
Multivalent Documents:

A New Model for Digital Documents*

Thomas A. Phelps and Robert Wilensky

Division of Computer Science
UC Berkeley

Berkeley, CA 94720-1776

* This work was supported as part of the NSF/NASA/DARPA Digital Library Initiative, under NSF IRI 94-11334.

2

Multivalent Documents:

A New Model for Digital Documents

Thomas Phelps and Robert Wilensky

Abstract

“Multivalent documents” is a model of documents that addresses some of the shortcomings one
currently encounters when manipulating documents in digital form. In the multivalent document
model, a document is composed out of distributed data and program resources, called layers and
behaviors, respectively. The model exposes virtually all aspects of document processing to
behaviors, and provides the means to compose these components into a single coherent document.
Behaviors allow the model to be highly extensible, including the capability to be extended to work
with arbitrary document formats. We have implemented the model in Java, and developed
behaviors that support multiple document types (scanned page images, HTML, and ASCII) and a
number of different user-interface metaphors (e.g., “lenses” and “Notemarks”). The multivalent
document model enables one to better use digital documents for tasks in which paper documents
are still otherwise superior to digital documents, such as annotating someone else’s document. We
have shown how the model is naturally conducive to realizing powerful forms of distributed, open
annotation by implementing a variety of annotation types, some familiar and some novel.

3

1 Introduction

Digital documents are superior to their paper counterparts in many ways. They are easier to edit,
reproduce, distribute, and search than are paper documents. With the use of networked information
systsems, digital documents are also more highly available and can be found more easily than
documents in paper format. In addition, electronic documents can manifest properties that have no
ready paper counterpart. Commonly available examples of such properties are hyperlinks, virtual
structures (e.g., documents whose elements are created dynamically), and inclusion of “dynamic
media” (either media types with a temporal extent, such as sound or video, or with an interactive
component).

Despite these valuable features, paper is still superior to the digital medium for many purposes.
Among the current advantages of paper is its ability to support a large variety of creative
manipulations by which the otherwise passive reader becomes actively engaged in a document. We
will use the term “annotation” to refer loosely to such manipulations. For non-recreational reading,
active engagement with the materials is a key part of understanding. Levy and Marshall eloquently
state the case, as observed in their ethnographic study of information analysts [LM95]:

Annotation is a key means by which analysts record their interpretations of a
particular document; in fact, annotation often acts as the mediating process between
reading and writing. Analysts generally do not take notes by writing their
observations down on a separate sheet of paper or in a text editor Instead, they
mark on the documents themselves. ... Post-Its ... highlight segments of text ...
marginalia ... automatically marked text These marking practices increase the
value of the documents to the analysts and form the basis for their personal and
shared files. ... [P]aper is a valuable medium for recording many types of
annotations not readily recorded in a digital medium.

The utility of paper for annotation is reinforced by Sellen and Harper’s field study [SH97], in
which they found that paper was used almost exclusively as the medium for reading, for reviewing
other people’s papers and data, and, especially, for tasks involving collaboration, despite a heavy
reliance on electronic tools for authoring one’s own text.

While there are many reasons for this practice, it is partially due to shortcomings of digital
document technology. One can annotate virtually any paper document in arbitrary ways, and share
the results with others, all with no appreciable overhead. The same situation does not hold for
digital documents. Until it does, the digital medium will be at a disadvantage to paper for certain
activities, especially those involving collaboration.

Of course, once the capability to annotate is readily available in digital form, annotated documents
would enjoy the many benefits unadorned documents already enjoy from digitalization. In
addition, the digital format would provide the possibility of entirely new forms of annotation, since
it would allow the exploitation of the dynamic and interactive capabilities of the digital medium.
Indeed, entirely new notions of documents might be possible, as taking further advantage of the

4

networked, digital world could enable electronic documents to become something more than digital
versions of paper documents.

In this paper, we propose features that digital document models need to support in order to impart
to digital document affordances more like those of paper. We use annotation as a paradigmatic
case, arguing that models that properly support annotation must support some very general and
powerful capabilities. In effect, it is not unreasonable to think of annotation as a “complete” digital
document problem, in that models that properly support it must support a number of general and
important document properties. We then describe a new model of documents, called “multivalent
documents”, that provides these general capabilities. We demonstrate the generality of this model
by first describing its application to a quite different task, namely, that of enlivening legacy
documents. Then we show how the model effects the annotation capabilities we require,
demonstrating these capabilities over a number of different document formats.

2 Requirements of Annotations

Here we list a set of requirements for digital annotations. Then we look at the implications of these
requirements for digital documents in general. Afterwards, we present and describe a model that
we believe largely addresses these needs.

We suggest that an adequate document model to support digital annotations requires the following
features:

Appearance in situ, yet separate. Annotations should appear on the documents themselves,
situated appropriately with respect to their referents. This property contrasts with the use of
newsgroups or email messages, in which portions of documents must be excerpted in order to be
commented upon. We interpret this requirement as meaning that the annotation should not refer to
or be part of a copy of a document, which can change independently of the original, but should
annotate “the document itself”. At the same time, experimental evidence indicates that users want
“to regard annotations as a separate layer of the document ... perceptually distinct from the
underlying text” [OS97].

High expressiveness. Annotations must have the power to engage with the document deeply,
potentially modifying content, appearance or runtime properties. This means that annotations must
be available at various grains, from the equivalent of a Post-It™ note to a copy-editor’s detailed
corrections (cf. superficial versus deep annotation [LS93]). In addition, annotations must be able to
provide arbitrarily powerful forms of user interaction, providing active capabilities in addition to
passive markings. For example, in addition to being able to put passive copy-editing marks on a
document, one would like the possibility of executing copy-editor marks to change the underlying
document.

Extensibility with composability. Individuals, readers, groups, or third parties should be able to
develop their own styles of annotations, which may be highly varied [Mars97]. As new annotation
types are devised, it must be possible to seamlessly integrate these with the old. Not only should
previous forms of annotations continue to function as new forms are added, but the various forms
need to compose together where appropriate.

5

Distributed and open. Annotation must be an open process, in that one should be able to annotate
any document one can view, and share the resulting annotated document with others. While
annotations need to appear in situ on a given document, it must be possible for individuals to create
them without modifying the document per se. It must be possible for the annotator to store the
annotation wherever that individual has storage capabilities, and make these available by wherever
mechanism that individual makes other resources available. Hence, annotating must require no
special access privileges to the target document, or special recognition of the annotator by the target
document’s server. (We call this mode of interaction “spontaneous collaboration”, i.e., the ability
to collaborate with small infrastructural overhead.)

Format independence. Users should be able to continue to use their preferred document
preparation systems, yet produce documents amenable to annotation. Thus, annotation systems
must work with a variety of source document formats, from scanned page images to documents
conforming to a markup language.

Platform independence. Since annotated documents need to be heterogeneous distributed
networked entities, it is desirable to be able to view the document on a platform other than the one
on which either the document or the annotation was created.

Robustness. As an annotation may reside in one place, but refer to a document in another,
documents and annotations may change asynchronously. Annotations, therefore, need to be robust
enough to survive at least modest document modification.

Some of these capabilities are related to digital document issues well known to the research
community. For example, Frank Halasz’s [Hal88] seven issues for next-generation hypermedia
systems include collaboration support, extensibility and tailorability. Openness and format
independence (interoperability generally) are also subject of considerable interest. Nevertheless,
while many forms of annotation capabilities now exist, we believe that digital annotation is not a
ubiquitous part of computer interaction because each system fails to address one or more of these
key requirements. Indeed, most annotation systems are document-type-specific, require
modification of the document to include the annotation, and are not readily extensible. That is, they
lacking most of the essential properties we stipulate. (We examine such systems in section 9.)

Generalizing from these desiderata for annotations, we can enumerate three basic design principles
for a digital document model:

1. Highly Distributed. Our first general requirement is that the document model take further
advantage of the networked world. That is, the document model should allow documents to be
assembled from multiple independent content sources. Having a document comprise multiple
composable components is useful for many purposes. The simplest examples of such
distributed documents are combinations of style sheets with marked up text, or multiple
overlays stored separately. Annotation imposes an especially stringent version of this
requirement, as one needs to compose an original document at one source with an annotation by
another author at another source, and these must fuse coherently at any grain. A quite different
example of distribute sources requiring intimate composition is a document composed from

6

scanned page images at one source with an analysis of those images from another source.
Finally, we require that procedures that extend functionality be available as composable
distributed components as well.

2. Highly Open. Document components may be distributed, created by different authors using
different authoring tools, and kept on different servers with varying privileges. Therefore, the
model must accommodate different access protocols, different document formats, and different
platforms. Any user should be able to participate with low cost of entry. Together with the
capability of composing content from multiple sources, openness imposes the additional
requirement that performance be robust and degrade gracefully in the face of changes to
document sources, which will happen asynchronously.

3. Highly Extensible. Since we want support not for a specific number of annotation types, but
for an open-ended number of types, we need a system that is arbitrarily extensible and
tailorable, as Halasz suggest. As suggested above, extensible means that features—both
content and programs—imported from one source integrate coherently with those imported
from a separate source.

3 Multivalent Documents

The multivalent document model (MVD) [PW96a, PW96b] is our attempt to design a document
model that realizes the capabilities described above. MVD is an architecture in which a document
is viewed as a composition of intimately related but distinct layers of content and dynamically
loaded program objects, called behaviors. Layers and behaviors are assembled by an MVD-
compliant browser from multiple distributed sources over the network. MVD provides an
infrastructure for the meaningful composition of layers and behaviors.

Potentially any media type can be bridged into the multivalent model. (As illustrated below, as of
this writing, MVD operates on scanned page images, ASCII, and HTML.) MVD was designed and
implemented by Tom Phelps. It is written in Java, and hence, runs on any Java-compliant platform.
MVD behaviors provide extensibility; the multivalent document infrastructure provides a way to
integrate such extensions coherently.

