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Abstract

Given a deterministic, non-blocking hybrid system, we introduce the notion of its hybrid
manifold (or hybrifold) with the associated hybrid flow on it. This enables us to study
hybrid systems as (generally non-smooth) dynamical systems from a global geometric
perspective. We introduce the notion of topological conjugacy of hybrid systems and
locally classify Zeno states in dimension two. We show that the Zeno phenomenon
is due to nonsmoothness of the hybrid flow and propose several ways of detecting and
removing it. A stability result, capturing examples such as unstable -|- unstable = stable,
and completely characterizing stable hybrid equilibria in dimension two, is proved in the
last section.

1 Introduction

In this paper we present a unifying approach for treatment of hybrid systems. We define the
notions of the hybrid manifold (or hybrifold) and hybrid flow, which enable us to study the
hybrid system "in one piece", that is, as a single, generally non-smooth dynamical system.
It is well known that even simple smooth dynamical systems can exibit a very complicated
behavior which makes their global study very difficult using analytical methods. This is why
developing qualitative (i.e. geometric and topological) techniques has been at the center of
smooth dynamics, ever since Poincare's foundational work at the end of the last century.

*This work was supported by the NASA grant NAG-2-1039, the Swedish Foundation for International
Cooperation in Research and Higher Education, Telefonaktiebolaget L.M. Ericsson, ONR under NOOO14-97-
1-0946, DARPA under F33615-98-C-3614, and ARC under DAAH04-96-0341.



Having established a reasonable framework for the geometric study of hybrid systems as
dynamical systems, we focus particularly on the Zeno phenomenon^ which does not occur in
smooth dynamical systems. We study its causes, ways of removing it from the system, and
classify it in dimension two. This classification is with respect to the notion of topological con-
jugacy borrowed from dynamical systems: two systems are conjugate if they are qualitatively
the same.

The last section of the paper deals with stability of isolated hybrid equilibria. We prove
a theorem which explains, among others, examples in which a stable hybrid equilibrium is
composed of unstable classical equilibria.

2 Preliminciries

2.1 Definitions and examples

We start with the following, relatively standard definition of a hybrid system.

Definition 2.1 An n-dimensional hybrid system is a 6-tuple

H = {Q,E,T>,x,g,n),

where:

• Q = {1,... , A:} 25 the collection o/(discrete) states o/H, where k > 1 is an integer;

• E C.Q X Q is the collection o/edges;

• V = {Di : 2G Q} is the collection o/domains o/H, where Di C {«} x R" for all i G Q;

• A! = {X,- : 2G Q} is the collection of vector fields such that Xi is Lipschitz on Di for all
i G Q; we denote the local flow of Xi by

• Q= {G(e) : e E E} is the collection o/guards, where for each e = {i-,j) GE, G[e) C Di;

• % = {i2e : e G is the collection o/resets, where for each e = (i,j) G E, Re is a
relation between elements of G{e) and elements of Dj, i.e. Re C G{e) x Dj.

A few remarks are in place here.

Remarks

(a) We choose to differ from the more standard terminology in which domains are called
invariants. Since there is nothing dynamicaly invariant about these sets, we prefer to
reserve the term for later, more appropriate use.
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Figure 1: A hybrid system.

(b) Note that we do not consider the set of initial states as a separate item in the definition
of a hybrid system. This is because we will restrict ourselves to studying only so called
non-blocking systems in which all points can be initial conditions.

(c) The above definition clearly allowsa hybrid system to be a very wild object. An important
question is: what properties should the domains, guards, resets and vector fields in H
satisfy to get a large enough class of hybrid systems about which something useful can
be said. Soon we will deal with this question in detail and focus our attention on such
a class of hybrid systems (which we will call regular).

(d) If a reset relation Re is actually a map G{e) Dj, with e = {i,j) 6 E, instead of
(a:,2/) 6 Re we write y = Re(x).

(e) Observe that domains D,- lie in distinct copies of R'^. However, we will sometimes abuse
the notation and consider the domains as subsets of a single copy of R". We also set

£» = U A,

and call this set the total domain of H, and

G=\jG{e), fl=UA(G(e)),

G = {G(e) :eeE}, = {Re{G(e)) : e £ E}.

(f) To every hybrid system H we can associate its graphs r(H), with elements of Q as vertices
and E as the set of edges.

Given H, the basic idea is that starting from a point in some domain D{ we flow according to
Xi until (and if) we reach some guard G{i,j), then switch via the reset R{i,j)-, continue flowing
in Dj according to Xj and so on.
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Figure 2: The water tank example.

