wafers
were used in this analysis. In the following sections, “CD” is used to represent the post-
etch aluminum linewidth, and “oxide etch rate” is used to represent the over-etch rate for

the underneath oxide layer.
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Figure 4.4 Typical contour plots of (a) aluminum CD measurements; (b) oxide loss
measurements. (the unit of the contour plots is angstrom)

4.3. Data Pre-Processing

The variation of OES data at one wavelength has two components: temporal vari-
ation (due to the optical emission intensity changes over time), and spatial variation (due
to the intensity difference of three spatially-resolved spectra at the same spectral line). In
this chapter, we only consider the temporal variation without taking into account the spatial
variation among the three beams of OES signals in order to simplify the analysis. The
details of using the information of the spatial variation and temporal-spatial interaction

variation will be addressed in the later chapters.

4.3.1. OES Temporal Variation
A typical temporal trajectory of optical emission at the CI line (725nm) from one

wafer is shown in Figure 4.5. Note that it is a three-stage process. Stage 1 is the main etch
of the Al layer terminating by the machine endpoint detector (operating at 261nm, i.e.,
AICl line), stage 2 is a brief over-etch process for the underlying thin TiN layer, and stage

3 is an over-etch process for the underlying oxide layer. While described in different
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stages, it is important to note that this is a single recipe etch process, that is, the process
recipe is identical during stage 1 through 3. This within-wafer temporal profile is due to the
fact that different amounts of chemical species are generated or consumed throughout the
etch process. Figure 4.5 also clearly shows that the within-stage variation is much smaller
than the stage-to-stage variation. Therefore, the optical emission intensity during the alu-
minum etch (stage 1) and the oxide etch (stage 3) for each wafer is approximated by the
average of emission intensity over stage 1 and stage 3, respectively. (The TiN etch stage is

ignored in this study)
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Figure 4.5 The temporal trajectory of optical emission intensity for one
wafer at the Cl line

In addition, because each wafer was intentionally processed under different
machine settings, wafer-to-wafer variation of sensor signals is much larger than within-
wafer variation for each etch stage. Therefore, in the following sections, we model the
wafer-to-wafer variation at selected wavelengths for the selected stage of the etch process.
For instance, the wafer-to-wafer variation for the emission intensity at selected wave-

lengths for the oxide etch (i.e. over etch) stage can be examined to see whether it is affected
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by the wafer-to-wafer chamber pressure, TCP coil power variation, or other process vari-

ables.

4.3.2. OES Variable Selection

One challenge worth noting is how to decide which wavelengths should be chosen
to represent the entire set of OES variables in order to determine the temporal variation.
Different wavelengths (corresponding to different chemical species and different excited
states) may reveal totally different temporal profiles. Therefore, much effort has been
devoted towards choosing the appropriate spectral lines to represent the entire spectrum.
We tried two separate approaches. First, only the wavelengths associated with identified
chemical species (e.g., Cl, BC], and Al) shown in Figure 4.3 are chosen as the input vari-
ables for the following regression model. Second, a statistical spectral compression tech-
nique, based on principal component analysis (PCA)[4.1], is employed to extract the
variance of the original spectral data using only a set of principal components (PCs)[4.1].
PCA often reveals relationships that were not previously suspected and thereby allows
novel interpretations, as demonstrated in Chapter 3. As mentioned in Section 2.6, PCA can
find a new coordinate system obtained by rotating the original system, and the new axes
represent the directions with maximum variability. In a sense, PCA captures the wave-
lengths which give the highest intensity variability and describes their linear combination
as principal c;omponents [4.1].

These PCs contain most data variance and are used as the input matrix for model-
ing. It is important to note that although this PCA technique lacks the insights of spectral
identification, it is sufficient to extract the spectral lines giving the most variance by taking
the lines with the greatest amplitudes on the loading plots. The objective of this regression
modeling is to explain the wafer-to-wafer variation (that is, the OE at one wavelength for
one wafer compares with the OE at the same wavelength collected from other wafer). As

long as the PCs capture the wafer-to-wafer variation of the plasma emission, this informa-
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Figure 4.6 Cl line intensity versus machine settings (each line denotes the fitted
linear regression model)

tion is sufficient to explain the corresponding wafer state variation. The details of the PCA

algorithm are described in Chapter 2.
4.4. Results

4.4.1. Relating OES and Machine Variables

The first aspect of this work is to model the temporal mean of OES trajectories
using the machine parameters collected by the machine-state sensors. We first select four
spectral lines including 262nm(AICl), 272nm(BCl), 396nm(Al), and 725nm(Cl) to repre-
sent the entire spectrum. A least-squares linear regression model is determined (y = OES
intensity, x = machine settings) and a student-t test [4.2] is used to examine the significance
of each machine variable. The results show that more than 96% of the emission intensity
variation for either oxide etch or Al etch is simply explained by three machine parameters:
1/pressure, TCP coil power and bias power. In fact, 70~85% of emission intensity variation
can be explained by the TCP coil power variation alone, whereas gas flow, and Cl,/BCl,
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Figure 4.7 Univariate correlation between emission intensity and TCP power over
all 2042 wavelengths in terms of their R-square value.

ratio have a negligible effect on the emission intensity. Figﬁre 4.6 displays the effects of
machine parameters on the optical emission intensities. Similar modeling results are shown
in Section 4.4.2 for the OES data reduced by PCA.

It is worth noting that the correlation between emission intensities and TCP coil
power is a weak function of wavelengths, as shown in Figure 4.7. In other words, the
enhancement or reduction of emission intensities is strongly sensitive the TCP coil power,
rather than their corresponding chemical species. This will be addressed in the following

sections.

4.4.2. Relating OES and Wafer-state Variables

The second aspect of this work is to model the spatial mean of the wafer-state
parameters such as etch rates or CDs as a function of their corresponding OES signals

acquired from one wafer without taking into account the spatial variation of wafer-state
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Figure 4.8 The wafer-to-wafer trajectory of oxide etch rate and emission intensity
values from Cl] line

measurements. The results show that the oxide etch rate can be easily modeled by four selected
wavelengths (adjusted R-square ~ 0.9) with a residual standard error (RSE) of only 1.1A/sec (the
average oxide etch rate is about 18.4A/sec), whereas only an adjusted R-square of 0.036 is
achieved for aluminum CD using the same wavelengths, corresponding to a RSE of 0.014um.
Figure 4.8 shows that the variations in emission intensities are strongly dependent on oxide
etch rate even though only one spectral line, A=500nm (which is not a distinct feature as shown in
Figure 4.3) is used to represent the entire spectrum. This suggests that the changes of oxide etch
rate in this etching condition can be fully explained by emission brightness changes ®R? > 0.9)
regardless of the chosen wavelength’s corresponding chemical species. In other words, the
observed correlation between oxide etch rates and emission intensities is almost independent of
wavelength.
The models are slightly improved if we use a PCA reduced OES data set as input variables.
- A student-t test at the 0.1 significance level is used to select the principal components which should
be retained in the model to explain the variation of wafer-state measurements. This significance
test is conducted for the modeling of the oxide etch rate. Four PCs are selected and the resulting
oxide etch rate RSE is only 1A/sec, corresponding to an adjusted R? of 0.94. However, the wafer-

to-wafer variation of the spatial CD mean is still poorly explained by the PCA-based model. An
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Figure 4.9 Oxide etch rate versus machine settings (each line denotes the
fittied linear regression model)

adjusted R2 of 0.43 is achieved for the model, which relates aluminum CDs to OES sensor

signals, corresponding to a RSE of 0.011pum.

4.5. Discussion

As indicated in the previous sections, in aluminum etch, optical emission intensity
is primarily dependent on TCP coil power, and the effects of pressure and RF bias power
are less significant. This can be explained as follows: despite the fact that the increase of
pressure (Pr) can enhance the ground state density N as shown in Eq.(2.1), P in Eq. (2.1)
tends to drop since the electron temperature decreases with decreasing 1/Pr [4.5][4.6].
Therefore, the optical emission intensity / («< N and P) is less sensitive to the change of
pressure. On the other hand, since electron density is proportional to TCP coil power [4.5],
the increase of TCP coil power leads to a higher P (electron impact excitation function) in
Eq.(2.2). Moreover, a higher concentration of neutrals can be achieved by increasing the

TCP coil power due to increased dissociation of the BCl;. Therefore, the higher TCP coil
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power tends to increase both N and P, resulting in an increase of emission intensity. This
hypothesis is strengthened by Figure 4.7: since TCP coil power controls the emission
intensities for all wavelengths, the correlations between TCP coil power and emission
intensities show little dependence on wavelengths.

Oxide over-etch in this experiment is mostly an ion-enhanced process since low
pressure (favors higher ion bombardment energies) and high TCP power (favors higher ion
flux) are used to enhance oxide etch rate. By contrast, in the case of a chemically driven
process, such as aluminum etch, the concentration of neutral etchant (in this case, the neu-
tral etchants are Cl, and Cl) is the key factor for determining the etch rate. Because neutral
etchants can also be generated through the dissociation of BCls, higher pressure (more Cl,
and BCl3) and higher power (more BCl; dissociation) can both lead to an increase in the
concentration of neutral etchant.

Itis relatively straight forward to explain the poor correlation between CD and OES
signals. First, since CD is a complex function of pressure, etchant concentration, wafer
temperature, and power (favors the reaction between etchant and photoresist so generate
polymer), a linear statistical modeling technique may not be sufficient to explain CD
behavior, as is also suggested by White et al.”[4.3]. Secondly, CD variation is usually an
accumulation of the variation from the previous lithography and thin-film deposition pro-
cesses, as well as the inhibitor-driven etch process. Because there is no pre-etch CD mea-
surement available in this experiment, we are unable to decompose the final CD variation
into lithography-induced CD variation and etch-induced CD variation. Yu et. al [4.4] have
also concluded that CD variation is mostly attributed to the lithography step, rather than
etch step. Because the OES signal only captures the variation due to plasma-induced fluc-
tuation, it is incapable to describe the total CD variation. Lastly, CD variation is not only
related to the plasma intensity, but is also a function of over-etch time. In this work, the

influence of over-etch time has not been considered.
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Figure 4.10 Information captured by machine-state, process-state, and wafer-state
Sensors

4.6. Summary

In this chapter we have demonstrated that the variation of the measured wafer-state
parameters can be sufficiently captured by the measured OES only under certain circum-
stances. Our results suggest the following: (1) optical emission due to the excitéd species
in plasma during Al etching is very sensitive to the variations of TCP coil power, while the
portions of etch rate variation driven by chamber pressure and other machine variables are
not captured well by the OES readings; (2) the variation in oxide etch rate during over-etch
is mainly attributed to the TCP coil power change, and the brightness of plasma emission
is strongly related to the oxide etch rate; (3) the correlation between emission intensities
and oxide etch rates is not a strong function of wavelength; (4) the variation of OES signals
has a direct correlation to the oxide etch rate variation which is driven by ion energy/den-
sity change. OES is less directly relatéd to CD variation which is inhibitor controlled.

As such, a process-state sensor [4.7][4.8] such as OES will have a limited success

in capturing the variations of aluminum CDs. The success of wafer-state modeling is lim-
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ited by the nature of the physical and chemical mechanisms of the etch process, as well as
the sensor efficiency. Specifically, OES analysis is only able to capture the changes of
plasma variables (e.g., ion density, ion energy, and electron temperature) which might not
be the only causes of the etch variations, as illustrated in Figure 4.10. Hence, OES is more
able to capture the plasma-induced etch variation, rather than to capture the variation
induced by non-plasma factors (e.g., wafer temperature). Sensor fusion [4.7] (that is, the
integration of the signals collected by many different types of sensors) is thus needed to
enhance the correlation between the sensor signals and wafer-state variables. An in-situ,
real-time wafer-state sensor may be the ultimate approach to provide a direct measurement

of wafer-states (e.g. CDs) for fault detection and process control.
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CHAPTER 5

CD Modeling and Monitoring Using
SROES for Poly-Si Etch

5.1. Introduction

The variation of poly-Si critica} dimension (CD) has a significant impact in deter-
mining integrated circuit (IC) pexforménce, because of possible device parameter drift and
circuit performance degradation inun;duced by CD non-uniformity. For example, the
microprocessor speed is a function of I3, which is strongly correlated to gate CD [5.1]. In
this chapter, we develop a novel approach to describe plasma-induced poly-Si CD reduc-
tion (also known as undercut) and its spatial variability using the signals collected from a
spatially-resolved optical emission spectroscopy (SROES) system. A Chromex 250IS
Imaging Spectrograph along with a Princeton Instruments TE-CCD-1024E thermoelectri-
cal cooled CCD camera and an ST-130 controller is installed in the Berkeley Microfabri-
cation Laboratory, and is set up to view the plasma across three distinct regions arranged

laterally above the etching wafer. Three full-range spectra are collected simultaneously.
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Figure 5.1 A typical spectrum collected from the Lam 4400 during the main etching
(etchant is Cl,) with spectral lines labeled with the corresponding species.
As a result, the data sets collected by this SROES system contain spatial, temporal and

spectral information of plasma emission.

The separation of the statistical contribution of OES signals is a key step to deter-
mine the spatial uniformity of CDs. However, it is not easy to directly use OES spatial and
temporal information because our OES sensors can only acquire signals in real-time from
three! distinct regions, while CDs are measured off-line at many different positions on each

wafer.

In Section 5.3, CD reduction is modeled using a compressed data set of OES with-
out taking into account the spatial variation among the three beams of the OES signals. In
Section 5.4, we take advantage of the wealth of spatially-resolved and real-time data that
an OES system can provide to characterize the temporal and spatial behavior of the plasma
and to estimate the spatial variation of within-wafer CD measurements. In other words, in

addition to establishing a model to describe the wafer-average CD using OES intensities,

1. The number of beams used in this experiment is chosen after considering the hardware installation com-
plexity, chamber geometrical limit, vertical CCD resolution, and possible acquired data size.
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Figure 5.2 Schematic illustration of three-beam spatially-resolved optical
emission spectroscopy

we also investigate the spatial and temporal emission profiles and relate them to the CD

spatial variances.

Although the optical emission intensities are changing from wafer to wafer, we use
the term, "OES temporal variation”, to describe the variation of real-time OES signals, col-
lected from the duration of the etch process for one wafer in this Chapter. We also use the

term “CD” to describe the etch-induced CD reduction in the following sections.

