
Abstract
Today’s fast-growing data-intensive network services place
heavy demands on the backend servers that support them. This
paper introduces ISTORE, an intelligent server architecture
that couples LEGO-like plug-and-play hardware with software
adaptability and continuous monitoring. ISTORE exploits
introspection to provide high availability and performance
while drastically reducing the cost and complexity of adminis-
tration. ISTORE provides a generic server platform designed
to be specialized to match the exact demands of a specific net-
work service application, providing the benefits of a fully-cus-
tom-built server, or appliance, without the complexity of
constructing one from scratch. Additionally, once specialized,
ISTORE acts dynamically to monitor and adapt to changes in
the imposed workload and to unexpected system events such as
hardware failure. This adaptability is enabled by a combina-
tion of intelligent self-monitoring hardware components and a
software extensibility mechanism that allows the target appli-
cation to specify adaptation policies to the system using con-
strained, domain-specific languages.

1 Introduction
We are entering a new era of computing, one in which tradi-
tional PCs, workstations, and servers are giving way to “thin”
clients backed by powerful, distributed, networked information
services. Information has becomethe commodity, with total
growth in online data storage more than doubling every nine
months [19]. This era of data-intensive network services is
being driven by new classes of applications such as electronic
commerce, information search and retrieval, and online deci-
sion support. Such online services impose stringent require-
ments that are difficult to achieve using today’s commodity
computing technologies: they require availability that permits a
mean time to failure measured in no less than years, perfor-
mance that allows for simultaneously servicing of millions of
clients, and scalability that meets the rapid growth of the user
base and the data those users need to access. Moreover, studies
show that, especially in this demanding environment, mainte-
nance and administration costs are enormous, consuming any-
where from two to twelve times the cost of the hardware
[10][11][12][26]. Such maintenance costs are inconsistent with
the entrepreneurial nature of the Internet, in which widely uti-
lized, large-scale network services may be operated by single
individuals or small companies.

In this paper we turn our attention to the providers of new
data-intensive services, be they Internet-based organizations or

data centers used internally by a company. We argue that con-
tinuous monitoring and adaptation, orintrospection, is a pow-
erful technique that can be exploited to build high-performance
data appliances that administer themselves. Introspection
allows the system to automatically achieve a number of goals.
At the lowest level, the system can examine data access pat-
terns and media integrity, responding to hot-spots or device
failures when they occur by migrating and replicating data. At
a higher level, the system can make predictions about future
access patterns and can use these predictions to guide global
rearrangement of data layout to optimize future performance,
to dynamically trade off access latency and storage efficiency,
or to maximize data integrity in the face of impending media
failure.

This paper presents the architecture of the ISTORE intelli-
gent storagemeta-appliance, a system that places introspection
and its associated adaptability as its architectural cornerstones.
By a meta-appliance, we mean a storage infrastructure com-
posed of hardware and software that can be flexibly custom-
ized to create an information appliance uniquely adapted to its
application niche. ISTORE-based data appliances are designed
to provide exactly one application or service and, as a conse-
quence, enjoy full cooperation among all levels of the system,
from the hardware to the runtime system to the application.
These components work in concert to provide application-
appropriate semantics, optimizations, and responses to external
stimuli such as component failures. Although different appli-
ances share similar base mechanisms, what differentiates them
is the application-specific policies that define when various
mechanisms are invoked, what semantics they guarantee, and
on what data they operate.

While a variety of data storage appliances have been devel-
oped during the past decade [13][24], the downside of existing
methods for constructing appliances is that each new applica-
tion or service requires the construction of a complete, inte-
grated system, usually from general-purpose commodity
hardware and software components. ISTORE’s meta-appliance
approach avoids the general-purpose system’s lack of focus by
allowing customization of a simple but powerful system that
provides as its base the runtime mechanisms needed to imple-
ment a complete appliance. The interfaces through which cus-
tomization of the ISTORE system occurs are a unique
combination of domain-specific languages and downloaded
user code. These interfaces achieve many of the advantages of
fully general, user-level operating system customizations
[2][14][22] while avoiding much of the complexity usually
associated with general extensibility. In ISTORE, the range of

ISTORE: Introspective Storage for Data-Intensive Network Services

Aaron Brown, David Oppenheimer, Kimberly Keeton, Randi Thomas,
John Kubiatowicz, and David A. Patterson

Computer Science Division
University of California at Berkeley

387 Soda Hall #1776
Berkeley, CA 94720-1776

{abrown,davidopp,kkeeton,randit,kubitron,patterson}@cs.berkeley.edu
http://iram.cs.berkeley.edu/istore/

2

possible customizations stretches from the details of schedul-
ing and layout policies to the appropriate response to compo-
nent failure.

