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Abstract

The necesssury and sufficient conditions for being able to estimate scene structure, motion
and camera calibration from a sequence of images are very rarely satisfied in practice. What
exactly, then, can be estimated in sequences of practical importance, when such conditions are
not satisfied? In this paper wegivea completeanswer to this question. For everycsuneramotion
that fails to satisfy the conditions for unique reconstruction, we give an explicit characterization
of the ambiguity in the reconstructed scene, motion and calibration. When the purpose of the
reconstruction is to generate novel views of the scene, we characterize the vantage points that
give raise to a valid Euclidean reprojection. We also characterize viewpoints that make the
re-projection invariant to the ambiguity.

The key to our findings lies in a powerful result on the dependency of multilinear constraints:
we prove that the coefficients of multilinear constraints involving any number of images can be
generated from coefficients of bilinearconstraints alone. Therefore, all the analysis involving n
views can be carried out using two views at a time.

Key words: multilinear constraints, camera self-calibration, structure from motion, reprojection.

1 Introduction

Reconstructing spatial properties of a scene from a number of images taken by an unknown camera
is a classical problem in Computer Vision. It is particularly important when the camera used
to acquire the images is not available for calibration, as for instance in video post-processing, or
when the calibration changes in time, as in vision-based navigation. If we represent the scene by a
number of isolated points in three-dimensional space and the imaging process by an ideal perspective
projection, the problem can be reduced to a purely geometric one, which has been subject to the
intense scrutiny of a number of researchers during the past ten years. Their efforts, which we discuss
in more detail in section 1.2, have led to several important and useful results. For instance, we now
know that the dependency among two or more images of the same points are described by multi
linear constraints, and we have necessary and sufficient conditions for being able to reconstruct
the three-dimensional position of the points, the motion of the camera and its calibration (up to a
global scale factor). The problem is that such conditions are almost never satisfied in sequence of
images of practical importance. In fact, they require that the camera undergoes rotation about at
least two independent axes, which is rarely the case both in video processing and in autonomous
navigation.

In this paper we address the question of what can be done when the necessary and sufficient
conditions for unique reconstruction are not satisfied. In particular:
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(i) For all the motions that do not satisfy the conditions, to what extent can we reconstruct
structure, motion and calibration?

(ii) If the goal ofthe reconstruction is to produce a new view ofthe scene from a diiferent vantage
point, how can we generate images of a "valid" Euclidean scene?

On our way to answering these questions, we pause to reflect on the nature of multi-linear con
straints. While constraints involving two images at a time (fundamental constraints) are well un
derstood and involve clean notation and geometric interpretation, muti-linear constraints are more
difficult to work with and to interpret. It seems therefore natural to ask the following question

(iii) Do multi-linear constraints carry information that is not contained in bilinear ones?

These are fairly fundamental questions that have been addressed by several researchers, as we
discuss in section 1.2. Before doing that, however, we want to highlight the answers given on this
paper, so that the reader know what to expect (and what not to expect) from it.

1.1 Outline of the paper and its contributions

The main contributions of this paper can besummarized as follows. Concerning question (iii), this
paper proves that the information encoded in trilinear and quadrilinear constraints is dependent
on that encoded in bilinear ones. Bilinear constraints, also known as "fundamental" or "epipolar",
are therefore the only independent ones and truly deserve their name. This is discussed in section
2. There we also discuss the role of multilinear constraints with regards to singular configurations
of points. The well-known, and conservative, answer to question (i) is that structure can always
be recovered up to a global projective transformation of the three-dimensional space. However,
there is more to be said, as we do in section 3. There, we first classify all the subgroups of the
Euclidean group ofrigid motions and, for each ofthem, we give an explicit characterization ofthe
ambiguity in the reconstruction ofscene structure and camera motion and calibration. Question
(ii) is answered in section 4, where we characterize the set of vantage points that generate "valid"
images ofthe scene. In section 5 we characterize the ambiguities in the reconstruction associated
to subgroups ofthe calibration group. This is important when (part of) thecalibration parameters
change across images, as for instance in a zooming camera.

These results have great practical significance, because they quantify precisely to what extent
scene structure, camera motion and calibration can be estimated in most sequences, for which
many of the results available up to date do not apply. In addition to that, we clarify the role of
multilinear constraints and their relationship to bilinear ones.

Granted the potential impact on applications, this paper is mainly concerned with theory. We
address neither algorithmic issues, nor do we perform experiments of any sort: the validation of
our statements is in the proofs. We have tried to keep our notation as slender as possible, avoiding
any tensorial notation and projective geometry. Our tools are borrowed from linear algebra and
some differential geometry, although all the results should be accessible without background in the
latter.

1.2 Relations to previous work

The study ofambiguities naturally arise in the problem ofmotion and structure recovery and self-
calibration from multiple cameras. There is a vast body of literature in this field; some of the
earliest contributions are due to Carlsson [4], Faugeras and Mourrain [7], Hartley [8], Triggs [20],



Shashua [19, 21], Luong et al. [11]. Here we only comment on some of the work that is most closely
related to this paper, while we refer the reader to the literature for more details, references and
appropriate credits.

It has long been known that in the absence of any a priori information about motion, calibra
tion and scene structure, reconstruction can be performed only up to a projective transformation
[6], Utilizing additional knowledge about the relationship between geometric entities in the im-
age (e.g. line parallelism, absolute conic) one can stratify the different levels of reconstructions
from projective all the way to Euclidean [6, 3, 5, 18]. At such a level of generality, the conditions
on the uniqueness and existence of solutions have not been established and the algorithms are
computationally costly, often exhibiting local minima [10]. Natural continuations of these efforts
assumed cases where the motion and/or calibration were restricted either to planar or linear mo
tion [16, 2] and provided techniques for affine reconstruction. In [9], Heyden and Astrom consider
the skew-frew camera model and use bundle adjustment methods to estimate the camera motion
and (time-varying) camera intrinsic parameters simultaneously. In [17], Pollefeys et al. show the
effectiveness ofa technique for (partial) self-calibration using a nonlinear iteration to estimate focal
length and principal point.