3.1 An Illustration

To illustrate MVD, we first describe the application of the model to scanned document images.
Scanning paper documents is a standard way to make electronic documents from paper ones.
While scanned documents provide a reasonably faithful rendering of the author’s intentions, as
expressed in the paper format, scanned images are difficult to interact with or manipulate. Because
they are so recalcitrant, such a data type is a challenging application for a document model. Here
we adopted the goal of enlivening these legacy documents. We will return to our discussion of
annotation after this example.

In general, MVD documents comprise layers and behaviors. In this application, each document’s
layers include (i) scanned document images, and (ii) the result of submitting these images to a

7

document recognition process (optical character recognition, or OCR). In some cases, determined
by the content of the page, additional layers may be provided as well. A set of behaviors is
included in each document implementing many of the functions familiar in browsers and word
processors. Again, some documents contain additional behaviors performing functions that make
sense only for that document’s specific content.

For example, Figure 1 shows in a web browser a scanned page image from the UC Berkeley Digital
Library Project server (http://elib.cs.berkeley.edu). Using a standard web browser, one can
examine such scanned document images, but no other manipulation or exploitation of them is
readily available.

Figure 2 shows the result of clicking the button in Figure 1 labeled “MVD”. Doing so provides
access to this document as a multivalent document. More precisely, a Java applet implementing
MVD is called, and is given as an argument an MVD “hub document”. The hub document
describes the layers and behaviors that this particular document should contain. In the case of our
scanned images, the hub document specifies as layers the images of the document, and the output
of an OCR process, which contains both the inferred text of the document and positional
information about where these words appear in the image. The behaviors specified in the hub
document include a standard set, plus a number of behaviors that are specific to particular
documents or pages.

The user is shown the document in a separate window, with a familiar-looking menu bar across the
top. The entries that appear in the individual menus will be determined by the particular behaviors
loaded. By selecting from the image, or by selecting menu entries, users avail themselves of the
functionality provided by the loaded MVD behaviors.

For example, Figure 2 shows some text that has been selected; the background of this text,
“CALIFORNIA DATA EXCHANGE” is highlighted in the image to reflect this status. This text
was selected simply by a mouse click-and-drag on that portion of the image. Of course, this is
exactly the behavior one expects in a word processor, but not from a GIF image, which is in fact
that format of the data. As in a text processing system, the text corresponding to the highlight
region is placed in the window system’s selection buffer, from which it is available for pasting into
other applications.

In addition, the user has previously chosen the “Search” entry on the “Edit” pull-down menu. This
action called into view the search dialog box, as shown. The text entered into this widget is found
and highlighted in the image.

8

Figure 1: A scanned page image inside a web browser

Functionality such as searching and selecting, and most other functionality we have made available
for scanned images, will work on any of the (approximately 200,000) pages in our collection.
However, some behaviors and layers are sensible only in certain contexts. For example, the page in
our example happens to contain tabular data, and we happen to have available both a layer
corresponding to a tabular analysis of the image, and a behavior, “Table Sorting’”, that exploits this
information. Specifically, one menu entry contributed by this behavior (the “Table Regions” entry
under the “Meta” menu) draws a box around the known table region, as well as boxes around active
portions of the table header. Clicking on one of these active portions sorts the table image by the
data in that column. Figure 3 shows the same page after the table regions have been highlighted,
and the table sorted by clicking on the column labeled “TODAY’”.

Functionality like selection, searching and table manipulation is familiar in conjunction with other
document formats. However, they are not readily realizable for scanned images. Using MVD, it
was reasonably straightforward to provide this functionality, despite the fact that there is nothing in
MVD that is specific to scanned images. That is, the exploitation of image and OCR layers needed
to achieve the capabilities just illustrated is done by a behavior, not by the MVD infrastructure per
se; behaviors like Search are not specific to scanned images, but will work with other data types.
We will illustrate the multi-data-type capability of MVD behaviors below.

9

Figure 2: A scanned image page “enlivened” as a multivalent document. The text corresponding to
“CALIFORNIA DATA EXCHANGE” has been selected. The search widget shows a search for the terms
“LAKE” and “67”; words whose corresponding images begin with these strings are highlighted in the image.
The highlighting is in color and is much more vivid than in this illustration. (Note that the occurrence of
“LAKE” in “GOLD LAKE” has been missed, due to an error in the OCR process.)

The reader may examine the functionality described herein by pointing a Java-compliant Web
browser at http://elib.cs.berkeley.edu. The “guided tour” of documents is recommended.

We note in passing that enlivening legacy documents raises the larger issue of the inter-operation of
digital and paper documents. Even as digital documents further depart from paper in terms of
functionality, the need to inter-operate between the two media types is increasing. The increased
functionality of the multivalent document architecture helps address this problem, even as the same
enhanced functionality serves to exacerbate it.

10

Figure 3: Illustration of a "Table Sorting" behavior. A table is highlighted in the image, and sorted by clicking
on the "TODAY" header. Note that highlighting of components (in the case, of matched search term regions) is
preserved as the image is manipulated.

4 The Multivalent Document Architecture

We present a brief overview of the multivalent document architecture. A more detailed description
can be found in [Phel98].

With layers and behaviors of arbitrary type coming together from multiple sources, a key problem
is their coherent composition into a single conceptual document for the user. This integration is
accomplished in the multivalent document architecture by several features:

1. A well-defined suite of protocols (implemented as method signatures in Java) to which
behaviors should conform. The model’s built-in logic promises to compose conforming
behaviors.

2. A separation of structural document content from media-dependent elements.

11

3. A single coherent abstract tree representation of the document, into which all content is
combined and upon which all behaviors operate.

4. Support for robust positioning. Mechanisms are provided to robustly align distributed
layers, so that it may be possible to position them in the presence of asynchronous changes.

5. An extensible and self-documenting user-interface. Behaviors can add entries to (or create
new) conventional pull-down menus, as well as provide help pages for self-documentation.

6. A well-specified format for persistent storage of a multivalent document.

4.1 The MVD Protocol Suite

To allow arbitrary extensibility of any aspect of the system, each of the fundamental runtime
operations on digital documents has been opened with an extensible protocol. The fundamental
document lifecycle can be found in some (perhaps abbreviated) form in almost all digital document
systems. In the MVD model, the life cycle begins with document instantiation (restore), i.e., the
assembling of components of the document, during which behaviors and layers are loaded, and the
behavior methods are inserted into their appropriate places in the other protocols. Then the build
protocol is started; the build methods create an internal graph data structure for the document, using
the information in the layers. After build, format formats the resulting documents, and then paint
renders the document on the screen. At this point, the user events protocol is started. An event
loop waits for input from the keyboard, mouse or other input device, and hands it to the methods
implementing the protocol. Among other things, events can trigger the save protocol, cause the
document to print, or select a portion of the document. In addition, an event might trigger some
action that requires looping back to an earlier phase, e.g., to rebuild, reformat, and repaint the
document.

Behaviors modify or extend the system by contributing methods to each protocol. Behaviors are
ordered, meaning that MVD protocols evaluate methods contributed by behaviors in a specified
sequence. In addition, many protocols have “down” and “up” stages, which admits very flexible
extension. Given the list of prioritized behaviors loaded into the document, the down phase iterates
through all active behaviors from highest priority to lowest, during which the more basic behaviors
of higher priority provide a base for lower priority. For instance, in our scanned image example, a
high priority behavior establishes the initial document tree based on information from the OCR
layer; a lower priority behavior later augment this structure with table description information.

Higher priority behaviors can “short-circuit” ones lower in the chain. For example, as we describe
further below, a behavior that “collapses” a segment of a document to achieve an outline mode
would, for the sake of efficiency, use short-circuiting to bypass formatting its hidden contents. In
the up stage, control flows low priority to high, giving higher priority behaviors the opportunity to
“massage” the results from lower priority behaviors. In addition, most protocols have a somwhat
complex internal structure. E.g., many protocols are followed while a graph (such as the IDEG,
described in the next section) is traversed, and are actually called repeated for each node of the

12

graph; paint has some complexities in order to deal efficiently with region geometry, as described
below.

MVD supports dynamic reordering of behaviors, meaning that, after a document has been loaded,
one can change the order in which behaviors are traversed. However, thus far, we have found
dynamic reordering of behaviors to be of limited utility. Specifically, we have only found it useful
for the lens behaviors described below. And, in these cases, reordering is done transparently to the
user.

4.1.1 The IDEG and Media Adapters

Media of various type (text, video) and format (within text: PostScript, HTML) are encapsulated by
specialized behaviors called media adapters. During the build stage, these behaviors contribute to
the construction of a document structure tree, called the Integrated Document Element Graph
(IDEG). The media adapter encapsulates media types, and is responsible for communicating to the
MVD infrastructure information such as the bounding boxes of its internal content (at some
granularity, e.g., a word or paragraph of a textual document) and for rendering that content upon
request from the MVD infrastructure. Separating the document structure from the media elements
facilitates a multimedia document system. Behaviors (other than media adapters) operate on the
medium-independent structural document tree (i.e., the IDEG) and communicate with encapsulated
media types through the protocols. Hence, behaviors can be written once without special
accommodation for any particular medium and, as much as it applies to a given medium, operate on
all media types.

A behavior’s build method specifies how that behavior modifies the IDEG. Generally, a document
will contain one behavior that builds the primary structure of the IDEG from one or more layers;
we refer to this structure informally as the “base” document. Other behaviors’ build methods may
incorporate additional layers into the document structure by modifying the IDEG. In the case of a
scanned image document, the primary structure of the document is that obtained by an OCR
process. In this case, the IDEG is likely to be simple, just indicating lines and words. The media
elements are the individual word images, along with the associated text from the OCR process. In
the case of a document in a mark-up language, the structure is likely to mirror that provided by the
mark-up. Other behaviors, for example, those that create spans, as described below, will modify
the IDEG by marking the beginning and end of the span. The behavior’s implementation of the
paint protocol determines interprets an appropriate user interaction within that span as a command.

Behaviors can contribute items to menus in a conventional menu bar, allowing one form of user
interaction. Individual behaviors can also intercept user events, as our table sorting example
illustrates.

4.1.2 A Simple Example

Here we give a very simple example of a behavior. Figure 4 contains the entire definition of the
“AwkSpan”1 behavior. This behavior implements a labeled span along the leaves of the IDEG. In
general, spans associate some property or functionality with a sequence of media elements.

