
Characterizing Large Storage Systems: Error Behavior and Performance
Benchmar
ks

by

Nisha Darshi Talagala

B.S. (Wayne State University) 1991
M.S. (Wayne State University) 1992

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in Charge:

Professor David Patterson, Chair
Professor Randy Katz

Professor George Shanthikumar

Fall 1999

1

Abstract

Characterizing Large Storage Systems: Error Behavior and Performance Benchmarks

by

Nisha Darshi Talagala

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Patterson, Chair

This dissertation characterizes two causes of variability in a large storage system: soft

error behavior and disk drive heterogeneity. The first half of the dissertation focuses on

understanding the error behavior and component failure characteristics of a storage proto-

type. The prototype is a loosely coupled collection of Pentium machines; each machine

acts as a storage node, hosting disk drives via the SCSI interface. Examination of long

term system log data from this prototype reveals several interesting insights. In particular,

the study reveals that data disk drives are among the most reliable components in the stor-

age system and that soft errors tend to fall into a small number of well defined categories.

An in-depth study of hard failures reveals data to support the notion that failing devices

exhibit warning signs and investigates the effectiveness of failure prediction.

The second half of the dissertation, dealing with disk drive heterogeneity, focuses on a

new measurement technique to characterize disk drives. The technique, linearly increasing

2

strides, counteracts the rotational effect that makes disk drives difficult to measure. The

linearly increasing stride pattern interacts with the drive mechanism to create a latency vs.

stride size graph that exposes many low level disk details. This micro-benchmark extracts

a drive’s minimum time to access media, rotation time, sectors/track, head switch time,

cylinder switch time, number of platters, as well as several other pieces of information.

The dissertation describes the read and write versions of this micro-benchmark, named

Skippy, as well as analytical models explaining its behavior, results on modern SCSI and

IDE disk drives, techniques for automatically extracting parameter values from the graph-

ical output, and extensions.

Professor David Patterson

Dissertation Chair

iii

DEDICATION

To my parents, Rohana and Punya

iv

TABLE OF CONTENTS

CHAPTER 1. Chapter 1: Introduction ... 1

1.1. Thesis Goal... 2
1.2. Thesis Outline... 3
1.2.1. Characterizing Error Behavior ... 3
1.2.2. Characterizing Disk Drives.. 5
1.3. Thesis Contributions.. 7

CHAPTER 2. The Storage System .. 8

2.1. Introduction .. 8
2.2. Prototype Hardware.. 9
2.3. Hardware Configuration... 13
2.3.1. Node Design... 13
2.3.1.1. Performance Trade-offs of Varying the Disks/Host Ratio 14
2.3.1.2. Problems with high Disk/Host Ratios ... 16
2.3.2. Ethernet and Serial Interconnection... 17
2.3.3. Power Scheme.. 19
2.3.4. Redundancy.. 19
2.4. Application: A Web-Accessible Image Server .. 19
2.4.1. Application Overview.. 19
2.4.2. File Format and User Interface .. 22
2.4.3. Disk Usage ... 23
2.5. Summary .. 24

CHAPTER 3. Characterizing Soft Failures and Error Behavior..................... 26

3.1. Introduction .. 26
3.2. Related Work.. 27
3.3. Failure Statistics ... 28
3.4. Logs and Analysis Methodology.. 30
3.5. Results .. 32
3.5.1. Error Types .. 33
3.5.2. Error Frequencies... 37
3.5.3. Analysis of Reboots ... 41
3.5.4. Correlations.. 45
3.6. Discussion .. 47
3.7. Summary .. 49

CHAPTER 4. Characterizing Failures.. 51

4.1. Introduction .. 51
4.2. Methodology .. 52
4.3. A Look At Failure Cases .. 53
4.3.1. SCSI Cases... 53

v

4.3.2. Disk Drive Cases.. 54
4.4. Effectiveness of Fault Prediction ... 55
4.4.1. The Dispersion Frame Technique.. 56
4.4.2. SCSI Cases... 58
4.4.3. Disk Drive Cases.. 60
4.4.4. Discussion .. 62
4.5. Side Effects of Disk Drive Failures.. 64
4.6. Summary .. 65

CHAPTER 5. The Skippy Linear Stride Benchmark.. 66

5.1. Introduction .. 66
5.2. Background and Related Work .. 67
5.2.1. Disk Background ... 68
5.2.2. Related Work ... 69
5.3. The Write Benchmark .. 71
5.3.1. The Algorithm.. 71
5.3.2. Graphical Result... 77
5.3.3. Extracting Parameters .. 80
5.3.4. A Sample Result .. 82
5.4. A Refined Analytical Model For Writes .. 85
5.5. Write Measurements... 87
5.5.1. SCSI Disk Drives ... 88
5.5.2. Discussion .. 93
5.6. Read Benchmark .. 95
5.6.1. Expected Behavior ... 96
5.6.2. Extracting parameters. ... 101
5.6.3. A Sample Result .. 102
5.7. Read Measurements ... 104
5.7.1. SCSI Disk Drives ... 104
5.7.2. IDE Disk Drives... 107
5.7.3. Discussion .. 108
5.8. Summary .. 109

CHAPTER 6. Automatic Extraction .. 111

6.1. Introduction .. 111
6.2. Approach .. 112
6.3. Implementation Details .. 114
6.3.1. Phase I: Median Filter .. 114
6.3.2. Phase II: Identifying the line slope and transition points..................... 115
6.3.3. Phase III: Identifying the head and cylinder switches 117
6.3.4. Phase IV: Parameter calculation .. 119
6.3.5. A Sample Result .. 119
6.4. Experiments.. 121
6.5. Optimizations ... 122
6.5.1. Wider and Multiple Pass Filters... 123

vi

6.5.2. Using Alternative Cluster Algorithms ... 126
6.5.3. Using multiple extractions for accuracy checking............................... 128
6.5.4. Combining the optimizations: A better algorithm 129
6.6. Discussion .. 129
6.7. Conclusion.. 131

CHAPTER 7. Extensions .. 132

7.1. Introduction .. 132
7.2. Extracting Global Disk Characteristics .. 133
7.2.1. Recording Zones .. 133
7.2.2. Seek Profile .. 138
7.3. Extending the Skippy Technique ... 141
7.3.1. Variable step size interval: Accuracy vs. Time Trade-off 142
7.3.2. Variable transfer size: Transfer Rate Measurement............................ 144
7.3.3. The Backwards Read Benchmark.. 146
7.4. Other Issues .. 147
7.4.1. Accuracy and Speed... 147
7.4.2. Cache Effects ... 148
7.5. Summary .. 149

CHAPTER 8. Conclusion ... 151

8.1. Summary .. 151
8.1.1. Characterizing Soft Error Behavior ... 151
8.1.2. Disk Drive Heterogeneity .. 152
8.2. Future Directions.. 153
8.2.1. Understanding Error Behavior ... 153
8.2.2. Understanding Disk Drive Heterogeneity... 154
8.3. Conclusion.. 155

vii

LIST OF TABLES

Table 2-1. Components Used in Storage Prototype.. 10
Table 2-2. Disk Enclosure Commands ... 12
Table 3-1. Absolute Failures over 18 Months of Operation. 29
Table 3-2. Sample Error Messages ... 34
Table 3-3. Error Frequencies for 16 Machines over 6 Months 37
Table 3-4. Total Number of Errors per Machine... 40
Table 3-5. Distribution of Restarts Across Machines 43
Table 3-6. Frequency of Each Type of Restart ... 44
Table 4-1. Summary: SCSI Failure Cases .. 54
Table 4-2. Summary: Disk Drive Failure Cases ... 55
Table 4-3. DFT Prediction for SCSI Timeout Cases .. 60
Table 4-4. DFT Prediction for SCSI Parity Cases .. 60
Table 4-5. DFT Prediction for Disk Drive Cases.. 61
Table 4-6. Primary and Secondary Disk Error Messages 63
Table 5-1. Parameters for Synthetic Disk Drive ... 77
Table 5-2. Description of the Disks in the Testbed... 88
Table 5-3. Extracted Parameters for SCSI Disk Drives 92
Table 5-4. Parameters Extracted from Read Benchmark................................ 106
Table 6-1. Percentage Errors of Manual and Automatic Extraction............... 120
Table 7-1. SSE for Linear and Quadratic Fits to Zoned Results..................... 138

viii

LIST OF FIGURES

Figure 2-1. Storage Node Architecture... 14
Figure 2-2. Performance Trade-Offs of Varying the Disks/Host Ratio 15
Figure 2-3. Interconnection and Power Topologies.. 18
Figure 2-4. Image Server Operation ... 20
Figure 2-5. GridPix Viewer .. 23
Figure 3-1. A Sample Line from Syslog Showing a SCSI TimeOut 31
Figure 3-2. Distribution of Errors by Machine over a Six Month Period........... 40
Figure 3-3. Restarts and Their Causes.. 43
Figure 3-4. Network Errors over Time ... 46
Figure 3-5. Other Errors over Time. ... 47
Figure 3-6. Time Distribution of Restarts... 48
Figure 4-1. Graphical Illustration of the Dispersion Frame Technique.............. 58
Figure 4-2. Side Effects of Disk Failure ... 65
Figure 5-1. Disk Drive Basics... 68
Figure 5-2. Pseudocode for the Write Version of Skippy. 71
Figure 5-3. Sequence of Events for Two 1 Sector Writes 74
Figure 5-4. Expected Skippy Result ... 78
Figure 5-5. Illustrations of Behavior in Skippy Result....................................... 79
Figure 5-6. Skippy Write Result for IBM UltraStar XP disk drive 84
Figure 5-7. Refined Model Result for Synthetic Disk .. 87
Figure 5-8. Skippy Write Result for 5400 RPM Seagate Hawk......................... 89
Figure 5-9. Skippy Write Result for 7200 RPM Seagate Barracuda.................. 90
Figure 5-10. Skippy Write Result for 7200 RPM Micropolis Drive 91
Figure 5-11. Skippy Write Result for 10000 RPM IBM 9ZX.............................. 91
Figure 5-12. Skippy Write Result for 5400 RPM IBM IDE Drive....................... 93
Figure 5-13. Skippy Write Result for 5400 RPM Quantum Fireball IDE Drive.. 94
Figure 5-14. Read Model Result... 99
Figure 5-15. Illustrations of Request Behavior... 100
Figure 5-16. Other Possible Read Results .. 101
Figure 5-17. Read Result for IBM UltraStar XP .. 103
Figure 5-18. Read Results for SCSI Disk Drives ... 105
Figure 5-19. Read Results for IDE Disk Drives ... 108
Figure 6-1. Classifications of Graph Regions... 112
Figure 6-2. Examples of Median Filters ... 115
Figure 6-3. Median Filtered Graph... 116
Figure 6-4. Removing the Linearly Increasing Offset 118
Figure 6-5. Extraction Accuracy... 122
Figure 6-6. Using Wider Filters and Multiple Passes 125

ix

Figure 6-7. Using An Optimized Clustering Algorithm................................... 128
Figure 6-8. Relative Errors of Optimized Algorithm 130
Figure 7-1. Pseudocode for Zoned Benchmark .. 134
Figure 7-2. Zoned Result on IBM UltraStar XP... 134
Figure 7-3. Zoned Results for SCSI Disk Drives ... 136
Figure 7-4. Linear and Quadratic Curve Fits for UltraStar XP Zoned Result .. 137
Figure 7-5. Seek Measurement Algorithms.. 140
Figure 7-6. Seeker Result for Seagate Barracuda Drive 141
Figure 7-7. Seeker Results for SCSI Disk Drives... 142
Figure 7-8. Effect of Increasing Step Interval Size .. 144
Figure 7-9. Effects of Increasing Transfer Size .. 145
Figure 7-10. Pseudocode for Backwards Read Benchmark 147
Figure 7-11. Backwards Read Result for IBM UltraStar XP Drive 147

x

ACKNOWLEDGEMENTS

Many people have helped and guided me through my time at Berkeley. The foremost of

these people is my advisor David Patterson. I am extremely lucky to have been able to

work with him. Dave helped me focus the direction of my research, while allowing me

the freedom to pursue my interests. His advising has been a great combination of technical

guidance, encouragement, and general good advice on all professional matters.

I would also like to thank my other readers, Randy Katz and George Shanthikumar, for

their advice during both my qualifying exam and dissertation. Randy Katz has always

been an inspiring influence, and has given me very good advice whenever I have inter-

acted with him. I was also fortunate to take a great course in Stochastic Processes from

George Shanthikumar.

I also owe thanks to Terry Lessard-Smith, Bob Miller, and Kathryn Crabtree, who have

saved me on many occasions in everything from registration matters to equipment.

Many thanks also to my fellow office mates in 477 Soda Hall, Remzi Arpaci-Dusseau and

Satoshi Asami. I have learned a great deal through working with each of them, and I’d

like to thank them for insightful comments, many fun discussions, and in all a friendly,

and memorable office environment. Thanks also to my other friends, in particular,

Sumudi, Rachel, and Manosha, who have been there for me throughout.

My husband, Amit, has been an essential background figure in this dissertation. In addi-

tion to giving me technical feedback and advice, he has been incredibly patient and given

me much emotional support and encouragement throughout my final years at Berkeley.

I owe a great debt to my parents. They instilled in me the importance of learning; they

have devoted their energy and made numerous personal sacrifices to enable me to study

in the United States. This dissertation would not have been possible without them.

xi

This research was funded by DARPA Grant N00600-93-K-2481, donations of equipment

from IBM and Intel, and the California State Micro Program.

1

1 Chapter 1: Introduction

The past decade has seen several fundamental changes in the field of I/O and storage sys-

tems. One of these changes was the invention of Redundant Arrays of Inexpensive Disks

(RAID) in 1988. The RAID work fueled a new class of disk-based storage systems con-

taining multiple disk drives with built in data redundancy. These innovations made it pos-

sible to construct large, multiple disk storage systems to serve I/O limited applications such

as video service. In 1999, eleven years later, RAID is a ten billion dollar industry, with

more than 50 companies making RAID-based subsystems. Storage systems research

during this time has also developed ways to improve the performance of RAID arrays, as

well as storage system designs for improving reliability.

However, modern applications, especially those derived from the web, require storage

infrastructures that are much larger than a simple disk-tape hierarchy containing a single

RAID system backed up by a single tape robot. Although stand-alone storage systems

range in capacity from hundreds of gigabytes to a few terabytes, large commercial instal-

lations contain terabytes to petabytes of data. This data is contained many storage arrays

on different hosts, many interconnected via switched networks. One of the largest unsolved

2

problems for such installations is not simply performance or reliability, but manageability.

Studies show that management of storage costs between twice to twelve times the cost of

the storage itself. Although management has traditionally been the task of system admin-

istrators, modern storage installations, with storage in thousands of disk drives, are far too

complex for human management.

Automated storage management is a large umbrella, covering everything from mainte-

nance, error reporting and diagnostics, to performance tuning. Solving these problems

requires that the storage system be adaptive, reacting correctly to the widely varying states

that the system will experience during its lifetime. A large part of an adaptive solution is

understanding and reacting to storage system variability. Even with a fixed architecture

and configuration, a storage system experiences considerable variability during its life-

time. This variability can result from a number of factors, including failures, component

and software upgrades, and so on.

1.1. Thesis Goal

The goal of this thesis is to assist the development of automated storage management by

characterizing storage system variability. In particular, the study focuses on two factors

that contribute to storage system variability, unexpected errors and heterogeneity in disk

drives.

(i) Error Behavior: Although much work has been done on designing storage systems to

tolerate failures of any component and combinations of components, not much work has

3

been done to characterize error behavior. Failures, however, are not binary events. Storage

systems exhibit a range of soft and hard errors, some leading to failure and some not. These

errors constantly change the state of the system, affecting both its performance and avail-

ability.

(ii) Disk Heterogeneity: Although a large system may be shipped with identical disk

drives, the disks in the infrastructure become more and more heterogeneous over time.

There are several reasons for this. First, as drives fail, they will be replaced by newer drives

that are considerably different. Second, the drive market evolves fast; a new disk appears

every nine to twelve months. Third, even if the drive mechanics remain unchanged, firm-

ware revisions appear every three to six months. Finally, a large installation is constantly

incrementing its storage by adding new subsystems. As a result, at any time, the installation

will contain many generations of disk drives, often from different manufacturers, and

hence will result in a heterogeneous system with disks of varying capacity and perfor-

mance.

1.2. Thesis Outline

This thesis characterizes the above two causes of storage system variability in the follow-

ing ways.

1.2.1. Characterizing Error Behavior

The first half of the thesis, chapters 2 through 4, deals with error behavior in a large storage

system. A terabyte capacity storage system prototype is described; the prototype contains

4

disks and supporting hardware such as SCSI controllers, network controllers and so forth.

The soft error and failure behavior of this prototype are then characterized, using system

logs and maintenance records gathered over six months of operation. The results reveal the

common types of errors that occur, the correlations between errors, and their effects on the

operating system and applications. The study also examines the events leading up to com-

ponent failure, as well as the distinction between transient errors and errors leading to fail-

ure.

Chapter 2 describes the storage system architecture used in this study. The prototype,

built by the Tertiary Disk group of the Network of Workstations (NOW) project, is a 3.2

TB system built from commodity hardware. The prototype contains 396 disks hosted by

20 PC and interconnected by a switched ethernet network. The application for this

storage system is a web server for high resolution art images. The collection, by far the

largest in the world, contains over 80,000 images and is available to users 24 hours a

day, 7 days a week at http://www.thinker.org/.

Chapter 3 describes the soft error behavior of the prototype. Six months of system logs

from the nodes of the prototype are analyzed to determine the types of errors that occur.

The analysis reveals some interesting insights. The data disks drives were among the most

reliable components in the system. Even though they were the most numerous component,

they experienced the lowest failure rate. Also, the study finds that all the errors observed

in six months can divided into eleven categories, comprising disk errors, network errors

and SCSI errors. The data supports the notion that disk and SCSI failures are predictable,

and suggests that partially failed SCSI devices can severely degrade performance.

5

Chapter 4 deals with failures in more detail. The chapter examines failure cases of disk

drives and SCSI hardware. Each case shows a noticeable increase in error messages before

replacement. The chapter also evaluates the effectiveness of a failure detection algorithm

developed by other researchers. The evaluation reveals that the algorithm tend to be over-

zealous, often reporting failures where none exist: transient errors can be labeled as failures

by such an algorithm. However, the type of message can be used to detect which events are

actually hardware failures and which are not.

1.2.2. Characterizing Disk Drives

The second half of the dissertation, chapters 5 through 7, presents a novel method for

extracting critical parameters from modern disk drives. The technique uses small disk

accesses, arranged in linearly increasing strides. The linearly increasing stride pattern

interacts with the disk mechanism in such a way that the resulting latency vs. stride size

graph explicitly illustrates many disk parameters. This micro-benchmark extracts a drive’s

minimum time to access media, rotational latency, sectors/track, head switch time, cylin-

der switch time, and the number of platters.

Chapter 5 describes the write and read versions of the basic linear stride micro-benchmark,

namedSkippy. The expected behavior of each version of the benchmark is described using

an analytical model. The analytical model verifies the technique and illustrates how drive

parameters can be extracted from the result graph. Measured results are presented on a

series of modern SCSI and IDE disk drives. The results show that the write version of the

benchmark is effective in extracting all the expected parameters, in all cases to within 3%

6

of values gathered from manufacturer specifications. The read version extracts the same

parameters with similar accuracy, and also provides some insight into how the drive han-

dles read ahead.

Chapter 6 describes an technique for automatically extracting the required parameters from

the result graph. This method is useful since it makes it possible for a higher level software

infrastructure, such as an adaptive storage system, to make use of theSkippy extraction

technique. The chapter describes the automated extraction tool and tests it on the results

from chapter 5. In most cases, the automatically extracted values are within 10% of their

manually extracted counterparts.

Chapter 7 presents extensions to the basicSkippy technique. Two additional algorithms,

Zoned andSeeker are presented.Zoned uses a bandwidth measurement to capture details

of the drive’s recording zones.Seeker shows how the linear stride technique can be used

to measure seek times. In addition, the chapter also presents howSkippy can be extended

by changing the transfer size and the stride size increment. With a larger transfer size,

Skippy can be used to measure the drive’s transfer rate. With larger stride size increments,

the same parameters can be extracted with fewer strides and in less time. Finally, the chap-

ter presents a read backwards stride micro-benchmark that retains the advantages of reads

without encountering read ahead effects.

7

1.3. Thesis Contributions

This dissertation makes the following contributions:

(i) Presents the first public, in-depth, analysis of soft error data from a terabyte-sized stor-

age system. The insights provided by this analysis are useful for any designer of a reliable

storage system.

(ii) Presents an in depth look at how devices fail. This type of data, again, is very hard to

come by, and is useful in the design of reliable storage systems. Evaluates the effectiveness

of failure prediction algorithms on large scale storage systems.

(iii) Presents a novel technique for extracting low level disk drive parameters using a

simple measurement that requires no a prior knowledge of the disk drive being measured.

This technique is also a good match to the rotational nature of the disk, a feature that makes

many other micro-benchmarks unsuitable for disk drives.

(iv) Presents extracted parameter values and performance data for a range of modern SCSI

and IDE disk drives. This data, and the measurement technique that generated it, and the

way the data is presented, are useful to the research community for parametrizing simula-

tors and understanding modern disk drives from a new perspective.

8

2 The Storage System

2.1. Introduction

This chapter describes the storage system prototype used in this thesis. The prototype, built

by the Tertiary Disk group of the Network of Workstations (NOW) project, is a 3.2 TB

system built from commodity hardware. The prototype contains 368 disks hosted by 20

PCs that are interconnected by a switched ethernet network. The main application for this

system is a web server for high resolution art images. The collection, by far the largest in

the world, contains over 80,000 images and is available to users 24 hours a day, 7 days a

week at http://www.thinker.org/.

Commodity storage systems, like the TD prototype, have several advantages over custom

designed disk arrays. For one thing, the cost/megabyte of disk arrays increases with capac-

ity and, in most cases, is higher than the cost/megabyte of the underlying disks. Disk array

costs are high because they contain custom designed hardware. In 1999, disks cost as little

as 5 cents per megabyte, close to the cost of tape libraries [Grochowski96, IDEMA97].

Although disk prices are falling by 50% every year, the cost/megabyte of disk arrays is not

falling as quickly. Secondly, performance of disk arrays is limited by the bandwidth of the

link to the host machine. Finally, incremental expansion in a disk array is possible only

9

until all available disk slots are filled. For these reasons, a commodity storage system made

up of relatively independent nodes is a plausible alternative to custom designed disk array.

The node-based design makes adding disks and nodes easier. The cost/megabyte of the

system stays relatively constant even as the capacity grows. The nodes also provide multi-

ple connections to the outside world, improving performance and availability. The proto-

type proves by example that storage systems using commodity hardware can be built for a

small extra cost over the underlying disks and provides a basis for the studies on error

behavior that make up the first part of the thesis.

This chapter covers the prototype’s architecture and application. This information is useful

as perspective for the chapters that follow. Section 2.2 describes the prototype hardware in

detail. The next section covers the hardware configuration, designs of nodes, interconnec-

tions and power scheme. Section 2.4 describes the application, including data layout and

user activity. Finally section 2.5 concludes with a summary.

2.2. Prototype Hardware

Table 2-1 describes the components used in the prototype. All components are the state of

the art as of 1996, when work on the prototype first began. The twenty PCs that host the

storage are interconnected using a switched Ethernet network. In addition, there is a sepa-

rate serial network that is use for management, connecting PCs, disk enclosures and UPS

units. Each PC has four PCI expansion slots on the motherboard (most PCs available at the

time of this writing contain three or four PC expansion slots). The PCI slots contain two

10

twin-channel Fast-Wide SCSI adapters and an Ethernet card. Power and cooling for the

disks is provided by disk enclosures. All the enclosures, host machines, and network com-

ponents are housed in a series of racks. Power to the system is supplied through Uninter-

uptible Power Supply (UPS) units.

The Pentium Pro machines were chosen over other alternatives (such as SPARCStation-5s

and UltraSPARCs) because PCs are naturally well equipped for hosting disks. The main

system bus, PCI, has a peak bandwidth of 132 MB/s, compared to 90 MB/s for the Sbus,

which was the main alternative available at the time. PCs also have more expansion slots

than either the SPARCStation 5 or the UltraSPARC: three or four compared to two in each

Component type
Number Used in
Prototype Description

Host machines 20 Pentium Pro 200 MHz, 96 MB main memory, 1
GB SCSI hard drive, PCI bus, 4 PCI expansion
slots, 3 ISA slots.

SCSI Disks 368 IBM Ultrastar XP, 8 GB, 7200 RPM, SCSI

IDE Disks 20 Seagate ST32140A 2GB 5400RPM IDE

SCSI Controllers 40 Adaptec 3940 Twin Channel UW SCSI

Disk Enclosures 48 Sigma Trimm Model SA-H381, Dual power
supplies. Each enclosure holds 7-8 disks.

Uninteruptible Power Supplies 6 Powerware Prestige 6000 Units

Ethernet Controller 20 3Com Fast Etherlink PCI 10/100 BASE-T
Adapters

Ethernet Hub 2

Serial Port Hub 2 Bay Networks 5000 Hub

Other equipment - Miscellaneous Cables (SCSI, Ethernet, Serial),
SCSI Terminators

Table 2-1. Components Used in Storage Prototype

The main components are the disks, SCSI controllers, host machines, disk enclosures, net-
work hardware and uninteruptible power supplies. This table gives the model numbers and
other information for each main components.

11

of the alternative machines. In addition, PCs were the most cost effective of the three

choices. The PC model used in the prototype was not preferred over the other PC models

for any reason. They were used because they were part of a donation by Intel.

Fast-Wide SCSI was chosen because it was the highest performance disk interconnect

available at the time. Serial interconnects with higher bandwidth, 40-100MB/s compared

to 20 MB/s for SCSI, had been introduced. However, disks and controllers using these

interfaces were not yet widely available. Twin-channel SCSI adapters were used because

each PC could host more SCSI strings with twin channel adapters than with single channel

adapters; each PCI expansion slot can host two SCSI strings instead of one. Performance

measurements comparing single and twin channel SCSI controllers revealed no noticeable

performance losses when using twin channel controllers.

