
Towards a Theory of Optimal Communication Pipelines�

Randolph Y. Wangy Arvind Krishnamurthyy Richard P. Martiny

Thomas E. Andersonz David E. Cullery

Abstract

In this paper, we study how to minimize the latency of
a message through a network that consists of a number
of store-and-forward stages. This research is especially
relevant for today's low overhead communication sub-
systems that employ dedicated processing elements for
protocol processing. We develop an abstract pipeline
model that reveals a crucial performance tradeo�. We
subsequently exploit this tradeo� and present a series
of fragmentation algorithms designed to minimize mes-
sage latency. We provide an experimental methodology
that enables the construction of customized pipeline al-
gorithms that can adapt to the speci�c pipeline char-
acteristics and application workloads. By applying this
methodology to the Myrinet-GAM system, we have im-
proved its latency by up to 51%. We also study the
e�ectiveness of this technique for other realistic cases.

1 Introduction

The goal of this research is to answer a simple question:
how do we minimize the latency of a message through a
network that consists of a number of store-and-forward
stages?
This question arose during our e�ort to improve the

performance of a distributed �le system [2] on a high-
speed local area network [3]. Two important charac-
teristics of the communication pattern distinguish the
�le system from the supercomputer applications which
traditionally run on these networks. The �rst is the
synchronous nature of the communication. While many
supercomputer applications tend to communicate asyn-
chronously to mask communication latency [13], a read
miss in the �le system cache, for example, blocks the
application until the entire �le block arrives. The sec-
ond distinguishing characteristic is message size. Tradi-

�This work was supported in part by the DefenseAdvancedRe-
search Projects Agency (N00600-93-C-2481, F30602-95-C-0014),
the National Science Foundation (CDA 9401156), California MI-
CRO, the AT&T Foundation, Digital Equipment Corporation,
Sun Microsystems, Hewlett Packard, IBM, Intel, Microsoft, Mit-
subishi, Siemens, and Xerox Corporation. Anderson was also
supported by a National Science Foundation Presidential Faculty
Fellowship.

yComputer Science Division, University of California, Berke-
ley, frywang,arvindk,rmartin,cullerg@cs.berkeley.edu

zDepartmentof ComputerScience and Engineering,University
of Washington, Seattle, ftomg@cs.washington.edu

tional high-speed network research has focused on min-
imizing the latency of small messages (of a few words)
and obtaining saturating bandwidth for bulk messages.
The �le system, on the other hand, reads and writes
�le blocks (4KB or 8KB medium messages), whose
performance characteristics, as we will see, are gov-
erned by a model that is not well understood. These
communication characteristics are not only common in
other high performance distributed �le systems [12, 19],
they are also shared by distributed shared memory sys-
tems [10, 18, 6, 9] and database applications.

Although traditional communication layers such as
TCP/IP have examined the use of fragmentation in the
context of managing congestion, bu�er overow, and er-
rors in the wide area [15, 16], they have not systemati-
cally addressed the issue of optimizing latency by prop-
erly fragmenting these medium messages as the high
host overhead in these systems has made �ne-grained
fragmentation infeasible.

Recent developments in high performance local area
network technology have necessitated revisiting the
message fragmentation issues. As network speed con-
tinues to increase, although the network fabric often
supports cut-through routing, the processing elements
in the network interface introduce store-and-forward de-
lays. Choosing the appropriate fragment size to ex-
ploit the inherent parallelism in this communication
pipeline becomes a key issue. New communication soft-
ware [21, 20] has signi�cantly reduced host processing
overhead, which in turn has made it possible to use
�ner-grained fragmentation to increase the parallelism
in the communication subsystem. Among such com-
munication subsystems, however, di�erent approaches
exist. For example, Active Messages (AM2) [4] do
not fragment medium messages, while Fast Messages
(FM) [14] use 128 byte fragments. In order to evaluate
the soundness of these design choices, one needs a sys-
tematic approach. The lack of an analytical model and
the heavy reliance on simulation and empirical experi-
ence in some previous research e�orts such as [8] have
made it hard to generalize their results to systems other
than their own.

In this paper, we develop a framework that may
lead to a complete theory of optimal communication
pipelines. We demonstrate several important optimal-
ity criteria. We show that an optimal fragmentation
strategy depends on the user packet size, and minimiz-
ing latency requires carefully considering the tradeo�

1



involving the e�ects of the overhead of the bottleneck
stage and the bandwidth of the remaining stages.
We provide a methodology that systematically uncov-

ers communication pipeline parameters and constructs
customized pipeline algorithms. We present empirical
studies comparing theory to practice. In one example,
we show that the discrepancy between the model predic-
tion and the implementation measurement on Myrinet-
GAM [13] averages 5.9%. By applying the �xed-sized
fragmentation to this example system, we have achieved
a performance improvement of up to 51%. We extend
the study to important hypothetical pipelines including
disks.
The remainder of the paper is organized as follows.

Section 2 de�nes the abstract problem and lays the foun-
dation for the pipeline model. Section 3 and Section 4
present a series of fragmentation algorithms. Section 5
presents the results of the case studies. Section 6 de-
scribes some of the related work. Section 7 concludes.

2 Problem Statement

We represent the network as a sequence of store-and-
forward pipeline stages characterized by the following
parameters:
� n: the number of pipeline stages.
� gi: the �xed per-fragment overhead for stage i.
� Gi: the per-byte cost (inverse bandwidth) for stage i.
Given these network characteristics, the challenge is

to �nd an optimal fragmentation strategy of a user
packet so that its latency is minimized. Note that frag-
mentation is only useful in minimizing the latency of
a �nite-sized packet; for steady-state data streams, the
bandwidth increases monotonically with fragment size
and asymptotically approaches the bottleneck band-
width. Also, we observe that if none of the stages have
overhead, the best fragmentation policy is trivial { par-
allelism is maximized at the maximum degree of frag-
mentation possible. Similarly, if none of the stages have
bandwidth limitations, then the best policy is the op-
posite { we send the entire packet in a single fragment.
For a general pipeline that has both overhead and bot-
tleneck limitations, we now develop a model for calcu-
lating packet latency using the following variables:
� B: the size of the entire packet.
� k: the number of fragments.

� xi: the size of the ith fragment (
Pk�1

i=0 xi = B).
� ti;j : the time the ith fragment spends in the jth
stage, which is ti;j = gj + xi �Gj.

� �i;j: the time at which the ith fragment exits the
jth stage. The clock starts when the �rst fragment
enters the �rst stage.

