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O-MINIMAL HYBRID SYSTEMS

GERARDO LAFFERRIERE, GEORGE J. PAPPAS, AND SHANKAR SASTRY

ABSTRACT. A unified approach to decidability questions for verification algorithms of hy-
brid systems is obtained by the construction of a bisimulation. Bisimulations are finite state
quotients whose reachability properties are equivalent to those of the original infinite state
hybrid system. In this paper, we introduce the notion of o-minimal hybrid systems, which
are initialized hybrid systems whose relevant sets and flows are definable in an o-minimal
structure. We prove that o-minimal hybrid systems always admit finite bisimulations. We
then present a list of o-minimal structures which captures most hybrid systems known to
admit finite bisimulations as well as present new classes of hybrid systems with more complex
dynamics for which finite bisimulations exist.

Keywords: Hybrid systems, bisimulations, model theory, o-minimality, decidability

1. INTRODUCTION

Hybrid systems consist of finite state machines interacting with differential equations. Various
modeling formalisms, analysis, design and control methodologies, as well as applications, can
be found in [3, 4, 5, 12, 13, 22]. The theory of formal verification is one of the main approaches
for analyzing properties of hybrid systems. The system to be analyzed is first modeled as a
hybrid automaton, and the desired property is expressed using a formula from some temporal
logic. Then, model checking or deductive algorithms are used in order to guarantee that the
system model indeed satisfies the desired property.

Verification algorithms are essentially reachability algorithms which check whether trajecto-
ries of the hybrid system can reach certain undesirable regions of the state space. Since hybrid
systems have infinite state spaces, decidability of verification algorithms is very important.
Decidability results for analyzing hybrid systems consider special finite state quotients of the
original infinite state hybrid automaton called bisimulations. Bisimulations are reachability
preserving quotient systems in the sense that checking a property on the quotient system is
equivalent to checking the property on the original system. Showing that an infinite state
hybrid automaton has a finite state bisimulation is the first step in proving that verification
procedures are decidable. This approach has yielded several classes of decidable hybrid sys-
tems including timed automata, triangular timed automata, fixed-slope automata, periodic
grid automata, and rectangular automata. The above decidability results as well as some
undecidable classes are described in [1, 2, 14, 15] and the references therein. Computing finite
bisimulations is clearly related to the problem of obtaining discrete abstractions of continuous

systems which has been considered among others by [6, 11, 26] as well as [9].
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The common approach to obtaining bisimulations has been to utilize an algorithm which
refines an initial partition of the state space until it becomes compatible with the system
dynamics and the property to be preserved. Using this approach, there are three main issues
that must be resolved:

1. When does the algorithm terminate after a finite number of iterations?
2. When does the resulting partition consist of a finite number of equivalence classes?
3. Are all the steps of the algorithm constructive?

Resolving all three issues results in a decidable problem. Attacking the first two issues has
been solved either by explicitly providing an equivalence relation which is checked to be a
bisimulation (timed automata), or by transforming the problem to one for which'a bisimulation
is known to exist (multi-rate, rectangular automata). The third issue is typically tackled using
quantifier elimination techniques from mathematical logic.

In this paper, we tackle the first two issues for a much wider class of hybrid systems. In order
to solve them, we need to identify classes of sets and flows with finite, global intersection
properties. This is provided by the concept of o-minimal theories in mathematical logic [24,
33, 32, 34, 35]. Using this concept, we introduce the notion of o-minimal hybrid systems
which are initialized hybrid systems whose relevant sets (guards, resets, etc) and flows are
definable in an o-minimal theory. We then prove that o-minimal hybrid systems always admit
finite bisimulations. We also show using examples that relaxing the notion of o-minimality
quickly leads into pathological situations. We then list various o-minimal theories and the
corresponding hybrid systems that are definable in them. This list captures most hybrid
systems known to admit finite bisimulations. Moreover, we present hybrid systems with much
more complex dynamics which are definable in recently discovered o-minimal structures and
thus also admit finite bisimulations. We also point out a new decidability result for a particular

class of o-minimal hybrid systems.

In addition to generating more classes of hybrid systems with finite bisimulations, the impor-
tance of this paper can be summarized by the following:

1. The results presented provide a unified framework for decidability analysis of hybrid
systems
2. Generation of more o-minimal theories immediately leads to new classes of o-minimal

hybrid systems
3. Constructive results within o-minimal theories immediately lead to decidability results

By providing a purely model theoretic framework, we also extend the planar results of [19]
and [20).

