

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SYMBOLIC EXPLORATION OF TRANSITION

HIERARCHIES

by

Rajeev Alur, Thomas A. Henzinger, and Sriram K. Rajamani

Memorandum No. UCB/ERL M98/21

15 April 1998

SYMBOLIC EXPLORATION OF TRANSITION

HIERARCHIES

by

Rajeev Alur, Thomas A, Henzinger, and Sriram K. Rajamani

Memorandum No. UCB/ERL M98/21

15 April 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Symbolic Exploration of Transition Hierarchies*^

Rajeev Alur^ Thomas A. Henzinger^ Sriram K. Rajamani^

Abstract

In formal design verification, successful model checking is typically preceded by a laborious
manual process of constructing design abstractions. We present a methodology for partially
and in some cases, fully—bypassing the abstraction process. Forthis purpose, we provide to the
designer abstraction operators which, if used judiciously in the description ofa design, structure
the corresponding state space hierarchically. This structurecan then beexploited by verification
tools, and makes possible the automatic and exhaustive exploration of state spaces that would
otherwise be out of scope for existing model checkers.

Specifically, we present the followingcontributions:

• A temporal abstraction operator that aggregates transitions and hides intermediatesteps.
Mathematically, our abstraction operator is a function that maps a flat transition system
into a two-level hierarchy where each atomic upper-level transition expands into an entire
lower-level transition system. For example, an arithmetic operation may expand into a
sequence of bit operations.

• A BDD-based algorithm for the symbolic exploration ofmulti-level hierarchies of transition
systems. The algorithm traverses a level-n transition byexpanding the corresponding level-
(n —1) transition system on-the-fly. The level-n successors of a state are determined by
computing a level-(n —1) reach set, which is then immediately released from memory. In
this fashion, we can exhaustively explore hierarchically structured state spaces whose flat
counterparts cause memory overflows.

• We experimentally demonstrate the efficiency ofour method with threeexamples—a multi
plier, a cache coherence protocol, and a multiprocessor system. In the first two examples,
we obtain significant improvements in run times and peak BDD sizes over traditional
state-space search. The third examplecannot be model checked at all using conventional
methods (without manual abstractions), but can be analyzed fully automatically using
transition hierarchies.

*To appear in the Proceedings of the Fourth Workshop on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 98), Lecture Notes in Computer Science, Springer-Verlag, 1998.

^This research was supported in part by the Office of Naval Research Young Investigator award N00014-95-1-0520,
by the National Science Foundation CAREERaward CCR-9501708, by the National Science Foundation grant CCR-
9504469, by the Air ForceOffice of Scientific Research contract F49620-93-1-0056, by the Army Research Office MURI
grant DAAH-04-96-1-0341, by the Advanced Research Projects Agency grant NAG2-892, and by the Semiconductor
Research Corporation contract 95-DC-324.036.

^University of Pennsylvania and Bell Labs, alur@cis.upenn.edu
^University of California at Berkeley, tah@eecs.berkeley.edu
^University of California at Berkeley, sriramr@eecs.berkeley.edu

1

1 Introduction

Formal design verification is a methodology for detecting logical errors in high-level designs. In
formal design verification, the designer describes a system in a language with a mathematical
semantics, and then the system description is analyzed agadnst various correctness requirements.
The paradigm is called model checking when the analysis is performed automatically by exhaustive
state-space exploration. A variety of model checkers, such as COSPAN [HZR96], Mur<^ [Dil96],
SMV [CKSVG96], SPIN [HP96], and VIS [BSVH"'"96] have been proven effective aids in the design
of error-prone system components such as cache coherence protocols [CK96].

As we seek to enhance the applicability of model checking to complex designs, we are faced
with the so-called state-explosion problem: the size of the state space grows exponentially with the
size of the system description, making exhaustive state-space exploration infeasible. Consequently,
to use the current tools effectively, one needs to focus on a critical system component. Since the
behavior of an individual component typically depends on its interaction with other components, a
component cannot be analyzed in isolation; rather, for a meaningful analysis, all relevant aspects of
the surrounding system need to be identified. This process, called abstraction, is usually performed
in an informal, manual fashion, and requires considerable expertise. Indeed, it is not uncommon
that a successful verification or falsification run, using a few seconds of CPU time, depends on
months of manual labor for constructing abstractions that are neither too coarse to invalidate the
correctness requirements, nor too detailed to exhaust the tool capacities.