1 The name comes from the use of this behavior to put a copyediting comment like “Awkward” next to a span of text.

13

AwkSpan must (i) attach the span to the IDEG, change the layout of the document so that the label
of the span can fit between the lines of text, and (iii) appropriately paint the span and associated
label. (Spans are described in some detail in 5.1.1. The span labeled with the text “which?” in
Figure 8 below is an instance of AwkSpan.)

public class AwkSpan extends Span {
 String awk_;
 Span underspan_;
 Span label_;

 public AwkSpan() {}
 public AwkSpan(Mark l,Mark r, Layer layer, String awk) {
 super(l,r, layer);
 awk_ = awk;
 attach();
 }

 public boolean appearance(Context cx) { cx.underline = layer_.getAnnoColor();
return false; }

 void attach() {
 label_ = new LabelSpan(start.node,start.offset, start.node,start.node.size()
, layer_, awk_);
 }

 public void buildBefore(IdegINode root) {
 super.buildBefore(root); // attach to tree
 attach();
 }

 public void save(StringBuffer sb) {
 putAttr("COMMENT", java.net.URLEncoder.encode(awk_));
 super.save(sb);
 }
 public boolean restore(ESISNode n, Vector bvect) {
 awk_ = Utility.urldecode(getAttr("COMMENT"));
 return super.restore(n, bvect);
 }

 public void remove() { label_.remove(); super.remove(); }
}

Figure 4: The “AwkSpan” behavior.

In terms of interfacing with the MVD protocols, AwkSpan extends build, save, and restore. In a
particular, it contributes a method to the “down”, or high-to-low stage, of the build protocol, i.e., a
“buildBefore” method. During this stage, MVD behaviors generally build up the IDEG; in the

14

subsequent low-to-high stage, the minor adjustments to the IDEG might be performed. AwkSpan’s
buildBefore method simply attaches the span to the IDEG. The contributions to the save and
restore protocols just use system utilities to save the span to and restore it from a hub document.

Almost all the real work for AwkSpan is done elsewhere. In particular, AwkSpan makes use of
another behavior, LabelSpan, to deal with formatting and painting. (Several other behaviors use
LabelSpan, which exists just to realize code sharing.) LabelSpan is show in Figure 5: The
LabelSpan behavior extends the high-to-low stage of the paint protocol (i.e., “paintBefore”) to
properly paint the span’s graphic characteristics and its text label.

Despite the fact that AwkSpan (via LabelSpan) must cause changes to the format of the document
to allow for the insertion of the span label, no method is contributed to the format protocol.
Instead, LabelSpan changes the graphics context of the span element (by use of the “appearance”
method). The format protocol knows to call this function at the appropriate time, thus making the
correct formatting information available. Since the primary format protocol knows to interpret the
graphics context properly, no actual code extension of the protocol is required.

public class LabelSpan extends Span {
 String label_;

 public LabelSpan(IdegNode l,int lo, IdegNode r,int ro, Layer layer, String
label) {
 super(l,lo,r,ro, layer);
 label_ = label;
 }

 Font annoFont = new Font("TimesRoman", Font.PLAIN, 10);
 public boolean paintBefore(Graphics g, Context cx, IdegNode start) {
 Rectangle bbox = start.bbox;
 g.setColor(layer_.getAnnoColor()); g.setFont(annoFont);
 g.drawString(label_, cx.x,bbox.y+10/*2 points of descender*/);
 return false;
 }

 public boolean appearance(Context cx) { cx.spaceabove =
Math.max(cx.spaceabove,12); return false; }
}

Figure 5: The LabelSpan behavior

While we have not described all the details of this simple behavior, the example illustrates rather
typical behavior construction. Specifically, there are typically a number of behaviors that
implement a particular function, for the sake of being able to write modular code. There may be
arbitrary functions that exist as part of the behavior, but they must ultimately interface with the
protocols. Sometimes what the behavior wants to do is anticipated by the infrastructure (as in the
case of format understanding how to lay out elements with certain graphics properties), so a
behavior may alter a data structure rather than extend a protocol.

15

4.2 Robust Anchoring

MVD assumes that documents are composed out of distributed layers. These are likely to be under
the control of different authorities. Rather than attempting to impose a requirement of strict
coherence (referential integrity), which we feel is untenable given our openness goal, we provide
support for redundant descriptions of positions across layers. Specifically, a standard system class
is provided that takes a document structure tree position and creates a redundant description of that
place. This description includes (i) the place’s structural position in the IDEG (similar to HyTime’s
[DD94] TREELOC), along with any media type-specific offset into the leaf node, (ii) an excerpt of
the underlying text (if any), and (iii) a unique identifier. If the document is restored at a later time
with the base document or other layers upon which it depends edited, a series of incrementally
permissive back-off strategies tries to reattach the anchor to the new appropriate location.

For example, if a block of text were deleted before an anchor, the structural tree position may be
invalid, but the text will be searched for and, if the excerpted text is unique in the document, the
anchor will be placed at the match. If the corresponding text were edited as well, we search for
smaller and smaller portions of the text down to some minimum length until a match is possible.
Closer matches to the original location are preferred to those farther away when several matches
produce a choice.

Preliminary results indicate that in practice this anchor repositioning strategy works well. Of 754
annotations using such anchors that needed repositioning to layers that underwent varying degrees
of mutation, 742 were automatically repositioned, leaving 12 to be reapplied by the user. In most of
the latter cases, the associated position had in fact been deleted entirely.

While robust anchoring is provided by the MVD infrastructure itself, we note that it could have
been implemented as an ordinary behavior. It is such a key service, however, that rather than
relying on a hub document that may or may not include it, we decided to include robust anchoring
as part of the core set of document services upon which all behaviors may depend. However,
behavior implementers might provide additional functionality to deal with asynchronous changes.
For example, if every attempt at reattachment fails, as when the corresponding area of the
document is deleted entirely, this fact could be reported to the user, who can reattach the object
manually or discard it. Or, the original author could be alerted to the change, and perform an
update if desired.

4.3 The User Interface

The MVD model poses interesting user interface issues, as new behaviors can add arbitrary
functionality. Also, one of our user interface design goals is to allow the user to interact with the
application without necessarily understanding all the details of the model. While we regard our
current user interface capabilities as preliminary, we believe we have at least partially addressed
these problems.

First, we have provided a general framework into which behaviors can interact with the user.
Specifically, each behavior can add one or more entries to be assembled into conventional pull-

16

down menu entries. Entries can be specified as belonging to functional groups that are mutually
exclusive or independent, so that the menus can be arranged accordingly. The detailed mapping of
behavior menu specifications to actual menu entries is specified in the hub document, allowing
more flexibility (and more potential user confusion if care is not exerted). For convenience, a
default assembly of groups into menu items is provided in the infrastructure, so that if no
specification is made, the menu item will probably end up in a meaningful location.

In addition, each behavior can provide help pages that document its function. One way to access
this information is on the “Help on Menu Item” entry in the “Help” menu. After this menu entry is
selected, the cursor changes, and the next selection of a menu item will bring up a page describing
the effect of that menu entry, the behavior to which it belongs, and perhaps other related menu
items. (Of course, this feature is provided via a help behavior, not by the infrastructure per se. In
general, we imagine that a number of generally useful behaviors will be packaged and included in
most documents, but the infrastructure does not require their inclusion.)

Some other forms of help are provided on a per-behavior basis, but along the lines of suggested
conventions. For example, behaviors can offer information about regions of the document to which
they pertain. They do so generally by providing a menu item in the “Meta” menu. For example,
the behavior managing image-OCR integration will show where it thinks word boundaries are via
such a method. The user can also dynamically load and unload behaviors. Again, this is done not
as part of the infrastructure, but via a “behavior loading behavior”, itself initially loaded under the
File menu. Similarly, another behavior describes which behaviors are loaded and what they do.

4.4 The Hub Document

As mentioned above, the persistent form of a multivalent document is the “hub” document. The
hub document is essentially a list (written in the language XML [BS97]) of the layers and behaviors
that comprise the single conceptual document. Figure 6 shows a slightly abbreviated example of a
hub document, in this case, for the scanned image example of the previous section.

In Figure 6, behaviors available for all pages are listed first. (Only the TableSorting behavior is
restricted to a single page.) The layers utilized by the behavior XDOC, the media adapter for
scanned page images, are given as URLs. Other data layers, e.g., the text of a note, is given in line.
Behaviors can choose whether to incorporate their associated layers by reference or inline, with
large layers, non-textual media, and layers meant to be shared across documents more naturally
included by reference. In this example, the behaviors will be loaded from a default location on the
document server. Similarly, no specification of mappings from menu groups to menu locations is
given, so the default configuration is used.

As part of the listing of the behaviors to be included in a document, the hub document may also
include behavior instances, i.e., specific uses of a behavior within a document. It is through the use
of such behavior instances that most annotation is effected in MVD. We will discuss behavior
instances more below.

To open a document, the framework fetches the behaviors specified in the hub document, and the
layers they reference, and composes them together. I.e., it places the methods specified by the

17

behaviors into the appropriate protocols, and begins following the protocols. The order of
behaviors in the hub determines the initial relative priority of the behaviors. It is primarily of
significance that certain fundamental behaviors be loaded first

The framework can write out a new hub document (and, possibly, new or updated layers as well).
The new hub document may reflect various changes that occurred during the course of using MVD,
including behavior instances created or eliminated or changes to a layer. Generally, it is the job of
each behavior’s save protocol implementation to write out the portions of a hub document that
reflect the current status of behavior instances or changes to a layer.

In this example, the layers are primarily images and OCR rendered from those images. Another
example of a hub document is a “base” document along with layers and behaviors that impose
annotations on this document. We examine a variety of such examples below.