The outline of the paper is as follows: In Section 2 we review the notion of bisimulations of
transitions systems. In Section 3 we define a general class of hybrid systems and describe
the bisimulation algorithm as it applies to hybrid systems. Section 4 presents the notion of
o-minimality from model theory which is used in Section 5 in order to define o-minimal hybrid
systems and prove the main theorem. In Section 6, we list various classes of o-minimal hybrid
systems. Section 7 contains conclusions and issues for further research.
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2. BISIMULATIONS OF TRANSITION SYSTEMS

We adopt here the terminology of [14] slightly modified for our purposes. A transition system
T = (Q,%Z,—, Qo,Qr) consists of a (not necessarily finite) set @ of states, an alphabet T of
events, a transition relation -C Q@ x X x @, a set Qo C @ of initial states, and a set Qr C Q
of final states. A transition (g, 0,g2) €— is denoted as ¢, 5 g,. The transition system is
finite if the cardinality of Q is finite and it is infinite otherwise. A region is a subset P C Q.
Given o € ¥ we define the predecessor Pre,(P) of a region P as

(2.1) Pre,(P)={g€ Q|3p€ Pand ¢ p}

Given an equivalence relation ~C @Q x @ on the state space one can define a quotient tran-
sition system as follows. Let @/ ~ denote the quotient space. For a region P we denote
by P/ ~ the collection of all equivalence classes which intersect P. The transition relation
—.. on the quotient space is defined as follows: for @,,Q2 € Q/~, Q1 5. Q. iff there exist
¢1 € Q) and ¢» € Q; such that ¢, = go. The quotient transition system is then T/ ~=
(Q/Na 21 e~ QO/Na QF/ N) )

Given an equivalence relation ~ on @, we call a set a ~-block if it is a union of equivalence
classes. The equivalence relation ~ is a bisimulation of T iff Qo, @F are ~-blocks and for all
o € ¥ and all ~-blocks P, the region Pre,(P) is a ~-block. In this case the systems T" and
T/ ~ are called bisimilar. We will also say that a partition is a bisimulation when its induced
equivalence relation is a bisimulation. A bisimulation is called finite if it has a finite number
of equivalence classes. Bisimulations are very important because bisimilar transition systems
generate the same language [14]. Therefore, checking properties on the bisimilar transition
system is equivalent to checking properties of the original transition system. This is very
useful in reducing the complexity of various verification algorithms where @ is finite but very
large. In addition, if T is infinite and T'/ ~ is a finite bisimulation, then verification algorithms
for infinite systems are guaranteed to terminate. Successful applications of this approach for
hybrid systems include timed automata [2], initialized rectangular automata [25], and linear
hybrid automata [14]. It should be noted that the notion of bisimulation is similar to the
notion of dynamic consistency [8, 9, 23]. If ~ is a bisimulation, it can be easily shown that if
p ~ q then

Bl: peQriffge Qr,and p€ Qo iff g € Qo
B2: if p -5 p’ then there exists ¢’ such that ¢ = ¢’ and p' ~ ¢

Based on the above characterization, given a transition system T, the following algorithm
computes increasingly finer partitions of the state space Q. If the algorithm terminates, then
the resulting quotient transition system is a finite bisimulation. The state space Q/~ is called
a bisimilarity quotient.

Algorithm 1: (Bisimulation Algorithm for Transition Systems)

Set: Q/~={QoNQr, Qo \Qr,Qr\ Qo,Q\ (QoUQr)}

while: 3 P,P' € Q/~ and ¢ € T such that @ # PN Pre,(P') # P
set: P, = PN Pre,(P'). P, = P\ Pre,(P')
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refine: Q/~= (Q/~ \{P}) U{P, PR}

end while:

Notice that each time the partition @/ ~ is refined, the transitions are updated to account
for the newly subdivided sets. When checking specific properties, such as reachability to the
set @Qr, one might simplify the algorithm by starting with a coarser partition, for example
{QF, @\ Qr}. In general one should include in the initial partition all additional sets relevant
to the verification problem of interest (such as safe or unsafe regions). The larger the initial
class of sets the more difficult it is for the algorithm to terminate.

3. BISIMULATIONS OF HYBRID SYSTEMS

We focus on transition systems generated by the following class of hybrid systems.
Definition 3.1. A hybrid system is a tuple H = (X, Xo, Xp, F, E, I,G, R) where

e X = Xp x Xc is the state space with Xp = {q1,...,¢.} and X¢ a manifold.

e X, C X is the set of initial states

e Xr C X is the set of final states

o F: X — TX¢ assigns to each discrete location ¢ € Xp a vector field F(g, -)

e F C Xp x Xp is the set of discrete transitions

o I: Xp —> 2%c assigns to each location a set I(gq) C X¢ called the invariant.

e G: E — Xp x 2% assigns to e = (q1,92) € E a guard of the form {g;} x U, U C I(q).
o R: E — Xp x 2*¢ assigns to e = (q1,q2) € E a reset of the form {g} x V',V C I(qg,).

Trajectories of the hybrid system H originate at any (g,z) € X, and consist of either con-
tinuous evolutions or discrete jumps. Continuous trajectories keep the discrete part of the
state constant, and the continuous part evolves according to the continuous flow F(q,-) as
long as the flow remains inside the invariant set I(g). If the flow exits J(g), then a discrete
transition is forced. If, during the continuous evolution, a state (g,z) € G(e) is reached for
some e € E, then discrete transition e is enabled. The hybrid system may then instanta-
neously jump from (g, z) to any (¢’,z') € R(e) and the system then evolves according to the
flow F(q',-). Notice that even though the continuous evolution is deterministic, the discrete
evolution may be nondeterministic. The discrete transitions allowed in our model are slightly
more restrictive than those in initialized rectangular automata [1, 2, 25]. In rectangular au-
tomata, the continuous dynamics are decoupled and each component of the continuous part
of the state may be either reset nondeterministically to an interval or remain the same. If,
however, the dynamics of a particular component changes then the reset map cannot be the
identity map on that component. In this paper, we restrict the reset maps in order to allow
complex and fully coupled dynamics. However, one could use the techniques in this paper
to deal with decoupled dynamics but more general reset maps. Finally, We assume that our
hybrid system model is non-blocking, that is from every state either a continuous evolution or

a discrete transition is possible.