� T : the latency of the entire packet, equivalent to
�k�1;n�1.
Figure 1 shows an example three-stage store-and-

forward pipeline. In Figure 1(a), the user packet is
transmitted as a single fragment and its latency through
the pipeline is longer than that shown in Figure 1(b)

per-
fragment
cost

per-
byte
cost

x00

1

2

st
ag

es

time

x0

x0

x1

x1

x1

x2

x2

x2

Tf Tb Tl

x0

1

2

st
ag

es

time

x

x

Tf Tb Tl

(a)

(b)

Figure 1: An example pipeline. Stage 1 is the bot-
tleneck. In (a), the user packet is not fragmented. In (b),
the same user packet (drawn to the same scale) has been
fragmented into three pieces and experiences a lower la-
tency. Minimizing the sum of the three components of
the total latency (Tf , Tb, and Tl) is our goal.

where the same packet is fragmented into three pieces.
This is because when the packet size is su�ciently large,
the bene�t achieved from increased parallelism in the
latter case is larger than the overhead introduced by
the extra fragments.
Figure 1 also shows the constraints imposed by a

store-and-forward pipeline. A fragment can enter the
next stage as soon as it exits the current stage in its
entirety. Also, a fragment can not enter a stage before
the previous fragment exits the same stage. These
constraints can be translated into the following system
of linear inequalities:

�0;j =

jX
h=0

(gh + x0 �Gh) (1)

�i;l � �i;l�1 + (gl + xi �Gl) (2)

�m;j � �m�1;j + (gj + xm �Gj) (3)

where 0 � i < k, 0 � j < n, 1 � l < n, and 1 � m <
k. Given the number of fragments k, we can �nd the
optimal fragmentation strategy by solving this linear
programwhere minimizing �k�1;n�1 is the objective. By
repeating this process for all possible values of k, we can
�nd the sequence of optimal fragment sizes.
This exhaustive search, however, has a number of

disadvantages. It does not provide much insight into
the characteristics of an optimal fragmentation strat-
egy; neither does it show how changes in the pipeline
parameters a�ect the end-to-end latency. This linear
system with its limitation of a known number of frag-

2



ments does not model reassembly or refragmentation,
which might be necessary for pipeline stages with high
overheads. The linear system also requires full knowl-
edge of all pipeline parameters, which might not always
be readily available.
In contrast, the pipeline models that we develop in

the rest of this paper explicitly illustrate the tradeo�s
that determine the optimal fragmentation strategy. The
models can also serve as a guideline for communication
subsystem designers by quantifying how the speeds of
individual stages impact the overall performance. Some
of our models also work with more limited information
of the pipeline than that required by the linear system.
The fragmentation algorithms we develop share a

number of common themes, which we will explore in
greater detail in the following sections. In our models,
the contribution of the \slowest" pipeline stage to the
total packet latency is a key issue. We de�ne the bot-
tleneck stage to be the stage whose transfer time for a
fragment is the greatest. We denote the bottleneck as
the bth stage, and its characteristics by (gb;Gb). Fig-
ure 1 illustrates some of the properties of the bottleneck
stage. First, the bottleneck stage (stage 1) in the �gure
is kept busy (except at the beginning and towards the
end). We will explain why this is necessary for min-
imizing end-to-end latency. Second, if we assume the
bottleneck is kept busy, then the total packet latency
can be represented as:

T = Tf + Tb + Tl (4)

where
� Tf is the time the �rst fragment takes to reach the
bottleneck,

� Tb is the time the entire packet spends in the bot-
tleneck, and

� Tl is the time the last fragment takes to exit the
pipeline after leaving the bottleneck.

How to trade o� one of these components against the
others is a crucial question that we shall explore in all
the models that we develop in the subsequent sections.
The third observation is a weak lower bound of the total
latency:

T > B �Gb +

n�1X
j=0

gj (5)

In this lower bound, the sizes of the leading and trailing
fragments are both zero, and the packet travels through
the bottleneck stage as a single fragment. Our goal in
the following sections is to devise fragmentation models
that are as close to this lower bound as possible.

3 Fixed-sized Fragmentation

We �rst explore fragmenting a packet into fragments of
equal size. Section 4 considers the more general case in
which fragment sizes can vary. We derive the optimal
�xed fragment size assuming the existence of a stage

that is the bottleneck for all possible fragment sizes.
Then we generalize our approach for pipelines whose
slowest stage depends on the fragment size.

3.1 Optimal Fragment Size

Restricting fragments to a uniform size implies that
once the bottleneck stage starts operating, it never idles
until the last fragment leaves it. Therefore Equation (4)
holds. To minimize T , we must minimize (Tf +Tb+Tl).
Minimizing (Tf + Tl) requires small fragments, because
as we decrease the size of the fragments, the amount
of time the �rst fragment takes to reach the bottleneck
(Tf ) decreases; so does the amount of time the last frag-
ment takes to leave the bottleneck (Tl). On the other
hand, minimizing Tb requires large fragments, because
fewer fragments incur less overhead in the bottleneck.
This is a fundamental tradeo�.
In practice, the fragment size xi and the number of

fragments k must be positive integers. To simplify the
discussion, we develop the subsequent theorems assum-
ing a de�nition of the packet latency T as a continuous
function of xi or k.

Theorem 1 (Fixed-sized Theorem) The fragment
size xi that minimizes the latency function T is:s

B � gbP
j 6=bGj

(6)

Proof. We express Tf as a sum of the times the lead
fragment spends in the stages leading to the bottleneck:

Tf =

b�1X
j=0

t0;j

=

b�1X
j=0

(gj + x0 �Gj) (7)

Similarly, Tl is the sum of the times the last fragment
spends in the stages after the bottleneck:

Tl =

n�1X
j=b+1

(gj + xk�1 �Gj) (8)

Each fragment spends an equal amount of time in the
bottleneck and there are k fragments:

Tb = k � t0;b

= k � (gb + x0 �Gb) (9)

We sum equations (7), (8), and (9) to obtain the total
latency T , and substitute x0 with B=k:

T = Tf + Tl + Tb

=
X
j 6=b

(gj + x0 �Gj) + k � (gb + x0 �Gb)

=
X
j 6=b

(gj +
B

k
�Gj) + (k � gb +B �Gb) (10)

3



To obtain the optimal number of fragments, we di�er-
entiate (10) with respect to k, and set the result to 0:

dT

dk
= �

B �
P

j 6=bGj

k2
+ gb = 0 (11)

Thus the optimal number of fragments is:

k =

s
B �
P

j 6=bGj

gb
(12)

The result in (6) follows by dividing (12) into B.
In practice, when we apply the fragmentation model

summarized by (12), k must be an integer in [1; B]. Due
to the shape of the latency function T (k) (as shown in
Figure 2(a)), we only need to apply the oor and ceiling
functions to (12) and choose the integer solution that
minimizes T .
We make several observations of this model. First,

minimizing the latency of a packet requires the fragmen-
tation strategy to adapt to the packet size (B). A static
algorithm (such as the one used in FM) can achieve the
same result for a single packet size and a single pipeline,
but it becomes suboptimal as we move away from that
design point. Second, we must balance the e�ects of
the overhead of the bottleneck (gb) and the bandwidth
of the remaining stages (

P
j 6=bGj). In particular, if the

overhead of any stage becomes large relative to inverse
bandwidth characteristics of other stages, fragmenta-
tion becomes unnecessary (k = 1 and xi = B). Third,
interestingly, factors such as the overheads of the non-
bottleneck stages and bandwidth of the bottleneck stage
do not a�ect the fragmentation strategy.

