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HIBRARCHICALLY CONSISTENT CONTROL SYSTEMS

GEORGE J. PAPPAS, GERARDO LAFFERRIERE, AND SHANKAR SASTRY

Abstract. Largescalecontrolsystemstypically possess a hierarchical architecture in order to man
age complexity. Higher levels of the hierarchy utilize coarser models of the system resulting by
aggregating the detailed lower level models. In this layered control paradigm, the notion of hierar
chical consistency is important as it ensuresthe implementation of high level objectives by the lower
level system. In this paper, we define a notion of modeling hierarchy for continuous control systems
and obtain characterizations for hierarchically consistent linear systems with respect to controlla
bility objectives. As an interesting byproduct, we obtain a hierarchical controllability criterion for
linearsystems firom which we recover the best known controllability algorithm firom numerical linear
algebra.

1. Introduction

Large scale systems such asIntelligent Vehicle Highway Systems [36, 37] and Air TVaffic Management
Systems [30] are systems ofvery high complexity. Both the design and the analysis ofsuch systems
may be formidable due to the complexity and magnitude of the system. Complexity is tjrpically
reduced by imposing a hierarchical structureon the system architecture. In sucha structure, systems
ofhigher functionality reside at higher levels ofthehierarchy and are therefore unaware ofimnecessary
lower level details. The main types of hierarchical structures are nicely classified and described in
the visionary work of [23].

Consider asa motivating example. AirIVaffic Management Systems, where the hierarchical structure
shown inFigure 1has been proposed in [34]. Bach aircraft has on board a Flight Management System
(FMS) which contains various different planners at different levels of functionality. The Strategic
Planner negotiates via points with Air Traffic Control and nearby aircraft based on scheduling, fuel
and safety issues. These via points are then directed down the hierarchy to the Taotical Planner
which uses a kinematic model to generate output trajectories for the aircraft connecting the desired
via points. The desired output trajectories are then passed to the Itajectory Planner which uses a
more detailed dynamic model and generates suitable control inputs and state trajectories. Finally,
the Regulation Layer utilizes a much more detailed model which considers engine dynamics, wind
conditions, actuator saturation andtriesto track the trajectories produced bythe Trajectory Planner.
The structure of Figure 1 is a multi-layered version of the quite common two-level planning and
control hierarchies.

In the structure of Figure 1, each level has different objectives with higher levels having higher
objectives. The Strategic Planner is interested in optimality, the Tactical planner is interested in
controllability whereas the Trajectory PlannerandRegulation layers dealwithexactand approximate
trajectory tracking respectively. In performing their tasks, higher planning levels use coarser aircraft
models than the lower levels. The Strategic Planner could be using simple geometric models, the
TacticalPlanner could be usingkinematic models while the TrajectoryPlanner couldbe usinga much
more detailed dynamic model. One of the main challenges in hierarchical systems is the extraction
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Figure 1. Hierarchical Structure for Air IVaffic Management Systems

of a hierarchy of models at various levels of abstraction which are compatible with the functionality
and objectives of each layer.

Abstraction or aggr^ation typically refers to grouping the system states into equivalence classes.
Depending on the cardinality of the quotient space we may have discrete or continuous abstractions.
With this notion of abstraction, the abstracted system will be defined as the induced quotient
dynamics. Discrete abstractions of continuous systems have been considered in [10, 11] as well
as [5, 26, 32]. Hierarchical systems for discrete event systems have been formally considered in
[9, 38, 39, 41]. In this paper, we focus on continuous abstractions and obtain continuous analogues
of their results. Therefore, our first priority is to have a formal notion of quotient control systems.
More precisely.

Problem 1.1. Given a control system

(1.1) x = f{x^u) xSlSP' u e R"*

and some map y = h{x), where h : R" —> we would like to define a control system

(1.2) y = 9{y^v) y&W veis!'

which can produce as trajectories all functions of the form y{t) = h{x(t))f where x(t) is a trajectory
of system (1.1)- That is, h maps trajectories of system (1.1) to trajectories of system (1.2).

The function h will be our "quotient map" which performs the state aggregation. System (1.2) will
be referred to as the abstraction [29] or macromodel of the finer micromodel (1.1). In the ATMS
example shown in Figiure 1, one can think of system (1.1) as a detailed dynamical model residing
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in the TVajectory Planner and system (1.2) as a coarser kinematic model of the Tactical Planner.
Note that the control input v of coarser model (1.2) is not the same input u of system (1.1) and
should be thought of as a macroinput. For example, v can be velocity inputs of a kinematic model
whereas it may be force and torque inputs of a dynamic model. This is therefore quite different from
model reduction techniques which reduce or aggregate dynamics while using the same control inputs
[6, 16, 17, 18, 19].

We will solve Problem 1.1 by first generalizing the geometric notion of ^-related vector fields to
control systems. A notion of ^-related control systems would allow us to push forward control
systems through quotient maps and obtain well defined control systems describing the aggregate
dynamics. The notion of^-related control systems introduced in this paper is more general than the
notion of projectable systems defined in [22] and [19] as we will show that given any control system
and any surjective map there always exists another system that is ^-related to it. Interestingly
enough, om: notion of ^-related control systems mathematically formalizes the concept of virtual
inputs used in backstepping designs [15]. The fact that the aggregation map sends trajectories of
(1.1) to trajectories of (1.2) will enable us to propagate controllability from the micromodel to the
macromodel.

Aggregation, however, is not independent of the functionality ofthe layer at which the abstracted
system will be used. Inhierarchical systems, each layer has a certain functionality andit is important
to ensure that objectives of higher layers have a feasible execution by the lower levels. Therefore,
when an abstracted model is extracted from a more detailed model, one wouldalso like to ensure that
certain properties propagate from the macromodel to the micromodel. The properties that are of
interest at each layer may include optimality, controllability, stabilizability, and trajectory tracking.
If one considers the property ofcontrollability, then one would like to determine conditions imder
which controllability ofthe abstracted system (1.2) implies controllability ofsystem (1.1). Obtaining
such conditionswould ensiue that the macromodel is a consistent abstraction of the micromodel in the
sense that controllability requests from themacromodel are implementable by the micromodel. Such
conditions will serve as good design principles for hierarchical control systems. Different properties
may require different conditions. For example, the notions ofconsistency [23], dynamic consistency
[9] and hierarchical consistency [41] have been defined in order to ensure feasible execution of high
level objectives for discrete event systems. In this paper, we will focus on controllability oflinear
control systems and characterize consistent linear abstractions. More precisely, we will solve the
following problem:

Problem 1.2. Given the linear control system

(1.3) x = Ax-\-Bu xeW"

characterize linear quotient maps y = Cx, so that the abstracted linear system

(1.4) if = Fy + Gv y€W v£lS^
is controllable if and only if system (1,3) is controllable.

In addition to hierarchical control, the above ideas could also be useful in the analysis of complex
systems. In order to tackle the complexity involved in verifying that a given large scale system
satisfies certain properties, one tries to extract a simpler but qualitatively equivalent abstracted
system, shown in Figure 2. Checking the desired property on the abstracted system should be
equivalent or sufficient to checking theproperty on theoriginal system. The area ofcomputer aided
verification, which must be credited with this notion of abstraction, typically faces problems of
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exponential complexity and abstractions are frequently used for complexity reduction. Depending
on the property, special graph quotients which preserve the propertyof interest are constructed. For
example, verification algorithms ofhybrid systems [2, 3, 4,13, 21], which contain both discrete event
and continuous dynamics, are based on abstracting continuous dynamics by constant rectangular
diflferential inclusions [14, 31]. More recently, a methodology for constructing finite graph quotients
which have equivalent reachability properties withanalytic vector fields is presented in [20]. A similar
approach for checking stabilityofdynamical systems has been developed in [24].

In this spirit, and after having characterized consistent linear abstractions, we propose a hierarchi
cal controllability algorithm which has computational or conceptual advantages over the standard
Kalman rank condition or the Popov-Belevitch-Hautus (PBH) tests for large scale systems. Intu
itively, instead of checking controllabilityof a large scalesystem, weconstruct a sequenceof consistent
abstractions and then check the controllability of a system which is much smaller in size. Consis
tency willthen propagate controllabilityalongthis sequence of abstractions from the simpler quotient
system to the original complex system. It is quite remarkable that a special case of the hierarchi
cal controllability criterion recovers the best known controllability algorithm from numerical linear
algebra [12].

The structmre of this paper is as follows: In Section 2 we review some standard differential geometric
concepts and the notion of ^-related vector fields. Section 3 generalizes these notions for control
systems and establishes the connection between trajectories of ^-related control systems. In Section
5 we restrict these notions to linear abstractions and characterize consistent linear abstractions.

These results are used in Section 6 in order to obtain a hierarchical controllability criterion. Finally,
Section 7 discusses many interesting directions for further research.

2. ^-Related Vector Fields

We first review some basic facts from differential geometry. The reader may wish to consult numerous
books on the subject such as [35,1, 25]. Let M be a differentiable manifoldand TpM be the tangent
space of M at p 6 M. We denote by TM = UpsM tangent bundle of M and by tt the
canonical projection map tt : TM —y M taking a tangent vector Xp G TpM C TM to the point
p G M.

