
Continuous Query Optimization

Ron Avnur Joseph M. Hellerstein

University of California, Berkeley

Berkeley, CA 94720-1776

avnur@cohera.com, jmh@cs.berkeley.edu

Paper Number: 175

Abstract

In large federated and shared-nothing databases, resources can exhibit widely 
uctuating character-
istics. Assumptions made at the time a query is submitted will rarely hold throughout the duration
of query processing. As a result, traditional static query optimization and execution techniques are
ine�ective in these environments.

In this paper we introduce a query processing mechanism called an eddy, which continuously reorders
operators in a query plan as it runs. We characterize the moments of symmetry during which pipelined
joins can be easily reordered, and the synchronization barriers that require inputs from di�erent sources
to be coordinated. By combining eddies with join algorithms appropriate to large-scale environments, we
merge the optimization and execution phases of query processing, allowing each tuple to have a 
exible
ordering of the query operators. This 
exibility is controlled by a combination of 
uid dynamics and
a simple learning algorithm. Our initial implementation demonstrates promising results, with eddies
performing nearly as well as a static optimizer/executor in static scenarios, and adapting to run-time
changes in the execution environment.

1 Introduction

There is increasing interest in query engines that run at unprecedented scale, both for widely-distributed
information resources, and for massively parallel database systems. We are building a system called Tele-
graph, a Global DBMS that is intended to run queries over all the data available on line [HBF99]. A key
requirement of a large-scale system like Telegraph is that it function robustly in an unpredictable and con-
stantly 
uctuating environment. This unpredictability is endemic in large scale systems, because of increased
complexity in a number of dimensions:

� Hardware and Workload Complexity: In wide-area environments, variabilities are commonly
observable in the bursty performance of servers and networks [AFTU96, UFA98]; large servers and
networks tend to serve large communities of users, whose aggregate behavior can be hard to predict,
and the hardware mix in the wide area is typically quite heterogeneous. Large clusters of computers
can exhibit similar performance variations, due to a mix of user requests and heterogeneous hardware
evolution. Even in totally homogeneous environments, hardware performance can be unpredictable:
for example, the outer tracks of a disk can exhibit almost twice the bandwidth of inner tracks [Met97].

� Data Complexity: Selectivity estimation for static alphanumeric data sets is fairly well understood,
and there has been some initial work on estimating statistical properties of static sets of data with
complex types [Aok99] and methods [BVO97, BO99]. But federated data often comes without any
statistical summaries, and complex non-alphanumeric data types are now widely in use both in object-
relational databases and on the web. In these scenarios { and even in traditional static relational
databases { selectivity estimates are often quite inaccurate.

1



Figure 1: An eddy in a query pipeline. Data 
ows into the eddy from input relations R;S and T . The eddy
routes tuples to operators; the operators run as independent threads, returning tuples to the eddy. The eddy
sends a tuple to the output only when it has been handled by all the operators. The eddy can adaptively
choose an independent order for routing each tuple through the operators.

� User Interface Complexity: In large-scale systems, many queries can run for a very long time. As
a result, there is interest in Online Aggregation and other techniques that allow users to \Control"
properties of queries while they execute, based on re�ning approximate results [HAC+99, RRH99].

For all of these reasons, we expect query processing parameters to change signi�cantly over time in
Telegraph, typically many times during the execution of a single query. As a result, it is not appropriate to
use the traditional architecture of optimizing a query and then executing a static query plan: this approach
does not adapt to intra-query 
uctuations. Instead, for these environments we want query execution plans
to be reoptimized regularly during the course of query processing, allowing the system to adapt dynamically
to 
uctuations in computing resources, data characteristics, and user preferences.

In this paper we present a query processing mechanism called an eddy, which continuously reorders the
application of pipelined operators in a query plan, on a tuple-by-tuple basis. An eddy is an n-ary tuple
router interposed between n data sources and a set of query processing operators; the eddy encapsulates the
ordering of the operators by routing tuples through them dynamically (Figure 1). Because the eddy observes
tuples entering and exiting the operators, it can adaptively change its routing to e�ect di�erent orders of
the pipelined operators. In this paper we present initial experimental results demonstrating the viability of
eddies: they can indeed reorder e�ectively in the face of changing selectivities and costs, and provide bene�ts
in the case of delayed data sources as well. Our results demonstrate that the eddy framework is a promising
avenue of research for adaptive and online query processing.

Reoptimizing a query execution pipeline on the 
y requires signi�cant care in maintainingquery execution
state. In this paper we highlight query processing stages calledmoments of symmetry, during which operators
can be easily reordered. We also describe synchronization barriers in certain join algorithms that can restrict
performance to the rate of the slower input. Join algorithms with frequent moments of symmetry and
adaptive or non-existent barriers are thus especially attractive in the Telegraph environment. We observe
that the Ripple Join family [HH99] provides e�ciency, frequent moments of symmetry and adaptive or
nonexistent barriers for equijoins and non-equijoins alike.

The eddy architecture is quite simple, obviating the need for traditional cost and selectivity estimation,
and simplifying the logic of plan enumeration. Eddies represent our �rst step in a larger attempt to do
away with traditional optimizers entirely, in the hope of providing both run-time adaptivity and signi�cant
reduction in code complexity. In this �rst paper we focus on continuous operator reordering in a single-site

2



query processor; we leave issues of operator selection and parallelism to our discussion of future work.

1.1 Run-Time Fluctuations

Three properties can vary during query processing: the costs of operators, the selectivities of operators,
and the rates at which tuples arrive from the inputs. The �rst and third issues are well discussed in the
literature [AFTU96, KD98, UFA98, IFF+99]. A standard example of a variable-cost operator is an index
lookup in a network service, e.g. a web form or an LDAP server that serves a large community of users.
Burstiness in utilization (and hence performance) is now common in wide-area services, and may become
more common in cluster systems as they \scale out" to thousands of nodes or more [Bar99, Gra99]. Run-
time variations in selectivity have not been widely discussed in the literature. Selectivites can indeed change
mid-query, and our techniques for run-time reoptimization of pipelined operators can take advantage of this
fact to change plans as appropriate during the course of query execution.

Changes in selectivity commonly arise due to correlations between the order of tuple delivery and the
predicates. For example, consider an employee table clustered by age, and a selection salary > 100000; age
and salary are often strongly correlated. Initially the selection will �lter out most of the tuples it sees, but
that selectivity rate will change as older employees are scanned. The selectivity over time can also be tied
to performance 
uctuations: e.g., in a parallel DBMS clustered relations are often horizontally partitioned
across disks, and the rate of production from various partitions { and hence from di�erent value ranges { may
change over time depending on performance characteristics and utilization of the di�erent disks. Finally,
Online Aggregation systems explicitly allow users to control the order in which tuples are delivered based
on data preferences [RRH99]; this can have a similar e�ect on query predicates that are correlated with the
user-controlled preferences.

1.2 Architectural Assumptions

Telegraph is intended to e�ciently and 
exibly provide both distributed query processing across sites in
the wide area, and parallel query processing in a large shared-nothing cluster. In this paper we narrow our
focus somewhat to concentrate on the initial, already di�cult problem of run-time operator reordering in a
single-site query executor; that is, changing the e�ective order or \shape" of a pipelined query plan tree in
the face of changes in performance.

We make some signi�cant simplifying assumptions in this initial paper, to allow us to focus carefully on
the problem run-time reordering. We assume that some initial query plan tree will be constructed during
parsing by a naive pre-optimizer. This optimizer need not exercise much judgement since we will be reordering
the plan tree on the 
y. However by constructing a query plan it must choose a spanning tree of the query
graph (i.e. a set of table-pairs to join) [KBZ86], and algorithms for each of the joins. We will return to the
choice of join algorithms in Section 2, and defer to Section 6 the discussion of changing the spanning tree
and join algorithms during processing.

We study a standard single-node object-relational query processing system, with the added capability
of opening scans and indexes from external data sets. This is becoming a very common base architecture,
available in a number of the commercial object-relational systems (e.g., IBM DB2 UDB [RPK+99], Informix
Dynamic Server UDO [SBH98]) and in federated database systems (e.g., Cohera [HSC99]). For uniformity,
we refer to these non-resident tables as external tables. External tables are now a practical mechanism for
integrating data from legacy systems of various kinds. In one typical application scenario, a remote SAP
R/3 application could expose a set of business objects as 
at XML structures via a system like webMethods
B2B [Tho99]; the DBMS schema would have metadata naming this set as a table and modeling its attributes
as columns, and would provide an XML \gateway" or \wrapper" to interpret the data as it streams in.
This external table could then be joined by the DBMS with local tables and other external tables. This
scenario has also been a topic of study in other research on heterogeneous databases and data integration,
e.g., [IFF+99, HKWY97, GMPQ+97, ACPS96]. Unlike some of the prior work, we make no assumptions
limiting the scale of external sources, which may be arbitrarily large. Note that external tables present many

3



of the dynamic challenges described above: they can reside over a wide-area network, face bursty utilization,
and o�er very minimal information on costs and statistical properties.

In a large and unpredictable environment, early results are often a required feature, since the time to
run a query to completion may be enormous. As a result, we focus on reordering the operators within a
pipeline; for the duration of the paper, when we speak of query plans we refer implicitly to pipelined plans
(or subplans). In Section 5 we outline synergies and tensions between this approach and prior work on
inter-pipeline run-time optimization.

1.3 Structure of the Paper

Before introducing eddies, in Section 2 we discuss the properties of query processing algorithms that allow
(or disallow) them to be frequently reordered. We then present the eddy architecture, and describe how it
allows for extreme 
exibility in operator ordering (Section 3). Section 4 discusses the policies for controlling
tuple 
ow in an eddy. A variety of experiments in Section 4 illustrate the robustness of eddies in both static
and dynamic environments, and raise some questions for future work. We survey related work in Section 5,
and in Section 6 lay out a research program to carry this work forward.

2 Reorderability of Plans

A basic challenge of run-time reoptimization is to reorder pipelined query processing operators while they are
in 
ight. To change a query plan on the 
y, a great deal of state in the various operators has to be considered,
and arbitrary changes can require signi�cant processing and code complexity to guarantee correct results.
For example, the state maintained by an operator like hybrid hash join [DKO+84] can grow as large as the
size of an input relation, and require modi�cation or recomputation if the plan is reordered while the state
is being constructed.

By constraining the scenarios in which we reorder operators, we can keep this work to a minimum. Before
describing eddies, we study the state management of query processing algorithms; this discussion motivates
the eddy design, and forms the basis of our approach for reoptimizing cheaply and continuously. As a
philosophy, we favor adaptivity over best-case performance. In a highly variable environment, the best-case
scenario rarely exists for a signi�cant length of time. So we will sacri�ce marginal improvements in idealized
query processing algorithms when they prevent frequent, e�cient reoptimization.