In [1], trilinear constraints are exploited to help generate reprojected images for a calibrated
camera. In the case of a partially uncalibrated camera, such a method may have to deal with
issues such as whether the reprojected image is still "valid". Werman and Shashua [21] studied
algebraic relationship among constraints of multiple images using elimination methods; however
"informational" dependence among multilinear constraints has not been assessed.

2 Dependency of multilinecir constraints

2.1 Notation

We model the world as a collection of points in three-dimensional Euclidean space, which we
represent in homogeneous coordinates as g = (gi,g2i93> 1)^ € - The perspective projection of
the generic point onto the two-dimensional image plane is represented by homogeneous coordinates
X 6 that satisfy

A(t)x(t) = A(t)g(t)q, t eR (1)

where X{t) € R is a scalar parameter related to the distance of the point q from the center of
projection and the non-singular matrix A{t) - called "calibration matrix" - describes the geometry
ofthe camera. Without loss ofgenerality we will re-scale the above equation so that the determinant
of A is one. The set of 3 x 3 matrices with determinant one is called Special Linear group and
indicated by A{t) € SL{S). The rigid motion of the camera g{t) is represented by a translation
vector p(t) e and a rotation matrix i?(t), that is anorthogonal matrix with determinant equal to
one. Such matrices form a group called Special Orthogonal group and indicated by R{t) € 50(3),
and g(t) = (p(t),i2(t)) G5jE(3), the special Euclidean group of rigid motion in R^. The action of
g(t) on the point q is given by g{t)q = R{t)q + p(t). In equation (1) we will assume that x(t) is
measured, while everything else is unknown.

When we consider measurements at n different times, we organize the above equations by
defining

= t = l,2 n, (2)



which we will assume to be full-rank. rank(Mi) 3 for i = 1,... , n, so that

/ x(ti) 0 0 \ f Hh) \ f Ml \
0 X(t2) • 0 X{t2) M2

9

V 0 0 • •• *(«») / K J \Mn )

which we re-write in a more compact notation as

XX = Mq

we call M € the motion matrix.

2.2 Constraints on multiple images

Let m,- € i= 1,..., 4 denote the four columns of the matrix M and Xj € i = 1,..., n
be the n columns of the matrix X. Then the coordinates x(t,) represent the same point seen from
different views only if they satisfy the following wedge product ^equation:

mi A m2 A ms A m4 A Xi A •• •A X„ = 0.

(3)

(4)

(5)

This constraint, which is multi-linear in the measurements x(fi) simply expresses the fax:t that
X must be contained in the span of M. Constraints involving four images are call quadrilinear,
constraints involving three images are called trilinear, and those involving two images are called
bilinear or fundamental In general, coefficients of all the multilinear constraints are minors of the
motion matrix M. As it has been proven by Triggs [20] et a/., constraints involving more than four
frames are necessarily dependent of quadrilinear, trilinear and bilinear ones.

In this section we go one step further to prove that the information encoded in trilinear and
quadrilinear constraints is dependent on that encoded in bilinearones.

2.3 Dependency of trilinear and quadrilinear constraints on bilinear ones

Consider the case n = S and, for the moment, disregard the internal structure of the motion
matrix M € Its columns can be interpreted as a basis of a four-dimensional subspace of the
nine-dimensional space. The set of A;-dimensional subspaces of an m-dimensional space is called a
Grassmannian and denoted by G(m, k). Therefore, M is an elementofG(9,4). By just re-arranging
the three blocks M,-, i = 1 ...3 into three pairs, (Mi,M2), and (M2,M3), we define a
map <f> between G(9,4) and three copies ofG(6,4)

<f>'G(9,4)

Ml

M2
Mz

The question of whether trilinear constraints are independent of bilinear ones is tightly related to
whether these two representations of the motion matrix M are equivalent, in the sense that they

'For the mathematically inclined reader wedge product Ais a specialized version of a tensor product over the
space ofa sum ofallalternating k-tensors A*(V) which preserves thealternating property; k-tensor is a multilinear
function f : V x V x .. .V -¥ R] the alternating tensor is a tensor / which satisfies the following skew-symmetric
property / = (—1)*'®" '̂̂ ^/, where f isa a-permutation of/, e.g. an alternating 2-tensor satisfies f{x,y) = —f(y,x)
for X, y € R". Thenotation allows to state some oftheknown results in a compact way and mediates elegant proofs.

G(6,4)xG(6,4)xG(6,4)

(( Ml \ ( M2\ (Ml
\\M2 )'\M3 J'\M3 ))'

(6)

(7)



span spaces of the same dimension. In order to answer this question we introduce the following
lemma.

Lemma 1 The map 4> : G(9,4) (j(6,4)^ above is injective if Ker(Mi) 6 = 1,2,3 are
linearly independent.

Proof; We want to show that if <I>(M) and (f>(M') span the same subspace, then so do M
and M'. Now suppose this is not true. If <I>(M) and ^(M') span the same subspaoe, there must
exist non-singular matrices (?i,G2,G3 € GL{4) ^such that (j>{M')i = <l){M)iGi, i = 1,2,3. Then
MiGi = MiGs = M2G1 = M2G2 = M3G2 = M3G3 = and therefore

Mi(Gi-G3) = 0, M2(Gi-G2) = 0, M3(G2-G3)=0. (8)

Since Ker(Mi)^i = 1,2,3 are linearly independent, we have Gi = G2 = G3 and therefore M and
M' span the same subspace. In other words, they represent the same element in G(9,4). Hence
the map is injective. •

Since the coefficients in the multilinear constraints are homogeneous in the entries of each block
Mi, the motion matrix M is only determined up to the equivalence relation:

M - M' if3\i e R%Mi = AiM/, i = 1,... ,n (9)

where R* = R \ {0}. Thus the motion matrix is only well-defined as an element of the quotient
space G(3n,4)/ which is of dimension (lln - 15), ^as it was already noted by Triggs [20].

