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Abstract

In this paper, a mathematical theory of camera self-calibration is developed from a dif-
ferential geometry viewpoint and no projective geometry is assumed. The problem of camera
self-calibration is shown to be equivalent to the problem of recovering an unknown (Riemannian)
metric of an appropriate space. An intrinsic geometric interpretation is thus revealed for camera
“intrinsic” parameters: the intrinsic parameter space can be characterized as the quotient space
SL(3)/S0O(3). Complete lists of geometric invariants associated to an uncalibrated camera are
given. The (dual) absolute conic is shown to be a special (co)invariant generated by the lists.
The self-calibration problem is then studied in both discrete and differential settings. In the
discrete case, the Kruppa equation is derived from a projective geometry free approach. In the
differential case, it is shown that the intrinsic parameter space is reduced to the space of singular
values of the intrinsic parameter matrix. Self-calibrations associated to different camera motions
are analyzed and their relations with the Kruppa equation are clearly revealed. In particular,
necessary and sufficient conditions for a unique calibraticn are given in the case of pure rotation.
Analysis of algorithms associated with these theories will be presented in a sequal to this paper.

Key words: camera self-calibration, epipolar constraint, fundamental matrix, the Kruppa equa-
tion, Euclidean invariants, Lie groups and Lie algebras. :

Introduction

The problem of camera self-calibration refers to the problem of obtaining intrinsic parameters ofa
camera using only information from image measurements, without any @ priori knowledge about the
motion between frames and the structure of the observed scene. The general calibration problem
is motivated by a variety of applications using vision as a sensor which requires the knowledge of
a full Euclidean structure of the environment, which is possible only when the intrinsic parameters
of the camera are known.

Both theoretical studies as well as practical algorithms have recently received an increased
interest in the computer vision community. The appeal of a successful solution to the camera
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self-calibration problem, lies in the elimination of the need for an external calibration object [21]
as well as the possibility of on-line calibration of time-varying internal parameters of the camera.
The latter feature is of importance for active vision systems.

The original problem of determining whether the image measurements “only” are sufficient
for obtaining the information about intrinsic parameters of the camera has been answered in the
computer vision context by Faugeras and Maybank in [18]. The approach and solution utilized
invariant properties of the image of the absolute conic. Since the absolute conic is invariant under
Euclidean transformations (i.e. its parameterization is independent of the position of the camera)
and depends only on the camera intrinsic parameters. The recovery of the image of the absolute
conic is then equivalent to the recovery of the intrinsic calibration matrix. The constraints on
the absolute conic captured by the epipolar transformation are expressed by the so called Kruppa
equation.

One class of approaches to self-calibration directly utilizes the Kruppa equations, which pro-
vided quadratic constraints in conics parameters. Each epipolar constraint provided two such
equations, requiring the total of three frames, for solution of all the unknowns. Proposed solution
to the Kruppa equations using homotopy continuation was quite computationally expensive and
required a good accuracy of the measurements [18]. An alternative iterative scheme was proposed
by [10]. Another class of approaches for the intrinsic parameters instead of directly using Kruppa’s
equations, solves for the entire projection matrices which are compatible with the structure of the
scene [8].

In spite of the fact that the basic formulation of the appropriate constraints is in place and there
are many success stories [23] which apply the proposed algorithms mostly for 3D-reconstruction
problems, to our knowledge, there is no complete analysis of the necessary and sufficient conditions
for unique solution of the caiibration problem. This often leads to situations where the algorithms
are applied in ill-conditioned settings or where a unique solution is not obtainable.

The derivation of the Kruppa equations was mainly developed in a projective geometry frame-
work and its understanding required good intuition of the projective geometric entities (with the
exception of [6]). This derivation is quite involved and the development appears to be rather unnat-
ural since, both the constraints captured by Kruppa's equations and the image of (dual) absolute
conic are in fact directly linked to the invariants of the group of Euclidean transformations. We pro-
vide an alternative derivation of Kruppa equations, which in addition to being concise and elegant,
also provides an intrinsic methods for deriving the conditions for uniqueness of the self-calibration
problem. Further, it can also be derived in the same way the Kruppa equation for the case when
the camera intrisic parameters are time-varying.

A clear feature of our approach is to tackle the sophisticated Kruppa equation through a study
of several important special cases, such as the pure rotation case previously investigated by Hartley
[8]. Not only connections between these special cases with the Kruppa equation is clearly revealed,
but also more detailed results about these cases themselves are carefully presented in a unified
fashion. For the first time, similarities and differences between the discrete and differential (or
continuous) cases are also clearly discovered.

The outline of the paper is as following. The geometric model of an uncalibrated camera is given in
Section 1. Section 2 reveals the intrinsic geometric meanings of the camera’s intrinsic parameters.
Complete lists of geometric invariants associated to an uncalibrated camera are given in Section
3, including an explaination for the (dual) absolute conics in terms of these invariants. Section 4
and 5 provide a geometric characterization of the space of fundamental matrices. The main theory -



of camera self-calibration is developed in Section 6 where conditions for unique calibration and
linear schemes are studied in detail. Section 7 and Section 8 extend the results to the differential
(continuous) and time-varying cases, respectively.

The theoretical contributions of our paper are as follows:

1. A differential geometric framework is proposed for the study of camera self-calibration. Ge-
ometric characterization of the space of fundamental matrices.

2. Derivation of the Kruppa equation and the time-varying Kruppa equation as invariants of
the appropriate group of transformations. It is shown that the Kruppa equation becomes
degenerate in the differential (continuous) case.

3. A clear proof of sufficient and necessary conditions for unique calibration for a class of trivial
motions (pure translation/rotation or constant translation/rotation, etc.) and outline of the
associated linear schemes for camera self-calibration.

4. Necessary conditions for a unique solution of the Kruppa equation and its relations with
camera motion.

1 Uncalibrated camera motion and projection model

We begin with introducing the mathematical model of an uncalibrated camera in a three dimen-
sional Euclidean space.

Consider that a camera is set in a three dimensional Euclidean space M. Then M is isometric
to R3. This isometry equips M with a global coordinate chart and for a point ¢ in M, it is assigned
a three dimensional coordinate

9= (QI, Q2vq3)T € Ra' ) (1)
Sometimes it is convenient to represent the point ¢ € M in homogeneous coordinates as:
9= (ql’ q2, 93, I)T € R4' (2)

In this way, M is viewed as a submanifold embedded in R*. To differentiate the notation, we will
use underlined symbol (g v.s. g) for the homogeneous representation. Let T,M be the set of all
vectors (in a Euclidean space, a vector is defined to be the difference between two points) in M
with the starting point g (i.e. T,M is the tangent space of M at g). Then any vector u € T,M in
its homogeneous representation has the form:

u= (w1, uz,u3,0)7 € R% (3)

So as a vector space Ty M is isomorphic to R3. A non-redundant representation of the same vector
u € TyM is just:

v = (u1, Uz, us)T € R3. (4)
The Euclidean metric g on M is then simply given by:

gq(u,v) = v, Vu,veT,M, Vge M. (5)

3



Sometime we use the pair (M, g) to emphasize that M is a manifold with a preassigned (Rieman-
nian) metric g.

The isometry (diffeomorphism which preserves metric) group of M is the so called Euclidean
group E(3). The motion of the camera is usually modeled as the subgroup of E(3) which preserves
the orientation of the space M, i.e. the special Euclidean group SE(3). SE(3) can be represented
in homogeneous coordinates as:

SE(3)={( g Ii")lpeR?’,RGSO(?.)}CR""4 (6)
where SO(3) is the space of 3 x 3 rotation matrices (unitary matrices with determinant +1). We
know the isotropy group of M at a point ¢ is the orthogonal group O(3). SO(3) is just the subgroup
of O(3) which is the connected component of the identity I. Given an element h € SE(3) and a
point ¢ € M, h maps the coordinates of ¢ to new ones. In the homogeneous representation, these
new coordinates are given by hg.