Example 2.1 (Water Tank WT) Here n = 2, k = 2, E = {(1,2), (2,1)},

Di = {l}xC, D2 = {2}xC,

where C = [/i,oo) x [/2, oo),

Xi = (u; - Ui,-V2)^, X2 = {-vuw - V2)'̂ ,

G(l,2) = {(l,a:i,a;2) € A : X2 = h}, G(2,l) = {(2,Xi,X2) e D2 : = /i},

and

^(i,2)(l,2^1, ^2) = (2,a;i,,/2), •R(2,i)(2,/i, 2:2) = (l,/i,a;2).
The interpretation is as follows (cf. Fig, 2). For i ^ Q, Xi denotes the volume of water in

tank 2, Vi is the constant rate of flow of water out of tank 2, and /,• is the desired volume of
water in tank i. The constant rate of water flow into the system, dedicated exclusively to one
tank at a time, is denoted by w. The control task is to keep the water volume above li and
I2 (assuming the initial volumes are above li and I2 respectively) by a strategy that switches
the inflow to the first tank whenever Xi = li and to the second tank whenever 2:2 = h-

Example 2.2 (Bouncing Ball BB) This is a simplified model of an elastic ball that is
bouncing and losing a fraction of its energy with each bounce. We denote by xi its altitude
and by X2 its vertical speed. Here n = 2, A: = l, £" = {(1,1)},

Di - {(2:1,2:2) : xy> 0}, Xi(2;i,2;2) = (2:2,-5')^,

1) = {(0,X2) : 2:2 < 0}, X2) = (0, -0x2),
where g is the acceleration due to gravity and 0 < c < 1 (cf. Fig. 3).

Example 2.3 (Bouncing m-Ball BBim)) The only difference between this and the previ
ous example is that we have m different domains in which the ball can bounce and after each



Figure 3: Bouncing ball.

bounce the ball switches to the next domain in a cyclic order. That is, n = 2, /: = m > 1,
E = {(1,2), (2,3),... ,(m —l,m),(m, 1)}, and for all i € Q,

Di = {i} X{(a:i,a;2) : xi > 0}, G(i,i + 1) = {i} x {(0,2:2) : X2 < 0},

%t+i)(^ 0,2:2) = (2 + 1,0,-0x2),

where we conveniently identify m + 1 := 1. Note that here the domains are just different
copies of the closed right half-plane in R^.

Example 2.4 (Ball Bouncing on an A^-step Staircase BBS[N)) Here a ball is bounc
ing on an TV-step staircase. Assume that step i = 1,... , /^ has width Wi > 0 and height
hi > 0, and define Wm = Slii and hm = Assume also that the ball loses a pro
portional amount of its vertical velocity (^2) with each bounce and that the ball has constant
horizontal speed (xa). Denote by Xi its vertical position. Then we have: Q = {1,... , TV + 1},
E = {(2,2) : 1 < 2< TV + 1} U{(1,2),... , (TV, TV + 1)}, and for 1 < z < TV + 1:

Di = {2'} X[Ai,oo) X(—00,0] X(—oo,u;i],

G(i,i) = {(2:i,X2,X3) G Di : xi = A,}, i2(v)(2,2:1, X2, X3) = (2, Xi,-0x2,2:3)

and Xj^xi,X2,2:3) = (x2, —g,v)^. Furthermore, for 1 < 2' < TV:

G(i,i + 1) = {(xi,X2,2:3) GDi : X3 = loj, %,+i)(2,x) = (i + l,x).

For more details see [JLSM].

Example 2.5 (Two Saddles 52(A)) Here (seeFig. 4) n = 2, A: = 2, A> 0, = {(1,2), (2,1)},
the domains are two copies of the square 5 = [—1,1] x [—1,1], i.e. for 2' G Q,

A-= {2} X5, A'i(xi,X2) = (Axi,-X2)^, A'2(xi,X2) = (-Xi, Ax2)^,

G(l,2) = union of the vertical sides of Di, G(2,1) = union of the horizontal sides of A,

for all {ij] e E.
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Figure 5: T^(a).

Example 2.6 (Flow on the 2-torus T^(o)) We have a > 0, n = 2, A: = 2, F = {(1,2), (2,1)},
Di = {i} XK, where K = [0,1] x [0,1] is the unit square, Xi = X2 = (l,a)^ are constant
vector fields,

G[i,i) = {0 X5upper, G{i,j) = {2} X5right,
%t)(^a;,l) = (i,a;,0) and %j)(2,l,y) = (i,0,t/),

where i,j = 1,2, i ^ j, 5upper = [0? 1] x {1} and 5right = {1} X[0,1) denote the (closed)
upper and (half-closed) right side of K. Note that i2(t,,)({2} x 5upper) = {0 x 5iower and

X"bright) = {i} X5ieft, with the obvious meaning of 5iower and 5ieft.
If we proceed as is usually done in geometry and identify {2} x 5upper with {i} x 5iower ^ia

and {z} X5fight with {j}x5ieft via R{i,j) (where i,j = 1,2, i ^ j), we obtain the standard
2-torus with a smooth flow with slope a on it. This is a baby-version of a construction we will
later apply to more general hybrid systems.