3.2 Generalizing Bottleneck De�nition

The derivation of the Fixed-sized Theorem assumes the
existence of a bottleneck which is always the slowest
stage. A su�cient condition is when a single stage has
both the worst overhead and bandwidth. In this section
we generalize the de�nition of a bottleneck { a stage
(gb; Gb) is the bottleneck when its latency (gb + Gb � x)
is the greatest for some range of fragment sizes (x). We
generalize the �xed-sized fragmentation model for the
new de�nition.
Equation (10) can also be expressed as:

T = k � gb +
B

k
�
X
j 6=b

Gj + (
X
j 6=b

gj +B �Gb) (13)

If the location of the bottleneck never changes, the
latency of a packet that is fragmented into k frag-
ments can be expressed as a function of the form
c1 �k+c2=k+c3, where c1, c2, and c3 are constants. Fig-
ure 2(a) shows the typical shape of this function. We
can regard this curve as the \signature" curve of the
pipeline and, in particular, of its bottleneck. If the lo-
cation of the bottleneck depends on the fragment size,
then the latency function becomes a concatenation of

Pa
ck

et
 L

at
en

cy
 (

T
)

Pa
ck

et
 L

at
en

cy
 (

T
)

(a) (b)
Number of Fragments k

B

A

Number of Fragments k

stage p

stage q

Figure 2: Pipeline latency curves. In (a), one stage
remains the bottleneck for all fragment sizes. In (b), two
stages can be bottlenecks for di�erent ranges of fragment
sizes. The solid curve is the latency curve. The circles
mark the candidate points for the global minimum. The
cross marks a false local minimum.

segments from di�erent bottleneck signature curves, as
shown by the solid curve in Figure 2(b). In this example,
stage p (whose signature is the thin curve) is initially
the bottleneck. As we increase the degree of fragmen-
tation beyond point A, stage q (whose signature is the
thick curve) becomes the bottleneck instead.
Finding the optimal fragmentation size requires �nd-

ing the global minimumon the latency curve. For cases
such as the one shown in Figure 2(b), we must 1) lo-
cate the transition points for the latency function (such
as point A) by applying a methodology detailed in Sec-
tion 5.3.2, 2) �nd the local minimums of all signature
curves that fall on the latency curve (such as point B) by
repeated application of the Fixed-sized Theorem, and 3)
take the minimum of all these candidate points.

4 Variable-sized Fragmentation

In this section, we explore algorithms that allow packets
to be fragmented into variable-sized fragments. The mo-
tivation is to have smaller leading and trailing fragments
to minimize (Tf + Tl) of Equation (4), while the frag-
ments in the middle are larger to minimize the overhead
component of Tb. We will study two-stage and three-
stage pipelines to gain more insights before we examine
more general cases.

4.1 Two-stage Pipelines

In this section, we develop an optimal fragmentation
strategy for an arbitrary two-stage pipeline.

4.1.1 Reversing a Pipeline

While considering the solutions of a two-stage pipeline
and its reversed counterpart whose stages are arranged
in the opposite order, we saw that the reversal of the
optimal solution of one pipeline was the optimal solution
of the other. Unlike the other theorems for two-stage
pipelines in this section, this observation applies to more
general pipelines as well:

Theorem 2 (Reversibility Theorem)
If (x0; x1; : : : ; xk�1) is an optimal fragmentation of B

4



bytes for a pipeline characterized by (g0; G0), (g1; G1),
: : :, and (gn�1; Gn�1), then (xk�1; xk�2; : : : ; x0) is an
optimal fragmentation of B bytes for a pipeline charac-
terized by (gn�1; Gn�1), (gn�2; Gn�2), : : :, and (g0; G0).

The Reversibility Theorem is an intuitively simple
outcome, but it is a powerful tool for understanding
pipeline solutions that are symmetrical to known ones.

4.1.2 A \Bubble-free" Pipeline

Theorem 3 (No-stall Theorem) For a two-stage
pipeline, a necessary condition of an optimal fragmen-
tation solution is ti+1;0 = ti;1, where ti;j is the transfer
time for fragment i through stage j.

x0 x1

x0

(c)

(b)

x0 x1

x0

(a)

bubble

bubble

x1´

x0´

(d)

x0´ x1´

x0´

ta

tb

x0´

Figure 3: Bubble-free pipelines. A bubble in the
second stage in (a) is eliminated by increasing x0 in (b). A
bubble in the �rst stage in (c) is eliminated by decreasing
x0 in (d). Note that according to our de�nition, the �rst
stage of pipeline (c) is considered to contain a bubble
regardless of whether fragment x1 is the last.

Proof. More informally, the theorem states that the
�rst stage completes the transfer of a fragment exactly
when the second stage completes the transfer of the pre-
vious fragment. We sketch the proof using Figures 3(a)
and (c), which are examples that violate this condition.
Figures 3(b) and (d) show how a better fragmentation
can be achieved by matching the transfer times of the
two stages by resizing the fragments while keeping the
sum of the two fragments constant. At time tb = ta,
the pipeline in Figure 3(b) has achieved a better state
than that of (a) because its second stage has transferred
more bytes. A similar argument applies if the bubble
occurs anywhere in the second stage and we resize all
the fragments leading to the bubble to eliminate it. And
�nally, because a bubble in the �rst stage is equivalent
to a bubble in the second stage of the reversed pipeline,
it follows from the Reversibility Theorem that a pipeline
which contains bubbles in its �rst stage is also subopti-
mal.

4.1.3 \Ramp-up" Algorithm

Theorem 4 (Ramp-up Theorem) For a two-stage
pipeline, the optimal fragment sizes xi follow the recur-
rent relationship:

xi+1 =
g1 � g0

G0

+ xi �
G1

G0

Given any number of fragments k, there is always a
unique initial fragment size x0 that leads to a bubble-
free solution.

Proof. Using the No-Stall Theorem:

ti+1;0 = ti;1

g0 + xi+1 �G0 = g1 + xi �G1

Thus,

xi+1 =
g1 � g0

G0

+ xi �
G1

G0

(14)

To simplify the notations, we de�ne:

a =
G1

G0

(15)

b =
g1 � g0

G0

(16)

so that we can rewrite (14) as a function f of x0, i, a,
and b:

xi+1 = a � xi + b

=

�
x0 � a

i+1 + b � a
i+1�1
a�1

if a 6= 1
x0 + (i + 1)b if a = 1

= f(x0; i+ 1; a; b) (17)

B can be expressed as another function h of the same
variables:

B =

k�1X
i=0

xi

=

(
x0

ak�1
a�1

+ b
a�1

(a
k�a
a�1

� k + 1) if a 6= 1

kx0 +
k(k�1)b

2
if a = 1

= h(x0; k; a; b) (18)

From (18), the initial fragment size x0 can be solved
given k.
According to Theorem 4, if the second stage is slower,

then the fragment size gradually increases; hence the
name \Ramp-up Theorem". If the second stage is
faster, then the fragment size gradually decreases. In
general, the Ramp-up Theorem dictates that the frag-
ment size is a monotonic function even if the bottleneck
stage depends on the fragment size.
The Ramp-up Theorem leads to a practical way

of �nding an optimal fragmentation for two-stage
pipelines. We can express the total latency T in terms
of k and follow the same approach as that of the Fixed-
sized Theorem to �nd integer solutions of k that mini-
mizes T .

5



To understand intuitively why ramp-up fragmenta-
tion is an improvement over �xed-sized fragmentation,
we revisit the tradeo� articulated by Equation (4). No-
tice that the No-stall Theorem guarantees that the
bottleneck stage never idles once it begins its opera-
tion. Therefore, if we compare a ramp-up fragmentation
against a �xed-size fragmentation which has the same
number of fragments k, because the fragments in the
new algorithm successively increase in size, the initial
fragment x0 is smaller, and therefore it has a smaller
\lead" time Tf . On the other hand, if we compare a
ramp-up fragmentation against a �xed-sized fragmenta-
tion which has the same initial fragment x0, again be-
cause the fragment sizes in the new algorithm increase,
the new algorithm has fewer fragments, and therefore
the packet spends a smaller amount of time in the bot-
tleneck (Tb). By decreasing Tf or Tb or both, the ramp-
up algorithm is able to out perform the �xed-sized al-
gorithm.