We are now ready to prove that trilinear coefficients depend on bilinear ones.

Theorem 1 (Dependency of trilinear coefficients) Given three views ofa point (n = 3^, the
coefficients of all bilinear constraints (or equivalently the corresponding fundamental matrices)
uniquely determine the motion matrix M (as an element ofG(9,4)/ '^) given that Ker{Mi)^i =
1,2,3 are linearly independent.

Proof: It is known that between any pair of images (i, j) the motion matrix:

(JJ;)€G(6,4), (10)
is determined by the corresponding fundamental matrix Fij up to two scalars A^, Xj:

(J;;;^;)€G(6,4), a,€r*. (11)
Hence all we need to prove is that the map:

^:(G(9,4)/~) (G(6,4)/~)3 (12)

is injective. To this end, assume ^(M) =^(M'); then we have that, after re-scaling, ( ) =
M? )«•• ( «i ) - ( «"•

^GL(m) stands for the general linear group of m x m non-singular matrices.
®The Grassmannian G(3n, 4) has dimension (3n- 4)4 = 12n - 16. The dimension of the quotient space is n - 1

smaUer since the equivalence relation has n —1 independent scales.



Thisyields Mi(AiGi —Gz) = 0, M2(A2(j2 ~^i) = 0) M3(A3G3 —G2) = 0. Therefore there exist
Ui € i = 1,2,3 with each column of Ui is in Ker(Mi) such that:

G3 —AiG^i = t/i, Gi —A2G2 —C^2? G2 ~ ^zGz —Uz' (13)

Combining these three equations, we obtain:

(1 —AiA2A3)Gi = A2A3?7i + A2C/3 + U2' (14)

The matrix on the right hand sideof the equation has a non-trivial null-space sinceits columnsare in
span{A'er(Mi),/<'er(M2),/<'er(M3)} which has dimension three. However, Gi is non-singular, and
therefore it must be A1A2A3 = 1. This gives AiGi —G3 = —Ai(A2G2 —(?i) —AiA2(A3G3 —G2). That
is, the columns of AiGi —G3 are linear combinations of columns of A2G2 —Gi and A3G3 —G2- But
Ker(Mi)^i = 1,2,3 are linearly independent. Thus we have AiGi = G3, A2G2 = Gi, A3G3 =
G2. This implies

M[ \ ( AiMi \
= M2 Gi. (15)

M3 / \ A1A3M3 j

which means that M' and M are the same, up to the equivalence relation defined in equation (9).
Therefore, they represent the same element in G(9,4)/ which means that the map 0 is injective.

Comment 1 While the above proofshows that the map ^ can be inverted, it does not provide an
explicit characterization of the inverse. Such an inverse can in principle be highly non-linear and
conditioning issues need to be taken into account in the design of estimation algorithms.

Comment 2 The reader familiar with the literature on multilinear geometry may be a bit surprised
at our statements, since it is often written that there are three independent trilinear constraints in n
views of a point. This only concerns algebraic dependency, and is not in contrast with our findings.

What the literature refers to is the counting of the number of independent generators of the ideal
associated with trilinear constraints. In other words, it is the count of the number of independent
constraints on the coordinates of the points x(t,).

Now, such constraints could be expressed through bilinear constraints, or through trilinear con
straints. Our claim states that the coefficients of trilinear constraints are dependent on the coef
ficients of bilinear ones. Note that our statement concerns coefficients of the constraints, not the
coordinates of the points.

To the risk of being tedious, we emphasize that we are not saying that two views are sufficient
for reconstruction! We claim that given n views, their geometry is characterized by considering
only combinations of pairs of them through bilinear constraints, while trilinear constraints are of
help only in the case of singular configurations of points (see comment 4).

In the case of four images, n = 4, in order to show that coefficients in quadrilinear constraints
also depend on bilinear ones, one only needs to check that the obvious map from G(12,4)/ ~ to
(G(9,4)/ ~)'̂ is injective. The proof directly follows that of the three frame case. We therefore
state this as a corollary to the above theorem



Corollary 1 (Dependency of quadrilinear coefficients) In the case of four frames, coeffi
cients in all the bilinear constraints (or equivalently the correspondingfundamental matrices) uniquely
determine the motion matrix M as an element in G(12,4)/ given that Ker{Mi), z= 1,..., 4 are
linearly independent.

Mathematically, the theorem states that, under the given conditions, the maps:

^,:(G(12,4)/~) (0(9,4)/^)" (16)
,^2:(G(12,4)/~) (G(6,4)/~)« (17)

obtained by rearranging the blocks of M are both injective.

Comment 3 In corollary 1, the condition that Ker{Mi),i = 1,... ,4 are linearly independent is
not necessary. A less conservative condition is that there exist two groups of three frames which
satisfy the condition given in Theorem 1.

Both Theorem 1 and Corollary 1 require that the one-dimensional kernels of the matrices Mi,i =
1,... ,n are linearly independent. The following Lemma gives a geometric interpretation of this
condition.

Lemma 2 The kernels of the matrices Mi,i = 1,... ,7i with n < 4 are linearly independent if
and only if the center ofprojection of the cameras generates a hyper-plane of dimension n-1. In
particular, when n = 3, the three camera centers form a triangle, and when n = 4, the four camera
centers form a tetrahedron.