2.1 Single-Table Operators

We begin by studying the simple scenario of reordering unary (single-table) operators during query execution.
The standard unary operators in an object-relational system include selections, projections and output
transformation (\Select list") expressions, all of which are processed in a simple manner: they repeatedly
fetch a tuple from their input, apply some logic to that tuple (possibly including expensive user-de�ned
functions), and then perhaps output a tuple. This \tuple-at-a-time" processing maintains no state across
tuples: the values of one input tuple are not considered when processing subsequent tuples. Since these
operators are stateless, run-time reordering can be done trivially { each operator can remain encapsulated,
and unaware of the change in ordering1. Not all operators can commute, of course, but constraints on legal
orderings are orthogonal to our concerns in this section about state management. Ordering constraints do
not complicate the task of swapping any two operators that are indeed commutable.

1As a detail, note that the types of tuples passed into an operator should not change on the 
y. This is relatively easy
to ensure in a relational context, without imposing undue constraints on reordering. All operators in a query should share a
common namespace for column variables (e.g. \column 3 of table R"), and for expressions (\query expression #5"). Contrast
this with the alternative approach, where column variables are parameterized by input relation (e.g. \column 3 of my left
input"). This latter implementation is used in postgres, and complicates even static query plan modi�cations, like those
of [Hel98].

4



Even the stateful unary operators like sorting and grouping can be easily reordered, subject to constraints
on legal orderings. Both sorting and grouping operators consume an entire input relation before producing
any output. While in the midst of reading from their inputs they are insensitive to changes in subsequent
input; no relationship is assumed between previously-seen and as-yet-unseen input records to be sorted or
grouped. Of course for correctness some reorderings are not allowed; for example, one cannot in general
commute a grouping operator with a selection if the grouping operator computes an aggregate. But again,
this is an issue about semantically correct reorderings, and is orthogonal to our discussion. We will return
to the issue of the desirability of these operators in Section 2.4.

In short, when unary operators can be legally reordered, the logic of doing so is trivial since no state
changes are required. We proceed to consider reordering joins, which we will see are signi�cantly more
complex.

2.2 Binary Operators: Synchronization Barriers

Binary operators like joins often capture signi�cant state. A particular form of state used in such operators
relates to the interleaving of requests for tuples from di�erent inputs. Some join algorithms must exercise
signi�cant control over the order in which they consume tuples from one input or the other, while other join
algorithms can consume tuples from either input with arbitrary interleaving.

As an example, consider the case of a merge join on two sorted, duplicate-free inputs. During the
processing of a merge join, the next tuple is always consumed from the relation whose last tuple had the
lower value. This signi�cantly constrains the order in which tuples can be consumed: as an extreme example,
consider the case of a slowly-delivered external relation slowlow with many low values in its join column, and
a high-bandwidth but large local relation fasthi with only high values in its join column { the processing
of fasthi is postponed for a long time while consuming many tuples from slowlow. Using terminology from
parallel programming, we describe this phenomenon as a synchronization barrier: one table-scan must wait
until the other table-scan produces a value larger than any seen before.

In general, barriers limit concurrency { and hence performance { when two tasks take di�erent amounts
of time to complete (i.e., to \arrive" at the barrier). Recall that concurrency arises even in single-site
query engines, which can simultaneously carry out network I/O, disk I/O, and computation. Thus it is
desirable to minimize the overhead of synchronization barriers in a dynamic (or even static but heterogeneous)
performance environment. Two issues a�ect the overhead of barriers in a plan: the frequency of barriers,
and the gap between arrival times of the two inputs at the barrier. We will see in upcoming discussion that
barriers can often be avoided or at least minimized by using appropriate join algorithms.

2.3 Binary Operators: Moments of Symmetry

Note that the synchronization barrier in merge join is stated in an order-independent manner: it does not
distinguish between the inputs based on any property other than the data they deliver. Thus merge join is
often described as a symmetric operator, since its two inputs are treated uniformly2. This is not the case for
many other join algorithms. Consider the traditional nested-loops join, for example. The \outer" relation in
a nested-loops join is synchronized with the \inner" relation, but not vice versa: after each tuple (or block
of tuples) is consumed from the outer relation, a barrier is set until a full scan of the inner is completed. For
asymmetric operators like nested-loops join, performance bene�ts can often be obtained by reordering the
inputs.

When a join algorithm reaches a barrier, it has declared the end of a scheduling dependency between its
two input relations. In such cases, the order of the inputs to the join can often be changed without modifying
any state in the join; when this is true, we refer to the barrier as a moment of symmetry. Let us return to
the example of a nested-loops join, with outer relation R and inner relation S. At a barrier, the join has
completed a full inner loop, having joined each tuple in a subset of R with every tuple in S. Reordering the

2If there are duplicates in a merge join, the duplicates are handled by an asymmetric but usually small nested loop. For
ease of exposition, we can ignore this detail in our discussion.

5



S
c

R
c

R

S

1
2
3

4 5 6

7
8
9
10
11
12
13
14
15
16
17
18
19

Figure 2: Tuples generated by a nested-loops join, reordered at two moments of symmetry. Each axis
represents the tuples of the corresponding relation, in the order they are delivered by an access method. The
dots represent tuples generated by the join, some of which may be eliminated by the join predicate. The
numbers correspond to the barriers reached, in order. cR and cS are the cursor positions maintained by the
corresponding inputs at the time of the reorderings.

inputs at this point can be done without a�ecting the join algorithm, as long as the iterator producing R
notes its current cursor position cR. In that case, the new \outer" loop on S begins rescanning by fetching
the �rst tuple of S, and R is scanned from cR to the end. This can be repeated inde�nitely, joining S tuples
with all tuples in R from position cR to the end. Alternatively, at the end of some loop over R (during a
moment of symmetry), the order of inputs can be swapped again by remembering the current position of
S, and repeatedly joining the next tuple in R (starting at cR) with tuples from S between cS and the end.
Figure 2 depicts this scenario, with two changes of ordering. Some operators like the pipelined hash join
of [WA91] have no barriers whatsoever. These operators are in constant symmetry, since the processing of
the two inputs is totally decoupled.

Moments of symmetry allow reordering of the inputs to a single binary operator. To generalize this
somewhat, note that since joins commute, a tree of n � 1 binary joins can be viewed as a single n-ary join.
One could easily implement a doubly-nested-loops join operator over relations R, S and T , and it would
have moments of complete symmetry at the end of each loop of S. At that point, all three inputs could
be reordered (say to T then R then S) with a straightforward extension to the discussion above: a cursor
would be recorded for each input, and each loop would go from the recorded cursor position to the end of
the input.

The same e�ect can be obtained in a binary implementationwith two operators, by swapping the positions
of binary operators: e�ectively the plan tree transformation would go in steps, from (R ./1 S) ./2 T to
(R ./2 T ) ./1 S and then to (T ./2 R) ./1 S. This approach treats an operator and one of its inputs as a
unit (e.g., the unit [./2 T ]), and swaps units; the idea has been used previously in static query optimization
schemes [IK84, KBZ86, Hel98]. Viewing the situation in this manner, we can naturally consider reordering
multiple joins and their inputs, even if the join algorithms are di�erent. In our query (R ./1 S) ./2 T , we
need [./1 S] and [./2 T ] to be mutually commutative, but do not require them to be the same join algorithm.
We discuss the commutativity of join algorithms further in Section 2.4.3.

Note that the combination of commutativity and moments of symmetry allows for very aggressive re-
ordering of a plan tree. A single n-ary operator representing a reorderable plan tree is therefore an attractive
abstraction, since it encapsulates any ordering that may be subject to change. We will exploit this ab-
straction directly, by interposing an n-ary tuple router (an \eddy") between the input tables and the join
operators.

6



2.4 Reorderability of Join Algorithms

There are a number of join algorithms in the literature, including the ones commonly used in today's systems,
and relevant alternatives proposed for \online" [HH99] and adaptive [UF99, IFF+99] processing. Some of
the prior work on querying external tables focused exclusively on the pipelined hash join [WA91], and found
it to be very e�ective; in prior work this was attributed to its lack of barriers, without leveraging its constant
symmetry for reordering. Hash joins are not always appropriate, however, since they do not take advantage
of indexes and only work for equijoin predicates. In this section we consider many join algorithms in light
of the discussion above, highlighting a general class of algorithms that allow for 
exible run-time reordering,
and adaptive or non-existent barriers.

2.4.1 Blocking vs. Pipelining

One can coarsely divide standard query processing methods into blocking and pipelining algorithms. Blocking
algorithms do not produce any output until they consume one or both input relations; the most common
binary example is the hybrid hash join3. Pipelining algorithms can produce output while concurrently
reading from their inputs. Examples of pipelining joins include merge joins, as well as the Ripple Join
family [HH99] that generalizes nested-loops joins, pipelining hash joins [WA91], and variants of the two.
Blocks in a pipeline represent barriers between an operator and all the operators that follow it in the data

ow. This barrier is a (trivial) moment of symmetry for the subsequent operators, since they cannot begin
until the barrier is crossed. Since the operators after the block have not begun processing, the symmetry
after a block is analogous to statically optimizing a (sub-)query before running it; this problem is treated
in [KD98, IFF+99]. We will focus here strictly on pipelining algorithms, which can be aggressively reordered
without long waits for the completions of barriers (like the barrier of a blocking operator �nishing.) Our
work here can be combined with cross-pipeline optimizations like those of [KD98, IFF+99], as we discuss in
Section 5.

2.4.2 Joins and Indexes

Nested-loops joins can take advantage of indexes on the inner relation, resulting in a fairly e�cient pipelining
join algorithm. An index nested-loops join (henceforth an \index join") is inherently asymmetric, since one
input relation has been pre-indexed. Even when indexes exist on both inputs, changing the choice of inner
and outer relation \on the 
y" is problematic4. Hence for the purposes of reordering, it is simpler to think of
an index join as a kind of unary selection operator on the unindexed input. The only distinction between an
index join and a selection is that { with respect to the unindexed relation { the selectivity of the join node
may be greater than 1. Although one cannot swap the inputs to a single nested-loops join, one can reorder
a nested-loops join and its indexed relation as a unit among other operators in a plan tree. Note that the
logic for indexes can be applied to external tables that require bindings to be passed; such tables may be
gateways to, e.g., web pages with forms, GIS index systems, LDAP servers and so on [HKWY97, FMLS99].