The goal of our research is to systematize and, whenever possible, automate the construction
of useful abstractions. Our approach is to provide the designer, within the system description
language, with operators for writing mental design abstractions into the system description. The
judicious use of such operators is called design for verifiability, because it simplifies—and in some
cases, eliminates—the process of "rediscovering" abstractions after the design is completed.

Our abstraction operators are motivated by the two main, orthogonal structuring principles for
designs: (1) spatial aggregation together with hiding of spatial details, and (2) temporal aggregation
together with hiding of temporal details. Type-(l) abstractions enable the design of components
at different levels of spatial granularity: an ALU can be designed by aggregating gates, then used
as an atomic block (after hiding internal gates and wires) in the design of a processor. Type-
(2) abstractions enable the design of components at different levels of temporal granularity: an
arithmetic operation can be designed by aggregating bit operations, then used as an atomic step
(after hiding intermediate results) in the design of an instruction.

Spatial, type-(l) abstractions can be written into a system description using, for aggregation,
the parallel composition of subsystems and, for hiding, the existential quantification of variables.
Accordingoperators are provided by most system description languages. They are exploited heavily,
both to facilitate the description of complex systems, and to obtain heuristics for coping with state
explosion. For instance, in symbolic state-space exploration using BDDs, instead of building a
single transition relation for the entire system, one typically maintains a set of transition relations,
one for each component [TSL90].

By contrast, most system description languages do not provide operators for defining tempo
ral, type-(2) abstractions. We have introduced such an operator, called next, and shown how it
facilitates the description of complex systems, in a language called Reactive Modules [AH96]. In
this paper, we show how the next operator can be exploited in symbolic state-space exploration
to enhance the power of model checking.

Specifically, if M is a system description, and y? is a condition on the variables of M, then
next (p for M describes the same system at a more abstract temporal level: a single transition

of next (p for M aggregates as many transitions of M as are required to satisfy the condition
and hides the intermediate steps. For example, if M is a gate-level description of an ALU, and
(p signals the completion of an arithmetic operation, then next <p for M is an operation-level
description of the ALU. Mathematically, the semantics of next (p for M is defined as a two-level
hierarchy of transition systems: each transition of the upper-level (e.g., operation-level) transition
system abstracts an entire lower-level (e.g., gate-level) transition system. Then, by nesting next
operators we obtain multi-level hierarchies of transition systems. The structuring of a state space
into a multi-level transition hierarchy makes possible the exhaustive exploration of very large state
spaces. This is because after the traversal of a level-n transition, the computed reach set for
the corresponding level-(n —1) transition system represents hidden intermediate steps and can be
removed from memory.

In Section 2, we briefly review the language of Reactive Modules and give a simple example
of a transition hierarchy. In Section 3, we introduce an algorithm for the symbolic exploration of
transition hierarchies. In Section 4, we present experimental results that demonstrate the efficiency
of our algorithm. For this purpose, we design a system comprising two processors with simple
instruction sets, local caches, and shared memory. If we simply put together these components,
using parallel composition but no next operator, the resulting flat transition system is far beyond
the scope of existing model checkers. If, however, we use the next operator to aggregate and hide
internal transitions between synchronization points before composing the various subsystems, the
resulting transition hierarchy can be explored using the search routines of VIS, and correctness
requirements can be checked fuUy automaticaUy. Thus, the description of a design using next can
eliminate the need for manual abstractions in verification.

Related work. The concept of temporal abstraction is inspired by the notion of multiform time
in synchronous programming languages [B1GJ91, Hal93], and by the notion of action refinement
in algebraic languages [AH89]. All of that work, however, concerns only the modeling of systems,
and not automatic verification.

Temporal abstraction is implicitly present also in the concept of stuttering [Lam83]: a stutter
ing transition of a system is a transition that leaves all observable variables unchanged. Ignoring
differences in the number of stuttering transitions leads to various notions of stutter-insensitive
equivalences on state spaces (e.g., weak bisimulation). This suggests the following approach to
model checking: for each component system, compute the appropriate stutter-insensitive equiv
alence, and before search, replace the component by the smaller quotient space. This approach,
which has been implemented in tools such as the Concurrency Workbench [CPS93], requires the
manipulation of the transition relations for individual components, and ha^ not been shown com
petitive with simple search (cf. Section 3.1 vs. Section 3.2).