5.2. Experiment to Link OES Signals to CD Variability

Three-beam in-situ SROES sensors have been installed on a Lam 4400 Rainbow
plasma etcher. The sensor readings are collected simultaneously throughout the etching
process at an acquisition rate of 1 Hz. We have chosen a 150 groove/mm grating in order
to monitor the. 240nm to 790nm spectra with a resolution of 1.2nm/pixel, as shown in
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Figure 5.1. Three optical fibers are connected from the spectrometer to the etcher reactor
viewport of a Lam 4400 polysilicon etcher. The spectrometer is set up to view the plasma
across three distinct regions arranged laterally above the etching wafer, as illustrated in
Figure 5.2. Each OES frame contains 3072 (1024x3) readings. Approximately 50 frames
are collected throughout the main etch process for each wafer. As a result, this SROES
sensor system provides both temporal and spectral information in addition to limited spatial

information.

The analysis that follows was based on a set of designed experiments. We used a
fractional central composite design with 9 center points, resulting in a total of 37 runs. The
input variables for this experimental design are RF power, pressure, gap, total flow, and
Cl,/He ratio (see Table ). The wafers are initially fabricated with a poly-Si film of 4500A
on buffer oxide layer of 1500A, before further lithography and etching processes are carried
out. The photomask was fabricated using a 2-micron design rule. Linewidths are optically
measured off-line both before and after the etching process with nine points recorded for
each wafer, as depicted in Figure 5.3. Once these measurements are complete, CD reduc-
tion can be estimated by subtracting the poly-Si linewidth from its corresponding photore-

sist linewidth, see Figure 5.4. Electrical CD measurement is also conducted for the poly-Si

1 d Beam 3
/3
i Beam 2
..... 4
! %7 5 Beam 1

Figure 5.3 Top view of spatially-resolved OES
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linewidth to verify and calibrate the optical CD measurements. The spatial variance of CD

measurements for one wafer is defined as

Y (CD;-CDY’
i=1 (5.1

n-1

where i is the index of CD measurement ranging from 1 to 9, n=9 is the total number of
measurements?, and CD is the “etch-induced CD reduction”. A gauge study [5.2] was also
conducted to ensure adequate CD inspection capability. This study showed that approxi-
mately 4.5% of the overall CD variation is due to measurement error, while the rest of the

variation is induced by the process.

—>|cpz\+

Post-etch
Figure 5.4 Cross sections of the test structures before and after etching (PR stands for

photoresist)

Table 5.1
Central Composite Experimental design - nominal and extreme settings

Design variables | RF Power | Pressure | Gap (cm) | Totalflow | Cl/He
(Watt) (toor) (sccm) ratio
Central settings 275 425 0.8 580 0.42
Change in per-
centage from 14.5% 13% 12.5% 7% 7%
nominal

2. Only nine points were measured for each wafer in order to reduce the measurement time while retaining

acceptable spatial information., as shown in Figure 5.3
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5.3. Models of Average CD Reduction

This section describes the procedures of the data analysis for two different modeling
methods. To perform this analysis, all experimental data are transformed into a matrix for-
mat. Leta 37 x 1 array Y = [y}, ¥y, ....., 3717 and a 37 x 1024 matrix X represent the sets
of CD measurements of 37 experimental wafers and the measured 1024 optical emission
spectral channels corresponding to the 37 wafers (that is, only one spectral frame for each
wafer), respectively. Xj; is the value of the jth OES channel for the ith wafer, wherei=1,
2,...,37and j = 1,2, ...,1024. The X and ¥ matrices in this study are not scaled.

5.3.1. Principal Component Regression Model
In this analysis, we first estimate the number of principal components that should be

retained in the model by performing a screeplot analysis. Figure 5.5(a) shows that the first
4 principal components are adequate to explain 99.5% of process variation. We retain this
percentage of variance in order to ensure that some of the variation contributed from the
weak3 spectral lines is also included by the selected principal components. Although many
weak spectral lines associated with the chemical species (e.g., SiCl) related to the etching
performance are relatively weak as observed in Figure 5.1, they might be physically signif-

icant and should not be neglected.

The number of principal components retained in the model can be also verified by
cross-validation. A Prediction-Error-Sum-of-Squares (PRESS) statistic is employed by a
jackknife routine [5.3] shown in Appendix A to confirm that 4 principal components give
the least PRESS, as shown in Figure 5.5(b). It also shows that the inclusion of the 5th PC
significantly degrades the PRESS in this PCA analysis.

3. In comparison to some of the strongest lines such Cl,.
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Next, these four principal components are employed in a regression model against

the original response Y. The model is

¥; = z,B: = 0.66 +0.00052z;, —0.0021z;, + 0.0014z;5 — 0.00082z;,, (5.2)

wherei=1, .....,, 37. Itis interesting to note that the 4th principal component has the highest
coefficient comparing with others. Also, the PCR of our OES data shows that the first prin-
cipal component accounts for 88.3% of the total variability of the predictors, the second
principal component accounts for about 7.7%, the third one accounts for 3% and the last
one for 0.5%. However, the fourth principal component explains more variability in the
response than in any other principal components, as listed in Table 5.2. Therefore, one
should not expect principal components to explain variability in responses in the same
order that they do for the variables from which they are formed [2.19]. An account for the
variability of the predictors and responses explained by the principal components is given

in Table 5.2.
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Figure 5.5 (a)The screeplot of OES data; (b) PRESS-statistics
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Table 5.2
Proportion of predictor and response variability explained by principal
components
X X Y Y
Explained by individual | cumulative | individual | cumulative
Z; 88.3% 88.3% 0.5% 0.5%
2 7.7% 96% 35.8% 36.3%
23 3% 99% 2.7% 39%
2 0.5% 99.5% 28% 77%
Unexplained 0.005% 100% 33% 100%

Because the 2nd and 4th principal components appear to reveal a strong effect on
the responses, it might be worth to see the loading plots (i.e., the coefficients of the original
variables) of all four components so as to distinguish the important spectral lines which

might be related to the etching performance. Figure 5.6 indicates that 387nm, 500nm,
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Figure 5.6 Loading plots of the first 4 principal components (the spectral lines
marked are difficult to observe in the original spectrum)
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583nm, 663nm and 703nm peaks are the most significant features, although they are not
revealed by observing Figure 5.1. PCR, in this case, in useful in filtering the spectral data
so as to identify the features which are difficult to observe in the original spectrum, as cir-

cled in Figure 5.6.

The prediction error sum of squares (PRESS) of this fitted model can be determined
by a jackknife iteration [5.3]. The result shows that the value of PRESS of this model is
about 0.168, -which corresponds to a standard error of prediction (SEP)* of 0.2 um. By
comparison, the average standard deviation of within-wafer and wafer-to-wafer CD mea-
surement are about 0.06pum and 0.13um, respectively. These tests suggest that the PCA
model based on the OES signals can not fully explain the CD variations. This will be fur-

ther addressed in Section 5.5.
Another modeling technique, PLSR, will be used in the next section.

5.3.2. Partial Least Squared Regression Model

The PLSR technique operates in somewhat the same way as PCR in that a set of
vectors are obtained from the predictof variables. However, what makes PLSR different is
that as each vector is obtained, it is im.mediately related to the response and the reduction
in variability among the predictors. The estimation of the next vector takes that relationship
into account. Simultaneously, a set of vectors for the responses is also being obtained that

also takes this relationship into account.

To determine how many variables are significant and should be retained in the
modeling, a PRESS statistic can be employed. It indicates that 5 latent vectors are needed
to describe the predictors in order to achieve minimum PRESS, as seen in Figure 5.7. The

PLSR model can be written as

4. SEP = (PRESS/m)"2, where m i the total number of PCs used in the prediction model.
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Figure 5.7 PRESS vs. the number of variables in model

wherei=1,......,37 and ljis the jth latent variable. The residual sum of squares (RSS) of this
PLSR prediction model is only 0.0493 with 31 degrees of freedom, smaller than that
derived from the PCR model which is 0.062. This is expected because we use both X and
Y to construct the model. It is important to note that the purpose of this model is prediction,
while another set of OES sensor data can be projected on the previously constructed latent
structure. Although we do not have additional data set to examine the prediction accuracy
of this model, jackknife is one approach to est.imate the prediction error. Using a jackknife
routine shown in Appendix A, the prediction error sum of squares is about 0.2, correspond-

ing to a SEP of 0.2um, which is similar to that in the PCR model.
5.3.3. Comparison of Models

For the data set used, no one modeling method clearly stands out as the “best” pre-
diction model for CD reduction. Both PCR and PLSR techniques can reduce the parameter
space of the models, although each one of them uses a different approach. The PCR model
has a RSS value of 0.0616 and corresponds to an R-square of 0.67, and a PRESS value of

0.168. Four principal components are used and each one has a different correlation to the
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response parameters (i.e., CD reduction). This information is helpful in the spectral analy-
sis since many small but important atomic spectral lines are often observed by stronger
molecular spectral bands. In our case, we find that the 2nd and 4th principal components
capture significant spectral lines which are not prominent in the original data (see

Figure 5.6). A comparison of the modeling results is summarized in Table 5.3.

Table 5.3
Comparison of modeling methods for CD reduction
RSS R? adji.R*® | SEP (um)
# of variable used
in model
PCR 0.062 4 0.67 0.63 0.2
PLSR 0.049 5 0.8 0.77 0.2

a. Adjusted R? is a modified version of the R? statistics that considers the number of
parameters of the model and is given by adj. R? = 1-(1-R*)n/(n-p), where n is the num-
ber of observations and p is the number of parameters.

Up to this point, we only use the average plasma emission intensity to describe the
etch state for each wafer and no real-time plasma emission information is included in this
modeling framework. From the next section, we will start to include the real-time informa-

tion and relate it to the CD spatial variation.

5.4. Monitoring and Modeling of CD Spatial Variation

In this section, we illustrate how to determine and summarize the statistical spread
associated with the acquired OES sensor readings. The variation of OES data can be char-
acterized by several categories including spectral variation (due to the emission intensity
difference at different wavelengths), temporal variation (due to the optical emission inten-
sity changes over time), and spatial variation (due to the intensity difference for the spectra
collected at different regions in the plasma). In this study, a typical OES data set collected

from all wafers contains 1024 spectral variables x 50 temporal variables X 3 spatial vari-
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ables x 37 wafers. Obviously, it is not easy to utilize all the information contained in this

large number of variables.

We propose a simple approach to decompose the variation of OES signals. This
approach is to determine the deviations of the intensities of selected wavelengths from their
temporal and/or spatial baseline trends. Since poly-Si is etched'by Cl, and Cl [5.5] and the
S/N ratio of Cl, line (A ~ 262nm) is much higher than that of the rest of the spectral features,
the intensities of Cl, reveal useful etch information. Therefore, the Cl, line is selected to
represent the entire spectrum to simplify the analysis and enhance the computational effi-

ciency.

In the following sections, both physical and statistical approaches are employed to
extract the spatial and temporal variation from the original OES sensor readings for a

selected Cl, spectral line.

5.4.1. Extraction of temporal variation of OES signals

In the past, an Auto-Regressive Integfated Moving Average (ARIMA) time-series
model was employed to filter the non-stationary sensor data time-series by a baseline model
and to convert them into a more stationary data series so that a control chart can be
employed [5.6][5.7]. However, although this technique can capture the machine faults asso-
ciated with short-term fluctuation, the difficulty of detecting the optical emission long-term
_ time drift problem (for example, due to window clouding effect) limits its application. In

this section, we propose an alternative approach to extract the temporal variation.

The temporal variance for the Cl, spectral line is determined as follows. Since the
OES trajectory is not a stationary time series (see Figure 5.8), the OES data must be filtered
from a baseline trend. The wafer with a minimum CD spatial variance and a nominal recipe

is selected as a baseline wafer. The first step in the algorithm is to remove the intensity dis-
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Figure 5.8 Typical OES trajectories for different spectral lines.

continuity due to the recipe change (we reduce the power level for the over etch step) by
mean shifting, and then model the baseline trend of the OES signals by a locally weighted
regression smoother’ [5.8], as shown in Figure 5.10. The baseline trend is then normalized
between 0 and 1 to prevent the intensity drift. Once the baseline behavior has been estab-
lished, the normalized OES data from the other wafers are subtracted from the trend model.
The deviations from the trend in the etch time frame suggest a plasma disturbance or a
chemical reaction discontinuity. The qstimated temporal variance of the OES signals ata

selected spectral line can be expressed as

Z (y. _ y:‘rend)Z
e B (5.4)

where y; is the OES intensity at time i, n is the total number of sequential observations, and

;T is the trend model at time i, as given by

5. This particular smoothing algorithm uses locally linear fits. A window is placed about each time point and data
points that lie inside the window are weighted so that nearby points get the most weight and a weighted regression is
used to predict the value at that point. A more complete description of this smoothing algorithm will be provided in
AppendixD. '

79



Chapter 5

N(y;o)

trend Iyi o l
rend _ . .W( ) ¥, ) 5.5
Yi j§1 Yij maxN(yilo)b’i, 0~ J{ =

where j indexes the near neighbor of each data point, N(y; ¢) is the total number of the near
neighbors of point y; o, W is the weight assigned to each point of a neighborhood with a tri-
cube weight function (i.e., W(u) = (I-1) for 0 < u <1; W(u) = 0, otherwise). The values
derived from Eq.(5.4) can be then used to represent the temporal variation of the OES sig-
nals, as illustrated in Figure 5.10.
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Figure 5.9 Poly-Si etched spatial profile vs. OES trajectory.
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Figure 5.10 Temporal variance extraction from the OES trajectories.

One mechanism that might relate the spatial CD signature to the temporal OES sig-
nature is given below: As illustrated in Figure 5.9, point A in the emission trajectory sig-
nifies the time when the underneath oxide starts to expose. Its corresponding poly-Si
thickness profile is shown in Figure 5.9. Point B in the same emission trajectory implies
that the poly-Si layer is fully cleared at Tg. The transition between point A and B indicates
the spatial uniformity of the etch process. Generally, a shorter transition means a better
etch uniformity. Figure 5.11 shows that the A-B transition time of a normal wafer is shorter

than that of an abnormal wafer.
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Figure 5.11 The OES trajectories and CD plots for (a) wafer #2; and (b) wafer #30

5.4.2. Extraction of spatial variation of OES signals for a three-beam sensor

The spatial variation of OES signals is often considered as the intensity differences
among the three beams at a selected spectral feature. However, it is important to note that
the different intensities among the three beams are mostly caused by the sensor collection
efficiency and the unequal plasma volume viewed, rather than the plasma density spatial
non-uniformity. This problem is usually compensated by actinometry, a technique

" described in Section 2 [5.9][5.10]. In this context, actinometry is used to determine the
absolute concentration of chemical species of interest only if the chemicals are suitable and
the ratio of P, and Pz shown in Eq. (2.6) is a constant. In the Cl,/He plasma, it is not ideal
to compare the absolute concentrations in order to determine their spatial distribution.
Nonetheless, since the relative variation of the plasma density is more important than its
absolute value in the application of process control, we propose an alternative approach to
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describe the relative wafer-to-wafer variations of spatial distribution of plasma density and

energy without determining their absolute concentrations.