2.4.3 Physical Properties, Join Predicates and Commutativity

Clearly, a pre-optimizer's choice of an index join algorithm constrains the possible join orderings. In the n-
ary join view, an ordering constraint must be imposed so that the unindexed join input is ordered before (but
not necessarily directly before) the indexed input. This constraint arises because of a physical property of an
input relation: indexes can be probed but not scanned, and hence cannot appear before their corresponding

3Note that sort-merge join can be modeled as two blocking unary sorts, followed by one non-blocking binary merge operator.
A similar description can be made for grace hash join [Sha86]. More generally, binary operators that are fully symmetric while
reading their inputs can be decomposed into two independent unary operators followed by a binary operator.

4In unclustered indexes, the index ordering is not the same as the scan ordering. Thus after a reordering of the inputs it
is di�cult to ensure that { using the terminology of Section 2.3 { lookups on the index of the new \inner" relation R produce
only tuples between cR and the end of R. When this is not ensured, care must be taken to eliminate incorrect duplicates from
the result.

7



Algorithm Moments of Symmetry Input Barriers Order Constraints

Hybrid Hash Join none none no �-products
end of each nested inputs must be sorted,

Merge Join loop over duplicates data dependent no �-products
Nested Loops end of each inner loop end of each inner loop none

at each corner, but
Block Ripple at each corner corners chosen adaptively none

outer precedes inner,
Index Join end of each index probe end of each index probe no �-products
Hash Ripple (+ pipelined
hash join, X-join) after each tuple none no �-products

Table 1: Reorderability Properties of Various Join Algorithms

probing tables. Similar but more extensive constraints can arise in preserving the ordered inputs to a merge
join.

The applicability of certain join algorithms raises additional constraints. Many join algorithms work only
for equijoins, and will not work on other joins like Cartesian products. Such algorithms constrain reorderings
on the plan tree as well, since they require all the relations mentioned in their equijoin predicates to always
be executed before them on each tuple. In this paper, we consider ordering constraints to be an inviolable
aspect of a plan tree, and we ensure that they always hold. In Section 6 we sketch some initial ideas on
relaxing this requirement, by simultaneously considering multiple join algorithms and query graph spanning
trees.

2.4.4 Join Algorithms and Reordering

In order for an eddy to be most e�ective, we favor join algorithms with frequent moments of symmetry,
adaptive or non-existent barriers, and minimal ordering constraints: these algorithms o�er the most oppor-
tunities for reoptimization. Table 1 summaries the salient properties of a variety of join algorithms. Our
desire to avoid blocking rules out the use of hybrid hash join, and our desire to minimize ordering constraints
and barriers excludes merge joins. Nested loops joins have infrequent moments of symmetry and imbalanced
barriers, making them undesirable as well.

All the remaining algorithms we consider are based on frequently-symmetric versions of traditional itera-
tion, hashing and indexing schemes, i.e. the Ripple Joins [HH99]. Note that the original pipelined hash join
of [WA91] is a constrained version of the hash ripple join. The external hashing extensions of [UF99, IFF+99]
are applicable to the variable-rate hash ripple join, and [HH99] captures index joins as a special case as well.
For non-equijoins, the block ripple join algorithm is e�ective, having fairly frequent moments of symmetry,
particularly at the beginning of processing [HH99]. Figure 3 illustrates block, index and hash ripple joins; the
reader is referred to [HH99, IFF+99, UF99] for detailed discussions of these algorithms and their variants.
These algorithms are adaptive without sacri�cing much performance: [UF99] and [IFF+99] demonstrate
scalable versions of hash ripple join that perform competitively with hybrid hash join in the static case;
[HH99] shows that while block ripple join can be less e�cient than nested-loops join, it arrives at moments
of symmetry much more frequently than nested-loops joins, especially in early stages of processing. Ap-
pendix A discusses the memory overheads of these adaptive algorithms, which can be somewhat larger than
standard join algorithms.

Ripple joins have moments of symmetry at each \corner" of a rectangular ripple in Figure 3, i.e., whenever
a pre�x of the input stream R has been joined with all tuples in a pre�x of input stream S and vice versa. For
hash ripple joins (like the pipelined hash join) and index joins, this scenario occurs between each consecutive
tuple consumed from a scanned input. Thus ripple joins o�er very frequent moments of symmetry.

Ripple joins are attractive with respect to barriers as well. Ripple joins were designed to allow changing

8



Figure 3: Tuples generated by block ripple join, index join, and hash ripple. In the hash ripple diagram, one
relation arrives 3x faster than the other. Each axis represents the tuples of an input relation, in the order
they are delivered by an access method. In the block ripple join, all tuples are generated by the join, but
some may be eliminated by the join predicate. In the index and hash ripple joins, the only tuples generated
by the join are those which satisfy the join predicates; these are indicated by black dots. The arrows for
index and hash ripple join represent the logical portion of the cross-product space checked so far; the index
and hash tables only expend work on tuples that satisfy the join predicates.

rates for each input; this was originally used to proactively expend more processing on the input relation with
more statistical in
uence on intermediate results. However, the same mechanism allows reactive adaptivity
in the wide-area scenario: a barrier is reached at each corner, and the next corner can adaptively re
ect
the relative rates of the two inputs. For the block ripple join, the next corner is chosen upon reaching the
previous corner; this can be done adaptively to re
ect the relative rates of the two inputs over time.

The ripple join family o�ers attractive adaptivity features at a modest overhead in performance and
memory footprint. Hence they �t well with our philosophy of sacri�cing marginal speed for adaptability,
and we focus on these algorithms in Telegraph. It is true that additional memory requirements can be
problematic in boundary cases, sometimes adding additional passes over the data to accomodate over
ow.
We believe that technology trends justify expending memory to maximize adaptability, but as we note in
Section 5 and Appendix A, one can mix blocking operators with eddy pipelines if desired.

3 Rivers and Eddies

The above discussion allows us to consider easily reordering query plans at moments of symmetry. In this
section we proceed to describe the eddy mechanism for implementing reordering in a natural manner during
query processing. The techniques we proceed to describe can be used with any operators, but algorithms
with frequent moments of symmetry allow for more frequent reoptimization. Before discussing eddies, we
�rst introduce our basic query processing environment.

3.1 River

We have implemented eddies in the context of River [ADAT+99]. River is a shared-nothing parallel query
processing framework that can dynamically adapt to 
uctuations in performance and workload. It has been
used to robustly produce near-record performance on I/O-intensive benchmarks like parallel sorting and
hash joins, despite heterogeneities and dynamic variability in hardware and workloads across machines in a
cluster. For more details on River's adaptivity and parallelism features, the interested reader is referred to
the original paper on the topic [ADAT+99]. In Telegraph, we intend to leverage the adaptability of River

9



to allow for dynamic shifting of load (both query processing and data delivery) in a shared-nothing parallel
environment. But in this paper we restrict ourselves to basic (single-site) features of eddies; discussions of
eddies in parallel rivers are deferred to Section 6.

Since we do not discuss parallelism here, a very simple overview of the River framework su�ces. River
is a data
ow query engine, analogous in many ways to Gamma [DGS+90], Volcano [Gra90] and many
commercial parallel database engines, in which \iterator"-style modules (query operators) communicate via
a �xed data
ow graph (a query plan). Each module runs as an independent thread, and the edges in the
graph correspond to �nite message queues. When a producer and consumer run at di�ering rates, the faster
thread may block on the queue waiting for the slower thread to catch up. River also provides a scripting
syntax and graphical user interface for specifying query plans; we currently use this feature to perform
pre-optimization of queries by hand for experimentation. Like the modi�ed Predator architecture used
in Query Scrambling [UFA98], River is multi-threaded and can exploit barrier-free algorithms by reading
from various inputs at independent rates. The River implementation we used derives from the work on
Now-Sort [ADADC+97], and features e�cient I/O and scheduling mechanisms including pre-fetching scans,
avoidance of operating system bu�ering, and high-performance user-level networking.

3.1.1 Pre-Optimization

Although we will use eddies to reorder tables among joins, a heuristic pre-optimizer must choose how to
initially pair o� relations into joins, with the constraint that each relation participates in only one join.
This corresponds to choosing a spanning tree of a query graph, in which nodes represent relations and
edges represent binary joins [KBZ86]. One reasonable heuristic for picking a spanning tree forms a chain
of cartesian products across any tables known to be very small (to handle \star schemas" when base-table
cardinality statistics are available); it then picks arbitrary equijoin edges (on the assumption that they
are relatively low selectivity), followed by as many arbitrary non-equijoin edges as required to complete a
spanning tree.

Given a spanning tree of the query graph, the pre-optimizer needs to choose join algorithms for each
edge. Along each equijoin edge it can use either an index join if an index is available, or a hash ripple join.
Along each non-equijoin edge it can use a block ripple join.

The focus of our work to date has been on validating the design of an eddy, and its ability to reorder oper-
ators in a pre-speci�ed spanning tree, with pre-speci�ed join algorithms. We have not yet experimented with
the sensitivity of the system to choices made during pre-optimization. Rather than validate the heuristics
above, however, we are focusing our energy on extending eddies with the capability of adaptively modifying
the spanning tree and join algorithms during processing. In Section 6 we discuss our initial ideas in this
direction. In the current paper, we assume that a heuristic pre-optimizer makes these decisions; in our
experiments we perform this heuristic by hand.

3.2 An Eddy in the River

An eddy is implemented via a module in a river containing an arbitrary number of input relations, a number
of participating unary and binary modules, and a single output relation (Figure 1)5. An eddy encapsulates
the scheduling of its participating operators; tuples entering the eddy can 
ow through its operators in a
variety of orders.

In essence, an eddy explicitly merges multiple unary and binary operators into a single n-ary operator
within a query plan, based on the intuition from Section 2.3 that symmetries can be easily captured in an
n-ary operator. An eddy module maintains a small �xed-sized bu�er of tuples that are to be processed by
one or more operators. Each operator participating in the eddy has one or two inputs that are fed tuples
by the eddy, and an output stream that returns tuples to the eddy. Eddies are so named because of this
circular data 
ow within a river.

5Nothing prevents the use of n-ary operators with n > 2 in an eddy, but since implementations of these are atypical in
database query processing we do not discuss them here.

10



A tuple entering an eddy is associated with a tuple descriptor containing a vector of Ready bits and Done
bits, which indicate respectively those operators that are elgibile to process the tuple, and those that have
already processed the tuple. The eddy module ships a tuple only to operators for which the corresponding
Ready bit turned on. After processing the tuple, the operator returns it to the eddy, and the corresponding
Done bit is turned on. If all the Done bits are on, the tuple is sent to the eddy's output; otherwise it is sent
to another eligible operator for continued processing.