4.2 A \Fast-slow-fast" Pipeline

In this section, we extend our results to a three-stage
pipeline that consists of a fast stage, a slow stage, and
another fast stage. A fundamental characteristic of the
optimal fragmentation strategy is formalized in the fol-
lowing theorem and illustrated by Figure 4.

Tf Tb Tl

ramp up ramp down

xc
xc

xc

Figure 4: \Ramp-up-and-down" algorithm. Frag-
ment size gradually increases to keep the �rst two stages
busy until it reaches xc; then it decreases to keep the last
two stages busy.

Theorem 5 (Ramp-up-and-down Theorem)
Suppose (x0; x1; : : : ; xk�1) is a fragmentation solution
for a \fast-slow-fast" pipeline, a necessary condition for
this solution to be optimal is that there exists a fragment
xc, 0 � c < k, such that ti+1;0 = ti;1 for 0 � i < c and
ti+1;1 = ti;2 for c � i < k.

Informally, the theorem states that fragments
(x0; x1; : : : ; xc) monotonically increase in a manner
that keeps the �rst two stages busy, while fragments
(xc; xc+1; : : : ; xk�1) monotonically decrease so as to
keep the last two stages busy. Due to space limitations,
we only provide a sketch of the proof. The proof consists
of three steps. First, we can show that if the bottleneck
stage is not kept busy at all times, the fragments can be
resized (as in Figures 3(a) and (b) of the No-stall The-
orem) to obtain a better fragmentation. Next we can
show that there is no bubble in the �rst stage for frag-
ments (x0; x1; : : : ; xc) using an argument similar to the
one shown by Figure 3(c) and (d). Lastly we show that

there is no bubble in the last stage for the fragments
(xc; xc+1; : : : ; xk�1). To accomplish this step, we show
that a bubble in the last stage after fragment xc can
be transformed into a bubble in the bottleneck stage,
which we have already shown to be non-optimal.
We can utilize the necessary condition of Theorem 5

to develop an optimal fragmentation strategy. For con-
venience, we will use a pair of integers k1 and k2, where
k1+ k2 = k, k1 is the number of monotonically increas-
ing fragments, and k2 is the number of monotonically
decreasing fragments. Suppose the sum of the mono-
tonically increasing fragments is B1 and the sum of the
monotonically decreasing fragments is B2:

B1 + B2 = B + xc (19)

Because (x0; x1; : : : ; xc) is a bubble-free solution for
pipelining B1 bytes through the �rst two stages, Equa-
tion (18) of the proof of the Ramp-up Theorem applies:

B1 = h(x0; k1; a; b) (20)

where a and b are given by Equations (15) and (16). If
we similarly de�ne c and d for the last two stages of the
three-stage pipeline, we have:

B2 = h(xc; k2; c; d) (21)

But xc is not only the �rst fragment of the \ramp-down"
part of Equation (21), it is also the last fragment of the
\ramp-up" part, therefore its relationship with x0 can
be deduced from Equation (14):

xc = f(x0; k1� 1; a; b) (22)

Substitute (20), (21), and (22) into (19) and we have
an equation in which the only free variable is x0. We
can solve for the unique x0 which determines a unique
solution that satis�es the necessary condition given by
Theorem 5. We then express the total latency T as a
function of k1 and k2, derive the partial derivatives, and
solve @T=@k1 = @T=@k2 = 0 to yield the optimal frag-
mentation factors k1 and k2. The function T (k1; k2),
however, can be complicated; so in practice we simply
search all feasible values of k1 and k2.
Note that the Ramp-up-and-down Theorem sub-

sumes the simpler Ramp-up Theorem by setting either
k1 or k2 to one. However, unlike the Ramp-up The-
orem, the Ramp-up-and-down Theorem has the limi-
tation that it assumes the bottleneck stage to be the
slowest for all fragment sizes.

4.3 A \Fast-slow-slower" Pipeline

In this section, we study a three-stage pipeline that con-
sists of a fast stage, a slow stage, and a third stage that
is slower yet. We show how recursive applications of
the algorithms discussed in the previous sections can
naturally lead to reassembly when necessary. We then
generalize the approach for other pipelines.

6



4.3.1 Hierarchical Fragmentation

In the algorithms that we have discussed so far, a frag-
ment always travels through all stages without being re-
fragmented into smaller sub-fragments or being reassem-
bled into larger ones. Fragmentation strategies with this
restriction are no longer optimal when the third stage
(the bottleneck) has a large transfer cost either due to
high overhead or low bandwidth.

If the third stage has a high overhead cost, in order to
amortize the large overhead and minimize Tb (of Equa-
tion (4)), we must start with a large initial fragment x0.
This large initial fragment, unfortunately, may not be
appropriate for the �rst two faster pipeline stages. In
order to minimize the time it takes to get x0 through
these two stages (Tf ), we may need to break down x0
into even smaller sub-fragments and treat the �rst two
stages as a sub-pipeline.

Next consider a third stage whose bandwidth is much
lower than those of the �rst two stages but has a compa-
rable overhead. Although the initial fragment x0 for the
bottleneck may no longer need reassembly, we now must
prepare a second fragment x1 for the bottleneck while
it is busy processing x0 at a low bandwidth. In order
to minimize the number of fragments required for the
bottleneck to keep Tb low, we must �nd the largest pos-
sible x1. This again may require treating the �rst two
stages as a sub-pipeline so that we can choose optimal
sub-fragment sizes in order to assemble the largest pos-
sible x1 for the bottleneck. We now see that reassembly
may be necessary to accommodate high overhead, low
bandwidth, or both of the bottleneck stage.

x0´ x1´
x0´ x1´

compound stage

stage 0
stage 1

stage 2

reassembly
x0=x0´+x1´

x0=x0´+x1´

Figure 5: Hierarchical fragmentation. The �rst two
stages of the three-stage pipeline are treated as a com-

pound stage. Small fragments exiting from the compound
stage are reassembled into larger ones for the bottleneck
stage.

Figure 5 illustrates this hierarchical approach. In
this example, we reduce a three-stage pipeline to a two-
stage compound pipeline, whose �rst stage is a compound
stage, which in turn consists of two internal stages. The
number of fragments used for the compound pipeline
uniquely determines the sequence of fragment sizes for
the compound pipeline, which in turn determines how
each of these fragments is transmitted through the �rst
two stages, potentially at even �ner granularity.

We note that this hierarchical approach is orthogo-
nal to the base fragmentation strategies used. In other
words, we can use the �xed-sized fragmentation (of Sec-
tion 3), or any of the variable-sized fragmentation algo-
rithms (of Section 4), or a mixture of these algorithms
for the di�erent levels of the hierarchy.

