Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMBINATIONAL VERIFICATION REVISITED

by

Sunil P. Khatri, Sriram C. Krishnan, Alberto Sangiovanni-
Vincentelli and Robert K. Brayton

Memorandum No. UCB/ERL M98/60

30 October 1998

COMBINATIONAL VERIFICATION REVISITED

by

Sunil P. Khatri, Sriram C. Krishnan, Alberto Sangiovanni-Vincentelli
and Robert K. Brayton

Memorandum No. UCB/ERL M98/60

30 October 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Combinational Verification Revisited

Sunil P. Khatri (linus@ic.eecs.berkeley.edu) *
Sriram C. Krishnan (krishnan@ic.eecs.berkeley.edu) *
Alberto Sangiovanni-Vincentelli (alberto@ic.eecs.berkeley.edu) *
Robert K. Brayton (brayton@ic.eecs.berkeley.edu) *

Abstract

We revisit the area of combinational circuit verification. We study the existing methods for combinational
verification, and propose a new method based on the computation of a Partial Satisfiability Dont-Care (PSDC)
of the networks being compared. The method involves the use of Reduced Ordered Boolean Decision Diagrams
(ROBDDs) to compute the PSDC of the networks. Results based on our implementation of this scheme and some
of its variants are discussed. ‘

In addition we implement a separate methed for combinational verification based on Brand’s scheme [31. This
method relies on an Automatic Test Pattern Generation (ATPG) package to determine the equivalence of subnet-
works within the two networks being compared.

Our results compare the two schemes, and discuss the conditions under which each scheme performs well. We
also identify opportunities for potential improvement in our implementations of the two schemes.

1 Introduction and Previous Work

The problem of combinational circuit equivalence has been well researched. It is a problem frequently encountered
in digital circuit design. There are many instances where a designer is given two different circuits, and would like
to know if they implement the same boolean function. Alternately, a designer may like to know if a given circuit
correctly implements a specification, where the specification could be described at a higher level of abstraction.

The knowledge about whether a circuit correctly implements a specification is of critical importance. Many
simulations performed before an IC is manufactured are done using a higher level specification, for efficiency reasons.
In order to have a correctly functioning IC, to keep manufacturing costs down, and to have a quick time to market, it
is very important that we reliably know whether a circuit is equivalent to the specification, against which many of the
simulations were done. If the problem of combinational verification is efficiently solved, it can have a great impact
on the IC design process.

In a similar way, we may sometimes want to know if a proposed revision to an existing design would function cor-
rectly. If we know that the two revisions are equivalent, and if we know that the existing design correctly implements
the specification, we can be assured that the proposed revision functions correctly.

Prior research in this area has taken three fundamental approaches. The first is to represent the two networks in a
canonical form, and then prove their equivalence. This is the basis of many ROBDD (henceforth referred to as BDD)
based approaches, where the BDDs for both networks are built in terms of the network primary inputs. Since BDDs
are canonical, the test for whether the networks are equivalent simply involves ensuring that the BDDs are identical.

*CAD Research Group, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720. This
research was funded under the Semiconductor Research Corporation Grant SRC-324-040.

This is a constant time operation. However, these schemes can require a great deal of memory. It has been shown in
[4] that for commonly occurring functions, BDDs can be of exponential size. As a result, there have been extensive
attempts to come up with better ordering schemes, allowing the scheme to verify somewhat larger circuits. Such
improvements were made in [9], [7], and [6]. In all these schemes, the BDDs of the network are built in terms of the
primary inputs of the networks.