Power and cooling for the disks is provided by the disk enclosures. Each enclosure hosts

up to seven disks. All enclosures are connected through a serial port hub. This way, any

enclosure can be accessed remotely, and the status of all enclosures can be monitored from

a remote location. The serial port interface supports a small set of commands; Table 2-2

lists the commands supported by our enclosures. The commands return the status of the

enclosure (power supplies, disks an so on) and control the LEDs above each disk slot.

When a disk needs to be replaced, the enclosure can be programmed to turn the LED above

the failed disk to red, making it easier for the disk to be identified. The enclosures are the

only components that are not strictly commodity. The serial port interface and other fea-

tures, like dual power supplies, were included because they make maintenance and moni-

toring easier. The additional features make the enclosures a special order item, and not

12

strictly commodity. However, standard disk enclosure models are also available by com-

panies like Sigma/Trimm.

The Uninteruptible Power Supplies provide 10 minutes of backup power to the nodes. This

feature is useful both for surviving short power glitches and for allowing time for safe shut-

down on power failure. The UPS units also provide a serial interface that can be polled to

detect power failure events.

Command Name Command Description
Command
Characters Result/Return

Hello Start of communications Ctrl-A Acknowledgment by chassis

Inquiry Request for identification Ctrl-E Acknowledgment followed by the enclo-
sure model number and firmware revision.

Status Request for status S Acknowledgment followed by 8 data bytes
of status information

Change Drive LEDs Change the status of an
LED to indicate failed
drives

D, 1 data byte Acknowledgment from chassis, the LED
of the specified drive is changed in color
(red to green or vice versa)

I/O control Control the mute-button
capture latch (can be used
to detect when an operator
is standing by)

I, 1 data byte Acknowledgment from chassis

SCSI Bus Reset Assert/Release the SCSI
bus reset line

R, 1 data byte Acknowledgment from chassis; the
requested reset/release action takes place

N/A Misunderstood character
sequences

All other character
combinations

Negative acknowledgment from chassis

Table 2-2. Disk Enclosure Commands

These commands are used to communicate with the disk enclosure over a serial port. More
details are available in [Sigma97]; the encoding of the status bytes and the data bytes is
described there. The mute button is a special button on the enclosure that stops the alarm
from sounding. The mute button capture latch catches all mute button presses and is used
to detect an operator standing by an enclosure.

13

2.3. Hardware Configuration

This section describes the hardware configuration of the storage system, beginning with a

description of the storage node architecture and ending with a discussion of the intercon-

nection and power schemes.

2.3.1. Node Design

The prototype has two types of nodes, which from now on will be called light nodes and

heavy nodes. The prototype has sixteen light nodes and four heavy nodes. Each light node

contains 16 disks on 2 SCSI strings while each heavy node has 28 disks on 2 SCSI strings.

There are cost and performance trade-offs in changing the disks/host ratio, as well as addi-

tional problems with large numbers of disks. The light nodes have a higher cost and better

performance than the heavy nodes. As the disks/host ratio is increased, the cost/megabyte

of the node becomes closer to the cost/megabyte of the disks, making the heavy nodes

more cost-effective.

Figure 2-1 shows the internal hardware architecture of a storage node. For clarity, the

figure shows only one SCSI string. In the heavy nodes, the 14 disks on each string are

housed in two disk enclosures of 7 disks each; in the light nodes, each SCSI string has 8

disks housed in a single enclosure. Disks plug directly into the enclosure’s backplane,

which contains the SCSI bus, a design that reduces the SCSI cable length within the disk

enclosure. The SCSI bus is made up of the SCSI cable, starting at the SCSI controller and

ending as the enclosure backplane. Each enclosure is powered by two power supplies and

cooled with a single fan. Each machine also contains a single Ethernet card and a cable

14

connecting the machine to the switched network. Inside the host PC is a 2GB internal IDE

disk.

2.3.1.1. Performance Trade-offs of Varying the Disks/Host Ratio

Figure 2-2 illustrates the performance of different disks/host ratios. The figure show the

read bandwidth possible through the raw disk interface and the throughput for 8KB, 64KB,

and 256KB requests. The performance for 8KB requests scales with the number of disks

up to 32 disks, leveling off at about 20 MB/s. Performance for 64KB and 256KB requests

increase to about 65MB/s and then levels off. The bottleneck in this case is the SCSI bus.

For this workload, having more than 32 disks per host will not increase performance if the

Figure 2-1. Storage Node Architecture
For the sake of clarity, the figure only shows one SCSI string. The SCSI bus is made up of
two parts: a cable between the controller and the disk enclosure, and the enclosure’s back-
plane. The disk canisters plug directly into this backplane.

Disk Enclosure

Controller
SCSI

Ethernet

Host

Terminator

SCSI
backplane

SCSI Cable

To Ethernet switch

15

requests are small. However, for larger requests, the disks per host ratio can be increased

up to 42 disks before the host becomes a bottleneck.

Different levels of performance should be expected with different disks/host ratios. Both

the light and heavy nodes can support small requests without the host or SCSI subsystem

limiting performance. However, for larger requests, the shared SCSI bus limits perfor-

mance for both types of nodes. These results can change further for reads and writes using

the file system. The prior experiment used the raw disk interface because the performance

through the raw interface is similar across different operating systems.

Figure 2-2. Performance Trade-Offs of Varying the Disks/Host Ratio

This figure shows the read bandwidth possible from a single host using the raw disk interface. The
throughput for 8KB reads scales up to 32 disks, and then levels off at about 20 MB/s. For the larger
requests (64KB and 256KB), the throughput levels off at around 65MB/s. Since four SCSI buses are
used, each bus is delivering around 16MB/s, close to the normal observed peak of 17MB/s.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

R
ea

d
B

an
dw

id
th

 (
M

B
/s

)

Number of disks

8KB

64KB
256KB

16

2.3.1.2. Problems with high Disk/Host Ratios

Since PCs are not normally required to support such a large number of disks, unexpected

problems may crop up when the disk/host ratio becomes larger. A few problems that we

encountered are listed below:

(i) Operating system and firmware bugs: Since most PC operating systems were not

designed to host large numbers of disks, increasing the disks/host ratio can expose undis-

covered problems in operating system and disk controller software. While developing our

prototype, we ran across several such problems. Windows NT, for instance, supports only

31 disks through its Disk Administrator GUI. Versions of Solaris x86 that we experi-

mented with had problems with more than 7 disks on a SCSI string. We also discovered an

Adaptec firmware bug that did not allow 15 disks on both strings of a twin channel SCSI

adapter. More details on these issues are available in [Talagala96].

(ii) SCSI Limits: Since the maximum length of a Fast-Wide SCSI string is about 9 feet, if

a SCSI string is longer, time-outs and other problems can occur. If the string is not properly

terminated, these problems can happen with shorter buses as well. We were able to keep

the string length short inside an enclosure by having the SCSI bus on the enclosure back-

plane. If the SCSI bus is not on the enclosure backplane, cabling between disks inside the

enclosure can add to the total string length. Differential SCSI allows longer cable lengths

(up to almost 80 feet), making string length less of a problem. Serial interconnects will also

allow very long strings [Schwarderer96].

17

(iii) Host Machine Limits: Most PCs have at most four PCI slots, placing a limit on the

number of disks that can be connected to it. In this case PCI-PCI bridges can be used to

extend the host PCI bus.

Because of such problems, we were not able to reliably connect more than 56 disks to a

single node. As the prior section indicated, increasing the disks/host ratio beyond this limit

also makes the host and SCSI subsystem a performance bottleneck.

2.3.2. Ethernet and Serial Interconnection

All nodes are connected via 100Mbit Switched Ethernet. Figure 2-3 shows the Ethernet

and Power Switch topology for the prototype. The subnet contains two Ethernet switch

hubs. The host machines are named m0-m19; each machine has its own ethernet address.

The heavy nodes are m0-m3 and the light nodes are m4-m19. The subnet contains four

additional machines. Two of these machines provide NFS, home directories, and naming

services for the storage cluster. The last two machines, namely ackbar and tarkin, are front

ends for the image server application. Their use is discussed further in section 2.4. Finally,

each remotely controlled power switch also occupies an ethernet address.

In addition to Ethernet, all machines are also connected via serial lines that provide an

alternative way to access the machines for easier management. For simplicity, all serial

connections are routed through a single serial port concentrator. This concentrator has four

24 port serial terminal servers, each with its own ethernet connection. This single hub is a

possible point of failure; however this is not much of a problem since the serial lines are

intended only for monitoring and management, not for data transfer. The disk enclosures

and UPS (Uninteruptible Power Supply) Units are also interconnected with serial lines.

18

Figure 2-3. Interconnection and Power Topologies
Each machine, serial port switch, and remote power switch is accessible via ethernet.
Three remote power switches (powered via UPS) control power to the machines and disk
enclosures. The machines ackbar and tarkin are the front ends for the image server appli-
cation and stampede provides NFS services to all nodes.

Ethernet and Power Switch Topology

m7

m8

m9

m10

m11

m12

m13

m14

m15

m16

m17

m18

m19

m1

m2

m3

tarkin

ackbar

stampede

leia

m4

m5

m6

.179

.131

.130

.176

.132

.124

.180

.182

.195

.193

.191

.189

.194

.192

.190

.188

.177

.181

.183

.178

.184

.185

.186

.187

12
8.

32
.4

5.
14

1
12

8.
32

.4
5.

14
0

12
8.

32
.4

5.
14

2

power1

power2

power0

8-
p

o
rt

 r
em

o
te

ly
 c

o
n

tr
o

lla
b

le
 p

o
w

er
 s

w
it

ch
es

m0.176

.177

.178

.179

.132

.131

.124

.130

.180

.181

.182

.183

.184

.185

.187

.188

.189

.190

.191

.192

.193

.194

.195

10
0x

4x
4

fa
st

 E
th

er
n

et
 s

w
it

ch
es

 (
12

8.
32

.4
5

n
et

)

.186

19

2.3.3. Power Scheme

Figure 2-3 also shows how power is routed to the cluster. Each disk enclosure contains two

power supplies. In addition, power protection is provided for the entire cluster via the six

UPS units. The power scheme is completed by the remotely controllable power switches

that enable automatic hard resets of each machine.

2.3.4. Redundancy

The data served by the image server is mirrored across the nodes. The dotted lines in figure

2-3 identify pairs of mirror nodes. As the figure shows, the configuration strives to provide

independent network paths and power paths to node in a mirrored pair.

2.4. Application: A Web-Accessible Image Server

The storage cluster hosts a web-accessible image server. This service, called The Zoom

Project, has been available to users since March 1st 1998. This site, a collaborative effort

between UC Berkeley and the Fine Arts Museums of San Francisco, provides a database

of over 80,000 high resolution images of art work. Each image is available at resolutions

of up to 3072x2048 pixels. It is by far the largest on-line art collection in the world.

2.4.1. Application Overview

Figure 2-4 shows how the site works. The front end, at http://www.thinker.org/, is hosted

by the Fine Arts Museum. Each image is searchable by title, artist, time period, and other

20

descriptive keywords. This search database contains only the image attributes, not the

images themselves. Within the database, each image is identified by a 16 digit key. The

storage prototype host the larger versions of the images. When a user wishes to view an

image, the image is requested from the storage servers using this key. This request is

passed down to the storage front end, which forwards the request to a storage server with

a copy of the image. From then on, all image data transfer occurs between the storage

server and the client. Note: We have two front ends because the database and the storage

server portions of the site are at different geographical locations. The second front end

eases management by creating a level of indirection between the search engine and the

storage servers. This way, we are able to reconfigure the storage system component with-

out modifying the search database.

Figure 2-4. Image Server Operation
This figure shows how the site works. Clients access images through a keyword search at
the front end. Once an image is selected, tiles are transferred to the client from a storage
server that is holding the image. The storage servers are managed by a storage front end.
The vertical line separating the database and storage system indicates that these two serv-
ers are in different geographical locations

21

The storage front end is implemented by the machines tarkin.cs and ackbar.cs that back

each other up using IP aliasing. All requests are directed to the canonical address

gpx.cs.berkeley.edu. When tarkin.cs is up and running, it handles all requests to this

address. tarkin.cs is constantly monitored by ackbar.cs. If tarkin.cs goes down, then sec-

ondary takes over by assuming the gpx.cs.berkeley.edu address. Once tarkin.cs comes back

up, ackbar.cs gives up the gpx address. The front ends maintain a directory of image IDs

and storage servers. In addition, the front ends periodically monitor the storage servers and

maintains lists of non-responding servers. When a storage server goes down, all image

requests are forward to the server with the mirror copy of the image.The requests are for-

warded from the front ends to the storage servers using HTTP-redirect. Each host in the

prototype serves its local images using the Apache Web Server.

Unlike prior file-service based storage systems architectures, this failover design does not

attempt to mask failures for client connections that are already in progress. This decision

reflects the design principle that for this type of web-based application, Fix-By-Reload is

the necessary level of availability. Studies have shown that the when internet users expe-

rience slowdowns, the problem is far more likely to be the connection to the web server

than the server itself [Manley97]. Since the user’s only means of access is through a slow

and unreliable link, they are capable of retrying requests that time-out or fail. Therefore,

for users coming over the web, the only availability requirement that the system must

meet is to recover within enough time to satisfy the request retry. In particular, it is not

necessary to mask all failures at the site. In many cases, no matter how reliable the web

server, the internet will generate failures that are visible to the user. Prior work on smart

clients has shown that it is possible for the client browser to do fault tolerance by switch-

22

ing between several sites that are offering the same service [Yoshikawa97]. This idea can

also be used to build an automatic retry mechanism into the browser so that the user does

not even have to click reload when a failure occurs.

Once the user specifies a screen size, a 12.5% resolution version of the image appears

inside a zoom window. Figure 2-5 shows Picasso’s Still Life with Skull, Leeks and Pitcher

in zoom windows at 12.5% and 50% resolutions. We can see the Picasso signature by

zooming into a corner of the painting. Once the image becomes too large to fit in the win-

dow, scrollbars appear. Users can zoom in up to 1600% resolution, 16 times the art work’s

full size.

2.4.2. File Format and User Interface

The images are stored in a tiled format called GridPix [Asami98], similar in concept to the

FlashPix standard [Kodak97]. Both formats have the notions of tile-based images and mul-

tiple image resolutions within a single file. The difference is that GridPix is a simpler

format designed only for storing tiled images, while FlashPix is a more generalized format

designed with many different uses in mind. A GridPix file contains a header structure, an

index of offsets, and a sequence of JPEG encoded image tiles in resolutions from 12.5% to

100%. Tiles for resolutions higher than 100% are generated on the fly from the 100% res-

olution tiles. The GridPix file format and associated software is discussed in more detail in

[Asami98].

The viewer is implemented by two CGI programs; one creates the graphical viewer and the

second retrieves each tile. The viewer places the tiles adjacent to each other in the HTML

page to create the full image. All images are initially displayed at 12.5% resolution. At this

23

size, most images fit entirely within the window. Once the image becomes too large for the

viewing area, the user can scroll up/down or left/right by clicking on the scrollbars. As the

user navigates, the necessary tiles are extracted from the GridPix file and sent to the user.

We do not describe the application further in this thesis; a more detailed description of

workload and user access patterns is available in [Talagala99].

2.4.3. Disk Usage

In addition to the GridPix images, the prototype also contains images in TIFF format; the

GridPix images are on average 1.2MB, while the TIFF images are on average 12MB in

size. Only the GridPix images are served by the site; the TIFF images are needed because

the GridPix images cannot be modified. At times, the images are displayed with incorrect

orientations and less than perfect color. In these cases, the corrections are performed on the

TIFF counterpart and a new GridPix image is generated. Note: other tile-based image for-

mats, like FlashPix, do allow editing. If such a format is used, it may not be necessary to

Figure 2-5. GridPix Viewer
Pablo Picasso’s Still Life with Skull Leeks and Pitcher at 12.5% and 50% resolution within
the GridPix viewer. At 50% we can see the artist’s signature at the lower right hand corner
of the image.

24

keep other formats around. However, in our experience, a large and constantly evolving

image database will contain images in several formats.

Each disk is divided into three key partitions. The first is a 32KB partition that contains

start-up scripts for each disk. These scripts are to identify the disk at boot time; they are

described in more detail in [Asami99]. The second partition is 1GB and is used for various

experiments. The third partition occupies the bulk of the disk, 7GB, and is used for image

storage. On each storage server, the third partition of all the disks are organized as a striped

disk array using the CCD (Concatenated Disk Driver) pseudo device driver. The GridPix

image files are stored on a BSD Fast-File System (BSD FFS) on this striped disk array

[BSD96].

The 2GB internal drive contains the operating system and swap area for each node. In addi-

tion, each node mounts shared NFS filesystems from the infrastructure servers. These file

systems contain software tools and home directories for the system’s users.

2.5. Summary

This chapter described the storage system prototype and its application. The prototype con-

sists of a group of relatively independent nodes interconnected by a switched network.

Directed by a front end, the nodes collectively form a web-accessible image database for

the high resolution art images of the Fine Arts Museums of San Francisco. The prototype

is used to study the soft error behavior in a large storage system; these studies are described

25

in the next two chapters. In addition, the prototype’s disks are used in the studies on disk

performance variability in chapters 5 and 6.

26

3 Characterizing Soft Failures and

Error Behavior

3.1. Introduction

This chapter presents data on the soft failure characteristics of the prototype. We analyze

system error logs from the storage system described in Chapter 2. We describe the soft

error behavior of disks and SCSI components, the effects of component failures on the

operating system of the host machine, and the effects of network failures. We also corre-

lation between soft errors on different storage nodes.

The analysis leads to some interesting insights. We found that the SCSI disk drives were

among the most reliable components in the system. Even though they were the most

numerous component, they experienced the lowest failure rate. Also, we found that all the

errors observed in six months can divided into eleven categories, comprising disk errors,

network errors and SCSI errors. We also gained insight into the types of error messages

reported by devices in various conditions, and the effects of these events on the operating

system. Our data supports the notion that disk and SCSI failures are predictable, and sug-

27

gests that partially failed SCSI devices can severely degrade performance. Finally, we

observed the disastrous effects of single points of failure in our system.

The rest of the chapter is organized as follows. Section 3.2 outlines related work. Section

3.3 describes the statistics on absolute failures for the prototype over 18 months of opera-

tion. Absolute (or hard) failures are cases where the component was replaced. These sta-

tistics provide a useful perspective for the study on soft errors that makes up the rest of the

chapter. Section 3.4 describes the logs used to gather soft error information. Section 3.5

describes the results obtained from studying these logs. Section 3.6 discusses the results

and their implications. Finally Section 3. 7 concludes with a summary.

3.2. Related Work

There has been little data available on the reliability of storage system components. An ear-

lier study [Tsao83] suggested that system error logs can be used to study and predict

system failures. This work focused on filtering noise and gathering useful information

from a system log. The authors introduced the “tuple concept”; they defined a tuple as a

group of error records or entries that represent a specific failure symptom. A tuple contains

the earliest recorded time of the error, the spanning time, an entry count, and other related

information. The work described a Tuple Forming Algorithm, to group individual entries

into Tuples, and a Tuple Matching Algorithm to group tuples representing the same failure

symptom. The study did not attempt to characterize the failure behavior of devices, and

was not specifically targeted at storage systems. Follow up work characterized the distri-

28

butions of various types of errors and developed techniques to predict disk failures [Lin90].

In this study, the system was instrumented to collect very detailed information on error

behavior [Lin90]. The DFT algorithm, a failure prediction algorithm developed in this

work, is used in the next chapter as part of a study of device failures.

A second study associated with the RAID effort [Gibson88] [Shulze89] presented factory

data on disk drive failure rates. This study focused on determining the distribution of disk

drive lifetimes. The authors found that disk drive lifetimes can be adequately characterized

by an exponential distribution. A third study, an analysis of availability of Tandem systems

was presented in [Gray90]. This work found that software errors are an increasing part of

customer reported failures in the highly available systems sold by Tandem.

Most recently, disk companies have collaborated on the S.M.A.R.T (Self, Monitoring,

Analysis and Reporting Technology) standard [SMART99]. SMART enabled drives mon-

itoring a set of drive attributes that are likely to degrade over time. The drive notifies the

host machine if failure is imminent.

3.3. Failure Statistics

We begin with statistics on absolute hardware failures for eighteen months of the proto-

type’s operation (from March 1997 to August 1998). Table 3-1 shows the number of com-

ponents that failed within this one and a half year time frame. For each type of component,

the table shows the number in the entire system, the number that failed, and the percentage

failure rate. Since our prototype has different numbers of each component, we cannot

29

directly compare the failure rates. However, we can make some qualitative observations

about the reliability of each component.

Our first observation is that, of all the components that failed, the data disks are the most

reliable. Even though there are more data disks in the system than any other component,

their percentage failure rate is the lowest of all components. The enclosures that house

these disks, however, are among the least reliable in the system. The disk enclosures have

two entries in the table because they had two types of failure, power supply problems and

SCSI bus backplane integrity failures. The enclosure backplane has a high failure rate

while the enclosure power supplies are relatively more reliable. Also, since each enclosure

Component Total in System

Total Failed
(Absolute
Failures) % Failed

SCSI Controller 44 1 2.3%

SCSI Cable 39 1 2.6%

SCSI Disk 368 7 1.9%

IDE Disk 24 6 25.0%

Disk Enclosure 48 13 28.3%

Enclosure Power 92 3 3.26%

Ethernet Controller 20 1 5.0%

Ethernet Switch 2 1 50.0%

Ethernet Cable 42 1 2.3%

Total Failures 34

Table 3-1. Absolute Failures over 18 Months of Operation.

For each type of component, the table shows the total number used in the system, the
number that failed, and the percentage failure rate. Note that this is the failure rate over 18
months (it can be used to estimate the annual failure rate). Disk enclosures have two
entries in the table because they experienced two types of problems, backplane integrity
failure and power supply failure. Since each enclosure had two power supplies, a power
supply failure did not affect availability. As the table shows, the SCSI data disks are
among the most reliable components, while the IDE drives and SCSI disk enclosures are
among the least reliable. Note that this table does not show the same number of compo-
nents as Table 2-1 since it lists the total number of components used over the 18 month
time frame.

30

has two power supplies, a power supply failure does not incapacitate the enclosure. The

IDE internal disks are also one of the least reliable components in the system, with a 25%

failure rate. The unreliability of the IDE disks could be related to their operating environ-

ment. While the SCSI drives are in enclosures specially designed for good cooling and

reduced vibration, the IDE drives are in regular PC chassis. Overall, the system experi-

enced 34 absolute failures in eighteen months, or nearly two absolute failures every month.

We note that Table 3-1 only lists components that failed over eighteen months (Table 2-1

lists all hardware components in the prototype). Some components had no failures at all in

this time frame. These components include the PC internals other than the disk (the moth-

erboard, power supply, memory modules, etc.), serial hardware, UPS units an so on.

3.4. Logs and Analysis Methodology

The operating system reports error messages, boot messages, and other status messages to

the internal system log. The kernel, system daemons, and user processes can contribute to

this log using the syslog and logger utilities [FreeBSD97]. These logs are located at /var/

log/messages in our configuration of FreeBSD 2.2. We studied these logs to gather

information about soft failure behavior.

We began by filtering out messages that reported status and login information. To this end,

we removed all messages from sshd (secure shell logins), sudo messages, other login mes-

sages, and all boot messages. This preprocessing reduced the size of the logs between 30%

31

and 50%. The messages that remained were primarily from the OS kernel and network dae-

mons.

Figure 3-1 shows a sample error message from a system log that is reporting a timeout on

the SCSI bus. This log line has seven pieces of information. The first three fields contain

the date and time. The fourth field is the machine name, in this case m2. The fifth field lists

the source of the message; in this case the operating system kernel is reporting the error.

The sixth field specifies the device on which the timeout occurred. The first two subfields

of the sixth field specify the disk number and SCSI bus number within the system; in this

case, the error is on the disk da1 that is attached to SCSI bus ahc0. The remainder of the

message describes the error; the value of the SCSI Control Block is 0x85, and the device

timed out while in the idle phase of the SCSI protocol.

We use the following terms in the rest of the chapter to describe the analysis results:

Error Message: An error message is a single line in a log file, as in Figure 3-1.

Error Instance: An error instance is a related group, or tuple, of error messages. The

notion of error tuples has been described in detail in [Tsao83]. We used a very

Figure 3-1. A Sample Line from Syslog Showing a SCSI TimeOut

Feb 6 08:09:21 m2 /kernel: (da1:ahc0:0:1:0): SCB 0x85 - timed out while

idle, LASTPHASE == 0x1, SCSISIGI == 0x0

32

simple grouping scheme; error messages from the same error category that were

within 10 seconds of each other were considered to be a single error instance.

Error Category: By manually examining the logs, we identified eleven categories

of errors. For example, the message above fell into the category “SCSI Timeout”.

These categories are described in detail in Section 3.5.1. We separated the mes-

sages from each category by searching for keywords in each message.

Error Frequency: An error frequency is the number of error instances over some

predefined time period. Section 3.5.2 presents results on error frequencies.

Absolute Failure: An absolute or hard failure occurs when a component is replaced.

An absolute failure is usually preceded by many error instances reported in the log.

Absolute failures are explored in more depth in Chapter 4.

3.5. Results

In this section we present the results of the system log analysis. Section 3.5.1 lists and

defines all the error categories, the types of error messages that we encountered in the logs.

These definitions are used in the remainder of Section 3.5. Sections 3.5.2-3.5.4 report

results on six months of log data for 16 of the 20 machines in the prototype. We were not

able to include four nodes in the study because they did not have six months worth of log

data. The storage nodes are labeled 1 through 16; nodes 1 through 4 have 28 disks each,

and all other nodes have 16 disks each. Section 3.5.2 describes the frequencies of each error

33

category, within and across machines. The effects of these errors, in particular their rela-

tionship to machine restarts, is discussed in Section 3.5.3. Section 3.5.4 discusses the cor-

relation between errors.

At this point it is useful to say something about the load levels on each machine. Intuition

tells us that there is a relationship between a machine’s load level and the number of

reported errors on it. By consulting with system administrators and users, we learned that,

during the six month period, the machines that received the most load were 1,3 and 8-12.

Machines 13-16 had very little load during this time.

3.5.1. Error Types

We now define all the error categories that we observed in the logs. Table 3-2 lists a sample

message for each type of error that we include in this study. While some errors appear as

one line in the log, others appear as multiple lines. Definitions of each error category fol-

low.

1. Data Disk Errors

Recall that the data disks are SCSI drives. An error from a data disk usually has

three lines. The first line reports the command that caused the error. The second

line reports the type of error and the third contains additional information about

the error. The messages in the second and third line are defined in the SCSI spec-

ification [SCSI2]. Although the spec defines many error conditions, we only men-

tion those that actually appeared in the logs.

