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Abstract. Blobworld is a system for image retrieval based on �nding
coherent image regions which roughly correspond to objects. Each image
is automatically segmented into regions (\blobs") with associated color
and texture descriptors. Querying is based on the attributes of one or
two regions of interest, rather than a description of the entire image. In
order to make large-scale retrieval feasible, we index the blob descriptions
using a tree. Because indexing in the high-dimensional feature space
is computationally prohibitive, we use a lower-rank approximation to
the high-dimensional distance. Experiments show good results for both
querying and indexing.

1 Introduction

From a user's point of view, the performance of an information retrieval system
can be measured by the quality and speed with which it answers the user's
information need. Several factors contribute to overall performance:

{ the time required to run each individual query,
{ the quality (precision/recall) of each individual query's results, and
{ the understandability of results and ease of re�ning the query.

All of these factors should be considered together when designing a system. In
addition, image database users generally want to �nd images based on the objects

they contain, not just low-level features such as color and texture [5, 7]; image
retrieval systems should be evaluated based on their performance at this task.

Current image retrieval systems tend to perform queries quickly but do not
succeed in the other two areas. A key reason for the poor quality of query results
is that the systems do not look for meaningful image regions corresponding to
objects. Additionally, the results are often di�cult to understand because the
system acts like a black box. Consequently, the process of re�ning the query may
be frustrating. When individual query results are unpredictable, it is di�cult to
produce a stream of queries that satis�es the user's need.

? A shorter version of this paper will appear at the International Conference on Visual
Information Systems '99 and is c Springer-Verlag.
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In earlier work we described \Blobworld," a new framework for image re-
trieval based on segmenting each image into regions (\blobs") which generally
correspond to objects or parts of objects [2, 3]. The segmentation algorithm
is fully automatic, requiring no parameter tuning or hand pruning of regions.
In this paper we present a complete online system for retrieval in a collection
of 10,000 Corel images using this approach. The query system is available at
http://elib.cs.berkeley.edu/photos/blobworld.

We present results indicating that querying for distinctive objects such as
tigers, zebras, and cheetahs using Blobworld produces higher precision than does
querying using color and texture histograms of the entire image. In addition,
Blobworld false positives are easier to understand because the matching regions
are highlighted. This presentation of results means that interpreting and re�ning
the query is more productive with the Blobworld system than with systems that
use low-level features from the entire image.

Because the speed of individual queries is also an important factor, we de-
scribe an approach to indexing Blobworld features in order to avoid linear scans
of the entire image collection. We project each color feature vector down to a
lower dimensional vector based on the Singular Value Decomposition [8] of the
quadratic distance weight matrix and index the resulting vector. We �nd that
queries that use the index to retrieve several hundred images and then rank
those images using the full Blobworld algorithms achieve results whose quality
closely matches the quality of queries that scan the entire database.

We begin this paper by briey reviewing the current state of image retrieval.
In Section 2 we outline the Blobworld segmentation algorithm, region descriptors,
and querying system. In Section 3 we discuss indexing. In Section 4 we present
experiments comparing the performance of Blobworld querying and indexing to
the performance of a system that uses color and texture histograms of the entire
image. We conclude with a brief discussion of our results.

1.1 Related Work

Many current image retrieval systems perform retrieval based primarily on low-
level image features, including IBM's Query by Image Content (QBIC) [6], Pho-
tobook [19], Virage [9], VisualSEEk [23], Candid [15], and Chabot [18].

Lipson et al. [16] retrieve images based on spatial and photometric relation-
ships within and across simple image regions. Little or no segmentation is done;
the regions are derived from low-resolution images. Jacobs et al. [13] use mul-
tiresolution wavelet decompositions to perform queries based on iconic matching.

Ma and Manjunath [17] perform retrieval based on segmented image regions.
Their segmentation is not fully automatic, as it requires some parameter tuning
and hand pruning of regions.

Much research has gone into dimensionality reduction [10] and new index
trees [22, 24] to cope with the high dimensionality of indices built over color
histograms. Work to date has focused on indexing the entire image or user-
de�ned sub-regions, not on indexing automatically created image regions. Our
indexing methods are based on those used in QBIC [10].
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2 Blobworld

The Blobworld representation is related to the notion of photographic or artistic
scene composition. Blobworld is distinct from color-layout matching as in QBIC
[6] in that it is designed to �nd objects or parts of objects; each image is treated
as an ensemble of a few \blobs" representing image regions which are roughly
homogeneous with respect to color and texture. A blob is described by its color
distribution and mean texture descriptors. Figure 1 illustrates the stages in cre-
ating Blobworld. Details of the segmentation algorithm may be found in [2].
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Fig. 1. The stages of Blobworld processing: From pixels to region descriptions.

