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Abstract

Motion recovery from image correspondences is typically a problem of optimizing an objective
function associated with the epipolar (or Longuet-Higgins) constraint. This objective function
is defined on the so called essential manifold, which has a nice intrinsic Riemannian structure.
Based on existing optimization techniques on Riemannian manifolds, in particular on Stiefel or
Grassmann manifolds, we propose 2 Riemannian Newton algorithm to solve the motion recovery
problem, making use of the natural geometric structure of the essential manifold. The same
ideas also apply to conjugate gradient algorithms. The proposed geometric algorithms have
quadratic rates of convergence.

Key words: essential manifold, motion recovery, Newton’s method, conjugate gradient method,
Grassmann manifold, Stiefel manifold.

1 Introduction

The problem of recovering structure and motion from a sequence of images has been one of the
central problems in computer vision over the past decade and has been studied extensively from
various perspectives. The proposed techniques varied in the type of features they used, types of
assumptions they made about the environment, projection models and the type of algorithms.
Based on measurements the techniques can be viewed either as discrete: using point, line features,
or differential: using measurements of optical flow.

The seminal work of Longuett-Higgins [9] on characterization of so called epipolar consiraint,
enabled decoupling of the structure and motion problems and led to the development of numerous
linear and nonlinear algorithms for motion estimation (see [12, 4, 7, 23] for overviews). The epipolar
constraint has been formulated both in discrete and differential setting and the recent work of the
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authors [10, 11] demonstrated the possibility of the parallel development of linear algorithms for
both cases: that of point feature measurements and optical flow. The original 8-point algorithm
proposed by Longuet-Higgins is easily generalizable for uncalibrated camera case, where the epipolar
constraint is captured by fundamental matrix. Detailed analysis of linear and nonlinear techniques

for estimation of fundamental matrix, exploring the use of different objective functions can be found
in [13].

While the (analytic) geometrical aspects of the problem have been understood the proposed
solutions to the problem have been shown very sensitive to noise and often failed in practical appli-
cations. These experiences motivated further studies which focused on the use of statistical analysis
of existing techniques and understanding of various assumptions which affected the performance
of existing algorithms. These studies had been done both in analytical [2, 16] and experimental
setting [20].

The appeal of linear algorithms which use the epipolar constraint, (in discrete case [23, 7, 9, 12]
and in differential case [6, 10, 19] is the closed form solution to the problem which in the absence
of noise provides true estimate of the motion. Further analysis of linear techniques reveals inherent
bias in the translation estimate [6]. Attempts were made to compensate for the bias improving
slightly the performance of the linear techniques [7]. By eliminating the nonlinear effects caused
by perspective projection [21] proposed a linear algorithm for both the shape and motion recovery
assuming orthographic projection.

The performance of the numerical optimization techniques which use nonlinear objective func-
tion has been shown superior to the linear ones. The objective functions used are either a version of
essential constraint or a 2-norm of image measurements. These techniques either require iterative
numerical optimization [23, 15} or use Monte-Carlo simulations [6] to sample the space of one of the
unknown parameters. Extensive experiments revealed problems with convergence when initialized
far away from the true solution [21]. They nonlinear algorithms are often initialized using the linear
ones and merely refine the initial estimates [22].

Different objective function has been proposed by Horn [5], where instead of minimizing directly
the essential (coplanar) constraint the objective function expresses the true errors in relative orien-
tation (i.e. translation and rotation). Horn proposed an iterative procedure where the update of the
estimate takes into account the orthonormal constraint of the unknown rotation. Horn’s algorithm
and the algorithm proposed by [18] are some of the few which consider explicitly the differential
geometric properties of SO(3). However they do not make a connection and full exploitation of
the differential geometric properties of the entire space of essential matrices as characterized in our
recent papers [10, 11].

More recent studies [15] clarified the source of some of the difficulties (e.g. rotation and trans-
lation ambiguity) from the point of view of noise and explored the source and presence of local
minima of the objective function. Soatto’s chooses to minimize an objective function which is
equivalent to essential constraint and proposed an iterative Bilinear Projection Algorithm (BPA)
for obtaining the optimal solution. The algorithm is in an essence Newton-Gauss iterative scheme
for updating in each step one of the unknowns.

Even from the efforts which rightly concentrated on the noise related aspects of the problem
(i.e. trying different nonlinear objective functions etc.) none of the existing algorithms truly took
advantage of the underlying geometrical structure of the problem. The underlying search space
was usually parameterized for computational convenience [5, 18, 12] instead of being consistent to
its intrinsic geometric structure. Consequently, in these algorithms, solving for optimal updating



direction typically involved using Lagrangian multipliers to deal with the constraints on the search
space; and “walking” on such space was done approximately by the update-then-project procedure.