The second approach attempts to decompose the networks into smaller subnetworks, which are easier to verify.
This is the approach of [2], where nodes of the two networks that are determined to be potentially equivalent are
attempted to be simultaneously decomposed. A simultaneous decomposition of the.candidate nodes is one in which
the decomposed circuit shares a common subfunction. In order to determine if the nodes are functionally equivalent,
it is sufficient to show that the nodes in the simultaneous decomposition that are not part of the common subfunction
are equivalent. Exhaustive simulation is employed to determine if this is true, if the remaining circuits are sufficiently
small, otherwise further decomposition is done. In this fashion, nodes that are determined to be equivalent are added
to the list of equivalent nodes, and are treated as primary inputs. The authors concede that this procedure can result
in false negatives, where the method declares two networks to be different, even when they are identical. This results
from the fact that nodes determined to be equivalent are treated as independent signals. As a result, this scheme is not
complete.

Most recently, [3] and [8] brought a new approach to the problem. Their approach eliminates the false negative
problem of [2], by recognizing that the internal nodes of the two networks need not implement identical functions
in order to be equivalent. The idea that they utilize is that under certain input minterms, the output of a node does
not determine the output(s) of the entire network. For such input minterms, the nodes from the two networks are
free to have different values. Brand’s scheme [3] makes use of a test generator to check if two potentially equivalent
nodes are indeed equivalent. The two nodes are connected to an XOR gate, and the output of this gate is tested for a
stuck-at-zero fault, at the network outputs. This implicitly checks the condition mentioned above. If the XOR gate
is not stuck-at-zero testable, then the two nodes are equivalent, and one of the nodes is replaced by the other. This
replacement is done in order to keep the test generation process for future potentially matching nodes as simple as
possible. Kunz’s scheme [8] is similar to Brand’s, and uses recursive static learning in addition. Learning is done
based on implications for a given set of specified signals. If learning alone is not sufficient to prove equivalence, atest
generator is used, which uses the learned clauses to determine if the networks are equivalent.

A generalization of this concept is found in [5). Here, the problem was stated in terms of cross-controllability and
cross-observability relations between nodes on a cut that spans both the networks. This procedure is complete.

A weakness of Brand’s scheme is that it defers the difficulty of the problem of verification to the ATPG program
that it calls. This routine is a structural test routine, and as such can require exponential search time before it deter-
mines whether a fault is testable. In order to keep this problem under control, test generation is abandoned if it takes
more than a preset amount of time. As a result, Brand’s procedure is not complete. An interesting point to be made
here is that even if the test generation is abandoned for a node, it does not preclude future nodes from being declared
as equivalent and replaceable.

Our approach, like Berman’s [2] approach, is based on computing internal equivalences in the network. Unlike the
Brand scheme, we call two nodes equivalent only if their functions are identical. We compute a Partial Satisfiability
Dont-Care set (PSDC) of the networks. Our scheme is based on a theorem that states that two networks are identical
if and only if their PSDC sets are identical. We build a BDD to compute the PSDC sets of the two networks, and
declare the networks to be equivalent if the PSDC BDDs are identical. The BDDs we build are in terms of the network
primary inputs, as well as the equivalent internal nodes. Under the condition that there is a uniform distribution of
equivalent internal nodes, we expect that PSDC BDDs will be well behaved. It is observed in [3] as well as in [2]
that even after significant optimizations are done on a network, there are still a large number of nodes whose function
remains unaltered. Further, when one network is transformed into another, based on manual edits, this is even more
likely to hold true.

2 Problem Statement

The problem of combinational circuit equivalence can be stated as follows. Given two combinational networks 13
and 12, we are to determine if N =n2.
Two functions f : B* — {0,1} and g : B* — {0,1} are eqmvalent (f=g)if

Vm € B"(f(m) = g(m))

If f; are the primary outputs of 1y, and g; are the primary outputs of 72, then the two networks are equivalent if
the following holds.

Vi(fi = &i)

3 Preliminaries and Definitions

A Boolean Network is a directed acyclic graph (DAG), with each node i having a logic function f;(x,y) associated
with it. Here x; € x is a primary input, and y; € y is a node variable representing the internal node k. There is an edge
(i, j) from node y; to y; if f; depends explicitly on f;.