Example 3.2. A typical hybrid system is shown in Figure 1. The state space is {Q1, @2} xR?.
The initial states are of the form {Q1} x {(z,y) € R? |0 < £ < 1,1 < y < 2}. The discrete
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FIGURE 1. A typical hybrid automaton

dynamics consists of two transitions e; = (Q1,Q2) and e; = (Q2,Q1). Within location
Q1, the continuous variables z and y evolve according to a differential equation as long as
(z,y) € I(Q:) = {(z,y) € R? | z < 5}. Once z > 5, discrete transition e, is forced and z,y
are nondeterministically reset to values in fixed sets. The system then flows according to the
flow associated with Q2. The evolution from that point on is similar. We would like to find
out whether the system will reach the set of final states {Q@>} x {(z,y) € R? | z < —5}.

Every hybrid system H = (X, Xy, Xr, F, E, I, G, R) generates a transition system T’ = (@, Z, —
,Qo, Qr) by setting Q = X, Qo = Xo, Qr = Xr, & = EU{7}, and == (Uece —)U - where

Discrete Transitions: (q,z) = (¢',z') for e € E iff (¢,z) € G(e) and (¢',2') € R(e)

Continuous Transitions: (g, 1) 5 (g2, 72) iff g, = g2 and there exists § > 0 and a curve
z:[0,8] — M with 2(0) = z,, z(6) = z, and for all t € [0, J] it satisfies z' = F(q;, z(¢))
and z(t) € I(qy).

The continuous 7 transitions are time-abstract transitions, in the sense that the time it takes to
reach one state from another is ignored. Having defined the continuous and discrete transitions
5 and > allows us to formally define Pre.(P) and Pre.(P) for e € E and any region P C X
using (2.1). Furthermore, the structure of the discrete transitions allowed in our hybrid system
model result in

[0 i#PARE=0
(3:1) Pre.(P) = {G(e) if PAR(e) # 0

for all discrete transitions e € E and regions P. Therefore, if the sets R(e) and G(e) are
blocks of any partition of the state space, then no partition refinement is necessary in the
bisimulation algorithm due to any discrete transitions e € E. This fact, in a sense, decouples
the continuous and discrete components of the hybrid system. In turn, this implies that
the initial partition in the bisimulation algorithm should contain the invariants, guards and
reset sets, in addition to the initial and final sets. This allows us to carry out the algorithm
independently for each location.
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More precisely, define for any region P C X and g € Xp the set P, = {z € X¢ : (¢g,z) € P}.
For each location ¢ € Xp consider the finite collection of sets

(3.2) Aq = {1(g), (Xo)g, (Xr)g} U{G(e)q: R(e)q : € € E}

which describes the initial and final states, guards, invariants and resets associated with
location g. Let S, be the coarsest partition of X¢ compatible with the collection A, (by
compatible we mean that each set in .4, is a union of sets in S;). The (finite) partition S, can
be easily computed by successively finding the intersections between each of the sets in A,
and their complements. These collections S, will be the starting partitions of the bisimulation
algorithm.

Algorithm 2: (Bisimulation Algorithm for Hybrid Systems)
Set: X/~ =1, S,
for: ¢ € Xp
while: 3 P,P' € S, such that @ # PN Pre,(P') # P
Set: P, = PN Pre,(P'); P, = P\ Pre,(P')
refine: Sq = (Sq \ {P}) U {Pl, Pg}
end while:
end for:

The following example shows that, even in apparently simple situations, Algorithm 2 does
not terminate.

Example 3.3. Consider the hybrid system with only one discrete location and let F' be the
linear vector field :i _11 x on R2. Assume the partition of R? consists of the following
three sets (see Figure 2): P, = {(z,0): 0< z < 4}, P, = {(z,0) : —4 < z < 0}, Ps = R*\(A U
P,). The integral curves of F' are spirals moving away from the origin. The first iteration of

sy
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NN
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FIGURE 2. Algorithm 2 does not terminate

the algorithm partitions P, into Py = P,NPre,(P,) = {(z,0) : z; < z < 0} and P\ Pre,(P).
Here z;, < 0 is the z-coordinate of the first intersection point of the spiral through (4, 0) with
P,. The second iteration subdivides P, into Ps = P, N Pre.(P;) = {(z,0): 0 <z < 75} and
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P, \ Pre.(P,) where zo > 0 is the z-coordinate of the next point of intersection of the spiral
with P;. This process continues indefinitely since the spiral intersects P, in infinitely many
points, and therefore the algorithm does not terminate.