Keeping in mind the examples above, we formally define the notion of an execution of a hybrid
system.

Definition 2.2 A (forward) hybrid time trajectory is a sequence (finite or infinite) r =
if^iervals such that Ij = [Tj,rj] for allj > 0 if the sequence is infinite; if N is finite,

then Ij = [Tj,rj] for all 0 < j < N —1 and /yv is either of the form [ta^,^]^^] or [T/v,Tj(/). The
sequences Tj and rj satisfy: tj < rj = rj+i, for all j.



One thinks of Tj's as time instants when discrete transitions (or switches) from one domain
to another take place. If r is a hybrid time trajectory, we will call N its size and denote it by
N{t). Also, we use (r) to denote the set {0,... , N{t)] if N{t) is finite, and {0,1,2,...} if
N{t) is infinite.

We will say that r is a prefix of an execution t' = {/j}^o N < N' (where the inequality
is taken in theextened real number system), and for 0 < j < A, we have Ij = /j; furthermore,
if T has finite size, then we must also have In C

Definition 2.3 An execution (or forward execution) of a hybrid system H is a triple x =
(r, q,x), where r is a hybrid time trajectory, q : {t) Q is a map, and x = {xj : j G (t)} is
a collection of maps such that Xj : Ij I^q(j) for all t GIj,

Furthermore, for all j G (r), we have

+ 1)) € E, Xj(T'j) GG{q(j),q(j + 1)),

and

For an execution x = denote by Too(x) its execution time:

Nir)

To-
. « j-*N{T)
j=o

Definition 2.4 An execution x Is called:

• infinite, if N(t) = oo or roo(x) = oo/

• a Zeno execution if N{t) = oo and Too(x) < oo/

• maximal if it is not a strict prefix of any other execution o/H.

The last statement means that there exists no other execution x' = q\ ^') such that r is
a strict prefix of r' and x = x' on r (in the sense that Xj = x'j on Ij for all j G(t)).

Note that in Examples 2.1 (WT), 2.2 (BB) and 2.3 (BB(m)) every execution is Zeno. The
same can be shown for Examples 2.4 (BBS{N)) if 0 < c < 1 and 2.5 (52(A)) if 0 < A < 1.
On the other hand, every execution in Example 2.6 (T^(a)) is infinite with infinite execution
time.

We say that an execution x = starts at a point p G D if p = xo(to) and tq = 0. It
passes through p if p = Xj(t) for some j £ (t), t E Ij, t > tq.

Given p G D, it is not difficult to see that there are many ways in which a hybrid system
can accept several executions starting from or passing through p. For instance, this happens
if at least one of the resets is a relation which is not a function.

= Vim r',-



Definition 2.5 A hybrid system is called deterministic if for every p G D there exists at most
one maximal execution starting from p. It is called non-blocking if for every p E D there is
at least one infinite execution starting from p.

Necessary and sufficient conditions for a hybrid system to be deterministic and non-blocking
can be found in [LJSE]. Roughly speaking, resets have to be functions, guards have to be
mutually disjoint and whenever a continuous trajectory of one of the vector fields in X is
about to exit the domain in which it lies, it has to hit a guard.

2.2 Standing assumptions

From now on we will assume that every hybrid system H = (Q,E^V^X^Q^IVj in this paper
satisfies the following assumptions.

(Al) H is deterministic and non-blocking.

This means that every point in D is the starting point of a unique infinite (and therefore
maximal) execution of H.

(A2) Each domain Di is a contractible n-dimensional smooth submanifold o/R", with
piecewise smooth boundary. No two smooth components of the boundary meet at a zero angle.

Recall that a space is contractible if it can be shrunk to a point (or more formally, if it
is homotopically equivalent to a point). Note that this implies that the domains are con
nected. A manifold is called piecewise smooth if it is the union of finitely many smooth pieces.
By smooth we will mean of class unless specified otherwise.

The non-zero angle requirement eliminates, for instance, cusps in dimension two, but does
not eliminate "corners". Thus for domains of a hybrid system we allow disks, half-spaces,
rectangles, etc.

(A3) Each guard is a piecewise smooth (n —\)-dimensional submanifold of the boundary
of the corresponding domain. The boundary of each guard is piecewise smooth (or possibly
empty).

(A4) Each reset is a piecewise smooth homeomorphism onto its image. The image of
every reset lies in the boundary of the corresponding domain.

Recall that a map / between (piecewise) smooth manifolds M and N is called piecewise
smooth if M can be decomposed into finitely many pieces such that / is smooth on each one
of them.

