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Abstract

This report studies the continuous time and mixed-signal simulation techniques in the

Ptolemy n environment. Unlike thenodal analysis representation usually seen incircuit simu

lators, the continuous time systems are modeled as signal-flow blockdiagrams in Ptolemy n.

This representation is suitable for system-level specification, and the interaction semantics

with other models ofcomputation can beeasily studied and implemented. The numerical solv

ing methods for ordinary differential equations are discussed from the tagged-signal point of

view and implemented in the continuous time domain. The breakpoint handling techmques

are essential for performing correct simulation and supporting the interaction with other

domains. Mixed-signal simulation ofcontinuous time and discrete event models is discussed.

Event detection can be performed using the breakpoint handling mechanism. The coordina

tion of the execution of the two models are discussed. The result shows that when a continu

ous subsystem isembedded in a discrete event system, theinner system must run ahead of the

global time and be able to roll back. Based on the result, a correct and efficient simulation

strategy is presented. Asa case study, the mixed-signal simulation techniques are applied to a

micro accelerometer with sigma-delta kind of digital feedback.

Continuous Hme and Mixed-Signal Simulation in Ptolemy n i



Acknowledgments

First of all, Iwould like to express my gratitude to my research advisor. Professor Edward

A. Lee for introducing me to this research area. It is his continuous support, guidance, and

encouragement that make this project possible. He gave extremely valuable comments on the

manuscript ofthis report, from typos to issues ofmathematical completeness and accuracy.

I wish to thank Professor Kristofer Pister forserving as thesecond reader for this report. It

is hisextraordinary MEMS lectures that inspired me for thecase study.

I am grateful to the Ptolemy group for the free and positive atmosphere. The discussion

with the group members are always helpful. Xiaojun Liu, Yuhong Xiong, James Lundblad,

andLukito Muliadi readthe draftof the report andprovided excellent suggestions.

This research ispart ofthe Ptolemy project, which issupported by the Defense Advanced

Research Projects Agency (DARPA), the State ofCaliforma MICRO program, and the fol

lowing companies: The Cadence Design Systems, Hewlett Packard, Hitachi, Hughes Space

and Communications, Motorola, NEC, and Philips.

Finally, I want to thank my family for the love and encouragement, and thank my parents

fortheir constantly support in spirit. This report is dedicated to them.

J.L

u Continiioiis Time and Mixed-Signal Simulation in Pttdemy n



Contents

1. Introduction 1

2. Continuous Time System Representation 3

2.1. Ptolemy II Infrastructure 3

2.1.1. The Kernel Package 3

2.1.2. The Actor Package 4

2.2. Ordinary Differential Equations 6

2.3. Block Diagramsfor CTSystems9

3. Design and Implementation of the CT Domain 12

3.1. CT Semantics 12

3.1.1. Time 12

3.1.2. Fixed-point Behavior 13

3.1.3. Discontinuity 15

3.2. Directing The Execution 15

3.2.1. Controlling Step Sizes 15

3.2.2. Scheduling 16

3.2.3. Dirac Impulses 17

3.3. Implementation 18

3.3.1. CTReceiver 19

3.3.2. CTActor and CTParameter 21

3.3.3. ODE solvers 22

3.3.4. CTDirector 22

3.4. Example 26

4. Mixed-signal Simulation 29

4.1. Discrete Event Model 29

4.1.1. Semantics 29

4.1.2. Simulating DE Systems 30

Qmtittuous Time and Mixed-Signal Simulationin Ptolemy11 ill



4.2. Mixed-signal SystemRepresentation 31

4.2.1. Event Generators 33

4.2.2. Event Interpreters 34

4.3. Mixed-signal SystemExecution. 35

4.3.1. Detecting Events 35

4.3.2. TimeSynchronization. 36

4.3.3. CT inside DE: Rollback 37

4.3.4. DE inside CT: Breakpoints 39

4.3.5. CTMixedSignalDirector 40

5. Case Study 43

6. Conclusion and Future Work 46

7. References 47

AppendixA. Numerical Root Finding Techniques49

AppendixA.1. Bisection. 50

Appendix A.2. Newton'sMethod and theSecantMethod 50

Appendix A.3. Regular Falsi (False Position) 51

Appendix A.4. IllinoisAlgorithm 51

iv Continuous Time and Mixed-Signal Simulation in Ptolemy II



List of Figures

Figure 1. Entities, ports and relations. 3

Figure 2. A hierarchical graph. 4

Figure 3. Hierarchical graphs with inputs and outputs. 5

Figure 4. A conceptual block diagram for continuous time systems. 11

Figure 5. A chain of integrators. 17

Figure 6. Approximation of an impulse. 18

Figure 7. UML diagram of CT Actor related classes. 19

Figure 8. UML diagram of CTDirector related classes. 20

Figure 9. The proceedOneStepO method of ODESolver. 23

Figure 10. fire() method of CTMultiSolverDirector. 25

Figure 11. A dumped spring-masssystem. 26

Figure 12. Block diagram for the spring-masssystem. 26

Figure 13. TclBlend codeforconstructing thespring-mass system in Ptolemy n. 27

Figure 14. The simulation resultsof the spring-mass system. 28

Figure 15. A DE systemwith a zerodelayblock.31

Figure 16. A CT subsystem inside a DE system. 32

Figure 17. A DE subsysteminside a CT system. 32

Figure 18. A generic event generator. 33

Figure 19. Pseudo code for discreteevent generators. 34

Figure 20. Two types of level triggered events. 36

Figure 21. The prefire() methodof CTMixedSignalDirector. 40

Figure 22. THe fire() method for CTMixedSignalDirector. 41

Figure23. Theblockdiagram for thedigital feedback microaccelerometer. 43

Figure 24. The simulation resultof the digital feedback microaccelerometer. 44

Figure 25. Roots of even and odd multiplicity.49

Figure 26. An illustrationof the false positionmethod. 51

Figure 27. An illustration of the Illinois algorithm.51

Continuous Tinw and Mixed-Signal Simulation in Ptolemy n



vi Continuous Time and Mixed-Signal Simulation in Ptolemy n



1 Introduction

Mixed-signal simulation aims to help thedesign of systems with both discrete event andcontinu

ous time parts, or discrete event systems that interact with a continuous environment In a discrete

event system, thesignals of interest contain events located discretely on the time axis. An event con

sists of a value and a time stamp. This model, which can deal with both functional information and

timing information, is widely used in modeling digital hardware [3] [27], embedded software [5] and

communication systems [6]. The signals ofcontinuous time systems arewaveforms that have value at

all the time points. Continuous time models are usually used for analog circuits, physical processes,

sensors, and accurators. Fora typical embedded system, the core part is usually clock driven digital

circuits, like a micro-controller running a real-time program, a DSP processor running a signal pro

cessing algorithm, and some digital application-specific circuits. The environment of the system, the

sensors and the accurators, are continuous time subsystems that interact with the digital core. Seam

lessly simulating the entire system could help designers understand the overall behavior ofthe system,

and provide timing information to aid thefurther refinement of thedesign.

Our work integrates the simulation ofcontinuous time systems with discrete event systems under

the Ptolemy Uinfrastructure [23]. The taiget isgeneral purpose system-level simulation, which makes

noassumptions about the properties ofthe systems, like the time constant, stability, orequal separation

ofevents. Systems are represented as block diagrams, in which each block is a component of the sys

tem that processes input signals and produces output signals. The blocks communicate by signals

transferred onthe arcs. This representation suggests a different implementation of thecontinuous time

simulation algorithms than the nodal analysis methods usually seen in circuit simulators like SPICE

and Saber. Inour representation, the conversions ofevents and waveforms are straightforward, and the

interaction of thediscrete event system and continuous time system canbe analyzed formally under a

uniform tagged-signal model.

Thesimulation of systems thatconsist of continuous and discrete parts has been studied in various

contexts in the lastdecade. TVpical work canbe found in thecircuit simulation community, under the

term of **mixed-mode simulation'̂ [24], and in the control community, under the term of ''digital con

trol systems" [21] and "hybrid systems" [2].

Themixed-mode simulation technique targets electronic systems thatcontain bothanalog anddig

ital circuits. The digital part of the system is considered an abstraction of the analog system. A com-

Continuous Time and Mixed-Signal Simulation in Ptolemy n



mon view isthat ^^Digital parts are merely analog parts that are over driven^ The values ofthe digital

signals (events) are discretized into levels, and the events are triggered from the continuous part by

threshold crossings. As a result, there is only a finite number ofevent values. Since in the digital part

ofthe system only certain events, like logical switches, are interesting, the simulation ofthe whole sys

tem can be dramatically faster than simulating the entire system under the continuous time model.

However, the event happening time are usually not accurately detected in this class of techniques.

They rely onthe global stability of the circuit, and iterative simulation methods to insure steady state

accuracy [4]. Inaccuracy in detecting events makes tight feedback that crosses the digital/analog

boundary difficult to simulate.

Inmost computer-based control work, aswell as in digital signal processing, theevents areviewed

as samples of continuous signals. The event values could be real numbers, but the event time stamps

areequally separated. This regularity ofevent times simplifies thesimulation such that thediscrete and

continuous parts can execute alternately.

Accurately detecting events hasbeen studied underthe hybrid systems contextin the control liter

ature [12] [15] [19]. But in hybridsystems, the model that interacts with the continuous time model is

finite state machines (FSM). The FSM model is not a timed model, so it cannot specify the timing

information of the discrete systems. In our work, we borrowed theeventdetection techniques from the

hybrid system literature and used them in mixed-signal simulations.

Report Outline

The rest of the report is organized as follows. Chapter 2 introduces the Ptolemy II infrastructure

and the continuous time system representation. Chapter3 presents the design and implementation of

the CT domain in Ptolemy II, focusing on the semantic analysis and how the semantics is imple

mented. Chapter 4 first briefly introduces the discrete eventdomain in Ptolemy n. Then it discusses

the techniques for mixed-signal simulation. The conversion of discrete events and continuous wave

forms, and the coordination of execution are discussed in detail. Chapter 5 provides a case study to

show how the mixed-signal simulation is applied to simulate a micro accelerometer. Chapter 6 con

cludes the work and discuss directions for future work. Appendix A gives a survey of root finding

techniques for nonlinear functions, which is used in eventdetection.

Continuous Time and Mixed-Signal Simulation in Ptolemy n



2 Continuous Time System Representation

Since Ptolemy n is the environment for ourimplementation, we introduce its infrastructure and

terminology inthis Chapter. Then the underlying mathematical model for continuous systems —ordi

nary differential equations (ODEs) —isbriefly reviewed. We list the existence and uniqueness condi

tion of the solution of ODEs, and discuss two classes of widely used numerical methods for solving

them. Finally, we present how the ODE models can be specified using the abstract graphical syntax of

Ptolemy n.