From the above example it is clear that the critical problem one must investigate is how
the flow of F(g,-) interacts with the sets S, for a single location ¢g. This requires that the
trajectories of the vector field (g, -) have “nice” intersection properties with such sets. Since
the goal is to obtain finite partitions, it will become important that we restrict the study
to classes of sets with global “finiteness” properties, for example, sets with finitely many
connected components. In the next section, we identify such classes of sets and vector fields
using the concept of o-minimal structures from model theory.

4. MoDpEL THEORY

Model theory studies structures through properties of their definable sets (see [16, 29] for
general background). The basic structures of interest for this paper are that of the real
numbers, symbolized by (R,+, —, <,0,1), and its extensions. Every such structure L has an
associated language £ of formulas. The (first order) formulas over £ are the well-formed logical
expressions obtained by using logical connectives, quantifiers 3 V (quantification is allowed over
the reals), real numbers as constants, the operation of addition, and the relations < and =.
All formulas will be interpreted over the real numbers. A definable set in the language £ (or of
the structure L) is a subset of R* (for some n) of the form {(a,...,a.) € R* : ®(ay,...,a.)},
where ®(z,,...,,) is a formula in £ and z,,...,z, are free (i.e. not quantified) variables
in ®. A function f is definable if its graph is a definable set. The collection of definable
sets is closed under Boolean operations and taking forward or inverse images under definable
functions. While many of the concepts here apply to more general structures, in all that
follows we consider only structures over the real numbers.

Definition 4.1. The theory of £ is o-minimal (“order minimal”) if every definable subset of
R is a finite union of points and intervals (possibly unbounded).

The class of o-minimal structures is quite rich. In [28] it was shown that the theory of the real

‘numbers as a real closed field, (R,+, —, X, <,0,1), admits elimination of quantifiers, which
in turn implies it is o-minimal. Tarski was also interested in the extension of the theory
of the real numbers by the exponential function, Rex, = (R, +,—, X,<,0,1,exp) (i.e., there
is an additional symbol in the language for the exponential function). While such theory
does not admit elimination of quantifiers, it was shown in [34] that such theory is o-minimal.
Another important extension is obtained as follows. Assume f is a real-analytic function in a
neighborhood of the cube [-1,1]* C R". Let f: R* — R be the function defined by

;) flz) ifzel-1,1)"
f(z) = {0 otherwise

We call such functions restricted analytic functions. The structure Rexpan =
(R,+, -, %,<,0,1,exp, {f}) is then an extension of Rex, wWhere there is a symbol for each
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restricted analytic function. In [32], it was shown that Rexpan is also o-minimal. More re-
cently it was shown in {27] that, so called Pfaffian extensions of o-minimal theories are also
o-minimal.

The following table summarizes o-minimal structures (even very recent ones) along with some
examples of sets and flows that are definable in these structures. We will examine the connec-
tion between these o-minimal extensions and different classes of hybrid system in Section 6.

Table 1 : O-minimal structures
Name | Theory Definable Sets Definable Flows
Riin (R, +,-,<,0,1) Polyhedral sets Linear flows
Raig (R, +,—, %,<,0,1) Semialgebraic sets | Polynomial flows
Ran (R,+,—, %x,<,0,1,{f}) Subanalytic sets | Polynomial flows
Rexp (R,+,—, %,<,0,1,exp) Semialgebraic sets | Exponential flows
Rexp,an | (R, +,—, X, <,0,1,exp, { f}) | Subanalytic sets | Exponential flows

Many geometric properties of the above structures can be found in [33] and the upcoming
book [30]. We present below those properties of o-minimal structures that are used in the
proof of the main theorem.

We assume given a structure L which is an extension of (R,+, —, <,0,1). Definability will
refer to this structure.

Definition 4.2. We define a cell in R” inductively as follows:

1. The cells in R are just the points {c} with ¢ € R and the open intervals (a,b), —oo0 <
a<b< +oo.

2. Let C C R" be a cell and let f,g : C = R be definable continuous functions such that
f < gon C. Then (f,g9) = {(z,7r) € CxR: f(z) < r < g(z)} € R*, is a cell
in R**!. Also, for each definable function f : C — R, the graph of f and the sets
(-0, f) = {(z,7) € C xR : 7 < f(z)}, (f,+o0) = {(z,7) € C xR : f(x) < r} and
C x R are cells in R**!.

Theorem 4.3. Assume L is an o-minimal structure which is an extension of (R, +,—,<
,0,1). Then

1. (Cell Decomposition) Given any finite family {A,, ..., A} of definable subsets of R"
there ezists a partition of R® into cells so that each A; is a union of such cells [18].

2. Any definable set has a finite number of connected components, each of which is a defin-
able set. Moreover, if A C R* xR is definable then there exists a positive integer N such
that for each € R" the number of connected components of A, = {t € R: (z,t) € A}
is less than N. (A consequence of cell decomposition.)

3. If A is definable and connected then it is arcwise connected. (A consequence of cell de-
composition and the curve selection theorem in [31].)