(A5) Any sets m ^ U7^ (i.e. closures of guards and images of resets) can intersect only
along their boundaries. Furthemore, if p £ G U R, then p can be of only one of the following



Figure 6: p,- is of Type (Roman) i (1 < 2 < 4).

four types (cf. Fig. 6):

Type I ; p € int G U int R;

Type II : p€ dG U dR and there exists exactly one set S E Q UR which contains p;

Type III ; p G dO U dR and there exist sets 5i,... , 5/ G Q UR (I > 2) such that p G
dSi n ... n dSi and some neighborhood of p in SiU .. .U Si is homeomorphic to R"~^;

Type IV ; p G dO U dR and there exist sets 5i,... ,5/ G Q UR (I > 2) such that p G
dSi n ... n dSi and some neighborhood ofp in SiU .. .U Si is homeomorphic to R"~^.

Assumption (A5) ensures that intersections of guards and images of resets (that is, their clo
sures) are sufficiantly nice. This in particular means that the configuration around ps in Fig.
6 is not allowed.

(A6) For all e = (i, j) € E, Xi points outside Di along G(e), and Xj is points inside Dj
along im Rg.

This means that if p GG(i, j), q = /?(,j)(p), then there exists e > 0 such that (l>Lt(p) ^ intZ),-
and (f>t(q) € intDj, for all 0 < << e, where int denotes the interior of a set. In particular, we
have that Xi is transverse to the smooth part of G(e) and Xj is transverse to the smooth part
of im Re, the image of the map Re.

(A7) Each reset map Re extends to a map Re defined on a neighborhood ofG{e) (the clo
sure of G(e)) in D, such that Re is a piecewise smooth homeomorphism onto its image, which,
in turn, is a neighborhood of im Re in Dj. Each vector field X, can be smoothly extended to a
neighborhood of Di in {2} x R".



The last one is a fairly technical assumption the need for which will become apparent later.
Note that all the examples provided above satisfy this (as well as all other) assumptions. For
instance, in Example 2.2 (BB), we can take ^(i,i)(a;i,a:2) = (xi, -0x2).
Definition 2.6 Ahybrid system which satisfies assumptions (Al) - (A7) will be called regular.
Given H, define a map

: Ho ^ D,
(where CIqCRxD will be specified later) as follows. hetpE Dbe arbitrary. Because of (Al),
there exists aunique infinite execution x{p) = (t,q, x) starting at p. For any 0< ^< roo(x(p))
there exist a unique j eQ such that t G[tj, t-). Then define

^^(t,p) = Xj{t).
To define $^(]i,p) for negative i, set

$«(i,p) = $«'(-<,p),
where H' is the reverse hybrid system [Q',E',V,G',%') defined by:

Q' = Q,V = V,X[ = -Xi for all i G Q;

(i,j) GE' if and only if (jfi) GE\

• for all e = {i,j) GE', G'[e) = %i)(G(j,0) and R'̂ = R-\

It can easily be checked that H' satisfies (Al) - (A7) ifH does.

Let Clo be the largest subset of R x D on which is defined.

For instance, in Example 2.2, for any p^ 0, ^^^(i, p) 0, as i 7-oo(x(p)), where x(p) is
the unique infinite execution starting at p. Note, however, that x(®) makes no time progress,
i.e. Tj = 0for all j > 0, but it involves infinitely many switches at the same, i.e. initial point,
which happens to be fixed by the reset map.

Theorem 2.7 (a) Qq contains a neighborhood of{0} x int D in Rx D.

(b) For all p £ D, $^(0,p) = p. Furthermore,

whenever both sides are defined.

Proof, (a) If p Gint Di, then since A,- is Lipschitz on Z),-, t 1—> <f>t{p) is defined on a neigh
borhood of0. Furthermore, there exists a neighborhood 7/ ofp in int D,- and c > 0 such that
for each p E. U,1isdefined on (—e, e). Thus (—e, e) x f/ is a neighborhood of (0,p)
in R Xint D,-. This proves (a).

(b) The first statement in (b) is clearly true. The second one follows from (Al). •
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3 The hybrid manifold and hybrid flow

The basic idea in construction of the hybrid manifold from a hybrid system is simple: "glue"
the closure of each guard to the image of the corresponding extended reset via the extended
reset map. We make this more precise below and then show basic properties of the newly
constructed object.

3.1 The hybrifold

Let H be a regular hybrid system. On D let ~ be the equivalence relation generated by

P ~ fie(p)>

for all e G and p G G{e). Collapse each equivalence class to a point to obtain the quotient
space

A/h —D/ ^ .

Definition 3.1 We call Mh the hybrid manifold or hybrifold ofH.}

Denote by tt the natural projection D -» Mr which cissigns to each p its equivalence class
p! Put the quotient topology on Mr. Recall that this is the smallest topology that makes
TT continuous, i.e. a set V C Mr is open if and only if 7r~^(V) is open in D.

Define the hybrid flow of H,
: n ^ Mr,

by
^"(f,7r(p)) = 7r$"(f,p).