Proof: Since A(ti) is non-singular, it does not change the kernel of M,. Express the camera po
sitions with respect to the first camera frame, so that R{ti) = Isxs^piii) —0 and Mi = ^=
2,3,4. The kernels of Mi for z= 1,2,3,4 are then given by (-pjRi,!)'^. In this notation, the
vector —Rjpi 6 is exactly the position of the i^^ camera center (with respect to the first frame).
•

Comment 4 (Critical surfaces) Although we have shown that the coefficients ofmultilinear con
straints depend on those of bilinear ones, we have assumed that the coefficients of bilinear con
straints, or the corresponding fundamental matrices, are uniquely determined by the epipolar geom
etry. However, this is not true when all the points lie on critical surfaces. In this case, as argued
by Maybank in [18], we may obtain up to three ambiguous solutions from the bilinear constraints.
This is the only case when trilinear and quadrilinear constraints provide useful information. On
this topic, see also [14]-

In order to extract calibration and motion parameters from the motion matrix, one needs to study
how these parameters are embedded in the motion matrix, i.e. study the map from the parameter
space to C(3n,4)/ Now, knowing that bilinear constraints contain all the useful information on
the motion matrix, we only need to study how the calibration and motion parameters are encoded
in the fundamental matrix. Using the three frame case as an example, mathematically, we need
to check if the map from the parameter space to (C(6,4)/ ~)^ is injective. If such a map is not
injective, then calibration and motion can be reconstructed only up to a subset of the parameter
space.

Solving the full calibration problem in the case of general SE{S) motion requires solution to
Kruppa's equations, which has been shown to be difficult and numerically ill-conditioned [10]. In
the following section we will consider a simplified problem, where we restrict the class of motions
and study to what extent can one recover calibration parameters.



3 Reconstruction under motion subgroups

The goal of this section is to classify all the motions that do not allow unique reconstruction
of structure, motion and calibration, and for each of them to characterize the ambiguity in the
reconstruction. We first quote some results that will be used repeatedly in this section.

3.1 Preliminaries

So far the only restriction we have imposed on the calibration matrix A is that it is non-singular
and is normalized as to have det(i4) = 1. However, this is not a suitable representation, for different
matrices A correspond to the same projection model. In fact, if we consider any rotation matrix
Ro and let B = Ai^o^ ^om BRoq = BRoRqo + BRop we can conclude that a point g, moving
under (R,p) and viewed with a calibration matrix A cannot be distinguished from a point Roq
moving under (RqRRq, Rop) with calibration matrix B. In other words, A can only be determined
up to an equivalence class of rotations^, that is A 6 SL(3)/50(3). Ma et al. ([12]) have shown
that, given a sequence of images ofcorresponding points, the calibration matrixA is not affected by
translation, and is uniquely determined (as an element of SL(3)/50(3)) if and only if the rotation
R spans at least two independent directions. Since we often refer to this result, we quote it here as
a lemma.

Lemma 3 (Ma-Kosecka-Sastry) Consider n uncalibrated images having (purely rotational) mo
tion matrices Mi = ARiA~^,i = 1,..., n, and call u* £ the real eigenvectors of Ri. Then the
calibration matrix A is uniquely determined (up to an equivalence class of rotations) if and only if
at least two of the eigenvectors u*,i= 1,..., n are linearly independent.

The condition on the independence of the rotation axes has been established previously by [11] for
the case of affine structure and general class of motions.

3.2 Subgroups of the special Euclidean group

The first step in our analysis consists in classifying all continuous Lie subgroups of SE{3);. It is a
well known fact ofdifferential geometry® that all such subgroups can be generated by left (or right)
invariant distributions, and therefore by proper subspaces of the Lie algebra se(3). Given a proper
subspace A C se(3), let A be the smallest subspace of se(3) containing A which is involutive, i.e.
V V,W G A their Lie bracket [V, W] = VW - WV is also in A. Then the Lie subgroup generated
by A is given by: ®

GA = <g = exp(V) I y € A > . (18)

On the other hand, every continuous Lie subgroup can be constructed in this way. Since se(3) is
finite dimensional, the number of proper Lie subalgebras is finite, and so is the number of continuous
Lie subgroups of S£'(3). It is then readily seen that a complete list (up to conjugation) of these

^A representation of the quotient space is given, for instance, by upper-triangular matrices; such a representation
is is often used in modeling calibration matrices.

®The reader who is unfamiliar with differential geometry can skip this paragraph without loss of continuity.
®The exponentisJ ofa matrix V € isdefined to be: exp(V) = 7+ ^4- -f- ^ + ••••



subgroups is:

Translational Motion: (R^, +) and its subgroups
Rotational Motion: (50(3), •) and its subgroup (50(2), •)
Planar Motion: SE(2)

Cylindrical Motion: (50(2),-) x (R,+)

Planar + Elevation: SE{2) x (R,+)

We are now ready to explore to what extent scene structure, camera motion and calibration can
be reconstructed when motion is constrained to one of the above subgroups. In other words,
we will study the generic ambiguities of the reconstruction problem. In what follows, we use
q(t) = (gi(0> 92(0) 93(0)^ € to denote the 3D coordinates of the point q= (91,92) 93,1)^ € R^
with respect to the camera frame at time t:

q(t) = (R(t),p(t))q. (19)

3.3 Translational motion (R^ and its subgroups)

Pure translational motion is generated by elements of se(3) of the form:

/ 0 0 0 wi \
0 0 0 U2

0 0 0 W3
\ 0 0 0 0 /

The coordinate transformation between different views is given by:

Aq{t) = Aq(to) + Ap{t), p{t) € R^ (21)

It is well known (see for instance [12]) that the calibration A 6 51(3) cannot be recovered from
pure translational motion, and therefore the corresponding structure q and translational motion p
can be recovered only up to the unknown linear transformation A of the projective coordinates.
We therefore have the following

Theorem 2 (Ambiguity under R^) Consider an uncalibrated camera described by the calibra
tion matrix A € 5L(3), undergoing purely translational motion R^ (or any of its nontrivial sub
groups) and let B be an arbitrary matrix in 5L(3). If the camera motion p € R^ and the scene
structure 9 € R^ are unknown, then B, B~^Ap andB'^Aq are the only generic ambiguous solutions
for the camera calibration, camera motion and the scene structure respectively.

Comment 5 Thus the group 5L(3) can be viewed as characterizing the generic ambiguity of re
construction under pure translation, and will therefore be called the "ambiguity subgroup".