34

Type Sample Message

Data Disk:
Hardware Fail-
ure

May 23 08:00:20 m5 /kernel: (da45:ahc2:0:13:0): WRITE(10). CDB: 2a
0 0 29 de f 0 0 10 0

May 23 08:00:20 m5 /kernel: (da45:ahc2:0:13:0): HARDWARE FAILURE
asc:2,0

May 23 08:00:20 m5 /kernel: (da45:ahc2:0:13:0): No seek complete
field replaceable unit: 1 sks:80,3

Data Disk:
Medium Error

Dec 13 00:55:31 m1 /kernel: (da41:ahc2:0:9:0): READ(10). CDB: 28 0
0 71 29 1f 0 0 30 0

Dec 13 00:55:31 m1 /kernel: (da41:ahc2:0:9:0): MEDIUM ERROR
info:712935 asc:16,4

Dec 13 00:55:31 m1 /kernel: (da41:ahc2:0:9:0): Data sync error -
recommend reassignment sks:80,2f

Data Disk:
Recovered
Error

Jul 24 10:40:09 m0 /kernel: (da73:ahc4:0:9:0): READ(10). CDB: 28 0
0 50 54 cf 0 0 80 0

Jul 24 10:40:09 m0 /kernel: (da73:ahc4:0:9:0): RECOVERED ERROR
info:505546 asc:18,2

Jul 24 10:40:09 m0 /kernel: (da73:ahc4:0:9:0): Recovered data- data
auto-reallocated sks:80,12

Data Disk:
Not Ready

May 20 11:14:09 m14 /kernel: (da1:ahc0:0:1:0): WRITE(10). CDB: 2a 0
0 26 2e 6 0 0 10 0

May 20 11:14:09 m14 /kernel: (da1:ahc0:0:1:0): NOT READY asc:40,80

May 20 11:14:09 m14 /kernel: (da1:ahc0:0:1:0): Diagnostic failure:
ASCQ = Component ID field replaceable unit: 1

Internal Disk:
Hard Error

Aug 19 16:43:12 m13 /kernel: wd0h: hard error reading fsbn 1970460
of 1970384-1970511 (wd0 bn 3412252; cn 54162 tn 2 sn 12)wd0: status
59<rdy,seekdone,drq,err> error 40<uncorr>

Internal Disk:
Soft Error

Aug 19 16:43:14 m13 /kernel: wd0h: soft error reading fsbn 1970461
of 1970400-1970511 (wd0 bn 3412253; cn 54162 tn 2 sn 13)wd0: status
58<rdy,seekdone,drq> error 40<uncorr>

Internal:
VM_fault

Jul 31 12:12:37 m14 /kernel: vm_fault: pager input (probably hard-
ware) error, PID 15211 failure

Network
Error: NIS

Nov 20 16:22:13 m17 ypbind[95]: NIS server [128.32.45.124] for
domain “td” not responding

Network
Error: NFS

Nov 20 16:23:10 m17 /kernel: nfs server stampede:/disks/stampede/
sandbox1: not responding

SCSI: Parity May 12 01:10:32 m2 /kernel: (da40:ahc2:0:8:0): WRITE(10). CDB: 2a 0
0 b9 54 cf 0 0 50 0

May 12 01:10:32 m2 /kernel: (da40:ahc2:0:8:0): ABORTED COMMAND
asc:47,0

May 12 01:10:32 m2 /kernel: (da40:ahc2:0:8:0): SCSI parity error

SCSI TimeOut May 17 02:14:58 m0 /kernel: (da33:ahc2:0:1:0): SCB 0x61 - timed out
while idle, LASTPHASE == 0x1, SCSISIGI == 0x0

Table 3-2. Sample Error Messages

This table lists the categories of errors that are discussed in this chapter and includes a
sample message for each type of error.

35

The Hardware Failure message indicates that the command terminated (unsuc-

cessfully) due to a non-recoverable hardware failure. The first and third lines

describe the type of failure that occurred.

The Medium Error indicates that the operation was unsuccessful due to a flaw in

the medium. In this case, the third line recommends that some sectors be re-

assigned. The line between Hardware Failures and Medium Errors is blurry; it is

possible for a drive to report a flaw in the medium as a Hardware Failure [SCSI2].

A Recovered Error indicates that the last command completed with the help of

some error recovery at the target. This happens, for instance, if a bad sector is dis-

covered. Drives handle bad sectors by dynamically re-assigning the affected

sector to an available spare sector [Worthington95, Schwarderer96]. The table

shows such an instance. If more than one recoverable error occurs within a single

request, the drive chooses which error to report. Finally, A Not Ready message

means that the drive is unprepared to serve requests.

2. Internal Disk Errors

The internal disks are IDE Drives. The logs contained two types of errors for IDE

drives: soft errors and hard errors. Unlike the SCSI disk errors, these messages are

operating system specific. By examining the operating system source code, we

learned that soft errors were operations that encountered some form of error but

recovered, while hard errors were operations that were not successful after the

maximum number of retries. The request information is buried within the error

36

message; for instance, the hard error message listed in Table 3-2 occurred while

the drive was trying to read block number 1970460.

3. Internal vm_fault

This error message appears when the OS kernel attempts to read a page into vir-

tual memory for a process. The error indicates that the read needed to satisfy the

page fault did not complete successfully. This error usually causes the affected

process to terminate abnormally.

4. Network Errors

Our system reported two types of network errors, those related to the naming

(NIS) services and those related to network file system (NFS) services. These

errors were reported whenever the system was unable to contact one of these ser-

vices (i.e., the problem was not in the reporting machine).

5. SCSI Errors

The two SCSI errors are TimeOuts and Parity errors; both are self explanatory.

SCSI Timeouts can happen in any of the SCSI bus phases. In our analysis, we

don’t separate the SCSI Timeout errors by SCSI BUS phase. By inspecting the

OS source, we found that the SCSI driver usually responds to a SCSI timeout by

issuing a BUS RESET command. This operation aborts all outstanding com-

mands on the SCSI bus. The other type of SCSI error is Parity. As Table 3.2

shows, SCSI parity error messages appear as the cause of an aborted request.

37

3.5.2. Error Frequencies

Now we analyze the errors that appeared in six months of system logs of 16 of the 20 host

machines. These logs are for the last six months of the 18 month period referred to in Table

3-1. During this time, the system experienced three IDE disk failures and one data disk fail-

ure. As mentioned previously, we were unable to include four machines because they did

not have six months of log data. Ironically, the logs of two of these machines were

destroyed when the IDE internal disks failed. The machine whose data disk failed is not

included in this section’s data, but the failure is discussed separately in Chapter 4 with

other data disk failures The data presented here are based on error instances, all groups of

errors that occurred more than 10 seconds apart.

Error Type Number
% of Total (Including
Network Errors)

% of Total (Not
Including Network
Errors)

Data Disk: Hardware Fail-
ure

2 0.29% 0.52%

Data Disk: Medium Error 3 0.43% 0.78%

Data Disk: Recovered Error 10 1.45% 2.60%

Internal Disk: Hard Error 24 3.49% 6.23%

Internal Disk: Soft Error 4 0.58% 1.04%

Internal: VM_fault 6 0.87% 1.56%

Network Error: NFS 43 6.25% -

Network Error: NIS 260 37.79% -

SCSI: Parity 129 18.75% 33.50%

SCSI TimeOut 207 30.09% 53.76%

Total 688 100% -

Table 3-3. Error Frequencies for 16 Machines over 6 Months

The table shows the percentages of each error type. Since our network errors were due to a
single point of failure that can be removed, the last column shows error frequencies with-
out including network errors.

38

Table 3-3 shows how frequently each error happened over all 16 machines. 688 error

instances were reported; on average, almost 4 errors appeared per day. As the table shows,

the network is a large source of error. Together, the NIS and NFS error messages make up

over 40% of all error instances over six months. These errors happened because the storage

nodes were dependent on external sources for name service and certain NFS mounted file

systems. Since the source is external, these errors are also highly correlated between

machines (we discuss error correlation further in Section 3.5.4). This correlation is partly

why the number of network errors is so high; one external fault, if it affects all the

machines, will be reported as 16 error instances. These services created single points of

failure in the system. However, we do not believe that highly available storage systems will

have such dependencies. In our system, they were kept only for the convenience of local

users. These errors can be removed simply by removing the dependencies. For this reason,

we also present the percentage frequencies of other errors without including network

errors. Once the network errors are removed, the total number of errors for 6 months was

385, or an average of 2.2 error instances per day.

The largest source of errors in our system are SCSI timeouts and parity problems. SCSI

timeouts and parity errors together make up 49% of all errors; when the network errors are

removed, this figure rises to 87% of all error instances. Data disk errors, on the other hand,

make up a surprisingly small percentage of the total error count, around 4% overall. This

happens even though disks make up 90% of the components of the system. Even in these

disk errors, the bulk, 3%, are Recovered Errors where the requests did complete success-

fully. Not all disks on the system are this reliable; IDE disk drives are responsible for over

8% of all reported errors, even though there are only 20 IDE drives in the system. This high

39

count of IDE errors is partly due to a failed IDE disk in machine 8. For the most part, the

error percentages match the failure rates in Table 3-1; SCSI bus failures on enclosures and

IDE drive failures make up the bulk of the absolute failures on the system.

Next we break the error information down by machine. Figure 3-2 shows the categories of

errors that each machine experienced. Note that Figure 3-2 does not show the total number

of errors reported on each machine; that data is in the accompanying table, Table 3-4. Not

surprisingly, all machines had a share of network errors. Figure 3-2 shows that IDE disk

errors actually appeared on only 3 machines, machines 5, 8 and 13. Data disk errors also

appeared on 8 machines. The figure also shows that 11 of the 16 machines experienced

SCSI timeout errors.

Table 3-4 shows that the error frequencies vary widely between machines. Ten machines

reported between 10 to 30 error instances, while three of the machines reported over 90

errors in the same time frame. Machines 1, 3 and 7 reported the most errors. Figure 3 shows

that, in all three cases, the bulk of the messages were all in a single category; for machines

1 and 7 the category was SCSI timeout, while for machine 3 it was SCSI parity. This data

suggests an impending failure or other serious problem in each machine. We were able to

trace the parity errors in machine 3 to an enclosure replacement that happened later. There

were no SCSI component replacements in machines 1 and 7; this suggests that the problem

may have been a loose cable that was later fixed. The SCSI errors in machine 9 also led to

a later cable replacement. The only other component replacement that occurred during the

six months was the IDE drive on machine 8.

40

We can make several other observations from this graph and table. First, all machines

experienced NIS errors. This behavior is not surprising, since these errors appear when the

nodes lose a connection with an external service. If the external service is down, all storage

nodes will report the same error. In Section 3.5.4, we show that NIS errors are heavily cor-

Figure 3-2. Distribution of Errors by Machine over a Six Month Period.

Each column represents a single machine; the column shows the relative percentages of
each error type on that machine. The figure shows that network errors occurred on all
machines, but other errors each occurred in two or three of the machines.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Network 31 24 29 19 11 10 18 11 26 21 21 27 11 12 18 14

Others 77 5 113 1 9 9 76 16 33 17 9 18 2 - - -

Total 108 29 142 20 20 19 94 27 59 38 30 45 13 12 18 14

Table 3-4. Total Number of Errors per Machine

This table and Figure 3-3 together describe how the errors were distributed between
machines. The table shows that errors are not evenly distributed; machines 1, 3 and 7 had
many more error entries than the others.

41

related between machines. The other type of network error, NFS, does not occur on all

machines. This happened because not all machines were mounting the same NFS filesys-

tems at the same time. Second, 10 of the 16 machines reported SCSI timeouts. In this case,

the cause was not external; the SCSI subsystems of the machines are independent of each

other. Also, the number of SCSI timeouts is not correlated with the number of disks on a

node; node 7 has a large number of timeouts even though it only hosts 16 disks. Finally,

although Table 3-3 shows that SCSI parity errors have high frequency, Figure 3-2 shows

that almost all of these errors appeared on a single machine, caused by an enclosure failure.

 Even though the number of potential problems on a system this large is virtually unlimited,

only ten different types of problems occurred over the six months. Another interesting

observation is that no type of error was limited to only one machine. SCSI, IDE disk and

other errors all occurred on at least two machines. This distribution suggests that even

though many combinations of errors can occur in theory on a storage system, there are a

small set of problems that can be expected to occur in a given architecture. We can also

conjecture that if an error happens once, it may happen again on a different machine.

3.5.3. Analysis of Reboots

The prior section looked at the errors that appeared in six months of system logs. The real

question is though, what are the consequences of these errors? To address this question, we

looked at restarts of nodes in the prototype. For each restart that occurred, we checked the

prior 24 hours of the system log for any errors that could be related to the shutdown. We

42

used these errors to guess the reason for the restart. After studying the causes of restarts,

we classified the restarts into the following four categories:

Cold Boot: A Cold Boot is a reboot that occurred without an explicit shutdown or

reboot command. All reboots or shutdown commands leave an entry in the system

log. When no such entry is present, we assume that the machine was power cycled,

either intentionally or because of a power outage. Normally, a machine will not be

power cycled unless all attempts to login via network or serial port have failed.

Reboot: A reboot is a restart of a machine with a prior reboot or shutdown com-

mand.

Within Maintenance Reboot: This is a reboot that happened within 3 hours of a prior

reboot. In this case, we assume that both reboots are part of the same maintenance

session.

For Schedulable Maintenance: If an explicit shutdown occurs without any error

messages within the prior 24 hours, we assume that the shutdown was for a planned

maintenance activity, such as a hardware replacement or upgrade. We call this cat-

egory Schedulable because we assume that the shutdown could have been moved

to another time.

Table 3-5 shows the number of times that each machine was restarted, and Figure 3-3

shows the percentages of restarts from each category for each machine. This data does not

include Within-Maintenance Reboots, since we consider them to have happened while the

node was down. Overall, we found that all machines were restarted at least twice in the six

43

months. While most machines had 3-4 reboots, several had 7 to 10 each. There were 73

reboots over all 16 nodes. In addition to schedulable maintenance, we found cold boots

with errors, cold boots without errors, reboots with errors, and reboots without errors.

Table 3-6 shows the frequency of each type of restart. Overall, 11% of these reboots were

for schedulable maintenance; six of the 16 machines had some scheduled maintenance

Figure 3-3. Restarts and Their Causes.
Three types of reboots are shown, Cold Boot (restart with no reboot or shutdown mes-
sage), Reboot (restart with explicit shutdown or reboot message), and For Schedulable
Maintenance (explicit shutdown with no error condition).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Restarts 3 5 9 6 3 2 7 7 10 2 3 5 3 3 3 3

Table 3-5. Distribution of Restarts Across Machines

Most machines have been restarted between two and three times over the six months, but
several machines have been restarted seven to ten times

44

done on them. A single power outage accounts for 22% of all restarts. Another 33% were

explicit reboots with no errors in the log; these reboots could have been for software main-

tenance. It is very unlikely that a machine was explicitly rebooted for no good reason, how-

ever, we cannot tell from the system logs whether a software upgrade took place. All

machines were rebooted without errors. Two machines also received cold boots with no

error messages. Finally, the remaining 32% of restarts happened due to errors.

We found only three types of error instances that preceded reboots or cold boots; they were

SCSI Timeout, SCSI parity, and NIS errors. Two machines were restarted for SCSI parity

problems; one of these is machine 3 that had the failed disk enclosure. Four machines were

restarted for SCSI timeout problems. By far, the main cause of reboots and cold boots was

NIS errors. All the machines but one were restarted because of network problems. The

reason could be that network errors are more fatal to an OS than SCSI errors. While the

effects of SCSI errors can be limited to the processes that are reading or writing to the

affected drives, the network errors affect all communication between the machine and the

outside world.

Restart Type Number % of Total

Schedulable Maintenance 8 11.0%

Reboot: No Errors 24 32.9%

Reboot: Errors 19 26.0%

Cold Boot: No Errors 2 2.7%

Cold Boot: Errors 4 5.5%

Power Outage 16 21.9%

Table 3-6. Frequency of Each Type of Restart

The table lists breaks the Reboot and Cold Boot categories into two subcategories, those
with errors and without errors. A Reboot with errors is an instance where the log data
showed errors before the explicit reboot. A Cold Boot with errors is a case where the log
data showed a restart, without an explicit reboot, and errors appeared before the restart
occurred. As such, a Cold Boot without errors is a very unlikely occurrence.

45

One interesting point is that no machine restarts happened because of data disk or IDE disk

errors. Even though there were hard errors on the three of the 16 system disks, these errors

did not cause the operating system to crash. The OS survived hard errors on the internal

disk because all of the errors occurred on a user partition that occupied around 80% of the

drive.

3.5.4. Correlations

Sections 3.5.2 and 3.5.3 described aggregate data on types of errors and causes of reboots.

In this section we examine the time correlation between errors, within and between

machines.

Figures 3-4 and 3-5 show the time distribution of errors. The X axis is time and the Y axis

shows the identification numbers of each machine. The errors for each machine over time

appear on a single horizontal line. A vertical line indicates correlation of errors between

machines. Figure 3-4 only shows NFS and NIS errors, while Figure 3-5 shows all other

errors. It is clear from Figure 3-4 that network errors are correlated between machines. This

data reiterates the need to remove all single points of failure from a highly available storage

system. The bulk of the errors are NIS errors. When NFS errors occur, they also seem to

be correlated with NIS errors.

Figure 3-5 shows all other forms of errors. In this case there is no reason to expect errors

on different machines to be correlated; each node is relatively independent of all other

nodes. However, the figure shows that even though there is no direct correlation between

SCSI errors (no single source), it is possible to have several SCSI errors across different

machines at the same time. For example, near August 13, 1998, several machines experi-

46

enced either a disk or SCSI error. The figure also suggests that SCSI failures may be pre-

dictable; machines 1, 3, and 9 show SCSI parity and timeout errors that escalated over

time.

Figure 3-6 shows the time distribution of reboots. The figure indicates that there is a strong

correlation between error-free reboots on different machines. This observation further sug-

gests that these reboots were part of software maintenance or upgrade. There are two other

heavily correlated groups of reboots between 5/5/98 and 5/25/98. We traced the first back

Figure 3-4. Network Errors over Time
This figure shows NFS and NIS related errors over time for all 16 machines. The X axis
shows time; the errors of each machine are displayed on a horizontal line. The Y axis
shows machines. The figure shows that network errors are heavily correlated over
machines. This behavior is not surprising as the cause of the errors is an external service.

47

to a NIS service problem. The second was due to a power outage. All other restarts (16 in

total or 22% of all restarts) do not appear to be correlated.

3.6. Discussion

We can draw several conclusions from the data in Section 3.5. First, the data supports our

intuition that failures are not instantaneous. The time correlation data in Section 3.5.4

showed that several machines showed bursts of SCSI errors, escalating over time. This data

Figure 3-5. Other Errors over Time.

This figure shows the data disk, internal disk, and SCSI errors over time. Since there are no shared
components between machines, we do not expect these errors to be correlated over time. The figure
does show that unrelated soft errors can occur at the same time on different nodes.

48

suggests that a sequence of error messages from the same device will suggest imminent

failure. A single message is not enough; as Section 3.5 showed, components report hard-

ware errors from time to time without failing entirely.

Second, SCSI errors happen often in a large storage system. Section 3.5.2 showed that over

six months, SCSI errors made up almost 50% of all errors in the system. Even though the

SCSI parity errors were relatively localized, appearing in only three of the 16 machines

studied, the SCSI timeout errors were not. SCSI timeout errors appeared in 10 of the 16

Figure 3-6. Time Distribution of Restarts

The X axis shows time; each machine’s restarts are shown on a separate horizontal line. There are
two time instances where nearly all machines were restarted at around the same time. The first is an
external network failure. The second is a power outage. The figure also shows that Reboots with No
Errors are also correlated between machines, suggesting that the restarts were part of software main-
tenance.

49

machines. These timeouts affect system performance for two reasons. First, a timeout typ-

ically indicates that devices that wish to use the bus are not able to use it, delaying requests.

Second, as the SCSI controller regains control by issuing a BUS RESET, a timeout can

cause the controller to abort all active requests on the bus. When there a large number of

disks on the bus and each disk has several tagged commands outstanding, a SCSI timeout

can severely degrade performance. The data also suggests that failures of SCSI compo-

nents are predictable. Disks already provide some warning that failure is imminent; the

data in Sections 3.5.2 and 3.5.4 suggest that SCSI failures may also be predictable. Since

many disks are dependent on a single SCSI bus, it would be very useful to predict the fail-

ures of SCSI buses. It may also be possible to avoid the degraded performance that occurs

before a SCSI bus has an absolute failure.

Third, the data also shows that data disks are among the most reliable components in the

system. Section 3.3 showed that data disks had the lowest percentage failure rate of all

components that failed in one year. This data suggests that work in the literature that has

focused on disk reliability [Burkhard93, Ng94] do not adequately reflect the reliability

challenges of real systems.

3.7. Summary

This chapter presented an analysis of hardware errors in a large storage system. We show

results from six months of system logs on 16 machines, absolute failure data for the entire

prototype for eighteen months, and four case studies of disk drive failures. The data

50

showed that data drives are among the most reliable components in the system, while SCSI

components generated a considerable number of errors. The data shows that no failure hap-

pens instantly, and that there are performance consequences when operating with degraded

components.

The data also supported the idea that it is possible to predict the failure of both disk drives

and SCSI components. The next chapter explores this idea in more depth. In particular, we

analyze error streams that occur before SCSI and disk drive failures to determine the long

term characteristics of failure events. Chapter 4 also explores the effectiveness of predic-

tion techniques to detect and remove failing components before they can degrade the

system performance and availability.

51

4 Characterizing Failures

4.1. Introduction

This chapter explores the failure behavior of devices in depth. In particular, we attempt to

understand what outward signs accompany the failure of disks and SCSI systems. We

present cases of device failure; for each case we ask the following questions: what mes-

sages appear before failure?, can these messages be used to predict failure?, how do the

messages compare in type to what appears without a failure? and finally, can all this infor-

mation be used to determine the best cause for action when a failure occurs? We also

present some evidence of the side effects of failures.

Section 4.2 defines different types of failure events. The terms defined are used in the dis-

cussions of failures in the rest of the chapter. The remainder of the chapter focuses on

understanding the nature of SCSI and disk drive failures. To do this, we begin by present-

ing each failure case for which system logs are available. For each case, we determine the

type of messages that were reported and whether those messages increased in intensity

over time. The next section, section 4.4, determines whether these failures are predictable

by applying a failure prediction algorithm. Section 4.5 presents empirical data on the side

effects of disk drive failure and section 4.6 concludes with a summary.

52

4.2. Methodology

Before we explore the nature of failures, we must define exactly what is meant by a failure.

The literature uses various terms to define failure events, transient, intermittent and per-

manent faults. Transient faults, as the name implies, are errors that appear and disappear

with no action needed. Intermittent faults tend to reoccur over time. Transient and inter-

mittent faults differ in that intermittent faults can be removed by replacing hardware, while

transient faults cannot. Once the hardware is replaced, the fault is labeled permanent

[Lin90]. The decision to replace hardware is subjective, and is usually made by a system

administrator when a component’s error behavior exceeds some tolerance level. In this the-

sis, such faults are also called absolute or hard failures.

Chapter 3 used the system logs gathered from the prototype to determine the nature of soft

failures. This chapter uses the same logs to study the nature of absolute (or hard) failures.

As Figure 3-1 in Chapter 3 showed, each error message identifies the device or subsystem

that is reporting the error. Using this information, we can separate the log data into per-

device error streams. Studying the error streams of failing devices and comparing them

with error streams of other devices reveals the nature of failures.

In addition to the types of failure outlined above, we define an extra category of errors,

Required Human Intervention. The error data presented so far showed that recurring errors

are far more common than hardware replacement. In quite a few cases, a problem that gen-

erated a series of recurring errors was solved by a hard or soft system reset. This type of

problem is not transient, since the errors do not disappear with no intervention, and cannot

be termed permanent or absolute since no hardware is replaced. We define such problems

53

as requiring human intervention. The system logs show cases where humans intervened.

In particular, if the host machine was manually shutdown or rebooted several times before

the error stream stopped, we assume human intervention.

4.3. A Look At Failure Cases

This section takes a more in-depth look at the failure cases of SCSI and disk drive compo-

nents. SCSI failures deserve an in-depth look because the soft error data presented in Chap-

ter 3 revealed that SCSI errors made up the largest percentage of all errors experienced by

the system. Also it would be particularly useful to predict SCSI bus failures since they

affect many disk drives. It is important to understand data disk failures since the data disks

are the most numerous and the most important part of any storage system.

We present each failure case in turn and describe both the types of messages that preceded

the failure event, and the duration of messages.

4.3.1. SCSI Cases

There were three SCSI bus failure cases for which system log data was available; Table 4-

1 summarizes the cases. For each case, the table shows the types of messages that occurred,

the number of messages and the duration of messages. As the table shows, all three SCSI

failures displayed Parity error messages. Two of the three cases displayed Timeout mes-

sages as well. The first and third case displayed considerably more messages than the

54

second case; however, in all cases, the messages appeared over durations of thousands of

hours.

The log data does not reveal which part of the SCSI subsystem failed, but examination of

maintenance logs revealed that FSCSI-1 and FSCSI-3 were failures of the SCSI bus seg-

ment on the disk enclosure backplane, and FSCSI-2 was a failure of the bus segment in a

SCSI cable.

4.3.2. Disk Drive Cases

Next we look at disk drive cases. The system log data contained entries corresponding to

four disk drive failures. Table 4-2 summarizes these cases. This table shows, for each

failed disk drive, the primary and secondary messages that appeared before failure. The

primary messages were explained in Chapter 3. The secondary messages are also defined

in the SCSI specification and are fairly self explanatory. The first message, “Peripheral

Device Write Fault” indicates that the device encountered a failure during a write. The

message, “Diagnostic Failure” indicates that diagnostic checks indicated device failure

[Merry98, Smith98]. The secondary messages in FDISK-3 and FDISK-4 are the most

Case Types of Messages Number of Mes-
sages

Duration (hours)

FSCSI-1 SCSI Parity 147 2562

FSCSI-2 SCSI TimeOut 10 2528

SCSI Parity 6

FSCSI-3 SCSI TimeOut 48 4033

SCSI Parity 36

Table 4-1. Summary: SCSI Failure Cases

This table summarizes the three SCSI bus failure cases. The cases are label FSCSI-1
through 3. For each case, the table shows the types of messages that occurred, the number
of messages before replacement, and the duration of messages.