Partial-order methods avoid the exploration of unnecessary interleavings between the transitions
of component systems. Gains due to partial-order reduction, in space and time, for verification have
been reported both in the case of enumerative [HP94] and BDD-based approaches [ABH'''97]. By
declaring sequences of transitions to be atomic, the next operator also reduces the number of
interleavings between concurrent transitions. However, while partial-order reductions need to be
"discovered" a posteriori from the system description, transition hierarchies are specified a priori
by the designer, as integral part of the system description.

addOpl addOp2 doAdd

WordAdder overflow

doTieAdd

doBitAdd bit! bit2 cln^

eOut

BitAdder

doneBHAdd

Figure 1: Word-adder and bit-adder

2 Example: From Bit Addition to Word Addition

2.1 Reactive Modules

We specify systems as Reactive Modules. A formal definition of reactive modules can be found
in [AH96]; here we give only a brief introduction. The state of a reactive module is determined by
the values of three kinds of variables: the external variables are updated by the environment and
can be read by the module; the interface variables are updated by the module and can be read
by the environment; the private variables are updated by the module and cannot be read by the
environment (this distinction is similar to I/O automata [Lyn96]).

For example, Figure 2 shows a module that adds two words. The environment of the word-
adder consists of two modules: a command module, which provides the operands to be added
and an instruction that they be added, and a bit-adder, which is called repeatedly by the word-
adder. Hence the word-adder has the external variables addOpI and addOp2 of type WORD,
which contain the two operands provided by the command module, the external variable doAdd
of type BOOLEAN, which is set by the command module whenever the two operands should be
added, and three output bits of the bit-adder: the sum bitResult, the carry-out cOut, and the flag
doneBitAdd, which is set whenever a bit-addition is completed. The word-adder has the interface
variables addResult of type WORD, which contains the sum, overflow of type BOOLEAN, which
indicates addition overflow, doneAdd of type BOOLEAN, which is set whenever a word-addition is
complete, and four input bits for the bit-adder: the operands bitl and bitB^ the carry-in cin, and
the flag doBitAdd, which instructs the bit-adder to perform a bit-addition. The word-adder has
the private variables state of type FLAGTYPE, which indicates if an addition is being executed,
and bitCount of type LOGWORD, which tracks the position of the active bits during the addition
of two words. We assume that, once a word-addition is requested, the command module keeps the
variable doAdd true until the word-adder signals completion of the addition by setting doneAdd to
true.

The state of a reactive module changes in a sequence of rounds. In the first round, the initial

values of all interface and private variables are determined. In each subsequent round, the new
values of all interface and private variables are determined, possibly dependent on some latched
values of external, interface, and private variables from the previous round, and possibly dependent
on some new values of external variables from the current round. No assumptions are made about
the initial values of external variables, nor on how they are updated in subsequent rounds. However,
in order to avoid cyclic dependencies between variables, it is not permitted that within a single
round, a module updates an interface variable x dependent on the new value of an external variable
y while the environment updates y dependent on the new value of x. This restriction is enforcedby
collecting variables into atoms that can be ordered linearly such that in each round, the variables
within an atom can be updated simultaneously provided that aU variables within earlier atoms
have already been updated. Thus, a round consists of several subrounds—one per atom.

A round of the word-adder consists of four subrounds: first, the command module may provide
new operands and issue an add instruction; second, the word-adder may initiate a bit-addition;
third, the bit-adder may perform a bit-addition; fourth, the word-adder may record the result of a
bit-addition and signal a completion of the word-addition. Accordingly, the interface and private
variables of the word-adder are grouped into two atoms: bitl, bit2, cin, doBitAdd^ state, and
bitCount are updated in the second subround of each round; addResult, overflow, and doneAdd in
the fourth. The first and third subrounds of each round are taken by the command module and
the bit-adder, respectively. The bit-adder, shown in Figure 3, needs one round for bit-addition, but
can choose to wait indefinitely before servicing a request. A word-addition of two n-bit numbers,
therefore, requires at least n rounds—one round for each bitwise addition. In the first of these
rounds, the word-adder reacts to the command module, and the first bits may (or may not) be
added. In the last of these rounds, the n-th bits are added, and the word-adder signals completion
of the addition.