In section 2 we have argued that multilinear constraints do not provide additional information. We
verify here that, indeed, multilinear constraints do not reduce the generic ambiguity, since

0 xo 0 0 \ . 1„ S / B 0 xoO 0\
Api 0 X, 0 ( ")= B Api 0 x, 0 (22)
Ap2 00 X2 /^ \ B Ap2 0 0 X2 /

and therefore the two sides of the equation span the same subspace. Hence trilinear constraints are
identical for all the ambiguous solutions. One can easily check that the same is true for quadrilinear
constraints.

ui,W2,W3€R. (20)



3.4 Rotational motion (50(3))

Pure rotation is generated by elements of se(3) of the form:

( 0 U>3 -iJ2 0 \
—W3 0 CJl 0

U)2 -Ui 0 0

I 0 0 0 0/

(23)

If any two of zero, the subgroup 50(2) is generated instead. The action of 50(3)
transforms the coordinates in different cameras by:

Aq{t) = AR(t)q(to), R(t) e SO(d). (24)

According tolemma 3, the calibration Acan be recovered uniquely, and so can the rotational motion
R(t) e 50(3). However, it is well known that the depth information of the structure cannot be
recovered at all. We summarize these facts into the following:

Theorem 3 (Ambiguity under 50(3)) Consider an uncalibrated camera with calibration ma
trix A € 5L(3) undergoing purely rotational motion 50(3) and let Xbe an arbitrary (positive)
scalar. If both the camera motion R G50(3) and the scene structure q are unknown, then
A, R and X^q are the only generic ambiguous solutions for the camera calibration, camera motion
and the scene structure respectively.

Comment 6 The multiplicative group (K"'", •) can be viewed as characterizing the ambiguity of the
reconstruction under pure rotation. Note that such a group (R+, •) acts independently on each point.
More properly, for each point the group consists of all smooth functions <f>: RIP® —> R"*".

Asfor the case of pure translation, there is no independent constraint among three or more images.

3.5 Planar motion {SE(2))

While the previous two cases were ofsomewhat academic interest and the theorems portray well-
known facts, planar motion arises very often in applications. We will therefore study this case in
some detail.

Let ei = (1,0,0)'' € R^ €2 = (0,1,0)'' GR^ and 63 = (0,0,1)'' GR^ be the standard basis of
R^. Without loss of generality, we may assume the camera motion is on the plane normal to 63
and is represented by the subgroup SE{2)

5£^(2) =|̂ Q R=exp(e39),p={pi,p2,0)'̂ ,6eB.^.
This group can be regarded as generated by elements of se(3) of the form:

f 0 CJ3 0 Ml

—CJ3 0 0 112

0 0 0 0

0 0 0 0 )
Ui, U2, W3 €

It is readily seen that the rotation matrix R = ea;p(e3^) has the form:

cos(^) —sin(^) 0
R= I sin(^) cos((9) 0 1, 0G

0 0 1

10

(25)

(26)

(27)



Let A be the unknown calibration matrix of the camera. As described in section 3.1 we consider A
as an element ofthe quotient space 5'L(3)/iSO(3). We will assume that bilinear constraints allow
us to estimate a fundamental matrix

F = e (28)

where p' = Ap e R^. In the particular case of pure rotation, we can instead obtain from the data
a matrix of the form:

C = A-^F^A^. (29)

In both cases, the rotation matrix Is R = expiezO), which has eigenvalue/eigenvector pairs given
by

Ai = l, u1 = (0,0,1)^€K3;
A2 = e'^ u2^(i,l,0)^€C3; (30)
A3 = e-*^ (-i,l,0)^€C?

where i = y/^. Then, following [12], any possible calibration matrix A € 5L(3)/50(3) is such
that the matrix S = A~^A~^ is in the symmetric real kernel (SRKer) of the Lyapunov map:

L : ^ ; V*^V- CVC'̂ . (31)

We define the matrices Si = A~^u^(u^)^A~^, S2 = A~^u^(u^)^A"^, 53 = A ^u^(u^)^A ^so
that S has the general form S = /35i +s(52 + 53). Substituting (30) and also imposing 5 6 5L(3),
we obtain S = A"^F>(s)A"\ where D(s) € R^^^ is a matrix function of s:

D{s) = , s€K\{0}. (32)
0 0 1/s

If we choose a matrix Ao € SRKer[L)^ and suppose that AqB —A for some matrix B € 51/(3),
we then have that, for some s G R,

A~^D{s)A~^ = Aq^Aq^ ^ B^B = D(s). (33)

A solution of (33) is of the form B = HD{s) with H € 50(3) and s G R. Let us define a
one-parameter Lie group Gse{2)

Gsb(2) = {OW|s€R\{0}}. (34)

Note that there is a natural diffeomorphism between 05£;(2) {II} ^ ^ multiplication group.
Then the solution space of (33) is given by 50(3)G5£;(2). The group Gse(2) can be viewed as a
natural representation of ambiguous solutions in the spaoe 5Z/(3)/50(3).

Once we havea calibration matrix, say Aq, wecan extract motion from the fundamental matrix
F = A'"^R^A'̂ j/ GR^^^ as follows: we know that A= AqB for some B = HD{s) G50(3)05£;(2)-
Then we define E = AJFAq and note that, for R= exp(eze), we have D(s)FD^"^ = R. Then
E is an essential matrix since E = H~^D~^{s)R^pD~^{s)H~^ = HR^HD{s)p. The motion
recovered from E is therefore {HRH^^ HD{s)p) G5F(3), where (F,p) G5F(2) is the true motion.
Note that (HRH'^,HD[s)p) is actually a planar motion. The coordinate transformation in the
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uncalibrated camera frame is given by Aq(t) = ARq(to) + Ap{t). If, instead, the matrix Aq is chosen
to justify the camera calibration, the coordinate transformation becomes:

AoBqit) = AoBRq{to) + AoBp(t)