The transitive fanout of node j (TF0;) is defined as

node i s.t. i=j or 3 path from jto i
The transitive fanin of node j (TFI;) is defined s
node i s.t. i=j or 3 path from i to j
The Satisfiability Dont-Care set of a node i is defined as
SDC; = (y:® fi)

It reflects the fact that nodes within the Boolean network are not independent, but are dependent on the primary inputs
(and other nodes). SDC; represents a set of variable values that cannot occur in the network, over the exterded space
of network variables (which includes primary inputs and internal nodes). :

The Satisfiability Dont-Care set of the network is defined as

SDC =Y (3i® f)
iel
where I C {1,---,m}, and m is the number of nodes in the network.
The Partial Satisfiability Dont-Care PSDC set of the network can be written as

k
PSDC =Y (3 ®f)
i=l1
The PSDC set is the SDC set of a subset of nodes of the network. The nodes that do not appear in the PSDC set are
eliminated. The PSDC set can be thought of as the SDC set of an equivalent transformed network, in which these
nodes do not appear.

The Global Function of a node i of the network is the function f; of the node i expressed in terms of the primary
inputs.

A Reduced Ordered Boolean Decision Diagram ((RO)BDD) is a Shannon Cofactoring “tree” which has the
same order of cofactoring variables for every branch. Further, it is reduced in the sense that nodes with identical
BDDs are merged, and a node which has identical BDDs as its children is eliminated.

A Stuck-At-Fault is a model for the faulty behavior of a circuit node. In this fault model, we assume that under
the action of the fault, the circuit behaves as if that node was statically stuck ataQora 1.

Figure 2: Testing if g can replace f
4 The Brand Scheme

Brand, in [3] proposed a test-generation based scheme to test for the equivalence of two combinational networks.
Assuming that we were trying to test two functions F and G for equivalence, he observes that we could simply
form the XOR of the signals F and G, and test the output of the XOR gate for a stuck-at-0. Brand refers to such a
configuration of gates as a miter. In general a miter consists of a 2-input XOR gate, plus the symmetric set difference
between the T'FIs of the fanins of the two inputs to the XOR gate. Alternately stated, a miter starts at an XOR gate,
and extends towards the primary inputs until nets that are common to both the cones of logic are encountered. Such a
miter is shown in figure 1.

If we find a test for this fault, we have an input vector under which F # G, and the functions are not equivalent. If
we cannot find such a test, then F = G.

However, Brand observes, most test generators have difficulty with miters. So he proposes a scheme where the
miter is always kept small, in order to keep the test generation problem manageable. Suppose f is a sub-function of F,
and g is a subfunction of G. Under his scheme, he first tries to see if f and g are equivalent, modulo their surrounding
logic. The means for performing this check is ATPG. An XOR gate is inserted between f and its immediate fanouts,
and the other input of the XOR gate is connected to g. Hence a miter is created. This is shown in figure 2.

If the miter output is not stuck-at-0 testable, then either f = g, or f # g, but their difference is not observable at
the output. In the latter case, the fault can be justified, but not propagated, to use testing terminology.

If two nodes f and g are found to be equivalent in the above sense (i.e. the miter output is not stuck-at-0 testable),

Figure 3: How g replaces f.

then the node g replaces the node f in F, as shown in figure 3. This is an important aspect of the scheme, since it
ensures that in subsequent efforts to test nodes for equivalence, the miter would remain small, since the new network
F shares the node g with network G. Proceeding in this fashion, if we are able to replace the outputs of F with the
outputs of G, then the networks are indeed equivalent. The proof of this statement is provided in the paper, and is
repeated here for clarity

Theorem 4.1 Let x € B" be a vector of variables, f : B* = {0,1}, and g : B — {0,1}. Then,

F(xlf) =F(xsg) iffF(X,f$g) =F(x,0) ¢))

and
F(x’f) =F(x’§) lffF(X,f@g) =F(x)l) @

Proof: The two equations are shown to be true for any x. For a given x, there can be four combinations of values on
f and g. For examples, take f =0, and g = 1. Then, 1 becomes

F(x,0) = F(x,1) iff F(x,1) = F(x,0) 3

and 2 becomes '
F(x,0) = F(x,0) iff F(x,1) = F(x,1) @
m

The RHS of 1 states that the output of the miter is untestable for stuck-at-0, and the LHS states that g can replace
f '

If the miter fault cannot be proven untestable in a specified amount of time, the ATPG for that miter is abandoned.
This does not preclude subsequent nodes from being declared equivalent, as discussed earlier. Of course, this implies
that the scheme is not guaranteed to verify a design.