Figure 1 gives a block diagram of the word-adder composed with the bit-adder, and Figures 2
and 3 provide formal descriptions of both components. For each atom, the initial values of the
variables and their new values in each subsequent (update) round are specified by guarded com
mands (as in UNITY [CM88]). In each round, unprimed symbols, such aa x, refer to the latched
value of the variable x, and primed symbols, such as x', refer to the new value. An atom reads
the variable x if its guarded commands refer to the latched value of x. The atom awaits x if
its guarded commands refer to the new value x'. The await dependencies between variables are
required to be acyclic. A variable is history-free if it is not read by any atom. Since the values of
history-free variables at any round do not infiuence the next round, they do not have to be stored
during state-space traversal.

2.2 Flat vs. Hierarchical Models

We discuss two operations for building complex reactive modules from simple ones. The parallel-
composition operator abstracts spatial complexities of a system by collecting the atoms of several
modules within a single module. The next operator abstracts temporal complexities of a system by
combining several rounds of a module as subrounds of a single round. Intuitively, if M is a reactive
module and y? is a condition on the variables of M, then next (p for M is a module that, in a single
round, iterates as many rounds of M as are necessary to make the so-called aggregation predicate
ip true. Formal definitions of parallel composition and next-abstraction can be found in [AH96].

Consider, for example, the following two modules:

ConcreteAdder = WordAdder || BitAdder
AbstractAdder = next {doAdd => doneAdd) for ConcreteAdder

module WordAdder

type FLAGTYPE : {IDLE, WORKING};
interface addResuH : WORD;

bitly bus, cin, doBitAdd^doneAdd^overflow : BOOLEAN
private state : FLAGTYPE;

bitCount : LOGWORD

external addOpl, addOp2 : WORD;
doAdd,doneBitAdd,bitResuH,cOut : BOOLEAN

atom controls state^ bitCouni, doBitAdd, bit!, bit2, cin
reads doneBitAdd, bitResult, cOut
awaits addOpI, addOp2, doAdd
init

[J true —+ state' ;= IDLE
update

[] {state = IDLE) AdoAdd' —*•
state' := WORKING; bitCount' := false; doBitAdd' := true;
bit]' := addOpl'[0]; bit2' := addOp2'\fl]; cIn' := false

D{state = WORKING) A{bitCount < WORDLENGTH - 1)AdoneBitAdd
bit}' := addOpl'[bitCount + 1]; bit2' := addOp2'[bitCount + 1];
cIn' = cOut; bitCount' = bitCount + 1

0 {state = WORKING) A{bitCount = WORDLENGTH - 1)AdoneBitAdd
doBitAdd' = false; state' := IDLE

endatom

atom controls addResult, doneAdd, overflow
reads bitCount

awaits bitResult, doneBitAdd, cOut
init

[] true —* doneAdd' := false
update

Q{bitCount < WORDLENGTH - 1) AdoneBitAdd' ^
addResult'[bitCount] ;= bitResult'

0 {bitCount = WORDLENGTH - 1) AdoneBitAdd'
addResult'[bitCount] := bitResult; doneAdd' := true; overflow' = cOut'

endatom

endmodule

Figure 2: Word-adder

module BHAdder

interface doneBUAdd^bHResuli, cOui : BOOLEAN
external biil ,bH2^cIn^doBUAdd : BOOLEAN
atom doneBHAddy bUResult, cOui

awaits biily bU2y cin, doBHAdd
init

[) true —* doneBHAdd' := false
update

[] doBitAdd'
bUResult' := bitl' © bit2' © cln'\
cOut' := {bitl'kbit2')\{bit2'kcIn')\{cJn'kbxtl')y
doneBitAdd' := true