Here Ct = {(f, 7r(p)) : {t,p) G Do}. In other words, orbits of are obtained by projecting
orbits of by tt. By the $^-orbit of p we mean the collection of points for all
possible t (i.e. all t such that (t,p) G Do).

Let us run this construction on some of the examples listed above.

Example 3.1 {WT continued) Without loss we assume that li = I2 = 0. To obtain Mwt
we have to identify the xi-axis from Di with the same axis from D2 via R(i,2) and similarly
with the a:2-axis.

It is not difficult to see that Mwt is homeomorphic to (see Fig. 7). However, Mwt
has a singularity (or "corner") at 0 = 7r(l,0,0), i.e. tt does not define a smooth structure on
Mwt- Note that every execution starting at x ^ 0 converges to 0.

Example 3.2 (BB continued) Here we have to identify the negative part with the positive
part of the X2-axis. The resulting space Mbb is again homeomorphic to (see Fig. 8), but
TT again does not define a smooth structure on it. As in the previous example, —> 0,
as f >Too(x(2^))7 lor all x 7^ 0.

^The authors thank Renaud Dreyer for suggesting the term hybrifold. The term "manifold" will be justified
by Theorem 3.2.
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Figure 7: Hybrid manifold and on orbit of the hybrid flow for WT.

Figure 8: Hybrifold and an orbit of the hybrid flow for BB.

Example 3.3 {BB{m) continued) For simplicity assume m = 2. Then we see from Fig. 9
that Mbb{2) is smooth and diffeomorphic to R^. However, the hybrid flow is not smooth.

Example 3.4 (•S'2(A) continued) Ms2{x) ishomeomorphic to the 2-sphere; it isnot equipped
with a smooth structure by tt.

Example 3.5 (T^(q) continued) We already observed that M'r2^a) is the standard 2-torus
and is a smooth linear flow on it. If a is rational, then every orbit is closed; if a is
irrational, then every orbit is dense in T^.

The following theorem establishes some basic properties of the hybrid manifold.

Theorem 3.2 (a) Mn defined above is a topological n-manifold with boundary.

(b) Both Mil o,nd its boundary are piecewise smooth.

(c) The restriction 7r(int D) is a diffeomorphism.

Recall that M is called a topological n-manifold with boundary if it is Hausdorff and every
point in M has a neighborhood homeomorphic to either R" or the closed upper half-space
r:^ = {(xi,... ,Xn) : Xn > 0}. Points having the latter property are said to be on the bound
ary dM, which is a topological (n —l)-manifold.

12
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Figure 9: Hybrifold and an orbit of the hybrid flow for BB{2).

Proof of the Theorem: (a) Recall that the quotient of a manifold M by an equiva
lence relation p is Hausdorff if and only if the graph of p is closed in M x M. In our case, the
graph of is

{(p,p ):p~ p} = Ad U|J{(p,Re(p)) :P€ G(e)},
bEE

which is easily checked to be closed. Here Ad = {(p,p) : P € D} is the diagonal of D x D.
This shows why in the definition of we needed to identify p and Re(p) not only for

p € G(e)^ but also for p € dG(e), since G(e) may not be closed (in which case Mh would not
necessarily be Hausdorff); this is why we had to use the maps Re.

We sketch the rest of the proof of (a) when n = 2. In higher dimensions the proof is
similar, but much more cumbersome to write.

Assume x 6 Mh- We need to show that there exists a neighborhood of x in Mr which is
homeomorphic to or R^.

Let X= 7r(p), for some p ^ D. If p is not identified with any other points, i.e. if it is not in
G U R, then either p 6 int jD or p 6 dD —(GU R). In the former Ccise, p has a neighborhood
V contained in the interior of a single domain, homeomorhic to R^; since tt is 1-1 on V, 7^{V)
is homeomorphic to R^. In the latter case, p has a neighborhood W contained in a single
domain, disjoint from GUR and homeomorphic to R^. Since tt is 1-1 on W (nothing in W
gets glued to anything else), 7r{W) is homeomorphic to R^. This completes the case when p
is identified with no other points.

13



If p G G U i2, then according to (A5) we must consider the following four cases (cf. Fig.
10):

Case 1: p is of Type I. Then there exists a unique e = (i,j) € E such that either p G
int G{e) or p G int(imi?e)- Without loss we can assume the former. Then p is identified
with p' = Re{p)\ note that 7r~^(a:) = {p,p'}. There exist neighborhoods V (in Di) and
V (in Dj) of p and p' respectively, homeomorphic to and (the closed lower half
plane), respectively. If U = T^iV UV) and V and V are small enough, it is not difficult
to show that U is homeomorphic to R^. Thus x Gint Mh-

Case 2: p is of Type II. Then p is on the boundary of exactly one set 5 G GU i2. Without
loss we may assume S = G(e) for a unique e = (i^j) G E. Then p gets identified
with (a unique point) p' = Rt[p) € d{im Re); observe that 7r~^(a:) = {p,p'}. There
exist neighborhoods V (in £),) and V (in Dj) of p and p' respectively, homeomorphic to
R+ and R?. (the closed lower half plane), respectively. Note that only a proper subset
of the boundary of V is identified with a proper part of the boundary of V. So, if
U = 7r(y U V), and V and V' are small enough, it is not difficult to show that U is
homeomorphic to R^. Thus x GdMn-

Case 3: p is of Type III. Then there exist sets 5i,... , 5/ G Q UlZ with I > 2 such that
p G dSi n... n dSif and there exists a neighborhood W of p in U... U5; homeomorphic
to R. Clearly, we must have 1 = 2.