When an eddy receives a tuple from one of its inputs, it zeroes the Done bits, and sets the Ready bits
appropriately. In the simple case, the eddy sets all Ready bits on, signifying that any ordering of the operators
is acceptable. It is possible for ordering constraints to be placed on the operators; in such cases, the eddy
is parameterized to turn on only the Ready bits corresponding to operators that can be executed initially.
When an operator returns a tuple to the eddy, the eddy turns on the Ready bit of any operator eligible
to process the tuple. Binary operators generate output tuples that correspond to combinations of input
tuples; in these cases, the Done bits and Ready bits of the two input tuples are ORed. In this manner an
eddy preserves the ordering constraints while maximizing opportunities for tuples to follow di�erent possible
orderings of the operators.

Two properties of eddies merit comment. First, note that eddies represent the full class of bushy trees
corresponding to the set of join nodes { it is possible, for instance, that two pairs of tuples are combined inde-
pendently by two di�erent join modules, and then routed to a third join to perform the 4-way concatenation
of the two binary records. Second, note that eddies do not constrain reordering to moments of symmetry
across the eddy as a whole. A given operator must carefully refrain from fetching tuples from certain inputs
until its next moment of symmetry { e.g., a nested-loops join would not fetch a new tuple from the current
outer relation until it �nished rescanning the inner. But there is no requirement that all operators in the
eddy be at a moment of symmetry when this occurs; just the operator that is fetching a new tuple. Thus
eddies are quite 
exible both in the shapes of trees they can generate, and in the scenarios in which they
can logically reorder operators.

4 Routing Tuples in Eddies

An eddy module paces and directs the 
ow of tuples from the inputs through the various operators to the
output. This provides the essential 
exibility to allow each tuple to be routed individually through the
operators. The routing policy used in the eddy determines the e�ciency of the system. In this section we
study these policies in detail; the policies we present here show promise, but we believe that this is a rich
area for future study. We outline some of the remaining questions in Section 6.

An eddy's tuple bu�er is implemented as a priority queue with a 
exible prioritization scheme. An
operator is always given the highest-priority tuple in the bu�er that has the corresponding Ready bit set.
For simplicity, we start by considering a very simple priority scheme: tuples enter the eddy with low priority,
and when they are returned to the eddy from an operator they are given high priority. This simple priority
scheme ensures that tuples 
ow completely through the eddy before new tuples are consumed from the
inputs, ensuring that the eddy does not become \clogged" with new tuples.

4.1 Experimental Setup

In order to illustrate how eddies work, we present some initial experiments in this section; we pause
brie
y here to describe our experimental setup. All our experiments were run on a single-processor Sun
Ultra-1 workstation running Solaris 2.6, with 160 MB of RAM. We used the Euphrates implementation of
River [ADAT+99]. We synthetically generated relations as in Table 2, with 100 byte tuples in each relation.

To allow us to experiment with costs and selectivities of selections, our selection modules are (arti�cially)
implemented as spin loops corresponding to their relative costs, followed by a randomized selection decision
with the appropriate selectivity. We will describe the relative costs of selections in terms of abstract \delay
units"; for studying optimization, the absolute number of cycles through a spin loop are irrelevant. We

11



Table Cardinality values in column a

R 10,000 500 - 5500
S 80,000 0 - 5000
T 10,000 N/A
U 50,000 N/A

Table 2: Cardinalities of tables; values are uniformly distributed.

0 2 4 6 8 10

cost of s1.

50

100

150

200

250

co
m

pl
et

io
n 

ti
m

e 
(s

ec
s)

s1 before s2
s2 before s1
Naive Eddy

Figure 4: Performance of two 50% selections, s2
has cost 5, s1 varies across runs.

0.0 0.2 0.4 0.6 0.8 1.0

selectivity of s1

30

40

50

60

co
m

pl
et

io
n 

ti
m

e 
(s

ec
s)

s1 before s2
s2 before s1
Naive Eddy

Figure 5: Performance of two selections of cost
5, s2 has 50% selectivity, s1 varies across runs.

implemented the simplest version of hash ripple join, identical to the original pipelining hash join [WA91];
our implementation here does not exert any statistically-motivated control over disk resource consumption
(as in [HH99]). We simulated index joins by doing random I/Os within a �le, returning on average the
number of matches corresponding to a pre-programmed selectivity. The �lesystem cache was allowed to
absorb some of the index I/Os after warming up.

The eddy's tuple bu�er was implemented using River's e�cient Distributed Queue mechanism, in order
to enable future research on parallel eddies. The rami�cation of this implementation is that each batch
of tuples entering the eddy causes a Myrinet network card to be noti�ed; the card notes that the tuple's
destination is local, and returns a noti�cation. This logic is done in a very lightweight user-level network
protocol called Active Messages [vECG+92]; it does not entail a context switch to kernel mode, but it does
cause a small measurable e�ect on performance. In order to mask this implementation detail in our study,
we simulate static plans by using eddies that enforce a static ordering on tuples (via setting Ready bits in
the correct order). An implementation that avoided the network card would thus bene�t eddies and static
plans by the same constant factor.

4.2 Naive Eddy: Fluid Dynamics and Operator Costs

To illustrate how an eddy works, we consider a very simple single-table query with two expensive selection
predicates, under the traditional assumption that no performance or selectivity properties change during
execution. Our SQL query is simply the following:

SELECT *
FROM U

WHERE s1() AND s2();
In our �rst experiment, we wish to see how well an eddy can account for di�erences in costs among operators.
We run the query multiple times, always setting the cost of s2 to 5 delay units, and the selectivities of both

12



0 2 4 6 8 10

cost of s1.

50

100

150

200

250

co
m

pl
et

io
n 

ti
m

e 
(s

ec
s)

s1 before s2
s2 before s1
Naive
Lottery

Figure 6: Performance of two 50% selections, s2
has cost 5, s1 varies across runs.

0.0 0.2 0.4 0.6 0.8 1.0

selectivity of s1

30

40

50

60

co
m

pl
et

io
n 

ti
m

e 
(s

ec
s)

s1 before s2
s2 before s1
Naive
Lottery

Figure 7: Performance of two selections of cost
5, s2 has 50% selectivity, s1 varies across runs.

selections to 50%. In each run we use a di�erent cost for s1, varying it between 1 and 9 delay units across
runs. We compare an eddy of the two selections against both possible static orderings of the two selections.
One might imagine that the 
exible routing in the eddy would deliver tuples to the two selections equally:
half the tuples would 
ow to s1 before s2, and half to s2 before s1, resulting in middling performance over
all. Figure 4 shows that this is not the case: the eddy nearly matches the better of the two orderings in all
cases, without any explicit information about the operators' relative costs.

The eddy's e�ectiveness in this scenario is due to simple 
uid dynamics, arising from the di�erent rates of
consumption by s1 and s2. Recall that the edges in a River data
ow graph correspond to �xed-size queues.
This limitation has the same e�ect as back-pressure in a 
uid 
ow: production along the input to any edge
is limited by the rate of consumption at the output. The lower-cost selection (e.g., s1 at the left of Figure 4)
can consume tuples more quickly, since it spends less time per tuple; as a result the lower-cost operator exerts
less back-pressure on the input table. At the same time, the high-cost operator produces tuples relatively
slowly, so the low-cost operator will rarely be required to consume a high-priority, previously-seen tuple.
Thus most tuples are routed to the low-cost operator �rst, even though the costs are not explicitly exposed
or tracked in any way.

4.3 Fast Eddy: Learning Selectivities

This naive eddy works well for handling operators with di�erent costs but equal selectivity. But we have not
yet considered di�erences in selectivity. In our second experiment we keep the costs of the operators constant
and equal (5 units), keep the selectivity of s2 �xed at 50%, and vary the selectivity of s1 across runs. The
results in Figure 5 are less encouraging, showing eddy performing as we originally expected, about half-way
between the best and worst plans. Clearly our naive priority scheme and the resulting back-pressure are
insu�cient to capture di�erences in selectivity.

To resolve this dilemma, we would like our priority scheme to favor operators based on both their
consumption and production rate. Note that the consumption (input) rate of an operator is determined by
cost alone, while the production (output) rate is determined by a product of cost and selectivity. Since an
operator's back-pressure on its input depends largely on its consumption rate, it is not surprising that our
naive scheme does not capture di�ering selectivities.

In order to track both consumption and production over time, we enhance our priority scheme with a
simple learning algorithm based on Lottery Scheduling [WW94]. Each time the eddy gives a tuple to an
operator, it credits the operator one \ticket". Each time the operator returns a tuple to the eddy, one ticket
is debited from the eddy's running count for that operator. When an eddy is ready to send a tuple to be
processed, it \holds a lottery" among the operators eligible for receiving the tuple. (The interested reader is

13



0 2 4 6 8 10

cost of s1.

0

20

40

60

80

100

cu
m

ul
at

iv
e 

%
 o

f 
tu

pl
es

 r
ou

te
d 

to
 s

1 
fi

rs
t.

Naive
Lottery

Figure 8: Tuple 
ow with lottery scheme for the
variable-cost experiment(Figure 6).

0.0 0.2 0.4 0.6 0.8 1.0

Selectivity of s1

0

20

40

60

80

100

cu
m

ul
at

iv
e 

%
 o

f 
tu

pl
es

 r
ou

te
d 

to
 s

1 
fi

rs
t

Naive
Lottery

Figure 9: Tuple 
ow with lottery scheme for the
variable-selectivity experiment(Figure 7).

referred to [WW94] for a simple and e�cient implementation of lottery scheduling.) An operator's chance
of \winning the lottery" and receiving the tuple corresponds to the count of tickets for that operator, which
in turn tracks the relative e�ciency of the operator at draining tuples from the system. By routing tuples
using this lottery scheme, the eddy tracks (\learns") an ordering of the operators that gives good overall
e�ciency.

Figures 6 and 7 repeat our previous experiments, this time measuring the more intelligent lottery-based
routing scheme against the naive back-pressure scheme, along with the two static orderings. The lottery-
based scheme handles both scenarios quite e�ectively, slightly improving the eddy in the changing-cost
experiment, and performing almost optimally in the changing-selectivity experiment.

To explain this a bit further, in Figures 8 and 9 we display the percent of tuples that followed the order
s1; s2 (as opposed to s2; s1) in the two eddy schemes; this roughly represents the average ratio of lottery
tickets possessed by s1 and s2 over time. Note that the naive back-pressure policy is barely sensitive to
changes in selectivity, and in fact drifts slightly in the wrong direction as the selectivity of s1 is increased.
By contrast, the lottery based scheme shows bene�ts in both experiments, even improving the back-pressure
scheme in the changing-cost experiment.