P true —+ doneBitAdd' := false;
endatom

endmodule

Figure 3; Bit-adder

Each of the two modules is a model for an addition unit that consists of two components, a word-
adder composed with a bit-adder. The two models differ only in their level of temporal granularity.
In the flat model ConcreteAdder, the addition of two 7i-bit words takes at least n rounds. In the
hierarchical model AbstractAdder, the addition of two n-bit words takes a single round. This is
because the next-abstracted module combines into a single round as many rounds as are necessary
to make either doAdd false or doneAdd true. In other words, in the flat model, bit-additions are
atomic. Thus the flat model is adequate under the assumption that the addition unit is put into an
environment that interacts with the addition unit only before and after bit-additions, but does not
interrupt in the middle of a bit-addition. By contrast, in the hierarchical model, word-additions are
atomic. Therefore the hierarchical model is adequate only under the stronger assumption that the
addition unit is put into an environment that interacts with the addition unit only before and after
word-additions, but does not interrupt in the middle of a word-addition. While the flat model is
adequate in more situations, we wiU see that the hierarchical model can be verified more efficiently,
and therefore should be preferred whenever it is adequate.

3 Symbolic Exploration of Hierarchical State Spaces

The reason why next-abstraction can be exploited by model checking can be seen as follows. If the
semantics of a reactive module is viewed as a state-transition graph, with each round corresponding
to a transition, then the hierarchical module next (p for M may have many fewer states than the
flat module M. In particular, the next operator removes all states of M in which the aggregation
predicate ip is not true; these states are called transient. When exploring the state space of the flat
module, both transient and nontransient reachable states need to be stored as they are computed.
By contrast, when exploring the state space of a hierarchical module, transient states need to
be computed in order to find nontransient successor states, but once these states are found, the
transient states need not be stored. Moreover, some of the variables that are not history-free in the
flat model no longer influence (nontransient) successor states in the hierarchical model, and thus
in effect become history-free. This results in further savings in memory for storing states.

The savings are particularly pronounced when hierarchical models are composed. Consider two

flat models M and TV, and twohierarchical models M' = (next ip for M) and N' = (next t}) for N).
The hierarchical composition M' || N' is an adequate model for the composed systems if the
aggregation predicates (p and tp characterize the synchronization points of the two components;
that is, if M interacts with N whenever (p becomes true, and N interacts with M whenever V
becomes true. The possible interleavings of transitions of M and N may lead to an explosion
of transient states of M \\ N (states in which either <p or ip is false), which can be avoided by
exploring instead M' {| N'. In other words, if the interaction between two component systems can
be restricted, then some of the state-explosion problem may be avoided. Indeed, as we shall see,
in complex systems with many components but well-defined interactions between the components,
the computational savings, both in time and memory, can be enormous.

In the foUowing, we first define the transition relations of composite and hierarchical modules
from the transition relations of the components. Then we present a nested-search algorithm that
explores the state space of a hierarchical module efficiently. The nested-search algorithm uses an
implicit, algorithmic representation of the transition relation of a hierarchical module for image
computation.

3.1 Explicit Definition of Transition Relations

The state-transition graph of a reactive module can be specified by a symbolic transition relation.
Given a module M with variables X, the symbolic transition relation of M is a boolean function
Tm(X,X'). Let X and X' be two states of M, i.e., valuations to the variables of M. Then the
expression Tm(X^X') evaluates to true iff there is an edge in the state-transition graph from state
X to state X'. AH modules are built from individual atoms using parallel composition and the
next operator. It is straightforward to construct the symbolic transition relation of an atom. For
complex modules, the symbolic transition relation is defined inductively.

Parallel composition. Consider the module M = Mi \\ M2. Let TMiiXi^X^) and Tm2(A2,A'2)
be the symbolic transition relations of Mi and M2, respectively. Then the symbolic transition
relation of M is given by the conjunction

Tm(X,X') = TM,(XuX^)^TM,(^2,X^).

Next abstraction. Consider the module M = (next (p for N). Let Tn{X,X') be the symbolic
transition relation of N. For all natural numbers i > 0, define

• rJJ^(X, AO = Tjv(A, A');

. Tlj\X,X') = T}^{X,X') V(3Y){-^^{Y)aTn{X,Y) ATUY^X')).
Let Th = be the limit of the fixpoint computation sequence ••• (finite conver
gence is guaranteed for finite-state systems). Then the symbolic transition relation of M is given
by

Tm(X,X') = Av>(X') ATl,{X,X').
The reachable state set of a module can be computed by iterated application of the transition
relation. For this purpose, it is theoretically possible to construct, using the above definitions, a
HDD for the symbolic transition relation of a hierarchical module. In practice, however, during the
construction the intermediate BDDs often blows up and results in memory overflow. For parallel
composition, it is a common trick to leave the transition relation conjunctively decomposed and
represent it as a set of BDDs, rather than computing their conjunction as a single BDD [TSL90].
Early quantification heuristics are then used to efficiently compute the image of a state set under a
conjunctively partitioned transition relation. For next abstraction, we propose a similar approach.