The base ISTORE system consists of intelligent LEGO-
like plug-and-play hardware components (such as disks,
blocks of memory, and compute nodes) that can be hot-
swapped into a scalable, fully redundant hardware back-
plane. Each of the hardware blocks in an ISTORE system
includes an embedded processor that is responsible for observ-
ing and reacting to the unique runtime behavior of its attached
device. As such, these processors comprise essential compo-
nents of ISTORE’s introspective substrate. Application-spe-
cific code can also be downloaded into these processors to
provide scalable data access primitives such as database scan,
sort, and join.

Hardware faults and failures are handled automatically
by ISTORE’s introspective runtime system. Faults are
entirely self-healing, as the system automatically shifts load
from non-functional components to working components.
The exact policies that are invoked during failures can be
customized for a particular application. Furthermore, data
layout and replication are under the complete control of the
introspective facilities. As a result, human maintenance of
an ISTORE system consists of nothing more than adding
new hardware when resources become low (a situation
detected automatically by the introspective runtime system)
or replacing faulty hardware within a reasonable amount of
time after failures occur—all other aspects of administra-
tion, including performance tuning, are handled automati-
cally.

ISTORE’s introspective nature sets it apart from today’s
existing general-purpose server architectures. Most existing
architectures cannot deliver ISTORE’s self-maintenance,
primarily because they are based on general-purpose hard-
ware and operating systems that must trade off reliability,
performance, and focus for the ability to simultaneously
support widely-varying hardware and application work-
loads. By focusing on servers customized to single applica-
tions, and by providing the framework for monitoring and
adapting to environmental changes in an application-spe-
cific way, ISTORE allows for the construction of low-main-
tenance, highly available, high-performance systems.

The remainder of this paper describes the ISTORE archi-
tecture in greater detail. We begin in Section 2 with a descrip-
tion of ISTORE’s modular, plug-and-play hardware
architecture. Section 3 presents the architecture of the extensi-
ble runtime software layer that runs on top of that hardware
and demonstrates how introspection provides adaptability and
self-maintenance. Finally, we present related work in Section 4
and conclude in Section 5.

2 ISTORE hardware architecture
Attaining an introspective, self-maintaining system requires
support from both hardware and software. Our proposed
ISTORE hardware architecture reflects this combined
requirement by providing both modular, flexible devices as
well as dedicated, per-device processing to support the soft-
ware infrastructure described in Section 3.

Traditional computer systems are built from a CPU-cen-
tric viewpoint: the CPUs sit atop a large hierarchy of busses,
far away from the I/O devices attached to the bottom-level

leaves of the hierarchy. This traditional configuration is not
optimal for data-intensive, I/O-centric systems such as those
built using the ISTORE architecture.

Thus, the ISTORE hardware architecture makes I/O
devices first-class citizens by eliminating busses and attaching
all components of the system directly to a high-bandwidth
switched network. An ISTORE appliance is built out of physi-
cally interchangeabledevice blocks that plug into an intelligent
chassis. A device block consists of one single-function device,
such as a disk, combined with an embedded CPU and a net-
work interface in a standard physical and electromechanical
form factor. These device blocks fit into the bays of a chassis
that provides uninterruptable power, cooling, environmental
monitoring, and a scalable, high-bandwidth, redundant
switched network.

A typical ISTORE appliance might be constructed out of
several different, but physically interchangeable, types of
device blocks. The exact configuration of blocks can be cho-
sen to match the demands of the target application, provid-
ing easy hardware adaptability. For example, a database-
focused appliance would be built primarily from disk
blocks, but might also have memory blocks for caching. All
appliances need one or more front-end interface/router
blocks to provide scalable external connectivity to the sys-
tem by translating between standard networks and protocols
(e.g., ODBC over TCP over Ethernet) and internal applica-
tion-specific protocols. One could imagine many other
classes of device blocks that might be useful in constructing
other types of appliances: tape blocks for backup, specialized
media transcoding blocks for video servers or PDA proxies,
high-performance CPU blocks for CPU-intensive applications
such as scientific data processing, and a variety of front-end
blocks that could be combined to provide multi-protocol
access to the system.