Now let M and N be smooth manifolds and $ : M —y N he & smooth map. Let p £ M and
let g = ^(p) G N. We push forward tangent vectors from TpM to TqN using the induced push
forward map : TpM —y TqN. If / : M —y N and g : N —y K then (p o /)» = g^o which
is essentially the chain rule. A vector field or dynamical system on a manifold M is a smooth map
X : M —y TM which plswres at each point p of M a tangent vector from TpM. Let I C IR be an open
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interval containing the origin. An integral curve of a vector field is a smooth curve c : I —¥ M whose
tangent at each point is identically equal to the vector field at that point. Therefore an integral curve
satisfies d = = X oc(t) for all t G/ where c,(l) denotes <=.(!)•
An abstraction or aggregation map is a map $ : M —y N which we will assume to be smjective.^
Given a vector field X on manifold M and a smooth map $ : M —> iV, not necessarily a diffeomor-
phism, the push forward of X by is generally not a well defined vector field on N. This leads to
the concept of ^-related vector fields.

Definition 2.1 (^-related Vector Fields). Let X and Y be vector fields on manifolds M and N
respectively and $ : M —y N be a smooth map. Then X and Y are ^-related iff the folloxving
diagram commutes

M N

(2.1)

TM TN

or otherwise iff = Y o

Note that the above definition does not require the map $ to be surjective. If # is not surjective
then X may be ^-related to many vector fields on N. However, if $ is a smooth surjection firom M
to JV, then given a vector field X on a manifold M, the push forward of X by is a well defined
vector field on N only if = ^♦(^P2) whenever $(pi) = for any two pointspi,p2 ^ M.

Example 2.2. Consider for example the linear vector field

(2.2) X= Ax XGR"

and the onto, linear quotient map y = Cx. Then in order to obtain a well defined quotient vector
field,

(2.3) y = Fy y GR""

byC-relatedness we must have CAx = FCx for alla; GR". Butfor x GKer{C) = {a: GR" | Cx = 0}
we must have CAx = F(Cx) = 0 and thus Ax G Ker{C). Thus, a necessary condition to obtain a
well defined quotient vector field is

(2.4) AKer(C) C Ker(C)

It tiurns out that this is also sufficient for the existence of unique quotient map F [40].

The following well known theorem ([1]) gives us a condition on the integral curves of two ^-related
vector fields. A simple proof is included for completeness.

Theorem 2.3 (Integral Curves of ^-related Vector Fields). Let X and Y be vectorfields on
M and N respectively and let ^ : M —y N be a smooth map. Then vector fields X and Y are
^-related if and only if for every integral curve c of Xj $ o c is an integral curve ofY.

^Note that any map $ gives rise to an equivalence relation by defining states x and y equivalent if $(x) = ^(y). In
order for the resulting quotient space to have a manifold structure, the equivalence relation must be regular [1]
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Proof. Assume first that for any integral curve c of X, $ ocis an integral curve of Y. Then

($ o c)' = ($ o c),(l) = y($ o c) =>
o c»(l) = y O$ Oc

$»oXoc = y o$oc

But since this is true for any integral curve c it must be true that o X = y o $ But then, by
Definition2.1, A" and Y are <&-related. Conversely, let X and y be related. Then for any integral
curve c of JV,

^♦oA' = yo$^

$»oXoc = y o$oc=>

o c«(l) = y($ o c) =>

($oc).(i) = y($oc)

and thus $ o c is an integral curve of Y. This completes the proof. D

If Ex and Ey denote all integral curves of vector fields X and Y respectively, then Theorem 2.3
simply states that

X and y are ^-related ^(Sx) Q Ey

Therefore Y overapproximates the collection of curves $(Ex) and allows redundant evolutions. This
is the notion of abstraction defined in [29]. Instead of checking a property, for example reachability,
on a vector field X, it is checked on y, which should be easier to analyze since, in general, N is
of lower dimension. If the property is true for Ey then it must be true for all $(Ex). If however
the property fails for some integral curve.in c € Ey, then we have no way of telling whether the
property fails for $(Ex) since c may belong in Ey\$(Ex). This procedure therefore is sufficient but
not necessary. However,

Corollary 2.4. Let X and Y be ^-related vector fields on M and N respectively with respect to a
smooth surjective map $ : M —y N. Then $(Ex) = Sy.

Proof. BVom Theorem 2.1 we have $(Ex) Q Sy- Now let cy € Ey. Let q be any point in cy. Since
$ is surjective, let p G^~^{q) and let cx be the integral curve passing through p. By Theorem 2.1,
$(cx) is an integral ciurve passing through q = ${p). By uniqueness of solutions cy = $(cx) and
thus Cy G $(Ex)- Therefore Ey C $(Ex) which resvilts in Ey = <>(Ex) •

Corollary 2.4 says that checking reachability properties, of vector field X is equivalent to checking
reachability on vector field Y. In addition. Corollary 2.4 says that every integral curve cy of y can
be writen as $(cx) for some integral curve cx of X. Therefore, if one thinks of y as a coarser model
and X as a more detailed model, then every trajectory of the higher model Y can be implemented
by a trajectory of the detailed model X.

Even though $-relatedness of vector fields is a rather restrictive condition, the above discussion
provides the correct conceptual framework for generalizing these concepts to control systems, where
due to the freedom of control inputs the equivalent conditions will not be as restrictive.
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3. Control System Abstractions

In this section, the notions of Section 2 for vector fields are extended to control systems. We will
develop such notions for rather general control systems since it does not require more effort to do so.
In addition, generality will ensure that the concepts of this section do not depend on the particular
system structure. We first present a global and coordinate-firee description of control systems which
is due to Brockett [7, 8] and can also be found in [27]. This global description is based on the notion
of fiber bundles which are defined first.

Definition 3.1 (Fiber Bundles). A fiber bundle is a five-tuple (B,M,7r, Cf, where B, M,
U are smooth manifolds called the total space, the base space and the standard fiber respectively.
The map tt : B —¥ M is a surjective submersion and {Ot}t€/ is an open cover of M such that for
every i ^ I there exists a diffeomorphism : 7r~^(0i) —¥ OixU satisfying

TTo o = TT

where ttq is the projection from OiXU to Oi. The submanifold 7r~^(p) is called the fiber atp £ M. If
all thefibers are vector spaces of constant dimension, then thefiber bundle is called a vector bundle.

Definition 3.2 (Control Systems). A control system S = (B,F) consists of a fiber bundle tt :
B —¥ M called the control bundle and a smooth map F : B —¥ TM which is fiber preserving and
hence satisfies

it' OF — IT

where tt' : TM —¥ M is the tangent bundle projection.

Essentially, the base manifold M ofthe control bundle is the state space and the fibers 7r~^(p) can
be thought of as the state dependent control spaces. Given the state p and the input, the map F
selects a tangent vector from TpM. The notion of trajectories ofcontrol systems is now defined.

Definition 3.3 (Trajectories of Control Systems). A smooth curve c : I —¥ M is called a
trajectory of the control system S = (B, F) if there exists a curve : I —¥ B satisfying

TT o = c

c' = c«(l) = FoeB

In local (bundle) coordinates, Definition 3.3 simply says that a trajectory of a control system is
a curve x: I -¥ M for which there exists a function u: I -¥ U satisfying, satisfying x = F{x,u).
Note that even though Definition 3.3 assumes c to besmooth, the bimdle curve c® isnot necessarily
smooth. Thedefinition therefore allows nonsmooth control inputs as long as the projection ttoc^ = c
is smooth. We are now in a position to define ^-related control systems in a manner similar to
Definition 2.1 for vector fields.

Definition 3.4 (^-Related Control Systems). Let Sm = (-^Mi-Pm) with ttm ' Bm —¥ M and
Sn = (BniFn) with ttn ' Bn —¥ N be two control systems. Let $ : M —¥ N be a smooth map.
Then control systems Sm ond Sn are ^-related iff for every p £ M

(3.1) $. oFm (Ti/(p)) CFn K'($(p)))

Condition (3.1) states that for each p £ M the left hand side of (3.1) first takes the input space
available at p, and pushes it through Fm to obtain all possible tangent directions of the control
system Sm at P- This set of tangent directions is pushed through to obtain a set of tangent
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vectors in T^(p)N. In order for Sm and Sn to be <&-related, this set must be contained in the image
imder Fn of the input space available at ^(p). Note that many control systems Sn may be ^-related
to Sm as the set of tangent vectors on N that must be captured, can be generatedusingmany control
parameterizations.

It is easy to show that Definition 3.4 is transitive. Indeed, if : Mi -i- M2, $2* ^2 Sm\ is
$i-related to and Sm^ is $2-related to Smz^ tiien Sm\ is $2 o $i-related to Sm^- It therefore
makes sense to consider a sequence of ^-related systems. In addition, given M, iV, a map M —¥ N
and a system Smi one can put a partial order on all possible ^-related systems Sn, where the partial
ordering arises from pointwisesubset inclusion of the right hand side of (3.1).

To see that Definition 3.4 is a generalization of Definition 2.1, consider vector fields Xm on M and
Xn on N. Then Xm and Xn can be thought of as trivial control systems on M and N respectively
by letting Bm = M, En = N, itm = idMt —idjVj and Fm —Xm-, Fn = Xn' Condition (3.1)
requires that for all p G M we have o Xm{p) Q Xn But since is a vector field on N
we can only choose one tangent vector at each point. This forces oXm{p) —Xn o ^(p)> which is
Definition 2.1 of ^-related vector fields.