8

3.2 Efficient Computation with Implicit Transition Relations

For model checking, it suffices to represent the symbolic transition relation ofa module not explic
itly, as a BDD, but implicitly, as an algorithm that given a state set, computes the set of successor
states. This algorithm can then be iterated for reachability analysis and more general verification
problems. Given a module M, the single-step successor function of M is a function from state
sets of M to state sets of M. Let c be a set of states of M. Then is the set of all states
X' of M such that there is a state X ^ a with Tm(X^ X'); that is, R\f{<7) is the image of <r under
the transition relation Tm- It is straightforward to compute for single atoms. For complex
modules, the single-step successor function is computed recursively.

Parallel composition. Consider the module M = Mi \\ M2 and a set a of states of M. Let
R\f^{<T) and R\j^{a) be the images ofa for Mi and M2, respectively. Then

Next abstraction. Consider the module M = (next (p for N) and a set a of states of M. Let
R]sj{ff) be the image of0 for N. Then R\f{(^) is computed by the nested-search procedure described
in Algorithm 3.2.

Algorithm 3.2
{Given module M = (next tp for N), single-step successor function R]^,

and state set a, compute -Rm(o')}
{We will assume <t Cp]
FirsiLevellmage := {}
SecondLevellmage := R}^(o)
SecondLevelReachSet := {}
loop

FirsiLevellmage := FirsiLevellmage U{SecondLevellmage PI p)
SecondLevelReachSei := SecondLevelReachSei U {SecondLevellmage n^)
SecondLevellmage := R]^{SecondLevelReachSei)

until {SecondLevelReachSei does not change)
return (FirsiLevellmage)

In contrast to a BDD for T\f{X, X'), which explicitly represents the transition relation of module M,
the recursive algorithm for computing the function R]^ implicitly represents the same information.
In practice, a mixture of explicit symbolic representation of transition relations (for small modules)
and implicit image computation (for complex modules) will be most efficient. We report on our
experiences with nested search in the following section.

4 Experiments

The aim of our experiments is to investigate the efficiency of the proposed method for the au
tomatic reachability analysis of complex designs. AU experimental results reported in this paper
were obtained by modeling the systems in Verilog and using the vl2mv Verilog compiler along
with VIS [BSVH+96]. We implemented a new command in VIS, called abstract.reach^ based on
Algorithm 3.2.

4.1 Multiplier

We model a word-multiplier that functions by repeated addition, using the word-adder described
earlier. With help of the next operator, we can model the multiplier at various levels of temporal
detail. We experiment with two options:

Model 1: For addition, use the flat module ConcreteAdder explained in Section 2. In this
model, bit-additions appear as atomic actions of the multiplier.

Model 2: For addition, use the hierarchical module AbstractAdder. In this model, word-
additions appear as atomic actions.

We perform reachability analysis with both models. Model 1 is given to VIS directly, and reacha
bility analysis is performed using the compute.reach command of VIS. In order to analyze Model 2,
we use the abstract-reach command with the aggregation predicate doAdd ^ doneAdd. As a result,
the states in which doAdd is true and doneAdd is false become transient states.

We experiment with two 4-bit operands and an 8-bit result. In this case. Model 1 has 68 latches
and 1416 gates. After the next abstraction, 24 of these latches become history-free; that is, their
values in a state do not influence the next states of Model 2. In particular, the local variables of
the adder become history-free, and hence, are represented by trivial functions in the BDD that
represents the reachable states. Table 1 shows the peak BDD sizes for both models.