Consider the emission ratio of the species of interest Z to that of the second inert

species M:

in

[Iz)_ [ N,P,Q0)AzK ]

NuPuQOapAyK |

NzPy
In); ¢ (N mf M)x' .6)

where N, P, O(A), A, and K are defined in Eq. (2.1), and i is the beam index ranging from
1 to 3. For each beam, X is identical and thus can be cancelled. The ratio A, /A, is inde-
pendent of the beam used and can be considered as a constant C. The apparatus function O
also cancels out if the wavelengths of the two lines are similar (i.e., within a few nm to each
other). In our case, the ratio of Py, and P, is a complicated function of plasma variables
(see Eq. (2.2)), and hence can not be simplified as a constant. Therefore, the spatial varia-
tion of emission is related not only to the ground density ratio of species CI and He, but

also to the ratio of their electron impact excitation functions, and can be written as:

NP NP

spatial variation ~ ( ¢t ¢l ) /( cl Cl] 5.7
NHePHe i NHePHe j

where i # j. To simplify this analysis, we assume Ny, Py, is uniform in the chamber since

He is non-reactive throughout the etch process. As a result, Eq. (5.7) can be rewritten as

(NP ey);
(NeiPer);

However, the remaining challenge for this techniques is how to decouple N and P

spatial variance ~ (5.8)

from Eq. (5.7) so that the spatial information of ion density, electron density, and electron
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temperature can be extracted to map CD spatial variances for this Cl,-He plasma. This dif-

ficulty limits the application of actinometry in this study.

Alternatively, an empirical approach is used to extract the spatial variation of
plasma emission. Similar to the method we used to extract the temporal variation from OES
signals, the baseline spatial behavior of selected A (in this case, we use the Cl, line) is also
established from the baseline wafer used in Section 4.1. The “spatial trend” consists of only
three points normalized between O and 1. Then the spatial curves extracted from other
wafers are subtracted from this trend curve. The deviation from the trend suggests a spatial
fluctuation of the plasma. We use a similar expression as shown in Eq. (5.4) to describe the
“spatial variance” of plasma (in this case, n is equal to 3). The physical normalization
approach, in which the emission intensity is converted to plasma density, thus becomes
unnecessary. An overview of this approach is illustrated in Figure 5.12. Note that the tem-
poral variance of emission intensities determined in Section 5.4.1 is an indicator of the tem-
poral variation of chemical reaction, while tl;e “spatial variance” of emission intensities
determined in this section is more of an indica-tor of the behavior of the plasma spatial uni-

formity.

5.4.3. Modeling Results

The extracted spatial and temporal variances are used to estimate the spatial vari-
ance of the CD measurements. The results show that most of the estimated CD spatial vari-
ance is explained by the OES temporal variance, rather than the spatial variance.
Specifically, a least-squares regression fit for wafer-to-wafer CD spatial variance shows
that an adj. R? of 0.82 is achieved by the OES temporal variance alone, while an adj. R? of

0.22 is achieved by the OES spatial variance alone. In this section, we only present the
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Figure 5.12 Extraction of OES spatial variance.

results derived from the Cl, line (A=260nm). Nonetheless, this approach can be easily

extended to other wavelengths as well.

It is hypothesized that the spatial variation of the normalized OES readings is
caused by plasma non-uniformity during the etch process, while the temporal variation of
OES readings is either due to the plasma disturbance, the photoresist profile variation, or
poly-Si film thickness variation, as tabulated in Table 5.4. Because the OES spatial varia-
tion has only a small influence on the resulting CD spatial variation in terms of their low
correlation, this indicates that the plasma non-uniformity may not be the major cause of
CD spatial variation. Instead, the variation resulting from the previous lithography/film
deposition steps, which can be detected by the OES trajectory discontinuity, is more

responsible for the post-etch CD spatial variation.
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Table 5.4
Possible physical causes of the decomposed OES variation.
Variation component Possible Physical Causes
Temporal plasma energy spatial non-unﬁ)rmity,

plasma density spatial non-uniformity,
species concentration spatial non-uniformity,
endpoint detector malfunctions,
poly-Si film/PR thickness non-uniformity

Spatial plasma energy spatial non-uniformity,
plasma density spatial non-uniformity,
species concentration spatial fluctuation

5.4.4. Monitoring of CD Spatial Variation

The previous technique provides a promising way to monitor the wafer-to-wafer CD
spatial variance. Because the extracted components of OES variances described in
Section 5.4.1 are filtered from the normalized baseline trend models, the deviations from
these trends can be also used to establish conventional control charts, based on the assump-
tion that these deviations are normally distriputed random variables. ‘This assumption is
later confirmed by the Fourier analysis [5.41, as seen in the periodogram in the top of
Figure 5.10. Moreover, because the data decor-nposition allows us to model many different
types of variations, the resulting fault detection tends to be more complete compared with

the time-series ARIMA approach [5.7] which only allows us to monitor temporal variation.

To demonstrate this technique’s fault detection capability, we monitor the OES tem-

poral variance by a2 control chart®. These extracted variations generally exhibit the wafer-

6. %2 control chart is based on a hypothesis test that the variance of a normal distribution equals to the base-
line variance. The test statistics for this hypothesis follows a chi-square distribution [5.2]. This test is very
useful in many quality-control applications [5.2]. For example, consider a normal random variable with vari-
ance o2. If 62 is less than or equal to some value, say the baseline 6,2, then the natural inherent scatter of the
process will be well within the design requirements. However, if og exceeds 6,2, then the natural scatter in
the process will exceed the specification limits. Note that this test is based on the assumption that variance of

the baseline process is known, and that the variables are i.i.d. normal.
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to-wafer variation arising from such things as deviations of the emission intensity of Cl,

line from their specified trajectories. A %2 control chart is used for each extracted variance

with a control limit of

2
S,

5.9

2
X e/2,n-1"

(=

where xza/z, n-1 is the o/2 percentage point of the chi-distribution with n-1 degrees of
freedom, 0_‘2’ is the sample variance of baseline wafer, and n is the sample number for each

wafer (n is typically larger than 50 in this case).

The results show that the OES sensors can detect 5 out of 6 wafers having an abnor-
mal spatial CD uniformity, as shown in Figure 5.13. The top chart in Figure 5.13 shows the

actual measured spatial CD variance over wafers, while the bottom chart in Figure 5.13

shows its corresponding OES temporal variance.

5.5. Discussion and Summary
In this chapter, we demonstrate that run-to-run wafer state model using an in-line

sensor is effective in capturing the process variation and explaining 63%~77% of the esti-
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Figure 5.13 The SPC chart of (a) CD spatial variance; (b) OES temporal variance
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‘mated CD variations. Two different modeling techniques, principal component regression
- and partial-least square regression are used to predict the CD reductions of semiconductor
* wafers using OES sensor signals. Neither modeling method is overwhelmingly better than
_ the other. PCR and PLSR show a similar modeling capability. 67% and 80% of the CD vari-
ations can be explained by PCR and PLSR, respectively. Since there is no other set of data
to verify the prediction accuracy for each model, a jackknife method is used to estimate the
prediction error sum of squares. The results indicate that both modeling approaches have a

similar SEP.

Although the results of the wafer-to-wafer poly-Si CD models are acceptable in
terms of their resulting R? values, the goodness-of-fit tests and the high SEP values suggest
- that these models are not good. This may be attributed to two factors. First, as suggested by
White et al. [4.3], the linear modeling approach is not sufficient to explain the CD variation.
They suggest that other non-linear approaches such as non-linear partial least squares anal-
ysis and neural network models appear to show better modeling results. Second, as
described in Chapter 4, the link between CD geducﬁon and plasma emission intensity may
not be significant so that the models based on the OES signals can not fully explain the CD
variations. It is also important to note that the logarithmic emission intensity has also been
investigated as the input space in our modeling schemes, but the results show no improve-

ment.

Nevertheless, we have demonstrated that CD within-wafer spatial variations, rather
than the CD within-wafer averages, can be more readily detected using OES sensor signals.
It has been shown that the single-wavelength approach applied to the OES sensor data can
be used to provide new insights with existing process knowledge. The results indicate that
the majority of the CD spatial variance can be explained by OES temporal profile behavior.

However, since CD spatial variation is not only related to the etch process but also to the
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previous process step as well, OES sensors and conventional statistical techniques are less
able to reveal enough information, unless the temporal variation of OES data is also

included in the modeling.

The next challenge is to implement this technique into manufacturing sites with
tighter process windows. Since the wafers in the IC Fabs are mostly processed under the
same “recipe”, the variations of CD and OES are less significant, compared with the case
in our designed experiment. This may lead to some degree of difficulty in implementation.
Additionally, the three-beam approach is often insufficient to describe the spatial distribu-
tion of plasma. Therefore, we propose an experiment using an alternative scanning SROES
technique in order to establish the observability of spatial OES non-uniformity to plasma
and wafer characteristics with less calibration problems and more spatial resolution. This

technique will be introduced in the next chapter.
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CHAPTER 6

Scanning Spatially Resolved OES

6.1. Introduction

While conventional endpoint detection techniques often provide temporally-
resolved information about the etch process, they do not provide any spatial resolution.
With the emergence of 300mm wafer production, the utility of a spatially-resolved end-
point detector is expected to increase éreatly. While multi-beam SROES is a very promis-
ing method for detecting spatial plasma uniformity, its promise has not yet been fulfilled.
There are several problems that need to be addressed. First, the intensity differences
between OES beams due to the asymmetry of grating efficiency can not be easily normal-
ized. Secondly, when only few beams are used, they are often insufficient to describe the
spatial distribution of plasma. Therefore, we propose an experiment using a scanning
SROES technique in order to observe plasma non-uniformity. We expect to face fewer cal-
ibration problems and enjoy better spatial resolution, using more than 20 viewing “chords”.

The optical emission signatures acquired from scanning SROES will be decom-

posed and normalized so as to map them onto the etch characteristics. We are also compar-
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ing the spatially-resolved emission intensity profiles with the machine endpoint traces
* collected by the etcher. Experiments have been carried out in the Berkeley Microfabrica-
* tion Laboratory in cooperation with Lam Research. The objective of this work is to use
these techniques for providing direct etch spatial uniformity information, as well as for spa-

tially-resolved endpoint detection.

6.2. Previous Work

Several research groups have developed optical diagnostic sensors and algorithms
for measuring 2-dimensional (2-D) or 3-dimensional (3-D) images of plasma, and measur-
ing the spatial distribution of reactants in a plasma reactor. In this section, we briefly intro-
duce their work and sensor designs.

Hareland and Buss [6.1] at Sandia National Laboratories have developed a sophis-
ticated imaging instrument, consisting of a monochrometer with bilaterally adjustable
extrance and exit slits, video camera with video cassette recorder and image processor, as
shown in Figure 6.1(a). The lateral image collected from the plasma etch chamber was
transformed to 3-D spatial maps of emitting' species of the Cl,/He plasma by the Abel
inversion (described in Chapter 3). A patterned 6” Si wafer with poly-Si lines was etched
so as to investigate the relation between local etch rate and radial emission intensity pro-
files of excited atomic Cl. The results show that there is a direct correlation between the
radial emission intensity of atomic Cl and the etch rate for polycrystalline silicon.

Pender et al. at the University of Michigan [6.2] used the Abel inversion to deter-
mine the radial optical emission profile in a parallel plate radio frequency system known
as the GEC Reference Cell. The optical system imaged the parallel light collected from the
emission of Ar discharges at a given height between the electrodes. This image was rotated

by 90 degrees to project parallel] light rays on to a photodiode array for various pressure
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and power settings, as illustrated in Figure 6.1(a). This was repeated for a number of points
across the electrode at various heights. Etch uniformity was also examined in this study.
The results indicated that the non-uniformity of this discharge was directly related to the
etch rates. Buie et al. [6.3][6.4] have conducted a similar experiment to construct the opti-
cal emission radial image at various pressure and power settings for 1024 points across the

electrode, at a given height above the bottom powered electrode for the Ar line at 750.4nm.

plasma side window
f optical fiber
i ; Camera
lens, prisms, monochrometer
pinhole +
B 1 Abel
movable in z-direction Az )
I (z,1)
(a)
pivot
rotational Camera
mirror and monochrometer *
collimator
Radon
movable in z-directi I) (z, ©)
Iy (z, 1)
rotational
mirror and
collimator

(b)

Figure 6.1 Schematic illustration showing the top view of the discharge chamber for
(a) references [6.1][6.2][6.3][6.4][6.5]; (b) reference [6.6].
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- The plasma was monitored for the entire 30 minute etch. The results indicated that the
--plasma emissivity and the etch depth are related.
] Beale et al. [6.5] at the University of Wisconsin-Madison also used the Abel inver-
“ sion of 'line-integrated intensities of Ar emission to characterize the 2-D maps of emission
'in a planar, inductively coupled discharge (ICP) of argon. The collection optics were
mounted on a movable stand outside a 6-inch diameter viewport on the side of the cylin-
drical chamber. The line of sight of the collection optics was oriented to image chords in
planes perpendicular to the chamber axis. Stand positions were selected to include three
heights, and for each of these, several radial positions. The contour plots of the emission
intensity spatial profile for two different Ar pressures were obtained. The results show that
maximum emission intensity in a location which is off-axis and close to the quartz window.
The variation of emission intensity with different power levels was also investigated.

- "Wafer measurements were not included in this study.

Table 6.1
Summary of the previous work related to spatially resolved OES
Reference Plasma Inversion | Lambda(nm)| Published | Wafer-state
: Year correlation
(6.1] Cl,/He Abel 726 (C1) 1993 Yes
[6.2]{6.31(6.4] | Ar; CF,/Ar/O, Abel 750 (Ar) 1993,95,96 Yes
[6.5] Ar Abel 912.5 (Ar), 1994 No
867 (Ar)
f6.6] Ar Radon 419 (Ar), 1991 No
434 (Ar),
396 (Ar)
[6.71(6.8] Ar * * 1996,97 Yes

*: pot available

Miyake et al. [6.6] have applied a more general tomographic method to reconstruct
the optical emission profile of several species in a ring-shaped DC magnetron discharge.