=i^ HD{s)q{t) = HRH'̂ {HD(s)q{to)) + HD{s)p{t). (35)

Therefore, any pointq viewed withan uncalibrated cameraAundergoing a motion {R,p) € SE{2) is
not distinguishable from the point HD{s)q viewed with an uncalibrated camera Aq = AD~^{s)H^
undergoing a motion (HRH"^, HD{s)p) € 5£?(2). We have therefore proven the following

Theorem 4 (Ambiguity under SE{2)) Considera camera with unknown calibration matrixA €
51/(3) undergoing planar motion SE{2) and letB(s) = HD{s) with H 6 50(3) andD{s) € GsEi2)-
If both the camera motion (R,p) € SE(2) and the scene structure q e are unknown, then
i4B~^(s) € 5Z/(3), (HRH"^, B(s)p) € SE{2) and B(s)q € are the only generic ambiguous
solutions for the camera calibration, camera motion and scene structure respectively.

Comment 7 Note that the role of the matrix H € 50(3) is just to rotate the overall configuration.
Therefore, the only generic ambiguity of the reconstruction is characterized by the one parameter
Lie group Gse{2)' planar motion and affine reconstruction case was considered in [2]. Linking
it with the results of Luong[11] on self-calibration given affine structure one can come to a similar
observation that one of the parameters of the calibration matrix is unconstrained.

Further note that the above ambiguities are obtained only from bilinear constraints between
pairs of images. We now verify, as we expect from section 2, that multilinear constraints do not
reduce the ambiguity. In fact, the matrix D{s) commutes with the rotation matrix, so that

n\f ^0 OxoOON
" ) = AoHRiH'̂ Api 0 xi 0 (36)

^ VAoHRiH'̂ Ap2 0 0 X2 /
Thus trilinear constraints are identical for all ambiguous solutions. A similar result holds for
quadrilinear constraints.

3.6 Subgroups 50(2), 50(2) x R and SE{2) x E

We conclude our discussion on subgroups of SE{Z) by studying 50(2), 50(2) x R and SE{2) x R
together. This is because their generic ambiguities are similar to the case of SE{2), which we have
studied in the previous section. Consider elements of se(3) of the form

[ 0 a?3 0 ui \
-UJ3 0 0 U2

0 0 0 U3

V 0 0 0 0 /

wi,U2,U3,u;3 € R. (37)

which generate the subgroup SE(2) x R; if ui = U2 = 0, they generate the cylindrical motion
50(2) XR; if m =U2 = U3 = 0, they generate50(2).

Notice that in the discussion ofthe ambiguity Gse{2)^ we did not use the fact that the translation
p has to satisfyP3 = 0. Therefore, thegenericreconstruction ambiguities of50(2) xR and SE{2)xR
are exactly the same as that of SE{2). The only different case is 50(2). It is readily seen that
the ambiguity of 50(2) is the "product" of that of SE{2) and that of 50(3) due to the fact
50(2) = 5jE'(2) n 50(3). As a consequence of Theorem 3 and Theorem 4 we have:
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Corollary 2 (Ambiguity under 50(2)) Consider an uncalibrated camera with calibration ma
trix A € 5L(3) undergoing a motion in 50(2) and let B{s) = HD{s) with H € 50(3), D{s) €
Gse(2) ^ € (i?"^,*)* U camera motion R € 50(3) and the scene structure g G
are unknown, then i4B~^(s) € 5L(3), HRH^ G50(3) and X•B{s)q G are the only generic
ambiguous solutions for the camera calibration, camera motion and scene structure respectively.

Comment 8 The generic ambiguities for reconstruction under motions in50(2) xR and 5jE'(2) xR
are characterized by GsE{2)i ambiguities of 50(2) are given by the product group Gse{2) x
(/?+,•). Furthermore, these ambiguities persist even if multilinear constraints are used for the
reconstruction.

Finally, as we have seen in section 3.1, there is no generic ambiguity in calibration, motion and
structure reconstruction under the full group SE{Z). From the above discussion of subgroups of
SE(3) we have seen that generic ambiguity exists for any proper subgroup of SE(Z). Furthermore,
such ambiguities - which have been derived based only on bilinear constraints, are not affected by
multilinear constraints.

4 Reprojection under partial reconstruction

In the previous section we have seen that, in general, it is possible to reconstruct the calibration
matrix A and the scene's structure q only up to a subgroup - which we call K, the ambiguity
subgroup. For instance, in the case of planar motion, an element in K has the form D(s) where
D{s) GGse{2) ^one-parameter group given by equation (32)^. Therefore, after reconstruction we
have

q{K) = Kq, A(K) = AK'K (38)

Now, suppose one wants to generate a novel view ofthe scene, x from a new vantage point, which is
specified by a motion g GSE(S) and must satisfy Xx(K) = A{K)gq(K). In general, thereprojection
x(K) depends both on the ambiguity subgroup K and on the vantage point, determined by g. A
question that arises naturally is what is the setofvantage points that generate a valid reprojection,
i.e. an image ofthe scene q taken with the camera A from some vantage point g(K). A stronger
condition to require is that the reprojection be invariant with respect to the ambiguity K, so that
we have g{K) = g independent of li.