41 Our Implementation of the Brand Scheme

We implemented this scheme within the SIS [10] framework. The program consists of around 1000 lines of code
written in the C programming language. It makes extensive use of the network, node and atpg packages in SI8.

Our scheme first simulates all the nodes of both the networks with a common randomly generated set of input
vectors. The signatures of all the nodes are hashed, and nodes from different networks that share the same signature

are considered potential matches. ! Next, for each node f in F, moving from the primary inputs to the primary
outputs, we look for potential equivalences g in G. If there is a node from G that shares its name with the node
being considered, it is tested for equivalence first. We create the miter node, and call ATPG on the miter node, for a
stuck-at-0 fault. If the fault is untestable, then the node g replaces the node fin F,

In our case, we set a limit on the number of backtracks that the ATPG package is allowed. This is currently set at
50. '

5 Our Approach

Until Brand’s work [3] the de-facto standard scheme for Combinational Verification, since the advent of Bryant’s
Reduced Ordered Binary Decision Diagrams, has been building BDDs and testing for equivalence. Brand borrowed
from methods existing for testing, exploited the multi-level structure of the circuit, and transformed the equivalence
problem to that of satisfiability. Testing techniques have the advantage of being more time-intensive than space-
intensive, and can succeed where BDDs for the functions cannot be built. In addition Brand’s scheme works on the
network structure itself, i.e. it exploits and retains the multi-level structure of the original circuit completely. Multi-
level circuits are a powerful and compact means of representing logic functions and verification schemes that can
retain this structure are desirable.

The new approach we suggest borrows some ideas from network optimization theory [1], but is still BDD-based.
Although our scheme is BDD-based, we exploit and retain the multi-level structure to a certain extent.

Berman and Trevillyan [2] suggested some schemes for choosing sub-functions (in the subject combinational
networks) to test for equivalence. Once nodes have been detected to be equivalent in the corresponding networks they
are treated as “primary” inputs. This scheme has the drawback of not being able to detect subsequent nodes to be
equivalent although they actually may be.
~ Our means of testing functional equivalence is not checking the equivalence of the two BDD’s built but checking
the equivalence of a special kind of partial SDC-set. For simplicity assume that we have two single output com-
binational networks on the same set of PIs, which we want to test for equivalence. Along the lines of Berman and
Trevillyan and other schemes, we choose internal nodes appropriately, and test if they are equivalent. Rather than build
BDDs of these internal nodes in terms of the Pls (the naive way), or treat previously computed equivalent internal
nodes as primary inputs, we impose the relative correlation amongst the internal nodes via a partial-SDC set.

Given two internal nodes (the subject nodes) to be tested for functional equivalence, we build the partial-SDC set
(see Equation 5) for the networks and compare them to test for equivalence. Equation (5) is termed a partial-SDC
set because, one can think of recursively eliminating internal nodes if these nodes have not been detected equivalent
between the two subject networks; the partial-SDC set is precisely the SDC set for this “collapsed” network. In this
“collapsed” neiwork all internal nodes have their functional counterparts in the other collapsed network.

Theorem 5.1 asserts that this scheme for detecting equivalences via building the SDC set is complete.