ISTORE’s LEGO-like approach to constructing a system
out of single-function building blocks offers advantages in
scalability, availability, and packaging. The system is inher-
ently scalable, as devices connect directly to a switched net-
work that offers scalable bandwidth and is capable of
spanning multiple chassis, rather than to a fixed-capacity I/
O bus. Additionally, the system can be incrementally scaled
with heterogeneous hardware due to the modular, plug-and-
play packaging of devices.

The network-based device interconnect enhances avail-
ability as well as scalability by replacing single-point-of-
failure busses with redundant switched paths; device blocks
can have multiple independent connections to the network to
survive cable or network interface failure. Availability is
also enhanced by having on-device intelligence, as devices
can then autonomously check themselves, verifying correct
operation of their integrated hardware and software via peri-
odic scrubbing operations or “fire-drill” testing. Intelligent
devices can also detect fatal errors or unexpected conditions
that occur during normal operation and automatically dis-
connect themselves from the system, providing fail-fast
behavior.

Finally, packaging all devices in small modular blocks
with a common form factor has potential advantages in sys-
tem packaging and operational cost. Certainly the packaging
of an ISTORE system is more compact than that of a tradi-
tional SMP- or cluster-based server, thus saving machine-

3

room space, power, and cooling: a chassis the size of a sin-
gle rack could hold over 100 3.5” device block bays with
room to spare for network switching and UPSs.

3 ISTORE software architecture
The key features of ISTORE’s hardware architecture are intel-
ligent devices with dedicated, per-device processing power and
a robust, scalable infrastructure that connects them. In this sec-
tion we propose a software architecture for ISTORE that
allows data-intensive applications to easily leverage these
hardware features to provide scalable, self-maintaining ser-
vices. This architecture has two main goals: first, the software
system should provide the common mechanisms needed by all
self-maintaining data-intensive applications. Second, it should
provide these mechanisms in an extensible manner: the appli-
cation should be able specialize the undifferentiated ISTORE
software by customizing the supplied mechanisms and by pro-
viding application-specific interfaces to those mechanisms.

In this section we discuss a software architecture that we
believe fulfils these goals. We focus first on the structure of the
software system itself, and return to the extension techniques
in Section 3.2.

3.1 Runtime software structure
The ISTORE runtime system is composed of three logical sub-
parts: local system software components executing indepen-
dently on each device block in the system, global system and
application software components running in a distributed man-
ner across all devices in the system, and front-end application
components running on the interface/router device blocks.

The local software components that run on each intelli-
gent device consist of the basic per-device OS services plus
a set of local mechanisms. The OS services are comprised of
a commodity embedded microkernel operating system plus
a layer of standard microkernel modules that provide low-
level process, communication, memory management, and
device access primitives. We add an additional module that
performs detailed, real-time monitoring of the operation of
the device itself; this module monitors device access pat-
terns, environmental parameters, indications of impending
failure (such as repeated ECC failures on a disk), and utili-
zation.

Above this layer of OS services is an extensible library
layer that implements a set of basic non-distributed mecha-
nisms. Most of these mechanisms are used to feed informa-
tion to the global layer, or to perform local commands at the
request of the global layer. One needed mechanism is a filter
on the low-level device monitoring data that selects only the
information or aggregate statistics appropriate for the appli-
cation; for example, a transaction-processing database appli-
cation might ignore the amount of disk bandwidth being
used, and would select only information about the number
of disk requests serviced per second. Another mechanism
needed for all storage devices is a data access mechanism
that controls data layout on the device and provides an appli-
cation-specific interface to the data (such as a record-based
interface for a database); this functionality might consist of
two mechanisms, one for mapping application data quanta
to disk objects, and another for mapping objects to raw
device addresses). Other needed local mechanisms include
device scheduling, caching, data tagging, and so on.

The ISTORE software architecture also includes a global
software layer that interacts with the local layer. Since
ISTORE has a shared-nothing hardware architecture, this
global layer is actually a distributed program that runs on all
of the device blocks in the system. The global layer consists
of system-supplied extensible global mechanism libraries as
well as the distributed application worker code that imple-
ments the particular network service for which the ISTORE
has been specialized.