Unfortunately, the mathematics involved in the pre-
cise modeling of this hierarchical approach becomes
rather complicated. To simplify the model, we ap-
proximate a compound stage by the model of a simple
stage. We model its latency characteristics with a per-
fragment overhead and a per-byte cost. Although this is
not strictly accurate, empirical experiences suggest that
this is an e�ective approximation1. We also assume that
a compound stage becomes free only when the last in-
ternal stage becomes free. Again, this is not strictly
accurate because the earlier internal stages in a com-
pound stage become free earlier. If the base fragmen-
tation strategy is variable-sized, a precise model must
consider how the earlier internal stages should utilize
this extra time. But as we shall see in Section 5.5, hi-
erarchical fragmentation is only useful for pipelines in
which the bottleneck latency is su�ciently large that
the the slight loss of free time towards the end of the
(non-bottleneck) compound stage is not signi�cant.
With these simpli�cations, modeling hierarchical

fragmentation becomes straightforward. First, we ap-
ply either the �xed-sized or variable-sized fragmenta-
tion model to the internal stages of the compound stage.
Next we approximate the compound stage with a simple
pipeline stage by �nding its overhead and bandwidth.
Finally we apply the �xed-sized or variable-sized frag-
mentation model to the compound pipeline using the
approximation. We can improve the accuracy of the
model by iteratively narrowing the range of the frag-
ment sizes used for the approximation in the second
step.

4.3.2 Generalizations

The Reversibility Theorem of Section 4.1 allows us to
generalize our fragmentation strategy to other pipelines.
First, reversing the �rst two stages of the \fast-slow-
slower" con�guration does not change the characteris-
tics of the compound stage of the compound pipeline.
Therefore, the fragmentation strategy for a \slow-fast-
slower" compound pipeline remains the same, but the
internal fragmentation of the compound stage is the re-
versal of that of the original pipeline. Second, if we
reverse the entire pipeline and reach a \slowest-slow-
fast" con�guration, it immediately follows from the Re-
versibility Theorem that the solution of the new pipeline
is the reversal of that of the original one. In this case,
instead of reassembly for the bottleneck, we have refrag-
mentation after leaving the bottleneck.

4.4 Discussion

Here we briey review the fragmentation strategies that
we have studied in the past sections:
� Fixed-Sized fragmentation works well for
pipelines whose stages have comparable speeds.

1In one typical experiment of Section 5.5, the standard devia-
tion of errors of the approximation was 65�s, for a mean latency
of 5118�s.

7



� Ramp-up fragmentation and ramp-up-and-
down fragmentation are provably optimal for
two-stage and \fast-slow-fast" pipelines respectively.
They allow us to evaluate the e�ectiveness of ap-
proximate algorithms by providing an upper bound
on performance. They also provide insight into an
optimal algorithm for arbitrary pipelines.

� Hierarchical fragmentationworks well when one
pipeline stage is signi�cantly slower than all other
stages.
A fragmentation algorithm for a general pipeline com-

bines these strategies. We identify the bottleneck stage.
Then we apply the fragmentation algorithm recursively
to construct models for the compound stage before the
bottleneck and the stage after. We then apply the
ramp-up-and-down algorithm to the top level compound
pipeline. In the next section, we see that a simple com-
bination of �xed-sized fragmentation and hierarchical
fragmentation, in which we apply �xed-sized fragmen-
tation to each level of the hierarchical fragmentation, is
an e�ective approximation.

5 Experimental Results

In this section, we apply the analytical models to realis-
tic case studies. We present a systematic methodology
for constructing pipeline algorithms that adapt to net-
work characteristics and user packet sizes. We evaluate
the accuracy and e�ectiveness of the models with a com-
bination of implementation and simulation studies.

5.1 Methodology

To construct a fragmentation algorithm for a spe-
ci�c pipeline, we �rst need su�cient details of the
pipeline characteristics. We obtain these parameters
through either \clear-box" instrumentation, where we
instrument the pipeline stages to obtain their overhead
and bandwidth characteristics, or \black-box" measure-
ment, where we deduce the combined e�ects of the indi-
vidual stages by non-intrusively observing how the net-
work responds to di�erent workloads. The customized
pipeline algorithmadapts the fragmentation at run time
to di�erent user packet sizes. We can also monitor
changes of the pipeline parameters, such as those due to
contention, and �ne-tune the fragmentation at run time
resulting in a customized fragmentation algorithm that
adapts to user packet sizes and network characteristics.

5.2 Experimental Platform

Our main experimental platform is the Berkeley
NOW [1, 5], which is a cluster of UltraSPARC Model
170 workstations running at 167 MHz. The host oper-
ating system is Solaris 2.5. The workstations are con-
nected by Myrinet [3]. Each workstation is equipped
with a Myricom M2F network interface card on the

SBUS. Figure 6 shows the block diagram of the inter-
face card. It contains a host DMA engine, which moves
data from host main memory to the SRAM on the net-
work interface, a network DMA engine, which moves
data from the SRAM into the network, and a 37.5 MHz
LANai processor, which executes the messaging proto-
col and is responsible for coordinating the actions of
the DMA engines and interactions with the host. The
presence of these processing elements is the source of
the parallelism which we shall exploit in the pipelining
algorithms. We perform our experiments on two work-
stations connected via a Myricom M2F switch, which
supports a link bandwidth of 160 MB/s.

Host
DMA

Processor

Network
DMA

LANai
Chip

SRAM

M
yr

in
et

 N
et

w
or

k 
In

te
rf

ac
e

Network

Host
Processor

Host
Memory

M
em

or
y 

B
us I/O Bus

Figure 6: Myrinet network interface. To send a
medium message, the host DMA moves the data from
host memory into the on-board SRAM, then the network
DMA moves the data from the SRAM into the network.

The base communication subsystem we use in the
study is Generic Active Messages (GAM) [13], a version
of Active Messages [20] enhanced to support cluster ap-
plications. One notable feature of this communication
layer is its low overhead, which has enabled �ne-grained
fragmentation that would be infeasible on systems with
higher overhead.
In order to experiment with pipeline parameters that

are di�erent from the Berkeley NOW, we also supple-
ment our study with a pipeline simulator.

5.3 GAM Pipeline Parameters

The �rst step towards constructing a customized
pipeline algorithm is determining the pipeline param-
eters. In this section, we present the direct instrumen-
tation approach, which provides exhaustive information
but requires source code access, and the indirect obser-
vation, which provides just enough information for the
�xed-sized fragmentation strategy and is less intrusive.

5.3.1 Direct Instrumentation

We instrument the source code that runs at each stage
of the pipeline. We then send packets of various sizes
through the data path without pipelining to obtain a
timing vector. From this vector, we obtain the overhead

8



and bandwidth characteristics of each stage by a simple
linear regression.

105µs

28 µs

28 µs

82 µs

41 µs

35 µssender host

sender host DMA

sender network DMA

receiver network DMA

receiver host DMA

receiver host

Figure 7: The timing of two 4KB fragments in the
Myrinet GAM pipeline.

Before we transform these measurements into an ab-
stract pipeline model, we examine the data path of our
experimental platform more closely. Figure 7 shows the
path of two 4KB fragments sent back-to-back through
the network. The steps labeled \sender host" and \re-
ceiver host" correspond to data copying on the two
hosts. The step labeled \sender host DMA", which oc-
curs over the SBUS, is the slowest. The steps labeled
\sender network DMA" and \receiver network DMA"
almost completely overlap each other because the net-
work fabric is cut-through, whereas the other compo-
nents at the network interface are store-and-forward.
The step labeled \receiver host DMA" is faster than
\sender host DMA" because of the asymmetry of the
SBUS. In fact, since the sum of the time spent in
the receiver network DMA and the receiver host DMA
roughly equals that of the sender host DMA, a conscious
design decision was made in GAM not to pipeline the re-
ceiver network and host DMA's; they are implemented
as one sequential step. As a result, the third, fourth,
and �fth steps in �gure 7 are combined into a single ab-
stract pipeline stage. Table 1 summarizes the pipeline
parameters.

stage i gi (�s) Gi (�s/KB)
0 7.2 7.2
1 5.2 24.9
2 7.5 24.9
3 7.4 7.9

Table 1: Myrinet GAM pipeline parameters.
Stages 0 and 3 are the copies on the end hosts. Stage 1 is
the sender host DMA. Stage 2 includes the two network
DMA's and the receiver host DMA and is the bottleneck.