55

interesting; the message “Failure Prediction Threshold Exceeded” indicates that the drive’s

failure prediction mechanism’s have detected imminent failure [Merry98, Smith98,

PFA99]. In the first and second cases, messages appeared days before replacement. In all

cases, a large number of messages appeared before replacement.

4.4. Effectiveness of Fault Prediction

All the failure instances had one thing in common; all generated considerable numbers of

error messages before the components were finally replaced. This behavior suggests that

these failures may have been predictable. In this section, we test the predictability of such

failures by applying a failure prediction algorithm, the Dispersion Frame Technique (DFT)

described in [Lin90].

Since the goal of this chapter is to understand the nature of failures, including how predict-

able they are, we evaluate only this one fault prediction algorithm. This algorithm was

Case Primary Message Secondary Message
Number of
Messages

Duration (hours)

FDISK-1 Hardware Failure Peripheral device write fault field
replaceable unit

1763 186

FDISK-2 Not Ready Diagnostic failure: ASCQ = Com-
ponent ID field replaceable unit

1460 90

FDISK-3 Recovered Error Failure Prediction Threshold
Exceeded Field Replaceable Unit

1313 5

FDISK-4 Recovered Error Failure Prediction Threshold
Exceeded Field Replaceable Unit

431 17

Table 4-2. Summary: Disk Drive Failure Cases

This table summarizes the four SCSI disk drive failure cases. While the SCSI messages
were always either Timeout or Parity, disk drives display both primary and secondary mes-
sages. The primary messages were defined in Chapter 3; the secondary messages are also
defined in the SCSI specification.

56

chosen for several reasons. First, it is the result of the most recent work on fault prediction

that we are aware of. Second, it attempts to detect increasing intensity of error messages,

a pattern noticeable in our observed failure cases. Finally, it was also originally used on,

and shown effective on, operating system based error messages for a group of worksta-

tions.

The effectiveness of fault prediction is determined not just by how many failure cases the

algorithm detects beforehand, but also by how few cases are incorrectly predicted. For this

reason, we apply the DFT algorithm not only to the cases described in Section 4.4, but also

to all error streams generated by SCSI components and data disk drivesthat did not fail.

4.4.1. The Dispersion Frame Technique

The Dispersion Frame Technique (DFT) was developed by [Lin90], a study showing that

error arrival times tend to follow the Wiebull distribution. The Wiebull distribution is as

follows: Botha andb are greater than 0;a is the shape parameter andb is the scale param-

eter. Note that whena=1, the distribution reduces to the exponential distribution function.

Equation 4-1.

The DFT method is a group of heuristics that determine whether the shape of the error

arrival matches a Wiebull distribution. In general, it captures a convergence in error

instances, i.e. when the interarrival time between errors starts to decrease. The details of

how the heuristics detect matches with the Wiebull distribution are covered in [Lin90].

R t() e bt–()a=

57

The DFT technique calculates two metrics, the Dispersion Frame (DF) and the Error Dis-

persion Index (EDI). The Dispersion Frame is the time interval between successive errors.

The Error Dispersion Index is the number of error messages in half of a DF. Figure 4-1

shows an example error series illustrating frames and EDI. In the figure, when error i

arrives, frame (i-3) has three errors when centered on errors (i-3) and (i-2). This behavior

triggers the 3:3 rule.

The DFT technique predicts failure if one of the following events occurs:

(1) 3:3 Rule: The EDI from two consecutive applications of the same frame

is greater than or equal to 3

(2) 2:2 Rule: The EDI from two consecutive frames is greater than or equal

to 2.

(3) 4 Decreasing Rule: If there are four monotonically decreasing frames,

and at least one frame is half the size of the prior frame.

(4) 4 in 1 rule: Four messages in 24 hours

(5) 2 in 1 rule: Two messages in 1 hour.

Rules 1, 2, and 3 attempt to capture various shapes in the error arrival processes. Heuristics

4 and 5 represented the rules of thumb commonly used at the time. We discard the last two

rules because the success or failure of these two rules is heavily affected by the reporting

mechanism in the system. Since the first three rules are based on a theoretical expectation

of error distributions we apply these rules to error streams see how well the technique pre-

dicts failures.

58

4.4.2. SCSI Cases

As noted in Section 4.3, two types of SCSI errors occur before failure, Timeouts and Parity

errors. We apply the fault prediction algorithm to the error streams of each SCSI subsystem

that generated errors, and compare its predictions with the failures that actually occurred.

Since a minimum of four error messages are needed to activate any of the rules, we

removed all cases of SCSI buses that had three errors or less of each type. (Note that no

failed SCSI bus generated less than four messages.) Table 4-3 shows the DFT predictions

for each case where more than four SCSI Timeouts occurred. The first two entries in the

table, labeled FSCSI-2 and FSCSI-3, are the actual failure cases. FSCSI-2 was not included

in this group since it did not generate any Timeout messages. The table also shows the mes-

sage count and duration, the DFT prediction result, the number of messages required to

Figure 4-1. Graphical Illustration of the Dispersion Frame Technique

This figure, based on a similar illustration in [Lin90] shows how the DFT technique is
applied to an error stream. A frame is calculated as half the time between the current and
previous error. As each new error arrives, the algorithm updates the EDI of the frames sur-
rounding each previous error. In the example, the interarrival time between error (i-3) and
(i-4) is used to determine the length of Dispersion Frame (i-3). When error (i-1) arrives,
the second half of Frame (i-3) contains 3 errors. When error (i) arrives, the same frame,
centered around (i-2), also contains 3 errors. As such, the condition for Rule 3:3 is met.

Time
(i-4) (i-3) (i-2) (i-1) (i)

EDI is 3

Second EDI of 3 activates 3:3 rule

Frame(i-3)

Dispersion Frame (i-3)

applied at (i-3)
Frame(i-3)

applied at (i-2)

59

generate a prediction, and the prediction time. The table also shows which cases required

human intervention.

The DFT algorithm predicted nine failures. For both cases where failure occurred, the algo-

rithm generated a positive prediction in one hour or less. However, the algorithm did have

a high false alarm rate; a positive prediction was given for seven cases where no failure

occurred. Further examination of maintenance data revealed that in one of the seven cases,

a component did fail around the time when the messages were generated; a disk drive

attached to the SCSI bus. This event was evidence that disk failures can extend to errors

on the SCSI bus. For the rest of the components, there was no replacement. It is certainly

possible that these components will fail sometime in the future, however, all information

to date suggests that the algorithm is over conservative.

Another way to estimate effectiveness is to compare the DFT failure predictions with

instances that Required Human Intervention. By this metric the DFT algorithm fares much

better. Of the six positive predictions where no component was replaced, the log data in

four cases showed evidence of human intervention.

Of all the SCSI buses, there were only three that reported parity errors; each reported more

than three messages and each was a failure case. Table 4-4 shows prediction effectiveness

when the Parity error streams are used. As the table shows, two of the three failures were

predicted by DFT. The algorithm did not predict the failure of FSCSI-2. This failure was

predicted, on the other hand, when the algorithm was applied to the Timeout message

stream.

60

4.4.3. Disk Drive Cases

Table 4-5 shows the actual and predicted failures for data disk drives. The DFT algorithm

predicted all four disk failures that occurred, but also predicted all other disk cases as fail-

Case
Message
Count

Messages
Needed for
Prediction

Prediction
Time (hours)

Predicted by
DFT?

Actual
Failure/
Replacement?

Human
Intervention?

FSCSI-2 10 7 0 Yes Yes Yes

FSCSI-3 48 5 1 Yes Yes Yes

OTHR-1 39 9 690 Yes - Yes

OTHR-2 65 12 437 Yes - Yes

OTHR-3 11 5 1271 Yes - Yes

OTHR-4 4 - - -

OTHR-5 175 10 0 Yes - Yes

OTHR-6 14 8 416 Yes - -

OTHR-7 10 10 1712 Yes - -

OTHR-8 6 - - -

OTHR-9 295 6 2 Yes (Disk) Yes

OTHR-10 8 - - -

Total 9 2 7

Table 4-3. DFT Prediction for SCSI Timeout Cases

This table shows the prediction effectiveness of the DFT algorithm. As the table shows,
both actual failures were predicted by DFT, but so were several false alarms. However, all
but two of the cases predicted as failures by DFT did need human intervention if not
actual component replacement.

Case
Message
Count

Messages
Needed for
Prediction

Prediction
Time (hours)

Predicted by
DFT?

Actual
Failure/
Replacement?

Human
Intervention?

FSCSI-1 147 7 1280 Yes Yes Yes

FSCSI-2 6 - - - Yes Yes

FSCSI-3 36 13 311 Yes Yes Yes

Total 2 3 3

Table 4-4. DFT Prediction for SCSI Parity Cases

This table shows DFT predictions for the SCSI Parity cases. In this case, one failure
(FSCSI-2) was not predicted by DFT. However, DFT did predict the same failure using
the SCSI Timeout messages.

61

ures. We do note, though, that in all the cases, the logs show evidence of human interven-

tion before the error messages stopped. These actions ranged from reboots to short

shutdowns that may have been used to readjust cables and restart disk enclosures.

Section 4.3 showed the types of primary and secondary messages generated by disk drives

during failure. Table 4-6 compares these messages to those generated in the cases where

no disk components were replaced. Further examination of the log data revealed that cases

OTHR-1 through OTHR-4 all occurred during system bootup, indicating that some com-

ponent may have been incorrectly connected. As the table shows, some disk drives that are

not about to fail do generate the same primary and secondary messages as those that are

about to fail. In particular, cases OTHR-5 and OTHR-6 generated the “Failure Prediction

Case
Message
Count

Messages
Needed for
Prediction

Prediction
Time (hours) Predicted?

Actual
Failure/
Replacement?

Human
Intervention?

FDISK-1 1763 76 12 Yes Yes Yes

FDISK-2 1460 5 33 Yes Yes Yes

FDISK-3 44 6 1 Yes Yes Yes

FDISK-4 1313 6 1 Yes Yes Yes

OTHR-1 2986 5 0 Yes - Yes

OTHR-2 37 4 0 Yes - Yes

OTHR-3 8989 5 0 Yes - Yes

OTHR-4 2217 6 0 Yes - Yes

OTHR-5 23 6 1 Yes - Yes

OTHR-6 28 6 1 Yes - Yes

Table 4-5. DFT Prediction for Disk Drive Cases

This table shows the effectiveness of the DFT algorithm for predicting disk drive failures.
The DFT algorithm predicted each test case as a failure, capturing all the real failures as
well as many false alarms. However, each case predicted by DFT to be a failure did
require human intervention.

62

Threshold Exceeded Message”. Further examination of these cases revealed that they were

side effects of the SCSI bus failure FSCSI-2.

4.4.4. Discussion

The close up look at each failure case revealed the following insights:

(i) In all the failure cases that were examined, the devices generated a considerable number

of soft error messages before absolute failure. These messages also tended to increase in

intensity over time. As a result, the DFT algorithm was able to detect all the failure cases

and issue a prediction well before the device was actually replaced.

(ii) Although DFT was good at predicting real failures, it also predicted failure in many

cases where the components were not replaced. These false alarms occurred because other

events also generate many error messages, with more messages as time goes by. Since the

DFT prediction scheme is based entirely on detecting an increasing intensity of error mes-

sages, the algorithm cannot differentiate between these false alarm conditions and actual

failures. However, each case predicted as a failure by DFT did require some form of human

intervention. Therefore, the DFT appears to do better as a detector of cases where human

intervention is needed, rather than a failure prediction algorithm.

(iii) The few SCSI failure cases available for analysis suggest that failing SCSI bus hard-

ware tends to generate both timeout and parity errors. All the false alarm cases generated

timeout errors but none generated parity errors. This observation matches intuition; a fail-

ing SCSI device is likely to have the types of integrity problems that generate parity errors.

63

This distinction may be useful to separate failure cases from the cases that only need

human intervention.

Graph Primary Message Secondary Message

FDISK-1 HARDWARE FAILURE Peripheral device write fault field replaceable unit

FDISK-2 NOT READY Diagnostic failure: ASCQ = Component ID field
replaceable unit

FDISK-3 RECOVERED ERROR Failure prediction threshold exceeded field replace-
able unit

FDISK-4 RECOVERED ERROR Failure prediction threshold exceeded field replace-
able unit

OTHR-1 NOT READY

HARDWARE FAILURE

Logical unit not ready, initializing command required
Internal target failure field replaceable unit

OTHR-2 NOT READY

HARDWARE FAILURE

 Logical unit not ready, initializing command required
Internal target failure field replaceable unit

OTHR-3 NOT READY

HARDWARE FAILURE

Logical unit not ready, initializing command required
Internal target failure field replaceable unit

OTHR-4 NOT READY

HARDWARE FAILURE

Logical unit not ready, initializing command required
Internal target failure field replaceable unit

OTHR-5 RECOVERED ERROR

HARDWARE FAILURE

Failure prediction threshold exceeded field replace-
able unit

Diagnostic failure: ASCQ = Component ID field
replaceable unit

OTHR-6 RECOVERED ERROR

HARDWARE FAILURE

Failure prediction threshold exceeded field replace-
able unit
Diagnostic failure: ASCQ = Component ID field
replaceable unit

Table 4-6. Primary and Secondary Disk Error Messages

This table compares the primary and secondary messages generated by disks in failure
conditions to those generated by disks not in failure conditions. As the table shows, in
some cases, drives that are not in failure conditions can generate the same types of mes-
sages as those in failure conditions.However, note that these messages appeared on drive
connected to a SCSI bus that failed.

64

(iv) SCSI failures can masquerade as disk failures and vice versa. Table 4-3 shows a case

where a large number of SCSI timeout messages are generated by a failing disk. We exam-

ine this case further in the next section. Table 4-6 shows a case where a single SCSI failure

generated error streams on two disks on the bus.

4.5. Side Effects of Disk Drive Failures

Figure 4-2 shows disk error and SCSI timeout events in one disk failure case. This is the

case labeled FDISK-1 Table 4-2 and the SCSI case labeled OTHR-9 in Table 4-3. The

figure shows that the failing disk generated a large number of SCSI Timeouts. The other

disks on the bus also generated some timeouts. As the intensity of the disk error messages

increased, so did the intensity of the timeout messages.

In this case, the failing disk did interrupt (though it did not halt) the activities of other

devices on the bus. The BSD SCSI driver responds to a SCSI timeout condition by issuing

a BUS RESET command to regain control of the SCSI bus. The BUS RESET has the side

effect of aborting all outstanding commands on the BUS. These commands must be issued

again. Both the timeout and its resulting BUS RESET several handicap the performance of

all devices on the bus. The figure is evidence that it is possible for failing disks to hold on

to the interconnect, causing timeouts and resulting in resets to reclaim the bus.

65

4.6. Summary

This chapter explored the failures of devices in depth. The analysis revealed some interest-

ing insights. Devices that are about to fail generate a large number of error messages,

increasing in intensity over time. This behavior makes it possible to use fault prediction

algorithms to predict these failures. However, other events such as transient failures also

behave in a similar way. These events are also often predicted as failures. The analysis sug-

gests that failure prediction algorithms are far more effective if they are assumed to detect

events that require human intervention, rather than events that require component replace-

ment.

Figure 4-2. Side Effects of Disk Failure

This figure shows the failure process of the drive in case FDISK1. The X axis shows time,
the Y-axis shows each disk on the shared bus. As the figure shows, the failing disk drive
generated many SCSI Timeout messages. Also, while the drive was failing, neighboring
drives also generated Timeout messages. These messages appear to be side effects of the
failure, since they no longer appear after the failing drive is removed.

66

5 The Skippy Linear Stride

Benchmark

5.1. Introduction

The past two chapters focused on soft error behavior of large scale storage systems. This

chapter, and the two that follow, describe the second portion of this dissertation, addressing

disk drive heterogeneity. The primary contribution towards this goal is the development of

a new technique for characterizing disk drives. This technique of linear strides, named

Skippy, is useful in that it is simple, it is an excellent match to the rotational latency of a

disk drive, it allows many parameters to be extracted with a simple, fast and portable exper-

iment, and in that it requires no prior information about the drive being measured. This

chapter presents the basic technique. The two following chapters describe techniques for

automatically extracting parameters from the Skippy graphical result and extensions of the

basic benchmark.

The Skippy experiment uses single sector reads and writes through the raw (character) disk

interface. The benchmark strides through the disk, increasing the step size between

accesses with each iteration. The resulting latency vs. step size curve has a distinctive saw-

67

tooth shape from which we extract the following parameters: sectors/track ratio, rotation

time, minimum time to access media, disk head positioning time, head switch time, cylin-

der switch time, and the number of recording surfaces.

The rest of the chapter is organized as follows. Section 5.2 covers background on disk

drives and related work on modern disk measurement. Section 5.3 describes the write

benchmark; we outline the algorithm and use an analytical model to illustrate the behavior

that we expect. This section also presents the graphical results for a synthetic disk and for

the IBM UltraStar XP SCSI drive described in Chapter 2. After comparing the synthetic

disk’s results to the IBM disk’s results, we refine our analytical model further in Section

5.4. Section 5.5 presents measurement data on other SCSI and IDE disk drives. Section 5.6

presents the read version of the benchmark and results on the synthetic and IBM disks. Sec-

tion 5.7 contains read results for the remaining disks and Section 5.8 summarizes the chap-

ter.

5.2. Background and Related Work

Before describing the benchmark, we provide some background on disk drives and define

the terms that are used in the rest of the paper. We only provide the disk background that

is necessary to understand the benchmark. References [Schwarderer96], [Worthington95]

and [Ruemmler91] describe disk internals in more detail. We also outline related work in

disk drive measurement.

68

5.2.1. Disk Background

Figure 5-1 shows a disk drive’s internal structure. There are several rotating disks coated

on both sides with magnetic media. Each rotating disk is called a platter; each side is called

a recording surface. Data is stored on each recording surface on concentric circles called

tracks. Each track is divided into sectors; a sector is the minimum unit of data that can be

accessed from the disk media. Typical modern disks have 512 byte sectors. The tracks

from each surface that are equidistant from the center form a cylinder. Most disks use

Zoned Bit Recording (ZBR) (not shown on figure); the outer cylinders have a higher sec-

tors/track ratio than the inner cylinders.

 The disk controller masks these details from the outside world. The operating system sees

a disk as an array of blocks. Read and write requests address the disk by Logical Block

Address (LBA); the drive translates this LBA into the CHS (Cylinder, Head, Sector)

Figure 5-1. Disk Drive Basics

This figure illustrates recording surfaces, platters, tracks, and sectors. A disk drive contains a stack
of rotating platters coated on one or both sides with magnetic media. Each magnetically coated sur-
face is called a recording surface. Each platter contains concentric tracks; the tracks on each platter
equidistant from the disk form a cylinder. Data is stored on a track in units of sectors.

Arm
Platter

Cylinder

Tracks

Recording
Surfaces

Sectors

69

address. Logical block numbering starts with the outermost tracks and continues inward

with each successive cylinder. Therefore, the sector after the last of any given track is the

first of the next track in the same cylinder.

Each recording surface has its own read head and write head. The heads are ganged

together on the disk arm. The time to move the arm to the right track is called Seek Time

and the time for the required sector to rotate under the head is called Rotational Latency.

The time to transfer the data from the media is called Transfer Time. In modern disks, only

one head is active at any time. When an access spans two tracks, the disk must complete

the portion on the first track, switch heads, and continue on the second track. The sector

mappings on consecutive tracks are skewed to allow for this Head Switch time. Switching

heads requires a short repositioning time; the skew prevents a request that crosses track

boundaries from missing the next logical block and having to wait a full rotation. Similarly,

if an access spans two cylinders, the disk arm has to seek forward one cylinder. Consecu-

tive cylinders are skewed to allow for this Cylinder Switch Time.

5.2.2. Related Work

Saavedra [Saavedra92, Saavedra94] introduced a simple, yet powerful, mechanism to

extract performance characteristics from a multi-level memory hierarchy. The benchmark

repeatedly executes a loop of reading memory locations in a fixed size array at a given

stride. Surprisingly, almost all the characteristics of the memory hierarchy, including

number of caches, their capacity, associativity, block size, and access times, can be

extracted by changing the size of the array and the length of the stride. This technique,

70

unfortunately, cannot be applied directly to disk drives. The complex interaction between

mechanical and electronics functions makes the results much more unpredictable and dif-

ficult to decipher than the those that occur when the benchmark is run on a memory hier-

archy.

Ganger and Worthington [Worthington95] described partially automated tools for extract-

ing parameters from SCSI disk drives. They used a twofold approach, interrogative and

empirical extraction. Interrogative extraction uses a library of SCSI access functions to

read the disk’s Mode Pages. The mode pages describe disk parameters like the sectors/

track ratio, prefetch buffer size, and so on. The information extracted from the mode pages

is used to construct test vectors for the empirical extraction process. They measured the

minimum time between requests (MTBRC) of various kinds. By comparing the MTBRCs

of different test vectors, they calculate switching times and other parameters.

The main disadvantage of this approach is that the user needs to know about the SCSI sub-

system. In particular, the user must be able to send low level SCSI commands to the disks,

requiring in turn that each drive manufacturer support the required commands. If the disk

is not SCSI, but IDE, then the user would need access to low level IDE commands. Also,

each parameter requires a separate group of test vectors. The ideal benchmark would com-

bine the simplicity and elegance of the Saavedra solution to the accuracy of the Ganger and

Worthington approach.

71

5.3. The Write Benchmark

This section describes the write version of the Skippy benchmark. We present the algo-

rithm and use a simple analytical model to illustrate the behavior that we expect. We

parametrize this analytical model with a synthetic disk and show the expected graphical

result. Next, we present the results on an actual disk, the IBM Ultrastar XP. Finally, we

extract the IBM disk’s geometry and switching latencies from the result graph and compare

them to the manufacturer specified values.

5.3.1. The Algorithm

The benchmark does a sequence of single sector writes and seeks through the raw device

interface; Figure 5-2 shows the pseudocode. By using the raw device interface, we can

bypass file optimizations activities like caching, buffering, and read ahead. The benchmark

writes one sector to the disk, seeks and writes again. At each iteration, the seek distance (or

StepSize) increases by one.

Figure 5-2. Pseudocode for the Write Version of Skippy.

int i;
open (raw disk device);
for (i=0; i< Number of Measurements;i++)
{

 Read start time
 lseek(raw device, i);
 write(1 sector)
}
close (raw device);

72

At this point, it is important to distinguish between the algorithm’s notion of seeks (or

steps) and the traditional definition of seeking. As mentioned in the prior section, Seek

Time, in the disk context, means the time to move the disk arm to the correct track. In the

operating system context, an lseek causes the operating system to change the current posi-

tion in the device file. Lseek calls have no direct relationship to actual disk seeks. In this

benchmark, we limit the step sizes between requests to less than a cylinder. Therefore, the

benchmark does not cause the disk arm to move further than a cylinder switch. To maintain

the distinction between benchmark steps and disk seeks, we refer to the distance between

two benchmark accesses as the Step Size, not Seek Distance.

The terms used in the analytical model are defined below. These terms are used in the rest

of this chapter and the following two chapters. whenever possible, we use the full name of

each term, rather than the abbreviation.

Tl: Transfer Time. The time to read data from or write data to the surface.

Mtm: Minimum Time To Media. This is the minimum time access data on the disk

surface. A disk request completes in Mtm+Tl when it incurs no rotational or seek

latency.

s: Step Size in sectors between the last request position and the current request posi-

tion. (the value of the second argument to lseek).

t: Sectors/track ratio.

p: Position of the last access relative to the start of the current track.

73

Rl: Time for one full rotation. We call this Full Rotation Time. Rotational Latency,

on the other hand, is the time that a given request spends waiting for the required

sector to rotate under the head. The Rotational Latency can vary anywhere between

zero and the Full Rotation Time.

Hsw: Head Switch Time.

Csw: Single Cylinder Switch Time

Stm: Number of sectors that the disk rotates in Minimum Time to Media. Equation

(1) defines Stm in terms of Mtm, t, and Rl, as

Equation 5-1.

Note that equation 5-1 assumes a linear relationship between the latency and the number

of sectors rotated. It is well known that seek time does not increase linearly with seek dis-

tance. However, as we stated earlier, the step sizes used do not generate any arm move-

ment; the delay is purely rotational. Since the disk rotates at a fixed speed, the delay

increases linearly with the number of sectors rotated.

Figure 5-3 shows the expected sequence of events for two single sector writes labeled W1

and W2. We assume that the step size between the writes is small enough that the two

requests will be on the same track. The figure shows five stages that each write goes

through; the disk rotates a few sectors between each stage. W1, starts at time W1Start. By

time W1atDisk, the OS and SCSI subsystem have processed the request and the command

has reached the disk. By time W1atSurface, the disk has positioned the head on the neces-

Stm
MinimumMediaTime SectorsPerTrack×

FullRotationTime
---=

74

sary track. By time W1underHead, the required sector is under the disk head. The differ-

ence between W1atSurface and W1underHead is the Rotational Latency for W1. By

W1End, the write system call has returned. Some short time later, the second write begins.

The figure does not explicitly show transfer time, but W1End-W1atSurface includes the

transfer time, Tl. By W2atSurface, the disk has already rotated some distance forward. In

the illustration, the step size s is greater than this distance; the required sector is still up

ahead and the second request can be served in the same rotation.

The time between W1End and W2Start is the time to start the next loop iteration and exe-

cute the lseek call; this time is negligible compared to the disk access times. In our system,

it is on average 7-8us, while the entire write takes between 2000-10000 us. If we assume

that the time between W1End and W2Start is negligible, we can make some interesting

observations:

Figure 5-3. Sequence of Events for Two 1 Sector Writes
This figure shows the expected sequence of events for two 1 sector writes to the disk
media. The writes are labeled W1 and W2.

75

(i) As the rotational delay approaches zero,W2End-W2Start becomesMinimumMedia-

Time+TransferTime.

(ii) When the rotational delay is eliminated,W2atSurface-W1atSurface is alsoMinimum-

MediaTime. Therefore, the disk rotates for approximatelyMtm time, or overStm sectors,

between any two requests. In other words, ifStepSize < Stm, W2 will need an extra rota-

tion. If StepSize>Stm, W2 can complete in the same rotation asW1.