Theorem 5.1 Give two combinational networks 1y and 12 on the same set of Pls, and a syntactic correspondence (a
1-1 map) on a subset of the internal nodes, then this implies a functional correspondence amongst the chosen nodes
if and only if

kZlfsky—wa.y.-,, (5)

the partial-SDC set is equivalent for both networks, where y;, is the variable corresponding 10 the &k internal node
and f; is the (global) function realized at the node.

tis possible that even if the signatures of two nodes are different, they are still equivalent. Our scheme does not account for this possibility,
however.

Proof: If the identified nodes are functionally equivalent then it is clear that the equality of Equation (5) for both
networks holds. On the other hand if (5) is equivalent for both networks then their complements are equal as well.
Therefore in the space of B*™ exactly the same minterms are present in both networks implying the functional
correspondence. [

Observe that in (5) it is sufficient to express the function realized at the #* internal node in terms of other internal
nodes present in the correspondence subset, as well as PIs. That is, it is not necessary to build the BDD for the
function in terms of just PIs; it is sufficient to compose functions of internal nodes starting from the “closest” cutset
of the transitive fan-in cone of the node for which the function f; is being constructed.

In the worst case the BDD for the partial-SDC set could be exponential in the size of the network even assuming
that the function of each internal node in terms of it nearest previously equivalent nodes is a constant size-BDD.
However, under good variable orders we expect the size of the partial-SDC BDD to be well behaved. The scheme
suggested may be viewed as a function decomposition scheme, i.e. the function representing the multi-level network
is retained in multi-level form as far as possible by the retention of the intermediate variables. Therefore the problem
that now arises is how best to order the variables, Pls and intermediate variables included, so as to exploit (retain) as
much of the multi-level nature of the circuit as possible in a small BDD.

In our scheme the decomposition points chosen are those with equivalent nodes in the other network. As has been
observed in [3] and [2], there are usually a large number of such decomposition points identifiable, even after one
network is altered by various combinational optimization scripts.

5.1 Implementations

We implemented the scheme in the C-programming language, under the SIS [10] framework. Our program consists
of about 1300 lines of code. We make extensive use of the ntbdd and bdd packages within SIS.

Our scheme first simulates all the nodes of both the networks with a common randomly generated set of input
vectors. This portion of the code is identical between this scheme and our implementation of Brand’s scheme. The
signatures of all the nodes are hashed, and nodes from different networks that share the same signature are considered
potential matches.

In the lazy PSDC scheme, we visit each node from one of the networks, and try to find a matching node from the
other network. If there are multiple potential matches, then a match with the same name as the node being matched is
tried first. The BDDs of both nodes are built, 2 and if they are identical, then the nodes are considered to be identical.
Subsequent BDDs are built in terms of primary inputs, variables corresponding to previously determined equivalences,
and also the variable corresponding to the nodes just determined to be equivalent. The position of this variable in the
variable ordering is determined based on a depth first search of the network. We proceed in this fashion, and see if all
outputs can be matched. If so, then we do not compute the PSDC BDD at all. If all outputs cannot be matched, we
repeat the process of visiting matched nodes, but this time we start to build the PSDC BDD of the network, in terms
of the PIs and the variables corresponding to the previously determined equivalences.

In another variant of the basic scheme calle the incremental PSDC scheme, we determine if function are equivalent
based on whether their PSDC BDDs are identical. Unlike the lazy scheme, the PSDC BDD is built incrementally. If
two candidate nodes are being tested for equivalence, then their node SDCs are ORed into the latest PSDC, and if the
resulting BDDs are identical, then the nodes are declared equivalent. Just as in the lazy PSDC scheme, subsequent
BDDs are built in terms of primary inputs, variables corresponding to previously determined equivalences, and the
variable corresponding to the nodes just determined to be equivalent. In this case, the new variable is inserted into the
variable ordering in the same position as in the lazy scheme,

Since each primary output must be included in the PSDC set, we force the SDC terms of each primary output to
be ORed into the PSDC set if the primary output was not declared equivalent in the first pass. This routine, called
psdcdast_gasp, ORs in the SDCs of unmatched primary outputs into the PSDC BDD.