In both graphs one can see that when the costs and selectivities are close to equal, then the percentage of
tuples that go the right way is close to 50%. This latter observation is intuitive, but actually quite signi�cant.
The lottery-based eddy approaches the cost of an optimal ordering, but does not concern itself about strictly
observing the optimal ordering. This is in contrast to earlier papers on dynamic reoptimization [KD98,
UFA98, IFF+99], which explicitly run a traditional query optimizer during processing to determine the
optimal plan at a given time. By focusing on overall cost rather than on �nding the optimal plan, the lottery
scheme probabilistically provides nearly optimal performance with much less e�ort, allowing re-optimization
to be done with an extremely lightweight technique that can be executed multiple times for every tuple.

A related observation is that the lottery algorithm gets closer to perfect routing (y = 0%) on the right
of Figure 9 than it does (y = 100%) on the left. Yet in the corresponding performance graph (Figure 7),
the di�erences between the lottery-based eddy and the optimal static ordering do not change much across
selectivity settings. This phenomenon is explained by examining the \jeopardy" of making ordering errors
in either case. Consider the left side of the graph, where the selectivity of s1 is 10%, s2 is 50%, and the costs
of each are c = 5 delay units. Let e be the rate at which tuples are routed erroneously (to s2 before s1 in this
case). Then the expected cost of the query is (1� e) � 1:1c+ e �1:5c = :4ec+ 1:1c. By contrast, in the second
case where the selectivity of s1 is changed to 90%, the expected cost is (1� e) � 1:5c+ e � 1:9c = :4ec+ 1:5c.
Since the jeopardy is higher at 90% than at 10%, the lottery more aggressively favors the optimal ordering
at 90% selectivity than at 10%.

14



0

50

100

150

200

ex
ec

ut
io

n 
ti

m
e 

of
 p

la
n 

(s
ec

s)

Hash First
Lottery
Naive
Index First

Figure 10: Performance of two joins: a selective
Index Join and a Hash Join

0

50

100

ex
ec

ut
io

n 
ti

m
e 

of
 p

la
n 

(s
ec

s)

Hash First
Lottery
Naive
Index First

Figure 11: Performance of two joins: a less selec-
tive Index Join and a Hash Join

4.4 Joins

We have discussed selections up to this point for ease of exposition, but of course joins are the more common
expensive operator in query processing. In this section we study how eddies interact with the pipelining
ripple join algorithms. For the moment, we continue to study a static performance environment, validating
the ability of eddies to do well even in scenarios where static techniques are most e�ective.

We begin with a simple 3-table query:
SELECT *
FROM R;S; T

WHERE R:a = S:a
AND S:b = T:b

In our experiment, we constructed a preoptimized plan with a hash ripple join between R and S, and an
index join between S and T . Since our data is uniformly distributed, Table 2 indicates that the selectivity
of the RS join is 1:8 � 10�4; its selectivity with respect to S is 180% { i.e., each S tuple entering the join
�nds 1.8 matching R tuples on average [Hel98]. We arti�cially set the selectivity of the index join w.r.t. S
to be 10% (overall selectivity 1� 10�5). Figure 10 shows the relative performance of our two eddy schemes
and the two static join orderings. The results echo our results for selections, showing the lottery-based eddy
performing nearly optimally, and the naive eddy performing in between the best and worst static plans. To
con�rm the 
exibility of the lottery scheme, we change the selectivity of the index join w.r.t. S to be 90%.
The resulting performance in Figure 11 shows that a di�erent static plan is optimal, and the lottery-based
eddy still performs competitively.

As noted in Section 2.4.2, index joins are very analogous to selections. Hash joins have more complicated
and symmetric behavior, and hence merit additional study. Figure 12 presents performance of two versions
of this query. We change the data in R;S and T so that the selectivity of the ST join w.r.t. S is 20% in one
version, and 180% in the other. In all runs, the selectivity of the RS join predicate w.r.t. S is �xed at 100%.
As the �gure shows, the lottery-based eddy continues to perform nearly optimally.

Figure 13 shows the percent of tuples that follow one order or the other in all four join experiments. While
the eddy is not strict about following the optimal ordering, it is quite close in the case of the experiment
where the hash join should precede the index join. In this case, the relative cost of index join is so high that
the jeopardy of choosing it �rst drives the hash join to nearly always win the lottery.

4.5 Responding to Dynamic Fluctuations

Eddies should adaptively react over time to the changes in performance and data characteristics described
in Section 1.1. The routing schemes described up to this point have not considered how to achieve this. In

15



0

50

100

150

ex
ec

ut
io

n 
ti

m
e 

of
 p

la
n 

(s
ec

s)

20%, ST before SR
20%, Eddy
20%, SR before ST
180%, ST before SR
180%, Eddy
180%, SR before ST

Figure 12: Performance of hash joins R ./ S and
S ./ T . R ./ S has selectivity 100% w.r.t. S, the
selectivity of S ./ T w.r.t. S varies between 20%
and 180% in the two runs.

0

20

40

60

80

100

cu
m

ul
at

iv
e 

%
 o

f 
tu

pl
es

 r
ou

te
d 

to
 t

he
 c

or
re

ct
 j

oi
n 

fi
rs

t

index beats hash
hash beats index
hash/hash 20%
hash/hash 180%

Figure 13: Percent of tuples routed in the opti-
mal order in all of the join experiments.

particular, our lottery scheme weighs all experiences equally: observations from the distant past a�ect the
lottery as much as recent observations. As a result, an operator that earns many tickets early in a query
may become so wealthy that it will take a great deal of time for it to lose ground to the top achievers in
recent history.

To avoid this, we need to modify our point scheme to forget history to some extent. One simple way to
do this is to use a window scheme. In this scheme, time is partitioned into windows, and the eddy keeps
track of two counts for each operator: a number of banked tickets, and a number of escrow tickets. Banked
tickets are used when running a lottery. Escrow tickets are used to measure e�ciency during the window.
At the beginning of the window, the value of the escrow account replaces the value of the banked account
(i.e., banked = escrow), and the escrow account is reset (escrow = 0). This scheme ensures that operators
\re-prove themselves" each window. The window length needs to be set carefully to balance the system's
reaction time against its sensitivity to transient 
uctuations; we return to this point in Section 6.

We consider a scenario of a three-table join, where two of the tables are external and used as \inner"
relations by index joins. Our third relation has 4,000 tuples. This scenario occurs when joining a set of
data to remote information resources that can do lookups based on input values (variable bindings); e.g., a
directory server, GIS server, or other form-based search interface. Since we assume that the server is remote,
we implement the \cost" in our index module as a time delay (i.e., while (gettimeofday() < x) ;) rather
than a spin loop; this better models the behavior of waiting on an external event like a network response.
In this experiment we always have one index that is fast (1 time unit per lookup) and another that is slow
(100 time units per lookup), but we switch speeds on the two indexes every 1000 calls. That is, three times
during the scan of S the fast index becomes slow, and the slow index becomes fast. Both indexes return a
single matching tuple 10% of the time.

Figure 14 shows the performance of both static plans, compared with an eddy using a lottery with a
window scheme. As we would hope, the eddy is much faster than either static plan. Figure 15 shows that the
eddy adapts correctly to changes, switching orders when the operator costs switch. The eddy sends most of
the �rst 1000 tuples to index #1 �rst, which starts o� cheap, as re
ected by the growth to a 100% value in
the �rst quarter of the graph. It sends most of the second 1000 tuples to index #2 �rst, causing the overall
percentage of tuples to reach about 50% in the graph, as re
ected by the near-linear drift toward 50% in the
second quarter of the graph. This pattern repeats in the third and fourth quarters, with the eddy eventually
displaying an even use of the two orderings over time { always favoring the best ordering.

Each static plan is suboptimal for two out of four runs of 1000 tuples, and the ratio of a suboptimal
plan to an optimal plan is (100 + 0:1 � 1)=(1 + 0:1 � 100) = 9:1. Thus the ratio of a static execution to a
perfect dynamic optimizer would be (2 � 9:1 + 2 � 1)=(4 � 1) = 5:05. Figure 14 shows that the eddy does not

16



0

200

400

600

execution time of plan (secs)

Index #1 first
E

ddy
Index #2 first

F
ig
u
re

14
:
A
d
ap
tin

g
to

ch
a
n
g
in
g
jo
in

co
sts:

p
er-

fo
rm

an
ce.

0
20

40
60

80
100

%
 of tuples seen.

0 20 40 60 80

100

cumulative % of tuples routed to Index #1 first.

F
igu

re
15:

A
d
ap
tin

g
to
ch
an
gin

g
join

costs:
tu
p
le

m
ovem

en
t.

d
o
p
erfectly,

a
ch
iev

in
g
on
ly

ab
ou
t
a
3.3x

sp
eed

u
p
;
w
e
b
elieve

th
is
h
as

to
d
o
w
ith

ou
r
w
in
d
ow

sch
em

e,
an
d

w
e
in
ten

d
to

stu
d
y
th
is
m
ore

ca
refu

lly
in

fu
tu
re

w
ork

.
F
or

b
rev

ity,
w
e
o
m
it
h
ere

a
sim

ilar
ex
p
erim

en
t
in

w
h
ich

w
e
m
o
d
i�
ed

selectiv
ity

over
tim

e.
T
h
e
resu

lts
w
ere

sim
ila
r,
ex
cep

t
th
a
t
ch
a
n
g
in
g
on
ly

th
e
selectiv

ity
of

tw
o
op
erators

resu
lts

in
less

d
ram

atic
b
en
e�
ts

for
an

a
d
a
p
tiv

e
sch

em
e.

T
h
is
can

b
e
seen

a
n
a
ly
tically.

T
h
e
ratio

b
etw

een
a
static

an
d
op
tim

ald
y
n
am

ic
ord

erin
g

is
m
ax
im

ized
w
h
en

selectiv
ities

vacillate
even

ly
b
etw

een
100%

an
d
0%

,
say

2
k
tim

es
w
ith

an
y
cost

c.
T
h
e

resu
ltin

g
ra
tio

of
static

to
op
tim

a
l-d

y
n
am

ic
is
(k

�2
c
+
k
�1
c)=(2

k
�1
c)
=
3
=
2.

W
ith

m
ore

op
erators,

ad
ap
tiv

ity
to

ch
an
g
es

in
selectiv

ity
can

b
ecom

e
m
ore

sign
i�
can

t,
h
ow

ever.