2.1 Ptolemy Illnfrastructure

Ptolemy n is a complete redesign of the Ptolemy environment [9], which supports heterogeneous

modeling and design ofconcurrent systems. The design principle ofPtolemy n is that choosing the

models ofcomputation plays an important role inthe process ofdesigmng complex embedded systems.

Amodel ofcomputation is the set of"laws ofphysics" that governs the interaction ofthe components

in a model. The Ptolemy n software provides an infrastructure that allows designers to explore and

integrate different models ofcomputation to achieve the overall design goals. Each model ofcomputa

tion is called a domain in Ptolemy n.

I*tolemy n core packages provide functionality for constructing and traversing an abstract clus

tered graph, encapsulating data and parameters, transferring data, sequencing execution, invoking

graph and mathematical algorithms etc. We will highlight some key packages that will be used in the
representation ofCT systems. This section is intended as asummary and not as an in-depth discussion.

We strongly suggest that the reader refer to the Ptolemy n design document [23] for a better under

standing.

2.1.1 The Kernel Package

Ptolemy n uses a graphical representation for concurrent and hierarchical systems. The kernel

package defines a small set ofJava classes that implement a data structure that supports uninterpreted

clustered graphs. A graph consists of entities that have ports, plus relations that connect the entities

through the ports. For example, inFigure 1, El and E2 are entities with ports PIand P2 respectively.

FIGURE 1. Entities, ports and relations.
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R1 is a relation that linksthe ports.The ports are said to be connected.

A hierarchical graph can be constructed by making an entity in one level of the graph contain

another graph. In this case, the container is called a CompositeEntity, and the contained gn^h ele

ments are instances of ComponentEntity, CornponentPort and ComponentRelation. Note that

composite entities themselves may becontained byanother composite entity, sothat the graph can be

arbitrarily nested.

Figure 2 shows an example of a hierarchical graph. EO is a top-level CompositeEntity that has no

container. EO contains E3 and E4, while E3 further contains E1 and E2. Note that P3 of E3 has two

kinds of links. The one that links to R3, which is at the same level of hierarchy as E3, is called a out

side linkor simply a link; the otherthat linksto R1,which is contained by E3, is calledan inside link.

A CompositeEntity can be opaque^ in the sense that when looking from the outside, none of its

containees can be observed. Otherwise, it is called transparent. Eliminating the transparent Composi-

teEntities from a graph is ceWodflattening the graph. A set of methods, whose names start with "deep",

are used to access the flattened graph. In our example, if E3 is opaque, calling P4 .deepConnected-

Ports () will return P3. However, if E3 is transparent, the same method will return P1 and P2. In the

latter case, P3 is a transparent port.

2.1.2 The Actor Package

While the kernel package only provides an abstract graph syntax; the actor package attaches the

semantics of message passingand execution to it This semantics is shared by a number of models of

computation.

Messages are encapsulated in tokens. A port that supports message passing is called an lOPort.

Relations that link lOPorts are lORelations. An lOPort can be an input port, output port, or both,

depending on whether it can receive tokens, send tokens or both. An input port contains receivers.

FIGURE 2. A hierarchical graph.
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which hold tokens before they are consumed. The way receivers handletokens is a crucial part of the

semantics of the domains. An lOReltion that links more than one input port acts like a/or/:, such that

for each token that is sent from a linked outputport, all the linked inputports receive it. lOPorts and

lORelations havewidth which is greater than or equal to one. The width indicates thenumber of chan

nels through which the data can betransferred. An lOPort with width greater than one iscalled amul-

tiporty distinguishing it from a singleporty whichhas widthone.

The Executable interface defines how an object can be invoked. An execution is defined to be

one invocation of initializeQ, followed by any number of iterations, followed by one invocation of

wrapupC). The initialize() method is assumed tobe invoked exactly once during the lifetime ofan exe

cution ofan application. Itmay be invoked again torestart an execution. An iteration isdefined tobe

one invocation ofprefire(), any number of invocation offire(), and one invocation ofpostfire(). The

wrapupO method will be invoked exactly once per execution, when the execution terminates. The

methods initialize(), prefire(), fire(), postfireO, and wrapupO are called iht action methods.

An Actor is an executable entity. There aretwo types ofactors, AtomicActor, which isa single

entity, and compositeActor,which isan aggregation ofactors. AtomicActors implement the execut

ableinterface and addtheirown functionality. Theexecution of thecomponents of a CompositeActor

isgoverned by aDirector. Directors also implement the executable interface, and all the executable
functions ofa CompositeActor are delegated toits director. The director ofthe container ofa compos

ite actor is called the executive directorfor the composite actor. If a composite actorhas no director,

then it iscalled transparenty and it relies on its executive director toexecute. Ingeneral, the top-level

composite actor (which has no containers) should have adirector, and ithas no executive director.

To follow theconvention ofblock diagrams, weuse a slightly different visual notation fortheclus

tered graph that is built by the actor package classes. As shown in Figure 3, the lOPorts ofatomic

actors are omitted, so are the lORelations that linkonly one inputport and one output port The con-

r
El

V J

"N
E2

V

FIGURE 3. Hierarchical graphs with inputs and outputs.
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nections are drawn as arcs with arrows that point to the input ports. lOPorts for composite actors are

drawn as white circles, andlORelations thatactas forks are drawn in blackdiamonds. In Figure 3, E1,

E2, E4, and E5areAtomicActors, while EO and E3areCompositeActors. D1 andD2 areDirectors for

EO and E3respectively. D1 is the executive directorfor E3.

2.2 Ordinary Differential Equations

We choose ordinary differential equations as the underlying mathematical model for continuous

time systems because it is widely used, has mature numerical solving methods, and the system has a

deterministic (unique)solutionunder simpleconditions.

In particular, we consider the system dynamic which can be formulated as an initial value ODE

problem:

X = fix, «, 0 (1)

jc(ro) = ^0

where, te Si, t>tQ,a. real number, is thetime. At any time /, jc g , an n-tuple of real numbers, is

the state ofthe system; m€ is the m-dimensional input ofthe system; i g 91" is the derivative of

Xwith respect to time t, i.e. *=^ •
The solution to this set of DDEs is a waveform in the n-dimensional state space such that at time t,

the derivative of the waveform for given t and uit) isfixit), uit), t). This waveform is also called the

state trajectory or simply the trajectory of (1). It can be shown that under the followingconditionson

/, a unique solution to (1) exists [10]. Herewe denote by D a set in Si which contains at most finite

numberof pointsper unit interval, and 9I\D=9I n D thedifference set of 91 andD.

Theorem 1. [Existence and uniqueness of the solution of an ODE] Consider the initial

value ODE problem (1). If/satisfies the conditions:

1. [Continuity Condition] Let D be the set of possible discontinuity points; it maybe empty. For each

fixed XG 91" and u g 91"*, thefunction /:9l\ D -> 91" in (1)iscontinuous. And Vt g D, theleft-

hand and right-hand limit f{x, u, t') and fix, u, t"*") are finite.

2. [Upschitz Condition] There is apiecewise continuous bounded function k:Si -> 91 , where Si*
is the set ofnon-negative real numbers, such that Vr g 91, V^, ^ g SR", Vm g ^R"

6 Continuous Time and Mixed-Signal Simulation in Ptolemy II



0 -/(C01 ^ ^(0115" cii. (2)

Then, for each initial condition (tg, jcq) C 9^ x 91" there exists a unique continuous function

y: SR -> 91" such that,

V(^o) = ^0

and

V(0 = /(¥(0» «(0» 0 Vr E SR\D. (4)

This function \|/(/) is called the solution through (/g. ^0-

♦

A proof of the theorem can be found in [10], Usually, only the solution on a finite time interval

[tQyt^ is interesting. The least upper bound of k(t) on this interval is called the Upschitz constant Lin

L = max{k{t)) for t e [/g, tf]. (5)

Notethat ^(r) is a continuous waveform. In general, it is not in ananalytical form, andit is impossible

fordigital computers to find, oreven represent it in aninfinitely precise way. Thesimulation of (1)can

only be performed on adiscrete set oftime points. Let [tg,ty3 be the time interval ofinterest, we denote

Tc = {tg,/j,/2» •••{^}» 2'c c [/g, (6)

such that

ro<r, </2 < — <'«< —<V*

A "snapshot" is taken on each of these time points. Here we denote by:

• : then-th timepoint, toexplicitly show thediscretization of time. We alsowritet if theordern is

not important.

• x[tjy tj]: the (continuous) state trajectory from time r,- to tj;

• x{t„): the precise solution of (1) at time /„;

• jc, : the numerical solution of (1) at time /_;Iff ##

• = t„-t„_i: step size of the discretization of time. We also write h if the position n in the

sequence is not important. For accuracy reason, h may not be uniform.

ContinuousHme and Mixed-Signal Simulationin Ptcdemy n 7



Most numerical ODE solving methods try tofind values that approximate x{t„) in the increas

ing order ofn. We call these methods the *time marching" methods, and will use these methods inthis

report.

According tothe mean-value theorem (see e.g. [1]), if /i„ +1 = +1 ~enough, then

•*('«+l) =*('») +Ant l '(P)

for some p€ [r„, ^„ +il. The time marching methods assume x,^ = x{t„) and approximate x(p) in

different ways using the "known information" at some history time points up to time t„. Then by

applying (8), we can compute x, « x{t„ +1). Since applying (8) is the same as integrating /(x, m, r)
fl +1

on the interval [r_, r_ . , ], the process of computing x, from x, is calledone integration step.
fi fl M M n^l #1

Wehighlight two classes of widely used methods.

1. Linear multistep methods. The LinearMultistep (LMS)Methods have the generalform:

k-l k-\

i = 0 1 = 0

where a's and P's arealgorithm parameters, andk is thenumber ofhistory points used. In particular,

a two stepLMS method, known as the TrapezoidalRule (TR), has the form:

\ = V.+ 2<-''.

This is proven tobeabsolutely stable^ and the most accurate among all second order LMS methods.

Notice that by plugging in the system dynamic (1) into(10), weobtain a setof algebraic equations of

X. at each timepoint /_. Thealgebraic equations can be solved by iterative methods like theNewton-

Raphson method [22], which find thefixed point of theequation from aninitial guess. Also notice that

LMS methods with order greater than 2 arenot ableto self start. They rely on lowerordermethods to*

provide the histories.