2in terms of primary inputs and variables corresponding to previously determined equivalences

If the resulting PSDC BDDs are identical, then we declare the functions equivalent.
In all our schemes, including the Brand scheme, we tried to compare a network with an altered version of the
network, derived by running the combinational optimization script script.rugged on the original network.

6 Experiments and Results

We ran a series of benchmark circuits on both the PSDC methods, as well as on the Brand method. The results of our
simulations are tabulated in Tables 1 and 2. We determined the execution times, number of matched nodes, and, in
the PSDC methods, the size of the PSDC BDD.

We notice that there are examples under which the incremental PSDC scheme performs very well compared to
other schemes. However, there are also examples where it takes much more time, probably because the PSDC BDD
grew too large while the scheme attempted to determine if two nodes are replaceable. Since the heuristic for choosing
the two candidate nodes is simply to see if their simulation signatures match over a small number of input vectors, we
may accidentally choose two nodes that cause the PSDC BDD to grow out of control. This can probably be controlled
somewhat if we ensured that the two nodes that are chosen for equivalence checking have about the same level in their
respective networks. We are able to prove equivalence for two examples (vda and e64) on which the Brand scheme
fails.

The lazy PSDC scheme showed some interesting results as well. In 45 cases, it was able to determine circuit
equivalence without requiring to build the PSDC BDD at all, which is a pretty reasonable fraction of the entire set of
circuits tested. It was able to verify vda and e64 as well, and in addition, verified some circuits that the incremental
scheme failed on. In many examples, it had a significantly smaller execution time than the incremental scheme, likely
because it did not need to compute the PSDC set at all.

The Brand scheme completed on the most number of examples. It failed on some, but was the most robust of the
schemes. We believe that the PSDC schemes will get a significant increase in their speed and their ability to verify
large circuits when we implement a interleaved BDD variable order. Currently we use the order_dfs routine of SIS,
and since most of our functions have a large number of outputs, we expect interleaving to play a big role in improving
the PSDC schemes.

Interestingly, the Brand scheme, in almost all cases, finds the exact same number of internal equivalences as does
the incremental PSDC method. This is good news for the incremental PSDC scheme. The lazy PSDC scheme finds
less equivalences in general; in some cases, it finds half as many equivalences as the other schemes.

7 Conclusions and Future Work

We implemented different schemes to determine combinational circuit equivalence. We implemented two types of
PSDC schemes, as well as the Brand scheme.

We find that there are a set of functions under which each one of the three schemes implemented proved to be the
best choice. We feel that there is still room for improvement in all the schemes.

Currently, for both the PSDC schemes, we use a variable ordering which is based on a depth-first-search of the
network. We feel that incorporating an interleaved variable ordering scheme as reported in [6] could play a significant
role in improving the capabilities of the PSDC schemes.

Another scheme is to use the Brand and PSDC schemes in tandem. This idea seems to have merit, and we think it
is an interesting follow-on study to the current one.

Further, as mentioned earlier, we could improve the efficiency of all the schemes by choosing candidate matching
nodes that are closer together in level. This could supplement our current scheme, which simply chooses nodes that
have same names across the two networks, if there exist such nodes.