A curve h(t) € SE(3),t € F is used to represent the translation and rotation of the camera
coordinate frame F; at time ¢ relative to its initial coordinate frame F;, at time to. By abuse of
notation, the group element h(t) serves both as a specification of the configuration of the camera
and as a transformation taking the coordinates of a point in the F, frame to that of the same
point in the F; frame. Clearly, h(t) is uniquely determined by its rotational part R(t) € SO(3)
and translational part p(t) € R3. Sometimes we denote h(t) by (R(t),p(t)) as a shorthand. Let
q(t) = (¢@®)T,1)T € R* be the homogeneous coordinates of a point ¢ € M with respect to the
camera coordinate frame at time ¢ € R. Then the coordinate transformation is given by:

q(t) = h(t)g(to)- (7
In three dimensional representation, the above coordinate transformation is simply equivalent to:
q(t) = R(t)q(to) + p(2). (8)

We assume that the camera coordinate frame is chosen such that the optical center of the
camera, denoted by o, is the same as the origin of the frame. Define the image of a point ¢ € M
to be the vector x € T,M which is determined by o and the intersection of the half ray {o+ A - u |
u = g—o,) € Rt} with a pre-specified image surface (for example, a unit sphere or a plane). Then
both the spherical projection and perspective projection fit into this type of imaging model. For a
point ¢ € M with coordinates ¢ = (q1,¢2,¢3, l)T € R4, since the optical center o always have the
coordinates (0,0,0,1)T € R4, the vector u = ¢ — 0 € T,M is then given by u = (q1,¢2,93)T € R3.
Define the projection matrix P € R3%4:

1000
Pp={0100]. (9)
0010

Then the projection matrix P gives a map from the space M to T,M:

P:M = T,.M (10)
g = u=Pgq. (11)



According to the definition, the image x of the point ¢ differs from the vector u = Pgq by an
arbitrary positive scale, which depends on the pre-specified image surface. In general, the ‘relation
between ¢ € M and its image x is therefore given by:

Ax = Pq (12)

for some A € R*. The unknown scalar ) encodes the depth information of ¢ and we call A the scale
of the point g with respect to the image x. The equation (12) characterizes the mathematical model
of an ideal calibrated camera. For a study of calibrated camera, one may refer to Ma, Kosecka and
Sastry [12, 11].

In this paper, we are going to study uncalibrated camera. By an uncalibrated camera, we mean
that the image received by the camera is distorted by an unknown linear transformation. This linear
transformation is usually assumed to be invertible. Mathematically, this linear transformation is
an isomorphism ¢ of the vector space T, M:

¢:ToM - T,M
u = Au,

where A € R3%3is an invertible matrix representing the linear map ¢. The actually received image
x is then determined by the intersection of the image surface and the ray {o+ A - u} where

U= APg_.

Without loss of generality, we may assume that A has determinant 1, i.e. A is an element in
SL(3) (the Lie group consisting of all invertible 3 x 3 real matrices with determinant 1) For a
representative image x € R~ of g, we have the relation:

Ax = APg (13)

for some scale A € R*. The equation (13) then characterizes the mathematical model of an
uncalibrated camera.

Comments 1 In the computer vision literature, it is assumed that the matriz A is of the following
form:

A=| 0 s, v |. (14)
0 0 1

The parameters in the matriz A are called “intrinsic parameters” associated to the uncalibrated
camera. Note that such an A is not in SL(3) and does not form a group either. We will soon see
that, this choice is equivalent to ours (in some sense).

If we know the linear transformation ¢, i.e. the matrix A, then the problems associated to an
uncalibrated camera can be reduced to those of a calibrated camera. So one important problem
we need to study about an uncalibrated camera is: knowing the image x, to what extent one
may recover the unknown linear transformation ¢ or the matrix .4, and how. This js the so-called
camera self-calibration problem.



2 Intrinsic geometric interpretation for camera intrinsic parame-
ters

Before trying to solve the camera self-calibration probiem, we first need to know some geometric
properties of an uncalibrated camera. In this section, differential geometric properties of an uncal-
ibrated camera will be explicitly revealed: the study of an uncalibrated camera is equivalent to the
study of a calibrated camera in a (Euclidean) space with an unknown metric. Further, the prob-
lem of recovering the linear transformation matrix A is mathematically equivalent to recovering
this unknown metric. Consequently, the camera intrinsic parameters given in (14) can be intrin-
sically characterized as the space SL(3)/SO(3). Some elementary Riemannian geometry notion
will be used here (to maintain the generality of the geometry). For good references of Riemannian
geometry, one may refer to (2, 9, 20].

Let M’ be another Euclidean space (isometric to R3) with a Euclidean structure induced as
follows. Consider a map from M’ to M:
M - M
¢ = ¢g=A""
where ¢’ and ¢ are 3 dimensional coordinates of the points ¢’ € M’ and ¥(g') € M respectively.The
differential of the map % at a point ¢’ € M’ is just the push-forward map:
'l,b... : quM’ — T‘l,(ql)M
u = Alu

Then the metric g on M induces a metric on M’ as the pull-back ¥*(g), which is explicitly given
by:

P™(9) ¢ (1, v) = gy(g) (¥u(1), ¥a(v)) = wTATA ly, VYu,ve TyM', Vg eM. (15)
We define the symmetric matrix S € R3%3 associated to the matrix A as:
S=A"TA™, (16)

Then the metric 1¥*(g) on the space M’ is determined by the matrix S. Let K C SL(3) be the
subgroup of SL(3) which consists of all upper-triangle matrices. That is, any matrix A € K has

the form:
a; @12 a13
A=1] 0 a2 a3 |. (17)
0 0 ass

Note that if A is upper-triangular, so is A~!. Clearly, there is a one-to-one correspondence between
K and the set of all upper-triangular matrices of the form given in (14); also the equation (16) gives a
finite-to-one correspondence between K and the set of all 3x3 symmetric matrices with determinant
1. Usually, only one of the upper-triangular matrices corresponding to the same symmetric matrix
is physically possible. Thus, if the matrix A of the uncalibrated camera does have the form given
by (14), the camera self-calibration problem is equivalent to the problem of recovering the matrix
S, i.e. the metric ¥*(g) of the space M'. '



Now let us consider the case that the uncalibrated camera is characterized by an arbitrary
matrix A € SL(3). A has the ) R-decomposition:

A=QR, QeKReSO3). (18)

Then A~! = RTQ"! and the associated symmetric matrix § = A~TA™! = QTQ~!. In general,
if A= BR with A, B € SL(3),R € SO(3) and S and Sp are associated symmetric matrices of A
and B respectively, then S4 = Sp. In this case, we say that matrices A and B are equivalent. The
quotient space SL(3)/SO(3) will be called the intrinsic parameter space. It gives an “intrinsic-
indeed” interpretation for the camera intrinsic parameters given in (14). This will be explained in
more detail in the rest of this section.

Without knowing camera motion and scene structure, the matrix A € SL(3) can only be
recovered up to an equivalence class [A] € SL(3)/SO(3). To see this, suppose B € SL(3) is
another matrix in the same equivalence class as A. Then A = BRy for some Ry € SO(3). The
coordinate transformation (8) yields:

Aq(t) = ARg(to) + Ap(¢) <« BRoq(t) = BRoR(t)Rj Rog(to) + BRop(t)- (19)
Notice that the conjugation:

Adg, : SO(3) = SO(3)
R — RoRRY

is a group homomorphism. Then there is no way to tell an uncalibrated camera with transformation
matrix A taking the motion (R(t),p(t)) and observing the point ¢ € M from another uncalibrated
camera with transformation matrix B taking the motion (RoR(t)RJ,Rop(t)) and observing the
point Rog € M. We will soon see that this property will naturally show up in the fundamental
matrix (to be introduced soon) when we study epipolar constraint.

Therefore, without knowing camera motion and scene structure, the matrix A associated with an
uncalibrated camera can only be recovered up to an equivalence class [A] in the space SL(3)/SO(3).
The subgroup K of all upper-triangular matrices in SL(3) is one representation of such a space,
as is the space of 3 x 3 symmetric matrices with determinant 1. Thus, SL(3)/SO(3) does provide
an intrinsic geometric interpretation for the unknown camera parameters. In general, the problem
of camera self-calibration is then equivalent to the problem of recovering the symmetric matrix
S =A"TA™1, ie. the metric of the space M’, from which the upper-triangle representation of the
intrinsic parameters car. be easily obtained.

The space M’ essentially is also a Euclidean space. But with respect to the chosen coordinate
charts, the metric form *(g) is unknown. From (8), the coordinate transformation in the space
M’ is given by:

Aq(t) = AR(t)q(to) + Ap(t) & ¢'(t) = AR()A™ ¢ (to) +7'(2) (20)
where ¢’ = Ag and p’ = Ap. In homogeneous coordinates, the transformation group on M " is given

by:

-1 7
G={( ARAT P )|p'eR3,Re50(3)}cR4x4 (21)



It is direct to check that the metric 4*(g) is invariant under the action of G. Thus G is a subgroup
of the isometry group! of M'. If the motion of a (calibrated) camera in the space M’ is given by
R'(t) € G,t € R, the homogeneous coordinates of a point ¢’ € M’ satisfy:

q'(t) = k'(t)g' (to). (22)

From the previous section, the image of the point ¢’ with respect to a calibrated camera is given
by:

Ax = Pg'. (23)

It is then direct to check that this image is the same as the image of ¢ = ¥(¢’) € M with respect
to the uncalibrated camera, i.e. we have:

Ax = APqg. (24)

From this property, the problem of camera self-calibration is indeed equivalent to the problem
of recovering the unknown (Riemannian) metric of a proper space assuming a calibrated camera.
Since isometric transformation (group) of the space M’ preserves its metric, invariants preserved by
such transformation are therefore keys to recover the unknown metric. The next section is about
to give a complete account of these invariants.