5.3.2 Indirect Measurement

Direct instrumentation, while providing much insight,
requires access to and careful analysis of the source code
of the communication subsystem, which is not always
feasible. In this section, we demonstrate how to indi-

rectly deduce the pipeline parameters by observing the
performance of the network at the interface level.
In the Fixed-sized Theorem of Section 3.1, we had

shown that it is not necessary to have the parameters of
each stage to construct the desired algorithm. Instead,
we only need two parameters: the overhead of the bot-
tleneck (gb) and the sum of the inverse bandwidths of
the remaining stages (

P
j 6=bGj).

We take a two-step approach to indirectly obtain
these parameters. We �rst send packets of various sizes
through the network without pipelining them and mea-
sure their latencies. The network behaves as a sin-
gle stage pipeline whose parameters are (

P
gi,
P

Gi).
By performing a linear regression on the packet sizes
and the corresponding latencies, we obtain these sums:
(
P

gi,
P

Gi). In the second step, we send packets into
the network as quickly as we can, and measure the fre-
quency at which they exit from the pipeline. The inter-
arrival time of the packets at the receiver is the time
the packet spends in the bottleneck stage. By varying
the packet sizes and running another linear regression,
we obtain the bottleneck parameters: (gb, Gb). Sub-
tracting Gb from

P
Gi, which was obtained in the �rst

step, we can compute
P

j 6=bGj. Table 2 compares the

results of the indirect instrumentation with the direct
measurements.

method gb (�s)
P

j 6=bGj (�s/KB)

direct 7.5 40.0
indirect 7.6 37.8

Table 2: Parameters for �xed-sized fragmentation.

If the bottleneck varies with fragment size, the �xed-
sized fragmentation algorithm requires us to identify
the range of fragment sizes for which a pipeline stage
is the bottleneck. To �nd these ranges, we �rst apply
the methodology above to �nd the bottleneck parame-
ters for a fragment size that is the lower bound of an
allowable user packet size. We then repeat the process
for the upper bound of the allowable user packet size.
If the two bottleneck stages match, then we know the
bottleneck does not change location. If these two bot-
tlenecks di�er, a third measurement is required in the
middle of the previous two fragment sizes. We repeat
the process for each of the two half ranges until we lo-
cate all the transition points.

5.4 Evaluation of Fixed-sized Fragmen-
tation

We use the GAM parameters obtained in the previous
section to implement the �xed-sized fragmentation. We
�rst validate the model presented in Equation (10) of
Section 3 by comparing it against the measurements of
the implementation. Figure 8 shows the result. In this
example, we show how the 4KB-packet latency varies as
a result of varying the fragmentation granularity. The

9



0

50

100

150

200

250

300

2 4 6 8 10 12 14 16

P
ac

ke
t L

at
en

cy
 (µs

)

Number of Fragments

Latency predicted by model
Latency measured from implementation

Time spent in bottleneck (modeled)
Time to reach/leave bottleneck (modeled)

1

Figure 8: Validation of the �xed-sized fragmenta-
tion model for 4KB packets.

model prediction has an error that averages 5.9%. The
model of Equation (12) predicts that the best latency
is achieved when the number of fragments is �ve. This
prediction is con�rmed by the implementationmeasure-
ment.

Figure 8 also illustrates the tradeo� presented in
Equation (4). As the number of fragments increases,
the time the packet spends in the bottleneck increases
due to the overhead introduced by each additional frag-
ment. At the same time, however, as the fragment size
decreases, the time the �rst fragment takes to reach the
bottleneck stage decreases; so does the amount of time
the last fragment takes to leave the pipeline after the
bottleneck.

We compare the performance of our �xed-sized frag-
mentation algorithm with that of the original GAM im-
plementation and that of FM [14], both of which al-
ways use a static fragmentation strategy (128B for FM
and 4KB for the original GAM). Figure 9 shows the
result. FM su�ers from the high overhead incurred
by the small fragments for large packets. With re-
spect to GAM, the �xed-sized fragmentation achieves
the largest performance gain of 51% for a packet size of
4KB. The performance gain diminishes for large packets
as the bandwidth of the bottleneck stage becomes the
more dominant limiting factor. The improvement is also
small for smaller packets due to the inherent overhead
in the pipeline, which prevents �ne-grained fragmenta-
tion. We also notice that the latency curve for GAM
is jagged beyond 4KB as the fragments of a packet are
not of equal size unless the packet size is evenly divis-
ible by 4KB. The curve for the �xed-sized fragmenta-
tion implementation, on the other hand, is smooth as
it dynamically adapts to the user packet size and the
fragments of a single packet are always equal in size.

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16

P
ac

ke
t L

at
en

cy
 (µs

)

Packet Size (KB, log scale)

GAM implementation with FM 128B fragments
Original implementation using 4K fragments

Fixed-sized fragmentation implementation

Figure 9: Latency comparison of �xed-sized frag-
mentation versus static fragmentation.

5.5 Evaluation of Variable-sized Frag-
mentation

In this section, we study the utility of the variable-sized
fragmentation strategies. When the pipeline stages have
similar speeds (as in the GAM pipeline), �xed-sized
fragmentation is su�cient. At the other extreme, when
the pipeline is dominated by one or more very slow
stages, fragmentation provides little improvement. It is
in between these extremes that the variable-sized frag-
mentation is useful.

We study the performance of a simulated system that
has a disk attached to a conventional network. The net-
work speed is one �fth of that of Myrinet-GAM; it has
�ve times the overhead of Myrinet-GAM and one �fth
of its bandwidth. These parameters are comparable to
that of conventional communication subsystems such as
TCP running on a 100 Mb/s ethernet. As we are inter-
ested in the impact of the relative speed of the network
to the rest of the system, we vary the overhead and
bandwidth characteristics of the disk.

We study three algorithms. Algorithm A uses a �xed-
sized fragmentation that treats the four internal stages
of a network stage as peers to the disk stage. Algo-
rithm B organizes the pipeline stages into hierarchies
and applies the hierarchical fragmentation. Fixed-sized
small fragments that are used for the internal stages of
the network stage are reassembled into �xed-sized large
fragments for the disk stage. Algorithm C further im-
proves algorithmB by varying the fragment sizes for the
compound pipeline. It applies the Ramp-up Theorem
to gradually increase the fragment size to keep both the
network and disk busy.