2. Runge-Kutta methods. The Runge-Kutta (RK) methods, instead of using the history points of the

previous solutions, create interpolation points at each integration step to approximate i(p). In
general, the k pointRunge-Kutta methods has the form:

1. Absolute stable roughly means thelocal errors do notaccumulate when theintegration steps increase.

8 Contmuous Time and Mixed-Signal Simulation in PtolemyII



1 = 0

where Kq = (12)

r'

Ki^K-x'S
V=i

, i= l...(A:-l), (13)

where Aand^ are algorithm parameters, c,- = ^ ,and kis the number of intermediate points used
7=1

tocalculate i(p). The first order RK method, also called the Forward Euler method, has the form:

X. = X. +h„' Xt .. (14)t„ t„.i n 'n-l

The RK methods make no assumption on the history and can self start. It is also easier to adjust

step sizes than with the LMS methods. On the other hand, although they have sophisticated order and
step size control mechanisms, the RK methods do not have a mature stability theory.

LMS methods, particularly the TR method, are widely used in circuit simulators, like SPICE and

Saber^ while RK methods are widely used in simulating mechanical and control systems [26], as in

Matlab^.

2.3 Block Diagrams for CT Systems

There are usually two ways tospecify a continuous time system, the conservative law model and

the signal-flow model [14]. The conservative law model defines a system by its physical components,

which speciEes relations ofcross and through variables, and the conservative laws are used to compile

the component relations into global system equations. For example, incircuit simulations, the cross
variables are voltages, the through variables are currents, and the conservative laws are the Kirchhoff's

laws. This model directly reflects the physical components ofa system, thus iseasy toconstruct from a

potential implementation. The actual mathematical form ofthe system ishidden behind the scene.

In the signal-flow model, entities in the system are ma^s that define the mathematical relation

1. A commercial analog simulator from Analogy Inc.
2. A commercial product from Mathworks Inc.

Continuous Time and Mixed-Signal Simulation inPtolemy n '



between the input and output signals. Entities communicate by passing signals. This model directly

reflects the mathematical relations among signals, and is more convenient for specifying the systems

that do not have an explicit implementation yet.

In the CT domain ofPtolemy 11, thesignal-flow model is chosen as the interaction semantics. The

conservative law semantics may beused within anentity todeflne itsI/O relation. There arefour major

reasons for this decision:

1. The signal-flow model ismore abstract. Ptolemy is focused onthe system-level design and behav

iorsimulation. It is usually thecase thatat this stage ofa design, theusers areworidng with simpli

fied mathematical models of a system, and the implementation details are unknown or not cared

about.

2. The signalflow model is moreflexible and extensible^ in the sense that it is easy to make topology

changes in the problem level. For models likehybrid systems, it is moreconvenient to manipulate

the system at this level.

3. Thesignalflow modelis consistent with other models of computation in Ptolemy II. Most models

of computation in Ptolemy use message-passing as the interaction semantics. Choosing the signal-

flow model for CT makes it consistent with other domains, so the interaction of heterogeneous

systems is easy to study and implement.

4. The signal flow model is compatible with the conservative law model. For physical systems that

are based on conservative laws, it is always possible to wrap them into an entity in the signal flow

model. The inputs of the entity are the excitations, like the voltages on voltage sources, and the

outputs are the variables that the rest of the system may be interested in.

To model a full system with inputs and outputs, we add an output function g() to the system

dynamics (1). So an entire continuous time system is specified by:

jc = f{Xy tt, f) (15)
y = g{x, «, t)

Jc(^o) = *0

where y6 SH' is the /-dimensional output of the system. We consistently call the equation

X = f{Xy w, t) the system dynamics. Notice that adding the output function gOhas nothing to do with

10 Continuous Time and Mixed-Signal Simulation in Ptidemy n



thesystem dynamics. Thesimulation strategy of (15)is that, at each timepoint , find thevalue of the

state X. , then apply the output function gO to get the output of the system y, .
#I

A block diagram representation of (15) is shown in Figure 4:

u

FIGURE 4. Aconceptual blockdiagram for continuoustime systems.

The signals in Figure 4, «, x, x, and y, are continuous waveforms flowing from one block to the

next. Since timeis shared by allblocks, it is notconsidered an input. At anyfixed time/, if the"snap

shot" values jt(0and m(0 aregiven, i(r) and y(r) can befound byevaluatingy() and g{),which canbe

achieved by firing the respective blocks.

Ccmtinuoiis Time and Mixed-Signal Simulation in Ptolemy n 11



3 Design and Implementation of the CT Domain

3.1 CT Semantics

Block diagrams only provide a syntax for specifying systems. The simulation orexecution ofthe

systems is defined by the semantics. Continuous time systems have strong semantic properties that dis

tinguish them from other models ofcomputation. This section briefly discusses the semantics of the

CT model using the tagged signal modelt which isameta model to compare the denotational semantics

of some concurrent models of coihputation [17].

3.1.1 Time

In the tagged signal model* an event e is a member of E = Tx V, where in this case T = SR isa

set of tags representing time, and Vis a set of values. If we consider the models with an earliest time

fo, like in (15), then T = [fQ. ) •Tags in general can be used to model time, precedence relationship,
synchronization points etc. Values represent the operands and results ofcomputations. Asignal s € S

is a set of events, where S = fp{E) is the power set (a set of all subsets)of all events.

In thecontinuous time model, the set of tags of any signal is the whole set T. This indicates the fol

lows.

1. A "snapshot" of all the signal values at t is called the behavior of a system at time t. A system

must have a behavior at any time in T. Theexecution engine, although marching at discrete time

points, should becapable of finding thebehavior of thesystem at any time of interest.

2. In signal flow models, function evaluations are achieved by firing corresponding actors, which

consume the input tokens and produce output tokens. If an actor in the CT domain has n inputs,

then there must be exactly one token at each input portwhen theactor is fired, andthe time of all

the events must be the same. The resultof a firing is one event token at each output port with the

same time. Soeach (single) port of a CTactor canonly hold one token at any time, and this token

must be consumed before the next token is generated.

Time is global ina CT system, in the sense that all the blocks share the same (continuous) clock.

This global notion oftime forces a total order ofthe behavior ofthe system. Time marching ODE solv

ers are consistent with this total order, such that the behavior of the system is found in the order of the

time points.
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3.1^ Fixed-point Behavior

Aprocess P is a subset of 5^, where 5^ is the set of all N'tuples of signals. Aparticular
s = [^1,S2...5^] is said to sati^ the process if s€ P. If N = and N^nN^ = O,

N- ^ • •
where S ' is the set ofinput signals and 5 " isthe set ofoutput signals, then the process is^.functional

process that maps the input signals to the output signals. Functional processes can be considered as a

set of constrains that the signals must satisfy.

For a continuous time system, at any time point , the functional processes reduce to iht firing

function ofthe actors. The composition ofthe functional processes isthen aset offiring functions that

map the input signal values at an instance to the output signal values at that instant. This set offunc
tions could be either explicit or implicit. An explicit function is "operational," which means that it

explicitly assigns the output values from the input values. An implicit function is "denotational,"
which means that it only specifies the relationship that the output values and the input values must sat

isfy. For example,an algebraic equation:

Vo = 9(v/,Vo) (16)

is an implicit function from input v, to output iffor each v,- there is aunique that satisfies (16).

An integrator is afunctional map from x to x. The integration methods are just algebraic approxi
mations ofintegrators with finite precision. Different integration methods may reduce afeedback loop

with integrators to explicit or implicit maps. For example, as described in section 2.3, at time t„, the
linear multistep method oforder kreplaces the integrator by afunction as shown in (9). Notice that the

feedback loop may reduce to an explicit function, if Pq ~ 0, or an implicit function if Pg ^ 0.

Generally, atany time point , a continuous time system dynamics is reduced to one of the fol

lowing two forms:

or

n n

where x is the state of the system, ), and F,( ) are derived from time t„, input «(r„), function/,

and the history ofxand x. For example, the forward Euler solver, shown in(14), isinthe form of(17);

the trapezoidal rule solver, shown in(10) isinthe form of(18). Solving (17) or(18) ataparticular time

point is calledan iteration of the CT simulation.
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Equation (17) can be solved simply by afunction evaluation and an assignment. But the solution

of(18) is thefixed point ofF, which may not exist, may not beunique, ormay not beable tobefound.

The contraction mapping theorem [8] shows the existence and uniqueness of the fixed point solution,

and providesone way to find the fixed point.

Here we consider the Euclidean space ^ , which is the n-dimensional vector space of reals with

the Euclidean norm(2-norm) as the metric. I.e. Va = [aj, a2» ^ *

A = I"?- (19)
1^1

For a vector x € 5R", a function F:9l" —»SR" is called a localcontraction map at x, if it satisfies the

following two conditions:

a) There exists e >0, such that q € SR" that satisfy ||5-x|| < e and l|q - x|| <e, it is true that

\\F{^) - x|| < e and [lF(q) -x|| < e. I.e. q andtheirimages areall within an e ballcentered atx.

b) For any ^ and q in a), 30 ^ 5 < 1 such that

l|F(0-F(Tl)D^5||5-q||. (20)

The largest e such that this is true is called the contraction radius at x.

Theorem 2. [ContractionMappingTheorem.] If F:5R" —> SR" isa local contraction map at

Xwith contraction radius e, then there exists a unique fixed point of F within the E ball centered at x.

I.e. there exists aunique o e SR", |lo - x|| <e, such that a = F(a). And VGq e SR", ||ao - x|| <e, the

sequence

Gi = F(Go), <52 = Gj = F(G2), ... (21)

converges to G.

♦

Theorem 2isaspecial case ofthe Banachfixed point theorem^ since SR" with the above metric isa

complete metric space [8].

Theorem 2 can be used to find the solutionof (18) at each time point. The semanticsindicates that

thefixed point is aninstantaneous behavior, so the F/ function in (18) should keep unchanged during
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one iteration of the simulation. This means the topology of the system, all the parameters, and all the

internal states that the firing functiondepends on should maintainunchanged.

3.13 Discontinuity

Theorem 1 allows the function / to be discontinuous at a countable number of discrete points,

which are also called the breakpoints. These breakpoints may be caused by thediscontinuity of input

signal u, orby an intrinsic property off. In theory, the solutions at these discontinuous points are not

well defined. But the left and right limit at these points are. So instead of solving the ODE at those

points, we would actually try to find the leftandright limit.

A breakpoint may be known beforehand, in which case it is called an expected breakpoint. For

example, a square wave source actor can predict its next flip time. This information can beused tocon

trol the discretization of time. A breakpoint can also be unexpected^ which mean it is unknown until

the time it occurs. Forexample, an actor that varies its functionality when the input signal crosses a

threshold canonly report a "missed" breakpoint after an integration step is finished.