The sets and S2 are both contained in the same domain, say D,,. Assume that
7r-i(a:) = {pi,... ,p,„}, wherepi = p, andpj GDi-. Let ej = (ij,ij+i) if j = 1,... ,m-l
and Cm = {im->H)' Without loss we may assume that

=imi2em» 'S2 = G(ei),

and

imi2ej_, nG(ej) = {pj},

for j = 2,... , m. Each point pj is also of Type III, so for each j there exists a neigh
borhood Wj of Pj in im Rej^i UG(ej) (with Wi = W) such that Wj is homeomorphic to
R. We can than find a neighborhood Vj of pj in Di^ such that Vj DdDij = Wj and Vj
is homeomorphic to R^. Note that not all Cj's have to be in E, i.e. represent allowed
discrete transitions. However, by (A5) only be the following two cases can occur:

• If Cj G £• for all j = 1,... , m, then U = 7r(Vi U ... U Vm) is a neighborhood of x
homeomorphic to R^ and hence x Gint Mh-

• If one tj is not in E, then U = 7r(Vi U ... U V} U ... U Vm) is a neighborhood of x
homeomorphic to R^. Thus x GdMn. Here denotes omission.

Case 4: p is of Type IV. Impossible if n = 2.
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Figure 10: Proof of Theorem 3.2.

Case 2

Pi Pz

This completes the proof when n = 2. •

Remark. It needs to be pointed out that in dimensions greater than two a hybrid manifold
can be a very complicated object, as one can realize by trying to imagine Mbbs^n)- However,
it enables us to study the dynamics of a hybrid system on a single phase space. Advantages
of this fact will become apparent soon.

If c : [0,1] —> Mh is a smooth curve contained in 7r(int /),-) for some i ^ Q, define its
arclength by

Jo

where Tn denotes the tangent map (i.e. the derivative) of tt. This makes sense by part (c)
of Theorem 3.2. If c is a piecewise smooth curve in Mh, e.g. c = Cj with Cj smooth (and
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contained in the projection of the interior of a single domain), define

i{c) = 5^%).
i

Define a distance function on Mh,

dn '• Mn X Mh —> R,

by: for x,?/ G Mh, let dii{x^y) be the infimum of i[c) where c : [0,1] Mh is an arbitrary
piecewise smooth curve such that c(0) = rc, c(\) =y. Then we have:

Theorem 3.3 (Mh, dn) is a metric space and it is a piecewise isometry. The topology induced
by dn coincides with the quotient topology on Mh-

Proof: That (MH,dH) is a metric space is a standard fact from the theory of piecewise
smooth manifolds. That tt is a piecewise isometry follows from the definition of da- Namely,
for each i G Q, : int Di -> 7r(int Di) is an isometry.

That dn-topology coincides with the quotient topology on Mh is also immediate by defi
nition of dn- •

3.2 The hybrid flow

Next we establish some basic properties of the hybrid flow.

Let ^ := be the hybrid flow of H, as defined above. For each <G R and x G Mh, let

M{t) = {y G Mh : ^(t,y) is defined},

and

J{x) = {s G R : is defined).

Observe that if a; = 7r(p), then J(x) n [0,oo) = [0, Too(x(p))). Also, for t > 0, M(t) contains
all points x = 7r(p) such that Too(x(p))) > L As usual, x{p) denotes the unique execution of
H starting at p.

If M(t) is not empty, denote by : M(t) Mh the time t map of defined by

Recall that a function (in particular, vector field) is said to be smooth on a closed set F if
it is the restriction of a smooth function defined on a neighborhood of F. Then we have the
following theorem.

Theorem 3.4 Suppose each vector field X in X is smooth (in addition to being globally
Lipschitz). Then:

16



(a) For each x G Mh the map t i-> is continuous and, if J(x) is not a single point,
piecewise smooth on J(x). More precisely, it is smooth except at (at most) countably
many points in J{x).

(b) Each map is injective.

(c) Whenever both sides are defined:

(X) =

(d) There is an open and dense subset of H on which ^ is smooth.