The mechanisms provided by the global software layer
are primarily aggregation and control mechanisms that inter-
act with the local mechanisms on each device. For example,
an important global mechanism is monitoring. Unlike the
local monitoring mechanisms associated with individual
devices, the global monitoring mechanism can obtain informa-
tion on all parts of the system, and can aggregate and interpret
locally-generated data. For instance, it could compute average
global utilization metrics that would allow it to decide if a par-
ticular device is being overutilized with respect to the rest of
the devices in the system; this would be impossible at the local
level since a device has no notion of a relative utilization scale.
Global monitoring can also detect device failures that disable
the local computation or connectivity on a device.

The global layer must provide several other key mecha-
nisms, including a distributed directory service that tracks
the location of data and metadata objects in the system,
mechanisms for performing data migration and replication
in response to hot spots and component failures, mecha-
nisms for recovering from device failures and rebuilding
redundancy of data that had been stored on the failed device,
and mechanisms for integrating new components into the sys-
tem. We present an example of how these components interact
to provide self-maintenance in Section 3.3.

Finally, the ISTORE architecture includes a set of front-
end-like application components that run on the interface/
router device blocks in the system (in addition to the stan-
dard per-device-block system software layers). These extra
application components are responsible for accepting
requests from the LAN/WAN connection on the block and
transforming them into invocations of the distributed appli-
cation worker components that are part of the global soft-
ware layer. For example, if an ISTORE system were being
specialized to provide decision-support database service, the
front-end block might receive SQL or ODBC queries across
a LAN and perform query optimization locally; it would
then invoke distributed relational operators (such as scans,
sorts, and joins) running on the data storage devices to per-
form the data-intensive query execution.

3.2 Runtime system extensibility
While the local and global runtime libraries described in the
previous section allow an appliance designer to directly
access monitoring data and to manipulate low-level system
state, those libraries are partitioned on functional boundaries
that isolate the implementation of one mechanism from that of
another. In contrast, appliance designers view their system at a
higher level, thinking about it in terms of properties they wish
the overall system to exhibit and the interfaces between their
application and the base runtime system mechanisms.

To this end, ISTORE proposes an extension scheme in
which the customizations to the base libraries are written using
domain-specific languages (DSLs). The ISTORE DSLs are

4

specialized languages that allow the declarative specification
of both the high-level behavior of particular aspects of the sys-
tem and the application-specific interfaces to coordinated base
mechanisms that implement that behavior. Each DSL in the
ISTORE system encapsulates the high-level semantics of one
logical component of the runtime system. By “logical compo-
nent” we mean an overall behavior of the system, which might
involve several different mechanisms of the runtime system.
For example, one DSL might be used to express application-
specific availability requirements. Because implementing a
particular data availability strategy requires coordinating and
directing a wide range of base mechanisms from replication
and caching policies to device failure handling, the DSL com-
piler must translate a high-level description of the availability
strategy into code that coordinates the relevant base mecha-
nisms and presents the specified application interface. A simi-
lar specification process takes place for each extension to the
base library that a programmer wishes to utilize; these specifi-
cations are compiled together with the local and global base
mechanisms to produce the distributed runtime system through
which the service application code interacts with the system.

When an undifferentiated ISTORE system boots, each
device block contacts the system boot server (a special
device block with removable media) and downloads both
the customized mechanism libraries and the application
worker code binaries. Although the extended libraries are
loaded with the application when the system boots, they are
structured as dynamic shared libraries so that they can be
upgraded without requiring the application service to be
restarted or the system rebooted.

We believe that ISTORE’s DSLs are essential to exposing
the power of ISTORE’s introspective capabilities in a way that
makes effective, application-specific utilization of those capa-
bilities tractable. The programmer simply describes trigger val-
ues of the monitored system variables and the actions that
should be invoked, and the DSL compiler decides how to tie
the appropriate local and global monitoring mechanisms to
appropriate low-level system actions. This allows individuals
writing appliance applications to create a customized, adaptive
runtime system that defines the appliance’s low-level operation
and the runtime system’s interface to higher levels of the sys-
tem.