Using the above logic, we can model the latency of the second write request. If the access

is on the same track as the prior access, (i.ep+StepSize < Sectors/Track), andStepSize >

Stm, the request can be satisfied in the current rotation and the latency is

Equation 5-2.

This latency is the minimum time to media plus the time to rotate the remaining sectors.

Substituting equation 5-1 into 5-2 gives us a simpler term for the latency:

Equation 5-3.

As the equation shows, the latency is a linear function of the step size. IfStepSize<Stm, the

request is satisfied in the next rotation, and the latency is given by equation (4):

Equation 5-4.

Equation 5-4 can also be simplified by substituting 5-1, giving equation 5-5:

Latency
StepSize Stm–() FullRotationTime×

SectorsPerTrack
--- MiminumMediaTime TransferTime+ +=

Latency
StepSize FullRotationTime×

SectorsPerTrack
-- TransferTime+=

Latency
SectorsPerTrack StepSize Stm–+()

SectorsPerTrack
-- FullRotationTime× MinimumMediaTime TransferTime+ +=

76

Equation 5-5.

When StepSize<Stm, the latency is still linear in StepSize with the fixed vertical offset

equal to FullRotationTime. If the step puts the new request on a different track (p+StepSize

> Sectors/Track), then the request incurs an extra head switch delay. Since the tracks are

skewed, a head switch does not cause the disk to have to wait a full rotation. In this case,

the latencies can be calculated as in equations 5-6 and 5-7, When StepSize>Stm:

Equation 5-6.

When StepSize<Stm:

Equation 5-7.

The equations for a cylinder switch are similar, with CylinderSwitchTime in place of Head-

SwitchTime.

Note that all these equations assume that there are no long distance seeks going on. This

model and the benchmark are not intended to for step sizes that cause seeks greater than a

single cylinder. After that point, there is significant arm movement and the latency does

not scale linearly with step size.

Latency
StepSize FullRotationTime×

SectorsPerTrack
-- FullRotationTime TransferTime+ +=

Latency
StepSize Stm–() FullRotationTime×

SectorsPerTrack
--- MinimumMediaTime HeadSwitch TransferTime+ + +=

Latency
SectorsPerTrack StepSize Stm–+()

SectorsPerTrack
-- Rl× MinimumMediaTime HeadSwitch TransferTime+ + +=

77

5.3.2. Graphical Result

Now we evaluate the above equations using a synthetic disk whose parameters are listed

in Table 5-1. The synthetic disk is 7200 RPM, with 15 recording surfaces containing 150

sectors per track. The minimum time to access media is 2.0 ms, and the head and cylinder

switch times are 0.7 ms and 2.1 ms respectively. Since the benchmark does not create long

distance seeks, we do not specify a seek profile.

Figure 5-4 shows the expected graphical result; the accompanying illustrations, Figures 5-

5(a-d), show what happens at points (1) through (4) in the graph. Each illustration shows

two writes; the second write shows the request pattern at the marked point in the graph.

Each track is shown as two concentric circles; the rotational delay for Write1 is marked on

the outer circle and the rotational delay for the Write2 is marked on the inner circle. The

illustrations do not show Transfer Time; since we are focusing on single sector accesses,

the transfer time is nearly negligible. We will discuss Transfer Time further when we

extract parameters in the next section and when we deal with larger transfer sizes in the

next chapter.

Parameter Value

Sectors/Track 150

Full Rotation Time 8333.33 us

Minimum Media Time 2000 us

Number of Heads 15

Head Switch Time 700.00 us

Cylinder Switch Time 2100.00 us

Table 5-1. Parameters for Synthetic Disk Drive

This table lists the parameters for a synthetic disk drive. These parameters are used in this
section and section 5.6 to illustrate the expected graphical results for the write and read
versions of the benchmark.

78

As the step size increases linearly, the latency follows a sawtooth pattern. At point (1),

(Figure 5-5(a)) StepSize is zero, causing a large rotational delay for Write2 and making

W2Latency equal to the Full Rotation Time Rl. As StepSize increases, the latency increases

linearly as in equation 5-4. When StepSize approaches Stm, equation (4) shows that the

latency approaches MinimumMediaTime+FullRotationTime. At point (2) (Figure 5.5(b)),

StepSize is almost Stm. By the time the disk head is lowered on the track, the required

sector has just been missed and a full rotation takes place. The latency is therefore the Full

Rotational Time plus MinimumMediaTime overhead.

Figure 5-4. Expected Skippy Result
This figure shows the expected result for the Skippy benchmark, derived by evaluating the
analytical model using the synthetic disk parameters. The X axis shows step size in sec-
tors, and the Y axis shows write latency in microseconds.

(1)

(2)

(3)

(4)

Minimum Time

To Media

Minimum Time to Media + Transfer Time

Sectors Per Track

Cylinder
Switch Time

Head Switch
Time

Cylinder
Switches (L4)

Head
Switches (L3)

Base Latency
(L2)

(L1)

79

Figure 5-5. Illustrations of Behavior in Skippy Result
Figures 5(a) and (b) show the request patterns at points (1) and (2) in the graph. At point
(1), step size is close to zero, causing a large rotational delay for W2. W2’s latency is
equal to the Full Rotation Time. At point (2), the required sector is just missed, making the
latency the Full Rotation Time plus Mtm overhead.Figure 5.5 (c) and (d) show the behav-
ior at points (3) and (4) in the graph. At point (3) the required sector is available exactly
when the head is positioned; there is no rotational latency. Figure (d) shows what happens
when a head or cylinder switch occurs

Figure 5.5(a) Figure 5.5(b)

Figure 5.5(c)

Figure 5.5(d)

80

A few steps later, we reach point (3) (Figure 5-5(c)), where StepSize is slightly larger than

Stm. In this case, the disk head is lowered just in time and there is no rotational latency.

The latency therefore becomes MinimumMediaTime. From then on, as StepSize increases,

the latency increases linearly as in equation 5-2. The graph has a sawtooth shape; the tran-

sition happens at StepSize=Stm.

The graph also shows a series of upward spikes that correspond to head and cylinder

switches. Point (4) (Figure (5-5(d)) illustrates a head switch. In this case, the rotational

latency is increased by HeadSwitchTime as specified by equation 5-6. The smaller spikes

correspond to head switches and the larger spikes correspond to cylinder switches.

5.3.3. Extracting Parameters

Figure 5-4 exposes many useful disk details. The X coordinate of point (3) is Stm and the

Y coordinate is MinimumMediaTime+TransferTime. Since the transfer time is very small

for a single sector, the Y coordinate of point (3) is a good estimate for MinimumMedia-

Time. Mtm is also the difference between the Y coordinates of points (1) and (2). FullRo-

tationTime Rl is the latency at step size 0 and the height of the transition at the

MinimumMediaTime point.

Using this information, we can calculate the number of sectors per track. Since we know

that the MinimumMediaTime point is reached when StepSize=Stm, we can reverse equation

5-1 to calculate the Sectors/Track ratio t:

Equation 5-8. SectorsPerTrack
Stm FullRotationTime×

MinimumMediaTime
--=

81

Note that we can only calculate the sectors/track ratio for the region that was written. Most

modern disks employ Zone Bit Recording; outer cylinders have more sectors per track than

inner cylinders. To get the Sectors/Track ratio of other regions in the disk, we will need to

run the benchmark on those regions as well.

As StepSize increases, the latencies form three distinct lines with the same slope and dif-

ferent offsets. Figure 5-4 shows four lines labeled L1 through L4. L1 conforms to equation

5-4 and L2 conforms to equation 5-2. By taking the difference in offsets between these two

lines, we can calculate the rotation time. The slope of each line is FullRotationTime/Sec-

torsPerTrack. Once FullRotationTime is known, we can extract the Sectors/Track ratio

from the slope value.

Each point on L3 represents a head switch and the latencies conform to equation 5-6.

Hence, the vertical offset between the L3 and the L2 is HeadSwitchTime. Each point on L4

corresponds to a cylinder switch; the vertical offset between the third line and L2 is Cylin-

derSwitchTime.

Finally, while the step size is less than the number of sectors per track, we can get the

number of recording surfaces by counting the number of head switches between two cyl-

inder switches. We can also calculate the number of recording surfaces from the total step

distance between two cylinder switches. Since the benchmark moves forward with each

step, the distance between the sectors accessed at step sizes s1 and s2 is not simply s2-s1.

If we assume that the benchmark started by writing sector 0, the address of the sector writ-

ten at step size s1 is the sum of s1 iterations of the arithmetic progression starting at 0 with

increment 1. This sum is

82

Equation 5-9.

We can calculate the address of the sector written at step s2 in the same way. Taking the

difference between these two addresses gives us the actual step distance between the mea-

surements at step sizes s1 and s2. The total distance between the two accesses is

Equation 5-10.

Since we already know the number of sectors per track, the number of recording surfaces is

Equation 5-11.

As the step size gets larger, the number of steps between successive head and cylinder

switches decreases. As figure 5-4 shows, after StepSize is greater than SectorsPer-

Track+Stm, every step causes a head switch.

5.3.4. A Sample Result

The prior section showed how all the parameters in Table 5-1 can be extracted from Figure

5.4. Now we apply these techniques to the IBM UltraStar XP disk drive [UltraStar96].

From the manufacturer specifications we learn that this disk is 7200 RPM (8.33 ms rota-

tional latency), with 9 platters (18 recording surfaces) and 8 recording zones, the outermost

of which has 184 sectors per track. The head and cylinder switch times are 0.85 ms and

2.17 ms respectively.

s1 s1 1+()×
2

StepDist
s2 s1–()

2
---------------------- 2s1 s2 s1–()+()×=

RecordingSurfaces StepDist
SectorsPerTrack
---=

83

Figure 5-6 shows the result of running the benchmark on this disk; the figure is quite sim-

ilar to the model result in Figure 5-4. The result follows the behavior predicted by equa-

tions 5-1 through 5-6. Equation 5-7, however, does not completely explain the result of

head and cylinder switches while StepSize<Stm. In Figure 5-4, head switches always cause

upward latency spikes consistent with 5-7; figure 5-6 shows upward spikes for small Step-

Size and also some downward spikes as StepSize approaches Stm. This variation does not

affect our ability to extract the necessary parameters, but it does require a refinement of the

analytical model. We refine the model in Section 5-4; for now, we focus on extracting

parameters from Figure 5-6.

Following the parameter extraction techniques described earlier, we get the following mea-

sured values. FullRotationTime from the Y coordinate at point (1) is 8.39ms; the actual

latency is 8.33ms and the error is 0.73%. If we use the height of the sawtooth wave to esti-

mate Rl, we get 8.30ms. In this case, the error is 0.43%. Both techniques for estimating Rl

yield extremely accurate results.

The X coordinate value of point (3) is 47 and the Y coordinate value is 2.20ms. As equation

(2) states, the offset of L2 is the Transfer Time; this value is 0.06ms. Since we are writing

only 512 bytes, the transfer time is very small. By subtracting Transfer Time from the Y

coordinate value at point 3, we estimate MinimumMediaTime to be 2.1 ms. In fact, since

the transfer time is so small, its effect on the Mtm value is virtually indistinguishable from

measurement noise and the Y coordinate value is itself a good estimate of Mtm. On the

other hand, if we estimate Mtm as the difference between the Y values at points (1) and

84

(2), we get 1.87ms. Mtm is a system specific value and has no counterpart in the specifica-

tion. It is however, an important estimate of file system overhead.

The sectors/track ratio is 181.9; since the actual sectors per track is 184, the error is 1.1%.

The measured head switch time is 0.87 ms, a 2.3% error compared to the specification.

Similarly, the measured cylinder switch time is 2.19ms, a 0.9% error compared to the spec-

ification. Finally, by counting the number of head switches between cylinder switches, we

find that the disk has 18 recording surfaces. This value matches the disk specification. For

this disk drive, the extracted values are very close to the actual values. In all cases, the error

rate is less than 3%.

Figure 5-6. Skippy Write Result for IBM UltraStar XP disk drive
For the most part, the graph is similar to the expected graph in Figure 5-4. The one excep-
tion is that labeled in point (5). The graph shows some extra downward transitions right
before the Mtm point. These transitions occur when a head switch happens when StepSize
is close to Stm. This effect is explored further in section 5.4.

(1)

(2)

(3)

(4)

(5)

85

5.4. A Refined Analytical Model For Writes

Figure 5-6 showed that the simple model is inadequate for describing some parts of the

benchmark behavior. In particular, the graph shows some downward spikes in the region

StepSize<Stm that are not explained by equation 5-7. In this section, we present a refine-

ment to the initial model to explain these effects.

In Figure 5-6, the downward spikes near point (5) happen when a head switch occurs while

StepSize is close to Stm. In normal circumstances, when there is no head switch, the

mechanics of equation 5-4 apply; there is not enough time to position the head and service

the write in the same rotation as the prior write. When a head switch occurs, however, the

track skew gives the disk head slightly extra time, enabling the disk to service some writes

without waiting an extra rotation. These writes can complete with latencies close to Mtm.

Figure 5-6 shows that these downward spikes actually extend L3, the head switch line, to

the left of the Mtm point. This observation confirms our hypothesis that the spikes are

caused by head switches.

To refine the model, we need to break Mtm down into two parts:

Mov: The sum of operating system, SCSI and disk electronics overheads to process

the request.

Sov: The number of sectors the disk rotates in time Mov.

Mdp : The disk positioning time. This is the minimum time needed for the disk to

position the arm over the required track.

86

Mov is the minimum time between the disk’s completing the first request and receiving the

second request. Any request where StepSize<Sov is not serviceable within the current rota-

tion whether it includes a head switch or not. The gray area is when Sov <StepSize < Stm.

Equation 5-12 gives the write latency when Sov< Size < Stm, p+StepSize > Sectorsper-

Track and a head switch occurs:

Equation 5-12.

Once again, the latency when a cylinder switch occurs can be calculated by replacing

HeadSwitchTime in equation 5-8 with CylinderSwitchTime.

To evaluate the refined model, we need to add two parameters for the synthetic disk’s pro-

file in Table 5-1 We assume that Mov and Mdp are each 1.0 ms. Figure 5-7 shows the

refined model parametrized for the synthetic disk.; the refined model shows the downward

spikes as expected. We can use the step size at which the first downward spike occurred to

estimate the value of Mdp, and hence Mov. Therefore, we can get finer estimates of oper-

ating system/interconnect overheads as well as estimates of disk positioning time.

In Figure 5-6, the result for the IBM disk, the first downward spike happened at step size

33. The Mtm point was at step 47. Therefore, we can estimate Mdp as the time taken to

rotate 47-33, or 14 sectors. This time is 634 us. Since Mdp and Mov add to Mtm, Mov is

1565 us.

Latency
StepSize Sov–() FullRotationTime×

SectorsPerTrack
--- Mov HeadSwitchTime TransferTime+ + +=

87

5.5. Write Measurements

The section describes how the benchmark can be used to extract parameters from a range

of modern SCSI and IDE drives. Table 5-2 lists the drives that we measured; the table gives

each drive’s year, interface, capacity, dimension, RPM, Full Rotation Time and the number

of recording surfaces. The remaining details, like head and cylinder switch times, were

available only for the IBM UltraStar XP drive [UltraStar96]. For the rest, the table contains

all the information that we were able to gather from the manufacturer’s specification sheets

[Seagate99, Micropolis99, IBM99, Quantum99]. We measured five SCSI disk drives and

two IDE disk drives.

Figure 5-7. Refined Model Result for Synthetic Disk

The refined model is much closer to the actual result in Figure 5-6 than the initial model.
In particular, it shows several downward spikes before the main transition, much like the
sample result.

88

5.5.1. SCSI Disk Drives

Figures 5-8 through 5-11 show the results for the SCSI drives on the write version of the

benchmark. The graphs are ordered in increasing RPM, from the 5411 Hawk to the 10020

RPM 9ZX drive. Table 5-3 summarizes the measurement numbers for each disk. The

UltraStar XP’s numbers are included in the table for comparison.

In all four cases, FullRotationTime is clear from the height of the sawtooth wave. For the

5400 RPM Hawk, the wave is about 11.22 ms high; the error rate is 0.9%. For the 7200

RPM Barracuda disk, it is about 8.43 ms; the error rate is 1.2%. The estimated rotation time

for the Micropolis disk is 8.41ms; the error rate is 0.9%. Finally, the rotation time of the

10,000RPM 9ZX is 6.06ms, giving an error of 1.0%.

Model # Year Interface
Capacity
(GB) Dimension RPM

Full
Rotational
Latency
(ms)

Recording
Surfaces

Seagate ST32430W
(Hawk)

1994 SCSI 2 3.5in, LP 5411 11.1 9

Seagate ST15150W
(Barracuda)

1995 SCSI 4 3.5in, HH 7200 8.3 21

MicroPolis 3391 SS 1996 SCSI 8 3.5in, HH 7200 8.3 22

IBM (UltraStar XP) 1996 SCSI 8 3.5in HH 7200 8.3 18

IBM 9ZX 1998 SCSI 8 3.5in HH 10020 6.0 12

Quantum Fireball EX
3.2A

1998 IDE 2 3.5in LP 5400 11.1 2

IBM-DTTA-351010 1997 IDE 9.6 3.5in, LP 5400 11.1 6

Table 5-2. Description of the Disks in the Testbed.

These disks are between 1 and 4 years old and range from 5400 RPM to 10020 RPM. We
only have detailed specifications for the IBM UltraStar XP disk drive. The table contains
all the relevant information that we were able to gather for the other disk drives from their
on-line specification sheets. All drives are 3. 5 in; HH and LP mean Half Height and Low
Profile respectively.

89

The measurements show that MinimumMediaTime can vary somewhat between disks of

the same RPM and generation. The Hawk’s average MTM is 1.9 ms, while the Mtm for the

7200 RPM disks ranged from 1.8ms to 3.8ms. The lowest, 1.8 ms, was the Seagate Barra-

cuda, while the highest, 3.8 ms, was the Micropolis drive. Finally, the latest disk, the 10000

RPM 9ZX, had the lowest Mtm value of 1.4 ms. Since these disks were measured on the

same testbed, we can assume that the operating system and SCSI overheads are similar.

Therefore, the results show that the IBM drive has the lowest overhead to access media,

with the Seagate Hawk and Barracuda drives not far behind. Interestingly, the Seagate

Hawk, which is considerably older than the 7200 RPM drives, still has a better Mtm than

both the IBM Ultrastar and the Micropolis drive.

Figure 5-8. Skippy Write Result for 5400 RPM Seagate Hawk

The result shows the characteristic sawtooth shape. For a slightly older disk drive, the head
and cylinder switch times are quite good. The disk also has an odd number of recording
surfaces, typical of Seagate drives.

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160

T
im

e
(m

s)

Distance (Sectors)

Base

Cylin
der S

witch

Head Switch

Base

of h
eads (

9)

Minimal Time to Media + Transfer Time (1.93 ms)

Rotational
Latency

(11.22 ms)

Cylinder
Switch

(2.29 ms)

Head
Switch

(1.16 ms)

90

Since all of the measured drives employ Zone Bit Recording, we extract the Sectors/Track

ratio for the outermost zone of each drive. The Hawk has around 142 sectors per track, the

Barracuda about 123, the UltraStar 186, the Micropolis 201, and the 9ZX about 224.

Finally, we compare the head and cylinder switch times. As the graphs show, the Seagate

Barracuda drive has the lowest head and cylinder switch times. The Hawk’s cylinder

switch time is comparable to that of the UltraStar XP, even though the Hawk is an older

drive.

By counting the number of head switches between cylinder, we learn that the Hawk has 9

recording surfaces, the Barracuda has 21, the Micropolis has 22, and the 9ZX has 12. The

numbers for the Hawk, Barracuda and 9ZX match the specification data in Table 5-2.

Figure 5-9. Skippy Write Result for 7200 RPM Seagate Barracuda

Like the previous figure, the Barracuda result shows very good switching times and an odd
number of recording surfaces, typical of Seagate disk drives.

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160

T
im

e
(m

s)

Distance (Sectors)

Base

Cylinder S
witch

Head Switch

Base

of h
eads (2

1)

Minimal Time to Media + Transfer Time (2.01 ms)

Rotational
Latency

(8.43 ms)

Cylinder
Switch

(1.32 ms)

Head
Switch

(0.76 ms)

91

Figure 5-10. Skippy Write Result for 7200 RPM Micropolis Drive

The Micropolis drive is the worst performer in the SCSI group, with high switching times
and extremely high minimum time to media. The result itself has more noise than the
Skippy results of the other SCSI drives.

Figure 5-11. Skippy Write Result for 10000 RPM IBM 9ZX

This is the most recent drive in the collection. As a result, it has very good switching times
and lowest minimum media time of all SCSI drives.

0

2

4

6

8

10

12

14

0 50 100 150 200 250

T
im

e
(m

s)

Distance (Sectors)

Base

Cylinder S
witch

Head Switch

Base

of heads (22)

Minimal Time to Media + Transfer Time (3.78 ms)

Rotational
Latency

(8.41 ms)

Cylinder
Switch

(2.62 ms)

Head
Switch

(1.50 ms)

0

2

4

6

8

10

0 50 100 150 200 250 300

T
im

e
(m

s)

Distance (Sectors)

Base

BaseHead Switch
Cylinder S

witch

of heads (1
2)

Minimal Time to Media + Transfer Time (1.40 ms)

Rotational
Latency

(6.06 ms)

Cylinder
Switch

(1.91 ms)

Head
Switch

(0.79 ms)

92

5.5.2 IDE Disk Drives

Figures 5-12 and 5-13 show the write behavior for the Quantum and IBM IDE disks. These

graphs show caching activity at the lower step sizes. In fact, it appears that the drives write

to the buffer cache for several requests, and then empties the cache as additional requests

are received. This behavior causes the entire result graph to shift to the right.

Although the graphs are slightly shifted, we can measure the rotational latency as the

height of the transition at the MinimumMediaTime point. The measured Full Rotation Time

is a 11.4ms, a 3% error over the specification value of 11.1 ms. The graph shows that the

Quantum disk has only two recording surfaces, consistent with the disk specifications in

Table 5.3. The Quantum drive also has a head switch time of 2.19ms and a cylinder switch

time of 2.89ms.

The measured rotation time of the IBM disk is 11.04ms, a 0.7% error compared to the spec-

ification. The sectors per track ratio is 330.01 and the disk has 6 recording surfaces. The

Disk

 Full
Rotational
Latency (ms)

Minimum
Time to
Media (ms)

Sectors/
Track
(outermost)

Number of
Recording
Surfaces

Head
Switch
Time (ms)

Cylinder
Switch
Time (ms)

Hawk (5400) 11.22 1.93 142.37 9 1.16 2.29

Barracuda (7200) 8.43 2.01 123.35 21 0.76 1.32

Micropolis (7200) 8.41 3.78 201.72 22 1.50 2.62

UltraStar (7200) 8.39 2.19 186.15 18 0.85 2.20

9ZX (10020) 6.06 1.40 224.69 12 0.79 1.91

Table 5-3. Extracted Parameters for SCSI Disk Drives

Table 5.3 lists the extracted parameters from each SCSI disk drive. The parameters for the
IBM UltraStar XP disk are included for comparison.

93

head switch time is 1.93ms and the cylinder switch time is 3.81ms. This disk’s Mtm value

is 1.02ms.

5.5.2. Discussion

We can make several interesting observations from these measurements. First, we see that

MinimumMediaTime can vary widely, even between the same generation of disk drives.

Among the 7200RPM SCSI disks, the Barracuda has the lowest Mtm, while the Micropolis

drive has the highest. In general, the Micropolis drive has the worst mechanical latencies

of all the SCSI disks; its head and cylinder switch times are also much higher than those of

any other SCSI drive. The Seagate drives appear to have the best mechanical latencies; the

Figure 5-12. Skippy Write Result for 5400 RPM IBM IDE Drive

This IDE drive shows evidence of write caching at the smaller step sizes. The head and
cylinder switch times are considerably higher than those of the SCSI drives, although the
minimum time to media is lower.

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450

T
im

e
(m

s)

Distance (Sectors)

Skippy

Base

Cylinder S
witch

Head Switch

Base

of h
eads (6

)

Minimal Time to Media + Transfer Time (1.02 ms)

Rotational
Latency

(11.04 ms)

Cylinder
Switch

(3.81 ms)

Head
Switch

(1.93 ms)

94

Barracuda’s switching times are lower than the 9ZX, even though the 9ZX is a newer disk.

Even the 5400 Hawk’s switching times are comparable with the 7200RPM drives.

Second, the number of recording surfaces varies widely between disks. In general, the

number of recording surfaces increases with capacity and decreases over time. For

instance, the IBM 9ZX has the same capacity as the Barracuda and UltraStar, but has less

recording surfaces because it is a newer disk, most likely with a higher areal density. The

results also show that some disks have an odd number of recording surfaces. When we first

took these measurements, we were surprised to find an odd number of heads, since it

implies that one side of one of the platters is not used.

Figure 5-13. Skippy Write Result for 5400 RPM Quantum Fireball IDE Drive

Like the previous IDE drive, this result also shows evidence of write caching, higher
switch times, and lower minimum time to media.

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

T
im

e
(m

s)

Distance (Sectors)

Skippy

Base

Cylinder S
witch

Head Switch

Base

of h
eads (2

)

Minimal Time to Media + Transfer Time (1.25 ms)

Rotational
Latency

(11.40 ms)

Cylinder
Switch

(2.89 ms)

Head
Switch

(2.19 ms)

95

Finally, if we compare the SCSI and IDE disk results, we see that the IDE disks have a

much lower MinimumMediaTime than the SCSI disks. Both IDE disks also show buffering

activity at the smaller step sizes, something we did not see with any of the SCSI disks. The

switching times of the IDE disks are also considerably higher than the SCSI disks.

5.6. Read Benchmark

The prior sections explored the benchmark’s behavior when the accesses are single sector

writes. Now we look at what happens if reads are used instead. The main advantage of

using reads is that the benchmark can be run on a disk without damaging its contents. How-

ever, reads are more complicated than writes because many disks employ read ahead opti-

mizations. The disk maintains a prefetch buffer; after the current sector is read, the disk

reads the next few sectors into this buffer. If the request pattern is sequential, the next

desired sector could be in the prefetch buffer before the request arrives. Each disk manu-

facturer has its own algorithm for read ahead. As we will see in the next few sections, such

optimizations can make read results widely different between disks of different manufac-

turers.