One impact ofthe discontinuities on the ODE solvers isthat the history solutions before the break

point are useless in approximating the derivative ofx after the breakpoint. The solver should resolve

the new initial conditions and start the solvingprocessas if it is at the startingpoint.

3.2 Directing The Execution

3.2.1 Controlling Step Sizes

Choosing the right time points to approximate a continuous time system behavior is one of the

major tasks ofsimulation. There are three factors that may impact the choice ofthe step size.

• Error control. For all integration methods, the local error at time is defined as a vector norm

(say, the 2-norm) of the difference between the actual solution jc(f„) and the approximation

calculated by the integration method, given that the last step is accurate. That is, assuming

X, = x(r„_i) then
•n -1 »

It can be shown that by carefully choosing the parameters in the integration methods, the local

error is approximately ofthe p-th order of the step size, where p, an integer closely related to the

k's in (9) and (11), is called the order ofthe integration method. I.e. - 0((r„ -t^_{f). There
fore, in order to achievean accuratesolution, the step size shouldbe chosento be small.But on the
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other hand, small step sizes means long simulation time. In general, the choice ofstep size reflects

the trade-off between speedandaccuracy of a simulation.

• Convergence. Theorem 2 shows that for implicit ODE solvers, in order to find the fixed point at

, the map Fji) must be a(local) contraction map, and the initial guess must be within the e ball
ofthe solution. Itcan be shown that Fj{) can be made contractive ifthe step size issmall enough.

(The choice of the step size isclosely related to the Lipschitz constant). So the general approach

for resolving the Exed point is that ifthe iterating function Fj{) does not converge atone step size

ft, then reducethe step size by Half and try again.

• Breakpoints. At breakpoints, the derivatives of the signals are not continuous, so the integration

formula is not applicable. That means the breakpoints can not be crossed by one integration step.

In particular, suppose the current time is t and the intended next time point is t+h. If there is a

breakpoint at r+5, where 5<ft, then the next step size should be reduced to t +6. For a
expected breakpoint, the director can adjust the step size accordingly before starting an integration

step. However for anunexpected breakpoint, which is reported "missed" after an integration step,

the director should be able to discard its last step and restart with a smallerstep size to locate the

actual breakpoint.

Notice that convergence and accuracy concerns only apply to some ODE solvers. For example,

explicit methods do not have the conveigence problem, and fixed step size methods do not have the

error control feature. On the otherhand, breakpoint control is a "generic" feature that is independent

on the choice of ODE solvers.

3,2.2 Scheduling

Some continuous time (analog) system simulators work on mathematical representations that are

explicitly in the form of (1) or (15). Although they may have a graphical interface to specify the sys

tem, the block diagrams are translated into the netlist form and, further, tothe mathematical form inthe

preprocessing stage. We believe that directly working on the signal flow representation ismore flexi

bleand extensible. Sowe donot rely ona preprocessing step togenerate mathematical equations. The

evaluation of the functiony()andg() in (15)is achieved by schedules andactorfirings.

The scheduler partitions a CT system into three clusters: the state transition cluster^ the output

cluster^ andtheevent generation cluster. In a particular system, these clusters may overlap.

The state transition cluster includes all the actors that are in the signalflow path for evaluating the
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) function in (15). It starts from the source actors and the outputs of the integrators, and endsat the

inputs of the integrators. A topological sort of thecluster provides anenumeration of the actors in the

orderof theirfirings. Thisenumeration is called thestate transition schedule. Afterthe integrators pro

duce tokens representing , one iteration of thestate transition schedule gives the tokens representing

Xt = /(jc,, w(/), t) back to the integrators.

The ou^ut cluster consists actors that are involved in theevaluation of the output function g()in

(15). It is also similarly sorted in topological order. Theoutput schedule starts from the source actors

and the integrators, and ends at the sink actors.

Event generating actors^ are continuous time actors that may generate unexpected breakpoints in

the middle of an integration step. The event generation cluster includes all the actors in a path that

starts from theintegrators and sources, and ends at theevent generate actors. This cluster is also topo-

logically sorted to produce theevent generation schedule.

Aspecial situation that must betaken care ofis the firing order ofa chain ofintegrators, asshown

in Figure 5.For the implicit integration methods, the order offirings determines two distinct kinds of

[dt ^2 \dt ^2

J J

FIGURE 5. A chain of integrators.

fixed point iterations. If the integrators arefired in thetopological order, namely —> *2

pie, the iteration iscalled the Gauss-Seidel iteration. That is, *2 always uses the new guess from in

this iteration foritsnew guess. On theother hand, if they arefired in the reverse topological order, the

iteration is called the Gauss-Jacobi iteration^ where *2 *^ses theguess of JC| in the lastiteration forits

new guess. The two iterations both have their pros and cons, which are thoroughly discussed in [20].

Gauss-Seidel iteration is considered faster in the speed of convergence thanGauss-Jacobi. For explicit

integration methods, where thenew states arecalculated solely from thehistory inputs up to .

the integrators must be fired in their reversetopological order.

3,23 Diraclmpulses

The Dirac impulse signal 5(r) is a special kind of continuous time signal. It satisfies

8(/) = 0, Vr 0, 6(0) = oo,and the integration

The name will be clear when the mixed-signalsimulation is discussed in the next chapter.
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Jb(t)dt =1. (23)

Feed an impulse toan integrator, say A, will change the state ofthe integrator abruptly. I.e.

x^iO*)=x,,iO-) + l (24)

where x^{0*) isthe state after integrating the signal, x^(0 ) Is the state before integrating the signal,

they are both at time 0.

General integration method approximate 6(r) bya narrow square wave, asshown inFigure 6.The

A"
Wn

Oh

FIGURE 6. Approximation of an Impulse.

width of the signal is the current step size A, and the height of the signal is \/h. This approximation is

usually not satisfactory, since the result is X/(0^) = X;(0 ), but Xj{h) = Xj{0 )+1. Vlach etc. present
a method that overcomes this inaccuracy in [28]. The method, at time 0, uses the backward Euler

method (LMS method with A:=l, Cq = 1,aj = -1, Pq = -1), and uses the minimum step size .

The impulse is also approximated asinFigure 6.Theresult, ofcourse, is = Jf/CO ) + 1•Then,

integrate backward in time with the same step size, i.e. h = , to obtain Xj{0*) = Xj{0 )+1. It
can be shown that this method can also deal with signals like the derivatives of the impulse, which is

impossible for other methods. This method, although it does notadvance time, is an ideal method to

handle impulse inputs and breakpoints. We call this solver the impulse backward Euler(IBB) solver.

3.3 Implementation

The Java package ptoleitry.domains.ct.kernel implements the continuous time semantics

based on the kernel and the actorpackages of Ptolemy U. Thekeyclasses in theCT kernel are:CTRe-

ceiver, CTActor, CTConpositeActor, CTDirector, CTScheduler, and ODESolver. The uni

formed modeling language (UML) diagrams for the classes are shown in Figure 7 and Figure 8. The

classes that are not in the CT kernel packages are drawn with dashed outlines. The constructors for

classes CTSingleSolverDirector, CTMultiSolverDirector, CTMixedSignalDirector,
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ForwardEulerSolver, BackwardEulerSolver, TrapezoidalRuleSolver, ExplicitRK23-

Solver, impulseBESolver are omitted for space reason.

33.1 CTReceiver

Receivers are the token holders in message passing. CTReceiver reflects the semantics that time

is continuous and any process (actor) must consume and produce tokens when it is fired. So CTRe

ceiver extends ptolemy. actor .Mailbox, which is a receiver with capacity one.Toreflect thefact

MomicActor

•Meiface-

Hi>aiametefChan9ed(e: parameteiEvent).
Hi»iainetefReiT)oved(e: pafameteiEvent).^

Mailbox

CTReceiver

CTActor

•jaramChanged: boolean

+CTActorO
iCTActortw: Worttspace)
'»CTActor(ca: lypedComposneActor, name: String)
ftsParamChang^: boolean
HesetParamChangedO
♦updatePaiametetsQ

containef

0..n

contalnee

•rCTReceiverO
«CTRec8iv8r(coniainer: lOPoit)
♦ffutO

CTParametar

♦CTParametef(contalner:NamedObj. name: String, deteult;Token)

CTBasetntagrater

flnput: TypedlOPoit
♦output: TypedlOPort
•.auxVariables; doubleO
•_lnitState: double
•.paramlnitState: CTPaianneter
•_potentiatState: double
-.potentialDerivative: double
-.state: double
-.storedState: double
-.histofy:doubteOD
♦CTBaselntegratorO
+CTBaseIntegrator(w: Woifcspace)
♦CTBa8elntegratO(<ca: TypedComposlteActor, name: String)
♦getAuWariableO: doubieQ
♦gethBstoiyO: double[H]
♦getHistoryCapadtyO: M
♦getlnitlaiStat^): double
♦getPotentialStateO: double
♦getStateO: double
♦68lAu^ariable<Index: M, value: double)
♦eelHtetoiyOapadtytcap: bit)
♦setPotentiaIDerivalive(vaIue: double)
tsetPotentia!State(value: double)
♦eetState(vaIue: doiriJie)
HjjushHIstoiyO

••Interface*

CWamMrisAetor

♦aaveStatesO
♦iBStoreStatesO

—2r~

-Interface-

CTEmrContmlAetor

-trterface-
CTDyrmnlcActor

♦isSuocessfulO: boolean
♦suggestedNffiitStepSizeO:double

♦emltPotenliaiStatesO

OOeSohnr

-tnterface*

CTEvantQmmaOngAetor

0..n

FIGURE 7. UML diagrstm of CT Actor related classes.
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FIGURE8. UML diagram of CTDIrectorrelated classes.
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that an integration stepmay fail due to errorcontrol or breakpoints, the LTi Receivers mustbe able to

discard the unconsumed token and receive new tokens when the ODE solvers are restarted from a

failed step. When a full CTReceiver receives a new token, theoldtoken will beoverwritten.

33J2 CTActor and CTParameter

CTActor is the base class for the atomic actors in the CT domain. It extends

ptolemy.actor.AtomicActor and builds in some default implementations that all the atomic

actors in theCTdomain may share. One of themajor features is to handle parameters. The CTseman

tics requires that the functionality ofan actor keep unchanged inthe process offinding the fixed point.

Since parameter changes will directly change the functionality ofit container, they are only allowed to

be changed at some particular points of the execution, namely between the successive iterations. To

achieve this requirement, the CTActor class implements the ParameterListener interface, and the

CTParameters register their containers as their listeners at the time they are constructed. When a

CTParameter ischanged atthe run time, the CT actor containing it will benotified. The actor will not

update the parameter until it is safe to do so. Instead, a flag is set to shown that there is a parameter

changing. Atthe prefire() stage of thenext iteration, theparameter will beupdated.