Instead of imaging the parallel light emission. Miyake’s group collected the optical emis-
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sion profiles from two ports at 90 degrees to each other by two identical scanning mirror
systems. In each case, the direction of the slice of collected emission was pivoted about the
point and controlled by the position of a mirror (along x or y, see Figure 6.1(b)) in order to
obtain the radial profile. A series of 100 fan-beam scans in the x-y plane were conducted
and the respective 2-D radial profiles were reconstructed by using the inverse Radon trans-
form [6.6].

Shannon et al. at the University of Michigan [6.7][6.8] also examined a similar
light collection system based on a rotating point sensor at the surface of the view window.
The radial emissivity profile was reconstructed by a regularized inversion algorithm. The
correlation between etch rate and radial emissivity profile was observed. A summary of
their works is tabulated in Table 6.1.

All these previous works use the sensor systems providing either low spatial or
temporal resolution. Moreover, only single wavelength experiments were presented. Here
we report on a more complete scanning OES system with good spatial, temporal, and spec-

tral resolution for the purpose of real-time monitoring of plasma etch processing.

6.3. Instrument Set-up at the Berkeley Microfabrication Laboratory

A Verity Instruments scanning mirror system with an Oriental Motor’s RFK 5-
phase stepper motor is mounted on the viewport of Lam 4400 plasma etcher in the Berke-
ley Microfabrication Laboratory. A set of line integral measurements for a selected spectral
line is collected by scanning the mirror on the x-y plane (see Figure 6.2) with an increment
of AB° over the range of -8° ~ +6°, dependent on the required spatial resolution. The typical
data acquisition rate is 20~30Hz. At this data acquisition rate, the plasma can be scanned
in 1~3 seconds. Each scan cycle consists of line discharge intensity measurements of many
different angular positions in the sweep. Fan-shaped regions of discharge emission are thus
collected by this computer controlled scanning mirror system, which optimizes two impor-
tant variables: scanning speed and scanning steps (that is, the number of stops for each scan
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optical fiber
focal lens

z plasma etcher A~———> pinhole
(| mirror

viewport
(a)

machine endpoint detector

stepper motor L
I ‘ controller

y ext
' ; = N PC

Monochrometer

% optical fiber W Or Spectrometer |~

Data Acquisition card
Lam 4400

(b)
Figure 6.2 Schematic illustration of the scanning SROES set-up and discharge
chamber (a) side view; (b) top view.
cycle), while the scanning angle is given. The angle of each scanning step of the stepper
motor is controlled by the pulse train clock rate sent by a 166 MHz Pentium ™ PC. The

T™ o ftware

driver of the stepper motor is written using the National Instrument’s LabView
package.

A slice of the light emission signals is deflected 90° from x-y plane to z-axis (see
Figure 6.2 and Figure 6.3) by a mirror, and collected by means of a series of UV-grade
fused-silica lens and optical fiber. A 1mm pinhole is placed at the focal point of the focal
lens in order to block out the surrounding background light. The collected light emission
signals are then transferred to an SC Technology DES-310 monochrometer, and thereafter
dispersed by a 600 groove/mm grating system with a spectral resolution of about Inm. The

wavelength can be chosen with the help of a 3-digit LED display which is built into the

monochrometer. Light intensity at this wavelength is then detected by a photomultiplier
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tube (PMT). The snapshots of the emission are triggered by the acknowledge signals of the
stepper motor to ensure the data acquisition takes place only when the stepper motor is
stepped. The data acquisition rate is therefore equal to the number of scanning steps per
second.

A DC voltage between 0 and 10 volts is applied to adjust the gain of the PMT. The
resulting analog output of the monochrometer (i.e., the light emission counts at a selected
wavelength) is sent into National Instrument’s AT-MIO-64E-3 data acquisition card via a
BNC cable. The lateral image of plasma is recorded for each scan. As a result, a high spatial
resolution (e.g., 20 steps per scan) can be achieved while the temporal resolution (e.g., scan
cycle time ~ 1 second) of plasma imaging is still acceptable. It is important to note that the
viewing angular range of this scanning OES is determined by the geometry of the etching
chamber. Figure 6.3 depicts the geometry of the etch chamber and the scanning OES sys-
tem.

Even though our objective is to collect full spectral data (as reported later in this

thesis), we initially collected single spectral lines. In this context, it is crucial to choose a

P

¥,
2

Figure 6.3 Geometrical illustration of the etch chamber (Lam 4400) and optical
paths of the scanning mirror '

97



Chapter 6

. proper monitored optical emission line which has high signal-to-noise (SN) ratio, and most

* importantly, relates well to the wafer-state parameter of interest such as the etch rate. In the

~ case of polysilicon etch, we can choose the endpoint wavelength of 262 nm which corre-

- sponds to the Cl, concentration, or 405nm which is related to SiCl. We chose the 262nm
in this experiment because of its high S/N ratio. The machine endpoint signals are also
simultaneously acquired from the SECII port on the machine and sent to the acquisition
card. Their optical emission traces are displayed together on the computer screen for com-
parison.

In an additional experiment, we have also collected full spectral-range data using
an SC Technology SentryTM 4001 spectrograph with an image intensifier. The scanning
spatial images of 512 different wavelengths can be simultaneously collected throughout
the etch process. Because the time for acquiring a spectrum is longer than that for the
single-wavelength case, the typical acquisition rate is about 20 steps per cycle, resulting in
a scan cycle time of 2.6 seconds. Table 6.2 lists the scanning rates and cycle times for

single-wavelength and full-spectrum SROES, respectively.

Table 6.2
The optimized scanning SROES system settings
Scanning SROES monochrometer spectrometer
System

Data acquisition rate 25Hz 10Hz

Scan steps per cycle) 25 20
Cycle time 1 second 2.6 second

viewing angle (degree) ~35 ~43

One challenge in designing this scanning SROES system is to optimize the scan-
ning steps and acquisition rates while keeping the cycle time as short as possible, in order

to maximize the temporal and spatial resolution. Figure 6.4 depicts the “resolution” trade-
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offs. Case 1 illustrates an OES system with a high spatial resolution (e.g., small step angle)
but low temporal resolution (e.g., long cycle time). Case 2 illustrates an OES with a high
temporal resolution (e.g., high scanning rate, long cycle time) while the spatial resolution
is low. Case 3 illustrates an ideal system in which both temporal and spatial resolutions are
high. One obvious solution to achieve high temporal and spatial solutions is to increase the

speeds of microprocessor/microcontroller, data acquisition routines and motor motion.

First cycle scan

time

time time

- : ; > >
spatial points spatial points spatial points

(a) Case 1 (b) Case 2 (c) Case 3

Figure 6.4 Schematic “resolution” plots for three different SROES systems with (a)
high spatial resolution and low temporal resolution; (b) low spatial resolution and
high temporal resolution; (c) high spatial resolution and high temporal resolution. (*
denotes data point at time t and spatial point s)
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6.4. Experimental Design Used to Collect Scanning OES Data

The experiment includes two phases. In the first phase, a simple experiment is con-
ducted in order to examine the spatially-resolved endpoint detection capability using this
scanning SROES system. The experiment includes seven 4” wafers which are covered with
30nm gate oxide and 400nm poly-Si films without patterns on the wafers. All wafers are
processed under the same baseline recipe (listed in Chapter 5) on a Lam 4400 poly-Si

etcher. The detector used in this experiment is a monochrometer turned at 262nm.

Table 6.3
Machine settings for a 24 experimental design
Input settings Low Center- High
point
I RFTopowaws) | 210 | 300 | 330 |

RF Bottom (Watts) 135 150 165

Pressure (mtorr) 11 12 13

HBr/Cl, flow ratio 2 3 4

In the second phase, a two-level, fouf-factor, full factorial experiment with four
center points is conducted on a Lam 9400 hiéh—density plasma etcher with an etchant of
Cl,/HBr. The experimental variables are pressure, RF top electrode power, RF bottom
electrode power, and HB1/Cl, gas flow ratio (see Table 6.2). The OES used in this phase
is a SC Technology Sentry™ 4001 full spectral-range spectrometer. A typical optical emis-
sion spectrum collected from Lam 9400 is shown in Figure 6.5, which is quite different
from the spectrum collected from Lam 4400 (etchant is only Cl,) as shown in Figure 5.1.
The spatial profiles are collected at 512 wavelengths ranging from 200nm to 1024nm with
a resolution of 2~3 nm/pixel. The data are collected throughout a 60-second timed main
etch plus a 20-second timed over-etch under various etching conditions. All poly-Si film is

removed completely after the etch process. Off-line oxide thickness measurements are per-
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formed both pre- and post-etch on the Nanospec. Thirteen points are recorded for each

wafer.
Wavelength(nm)
200 400 600 800 1000
Si
Si
]
=
@D
g
"‘é >
(%)
w
o
w0
o
<
o 13 T L2 L3 Ll L
0 100 200 300 400 500

pixel number

Figure 6.5 A typical spectrum collected from the Lam 9400 during main etching
(etchant is Cl,/HBr) with spectral lines labeled with their corresponding chemical

species.

6.5. Data Analysis

6.5.1. Phase 1: Single Wavelength
A typical two-dimensional spatial profile collected from this scanning SROES

system with monochrometer is shown in Figure 6.6. The most interesting feature of these
spatial images is their temporal dependence. In order to distinguish the plasma-induced
emission variability from the background noise, one needs a high S/N ratio of the emission
signals at a selected wavelength. Therefore, the SROES is operated at 262nm (the strongest
Cl, line) in this experiment. Figure 6.7 depicts a typical evolution plot of plasma spatial

profile at the 262nm spectral line. One can clearly identify the endpoint from this plot. In
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order to further eliminate the noise induced by the non-plasma factors, careful data smooth-
. ing, both along time axis as well as along © axis, is sometimes necessary. In those cases, a

. locally-weighted smoothing technique is used.

OES profile at various times from 55.6 to 83.6 secs.
0'45 1 L] L] ¥ L) L]

0.4

0.35

o
v ©
o W

OES intensity
o
N

0.15
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Angular position number

(a)

OES profile at various times from 54.8 to 82.8 secs.
3.5 L) L] L] L) L) LJ

N
N 0
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L)
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(b

Figure 6.6 Typical plasma lateral profiles collected by scanning SROES with
monochromater turned at (a) 405nm; (b) 262nm
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Figure 6.7 The temporal evoluﬁon of spatial plasma images (at 262nm) before
.smoothing.

The next challenge is to extract a spatially-resolved endpoint from this plot.
Because the trajectory of plasma emission might evolve differently, depending on the
angular point, an empirical approach is presented here to detect the spatial uniformity of

endpoints: first, we take the ratios of the OE intensities of the adjacent scanning cycles, that
is, we determine the value of

where R; ; is the intensity ratio, and J; ; is the smoothed OE intensity at cycle i and angular

position j. In an uniform etch process, the ratio should be independent of the angular posi-
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tion and is approximately a constant for each scanning cycle. By reconstructing a 3-D plot

“ based on these ratios Rz‘,j as a function of time and angular position (see Figure 6.8(a)), we

can observe that the ratio profiles are mostly independent of angle during the main-etch and

over-etch period, but become dependent on angle while the wafer is undergoing endpoint.

In other words, this “spatially-resolved time dependence” means that the spatial profile of

OE evolves at different rates while the etch process is at endpoint. This information can be

further used to monitor the etch uniformity.
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Figure 6.8 (a) OE intensity ratios v.s. time, and (b) its corresponding §; plot

A statistical score §; is defined by the standard deviations of R;; dividing by the

mean of R; ; at cycle i, that is,

n 0.5
> (R ;~R; ) Vn-1)

=1

(6.2)

F
D R ;in

J=1
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where n is the total number of angular points. This score is an indirect measure of the
changes of the spatial profile at cycle i as shown in Figure 6.8(b), and can be used to predict

the etch uniformity.

It is important to note that no direct information of etch uniformity is available in
this experiment because the poly-Si film is removed completely during the etch process.
Nonetheless, etch uniformity can be indirectly extracted by measuring the post-etch oxide
thickness after the over-etch process, based on the assumption that etch rate non-unifor-
mity mainly contributes to plasma non-uniformity rather than poly-Si film thickness non-
uniformity. This data set can be used to verify the fault detection capability of this scanning
SROES. Figure 6.9 shows the charts based on the spatial variance S; and the corresponding
over-etch uniformity. One can see that some wafers with large etch non-uniformity can be

captured by the §; chart.
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Figure 6.9 Control chart based on (a) statistical score §;, and (b) over-etch
uniformity
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-6.5.2. Phase 2: Multiple Wavelengths
While single wavelength spatial profiles, collected at high speed, conserve the pur-
~pose of process monitoring and control, a full spectral fingerprint of plasma emission, even
with a relatively low scanning rate, can be comprehensive means of process diagnosis. In
this section, our scanning system incorporates full-range spectroscopy to acquire the scan-

ning 3-D images of plasma at multiple wavelengths, so as to characterize the plasma etch
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Figure 6.10 Arrangement and decomposition of a three-way array of
scanning OES data set
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process. The scanning rate is set at 20 steps per cycle, which corresponds to a cycle time
of 2.6 seconds and a scanning angle that spans about 43 degrees. The data provided by this
full-spectral scanning SROES require additional computation. In this section, we propose

three different approaches to deal with these data sets.

6.5.2.1. Signature Analysis

To investigate the plasma images for one wafer, the measurement data is organized
into a three-dimensional array X (¢ X A X 0 ), in which 8 is the angular point ranging from
1 to 20, A is the wavelength, and ¢ is the cycle number. The different wavelengths are orga-
nized along the vertical side, the measurement angular points are organized along the hor-
izontal side, and their time evolution is revealed along the third dimension, as illustrated in
Figure 6.10. Each horizontal slice through this array (see Figure 6.10) is a 6 X # data matrix
representing the time trajectories of emission intensities for all the angular points at a
single wavelength A. Each vertical slice (see Figure 6.10) is a A X ¢ matrix representing the
evolution of spectra at a specified angular point S. Each slice on a A X 6 plane represents
the spectral evolution along different angular points at a specified measurement cycle ¢.