In addition to providing programmability advantages by
capturing precisely the relevant customizable features of a
particular aspect of the system’s behavior, DSLs offer
advantages over low-level systems programming languages
in terms of reliability, verifiability, and safety. While it is
impossible to guarantee that the designer’s program imple-
ments the desired algorithm, the high-level semantics of a
DSL make it much more likely that the appliance designer’s
program is correct. For example, proper synchronization
operations can be added by the DSL compiler to serialize
accesses to a distributed data structure. Also, the DSL supports
types that are natural to the module being designed, so type-
checking in the compiler can detect many errors specific to the
domain. Once the DSL compiler writer is satisfied that the
DSL compiler is correct, designers inherit that verification
effort. In terms of verifying the designer’s DSL program itself,
the high-level, constrained semantics of DSLs enable a more
abstract form of semantic checking than is possible for a gen-
eral-purpose programming language. Moreover, whole classes

of general programming errors that are possible in low-level
languages are not possible in well-designed high-level lan-
guages that hide details such as runtime memory management
or that automatically add code to synchronize accesses to glo-
bal data structures.

Because ISTORE proposes to use a DSL compiler to
generate its runtime system, the DSL compiler also serves as
a natural point in the system to add artificial diversity in the
implementation of system components. Applying concepts
from recent research into “survivable systems” that can con-
tinue operation in the face of internal bugs or malicious
attack, we propose the use of software diversity to create
multiple implementations of runtime system components [9].
Each implementation might be slightly different with respect
to runtime memory layout, code ordering and layout, and sys-
tem resource usage, within the constraints of the designer’s
DSL-based specification. Multiple implementations of a runt-
ime system component could run simultaneously on different
data replicas, checking each other with respect to high-level
behavior.

3.3 From introspection to adaptation
Throughout this paper, we have claimed that intelligent hard-
ware components, continuous monitoring, and extensible
application-tailored software layers combine to produce adap-
tive, self-maintaining systems. In this section we provide an
example of how this happens. Although this discussion applies
to any data-intensive service application, we will use the exam-
ple of a database to provide concreteness.

Consider the scenario of a slowly-failing data disk in a
large system. With a traditional server architecture, the only
report of this forthcoming failure would be the presence of
media or ECC errors in the system log. If the system admin-
istrator were not watching the log (manually or automati-
cally) at the time these errors occur, the disk failure might go
unnoticed; even worse, the disk might return corrupt data,
thereby driving the system into an inconsistent state.

In an ISTORE system, the microkernel monitoring mod-
ule running on the local processor in the disk hardware block is
responsible for monitoring the disk’s health. When this module
detects ECC failures or media errors on the disk, or even
increased rates of ECC retries, it notifies the global fault-han-
dling mechanism that its associated device may be about to
fail. This mechanism is then responsible for migrating load off
of that device, rescuing any unreplicated data, and rebuilding
data redundancy. All of these actions are application-specific,
and their exact behavior depends on application-specified pol-
icy.

In our database example, the fault-handling mechanism
would first modify the global directory to remove the entries
corresponding to the failing component’s data; this prevents
the system from sending more work to the failed device.
Because database queries are typically transactional, the fault-
handling mechanism might just discard the work currently in
progress on the failing device and reissue those transactions to
another replica of the data in the system. In a non-transactional
system without coherent replicas, it might be necessary to
checkpoint the computation and restore it on another replica of
the data. At this point, the global fault handler could instruct
the local software on the disk to shut itself down, effectively
disconnecting the disk from the system and providing failstop
behavior. Finally, the global fault handler would invoke the

5

data replication mechanism in order to rebuild the redundancy
that was lost when the component failed. This action would in
turn cascade through the layers of the system, using applica-
tion-specified global layout policies to select another disk with
spare space to hold the replica, global directory operations to
record the location of the new replica, local mechanisms to
copy the data, and local data layout mechanisms and policies
to optimize the placement of the replica on the new disk.

In ISTORE, this entire process would take place auto-
matically; when it was complete, the system would be in the
same working order as when the failure began, and, because
the system dynamically rebuilds redundancy, it would be as
fault-tolerant as it was before the failure (assuming enough
spare space is available). The failed component could then
be replaced during regularly-scheduled maintenance, rather
than requiring immediate human intervention. Finally, note
that similar mechanisms would be used for automating per-
formance-related administrative tasks, such as detecting a
hot database table and automatically replicating its data.

4 Related work
The goals of the ISTORE system and the system-building
techniques used to achieve these goals draw from research
in a number of areas, including specialized appliances,
extensible operating systems, domain-specific languages,
plug-and-play hardware, and adaptive systems.