3 Geometric invariants associated to uncalibrated camera

Although the explicit form of the metric of the space M’ is unknown, we know M’ is isomorphic to
the Euclidean space M through the isomorphism % : M’ — M. Thus the invariants of M’ under
its isometry group G are equivalent to the invariants of M under the Euclidean group.

The complete list of Euclidean invariants is given by the following theorem:

Theorem 1 (Euclidean invariants) For a n dimensional vector space V, a complete list of basic
invariants of the group SO(n) consists of (1) the inner product g(u,v) = uTv of two vectors u,v €V
and (2) the determinant det[u!,...,u"] of n vectors ul,... ,u" € V.

See Weyl [22] for a proof of this theorem and see Ma, Kosecka and Sastry [11] for a more detailed
discussion about applications of this theorem in structure reconstruction. From the theorem, the
set of all Euclidean invariants is the R-algebra generated by these twc types of basic invariants. In
the uncalibrated camera case, applying this theorem to the three dimensional space M’, we have:

Corollary 1 (Invariants of uncalibrated camera) For the space M’, a complete list of basic
invariants of the isometry group G consists of (1) the inner product ¥*(g)(u,v) = vTA~TA 1y
of two vectors u,v € TM' and (2) the determinant det[A~u!, A=1u?, A~ u3] of three vectors
ul,u?, ud e TM'

14y .

Then the set of invariants associated to an uncalibrated camera is the R-algebra generated by these
two types of basic invariants. Since

det[A™'u!, A7 12 A7 2?2 = det(A7!) - detfu!, u?,48),

'Isometry group of a space M is all transformations which preserve metric (or distance).
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it follows that the invariant det[A~!u!, A~1u2, A~143] is independent of the matrix A. Therefore
the determinant type invariant is useless for recovering the unknown matrix A and only the inner
product type invariant can be helpful.

For any n-dimensional vector space V, its dual space V'V is defined to be the vector space of
all linear functions on V. An element in V'V is called a covector. If ¢',i =1,...,n are a basis for
V, then the set of linear functions e;,j =1,...,n defined as:

ej(e') = &; (25)

form a (dual) basis for the dual space VV. The pairing between V and its dual V'V is defined to
be the bilinear map:

<+4>xVVxV =5 R (26)
(u,v) — u(v). (27)
If we use the coordinate vector u = (@1, ..., )T € R™ to represent a covector u = Y_7_; aje; €

VV,e; € R, and similarly, v = (1,... ,Ba)T € R™ to represent v = Y~ fBie' € V,0; € R (note
that we use column vector convention for both vectors and covectors in this paper), then with
respect to the chosen bases thc pairing is given by:

< u,v>=uTv.

For a linear transformation f : V — V, its dual is defined to be the linear transformation f :
VV — VV which preserves the pairing:

<u, f(v) >=< fY(u),v>, VueVV,veV. (28)
Let A € R™*" be the matrix representing f with respect to the basis e’,i = 1,...,n. Since:
< u, f(v) >= uT Av = (ATw)Tv, - (29)

it follows that the dual fV is represented by AT with respect to the (dual) basis ej,j =1,...,n.

The invariants given in Corollary 1 are invariants of the vector space TM’ = R3 under the action
of the isotropy subgroup ASO(3)A~! of G on M’ (here we identify an element in ASO(3)A~! with
its differential map). As we know from above, this group action induces a (dual) action on the
dual space of TM’, denoted by T*M’. This dual action can then be represented by the group
A~TSO(3) AT since

(ARA™1)T = A"TRTAT € A"TSO(3)AT

for all R € SO(3). We call invariants associated to the dual group action (on the covectors) as
coinvariants. As we will soon see, the Kruppa equaticn can be viewed as such coinvariants.
Consequently we have:

Corollary 2 (Coinvariants of uncalibrated camera) For the space M', a complete list of ba-
sic coinvariants of the isometry group G consists of (1) the induced inner product ETAATy of two
covectors £, € T*M’ and (2) the determinant det[€;,&2,£3] of three covectors £1,§2,§3 € T*M'.



Note that in the above we use the convention that vectors are always enumerated by superscript
and covectors by subscript. One may also refer to Weyl [22] or Goodman and Wallach [5] for
a detailed study of polynomial invariants of classical groups — Corollary 1 and 2 can then be
deduced from the First Fundamental Theorem of groups G C GL(V) preserving a non-degenerate
(symmetric) form (see [5]). Note that the induced inner product on T*M’ is given by the symmetric
matrix S~1 = AAT, the inverse of S = AT A1, As we will soon see, coinvariants naturally show
up in the recovery of S ~! from fundamental matrices.

Next we want to show that the absolute conic (or the dual absolute conic) is actually a special
invariant generated by inner product type invariants (or coinvariants), In the projective geometry
approach, the absolute conic plays an important role in camera self-calibration.

In order to give a rigorous definition of the absolute conic, we needs to introduce the space CP?,
the three dimensional complex projective space?. Let ¢ = (g1, 92,3, ¢4)T € C* be the homogeneous
representation of a point ¢ in CP3. Then the absolute conic, denoted by €2, is defined to be the set
of points in CP? satisfying:

G+a+¢i=0, =0 (30)

Note that this set is invariant under the complex Euclidean group:

E(3,C)={(l(;z f)lpe@,Rer)}cC‘”“‘ (31)

where U(3) is the space of all (complex) 3 x 3 unitary matrices. The special Euclidean group SE(3)
is just a subgroup of E(3,C) hence the absolute conic is invariant under SE(3) as well.

For any ¢ = (q1,92,93,94)T € 2, suppose
g =u;+iv;, u;v;€ER, j=1,...,4 (32)

where i = \/—1. Since u4 = vq = 0, we obtain a pair of vectors u = (ul,uz,ug,O)T and y =
(v1,v2,v3,0)T of the 3 dimensional (real) Euclidean space M (in homogeneous representation).
From (30), these two vectors satisfy:

wTu=vTv, wTv=0 (33)

On the other hand, any pair of vectors u,v € TM which satisfy the above conditions (i.e. u and
v are orthogonal to each other and have the same length) define a point on the absolute conic Q2.
Therefore, the absolute conic Q2 is the same as the set of all pairs of such vectors. Since all the
inner product type quantities in (33) are invariant under the Euclidean group SE(3), the absolute
conic § is simply generated by these basic invariants.

In the uncalibrated camera case, if we let § = A~TA™! and ¢’ = (q1,42,93,94)7 € C*, the
corresponding absolute conic (30) is then given by:

(61,92,93)5(q1,92,93)T =0, ¢4 =0. (34)

Therefore, the camera self-calibration problem is also equivalent to the problem of recovering this
absolute conic (for example see Maybank [17]). It is direct to check that this absolute conic is

2CP3 is the space of all one dimensional (complex) subspaces in C', i.e. the quotient space C'/ ~ where the
equivalence relation ~ is: (21,22,23,24)T ~ (2-21,2-22,2 23,2 - 24)T for all z #0.

10



generated by basic invariants given in Corollary 1. Define the dual absolute conic VY to be the set
of points in CP3 satisfying:

(91,92, 93)5 (91,92, 93)T =0, ¢4 =0. (35)

Similarly, one can show that it is generated by the inner product type coinvariants given in Corollary
2. '

4 Epipolar geometry

Before we can apply the invariant theory given in the previous section to the problem of camera
self-calibration, we first need to know what ~uantities we can directly obtain from images and what
type of geometric entities they are. This section and Section 5 are going to show that fundamental
matrices which can be estimated from the epipolar constraint are in fact covectors — Section 6 then
shows that their associated coinvariants directly give the Kruppa equation.