Figure 6.11 shows typical (6,2) plots at 252nm (Si) and 838nm(Cl) lines, respec-
tively. In this example, this specific wafer has undergone a long, three-step process: step 1
is the main etch for the poly-Si fﬂm, step 2 is the over-etch process for the underlying thin
gate oxide, and step 3 is the continuous over-etch process for the underlying Si substrate.
Si emission intensity appears to be higher during the Si etch steps than that during the oxide
over-etch. On the contrary, Cl intensity is lower during the Si etch step compared with that
during the oxide over-etch process. Figure 6.12 shows a typical I(A, ¢) plot at 6 =10 (central
angular point), and Figure 6.13 shows a typical I(A, 8) plot during the 10th scanning cycle

(midway through the main etch process).
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Figure 6.11 Typical I(6, t) trajectory at (a) 252nm; (b) 838nm.

Figure 6.14 shows these emission signatures at different top-electrode power lev-
els. It reveals that power has a stronger effect on the optical emission intensity levels, rather
than that on the spatial or temporal profiles. Similarly, these emission profiles show little
dependence on the bottom-electrode power, pressure, and HBr/Cl, gas flow ratios. In the
future, with higher scanning speed and spectral resolution, these plots may be used as the
signatures of the plasma chamber conditions. One possible application of the 3-D emission
signature database is that it can be used to characterize and monitor the plasma and

machine conditions with “inert” plasma without processing expensive test wafers.
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Figure 6.12 Typical I(A,t) plots at the central angular point (a) full spectral range plot,
(b) 500-1000nm spectral range plot, (c) full spectral range image plot (NOTE: for
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Figure 6.13 Typical I(A,8) plots at the 10th scanning cycle (a) full spectral range
plot, (b) 500-1000nm spectral range plot, (c) full spectral range image plot
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Figure 6.14 I(), ), I(A, t), and I(6, t) plots at different top electrode power levels
(a) 270 W, (b) 330 W.

6.5.2.2. Ratio Analysis

As seen in Figure 6.4, the light collected by the scanning OES system outside the
process chamber is actually the total emission along a linear path through the process
chamber. The linear paths correspond to chords through the circular chamber, and their
lengths differ according to their angular position. The total emission received at the detec-
tor is the integral of the local emission along that path length. Due to the difference of these
collection chords, bell-shaped curves are usually observed. Since this geometrical factor in
the Si signal is also present in the Cl signal at the same acquisition, the spatial profiles can
be corrected by normalizing the Si emission intensity by that of Cl, in order to visualize the

true spatial profiles. This is seen in Figure 6.15, in which we take the ratio of the normal-
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Si/Cl ratio

angular point

Figure 6.15 A typical ratio plot of normalized spatial-temporal profiles of
1(252nm)/1(838nm)

ized !spatial-temporal profiles of two different wavelengths. Note that the temporal infor-
mation is still retained in this plot, while the spatial profile is normalized. This information

can be used to indicate the spatial uniformity of the plasma emission, allowing an indirect

observation of spatial etch variability.

6.5.2.3. Principal Component Analysis

A statistical data compression technique, Principal Component Analysis (PCA),
can be also implemented to compress the spectral information into few principal compo-
nents. In this way, the plots depicted in Figure 6.12 and Figure 6.13 can be reduced to those
shown in Figure 6.16 and Figure 6.17, respectively. In addition, by extending the PCA
compression shown on Figure 6.16 to all angular points, we can construct the spatial-tem-
poral profiles for the first four principal components (PCs), as depicted in Figure 6.18.

In comparison to the similar profiles sampled at the selected wavelength (see

Figure 6.11), the profiles based on the compressed PCs are more difficult to interpret phys-

1. the spatial-temporal profiles are normalized for a total range for 0 to 1 before taking the ratio.
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ically. However, there are several advantages in using the PCA approach. First, the spectral
information is statistically filtered to only a few components so that no chemical identifi-
cation is necessary. Secondly, because the geometrical factor associated with the spatial
profiles is mostly included in the lower order PCs, as described in Section 6.5.2.2, higher
order PCs often contain more information of plasma emission disturbance than that of
lower order PCs (however, in this case, the PCs higher than 4th order just contain white
noise). For instance, the 2nd PC shown on Figure 6.18, reveals the etch transitions at dif-
ferent angular points without the typical bell-shaped spatial profiles. Additionally, the 3rd
and 4th PCs shown on Figure 6.18 reveal the emission disturbances during etch transitions.
By enhancing the scanning speed, this PCA approach can be incorporated with the frame-
work proposed in Section 6.5.1 in order to extract the spatial etch uniformity. Thirdly, PCA

is essentially a data smoother which can automatically move the data noise to the higher

order PCs, while smoothing the profiles of the 1st and 2nd PCs.
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Figure 6.16 Temporal profiles at the four principal components after PCA
compression (the first four PCs explain 94% of the variability of optical emission)
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Figure 6.17 Spatial profiles at the four principal components after PCA compression
(the first four PCs explain 98% of the variability of optical emission)
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Figure 6.18 PC(6,t) plots of the spatial profiles of the first four principal
components
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-6.6. Discussion

It is worth noting that the Abel inversion [6.9][6.10] is not used in this study. Abel
inversion is a pure mathematical technique applied in the study of extended radiation
source with cylindrical symmetry. It was proposed [6.1][6.2][6.31[6.4][6.5][6.7] to elimi-
nate the geometrical factor of the collected plasma emission spatial profile by inverting
Abel’s integral equation, assuming the light source is optically thin and axially symmetri-
cal. However, the success of this technique is heavily relied on many geometrical assump-
tions and the low signal noise [6.9](6.10].

Because the geometrical factor of the collected plasma emission spatial profile is
independent of its corresponding measurement time and wavelength, the temporal and
spectral dependence of the spatial image collected by our scanning SROES system can still
be revealed without utilizing the Abel inversion.

The post-etch remaining oxide thicknesses are measured for all wafers. Their
within-wafer variations are also determined and plotted in Figure 6.19(a). Note that the
oxide layers on some wafers are etched comp}etely during the etch process, and therefore
no oxide layer remains for these wafers. The résults from the rest of the wafers indicate that
wafer # 4 shows large etch rate variation. Figﬁre 6.19(b) shows the spatial-temporal plots
based on the 3rd and 4th PCs, as well as the plot based on its ratio analysis results (see
Figure 6.19 (c)). These patterns do not exhibit any significant difference when compared
to those of normal wafers. This might be due to the fact that the spectral (i.e., chemical),
spatial, and temporal resolution of the full spectrum scanning SROES system used in this
experiment is insufficient to reveal enough etch information, which will be addressed next.

Several issues are important for the implementation of the scanning SROES sys-
tem. First, the sensitivity of the SROES system must be higher than the noise level in order

to detect the etch-induced emission variability.
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Figure 6.19 (a) oxide etch rate uniformity of wafer #4 and its contour plot, (b) its
corresponding spatial-temporal plot based on 3rd and 4th PCs, and (c) its
corresponding ratio plot of wavelength 252nm and 838nm.

Secondly, the scanning SROES is only able to detect the plasma-induced etch vari-
ability, but not the etch variability due to other factors such as wafer temperature, lithog-
raphy non-uniformity, film defects and polymer deposition.

Thirdly, the scanning rate of this system has to be very high in order to remove the
confounding effect between temporal resolution and spatial resolution, as described in
Section 6.3. Since the typical endpoint transition lasts 1~3 seconds, a fast scanning SROES
with short scan cycle time is required to detect the spatially-resolved endpoints.

Lastly, high spectral-resolution spectroscopy is important for detecting the minor
species such as etch by-products. However, high resolution spectroscopy requires a detec-

tor with many pixels (e.g., 1024 or 2048 pixels). The acquisition time associated with this
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high-resolution system is usually longer, thereby degrading the scanning rates and hence
‘ increasing the scanning cycles. Thus, optimizing the temporal, spatial, and spectral resolu-
tions of the scanning SROES system is crucial for a potential application. For the purpose
of process control and etch uniformity monitoring, a high scanning rate system with a
monochrometer is acceptable, as long as the key spectral line is determined apriori. For the
purpose of process diagnosis, full spectral-range spectroscopy with high spéctra.l resolution
is necessary in order to investigate the emission signatures from many different chemical
species simultaneously, despite the fact that the scanning rate of this system may be signif-
icantly lower than the monochrometer case. Presently, an integrated system with both high

scanning rate and high spectral resolution is under construction.

6.7. Summary

In this chapter we have demonstrated a novel approach to monitor etch spatial uni-
formity. Much effort has been devoted to build a scanning SROES system, which enables
us to monitor the plasma variability with high spatial and temporal resolutions. We first
attempt to use this system with a monochrometer as a “spatially-resolved endpoint detec-
tor”. The results show that the time dependence of the spatial profiles is indeed more
important than the profiles themselves. This framework has also been extended to a scan-
ning SROES with a full spectrometer. The obvious advantage in using the spectrometer is
that we can monitor a large number of different chemicals, allowing us to characterize the
plasma even at the cost of losing the temporal resolution (because of the longer scanning
cycle time). We have proposed three different approaches to analyze these data sets. It
appears that none of these approaches is able to relate these scanning profiles to wafer
states. The PCA is a more statistically robust approach compared to other empirical
approaches, but may be too difficult to interpret practically, and may also need additional

computational resources.
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In order to maintain a high acquisition rate while still having high spectral resolu-
tion, an improved scanning OES system with improved software and better hardware
design is being built. This new system can acquire signals with a potential maximum acqui-
sition rate of 100Hz with an adjustable spectral range. The signals collected by this
improved system can be used as fingerprints of the plasma emission conditions. One future
direction is to analyze these fingerprints with the help of the signal processing algorithm
such as Fourier Transformation [6.11] to extract the etch-induced emission disturbance.
Moreover, this system possibly can be used to investigate the Cl, plasma density spatial
profiles using Ar as an actinometer [6.12]. That is, the spatial profile of the ratios of the
selected Cl and Ar lines can be used to indicate the spatial distribution of the plasma den-
sity in-situ and in real-time. The result also can be confirmed and further investigated by

the traditional Langmuir probe [2.8].
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CHAPTER 7

Conclusion and Future Work

7.1. Thesis Summary

This thesis presents a methodology for estimating etching performances using the
information provided by real-time OES sensors. The sensor readings were first collected
throughout the oxide plasma etching processes and then used with existing statistical
techniques to model etch rate, etch rate spatial uniformity, aspect-ratio dependent etch-
ing. Various modeling techniques such as Principle Component Analysis (PCA), and Par-
tial Least Squares (PLS) have been employed to relate the various OES signatures to
etching performance. The results show that 87% of oxide etch rate variation and more
than 95% of the variation in their within-wafer uniformity can be explained by these
models, although the OES signals can only explain 65% of the variation in aspect-ratio
dependent etch (ARDE).

We then examined the optical emission spectra collected from a commercial high-
density plasma metal etcher under various machine input settings. Similarly, these optical

emission spectra collected during aluminum etch and over etch (i.e., oxide etch) steps can
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be employed in combination with several statistical and physical techniques to model the

-wafer states such as over-etch rate and aluminum critical dimension (CD), and machine
states such as TCP coil power and chamber pressure. This study is based on the optical
emission spectroscopy (OES) system installed on a Lam 9600 TCP high-density plasma
(HDP) metal etcher at Texas Instruments (TI).

Our study shows that OES is only superior in capturing the variations of few
machine variables such as TCP power. Specifically, our results indicate that more than 80%
of the wafer-to-wafer plasma light-emission variation is explained by TCP power alone,
while chamber pressure and bias power can only explain a small portion of variation. Addi-
tionally, we observe that OES is more sensitive to the variations in the etching process
driven by ion-bombardment than to the variations driven by the inhibitor-driven mecha-
nism. In other words, the implementation of OES sensor for monitoring the etch variability
is dependent on the etch mechanisms. Our results suggest that OES sensors are better able
to capture oxide etch rate variation (more than 94% of wafer-to-wafer variation is
explained), while only less than 44% of CD variation is modeled by OES under the same

experimental conditions.

Although the OES sensor is capable of continuously collecting spectra in real-time,
this study only looked at a single spectral snapshot per wafer. Hence, we develop
methods for characterizing the time behavior of the plasma. These methods allow us to
incorporate real-time data into our models, thus increasing the accuracy of our
predictions. Most of this effort has been devoted to decompose the variations of signals
acquired from a spatially-resolved optical emission spectroscopy into several
components, which provide valuable information of etch spatial uniformity. We have
proposed an empirical approach to extract the variability of OES signals. It is conducted

by the temporal and spatial signature analysis of a selected wavelength. The results show
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that the CD spatial variation is mostly explained by the temporal, rather than their spatial
component of sensor signals. The monitoring of the spatial CD variation in-situ is also
accomplished by a statistic describing the variation of the real-time OES signals This
SPC scheme is employed to indicate tfle nature of the CD spatial non-uniformity.

The scanning SROES provides another way to monitor the spatial variability of
etching by enhancing the spatial resolution of the SROES sensor, as illustrated in
Figure 7.1. The time dependence of the spatial emission profiles is used to resolve the
spatial endpoints. The information extracted from the 3-D spatial profiles is further used
to monitor the spatial uniformity of etch process. This project is also extended to a full-
spectrum scanning OES system, in which we can achieve high resolution of spatial, and
spectral information (see Figure 7.1), however, at the expense of temporal resolution.
Potentially, these color 3-D signatures can be used to characterize the plasma conditions.

In summary, we believe that the information provided by the OES sensors can be

categorized into three parts: First, the emission intensity level at selected wavelengths
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Figure 7.2 A schematic illustration of the relations among etch variability, plasma

variability, and OES detection capability (not in scale).
can be used to characterize the density of excited species. This might relate to etch
activity that depends on the etch mechanisms; Secondly, the ratio of the intensities of
two selected wavelengths can be used to normalize the intensity drift and relate to the ion
density (e.g., actinometry), for selected wavelengths; Thirdly, the emission profiles,
including both temporal and spatial profiles, can be used to indicate plasma and etch
uniformity.