4
.5
.1

D
e
la
y
e
d
D
e
liv

e
r
y

A
s
a
�
n
al
ex
p
erim

en
t,
w
e
stu

d
y
th
e
ca
se
w
h
ere

an
in
p
u
t
relation

su
�
ers

from
an

in
itiald

elay,
as

in
[A
F
T
U
96,

U
F
A
98].

W
e
retu

rn
to

th
e
3-tab

le
q
u
ery

sh
ow

n
in

th
e
left

of
F
igu

re
12,

w
ith

th
e
R
S
selectiv

ity
at

100%
,
an
d

th
e
S
T

selectiv
ity

at
20
%
.
W
e
d
elay

th
e
d
elivery

of
R

b
y
10

secon
d
s;
th
e
resu

lts
are

sh
ow

n
in

F
igu

re
16.

U
n
fortu

n
a
tely,

w
e
see

h
ere

th
a
t
ou
r
ed
d
y
{
even

w
ith

a
lottery

an
d
a
w
in
d
ow

-b
ased

forgettin
g
sch

em
e
{

d
o
es

n
o
t
a
d
a
p
t
to

in
itial

d
elay

s
of

R
as

w
ell

as
it
cou

ld
.
F
igu

re
17

tells
som

e
of

th
e
story

:
in

th
e
early

p
art

of
p
ro
cessin

g
,
th
e
ed
d
y
in
correctly

fav
o
rs
th
e
R
S
join

,
even

th
ou
gh

n
o
R
tu
p
les

are
stream

in
g
in
,
an
d
ev
en

th
o
u
gh

th
e
R
S
jo
in

sh
o
u
ld

a
p
p
ea
r
secon

d
in

a
n
orm

al
ex
ecu

tion
(F
igu

re
12).

T
h
e
ed
d
y
d
o
es

th
is
b
ecau

se
it
ob
serv

es
th
a
t
th
e
R
S
join

d
o
es

n
o
t
p
ro
d
u
ce

an
y
ou
tp
u
t
tu
p
les

w
h
en

giv
en

S
tu
p
les.

S
o
th
e
ed
d
y
aw

ard
s

m
o
st

S
tu
p
les

to
th
e
R
S
join

in
itia

lly,w
h
ich

p
laces

th
em

in
an

in
tern

al
h
ash

tab
le
to

b
e
su
b
seq

u
en
tly

join
ed

w
ith

R
tu
p
les

w
h
en

th
ey

arriv
e.

T
h
e
S
T
join

is
left

to
fetch

an
d
h
ash

T
tu
p
les.

T
h
is
w
astes

resou
rces

th
at

cou
ld

h
av
e
b
een

sp
en
t
jo
in
in
g
S
tu
p
les

w
ith

T
tu
p
les

d
u
rin

g
th
e
d
elay,

an
d
\p
rim

es"
th
e
R
S
join

to
p
ro
d
u
ce

a
larg

e
n
u
m
b
er

of
tu
p
les

o
n
ce

th
e
R
s
b
egin

ap
p
earin

g.
N
ote

th
a
t
ed
d
y
d
o
es

b
etter

th
an

p
essim

ally
:
w
h
en

R
b
egin

s
p
ro
d
u
cin

g
tu
p
les

(at
43.5

on
th
e
x
ax
is

o
f
F
igu

re
17
),
th
e
S
valu

es
b
ottled

u
p
in

th
e
R
S
join

b
u
rst

forth
,
an
d
th
e
ed
d
y
q
u
ick

ly
th
rottles

th
e
R
S

join
,
allow

in
g
th
e
S
T

jo
in

to
p
ro
cess

m
o
st

tu
p
les

�
rst.

T
h
is

scen
ario

in
d
icates

tw
o
p
rob

lem
s
w
ith

ou
r

im
p
lem

en
tation

.
F
irst,

ou
r
ticket

sch
em

e
d
o
es

n
ot

cap
tu
re

th
e
grow

in
g
selectiv

ity
in
h
eren

t
in

a
join

w
ith

a
d
elay

ed
in
p
u
t.

S
eco

n
d
,
storin

g
tu
p
les

in
sid

e
th
e
h
ash

tab
les

of
a
sin

gle
join

u
n
n
ecessarily

p
rev

en
ts

oth
er

join
s
from

p
ro
cessin

g
th
em

;
it
m
ig
h
t
b
e
co
n
ceivab

le
to

h
ash

in
p
u
t
tu
p
les

w
ith

in
m
u
ltip

le
join

s,
if
care

w
ere

17



0 50

100

150

200

execution time of plan (secs)

R
S First

E
ddy

ST
 First

F
ig
u
re

16
:
A
d
ap
tin

g
to

a
n
in
itial

d
elay

on
R
:

p
erfo

rm
an
ce

0
20

40
60

80
100

%
 of S tuples seen.

0 20 40 60 80

100

cumulative % of tuples routed to ST first

F
igu

re
17:

A
d
ap
tin

g
to

an
in
itial

d
elay

on
R
:

tu
p
le
m
ov
em

en
t.

tak
en

to
p
rev

en
t
d
u
p
licate

resu
lts

from
b
ein

g
gen

erated
.
A

solu
tion

to
th
e
secon

d
p
rob

lem
m
igh

t
ob
v
iate

th
e
n
eed

to
so
lv
e
th
e
�
rst;

w
e
in
ten

d
to

ex
p
lore

th
ese

issu
es

fu
rth

er
in

fu
tu
re

w
ork

.
F
or

b
rev

ity,
w
e
o
m
it
h
ere

a
va
ria

tion
o
f
th
is
ex
p
erim

en
t,
in

w
h
ich

w
e
d
elayed

th
e
d
eliv

ery
of

S
b
y
10

seco
n
d
s
in
stea

d
of

R
.
In

th
is
ca
se,

th
e
d
elay

of
S
a�
ects

b
oth

join
s
id
en
tically,

an
d
sim

p
ly

slow
s
d
ow

n
th
e

com
p
letion

tim
e
o
f
all

p
lan

s
b
y
a
b
ou
t
1
0
secon

d
s.

5
R
e
la
te
d
W
o
rk

A
s
n
oted

in
th
e
in
tro

d
u
ction

,
th
ere

h
a
s
b
een

a
h
ost

of
b
oth

research
an
d
in
d
u
strial

w
ork

on
logically

u
n
ify

in
g

in
fo
rm

atio
n
so
u
rces

in
to

a
sin

g
le
sy
stem

v
iew

,
an
d
attem

p
tin

g
to

ease
th
e
d
i�

cu
lty

of
d
ata

in
tegration

.
T
h
is

is
im

p
o
rtan

t
g
ro
u
n
d
w
o
rk

for
sy
stem

s
lik
e
T
elegrap

h
,
b
u
t
is
orth

ogon
al
to

th
e
d
iscu

ssion
of

th
is
p
ap
er

[IF
F
+
9
9]
ob
serva

n
tly

n
o
tes

th
a
t
th
e
origin

al
IN
G
R
E
S
q
u
ery

d
ecom

p
osition

sch
em

e
w
as

in
tegrated

w
ith

th
e
on
e-va

riab
le
q
u
ery

p
ro
cesso

r,
a
n
d
in

essen
ce

d
id

ru
n
-tim

e
op
tim

ization
[S
W
K
76].

H
ow

ever,
th
e
ord

erin
g

h
eu
ristic

in
IN
G
R
E
S
w
a
s
sta

tic,
a
n
d
cou

ld
h
ave

b
een

ap
p
lied

b
efore

th
e
q
u
ery

ex
ecu

tion
b
egan

.
T
h
ere

h
as

b
een

a
va
riety

of
w
ork

o
n
th
e
b
road

top
ic

of
gen

eratin
g
m
ore

th
an

on
e
p
ossib

le
p
lan

for
a
q
u
ery.

A
n
u
m
b
er

o
f
p
a
p
ers

trea
t
th
e
q
u
estion

of
com

p
ilin

g
p
aram

eterized
p
lan

s
th
at

are
in
stan

tiated
at

ru
n
-tim

e
[IN

S
S
97,

G
C
94],

b
u
t
th
ese

sch
em

es
d
o
n
ot

ch
an
ge

th
e
p
lan

on
ce

it
is
in



igh

t,
an
d
h
en
ce

d
o

n
ot

ad
d
ress

th
e
p
rob

lem
s
of

ou
r
en
v
iro

n
m
en
t.

D
E
C

R
d
b
(su

b
seq

u
en
tly

O
racle

R
d
b
)
w
as

q
u
ite

early
in

co
n
sid

erin
g
co
m
p
etitiv

e
tech

n
iq
u
es

fo
r
ch
o
osin

g
am

on
g
d
i�
eren

t
access

m
eth

o
d
s
at

ru
n
-tim

e
[A
Z
96].

T
h
e

go
al
in

th
a
t
w
ork

w
as

to
a
ctu

ally
m
easu

re
costs

of
altern

ativ
e
access

m
eth

o
d
s
at

ru
n
-tim

e
rath

er
th
an

resort
to

estim
a
tion

,
b
u
t
a
fter

a
sh
ort

m
easu

rem
en
t
p
h
ase

th
e
ch
osen

access
m
eth

o
d
w
as

assu
m
ed

to
b
e
correct

for
th
e
rest

of
th
e
q
u
ery

ex
ecu

tion
.
T
h
is
b
ears

som
e
resem

b
len

ce
to

th
e
w
ork

on
sam

p
lin

g
for

cost
estim

ation
(see

[B
D
F
+
9
7]
for

a
su
rv
ey
).

T
h
e
in
itia

l
w
ork

on
Q
u
ery

S
cram

b
lin

g
[A
F
T
U
96]

stu
d
ied

th
e
p
rob

lem
of

n
etw

ork
u
n
p
red

ictab
ilities

in
p
ro
cessin

g
q
u
eries

ov
er
w
id
e-a

rea
sou

rces.
O
n
e
im

p
ortan

t
tech

n
iq
u
e
th
ey

in
tro

d
u
ced

w
as

to
m
aterialize

d
ata

from
rem

o
te

so
u
rces

even
w
h
en

q
u
ery

p
ro
cessin

g
w
as

b
lo
cked

w
aitin

g
for

oth
er

sou
rces.

T
h
is
id
ea

can
b
e

u
sed

to
p
refetch

d
ata

fro
m

a
n
in
p
u
t
ev
en

w
h
en

th
e
op
erator

h
as

b
lo
cked

it
w
aitin

g
for

a
b
arrier;

th
is
can

b
e

u
sed

in
con

cert
w
ith

th
e
id
eas

of
th
is
p
a
p
er.