Due to recent developments in optimization techniques on Riemannian manifolds [14, 3], in
this paper we will give a top level mathematical view for the nonlinear optimization problem
associated with the motion recovery and, using Newton’s method as an example, show how to
apply the optimization theory on Riemannian manifolds to solve this problem by using the intrinsic
Riemannian structure of the underlying search space. In this paper, only the discrete case will be
worked out in detail while the generalization to the differential case is also discussed.

This paper relies on familiarity with Riemannian geometry. Section 2 shows how to generalize
optimization schemes on single Riemannian manifold to their product space. Section 3 then studies
the intrinsic Riemannian structure of the essential manifold (the space of all essential matrices).
Section 4 discusses how to optimize a general objective function on the essential manifold using the
(Riemannian) Newton’s method. Section 5 works out in details the (Riemannian) Newton algorithm
for optimizing the least square objective function associated with the epipolar constraint. Some
simulation results are presented in Section 6 and Section 7 discusses how to generalize to the
differential case.

2 Optimization on Riemannian Manifold Preparation

Newton and conjugate gradient methods are classical nonlinear optimization techniques to minimize
a function f(z), where = belongs to an open subset of Euclidean space R™. Recent developments
in optimization algorithms on Riemannian manifolds have provided geometric insights for gener-
alization of Newton and conjugate gradient methods to certain classes of Riemannian manifolds.
Smith [14] gave a detailed treatment of the general theory of optimization on Riemannian man-
ifolds; Edelman, Arias and Smith [3] then studied the case where the Riemannian manifolds are
Stiefel and Grassmann manifolds, and presented a uniform geometric framework for Newton and
conjugate gradient algorithms on Stiefel and Grassmann manifolds.

These new mathematical results solve the more general optimization problem of minimizing the
function f(z), where z is constrained to a Riemannian manifold (M, g) which is, in turn, usually
given as a submanifold in a Euclidean Space R™. Previous algorithms for solving such problems
were application dependent: the performance of proposed algorithms relied on particular param-
eterization chosen for the submanifold M and also depended on certain approximation schemes
applied to update the states on the search space. However, the new results of [3] show that, on
Stiefel and Grassmann manifolds, one may make use of the canonical Riemannian structure of these
manifolds and systematically develop Newton and conjugate gradient methods on them. Since the
parameterization and metrics are canonical and the state is updated using geodesics, the perfor-
mance of so obtained algorithms is guaranteed: they typically have polynomial complexity and
super-linear (quadratic) rate of convergence [14].

The purpose of this paper is to apply these new Riemannian optimization schemes to solve
the long-existing problem in computer vision: recovering 3D motion from image correspondences.
As we will soon see the underlying Riemannian manifold for this vision problem (the so called
essential manifold) is a product of Stiefel manifolds instead of a single one. We first need to
generalize Edelman et al’s methods to the product of Stiefel (or Grassmann) manifolds. This paper
relies on familiarity with Edelman et al’s work [3] and some background of modern Riemannian
geometry (a good reference for Riemannian geometry is Spivak [17] or Kobayashi [8]).



Suppose (Mi, 1) and (M2, g2) are two Riemannian manifolds with Riemannian metrics:

gl(-, ) :TMy; xTM, —» C°°(M1),
g2(+y*) : TM2 x TMp — C*® (M)

where T'M; is the tangent bundle of M, similarly for TM,. The corresponding Levi-Civita con-
nections of these manifolds are denoted as:

Vl : X(M]) X X(Ml) — X(Ml),
Va: X(Mg) X X(Mz) - X(Mz)

where X' (M;) stands for the space of smooth vector fields on M, similarly for X'(M3).

Now let M be the product space of M; and M, i.e. M = M; X My. Let 33 : Mj - M
and i3 : My — M be the natural inclusions and 7y : M — M; and 7y : M — M, be the
projections. To simplify the notation, we identify TM; and TM; with i1.(TM;) and iz.(TMp)
respectively. Then TM = TM; x TM; and X¥(M) = X (M;) x X(M;). For any vector field
X € X(M) we can write X as the composition of its components in the two subspaces TM; and
TM,: X = (X1,X2) € TMy x TM,. The canonical Riemannian metric g(-,-) on M is determined
as:

9(X,Y) = q1(X1, 1) + 92(X2, Ya), X,Y € X(M).
Define a V connection on M as:
VxY = (Vix, Y1, Vax,Y2) € X(M1) x XM, X,Y € X(M).