The epipolar (or Longuet-Higgins) constraint plays an important role in the study of geometry
of calibrated camera. In this section, we study its uncalibrated version. First, we introduce some
notation. For a three dimensional vector p = (p1,p2,p3)T € R3, we define the skew-symmetric
matrix p € R3*3 associated to p as:

0 -p3 p
p=| p» 0 -p |. (36)
-2 ;0
Then for another vector / € R3, the cross-product p x [ is equal to pl.
From (20), for a point ¢’ € M’ we have
¢'(t) = AR(t)A7 ¢ (to) + P(t) = P'(t) x ¢'(t) =#'(t) x AR()A™¢ (to)
= ¢(t)TATRATATH (D)4 (t) = 0. (37)

Let x; € R3 and x; € R3 be images of ¢’ at time #o and t respectively, i.e. there exist Ay, A2 €
Rt such that A\;x; = ¢'(to) and Ayx2 = ¢'(t). To simplify the notation, we will drop the time
dependence from the motion (AR(t)A~!,p'(t)) and simply denote it by (ARA™!,p). Then (37)
yields:

xTA-TRT ATp'x, = 0. (38)
Note that in the above equation the matrix '
Fi=ATRTATy eR3<® (39)

is of particular interest — it contains useful information about camera intrinsic parameters as well
as the motion of camera. -
Recall that the motion (ARA™!,p’) in the space M’ is equivalent to the motion (R,p) in the
space M, with p = A~!p’. Also from (20), we have
AT () = ROAT (o) +p(t) = p(t) x A7'(t) = p(t) X R(t)A™'¢'(to)
= ¢'(to) AR p(t)A¢'(t) = 0 (40) -

11



We then have a second form for the constraint given in (38):
xTA"TRTpA x; = 0. (41)
The matrix .
F,=ATRTA eR¥ ' (42)

is called the fundamental matrix in the computer vision literature. In fact, the two constraints
(38) and (41) are equivalent and they are both called the epipolar constraint. We prove this by
showing that the two matrices F; and F; are actually equal.

Lemma 1 Ifp € R® and A € SL(3), then ATHA = A-1p.

Proof: Since both AT(-\)A and A-1(-) are linear maps from R3® to R3®*3, using the fact
that det(A) = 1, one may directly verify that these two linear maps are equal on the bases:
(1,0,0)7,(0,1,0)7 or (0,0,1)T. - .

According to the lemma, we have:
Fy=ATRTpA = A TRTATA TpA~ = A"TRTATY = F,. (43)

We then can denote F; and F, by the same name F. Define the space of fundamental matrices
associated to A € SL(3) as:

F={ATRTpA"? | R€ SO(3),p€ R3}. (44)

The space F is also called fundamental space.

In the preceding section, we have known that if two matrices A and B are in the same equivalence
class of SL(3)/SO(3), we are not able to tell them apart only from images. We may assume
B = AR for some Ry € SO(3). Then with the same camera motion (R,p), the fundamental
matrix associated with B is:

B-TRTpB~! = A TRyRTHRT A~ = A-T(RoRT RT) RopA~". (45)

As we noticed, the essential matrix RT §is simply replaced by another essential matrix (RoRT RT) Rop.
Therefore, without knowing the camera motion, from only the fundamental matrix, one cannot tell
camera B from camera A.

5 Geometric characterization of the space of fundamental matri-
ces

In this section, we give a geometric characterization of the space of fundamental matrices. It will
be shown that this space can be naturally identified with the cotangent bundle of the matrix Lie
group ASO(3)A™!, therefore, fundamental matrices by their nature can be viewed as covectors.
This characterization is quite different from the conventional way of characterizing fundamental
matrices as a degenerate matrix which represents the epipolar map between two image planes (for
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example see [10]), but it directly connects a fundamental matrix with its Kruppa equation, as we
will soon see in Section 6.

We define a metric g on the space R3*3 as
¢(B,C) = tr(BTSC), VB,C e R3<3 (46)

where S = A~TA-!. It is direct to check that so defined g is indeed a metric. This metric may be
used to identify the space R3*3 with its dual (R3*3)V (the space of linear functions on R3%3). In

other words, under this identification, given-a matrix C € R3%3, we may identify it as a member in
the dual space (R3%3)V through:

f : R3X3 - (R3x3)v
C = C¥=g(C).

From the metric definition (46), CV can be represented in the matrix form as CV = SC. Since S is
non-degenerate, the map f is an isomorphism and it induces a metric on the dual space as follows:

g"(B",C") = ¢(B,C) = tr((BY)TS7'CY). (47)

A tangent vector of the Lie group ASO(3)A~! has the form ARTpA~! € R3*3 where R € 50(3)
and p € R3. By restricting this metric to the tangent space of ASO(3)A~}, i.e. T(ASO(3)A™1),
the metric g induces a metric on the Lie group ASO(3)A~1:

.

g(ARTp1A™Y, ART 5, A7) = g(Ap1A™!, AprA7Y). (48)

The equality shows that this induced metric on the Lie group ASO(3)A~! is left invariant.

The cotangent vector corresponding to the tangent vector ARTpA~! € T(ASO(3)A~") is given
by:

(ARTpAY)Y = SARTHA™! = A"TRTpA L. (49)

Note that the matrix A~TRTpA~! is the exact form of a fundzamental matrix. Therefore, the space
of all fundamental matrices can be interpreted as the cotangent space of the Lie group ASO(3)A™1,
i.e. T*(ASO(3)A™!). There is an induced metric on the cotangent bundle:

g (A TRT5, A AT R A7) = ¢¥(9}, 7)) (50)

where p}, = Ap; and p) = Ap,. Since a fundamental matrix can only be determined up to scale,
we may consider the unit cotangent bundle T7(ASO(3)A~!). Define the space of normalized
fundamental matrices to be:

Fi ={A"TRTHA™! | R€ SO(3),p € R® ¢"(Ap, Ap) = 1}. (51)

The space F; is also called normalized fundamental space. The relation between the normalized
fundamental space F; and the unit cotangent bundle T} (ASO(3)A™?) is given by:

Theorem 2 The unit cotangent bundle T;(ASO(3)A™!) is a double covering of the normalized
fundamental space F;.
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The proof essentially follows from the fact that the unit tangent bundle T3(SO(3)) is a double
covering of the normalized essential space (see Ma, Kosecka and Sastry [12]). For a fixed matrix
A € SL(3), the normalized fundamental space F; is a five dimensional connected compact manifold
embedded in R3*3.

Comments 2 Usually the eight point algorithm can still be used to estimate the fundamental ma-
triz. However, the matriz directly obtained from solving the LLSE problem may not be ezactly in
the fundamental space or the normalized fundamental space.

6 Camera self-calibration

After all the preparation in geometry, we are now ready to investigate possible schemes for recover-
ing the unknown intrinsic parameter matrix A, or equivalently, the symmetric matrix § = A TAL,

6.1 The Kruppa equation

We first assume that both the rotation R and translation p are non-trivial, i.e. R# I and p # 0
hence the epipolar constraint (38) is not degenerate and the fundamental matrix can be estimated.
The camera self-calibration problem is then reduced to recovering the symmetric matrix S from
fundamental matrices, i.e. recovering § = A~T A~! from matrices of the form F = A"TRTpA1.
It turns out that it is easier to use the other form of the fundamental matrix F = A~TRTATp
with p' = Ap. From the fundamental matrix the epipole vector p’ can be directly computed as
the null space of F. Withnut loss of generality, we may assume [|p'|| = 1. The corresponding
fundamental matrix F is then called a unit fundamental matrix (to be separated from the
normalized fundamental matrix). In this section, all vectors (by their nature) are covectors hence
will be denoted with subscripts — but we always use column vector convention to represent them
unless otherwise stated. Suppose the standard basis of R3 is:

e1=(1,0,007, e2=1(0,1,007, e3=(0,0,)7 €eR%:. . (52)
Now pick any rotation matrix Rg € SO(3) such that Rop’ = e3. Using Lemma 1, we have:
P = RT&R,. (53)
Define matrix D € R3*3 to be
D = RoFRT = (RoA)~TRT (RoA)7 &. (54)
Then D has the form D = (d,,d2,0) with d,,dz € R3 as the first and second column vectors of D.
From the definition of D we have:
di = (RoA)"TRT(RoA)Tes, d2 = —(RoA)"TRT(RoA)Te,. (55)

Define matrix K = RoA € SL(3). Note that (55) is in the form of a transformation on covectors
that we discussed in Section 3. According to Corollary 2, coinvariants of the group KSO(3)K ™!
(i.e. the invariants of the dual group K-TSO(3)KT) give:

(d)TKKTdy = (e2)TKK ey, .

(d))TKKTd, (e1)TKKTe,, (56)

(di)TKKTd, = —(e2)TKKTe. ’
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Note that KKT = RyAATR] = RoS~!R} where as usual S = A~TA~!. If we know KTK, the
symmetric matrix S can be calculated from the chosen Ry. By defining covectors &;, &2, 11, 72 € R3
as:
& =RYd), &=RIdy; m=-Rle, m=Rje,

then (56) directly gives constraints on S~! as:

8% = n3S7'm,

576 = 7S, (57)

€576 = nS7'm.
We thus obtain three homogeneous constraints on the matrix S~!, the inverse of the matrix S.
These constraints can be used to compute S~! hence S.