A specialized ISTORE appliance is similar to a class of
single-function network servers that has recently emerged as
a way to cost-effectively provide network services [13][24].
The device from Network Appliance is designed to be fac-
tory-configured to serve as either a file server appliance or a
web server appliance by selecting the external protocol
installed on the system; both appliances share a common
hardware and system software platform. Although ISTORE
is designed around a common hardware/software substrate
as well, it addresses the higher-level goal of providing a
generic meta-appliance that can be customized at all levels
for a particular application.

Much of ISTORE’s power and flexibility comes from its
extensible runtime system, which leverages concepts from
recent work in extensible operating systems [2][14][18][22].
As with extensible operating systems, the argument for
extensible runtime systems is increased application perfor-
mance and flexibility. But by addressing a higher level of
the system, targeting the runtime system for a single-func-
tion appliance, and constraining extensions to those that can
be expressed using DSLs, ISTORE sidesteps many of the
thorny protection, security, and fairness issues found in
designing an extensible operating system.

ISTORE’s focus on domain-specific languages as an
extension technique builds on past work in which DSLs
have been used to specify cache coherence protocols and
network protocols [4][17], or operating system extensions
[14]. Like the OGI “microlanguages” project [20], ISTORE
uses DSL-based specifications to generate system code;
however, ISTORE will also be able to translate desiredglobal
system properties into appropriate use ofmultiple low-level
mechanism libraries. In this sense the runtime system exten-
sions in ISTORE borrow concepts from aspect-oriented pro-
gramming [16].

ISTORE’s LEGO-like hardware architecture extends
several areas of previous work. While ISTORE and PC
“plug-and-play” hardware both include ways to detect and
identify new devices without the need for manual configura-
tion, ISTORE also provides mechanisms by which the sys-
tem can automatically begin using the capabilities of a
newly-attached device. ISTORE’s device blocks are a gener-
alization of recent work in intelligent disks [1][15][21] and
intelligent network interfaces [8]; ISTORE goes beyond these
projects by providing a way to integrate multiple intelligent
devices into a single hardware and software system designed to
meet application-specific needs. Sun’s Jini system [25] pro-
vides mechanisms by which intelligent devices can communi-
cate and recognize each other and, as such, Jini fulfills a role
similar to that of the low-level communication layers of
ISTORE.

ISTORE’s adaptive nature and self-tuning properties
reflect a general trend in the software community. Research-
ers have proposed feedback-driven adaptation for extensible
operating systems [23], databases [5][6], global operating sys-
tems [7], and storage devices [3][27]. The ISTORE architec-
ture differentiates itself from these projects in two ways. First,
ISTORE is a combined hardware/software architecture that
integrates continuous, detailed monitoring at all levels of the
system rather than retrofitting it into an existing system behind
restricted interfaces. Second, an ISTORE-based appliance’s
adaptability is under complete control of the application via the
DSL-based extension mechanisms, as opposed to being a static
policy chosen by the system designer.

5 Conclusions
The growing importance of data-intensive network services
demands new architectures for building the servers that sup-
port these services. We believe that specialized, optimized
appliances built on top of intelligent hardware and intro-
spective software form the right platform for data-intensive
information services, as they provide the automatic self-
administration, high availability, and performance needed
by these services. Our approach stands in contrast to exist-
ing server architectures that are built from general-purpose
hardware and system software, as such architectures are
constrained by generic interfaces and abstraction barriers
that make monitoring difficult and adaptation challenging.

By combining intelligent components with an extensi-
ble, reactive runtime system, the ISTORE architecture pro-
vides a powerful introspective framework for building the
appliances needed to provide tomorrow’s network services. Its
modular intelligent hardware is adaptable, easily scaled, and
reliable, while its extensible runtime system provides the base
mechanisms needed by self-maintaining appliances yet can be
easily customized by application designers to implement pre-
cisely the policies and semantics needed by their applications.

6 References
[1] A. Acharya, M. Uysal, and J. Saltz. “Active disks: pro-

gramming model, algorithms and evaluation,” inProc.
8th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VIII), Oct.
1998, pp. 81–91.