Nevertheless, there are several issues related to the implementation of OES sensors.
First, an OES sensor can only partially explain the causes of etch process variability.
Because etch process involves a wide variety of reactions among molecules, atoms, ions,
and electrons, an OES sensor is only capable of capturing the density variability of the
chemical species visible on the collected spectrum. It is still questionable whether the
OES sensor is able to detect other non-plasma factors such as wafer temperature,

chamber wall temperature, polymer deposition, thin film uniformity and quality, and
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lithography variations, which also have significant impact on the wafer. As a result, the
emission signals collected from the OES sensor relate more to etch rates, rather than
selectivity, etch-stop, anisotropy, plasma damage, and microloading effects. Figure 7.2
illustrates the observed relations among the etch process variability, plasma variability,

and OES detection capability.

7.2. Future Work

Although the methods developed in this study are based on OES data collected
from plasma etchers, the methodology presented is general and can be applied to other
types of equipment and sensor readings. For example, multivariate data collected from RF
monitors, or residual gas analysis (RGA) sensors can be used in the same manner. More-
over, this methodology can also be applied to other semiconductor equipment that can be

monitored by a multivariate sensor.

By comparison with other in-situ OES sensors, our unique full-spectral range scan-
ning SROES sensor, providing a high }esoluﬁon spatial and spectral information, is prom-
ising in the application of in-situ process control and monitoring. The temporal resolution
(i.e., acquisition rates) can be enhanced by a faster microprocessor/microcontroller.
SROES can be further extended to monitor the spatially-resolved endpoints and character-
ize the plasma conditions. For example, the plasma etch equipment can be conditioned by
the scanning OES signatures, instead of using monitor wafers. Statistical data filters such
as PCA may be utilized to compress the spectral information so that a compressed 2-D
spatial plot based on principal components is extracted for the characterization of the
plasma conditions. The etch transition detection method based on PCA and jump linear
filtering [7.1] might be another solution that will determine the spatially-resolved end-

points.
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Appendix A

S-plus Code

A.1 The Splus routine for quick principal component analysis

> PCA
function (X)
{
nr <- nrow(X)
nc <- ncol(X)
Xbar <- apply(X, 2, mean) # mean of columns (length=nc)
Xout <- outer(rep(l, nr), Xbar) # rows of Xbar repeated nr times
Xc <- X - Xout # Centered X
XXt <- (Xc %*% t(Xc))/nr # XXt instead of XtX
o <- eigen(XXt, symmetric = T) # do eigendecomp. of XXt
V <- matrix(0, nr, nc)
V <- t(X) %*% oSvectors # get e-vectors of XtX

vV <- t(t(V)/apply(V, 2, vecnorm)) # make all e-vectors unit
length
list(scores = ((X - Xout) %*% V){, 1l:nr - 1], loadings = V[, 1l:nr -
1],
center = Xbar, var = (oSvalues)[l:nr - 11])

)

The bootstrap routine for cross-validation

> PCACV
function(X, y, maxFactors)
{
N <- nrow(X) # total number of samples (wafers)

resid <~ matrix(0, N, maxFactors) # residual (prediction error)
matrix

PRESS <- numeric(maxFactors) # prediction error sum of squares
for(i in 1:N) (
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# Do PCA on all samples except one
‘pcobj <- MYPC(X[ - 1, 1))
for(j in 1l:maxFactors) {
# Fit y to linear model of the first j scores (with intercept)

lsobj <- lsfit(pcobj$scores[, 1:j], y[ - il, intercept

= T)
# Predict the excluded sample and calculate residual (pred. error)
Xc <- X[i, ] - pcobj$center # center X([i,]
sco <- t{as.matrix(Xc)) %*% pcobj$loadings[, 1:3j]
# scores .
pred <- sum(as.numeric(sco) * lsobj$coef[-1]1) + lsobj$
coef[1]
resid[i, j] <- pred - yl[i]
PRESS[j] <- PRESS[j] + (resid[i, Jj))~2
)
cat(*i=", i, *“\n")
}
list(resid = resid, PRESS = PRESS)

A.2 The Splus routine for partial Jeast-square analysis

> PLS1.pred
function(X, y, maxa)
{

Xc <- scale(X, center = T, scale = F) # Center each column

yc <- scale(y, center = T, scale = F)

nr <- nrow(Xc)

nc <- ncol (Xc)

w <- matrix(0, nc, maxa) ## Correlation between inputs/response
tt <- matrix(0, nr, maxa) ## Scores

p <- matrix (0, nc, maxa) ## Input loadings

gg <- as.numeric(0) ## Response loading (length=maxa)

# for prediction
aveX <- apply(X, 2, mean) ## avg. of columns (a vector, length=nc)
aveY <- mean(y) ## (a scalar)

b <- matrix(0, nc, maxa) ## Beta for prediction

b0 <- matrix(0, 1, maxa) ## Offset (constant term)

a<-1

while(T) (
v <- as.numeric(t(Xc) %*% yc)## (yc assumed to be a column
matrix)

wl, a) <- v/sqgrt(sum(v * v))
## loading weights (unit length)

tt[, a) <- Xc %*% w([, a) ## input scores
v <- as.numeric(tt[, al)
inv <- 1/sum(v * v)
pl, a] <- t(Xc) %*% tt[, al] * inv ## input loadings
gqgf{a) <- sum(yc * v) * inv ## response loading
Xc <- Xc - as.matrix(tt[, a]) %*% t(pl., al)
yc <- yc - tt[, a] * gqla)

## Coefficients for prediction. Model: y = b0 + Xb

b(, al] <- w[, 1:a] %*% solve(t(p[, 1:a)) %*% w[, 1:al) %*% qqgll:a]

bo[, a)] <- aveY - sum(aveX * as.numeric(bf, al)) # (scalar)
## convergence criteria
if(a == maxa)
break
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if{a == nr - 1) break
# if (sum(diag(t(Xc) %*% Xc)) <= 5) break
# if (sum(abs(yc)) <= le-10) break
a<-a+1
}
# return values and names
list(weights = w, scores = tt, loadings

=p, =499, E=Xc, £ =yc, b
= b, b0 = b0, aveX = aveX, aveY =

aveY)
)
A.3 The Jacknife routine for cross-validation

> PLS1CV
function(X, y, maxFactors)
{

N <- nrow(X) # total number of samples (wafers)

resid <- matrix(0, N, maxFactors) # residual (prediction error)
matrix

PRESS <- numeric(maxFactors) # prediction error sum of squares

for(i in 1:N) (
# Do PLS on all samples except one
obj <~ PLSl.pred(X[ - i, 1, y[ - i], maxFactors)
# Predict the excluded sample and calculate residual (prediction
error)
# for each number of PLS factors
for(j in l:maxFactors) (
resid[i, j} <- (ob3i$bO[, j) + sum(X[i, ] * objs$b(. jl)
) - yl[i]
PRESS{j] <- PRESS[j] + (residf[i, j])~2
}
cat(*i=", i, "\n”)
}
list(resid = resid, PRESS = PRESS)
)

A.4B I- ﬁ ! I . - QES ] (3

> OES.temp
#temporal plots at selected wavelength for each wafer for exp2
#Mc: pixel number. (Mc=34 => 262nm)
function(Wafl=2,Waf2, Mc=34)
{
OES1 <- numeric()
OES2 <- numeric{)
DEV <- numeric()
VAR <- numeric()
wafNameList <- character()
par (mfrow=c(3,1))
# determine the trend model

trend <- matrix(scan(“oes_st2/waflé6”),ncol=1024,byrow=T)
leng <- nrow{trend)
for(qg in 1:30)(
if (trend[g+2,Mc] > 3*trend(q,Mc]){
m <- (g+3)
break
}else(
m <-1
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}
for(j in 40:(leng-1)) (
if (trend[j+1,Mc] < 0.5*trend[j,.Mc])){
n <- j-1
break
}else (n<-leng)
}
trend <- trendim:n,Mc]
trendO_trend
LL <- length(trend)
for (k in 20:LL){
’ if(trend[k)==min(trend[20:LL])) (
no0 <- k
break
}
else{ )

shift<- trend(no0-1)-trend[n0+2]
trend <- c(trend[l:(n0-1}], (trend[(n0+2) :LL}+shift))

trend <- (trend-min{(trend))/(max(trend)-min(trend))
trend <- supsmu(l:length(trend),trend, span=1/40,bass=10)$%y

# read data

for(i in wafl:Waf2) {
if(i < 10) {
wafPrefix <- “waf0”
} else {
wafPrefix <- ‘“waf”
}

wafNamel <- paste(“oes_stl/”,wafPrefix, i, “.stl”, sep = “")
wafName2 <- paste(*oes_st2/”,wafPrefix, i, sep = “")
wafName3 <- paste(“oes_st3/”,wafPrefix, i, “.st3”, sep = "*%)

Wl <- matrix(scan(wafNamel,numeric()),ncol=1024,byrow=T)
W2 <- matrix(scan(wafName2,numeric()),ncol=1024,byrow=T)
W3 <- matrix(scan(wafName3,numeric()),ncol=1024,byrow=T)
t <- nrow(W2)

title <- paste(“wafer *,i,”\n")

#In this matrix, col is wavelength, row is time;

if (i'=34 & i!=4 & i!=5 & 1!=20 & i!=24 & i!=27 & 1!=30)(
# Remove the zero points
if (Mc==34){(
for(g in 1:30)
if (W2 [g+2,Mc] > 3*W2[q,Mc])(
m <- (g+3)
break
}else(
m <-2

}
for(j in 10:t-1) (
if (W2[j+1,Mc) < 0.5*W2([j,Mc]){
n <- j-2
break
}else (n<-(t-1))
}

cat(i,m,n, "\n")
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W1

w2 <-
W3

L0 <-
D1 <-
D2 <~
D3 <~
diffwl
diffw2
diffws
diffwl
diffw2

diffw3
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Wil[m:n,Mc]
W2 [m:n,Mc]
W3 [m:n,Mc]
length(W2)

supsmu (1:L0,W1l,span=1/40,bass=10)$y
supsmu (1:L0,W2, span=1/40,bass=10) Sy
supsmu (1:L0,W3,span=1/40,bass=10) 8y

_diff(D1)
_diff (D2)
_4iff(D3)

_supsmu(l:length(diffwl) ,diffwl,
span=1/10,bass=20) $y

_supsmu (l:length(diffw2) ,diffw2,

span=1/10,bass=20) $y
_supsmu(l:length (diffW3) ,diffws,
span=1/10,bass=20) Sy

for (k in 20:length(diffwil)-3)(

)

if(aif

}
cat(i,
Title
shift<
new <-
normal

trendl
dev <-

fWl(k)==min (AiffW1([20:1length(diffWl)-31)) {
nl <- k
break
}
else{ )

m,nl,n,”\n”)
<- paste(“wafer#”,i,sep="")
- Wl[nl]-Wilinl+2)
c(Wi[l:nl1], (W1[(nl1+2):LO0]l+shift))
<- (new-min(new))/(max(new)-min(new))

<- approx(trend,n=length(normal)) Sy
normal-trendl

plot (Wl,ylab="Cl_stl”,6xlab="etch time”,

type="b”" ,main=Title)

plot (new,ylab="Cl_stl”,xlab="etch time”,

type="b" ,main=Title)

plot (dev,ylab="deviation”,xlab="etch time”,

OES1 <
OES2 <

type="1",main=Title)
- c(OES1,Wl)
- c(OES2,new)

DEV <- c(DEV,dev)

var <- cbind(i,sum(dev~2)/(length(dev)-1))

)

VAR <- rbind(VAR,var)

par (mfrow=c(2,1))list (trend=cbind(l:length(trendl), trendl),
OESl=cbind(1l:1length(OESl1),0ESl),

OES2=cbind(1l:length (0OES2),0ES2),

DEV=cbind(l:length(DEV),DEV))

plot (OES1,xlab="time",ylab="0ES Intensity(Cl2)”, type="1")
plot (OES2,xlab="time” ,ylab="0ES Intensity(C1l2)”,type="1")
plot (DEV, xlab="time”,ylab="Deviation”, type="1")

Plot (VAR, xlab="wafer order”,ylab="Temporal Variance”, type="b")

)
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par (mfrow=c(4,2))
timeall <- numeric()
unif.all <- numeric()
#default parameter

# s is angular point

s <- 10
# t is cycle number
t <- 15

for (i in wafl:waf2)(

OES <- numeric()

OESnew <- numeric()

cycleNameList <- character()

cat (paste(*waf”,i,” is loading”,sep=""),"\n")

wafername <- paste(“wafer *, i, sep="")

cycl <- 0

cyc2.matrix <- cbind(c(1:15),c(89,36,19,95,0,84,79,84,85,81,
82,80,38,61,21)-1)

if (i==cyc2.matrix[i, 1)) {cyc2 <- cyc2.matrix(i,2])}

# read data from ASCII format

if(i < 10) (
waferPrefix <- “wafer00”
} else (
waferPrefix <- “wafero0”
)
wafname <- paste(“*data/”,waferPrefix,i,”/”,sep="")

for(j in cycl:cyc2) (
if(j < 10) {
cyclePrefix <- “cycle00”
} else {
cyclePrefix <- “cycle0”
}

cycleNamel <- paste(wafname,cyclePrefix, j,”.dat”, sep = **)
cat (paste(“cycle”,j,” is loading”,sep=""),"\n")
W <- matrix(scan(cycleNamel,numeric()),ncol=2,byrow=T)

OES <- rbind(OES,W)
}

time <- matrix(OES[,1],ncol=20,byrow=T)

cycletime<~ time[3,1]-time[2,1]

cat (paste(“Cycle time for wafer#7,i, “ is “, cycletime,” seconds”,
sep=ﬂlf) , If\nll)
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OES <- OES[,-1]

# arrange the data set into a 3-4 array format
OES <- matrix(OES,ncol=20,byrow=T)

# row:time; col:spatial points ==> OES[t, s]

# Plots of one-dimentional signatures

# par (mfrow=c(2,1))
Sp <- c(1:20)
Time <- c(cycl:cyc2)*cycletime

# plot spatial profile

plot(Sp,0ES|[t,],xlab="angular points”,ylab="0ES intensity”, type="1")
# plot temporal profile

plot(Time,OES[, s) ,xlab="cycle number”,ylab="0ES intensity”, type=“17,
main=wafername)

# Plots of two-dimentional signatures

par (mfrow=c(1,1))
persp (Time, Sp, OES, xlab="time(sec) ", ylab="Angular
point”,zlab="0OE intensity”,cex=0.7)
zlab="0E intensity”,cex=0.7)
if (i <10){

printnamela <- paste(“plot.waf0”, i,”.ps”,sep=""))
else(

printnamela <- paste(*plot.waf”, i,”.ps”,sep=""))
printgraph{file=printnamela)