The above derivation is based on the assumption that the fundamental matrix F is unit, i.e.
l”'ll = 1. However, since the epipolar constraint is homogeneous in the fundamental matrix F, it
can only be determined up to an arbitrary scale. Suppose A is the length of the vector p €R%in
F= A‘TRTAT;;’. Consequently, the vectors d; and d; are also scaled by the same ), as are ; and
&;. Then the ratio between the left and right hand side quantities in each equation of (57) is equal
to A2. This gives two independent constraints on S~1, the so called Kruppa equation:

_ 5716 _ Fs-1¢, _ &8¢,
i S=lm ~ niS~m  pfS-lmy

Alternative means of obtaining the Kruppa equation is by utilizing algebraic relationships between
projective geometric quantities [18] or via SVD characterization of F [6]. Here we obtain the same
equation from a quite different approach. Equation (58) further reveals the geometric meaning
of the Kruppa ratio: it is the square of the length of the vector p’ in the fundamental matrix
F. Note that the above approach of deriving Kruppa equation does not have to use the singular
value decomposition (SVD) of F, hence, computationally, it is less costly. Each fundamental matrix
provides two (Kruppa) constraints on S~1. Since the symmetric matrix S has six degrees of freedom,
in general at least three fundamental matrices are needed to uniquely determine S.

A2

(58)

The above derivation of Kruppa equation is straight forward but the expression (58) depends
on a particular rotation matrix Rp that one chooses — note that the choice of Ry is not unique.
In fact, there is an even simpler way to get a equivalent expression for the Kruppa equation
in a matrix form. Given a unit fundamental matrix F = A-TRT AT/, note that the element
A-TRTAT ¢ A-TSC(3)AT acts on each column of the skew matrix p’. It is then natural to view
the fundamental matrix F as an cotangent vector (of the group ASO(3)A™!) with appropriate
coinvariants associated to it. Applying Corollary 2, one directly gets the matrix equation:

FTS-1F =" 577 (59)

We call this equation the normalized matrix Kruppa equation. It is readily seen that this
equation is equivalent to (57). If F is not unit and is scaled by A € R, i.e. F = AA-TRTATY, we
then have the matrix Kruppa equation:

FTS-1F = 329" 5-1p. (60)

This equation is equivalent to the scalar Kruppa equation (58) and is independent of the choice
of the rotation matrix Rp. If we view a 3 x 3 matrix as a vector in RY, (60) simply says that the
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~T ~ ] .
two vectors FTS~!F and p’” S~'p’ are linearly dependent. This fact can be expressed in a more
compact form:

(FTS'F) A (;?Ts-lﬁ') =0 (61)

where the wedge product is the standard one of the vector space R®. This equation is homogeneous
in the fundamental matrix F and the vector p’ hence F and p’ do not have to be unit. However,
this equation may introduce extra solutions for S~1 because it does not impose the condition that
the quantity A% has to be positive.

Algebraic properties of Kruppa equation were first studied by Maybank and Faugeras in [18].
However, conditions on possible dependences among Kruppa equations obtained from different
fundamental matrices were not clearly given, at least not given in a geometrically intuitive form.
Therefore it is hard to tell whether a set of Kruppa equations give a unique solution for calibration.
Since the Kruppa equation is highly nonlinear in S, most Kruppa equation based algorithms suffer
from being computationally expensive and having multiple local minimums. These reasons have
motivated us to study the geome! ric nature of this equation and hope to gain a better understanding
and obtain simpler methods for camera self-calibration. Or our way to do so, we first study camera
self-calibration for some special (and simple) camera motions and then show that so-obtained results
also help us to understand the general case and the Kruppa equation better.

6.2 Cases with pure translation or pure rotation

We first consider the case that there is only pure translation p and the rotation component R is
always equal to the identity I. In this case, the fundamental matrix F' has the form A TpAL,
According to Lemma 1, .

A-TpA1 = Ap. (62)

So Ap can be directly recovered. But no matter how many such fundamental matrices are given,
one can never recover A without knowing the actual translational motion p. Therefore, rotational
motion is absolutely necessary for camera self-calibration.

Another special case is that there is only pure rotation and no translation. This case has
been thoroughly studied in the literature [8], but no proof of the necessity and sufficiency of the
conditions for a unique calibration has ever been given. We here give a clear answer to it.

In the pure rotation case, the fundamental matrix F is not well-defined hence the Kruppa
equation based approach cannot be used here - but this does not necessarily say that these two
cases are not deeply related. In stead, a matrix of the form ARA™! € ASO(3)A™! can be directly
estimated from no less than four image correspondences between two images. The problem of
estimating such a matrix was mentioned by Hartley [8]. Here, to be self-contained, we explicitly give

out this linear scheme. In the pure rotation case, corresponding image pairs (x},x3}),7 =1,...,4
satisfy:

Mxd = ARAT\MX], j=1,...,4 (63)
for some scales A{, )\.i;, j=1,...,4. Then we have eight linear constraints on the matrix ARA™!
as:

RARA™X) =0 (64)
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for j =1,...,4. In general these linear equations uniquely determine the matrix ARA™Y,

Information about the matrix A is therefore encoded in the conjugate group ASO(3)A~! of
SO(3). It will be useful to understand the relation between the two groups: SO(3) and ASO(3)A~L.
In particular, we need to study the problem: given an element, say matrix C € R3%3, in the group
ASO(3)A™!, how much does it tell us about the matrix A? Since C € ASO(3)A~!, there exists a
matrix B € SO(3) such that C = ARA~!. As usual, let S = A~TA~!, we have:

S-CTsCc=0. (65)
That is, S has to be in the kernel of the linear map:

L:Cx3 5 (83
X » X-CTxc. (66)

Note that this is a Lyapunov map. According to Callier and Desoer [4], it has eigexivalu% 1-
A, 1< 4,5 < 3 where Ay, i = 1,2,3 are eigenvalues of the matrix C.

Suppose the rotation matrix R has eigenvalues 1, e, & € C with a@ = 1 and corresponding right
eigenvectors u, v, € C3. 3 Then the matrix C has the same eigenvalues and corresponding right
eigenvectors become A~Tu, A=Tv, AT € 3. Then the matrix S is in the 3 dimensional subspace:

Ker(L) = span{S; = A Tuv* A1, 5, = A Tov’' A", 53 = A7 Tow" A7} c C*3. (67)

This is the kernel of the linear map L. Since R # I, S; is real, S; = S3 and S, 53, Ss are
linearly independent. For a real symmetric solution of S, it must have the form S = 85 + v(S2 +
S3) with 3,7 € R. The sc ation space for symmetric real S is only two dimensional?. We call
this two dimensional space as the symmetric real kernel of the map L, denoted as SRKer(L).
Summarizing thé above we obtain:

Lemma 2 Given a matriz C = ARA™! in the matriz group ASO(3)A~1 with the rotation matriz
R not equal to the identity matriz I, the symmetric real kernel associated with the Lyapunov map
L:X -CTXC is of 2 dimension.

Since the symmetric real kernel associated with one matrix C € ASO(3)A™! is only two di-
mensional, one more effective constraint on S will be able to uniquely determine it, for example
see Hartley [7, 8]. However, we are more interested in uniquely determining S from elements in
ASO(3)A~. Suppose we know n elements Cj,j = 1,...n in the group ASO(3)A~!. Then S has
to be in the (symmetric real) kernels of all the linear maps:

L_,‘:C?'x:3 - %3, j=1,...,n
X » x-ctfxc;. , (68)
That is S € SRKer(L;) N...NSRKer(L,).

Before we give a useful sufficient condition for such S to be unique, we state a lemma from
linear algebra. ‘

3Here we still use column vector convention to represent right eigenvectors. Therefore, we have-u*C = u*,v°C =
av® where (-)* means the Hermitian transpose.
4L has a three dimensional real kernel but one dimension is #(S2 — S3) which is skew-symmetric.
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Lemma 3 If u,v,w € R3 are linearly independent, then the matrices wul,voT and ww? are

linearly independent.

Proof: For non-zero A1, A2 € R, the matrix Ajuu? 4 ApvvT always has rank 2 while the matrix
ww? has rank 1. | "

Lemma 4 Given matrices Cj = AR;A™! € ASO(3)A71,j=1,...,n with R; # I and given the
real right (hence left) eigenvectors w € R® of R; (i.e. the principal azis of the rotation matriz R; )
If three of the n principal azes w?,j =1,...,n are linearly independent, then there is @ unique real
symmetric matriz S € SL(3) satisfying S = C’JTSC,-, j=1,...,n hence S = AT,

Proof: We may assume u!,u?, u3 are linearly independent. Then according to Lemma 3 the
three matrices u! (u!)T, u2(u2?)T, ud(u®)7 are linearly independent. Then

span{A'Tul (‘ll,l)TA_l, A‘Tuz(uz)TA'l,A'Tus(ua)TA'l} )

has three dimensions. Thus SRKer'(L;;) is not fully contained in SRKer(L;) N SRKer(L3) hence
their intersection SRKer(L;)NSRKer(L2) NSRKer(L3) has at most one dimension. This guarantees
that S has a unique solution. -

If we study the condition more carefully, we can actually obtain the following necessary and
sufficient condition.