One can directly check that this connection is torsion free and compatible with the canonical
Riemannian metric g on M (i.e. preserving the metric) hence it is the Levi-Civita connection for
the Riemannian manifold (M, g). From the construction of V, it is also canonical.

According to Edelman et al’s paper [3], in order to apply Newton and conjugate gradient meth-
ods on a Riemannian manifold, one needs to know how to explicitly calculate parallel transport of
vectors on the manifolds and also needs the explicit expression of geodesics. The reason that Edel-
man et al’s methods can be easily generalized to any product of Stiefel (or Grassmann) manifolds
is because there are simple relations between the parallel transports on the product manifold and
the factor manifolds. The following theorem follows directly from the definition of the Levi-Civita
connection on the product manifold.

Theorem 1 Consider M = M; X M, the product Riemannian manifold of My and M. Then for
two vector fields X,Y € X(M), Y is parallel along X if and only if Y; is parallel along X, and Y>
is parallel along X,.

As a corollary to this theorem, the geodesics in the product manifold are just the products
of geodesics in the two factor manifolds. Consequently, the calculation of parallel transport and
geodesics in the product space can be reduced to those for each factor manifold.

3 Riemannian Structure of the Essential Manifold

In this section we study the Riemannian structure of the essential manifold, which plays an im-
portant role in the motion recovery from image correspondences (for details see [11]). For a vector
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S = (s1, 52,83)T € R3, the notation S means the associated skew-symmetric matrix:

0 —$83 82
83 0 bt} | .
-8 8§ 0

The essential manifold is defined to be:
£={RS|Re SO(3),5 € s0(3)}.

SO(3) is the Lie group of 3 x 3 rotation matrices (special orthogonal matrices with determinant
+1), and so(3) is the Lie algebra of SO(3), i.e. the tangent plane of SO(3) at the identity. so(3)
then consists of all 3 x 3 skew-symmetric matrices. A matrix E with the form E = RS,R €
S0(8), 5 € so(3) is then a point in this manifold. Such a matrix E is called an essential matriz. In
the motion recovery problem, the objective function is a function on the essential manifold F(E)
which is linear with respect to E. Because of this linearity, the problem may be reduced to optimize
the function on the normalized essential manifold:

& ={RS|R e SO(3),5 e s0(3), %tr(S'T $) =1}

Notice %tr(S’TS) = STS. In order to understand the Riemannian structure of the normalized
essential manifold, we start with the Riemannian structure on the tangent bundle of the Lie group

SO(3), i.e. T(SO(3)).
The tangent space of SO(3) at the identity e is simply its Lie algebra so(3):
T.(SO(3)) = so(3).
Since SO(3) is a compact Lie group, it has an intrinsic bi-invariant metric [1] (such metric is unique
up to a constant scale). In the matrix form, this metric is given explicitly as:
90(81,82) = %tr(ﬁfgg), 81,82 € s0(3).

Notice that this metric is induced from the Euclidean metric on SO(3) as a Stiefel submanifold
embedded in R3*%3. The tangent space at any other point R € SO(3) is given by the push-forward
map R.:

Tr(SO(3)) = R.(s0(3)) = {RS|S € s0(3)}.
Thus the tangent bundle of SO(3) is: |
T(S0@3)= |J Tr(SO(3))
ReSO(3)

Since the tangent bundle of a Lie group is trivial [17], T(SO(3)) is then equivalent to the product
S0(3) x s0(3). T(SO(3)) can then be expressed as:

T(SO(3)) = {(R,RS) | R € SO(3), S € 50(3)} = SO(3) x so(3).
If identify the tangent space of so(3) with itself, then the left-invariant metric go of SO(3) induces
a canonical metric on the tangent bundle T(SO(3)):
9(X,Y) = go(X1,X2) + 90(Y1,Y2), X,Y € s0(3) x so(3).

Note that the metric defined on the fiber s0(3) of T'(SO(3)) is the same as the Euclidean metric if

we identify so(3) with R3. Such induced metric on T(SO(3)) is left-invariant under the action of
SO(3).



Comments 1 Averaging the above left-invariant metric on T(SO(3)) with respect to all the right
action of SO(3), one obtains a natural bi-invariant metric on T(SO(3)). However, such bi-invariant
metric does not allow a product structure. We therefore avoid using such bi-invariant structure
and use the left-invariant one instead, since the product structure has much more computational
advantage, as we will soon see.