<Multivalent title="Testing" author="Authoritative" source="Source">
<Pages Behavior=Multivalent.Pages page=1 pagecnt=20>
<Xdoc Behavior=Multivalent.Xdoc XdocURL="http://elib.cs.berkeley.edu/docs/data/0000/17/OCR-
XDOC/%08s.xdc" ImageURL=" http://elib.cs.berkeley.edu/docs/data/0000/17/GIF-
INLINE/%08s.gif" Scale=3.32>
</Xdoc>
<Page number=8>
<TableSort Behavior=Multivalent.TableSort>
…
</TableSort>
</Page>
<Doublespace Behavior=Multivalent.Doublespace active=off></Doublespace>
<Hyperlink Behavior=Multivalent.Links></Hyperlink>
<Search Behavior=Multivalent.Search Active=off></Search>
<Magnify Behavior=Multivalent.Magnify active=off x=300 y=200></Magnify>
<ShowOCR TITLE="OCR Lens" Behavior=Multivalent.ShowOCR active=off x=50 y=200 width=300
height=300></ShowOCR>
<ShowImage TITLE="Scanned Image Lens" Behavior=Multivalent.ShowImage active=off x=100 y=200
width=300 height=300></ShowImage>
<Note Behavior=Multivalent.Note x=200 y=50 active=off>Page 8 illustrates\nthe tablesorting
behavior.\nClick on a column title.</Note>
<ShowOCR TITLE="OCR Lens" Behavior=Multivalent.ShowOCR active=off x=50 y=200 width=300
height=300></ShowOCR>
<High Behavior=Multivalent.HighMan></High>
<SelProvenance Behavior=Multivalent.SelProvenance></SelProvenance>
<SelMarkup Behavior=Multivalent.SelMarkup active=off></SelMarkup>
<Debug Behavior=Multivalent.Debug></Debug>
<Bed Behavior=Multivalent.Bed></Bed>
</Pages>
</Multivalent>

Figure 6 : A hub document. Shown in abbreviate form is the hub document for the scanned image
document used in the previous figures.

While this description of the architecture is very brief, we hope it at least suggests how the model
can be highly distributed (the layers and behaviors, specified by a hub document, can reside
anywhere, and are composed robustly by the infrastructure), highly open (the layers can be of
varying data types, provided that a media adapter behavior is made available for that type, and the
document can be viewed and manipulated on any Java-compliant platform), and highly extensible
(all functionality is opened to extension of the protocols).

18

5 Multivalent Annotations

Above we proposed a number of criteria that an adequate model of annotation should meet. The
multivalent document model outlined provides a straightforward means to meet these criteria.
Specifically, one can construct a multivalent document that includes as a layer a “base” document,
i.e., the document to be annotated, and also, some behaviors and associated data that effect the
desired annotations. “Multivalent annotations” are then just MVD behavior instances used
annotatively. Moreover, if the base document is created by one author, and the annotative behavior
instances by another, then the result is a distributed annotation.

While there is nothing built in to the MVD model in support of annotation per se, some behaviors
can naturally be used to effect annotative functions. In addition, combinations of such behaviors
can achieve coherent, recognizable genres of annotation. In this section, we discuss some types of
MVD behaviors, and illustrate their annotative applications.

5.1 Types of Behaviors

We have developed a number of multivalent behaviors that have annotative (as well as other) uses.
We find it convenient to divide these behaviors into three classes, as categorized by their
underlying technologies. There are behaviors that make use of (1) point-to-point spans of media
elements, (2) geometric regions of a document presentation, and (3) structures within the document
tree. Here we give examples of each class, and illustrate how they can be used annotatively. We
also show some examples of uses of these behaviors in coherent combinations.

As behaviors are in effect extensions of the MVD framework, the functionality we illustrate here is
not part of the framework itself. However, the behaviors used in these types have emerged as
important to our model’s goals, and hence we have designed the infrastructure, if not to support
such behaviors directly, to provide efficient mechanisms that these behaviors require. We reiterate
that the model is not limited to behaviors (and hence, modes of annotation) fitting into these
categories.

5.1.1 Spans

Span are behavior instances that extend from one point in the document continuously to another
point. Spans are implemented as behavior instances with (robustly specified) start and end points in
the document tree. As a span is just a behavior instance, there is generally one behavior
corresponding to each span type. That behavior can create new spans, influence how these appear,
handle user interactions, and save and restore spans from persistent storage. Spans generally
modify the current display parameters (the graphics context) before the content itself is drawn, and
can receive user events such as mouse clicks and keypresses.

Figure 7 shows a document containing several types of spans. This document is a scanned page
image, enlivened by an optical character recognition layer and a set of supporting behaviors, as
described in the previous section. One type of span illustrated in the example is a hyperlink. It is
presented by having the associated document span be underscored in blue. It has user interface

19

properties one has come to expect from hyperlinks, in that moving the cursor over the link changes
the cursor to a pointer, and reveals a destination at the bottom of the page. Clicking on the link
accesses the resource being referred to.

Figure 7: An image document with some spans. The spans shown here include a hyperlink
(presented by the blue underscore), and a highlight (yellow background). Spans corresponding
to the current selection (orange background) and search results (red boxes) are also shown. A
menu (Anno) has been pulled down, revealing entries for creating hyperlink and highlight
spans. If either is now chosen, the current selection span with become an additional hyperlink
or highlight span.

Another span on this page is a highlight, meant to resemble a yellow marker pen. In addition, the
results of a search are also displayed by spans marked by red boxes. The current selection (display
with an orange background) is also implemented as a span.

20

Note that in this figure, as in all our examples, it is not possible to discern exactly how these spans
relate conceptually to the underlying image. Indeed, three possible scenarios are worth
distinguishing. In one scenario, these spans are described in the hub document created by the
author of the underlying image document. In this case, the author has used MVD capabilities to
enrich his or her own document, perhaps adding features to it beyond those the base document
format can support. However, the annotations and images are likely to live on the same server, and
hence, even if we were to construe them as annotations by the author, they would not be taking
advantage of the distributed nature of the model. A second, more interesting, scenario, is one in
which these annotations are described in a hub document created by another author, and which
resides on a server other than the one holding the image. In this case, the spans comprise
distributed annotations of the original document.

In a third scenario, the spans have not (yet) been stored anywhere, but instead, have been created in
the MVD client’s internal representation of the document, perhaps just for the user’s temporary
purposes. This is certainly the case for the current selection, and most likely (but not necessarily)
for the search result. However, the user may subsequently save the spans in a new hub document,
thus created some annotations of the base document. For example, in the figure, the pulled down
“Anno” menu reveals entries for creating highlight and hyperlink spans. Should one of these menu
entries now be selected, the current highlight span would become a highlight or hyperlink span.
The user may then decide to save the new span by writing out a new hub document, hence creating
a persistent, and potentially distributed, annotation on the base document.

Of course, any combination of these scenarios is possible. E.g., the author might have added the
hyperlink as part of the initial publication. An annotator may have added the highlight (i.e., used
MVD to create the highlight, and then to create another hub document containing this span
persistently). A third user may have opened the document created by the second user, and done a
search, resulting in the search terms being outlined.

Before continuing, it is useful to clarify the relation of behaviors and behavior instances, such as
spans. In this example, there is one hyperlink behavior, and one highlight behavior. Each of these
behaviors may create and manage any number of spans, i.e., it may have any number of instances.
The behaviors themselves may indicate that they want an entry in a menu, the use of which might
create a new behavior instance, or the like. The behaviors’ user events methods intercept events on
these spans; their paint methods set the graphics properties for the span, and so on.

Another class of spans we have implemented are copyediting marks. Figure 8 is an example of the
same document, but with copyediting behaviors loaded, and used to create a few spans. One span,
in the left hand column, extends over the word “equation”. This span simply provides a comment.
The second span, on the upper right, specifies replacement text. In this case, the copyediting mark
extends through the word “J.”, and recommends that this be replaced with the text “Journal”.

Note that these spans illustrate a powerful feature of the MVD infrastructure, namely, layout
control. These spans effectively change the height of associated lines, and image management
behavior must re-layout the document to accommodate them. It does so by painting the document
from its OCR rendering. Since such rendering is imperfect, a warning is displayed to this effect.
The user can use menu entries to toggle back and forth between these (and other) presentations of

21

the document. (Note that commercial OCR engines, such as the one used here, generally do a very
poor job with equations, so that that region of the document is redrawn particularly poorly.)

Figure 8: Copyediting spans on a scanned image

There are several advantages to using spans of this sort for annotations. Unlike simple overlays,
spans are anchored to document contents, so the annotation will be coherent after additional
document manipulation. For example, Figure 9 shows the same document in which layout control
has been used to double-space the page image (by the use of a doublespace behavior). Note that
the copyeditor marks have stayed with the appropriate text. Had this annotation been achieved by a
simple bit image overlay (which one can also easy accomplish in the MVD framework), the
contents of the overlay would no longer be aligned with the base after such a manipulation.2 In
addition, spans can be made robust, so that they still may be positioned correctly in the presence of
change in the underlying base document.

2 Of course, one might want to have spans whose annotative content is a bit image, rather than a structured object as in
these examples. A behavior supporting such spans should be easily accommodated within the MVD framework.

22

Figure 9: A scanned image double-spaced. The copyedit marks remain coherent.

This type of annotation is more interesting when the base document is more readily subject to
manipulation. As an example, consider Figure 10, in which the base layer is one of the authors
home page on the web page, i.e., an HTML document. Here we have added four copyediting
marks: Suggestions that “Acrobat” be replaced by “PDF”; that the word “that” four lines below be
deleted; that “Roget’s Thesaurus, Fifth Edition”, be italicized; and that a missing parenthesis be
added at the end of a line.

This example illustrates a number of points. First, it demonstrates support for HTML within the
framework. This was done simply by writing a media adapter for this document format. Second,
the same behaviors are seen operating on multiple, rather different, document formats: scanned
images above, and HTML here. (We have explicitly illustrated copyeditor marks operating on two
document formats; all the other behaviors shown above, e.g., highlighting and searching, also
operate across formats. Indeed, HTML hyperlinks (many of which appear in the example) are
implemented in MVD by turning the underlying HTML markup into MVD hyperlink spans.)