The following proposition, which is an immediate consequence of Definition 3.4, shows that every
control or dynamical system is ^-related to some control system for any map

Proposition 3.5. Given any control system Sm = (Bm^Fm) and any smooth map $ : M —¥ N,
then there exists a control system Sn = {Bn^Fn) which is ^-related to Sm- la particular, every
vector field X on M is ^-related to some control system Sn-

Proof. Given Smi construct Sn by simply letting En —TN and Fn ' TN —¥ TN equal the identity.
Then condition (3.1) is trivially satisfied. Thus Sn = {En,Fn) is ^-related to Sm- ^

In local coordinates. Proposition 3.5 simply states that the push forward of a control system or a
vector field is a differential inclusion which can be thought of as another control system. Even though
Proposition 3.5 is a simple existential result, it is important as it shows that given any control system
and any aggregation map, then an abstracted control system always exists. Therefore, Definition 3.4
is a generalization of the notions of projectahle control systems defined in [19, 22]. A control system
is projectahle, essentially, when each vector field corresponding to a fixed input value is ^-related
to some vector field. Definition 3.4, instead of globally pushing a vector field for each fixed value of
the control input, takes a pointwise approach by pushing forward all possible tangent directions at
a state for all possible inputs available at that state. By Proposition 3.5, any projectahle system in
the sense of [19, 22] is also ^-related in the sense of Definition3.4. The following example illustrates
that the other direction is not true.

Example 3.6. Consider the double integrator

= X2

X2 = u

with a;i,a;25ii € E and the projection $(xi,X2) = xi. Using Definition 3.4, we obtain that

Xi = X2

is a valid ^-related system. The double integrator, however, is not projectahle in the sense of [22, 19]
with respect to this map as for any fixed value of u, the vector field [x2 u]^ is not ^-related to any
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vector field on HSL For the nonlinear control system,

XI - fi(xi,X2)

X2 = /2(a?l,X2,ti)

with states rci, X2i input u, and the projection ^(xi^X2) = ffi, a ^-related system is

xi = fi(xuX2)

with state xi but where X2 is now thought of as an input. This is the notion of virtual inputs used
in backstepping designs [15]. A more constructive methodology for generating abstractions of linear
systems will be presented in Section 5.

The following theorem should be thought of as a generalization of Theorem 2.3 for control systems.

Theorem 3.7 (Trajectories of ^-Related Control Systems). Let Sn = (Bn^Pn) and Sm =
{Bm-) Pm) two control systems and $ : M —> N be a smooth map. Then Sm and Sn are ^-related
if and only if for every trajectory cm of Sm, cm is a trajectory of Sn-

Proof. (Sufficiency) Assume that Sm and Sn are ^-related and thus for all p € M we have

(3.2) oFm (ttm (p)) CFn (7r;^^(^(p)))
Let CM • I —> Af be any trajectory of Sm- We must show that $ o cm is a trajectory of Sn- We
must therefore find a curve c® : I —¥ Bn such that for all t GJ we have ttn o = $ oCM(t) and
(^OCMy{t)=FNOC^(t).

Since cm -1 —^ M is a trajectory of Sm, by Definition 3.3 there exists a curve : J —> Bm such
that for all t G/ we have ttm o = CM{t) and c^(t) = Fm ooff{t). By $-relatedness ofSm aJid
Sn we obtain that for alH G /,

OFm (-^MicMit))) c Fn {*)))) =>
(3.3) ^*oFmo cff(t) G Fn [T^J^mcMit))))
Condition (3.3) implies that for each te I there must exist atleast one element TTf/ ($(cm(<)))
(and thus ttjv oc^(t) = $ oCM{t)) such that

^*oFMOcff(t) = Fjvoc^(t)
^*oci^(t) = FNOcff(t)

($ocm)'(<) = FNOcff(t)
Therefore $ o cm is a trajectory of Sn-

(Necessity) Assume that for every trajectory cm •I —^ M ofSm, cm isa trajectory ofSn- Now
for any point p G M let

(3.4) >«0>) € (p)))
We must show that € FAr(*;j'($(p))). We can write y$(p) = for some (not necessaiUy
unique) tangent vector Xp GFMi^^llip))- Then there exists a trajectory cm : I —>• Af such that at
some t* G / we have

(3.5) CM(f) = P
(3.6) c'Min =
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Indeed, a curve cm satisfying (3.5,3.6) always exists by the existence theorems for differential equa
tions. To show that cm is a trajectory, we need to find c^: I —> Bm such that tt o = cm- Let
O be a bundle trivializing neighborhoodof p and ^(O) —> O xU the trivializing map. There
exists ueU such that Xp = Fmo Restricting I if necessary we may assume cmW C O.
We can then define the desired curve by c^(<) = Fmo^ ^(cm(<)>w).
Since cm is a trajectory of Sm satisfying (3.5,3.6), then by assumption we have that $ o cm is a
trajectory of Sn- Therefore by Definition 3.3, there must exist a curve c^ : I —¥ Bn such that for
all f 6 / we have ttn oc^{t) = ^ oCM(t) and (<^ ocm)'(<) = Fn oc^(t). In particular, at € / we
have

($ocM)'{n = -FVocgC*)
6 fw (7r '̂($(CM(f))))

yp = 0.(Jf,) 6 /V(%'($(p)))

Therefore, at allpoints p€ M vre must have $, oFm (t^'(p)) S Ff/{irji^{^{p))) and thus Sm and
Sn are ^-related. This completes the proof. •

If ^Sm ^Sn denote all trajectories of control systems Sm and Sn respectively, then Theorem 3.7
simply states that

Sm and Sn are ^-related $(2^^^^) C

This is the notion of control system abstractions defined in [29]. Intuitively, it says that if a state
trajectory can be generated by the micromodel using some low level control input, then the abstracted
trajectory must also be generated by the macromodel using some high level input. Note again that
the quotient system overapproximates the abstracted trajectories of the original system which may
result in trajectories that the macrosystem may generate but are infeasible in the micromodel.

Theorem 3.7 does not guarantee that the ciurve c®(t) is a smooth curve. The main obstacle for
generating smooth c^{t) is whether the map Fn ' Bn —> TM is an embedding. The following
variation on a well known example shows that the assumption that Fn be an embedding is necessary.

Example 3.8. Let M = JV = Bm = Bn = Um = Un = K, and let $ : M iV be the
identity. Let Fm : Bm TM and Fn : Bn TN be given by

FM(x,y,u) =(rc,y,2cos(^(u) - |),sin2(y(u) - |))
FN(x,y,u) =(a;,y,2cos(p(u) - |),sin2(| - y(u)))

where g(u) = tt -I- 2arctanu. In fact, the analysis below would work with any infinitely differ-
entiable function g which is monotone increasing and satisfies g{0) = tt, limu^ooP(u) = ^tt, and
limti_>_oo y(u) = 0. Notice that the difference between Fn and Fm is only in the sign of the last
component. For each fixed (x^y) 6 E^, both Fn and Fm embed E in E^ as the same set, the figure
"eight". However, near the origin of E^, as u increases the images of E imder Fm and Fn are
traversed in different directions: from the fourth to the second quadrant for Fm, and from the first
to the third for Fn- As is well known, the maps Fn and Fm so defined are indeed immersions, but
not embeddings. The relative topology of their respective images as subsets of TN = TM = E^ is
coarser than the topology induced by Fn and Fm-
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As an trajectory on M we take the curve Cji/ : K M given by

CM(t) = 2cos(p(r) - |) sin2(p(T) - |) .
Then, cm(0,0) = 0 and <4f(t) as an element of the tangent bundle TM can be written (in global
coordinates) as

Cm(0 = 2cos(p(r) - ^) dr,^ sin2(^(r) - ^) dT,2cos(p(f) - |),sin2(^(t) - ^)^ .
The desired : E Bm (to effectively show that CM(t) is a trajectory) is defined by

chit) = 2cos(5(t) - |)dr,^ sin2(p(r) - |)dr,t^ .
We then clearly get

CM(t) = FM(cM(t)) for <GM

The induced curve on N is CN(t) = $ oCM(t) and so c!f^(t) = $« oCj^(t) = <4^(t), since = id#. To
show that Cjv is a trajectory we must find a curve : R —> Bff such that

(3.7) FN(cN{t)) =

for all t GR. Let's write c% incomponents as c^(t) = (7i(t)>72(t), s(t)). By comparing components
in Equation 3.7 , we immediately get

7i(«) =j 2cos{9(t) - |) dT
I2{t) =j sm2{s(T) - |) dr

'0

Moreover, for each t, the function s = s(t) must solve

2cos{g(s) - ^) =2cos(p(t) - ^)
sin2(p(s) - ^) =sin2(| -p(<))

As a (lengthy and tedious) consideration ofall the different possibilities shows, the function s(t) is
uniquely defined by

fo ift = 0,
^ axctant) for 15^ 0.\tan(f -

Therefore, c® (t) is clearly not even continuous.

The following theorem shows that Ff^ being an injective embedding is sufficient to guarantee smooth
ness of the <^(t). Note that requiring Fn to be an injective embedding implies that the dimension
of the input space is less than the dimension of TN and thus there are no redundant inputs (which
covers the cases of interest). In particular, if the control system 5^^ is affine in the controls then this
is equivalent to saying that the "controlled" vector fields are linearly independent at eachpoint. That
is, if we write the system in local (bundle) coordinates of Bff and local (vector bundle) coordinates
of TN as

k

X= f{x) -\-^gi{x)ui
t=i
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then for each x the vectors pi(a:),... ,9k(^) are linearly independent.