Then the metric § on the whole tangent bundle T(SO(3)) induces a canonical metric g on the
unit tangent bundle of T(SO(3)),

T1(SO(3)) = {(R, RS) | R € SO(3), 5 € s0(3), 2tr(5T§) =1}

It is direct to check that with the identification of so(3) with R3, the unit tangent bundle is simply
the product SO(3) x 5% where $? is the 2-sphere embedded in R3. According to Edelman et al [3],
50(3) and S? both are Stiefel manifolds V;, , with the type n = p= 3 and n = 3, p = 1, respectively.
As Stiefel manifolds, they both possess canonical metrics by regarding them as quotients between
orthogonal groups. Here S? = SO(3)/SO(2). Fortunately, for Stiefel manifolds with the special
type p = n or p = 1, the canonical metrics are the same as the Euclidean metrics induced as
submanifolds embedded in R®*?, From the above discussion, we have

Theorem 2 The unit tangent bundle T1(SO(3)) is equivalent to SO(3) x §%. Iis Riemannian
metric g induced from the left-invariant metric on SO(3) is the same as that induced from the

Euclidean metric with T1(SO(3)) naturally embedded in R3*%. Further, (T1(SO(3)),g) is the product

Riemannian manifold of (SO(3),¢1) and (S%,92) with g, and go canonical quotient metrics for
SO(3) and S? as Stiefel manifolds.

However, the unit tangent bundle T7(SO(3)) is not exactly the normalized essential manifold &;.
Indeed, T7(SO(3)) is a double covering of the normalized essential space &, i.e. & = T1(SO(3))/Z?
(for details see [11]). The natural covering map from T (SO(3)) to &, is:

h:Ti(SOB3) — &
(R,RS) € T1(SO(3)) — RS €é&.

The inverse of this map is given by:

h1(RS) = { (B, BS), (Rexp(-5n), R3)}.

Comments 2 As we know, the two pairs of rotation and translation corresponding to the same
normalized essential matriz RS are (R, 5) and (Rexp(—S5r),exp(S7)3). As pointed out by profes-
sor Weinstein, this double covering h is equivalent to identify a left-invariant vector field on SO(3)
with the one obtained by flowing it along the corresponding geodesic by distance w, the so-called
time-r map of the geodesic flow on SO(3).

If we take for £; the Riemannian structure induced from the covering map h, the original
optimization problem of optimizing F(E) on £, is equivalent to optimizing F(R, S) on T7(SO(3)).

Generalizing Edelman et al’s methods to the product Riemannian manifolds, we obtain elegant
geometric Newton or conjugate gradient algorithms for solving the later problem. Due to Theorem
2, we can simply choose the induced Euclidean metric on T;(SO(3)) and explicitly give out these
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intrinsic algorithms in terms of the matrix representation of T1(SO(3)). Since this Euclidean metric
is the same as the intrinsic metrics, the apparently extrinsic representation preserves all the intrinsic
geometric properties of the given problems. In this sense, the algorithms we are about to develop
for the motion recovery are different from other existing algorithms which make use of particular
parameterizations of the underlying search manifold T3 (SO(3)), such as quaternions [5, 18, 7, 12].

4 Optimization on the Essential Manifold

Let F(R,S) be a function on T(SO(3)) = SO(3) x S? with R € SO(3) represented by a 3 x 3
rotation matrix and S € S? a unit vector in R3. This section derives the Newton algorithm for
optimizing a function on this manifold (please refer to [3] for the Newton algorithm on general
Stiefel or Grassmann manifolds).

Let g; and g, be the canonical metrics for SO(3) and S? respectively and V; and V3 be
the corresponding Levi-Civita connections. Let ¢ and V be the induced Riemannian metric and
connection on the product manifold T;(SO(3)). The gradient of a F(R,.S) on T3(SO(3)) is a vector
field G = grad F on T1(SO(3)) such that:

dF(Y)=g(G,Y), for all vector fields Y on 771(SO(3)).
This gradient is explicitly given as:
| = (Fr - RFLR, Fs — SFES) € Tr(SO(3)) x Ts(S5?)

where Fr € R%*%3 is the matrix of partial derivatives of F' with respect to the elements of R and
Fs € R3 is the vector of partial derivatives of F with respect to the elements of 3, i.e. ,

OF oF

(FR)ij = 3R’ (Fs)k = 35,

1<14,5,k<3.