In this section, we explore the read behavior by creating an analytical model and parame-

terizing it with our synthetic disk. This way, we illustrate how the graphs will look under

different read ahead policies. We also describe how to extract parameters from read graphs.

We round out this section by presenting the result for the IBM UltraStar XP disk.

96

5.6.1. Expected Behavior

We begin, as we did in section 5.3.1, by outlining the expected result of the benchmark.

Unlike the write experiment, where all requests are handled in the same way by the disk,

each request in the read benchmark falls into one of three distinct categories. A request’s

category defines what the disk needs to do to service the request and hence determines the

request latency. The three categories are:

(i) In Prefetch Buffer: In the time between when the prior request completed and the cur-

rent request arrived at the disk, the sector had been read into the prefetch buffer. In this

case, the disk’s task is very simple, return the sector from the prefetch buffer.

(ii) Immediately Ahead In Read Path: The required sector is not in the prefetch buffer but

is immediately ahead in the read path. The disk chooses to read all sectors between the cur-

rent sector and the requested sector. Hence, the disk does not have to reposition the head,

merely wait till the required sector rotates under the head.

(iii) Far From Read Path: In this case, the required sector is far away from the sector cur-

rently being read. The disk will stop the ongoing read process and reposition the head to

serve the new request.

Each disk’s will have a different read ahead algorithm. Therefore, the transitions between

the above three categories will occur at different step sizes in different disks. Where the

transitions occur determines the shape of the result curve. We use the following terms to

define the transition points in our initial model:

97

Mbuffer: Minimum time to read a sector’s worth of data that is in the read-ahead

buffer.

Sbuffer: Number of sectors read into the disk buffer in time Mbuffer. This is also

the number of sectors that the disk rotates in time Mbuffer.

Sreposition: The value of StepSize at which the transition between categories (ii)

and (iii) occurs.

For small values of StepSize, the required sector will already be in the prefetch buffer when

the request arrives. The latency for category (i) requests is Mbuffer. Since the disk can read

Sbuffer sectors between successive category (i) requests, the number of sectors in the

prefetch buffer increases by Sbuffer at each step. In other words, by step s, there are

SBuffer*s sectors in the prefetch buffer. The transition between categories (i) and (ii)

occurs when the required sector is not in the prefetch buffer. For the moment, we assume

that any sector read into the prefetch buffer us not replaced by incoming sectors before it

is read. Using equation 5-9 to specify the address read at step s, we can calculate that the

transition will happen when

Equation 5-13.

In other words, when the sector to be read is ahead at step s is ahead of all sectors read by

step StepSize.

While the request is in category (ii), the disk will chose to not to reposition the head and

will wait for the required sector to rotate under the head. Therefore the latency for requests

StepSize StepSize 1+()×
2

--- Sbuffer StepSize×≥

98

in category (ii) is given by the minimum overhead to access a sector without positioning

the head, plus whatever rotational delay is incurred by each request. This latency is given

by:

Equation 5-14.

Note that in this case, the time between successive requests is Mov, during which the disk

rotates Sov sectors.

The transition between categories (ii) and (iii) occurs when the required sector is far

enough away that disk chooses not to read all the sectors in between. Hence, the disk repo-

sitions the head near the requested sector. In different disks, this transition will take place

at different values of StepSize. The transition point could be related to the size of the

prefetch buffer in some disks. We define the step size where the transition occurs as Srepo-

sition. After this point, the read requests behave in much the same way as the write

requests. If StepSize>Stm, where Stm is the number of sectors that the disk rotates in Min-

imumMediaTime, then the request will complete in the same rotation. If StepSize<Stm,

then the request will need one extra rotation. As before, if there is a head or cylinder switch

in either a category (ii) or category (iii) request, the head/cylinder switch time is added to

the read latency.

We can now use this model to explore the types of result curves we are likely to see in var-

ious conditions. We use the synthetic model profile from Sections 5.3 and 5.4. We also

assume that Mbuffer is 0.5 ms. Figure 5-14 shows the graphical result for Sreposition=30.

The accompanying illustrations in Figures 5-15 (a-c) explain the behavior at points (1)

Latency
StepSize Sov–() FullRotationTime×

SectorsPerTrack
--- Mov TranferTime+ +=

99

through (3). In the horizontal part of the graph, from StepSize=1 to StepSize=17, all

requests are satisfied from the prefetch buffer (category (i)) and the latency is Mbuffer.

When s>17, the requests fall into category (ii) and the latency increases linearly with the

step size. At StepSize=30, we transition into category (iii) and the disk repositions the head

on each request. Between StepSize=30 and StepSize=37, this repositioning makes it

impossible to satisfy the request in the current rotation (i.e., StepSize<Stm), and we see an

abrupt increase by about FullRotationTime. After StepSize>37, we see the same type of

downward transition as we have already seen in the write results. After this, the read results

are similar to the writes, with a sawtooth wave transitioning at intervals of approximately

150 sectors.

Figure 5-14. Read Model Result

This figure shows the expected behavior under reads when Sreposition=30.

(1)
(2)

(3)

100

Since the read behavior is considerably more complex than the write behavior, this model

is particularly useful to show how the shape of the curve is likely to change with small dif-

ferences in the read ahead policy. Figures 5-16 (a) and (b) show the expected behavior for

Sreposition values 100 and 1000. In Figure 5-16 (a), by the time the disk decides to repo-

sition the head on each request, StepSize is already greater than Stm and none of the

requests incur an extra rotation. Therefore, the latency increases linearly with s the initial

downward transition takes place.

Figure 5-15. Illustrations of Request Behavior
Figure 5-15 (a) and (b) show the request behavior at points (1) and (2) in Figure 5.10.

Figure 5-15(a) Figure 5-15(b)

Figure 5-15(c)

101

Figure 5-16 (b) shows an extreme case where Sreposition is set at 1000. In this case, the

disk does not reposition the head for any request shown on the graph. As long as the head

is kept on the surface, the disk will read all sectors between that under the head and the

required sector. Each time a head switch happens; the latency will increase by HeadSwitch-

Time. We see that in this case the latency can become arbitrarily large. Although this seems

to be an extreme case, in the next section we will encounter a disk that shows exactly this

behavior.

5.6.2. Extracting parameters.

Although the read graphs are considerably more complex than the write graphs, most of

the parameters explicit in the write graphs can also be extracted from the read graphs. In

this section we examine this extraction process, beginning with figure 5-14.

The latency value of the horizontal portion is MBuffer (500 us). Using equation 5-13 and

substituting the X values before and after the transition point (1), we can estimate Sbuffer.

Figure 5-16. Other Possible Read Results
Figure 5-16 (a) and (b) show the expected results for Sreposition values 100 and 1000.

102

The height of the sawtooth wave is FullRotationTime. As in the write case, we can use the

slopes of the lines to find Sectors/Track. The head switch time, cylinder switch time, and

number of heads, are all determined in the same way as in the write graphs.

The main difference between graphs 5-14 and 5-15 (a) is that MinimumMediaTime is not

obvious in the early part of figure 5-15 (a). We can, however, determine both Mtm and

FullRotationTime from the sawtooth transition near StepSize=175. The height of the tran-

sition is still Rl; if a head switch has occurred, the Y coordinate at the bottom of the tran-

sition could be MinimumMediaTime+HeadSwitchTime+TransferTime. Since

HeadSwtchTime is known, we can estimate MinimumMediaTume as before. We can also

get MinimumMediaTime by subtracting FullRotationTime from the highest Y value in the

wave.

Finally, in the third graph, Figure 5-16(b), we have lost all the information embedded in

the transitions. We can still determine Mbuffer, HeadSwitchTime, CylinderSwitchTime and

the number of heads. However, without knowing FullRotationTime, we cannot find Sec-

tors/Track.

5.6.3. A Sample Result

Figure 5-17 shows the UltraStar XP’s result on the read benchmark. This result is similar

to Figure 5-14. Using the techniques outlined in the last section, we can extract the follow-

ing parameters:

103

(1) MBuffer is approximately 470 us. The transition between categories (i) and (ii) happens

between StepSize=17 and StepSize=18. Therefore, the estimated value of Sbuffer is 9.25.

(2) The MinimumMediaTime point is reached at StepSize=47; the value of Mtm is 2.46 ms.

(3) The height of the drop at the Mtm point, or the value of FullRotationTime, is 8.63 ms.

Compared with the specification value that is 8.33ms, the error rate is 3.6%.

(4) The measured HeadSwitchTime is 0.84ms, a 0.6% error. The measured Cylinder-

SwitchTime value is 2.23ms, a 1.6% error.

(5) The slope of the base line, FullRotationTime/SectorsPerTrack, is 45.59; using the

above estimate for FullRotationTime, we can calculate Sectors/Track to be 189. Since the

actual value is 184, the error rate is 2.7%.

Figure 5-17. Read Result for IBM UltraStar XP
The sample read result matches the shape of the model result in Figure 5-14.

104

(6) Finally, counting the number of head switches between cylinder switches gives us 18,

the correct number of recording surfaces.

The parameters extracted from the read graph are also very accurate; the maximum error

rate is 3.6%. As expected, we see that there is a slight difference between the read Mini-

mumMediaTime value and the write MinimumMediaTime value.

5.7. Read Measurements

Now we examine the read results for the remaining disks in Table 5-2. Figures 5-18(a-d)

show the read results for the SCSI disks and figures 5-19(a and b) show the results for the

IDE disks. Figure 5-20 shows that each disk behaves quite differently. The X and Y scales

are the same for all graphs except 5-18(b), the Seagate Barracuda drive.

5.7.1. SCSI Disk Drives

Table 5-4 contains the parameters extracted from Figures 5-18(a-d). The UltraStar XP’s

parameters are also included for comparison. We begin with the Seagate Hawk. This drive

has the expected sawtooth behavior, the curve differs from its write counterpart at the

smaller step sizes where the read ahead activity comes into play. The Hawk’s read behavior

differs from the UltraStar XP in one important respect; Figure 5-18(a) does not show the

latency increase similar to that in point (3) of Figure 5-17. In the Hawk’s case, the transi-

tion between categories (i) and (ii) happens well past the MinimumMediaTime point, and

the read curve is similar to the model result in 5-16(a). We see that the transition between

categories (i) and (ii) happens between StepSize=18 and StepSize=19. Therefore, Sbuffer is

105

between 9.5 and 10, averaged out to 9.75. MBuffer is 866 us. The measured FullRotation-

Time is 11.05 ms, an error of 0.5% compared to the specification. The head switch time is

1.15 ms and the cylinder switch time is 2.34 ms. The Sectors/Track ratio is 140.54, and

there are 9 recording surfaces. There is some difference between the measured values in

the read and write experiments. In all cases, however, the difference is less than 3%.

Figure 5-18. Read Results for SCSI Disk Drives
Figures 5-18 a, b, c, and d (numbered in row major order) show the results of the read
benchmark for the disks listed in Table 5-2

Figure 5-18(a) Figure 5-18(b)

Figure 5-18(c) Figure 5-18(d)

106

The Seagate Barracuda’s result in Figure 5-18(b) is similar to model 5-16(b). Even though

Figure 5-16(b) illustrates an extreme case, we see that it can actually occur in disk drives.

Although Figure 5-16(b) shows only step sizes up to 250, we ran the experiment up to step

size 5000. The Barracuda chose to read all sectors between the current and the requested

sector. This causes the read latency to increase rapidly; even at step size 250, the latency

is already around 18 ms. The measured Mbuffer value is 970 us. The averaged Sbuffer

value is 12.75. The graph also shows occasional spikes caused by rotational misses. Even

though we could not extract FullRotationTime from Figure 5-18(b), we can find it from the

Barracuda result because of the rotational misses. The measured Rl value is 8.34 ms, a

0.1% error from the specification. The Sectors/Track ratio is 125. The head switch time is

0.73 ms. The graph does not show any noticeable cylinder switches, therefore we cannot

measure the cylinder switch time or the number of recording surfaces.

Disk
MBuffer
(ms)

 Full
Rotational
Latency
(ms)

Minimum
Time to
Media (ms)

Sectors/
Track
(outermost
)

Number
of
Recording
Surfaces

Head
Switch
Time (ms)

Cylinder
Switch
Time (ms)

Hawk (5400) 0.87 11.05 2.11 140.54 9 1.15 2.34

Barracuda
(7200)

0.97 8.34 - 125.04 21 0.73 -

Micropolis
(7200)

- 8.40 3.19 206.66 22 1.31 2.97

UltraStar
(7200)

0.47 8.44 2.46 182 18 0.84 2.23

9ZX (10020) 0.13 5.96 2.76 227.22 12 0.60 1.72

Table 5-4. Parameters Extracted from Read Benchmark

Table 5.4 lists the extracted parameters from each SCSI disk drive. The parameters for the
IBM UltraStar XP disk are included for comparison. The MinimumMediaTime of the
Seagate Barracuda cannot be determined because of its abnormal result.

107

Figure 5-18(c) shows that the 9ZX’s read behavior is similar to that of the UltraStar XP.

The MBuffer value is 130 us; the Sbuffer value averages out to 11.75. The measured rota-

tion time is 5.96 ms, a 1.7% error compared to the specification. The sectors/track ratio is

227, and the head and cylinder switch times are 0.6 ms and 1.7 ms respectively. The

number of recording surfaces is 12.

Finally, Figure 5-18(d) shows the read behavior of the Micropolis disk. This drive does not

seem to benefit from read ahead the way that the other drives do It’s read behavior is quite

similar to its write behavior. The measured rotation time is 8.40 ms, a 0.8% error compared

to the specification. The sectors/track ratio is 206.7, and the head and cylinder switch times

are 1.31 ms and 2.97 ms. The graph also shows that the disk has 22 recording surfaces.

5.7.2. IDE Disk Drives

Next we look at the read results for the IDE drives. Figure 5-19(a) shows the read result

for the IBM IDE drive; the graph is similar to model 5-16(a). MBuffer is 392 us and SBuffer

is 11.25. The measured FullRotationTime is 11020.15 us, a 0.8% error compared to the

specification. The measured values of HeadSwitchTime and CylinderSwitchTime are

1891.38 us and 3812.52 us respectively. The Sectors/Track ratio is 329.84 and the disk has

6 recording surfaces.

Figure 5-19(b) shows the result for the Quantum IDE drive; the graph matches the model

result in figure 5-14. The measured FullRotationTime is 11.35, a 2.3% error compared to

the specification. The Sectors/Track ratio is 360, and the head and cylinder switch times

are 2.14 ms and 2.84 ms respectively. The graph also shows that the disk has only two

recording surfaces.

108

5.7.3. Discussion

Of the five SCSI disks and three IDE disks, we found three whose read behavior matched

model 5-14 and three whose behavior matched model 5-16(a). The Micropolis disk did not

appear to benefit from read ahead in this experiment, and the Barracuda disk showed the

extreme behavior predicted by model 5-16(b). Overall the best possible response is one

similar to model 5-16(a); the latency at any point is the lowest it can be. In model 5-14,

some points at small step sizes have a higher latency. However, the result depends on how

the disk policies interact with the system dependent MinimumMediaTime. A disk that gives

a result like model 5-14 on one system may well give a result like model 5-16(a) on another

system. A result like model 5-16(b), however, suggests a bad read ahead policy or a firm-

ware bug.

Figure 5-19. Read Results for IDE Disk Drives
Figures 5-19 (a) and (b) show the read results for the IBM and Quantum disk drives.
Although the sawtooth transition is not visible in the graph, it does occur in each case at a
higher step size. The IBM disk’s result is similar to model 5-16(a), and the Quantum disk’s
result is similar to model 5-14

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350 400

La
te

nc
y

(u
s)

Step Size (Sectors)

5400 RPM IBM IDE Drive

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350 400

La
te

nc
y

(u
s)

Step Size (Sectors)

5400 RPM Quantum Fireball IDE Drive

109

Also, if we compare the SCSI and IDE disk results, we see that the IDE disks have lower

MBuffer values than almost all the SCSI disks. This is not surprising, as the IDE disks also

have much lower MinimumMediaTime values than the SCSI disks. The exception is the

SCSI 9ZX disk, which has a MBuffer of 130 us, a factor of two lower than all the other

disks.

5.8. Summary

Disks have always been difficult to measure because of the rotational effect. The rotational

latency can add anywhere from zero to the full rotation time to any latency measurement.

If we do not know what part of the latency is rotational, it is virtually impossible to deter-

mine other parameters like head switch time. This variability is why many benchmarks that

work on other parts of computer systems, like memory [Saavedra92, McVoy96[, do not

work well on disks. The linear stride technique actually takes advantage of the disk’s rota-

tional nature; the result curve shows very clearly what part of each measurement latency is

rotational. It is possible to extend this technique to filter out the rotational effect in all kinds

of disk measurements.

The Skippy benchmark strides across the disk, transferring one sector at a time and increas-

ing the step size with each step. The resulting latency curve has a sawtooth form; the lowest

points are the minimum latency to access drive media, and the highest points are when a

full rotational miss occurs. Instances of head and cylinder switches stand out clearly,

making it easy to determine switching times and the number of heads on the disk. This

110

single benchmark can extract all the disk geometry information and many useful mechan-

ical latencies.

We explored the benchmark behavior for writes and reads and presented results for seven

modern disk drives. We found that the write curves have the same shape for all disks, while

the read curves can have several shapes depending on the disk’s read ahead algorithms.

Nevertheless, we were able to extract parameters from all the write cases and all but one

of the read cases. The extracted parameters matched all the specification data we were able

to find, with less than 3% error. One of the benchmark’s strengths is that most parameters

can be measured in more than one way. Therefore, even if the shape of the curve changes

slightly between disks, we can still extract all the information we need.

In the next chapter, we explore extensions to the benchmark and presents a tool to automate

the parameter extraction process.

111

6 Automatic Extraction

6.1. Introduction

Chapter 5 described the Skippy algorithm for extracting disk geometry details and mechan-

ical latencies. The extracted information can be used by disk controllers, device drivers and

file system layers to create drive specific performance enhancements [Horst99]. Even

though the technique is simple and efficient, it cannot be incorporated into such a higher

level system without a mechanism to automatically extract the parameters from the graph-

ical result. This chapter describes such a mechanism.

The chapter is organized as follows. Section 6.2 describes the four phase approach used in

the extraction algorithm for write graphs. Section 6.3 describes each phase in detail and

illustrates the results on the IBM UltraStar XP disk drive. Once the technique has been

explained, we extract the parameters of the other SCSI disks in Section 6.4. Section 6.5

explores ways to improve the accuracy of the extracted results. Section 6.6 discusses these

results in more detail. Section 6.7 describes how the extraction techniques can be adapted

to read graphs and Section 6. 8 concludes with a summary. All through the chapter, the

SCSI disk results from Chapter 5 are used to test the extraction algorithms.

112

6.2. Approach

Figure 6-1 shows a sample write result. As Chapter 5 described, the disk parameters of

interest are embedded in the linearly increasing segments of this graph. However, the saw-

tooth nature of the graph makes it to hard access these segments directly. To isolate the lin-

early increasing segments, we first break the graph down into several pieces. In Figure 6-

1, the graph is divided into two linearly increasing segments, S1 and S2, and two transition

segments, T1 and T2. The height of a transition is the rotational latency.

S1 and S2 contain points that fit on three lines; the first line, marked as L1 in S1 and L2 in

S2, is called the base. The second line, marked as L3 in S2, contains head switches, and the

third line, marked as L4 in S2, contains cylinder switches. Note that these lines all have the

Figure 6-1. Classifications of Graph Regions
This figure shows how the data is classified during processing. The graph is broken down
into sections S1, T1, S2, and T2. T1 and T2 are transition sections. The lines L1, L2, L3
and L4 have the same slope.

T1 T2

S2S1

L1

L2

L3L4

113

same slope, and differ only in the offset. If we can separate the points that belong to each

line, we can then use linear regression to find the slopes and offsets. The slope gives the

Sectors/Track ratio, and the offsets between the lines gives the head and cylinder switch

times.

The automated extraction process requires the following four phases of processing:

Phase I: Filtering the data: The upward and downward spikes caused by head and cylinder

switches make it harder to isolate the transition regions. Therefore, phase I removes as

many of these spikes as possible by filtering the data.

Phase II: Isolating the Transition Regions: The filtered data is used to isolate the transition

regions T1 and T2. Once T1 and T2 are known, we can isolate S1 and S2. We also estimate

the slope of the line L1 by applying linear regression on the filtered latency values in region

S1.

Phase III: Extracting Head and Cylinder Switch Times: Now that the transition regions and

the slope have been extracted from the filtered data, we return to the original data. We use

the coordinates discovered in phase II to isolate S2 in the original data. Once this region is

found, we can separate the base, head switch and cylinder switch points. Section 6.3

describes how these points are extracted.

Phase IV: Calculating Parameter Values. Once the base, head switch and cylinder switch

points in a single linearly increasing segment have been identified, we can use the equations

in chapter 5 to extract all necessary parameters.

114

6.3. Implementation Details

This section describes how each phase is implemented. Throughout the section, we use the

UltraStar XP’s graphical result to illustrate the processing steps. Some steps use techniques

borrowed from other fields, in particular the Artificial Intelligence and Statistics commu-

nities. Therefore, in each phase, we describe the techniques used, define any necessary

terms, and outline any trade-offs.

6.3.1. Phase I: Median Filter

The goal of phase I is to ease the detection of transition regions by removing as many spikes

as possible from the data. A median filter is very useful for this task, as it removes sudden

noise spikes without excessively distorting the surrounding data.

A median filter is a nonlinear filter commonly used in digital image processing to remove

noise from images [Davies88, Pitas90, Russ95]. In the digital processing context, a median

filter is a sliding window spatial filter that replaces each pixel with the median value of all

the pixels surrounding it. The advantage of the median filter is that it removes Gaussian

nose without affecting edges; a low pass filter, in contrast, will blur the image while reduc-

ing nose. Figure 6-2 shows a two dimensional median filter where the median is calculated

from the 3x3 grid surrounding the image. The number of points used to find the median is

the window size. In our context, we use a one dimensional version of the same idea. Figure

6-2 also shows a one dimensional filters with a window size of 5.

115

Figure 6-3 shows what happens when a median filter is applied to the benchmark result for

the IBM UltraStar XP drive. The original benchmark result is in Figure 6-1. The median

filter used here has window size 3; each latency value is replaced by the median of itself,

the value immediately before, and the value immediately after. We discuss the effects of

varying the window size later in the chapter. If we compare Figure 6-3 to Figure 6-1, we

can see that the graph in Figure 6-3 is considerably smoother for small step sizes. As long

as the step size is small, there are very few head and cylinder switches; once this region is

filtered, all those spikes are removed. The filter also causes the sawtooth transition to be

more clearly defined. At larger step sizes, there are too many head switches to be removed

by the median filter. However, we see that the filter smooths out the early part of the graph

and the first two transition regions quite well.

6.3.2. Phase II: Identifying the line slope and transition points

Now, we can use the filtered result to find the first two transition regions. Although the

median filter does a good job of removing noise spikes, we cannot guarantee that there will

be only one downward transition; therefore we identify transition regions in the graph. We

define a transition region to be when the latency drops from the prior value by over 30%.

Figure 6-2. Examples of Median Filters
This figure shows a 3x3 window filter and a 5x1 median filter.

5 3 8

7 2 9

6 1 4

5→ 5 4 2 1 3 3→

116

The 30% point was chosen because a drop that large was not likely to be the result of noise;

the measurement variance is typically less than 10%. The transition region ends when three

consecutive monotonically increasing latency values are detected. Once the transition

regions are identified, the height of the transition is a good estimate of the full rotation time.

The area to the left of the first transition region is S1. Since there are very few head/cylinder

switch spikes at small step values, the median filter does a very good job of removing noise

in this region, What remains are the base points that fit on line L1. Therefore, linear regres-

sion on these filtered data points reveals the slope of L1. This is, in turn, a good estimate of

the slope of L2, L3 and L4 in the original graph. For the UltraStar XP drive, this extracted

slope value is 44.9 usec/sector.

Figure 6-3. Median Filtered Graph

The IBM UltraStar XP result from Figure 6-1 after being processed with a median filter of
window size 3

S1

T1

S2

T2

L1

L2

117

6.3.3. Phase III: Identifying the head and cylinder switches

Next, we focus on the data segment between the two transition regions, region S2. We

cannot use this region in the filtered graph, however, since the median filter has removed

many cylinder and head switch points. Therefore, we analyze this region in the original

data. The median filtered data is used only to find the slope, the full rotation time, and the

transition regions.

Our goal is to classify each point in this region into one of three categories: base, head

switch, and cylinder switch. This is hard to do, however, because the latency values are lin-

early increasing. So we begin by removing the linearly increasing portion of the latency.

Since the full rotation time, Rl, is known, we can add it to each latency value in S2. This

causes the entire segment to move up, as in Figure 6-4(a). The base line in segment S2 now

becomes a continuation of line L1 from segment S1. Since we know the slope and offset of

line L1, we can subtract the linearly increasing segment from all points in region S2. Once

this is done, the data appears as in Figure 6-4(b); all the points in one category are now the

same height and the base, head switch and cylinder switch points are easily distinguishable.

Now that all the points from each category have roughly the same Y value, we can use a

clustering algorithm to separate the base, head switch and cylinder switch points. There is

a slight complication, however. Excess noise and unexpected rotational misses can create

points that don’t belong in any of the three categories. If these points are included in one of

the clusters, the outlying values will reduce the accuracy of the linear regression and the

extracted mechanical latency values.

118

Figure 6-4. Removing the Linearly Increasing Offset

The first graph shows how segment S2 in Figure 6.3 can be moved up. The base line of
segment S2, line L2, now becomes a continuation of line L1. The second graph shows the
Base, Head Switch and Cylinder Switch points after the linearly increasing portion of the
latency is removed from Figure 6.4(a). The category in which each data point belongs is
clear from its Y value.

S1
T1 S2

L1

119

Our initial solution to this problem is as follows: the number of clusters is not set to three,

we impose only a minimum distance between clusters. This way, outlier points will form

clusters that will not be merged with the useful data points. Since we assume that there are

more useful data points than outliers, the three clusters with the most points will be the data

clusters. The key is choosing the right minimum distance so that head switch points and

cluster switch points are not merged into the same cluster. For the moment, we set the dis-

tance between clusters to 0.2 ms. Although this constant works well for the UltraStar XP

result, it is not a robust solution. Section 6.4 shows how well the constant works for other

cases and Section 6.5 explores more robust techniques.