Theorem 3.9 (Control Input Smoothness). Let Sn = {Bn^Fn) and Sm = {BmiFm) be two
^-related control systems where Fn ' —> TN is an injective embedding. Let cm ' I —> M be
a trajectory of Sm ond assume that the corresponding —¥ Bm is smooth. Then there exists
a smooth curve c® : I —> Bn such that for all t £ I, Trjsf oc^(t) = ^ oCAf (t) and Fn oc^(t) =
{^ocmY W-

Proof. Since Sm and Sn are ^-related we have oFm oc^(t) ^ Bn {ttJY (^(cm(<)))) for each
t E I. Moreover, since by assumption Fn is an embedding, the space Bn is diffeomorphic to its
image under Fn- We can then define

C® W = oFmoc^{t))
which is clearly smooth and satisfies the desired properties. •

4. Consistent Control Abstractions

In general, we are not simply interested in abstracting systems but also propagating properties be
tween the original and abstracted model. In this paper, we focus on various notions ofcontrollability.

Definition 4.1 (Controllability). Let S = {B^F) be a control system on M. For p £ M, define
Reach{py S) to be the set of points q £ M for which there exists a trajectory c : I —> M of S such
that for some ti,t2 £ I we have c(ti) = p and c(<2) = q- The control system S is called controllable
iff for all p £ M, Reach{p, S) = M.

Theorem 3.7 allows us to always propagate the property of controllability firom the micromodel to
the macromodel for any aggregation map.

Theorem 4.2 (Controllability Propagation). Let control systems Sm = (BmiFm) o-nd Sn =
(Bn^Fn) be ^-related with respect to some smooth surjection $ : M —¥ N. Then for all p£ M,

# {Reach{p^ Sm)) Q i?eacfi($(p), Sn)

Thus, if Sm is controllable then Sn is controllable.

Proof. Consider any p £ M and let q £ ^(Reach{p,SM))' Then there exists pi £ ^~^(q) with
Pi £ Reachip,Sm)- Thus there exists a trajectory cm of Sm such that cmM = P and cm(*2) = Pi-
By ^-relatedness, the curve $ o cm is a trajectory of Sn which connects $(cM(ti)) = ^(p) and
^(cm(<2)) = ^(pi) = Q- Therefore q £ R€ach{^(p),SN)-
If Sm is controllable, then for all p 6 M we have Reachip, Sm) —Li. But then ^{Reachip, Sm)) =
$(M) = N = Reachi^ip), Sn)- Thus Sn is controllable. •

Note that Theorem 4.2 is true regardless of the structure of the aggregation map Prom a hi
erarchical perspective, the reverse question is a lot more interesting since it would guarantee that
controllability requests are implementable by the lower level system. In order to arrive at this goal,
we define the notions of implementability and consistency. We also give descriptions of those concepts
in terms of reachable sets.
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Definition 4.3 (Controllability Implementation). Let Sm = and Sn = be
two control systems and $ : M —> N be a smooth surjection. ThenSn is implementabl^ by Sm iff
whenever there is a trajectory of Sjq connecting qi E N and 92 € Nj then there exist pi G
andp2 6 $"^(92) and a trajectory of Sm connecting pi andp2

Implementability is therefore an existential property. If one thinks of the map $ as a quotient map,
then implementability requires that a reachability request is implementable by at least one member
of the equivalence class. It is clear from Definition 4.3 that implementability is transitive, that is if

is implementable by Sm2 with respect to $1, and Sm2 is implementable by Smz with respect to
$2> then Smi is implementable by Sms with respect to $1 o $2- This is important in hierarchical
systems whidi should consist of a sequence of implementable abstractions. It should be noted that
the notion of implementability defined above is related to the notion of between-block controllability
for discrete event systems, defined in [9, 11].

Proposition 4.4 (Implementation Condition). Consider control systems Sm = (Bm^Fm) and
Sn = (Bj^^Fn) and a smooth surjection $ : M —> N. Then Sn is implementable by Sm if and
only if for all q £ N,

(4.1) Reach{qySf^) C $(i?eoc/i($~^(g), 5^))
where Reach(^~^(q)iSM) = ^pe^-i{q)Raach{p,SM)-

Proof. Let ^ G Reach(q,SN). By implementability, there exists a trajectory of Sm connecting
some p G i~^(9) to some p' G i~^(q') and thus p' G Reach{p,SM)- But then q' = $(p') €
^{Reach{p,SM)) Q $(i?each($~^(g),5M))-
Conversely, let q2 6 Reach(qi^SN) for some qi G N. By assumption,

92 € $(jReach($"^(9i),5M)) = ^{Up^e^-i^q^)Reach{pi,SM)) = Upj€$-i(g,)$(i2eac/i(pi, S'm))
But then there must exist at least one p[ G$"^(91) such that 92 G$(ileoc/i(pi,5m)) which in turn
implies that there exists pj ^ Reach{p[,SM) with $(p2) = 92 and thus Sn is implementable by Sm-
This completes the proof. D

We will mostly be interested in implementability of <&-related systems, in which case the above
inclusion becomes an equality, by Theorem 4.2.

Implementability may depend on the particular element chosen firom the equivalence class $~^(9)-
In order to make the controllability request well defined, it would have to be independent of the par
ticular element chosen firom the equivalence class. This leads to the important notion of consistency.

Definition 4.5 (Controllability Consistency). Let Sm = (Bm^Fm) be a control system on M
and let^ M —> N be a smooth surjection. Then Sm is called consistent with respect to $ whenever
the following holds: if there exists a trajectory of Sm connecting p and 9, then for all p' such that
$(p) = $(p') there exists a trajectory ofSm connecting p' to some <f with $(9) = $(9^).

Note that while implementability is a condition between two systems Sm and Sn^ consistency is a
condition on a single system with respect to some quotient map $. Consistency requires that the
ability to reach a particular equivalence class is independent of the chosen element fi'om the initial
equivalence class. Notice that $~^($(p)) is the equivalence class ofp with respect to $.

^In this paper, we only consider implementation of controllability requests. Thus implementability will refer to
controllability implementation.



14 G. PAPPAS, G. LAFFERBIERE, AND S. SASTRY

Proposition 4.6 (Consistency Condition). Consider a control system S = (B,F) on M and a
smooth surjection $ : M —> N. Then S is consistent with respect to $ if and only iffor allpeM,

(4.2) ^{Reach{^~^{^{p)), S)) = ^(Reach{p, S)).

Proof. Clearly ^{Reach{py S)) C ^Reach(^-^(^{p)),S)) for any p e M. Let q = $(p') with
p' e Reach(^-^{^(p)),S). There exists po G such thatp' GReachipo.S). By consistency,
since $(po) = i(p)i there exists p" € Reach(pjS) with $(p") = ^(p')- But then q = $(p") G
^(Reach(p, S)).

Conversely, assume (4.2) holds. Let q G Reach(p,S) and ^(p') = ^(p). Then $(9) G
^(Reach(<^~^(^(p)), S)) = ^(Reach{p\ 5))and there exists q'GReach{p\ S) with $(g) = $(gO- ^

Consistency does not place anyconditions on which element of the final equivalence class the system
will be steered to. In some hierarchical systems, this may be acceptable as the high level system
Sn may be interested in its command having a feasible execution by Sm without being interested
about the particular state of Sm as long as it steers it to the correct equivalence class. This form of
generalized output controllability is now defined.

Definition 4.7 (Macrocontrollability). Let S = {B,F) be a control system on M and let $ :
M —> N be a smooth surjection. Then S is called macrocontrollable if for allpe M and any q e N
there exists an trajectory of S connecting p to some p' £ M with $(p') = q-

By combining the notions ofimplementability andconsistency, we canpropagate some controllability
information from the coarser system Sn to the more detailed system Sm-

Proposition 4.8 (Macrocontrollability Propagation). Consider control systems Sm = (Bm^Fm)
and Sn = (Bn^Fn) which are ^-related with respect to the smooth surjection ^ : M —¥ N. Assume
that Sm is an implementation of Sn, c^nd Sm is consistent. Then Sm is macrocontrollable if and
only if Sn is controllable.

Proof. Let p e M and q £ N he any points. Let go = ^(p)- Since Sn is controllable, there exists a
trajectory of Sn connectinggo and g. SinceSm is an implementationof Sn, there exists a trajectory
of Sm connecting some pi G$~^(go) and some P2 € $~^(g). Moreover, since Sm is also consistent,
there is a trajectory of Sm connecting p to some p' with $(p') = $(p2) = g. Therefore, Sm is
macrocontrollable. The other direction follows easily from Theorem 4.2. •

In order to propagate full controllability from Sm to Sn, we need a stronger notion of consistency
which would be independent from the elements chosen from both the initial and final equivalence
class.

Definition 4.9 (Strong Controllability Consistency). LetSM = (Bm,Fm) be a control system
on M and $ : M —> N a smooth surjection. Then Sm is called strongly consistent with respect to
$ whenever the following holds: if there exists a trajectory ofSm connecting p andq, then for allp'
andfor all q' such that $(p) = $(g) = ^(g') there exists a trajectory connecting p' to <{.

Definition 4.9 is weaker than the notion of in-block controllability of [9, 11] as it does not restrict
the system to remain within the equivalence class in order to steer from one element to another in
the same class.
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Proposition 4.10 (Strong Consistency Condition). Consider control system S = (B,F) on M
and the smooth surjection # : M —> N. Then S is strongly consistent with respect to $ if and only
if for all p G M,

(4.3) Reachip, S) = $-i($(i2eoc/i($-n^(p)), S))).