4.1 Valid Euclidean reprojection

In order to characterize the vantage points,specified bya motion g, that produce a valid reprojection
we must

find g such that A(K)gq(K) = Ag(K)q. (39)

for some g(K) GSE{Z). Since the reprojected image x is

Xx[K) = A[K)gq(K) = Ag{K)q (40)

^The ambiguity ofplanar motion is generally with H € SO(3). Given that A is triangular, such H can be
assumed to be the identity without loss of generality.
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the characterization of all such motions g is given by the following Lie group:

R{K) = {s e SE(3) \K-'gK C SE(,3)}. (41)

We call R(K) the reprojection group for a given ambiguity group K. For each of the generic
ambiguities we studied in section 3, the corresponding reprojection group is given by the following

Theorem 5 The reprojection groups corresponding to each of the ambiguity groups K studied in
section 3 are given by

1. R{K) = (R^+) for K = 5L(3) (ambiguity of

2. R(K) = 50(2) for K = Gse{2) x ') (ambiguity ofSO(2)).

3. R{K) = SE{2) XR for K = Gse{2) (ambiguity ofSE(2),SO(2) x R,SE{2) x R^.

4. R{K) = 5£^(3) for K = I (ambiguity ofSE(Z)).

Even though the reprojected image is, in general, not unique, the family of all such images are
still parameterized by the same ambiguity group K. For a motion outside of the group R(K),
i.e. for a <9 6 SE{Z) \ R(K)y the action of the ambiguity group K on a. reprojected image cannot
simply be represented as moving the camera: it will have to be a more general non-Euclidean
transformation of the shape of the scene. However, the family of all such non-Euclidean shapes are
still parameterized by the quotient space SE{Z)/R{K)^.

Comment 9 (Choice of a "basis" for reprojection) Note that in order to specify the view
point it is not just sufficient to choose the motion g for, in general, g(K) ^ g. Therefore, an
imaginary ^visual-effect operator" will have to adjust the viewpoint g{K) acting on the parame
ters in K. However, the ambiguity subgroups derived in section 3 are one-parameter groups (for
the most important cases) and therefore the choice is restricted to one parameter. In a projective
framework (such as [6]), the user has to specify a projective basis of three-dimensional space, that
is 15 parameters. This is usually done by specifying the three-dimensional position of 5 points in
space.

It seems inconvenient that, in general, the image reprojected at a given viewpoint is not unique,
and therefore one has to choose one (or more) parameters ad-hoc. It seems therefore natural to
ask the question of when the reprojection is not only valid, but indeed unique.

4.2 Invariant reprojection

In order for the reprojection from the viewpoint identified by g to be unique, we must have

Ax = A(K)gq(K) = AK-'gKq (42)

independent of K. Equivalently we must have K~^gK = g where K is the ambiguity generated by
the motion on a subgroup G of SE(Z). The set of g that satisfy this condition is a group N{K),
called the normalizer of K in SE{Z). Therefore, we have to do is to characterize the normaJizers
for the ambiguity subgroups studied in section 3.

®In general, R{K) is not a normalsubgroup ofSE{3). But if it is, the quotient SE{3)/R{K) is alsoa group. That
is, all the non-Euclidean shapes that show up in the reprojection can also be characterized by a group, as in the case
of the generic ambiguity.
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Theorem 6 The set of viewpoints that are invariant to reprojection is given by the normalizer of
the ambiguity subgroup. For each of the motion subgroup analyzed in section 3 the corresponding
centralizer of the ambiguity group is given by

1. N(K) = I for K = 5L(3) (ambiguity of

2. N(K) = 50(2) for K = Gse(2) x ') (ambiguity ofS0{2)).

3. N{K) = SO{2) for K = Gse{2) (ambiguity ofSE(2),SO(2) x R,SE(2) x R).

4. N(K) = SE(3) for K = I (ambiguity of SE(S)).

For motion in every subgroup, the reprojection performed under any viewpoint determined by the
groups above is unique.

5 Reconstruction under calibration subgroups

In the previous section we studied reconstruction under different motion subgroups. In this section
we explore reconstruction under different calibration subgroups, i.e. when the calibration is rep
resented by a matrix A that is constrained onto a subgroup of 5L(3)/50(3). However, unlike in
previous sections where the calibration matrix was unknown but constant, here we will allow yl(t)
to change in time, therefore describing a trajectory on subgroups of5L(3)/50(3).

The ultimate goal is to have a complete taxonomy of the ambiguities in reconstruction with
with respect to all possible motion and calibration subgroups. It is readily seen that the smaller
the motion subgroup and larger the calibration subgroup, the larger the ambiguity.

5.1 Partial, constant calibration

As we have discussed in 3.1, a natural representation of the space 5L(3)/50(3) is the space of
all upper-triangular matrices in 5L(3), which we denote with A3. This representation has an
immediate geometric interpretation in terms of parameters such as focal length or the principal
point of the system. ^From a practical standpoint the important cases to consider are: known
principal point, skew is not present and known aspect ratio. These cases have been previously
explored in the literature, both in the general and restricted motion settings. It has been shown
that such restrictions of the parameter space reduces the reconstruction ambiguity. Moons et al.
[16] have shown that in the case of no skew, known principal point and aspect ratio = 1, the
affine structure can be reconstructed from two views related by pure translation. Same calibration
subgroup but general class of motions has been considered by [17] which proposed an algorithm
for full self-calibration. Finally, Heyden and Astrom [9] proved that Euclidean reconstruction is
possible, assuming known aspect ratio and no skew.

5.2 General time-varying calibration

We now consider the case where calibration is allowed to vary arbitrarily. In this case, the motion
matrix M may be written in terms of the motion and calibration parameters as

M =

f 0 ^
A{t2)R(t2) A(t2)p(t2)

VA(tn)R{tn) A{tn)p{tn) j
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where the cameramotion is expressed with respect to the first cameraframe. Clearly M has overall
(5 + 6)n - 6 = lln - 6 unknowns. However, as a motion matrix, M is an element of a space of
dimension lln - 15. Therefore, no matter how large n is, the motion and calibration
A{ti) can never be uniquely determined from M. This has long been known, see for instance [7].
Therefore, following a path analogous to the one traced in the previous sections, we will consider
restrictions of the calibration group K^,

The bilinear constraints associated to fundamental matrices between time instants t,- and tj

F(ti, tj) = A(ti, tj)A-'̂ (,tj)R^{ti, tj) 6 (44)

where (R{ti,tj),p{ti,tj)) describes the motion between the «"• and j'* frames, pf(ti,tj) € R' is
defined to be A(ti)p(ti,tj) and p e is the skew-symmetric matrix associated with p'. The
following equations, known as Kruppa's equations, can be interpreted in a projective geometric
framework as specifying the absolute conic (see [15] for details), or they can be interpreted in a
differential geometric setting asexpressing the invariance ofthe Riemannian metric ofthe Euclidean
space (see [12] for details). In any case they represent constraints on the calibration matrix A and
are given by