The above Cell Decomposition Theorem is used to provide the initial partition of Algorithm
2. It is also the first step in the proof of the main theorem.
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5. O-MINIMAL HYBRID SYSTEMS

In this section we prove the main theorem and give specific examples of new classes of hybrid
systems which admit a finite bisimulation. We also show how the existing results fit in this

context.
Definition 5.1. A hybrid system H = (X, Xo, XF, F, E, I, G, R) is said to be o-minimal if

[ ] XC = Rn

e for each g € Xp the flow of Fy is complete

o for each ¢ € Xp the family of sets A, = {I(g), (Xo)q, (XF)q} U {G(€)q, R(e)q : € € E}
and the flow of F, are definable in an o-minimal extension of (R, +, —, X, <, 0, 1).

Theorem 5.2. Every o-minimal hybrid system admits a finite bisimulation. In particular,
the bisimulation algorithm, Algorithm 2, terminates for o-minimal hybrid systems.

Proof. We assume given a fixed o-minimal extension R of R(+,—,-,<,0,1}, in which all
relevant objects are definable. From now on, definable will mean definable in R. We start by
applying the cell decomposition theorem on each family .4,. As mentioned in Section 3, the
special form of Pre.(P) allows us to construct the bisimulation quotient on each set {g} x X¢
separately. Therefore, we assume given a finite partition P of R" into definable sets and a
vector field F whose flow is definable. Moreover, we will simply write Pre for Pre;.

The outline of the proof is as follows. We first perform an initial finite refinement P of P
which has the property that the intersection of any trajectory with each set has one connected
component. Because of this property we can use a slight variation of the iterative step of the
bisimulation algorithm to construct a finite partition B which is a further refinement, and
satisfies the bisimulation condition, namely, that for any B € B, the set Pre(B) is a finite
union of set in B. This guarantees that the bisimulation algorithm terminates.

We first notice that if f : R — R” is continuous, periodic, and not constant, then f is not
definable. Indeed, for such f there is y € R® such that the set R = {z € R : f(z) = y}
consists of an infinite number of isolated points. On the other hand, if f is definable, then so
is R, but this contradicts o-minimality.

For each z € R*, v,(t) will denote the integral curve of F which passes through z at ¢ = 0.
That is, 4.(t) = F(7:(t)) and v,(0) = z. Therefore, ®(z,t) = 7:(t) denotes the flow of F’
and is definable by hypothesis. Combining this with the comment above we conclude that for
each £ € R", v,(-) is either constant or injective.

We will need the following lemma.

Lemma 5.3. Let F and ®(z,t) be as above, and let v be an integral curve of F. Define
I'=1Im(y) = {y(t):t € R}. Let S be a definable set and C a connected component of 'N S.
Iftg,t1 € R are such that ¥(t),v(t1) € C, then () € C for allty <t < t,.

Proof. Since C is definable and connected, it is also arcwise connected. Let §: [0,1] — C
be continuous and such that 8(0) = v(¢p) and B(1) = «(t;). If 7 is constant there is nothing
to prove. We can then assume < is injective and F(v(¢)) # O for any ¢. Therefore, the
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restriction of y to any compact interval [a, b] is a homeomorphism between [a, b] and v(|a, b]).
If 5([0,1]) € 7¥([a,b]) then y~! o B is continuous and so y~! o §([0, 1]) is an interval containing
to, t;. Therefore, for all ¢ € [to, ], 7(t) € B([0,1]) € C as desired.

Assume then that 3([0,1]) is not contained in the image under v of any finite interval. Hence
there exist a sequence {t,} with |t,| — oo and 7(¢,) € B([0,1]) for all n. By taking a
subsequence if necessary we may assume that v(¢,) = € B([0,1]). Therefore, Z = 7(£) for
some ¢ € R. We will show that this is a contradiction. In a (definable) neighborhood B of
Z we can make a definable change of coordinates centered at Z, so that in this coordinates
F= 5‘1—1. In fact, after a translation and rotation (which are definable) we can assume that

£ =0and F(0) = £-. Then the desired change of coordinates is given by
(yl, teey yn) — CI)((O, Y2,..., yn)s yl)

Therefore, in that neighborhood all integral curves of F are of the form v(t) = (¢,az,... ,a,)
for some constant as,... ,a,. By restricting the neighborhood further we may assume it is of

the form
B = {(z1,...,%n) 1 0; < z; L T}

The set I'N B is a union of at most countably many sets of the form I, ... o, = {(¢;02,... ,a5):
@, <t <@} and so each such set is a connected component. By o-minimality, ' N B is a

union of finitely many such sets. By shrinking the set B, if necessary, we may assume that
'nB={(t0,...,0):a, <t<a}.

For n large enough we must have (t,) € I'N B. Therefore, for such an n there exists ¢ near ¢
such that y(t) = v(¢,), which contradicts the injectivity of . This concludes the proof of the
lemma. O

We now continue with the proof of the main theorem. Given a set S, we define H = {(z,t) €
R**1 : &(z,t) € S}. If S is definable, then H is definable. Moreover, by o-minimality there
exists Ns € N such that the number of connected components of H, = {t: (z,t) € H} is less
than N for all z € R*. This implies that if S is definable and I', denotes the trajectory of F'
passing through z, then the number of connected components of I'; N S is bounded above by
a constant independent of . We choose N € N larger than the corresponding Ng for all sets

SeP.