2.1 Grouping pixels into regions

Each pixel is assigned a vector consisting of color, texture, and position fea-
tures. The three color features are the coordinates in the L*a*b* color space
[25]; we smooth these features to avoid oversegmentation arising from local color
variations due to texture. The three texture features are contrast, anisotropy,
and polarity, extracted at a scale which is selected automatically [2]. The posi-
tion features are simply the (x; y) position of the pixel; including the position
generally decreases oversegmentation and leads to smoother regions.

We model the distribution of pixels in this 8-D space using mixtures of two
to �ve Gaussians. We use the Expectation-Maximization algorithm [4] to �t the
mixture of Gaussians model to the data. To choose the number of Gaussians
that best suits the natural number of groups present in the image, we apply
the Minimum Description Length (MDL) principle [20, 21]. Once a model is
selected, we perform spatial grouping of connected pixels belonging to the same
color/texture cluster. Figure 2 shows segmentations of a few sample images.

2.2 Describing the regions

We store the color histogram over the pixels in each region. The histogram is
based on bins with width 20 in each dimension of L*a*b* space. This spacing
yields �ve bins in the L* dimension and ten bins in each of the a* and b*
dimensions, for a total of 500 bins. However, not all of these bins are valid; only
218 bins fall in the gamut corresponding to 0 � fR;G;Bg � 1. (The other 282
bins are always empty.)
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To match the color of two regions, we use the quadratic distance between
their histograms x and y [10]:

d2hist(x;y) = (x� y)TA(x � y)

where A = [aij] is a symmetric matrix of weights between 0 and 1 representing
the similarity between bins i and j based on the distance between the bin centers;
neighboring bins have a weight of 0.5. This distance measure allows us to give
a high score to two regions with similar colors, even if the colors fall in di�erent
histogram bins.

For each blob we also store the mean texture contrast and anisotropy. The
distance between two texture descriptors is de�ned as the Euclidean distance
between their respective values of contrast and anisotropy�contrast. (Anisotropy
is modulated by contrast because it is meaningless in areas of low contrast.) We
do not include polarity in the region description because it is generally large only
along edges; it would not help us distinguish among di�erent kinds of regions.

2.3 Querying in Blobworld

The user composes a query by submitting an image in order to see its Blobworld
representation, selecting the relevant blobs to match, and specifying the relative
importance of the blob features. We de�ne an \atomic query" as one which
speci�es a particular blob to match (e.g., \like-blob-1"). A \compound query" is
de�ned as either an atomic query or a conjunction of compound queries (\like-
blob-1 and like-blob-2"). The score �i for each atomic query with feature vector
vi is calculated as follows:

1. For each blob bj in the database image (with feature vector vj):
(a) Find the distance between vi and vj : dij = (vi � vj)

T�(vi � vj).

(b) Measure the similarity between bi and bj using �ij = e�
dij
2 . This score

is 1 if the blobs are identical in all relevant features; it decreases as the
match becomes less perfect.

2. Take �i = maxj �ij .

The matrix � is block diagonal. The block corresponding to the texture
features is an identity matrix, weighted by the texture weight set by the user.
The block corresponding to the color features is the A matrix used in �nding
the quadratic distance, weighted by the color weight set by the user.

The compound query score for the database image is calculated using fuzzy-
logic operations [14], and the user may specify a weight for each atomic query.

We then rank the images according to overall score and return the best
matches, indicating for each image which set of blobs provided the highest score;
this information helps the user re�ne the query. After reviewing the query results,
the user may change the weighting of the blob features or may specify new blobs
to match and then issue a new query. Figure 3 shows the results of a sample
query.
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Fig. 2. Sample image segmentations.

Fig. 3. Results from a tiger query. The user selected the tiger blob and grass blob.
Matching regions in each returned image are outlined in red.
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3 Indexing

Indices allow the computer to �nd images relevant to a query without looking at
every image in the database. We investigated indexing the color feature vectors
to speed up atomic queries.

We used R*-trees [1], index structures for data representable as points in
N-dimensional space. R*-trees are not the state of the art for nearest-neighbor
search in multiple dimensions; using a newer tree [22, 24] would likely speed up
our indexing results by a constant factor. However, our basic observations are
independent of this tuning of the index: (i) indexing over blobs can decrease
query time without signi�cantly reducing quality, and (ii) indices over blobs can
perform better than whole-image indices. As we tune and scale the system, we
intend to examine new indexing schemes. We used the Generalized Search Tree
framework [11] to experiment with the indices.