23

Figure 10: Copyediting marks on an HTML document. The copymarks appear in a blue-
green font, and suggest, in order, the following actions: replacing the word “Acrobat” with
“PDF”; deleting a gratuitous “that” (about the middle of the page); italicizing the words
“Roget’s Thesaurus, Fifth Edition”, and inserting an omitted parenthesis.

Third, because MVD annotations are supported by behaviors, they can have useful functionality.
Copyeditor spans, for example, are executable: Moving the cursor over a copyeditor span and
clicking carries out the advertised action. For example clicking on the deletion and italicize spans
in the current example produces the result shown in Figure 11.

Executable copyediting marks illustrates the separation between document structure and media type
in MVD. The copyediting spans refer to leaves in the MVD IDEG. The IDEG is essentially the
same for documents created from scanned images or HTML, although in the former case the IDEG
is created from the (generally simple) structure given to us by an OCR process, and in the latter,
from the parse tree for an HTML document. However, the leaves of the IDEG for a scanned image
refer to image regions; the leaves of the IDEG for HTML contain strings of text. The latter are
relatively easy to manipulate, the former much harder. For example, it is relatively easy for a
behavior to implement “italicize” for text, as doing so corresponds to setting a graphics property. If
we wanted this same copyediting behavior to be executable in images, one would have to
implement a transformation specific to that media type. Doing so would require a considerable
amount of effort, for marginal utility, so we have not done so. Of course, someone believing that
this functionality would be valuable can implement such behaviors within the framework.

24

We will return to this example below, in the discussion of Notemarks, where we will demonstrate
additional ways of taking advantage of capabilities afforded by spans.

Figure 11: The HTML page after executing two copyediting marks, namely, a deletion and an italicization.

Before we leave spans, we note that we have only illustrated a few types here. We have also
written behaviors can change most graphics properties, including background color, foreground
color, underline/overstrike, font, scaling factor, visibility, and so forth, i.e., the general range of
textual attributes found in most document systems.

Also, while we have shown some uses of spans, e.g., highlights and hyperlinks, that are familiar to
users of various word processing and hypertext systems, here we have shown how the MVD model
allows these notions to be imposed on a document format (scanned images) that does not support
such capabilities per se. We have also shown how such behaviors, while not intrinsically
annotational, can be used annotatively, by storing their instances in a hub document separate from
the underlying base document. (Note that this annotative capability may be useful for document
formats that do support these types internally. For example, one could add a new hyperlink to
someone else’s web page.) We have also demonstrated annotation in situ. Finally, span
annotations are robust against changes to document content and against document manipulation.
As described above, when saved to persistent storage, spans use a system class to achieve
gracefully degrading repositioning. (Internally, spans are anchoring with “sticky pointers” [Lad],

25

which maintain perfect alignment if a layer changes during a session.) Span annotations are deleted
when the entire span being annotated is deleted, and expand to cover any text inserted into the span.

5.1.2 Geometric Region Behaviors: Lenses

Spans allow reference to the fine-grain structure of a document. Another type of multivalent
behavior, lenses, affect geometric regions of a document’s appearance. MVD lenses were inspired
by Xerox PARC’s Magic Lenses [Bier93]. Like spans, MVD lenses can modify content display
parameters before document content is drawn and can receive events. As such, we were able to
implement lenses within the multivalent model with no specific allowance for them; they were
implementable as behaviors simply by using the fundamental operations on digital documents
exposed by the MVD protocols. However, it was not possible to compose lenses efficiently in this
matter, so support for lenses was introduced directly into the core of the MVD framework.

Figure 12 illustrates two examples of lenses. Toward the upper left portion of the screen is a “Show
OCR” lens. Inside this lens, the image text is replaced by the results of an OCR process, rendered
in the font the OCR software estimates for the original text. (As mentioned above, and can be seen
in this example, the OCR software does a much more credible job with text than with
mathematics.) Toward the lower right portion of the screen is a “Bit Magnify” lens. This lens
enlarges the image underneath it. Where the lenses overlap, the effects compose: The upper left
portion of the “Bit Magnify” lens overlaps the “Show OCR” lens, and so enlarges the OCR
translation; the rest of the lens enlarges the base scanned image. Of course, lenses compose with
other types of behaviors as well. Where lenses overlap the selected span, or the copy-editor marks,
that element composes with the effect of the lens. User interactions also compose through the
lenses, so, for example, one can select text or invoke hyperlinks through the lens and so forth.

Lenses compose according to their order in the protocol hierarchy. The user can reorder the
relative priority of behaviors simply by clicking on a lens’s title bar, bringing that lens to the top of
the stack. (This is in fact the only case we have encountered so far in which it is useful and
intuitive for the user to change the order of behaviors in the protocol.)

Lenses can be moved about by their title bar, resized by dragging the lower right corner, and
removed by clicking the close box at the right of the title bar. Lenses also receive events, which
they can block, let pass through, or transform. For example, the magnify lens adjusts the x,y
coordinates of mouse cursor positions to correspond to the underlying appearance, enabling
selection or hyperlink activation inside.

Lenses can arbitrarily transform the appearance of their contents. Some transformations can be
accomplished simply by altering a graphics property of the region. Other transformations, e.g., that
done by “Show OCR, require the lens to carry a list of attribute-value pairs, e.g., “show—OCR”
(as opposed to “show—image”), which receptive media elements know to look for in order to draw
themselves appropriately. In composing overlapping lenses, conflicting settings between two lenses
are overridden by the higher priority lens, i.e., the one that appears “on top”.

26

Figure 12: Geometric or lens behaviors: One “Show OCR” and one “Bit Magnify” lens are shown, in
composition in overlapped regions.

It is certainly possible to use geometric region behaviors annotatively. E.g., one might use a
magnify lens to draw attention to a detail of the document being annotated. However, the most
obviously annotative use of lenses is the Post-it™-style note. Such notes are implemented as
“opaque” lenses. A note is simply a lens which, during its down (i.e., high-to-low) priority phase
of painting, paints the background and then short-circuits any lenses below. Since a note lens
shares the window apparatus with other types of lenses, the note can be moved about the page and
resized.

Notes can contain their own document contents. Such context can be an IDEG, and therefore,
make its own use of behaviors. One particularly useful example is shown in Figure 13. Here we
show the top of a relatively long HTML page, annotated with a note whose contents include a
hyperlink to a location further down the page, where additional annotations have been placed. The
anchor for this reference was also added to the document externally. (Anchors are implemented as
a type of span.) Now, the reader need only click on the link to be transported to an off-screen
comment. (We also included a Bit Magnify lens in this example, to illustrate its annotative use, and
to illustrate its functioning on another document format.)

27

Figure 13: A note and an magnify lens on an HTML document. The note contains a hyperlink
to additional annotations offscreen.

Lenses are a good example of a kind of annotation that is not readily available via paper. First,
lenses can perform functions that are not easy to do with paper, such as magnifying a portion of a
document, or containing an active link to another part of a document.

Other examples of lenses that are primarily annotative are under development. For example, one
such lens shows information about Chinese characters in Chinese text, to be used as a teaching aid.
Another shows language translations, from a layer of aligned language translations.

5.1.3 Structural behaviors

Structural behaviors hook into the IDEG, representing a function applicable to a structurally
meaningful portion of the document. Whenever an action is happening in that area of the
document, structural behaviors are given an opportunity to modify the results. Structural behaviors
can invest incremental knowledge into a document or leverage existing structure.

As an example of a structural behavior that invests some incremental information, recall that the
user can select words in the document image and paste the corresponding OCR. If further
structuring can be imputed to a region, it may be useful to paste different text more directly suited
to another application’s input. In Figure 14(a), a bibliographic entry has been selected. To
incorporate this entry into another application, one could start by pasting the OCR text and editing
it as necessary. Instead, we have created a “Biblio” behavior that automatically performs some
useful transformations. Specifically, having a semantic description of fields for author, title, pages
and so on, the Biblio behavior affects the selection protocol, automatically inserting BibTeX- or

28

(a)

(b)

Figure 14: An example of structural behaviors. (a) shows a page image in which behaviors
associate with the subtrees corresponding to bibliographic entries the semantic contents of
those entries. Here the user has selected the entirety of one entry, and then uses the entries
under the “Selection” menu to change the way selection works so that content of the
bibliographic entry is formatted as requested before being put in the selection buffer. (b) shows
the results of choosing the “OCR”, “BibTeX”, and “refer” menu entries, respectively, from this
menu, prior to selection, and then pasting the resulting selection in another application.

29

refer-formatted text, as the user chooses. Once in the selection buffer, of course, this formatted text
could be pasted into any application, as evidenced in Figure 14(b), which contains various
transformations of the text pasted into another application. The formatted text is computed on the
fly, so that adding an additional output format merely requires coding the appropriate formatting
statements.

A similar “alternative select and paste” has also been implemented for mathematics, with a fixed
set of output formats (Lisp and TeX) available at this time.

This example of structural annotations is not intrinsically annotative. From the point of view of a
user, the ability to select bibliographic alternatives can simply be a useful document feature. In this
example, the alternatives were added by someone other than the original author, lending them an
annotative quality. Some more obviously annotative examples are described in the next section.

5.1.4 Combining Annotations

It is possible to combine behaviors together in useful ways. In some cases, it is merely convenient
to use a number of forms of annotation together to a single purpose. For example, one might attach
a note to describe the overall comments, adding a hyperlink to move the reader to an annotated
portion of the text, where additional annotations appear, e.g., as yellow highlights or blue-pencilled
markup.

Other examples more closely couple multiple annotations to form coherent annotation genres. One
example with which we have experimented is a “language translation” lens. This lens makes use of
structural annotations that build sentence-aligned translations from additional layers. (In our case,
these aligned translations were constructed manually, although the model is indifferent to their
origin.) When positioned over a line of a sentence, the translation lens displays underneath that line
the corresponding translations, in our case French or German. (One could just as easily create a
“biblio” lens that displays variously formatted text, and a translation selection behavior that allows
the pasting of alternative translations.)

Another, more elaborate example, can be thought of as simulating creative paper folding. Paper
documents can be laid out in space to gain a sense of overall structure and to cross-reference
specific information across pages [OS97]. An orchestrated combination of multivalent annotations
can exploit computer processing of the document to provide a good portion of this useful
functionality.