# Extract OES time dependence
if (smooth==T) {
# smoothing
datal.l <- numeric()
data <- numeric()
#cycle
m <- nrow (OES)
#spatial point
n <- ncol (OES)
# smooth x-axis
for (i in 1:m){
D1.1 <- supsmu(l:n,OES[i,],span=1/40,bass=10)8$y
datal.l <- rbind(datal.1,Dl1.1)
)

# smooth y-axis
for (j in 1:n){
D1l<- supsmu(l:m,datal.l[,j],span=1/40,bass=10) Sy
data <- cbind(data,Dl)

)
)
else(
data <- OES
}

totaltime <- nrow(data)
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time <- numeric()
uniformity <- numeric()
ia <- 2

ib <- 19

offset <- 10

par (mfrow=c(2,2))

if (i == 12)(offset <- 7}

for (k in 15: (totaltime-offset)){
OESratio <- datafk+l,ia:ib)/datafk,ia:ib]
OESnew <- rbind(OESnew, OESratio)
time <- rbind(time, Time[k])

unif <- var (OESratio[]) /mean(OESratiol[])
uniformity <- rbind(uniformity,unif)
}

persp (time, Sp[ia:ib], OESnew,xlab="time(sec)”,ylab="Angular point”,
zlim=c(0.8,1.2),zlab="It/It-1")
if (i <10)¢(
printnamela <- paste(“3Dratio.waf0”, i,”.ps”,sep="")}
else(
printnamela <- paste(“3Dratio.waf”, i,”.ps”,sep=""}}
printgraph(file=printnamela)

# determine the spatial uniformity information
par (mfrow=c(2,2))
plot(x=time,y=uniformity, type="1",xlab="time”,ylab="",
ylim=c(0,0.00012))
if (i <10){
printnamela <- paste(*unif.waf0”, i,”.ps”,sep=""))
else{
printnamela <- paste(*unif.waf”, i,”.ps”,sep="")}
printgraph({file=printnamela)
unif.all <- rbind(unif.all, uniformity)
cat(“waiting........ ","\n")
)
par (mfrow=c(2,1))
plot(unif.all,xlab="time”,ylab="",type="1")
}

A.6 Routine for read and analysis of the scanning SROES data (spectroscopy case)

function (wafl,waf2, pca=T, nor=F)
{

par (mfrow=c(2,2))

#default parameter

#s is angular point

s <- 10
#t is cycle number
t <- 10

# tranfer pixel number to wavelength
pixel <- matrix(c(1,36,54,512),ncol=1)
lambda<- matrix(c(200,262,309,1024),ncol=1)
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a <- coef.lm(lm( (lambda~pixel))) [1]
b <- coef.lm(lm( (lambda~pixel))) [2]

X <- ¢(1:512)
wavelength <- a + b*x

for (i in wafl:waf2)(
OES <- numeric()
cycleNameList <- character()
cat (paste(*waf”,i,” is loading”,sep=""),”"\n")
wafername <- paste(“wafer “, i, sep="")
cycl <- 4
cyc2.matrix <- cbind(c(1:20),¢c(29,32,32,34,28,31,27,28,29,30,29
,28,31,25,29,28,28,27,29,29)-1)
if (i==cyc2.matrix[i,1])(cyc2 <- cyc2.matrix[i,2])

# read data from ASCII format
if(d < 10) ¢(
waferPrefix <- “waf0”
} else {
waferPrefix <- “waf”
)
wafname <- paste(“data/",waferPrefix,i,”/”",sep="")

for(j in cycl:cyc2) {
if(3 < 10) ¢
cyclePrefix <- “CYCLEOO”
) else (
cyclePrefix <- “CYCLEO”
}

cycleNamel <- paste (wafname,cyclePrefix, j,”.DAT.d", sep = "%}

W <- matrix(scan{cycleNamel,numeric()),ncol=513,byrow=T)

OES <- rbind(OES,W)
)

time <- matrix(OES[,1],ncol=20,byrow=T)

cycletime<- time(3,1)-time(2,1]

cat (paste(“Cycle time for wafer#",i, * is ™, cycletime,” sec-
onds”,sep=""),"\n")

OES <- OES[,-1]

# arrange the data set into a 3-d array format

OES <- array (OES,dim=c (20, (cyc2-cycl+l),512))

# Plots of one-dimentional signatures

# plot spectrum

plot (OES([s, t,},xlab="pixel number”,ylab=*OES intensity”,type="1")

par (new=T, yaxs="d")

plot (x=wave-
length,y=0ES(s,t,],axes=F,type="1",1ty=2,xlab="",ylab="",mex=0.1)

axis(side=3)

mtext (side=3,1line=3, "Wavelength(nm) ")

par (yxas="r")

write(t(OES[s,t,]),ncol=1, file="spectrum”)
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# plot spatial profile

# pixel 36 is the main Br peak, Pixel 407 is Cl line

Mc <- 36

Mc2 <- 407

pPlot (OES [, t,Mc),xlab="angular points”,ylab="0OES intensity”", type=*1")

plot (OES[, t,Mc2] ,xlab="angular points”,ylab="0ES intensity”,type="1")

plot (OES(, t,Mc]/OES[,t,Mc2],xlab="angular points”,ylab="0ES inten-
sity”,type="1")

# plot temporal profile

plot (OES[s, ,Mc],xlab="cycle number”,ylab="0ES inten-
sity”,type="1”",main=wafername)

Time <- c(cycl:cyc2) *cycletime

Sp <- c(1:20)

if (pca == T){
par (mfrow=c(3,3))
OESPCAl <- numeric()
OESPCA2 <~ numeric()
OESPCA3 <- numeric()
OESPCA4 <- numeric()

for (k in 1:20){

OES.PCA <- PCA(OES[k,,])$scores[,1:4)

OESPCAl <- cbind(OESPCAl,OES.PCA[,1])

OESPCA2 <- cbind(OESPCA2,0ES.PCA[,2])

OESPCA3 <- cbind(OESPCA3,O0ES.PCA[,3])

OESPCA4 <- cbind(OESPCA4,0ES.PCA[,41])

)}

cat (dim (OESPCAl), *“\n")

persp (Time, Sp, OESPCAl,ylab="angular point”,xlab="time (sec
ond) 7, zlab="PCl")

persp(Time,Sp,OESPCA2,ylab=”angu}ar point”,xlab="time (sec
ond) ", zlab="PC2") ’

persp (Time, Sp, OESPCA3,ylab="angular point”,xlab="time (sec
ond) 7, zlab=paste (“PC3",sep=""))

persp (Time, Sp, OESPCA4,ylab="angular point”,xlab="time (sec
ond) ", zlab="PC4") '

if (i <10)¢(

printname <- paste(“T_W_PC4.waf0”, i,".ps”,sep="")}

else(

printname <- paste(“T_W_PC4.waf”, i,”.ps”,sep="")}

printgraph(file=printname)

)

if (pca == F)({(
# Plots of two-dimentional signatures
par (mfrow=c(1,1))
persp (Time, wavelength,OES([s,,],xlab="time (sec)",ylab="wave-
length(nm)”,cex=0.5)
if (i <10)(
printnamela <- paste(*T_W.waf0”, i,”.ps”,sep=""))
else(
printnamela <- paste(“*T _W.waf”, i,”.ps”,sep=""))
printgraph(file=printnamela)

par (mfrow=c(1,2)) .
image (Time,wavelength,OES[s,,],xlab="time (sec)”,ylab="wave
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length(nm}”,cex=0.7)
if (i <10){

printnamelb <- paste(“T_W_image.waf0”, i,".ps”,sep=""))
else(

printnamelb <- paste(“T_W_image.waf”, i,”.ps”,sep=""))
printgraph(file=printnamelb)

par (mfrow=c(1,1))
persp (Sp,wavelength[],OES[, t,],xlab="angular point”,ylab="Wave
length(nm) " ,cex=0.6)
if (1 <10) (¢
printname2a <- paste(“S_W.waf0", i,”".ps”,sep="")}
else(
printname2a <- paste(*S_W.waf”, i,”.ps”,sep="")}
printgraph(file=printname2a)
par (mfrow=c(1,2))
image (Sp,wavelength,OES[, t, ] ,xlab="angular point”,ylab="Wave
length(nm)”,cex=0.7)
if (1 <10)¢
printname2b <- paste(“S_W_image.waf0”, i,”.ps”,sep="")}
else(
printname2b <- paste(“S_W_image.waf”, i,”.ps”,sep=""})
printgraph(file=printname2b)

# normalize the temporal and sptail profiles to between 0 and 1
if (nor == T){

else

par (mfrow=c (2,2))
t0 <- 10
ia <- 3
ib <- 17
OES1 <- (OES[ia:ib, ,Mc)-min(OES[ia:ib,t0,Mc]))/(max(OES[ia:ib,t0,Mc])
-min (OES(ia:ib, t0,Mc]))
OES2 <- (OES([ia:ib, ,Mc2]-min(OES([ia:ib, t0,Mc2]))/
(max (OES[ia:ib,t0,Mc2])-min(OES[ia:ib, t0,Mc2]))
persp(Sp[ia:ib],Time,0E5170E82,x1ab="”,ylab:'",cex=0.7,zlab:")
persp (Sp, Time,OES[, ,Mc2],xlab="angular point”,ylab="Time(Sec) ", cex=0.7)
persp (Sp, Time,OES[, ,Mc]l/OES[, ,Mc2],xlab="angular point”,
ylab="Time(Sec)”,cex=0.7,zlab="Br/Cl ratio”)
}
{
par (mfrow=c(1,1))
t0 <- 5
persp (Sp, Time,OES[, ,Mc] /OES[, t0,Mc] ,xlab="angular point”,
ylab="Time (Sec)”,cex=0.7,2zlim=c(0,2.5),z1lab="0ES intensity”)
persp (Sp, Time,OES[, ,Mc2], xlab="angular point”,ylab="Time(Sec)"”,cex=0.7)
persp (Sp, Time,OES[, ,Mc]l /OES[, ,Mc2],xlab="angular point”,
ylab="Time (Sec) ",cex=0.7,zlab="Br/Cl ratio”)
image (Sp, Time, OES [, ,Mc],xlab="angular point”,ylab="Time (Sec)")
if (i <10)(
printname3 <- paste(*S_T.waf0”, i,”.ps”,sep="")}
else(
printname3 <- paste("S_T.waf”, i,”.ps”,sep=""))
printgraph(file=printname3)
}
)

cat(“*waiting........ ”,"\n")

)
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A.7 Routine for wafer-state contour plot

function(wafl, waf2, loess = T){
uniformity <- numeric()
# col 1 in map is the die number, col2 and 3 are the site address
map <- matrix(scan(*map”), ncol = 2, byrow = T)
num_nrow (map)

par (mfrow = c(1, 1))
del <-c(2,5,6,9,10,14,16,20)
for(i in wafl:waf2) (
if (i'= 2 && i!'=5 && i!=6 &&i!=9 && 1i!=10 && i!=14 && il=16&& 1i!=20) {
cat (paste("waf”,i,” is loading”,sep=""),"\n")
wafername <- paste(“wafer”,i,sep="")

## read data from ASCII format
if(1i < 10) (
waferPrefix <- “*waf0”
} else (
waferPrefix <- “waf”
}
wafname.pre <- paste(“pre/”,waferPrefix,i,sep="")
wafname.post <- paste(“post/”,waferPrefix,i,sep="")

oxide.pre <- matrix(scan(wafname.pre,numeric()),ncol=1,byrow=T)
oxide.post <- matrix(scan(wafname.post,numeric()),ncol=1,byrow=T)
oxide <- (oxide.pre - oxide.post)

unif <- sqgrt(var(oxide)) /mean(oxide)

unif <- cbind(i,unif)

uniformity <- rbind(uniformity, unif)

# fomatting data

topo <- cbind(map(, 1], mapl, 2], oxide)
dimnames (topo) <- list(l:num, c(*x", “y", “27))
topo <- data.frame (topo)
# plot

.

if(loess) ( -

#1. contour plot

topo.loess <- loess(z ~ X * y, topo, degree = 1, span= 0.50)
resid_topo.loessS$residuals

topo.mar <- list(x = seq(l, 9, 0.5).,y = seq(l, 9, 0.5))
topo.lop <- predict(topo.loess, expand.grid(topo.mar))

contour (topo.mar$x, topo.mar$y, tope.lop,xlab="" ,ylab="",
levels=seq(min(topo.lop) ,max(topo.lop),30),labex=0.5)

points (topo)

)

)

}

par (mfrow=c(2,1))

plot (x=uniformity(,1]),y=uniformity([,21,xlab="wafer number”,
ylab="etch uniformity”, type="b”)

printgraph(file="uniformity plot.ps”)
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Appendix B
MATLAB Code

B.1 Scanning OES Profile

% GRAPH_EX

% This programs reads the scanning OES data from the file and creates
% a 3D plot. If desired, will create ps files of plots:

%

% oes2dxx.ps 2d profile

% oes3dxx.ps 3d profile

% oes_enptxx.ps machine endpoint

$ .

% You may wish to change axes and labels on graphs.