T
h
is
m
aterialization

can
am

eliorate
th
e
p
rob

lem
of
b
arriers,

b
u
t

d
o
es

n
o
t
so
lv
e
it;

th
e
lo
cal

w
ork

p
o
stp

on
ed

u
n
til

after
a
b
arrier

can
still

b
e
q
u
ite

sign
i�
can

t.
L
ater

resu
lts

18



from this team focus on rescheduling runnable sub-plans in the face of initial delays in delivery, with an
eye toward using spare cycles during delays to pay for materialization and subsequent re-scans [UFA98]. In
focusing on initial delays, this work does not attempt to reorder in-
ight operators as we do here. However,
it does introduce the suggestive notion of operator synthesis, i.e., changing the set of operators in a query
plan during processing. We intend to explore this idea further in the eddy framework, combining it with the
ability to reorder pipelines.

To our knowledge, this paper represents the �rst general query processing scheme for reordering in-
ight
operators within a pipeline. Ng, et al. suggest allow reordering operators in parallel data
ow pipelines, but
only consider unary operators [NWMN99], not the more common (and more di�cult) case of joins.

There is a recently growing body of work on reoptimizing operators at the completion of pipelines,
including work by Kabra and DeWitt [KD98], and the Tukwila system [IFF+99]. These schemes reorder
operators only after materializing temporary results, i.e. after blocks in the query plan. They contain explicit
(and sometimes programmable) logic for discretely deciding when to perform reoptimization (as does the
scheme of [NWMN99]. These inter-pipeline techniques are not adaptive in the sense used in traditional
control theory (e.g., [Son98]) or (more recently) machine learning (e.g., [Mit97]); they make decisions without
any feedback from the operations they are to optimize, instead performing static optimizations at coarse-
grained intervals in the query plan. It is important to note that these e�orts are complementary to the work
here: eddies can be used to do tuple scheduling within pipelines, and techniques like those of [UFA98, KD98,
IFF+99] can be used to reoptimize across pipelines. Of course such a marriage sacri�ces the simplicity of
eddies, requiring both the traditional complexity of cost estimation and plan enumeration along with the
ideas of this paper. There are also signi�cant questions on how best to combine these techniques { e.g., how
many materialization operators to put in a plan, which operators to put in which eddy pipelines, etc.

Both the Tukwila and Query Scrambling teams saw bene�ts in the pipelined hash join, and each proposed
an e�cient out-of-core version [IFF+99, UF99]. In both cases, the motivation for using pipelined hash join
was its lack of barriers, not the frequent symmetry allowing for reordering. The X-Join [UF99] enhances
the pipelined hash join both by running e�ciently in the out-of-core case, and by exploiting delay time
to aggressively match previously-received (and spilled) tuples. We intend to experiment with X-Joins and
eddies; X-Joins change cost when they begin to spill tuples to disk, and hence are best handled by adaptive
optimization.

Our characterization of barriers and moments of symmetry appears to be new, arising as it does from
our interest in reoptimizing pipelines. Traditional work on parallel query processing recognized the power
of pipelining for parallelism [DG92]. Wilschut and Apers' work on pipelining hash joins was motivated
both by the opportunity for pipelined parallelism, and by the lack of barriers in the algorithm that enabled
inputs to run at asynchronous rates. [IFF+99] incorrectly argues that index join is not pipelining; pre-
indexed collections are widely available in database systems and in network services. [NWMN99] warns of
the complications of reordering operators at arbitrary points in processing, but does not analyze any speci�c
algorithms in this regard.

The Control project [HAC+99] addresses the goal of making long-running computations interactive,
using techniques like Online Aggregation to return re�ning approximate results during query processing,
and allowing for in-
ight user control of the processing. This includes work on ripple joins [HH99], which are
streaming join algorithms that adapt to statistical characteristics of data. There is a natural synergy between
the goals of the Control project and the development of large-scale adaptive query processors; techniques
used to pipeline best-e�ort answers in online query processing are naturally adaptive to less-than-perfect
performance scenarios. The need for optimizing pipelines in the Control project initially motivated our work
on eddies 6.

The River project [ADAT+99] was another main inspiration of this work. River arose from frustrations in
achieving a sorting record on a cluster of workstations with NowSort [ADADC+97]: impressive performance
was possible in the best case, but even slight perturbations in the cluster (e.g., a stray �le occupying the
outer tracks of a scratch disk) would cause signi�cant slowdowns in the common case. River uses two

6The Control project [HAC+99] is not explicitly related to the �eld of control theory [Son98], though Eddy appears to link
the two in some regards.

19



basic techniques to attack performance heterogeneity and unpredictability for I/O operations in clusters of
computers: work is balanced among consumers via a highly optimized distributed queue implementation,
while work is balanced among producers via a data redundancy mechanism. River allows modules to work
as fast as they can, naturally balancing the 
ow to whichever modules are faster. We carried the River
philosophy into the intial back-pressure design of eddies, and intend to return to the parallel load-balancing
aspects of the optimization problem in future work.

6 Conclusions and Future Work

An eddy is a query processing mechanism that encapsulates a set of pipelined operators, and adaptively routes
tuples through them. Eddies are particularly bene�cial in the unpredictable query processing environments
prevalent in wide-area systems. They �t naturally with join algorithms from the Ripple Join family, which
have frequent moments of symmetry and short or non-existent barriers. Eddies can be used as the sole
optimization mechanism in a query processing system, obviating the need for much of the complex code
required in a traditional query optimizer. Alternatively, eddies can be used in concert with traditional
optimizers to improve adaptability within pipelines. Our initial results indicate that eddies perform well
under a variety of circumstances, though some questions remain in improving reaction time and in adaptively
choosing join orders with delayed sources. We are su�ciently encouraged by these early results that we are
using eddies and River as the basis for query processing in the Telegraph Global DBMS.

In order to focus our energies in this initial work, we have explicitly postponed a number of questions
in understanding, tuning, and extending these results. Foremost among the remaining challenges is to
formally prove that eddies converge quickly to a near-optimal execution in static scenarios, and that they
adaptively converge when conditions change { both for selections and for joins, including hash joins that
\absorb" tuples into their hash tables. We intend to focus on multiple performance metrics, including time to
completion, the rate of output from a plan, and the rate of re�nement for online aggregation estimators. We
are also interested in analyzing the ability of eddies to e�ectively order dependent predicates [NGMC98]. Our
formal research agenda is likely to involve more careful analysis of lotteries and forgetting schemes, perhaps
based on techniques borrowed from control theory or machine learning. In a related vein, we would like to
automatically tune the aggressiveness with which we forget past observations, so that we avoid introducing
a tuning knob to adjust window-length or some analogous constant (e.g., a hysteresis factor).

Another main goal is to attack the remaining static aspects of our scheme: the pre-optimization choices of
spanning tree and join algorithms. We believe that competition is key here: one can run multiple redundant
joins and join algorithms and track their behavior in an eddy, adaptively choosing among them over time.
The implementation challenge in that scenario relates to preventing duplicates from being generated, while
the e�ciency challenge comes in not wasting too many computing resources on unpromising alternatives.
We suspect that tagging techniques analogous to those of [IFF+99, UF99] can be applied for duplicate
elimination in this framework, aided perhaps by Bloom �lters to reduce the need for duplicate checks when
possible, and query-scrambling-like postponement of any post-Bloom-�lter work until delays appear or the
query must be completed. With regard to e�ciency, we are hopeful that the basic mechanism of eddy will
moderate the resources spent on ine�cient alternative operators.

A third major challenge is to harness the parallelism and adaptivity available to us in River. We concur
with [Bar99, Gra99] that massively parallel systems are reaching their limit of manageability, even as data
sizes continue to grow very quickly. Adaptive techniques like eddies and rivers can signi�cantly aid in
the manageability of a new generation of massively parallel query processors. Rivers have been shown to
adapt gracefully to performance changes in large clusters, spreading query processing load across nodes and
spreading data delivery across data sources. Eddy faces additional challenges to meet the promise of rivers:
in particular, reoptimizing queries with intra-operator parallelism entails repartitioning data, which adds an
expense to reordering that was not present in our single-site eddies. An additional complication arises when
trying to adaptively adjust the degree of partitioning for each operator in a plan. On a similar note, we
would like to explore enhancing eddies and rivers to tolerate failures of sources or of participants in parallel

20



execution.
Finally, we are exploring the application of eddies and rivers to the generic space of data
ow programming,

including applications such as multimedia analysis and transcoding, and the composition of scalable, reliable
internet services [FGCB97, GWBC99]. Our intent is for rivers to be a generic parallel data
ow engine, and
for eddies to be the main scheduling mechanism in that environment.

Acknowledgments

Vijayshankar Raman provided signi�cant assitance in the course of this work. Remzi Arpaci-Dusseau, Eric
Anderson and Noah Treuhaft implemented River, and helped get Eddy up and running. Mike Franklin
asked a variety of hard questions, and suggested interesting directions for future work. Stuart Russell,
Christos Papadimitriou, Alistair Sinclair, Kris Hildrum and Lakshminarayanan Subramanian all helped us
focus our thoughts on the formal aspects of eddies. Thanks to both Navin Kabra and Mitch Cherniack for
initial suggestive discussions on run-time reoptimization, and to the database group at Berkeley for feedback.
Stuart Russell suggested the term \eddy".

This work was supported by a grant from IBM Corporation, NSF grant IIS-9802051, and a Sloan Foun-
dation Fellowship. Computing and network resources for this research were provided through NSF RI grant
CDA-9401156.

References

[ACPS96] S. Adali, K. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query Caching and
Optimization in Distributed Mediator Systems. In Proc. ACM-SIGMOD International Con-
ference on Management of Data, Montreal, 1996.

[ADADC+97] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, David E. Culler, Joseph M. Hellerstein,
and David A. Patterson. High-Performance Sorting on Networks of Workstations. In Proc.
ACM-SIGMOD International Conference on Management of Data, Tucson, May 1997.

[ADAT+99] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E. Culler, Joseph M. Heller-
stein, David A. Patterson, and Katherine Yelick. Cluster I/O with River: Making the Fast
Case Common. In Sixth Workshop on I/O in Parallel and Distributed Systems (IOPADS '99),
pages 10{22, Atlanta, May 1999.

[AFTU96] Laurent Amsaleg, Michael J. Franklin, Anthony Tomasic, and Tolga Urhan. Scrambling
Query Plans to Cope With Unexpected Delays. In 4th International Conference on Parallel
and Distributed Information Systems (PDIS), Miami Beach, December 1996.

[Aok99] Paul M. Aoki. How to Avoid Building DataBlades That Know the Value of Everything and
the Cost of Nothing. In 11th International Conference on Scienti�c and Statistical Database
Management, Cleveland, July 1999.