Notemarks, a fusion of “note” and “bookmark”, is a form of annotation that provides some of the
same ability to sense the overall structure of a document by combining several kinds of annotations
together. Notemarks were first prototyped using the Tk toolkit’s text widget [Oust94] and applied
to the visualization of UNIX online documentation in TkMan [Phel94]. The same functionality has
been duplicated in MVD, via the combination of several types of behaviors. First, structural
annotations are used to allow a user to collapse or expanded a section by clicking the section
header. Within otherwise collapsed outline sections, single lines are made visible by versions of
span annotations similar to those described above, but in which care was taken that the graphics

30

properties of the span annotations were higher priority than that of structural annotations, and thus
can override the visibility state. Some such spans are created just for the purpose of overriding a
structural collapse. For example, often one refers to a manual page just to check the letter of a
command line option, so it is reasonable to pre-configure these lines as visible within collapsed
sections. Similarly, the first line of each paragraph of commonly important sections can be
excerpted in order to present a highly informative single screen overview. In addition, lines in
which the individual user may have somehow indicated an interest might also override collapse.

To implement Notemarks, an MVD media adapter was written especially for ASCII UNIX manual
pages. This media adapter examines an ASCII layer looking for manual page structures, such as
section headers and examples, and creates an IDEG with spans and attached structural behaviors
that present the page in a stylized fashion. Figure 15 illustrates an MVD document so created from
the text of the “file” command manual page. The headings of each section are shown in large font,
preceded by a triangle whose orientation shows the state of section collapse. Initially, the sections
are all collapsed, so their contents are generally not visible. However, command line options have
spans that override the collapse, so they are visible. (These appear in the “Description” section).
Also, as mentioned above, lines in which the user expresses an interest should be shown. In this
example, lines containing search matches (for “Windows” and “Mac”) also override the collapse of
sections. Clicking on any of these lines opens the document to the desired point.

Figure 15 is also noteworthy because it illustrates MVD operating on another document format,
namely, plain text. (Actually, the format supported here is plain text that conforms to a UNIX man
page; support for general plain text is also provided, but by a separate, simpler media adapter.)
Getting MVD to support this format was simply a matter of writing a behavior to support it, i.e., a
media adapter that builds the IDEG from a plain text, lays out the tree on the canvas appropriately,
and so forth. All the behaviors described above are immediately available.

The Notemarks idea works well together with other annotations. For example, the user can (using a
menu entry) determine whether highlights or copyediting marks should be treated like Notemarks,
and hence override section collapsing. Thus. turning on the Notemarks in the HTML collapses the
document long major HTML structures; specifying that copyediting marks should override this
folding makes most other text invisible. Figure 16 shows the document marked up as in Figure 8,
but collapsed so that most of what is visible is lines with copyediting marks.

31

Figure 15: Notemarks: Within otherwise collapsed Description section, subcommands,
highlights and search hits show through. Clicking on the desired area opens it up to that point.

Figure 16: Copyediting marks used as Notemarks

32

6 Applications to Other Data Types

So far, we have examined documents built from distributed layers, but whose primary content is
rather standard, i.e., text and scanned images. We have made some attempts to extend the model to
other data types. We have begun to experiment with data that have temporal extent, data that have
spatial extent, and data that have both temporal and spatial extent. Our work in this area must be
regarded as preliminary, but our experiments thus far indicate some possibilities and limitations.

6.1 Data with Temporal Extent

Data with temporal extent includes sound and video. Video and sound have been incorporated both
as separate elements, and as data associated with a structural annotation. However, at this point,
the internal structure of these media types is largely opaque to the infrastructure.

By separate elements, we mean that sound or video can be the content of a note. When such a note
is displayed, controls become visible when the cursor enters the boundary of the note, and the
content is streamed. It is also possible to use video or sound as annotations. In this case, the user
can select a span, and choose a behavior for making video or sound annotations. A widget is
displayed requesting a URL. A tool to control the continuous medium is displayed to the right in
the margin near the selected text.

It is possible to associate textual notes with video notes, and synchronize the text shown with the
video, to achieve a captioned video effect. Figure 17 shows an example of a document with a
sound annotation, and a video note synchronized with two textual notes, one in English and one in
Polish. This example illustrates a potentially useful application of the document model to
continuous media, in that keeping the data layers separate in the document, with the ability of
combining them in the client, leads to flexible captioning.

33

Figure 17: Data with temporal extent: The widget on the right is an anchored sound annotation. The floating
window is a video note. The two textual notes are captions synchronized with the video stream.

6.2 Data with Spatial Extent

We have experimented with applying the idea of MVD to visualizing and annotating data with
geographic interpretation, i.e., maps and the like. However, as we have not yet attempted to
integrate this effort into the MVD framework proper, we forego discussion of this experiment here.
The interested reader can examine our prototype, called the GIS Viewer, which is available as
another Java applet at http://elib.cs.berkeley.edu. (The “GIS Viewer tour” is recommended.)

34

7 Using MVD for Annotation

The previous sections provided an overview of MVD, and gave examples of annotative behaviors.
Here we clarify some pragmatic details of the processes by which a user might use MVD
annotatively.

To begin with, a user opens a multivalent (i.e., hub) document in the MVD applet. This may be
done by specifying the URL for a hub document to the MVD Open widget, available under the File
menu. Since the MVD applet may not already be running, we have provided a service, using a CGI
script, to which a hub document URL may be provided as an argument. The script returns a call to
the MVD applet, passing it the hub document URL as an argument. In other words, by appending a
hub document URL as an argument to this script URL, one produces a valid web URL which, when
supplied to a Java-compliant web-browser, will invoke MVD on a given hub document.

Once the hub document is loaded, the user can use whatever behaviors there are that have been
specified by that hub. Presumably, these will include the various annotative behaviors described
here, although exactly what is included is specified by the hub document. The user makes various
annotations on the document. (As explained above, from the MVD viewpoint, all the user is doing
is creating new instances of MVD behaviors; these just happen to be annotative.) Then the user
saves these annotations by created a new hub document. This is done simply by selecting the
“Save As” entry in the File menu, and supplying a name. MVD will create a new hub document,
which will include the instances of behaviors extant at the time, including the new annotations.

Figure 18 contains the simple hub document resulting from annotating a web page with a
replacement copyediting span and a note, and then saving, as just described.

<MULTIVALENT GENRE="HTML" SEARCHNB="ON" ANNONB="ON" COPYEDNB="ON">
<Multivalent.std.adaptor.HTML BEHAVIOR="Multivalent.std.adaptor.HTML"
URL="http://www.darpa.mil/"></Multivalent.std.adaptor.HTML>
<Layer BEHAVIOR="Multivalent.Layer" NAME="Personal" URL="inline">
<Span BEHAVIOR="Multivalent.std.span.ReplaceWithSpan" CREATEDAT="Wed Feb 11 14:52:02 PST
1998" NB="COPYEDNB" INSERT="DARPA">
<Start BEHAVIOR="Multivalent.Location" TREE="0 20/It 4/P 0/BODY 0/HTML" CONTEXT="It
(DoD). manages"></Start>
<End BEHAVIOR="Multivalent.Location"
 TREE="2 20/It 4/P 0/BODY 0/HTML" CONTEXT="It (DoD). manages"></End>

<Note BEHAVIOR="Multivalent.Note" NAME="NOTE1739298548" X="161" Y="258" WIDTH="287"
HEIGHT="303" POSTED> Here are some comments on \nthe DARPA home page. \nRW</Note>
</Layer>
</MULTIVALENT>

Figure 18: A hub document resulting from annotating a web page with a span and a note. The base document is
the DARPA home page. As this is an HTML item, the appropriate media adapter is specified. The
ReplaceWithSpan instance makes the editorial suggestion that an particular occurrence of the word “It” be
replaced with the term “DARPA”. The start and end portions of the span show tree locations and redundant
context for the location.

Since MVD is an applet, it cannot save to arbitrary locations. To get around this limitation, all
saves are done to a scratch directory on our server to which the world has read/write permission.
While items in this scratch area are apt to be transient, the user can subsequently visit the hub

35

documents via a web browser, to which they will merely be ASCII files. The web browser can then
be asked to save the contents on the user’s web server or other networked service at which it will
have a valid URL. The hub documents contain only absolute references, so the resulting item is a
persistent well-formed MVD hub document.

There are several other augmentations we have provided to facilitate use of MVD. While strictly
speaking MVD can only open hub documents, one can specify a default hub document for given
data types. We have done so, and extended MVD’s Open procedure so that, if it is given a
recognized MIME type instead of a hub document, it will create a default hub document for this
data type and open that. In this manner, one can use MVD as a web browser: One can specify to
Open an HTML page rather than a hub document, and MVD will open a synthesized default hub
document containing this page as a layer. If the HTML page contains hyperlinks, these can be
selected for traversal within MVD, which will once again open the web page by inferring a default
hub document around it.

Another mode in which one may use MVD is email. An MVD emailer has been written by Hoon
Kang. This allows one to read, originate, and reply to one’s mail within MVD. The user may
respond to an ordinary email message by using MVD annotations, and mail off the result.
Similarly, the user may mark up a document, and email rather than save the hub document. The
email contains both the hub document and a URL for opening a temporarily stored version of the
hub document. If the recipient is using MVD to read mail, the hub document can be viewed
directly; in other mail reading programs, the user can invoke the URL, thus running MVD on the
hub. We have found MVD to be useful in this manner for replying to long ASCII email messages.

7.1 Evaluating Multivalent Annotations

Multivalent annotations meet many of our requirements stipulated for annotations simply by virtue
of operating within the multivalent document model. They are highly expressive (behaviors have
access to every state of the fundamental document life cycle), extensible yet composable (new types
of annotation can be created by writing new behaviors; the multivalent framework insures
composability of behaviors conforming to the protocols), distributed and open (layers and
behaviors are intrinsically distributed; one can annotate any document for which one has a media
adapter, with no server-side requirements), format-independent (behaviors manipulate the abstract
document tree and communicate to encapsulated media types through media adapters), platform-
independent (the infrastructure is written in Java).