Inorder tohelp the actor partitioning and scheduling, several interfaces are defined such that CT

actors with different functionality may be distinguished. They are:

• CTDynamicActor. Dynamic actors are actors that have integrators. Integrators themselves are

dynamic actors, soisan actor that implements (15). Inthe latter case, uisthe input and yisthe out

put. Aunique property ofdynamic actors isthat they have initial states, and atthe beginning ofthe

execution they can emit the initial state response. Actors that implement this interface will beused

to break the feedback loops in the scheduling.

• CTErrorControlActor. In order to ensure accuracy, the local error is controlled by some

actors. These actors should implement theCTErrorControlActor interface. At theendof each

integration step, the error control actors will beasked if their local errors are within tolerance. If

not, the step size will becut by half and the last step will berestarted. Ifyes, they will beasked for

a suggestion for the next step size.

• CTEventGeneratingActor. These are actors that may generate unexpected breakpoints in

the middle of an iteration step. They are used forconstructing the event generation schedule and

controlling unexpected breakpoints, as described in section3.2.2.
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• CTMemarisActor^ Someactors havememory; that is the output of the actordepends not only

on the inputs but also on some internal variables that may vary. When the CT domain interacts

withotherdomains, like the discrete event domain, it is possible that CT willdiscard some of its

execution, androll back to anearlier time. In thatcase, all theactors with memory should go back

to their earlier state corresponding to the rollback time. To ensure correct rollbacks, all actors that

have internal states should implement this interface to perform saving and restoring states if they

are going to be correctly used in CT.

Integrators are special in the CT domain. CTBaselntegrator implements CTDynamicActor,

CTErrorControlActor, and CTMemarisActor, since it has initial state that is used to break the

feedback loops; it does error controls in the variables step size methods; and it has memories which is

its state. Integrators behave differently under different ODE solvers. In order to seamlessly change

ODEsolvers during the simulation, the integrators delegate theirfire() method anderrorcontrol meth

ods to the ODEsolverthat is in charge. History is a private arrayof past states and theirderivatives,

so methods using history steps can access them.

33.3 ODE solvers

ODESolver is the base class for all ODE solvers. The basic operation of an ODESolver is pro-

ceedOneStep(). The method will perform one "successful" integration step without concern for

breakpoints. The conceptual execution of this method is shown in Figure 9. Different solvers will

implement the methods: resolveStates (), errorControl (), startOverLastStep () and

resolveNextStepSize () differently. For example, for fixed step size solvers, the errorCon

trol () methods always return a "success"; the startOverLastStep () methods are empty; and

resolveNextStepSize () methods always return the current step size. For explicit solvers, the

resolveStates () methods fire the state transition schedule for a fixed number of times, while for

implicit solvers, the methods fire the schedule repeatedly until the fixed point is reached.

33.4 CTDirector

CTDirector is the base class for directors in the CT domain. It manages shared parameters and

thebreakpoint table. Tasks likechoosing ODE solver and handling thebreakpoints are left to individ

ual subclasses. A CT director may have one or more ODE solvers; one of them, called the current

ODEsolver, is the onethat takes charge of thecurrent integration step. The reason for separating ODE

1. Memarisis the Latin word for memory. It is used here to distinguish fromactors that modelmemories.
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solvers and directors is that in one execution, the director may use different solvers to deal with differ

ent situations; for example, a breakpoint solver may be used to deal with the first few steps after a

breakpoint. So making ODESolver a separateclass improves code reuse.

CTDirector manages parameters thatmay be required for subclasses andODE solvers, including:

• current time (currentTime). Time is global in CT, meaning that all the actors share the same

notion of time. So time is managed in the directors, and actors can reference the time by calhng

getCurrentTime().

• start time (startTime). The start time of the simulation. This is only applicable when CT is the

top level domain. Otherwise, theCTdirector should follow the times of itsexecutive director.

• stop time (stopTime). The stop time of thesimulation. This is only applicable when CTis thetop

level domain, too.

• current stepsize (currentStepSize). Thestep size thatis used in thecurrent integration step.

staitOveiLBStStep

Reset ciuTcni time.

Reset all integrator states.
Halve the step size

Rie tbe acton

aocoiding to tbe
state tnnsitioo scbeilule

until tbe state of tbe cmicnt

lime is resolved

control

Fire all the

error control actors.

Ask for successfulness.
Take an ANDoniU tbe

results.

rasolvaNetdStapSize

Ask all em>r control acton
for suggestions;

Take tbe ntinimum of
all suggestions.

FIGURE9. The proceedOneStepQ method of ODESolver.
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• suggested next step size (suggestedNextStepSize) For solvers with error control capability,

the integrators maybe ableto predict anestimation forthenextstepsizebased onthe local errorof

the current step. This variableis the minimum of all the predictionsfrom the integrators.

• initial step size (initiaistepsize). This is the step size that the user specifies as the desired

step size. For fixed step sizesolvers, this step size will be used in all iterations. For variable step

size solvers, this is only a reference.

• local truncation error tolerance (LTETolerance). The upper bound of the local truncation error.

All error control actors will compare the estimated local error to this value. If the local error is

greater than this value, then the integration step should be restart.

• minimum step size (minStepSize). The lower bound for adjusting step sizes. If this step size is

used and the errors are still not tolerable, the step is considered failed. And the simulation aborts.

• minimum time resolution (timeResolution). This controls the comparison of time. Since CT

director works on double precision of real numbers, it is sometime impossible to reach or step at a

specific time point. If two time points are within this resolution, then they are considered identical.

• value resolution (valueResolution). This is used in the fixed point iterations. If in two succes

sive iterations the states are within this accuracy, then the fixed point is considered reached.

• maximum number ofiteration per step (nicixlterations). This is used to avoid the infinite loops

in the fixed point iterations. If the number of iterations exceed this value but the fixed point is still

not found, then the tixed point procedure is considered failed. And the simulation aborts.

One of the major tasks of the CT directors is to manage the breakpoints. Recall that a breakpoint

can be expected or unexpected, depending on whether it is known beforehand. Expected breakpoints

are registered in a Total lyOrderedSet, which is called the breakpoint table. In the table, the break

points are sorted by their expected occurring time. Once a breakpoint is processed, it will be removed

from the table. Multiple breakpoints at the same time are treated as one breakpoint.Before one integra

tion step starting from /, if the intended step size is /t, the director will query the breakpoint table for

the earliest breakpoint, say . If t<ti,<t + h, then the current step size is adjusted to be -r. If

ty ^ ty which means that this is the first step after the breakpoint, then the breakpoint at ty will be

removed from the table. In this situation, the director may replace the current ODE solver with a break

point solver, and it may adjust the step size to the minimum step size. The handling of unexpected

breakpoints is key for mixed-signalsimulation,and will be discussed in the next chapter.
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Three classes are derived from CTDirector, CTSingleSolverDirector» CTMultiSolver-

Director, andCTMixedSignalDirector. The first twoare for **pure" continuous timesimulations,

and can only handle expected breakpoints. They differ in whether a specific solver is used at the first

few steps after the breakpoints. The flow of the fire method of the CTMultiSolverDirector is

shown in Figure 10. CTSingleSolverDirector can be treated as a special case of it that has no

switchODESolver() call in the flow. The most complicated one, CTMixedSignalDirector, can

handle both expected and unexpected breakpoints, and has the ability to interact with event-based

C fir»0 3

t • gatCumntTimeO
h s getCurraniStepSizeO
bp • getRrstBreakpointO

remove bp from BPtabta

switch (0 bieskpoim solver
use ntinimumstep size:

bp • getRntBreekPointO

bp<t4ti7

N habp-t

•olvaf.prDceedOn«StapO

produceOulput

imegnion emit new nites;
fire the ouipuuchedulc;

updsteStatss

putfireill acton;
bteakpointstakecflect;

c return

FIGURE10. fireO method of CTMultlSolverOtrector.
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models. The details will be discussed in the next chapter. The three directors provide trade-offs

between speed and complexity ofa simulation. If the application is CT only and all the breakpoints are

expected, then the first two directors are suitable and efficient. In addition, if the default integration

methodcan self start and no impulsesignals appear in the simulation, then CTSingleSolverDirec-

tor is approperate.

3.4 Example

A proof-mass, spring, and damper system is shown in Figure 11. The relation between the input

force , and the position of theproof-mass x, is givenby the differential equation;

mxit) + bx{t) + kx{t) = Fj„{t) (25)

where m is the mass of the proof-mass, b is the dampingparameter, and k is the spring constant.

The block diagram representation of the system is shown in Figure 12, where the input force is

m Vs

K b

Substrate

FIGURE 11. A dumped spring-mass system.

atars". 'rBBwrtrff-S'

FIGURE 12. Block diagram for the spring-mass system.
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modeled asa square wave. The TclBlend code for constructing ofthe system inthe CTdomain isgiven

in Figure 13. There, G1=-, G2=--, and G3=--. The parameters of the system^ are
mm m

m = 500, k = 0.2, b = 5. Theinput of thesystem hasfiequency 0.25andmagnitude ±1.

The system is simulated from time 0 to 1.0 using thefollowing ODE solvers:

set sys tjava;:new ptolemy.actor.TypedCon^ositeActor]
$sys setName System
set man tjava::new ptolemy.actor.Manager]
$sys setManager $man
set dir [java;:new ptolemy.domains.ct.kernel.CTMultiSolverDirector DIR]
$sys setOirector $dir
♦construct actors

set sqwv [java: :new ptolen^^. domains .ct. lib. CTSquareWave $sys SQWV]
set addl [java::new ptolemy.domains.ct.lib.CTAdd $sys Addl]
set intgll [java::new ptolemy.domains.ct.lib.CTIntegrator $sys
Integratorl]
set intgl2 [java::new ptolemy.domains.ct.lib.CTIntegrator $sys
Integrator2]

set gainl [java::new ptolemy.domains.ct.lib.CTGain $sys Gainl]
set gain2 [java::new ptolemy.domains.ct.lib.CTGain $sys Gain2]
set gain3 [java::new ptolemy.domains.ct.lib.CTGain $sys Gain3]
set plot [java::new ptolemy.domains.ct.lib.CTPlot $sys Plot]
♦get ports

set sqwvout [$sqwv getPort output]
set addlin [$addl getPort input]
set addlout [$addl getPort output]
set intgllin [$intgll getPort input]
set intgllout [$intgll getPort output]
set intgl2in [$intgl2 getPort input]
set intgl2out [$intgl2 getPort output]
set gainlin [$gainl getPort input]
set gainlout [$gainl getPort output]
set gain2in [$gain2 getPort input]
set gain2out [$gain2 getPort output]
set gain3in [$gain3 getPort input]
set gain3out [$gain3 getPort output]
set plotin [$plot getPort input]
♦create relations

set rl [$sys connect $sqwvout $gainlin Rl]
set r2 [$sys connect $gainlout $addlin R2]
set r3 [$sys connect $addlout $intgllin R3]
set r4 [$sys connect $intgllout $intgl2in R4]
set r5 [$sys connect $intgl2out $plotin R5]
set r6 [$sys connect $gain2out $addlin R6]
set r7 [$sys connect $gain3out $addlin R7]
$gain2in link $r4
$gain3in link $r5
$plotin link $rl

FIGURE 13. TclBlend code forconstructing the spring-mass system In Rolemy II.