R*-trees break the multi-dimensional data space into successively smaller
rectangles. Each node contains a list of the minimumbounding rectangles (MBRs)
of its children and pointers to those children. The MBR of a node is a rectangle
that minimally encloses all the children of that node. Leaf nodes contain all the
data points enclosed within their MBRs.

Index speed degrades as the dimensionality of the data indexed increases.
Because index trees are secondary storage structures, each node and leaf in an
index tree must �t on a single disk page. Shorter paths from root to leaf in
an index tree lead to fewer disk accesses to reach the leaves, and thus faster
index retrievals. Node fanout, the number of data entries (MBR + pointer) that
can �t in a node, dictates index tree height. Smaller data entries allow greater
fanout and faster index retrievals. Higher dimensional data requires larger data
entries and thus lower fanout. At su�ciently high dimensions fanout becomes so
low that query speed using the index is worse than simply scanning the entire
database. To avoid this, we need a low dimensional approximation to the full
color feature vectors.

Computing the full distance d(x;y) =
�
(x� y)TA(x � y)

�1=2
would require

storing the entire 218-dimensional histogram and performing the full matrix-
vector multiplication.To reduce the storage and computation in the index, we use
Singular Value Decomposition to �nd Ak, the best rank-k approximation to the
weight matrixA. We then project x and y into the subspace spanned by the rows

of Ak, yielding xk and yk. The Euclidean distance
�
(xk � yk)T(xk � yk)

�1=2
is

a lower bound on the full distance. Since the singular values �k+1; : : : ; �218 are
small for our A, this bound is tight. We can thus index the low-dimensional xk's
and use the Euclidean distance in the index without introducing too much error.

The index aims to match the quality of full queries without looking at all the
blobs in the database. We would like the indices to retrieve exactly the images
that the full query ranks as the best matches. Because the index does not use
the full feature vector when selecting the images it returns, the index will not
return images in exactly the same order as a full Blobworld query. There is a
quality/time tradeo�: as the index returns more images, the �nal query results
will get better, but the query will take longer.
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4 Experiments

In order to understand the performance of the Blobworld system, we asked sev-
eral questions:

{ What is the precision of Blobworld queries compared to queries using global
color and texture histograms? More speci�cally, for which queries does Blob-
world do better, and for which do global histograms do better?

{ How well do the indexing results approximate the results from a full scan of
the collection? (According to this measure, false positives returned by the
full scan should also be returned by the index.) Here we must consider the
dimensionality of the indexed data as well as how indices over blobs compare
to indices over whole image histograms.

{ What do we lose by using an index instead of a full scan|how does the
precision of the indexed query compare to the full-scan precision?

We explore each of these questions in turn in the next three sections.

4.1 Comparison of Blobworld and global histograms

We expected that Blobworld querying would perform well in cases where a dis-
tinctive object is central to the query. In order to test this hypothesis, we per-
formed 50 queries using both Blobworld and global color and texture histograms.

We selected ten object categories: airplanes, black bears, brown bears, chee-
tahs, eagles, elephants, horses, polar bears, tigers, and zebras. There were 30 to
200 examples of each category among the 10,000 images.

We compared the Blobworld results to a ranking algorithm that used the
global color and texture histograms of the same 10,000 images. The color his-
tograms used the same 218 bins as Blobworld, along with the same quadratic
distance. For texture histograms, we discretized the two texture features into 21
bins each. In this global image histogram case, we found that color carried most
of the useful information; varying the texture weight made little di�erence to
the query results.

For each category we constructed queries using one blob, two blobs, and
global histograms. In each case we performed a few test queries to select the
weights for color and texture and for each blob. We then queried using �ve new
images. We used the same weights for each image in a category. We also were
not allowed to choose whether to use one or two query blobs, which penalizes
the Blobworld results; for example, in some bear images a background blob was
salient to the category, while in others there was not a meaningful background
blob. In Figure 4 we plot the average precision (fraction of retrieved images which
are relevant) vs. recall (fraction of relevant images which are retrieved) for queries
in the tiger, cheetah, zebra, and airplane categories; the di�erences between
Blobworld and global histograms show up most clearly in these categories.
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Fig. 4. Average precision (fraction of retrieved images which are relevant) vs. recall
(fraction of relevant images which are retrieved) for Blobworld and global histogram
queries. (Chance would yield precision ranging from 0.003 for zebras to 0.02 for air-
planes.)