Another desideratum of digital annotations is that they appear in situ. We meet this requirement by
having the individual annotative behaviors rely upon the geometric placement information of
behavior instances available in the format stage of the document life cycle. Annotations are
attached to a particular component or series of components, and then placed in relation to them.
Thus when a document is double-spaced, say, or a table sorted, the annotation is drawn at the right
place because it is drawn in relation to the new position. Placement is managed by the multivalent
framework calling a behavior method at the right time.

36

In addition to meeting these conditions, multivalent annotations also deliver at least some of the
promise of digital annotations. They can be readily shared with others, and can have dynamic
properties, such as being executable or dynamically changing the view of the document. Exploiting
other aspects of digital annotations await future work.

8 Future Work

8.1 Other Data Formats

We have shown that MVD can be applied to multiple document formats, namely, scanned images,
plain ASCII text, and HTML. However, other document formats are in widespread use, including
those used by common office suites, i.e., word processing, presentation, and spreadsheet formats.
Support for “near image” formats, i.e., PostScript and Acrobat, would also be valuable. One
possibility is simple to provide media adapters for each media type. Such behaviors could run
efficiently, but requires significant programming. Another possibility is to write a media adapter
for RTF, and provide a service that converts documents in and out of this format. Another
possibility involves support for XML. We plan to support XML along with some style sheet
language. (Indeed, our support for HTML was implemented with this in mind, so support for XML
should not be a large step.) Of course, support for XML may be useful in its own right. In
addition, it should possible to translate most proprietary document formats into an XML DTD plus
style sheet. Thus, given support for XML, one needs only a translation service to convert the given
proprietary format into XML. Perhaps the office suite producers will include export and import of
XML, which will save us the trouble of providing translation software or services.

Our coverage of HTML is not complete. Some aspects are straightforward, and just require more
programming on our part. Others are less obvious. For example, it is not clear to us what is best to
do with dynamic components in documents, just as JavaScript or Java.

Near image formats can be handled in a number of ways. One can render documents by converting
them to image formats; alternatively, one can wait for promised 2D graphics rendering capabilities
to appear in the Java class libraries. The underlying document representation could be used to
more easily compute structure (i.e., word location). (This is straightforward for PDF; may
packages are available to do so for PostScript, with varying decrees of accuracy.) Alternatively, it
is possible just to run OCR on the images. Doing so produces an accurate rendering of the text
content of the documents, especially when true images containing text are included in the
document, although at greater computational cost. (We have set up a simple service into which the
user supplies a URL for a tiff file produced by a scanner; the service runs OCR on the contents,
converts the image to GIF for viewing, and returns a MVD document combining this image and
OCR contents. A similar service could be set up to other types of conversion.)

We have shown other applications that apply the ideas of MVD to other data types, namely, those
with temporal and spatial extent. We have demonstrated some degree of support for video and
audio within the model proper. It remains to be seen whether these data types can be well
integrated into a single framework.

37

8.2 Authoring Behaviors

We have provided some rudimentary authoring behaviors, namely, those for authoring notes and
various kinds of spans. However, more work is required in this area. In particular, the following
features are desirable:

• The ability to edit or remove annotations once they are created.
• More complex kinds of copyediting annotations. For example, one would like to be able to

indicate that a span of text should be moved to another point. Doing some presumably requires
rendering graphics, possibly across pages.

• The ability to provide recursive annotations. Right now, one can, e.g., put copyeditor marks or
hyperlinks in a note, but one cannot put a copyeditor span on another copyeditor span.

• The ability to save edited base layers. Right now, one can execute a copyeditor mark, or
otherwise modify a layer, but not of the media adapters currently write out their contents upon a
save. Doing so is just a matter of programming.

8.3 Other User Interfaces

Furthering our goal of “paper as a user interface”, we would like to capture annotations while
writing upon paper rather than using a keyboard and screen. For example, the user might mark up
paper copy, and provide this as input to a scanner. Then the original document could be subtracted
to produce a mark-up layer, which would then be subject to recognition analysis. The resulting
layer could be executed interactively by a user, in effect automatically executing one’s paper mark-
up. Alternatively, the marks might be made on paper but captured by using a special pen or a video
camera.

8.4 Dynamically Assembling Document Components

With layers and behaviors generally, but especially with annotations, one would like to take a
document and collect commentaries on it (i.e., retrieve all annotations by various authors). We
believe MVD hub documents can be searched in this fashion using generic Web search engines.
Within MVD, one would like to support collections of annotations, so that one can flip back and
forth between the annotations of different commentators on the same document. Similarly, one
would like to be able to annotate already annotated documents simply by including a hub document
inside a hub document. This idea of “cascading hub documents” should be straightforward to
support.

8.5 Real-time collaborative authoring

We have mostly described an asynchronous view of collaboration, in which documents are visible
after they have been authored. Indeed, our “document-centric” view of collaboration is

38

distinguished from session-oriented collaboration models in this way. However, it is possible to
allow synchronous collaboration, in our model, which amounts to allowing one user to see a layer
as it is being authored by another. Hence, we plan to explore extending the system to support real-
time viewing of layers as they are being authored. One possible way to implement this
functionality in MVD is via NCSA’s Habanero3, a session-oriented object-sharing framework,
written in Java, which enables software developers to transform single-user applications into multi-
user, shared applications.

9 Related Work

There has been a great deal of prior work in the area of document models and computer-based
collaborative work that we have drawn upon in this research. We do not attempt to review this
body of work here, but instead, compare and contrast our work to some of these approaches, with
the goal of highlighting how we see our work as differentiated from them.

It is useful to first contrast the MVD model with more traditional document models. Most
document processing tools manipulate documents of a specific data type. E.g., Microsoft Word
handles documents in native Word format or RTF; Web clients handle HTML; emacs processes
text; Adobe Acrobat4 products handle PDF. For the most part, these tools also generally have
rather limited notions of extensibility, and of a relatively coarse-grained level. Thus, it might be
possible for users to add a macro to Word, but it is very difficult to add a new feature. Moreover,
customizations are local to users or installations, and hence, difficult to share. Some systems,
notably emacs, address this problem by providing a powerful extension language. This approach
has been successful in some ways. But one is still left with the intrinsic limitations of the original
framework, which have proven difficult to overcome, as well as an extensive, support-intensive,
code distribution problem.

The MVD model addresses these problems in a number of ways: First, the incorporation of layers
as a basic document structuring element allows for a modularization of functionality, in that not
every piece of functionality need be supported by a single mark-up language. For example, to
incorporate hyperlinks into Word, say, the designers must support hyperlinks in the underlying
mark-up language, and then modify the software to handle them (and resell the new version).
However, in the MVD model, this functionality could be added to a Word document without the
underlying Word machinery even being aware of it. Moreover, the same hyperlink mechanism
would apply to other mark-up languages.

OpenDoc [Appl95] and OLE/COM [Broc95] represent document structuring efforts that address
some of the same issues as MVD. OLE is Microsoft’s propriety approach; OpenDoc a cross-
platform approach supported by a consortium (until its recent demise). OpenDoc and OLE are
similar to each other in that both view documents as comprising multiple embedded document
segments, each to be interpreted by software components. Both are similar to MVD in that they are
all essentially software component technology, and they attempt to simplify document structuring

3 http://www.ncsa/uiuc.edu/SDG/Software/Habanero/index.html
4 http://www.adobe.com/prodindex/acrobat/main.html

39

via modularity. However, OpenDoc and OLE attempt to modularize by dividing a document into
planar regions, each of which is controlled by a separate process. E.g., a table embedded inside a
text document would be managed by a table editor module, while the containing text component is
managed by a text editor module. MVD in effect provides a third dimension. That is, an OpenDoc
or OLE document would simply be one layer of an MVD document, albeit a modularized one.

Note that additional modularity is provided by MVD’s layering-and-behaviors approach: With
only the OpenDoc/OLE model, enhancing functionality requires changing individual software
components. While there is some mechanism for inter-application communication, it not generally
possible to augment a part, e.g., to add a hyperlink or a lens to a component that does not already
support such functionality.. Rather, to add, say, hyperlink support to both tables and text, both the
table and text components would have to be modified. In MVD, hyperlinks can be added via a
separate layer, i.e., in a “depth” dimension, without having to modify either an underlying text or
table manager.

OpenDoc/OLE components are essentially black boxes. In contrast, MVD integrates information
from multiple layers into a single document representation. Thus, in MVD, it is possible to
introduce behaviors that operate on multiple data types, whereas in OpenDoc/OLE the individual
editors are entirely separate programs. Thus, it is fairly straightforward to introduce behaviors like
a magnifying lens into MVD, and have it operate over multiple formats, whereas it is not obvious
how to implement an analogous function in OpenDoc or OLE.

OpenDoc and OLE require machine-specific implementations of software components. Thus, even
though an OpenDoc document is in principle cross-platform, there is no guarantee that a required
OpenDoc editor will be available on a given platform, much less installed. MVD addresses this
problem by the use of Java, so that code is transferable and normally down-loaded automatically
across the network.

Finally, OpenDoc and OLE both embrace a model in which a user controls a document, which
resides as a file in a single location. As such, these models are not particular conducive to the sort
of collaborative possibilities easily introduced in MVD.

Now let us contrast how we have used MVD to support annotations with the many other models of
annotation. One set of systems consider annotations to be part of the document per se, and
therefore, require write-access to or copying of a document in order to annotate it. For example,
Adobe Acrobat and Microsoft Word allow several different kinds of annotations. These may be
added after the document is authored, but only by editing a write-able version of the document.
Hence, they are ill-suited for distributed, loosely coupled collaboration.

These systems are also entirely data-type specific. E.g., Acrobat allows the annotation of PDF
files, but only PDF files. Similarly, Word’s annotations will not help a user who has authored a file
using some other word processor (much less one who has only a scanned image to work with). In
contrast, the MVD model will allow annotation of any data format that is supported. In general,
MVD is capable of incorporating diverse document formats, and operating on them.