Theorem 3 (Sufficient and necessary condition of unique calibration) Given mairicesC; =
AR;A"! € ASO(3)A™%,j =1,...,n with R; # I and given the real right (hence left) eigenvectors
w € R® of R; (i.e. the principal azis of the rotation matriz R; ). The real symmetric matriz
S = A"TA™1 ¢ SL(3) is uniquely determined if and only if at least two of the n principal azes
w,j=1,...,n are linearly independent. :

Proof: The necessity is obvious: if two rotation matrices R; and R; have the same axis, they have
the same eigenvectors hence SRKer(L;) = SRKer(L;). We now only need to prove the sufficiency.
We may assume u! and u? are linearly independent and both are unit vectors. Define matrices
Ro = R1R; and Cpry € R3x3;

Cny1 = C1C2 = ARYAT AR, A™! = AR A7 (69)

The rotation matrix R; must has the form exp(;ﬁel) for some #; € R and similarly Rz = exp(;ﬁOg)
for some @, € R. Then the axis u™*! € R3 of the rotation matrix R, is given by (see Murray, Li
and Sastry [19]):

u™+! = cos(6;/2) sin(62/2) - u® + cos(f2/2) sin(6;/2) - u! + sin(0)/2) sin(82/2) - (u! x w?).  (70)

Note u"+! may not be of unit length here. But it is linearly independent of u! and 2 if both 6,
and 6, are not zero. This then reduces to the case of Lemma 4. -

According to this theorem, the simplest way to calibrate an uncalibrated camera is to rotate it
about two different axes. The self-calibration algorithm in this case will be completely linear and
a unique solution is also guaranteed.
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Comments 3 Note that Kruppa equation gives direct constraints on S~! instead of S. In the pure
rotation case, we have:

§=CTsCc & S '=cls'c T | (71)

Thus, we also obtain direct constraints on S™1. This provides a possibility of combining these two
types of constraints in u unified framework for estimating S~!.

6.3 Cases with constant translation or constant rotation

By the case of constant translation, we mean that the translation p(t) or p'() always has a constant
direction and the axis of rotation R(t) is arbitrary; by the case with constant rotation, we mean
that the axis of the rotation R(t) is constant and the translation direction is arbitrary. Note that
these two cases are different from the cases with pure translation or pure rotation.

We first study the case with constant rotation. The fundamental matrices obtained in this case
have the form:

F.=A"TRTATY, i=1,...,n (72)

where R € SO(3) and p! € R3%i = 1,...,n. Note that the columns of matrices F;’s are linear
combinations of columns of the matrices A‘TR,TAT, 1 < ¢ < m, or equivalently the rows of the
matrices C; = AR;A™1,1 < i < n. Since R;’s have the same axis, according to Theorem 3, such
matrices are not sufficient to determine the camera calibration. Therefore, not only rotational
motion but also variation in rotational motion is necessary for camera self-calibration.

We next study the case with constant translation — the translation vector p' always has a fixed
direction. That is, the fundamental matrices obtained in this case are supposed to have the common
form:

F,=ATRTATY, i=1,...,n (73)

where R; € SO(3),i = 1,...,n and p' € R% Now suppose we have three consecutive images
I, I, Is. The fundamental matrices estimated between the i** and j** images are denoted as
F;j,1 < i< j < 3. Then under the constant translation assumption, they all have the form:

Fj=ATREATY, 1<i<j<3 (74)
and we may assume ||p'|| = 1. Pick any rotation matrix Rp such that Rgp’ = e3. Then:
D;; = RoFijR] = (RoA)™TRi;(RoA)T&;, 1<i<j<8. (75)
Define matrices C;; € R3*3:
Cij = (RoA) TRi;(RoA)T, 1<i<j<3. (76)

It is readily seen that the first two columns of Cj; can be directly obtained from D;;. We also have
relations:

Ciz2:Co3 = Cia. (77)
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Let us denote the k** column of the matrix C;; as c‘fj €ER31<k<3,1<i<j<3. Then
even if D;;’s are estimated up to arbitrary scales, from (77) we still have:

(612’ c§2v c:1"2) . (0%3’ cgs) = AIS(C}& 0%3) (78)

where A;3 € R. If D;;’s are already unit fundamental matrices, then A3 = 1. From the above
linear equations the unknown columns ¢, and scalars A;3 can be uniquely determined. Since we
have more equations than unknowns, the numerical solution can be taken as the associated LLSE
estimate. We can therefore obtain C2 up to a scale. Knowing that it is in SL(3), we can further
normalize it and obtain the matrix Cyz € (RoA)~TSO(3)(RoA)T. We thus obtain one element
Cy = RIC12Ry = A-TR,AT in A-TSO(3)AT. If we have another three such image frames, we
can obtain another element, say C,, in A~TSO(3)AT. According to Theorem 3, if the rotational
components in these two elements have different principal axes, the symmetric matrix S-1= AAT
is uniquely determined.

Although the above approach requires two groups of three images with constant translation
vectors, the algorithm is purely linear and a unique solution is guaranteed. Most importantly, it
provides an alternative way to the nonlinear Kruppa equation in the case that the camera has both
rotational and translational motion. In practice, the above approach can be approximately used as
long as the variation of the direction of translation is relatively slower, comparing to the variation
of the direction of the rotation.

Example 1 In order to obtain a group of image frames with constant (relative) translation p', one
needs to impose some constraints on the motion of the camera. In the case that the camera is
attached to a mobile robot with kinematics given by:

ien( ?) 9

where h € SE(3) and w,v € R3. In order for p'(t) to be constant, one may simply choose
w=oou, v=ou : (80)

where u € R3 is a fired unit vector and a;, a2 € R are constants. In this scheme, one does not
have to know w and v, and this constraint can be imposed by a low level controller which only works
whenever camera self-calibration is needed.

Comments 4 As we have seen above, translation causes problems for camera self-calibration while
rotation always serves as a positive factor. Interestingly, the situation is quite the opposite in the
case of reconstructing structure from motion where, as well-known, it is impossible to recover 3D
structure only from rotation and translation is absolutely necessary.

6.4 General case
Now let us go back to the general case and study the matrix Kruppa equation (59) and (60). Given
a unit fundamental matrix F = A—TRT ATp’ with p' of unit length, let C = A-TRT AT, define the

linear map o : R3%3 — R3*3 as:

0: X~ CTXC-X, XeR3¥3 (81) -
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and define the linear map 7 : R3%3 — R3%3 as:
Y P YD, YeR* (82)

The solution S~! of the normalized Kruppa equation (59) is then in the (symmetnc real) kernel of
the composition map:

roo: R¥® L R¥3 L, R3S, (83)

This interpretation of Kruppa equation decomposes effects of the rotational and translational parts
of the motion: if there is no translational motion, i.e. there is no map 7, the symmetric kernel of o
is just a two dimensional subspace according to Theorem 3; if the translational motion is non-zero,
the kernel is enlarged by composing the map 7. According to (57), in general, the symmetric real
kernel of the composition map 7 o ¢ is three dimensional.

Because of the unknown scale ), the solution space for the matrix Kruppa equation (60) is even
larger than that of the normalized one (59). It will be helpful to know under what conditions the
matrix Kruppa equation may have the same solution as the normalized one.

Lemma 5 Given a fundamen.al mairiz F = A“TRTATp’ with p' = Ap, a real symmetric matriz

X € R3%3 is g solution of FTXF = /\2p' Xp if and only if Y = A" X AT is a solution of
ETYE = \2pTY p with E = RTp.

The proof is trivial. This simple lemma however states a very important fact: given a set
of fundamental matrices F; = A'TRTATp with p} = Ap;,i = 1,...,n, there is a one-to-one
correspondence between the set of solutions of the Kruppa equations:

FTXF=Np Xgl, i=1,...,n. (84)
and the set of solutions of the equations:
ETYE: = 2fYp:, i=1,...,n (85)

where F; = RtT p; are essential matrices associated to the given fundamental matrices. Note
that these essential matrices are determined only by the camera motion, therefore conditions
of uniqueness of the solution of Kruppa equations should only depend on the camera
motion.

What do we gain from this observation? It immediately gives us some suggestion for possible
camera motions which may make the use of the Kruppa equation for self-calibration simpler.