Provided by Coyote Systems Inc.
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• Single solver: fixed step size Forward Euler (FE). initiaStepSize=0.005

• Single solver fixed step size Backward Euler (BE). initialStepSize=0.005

• Multi-solven RK23 as default solver and BE as breakpoint solver (RK23). initialStepSize =

0.005, minStepSize = le-6

• Multi-solver: Variable step size Trapezoidal Rule as default solver and IBE as breakpoint solver

(TR). initialStepSize = 0.005, minStepSize = le-6

Other parameters in CTDirector are:

maxlterations = 20; LTETolerant = le-4;

valueAccuracy = le-6; timeAccuracy = le-10.

The simulation results under different integration methods are shown in Figure 14. From the

results we can see that FE method trends to overshoot, and BE trends to undershoot. The slightly large

step sizes makes the error significant. TR and RK23 have similar results, and are more accurate than

the fixed stepsizemethods (for thenotcarefully chosen stepsizes).

simulation results

FIGURE 14. The simulation results of the spring-mass system.
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4 Mixed-signal Simulation

Mixed-signal simulation* in this report* refers to the simulation of systems thatare speciHed partly

in ordinary differential equations and partly in the discrete event models. In the discrete event (DE)

model, the set of eventsare located discretely on the time axis. An eventconsistsof a valueand a time

stamp. The components in a system respond to input events and produce output events (instanta

neously or in the future) that may trigger other parts of the system.

In this chapter* we are going to analysis the mixed-signals in the tagged signal model and derive

correct and efficient mixed-signal simulation techniques.

4.1 Discrete Event Model

We briefly review some semantic properties of theDEmodel thatwill beused later in this chapter.

For a completeanalysis of the discreteevent model* pleasesee [16].

4.1.1 Semantics

Following the tagged signal model in section 3.1.1* fora discrete event signal s* thesetof distinct

tags T{s) is a subset of Tsuch that T{s) is order-isomorphic to a subset of the integers. That is* the

tags are ordered and countable. These tags arecalled the time stamps. Forease ofdiscussion* weuse x

with possible subscripts to denoted the time stamps of the discrete events* and continue using t with

possible subscripts for the time points of CT signals.

Causality is an important concept in the DE model. The formal definition of causality uses the

Cantor metric onthe process level [16]* which is beyond the scope of this report. We roughly explain
N- N

the concepts by using the firing functions ofactors. Let O = {<1>:5 'xT-^S "} bethe set ofall fir

ing functions an actor has in a simulation* and Af* a positive integer* be the number of firings of the

actor inthesimulation. I.e. Vm € {1,2*...*Af}, <t>»i ^ <l*i» ^2* ^ sequence offiring

functions executed in the simulation. The relation between the input signal

s' = [5j*52. "'s[, e S '̂ and the output signal 5^" is given by procedure (26). In (26)*
Thefirstthreestatements initialize the procedure. Theoutput signal is set to an empty result. The while

loop processes the pending events for each firing. \Wthin the loop* x^ is the smallest time stamp of the
pending input events. The m-th firing function <|>„ operates on the input signals at time x^ *and pro
duces the output s\ x^ is the smallest time stamp of the events in s\ The processed events are
removed from the input signals by the set subtraction* andthe output is appended to theoutput sig-
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nal by the set union operation.

s* =[i'„ ...iV •• s s"' <26)
O A

s -

m = 1

while(m ^M){

= imn (min(r(4)))

s' = <l)„(s'(xL),<)
= min {rmn{T{s*i)))

s' = s'-s'(xj„)
= s^us'

m = /n + 1

}

where is the -tuple of empty signals.

A DE actor is called causal if Vm € M,

x^>x'. (27)''m~m ^ '

Thatis, foreachfiring, the minimum timestamp of the output events is notearlierthanthe timestamp

of the earliest input events. Ifx^ = for some m, then we say the actor can have zero delay. ADE

actor is called strictly causal if Vm e M,

<>C (28)

Thatis, foreach firing, theminimum time stamps of theoutput events arestrictly greater than thetime

stamps ofthe earliest input events. ADE actor isdelta causal if 3A >0, such that Vm € M,

x2sTi. +A. (29)

4.12 Simulating DE Systems

A typical discrete event simulator operates bymaintaining anevent queue, in which the events are

sorted by time stamp. During the simulation, the output events from all actors will be fed into the

queue. At each iteration ofthe execution, the events with the smallest time stamp are removed from the
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queue, and the actors that respond to the events are fired. The time stamp of the event that is just

removed from the queue isdefined as the current time of the system. An iteration of the simulation is

defined as processing all the simultaneous events atthe current time. Ithas been shown in [16] that, for

DE systems that are built by delta causal actors, this simulation technique yields the correct result. A

loosercondition is that all the actors must be causal, and at least one delta causal actor is required in a

feedback loop.

How to handle simultaneous events (events with thesame time stamp) is a key issuein designing a

discrete event simulator. In Ptolemy n (as well as Ptolemy 0.x [13]), the actors in a DE system are

topologically sorted, and apriority is assigned to each arc. The topological sort is based on the annota

tion ofthe actors in the graph indicating whether the actor can have zero delay. When such zero delay

is possible, the topological sort views this as a precedence constraint. For example, for the system
shown in Figurel5, ifCis a zero delay actor, then the firing order is A C B, and Bwill see

two simultaneous events when it fires.

A slightly subtlety arises in discrete event simulations with sources ofevents. Since the source

actors has no input, there is no event in the event queue that can trigger its firing. This problem is
solved in Ptolemy n using pure events. A pure event is an event that has no value. Whenever the
source actor is fired, besides ofemitting signal events, it puts a pure event into the event queue with

itself as the destination and its next firing time as the time stamp. When this pure event isat the top of

the event queue, the source actor can be refired. Of course, this requires the actor to be fired at least
once at the beginning ofthe simulation. The refiring mechanism is also key for mixed domain simula-

4.2 Mixed-signal System Representation

Ptolemy 11 mixes different models of computation by the container-containee relationship. As
shown previously in Figure 2, an opaque composite actor in one domain can implement another
domain internally. This mechanism controls the complexity ofa design by information hiding, such

FIGURE 15. A DE system with a zero delay block.
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FIGURE 17. A DE subsystem inside a CT system.

that from the outer domain point of view, all the actors under its control have the same type.

CT and DE have distinct types of signals. For CT systems, the signals on all the arcs are continu

ous time waveforms, while for DE systems, the signals are discreteevents. When putting together dif

ferent domains, the signals at the boundaries must be correctly converted. These conversions are

performed by event generators and event interpreters.

For example. Figure 16 shows a DE system that contains a CT subsystem 0. The arcs that pass

continuous waveforms are drawn in thicker lines than the arcs passing discrete events. Actors U and V

are event interpreters, which have discrete event inputs and waveform outputs. Actor W is an event

generator, which converts waveforms to discrete events. A reverse situation is shown Figure 17,where

a DE subsystem is contained in the CompositeActor D.

FIGURE 16. A CT subsystem inside a DE system.
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FIGURE 18. A generic event generator.

4^.1 Event Generators

Event generators are actors thatconvert continuous waveforms to discrete events. Since a discrete

event is defined bya value and a timestamp, thegenerator must be ableto capture both of them.

Following thesystem formulation (15) of a continuous time system, an event e(x,v) is said to be

triggered by the condition

q{x{t), «(0,0 = 0. (30)

if 38 > 0, such that Ve suchthat 0 < e < 8, q(x{x- e), m(x - e), x - e) ^ 0, but q{x{x), m(x), x) = 0.

Condition (30) is called the trigger condition. The values of the event is definedby

V = r(jc(x), m(x), X). (31)

In other words, for any fixed input waveform m(/), condition (30) defines aclosed set Fc 91", and the

events occurat the first timethat the state trajectory enters F from the outside. Noticethat thisdefini

tion assures that the events are located discretely on the time axis. If there is a segmentof trajectory

x[r|, t2] that satisfies (30), thenthe eventis defined to occurat /j.

Anevent generator is fully specified by thefunction pair{q, r). Since thefunctions qQ andr() can

be built in the CT domain by a chainof blocks from the outputs of integrators and sources, the event

generators can be reduced to a two-input-one-output actor as shown in Figure 18. The input Tis the

trigger signal, and the input Vis the value signal. The generic function of an event generator can be

described in the pseudo code as in Figure 19.

In the code, nowis the current time of the system, and enabled is an intemal state that rules out the

continuity of events. Theactor hasno output if thetrigger condition is not satisfied or it is notenabled.

Notice that since the current time is maintained by CT directors and all the actors can access it

without an input signal, someevent generators can be simplified if the triggercondition ^0 depends

only on time. These actors are called time triggeredevent generators. ActorS in Figure 16 is a time
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enabled = true;

for each firing {
if (T == 0 and enabled) {

output E(now, V) i
enabled = false;

} else {

enabled = true;

}

}

FIGURE 19. Pseudo code for discrete event generators,

triggered event detector. One of themostuseful time triggered event generators is theperiodic sampler

which has one input V, and a parameter sample period , such that it outputs an event at x = tQ + ntj,

where /g is the starting time ofthe simulation, and n isa natural number. If^0 depends onthe state tra

jectory, then the event generator is called level triggered.

4J2,2 Event Interpreters

Event Interpreters are actors that convertdiscreteevents into a continuous waveform. The critical

task for event interpreters is to provide a default value at the time points where no events occur. Event

interpreters can be application speciric. Usually, users may interpretevents in the following twoforms.

• Zero-order hold. The output of a zero-order hold actor is a piecewise constant function. If no

events are received after the starting time, the output is zero. Formally, if the sequence of input

events is {e|(x,, Vj), £2(^2. ^2), • v^)}. thenthe output signal yv{t) is

w(r) = 0, for/o<f<Xj; (32)
w{t) = V,., forx,<r<x,+ j,ie {1,
w(0 = v^, forX;i^^r.