We begin the construction of the partition B by subdividing each set S in P as follows. Let
So = {ze€X:Vt>0 1.(t) €S}
S1 = {z€S\So:Vt20(1(t) € S\ So=Vt' 2t (') € S\ So)}

Si = {reS\(SoU---USi):
VE> 0 (1:(t) € S\ (SoU--USic1) 2Vt 2 ¢ (t') € S\ (SoU---U i)}
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The set S; is clearly definable for every i. For i > 1 the set S; consists of those z for which 7,
leaves the set S\ (SpU---US;_;) but never returns to it.

Claim: S, =0 for £k > N.

To prove the claim it suffices to show that if z € S; with ¢ > 1, then I'; NS has at least ¢
connected components. To prove this we will use a couple of lemmas.

Lemma 5.4. Let S and S;, i > 0 be as above. Let I be an interval and y(-) an integral curve
of F such that v(I) € S. If ¥(to) € S; for some to € I, then v(I) C S;.

Proof. We proceed by induction. The statement is clearly true for So. Assume it holds for
i< k. Let y(I) C S, to € I and (to) € Sk+1- Then y(tp) € S\ (SoU...USy). Forany t €I,
if v(t) € SoU...U Si then there is j < k such that y(¢) € S;. By the inductive hypothesis,
v(I) C S;, but this contradicts v(to) & S;. Therefore we have (1) € S\ (SoU...USy). Let
t €I and ¢ >t be such that (') € S\ (SoU...USk). Then t' ¢ I and so ¢’ > t,. Since
v(to) € Sk41 we conclude that for any t” > t' we get y(t") € S\ (SoU...U Sk). This shows
that v(t) € Sk+1- O

Lemma 5.5. If z € S; for i > 2 then there existt; > 51 > 13 > -+- > 82 > ti-1 > 8i-1 > 0
such that v,(s;) € S and v;(t;) € S; forj=1,...,1 -1

Proof. We proceed by induction. Let z € S,. Then z € S\(SoUS)) € S\ Si. Therefore there
exist ¢ > s > 0 such that 7,(s) &€ S\ S and v.(t) € S\ So. We can not have 7;(s) € Sp because
then we would also have 7,(t) € Sp. Therefore v;(s) ¢ S. We set 5; = 5. If 1,(t) € S; then
we set £, = t. Otherwise, there exist ¢ > s’ > ¢ such that v;(s') € S\ Sp and (') € S\ So.
Since £ € Sy, 7z(s) € S\ (SoUSy), and #' > s we must have 7.(t') € S\ (So U 51). Therefore
vz(t') € S) and we set t; = t'. This completes the proof for the case i = 2.

Assume now the conclusion holds for 7 and let z € S;4;. In particular, z € S\ S;, and there
are t > s > 0 such that v,(s) € S\ (SoU...US;_;) and 7(t) € S\ (SoU...US;;). If
vz(s) € S; for some j < i—1 and 7,(3) € S for all s <3 < ¢, then Lemma 5.4 would imply
that 7,(t) € S; which is not true. Therefore there exists 5, s < 5 < ¢ such that 1;(5) ¢ S. We
set s; = 8.

If v-(t) € S; then we set t; = t. Otherwise, there exist ¢’ > s’ > ¢ such that 7,(s') ¢
S\ (SoU...USi_;) and 7:(¥') € S\ (SoU...US;_1). Since € Siy1, 12(3) € S\ (SoU...US)),
and #' > 3 we must have 7, (t') € S\ (SoU...US;). Therefore v,(t') € S; and we set t; = t'.

By the inductive hypothesis there exist f; > 35 > -+ >ti_y > 3i_1 > 0 such that Yo (t:)(55) &
Sj, 77,“,.)(5,-) € S;,for j=1,...,i—1. Setting s; =3§;+1;, t; = fj +t;forj=1,...,i—1
we get the desired conclusion. O

The last lemma together with Lemma 5.3 proves that if z € S; then I'; N S has at least ¢
connected components. This, in turn, proves the claim.

Notice that Lemma 5.3 also implies that if z € S; then I'; N S; has exactly one connected
component.



12 G. LAFFERRIERE, G. PAPPAS, AND S. SASTRY

By carrying out the subdivision into the sets S; for all S € P we obtain a new finite partition
P of R* with the property

(P) For each S € P, and each trajectory  of F such that y(t),v(t;) € S we have (t) € S
for all t with ¢y < ¢t < t;. In particular, for each z € S, the set ['; N S has exactly one
connected component.

We will denote by p = p(P) the number of sets in P and write P = {S;:i=1,...,p}.
We introduce two functions, I and C, acting on pairs of sets, defined by
I(A,B) = AnPre(B)
C(A,B) = A\ Pre(B)
It is clear that if A and B are definable, then I(A, B) and C(A, B) are definable. Notice also
that for each A, B the sets I(A, B), C(A, B) form a partition of A.
For each 7, 1 < i < p consider all the partitions of S; defined by
(5.1) I(S;, Q(San(sz’ e ’Q(Sjk-l’Sjk) )
(5.2) C(Si, Q(Sjl ) Q(Sjw SR Q(Sjk—l ' Sjk) R )))

where Q iseither JorCand 1 < j; < pforl =1,...,k. Thisis a finite collection of partitions.
We let B denote the coarsest partition of R® compatible with all such partitions.