Theorem 4 Given a camera motion (R,p) € SE(3), if the azis of the rotation R is perpendicular
to the translational motion vector p, then the matriz Kruppa equation:

pTRYRTp = N*pTYp (86)

has the same solutions of non-degenerate real symmetric Y as the normalized matriz Kruppa equa-
tion:

pTRYRTp = pTYp. (87)
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Proof: Since the columns of 5 span the subspace which is perpendicular to the vector p, the
eigenvector u of R is in this subspace. Thus we have:

WTRYRTu=2TYu = oTYu=24TYu (88)
Hence A2 = 1if Y is non-degenerate. »

Under the conditions given by the theorem, then there would be no solution for A in the Kruppa
equation (60) besides the true scale of the fundamental matrix. Then each fundamental matrix
can be immediately made unit by picking any (non-degenerate) solution of the associated Kruppa
equation. Once the fundamental matrices are unit, the problem of selving the calibration matrix
S-! from n > 3 normalized matrix Kruppa equations becomes a simple linear one!

Comments 5 Interestingly, in the case of human eyes, such conditions are closely satisfied: the
main rotation of human eyes and head are yaw and pitch which have azes perpendicular to the
direction of walking. As the theorem suggests, self-calibration in this situation is much easier than
roll motion is allowed. Similar cases can also often be found in vision-guided navigation systems.

We here summarize some of the conditions on (R, p;)’s such that equations in (85) may give
a unique solution for calibration. From the study of the constant rotation case, we know R;’s
cannot share a common principal axis otherwise the solutions would be a one-parameter family.
Consequently, one can actually show that full calibration is not possible if the camera motion
is restricted to any proper subgroup of SE(3) [14]. Also, due to exp (p;7)p; = —p;, in order that
equations given in (85) are not trivial, it is required that R; is not equal to exp (f;7). However, these
are just necessary conditions, and it remains an open problem that for given three fundamental
matrices under what (appropriate) conditions on the motion (R;, p;),¢ = 1,2,3 the associated three
Kruppa equations will have a unique (or finite number of) solution(s). Although it is claimed in [18]
that three is the minimum number of Kruppa equations needed, such conditions were not clearly
studied.

7 Differential case

So far, we have understood camera self-calibration when the motion of the camera is discrete -
positions of the camera are specified as discrete points in SE(3). In this section, we study its
differential (or continuous) version. Define the angular velocity @ = R(t)RT(t) € s0(3) and linear
velocity v = —@p(t)+p(t) € R®and. Let v' = Av € R3,w’' = Aw € R3. Differentiating the equaticn
(20) with respect to time t, we obtain:

F=ADA™r 40 (89)

where, to simplify the notation, we use r to replace the original notation ¢’ € M’.

7.1 General motion case

By the general case we mean that both the angular and linear velocities w and v are non-zero. Note
that r = Ax yields # = Ax 4+ Ax. Then (89) gives:

F=AOA P +Y = (V4x)xF= (v +x) x ADA”!r
= xTA ToA 'x+xTATOdA 'x = 0. (90)
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The last equation is called the differential epipolar constraint. Let s € R3%3 to be s =
1(@9 4 90). Define the differential fundamental matrix F' € R®® to be:

A TpA?
F' = ( A-TsA-! ) . (91)

F can therefore be estimated from as few as eight optical flows (x,x) from (90) (see Ma, Kosecka
and Sastry [12]).

Note that o' = A~T9A! and @ = A-T&A™!. Applying Lemma 1 repeatedly, we obtain
ATeA 1 = %A‘T(d)ﬁ +o0)A™! = %(A'TG)AT;' +PAGA™Y) = %(5'5-1& +USTIT).  (92)
Then the differential epipolar constraint (90) is equivalent to:
xTox + xT %(5'5-13' +0'S~1oNx = 0. | (93)
Suppose S~! = BBT for another B € SL(3), then A = BRy for some Ro € SO(3). We have:
KT 42T 3(5719 + TS 1Tk = 0
o Tox+ xT%(J'BBTJ' +0BBTO)x=0
& %xTB TRovB 'x+xTB T RowRouB~'x = 0. (94)

Comparing to (90), one can: st tell the camera A with motion (w, v) from the camera B with motion
(Row, Rov). Thus, like the discrete case, without knowing the camera motion the calibration can
only be recovered in the space SL(3)/SO(3), i.e. only the symmetric matrix S-! hence S can be
recovered.

However, unlike the discrete case, the matrix S cannot be fully recovered in the differential
case. Since S~! = AAT is a symmetric matrix, it can be diagnalized as:

S~'=RTZR,, R, e SO(3) (95)

where T = diag{01, 02,03}. Then let w” = Ryw' and v" = Ryv’. Applying Lemma 1, we have:

v = RTv'R,
1 ~ -~ ~ ~ - -~ - -
3 WS W +v'S™ W) = RT{% (W'Sv" + v"ZW" Ry, (96)

Thus the differential epipolar constraint (90) is also equivalent to:
~ 1 - s~ -~ -
(Ryx)Tv" (Ryx) + (Rlx)T-z-(w"Ev” + v"Zw"){R1x) = 0. 97)

From this equation, one can see that there is no way to tell a camera A with AAT = RTER, from
a camera B = R; A. Therefore, only the diagonal matrix Z can be recovered as camera parameters
since both the scene structure and camera motion are unknown.

Note that T.is in SL(3) hence 010203 = 1. The singular values only have two degrees of
freedom. Hence we have: '
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Theorem 5 Consider an uncalibrated camera with an unknown calibration matriz A € SL(3).
Then only the eigenvalues of AAT can be recovered from the bilinear differential epipolar constraint.

If we define that two matrices in SL(3) are equivalent- if and only if they have the same singular
values. The intrinsic parameter space is then reduced to the space SL(3)/ ~ where ~ represents
this equivalence relation. The fact that only two camera parameters can be recovered was known
to Brooks, Chojnacki and Baumela [3]. They have also shown how to do calibration for certain
matrices A with only two unknown parameters. But the intuitive geometric reason was hidden in
their algebraic geometry arguments.

Comments 6 It is a little surprising to see that the discrete and differential cases are different
for the first time, especially knowing that in the calibrated case these two cases have ezactly parallel
theories. We believe that this has something to do with the map:

7A:R3X3 - R3x3
B + ABAT

where A is an arbitrary matriz in R3%3, Let s0(3) be the Lie algebra of SO(3). The restricted
map Y4 lso(3) is an endomorphism while ¥4 |so(3) is not. Consider y4 lso3) to be the first order
approzimation of v4 |so(3). Then the information about the camera matriz A will not fully show up
until the second order term of the map v4. This also ezplains why in the discrete case the (Kruppa)
constraints that we can get for A must be nonlinear.

Comments 7 From the above discussion, if one only uses the (bilinear) differential epipolar con-
straint, at most two intrinsic parameters of the calibration matriz A can be recovered. However, it
is stiil possible that the full information about A can be recovered from multilinear constraints on
the higher order derivatives of optical flow. A complete list of such constraints are given in Ma,
Kosecka and Sastry [11] or Astrom [1].

7.2 Cases with pure translation or pure rotation

Since full calibration is not always possible in the general case, we need to know if it is possible in
some special cases.

First we consider the case that the camera does pure translation, i.e. the angular velocity w is
always zero. In this case, the differential fundamental matrix F’ has the form

P (1) (2),

Only the vector v/ = Av is recovered. As in the discrete case, there is no way to recover the
matrix A from it without knowing the actual linear velocity v. Therefore, rotational motion is
absolutely necessary for camera self-calibration in the differential case.

Another special case is when there is only rotational motion, i.e. the linear velocity v is always
zero. In this case the differential fundamental matrix is no longer well defined. However from the
equation (89) we have:

F=A0A™r = Ax 4 Ax= A0 x
= %= %AOA x. (99)
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This equation gives two independent constraints on the matrix AdA~!. Given as few as four optical
flow measurements (x, ), one may uniquely determine the matrix AGA™! with w normalized, i.e.
|lwll = 1. Such normalization is possible because A A~! has the same eigenvalues as . Then the
calibration problem becomes how to recover S = A~TA-Y or S~! = AAT from matrices of the form
A®A~1. We may assume w is always normalized. Notice that this problem is exactly a differential
version of the discrete pure rotation case.