% Constants

Y m~mmm—————

fnum = 20; % File number

print_fig = 1; $ 1 = print figures, 0 = no printing
print_parse = 1; % 1 = create parse data file, 0 = no file

tstep = 0.025; % Sample period (in secs)

SICL = 405; % Spectral lines

CL2 = 211;

line_num = SICL; % Line wavelength, used in determining

% constants for parsing data

% Data parsing contants

pkwid = 8; % max. width of the beginning peak
pksep = 90; % min. separation between peaks
if (line_num == SICL)

pkht = 0.1; % min. height of the peak
else % for Cl line

pkht = 1.0;
end
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% Read OES data from file

% x0 Scanning OES data

$ fix Fixed OES data

% to Time

disp(‘Reading OES data from file...’);
[x0,fix,t0] = read_soes(fnum);

10 = length(x0);

tint = [tO0(1l) :tstep:t0(10)~-tstepl’;

% Parse data into cycles

§ cmmcmcccr e cc e -

% Data (t0,x0) is interpolated to create (tint,xint) where the
% the time spacing is uniform. The interpolated data is then
% partitioned into cycles in the matrix 2

% Z2(i,j) = OES value of i~th cycle, j~th position

% Tm(i) = time of the beginning of the i“th cycle

$ Parse data routine

tint = [tO(1) :tstep:t0(10)-tstep]’;

disp(‘Parsing and interpolating OES data...’');
[xint,pkloc,Tm, 2] = parse_soes(t0,x0, tint,pkwid, pksep,pkht);
[n,per) = size(Z);

% Output matrix Z to file
if (print_parse)
disp(‘Creating parse data file...’);
fn = sprintf(‘sroes%02d_parsed’, fnum);
fid = fopen(fn, ‘wt’);
if (fid <= 0)
error ('Cannot open parse data file’);
end )
for i = 1:n
fprintf (fid, '$12.4e “, 2(i,:));
fprintf (fid,’'\n’);

end
fclose(£id);
end
% Plot data
§ mmmmnma—a

% Figure 1: OES profile at various times
ta = 20; tb = 30; % min. and max. cycle numbers to plot
ia = 45; ib = 77; % min. and max. angular position numbers to plot
plot([ia:ib)’, Z(ta:tb,ia:ib)’):
xlabel (‘Angular position number’);
ylabel (‘OES intensity’);
title_str = sprintf(‘OES profile at various times from %$4.1f to %4.1f
secs.’, ... Tm(ta),Tm(tb));
title(title_str);
if (print_fig)
set (gcf, ' InvertHardcopy’, ‘on’);
prtstr = sprintf(‘'print oes2d%02d4 -dpsc’, fnum);
eval (prtstr);
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end
disp(‘Hit any key to continue...’);
pause;

$ Figure 2: 3-D plot oF OES data

ta = 1; tb = length(Tm);

mesh([ia:ib]’, Tm(ta:tb) , Z(ta:tb,ia:ib)):
view([1l 1 1]);

Zmax = max(max(2));

axis([ia ib Tm(ta) Tm(tb) 0 Zmax]):

xXlabel (‘Angular position number’);
ylabel('Time (secs.)’);

zlabel (*OES intensity’):

title('Scanning OES profile’);

if (print_f£fig)
set (gcf, ' InvertHardcopy’, ‘on’);
prtstr = sprintf(‘print oes3d%02d -dpsc’, fnum);
eval (prtstr) ;

end

disp(‘Hit any key to continue...’};
pause;

$ Figure 3: 3-D plot oF OES smoothed data/ or Ratios
? A is the smoothed Z data file via splus

ta = 5; tb = length(Tm)-7;

mesh([ia+3:ib-3)', Tm(ta:tb) , A(ta:tb,ia+3:ib-3));
view([1l 1 1));

$Zmax = max(max(A));

axis({ia ib Tm(ta) Tm(tb) 0.7 1.3]));
xlabel ('Angular position number’);
ylabel('Time (secs.)’);

zlabel {‘OES intensity ratio (smoothed)’);
gtitle(‘'Scanning OES profile’);

if (print_£ig)
set (gcf, 'InvertHardcopy’, ‘on’});

prtstr = sprintf(‘print oes3d$02d_smoothed -dpsc’, fnum);

eval (prtstr);
end

disp(‘Hit any key to continue...’});
pause;

% Figure 4: Machine endpoint
% machine endp

ta = 800;

tb = 3995;
plot(t0(ta:tb),fix(ta:tb));
axis([tO(ta) tO(tb) 0.7 1.2]));
title('Machine endpoint’);
xlabel (‘Time (secs)’);

ylabel (*OES intensity’);

if (print_£fig)
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set (gcf, ‘InvertHardcopy’, ‘on’);
prtstr = sprintf('‘print oes_enpt%$02d -épsc’, fnum);
eval (prtstr);

end

ﬁ*i*t*tQtit*tt**i***&*’t’*'***it*it***i'***f*ﬁ*****'*tﬁtﬁiiﬁtt#ﬁ**i*.*

function [xint,pkloc,Tm,Z] = parse_oes(t0,x0,tint,pkwid,pksep,pkht)
% PARSE_SOES Parses scanning OES data into cycles

% .

%  [xint,pkloc,Tm,Z] = parse_oes(t0,x0,tint,pkwid,pksep,pkht);
%

% Parsing:

A

% 1. Raw data (t0,x0) is first interpolated onto time vector

% tint to produce xint.

%  2.'The beginnings of the sweeps are identified by a small

% peaks. The small peaks are defined by the parameters pkht,
% pkwid and pksep. Using these parameters, the peak locations
% are determined and stored in the vectors pkloc, and Tm.

% 3. Data is organized into by cycles in the matrix Z.

%

% Arguments

[ A

% 10 Time values for OES data.
% %0 OES data at time values t0.

% tint Time values to interpolate data.

% pkwid Maximum width in data points of peaks

% pksep Minimum separation between peaks in num. data points
% pkht Minimum height of peak

%

% xint Interpolated data: xint(i) = x at time = tint(i)

% pkloc data point number of peak locations -

% Tm time of peak locations
% Z Parsed OES data Z(i,:) = data from i th sweep
% Check time vectors

10 = Jength(x0).

11 = length(t0);

1= length(tint);

if (11 ~=10)
error(‘vectors X0 and t0 must be the same length’);

elseif (any(t0(2:10) <= t0(1:10-1))) | (any(tint(2:1) <= tint(1:}-1)))
error(‘time values must be in ascending order’);

elseif (tint(1) < t0(1)) | (tint(}) >= t0(10))
error(‘time values must be in ascending order’);

end

% Interpolate data
xint = zeros(L,1);
k=1;
fori=1:1 .
while (t0(k+1) <= tint(i))
k=k+1;
end
p = (tint(i) - t0(k))/(t0(k+1)-t0(k))
xint(i) = p*x0(k+1) + (1-p)*x0(k);
end

% Determine starting points of scan by identifying peaks
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k = pkwid+1; n = 0; done = 0;
pkloc =[J;
while (~done) & (k <= 1-pkwid)
while (xint(k) <= pkht) | (xint(k+pkwid) > pkht) ...
| (xint(k - pkwid) > pkht)
k=k+1;
if (k > }-pkwid)
done=1;
break;
end
end
if (~done)
[pkmax,j] = max(xint(k-pkwid:k+pkwid));
n=n+l;
pkloc = [pkloc; k-pkwid+j-1];
k = pkloc(n) + pksep;
end
end

% Parse matrix into data Z.

per = round(mean(pkloc(2:n) - pkloc(1:n-1))); % Compute avg. period

pkloc = [flipud([pkloc(1)-per:-per:1]’); pkloc; ...
[pkloc(n)+per:per:length(xint)-per+1]° ];
% Add cycles at beginning and end of data to include
% power up and down periods
n = length(pkloc);
Z = zeros(n,per);
Tm = zeros(n,1);
fori=1:n
Z(i,:) = xint(pkloc(i):pkloc(i)+per-1)";
Tm(i) = tint(pkloc(i));
end

ERREEKEEKERKEERKRERKKEKEKEERERERERKKRRKRENEXERKKEEREERF

% this function is for data coverstion from ASCH to matlab file

fid = fopen(‘wafer20_ratio’)

A = fscanf(fid,%f,[112 inf])

A=A

fclose(fid)

rhodes.eecs 135# more read_soes.m

function [scan_dat fix_dat,tm] = read_soes(fnum)
% READ_SOES Reads scanning OES data from file
%

% [scan_dat,fix_dat,tm] = read_soes(fnum);
%

% fnum File number (file is named ‘datxx’)
% scan_dat  Scanning OES data

% fix_dat  Fixed position OES data

% tm Time stamp

% Open data file
DAT_DIR = ‘/home/users/spanos/rwchen/crete/ScanOES/test’;
%DAT_DIR = ‘/a/crete/cretel/rwchen/ScanOES/test’;
fn = sprintf(‘%s/DAT%02d’, DAT_DIR, fnum);
fid = fopen(fn,'rt’);
if (fid <= 0)
error(‘Cannot open data file');
end
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% Read data

z = fscanf(fid, ‘%f", [3 inf]);
tm=12z(1,})"; )
scan_dat = 2(2,:)";
fix_dat=12(3,:)";

% Close file
fclose(fid);
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Appendix C

Experimental Design

C.1 AMD’s AMAT 5300 experiment

Source Bias C,F¢ flow Roof Throttle
Run # (Watts) (Watts) rate Temp (°C) | (Percent)
' (sccm)
1 2300 1800 20 260 30
2 2900 1800 40 260 30
3 2300 1400 20 260 100
4 2300 1400 40 260 30
5 2900 1400 20 260 30
6 2900 1400 40 260 100
7 2300 1800 40 260 100
8 2600 1600 30 260 65
9 2900 1800 20 260 100
10 2600 1600 30 270 30
11* 2600 1600 30 270 65
12* 2600 1600 30 270 65
13* 2600 1600 30 270 65
14 2600 1400 30 270 65

143




Appendix C

Source Bias C,F¢ flow Roof Throttle
Run # (Watts) (Watts) rate Temp (°C) | (Percent)
(sccm)
15 2900 1600 30 270 65
16 2600 1600 40 270 65
17 2300 1600 30 270 65
18 2600 1600 30 270 100
19 2600 1600 20 270 65
20 2600 1800 30 270 65
21* 2600 1600 30 270 100
22 2300 1400 40 280 30
23 2900 1800 20 280 30
24 2300 1400 20 280 30
25 2900 1400 20 280 100
26 2900 1800 40 280 100
27 2900 1400 40 280 30
28 2300 1800 20 280 100
29 2600 1600 30 280 65
30 2300 1800 40 280 30
*: center points
C.2 Berkeley’s L.am 44 erime
RF Clz/HC
Run Pressure Power Gap Ratio Cl, He
1 370 235 09 0.42 183 437
2 370 275 0.8 0.45 180 400
3* 425 235 0.8 0.45 180 400
4 370 235 0.7 0.48 200 420
5 425 275 0.7 0.45 180 400
6 425 275 0.8 0.42 172 408
7 - 425 235 0.8 0.45 180 400
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Run | Pressure Pcli:cr Gap (l::i/;—ie Cl, He
8 480 315 0.9 042 160 380
9 425 275 0.8 045 180 400

10* 425 275 0.8 045 180 400
11 425 275 0.8 045 168 372
12 480 315 0.9 048 200 420
13 425 275 0.8 045 180 400
14 480 315 0.9 0.48 200 420
15 370 315 0.9 042 160 380

16* 425 275 0.8 0.45 180 400
17 425 315 0.8 0.45 180 400
18 370 235 0.9 0.48 175 365

19* 425 275 0.8 0.45 180 400
20 370 315 0.7 048 175 365
21 480 275 0.8 045 180 400
22 480 235 0.9 048 175 365

23* 425 275 0.8 045 180 400
24 480 315 0.7 048 175 365

25% 425 275 0.8 0.45 180 400
26 480 235 0.9 042 183 437
27 370 315 0.7 048 175 365
28 425 275 0.8 048 188 392
29 425 275 0.9 0.45 180 400
30 480 315 0.7 042 183 437
31 480 235 0.7 0.48 200 420
32 425 275 0.8 0.45 192 428

33* 425 275 0.8 045 180 400
34 370 315 0.7 0.42 437

183
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Run Pressure ngjer Gap cl:izltli-f)e Cl, He

35* 425 275 0.8 0.45 180 400

36* 425 275 0.8 0.45 180 400

37 370 315 0.9 0.48 200 420

*: center points
C.3 Berkeley’s I.am 9400 experiment
| P | o | gover |2 | | R
(Watts) | (Watts)
T | 2 | w | m | % | w0 ] 3 | © |

2 14 270 165 40 160 4 60
3 10 270 135 65 130 2 60
4 14 330 165 40 160 4 68
5 10 330 135 65 130 2 60
6 10 330 165 . 65 130 2 67
7* 12 300 150 _ 50 150 3 60
14 270 135 65 130 2 60
14 330 165 65 130 2 65
10 14 330 135 65 130 2 65
11 14 270 165 65 130 2 65
12 10 270 135 40 160 4 65
13 14 330 135 40 160 4 60
14 10 330 135 40 160 4 63
15 14 270 135 40 160 4 63
16 10 330 165 40 160 4 60
17* 12 300 150 50 150 3 60
18 10 270 165 65 130 2. 60
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Pressure Top Bottom Cl, HBr HBr/ time
Run | (o) | POWer | power | (o | (scom) | CI (secs)
(Watts) | (Watts) 2
19 10 270 165 40 160 4 63
20* 12 300 150 50 150 60

*: center points
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Appendix D
Locally Weighted Regression Smoothing

In locally weighted regression smoothing, we build the smooth function s(x) point-

wise as follows:

1. Take a point, say x,,. Find the k nearest neighbors of x,, which constitute a neighborhood
N(x,). The number of neighbors k is specified as a percentage of the total number of points.

This percentage is called the span.

2. Calculate the largest distance between x, and another point in the neighborhood:
Alxg) = maxN(xo)lxo - x,-|

3. Assign weights to each point in N(x,) using the tri-cube weight function:
xo— x|
W)
A(xg)
3
where W) = (1-4°), )  for0<u<l

W(u) =0 otherwise
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4. Calculate the weighted least squares fit of y on the neighborhood N(xp). Take the fitted

value §0 = s(xg).

5. Repeat for each predictor value.
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Appendix E
Element vs. Wavelength
element wavelengths (nm)
AICI 261,265,268
AH { 426
Ar 416,451,485,550,603,697,707,750
B ' 250
BCl 267,272
Br 290,334,355,470,479,570,576,588,600
C 248
cal 258,307,460
CF 240,256
CF, 249,252,246.255,260,263,271,275,288,292,321
CH 431
CN 359,386,387,418,420,422,647,693,709,785
co 239,246,249,271,283,313,349,370,451,484,520,561,608,662
Co, 288,290,337
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element wavelengths (nm)
ci 726,741,755,772,775,838
Cl, 262,309
Cu 325,327
F 624,635,641,677,683,686,687,690,691,697,704,713,720,733,740,
743,751,755,757
H 434,486,656
He 295,319,345,361,363,371,382,387,389,397,403,414,439,444,447,
471,492,502,505,588,668,707,728
Hg 253.7,365.0,404.7,435.8,546.1
N, 337,326,331,390,391,428,576,580,655,662,671,688,727,790
NO 237,245,256,268,272,286
0 437,497,502,533,544,605,616,646,700,725,777
NH 336
OH 307
Si 252,288
SiF 640,777
SiCl 281,282,287,405
SiF, © 390,401
SiN 441,405,409,413,420,424
Sio 234,241,249
Ti 335,365,400
TiCl 419
TiF 408
w 272,401,407,430
WF 578

NOTE: the most prominent wavelength are bold
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