We vary the overhead of the disk stage from 0.5 ms to
32 ms, and its bandwidth from 1MB/s to 20 MB/s. Fig-
ure 10 shows the improvement of hierarchical fragmen-
tation (algorithm B) over the simple �xed-sized frag-
mentation (algorithm A) for 64KB packets. The per-
formance results can be explained using the �xed-sized
theorem and the tradeo� expressed in Equation (4). We

10



0

5

10

15

20

25

30

35

40

45

2 4 6 8 10 12 14 16 18 20

Im
pr

ov
em

en
t (

%
)

Disk Bandwidth (MB/s)

g = 32 ms

g = 16 ms
g = 8 ms

g = 4 ms

g = 2 ms

g = 1 ms

g = 0.5 ms

Figure 10: Performance improvement of hierarchi-
cal fragmentation over �xed-sized fragmentation
as a function of disk parameters for 64KB pack-
ets. The point marked by the square represents the
parameters of a typical modern disk.

observe that for both hierarchical and non-hierarchical
�xed-sized fragmentation strategies, the fragment size
does not depend on the bandwidth of the bottleneck
stage. Consequently, as long as the disk remains the
bottleneck, the improvement in packet latency in ab-
solute terms for a given disk overhead is independent
of the disk bandwidth. However, the relative improve-
ment of the hierarchical strategy increases as the over-
all packet latency is lowered with better disk band-
width. For most disks, the performance bene�ts reach
an asymptote as the packet latency itself reaches a
plateau. However, for disks with low overheads (g � 2
ms), the disk is not the bottleneck when operated at
a high bandwidth and the performance bene�ts of hi-
erarchical fragmentation taper o�. Also, for a given
disk bandwidth, the improvement in packet latency in
absolute terms increases with higher disk overheads as
hierarchical fragmentation minimizes the disk start-up
costs. However, the relative performance improvement
is lower for very large disk overheads (g = 16 ms, or
g = 32 ms) as the packet latency itself becomes large.
Overall, we see that hierarchical fragmentation provides
excellent performance improvement when the overhead
of the bottleneck stage is roughly an order of magnitude
greater than the remaining stages and its bandwidth is
no worse than an order of magnitude smaller than the
other stages.

Figure 11 shows the result of repeating the above ex-
periment for algorithm C, which adds the ramp-up al-
gorithm to the hierarchical pipeline of algorithm B. We
see that its additional improvement over �xed-sized hi-
erarchical fragmentation is never greater than 10%.

In the next experiment, we keep the disk bandwidth
constant (5 MB/s), and vary the user packet size (from
4KB to 4MB) and the disk overhead (from 0.5 ms to 32
ms). Figure 12 shows the improvement of algorithm B
over algorithm A. Hierarchical fragmentation provides

0

5

10

15

20

25

30

35

40

45

2 4 6 8 10 12 14 16 18 20

Im
pr

ov
em

en
t (

%
)

Disk Bandwidth (MB/s)

g = 32 ms
g = 16 ms
g = 8 ms
g = 4 ms
g = 2 ms
g = 1 ms

g = 0.5 ms

Figure 11: Performance improvement of ramp-up
fragmentation over �xed-sized fragmentation as a
function of disk parameters for 64KB packets. The
point marked by the square represents the parameters of
a typical modern disk.

5

10

15

20

25

30

35

40

45

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Im
pr

ov
em

en
t (

%
)

Packet Size (log scale)

g = 32 ms
g = 16 ms
g = 8 ms
g = 4 ms
g = 2 ms
g = 1 ms

g = 0.5 ms

Figure 12: Performance improvement of hierarchi-
cal fragmentation over �xed-sized fragmentation
as a function of packet sizes.

excellent performance improvement for \medium-sized"
packets. As expected, the bene�ts of hierarchical frag-
mentation is less for small packets and for disks with low
overhead. Also, when the packet size is very large, the
packet approximates a continuous stream and a non-
hierarchical strategy performs almost as well. Fig-
ure 13 shows the result of repeating the above experi-
ment for algorithm C. The curve shows a similar trend
but the additional improvement is again never greater
than 11%.

Figure 14 shows further insight into the working of
the variable-sized fragmentation algorithms by analyz-
ing one data point from the above experiments. The
packet size is 64KB. The disk stage has a 4 ms over-
head and a 5 MB/s bandwidth. The �rst three bars
model a pipeline that consists of a network stage and a

11



5

10

15

20

25

30

35

40

45

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Im
pr

ov
em

en
t (

%
)

Packet Size (log scale)

g = 32 ms
g = 16 ms
g = 8 ms
g = 4 ms
g = 2 ms
g = 1 ms

g = 0.5 ms

Figure 13: Performance improvement of ramp-up
fragmentation over �xed-sized fragmentation as a
function of packet sizes.

disk stage. The next three bars model a longer pipeline
that consists of a network stage, a disk stage, and an-
other identical network stage. The x-axis is labeled by
the algorithms as de�ned above. In addition, we have
introduced Algorithm C' (the ramp-up-and-down frag-
mentation), which starts and ends with small fragments
but has larger fragments in the middle.

0

5

10

15

20

25

30

35

40

A B C A B C´

Time to reach
(or exit from) disk

Time spent
on disk

P
ac

ke
t L

at
en

cy
 (

m
s)

net-disk net-disk-net

Figure 14: Performance improvements of hierar-
chical fragmentation and variable-sized fragmen-
tation compared to �xed-sized fragmentation for
64KB packets.

We notice that the primary e�ect of the more com-
plex algorithms is to decrease the time spent by the
leading and trailing fragments in the network stage(s)
(Tf +Tl). For the �rst pipeline, we see that the amount
of time contributed by the disk is constant for the three
di�erent algorithms as the number of fragments used
for the disk stage does not change. Algorithm B's hi-
erarchical fragmentation reduces the time of the lead
fragment in the network (Tf ) by recursively fragment-

ing it resulting in a 21.3% overall reduction of latency.
By gradually ramping up the fragment size, algorithm
C uses a smaller lead fragment size, which further de-
creases Tf and reduces the overall latency by another
9.2%.
Algorithm A spends more time on the disk for the

second pipeline as it uses more fragments to overlap
the additional network stage. In other words, we must
increase the time the packet spends on the disk, Tb,
to keep Tf + Tl low. This increase in the number
of fragments, however, is unnecessary for algorithm B
since the hierarchical fragmentation keeps the network
time contributed by the leading and trailing fragments
small. Overall, algorithm B out-performs algorithm A
by 25.8%. AlgorithmC' �nds a more optimal solution as
it derives more bene�t from an increase in the number of
fragments so it can have small leading and trailing frag-
ments. However, the performance bene�t of algorithm
C' over algorithm B is only 6.4%.
From the experiments in this section, we conclude

that the optimal algorithms are unlikely to obtain sig-
ni�cant improvements over the simple combination of
�xed-sized fragmentation and hierarchical fragmenta-
tion.

6 Related Work

Internet protocols have long used fragmentation to man-
age packet bu�ering, congestion control, and packet
losses [15, 16]. Due to the high overheads of these proto-
cols, it is generally better to use large packets to max-
imize bandwidth. However, most datagram networks
impose a maximum fragment size. Higher level proto-
cols (TCP/UDP) which are unaware of this limit may
generate packets that cause extraneous fragments at IP
level, which can signi�cantly degrade performance due
to high overheads and due to the fact that reassembly
is not performed until the IP fragments reach the desti-
nation. Kent and Mogul discussed this problem in [11]
and argued that the higher level protocol must make an
e�ort to use packets whose size matches the minimum
of the maximum fragment allowed on the route. This
is a compromise for the legacy systems on the internet
and is not optimal. However, their proposed changes
to the internet architecture allow the application of our
technique to the IP internet: the use of transparent frag-
mentation where each hop performs reassembly and the
recording of path information in each packet allow high
level protocols to intelligently choose fragment sizes.
In pathchar [7], Jacobson discusses a technique of

measuring the latency and bandwidth characteristics of
the individual hops on an internet path. By gradu-
ally increasing the \time-to-live" �eld of an IP packet,
pathchar isolates the latency contributed by each addi-
tional hop and uncovers its characteristics. The inclu-
sion of a diagnostic mechanism similar to the IP \time-
to-live" �eld in a communication pipeline can allow the
black-box measurement of detailed pipeline parameters.