[AZ96] Gennady Antoshenkov and Mohamed Ziauddin. Query Processing and Optimization in Oracle
Rdb. VLDB Journal, 5(4):229{237, 1996.

[Bar99] Robert Barnes. Scale Out. In High Performance Transaction Processing Workshop (HPTS
'99), Asilomar, September 1999. http://www.research.microsoft.com/barc/hpts99.

[BDF+97] Daniel Barbara, WilliamDuMouchel, Christos Faloutsos, Peter J. Haas, Joseph M. Hellerstein,
Yannis E. Ioannidis, H. V. Jagadish, Theodore Johnson, Raymond T. Ng, Viswanath Poosala,
Kenneth A. Ross, and Kenneth C. Sevcik. The New Jersey Data Reduction Report. IEEE
Data Engineering Bulletin, 20(4), December 1997.

21



[BO99] J. Boulos and K. Ono. Cost Estimation of User-De�ned Methods in Object-Relational
Database Systems. SIGMOD Record, 28(3):22{28, September 1999.

[BVO97] J. Boulos, Y. Vi�emont, and K. Ono. Analytical Models and Neural Networks for Query Cost
Evaluation. In Proc. 3rd International Workshop on Next Generation Information Technology
Systems, Neve Ilan, Israel, 1997.

[DG92] David J. DeWitt and Jim Gray. Parallel Database Systems: The Future of High Performance
Database Systems. Communications of the ACM, 35(6):85{98, 1992.

[DGS+90] David J. DeWitt, Shahram Ghandeharizadeh, Donovan Schneider, Allan Bricker, Hui-I Hsiao,
and Rick Rasmussen. The Gamma database machine project. IEEE Transactions on Knowl-
edge and Data Engineering, 2(1):44{62, Mar 1990.

[DKO+84] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael R. Stonebraker,
and David Wood. Implementation Techniques for Main Memory Database Systems. In Proc.
ACM-SIGMOD International Conference on Management of Data, pages 1{8, Boston, June
1984.

[FGCB97] Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric A. Brewer. Cluster-Based Scal-
able Network Services. In Proc. 1997 Symposium on Operating Systems Principles (SOSP-16),
St-Malo, France, October 1997.

[FMLS99] Daniela Florescu, Ioana Manolescu, Alon Levy, and Dan Suciu. Query Optimization in the
Presence of Limited Access Patterns. In Proc. ACM-SIGMOD International Conference on
Management of Data, Phildelphia, June 1999.

[GC94] G. Graefe and R. Cole. Optimization of Dynamic Query Evaluation Plans. In Proc. ACM-
SIGMOD International Conference on Management of Data, Minneapolis, 1994.

[GMPQ+97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A Rajaraman, Y. Sagiv, J. Ullman, and
J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources. Journal
of Intelligent Information Systems, 8(2):117{132, March 1997.

[Gra90] G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing System. In Proc.
ACM-SIGMOD International Conference on Management of Data, pages 102{111, Atlantic
City, May 1990.

[Gra99] Jim Gray. How High is High-Performance Transaction Processing? In High Per-
formance Transaction Processing Workshop (HPTS '99), Asilomar, September 1999.
http://www.research.microsoft.com/barc/hpts99.

[GWBC99] Steven D. Gribble, Matt Welsh, Eric A. Brewer, and David Culler. The MultiSpace: an
Evolutionary Platform for Infrastructural Services. In Proceedings of the 1999 Usenix Annual
Technical Conference, Monterey, June 1999.

[HAC+99] Joseph M. Hellerstein, Ron Avnur, Andy Chou, Christian Hidber, Chris Olston, Vijayshankar
Raman, Tali Roth, and Peter J. Haas. Interactive Data Analysis: The Control Project. IEEE
Computer, 32(8):51{59, August 1999.

[HBF99] Joseph M. Hellerstein, Eric Brewer, and Michael Franklin. A Storage Manager for Telegraph.
In High Performance Transaction Processing Workshop (HPTS '99), Asilomar, September
1999. http://www.research.microsoft.com/barc/hpts99.

[Hel98] Joseph M. Hellerstein. Optimization Techniques for Queries with Expensive Methods. ACM
Transactions on Database Systems, 23(2):113{157, 1998.

22



[HH99] Peter J. Haas and Joseph M. Hellerstein. Ripple Joins for Online Aggregation. In Proc. ACM-
SIGMOD International Conference on Management of Data, pages 287{298, Philadelphia,
1999.

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing Queries Across Diverse Data
Sources. In Proc. 23rd International Conference on Very Large Data Bases (VLDB), Athens,
1997.

[HSC99] Joseph M. Hellerstein, Michael Stonebraker, and Rick Caccia. Open, Independent
Enterprise Data Integration. IEEE Data Engineering Bulletin, 22(1), March 1999.
http://www.cohera.com.

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc Fiedman, Alon Levy, and Daniel S. Weld. An Adap-
tive Query Execution System for Data Integration. In Proc. ACM-SIGMOD International
Conference on Management of Data, Philadelphia, 1999.

[IK84] Toshihide Ibaraki and Tiko Kameda. Optimal Nesting for Computing N-relational Joins.
ACM Transactions on Database Systems, 9(3):482{502, October 1984.

[INSS97] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. Parametric Query
Optimization. VLDB Journal, 6(2):132{151, 1997.

[KBZ86] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of Nonrecursive Queries.
In Proc. 12th International Conference on Very Large Databases (VLDB), pages 128{137,
August 1986.

[KD98] Navin Kabra and David J. DeWitt. E�cient Mid-Query Reoptimization of Sub-Optimal
Query Execution Plans. In Proc. ACM-SIGMOD International Conference on Management
of Data, pages 106{117, Seattle, 1998.

[Met97] Rodney Van Meter. Observing the E�ects of Multi-Zone Disks. In Proceedings of the Usenix
1997 Technical Conference, Anaheim, January 1997.

[Mit97] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[NGMC98] Shivakumar Narayana, Hector Garcia-Molina, and Chandra S. Chekuri. Filtering with
Approximate Predicates. In Proceedings of 1998 International Conference on Very Large
Databases (VLDB'98), New York, August 1998.

[NWMN99] Kenneth W. Ng, Zhenghao Wang, Richard R. Muntz, and Silvia Nittel. Dynamic Query
Re-Optimization. In 11th International Conference on Scienti�c and Statistical Database
Management, Cleveland, July 1999.

[RPK+99] B. Reinwald, H. Pirahesh, G. Krishnamoorthy, G. Lapis, B. Tran, and S. Vora. Heterogeneous
Query Processing Through SQL Table Functions. In 15th International Conference on Data
Engineering, pages 366{373, Sydney, March 1999.

[RRH99] Vijayshankar Raman, Bhaskaran Raman, and Joseph M. Hellerstein. Online Dynamic Re-
ordering for Interactive Data Processing. In Proc. 25th International Conference on Very
Large Data Bases (VLDB), pages 709{720, Edinburgh, 1999.

[SBH98] M. Stonebraker, P. Brown, and M. Herbach. Interoperability, Distributed Applications,
and Distributed Databases: The Virtual Table Interface. IEEE Data Engineering Bulletin,
21(3):25{34, September 1998.

[Sha86] Leonard D. Shapiro. Join Processing in Database Systems with Large Main Memories. ACM
Transactions on Database Systems, 11(3):239{264, September 1986.

23



[Son98] Eduardo D. Sontag. Mathematical Control Theory: Deterministic Finite-Dimensional Sys-
tems, Second Edition. Number 6 in Texts in Applied Mathematics. Springer-Verlag, New
York, 1998.

[SWK76] M. R. Stonebraker, E. Wong, and P. Kreps. The Design and Implementation of INGRES.
ACM Transactions on Database Systems, 1(3):189{222, September 1976.

[Tho99] Anne Thomas. webMethods B2B Integration Server: Business-to-Business E-commerce
Solutions. Technical report, Patricia Seybold Group, 1999. Available from
http://www.webmethods.com/products/whitepapers/index.html.

[UF99] Tolga Urhan and Michael Franklin. XJoin: Getting Fast Answers From Slow and Bursty
Networks. Technical Report CS-TR-3994, University of Maryland, February 1999.

[UFA98] Tolga Urhan, Michael Franklin, and Laurent Amsaleg. Cost-Based Query Scrambling for
Initial Delays. In Proc. ACM-SIGMOD International Conference on Management of Data,
Seattle, June 1998.

[vECG+92] T. von Eicken, D. E. Culler, S. C. Goldstein, , and K. E. Schauser. Active Messages: A
Mechanism for Integrated Communication and Computation. In Proc. of the 19th ISCA,
pages 256{266, May 1992.

[WA91] A. N. Wilschut and P. M. G. Apers. Data
ow Query Execution in a Parallel Main-Memory
Environment. In Proc. First International Conference on Parallel and Distributed Info. Sys.
(PDIS), pages 68{77, 1991.

[WW94] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible proportional-share
resource management. In Proc. of the First Symposium on Operating Systems Design and
Implementation (OSDI '94), pages 1{11, Monterey, CA, November 1994. USENIX Assoc.

A The Costs of Adaptivity

As observed previously, we favor adaptivity over raw performance in the best case. It is important to note
that adaptivity does come at a cost in resource utilization.

Pipelining always incurs a memory penalty. Even with traditional join algorithms like hybrid hash
joins, a large pipeline of joins has a large memory footprint: for a query on relations R1; :::; Rk, at least

(k � 1)
q
minki=1 jRij memory will be used, or recursive partitioning will be required [Sha86].

Within a single join, pipelining often comes at the expense of additional resource consumption as well.
While hybrid hash join has memory requirements equal to

p
min(jR1j; jR2j), pipelined hash joins like hash

ripple require memory equal to
p
jR1j+

p
jR2j. When memory becomes scarce, the space consumption must

be converted to time via recursive partitioning.
One is not required to pipeline entire query plans, and it is always possible to choose blocking operators

like hybrid hash join. In such scenarios, the reordering may be constrained. For example, if materialization
operators are introduced into the tree, joins below the materialization operator cannot be reordered on the

y to a point above the materialization.

In our initial work, we assume in Telegraph that memory and disk I/O can be spent in exchange for
aggressive pipelining. Part of our reasoning is to maximally exercise our reordering ideas; another idea
is to preserve the opportunity for online aggregation and other \Control" interactions [HAC+99], which
depend on non-blocking operators. We continue to entertain the idea of merging eddies with traditional
static optimization in Telegraph in various ways, but are postponing that decision until we are convinced
that static optimization will solve signi�cant problems that eddies cannot address.

24