Circuit | Number of || Brand scheme Lazy PSDC Incremental PSDC
outputs time | matches time | matches | BDD size “ time | matches | BDD size
1] 0.043 1 0.035 1 * T 0.039 1 8
2 0.050 2 0.055 2 14 0.035 3 14
C17 2| 0.106 3 0.050 3 * 0.047 3 30
w2 21 || 2.957 37 6.304 27 29274 3.668 39 29850
x4 71 || 16.233 91 1.387 88 * - - -
z4ml 41 0317 9 0.129 7 * 0.149 9 221
terml 10 " 1.929 22 7.574 17 46427 " 3.656 23 51219
vda 39 - - 58.336 59 11810 || 125.676 113 16043
1481 14 0.383 11 0.125 9 * 0.140 11 175
unreg 16 [1.149 18 0433 17 * 0.738 18 1049
x1 35 || 5.735 50 - - - - - -
x2 71 0.328 9 0.172 7 * J 0.168 9 176
tcon 16 || 0.293 8 0.305 8 1786 r 0.211 8 1786
pcler8 17 ‘ 1.129 22 0.316 19 * 0.976 22 8938
pcle 9 ! 0.602 14 0.191 14 * 0.527 14 4954
parity 1 0.566 15 0.165 10 * 0.176 15 160
sct 15 | 0.969 19 0547 14 441 0.305 19 441
t 2 | 0.067 3 0.043 3 * 0.047 3 31
pml ‘ 13 || 0.656 17| 0175 16 « | 0207 17 399
mux 14 0379 9 0.191 8 * 0.285 9 2638
majority 1 J 0.028 o1 0.027 1 * 0.039 1 10
lal 19 r 1.332 23 10.469 18 90431 8.597 23 90431
my.adder 17 || 6.304 63 0.699 47 * - - -
i5 66 [| 9.562 66 0.883 66 * J 77.186 66 114547
i3 6| 6.875 62 0.770 62 * r - - -
f51m ‘ 8] 0.754 16 0.222 14 * 0.328 16 1155
il ’ 16 || 0.543 13 0.344 13 261 0.180 13 261
frgl 3 r 1.282 13 1.371 10 5741 1410 13 11302
example2 66 || 12.077 82 - - - - - -
comp 3 1.340 18 0.355 17 0.445 18 2252
decod 16 i 0.836 © 23 0.192 23 * “ 0.203 23 261
cordic - 2| 0511 10 0.180 9 * 0.215 10 970
count 16 | 6.882 31 0.504 31 * 0.742 31 1158
cu “ 11 || 0.488 13 0.429 12 1130 0.242 13 1130
cml152a 1 0.089 1 0.063 1 * 0.070 1 17
cm163a 5| 0496 12 0.152 9 * 0.218 12 664
cml62a 5| 0453 12 0.172 9 * 0.203 12 277
cm42a 10 || 0.383 13 0.137 13 * 0.195 13 106
cm85a 3 0.281 6 0.132 6 * 0.144 6 107
cmb 4] 0.289 8 0.179 8 * 0.152 8 259
cml51a 21 0.137 4 0.082 4 * 0.082 4 305
cm150a 1) 0.395 9 0.191 8 * 0.289 9 2638
cm82a 3| 0.156 6 0.074 4 * 0.067 6 37
cc 20 | 0.817 18 0.695 18 3322 0.441 18 3322
cml38a 8| 0297 10 0.129 10 C* 0.144 10 94
cht 36 || 3.594 44 0.602 41 * 0.836 44 1161
b9 21 || 1.828 28 0.437 27 * 1 18315 30 69093
apex7 37| 5.796 56 - - - - - -
c8 18 || 2.008 34 9.323 34 69414 9.668 34 69414
bl 4 l 0.086 3 0.082 3 19 0.040 3 19
alu2 6| 8492 45 || 1592.879 23 4250 8.609 44 7457

] Table 1: Experimental Data
Legend: -: mcthod fails *: Did not need to compute PSDCs