12



GMS relies on simulation to �nd the optimal fragment
size for sending an 8KB message through a pipeline that
consists of an AN2 network and DEC Alpha worksta-
tions [8]. Using the GMS pipeline parameters derived
from that work (Table 3), we were able to conclude that
the optimal number of fragments is three or four, a re-
sult con�rmed by the original GMS experiments.

stage i gi (�s) Gi (�s/KB)
Srv-DMA 2.1 25.6
Wire 4.0 60.1
Req-DMA 2.1 25.6
Req-CPU 92.8 26.2

Table 3: GMS pipeline parameters. The bottleneck
shifts from the \Req-CPU" stage to the \Wire" stage as
the fragment size increases.

The Myrinet-BIP system [17] is the only other sys-
tem that we are aware of that systematically adapts the
fragment size to the user packet size. The model used
in this system, while achieving a similar goal as that of
the Fixed-sized Theorem, is more complex and its use
requires the full knowledge of the pipeline parameters.
The Fixed-sized Theorem only relies on as few as two
parameters and they can be easily obtained from unin-
trusive observation of the network. An advantage of the
BIP model is that it allows for adjustments to pipeline
parameters for the di�erent fragments.

7 Conclusion

In this paper, we present a number of fragmentation al-
gorithms designed to minimize the latency of a message
through a network of store-and-forward pipeline stages.
The models provide insight into a crucial performance
tradeo� that requires the careful balance of the di�erent
e�ects of the bottleneck stage and the remaining stages.
We also present an experimental methodology that al-
lows one to construct a customized pipeline algorithm
that can adapt to the network characteristics and user
packet sizes. By applying this methodology, we have not
only achieved signi�cant performance improvement on
the Myrinet-GAM system, but we have also seen that a
combination of �xed-sized fragmentation and hierarchi-
cal fragmentation can achieve performance results close
to the theoretical optimum.

Acknowledgements

We would like to thank Susan Owicki and John Zahor-
jan for their suggestions that improved the proofs, Anna
Karlin for the linear programming solution, Geo�rey
Voelker and Michael Feeley for the GMS parameters,
and Bernard Tourancheau for an interesting discussion
on the Myrinet-BIP system, hiking in the French Alps,
and local cuisine of Lyon. We would also like to thank

Steve Lumetta and David Bacon for their comments on
earlier drafts.

References

[1] Anderson, T., Culler, D., Patterson, D., and the
NOW team. A Case for NOW (Networks of Workstations).
IEEE Micro (Feb. 1995), 54{64.

[2] Anderson, T., Dahlin, M., Neefe, J., Patterson, D.,
Roselli, D., and Wang, R. Serverless Network File Sys-
tems. ACM Transactions on Computer Systems 14, 1 (Feb.
1996), 41{79.

[3] Boden, N., Cohen, D., Felderman, R., Kulawik, A.,
Seitz, C., Seizovic, J., and Su, W. Myrinet { A Gigabit-
per-SecondLocal-Area Network. IEEE MICRO (Feb. 1995),
29{36.

[4] Chun, B., Mainwaring, A., and Culler, D. Virtual Net-
work Transport Protocols for Myrinet. In Proc. of 1997 Hot
Interconnects V (August 1997).

[5] Culler, D. E., Arpaci-Dusseau, A., Chun, B., Lumetta,
S., Mainwaring, A., Martin, R., Yoshikawa, C., and
Wong, F. Parallel Computing on the Berkeley NOW. In
9th Joint Symposium on Parallel Processing (1997).

[6] Feeley, M. J., Morgan, W. E., Pighin, F. P., Karlin,
A. R., Levy, H. M., and Thekkath, C. A. Implementing
Global Memory Management in a Workstation Cluster. In
Proc. of the 15th ACM Symposium on Operating Systems
Principles (December 1995), pp. 201{212.

[7] Jacobson, V. pathchar { A Tool to Infer Characteristics
of Internet Paths. http://www.msri.org/sched/empennage-
/jacobson.html, 1997.

[8] Jamrozik, H. A., Feeley, M. J., Voelker, G. M., II, J. E.,
Karlin, A. R., Levy, H. M., and Vernon, M. K. Re-
ducing Network Latency Using Subpages in a Global Mem-
ory Environment. In Proceedings of the Sixth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VII) (Oct. 1996),
pp. 258{267.

[9] Johnson, K. L., Kaashoek, M. F., and Wallach, D. A.
CRL: High Performance All-Software Distributed Shared
Memory. In Proc. of the 15th ACM Symposium on Oper-
ating Systems Principles (December 1995), pp. 213{228.

[10] Keleher, P., Cox, A. L., Dwarkadas, S., and
Zwaenepoel, W. TreadMarks: Distributed Shared Mem-
ory on Standard Workstations and Operating Systems. In
Proc. of the 1994 Winter Usenix Conference (January 1994),
pp. 115{132.

[11] Kent, C. A., and Mogul, J. C. Fragmentation considered
harmful. InProc. of Frontiers in Computer Communications
Technology, ACM SIGCOMM (August 1987).

[12] Lee, E. K., and Thekkath, C. E. Petal: Distributed Vir-
tual Disks. In Seventh International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (October 1996), pp. 84{92.

[13] Martin, R. P., Vahdat, A. M., Culler, D. E., and An-
derson, T. E. E�ects of CommunicationLatency, Overhead,
and Bandwidth in a Cluster Architecture. In Proceedings of
the Twenty-Fourth International Symposium on Computer
Architecture (May 1997), pp. 85{97.

[14] Pakin, S., Lauria, M., and Chien, A. High Performance
Messaging on Workstations: Illinois Fast Messages (FM) for
Myrinet. In Proc. of Supercomputing '95 (November 1995).

[15] Postel, J. Internet protocol. Request for Comments 791,
Information Sciences Institute, Sept. 1981.

[16] Postel, J. Transmission control protocol. Request for Com-
ments 793, Information Sciences Institute, Sept. 1981.

13



[17] Prylli, L., and Tourancheau, B. New protocol design for
high performance networking. Tech. Rep. 97-22, LIP-ENS
Lyon, 69364 Lyon, France, 1997.

[18] Scales, D. J., and Lam, M. S. The Design and Evalua-
tion of a Shared Object System for DistributedMemory Ma-
chines. In Proc. of the First Symposium on Operating Sys-
tems Design and Implementation (November 1994), pp. 101{
114.

[19] Thekkath, C. A., Mann, T., and Lee, E. K. Frangipani: A
ScalableDistributedFile System. In Proceedings of the ACM
Sixteenth Symposium on Operating Systems Principles (Oct.
1997).

[20] von Eicken, T., Basu, A., Buch, V., and Vogels, W.
U-Net: A User-Level Network Interface for Parallel and Dis-
tributed Computing. In Proc. of the 15th ACM Symposium
on Operating Systems Principles (December 1995), pp. 40{
53.

[21] von Eicken, T., Culler, D., Goldstein, S., and
Schauser, K. E. Active Messages: A Mechanism for In-
tegrated Communication and Computation. In Proceedings
of the Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS-V) (May 1992), pp. 256{266.

14