For any X = (X1,X3),Y = (Y1,Y2) € T(SO(3)) x T(S?), the Hessian of F(R, S) is given by:

Hess F(X,Y) = Frp(X1,Y1) - trFETR(X1,Y1)
+ Fss(X2,Ys) — trFiTs(X2,Ya)
+ Frs(X1,Y2) + Fsr(Y1, Xs).

where the Christoffel functions I'g for SO(3) and I's for $? are:

Tr(X1,11)

1

SR +YT X)),
1

Is(X3,Y2) = ‘2‘5(X2TY2 + Y] Xo)

and the other terms are:

0*F
Frr(X1,Y1) = zk:zaR‘ SR (X1);i(N)rt,  Fss(Xe,Y2) = ZOS 35; (X2)i(Y2);,
32y

0*F 0’F
FRS(XI’},Z) = ZaR’J S (Xl)tJ(},?) FSR(Y17X2) asaR (le) (XZ)Jk



For Newton’s method, we need to find the optimal updating tangent vector A such that:
Hess F(A,Y) = g(—G,Y) for all tangent vectors Y.

In order to solve for A, first find the tangent vector Z(A) = (Z;, Z2) € Tr(SO(3)) x Ts(S?) (in
terms of A) satisfying the equations:

Frp(A1, Y1) + Fsp(Y1,42) = ¢1(Z1,Y1) for all tangent vectors Y; € T(SO(3))
Fsg(A2,Y2) + Frs(A1,Y2) = g2(Z,Y2) for all tangent vectors Yz € T(S5?)

From the expression of the gradient G, the vector A = (A;, A,) then satisfies the linear equations:

Z) — R skew(FEA;) — skew(A,FE)R = —(Fr - RFER)

Zy - FTSA, = —(Fs — SFZS)
with RTA; skew-symmetric and STA; = 0. In the above expression, the notation skew(A) means
the skew-symmetric part of the matrix A: skew(A) = (A—AT)/2. For this system of linear equations
to be solvable, the Hessian has to be non-degenerate, in other words the corresponding Hessian

matrix in local coordinates is invertible. The non-degeneracy depends on the chosen objective
function.

According to Newton’s algorithm, knowing A, the search state is then updated from (R, S) in
direction A along geodesics to (exp(R, A;), exp(S, Az)), where exp(R, -) stands for the exponential
map from Tr(SO(3)) to SO(3) at point R, similarly for exp(S,-). For explicit expressions for
the geodesics exp(R, A;t) on SO(3) and exp(S, Agt) on S2 see [3]. The overall algorithm can be
summarized in the following:

The Newton Algorithm for Minimizing F(R,S) on the Essential Manifold:

e At the point (R, S),

— Compute the gradient G = (Fr — RFE R, Fs — SFZS),
— Compute A = — Hess™1G.

e Move (R, S) in the direction A along the geodesic to (exp(R, A;), exp(S, Az)).

e Repeat if ||G|| > € for pre-determined € > 0.

Since the manifold SO(3) x S? is compact, this algorithm is guaranteed to converge to a (local)
extremum of the objective function F(R,S). Note that this algorithm works for any objective
function on SO(3) x S2. For an objective function with non-degenerate Hessian, the Newton algo-
rithm has quadratic (super-linear) rate of convergence [14]. In the next section, we will apply this

algorithm to a particular objective function which is widely used in the computer vision literature
to recover relative motion from image correspondences.

5 Optimal Motion Recovery

From computer vision, we know that two corresponding image points p, ¢ € R? satisfy the so called
epipolar (or Longuet-Higgins) constraint:

pTRSq=0
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where R € SO(3) and S € S? are relative rotation and translation between the two image frames.
Thus to recover the motion R, S from a given set of image correspondences p;,q; € R3,i=1,...,N,
it is standard to optimize the following objective function:

N
F(R,S)=>_(pTR5¢:)? pi,g: € R (R,S) € T1(SO(3)).

i=1

In this section, we apply the Newton algorithm introduced in the previous section to solve this
problem, and give explicit expressions for calculating all the quantities needed: geodesics, gradient
G, Hessian Hess F' and the optimal updating vector A = —Hess™'G. Further, we will show, under
certain conditions, the Hessian of this function is non-degenerate, whence the Newton algorithm
has quadratic convergence in search for the optimal solution.

Notice that for this objective function we have F(R, S) = F(R, —S). It then suffices to optimize
F(R, S) as a function on SO(3) x P? instead of SO(3) x §2, where P2 is the two dimensional real
projective plane (also referred to as RP?). The calculation of the gradient and Hessian is done by
using the explicit formula of geodesics on these manifolds.