Let C' = A®A™! € R3%3, Then we have:
SC'= A ToA =& (100)

where w' = Aw. Thus SC' = —(SC")T, i.e. SC' 4+ (C")TS = 0. That is, S has to be in the kernel
of the linear map:

L':C3 5 ¢
X ~» C)X+xC (101)

This is also a Lyapunov map. If w # 0, the eigenvalues of & have the form 0, i, —ic: with & € R.
Let the corresponding eigenvecturs are w,u, % € C*. According to Callier and Desoer [4], the null
space of the map L' has three dimensions and is given by:

Ker(L') =span{S; = A Tww*A™!, 8, = A Tuw'A™", 53 = A Tuw" A7} (102)
As in the discrete case, the symmetric real S is of the form S = 85;+7(S2+S3), i.e. the symmetric
real kernel of L’ is only two dimensional. We denote this space as SRKer(L’). We thus have:

Lemma 6 Given a matriz C' = AOA™! with w € S2, the symmetric real kernel associated with
the Lyapunov map L' : (C')TX — XC' is of 2 dimension.

Similarly to the proof of the discrete case, we also obtain:

Lemma 7 Given matrices C} = A;A™! € R¥,j = 1,...,n with |lwj]| = 1. If three of the
n vectors wj,j = 1,...,n are linearly independent, then there is a unique real symmetric matriz
S € SL(3) satisfying (C;-)TS +8C=0,j=1...,n hence S = A~TA-L,

Following this lemma, we further have:

Theorem 6 (Sufficient and necessary condition of unique calibration) Given matrices C';- =
A;A™! € R332, = 1,...,n with |w;|| = 1. The real symmetric matriz S = A-TA-! € SL(3)
is uniquely determined if and only if al least two of the n vectors wj,j = 1,...,n are linearly
independent.

Proof: We may assume w; and wo are linearly independent. As the discrete case, we construct
a third matrix of the form A®A~1. We may define the matrix to be C,, € R3*3:

Chi1 = A0t AT AR ATY — A A1 Aw  AT! = Aliy, 9] A (103)
where the bracket operator [-, ] is the Lie bracket on the Lie algebra so(3) of the Lie group SO(3):
(@1, D) = @1 D2 — D201 = Wng: (104)

where wn41 = w) X wz. One may refer to Murray, Li and Sastry [19] for a more detailed discussion
on the Lie algebra so(3). Clearly, wn41 is linearly independent of wy,w,. This reduces to the case
of Lemma 7. [ ]
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8 Time-varying case

So far we have only been dealing with the case when all intrinsic parameters of the camera are
fixed (or time-invariant). In this section, we study briefly the case when intrinsic parameters of
the camera are time-varying and show how the theory of the time-invariant case may help us to
understand the time-varying problem. In particular, various forms of the Kruppa equation in the
time-varying case will be derived.

Suppose the motion of the camera between two times ¢; € R and t; € Ris
(R(ti»tj)’p(ti’t:i))v R(thtj) € 50(3),1)(12,', t.i) € RS‘

that is:

q(t:) = R(t:,;)q(t;) + p(tist5)- - (105)

Suppose the calibration matrix at time ¢; is A(t;) € SL(3) and at time ¢; is A(t;) € SL(3). Then
we have the time-varying version of the epipolar constraint:

x(t5)T AT (¢5) RT (8, 8;) AT (6P (8, 85)x (85) = 0 (106)

where p'(ti,t;) = A(t:)p(ti,t;) and x(;) and x(¢;) are images of the point ¢ at time ¢; and t;
respectively. Then we can estimate the fundamental matrix -

F(ti,t;) = A(t,-,tj)A-T(tj)RT(t.-,t,-)AT(t,-);?(t,-,t,-) € R3%3 (107)

from the epipolar constraint, where A(¢;,t;) € R is an unknown scalar since we let ?'(ti,t;) be of
unit length. Then we have tne time-varying Kruppa equation: :

F(tit;)T Al AT () F(ti, 1) = Mt 87 (8, 85) A AT ()7 (8 15)- (108)
Define S~!(t) = A(t)AT(t). The time-varying Kruppa equation becomes:
Pt t;)TS™ () Flti 1) = Nt t)F (1) E)P (tirts). (109)
As in the time-invariant case, we also have the wedge product form:
(F(t,£5)S 7 ) F(tis ) A (7 (86 15)S 7 (03P (1, 1)) =0 (110)

where we view a 3 x 3 matrix as a vector in R® and the wedge product between two vectors in R®
is then defined as usual. An interesting feature of the wedge product form is that it is bilinear in
the two matrices S~(t;) and S~1(t;). Therefore, knowing S~ (ti—¢),k = 1,2,3, S~!(t;) can be
estimated linearly from the equations:

(FT(t,-,t.-_k)S‘l(t,-_k)F(t,-,t;_k)) A (}?’T(t,',t;_k)s-l(ti);’(tg,t,'..;;)) =0, k=123 (111)

This suggests a linear recursive scheme for estimating time-varying calibration. It requires paring
the current frame with the previous three frames with known calibrations. Experiments show that
such linear scheme is not numerically stable and is very sensitive to errors. However, to directly
solve the time-varying Kruppa equation is a highly nonlinear problem and it will be our future

research to search for a fast and stable algorithm. '
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As in the time-invariant case, we need to know conditions on a unique solution of the time-
varying Kruppa equaticn. Let B(t;,t;) = A(t;) A" (t;), and:

F(ti, t;) = F(ti, t;) B~ (tint5),  Btist;) = Blti, t5)p (¢ t5)- (112)

Note that for fixed t;, the so defined f’(t,',t_,-) has the form of a fundamental matrix in the time-
invariant case:

F(ti, t;) = Mti, t;) AT (8;)RT (84, 1) AT (85)B(ti, t5) € R3S, (113)

Hence, knowing A(t;), the symmetric matrix S~1(¢;) is a solution of the Kruppa equations associ-
ated to all such time-invariant fundamental matrices for ¢; # ¢;:

FT (14,8571 F(tir t5) = N (i, 650D (8, £5)S2(85)B (8, 15)- (114)

This set of equations is obtained as if the calibration is fixed as S~!(t;). .Conditions on the
uniqueness of S~!(¢;) can then be studied as in the time-invariant case, which, as we have known,
only depend on the relative motions between the j** and i*# frames for all ¢; # t;.

9 Discussions and future work

In this paper, we have proposed a geometric approach for the study of camera self-calibration.
The intrinsic geometric meanings of fundamental matrices and the Kruppa equation (and the time-
varying Kruppa equation) are discovered in a unified geometric framework, so are their relations
with various results concerning camera self-calibration with respect to special camera motions (such
as the pure rotation case). Not only it is shown that rotation about two different axes is necessary
and sufficient for a unique calibration, but also the relationship between rotation/translation and
the Kruppa equation is clearly explained.

As in several of our other papers [12, 13, 11], we investigate differential case as the limit of the
discrete case. For camera self-calibration, although essential similarities still exist between these
two cases, there is no differential version of the Kruppa equation — the one we have will be a
degenerate one which can only determine (at most) two intrinsic parameters of the camera. This
also explains the nonlinearity of the Kruppa equation.

Although it has been pointed out in this paper that conditions on the uniqueness (or finiteness)
of solutions of the Kruppa equations only depend on camera motion, sufficient conditions are not
yet given for general case — one may refer to [14] for a partial answer about unique calibration as
well as structure reconstruction from fundamental matrices. On the other hand, special camera
motions are studied in this paper for understanding calibration only. In [14], subgroups of SE(3)
will be systematically studied for recovering motion, structure and calibration simultaneously.

It is very interesting to see in this paper that Lyapunov maps show up in the proof of necessary
and sufficient conditions of unique calibration. Properties of the Lie group SO(3) and its Lie algebra
s0(3) also play important roles in the proof. These are subjects well studied in system theory or
robotics. Their presence in the theory of self-calibration suggests that multi-view geometry, system
theory and robotics share a common mathematical ground.

Although in this paper the self-calibration theory is only developed for the Euclidean case, most
theorems can be easily generalized to a larger class of Riemannian manifolds (for example see Ma
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and Sastry [15]). In fact, it may be shown that in general, multi-view geometry is about studying
certain intrinsic geometric properties of certain Lie groups (isometry groups of the corresponding
spaces). Most of the important objects encountered in multi-view geometry can then be interpreted
intrinsically. In a three dimensional Euclidean space for example, the associated Lie group is SE(3)
and the associated isotropy subgroup SO(3). Multi-view geometry in this space is then about the
study of the quotient space SE(3)/SO(3). For an axiomatic formulation of multi-view geometry
based on Lie groups, one may refer to Ma, Shakernia, Kosecka and Sastry [16]). In this way, one
may convert most problems in multi-view geometry to some pure differential geometry problems.

Skeletons of algorithms can already be derived from the theories presented in this paper. We
will give a more detailed analysis in another paper, where numerical and statistical issues will be
systematically addressed for the problem of solving the time-invariant and time-varying Kruppa
equations.
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