Claim: B is a bisimulation.

The intuitive basis for this proof is the fact that the partitions constructed so far are done
“along the flow of F.” That is, two sets in B which are subsets of the same set in P can not
be connected by a trajectory of F.

To prove the claim first notice that the sets in B are (finite) intersections of sets of the
form (5.1) or (5.2). Notice also that by construction B is a refinement of P.

To check the bisimulation property let Be B, BC S € P, be written as
m
B=[)\P
=1
where each B, is of the form (5.1) or (5.2). We want to prove first that

(5.3) Pre(B) = ﬁPre(P,).
=1

The inclusion Pre(B) C N2, Pre(P,) is straightforward. For the other onelet z € N2, Pre(P,).
For each [ there exists ¢; > 0 such that 7.(t;) € F. Each set P, is of the form I(S;, A;) or
C(S;, A;) for some A;’s. Hence, v,(t;) € S; for all . We now want to show that indeed
vz(t;) € B for all t;. Consider the following property of a set A.

(Q) for any trajectory y of F,if y(so) EAC S € P, then for all s with y(s) € S, v(s) € A.
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We show that if a set A has Property (Q), then so do I(S’, A) and C(S’, A) for any S’ € P.
Let v(so) € I(S,A) C S'. Then 7(sp) € S’ and there exists ¢ > so such that y(t) € A. If
v(t) € §’, then we have S = S’ since both belong to P. By (Q) v(s) € A C Pre(A) for all s
such that y(s) € S'. Therefore v(s) € I(S’, A) for all such s. On the other hand, if v(t) € S,
then ANS' C SNS' =0. Let y(s) € §’. By Property (P) applied to S’ we get that s < t.
But then v(s) € Pre(A) N S’ as desired. The proof for C(S’, A) is analogous.

Proceeding by induction it is easy to show that the sets P, have Property (Q) and this
completes the proof of (5.3).

Notice also, that Pre(A U B) = Pre(A) U Pre(B) for all sets A, B.

To complete the proof that B is a bisimulation we only need to show that for each I, and each

set S € P, the set SN Pre(P,) is a union of sets in B. The set SN Pre(P) = I(S,P) is of
the form (5.1) with k < p+ 1. If k < p+ 1 we already know that I(S, P) is a union of sets in
B. We only need to consider the case k = p+ 1.

There are two possibilities for I(S, P):

1. there are two occurrences of C in I(S, P), 5
2. there are p+ 1 occurrences of I in I(S, P,), and therefore, at least one S; € P is repeated
as an argument of 1.

In case 1 the following two formulas, and boolean algebra, show how to rewrite I(S, P)) either
with fewer terms or using only /.

(54) C(S3, C(Sz, Sl)) = C(Sa, SQ) U I(Sg, I(SQ, Sl))
(5.5) C(53.1(52,51)) = C(83,5:) UI(S3,C(S2,51))

Both formulas can be proved with arguments similar to the ones above, relying on Prop-
erty (P). .

Finally, in case 2 we can show, again using (P) that I(S, A) = 0. This concludes the proof
that B is a bisimulation. O

Notice that in the proof we used multiplication only to find a suitable rotation to “straighten
out” the flow of F,. In the structure (R,+,—,<,0,1) where multiplication is not defined,
the only definable flows are already complete and consist of straight lines. This leads to the

following corollary.

Corollary 5.6. Consider the hybrid system H with X¢c = R* and for each ¢ € Xp the collec-
tion of sets A, and the vector field Fy are definable in (R, +, —, <, 0, 1). Then the bisimulation
algorithm terminates.

In the next section we list various classes of o-minimal hybrid systems.
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6. CLASSES OF O-MINIMAL HYBRID SYSTEMS

In this section, we apply Theorem 5.2 to several special classes of o-minimal hybrid systems.
For each o-minimal structure of Table 1, we provide examples of definable, o-minimal hybrid
systems. While it is clearly possible to identify other special cases, the ones described below
cover most known results and several natural extensions.

6.1. Ryn = (R, +,—,<,0,1). The definable sets in this theory capture polyhedral sets whereas
the definable flows capture linear flows. Therefore the corresponding o-minimal hybrid system
captures the standard initialized model of timed automata. In addition, it captures all other
hybrid system models that can be transformed to timed automata such as multirate automata

and rectangular automata.

It is a well known fact that this theory is not only o-minimal but also decidable. Therefore,
the definable o-minimal hybrid systems do not only admit finite bisimulations but there is
also an effective procedure to compute them. This immediately leads to decidability results
for o-minimal hybrid systems defined in Ry;,. In particular, it captures initialized (in the sense
defined in Section 3) timed automata [2], where all relevant sets are conjuctions of predicates of
the form zoc¢ with ¢ being one of >,>,<,<,=, and c € Q, and flows are of the form = = 1. We
also capture initialized versions of multirate automata [1], and rectangular automata [15, 25|.
Rectangular automata also allow for identity reset maps as long as the dynamics from one
location to another remain the same. If we restrict the dynamics to be decoupled, then more

general reset maps can be allowed.