40

Other models tend to support only limited and very specific forms of annotations, e.g., notes, or
hyperlinks. MVD already supports forms of annotation not readily available elsewhere, e.g.,
executable copy-editing. Moreover, in MVD, there is no limit to the kinds of annotations one can
envision and implement. As end-users can introduce new behaviors in their documents, new forms
of annotation and collaboration can be introduced dynamically.

Other models of annotation presume closed systems. I.e., they require that a user be registered in
some fashion in order to participate in collaboration. In contrast, MVD is highly open, meaning
that one need only be able to read a document in order to annotate it; one need only be able to write
to some networked resource to be able to share one’s annotations. The original document author
need never even know that the document has been annotated, any more than one needs to know that
a hyperlink points to one’s web page.

There are a number of existing systems that support various kinds of in-place annotation. These
include the annotations facility in Lotus Notes, which requires making available “hooks” for
annotation attachment in a given document. ForComment supports individuals in a group
making comments on documents in most common word processing formats. Markup 5 supports
annotation, including copyeditor marks, in the MacIntosh environment; the NeXT OS provides
blue-pencil mark-up over any document rendered as Display PostScript. These operate at the
graphics level, and hence have the nice property that any document can be annotated. However,
annotations are superficial. (I.e., one can’t attach a copyeditor mark to a span, say, and then
execute it.) All these models require buy-in to a particular system.

Adobe’s Acrobat bears a number of similarities to the scanned page image application of the
general multivalent model. Adobe has published the specification of the PDF format viewed by
Acrobat, and that format is in principle extensible by anyone. In practice, however, it is extensible
only by Adobe as extensions to the format require corresponding changes to the viewer, and that is
proprietary to Adobe, and would be difficult to build. Moreover, the types of annotations provided
in Acrobat, though growing with each new version, are geometrically positioned at x,y coordinates
on the page, not tied to content, and therefore not robust to changes in the document.

Microcosm [FHHD90] builds a hypertext system on top of existing applications, on Microsoft
Windows. The philosophy is that, rather than compete with Microsoft Word and Excel, one should
take advantage of the hooks these applications make available and layer the system on top of them.
While gaining the power of highly evolved applications, this strategy is limited to the extent that
such hooks are permitted by those applications.

ComMentor [RMW95] focuses on the server side of annotation support. ComMentor has a
complete and well worked out meta data strategy and a database system for managing annotations,
but only provided minimal functionality at the client. The ComMentor server-side support would
be a nice complement to multivalent annotations.

Knowledge Weasel [LS93] distinguishes between surface annotation and deep annotation. Like
ComMentor it focused on database aspects like a common record format and surface annotations
and not as much on deep annotations, except for spatial data imagery. It took advantage of common

5 http://www.mstay.com/

41

tools (Tcl and Tk) for wide availability, but ultimately it was also limited to them. If the text widget
does not admit, say, lenses, then that is an insurmountable barrier to implementing them.

Microcosm, ComMentor and Knowledge Weasel were developed mindful of the fact that it takes a
great deal of effort to build a document formatter-renderer, and hence follow a strategy of
interoperating with existing formatter-renders. Unfortunately, requirements of deep and powerful
annotation push against the limits of such systems. Instead, we pursued a strategy that imposes an
up-front cost to bridge existing application formats into the model and to reproduce the desired
pieces of functionality. Our hope is that this price will be ultimately be worth paying.

10 Conclusions

We have outlined the MVD architecture, and demonstrated its use in enlivening legacy documents
and supporting distributed annotation. We have demonstrated the model’s applicability to multiple
document formats, and suggested how it might apply to other data types.

There are a number of features of our approach that one might view as drawbacks, or cause for
concern. One particular important concern is the choice of Java as the implementation language.
Java provides a number of advantages: portability, sizeable and growing support in the form of
tools, compilers, program development kits, near-platform independence. However, Java currently
has a number of shortcomings: Implementations are immature; the Java VM/browser interface is
often defective, and do not utilize memory well. Moreover, there has yet to emerge a stable model,
much less decent implementation, of how Java programs running within browsers change persistent
state. The last issue is of serious concern to us, as a substantial part of our effort is directed at
authoring. (Indeed, the problems are significant enough for us to consider abandoning MVD as an
applet, and running it as a stand-alone Java application.) The language definition is also continually
changing. We note that these problems are generic to Java, and there is substantial motivation for
industry to address them. Of course, there is nothing in our model that requires it to be
implemented in Java, or, for that matter, for the extension language (i.e., the language in which
behaviors are written) to be the same as the implementation language.

However, the model does require behaviors written in a single language. Thus, we cannot easily
take advantage of the great amount of related code that is written in C, C++ or the like (or, if we do
so, we lose some platform independence, and transparent installation). This problem seems to us to
be an intrinsic trade-off between platform independence and using code targeted to a particular
architecture, rather than a defect specific to MVD.

We suspect that some of the individual MVD applications we envision could be realized more
efficiently as stand-alone, platform-specific applications. Our claim is that there are large benefits
to having a ubiquitously available infrastructure that facilitates extensible documents, both as a
practical matter and as a platform for research. The ease with which we were able to create the
annotation types and the assorted “power tools” described above illustrates this point. We are
relying on continuing improvements to just-in-time compilers and faster processors to address
performance concerns. However, occasionally, we have found ourselves adding some more
support to the infrastructure where efficiency has become an issue.

42

While MVD is still a research prototype, our experience with it indicates that MVD is a useful step
toward a more network-centric document model. In particular, we have shown that it can run on
multiple platforms, handle multiple document formats, provide a high degree of extensibility, and
provide a basis for “spontaneous collaboration”. Perhaps multivalent documents do not make
digital documents as inviting as paper, but they move the digital medium one step closer.

11 Acknowledgments

Many members of the UC Berkeley Digital Library Project contributed to the ideas in this paper.
We are especially indebted to Gary Kopec for his insights into the use of scanned document
images, and for helping us untangle the undocumented intricacies of the XDOC format.

Loretta Willis implemented the table sorting behavior in the current MVD implementation.
Wojciech Matusik implemented the video and audio annotations. Hoon Kang implemented
services to regularize HTML, and also implemented the MVD emailer.

Other Digital Library Project members, including Ginger Ogle and Joyce Gross contributed to the
many discussions from which MVD arose. The alternative selections for mathematics derive from
the work of Richard Fateman and Taku Tokuyasu on optical character recognition and
representation of mathematics.

We would like to thank Carl Staelin, Nic Lyons, Ben Vigoda and Steven Rosenberg of Hewlett-
Packard Laboratories for their encouragement, support and their many valuable suggestions.

12 References

 [Appl95] Apple Computer. OpenDoc Programmer’s Guide. Addison-Wesley, 1995.

 [Bier93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose.
Toolglass and Magic Lenses: The see-through interface. In Proceedings of SIGGRAPH `93,
pages 73-80, August 1993.

 [BS97] Tim Bray and C. M. Sperberg-McQueen. Extensible Markup Language, Working Draft.
http://www.w3.org/TR/WD-xml-lang

 [Broc95] Kraig Brockschmidt. Inside OLE 2. Microsoft Press, 1995.

[DD94] DeRose, Steven J. and Durand, David G., Making Hypermedia Work: A User's Guide
to HyTime. Kluwer Academic Publishers, 1994.

 [FHHD90]A. Fountain, W. Hall, I. Heath and H. David. Microcosm: An Open Model for
Hypermedia with Dynamic Linking. In Proceedings of ECHT `90, 1990.

43

 [Hal88] Frank G. Halasz. Reflections on NoteCards: Seven Issues for the Next Generation of
Hypermedia Systems. Communications of the Association for Computing Machinery, July
1998, pages 836-852.

 [Hal91] Frank G. Halasz. Seven Issues Revisited, Keynote Address, Hypertext ’91 Conference
San Antonio, Texas December 18, 1991, http://www.parc.xerox.com/spl/projects/halasz-
keynote/

 [Lad] Richard Ladner. Sticky Pointers. University of Washington Technical Report.

 [LS93] Daryl T. Lawton and Ian E. Smith. The Knowledge Weasel Hypermedia Annotation
System. In Hypertext ‘93 Proceedings, November 14-18, 1993, pages 106-117.

 [LM95] David M. Levy and Catherine C. Marshall. Going Digital: A Look at Assumptions
Underlying Digital Libraries. Communications of the Association for Computing Machinery,
April 1995, pages 77-84.

 [Mars97] Catherine C. Marshall. Annotation: From Paper Books to the Digital Library.
Proceedings of the Second ACM Conference on Digital Libraries, July 23-26, 1997.

 [Oust94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

 [OS97] Kenton O’Hara and Abigail Sellen. A Comparison of Reading Paper and On-Line
Documents. In Proceedings of CHI ‘97, March 22-27, 1997.

 [Phel94] Thomas A. Phelps. TkMan: A Man Born Again. The X Resource, 10, 1994.

 [Phel98] Composing Multivalent Documents. UC Berkeley Ph. D. thesis. In preparation.

 [PW96a] Thomas A. Phelps and Robert Wilensky. Multivalent Documents: Inducing Structure
and Behavior in Online Digital Documents. Proceedings of the 29th Hawaii International
Conference on System Sciences, January 3-6, 1996.

 [PW96b] Thomas A. Phelps and Robert Wilensky. Multivalent Documents: Architecture and
Applications. In Proceedings of the First ACM International Conference on Digital Libraries,
March 20-23, 1996, pages 100-108.

 [PW97] Thomas A. Phelps and Robert Wilensky. The Architecture of Multivalent Documents.
In preparation.

 [RMW95]Martin Roscheisen, Christian Mogensen and Terry Winograd. Beyond Browsing:
Shared Comments, SOAPs, Trails, and On-line Communities. In Proceedings of the Third
World Wide Web Conference, April 10-14, 1995.

 [SH97] Abigail Sellen and Richard Harper. Paper as an Analytic Resource for the Design of
New Technologies. In Proceedings of CHI ‘97, March 22-27, 1997.

44

 [Trig83] Randall H. Trigg. A Network-Based Approach to Text Handling for the Online
Scientific Community. Ph.D. Thesis, Dept. of Computer Science, University of Maryland
(University Microfilms #8429934), November, 1983.