Proof: (a) Let x = 7r(p) for some p £ D. Let x(p) = be the unique execution of H
startingat p (i.e. tq = 0and a:o(0) = p). Recall that for positive t, = 7r$^(t,p) = nxj{t),
if t G[tj,Tj). Thus it is enough to check continuity of t at rj = Tj+i, for j >0. But
recall that t >->• is continuous from the right, with discontinuities of the first kind only
at Tj, j > 0. Since Xj{Tj) G G and

= 7r(x,+i(rj+i))

for all j > 0, it follows that

lim = lim TTXj{t) = Trxj+i(Tj+i) =

which shows that t is continuous on J(x) fl [0, oo).
Continuity of i i-> for negative t follows by observing that (x) (t > 0),

where H' is the reverse hybrid system to H.
The extreme case when J{x) = {0} happens when x = 7r(p) for some p € D such that:

P e G(eo), Pi = Reo(p) G G(ei), p2 = ReAPi) ^ G{e2), etc.,

for a sequence eo,ei, 62,... in E. Then 11-)- ^f(a:) is trivially continuous.
Assume now that J{x) is not a single point. With the notation as above, we have that for

Tj <t< Tj,

^^f(a:) =TniXg^j^ixjit))),
which proves that 1^t(a;) is piecewise smooth. Here Ttt denotes the tangent (or derivative)
map of TT. It is defined at Xj{t) because Xj(t) GintZ) for Tj < t < rj and tt is smooth on int D.

(b) Injectivity of follows directly from uniqueness of executions through any point.

(c) Follows from the analogous property of

(d) For a proof of this fact see [LJZS]. •
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Figure 11: Flow in topologically conjugate to

4 Conjugacy of hybrid systems

In this section we discuss the following question: when are two hybrid systems qualitatively
the same? For that purpose we borrow the notion of conjugacy from the theory of dynamical
systems. Roughly speaking, two dynamical systems are conjugate if their phase portraits look
qualitatively (or topologically) the same. Similarly, two hybrid systems are conjugate if their
hybrid flows are conjugate. We now make this more precise.

Definition 4.1 Two hybrid systems Hi and H2 are said to be topologica.lly conjugate (de
noted by Hi w H2 j if there exists a homeomorphism h : Mhi Mh9 which sends orbits of

to orbits of^^'^.
If Mhi Mh2 happen to be smooth manifolds of class (r > \) and h is a

diffeomorphism, then Hi and H2 are said to be C-conjugate.

As usual, by the orbit of a point x under a (local) flow {<t)t} we mean the set of points <f>t(x)
for all t for which is defined.

We usually think of /i as a change of coordinates so that two hybrid systems are topologi
cally conjugate if their hybrid flows are the same up to a continuous coordinate change.

Note that conjugacy does not necessarily preserve the time parameter t. If it does, it is
called equivalence.

Example 4.1 WT is topologically conjugate to BB. This can be seen in the following way.
Assume Mwt is embedded in in such a way that its "origin" coincides with the point
(0,0,0) and Mwt lies entirely in the upper half space R^. Let P be the plane 2:3 = 0 and let
h : Mwt P he the orthogonal projection. Then h is a homeomorphism which sends orbits
of to the orbits of the flow in Fig. 11.

By smoothing $ along the y-axis, we get that it is topologically conjugate to a (smooth)
spiral sink at the origin, e.g., the flow of the linear vector field corresponding to the matrix

-1 -1

1 -1
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Similarly, we obtain that is topologically conjugate to the flow of A. Since conjugacy
is an equivalence relation, we get that WT « BB, as claimed. We will see later that in
dimension two this picture is typical.

Example 4.2 T^(l) is not conjugate to T^(\/2). Even though the hybrifold for both hybrid
systems is the same (the 2-torus), every orbit ofT^(l) is closed, while every orbit ofT^(V5) is
dense in T^. Since conjugacy always sends closed orbits to closed orbits, the statement above
follows immediately.

Example 4.3 Suppose < 0 < pi for i = 1,2, and ai ^ or ft ^ ft. Let A,- = diag(a,•,/?,).
Then the flows of Ai and A2 both have a saddle at the origin of and are topologically
conjugate. However, they are not smoothly conjugate, because if they were, it is not difficult
to check that their corresponding eigenvalues would be the same.

Ideally, one would like to be able to classify all hybrid systems up to topological conjugacy
(smooth conjugacy being too strong a notion). Unfortunately, this attempt fails even for
smooth dynamical systems on compact boundaryless manifolds of dimension greater than
two, as can be seen in the standard dynamics literature (for instance, [PdM]). However, it
turns out that it is possible to obtain a fairly detailed picture of the local behavior of 2-
dimensional hybrid flows near a point called Zeno state. We will show this in Section 6. In
the next section we investigate such points.