The results indicate that the categories fall into three groups:

distinctive objects: The color and texture of cheetahs, tigers, and zebras are
quite distinctive, and the Blobworld result quality was clearly better than
the global histogram result quality.

distinctive scenes: For most of the airplane images the entire scene is distinc-
tive (a small gray object and large amounts of blue), but the airplane region
itself has quite a common color and texture. Histograms did better than
Blobworld in this category. (We have added an option to allow the user to
use the entire background in place of a second blob. Using the background
improves the Blobworld performance somewhat on these distinctive-scene
queries, since it avoids matching, for example, the small regions of sky found
in thousands of images in the database.)

other: The two methods perform comparably on the other six categories. Blobs
with the same color and texture as these objects are common in the database,
but the overall scene (a general outdoor scene) is also common, so neither
Blobworld nor global histograms has an advantage, given that we used only
color and texture. However, histograms can be taken no further, while Blob-
world has much room left for improvement. For example, the shapes of ani-
mals and airplanes are quite distinctive. (Using the background also improves
the Blobworld performance in some of these categories.)

These results support our hypothesis that Blobworld yields good results when
querying for distinctive objects.

4.2 Comparison of Indexed to Blobworld Queries over Multiple

Index Dimensionalities

Index speed improves as the number of dimensions in the index decreases; there-
fore, we want to �nd the minimum number of dimensions that the index may
use. Query speed improves as the number of images retrieved by the index and
then ranked by the full Blobworld algorithm decreases; therefore, we want to
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�nd the minimum number of images that the index must return. However, we
must ensure that a query using the index produces nearly the same results as a
full Blobworld query.

We are also interested in how well we can index blobs for Blobworld queries
relative to how well we can index global feature vectors for global histogram
queries.

For simplicity, we compare the indices based on color feature vectors alone.
We built indices over the color feature vectors of the blobs as well as over

color feature vectors based on global histograms. We measured the recall of the
indices using nearest-neighbor search [12] to retrieve and rank images against
the top 40 images retrieved by a full Blobworld query or global histogram query
over all the images.
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Fig. 5. Recall of (1) blob index compared to the top 40 images from the full Blobworld
query and (2) global histogram index compared to the top 40 images from the full
whole image query. The plots are the average of 200 queries over a database of 10,000
images, or about 61,000 blobs. Results using �ve dimensions and twenty dimensions
are shown.

Figure 5 shows that in the low-dimensional case recall for the blob indices is
higher than for the global histogram indices; blob indices approximate the results
of full Blobworld queries better than global histogram indices approximate the
results of global histogram queries. We believe this occurs because the blob color
histograms, which are derived from relatively uniformly colored regions, cluster
better than the global histograms.

Retrieving just a few hundred blobs from the �ve-dimensional blob index
gives us most of the images the full Blobworld query ranked highest. Therefore,
for the remaining experiments we use the �ve-dimensional indices.

4.3 Precision of indexed and full queries

The previous experiment showed that Blobworld indexing approximates the
\true" Blobworld ranking more closely than global histogram indexing approx-
imates the \true" histogram ranking. We also wanted to test the behavior of
the indexing schemes in terms of precision measured against ground truth. In
essence, we wanted to see how indexing a�ects the quality of Blobworld query
results.
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We performed the same queries as in Section 4.1, using the index to reduce the
number of \true" comparisons required. We passed the query to an index using
the �ve-dimensional projection and retrieved the nearest 400 database objects
(400 blobs for Blobworld, 400 images for global histograms). When indexing
two-blob queries, we retrieved the nearest 400 matches to each of the two blobs
and returned the union of the two result sets. In all cases, we used the \true"
matching algorithm to rank the retrieved images.

Figure 6 indicates that the precision of the indexed results closely mirrors
the precision of the full query results. As previously stated, this is the quality
goal for the index. Simple timing tests indicate that indexed Blobworld queries
run in a third to half of the time of the full query. As the number of images in
the collection increases, this speed advantage will become even greater.
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Fig. 6. Average precision (fraction of retrieved images which are correct) vs. number
of images retrieved for several query types. Solid lines represent full queries; dashes
represent indexed queries. The index tracks the corresponding full query quite closely,
except for the zebra case, where the indexed Blobworld precision is lower than the full
Blobworld precision because we only index color, not texture.
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5 Conclusions

The e�ectiveness of an image retrieval system is determined by three factors:
the time to perform an individual query, the quality of the query results, and
the ease of understanding the query results and re�ning the query. We have
shown that Blobworld queries for distinctive objects provide high precision and
understandable results because Blobworld is based on �nding coherent image
regions. We have also shown that Blobworld queries can be indexed to provide
fast retrieval while maintaining precision.
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