This is the most commonly used event interpreter, and it is consistent with D/A converters.

• Impulses. Somediscrete events, like switching capacitors, are bettermodeled as impulsefunctions.

In this case, if the sequence of input events is {e,(Xi, v,), e2(t2» ^2)* •••» ^Af))»then the

output signal w(0 is

M

^(0 = (33)

1= I

where 5() is the Dirac delta function defined in (23).

Strictly speaking, event generators andevent interpreters belongs to neither theCTdomain northe
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DE domain. Implementing them in the CT domain simplifies the overall software design. There are

multiple event-based domains, butnone ofthem handle continuous-time signals.

43 Mixed-signal System Execution.

Many requirements for mixed-signal simulation have already been met by the CT directors dis

cussed inthe last chapter. For example, the event interpreters can betreated as sources, and the CT sys

tem can be scheduled in the same way; the impulse interpretation of events can be handled by the

breakpoint IBB solver discussed in section 3.2.3. However, we still need more techniques to handle
event generators, and more importantly to coordinate the executions ofthe two domains.

43,1 Detecting Events

The difficulty ofgenerating an event is to locate the event time. If the time is found, to find the

value ofthe event is just afunction evaluation. The breakpoint mechanism in the CT directors provides
a convenient way to locate an event time.

7. Timetriggered event generators

Time triggered event generators can know the time at which their next event happens beforehand.
This time is an expected breakpoint for the CT directors. Recall that the CT directors will find the
behavior ofthe system atall the breakpoints inthe breakpoint table. So the time triggered event gener

ators can just register abreakpoint at its next event time, say . When the current time reaches t/^, it
cancompute theevent value andregister thenextevent time.

2. level triggered event generators

Suppose the function q{x{t)y u{t)y t) is built by achain ofactors startrng from the integrators and
source actors. Let z{t)= q(jc(f), M(r), t) be the signal that isfed into the trigger input Tofa level trig

gered event generator. We want tofind t e [tQyt^ such that

z{t) = 0. (34)

In general, (34) cannot be solved analytically. We will rely on numerical methods to find an approxi
mation. In continuous time simulation, time is discretize into a discrete set 7c, where the timepoints

are selected based on the accuracy, convergence, and expected breakpoint concerns. It isunlikely that

these time points happen tosatisfy (34). However, the state trajectory iscontinuous when there are no

breakpoints. This continuity assures that iftwo consecutive integration time points r,- and f,- ^| satisfy
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then there must exist xe (r,-, t,- +1) such that z(x) = 0. From the CT simulation point of view, x is an

unexpected breakpoint. Only when the integration step from tj to r,- ^ j isfinished can the event gener

ator report a "missed" event.

Notice that (35) is only a sufficient condition for detecting an event. It is also possible that

although z(r,) •z(t,> i)>0, there still exists x€ (/„ r, that satisfies (35). Figure 20 shows the two

cases of level triggered events. The event in(a) iscalled a zero crossing eventy which can bedetected

by (35); theevent in (b)is called a zero touching events which canT bedetected.

2(0 . z(t)
i i I

+1

0
t 0

(a) zero crossing

FIGURE 20. Two types of level triggered events.

(b) zero touching

Appendix A presents some methods to iteratively find x given (35) based on [19] and [25].

Amongthem, the Illinois method is considered the bestone, and is implemented.

43.2 Time Synchronization.

Information hidingrequires that a composite actor with internal semantics shouldobey the seman

tics of the outer domain at the boundaries. CT and DE are both timed domains, so the tags of signals

are both time. When they are combined together, they mustsharethe samenotion of the global time.

Theglobal time is maintained bytheouterdomain. Thecurrent time ofa domain is accessible from the

getCurrentTimeO method. A composite actor withan inside domain mayhave its own local time.

But this local timemustbecorrectly tuned suchthatthesignals at theboundaries follows thesemantics

of the outer domain. The next two sections study the two possiblecases whencombining CT and DE

domains.

433 CT inside DE: Rollback

For easeof discussion, we denote by Q the eventqueue in the DE domain, andby ej^{Xy v) a dis

crete event for actor A at time x with value v. When the event has no value, we write v = X, so
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e^(i, ±) is a pure event. Subscript Awill beomitted if the destination actor isnot important.

When a CTcomposite actor is embedded in a DEdomain, it must behave likea DEactor. Thatis,

it responds todiscrete events and produces discrete events. Inparticular, it must becausal, in thesense

that thetime stamps of theoutput events is notearlier than thetime stamps of the input events. Tosat

isfy this causality property, the followingclaim must hold.

Claim 1: If a CTcomposite actor C with current time t is contained in a DEcomposite actor D

with current time x, then whenever C is fired, it must be true that:

/ ^ X. (36)

Proof: An actor Cinthe DE domain can befired at time x iffthere is an event €^{1, v) at the top of

Q. I.e. all the events that are earlier than x have been processed. Inaddition, when a CT actor isexe

cuting from r, it may generate events at anytime after t. So suppose C is fired at x and r<x, it will

continue executing from t (itcan'tjump totime x since the semantics requires the local time tobecon

tinuous). Let d = x-f, and d>0. It is possible that C generates an event

r + - < X, C is notcausal. Thus, in order forC to behave likea causal DEactor, (36) must be satisried.

♦

Claim 1 shows that the CT subsystem must run ahead of the global time. Inequality (36) implies

two possibilities:

1) r = X. This is ideal. C can continue execution and the input event ec{% v) is converted to a

source signal by the correspondingevent interpreters.

2) / >X. This says that Chas gone too far the last time, and skipped the input event e^(x, v). I.e. the

(last) execution from x to r was wrong. To correct this error, C must rollback to an early state

where itcan be guaranteed not tomiss events. The following claim shows how far should this roll

back be performed.

Claim 2: Let ^^(Xi, Vi) and €^{^2* ^2) ^ consecutive events for aCT subsystem C, where

X| ^ X2. Ifatthe time Cisfired, its local time is r>X2. then itatmost needs toroll back totime X|.

Proof: Since the events in Q are ordered by their time stamp, and only the events with the smallest

time stamp will beremoved from Q to fire its destination actor, when Creceives event ^2) *no

event with time stamp less than X2 can be received after that. That is Ccan roll back toany time less
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than orequal to T2. Since X| ^ T2 ♦ Catmost needs toroll back totime Xj.
♦

Claim 2 implies that Cshould remember the state at the time ofthe last input event. This is the
state isa "x"^ state," meaning that the time ofthe state isthe event time x, and the effect ofthe event

has been taken care of. The IBE solver is exactly suitable for this situation, because it considers the

effectof the inputsignal, anddoes not advance time.

The ahead-of-time execution of theCTsubsystem brings another problem that anevent generated

may not be a "real" event, especially for level triggered event generators. If there is a skipped input

event that causes theCT subsystem to rollback, the potential output event may nothappen anymore.

So when the CT subsystem C detects an output event v), it should locally cache the event and

require a refire at time x = (by emitting a pure event i.)). Only when the global time has

reached tg can the CT subsystem be sure that e(tg, v) does actually happen, and it can be emitted. A

side effect of this approach is that a CT subsystem always emits events at the current time of the DE

system, in other words, if pure events are also treated as input events, then CT subsystems have zero

delay.

Rollback is a time consuming operation. It implies that certain segments of the state trajectory

have tobe computed twice. Since the simulation ofCT systems isvery expensive, we should minimize

the possibility ofrollbacks. Sothe question "howfar should the CPsubsystem runT^ must beanswered

carefully. Ideally, the CT subsystem should run tothe time ofitsnext input event. But this isnot appli

cable, because theDE system can not provide the next input event time until the event is actually hap

pening. Practically, there are several possible answers:

• Run until the output event isfound. This is themost aggressive answer. Itblindly q)plies theinput/

output semantics to an actor. This is unsatisfactory not onlybecause an output eventmaynot actu

ally happen, but also because ifno event isdetected, the execution control will never return tothe

outer domain.

• Run one minimum step. This is the most conservative answer. It tries toavoid rollback by making

the smallest possible progress. But, this approach puts too many pure events into the DE event

queue, and looses the advantage ofspeeding up the CT simulation by adjusting step sizes. In addi

tion, we still cannot guarantee that rollback is not needed. It is always possible that two successive

input events have time difference less than the minimum step size, oreven that they are simulta-
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neous.

• Run until the time of the next event in the event queue. This s^proach is better than the previous

two, since it will always return the execution control to the outer domain, and CT can use larger

step sizes. Notice that the next event in the queue may not be the next event for the CT subsystem,

so this approach cannotavoid rollback.

In our implementation, all the directors support the query ofthe next iteration time. The getNextit-

erationTime () method in the DEdirectors will return thetime stamp of thenext event currently in

the queue. Notice that this time is strictly greater than the current time, but is not the actual next itera
tion time because some events that arecurrently processing may produce output events that areearlier

than the potential next iteration time. In summary, one firing ofaCT subsystem stops ifone ofthe fol-
lowings is true:

1. A potential outputeventis generated;

2. The CT current time reaches the next iteration time of the outer domain.

43.4 DE inside CT: Breakpoints

The situation is much simpler when a DE subsystem is contained ina CT system, once the event

generation problem is solved. The mechanism ofbreakpoint handling in the CT domain allows the DE
subsystem to register its next output event as a breakpoint. Since time is advanced monotonically in
CT, and the event generators can only generate events that are atthe "current time," the DE subsystem

will receive inputs events monotonically in time. In addition, acomposition of causal DE actors is still
causal (discard the zero delay loops), so the time stamp of the output events is always greater than or

equal to the CT current time. That is, the DE subsystem only produces expected breakpoints.

Note that the DE subsystem should not be involved in the process of the fixed point iteration of

CT. As stated in section 3.1.2, the fixed point solution is aninstantaneous behavior. The configuration

ofthe system should be kept unchanged. The firing ofa DE subsystem may change its states. So the
DE subsystem can only befired between two successive integration steps ofthe CT system.