Proof. The inclusion Reach{p,S) C $'~^($(i?eac/i($~^($(p)),S'))) always holds. Let
qGi~^($(i?eoc/i($~^($(p)),5))). Then there exists <i Gileoc/i(i~^(i(p)),5) with $(g') = ^(q)-
Let p' G$~^($(p)) be such that q' GReach{p\S). Since $(g) = ^{q') and i(p) = ^(p')> strong
consistency impUes q G Reachlp^ S).

Conversely, assume (4.3) holds. Let q G Reach{p^S) and p\q' be such that $(p') = $(p), ^(g') =
$(g). Then

^ $-i($(g)) c #~^($(i?eoc/i(p,5)))

C $~^($(i2each($~^($(p)),5)))
= $-H^(i?eac/i($-i($(p')),<S')))
= Reach(p\ S)

Therefore, S is strongly consistent. •

Since strong consistency is a more restrictive notion, it is natural that condition (4.3) is stronger
than condition (4.2) for consistency.

Proposition 4.11 (Controllability Equivalence). Consider control systems Sm =
and Sn = which are ^-related with respect to smooth surjection $ : M —¥ N. As
sume that Sm is an implementation of Sn, and Sm is strongly (insistent. Then Sn is controllable
if and only if Sm is controllable.

Proof. Let pi,p2 ^ M any points. Let qi = $(pi) and q2 = ^(P2)- Since Sn is controllable, there
exists a trajectory of Sjsr connecting qi and g2- Since Sm is an implementation of Sn, there exists
a trajectory of Sm connecting some p[ G i~^{qi) and some P2 G $"^92)- Then, since Sm is
strongly consistent, there is a trajectory of Sm connecting pi to p2- The other direction is given by
Theorem 4.2. D

In this section we identified the relevant notions for the study of controllability in ^-related systems.
We also described them for arbitrary systems in terms of reachable sets. In the following sections
we give concrete characterizations of these concepts for linear systems. Moreover, we show how to
use them to construct explicit ^-related systems.

5. Consistent Linear Abstractions

The notion of ^-related control systems is now specialized for the case of linear, time invariant
systems with linear aggregation maps. Consider the linear control systems

(El) x=^Ax + Bu

(S2) if = Fy + Gv
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with XGR", II € R*^, y € R^, v GR', ^4 GR"^", B G F G G GR'"^^ and the onto,
Unear aggregation map y = Cx. Then by Definition 3.4, Ex and E2 are C-related if for all x G R",
and u G R^ there exists v G Rf such that

(5.1) C(Ax + Bu) = FCx + Gv

By Proposition 3.5, given any control system and any map there always exists another control
system which is ^-related to it. It is clear from the proof that in the linear case the new system
can also be chosen linear. We are interested, however, in a constructive methodology for generating
^-related systems. The following proposition gives us a systematic way to generate C-related hnear
abstractions of a linear system with respect to a linear aggregation map y = Cx.

Proposition 5.1 (Construction of Linear Abstractions). Consider the linear system

(El) x = Ax-\-Bu

and a surjective map y = Cx. Let

(E2) y = Fy-hGv

be the system where

F = CAC+

G = [CB CAvi ... CAvr]

with C"^ the pseudoinverse of C and vi,...,Vr spanning Ker(C). Then Ei and E2 are C-related.

Proof. We need to show that for all x GR" and u GR*^, there exists v GR' such that

C{Ax + Bu) = Fy-{-Gv or equivalently

Gv = CBu-\-{CA-FC)x

Clearly, CBu belongs in the range of G for all u. Decompose R" = Ker{C) © Ker(C)^. If x G
Ker{C)^ then C'^Cx = x and thus

{CA - FC)x = {CA - CAC+C)x = 0

If X G Ker{C) then (CA —FC)x = CAx which also belongs in the range of G. •

Proposition 5.1 is already interesting as it constructively generates for linear systems the so called
virtual inputs used in backstepping designs. As a special case suppose that Ker(C) = Im(B). Then
we can take as ui, ... , Vr the columns of B. The input vectors for E2 are the images under C of
the vectors Auj, which correspond to the next r vectors in the controllability matrix of Ei. That is,
the image under C of the first order Lie brackets of Ei become the new input vectors for E2. The
following example illustrates the proposition.

Example 5.2. Consider again the double integrator

Xi = X2

X2 = u

fO 1
and the projection y = xi. So here A =

span{[0 1]^} and the procedure of Proposition 5.1 results in F = 0, G = 1, so

y = V.

0 0
, B = [0 1]^, and C = [1 0]. Then Ker(C) =
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Now consider the dynamics of the oscillating vector field

X\ = X2

X2 =

0 1

-1 0
with the same projection map y = xi. Here A —

control system (or better, differential inclusion)

y - V

The fact that the coarser system may have control inputs, even though the original one did not, is
clearly undesirable. However, as will be shown, this will be talcen careofby the notionofconsistency.

FVom linear systems theory we know that for the linear system

(Si) x = Ax-\-Bu

the reachable space from any xo 6 R" is given by

(5.2) i?each(xo,Si) = [J e'̂ ^xo +iieac/i(0,Ei) = [J e^^XQ-{-%{A^B)
r>o T>o

where

•R.(A,B) = Im[B AB ...

isthereachable space from theorigin. Inparticular, system Si is controllable ifandonly if1l(.A, B) =
E". As a corollary of Theorem 4.2 we obtain the following result.

Theorem 5.3 (Controllability Propagation for Linear Abstractions). Consider the linear sys
tems

(51) X= Ax + Bu

(52) y-Fy->rGv

which are C-related which respect to the surjective map y = Cx. Then

Cn(A,B) C1l{F,G)

In particular, if Si is controllable then S2 is controllable.

Proof. Simple application ofTheorem 4.2. ^

In order to propagate controllability from the linear system S2 to Si, the notions ofimplementabihty
and consistency where defined in Section 4.

Proposition 5.4 (Implementabihty Characterization for Linear Systems). Consider two lin
ear systems

(51) X = Ax + Bu

(52) if = Fy-{-Gv

and surjective map y = Cx. Then S2 is implementable by Si if and only if for all y we have

(5.3) U e^y +TC(F, G) C (J (J Ce '̂̂ x +CTl(A, B)
T>0 T>Ox^C-Hy)

Proof. Follows from Proposition 4.4 and Equation (5.2). •

Then Proposition 5.1 results in the same
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By Theorem 3.7, C-relatedness of Ei and S2 is equivalent to the fact that trajectories of Ei map to
trajectories of E2. We now tahe a look at the converse problem, namely when do trajectories of E2
come from trajectories of Ex? This can be viewed as the trajectory implementation problem. It is
essentially a (pseudo) invertibility problem or an exact tracking problem where the system generating
the desired trajectory is C-related to the original system.

Theorem 5.5 (Trajectory Implementation). Consider two linear systems

(El) x = Ax-\-Bu

(S2) if = Fy + Gv

and the surjective map y = Cx. Assume x E ^ y £ K"* with m < n, and u with k < n. Let
B, G, and C he of full rank. Let K = Ker C. We make the following two assumptions:

1. CAx = FCx for all x GK,-^ (the orthogonal complement of K).
2. {x: Cx G(CAK)^} C B = Im[B].

Then for every trajectory y(-) 0/E2 corresponding to a differentiable control there exists a trajectory
x{-) o/Ei such that y(t) = Cx{t) for all t in the domain ofy(').

Proof. Let y(') be a trajectory of E2 corresponding to the control v. First we define Xa(t) = C'^y(t)
where is the Moore-Penrose pseudo-inverse of C (C"^ = C^(CC^)~^). If z £ JC then

z'̂ Xa(t) = z'̂ C'̂ (CC'̂ )~^y(t) = {Cz)'̂ {CC'̂ )~^y{t) = 0.

Therefore, Xa(t) GK.-^ for all t. Moreover, Xa(t) = C'*'y(t) = Fy(t) + Gv(t).

Let P denote the orthogonal projection from R*" onto OAK. Let be the pseudo-inverse of
OA considered as a map from K onto OAK. Define Xb{t) by Xb(t) = H'^P{Gv{t)). Notice that
by construction, Xb{t) G )C and Gv{t) —CAxb(t) is orthogonal to OAK for all t. Since v{-) is
difierentiable, so is Xi,(-). We then get

C(xa + Xb) = Cxa = y = Fy Gv = FCxa -\-Gv = CAxa + Gv

where the last equality holds by Assumption 1. Set z{t) = Xa{t) + Xb(t) —Axa{t) —Axb(t). Then
for all t, Cz{t) = Gv{t) —CAxb{t) is orthogonal to OAK. By Assumption 2, for each t there is
u{t) G R*^ such that z{t) = Bu{t). In fact, we can take u{t) = B'^z(t) so u(-) is continuous (here
B"*" = (B^B)~^B^ since k < n). Then if we let a;(t) = a;o(t) -f Xb{t) we get x{t) = Ax(t) -f Bu(t)
and Cx{t) = Cxa{t) = y(t) for sdl <. CII

The following theorem gives a simple characterization of consistency for linear systems in terms of
subspace invariance.

Theorem 5.6 (Consistency Characterization for Linear Systems). The linear system

(El) x —Ax + Bu

is consistent with respect to the map y = Cx if and only if

(5.4) AKer{C) C Ker{C) + 7^(A, B)

Proof. First notice that for any set V C R" we have C~^{CV) = V+ Ker{C).
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Assume (5.4) holds. We must show consistency condition (4.2), which for lineax systems requires,
for all X that C(Reach(x + A'er(C),Ei)) = C{Reach{x,'£i)), or, equivalently

(5.5) CIU +Ker{0) +H{A, B) j = Cj (J e^x +U^A, B)
\T>0 J \T>0

Clearly, CReach{x,lli) C C{Reach{x + Ker{C),Y^i). Condition (5.4) and A-invariance of Tl(AyB)
imply that for all T > 0 we have

e '̂̂ Ker(C) C Ker(C)+ 1l(A,B) and therefore
Ce^^A'er(a) C CTl(A,B).