4.2 Cache Coherence Protocol

We describe the various components of a generic cache coherence protocol before discussing our
results. Each cache block can be in one of three states: INVALID, READ-SHARED, or WRITE-
EXCLUSIVE. Multiple processors can have the same memory location in their caches in the
READ-SHARED state, but only one processor can have a givenlocation in the WRITEJEXCLUSIVE
state. There is a directory that, for each memory location, has a record of which processors have
cached that location and what states (READ-SHARED, WRITE-EXCLUSIVE) these blocks are
in. Due to want of space, we will not explain the protocol formally. An example scenario gives the
general flavor. Suppose that Processor 1 has a location in WRITE-EXCLUSIVE, and Processor 2
wants to read this location. First Cache 2 records a write miss and communicates that to the
directory. The directory then sends a message to Processor 1, requesting it to move the state of the
block under consideration from WRITE-EXCLUSIVE to READ-SHARED. Cache 1 acknowledges
this request and also sends the latest version of the data in this block to the directory. The direc
tory then services Cache 2 with this data, and Cache 2 gets the block as READ-SHARED. Each
of these steps involves a transaction on the bus, which could take an arbitrary number of rounds
due to the asynchronous nature of the bus.

We experiment with two levels of temporal granularity. Model 1 is a flat model of the memory
system, and Model 2 is a hierarchical model that abstracts temporal detail about the bus. While a
bus transaction can consume multiple rounds in Model 1, it is forced to always complete in a single
round in Model 2. For our experiments, we choose a 1-bit address bus and 1-bit data bus. In this
case. Model 1 has 44 latches, of which 6 latches become history-free in Model 2. The peak BDD
sizes during reachability analysis for both models are reported in Table 1.

4.3 Processor-Memory System

Aiming for a more dramatic improvement over flat modeling, we compose several systems whose
interactions are limited. We put together two processors, each with an ALU consisting of the

10

Pi P2

Cache\ Cache2

Memory

Bus

Figure 4: Processor-Memory System

adder and multiplier described earlier, and the cache protocol, to obtain a complete processor-
memory system. A block diagram of the system is shown in Figure 4. The processors have a simple
instruction set: load/store register to/from memory, add two register operands, multiply two
register operands, compare two registers, and a conditional branch. Again we experiment with
two models. Model 1 is flat, and Model 2 is constructed by composing next-abstracted versions of
the multipliers, adders, and bus protocol.

We choose an 1-bit wide address bus and a 2-bit wide data bus. In this case. Model 1 has
147 latches, of which 36 latches become history-free in Model 2 (15 latches in each multiplier,
and 6 in the cache protocol). Here, reachability analysis for Model 1 is beyond the capability of
current verification tools. However, fuUy automatic reachability analysis succeeds for Model 2,
which structures the design using the next operator. Consider, for example, the situation where
both processors start a multiplication at the same time. In Model 1, there are several transient
states due to the interleaving of independent suboperations of the two multipliers. These transient
states are entirely absent in Model 2. Indeed, nested search (Algorithm 3.2) is the key to verifying
this example: we run out of memory when trying to compute an explicit representation of the
transition relation for Model 2}

4.4 Processor-Memory System with Programs

Finally, we add programs to the processors of the processor-memory system. Processor 1 computes
A*B. Processor 2 computes C*D. Processor 1 then adds up both results and computes A*B-fC*Z?.
The two processors synchronize through a flag in memory. The last entry of the table shows
the reachability results for the processor-memory system constrained by these programs. Again,
Model 2 completes reachability using abstract-reach^ whereas Model 1 does not. Thus we are able
to verify invariants on Model 2, such as confirming that the results computed by the programs are
correct.

^The transition relation for the multiplier module alone, as computed by VIS, has 7586BDD nodes and is composed
of 6 conjunctive components. Even "and"-ing the components together results in memory overflow.

11

Peak BDD size Time for reachability (sec)
Example Model 1 Model 2 Model 1 Model 2

Multiplier 26979 6561 157 122

Cache Coherence 42467 21498 310 227

Proc/Mem System space out 53103 * 816

with Program space out 9251 * 153

Table 1: Experimental Results

5 Conclusions

We introduced a formal way of describing a design using both temporal and spatial abstraction
operators for structuring the description. The temporal abstraction operator next induces a hier
archy of transitions on the state space, where a high-level transition corresponds to a sequence of
low-level transitions. We exploited transition hierarchies in symbolic reachability analysis and pre
sented an algorithm for proving invariants of reactive modules using hierarchical search. We tested
the algorithm on arithmetic circuits, cache coherence protocols, and processor-memory systems,
using an extension of VIS. The experimental results are encouraging, giving fully automatic results
even on systems that are amenable to existing tools only after manual abstractions. Transition
hierarchies can be exploited to give efficiencies in enumerative reachability analysis as well [AH96].
We are currently building a formal verification tool for reactive modules, called MOCHA, which
will incorporate both symbolic and enumerative hierarchical search as primitives.