6.3.4. Phase IV: Parameter calculation

Once the three clusters of points are identified, we can apply linear regression (using the

original latency values of each point), to calculate the head switch time HeadSwitchTime

and the cylinder switch time CylinderSwitchTime. Since we already know the slope Full-

RotationTime/SectorsPerTrack and we have an estimate of FullRotationTime, we can cal-

culate the Sectors/Track ratio. By counting the number of head switch data points between

each cylinder switch data point, we can calculate the number of recording surfaces.

6.3.5. A Sample Result

Table 6-1 shows the manufacturer specified parameters for the UltraStar XP drive, along

with the manually extracted and automatically extracted values.

120

The automatically extracted values are as follows. The full rotation time, measured as the

height of the transition, is 8.27 ms. Compared to the manufacturer’s specification, the error

is 0.7%. The sectors/track ratio is 184.18; the error is less than 0.1%. The head and cylinder

switch times are 0.87ms and 2.24ms respectively. The error rates here are 2.3% and 3.2%.

We see that the extracted values are very close to the actual values. In all cases, the error is

less than 5%. The table shows that the automatically extracted values differ slightly from

the manually extracted values. Occasionally, as in the Sectors/Track measurement, the

automatically extracted value is closer to the specified value than the manually extracted

value.

Parameter Manufacturer
Data

Manually
Extracted
Values

Percentage
Error (as com-
pared to Man-
ufacturer
Data)

Automatically
Extracted
Values

Percentage
Error (as com-
pared to Man-
ufacturer
Data)

Sectors/Track 184 181.9 1.1% 184.2 0.1%

Full Rotation
Time

8.33 ms 8.30 ms 0.4% 8.27 ms 0.7%

Minimum
Media Time

- 2.19 ms - 2.34 ms -

Head Switch
Time

0.85 ms 0.87 ms 2.3% 0.87 ms 2.3%

Cylinder
Switch Time

2.17 ms 2.19 ms 0.9% 2.24 ms 3.2%

Table 6-1. Percentage Errors of Manual and Automatic Extraction

The table shows, for each parameter, the manufacturer specified value, the value manually
extracted using Skippy, and the value automatically extracted using Skippy. For all param-
eters, both the automatically extracted and manually extracted values are close to the man-
ufacturer value. The biggest disparity between manual and automatically extracted values
occurs in the MinimumMediaTime parameter. This disparity is larger because this value is
determined using one or two points, and is as such more prone to error than the other val-
ues.

121

6.4. Experiments

Next we apply this algorithm to the write results for the other SCSI disk drives presented

in Chapter 5. Figure 6-5 shows, for each SCSI disk, the absolute relative error between the

manually extracted values and those extracted by the algorithm. In all cases, the techniques

described in section 6.3 were used, with the same constant values (30% drop required to

determine transition in Phase II and 0.2 ms fixed distance between clusters in Phase III).

As the figure shows, in most cases the error rate is less than 5%. In general, the error rates

for the Minimum Time to Media are greater than the error rates for all other parameters. This

happens because the MinimumMediaTime value is approximated as part of the transition

detection process; the other parameter values are considerably more accurate since they are

extracted from a larger number of points.

The only disk whose extracted values show a marked inaccuracy is the Micropolis drive.

There are several reasons for this. First, as Figure 5.4 showed, the Micropolis disk result

has more noise than the other SCSI disks’ results. A single pass of a median filter does not

remove all noise spikes. As a result, the rotational latency value and the slope values are

less accurate. This inaccuracy affects all other results, since these quantities are used to cal-

culate SectorsPerTrack, HeadSwitchTime and CylinderSwitchTime. Second, the transition

region is considerably wider than in the other results, leading to a less accurate Minimum-

MediaTime measurement. Third, we discover that the clustering technique described in sec-

tion 6.3 does not work well for the Micropolis drives. The clustering process terminates

prematurely, since the constant separation distance of 0.2 ms is inappropriate for a result

with as much noise as the Micropolis result. Although the clusters containing base and head

122

switch points are correct, the cluster that should contain cylinder switch points actually

contains head switch points. This mix-up is why the relative error for the cylinder switch

time is so high in Figure 6-5. The next section addresses these shortcomings.

6.5. Optimizations

The prior results showed that the technique is in general very accurate. However, as the

amount of noise in the graph increases, the results can become quite inaccurate. In partic-

ular, small inaccuracies in the estimation of the slope and rotational latency can lead to

large errors in the estimation of the other parameters. In this section, we examine alterna-

Figure 6-5. Extraction Accuracy
The absolute relative errors between the manually extracted and automatically extracted
values. We calculate the absolute percentage relative error between two values y1 and y2
as the absolute difference between y1 and y2, divided by their average, or
AbsoluteRelativeError

y1 y2– 2×
y1 y2+

------------------------------=

123

tives to the basic algorithm that deal with some of these problems. We explore the follow-

ing:

(i) Wider filters and multiple filter passes: The goal here is to reduce noise even fur-

ther by using filters with larger window sizes or using multiple passes of a filter.

The trade-off is that the data is further distorted.

(ii) Using an alternative clustering algorithm: The clustering algorithm used thus far

attempted to avoid outlier points by limiting the distance between clusters. Here we

explore alternative clustering algorithms.

(iii) Comparing multiple values of the same parameter for robustness checking: The

rotational latency and slope values are embedded in more than one place in the

graph. By comparing the values extracted from different points in the graph, we can

make some estimate of the accuracy of the extraction process.

We examine each optimization in turn, focusing on how the alternatives affect the extrac-

tion accuracy for the five disks mentioned in Section 6.4. Finally, we combine some of the

optimizations to create a better extraction algorithm.

6.5.1. Wider and Multiple Pass Filters

Figure 6-5 shows the extraction results when the data was filtered with one pass of a median

filter with window size 3. Here we examine four alternative filters: a size 5 filter, a size 7

filter, two passes of a size 3 filter, and three passes of a size 3 filter. Intuitively, a filter with

a smaller window distorts the data less than a filter with a larger window. At the same time,

124

a filter with a smaller window removes fewer spikes than a filter with a larger window.

Multiple passes of a smaller window filter will remove more spikes than a single pass,

while likely distorting the data less than a single pass of a filter with a larger window size.

Figure 6-6 shows the relative error rates for each parameter and each type of filter. In all

cases, the accuracy is calculated by comparing with the manually extracted value. In each

graph, the disks are labeled on the X-axis; each disk has a cluster of bars representing the

error rate with each filter. The filter’s are labeled on the legend, starting with the single

pass, size 3 filter, and ending with the single pass, size 7 filter.

In almost all the cases, we see that using multiple passes of the size 3 filter does not

increase the error. In the Micropolis case, where the errors are the highest and the data had

the most noise, the multiple passes give a noticeably improvement in the error rate. For

MinimumMediaTime, using two passes of the 3 filter reduces the error rate from over 40%

to around 25%. For FullRotationTime and Sectors/Track, the improvement is even greater.

The extra filtration does not help the accuracy of HeadSwitchTime and CylinderSwitch-

Time as much. This is not surprising; the head and cylinder switch times are affected more

by the clustering algorithm than the filtration process.

In most cases, using three passes of the 3 filter does not do damage, but also does not

improve the accuracy further. On the Micropolis result, the triple pass of 3 filter does cause

slightly higher error rates for FullRotationTime, SectorsPerTrack, HeadSwitchTime and

CylinderSwitchTime. It is still however, a great improvement from the single pass 3 filter.

The Barracuda is the only disk for which the three pass 3 filter seems to help; the error rates

125

for MinimumMediaTime and RotationalLatency are considerably lower than in the case

where two passes of the size 3 filter were used.

Figure 6-6. Using Wider Filters and Multiple Passes

Figures 6-6(a) and (b) show the error rates for the minimum time to media and rotational
latency parameters. Figures 6-6(c) and (d) show the error rates for the sectors/track ratio
and the head switch time parameters. Figure 6-6(e) shows the error rates for the cylinder
switch time.

126

The remaining two filters, the size 5 filter and size 7 filter, perform considerably worse

than the size 3 filters. In all cases but the Micropolis disk, these filters actually increase the

error rate. On the Micropolis, they do reduce the error compared to a single pass of the size

3 filter, but never do any better than two passes of the size 3 filter. Multiple passes of size

3 filters are less intrusive to the data than the size 5 and size 7 filters. Since the filter works

by replacing each value with the median of those around it, the size 5 and size 7 filters dis-

tort the data more than the size 3 filter. Our goal of removing point noise is better served

with multiple passes of the size 3 filter than with single passes of wider filters. Thus we

will use 2 passes of the size 3 filter as our baseline.

6.5.2. Using Alternative Cluster Algorithms

The clustering solution used so far in Phase III has been simple; points are grouped into

clusters until a minimum distance between clusters is reached. Although only three clusters

are expected, this technique stops noise points from joining the three clusters and affecting

the regression results. The distance between clusters was set to 0.2 ms; this value worked

well for all the graphs except the Micropolis disk. In that case, the algorithm stopped before

all the head switch points could be joined into one cluster. As a result, the points identified

by the algorithm to be cylinder switches were actually head switches. A better clustering

algorithm, one that does not require a fixed distance between clusters, is clearly needed.

While looking for a better clustering algorithm, we explored and rejected several alterna-

tives. We describe them briefly and explain why they did not work, but do not go into detail

with each. The unsuccessful alternatives are listed below:

127

(i) The first alternative was to force all points into three clusters and then remove

outliers from each cluster. This did not work because the values of the noise points

were so different from the data values that they tended to form clusters on their

own. As a result, the useful points were forced into a single cluster. The converse,

removing the outlier points before clustering, also does not work. If there are no

outliers, this process can remove cylinder switch data points.

(ii) The second alternative was to purposely place noise points that could attract

other noise points into clusters. Later, these noise clusters (identified by the artifi-

cial points), could be removed. Here we’re exploiting the fact that we can predict

the values of some outlier points. Given the structure of the graph, we expect some

outliers in the data with values of approximately plus and minus the rotational

latency. This technique worked well for some results. However, it is not robust

since it does not work when there are noise points with values far away from plus

and minus the rotational latency.

In the ideal case, the clustering should continue until most of the useful data is in the three

clusters, and stop before two of the useful clusters are merged into one. To effect this com-

promise, we used a hybrid technique. In the beginning, the clustering process proceeds

until the three largest clusters contain some predetermined percentage, p, of the data. After

this happens, we assume that each cluster has enough points that we can calculate its width

(the width is defined as the average plus or minus three times its variance). From this point

onwards, clusters are merged only when their widths overlap. The process stops once no

more clusters can be merged.

128

Figures 6-7(a) and (b) show the extracted head and cylinder switch times using this hybrid

optimization. Since the other parameters are extracted before the clustering phase, their

values do not change. Each figure shows the extraction accuracy for the original clustering

scheme and for the hybrid scheme for p=90% and p=95%. As the figures show, this tech-

nique does improve the accuracy of the extracted cylinder switch time for the Micropolis

disk. The accuracy of the head switch time is slightly worse on the Micropolis disk, but the

other disks’ results appear unaffected.

6.5.3. Using multiple extractions for accuracy checking

Because of the symmetric nature of the benchmark result, there are several ways to calcu-

late the FullRotationTime, and the slope FullRotationTime/SectorsPerTrack. In particular,

the latency value at step size 0 should be approximately FullRotationTime. The slope value

Figure 6-7. Using An Optimized Clustering Algorithm

Figures 6-7(a) and (b): Accuracy of head and cylinder switch values extracted using the
new cluster extraction algorithms. As the figures show, the new algorithm causes the head
switch error to increase slightly, but the cylinder switch error (for the Micropolis disk)
improves dramatically.

129

is also available in more than one way. Once linear regression has been done on the base,

head switch, and cluster switch points, the slope values should be approximately equal, and

should also match the slope value extracted from the filtered graph. By comparing the

values of these parameters, we can obtain some assurance of the accuracy of the parameters

extracted by the algorithm.

6.5.4. Combining the optimizations: A better algorithm

This section combines the alternative filter and clustering options described above to create

a better extraction algorithm. The new algorithm uses two passes of a size 3 median filter

and the hybrid clustering algorithm described in section 6.5.2 with p=90%. Figure 6-8

shows the error rates of the resulting algorithm. If we compare these results to those of the

original extraction algorithm (in Figure 6-5), we see that the relative error rates of the opti-

mized algorithm are considerably lower. Except for the MinimumMediaTime values of the

Barracuda and Micropolis disk, and the CylinderSwitchTime value of the Micropolis disk,

the relative errors of all other parameters are less than 10%. In fact, the relative error of

most parameters is under 5%.

6.6. Discussion

Sections 6.4 and 6.5 show that an automated algorithm can successfully exact the critical

parameters embedded in the benchmark’s graphical result. In most cases, the automatically

extracted parameter values were within 5% of their manually extracted counterparts. The

130

median filter approach is particularly useful in filtering the data, since it removes spikes

without distorting the surrounding data. Although the values removed by these filters were

not actual noise, they should be equally effective if the spikes were caused by noisy data

points. Section 6.5.1 showed that, in most cases, using multiple passes of a small filter

improved the extraction accuracy for the more noisy cases without adversely affecting the

other cases.

Although this chapter focused on extracting parameters from write graphs, these tech-

niques are all applicable to the read graphs. The algorithm itself cannot be the same

because the shape of the read graphs is different from the write graphs. However, since the

read graphs have the same sawtooth form as the write graphs, they can also be broken down

Figure 6-8. Relative Errors of Optimized Algorithm

The optimized algorithm used two passes of a size 3 filter in phase I and used the hybrid
clustering algorithm, As a result, the accuracy of the extracted parameters is noticeably
improved.

131

into linearly increasing regions and transition regions. Since the head switch and cylinder

switch points are embedded in the linearly increasing segments of the read graphs, the tech-

niques described in section 6.3 and 6.5 should also work well for the read graphs.

6.7. Conclusion

This chapter outlined an algorithm for automatically extracting information embedded in

the graphical output of the Skippy benchmark. The algorithm was tested on the write

results of the five SCSI disks that were presented in Chapter 5. Several optimizations were

explored; combining the optimizations led to a new version of the extraction algorithm

whose results were in most cases within 5% of manual extraction.

132

7 Extensions

7.1. Introduction

The last two chapters presented the basic Skippy benchmark and a sample extraction tool.

The technique used single sector accesses, started with a step of 0, and increased the step

distance by one with each stride. This chapter describes extensions to this basic method.

The extensions take two forms. First, two algorithms are presented that, combined with

Skippy, extract a global picture of a disk drive by gathering information about recording

zones and seek behavior. The second part of the chapter describes how the Skippy tech-

nique can be extended by changing the step size interval and the transfer size. This section

also briefly introduces a backward stride technique that preserves the advantages of the

read Skippy technique while removing some disadvantages.

The chapter is organized as follows. Section 7.2 describes the two algorithms for collecting

zone and seek information and presents data for the disks described in Chapter 5. Section

7.3 describes how the basic technique can be extended with variable step size increments

and transfer sizes. Section 7.4 discusses related issues and Section 7.5 concludes with a

summary.

133

7.2. Extracting Global Disk Characteristics

The Skippy benchmark is local in nature; it provides a detailed picture of drive behavior

in a small area. Two global pieces that are missing are the drive’s recording zone charac-

teristics and its seek behavior. The recording zone characteristics describe how the Sectors/

Track ratio varies across different areas of the disk, and the seek behavior describes the

latencies associated with moving the disk arm.

7.2.1. Recording Zones

We begin with Zoned, a micro-benchmark designed to extract a bandwidth profile across

the different recording zones of the disk. The basic algorithm is depicted in Figure 7-1 and

is quite straight-forward. The algorithm reads each sector of the disk, in fixed size units.

The resulting graph of bandwidth vs. sector address shows the drive’s recording zones.

Note: it is possible to extract much the same information by sampling the bandwidth at var-

ious points in the disk drive. However, as the measurement results show, some disks are

very finely zoned: a full sweep is necessary to capture all the recording zones.

Figure 7-2 shows the algorithm’s result on the UltraStar XP disk drive. From the manufac-

turer specification, we learn that the disk has eight recording zones, with the Sectors/Track

ratio ranging from 184 at the outermost zone to 120 at the innermost zone. The graph

clearly shows the recording zones. Chapter 5 demonstrated how Skippy can extract Sec-

tors/Track in the local area where it is run. By running Skippy in each zone defined by

Figure 7-2, it is possible to extract Sectors/Track at each zone in the drive. Using this tech-

134

nique, we learn that the first and largest zone has on average 187.36 sectors per track. The

Sectors/Track values for all subsequent zones are 179.85, 167.66, 155.82, 147.76, 142.10,

134.14, and 120.39, respectively. All values match the specifications in [UltraStar96] to

within 2%.

Figure 7-1. Pseudocode for Zoned Benchmark
The benchmark simply reads the disk sequentially, in blocks of size LARGE_SIZE. When
a threshold amount has been read (REPORT_SIZE), the benchmark outputs the location
as well as the bandwidth achieved over the region.

Figure 7-2. Zoned Result on IBM UltraStar XP
The figure shows the Zoned results for the IBM UltraStar XP disk drive. The graph clearly
shows the eight recording zones on the drive.

fd = open("raw disk device");
while (read(fd, buffer, LARGE_SIZE) == LARGE_SIZE) {

transfer += LARGE_SIZE; if (transfer >= REPORT_SIZE) {
// output location and bandwidth achieved over region
transfer = 0;
}}

close(fd);

6

7

8

9

10

0 1 2 3 4 5 6 7 8

B
an

dw
id

th
 (

M
B

/s
)

Location (GB)

135

One also can observe the large difference in delivered bandwidth across the zones of the

drive. In the outermost zone, bandwidth is roughly 9.68 MB/s, whereas the inner tracks

deliver 6.29 MB/s, roughly a 54% increase from inner to outer tracks.

Figures 7-3(a) to 7-3(d) show the zoned results for the remaining SCSI disk drives. We can

make two general observations from these results. First, the Seagate drives are noticeably

more finely zoned than the IBM and Micropolis drives. Second, the overall difference

between outer-track and inner-track bandwidth ranges from 50% up to 80%. An anomaly

occurs with the Micropolis drive. The transfer rate at the outermost zones is lower than the

transfer rate in the next innermost zone. This anomaly is one of many oddities seen on the

Micropolis drive.

The most recent, comprehensive, discussion of disk drive zoning behavior was in

[VanMeter97], which observed that the relationship between transfer rate and disk position

was far better described with a linear function than a single value. After examining the zone

results, we see that the curve is actually closer to parabolic than linear. The quadratic shape

occurs partly because the outermost zone is often longer than the other zones. This feature

is particularly obvious in the IBM drives and occurs because an internal data rate limit is

reached and the drives cannot support a higher sectors per track ratio [Palmer99].

A quadratic function, of the form ax2 + b is a much better fit for the zone graph than the

linear function. In fact, by fitting both linear and quadratic functions to the data (using stan-

dard linear regression techniques), we learned that the quadratic function has between a

factor of 2 to a factor of 10 better error than the simple linear fit. The linear fit explored in

[VanMeter97] had an extra advantage in that it only required the highest and lowest band-

136

width values from the drive. However, we found that a quadratic fit using only these two

values was still better (by a factor of 10 to 20!) than a linear fit using the same two values.

Table 7-1 shows the SSE (Sum of Squared Errors) for each a linear fit using all points, a

linear fit using only the first and last point, a quadratic fit using all points, and a quadratic

fit using only the first and last point. As the table shows, in all cases but one, the quadratic

fit with two values was better than a linear fit using all values, by a factor of 2 to 10. Figure

Figure 7-3. Zoned Results for SCSI Disk Drives
The figures, numbered in row-major order, show the Zoned results for the remaining four
SCSI disk drives. The drives are ordered in increasing RPM, starting with the 5400 RPM
Hawk and ending with the 10000 RPM IBM 9ZX.

Figure 7-3(a) Figure 7-3(b)

Figure 7-3(c) Figure 7-3(d)

3

3.5

4

4.5

5

5.5

6

0 0.5 1 1.5 2

B
an

dw
id

th
 (

M
B

/s
)

Location (GB)

Seagate Hawk

4

4.5

5

5.5

6

6.5

7

0 0.5 1 1.5 2 2.5 3 3.5 4

B
an

dw
id

th
 (

M
B

/s
)

Location (GB)

Seagate Barracuda

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8

B
an

dw
id

th
 (

M
B

/s
)

Location (GB)

Micropolis

10

11

12

13

14

15

16

17

0 1 2 3 4 5 6 7 8

B
an

dw
id

th
 (

M
B

/s
)

Location (GB)

IBM 9ZX

137

7-4 shows the four approximations to the recording zone graph of the IBM UltraStar XP

drive.

Thus, if a model must be employed, we recommend usage of a quadratic fit. It is as simple

to construct as the linear model (requiring only two data points) and matches the profiles

better than the linear fit. For disks with only a few zones, the exact step function should be

utilized; at least one modern disk drive simulator [Ganger98] makes use of such an exact

characterization. In fact, the quadratic fit showed the best results over the linear fit in the

more finely zoned disks, where the zones are virtually impossible to identify. For the other

disks, it is possible to generate a step function that is an exact match.

Figure 7-4. Linear and Quadratic Curve Fits for UltraStar XP Zoned Result
 This figure shows the linear and quadratic approximations for the UltraStar XP recording
zone graph. The quadratic fits are closer to the graph shape than the linear fit. In particular,
even the quadratic fit using two points is better than the linear fit with all points

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
ea

d
B

an
dw

id
th

 (
M

B
)

Disk Address (Bytes)

Linear Fit, all points

Linear Fit, two points

Quadratic Fit, all points

Quadratic Fit, two points

138

7.2.2. Seek Profile

The second global disk characteristic missing is the seek profile. Fortunately, seek delays

are based solely on the mechanical movements of the disk arm, and have been thoroughly

explored in several prior studies [Worthington95, Ruemmler91]. We limit our discussion

of seeks, therefore, to the following. First, we present a variant of Skippy that can be used

to make seek experiments easier by factoring out the rotational latency component of the

measured time. Second, we present seek curves as a function of sector distance, not cylin-

der distance.

Since Skippy is a local benchmark, it cannot be directly used to measure seek distances. If

the stride size is large, the benchmark will overrun the drive boundary before enough steps

are taken. Also, since the Sectors/Track ratio varies across different areas of the disk, the

striding technique is not useful when the strides cross a large portion of the disk surface.

However, we can utilize the technique to remove the rotational latency component of a

seek measurement.

Dri ve

SSE (Linear Fit
using all data
points)

SSE(Linear Fit
using only two
data points)

SSE(Quadratic
Fit using all
data points)

SSE(Quadratic
Fit using two
data points)

Hawk 2.49 14.19 0.19 0.31

Barracuda 2.79 19.25 0.38 0.49

UltraStar XP 53.03 212.14 12.54 22.87

Micropolis 23.95 248.33 7.79 25.97

9ZX 156.88 795.05 30.72 99.67

Table 7-1. SSE for Linear and Quadratic Fits to Zoned Results

The table shows the Sum of Squared Errors for the linear and quadratic fits to the Zoned
results. The quadratic fit has less error, by between a factor of 2 to 10, than the linear fit in
all cases. For all results but the Micropolis result, the quadratic fit using only two points is
still better, by factors of 2 to 10, than a linear fit using all data points.

139

Figure 7-5(a) describes an algorithm for measuring seek times. Between each of the mea-

surements, the algorithm writes to a fixed location at the beginning of the disk. This variant

allows the same disk space to be reused, and creates a similar (although not identical) saw-

tooth wave whose minimum value can be used to estimate the seek time if the rotational

latency is zero. By determining this minimum time for different seek distances, a seek pro-

file can be created.

The algorithm depicted in Figure 7-5 (a) uses write accesses. The second write in each iter-

ation can be replaced by a read, but the first write cannot. The reason is that the first write

is always to the same disk location. If it were replaced by a read, the read may be cached,

and the disk arm would not be moved to the starting location. Therefore, this algorithm

relies upon the drive not doing write caching.

A more robust algorithm, the Seeker algorithm, is described in Figure 7-5(b). In this case,

the disk accesses at each area of the disk are done with linear strides. This algorithm, in a

sense, is an interleave of two Skippy runs on different areas of the drive. This technique is

more robust since it works with reads as well as writes.

Figure 7-6 shows seek latency versus distance from sector 0 for the Seagate Barracuda. The

shape of the curve is slightly different from most seek curves seen in papers and textbooks,

since it is seek time versus sectors and not versus cylinders. Also note that the Minimal

Time to Media (Mtm) is included in the values reported; the true seek values can be

obtained by subtracting the Minimum Time to Media value derived by the Skippy bench-

mark.

140

Figures 7-7(a) through 7-7(d) show the Seeker results for the remaining 4 SCSI disk drives.

For seeks over one tenth of the disk, the seek latency appears to increase linearly with

sector distance (much like the seek latency increases with larger numbers of cylinders).

Figure 7-5. Seek Measurement Algorithms
In the first algorithm (Figure 7-5(a)), the benchmark jumps between the beginning of the
disk and the target locale, writing a single sector each time. The time for the second write
is timed. This is performed repeatedly for many parts of the disk, as shown by the outer
loop. The SEEK_SET argument moves the file pointer to the absolute (not relative) loca-
tion specified by the call. This algorithm has the disadvantage that it relies on write
accesses.

The second algorithm (Figure 7-5(b)) is the algorithm used in the seek results presented in
the rest of the chapter. This algorithm differs from the above in that the drive is accessed in
linearly increasing strides in each local area and in that it uses reads. This algorithm is an
interleave of two runs of Skippy, one run in each area of the disk drive. It is more robust
than the previous algorithm since it works with both read and write accesses.

fd = open("raw disk device");
for (base = 0; base < DISK_SIZE; base += LARGE_SIZE} {

for (i = 0; i < measurements; i++) {
lseek(fd, 0, SEEK_SET);
write(fd, SINGLE_SECTOR);
// time following sequence, output <location, time>
lseek(fd, base + (i * SINGLE_SECTOR), SEEK_SET);
write (fd, buffer, SINGLE_SECTOR);

}
}
close(fd);

Figure 7-5(a)

fd = open("raw disk device");
for (base = 0; base < DISK_SIZE; base += LARGE_SIZE} {

for (i = 0; i < measurements; i++) {
lseek(fd, i*SINGLE_SECTOR, SEEK_SET);
read(fd, SINGLE_SECTOR);
// time following sequence, output <location, time>
lseek(fd, base + (i * SINGLE_SECTOR), SEEK_SET);
read (fd, buffer, SINGLE_SECTOR);

}
}
close(fd);

Figure 7-5(b)

141

Close examination of the data reveals that, for seeks reaching the innermost zones, the

latency increase is higher than linear. This increase is most observable in the IBM 9ZX

seek result. The seek time increases more rapidly because the Sectors/Track ratio decreases

more rapidly in this area, requiring more arm movement for the same sector distance.