This gives the other inclusion, proving consistency.

Conversely, assume that Ei is consistent. Let xq G Ker{C). From (5.5) with a; = 0 we get for
any T > 0 there exists r G Tl(A, B) such that = Cr. Therefore, = Xq + r for some
Xq GKer{C).

We have therefore shown that for all T > 0, e '̂̂ xo GKer(C) + 7^(A, B). By using and
taking limits as t —^ 0 we conclude that Axq GKer(C) + 7?.(A, B). •

Note that condition (5.4) requires Ker{C) to satisfy

AKer{C) C Ker(C) + 7^(A, B)

which is clearly weaker than the well known condition

AKer(C) C Ker{C) + 'Jl{B)

for Ker(C) to be a controlled invariant (or (A,B)-invariant) subspace.

Theorem 5.7 (Strong Consistency Characterization for Linear Systems). The linear sys
tem

(El) X= Ax 4-Bu

is strongly consistent with respect to the map y = Cx if and only if

(5.6) Ker{C) cn{A,B)

Proof. Assume Ei is strongly consistent. Condition 4.3 for linear systems becomes

(5.7) Ue^^x +7e(A,B) = [j e'̂ '̂ {x-{-Ker(C))+n(A,B) +Ker(C).
T>0 T>0

Using (5.7) with x = 0 gives 7l.(A,B) 3 Ker{C).

Conversely, assume (5.6) holds. By A-invariance of 72-(A, B) we get, for all T > 0,

e^'^Ker{C)Qn(A,B).

This gives the inclusion

U +Tl(A,B) 2 y e*'̂ (x +Ker(C)) +n{A,B) +Ker{C).
T>0 T>0

The other inclusion always holds. •
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Note that by the j4-invariance of condition (5.6) is indeed stronger than condition (5.4).
Consistency conditions (5.4) and (5.6) are rather intuitive. Condition (5.4) essentially says that
whatever piece of Ker(C) is not A-invariant can be compensated by controls and their Lie brackets.
On the other hand, condition (5.6) is a form of controllability within the equivalence classes. The
trajectories ofthe system which connect two points ofthe same equivalence class (as defined by C)
are not, however, restricted to remain within the equivalence class. This is less restrictive than the
notion of in-block controllability defined in [9, 11]. The following example illustrates the notions of
implementability and consistency.

Example 5.8. Consider the linear system (without controls) x = A®, where

A =
0 1

0 0
C=[l 0]

and the C-related (one-dimensional) system y = Fy + Gv^ where

F = 0 G = l.

The systems are obviously C-related. We also have

[0
Ker(C) = span{ } AKer{C) = span{ } 2 Ker(C).

Therefore, the system Ei is not consistent. To show it is implementable we simply solve the system
explicitly. Notice that since y = u, any two points (of K) can be connected by a trajectory of E2 in
arbitrary positive time. Let yo^y/ gR. The curve

X2(t) =^

is a trajectory of Ei from
2/0

to
' Vf '

yr-yo yf-yo

T I T J
at time T. Therefore, E2 is implementable by Ei.

Notice, that if yf ^ yo there is not trajectory of Ei connecting

The reason is that all the points
XI

0
are equilibria of Ei.

to any point x with Cx = yj.

In order to propagate some form of controllability from E2 to Ei, we need to check two properties,
namely implementability and (strong) consistency. Unfortunately, Condition (5.3) is not easy to
check since it involves the explicit integration of the differential equation. However, condition (5.3)
in conjunction with consistency conditions (5.4) or (5.6) results in checkable characterizations of
implementations which are also (strongly) consistent. To achieve this, we will need the following
lemma.

Lemma 5.9. Let A (n x n), C (m x m), F (mxm) and G (mxl) be matrices with I < m and G
of full rank. If for all x {OA —FC)x G'R'{Fi G), then for all <> 0,

(Ce^^-e^^C)xen{F,G) .

In particular, the conclusion holds if A, F, are G are the corresponding matrices for the C-related
systems Ei and E2.
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Proof. We have the following identity for all <> 0
OO -A

(5.8) Ce''̂ - = '̂ {CA' - F'C)- .
3=0

We prove by induction the statement

(Pj) VxeR" (CA^ -F^C)xen(F,G)

It is clearly true for j = 0 and by hypothesis it is also true for 3 = 1. Assume P* holds for i < j. We
can write,

(CA^+i _ F^+^C)x = (CA^ - F^C)Ax + F^(CA - FC)x .

By the inductive hypothesis applied to x and Ax, {CA^ —F^C)Ax € IZ(FyG) and (CA —FC)x 6
7^(F, G). But then F^{CA —FC)x e 7l(F,G) for all j since 72,(F, G) is F-invariant. Therefore,

(CA^ - F^C)Ax+ F^CA - FC)x € n{F, G) .

By taking the limit in (5.8) we conclude the proof. •

Theorem 5.10 (Implementability and Consistency Characterization). Consider the linear
systems

(51) x = Ax + jBit

(52) y = Fy-\-Gv
which are C-related which respect to the surjective map y = Cx. Then E2 is implementable by Si
and Si is consistent if and only if

(5.9) C'Jl{A,B)=n{F,G)

In addition, S2 is implementable by Si and Si is strongly consistent if and only if

(5.10) n(A,B) = C-Hn{F,G))

Proof. Assume CTZ{A,B) = 71{F,G) and thus 'R.{F,G) C C'R.{A,B). Now let x GKer{C). By G-
relatedness, there exists v GE' such that CAx = FCx + Gv = Gv (using u = 0 and since Cx = 0).
So, CAx G R{F,G) and by assumption, there is xi G R{A,B) such that Cxi = CAx. Therefore,
Ax—xi GKer(C) andAx = Ax—xi+xi GjK"er(C)+i2(A,B). Thus AF'er(C) C Ker{C)-\-1Z(A,B)
and Si is consistent. We must now show that condition (5.3) holds. Consider any

y/ = e^yo +rj- GReach(yo, S2) = (J e^yo +R{F, G)
T>0

with rj. G'R{F,G). By Lemma 5.9, we have that e^j/o = Ce'̂ ^xo + Cr'p for some rj. GTZ{A,B),
and for any xq with yo = Cxq. But then

yj = ae^^xo+rK4 = Ce^^xo+Cr^ Gjj (J Ce '̂̂ x+Cn(A, B) = C(Reach(C-\yQ), Si))
T>Ox6C-i(yo)

for some rA GK(A,B) since 11{F,G) C CTl{A,B). Therefore S2 is implementable by Si.

For the converse notice that, since the systems are C-related, Proposition 5.3 implies R{F,G) 5
CR(A,B). Moreover, the implementabilitycondition (5.3) with y = 0 gives

ll(F,G) C y Ce '̂̂ Ker(C)'¥Cn(A,B).
T>0
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And the consistency condition (5.5) with a; = 0 gives

y Ce '̂̂ Ker(C) CCTl(A,B).
r>o

These two combined give 72.(F, G) C C7^(A,B). This concludes the proof of the first equivalence.

Now assume that 1l(A,B) = Then CTl(A,B) = Tl(F,G) and therefore Ei imple
ments E2. Since 0 G1l(F,G) we also have Ker(C) C 7^(A,B). Therefore Ei is strongly consistent.

If El is strongly consistent and implements S2 then Ei is also consistent and therefore must satisfy
Cn(AyB) = 7^(F,G). Therefore, n(A,B) C C-'̂ CJl(F,G)) = 1l(A,B) + Ker(C). By strong
consistency Ker{C) C F,{A^B), and thus (7-^(7^(F,G)) C ^{A^B), Therefore C~^{'R,{F,G)) =
n{A,B). •

We now have the main ingredients for propagating controllability from the coarser to the more
complex model.

Theorem 5.11 (Consistency and Implementability imply Controllability). Considerthe lin
ear systems

(El) x = Ax-\-Bu

(S2) y = Fy-\-Gv
which are C-related system with respect to the surjection y = Cx. Assume that Ei implements E2,
and El is consistent that is

Cn(A,B) ^Tl(F,G)

Then E2 is controllable if and only if Ei is macrocontrollable. If in addition Ei is strongly consistent,

7J(A,B) = C-'(ie(F,G))

then El is controllable if and only if E2 is controllable.

Proof. Same as the proof of Propositions 4.8 and 4.11. •

Thus in order to propagate controllability between two linear systems, we have to ensure that the
systems are C-related and check either condition (5.9) or (5.10) depending on the notion of con
trollability that is needed. It is desirable to have a methodology for constructing C related systems
with the desirable properties. Fortunately, for the C-related system constructed in Proposition 5.1,
(strong) consistency implies implementability. In order to show this, we will need the following
lemma.