On SO(3), the formula for the geodesic at R in the direction A; € Tr(SO(3)) = R.(s0(3)) is:
R(t) = exp(R, At) = Rexp&t = R(I + &sint + &%(1 = cost))

where & = RTA; € s0(3). The last equation is called the Rodrigues’ formula. P? is a Grassmann
manifold and it has very simple expression for geodesics too. At the point S along the direction
Ag € Ts(S?) the geodesic is given by:

S(t) = exp(S, Ast) = Scosot + Usin ot

where 0 = ||Az|| and U = A/, then STU = 0 since STA; = 0.

Using the formula for geodesics, we can calculate the first and second derivatives of F(R, S) in
the direction A = (A;, Az) € Tr(SO(3)) x Ts(S?):

N
dF(A) = Y plRSq(pf ArSa + p] RAzg),

i=1
N
o - 2 o A N -
Hess F(A,A) = Y [oF(818+ RAs)a| +pFRSq: [oF (-A1AT RS - ATARS +24140)4i)

i=1

From the first order derivative, the gradient G = (G1,G2) € Tr(SO(3)) x Ts(5?) of F(S, R) is:

N
G =Y pf RS (nal 8" - RSa:pT R, 4B pi - SpTRETS)

i=1

It is direct to check that RTG; € s0(3) and STG; = 0, so the G given by the above expression is a
vector in Tr(SO(3)) x Ts(S?).

'In the literature, for different definitions of the rotation R, the matrix R in the above expression might differ by
a transpose.



For any pair of vectors X,Y € Tr(SO(3)) xTs(S?), polarize Hess F(A, A) we get the expression
for Hess F(X,Y):

Hess F(X,Y) = %[Hess F(X+Y,X+Y) - Hess F(X — Y, X — Y)]

N
= Y _pf (X18 + RX5)aip] (ViS5 + RYy)g;

i=1

. 1 N N - N
+ p{RSq [p? (—E(XIYIT + Y X{)RS - X{YaRS + (XaYa + Y1X2)> q,-] :

To make sure this expression is correct, let X = Y = A. One obtains the same expression for
Hess F(A, A) as that obtained directly from the second order derivative.

The following theorem shows that this Hessian is non-degenerate in a neighborhood of the opti-
mal solution, therefore the Newton algorithm will have quadratic rate of convergence by Theorem
3.4 of Smith [14].

Theorem 3 Consider the objective function F(R,S) as above. Its Hessian is non-degenerate in a
neighborhood of the optimal solution if there is a unique (up to a scale) solution to the system of
linear equations:

p7Eq;=0, Ee¢R>3 i=1,...,N.

If so, the Riemannian Newton algorithm has quadratic rate of convergence.

" Proof: It suffices to prove for any A # 0, Hess F(A,A) > 0. According to the epipolar
constraint, at the optimal solution, we have p] RS¢g; = 0. The Hessian is then simplified as:

N
Hess F(A,4) = Y [F (A1 + RA)q] :

i=1
Thus Hess F(A,A) = 0 if and only if
pF(A1S + RAg)gi =0, i=1,...,N.
Since we also have
pFRSq; =0, i=1,...,N.

Then both A;8 + RA; and RS are solutions for the same system of linear equations, hence
Hess F(A,A) = 0 if and only if

A1S + RA, = )\RS', for some A e R
RT(A S +RA) =25 o 0S+A, =8
@8 =A5, and A; =0, since STA; =0
w=0, and A =0, since S#0

A=0.

ts 8
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In the previous theorem, regarding the 3 x 3 matrix F in the equations p,TEq,- = 0 as a vector
in R®, one needs at least eight equations to uniquely solve E up to a scale. This implies we need
at least eight image correspondences (p;, ¢;) to guarantee the Hessian non-degenerate whence the
iterative search algorithm converge in quadratic rate. If we study this problem more carefully,
using transversality theory, one may show that five image correspondences in general position is
the minimal data to guarantee the Hessian non-degenerate [12]. However, the five point paradigm
usually leads to many (up to twenty) ambiguous solutions, as pointed out by Horn [5]. Moreover,
numerical errors usually make the algorithm not work exactly on the essential manifold and the
extra solutions for the equations p,TEq,' = 0 may cause the algorithm converge very slowly in these
directions. It is not just a coincidence that the conditions for the Hessian to be non-degenerate
are exactly the same as that for the eight-point linear algorithm (see [12, 11]) to have a unique
solution. A heuristic explanation is that the objective function here is a quadratic form of the
epipolar constraint which the linear algorithm is directly based on.