A{tj)A^{tj)F{ti^tj) = A^(tj,tj)p' {ti,ti)A{ti)A^{ti)p'{ti^tj). (45)

We define, as before, 5'~^(t) = A(t)A^(t). Let = A{tj)A~^(ti)^ and:

F{tutj) = F(ti,tj)B-\ti,tj), p{ti,tj) = B(ti,tj)p\ti,tj). (46)

Notice that for fixed tj, the matrix F(ti,tj) thusdefined has the form of a fundamental matrix for
constant calibration parameters:

F{ti, tj) = A(f„ tj)A-'̂ (,tj)R'̂ (ti, tj)A'̂ (tj)p(ti, tj) 6 (47)

Hence, knowing A(t{), the symmetric matrix is a solution of Kruppa's equations associated
to all such time-invariant fundamental matrices for t, ^tj:

F'̂ (ti,tj)S-^(tj)F(ti,tj) =X\ti,tj)f{ti,tj)S-^{tj)p{ti,tj). (48)
This set of equations is obtained as if the calibration was fixed at S~^{tj). Conditions on the
uniqueness ofS~^{tj) can then be studied as in the time-invariant case which only depends on the
relative motions between the and frame for all i ^ j.

Note that the scale A is introduced for convenience only. To eliminate it, one can write (45),
for instance, as a wedge product form:

(F^(t,-, tj)S-^{tj)F(ti, tj)) A(p^(t„ tj)S-\ti)P{ti, tj)) =0 (49)
where weview a 3 x 3 matrix as a vector in R®. Although there seem to be many equations in (49),
due to the symmetry ofthe two wedged matrices and the fact that both F and p are degenerate,
there are in fact only two algebraically (or linearly) independent constraints.

Since from equation (49) we cannot estimate all the parameters of the calibration, it is only
natural to study its restriction to a subset of the parameterset. In particular, it is possible to study
the solution on (orbits on the) subgroups of the calibration space A'3. For the sake of example,
we show how this works for a time-varying focal length; a similar exercise can be repeated for a
time-varying principal point.
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Example: time-varying focal length

Equation (49) is the unsimplified version ofKruppa's equations for time-varying parameters. When
the only changing parameter is /, without loss of generality we can specialize the above equation
by choosing S~^(t) = AoD^(t)AQ and

Ao = D(t) =
0 0 1

m 0 0
0 m 0
0 0 1

(50)

The set of all such D(t) form a group, denoted by Kj. Each Kruppa equation is quadratic in the
2 unknown parameters and which for simplicity we call /j and respectively.

Comment 10 In (49), the symmetric matrix S is different in the two sides ofthe equation. Such a
matrix can be linked with the coefficients of the absolute conic, in a projective geometric framework.
Several previous studies have assumed that S in the two sides is the same, for instance [17], sect.
3. However, this is an approximation, and it holds only if the focal length changes "slowly^.

Suppose that the fundamental matrix between time i, and tj is given. For simplicity we call it
F and partition it into a four blocks as

F =
Fi F2
Fs F4

(51)

where Fi G (and the other blocks are sized consequently). Then, assuming Aq = I without
loss of generality, we can re-write the (un-wedged) Kruppa equations as

F'^DjF = -X^pDlp.

Given the structure of = diag{/"^, f~^, 1} we can
re-write the right-hand side of (52) as

(52)

/r'

and the left-hand side as

F^Fi F^F,
FjFi FlFi +

F^F3 FiF4
F3F4 Fi = /i (53)

-2
2

Pp P3
' Pi ' • • -Pi P1P2 0 •

. P2 . + P1P2 -Pi 0 = x^f^^u + aV (54)

. -psbi - P2] P1+P2 0 0 0 .

Therefore, (52) can be written as

f-^(f>-hi> = X'f2'U-\-X'V.2 r-2i (55)

If we call uj the rows of U, and similarly with V,4>,ip, we can eliminate from the third rows
obtaining

f2 1
A^ = 72^

J2 J2

17

(56)



where a = and 8 = After substitution, we finally obtain
uju3 «3«3

flSliaU -</>) + /?(QrV) + fl(pU - V) + = 0 (57)

The above equation admits a solution as soon as its (matrix) coefficients span at least three in
dependent directions, which is true under general position conditions. Similar calculations can be
performed for the case of a time-varying principal point.

Comment 11 In the above discussion we have tacitly assumed that = (Pi+P2)(Pi+P2+P3) ^
0. This is equivalent to saying that translation cannot be only along the optical axis, since in that
case it is not distinguishable from zooming.

6 Conclusions

When the necessary and sufficient conditions for a unique reconstruction of scene structure, camera
motion and calibration are not satisfied, it is still possible to retrieve a reconstruction up to a
global subgroup. We characterize such subgroup explicitly for every possible motion ofthe camera.
The reconstructed structure can then be re-projected to generate novel views of the scene. We
characterize the "basis" of the reprojection corresponding to each subgroup, and also the motions
that generate a unique reprojection. Finally, we consider a time-varying calibration, which is
described as a trajectory on a group, and show how restrictions on certain subgroups can be
reconstructed.

We achieve these results using only epipolar (i.e. bilinear) geometry, with no use of tensors nor
of projective geometry. This is made possible by the core result of this paper, which proves that
the coefficients of multilinear constraints can be derived from the coefficients of bilinear constraints
alone. Therefore, the only advantage in considering multilinear constraints is in the presence of
singular surfaces.

Our future research agenda involves the design ofoptimal algorithms to perform all (and only!)
the parameters that can be estimated from the data based upon their generic ambiguities. This
will involve hierarchical estimation on quotient spaces, and will be carried out using tools from
Riemannian geometry.
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