Lemma 5.12. Let A G W^^,B G and full rank G G be such that

AKer{C) C Ker(C)-\-n(A,B)

and let F = CAC+. Then CK{A,B) is F-invariant, that is

FC7Z(A,B) C C7Z(A,B)

Proof. Let y = Cx for x G '72.(A,jB) and consider

Fy = CAC+y = CAC^Cx

Decompose x = -f x" where x^ GKer{C) and x^ GKer{C)'̂ . Then
Fy = CAC+C(x'= -f x") = CAx" = CA{x - x^)
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Since a; 6 TZ{A^B) and is A-invariant, we get that CAx 6 C'R,{AjB). By consistency, there
exist e Ker(C) and G ^(A, B) such that

(5.11) CAx^ = Ciz"^ + z^) = Cz""

Thus CAx^ also belongs in C7^(A,B) resulting in Fy 6 C7^(A,B). •

Theorem 5.13 (Consistency implies Implementability). Consider the linear system

(51) x^Ax-hBu

which is consistent with respect to the surjective map y = Cx. Let

(52) if = Fy + Gv

be the system where

F = CAa+

G = [CB CAvi ... CAvr]

with C"^ the pseudoinverse of 0 and ui,... ,Ur spanning Ker{C). Then S2 is implementable by Ex.

Proof. By Theorem 5.3 we have that 11{F,G) D CTl(A,B) and thus we only need to show that
n(F,G) C CTl(A,B). Let yj Gn(F,G). Then

(5.12) yf=[GFG ... F"'-'̂ G]x
for some x GK"*'. By an appropriate partition of a; = [xi X2 ••• we get

(5.13) yj = Gxi + FGx2 H 1- F"^ ^Gxm
It suffices to show that Tl{G) C C7^(A,B) since then, by Lemma 5.12, we get that 7^(FG) C
CTl(A,B),..., Tl(F"^~^G) C CTl{A,B). Now consider

= CBx\ + [CAui ... CAvk] Xi(5.14) yi = Ga;i = [CB CAvi ... CAvk]
x\
X 1 j

Clearly, CBrc} GC7^(A,B). By consistency we have

(5.15) AKer{C) C Ker(C) + n{A,B)
and therefore for z = 1,..., A:

(5.16) Avi = v^ + vl
for some vf GKer{C) and G"/^(A, B). Thus

CAvi = C(Vi + u[) = Cvl

(5.17) = C[BAB ... A"-^B] gi
for some vectors qi of appropriate dimension. But then

[CAvi ... CAvk] Xi = C[B AB ... A""^B] [qi ... qk] x?
(5.18) = a [BAB ... A"-iB] Xf
and thus 7^(G) GC7i(A,B). D

As a result of the above theorem, if we use Proposition 5.1 to construct our abstracted models, then
consistency (or strong consistency) is the only condition on the aggregation map that is needed to
propagate controllability.
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Theorem 5.14 (Consistency Implies Controllability). Consider the linear system

(El) x = Ax-\-Bu

and surjective map y = Cx. Let
(E2) y = Fy + Gv

be the C-related system where

F = Ci4C+

G = [CB GAvi ... CAvr]

with C'^ the pseudoinverse of C and vi,... jUr spanning Ker{C). If

AKer(C) C Ker(C) + n(A, B)

then E2 is macrocontrollable if and only if Ei is controllable. In particular, if

Ker(C) C n{A,B)

then El ts controllable if and only if E2 is controllable.

Proof. Follows from Theorems 5.11 and 5.13. •

It is interesting to notice what happens to conditions (5.6) and (5.4) when the linear system is a
linear vector field and thus B = 0. In that case, condition (5.4) reduces to

AKer(C) C Ker(C)

which, recall from Section 2, is the necessary and sufficient condition to obtain a well defined quotient
vector field. Therefore a consistent abstraction of a linear vector field cannot have any control inputs
(or cannot be a differential inclusion). Condition (5.6) reduces to

Ker{C) = {0}

and thus y = Cx must be an invertible linear transformation (since it is already surjective). We
will be typically interested in consistent abstractions which are nontrivial, in the sense that some
state space reduction is performed (thus Ker(C) {0}), but the abstracted system is also nontrivial
(Ker(C) W).

Corollary 5.15. Consider the assumptions of Theorem 5.14 and assume that 0 < rank(B) < n.
Then a nontrivial, strongly consistent abstraction always exists.

Proof. If rank(B) > 0 then we can always find a linear map C such that Ker{C) = Im[B]. •

Theorem 5.14 and Corollary 5.15 are important as they show that a consistent abstraction always
exists as long as there are control inputs. If B = 0, then we are left with a linear vector field, and
in order to abstract a vector field we must satisfy the restrictive <^-related conditions of Section 2.
Therefore, modeling hierarchies are more meaningful for control systems than differential equations
since the existence of control always allows us to have a coarser, higher level model. In addition,
the notions of consistency are important from a hierarchical perspective as they provide good design
principles for constructing valid hierarchies. For exsimple, the condition for strong consistency,
Ker{C) C 'R.(A, B), suggests that in order to ignore dynamics at a higher level (captured by Ker(C))
then one would have to ensure the ignored dynamics can be accommodated at the lower level.
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6. Hierarchical Controllability Algorithm
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In this section, we will take advantage of the results of Section 5 in order to analyze the controllability
of large scale linear systems. Theorem 5.14enables us to have a hierarchical controllability criterion
which decomposes the controllability problem into a sequence of smaller problems. Such an approach
is niiTnfirir.fl.11y more efficient or robust than the standard Kalman rank and Popov-Belevitch-Hautus
(PBH) eigenvalue tests.

Conceptually the algorithm, starts with the linear system in question, and determines the number
of linearly independent input vector fields. K this number is zero, then the system is uncontrollable
and the algorithm terminates. If the number of linearly independent inputs is equal to the number
of states, then the system is trivially controllable and the algorithm terminates as well. If the
number of linearly independent vector fields is less than the number of states but greater than
zero, then by Corollary 5.15 we can always find an aggregation matrix C satisfying the strong
consistency condition Ker{C) C TZ{A^B). Since Im[B AB ... A^B] C Im[B AB ... A^~^B] for
any 0 < fc < n —1, firom a computational standpoint, we can actually choose any matrix C satisfying
Ker{C) = Im[B AB ... A'̂ B] for 0 < fc < n - 1. If /: = 0, then the abstracted system essentially
ignores the directions spanned by the input vector fields (which are trivially controllable). As k goes
up, we not only ignore the directions of the input vector fields, but also their Lie brackets with the
drift dynamics. lfk = n-l then the matrix C will ignore the whole reachable space.

After a consistent C matrix is determined, the construction of Theorem 5.14is used in order to obtain
a system of smadler dimension with equivalent controllability properties. We recursively apply the
same procedure to this new abstracted system. Eventually, by dimension count, either there will be
no inputs left and the system will be trivially uncontrollable, or there should be as many linearly
independent inputs as number ofstates in which case controllability follows trivially. Since at each
step, the abstractions that are constructed axe consistent, then by Theorem 5.14, the outcome ofthe
algorithm at the coarsest level will propagate along this sequence ofconsistent abstractions to the
original complex model.

Algorithm 6.1. (Hierarchical Controllability Algorithm)

1. Start with system re = Arc + Bu, A € 0 <k <n —l
2. If rank{B) is

• 0 : System is uncontrollable. Algorithm Terminates
• n : System is controllable. Algorithm Terminates

3. Find matrix C such that Ker{C) = Im[B AB ... A^B]
4. Obtain new system matrices A, B of the abstracted system using Theorem 5.14
5. Return to 2

The higher the order of the Lie brackets (the larger k is), the fewer steps the algorithm will need
to terminate. On the other hand, as k increases, the amount of computation per step will be
higher. Before we discuss computational and implementation aspects ofthe above algorithm, we will
demonstrate its application on various examples.

Example 6.2. Consider the hnear system

' '
' 0 0 1' " Xi ' ' 0 •

(6.1) X = X2 = 0-10 • X2 + 1

. ^3 . 1 1 0 . ^3 . 0

u = Aix-^Biu
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Since there is one linearly independent input field, we can find a consistent abstraction satisfying

Ker{Ci) = Im[Bi] C Im[Bi AiBi AIBi]
For example, we can choose

Ci =

(6.2) A2 = CiAiC^- =

1

0

The construction of Theorem 5.14, then results in

0 1

1 0
B2 =

Since B2 is nonzero and the number of linearly independent inputs is strictly less than the number
of states, we can obtain another consistent abstraction by choosing C2 = [1 0]. The resulting
abstraction is

(6.3) As = C2A2C2 —0 Bs = 1

At this point, the number of inputs is equal to the number of states and thus the pair (As^Bs) is
trivially controllable. By consistency, the pairs (^2,^2) and (Ai^Bi) are also controllable.

There is a much more intuitive explanation of the sequence of steps taken above. Note that the
system started with the pair (Ai, Bi) and in the first iteration, we essentially removed the djmamics
of X2 (second row) fi:om equation (6.1) since they have direct connectionto the input u. This results
in the pair (A2,B2). We re-apply the above procedure by now removing the dynamics of X3 (second
row of (6.2)) since they can be directly controlled by the new controls. This results in the pair
(A3,B3) which is trivially controllable.

Example 6.3. Consider the linear system

(6.4) X =
±1 10' • Xi '

+
• 1 •

X2 1 0 X2 1
u = Aix + Biu

A consistent abstraction results by choosing the aggregation matrix

c, = [-l 1]
resulting in

(6.5) A2 = CiAiC^- = 0 B2 = 0
Therefore, by Theorem 5.14, the pairs (A2,B2) and (Ai,Bi) are both uncontrollable.

In the case where we select fc = 0 in Algorithm 6.1, then we choose matrices C satisfying Ker(C) =
/m[B]. In this particular case CB = 0, and in addition the columns of B span Ker{C). Prom a
compuatational standpoint, it is advantageous to actually choose a matrix C which not only satisfies
Ker(C) = Im[B] but is also a projection to Im[BY-. This reduces some of the computations of
Theorem 5.14 and results in the following variation of Algorithm 6.1.