6.2. Rag = (R, +,—, X, <,0,1). It was shown in [28] that R,); (without parameters) is decid-
able. In fact, the decision procedure consisted of two parts: first an algorithm for eliminating
quantifiers, and second an algorithm for deciding quantifier free formulas. Because of these
results, the definable sets in R,); (with parameters) are the semialgebraic sets, which are de-
fined as Boolean combinations of sets of the form {z : p(z) < 0} and {z : p(z) = 0} where
p(z) is a polynomial. The definable flows in this theory are polynomial. Therefore, the o-
minimal hybrid systems corresponding to this theory are hybrid systems H where all sets
all semialgebraic and all flows all polynomial. Moreover, if all polynomials involved in the
description of the hybrid system have rational coefficients, we obtain a new class of decidable

hybrid systems.

The o-minimality of this structure can also be used to show the existence of finite bisimulations
in special cases when the flow is not definable. This was illustrated in [19] for the case of
planar hybrid systems whose vector fields admit definable Hamiltonians. This captures the
decidability result of [10].

6.3. Ran = (R, +,—,%,<,0,1,{ f })- In order to describe the definable sets in this theory,
we need the notions of semianalytic and subanalytic sets. We provide below an informal
definition of these notions. For precise definitions and properties the reader is referred to
[7]. We say that a bounded subset S of R" is semianalytic in R" if for every z € R* there
exists a neighborhood U of z such that U N S is a boolean combination of sets of the form
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{z: f(z) < 0} and {z : f(z) = 0} where f is an analytic function on U. Roughly speaking, a
local description of a semianalytic set is analogous to that of a semialgebraic set with analytic
functions replacing polynomials. A bounded subset S of R" is subanalytic in R", if it is the
image of a relatively compact semianalytic set T under an analytic map (defined on T'). The
bounded subanalytic sets in R* are definable in this theory.

Even though polynomial flows are definable in this theory, since the functions f are zero
outside a compact set, they cannot be used to define complete flows. However, the Pre
operator corresponding to some periodic flows may still be definable. Consider for example,
a hybrid system H whose vector fields are diagonalizable linear vector fields with purely
imaginary eigenvalues and all relevant sets are definable in R,,. Since the restriction of sin
on [—m,n) is definable, the Pre operator corresponding to F' is definable. This leads to the

following theorem which generalizes the planar result in [19)].

Theorem 6.1. Let H be a hybrid system for which all relevant sets are subanalytic and all
vector fields are diagonalizable linear vector fields with purely imaginary eigenvalues. Then H
admits a finite bisimulation.

6.4. Rexp = (R,+,—, x,<,0,1,exp). The main difference between Rex, and the previous
theories, besides enriching the class of definable sets, is the fact that the symbol exp represents
a globally defined function. This allows new classes of definable flows. In particular, the flows
of linear vector fields with real eigenvalues are definable. The following theorem is then a

special case of Theorem 5.2.

Theorem 6.2. Let H be a hybrid system for which all relevant sets are semialgebraic and all
vector fields are linear with real eigenvalues. Then H admits a finite bisimulation.

It is not known if the theory of Rey, is decidable, although in [21] it was shown that it would
be a consequence of Schanuel’s conjecture in number theory.

6.5. Rexpan = (R, +,—, %,<,0,1,exp, {f}) This theory extends both R,, and Rep. We
can therefore combine the Theorems 6.1 and Theorems 6.2 to obtain the following result.

Theorem 6.3. Let H be a hybrid system for which all relevant sets are subanalytic and all
vector fields are of one of the following two forms:

e linear vector fields with real eigenvalues
e diagonalizable linear vector fields with purely imaginary eigenvalues

Then H admits a finite bisimulation.

The above theorem extends the planar results in [19] to R*. Note that relaxations of Theorem
6.3 would allow spriraling, linear vector fields which are not definable in Rexp,an- As was shown
by Example 3.3, such systems, in general, do not admit finite bisimulations.
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6.6. Other Extensions. It is shown in [27] that extensions of o-minimal theories by Pfaffian
functions are also o-minimal. Informally, the sequence of analytic functions Gy,...,Gi: U —
R" form a Pfaffian chain on U if there exist polynomials p;; such that for all z € U

Z_i':(z) = pij(.’r, Gl(:z:), ceey G;(IE))

A function is called Pfaffian if it is the last function of some Pfaffian chain (see [17] for more
precise definitions). While this theory provides new globally defined functions, there are no
easily described classes of vector fields whose flows are definable in it. The search for such

classes is a topic for current research.

7. CONCLUSIONS

In this paper, we presented a unified framework for tackling decidability questions of hybrid
systems. We introduced the notion of o-minimal hybrid systems as initialized hybrid systems
whose relevant sets and flows are definable in an o-minimal theory. We showed that all o-
minimal hybrid systems admit finite bisimulations. Various examples from recently discovered
o-minimal theories were presented. The examples capture most of the known decidable classes
of hybrid systems. In addition, they extend the class of hybrid systems which admit finite
bisimulations by enriching the class of relevant sets and incorporating more complex dynamics
at each discrete location.
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