Returning to the Newton algorithm, assume that the Hessian is non-degenerate, i.e. invertible.
Then, we need to solve for the optimal updating vector A such that A = Hess™!G, or equivalently:

Hess F(Y,A) = g(-G,Y) = —dF(Y), for all vector fields Y.

Pick five linearly independent vectors, i.e. a basis of Tr(SO(3)) x Ts(S?): E%,j=1,...,5. One
obtains five linear equations:

Hess F(E',A) = —dF(EY), j=1,...,5.

In general, these five linear equations uniquely determine A. In particular, one can choose the
simplest basis such that for j = 1,2,3: EJ = (Ré;,0) with ¢;, j = 1,2, 3 the standard basis for RS,
and for j = 4,5: E7 = (0, ¢;) such that {S, e, es} form an orthonormal basis for R3. The vectors
e4, €5 can be obtained using Gram-Schmidt process.

Define the 5 x 5 matrix A € R5%5 and the 5 dimensional vector b € R°® to be:
(A);x = Hess F(E?, E*), (b); = —dF(EY), jk=1,...,5.
Then solve for the vector a = (a;, a, a3, a4, as)T € R%:
a=A"'b.
Let w = (a3, az,a3)T € R® and v = aseq + ases € R3. Then for the optimal updating vector

A = (A;1,A3), we have A; = Rd and A; = v. We now summarize the Riemannian Newton
algorithm for the optimal motion recovery, which can be directly implemented.

The Newton Algorithm for Optimal Motion Recovery from the Objective Function:

N
F(R,S)=) (ofRS%:)?, pi g € R3(R,S) € SO(3) x P

=1
e At the point (R, S) € SO(3) x P?,

— Compute the gradient G:

N
G=) plRSq (Pi‘IiT ST — RSqpf R, &:R"p; — SpT 4T 5) .

=1
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— Compute the optimal updating vector A = —Hess™'G,

* Compute the vectors e4 ) €5 from S using Gram-Schmidt process and obtain the five
basis tangent vectors E? € Tr(SO(3)) x Ts(S?),1 < j < 5 as defined in the above,

* Compute the 5 x 5 matrix (A);x = Hess F(E?, E¥),1 < j,k < 5 using:

N
Hess F(X,Y) =Y _pf (X18 + RX;)aip] (18 + RV2)g;

=1

N 1 N N N N
+p] BSq: [p? (—g(XIYIT +Y1X{)RS - X{V2RS + (XiYa + Ym)) q,-] )

* Compute the 5 dimensional vector (b); = —dF(E?),1 < j < 5 using:

N
dF(X) =Y pl RSq:(pT X18q; + pT RX2g:),

=1

+ Compute the vector a = (a;, a2, a3, a4,as)” € RS such that a = A~'b,
* Define w = (ay, a2, a3)T € R3and v = aseq +ases € R3. Then the optimal updating
vector

A = —Hess™'G = (R, v).

e Move (R, S) in the direction A along the geodesic to (exp(R,A;),exp(S, Az)), using the
formula for geodesics on SO(3) and P? respectively:

exp(R,A;) = R(I+dsint+&%(1 - cost)),
exp(S,Az2) = Scoso+ Usino,
where t = 1tr(ATA,),w=RTA,/t and 0 = ||A2||, U = Ay /o.

e Repeat if ||G]| > ¢ for some pre-determined ¢ > 0.

Note that the Hessian matrix A is symmetric. This reduces almost half of the computation cost.

From the above calculations, note that one can consider the more general objective function
with a (positive) weight w; € R* associated with each image correspondence (p;, ¢:):

N
F(R,S)=) wi(pfRSa:)?, pi g € R% (R,S) € T1(SO(3)).
=1
For example, one may choose w;! = ||p;||%||:||*> to convert the image points from perspective

projection to spherical projection. Then, in the above algorithm, the expressions of the gradient,
dF and the Hessian only need to be slightly modified.

6 Experimental Results

We have implemented the above Riemannian Newton algorithm for optimal motion recovery in
Matlab.2 The Matlab program is used to demostrate the asympotic convergence properties of the
algorithm.