Algorithm 6.4. (Hierarchical Controllability Algorithm)

1. Start with system x = Ax + Bu, A €
2. If rank{B) is

• 0 : System is uncontrollable. Algorithm Terminates
• n : System is controllable. Algorithm Terminates

3. Find matrix C such that Ker{C) = Im[B]
4. Let A := CAC'', B := CAB
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5. Return to 2

It is quite interesting to obtain some intuition of Algorithm 6.4. The algorithm starts with the system
in question and, since Im[B] is in the controllable region, chooses an abstraction matrix C which
essentially projects the system in a direction which is orthogonal to space spanned by B. Thus the
macroinputs of the first abstraction are spanned by CAB, which are the first order Lie brackets,
projected on the orthogonal complement of Im[B]. Similarly, the second abstraction will have as
input vector fields the second order Lie brackets projected on the orthogonal complement of both
Im[B\ and l7n[AB]. Because of this smart selection of inputs at each abstraction layer, we simply
have to add the dimension of the span of the input vector fields at each abstraction layer in order to
obtain the dimension of the controllability subspace. From the above discussion, it is also clear that,
if the system is imcontroUable, then the algorithm computes the uncontrollable part of the system
since at each iteration we axe projecting on space orthogonal to the reachable space. The sequence
of abstracting maps can then be used in a straightforward manner in order to decompose the system
to controllable and uncontrollable subsystems.

We now focus on the implementation issues of Algorithms 6.1 and 6.4. For simplicity, we consider
Algorithm 6.4 ; Algorithm 6.1 can be treated in a similar manner. From a computational perspective,
the two main problems for implementing Algorithm 6.4 are: first, the construction of a consistent
aggregation matrix C satisfying Ker{C) = Jm[B], and second, given such a matrix, to perform
the computations required for the construction of a consistent abstraction. In order to tackle the
first problem, we perform a singular value decomposition decomposition on the matrix B. The
n Xm(n > m) matrix B with rank r is decomposed as

(6.6) B = USV^ = [t/i U2] Sr 0 ] r Vf
0 o Mv/ = tliErV?

where Er is the r xr matrix of nonzerosingular values. From the above decomposition we immediately
obtain that Ker(C) = Im[B] = /m[C/i] and we can therefore choose the abstracting map 0 = C/J. In
addition, = U2 and therefore the singular value decompositiongives us for fi:ee the pseudoinverse
calculation. Similar constructions are used in the implementation of Algorithm 6.1. The Matlab
code that implements Algorithms 6.1 and 6.4 can be found in Appendix A.

It is quite remarkable that the implementation of Algorithm 6.4 is identical to the controllability
algorithm of [12], derived from a purely numerical analysis perspective. In [12], the above algorithm
is shown to be numerically stable and is a stabilized version of the realization algorithm of [33]
(Matlab command CTRBF). This can be seen by the fact that the main operationsof the algorithm
are the singular value decomposition and multiplication by orthogonal matrices which are very well
conditioned. Of course, singular value decompositions are computationally expensive. If speed of
computation is of great interest, then QR type decompositions could be used instead of singular
value decompositions in order to accelerate the algorithm. However, as is typical in such cases, this
may result in less robust algorithm.

Various experimental, comparative studies were performed on a Matlab platform. Given the dimen
sion of the state and input space, random A, B matrices were generated, and their controllability
was checked using the Kalman rank condition, the PBH test and Algorithm 6.4. Floating point
operations were measured for each test, and the following ratios

_ Floating Point Operations of Kalman or PBH Test
Floating Point Operations of Algorithm 6.4
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Figure 3. Compaxison of Algorithm 6.4 and the Kalman rank condition

Figure 4. Comparison of Algorithm 6.4 and the Popov-Belevitch-Hautus test

are plotted as a function on state and input dimensionin Figures 3 and 4. The plane with ratio equal
to one is also plotted. Whenever the unreliable Kalman rank test fails to recognize a controllable
system, the ratio is set to zero. Note from Figure 3, that the Kalman rank test is more efficient
for very low dimensional systems but Algorithm 6.4 is up to 15 times faster for most systems. In
addition, the Kalman condition fails to be reliable for systems with more than approximately 15
states. Figure 4 compares the PBH test with Algorithm 6.4. Even though the PBH test is more
reliable than the Kalman rank condition, it is significantly slower than Algorithm 6.4 (up to 150
times for some systems). In addition, it is well known (see [28]) that the PBH test is verysensitiveto
parameter perturbations due to eigenvalue calculations. Finally, Figure5 compares Algorithm 6.4and
Algorithm 6.1 with k = 1. Figure 5 clearly shows that it may be advantageous to use Algorithm 6.1
with k = 1 only in cases where the state dimensionis much larger than the input dimension. Similar
experiments wih higher values of k did not result in significant accelerations of the algorithms.

The fact that the implementation of a particular case of Algorithm 6.1 (Algorithm 6.4) coincides
with the best known algorithm from numerical linear algebra, is strong evidence that the research
direction presented in this paper is indeed reducing the complexity of control algorithms and is
worthwhile pursuing for more general classes of systems (nonlinear) as well as for other properties
of interest (stabilizability, optimality, trajectory tracking).
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Figure 5. Comparison of Algorithm 6.4 and Algorithm 6.1 with k = 1

7. Issues for Further Research

In this paper, we considered a notion of control system abstractions which are typically used in
hier2irchical and multi-layered systems. This was 2ichieved by generalizing the notion of ^-related
vector fields to control systems. This notion is more general than the notion of projectable control
systems [19, 22] and, in addition, mathematically formalizes the concept of virtual inputs used in
backstepping designs [15]. The notions of implementability and consistency were then defined in
order to propagate controllability from the abstracted system to the more detailed one. These
notions were completelycharacterized for linear systems, and the easily checkable conditions allowed
us to construct a hierarchical controllability algorithm for linear systems.

There are many directions for further future research. The results of Section5 enable the development
of an open loop backstepping methodology which, given a sequence of consistent abstractions would
recursively generate the actual control input, by first generating a control input for the abstracted
system and then recursively refine it as one adds more modeling detail. Nonlineaxizing the results
of Section 5, will result in a hierarchical controllability algorithm for nonlinesLr system which may
be more efficient and robust from a symbolic computation point of view. Many other properties
are also of interest and will be investigated both for linear and nonlinear control systems. For
example, obtaining consistent abstractions for nonlineajsystems with respect to stabilizability would
essentially classifyall backsteppable systems. Other properties of interest include trajectory tracking,
optimality as wellas the proper propagation of state and input constraints. The framework presented
in this paper provides a suitable platform for such studies.

Finally, another direction which is of great interest from a hybrid systems perspective, is to obtain
consistent, discrete and hybrid abstractions of continuous systems. A very interesting problem,
however, remains the construction of finite eind consistent state space partitions, given a continuous
control system. An eilgorithm for constructing finite, reachability-preserving quotients of analytic
vector fields is proposed in [20].

Acknowledgments: This work is supported by the Army Research Office imder grants DAAH
04-95-1-0588 and DAAH 04-96-1-0341.
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Appenddc a. Matlab Implemetation of Algorithms 6.1 and 6.4

fimction [controllable]=HCA(A,B,k,tol)

HiersLrchical Controllability Algorithm 6.1

Function Call : HCA(A,B,k,tol)
Required Inputs : System Matrices A,B
Optional Inputs : Integer 0<= k <= n-1 (default is 0)

: Tolerance threshold tol (used for rank confutation)

n=size(A,l);
if nargin == 2

k =0;

tol = n»norm(A,l)*eps;
elseif nargin == 3

tol = n*norm(A,l)*eps;
end

r = rank(B,tol);

while ( (n>r) & (r>0) ),
1 = min(k,n-l);
W = B;

for j=l;l,
W = [B A#W] ;

end

[U,S,V] = svd(W);
m » rank(S,tol);
U1 = U(:,l:m) ;
U2 = U(:,(m+l):n)
C = U2';

B = C*A*U1;

A = C»A»C';

n = size(A,1)
r = rank(B,tol);

end

if (n==r)
controllable=l;

elseif (r==0)

controllable»0;

end

X*** Dimension of input space

%«*« If inputs exist and are less than states
Ignore Lie brackets higher than n-1

•/,♦♦♦ Compute [B AB A*kB]

%:¥** Obtain consistent matrix C

Obtain consistent abstraction

*/,««« Dimension of abstracted system
y,*** Dimension of macroinputs



HIERARCHICALLY CONSISTENT CONTROL SYSTEMS

function [controllable]=HCA(A,B,tol)

Hierarchical Controllability Algorithm 6.4

Function Call : HCA(A,B,tol)
Required Inputs : System Matrices A,B
Optional Input : Tolerance threshold tol

n=size(A,l);
if nargin == 2

tol = n«norm(A,l)#eps;
end

[U,S,V] = svd(B);
r = rank(S,tol);

while ( (n>r) & (r>0) ),
Ui = U(:,l:r) ;
U2 = U(:,(r+l):n)
C = U2';

B = CfA*Ul;

A = C*A#C';

n = size(A,1);
[U,S,V] = svd(B);
r = rank(S,tol);

end

if (n«r)
controllable=l;

elseif (r==0)
controllable=0;

end

Dimension of input space

%*** If inputs exist and are less than states
Obtain consistent matrix C

Obtain consistent abstracted system

Dimension of abstracted system

Dimension of macroinputs

31
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