While the next operator is ideally suited for abstracting subsystems that interact with each
other at predetermined synchronization points, it does not permit the "out-of-order execution" of
low-level transitions. We currently investigate additional abstraction operators, such as operators
that permit the temporal abstraction of pipelined designs.

References

[AH89] L. Aceto and M. Hennessy. Towards action refinement in process algebras. In Proc. of
Lies 89: Logic in Computer Science^ pages 138-145. IEEE Computer Society Press, 1989.

[ABH+97] R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajamani. Partial-order
reduction in symbolic state-space exploration. In Proc. of CAV 97: Computer-Aided Verification,
LNCS 1254, pages 340-351. Springer-Verlag, 1997.

[AH96] R. Alur and T.A. Henzinger. Reactive modules. In Proc. of LICS 96: Logic in Computer
Science, pages 207-218. IEEE Computer Society Press, 1996.

[B1GJ91] A. Benveniste, P. le Guernic, and C. Jacquemot. Synchronous programming with events
and relations: The SIGNAL language and its semantics. Science of Computer Programming,
16:103-149,1991.

[BSVH+96] R.K. Brayton, A. Sangiovanni-Vincentelli, G.D. Hachtel, F. Somenzi, A. Aziz, S.-T.
Cheng, S. Edwards, S. Khatri, Y. Kukimoto, S. Qadeer, R.K. Ranjan, T.R. Shiple, G. Swamy,
T. ViUa, A. Pardo, and S. Sarwary. VIS: a system for verification and synthesis. In Proc. of
CAV 96: Computer-Aided Verification, LNCS 1102, pages 428-432. Springer-Verlag, 1996.

12

[CK96] E.M. Clarkeand R.P. Kurshan. Computer-aided verification. IEEE Spectrum^ 33(6):61-67,
1996.

[CKSVG96] E.M. Clarke, K.L. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic
model checking. In Proc. of CAV 96: Computer-Aided Verification, LNCS 1102, pages 419-422.
Springer-Verlag, 1996.

[CM88] K.M. Chaudy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[CPS93] R.J. Cleaveland, J. Parrow, and B. StefFen. The Concurrency Workbench: a semantics-
based tool for the verification of finite-state systems. ACM Transactions on Programming Lan
guages and Systems, 15(l):36-72,1993.

[Dil96] D.L. Dill. The Mur0 verification system. In Proc. of CAV 96: Computer-Aided Verification,
LNCS 1102, pages 390-393. Springer-Verlag, 1996.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic Publish
ers, 1993.

[HP94] G.J. Holzmann and D.A. Peled. An improvement in formal verification. In Proc. of FORTE
94: Formal Description Techniques, pages 197-211. Chapman & Hall, 1994.

[HP96] G.J. Holzmann and D.A. Peled. The state of SPIN. In Proc. of CAV 96: Computer-Aided
Verification, LNCS 1102, pages 385-389. Springer-Verlag, 1996.

[HZR96] R.H. Hardin, Z. Har'El, and R.P. Kurshan. COSPAN. In Proc. of CAV 96: Computer-
Aided Verification, LNCS 1102, pages 423-427. Springer-Verlag, 1996.

[Lam83] L. Lamport. What good is temporal logic? In Proc. of Information Processing 83: IFIP
World Computer Congress, pages 657-668. Elsevier Science Publishers, 1983.

[Lyn96] N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

[TSL90] H.J. Touati, H. Savoj, B. Lin, R.K. Brayton, and A. Sangiovanni-Vincentelli. Implicit
state enumeration of finite-state machines using BDDs. In Proc. of ICCAD 90: Computer-Aided
Design, pages 130-133. IEEE Computer Society Press, 1990.

13

	Copyright notice 1998
	ERL-98-21