[2] B. Bershad, S. Savage, et al. “Extensibility, Safety, and
Performance in the SPIN Operating System,” inProceed-

6

ings of the Fifteenth ACM Symposium on Operating Sys-
tem Principles (SOSP-15),Copper Mountain, CO., pp
267–284.

[3] E. Borowsky, R. Golding et al. “Eliminating Storage
Headaches through Self-management,” in1996 OSDI
Symposium, Seattle, WA, Oct. 1996.

[4] S. Chandra, J. R. Larus, M. Dahlin, et al. “Experience
with a Language for Writing Coherence Protocols,” in
Usenix Conference on Domain-Specific Languages
(DSL),Santa Barbara, CA., Oct. 1998.

[5] S. Chaudhuri and V. Narasayya. “AutoAdmin ‘What-If’
Index Analysis Utility,” in Proceedings of ACM SIG-
MOD, Seattle, 1998.

[6] S. Chaudhuri and V. Narasayya. “An Efficient Cost-
Driven Index Selection Tool for Microsoft SQL Server,”
in Proc. 23rd Intl. Conf. on Very Large Databases
(VLDB97), Athens, Greece, 1997, pp. 146-155, 1997.

[7] R. Draves, W. Bolosky et al. “Operating system directions
for the next millennium,” inProc. Sixth Workshop on Hot
Topics in Operating Systems (HotOS-VI), May, 1997.

[8] M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N. Ber-
shad. “SPINE: A Safe Programmable and Integrated Net-
work Environment,” inProc. of the Eight ACM SIGOPS
European Workshop, September 1998.

[9] S. Forrest, A. Somayaji, and D. Ackley. “Building diverse
computer systems,” inProc. of the Sixth Workshop on Hot
Topics in Operating Systems (HotOS-VI), 1997.

[10] Forrester. http://www.forrester.com/
research/cs/1995-ao/jan95csp.html.

[11] Gartner. http://www.gartner.com/hcigdist.htm
[12] J. Gray. “Locally served network computers,” Microsoft

Research white paper, February 1995, available from
http://research.microsoft.com/~gray.

[13] D. Hitz. “An NFS File Server Appliance,”Network Appli-
ance, Inc., Technical Report 3001,1995.

[14] M. F. Kaashoek, D. Engler, et al. “Application Perfor-
mance and Flexibility on Exokernel Systems,”Proc. 16th
Symposium on Operating System Principles, St. Malo,
France, 1997.

[15] K. Keeton, D. A. Patterson and J. M. Hellerstein. “The
case for intelligent disks (IDISKs),”SIGMOD Record,
Vol. 27, No. 3, September 1998, pp. 42–52.

[16] G. Kiczales, J. Lamping, et al. “Aspect-Oriented Pro-
gramming,” in Proc. of the European Conference on
Object-Oriented Programming (ECOOP), Finland, June
1997.

[17] E. Kohler and M. F. Kaashoek. “A readable TCP in the
Prolac protocol language,”submitted to ACM SIGCOMM
‘98.

[18] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peter-
son, and T. A. Proebsting. “Scout: A Communications-
Oriented Operating System,” inHotOS-V,May 1995.

[19] G. Papadopoulos. “Moore’s Law Ain’t Good Enough,”
Keynote address atHot Chips X, August 1998.

[20] C. Pu et al. “The Microlanguage Project Overview,”
http://www.cse.ogi.edu/DISC/projects/
microlanguage/overview.html

[21] E. Riedel, G. Gibson, and C. Faloutsos. “Active Storage
For Large-Scale Data Mining and Multimedia,”Proceed-
ings of the 24th International Conference on Very Large
Databases (VLDB '98), August 1998.

[22] M. Seltzer, Y. Endo, C. Smith, K. Smith. “Dealing with
Disaster: Surviving Misbehaved Kernel Extensions,” in
Proceedings of the 1996 Symposium on Operating System
OSDI II).

[23] M. Seltzer and C. Small. “Self-Monitoring and Self-
Adapting Systems,” inProc. of the 1997 Workshop on
Hot Topics on Operating Systems, Chatham, MA, May
1997.

[24] SNAP!Server.http://www.snapserver.com.
[25] J. Waldo. “Jini Architecture Overview,”Sun Microsys-

tems White Paper, 1998.
[26] J. Wilkes. Personal communication, October 1998.
[27] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. “The

HP AutoRAID Hierarchical Storage System,”ACM
TOCS 14(1):108–136, February 1996.