43.5 CTMixedSignalDirector
CTMixedSignalDirector is the director that handles the execution ofa CT composite actor when it

is interacting with other domains. It implements all the features discussed above to achieve a correct

and efficient mixed-signal simulation. Itextends the functionality ofCTMultiSolverDirector inthe fol

lowing ways:
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initialize(). Ifthe CT composite actor isembedded in another domain, in the initialize phase ofthe

whole simulation, theCTMixedSignalDirector will askfor a zero delay refire from its execu

tive director. This will guarantee that the CT subsystem is running ahead ofglobal time.

prefire(). While the prefire() method ofthe multi-solver director simply returns true, the prefire()
method ofthe mixed-signal director manages possible rollback. As shown inFigure 21, when the

prefireO method is called, itchecks ifitis embedded in another domain. Ifso, itcompares its local
current time t with the current time x of its executive director. If r > x, it must roll back. In order

tocorrectly roll back to a previous "known good" state, all theactors that have state (parameters

and internal variables) should implement theCTMemarisActor interface. The known good state

is saved by calling saveStates {) on all actors with memory, when the director's local current

time is equal to the global current time and the input event has been processed. The method

restoreStatesO is called when rollback is performed. The current time is set back to the

"known good time" the time ofthe know good state. After rollback, the director can re-execute the

^ pretireO ^

40
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T s getCurrentTifneO
Te s exacutiveDirector

getCurrentTtfneO
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> '

catchl^ N

execute the system
from knownCoodTime to Te

c return tnie

FIGURE 21. The preflre() method of CTMixedSignalDirector.
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system up to the time of the outside current time.

fire(). As shown in Figure 22, the fire() method of the directorexecutes in two phases, the event

processing phase and the execution phase. In the event processing phase, all the event generators

emit their potential event at the current time; all the event interpreters consume input events if

there are any. Notice that time is not advanced in the event processing phase. The director will

request a zerodelay refire ftom its executive director, if it is not a top level director. If the outer

domain is theDEdomain, this request willbe a pureeventthatis placed afterallotherevents with

the same time stamp. This pure event will be processed after the DE director has processes all

emitEvents

Event geiaiors enut
cnnent lime events,

if they have any .

consumeEvents

eventPhase?

Event inteipreters consume
cunent lime events

and register them as
breakpoints.

refineStepSize

Ask all event generators for
lefineStepSizeO.

Set the minimum one as the

suggected next step size

exscutiveDirector.

fireAttaetCurrentTimeOI

eventPhase > -eventPhase

i
C )

IsTopLevel?

chooseODEsolver and

resovie step size
acooding to suggested

step size and breakpoints

sdverproceedOneStepO

detectEvent

Fire eventOeneratingScheduIe

hasEventNow?

reach nroEndTime

FIGURE 22. THe flreQ method for CTMixedSignalDirector.
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other simultaneous events. The consequence is that when the CT composite actor is triggered by

this pure event, itwill have abetter estimation about the next iteration time. In fact, ifthere is only
one CT composite actor in aDE domain, then the CT composite actor will never need to roll back.

In the execution phase, the CT system will run until the "fire end time" if itisnot atthe top level.

Otherwise, it will just run one step. The fire end time is by default the next iteration time of the

executive director, but it can be refined if an event is generated during the execution.

CTMixedSignalDirector is the most powerful director in the CT domain. It not only can be used

for interactions with other domain, but also can be used to handleunexpected breakpoints. So when

users construct a pure CT system with actors that may cause unexpected breakpoint, the CTMixedSig

nalDirector should be used.
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5 Case Study

We explore a mixed signal simulation ofa micro accelerometer with digital force feedback. Micro

accelerometers are MEMS devices that use beams, gaps, and electrostatics to measure acceleration.

Beams and anchors, separated by gaps, form parallel plate capacitors. When the device is accelerated

in the sensing direction, the displacement of the beams causes changes in gap sizes, which further

causes change in the capacitance. By measuring the change ofcapacitance (using the Winston capaci

tor bridge), the acceleration can be obtained accurately.

Feedback can beapplied tothe beams by charging the capacitors. The benefits offeedback are [7]:

• Reduce the sensitivity to process variations.

• Eliminate mechanical resonances, increase sensor bandwidth

• High selectivity and dynamic range.

• Reduce sensor Brownian motion noise.

Sigma-delta modulation [11 ], also called the pulse density modulation or the bang-bang control, is

adigital feedback technique, which provides the A/D conversion functionality "for free." Adesign ofa
micro accelerometer with digital feedback is described in [18].

As shown in Figure 23, the second order CTsubsystem is used to model a beam. The voltage on

the beam-gap capacitor issampled every Tseconds (much faster than the required output ofthe digital

signal), then filtered by a lead compensator (FIR filter), and fed to an one-bit quantizer. The outputs of
the quantizer are converted to force and fed back tothe beams. The outputs are also counted and aver-

t t de

1 " J jriCffW:

1^

RRHtor Quan6z»r

iccumulitof DcPtot

FIGURE 23. The block diagram for the digital feedback micro accelerometer.
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aged every N*T seconds to produce the digital output. In our example, the external acceleration is a
Sin wave.

"Sampler" is a time triggered event generator, which samples the input signal every Tseconds and
produces events. **ZeroOrderHold** is an event interpreter that translate the input discrete events into
piecewise constant CT signals. The simulation result is shown in Figure 24. In the CTPlot, DataO is the

^lle i Special

(a) Plot of the continuous signals

File Special

(b) Plot of the discrete signals

FIGURE 24. The simulation result of the digital feedback micro accelerometer.
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position ofthe beam; Datal is the input Sin signal; Data2 isthe feedback control force. In the DEPlot,

DataO is the quantization result for every 0.02 second, and Datal shows the digital output of the

device, which is the moving average of DataO overevery 50 samples.
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6 Conclusion and Future Work

This report presents the techniques ofcontinuous time and mixed signal simulation in Ptolemy II.

Continuous time systems that are modeled as ordinary differential equations can be represented in the

Ptolemy n CT domain using integrators with feedback loops. The numerical integration methods are
implemented using the Ptolemy n execution model and the proper schedules. Breakpoints are treated
as an integral part ofthe CT semantics, and the directors are designed tohandle them correctly.

Mixed-signal simulation ofcontinuous time and discrete event model is studied using the tagged

signal model. Since the signal types in the two domains are distinct, special actors, like event genera

tors and event interpreters, are needed to convert them. Using the breakpoint mechanism in the CT

domain, the event generation problem can beeasily solved. The execution coordination of the CTand

DEdomains arediscussed in detail. When CTsubsystems are embedded in a DEsystem, the semantics

requires that the CT subsystems must run ahead oftime and beable torollback. Aspecial treatment in

theCTMixedSignalDirector can help preventing theCTsubsystem from running toofar, and thus can

minimize the possibility of rollback.

The techniques presented in this report, especially the event detection techniques, the breakpoint

mechanism, andthe variable stepsizeintegration methods arehelpful to support otherpossible hetero

geneous simulations. Forexample, the discrete time (DT) model is a special case of the DE model

where theevents only happen atequally separated time points. Theintegration ofCTandDTmodels is

widely used to model periodical sampling systems. The simulation of this kind of system should be

easy to achieve since CT partcanknow exactly how far it should runahead, and rollback is never nec

essary. Finite state machine (FSM) is a popular model for specifying sequential control logics. The

integration of CT and FSM models yields the so called "hybrid system" model. Ourevent detection

techniques can generate trigger events from CT that cause state transitions in the FSM part, but we

need more study on how theFSM canchange theCTsystem configuration byits "actions". Theinte

gration of the simulation of CT, DT, andFSM willbe future woric.
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Appendix A: Numerical Root Finding Techniques
Partof thematerials in this section arecompiled from [25] and [19]. Thegeneral statement of the

problem is:

Problem l.To find xeSfi, such that

fix) = 0 (37)

where^) is a function that is continuous and "smooth".

Definition: Multiplicity of the root. If 3g(j:), such that

fix) = (A:-a)'"g(x), (38)

and g(a) * 0, then a is a m multiple rootoffi).

If weexamine thederivative of^) near a, wecan find thedifference ofaneven multiplicity root

and an odd multiplicity root, as shown in Figure 24

even

multiplicity

dd

inultiplicity

0

FIGURE 25. Roots of even and odd multiplicity.

It can be seen that a zero with even multiplicity is very hard todetect, especially ona finite preci

sion digital computer. So when facing the foot finding problems, sometimes we can only say "as good

as it gets."

So in practice, the problemis reformulated as:

Problem 2.Given a closed interval [B, C] withy(B)/(C)< 0, find the root M e [B, C], such that

l/(M)l<e, for some small e >0.

Notice that ify(B)/(C)>0, there may be:

• no zeros in [B,C]

• odd number of even zeros, like the interval [A, B] in Figure 24.

• even number of odd zeros, like the interval [B, D] in Figure 24.

The basic idea of solving Problem 2 isto shrink the interval and keep they(B)/(C)< 0 property until

some point M is found such that j/(M)l<e. Here aresome generally used methods.
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Al.Bisection.

This is the most naive and popular method. The methodis shownbelow.

if (f(B)*f{C)<0) {

M = B + (B - C)/2.0

if (abs(f(M))<eps) {

return M;

) else {

if {f(M)f(B)<0) {

C = M;

redo ;

} else {

B = M;

redo;

}

)

}

Although thealgorithm looks like a blind search, it is very robust and theconvergence is guaranteed as

long as the function iscontinuous. Theproblem is that this method may converge very slowly.

A2.Newton's Method and the Secant Method

Thesemethods do not need an interval of oppositesigns. They use a first order(linear) approxima

tion of the function/near 0, as shown in (39), and try to recursively solve the linear equations (40)

using (41)

fix) «/(x,) + (x- r,.)/(r,.) (39)

/(r,) + ix- Xi)f(x,.) = 0 (40)

=;c+^ (41)
' /(*,)•

Since it is inconvenient to calculate /(x,), it can be approximated by linearly extrapolating the old

points, Xj and x,-./, to get:

This is called the secant method. The advantage of this class of methods is that it converges fast. The

downside is that if/is *Tlat," i.e. /(x,) and /(x,- _i) are very close toeach other, then the extrapolation

becomes very coarse. This method is noteasy to scale to themultidimensional case, where/is a vector

function.
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A3.Regular Falsi (False Position)

This is the method that is used in f zero .m in the Matlab. The method is similar to the bisection

method. But, instead of finding themidpoint of B andC, it usesthe linear interpolation of thevalues at

B andC. Asshown in Figure 25,fora convex function, thismethod will useone"old"value again and

again, and it converges slowly.

m

FIGURE 26. An Illustration of the false position method.

A4.IIlinois Algorithm

This method combines the regular falsi and the bisection method. As shown in Figure 26,instead

of bisection in r, it bisection onJ{x)when x is reused in the regular falsi method.

Ac)

y(a)/2

FIGURE 27. An illustration of the Illinois algorithm.

*This method shares the reliability that the bisection algorithm obtains by staying in an evershrinking

interval, but avoids the slowconvergence that plagues the method of falseposition. Andit can be vec-

torized."[19]
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