2The source codes are available at the authors.
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Twenty five pairs of image correspondences are randomly generated. The algorithm starts from
a random (Ryp,So) which is generated by adding up to 10 percent normal Gaussian noise on the
true motion (R,S) (which, in our setup, gives roughly a corresponding error 0.1 on the objective
function). The searching process stops when the error of the objective function F(R,S) reaches
the numerical limit of Matlab (about 10~31).

o A Typical Simulation Path of the Ri Newton Alg
10 Y T T T
10° |
&9l
gw
'
u_w
810™
2
3
=25
S0
107
10“ L 2 N
1 2 3 5 6 7

4
Iteration Steps

Figure 1: A typical simulation sample path of the Riemannian Newton algorithm searching for the
optimal motion. The error indicates the value of the objective function F(R,S).

Figure 1 presents a typical simulation sample path of the searching process. The quadratic rate
of convergence is evident, as a consequence of Theorem 3.

7 Optimal Motion Recovery: the Differential Case

The generic similarity between the linear algorithms of the discrete case and the differential case
has been revealed in [10, 11]. Their nonlinear algorithms should also be consistent with each other.
In the differential case, the epipolar (or Longuet-Higgins) constraint is replaced by its differential
version:

uwTog + g g =0,

where u € R3 is the optical flow at point ¢ € R3 in the image plane, and w,v are, respectively,
the angular velocity and linear velocity of the moving camera frame.® Given N optical flow mea-

surements (u;,¢;), one may consider to recover the motion (w,v) from optimizing the objective
function:

N
flw,v) =Y wi(ulog; + ¢f 09g:)%, w €R% g € R3 (w,v) € R3x S2,

=1

3In the literature, depending on the choice of reference frames, w or v might be different from here by a sign.
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where w; € R* is a weight associated with each measurement (u;,g;). Note when w; = 1, f(w,v) is
the same objective function used by Soatto in [15], where a Bilinear Projection Algorithm (BPA)
is proposed to optimize it.

This is indeed an optimization problem on the space R® x $2, which has a much simpler
Riemannian structure than the essential manifold for the discrete case. Following the same steps
we did for the discrete case in the previous sections, one will obtain a Newton algorithm to optimize
this objective function f(w,v). Since the underlying manifold is nicer now, the expressions for the
gradient and the Hessian will be much simpler. Similarly, the Hessian of the function f(w,v) is non-
degenerate as long as the (differential version) eight-point linear algorithm has a unique solution

[11].

8 Discussions and Conclusions

In this paper, we have studied in detail the problem of recovering a discrete motion (displacement)
from image correspondences. Similar ideas certainly apply to the differential case we briefly dis-
cussed in Section 6, where the rotation and translation are replaced by angular and linear velocities
respectively [11]. The optimization schemes for the differential case have also been studied by many
researchers, including the most recent Bilinear Projection Algorithm (BPA) proposed by Soatto
[15). However, we hope the Riemannian viewpoint will provide people a different point of view to
revisit these schemes.

We only applied Newton’s method to the motion recovery problem since Newton’s method
has the fastest convergence rate (among algorithms using second order information, see (3] for a
comparison). In fact, the application of other conjugate gradient algorithms would be easier since
they usually only involve the calculation of the first order information (the gradient, not Hessian),
at the cost of slower convergence rate.

The motion recovery problem has been studied extensively and many researchers have proposed
efficient nonlinear search algorithms. One may find historical reviews of these algorithms in May-
bank [12] or Kanatani [7]. Although these algorithms already have good performance in practice,
the geometric ideas behind them are not very clear. The non-degeneracy conditions and conver-
gence speed of those algorithms are usually not explicitly addressed. Due to the recent development
of optimization methods on Riemannian manifold, we now can have a better mathematical under-
standing of these algorithms, and propose new geometric algorithms, which exploit the intrinsic
geometric structure in the motion recovery problem.

Like most iterative search algorithm, Newton and conjugate gradient algorithms are local meth-
ods, i.e. they do not guarantee convergence to the global minimum. For the motion recovery
problem, one can use linear algorithms to get a closed guess for the optimal motion and initialize
the nonlinear search algorithm with it.

As we pointed out in this paper, these Riemannian algorithms can be easily generalized to
products of manifolds. Thus, although the proposed Newton algorithm is for single rigid body
motion recovery, it can be generalized to multi-body case. Comparing to other existing algorithms
and conjugate gradient algorithms, the Newton algorithm involves more computation cost in each
iteration step. However, it has the fastest rate of convergence. This is very important when the
dimension of the space is high (for instance, multi-body motion recovery problem). This is because
the number of search steps usually increases with the dimension, and each step becomes more costly.

14



However, we will study this in future work. Detailed study of the performance of the proposed
algorithm and its sensitivity to noise on synthetic and real images is currently in progress.
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