Lazy PSDC

Circuit || Number of Brand scheme || il Incremental PSDC

outputs time | matches time | matches | BDD size || time | matches | BDD size
9symml u 1 1.329 11 2.394 9 1337 0.899 11 1592
xorS 1 0.094 4 0.040 2 * 0.051 4 61
vg2 8 0.605 10 0.199 10 * 0.320 10 2195
squar5 8 H 0.360 9 0.336 5 191 0.164 9 191
rd84 4 1.289 16 1.285 12 803 0.531 16 1024
rd73 3 0.668 16 0.207 13 * 0.253 16 379
$a02 4 1.332 17 2.355 13 2727 0.695 17 2727
1dS3 ! 3 0.183 5| 0226 3 55 J 0.113 6 55
misex] 7(0360 10| o164 9 0172 10 118
misex2 18 1.516 25 0.301 23 * 0.434 25 1098
bw 27 3.535 - 1418 16 716 0.718 34 - 116
e64 65 - - 19.178 107 5543 || 30.525 107 5543
conl 2 0.101 3 0.058 3 * 0.070 3 46
clip 5 1.235 16 0.383 14 * 0.496 16 1438
ex$ 63 || 12.644 86 1.367 79 * 4316 86 5147
b12 9 0.680 16 0.274 14 * J 0.355 16 736
apex2 3 - - - - -1 - - -
5xpl 10 1.156 18 0.320 17 * 0.566 18 1645
9sym 1 1.016 9 0.879 8 889 0.477 9 889
064 130 §f - - - - - - - - -
duke2 29 || 37611 70 || 201.448 31 81611 174.7 72 107029
ex4 28| 17.144 51 || 723.294 45 | 2719619
misex3 14 || 120410 81 || 1872.607 59 175517 | 426.239 82| 207060
C1908 25 - - - - - - - -
C1355 ' 32 || 60.328 162 || 563.448 104 * - - -
C499 32 || 52.118 162 || 561.699 104 * - - -
C432 3 23991 ~ || 1636.403 30 | 655974 || 494.883 45 | 678124
C880 26 || 10.000 70 1.722 59 * - - -
alu4 8 - - - - - - - -
frg2 144 - - - - - - - -
i4 6 - - - - - - - -
i7 67 | 17.878 77 2422 75 * 8.14 77 2735
i6 67 | 12.902 76 1.735 74 * 2.949 76 2045
i9 " 63 || 15.343 78 2.746 76 * - - -
rot 93 || 73.281 - - - - - - -
w2 21 2.785 37 6.687 27 29274 3.621 39 29850
x3 99 || 37.099 144 — - - - - -

Table 2: Experimental Data, continued
Legend: -: method fails *: Did not need to compute PSDCs

References

[1] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R, Morrison, R. L. Rudell, A. L. Sangiovanni-
. Vincentelli, and A. R. Wang. Multilevel Logic Minimization Using Implicit Don’t Cares. IEEE Transactions on
Computer-Aided Design of Integrated Circuits, 7(6):723-740, June 1988.)

[2] C.L.Berman and L. H. Trevillyan. Functional Comparison of Logic Designs for VLSI Circuits. In Proc. of the
Intl. Conf. on Computer-Aided Design, pages 456459, November 1989.

[3] D. Brand. Verification of Large Synthesized Designs. In Proc. of the Intl. Conf. on Computer-Aided Design,
pages 534-537, November 1993.

[4] R. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers,
C-35:677-691, August 1986.

[5] E. Cerny and C. Mauras. Tautology Checking Using Cross-Controllability and Cross-dbservability Relations.
In Proc. of the Intl. Conf. on Computer-Aided Design, pages 34-37, November 1990.

[6] H.Fujii, G. Ootomo, and C. Hori. Interleaving Based Variable Ordering Methods for Ordered Binary Decision
Diagrams. In Proc. of the Intl. Conf. on Computer-Aided Design, pages 38-41, November 1993.

(7] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and Improvements of Boolean Comparison Method Based
on Boolean Decision Diagrams. In Proc. of the Intl. Conf. on Computer-Aided Design, pages 2-5, November
1988.

[8] W. Kunz. HANNIBAL: An Efficient Tool for Logic Verification Based on Recursive Learning. In Proc. of the
Intl. Conf, on Computer-Aided Design, pages 538-543, November 1993.

[9] S.Malik, A.R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic Verification using Binary Decision
Diagrams in a Logic Synthesis Environment. In Proc. of the Intl. Conf. on Computer-Aided Design, pages 69,
November 1988.

[10] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. Technical Report
UCB/ERL M92/41, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, May 1992.

	Copyright notice 1998
	ERL-98-60