7.3. Extending the Skippy Technique

This section discusses how the Skippy technique can be extended by varying step size

intervals and transfer sizes. By increasing the step size interval, it is possible to extract all

the parameters extracted by the original technique in less time, using less disk area. The

trade-off, however, is that as the step size increment becomes larger, the result graph loses

detail. By increasing the transfer size, it is possible to measure the transfer rate of the drive.

Each extension is illustrated using the UltraStar XP disk drive.

Figure 7-6. Seeker Result for Seagate Barracuda Drive

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5

S
ee

k
T

im
e

(m
s)

Distance (GB)

142

7.3.1. Variable step size interval: Accuracy vs. Time Trade-off

The first variable is the step size interval. Varying this parameter creates a trade-off

between result accuracy and benchmark execution time. There are two advantages to

increasing the step size interval. First, we can obtain a result curve with two sawtooth tran-

sitions with fewer measurements and in less time. Second, since each step increases the

disk surface exposed to the benchmark, increasing the step interval reduces the overall data

space touched by the benchmark. The trade-off is that the result graph contains fewer

Figure 7-7. Seeker Results for SCSI Disk Drives

 Figure 7-7 (a) Figure 7-7(b)

 Figure 7-7 (c) Figure 7-7(d)

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

S
ee

k
T

im
e

(m
s)

Distance (GB)

Seagate Hawk

0

5

10

15

20

0 1 2 3 4 5 6 7 8

S
ee

k
T

im
e

(m
s)

Distance (GB)

Micropolis

0

5

10

15

20

0 1 2 3 4 5 6 7 8

S
ee

k
T

im
e

(m
s)

Distance (GB)

IBM UltraStar XP

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8

S
ee

k
T

im
e

(m
s)

Distance (GB)

IBM 9ZX

143

points, making the extracted values less accurate. Figures 7-8 (a) through (c) show the

benchmark’s write behavior for the IBM UltraStar XP disk, when the step size interval

varies from 1 to 3.

When the step size increment is 2 (Figure 7-8(b)), we see that some of the detail is lost, but

the graph retains all the important characteristics of Figure 7-8(a). Although there are fewer

points in this graph, there is enough information to extract all the necessary parameters. By

applying the automatic extraction technique, we get the following parameter values: the

Minimum Time To Media (Mtm) is 2.32ms, the FullRotationTime is 8.36ms, the Sectors/

Track ratio is 183.24, the head switch time is 8.70ms, and the cylinder switch time is 2.08

ms. Except for the cylinder switch time, all values are within 1% of their counterparts that

were extracted with step interval 1. The cylinder switch time value is within 7% of the orig-

inal; this value is less accurate because there are fewer points to contribute to the cylinder

switch time calculation. There are less head and cylinder switches overall, since the bench-

mark traverses less disk area. For this loss in accuracy, the gain is a reduced execution time.

While a single iteration with step size interval 1 took 1.57 seconds, an iteration with step

size interval 2 took 0.78 seconds.

If the step size interval is increased to 3, the graph deteriorates further. It is no longer pos-

sible to determine the cylinder switch time, since the benchmark does not travel across

more than one cylinder during a single sawtooth. Therefore, it does not make sense to

increase the step size interval beyond 2.

The main advantage to making the step size interval 2 is that the same parameters can be

extracted as in the original benchmark, while touching half the disk area. Since the original

144

benchmark runs very fast, 1.5 seconds, in practice it may not be necessary to increase the

step size increment for faster benchmarking.

7.3.2. Variable transfer size: Transfer Rate Measurement

Next we examine the effects of increasing the transfer size. After trying variable step size

increments, the transfer size is the next parameter of the original Skippy algorithm that can

be varied. Figure 7-9 shows the benchmark with 512 byte, 64KB and 128KB transfer sizes.

Figure 7-8. Effect of Increasing Step Interval Size
Figures 7-8 (a), (b) and (c) (Numbered in clockwise order) shows the results of the write
benchmark as the step interval is varied between 1 to 3. As the figures show, the general
shape of the result is maintained, but some of the detail is lost with each increment.

0

2000

4000

6000

8000

10000

0 50 100 150 200 250

La
te

nc
y

(u
s)

Step Size (Sectors)

0

2000

4000

6000

8000

10000

0 50 100 150 200 250

La
te

nc
y

(u
s)

Step Size (Sectors)

0

2000

4000

6000

8000

10000

0 50 100 150 200 250

La
te

nc
y

(u
s)

Step Size (Sectors)

Figure 7-8(a) Figure 7-8(b)

Figure 7-8(c)

145

Note that the shape of the curve does not change; as the transfer size increases, the curve

moves up. In each case, the low points in the curve show the possible transfer latency when

there is no rotational delay. When the request size is 512 Bytes, this latency is primarily the

overhead since the transfer time is nearly negligible. When the request size is 128KB, the

rotational delay adds only a small increment to the overall latency.

By comparing the three curves in Figure 7-9, we can make several other observations. First,

since the regions written are larger, for any given number of steps, the benchmark with the

larger request size traverses more disk area than the benchmark with the smaller request

size. Second, when the request size is large, it is quite likely for a head or cylinder switch

to occur in the middle of a transfer. This effect, particularly, makes it harder to extract infor-

mation like head switch time from the graph results for larger request sizes.

Figure 7-9. Effects of Increasing Transfer Size
The figure shows the results for the write benchmark under different transfer sizes. As the
transfer size increases, the curve moves up by an amount representing the additional time
needed to transfer the data. Other aspects of the graph remain relatively the same.

146

These graphs are useful, primarily, for determining bandwidth. The request size divided by

the access latency gives the effective write bandwidth. Looking at the 128KB graph, we see

that when there is no rotational latency or head switch delay, access latency is approxi-

mately 23 ms, and the effective write bandwidth is approximately 5.57MB/s. In practice

however, a request will encounter some head switch delay and on average one half a full

rotational delay. When these effects are taken into account, the effective write bandwidth

becomes approximately 4.56MB/s. This value is close to the measured write bandwidth of

the disk, approximately 4.30MB/s.

7.3.3. The Backwards Read Benchmark

The final extension is the Backwards Read. Figure 7-10 shows the pseudocode for this

extension. Basically, the benchmark implements the Skippy technique in reverse, with read

accesses. Overall, the benchmark interacts with the drive mechanism in much the same

way that the forward benchmark does. At some point, the natural rotation between requests

matches the stride size, and the sawtooth transition occurs. The advantage of the backwards

read technique is that it maintains the advantages of read without the distortion of read

ahead. The backwards pattern is also less like regular access patterns, making it less sus-

ceptible to drive optimizations. Figure 7-11 shows the backwards read result on the IBM

UltraStar XP drive. The parameters extracted from this graph are also accurate, in all cases

within 4% of manufacturer specification.

147

7.4. Other Issues

7.4.1. Accuracy and Speed

The SKIPPY technique is local in nature; it provides a detailed picture of drive behavior

in a small area. As a result, it is extremely fast. One iteration of the benchmark runs in less

Figure 7-10. Pseudocode for Backwards Read Benchmark
The algorithm begins by seeking to the end of the region. Each subsequent step seeks
backwards, using linearly increasing strides

Figure 7-11. Backwards Read Result for IBM UltraStar XP Drive
As the figure shows, the backwards result is also a sawtooth wave. All the characteristics
are reversed; head and cylinder switches appear as downward spikes rather than upward
spikes.

fd = open("raw disk device");
lseek(fd, TotalArea, SEEK_SET);
CurrentPosition = TotalArea;
for (i = 0; i < measurements; i++) {

// time following sequence, output <location, time>
lseek(fd, CurrentPosition - i * SINGLE_SECTOR, SEEK_SET);
read (fd, buffer, SINGLE_SECTOR);
CurrentPosition = CurrentPosition - i * SINGLE_SECTOR;

}
close(fd);

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

0 50 100 150 200 250

R
ea

d
La

te
nc

y
(u

s)

Step Size (Sectors)

148

than a second on faster drives, such as 10000 RPM or 7200RPM, and in 2 to 3 seconds on

slower 5400 RPM drives. The accuracy of the extracted parameters is extremely good with

one iteration. Since it is good practice to perform multiple iterations, the data presented

here and in the last two chapters used 10 iterations of the benchmark. In practice, however,

there is no noticeable difference in accuracy between a measurement with 1 iteration or 10

iterations.

7.4.2. Cache Effects

Modern disks are capable of both read and write caching. In most SCSI disk drives that are

used in servers, write caching is disabled. Most IDE disk drives that are used in desktop

environments, write caching is enabled. When write caching is enabled, the write version

of SKIPPY does not work, since it is impossible to measure the latency of a write to disk

media. However, the read forward and read backwards versions do work on such disk

drives.

In the read cases, when Skippy uses forward strides, there is no need to flush the cache

between strides. Even between iterations, we did not find it necessary to flush the disk

buffer cache. By the time enough measurements are done in one iteration, the benchmark

has traversed about 20MB of disk area, so the data read during the first few accesses has

been flushed out of the cache.

The seek algorithms are far more sensitive to cache effects since they require the same disk

area to be repeatedly accessed. The first seek algorithm, presented in Figure 7-5(a) was

ineffective for this reason. The Seeker algorithm, presented in Figure 7-5(b), works despite

disk caching because it is essentially two runs of the Skippy benchmark. Within each local

149

area, the caching effects are the same as for a single run of Skippy. The backwards read

version can also be used in Seeker, resulting in yet a more robust seek algorithm.

7.5. Summary

This chapter described several extensions of the Skippy technique. The first half of the

chapter described Zoned and Seeker, two algorithms that can be used to extract global disk

drive characteristics. Zoned extracts the disk’s recording zones; the Sectors/Track ratio in

each zone can be found by running Skippy within the zone. Seeker measures the seek time

between two disk locations, using the linear stride technique to factor out the rotational

latency component. Automatic extraction would be useful for the Zoned result, to create a

table listing the starting and ending positions of each zone. The median filter technique is

also useful in this instance, for removing n oise. After the graph is filtered, it may be pos-

sible to isolate step transitions by determining gradient values within a small sliding win-

dow. We leave such an endeavor to future work.

The second half of the chapter described how Skippy can be used with different step size

increments and different transfer sizes. The advantage of increasing the step size increment

is that the same parameters can be extracted using less measurements, covering less disk

area, in less time. Experimentation showed that step increments of 2 are practical; the auto-

mated extraction algorithm can still extract the required parameters. Some accuracy is lost,

however, since there are fewer data points available. When the step size increment is raised

to 3, the resulting graph does not have enough information to extract all the required

150

parameters, although some values can still be extracted. When the transfer size is

increased, the result curve moves up. The base of the curve can be used to calculate the

drive’s transfer rate. The chapter also presented the Backwards Read technique that pre-

serves the advantages of reads and eliminates interaction with read ahead.

151

8 Conclusion

8.1. Summary

This dissertation characterized two factors that contribute to storage system variability,

error behavior and disk drive heterogeneity. The study led to the following two main

research contributions.

8.1.1. Characterizing Soft Error Behavior

The thesis described a large storage system prototype. This prototype was ideal for the

study of soft error behavior for several reasons. First, it contained a large number of data

disk drives and supporting infrastructure such as SCSI and network hardware. Second, all

components used were commodity hardware. Third, the operating system had open source,

making it possible to trace the cause of error messages, and hence better understand the

nature of the system’s error behavior.

System logs and maintenance data from the prototype were used to characterize soft error

behavior. The analysis revealed some interesting insights. The data disks drives were

among the most reliable components in the system. Even though they were the most

152

numerous component, they experienced the lowest failure rate. Also, the study found that

all the errors observed in six months can divided into eleven categories, comprising disk

errors, network errors and SCSI errors. The same errors occurred repeatedly, supporting

the observation, made in a prior study [Tsao83], that errors seen in a short time period are

representative of the types of errors seen over a system’s lifetime.

The log data was also used to study failure cases. The data supports the notion that disk and

SCSI failures are predictable, and suggests that partially failed SCSI devices can severely

degrade performance. A failure prediction algorithm, the Dispersion Frame Technique

[Lin90], was evaluated. The evaluation suggested that this technique, and others that pre-

dict failures by detecting increasing intensity of error messages, are more useful in detect-

ing cases where human intervention is needed than cases where replacement is needed. The

types of messages generated can sometimes be used to separate absolute failures from tran-

sient errors.

8.1.2. Disk Drive Heterogeneity

In the area of addressing disk drive heterogeneity, the primary contribution of this disser-

tation is the development of the linear stride technique for extracting important parameters

from disk drives. The Skippy benchmark utilizes this technique to extract parameters from

SCSI and IDE drives. The linear stride technique is an excellent match to the rotational

nature of a disk drive, a feature that most disk benchmarks try to defeat, rather than take

advantage of. As a result, the technique is portable across drive interfaces, working on both

153

SCSI and IDE drives, requires no prior knowledge of the drive’s internals, and delivers

extremely accurate results with a few seconds.

The thesis also describes an automated technique for extracting parameter values from the

graphical benchmark result. These techniques make it possible to use the linear stride tech-

nique, not merely as a stand-alone benchmark, but also has part of a larger adaptive storage

system. In such a system, the parameters of a new disk drive can be determined automati-

cally and used in disk specific optimizations or load balancing algorithms.

8.2. Future Directions

The results presented suggest future directions in both of the explored areas. The possible

future directions fall into two categories: ways to refine the characterization techniques,

and ways to make use of them in adaptive storage systems.

8.2.1. Understanding Error Behavior

In this dissertation, the analysis of soft error behavior was done by compiling statistics on

each type of observed error, understanding its cause by tracing the path of the error through

the operating system code, and by isolating failure cases and studying them in depth.

Although these techniques revealed many useful insights, there are several areas that

deserve further exploration:

154

(i) The logs provided empirical evidence that disk failures affect the performance of neigh-

boring disk drives. It would be useful to quantify the extent to which performance of neigh-

boring drives deteriorates. This data will help determine how to trade-off maintenance time

for system performance.

(ii) The logs showed evidence of correlations between events. For instance, network errors

were heavily correlated. It may be possible to apply data mining techniques to the system

log data to automatic detect interesting correlations.

(iii) The study of failure cases suggested that failure prediction algorithms are useful for

detecting cases where human intervention is required. The type of message can indicate

whether the failure is absolute or transient. A useful task for future work will be to deter-

mine how these two techniques can be combined in a failure detection and diagnostic sys-

tem.

8.2.2. Understanding Disk Drive Heterogeneity

This dissertation showed how linearly increasing strides can be used for extracting disk

drive parameters via operating system level measurements. This technique can be explored

further in the following ways:

(i) Chapter 7 presented initial work on the Backwards Read benchmark. This variant is

interesting because it retains the advantages of a read experiment without interference from

the drive’s read ahead mechanism. Further exploration of this variant would be useful.

155

(ii) Extending the linear stride technique to arrays of disk drives. Extracting critical param-

eters from disks in a striped array is also a useful exercise. A direction for future work

would be to see how these techniques could be extended to work over striped arrays, to

extract information about each disk in the array.

(iii) Finally, the ultimate goal would be to incorporate such a technique into an adaptive

storage system. This would require developing algorithms that can take advantage of the

underlying disk parameters to improve performance. Several such algorithms exist

[Horst99] [Worthington94]. Making use of them in an adaptive storage system is an inter-

esting direction for future research.

8.3. Conclusion

This thesis presented evidence variability in storage systems. The data showed that large

storage systems can display considerably variability, either from degraded behavior or

from device heterogeneity. An essential part of an adaptive storage solution will be to

understand and react correctly to such variability. The contributions of this dissertation

should assist such a task.

156

Bibliography

[Asami98] Asami, S. “GridPix: A Method for Presenting Large Image Files
Over the Internet”. http://now.cs.berkeley.edu/Td/Papers/.

[Asami99] Asami, S. Talagala, N. Patterson, D. “Design of a Self Maintaining
Storage System”. In Proceedings of the 1999 IEEE Symposium on
Mass Storage Systems. pages 222-234. March 1999.

[Burkhard93] Burkhard, W. Menon, J. “Disk Array Storage System Reliability.”
In Proceedings of the 23rd International Symposium on Fault
Tolerant Computing, June 1993.

[BSD96] McKusik, M.K. The Design and Implementation of the 4.4BSD
Operating System. Addison-Wesley, 1996.

[Davies88] Davies, E.R. “On the Noise Suppression and Image Enhancement
Characteristics of the Median, Truncated Median, and Mode
Filters.” In Pattern Recognition Letters. Vol 7. Pages 87-97, 1988.

[FreeBSD97] FreeBSD Library Functions Manual, Version 2.2

[Ganger98] Ganger, G. Worthington, B. Patt, Y. “The DiskSim Simulation
Environment Version 1.0 Reference Manual”. Technical Report
CSE-TR-358-98. Department of Electrical Engineering and
Computer Science, University of Michigan, February 1998.

[Gibson92] Gibson, G. Redundant Disk Arrays: Reliable, Parallel, Secondary
Storage. The MIT Press, Cambridge Massachusetts, 1992.

[Gray90] Gray, J. “A Census of Tandem System Availability Between 1985
and 1990.” In IEEE Transactions on Reliability. Vol 39. No 4.
October 1990.

[Grochowski96] Grochowski, E. Hoyt, R. “Trends in Modern Disk Drives”. IEEE
Transactions on Magnetics. vol.32, (no.3, pt.2) pages 1850-1854,
May 1996.

157

[Horst99] Horst, B. MacDonald, J. Alessi, B. “Beyond RAID: An
Architecture for Improving PC Fault Tolerance and Performance.”
In Digest of Fast Abstracts, Proceedings of the 29th International
Symposium on Fault Tolerant Computing.

[IBM99] IBM Disk Drive Specifications, available at http://
www.storage.ibm.com/.

[IDEMA97] Frank, B. “Rigid Disk Drive Price Trends.” IDEMA Insight. August
1997.

[Kodak97] Flashpix White Paper. Kodak Corporation. http://www.kodak.com/
country/US/en/digital/flashPix/.

[Lin90] Lin, T-T., Siewiorek, D. “Error Log Analysis: Statistical Modeling
and Heuristic Trend Analysis.” In IEEE Transactions on Reliability.
Vol 39. No 4. October 1990.

[Manley97] Manley, S., Seltzer, M. “Web Facts and Fantasy” In Proceedings of
the 1997 USENIX Symposium on Internet Technologies and
Systems, December 1997.

[McVoy96] McVoy, L. Staelin, C. “lmbench: Portable Tools for Performance
Analysis.” In Proceedings of the 1996 Winter USENIX Symposium.
January 1996.

[Merry98] Merry, K. FreeBSD SCSI Group. Personal Communication.

[Ng94] Ng, S. Crosshatch Disk Array for Improved Reliability and
Performance. In Proceedings of the 21st International Symposium
on Computer Architecture. Pages 225-264. April 1994.

{Palmer99] Palmer, J. IBM Almaden Research. Personal Communication.

[PFA99] Predictive Failure Analysis. IBM Corporation. http://
www.storage.ibm.com/storage/oem/tech/pfa.html.

[Pitas90] Pitas, I, Venetsanopoulos, A.N. Nonlinear Digital Filters:
Principles and Applications. Kluwer academic publishers 1990.

[Quantum99] Quantum Disk Drive Specifications, available at http://
www.quantum.com/.

[Ruemmler91] Ruemmler, C., Wilkes, J. An Introduction to Disk Drive Modeling.
In IEEE Computer. March 1991.

[Russ95] Russ, J.C. The Image Processing Handbook, 2nd Edition. CRC
Press 1995.

158

[Saavedra92] Saavedra-Barrera, R. CPU Performance Evaluation Using Narrow
Spectrum Benchmarking. Ph.D Thesis, U.C. Berkeley, February
1992.

[Saavedra94] Saavedra, R. Gaines, S. Carlton, M. “Characterizing the
Performance Space of Shared Memory Machines Using Micro-
Benchmarks”, In Hot Interconnects 1994. August 1994.

[SCSI2] The SCSI-2 Interface Specification.

[Schwarderer96] Schwarderer, D., Wilson, D. Understanding I/O Subsystems.
Adaptec Press, January 1996.

[Schulze88] Schulze, M.E. “Considerations in the Design of a RAID Prototype.”
Technical Report UCB/CSD 88/448. Computer Science Division,
University of California at Berkeley, 1988.

[Seagate99] Seagate Disk Drive Specifications, available at http://
www.seagate.com.

[Sigma97] “SA-H381 Environmental Sensing Communications
Specification.” Trimm Technologies, 1997.

[SMART99] “Self Monitoring, Analysis and Reporting Technology, Frequently
Asked Questions.” Seagate Technology. http://www.seagate.com/
support/disc/faq/smart.shtml

[Smith98] Smith, M. FreeBSD SCSI Group. Personal Communication.

[Talagala96] Talagala, N. Asami, S., Patterson, D. "A Comparison of PC
Operating Systems for Storage Support." Technical Report UCB//
CSD-98-1018. Computer Science Division, University of
California at Berkeley.

[Talagala99] Talagala, N. Asami, S., Patterson, D. "Usage Patterns of a Web
Based Image Collection", In Proceedings of the 1999 IEEE
Symposium on Mass Storage Systems. March 1999.

[Tsao83] Tsao, M. “Trend Analysis and Fault Prediction.” PhD. Dissertation,
Technical Report CMU-CS 83/130, Computer Science Division,
Carnegie Mellon University, 1983.

[UltraStar96] “Ultrastar 2XP Hardware/Functional Specification: 4.55 GB and
8.22 GB Models, 7200 RPM, Version 5.03.” Document Number
AS05-0087-45. IBM Storage Products Division. June 1996.

[VanMeter97] VanMeter, R. “Observing the effects of Multizone Disks.” In
Proceedings of the 1997 USENIX Conference, January 1997.

159

[Worthington94] Worthington, B.L., Ganger, G, Patt, Y. “Scheduling Algorithms For
Modern Disk Drives.” In 1994 International Conference on the
Measurement and Modeling of Computer Systems. Pages 241-151.
May 1994.

[Worthington95] Worthington, B.L., Ganger, G.R., Patt, Y.N., Wilkes, J. “On-line
Extraction of SCSI Disk Drive Parameters.” In 1995 Joint
International Conference on Measurement and Modeling of
Computer Systems.

[Yoshikawa97] Yoshikawa, C. Chun, B. Eastham, P. Vahdat, A. Anderson, T.
Culler, D. “Using Smart Clients to Build Scalable Services”. In
Proceedings of the 1997 USENIX symposium.

160

Appendix A: Skippy Code

The code for the Skippy benchmark is listed below. If writes are used, the benchmark first

reads in all the data that will be touched on disk. This data is in turn written back during

the measurement phase. As such, the data on disk is not modified.

void main(int argc, char * argv[])
{
int bufferSize = 512; /* Buffersize in Bytes */
int totalIterations = 1; /* Number of iterations */
int readWrite=0; /* Writes */
int numSteps=250; /* Stride size up to 250*/
int sectorSize=512;
int stepInterval=1; /* Stride Size Increment*/

struct timeval startTime, endTime;
struct timezone timeZone;

char *buffer, *originalData;
int fd;
double *sumLatency, *sumLatencySquares;
char *deviceName;

double accessLatency;
int stepSize;
int iteration;
int stepNumber;
int i;

buffer = (char *) malloc(bufferSize*sizeof(char));
if (Writes == 1) {
 /* Create structure to hold the read info */
 originalData = (char *)

malloc(numSteps*bufferSize*sizeof(char));
}
sumLatencySquares = (double *)malloc(numSteps*sizeof(double));
sumLatency = (double *) malloc(numSteps*sizeof(double));
bzero(sumLatencySquares, numSteps*sizeof(double));
bzero(sumLatency, numSteps*sizeof(double));

161

/* open device file */
if(readWrite == 0)
 fd = open(deviceName, O_RDONLY, 666);
else
 fd = open(deviceName, O_RDWR, 666);

 fprintf(stderr, "Running benchmark on %s for %d steps and %d it
erations\n", deviceName, numSteps, totalIterations);

 /* The meat of the benchmark */
 /* If we are doing writes, read the data in first */
 lseek(fd, 0, SEEK_SET);
 if (readWrite == 1) {
 stepSize =0;
 for (stepNumber =0; stepNumber < numSteps; stepNumber++){
 lseek(fd, stepSize*sectorSize, SEEK_CUR);
 if(read(fd, buffer, bufferSize)!= bufferSize) {

fprintf(stderr,"Error during initial read phase\n");
exit(3);

 }
 bcopy(buffer, originalData+bufferSize*stepNumber, bufferSize);
 stepSize += stepInterval;
 }}
 /* Now do the benchmark */
 for (iteration=0; iteration <totalIterations; iteration++) {
 lseek(fd,0,SEEK_SET);
 stepSize =0;
 for (stepNumber=0; stepNumber<numSteps; stepNumber++) {
 lseek(fd, stepSize*sectorSize, SEEK_CUR);
 gettimeofday(&startTime, &timeZone);
 if (readWrite == 1) {

if(write(fd,originalData+bufferSize*stepNumber, bufferSize) !=
bufferSize) {

 fprintf(stderr, "%s %d: Write error at step %d. Exiting..\n",
argv[0], bufferSize, stepSize);

 exit(2);
}} else {
if (read(fd, buffer, bufferSize) != bufferSize) {
 fprintf(stderr, "%s %d: Read error at step %d. Exiting..\n",

argv[0],bufferSize, stepSize);
 exit(2);
}}

 gettimeofday(&endTime, &timeZone);

 accessLatency = (double) (endTime.tv_sec*1000000.0 + endTime.tv_usec
- startTime.tv_sec*1000000.0 - startTime.tv_usec);

 sumLatency[stepNumber] +=accessLatency;
 sumLatencySquares[stepNumber] += accessLatency*accessLatency;
 stepSize += stepInterval;
 }}

 /* Now report results */
for (stepNumber=1; stepNumber<numSteps; stepNumber++)
 printf("%d\t%lf\n", stepNumber*stepInterval, (double)

sumLatency[stepNumber]/totalIterations);

162

/* Clean up and exit */
close (fd);
exit(0);
}