5 w-limit sets and the Zeno phenomenon

It has to be pointed out that Zeno executions do not arise in physical systems and are a
consequence of modeling over-abstraction. Therefore, one wishes to avoid such executions.
However, from a mathematical viewpoint, the Zeno phenomenon poses several interesting
questions: for instance, what is its topological cause? Is there a checkable criterion which
guarantees the non-occurence of Zeno? How should the original system be modified to remove
Zeno executions? In this section we show that, in short, the topological cause of Zenoness is
a lack of smoothness in the hybrid flow and that the Zeno phenomenon can be removed by
smoothing out the hybrifold and the hybrid flow on it.

Since we would like to study the long term behavior of executions of hybrid systems, we
define the following notion (keeping the previously introduced notation).

Definition 5.1 A point y € Mu is called an cj-limit point of x £ Mh if

y= lira
m-^oo

for some increasing sequence (tm) in J(x) such that tm —>• Too(a:), as m 00. The set of all
(jj-limit points of x is called the uj-limit set of x and is denoted by uj(x).
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By Too (a;) we denote the execution time of the unique execution of H starting from where
X = 7r(p); that is, Too(a;) = Too(x(p))- is easy to check that this is a well defined element
of the extended real number system. In other words, w-limit points for x are accumulation
points of the orbit of x.

Suppose X € Mh and denote by Eoo{x) the set of discrete transitions which occur infinitely
many times in the execution starting from x. If Eoo(x) is empty, then the orbit of x eventually
ends up in a single domain Di (that is, its image under tt in the hybrifold) in which case

w(a:) C 7T(Di),

This means that every point y Gu;(a;) is an accumulation point of the orbit of a single vector
field, namely Xi. We will call such a point y, a pure (jj-limit point.

If Eoo(x) is nonempty, then every w-limit point for a: is a result of both the continuous and
discrete (i.e. hybrid) dynamics of H and will accordingly be called a hybrid u-limit point of
X.

Theorem 5.2 For every x G Mh, ijv{x) is invariant with respect to the hybrid flow. That is,
if y ^ (jj{x), then

for all t E J{y).

Proof: See [LJZS]. •

5.1 Properties of Zeno executions

A special case of an w-limit point is a Zeno state:

Definition 5.3 A point z GMh is called a Zeno state for x if z E (jj{x) and Too(a:) < oo.

We will also refer to points in as Zeno states in H.
For example, the "origin" of Mwt (as well as Mbb and Mbb(2)) is a Zeno state for every

pointf. Moreover, for each x, a;(a:) contains only one Zeno state. We now show this is always
the case.

Theorem 5.4 If the execution starting from x G Mh is Zeno, then uji^x) consists of exactly
one Zeno state for x and

w{x) C Pi T(G(e)). (1)
e€£oo(a:)
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Proof: Let -p E 7r~^(a:) be arbitrary and, as before, let x(p) = be the unique
execution starting from p. For j > 0, let Aj = 7r(a;j(/j)), Then Aj is an arc in 7r(Dg(j)) of the
^^-orbit of X. Since X '̂s are bounded along x(p) (cf. [ZJL]) and x(p) is Zeno, we have that

oo

< °°>
J=o

where \Aj\ is the length of Aj. Therefore, A = jj^- Aj is a bounded set and hence it has an
accumulation point, 2. Clearly, z and 2 is a Zeno state for x.

Suppose there exists another accumulation point of A or equivalently, another Zeno state
z' for X. Then we have:

2 = lim (a:), z' = lim (i),
m-¥<x> m—

for some increasing sequences {tm) and (t!^) in J{x) such that tmyt'm 7-00(2?), as m 00. If

2?Tn = ^ ~ ^

for some jmij'm 00, we obtain:

CO

as m 00. Thus z = z'. This completes the first part of the proof.
To show (1), let uj{x) = {2}, and let e = (i,j) E £^00(2?). Then there exists a sequence

(a;,„) of points in Di such that: Xm is on the forward orbit of x and Xm —> 2 as m —>• 00. Thus:
2 E TT(Di). Similarly, 2 E Tr(Dj). But 7r(Z),) fl 7r(Z)j) C 7r(G(e)), so 2 E 7r(G(e)). Since this
holds for all e E i?oo(2?), the proof of (1) is complete. •

Note than in all the Zeno examples above none of the flows involved in creating the Zeno
state has an equilibrium at the Zeno state. The following lemma shows that this is not a
coincidence.

Lemma 5.5 A Zeno state is not an equilibrium. More specifically, if z ^ Mh is a Zeno state,
then for every p E i^~^(z), if p ^ Di, then Xi(p) ^ 0.

PROOF: Let 2 be a Zeno state for x. Consider the lift of the orbit of a: by tt to D and let us
concentrate on its "trace" in a particular domain which it visits infinitely often.

More precisely, there exist j 6 Q, e = = {jfi') E E and p» E Dj such that
7r(p») = 2 and

p. E im n G(e').

Furthermore, there exists a sequence (pm) in im Re converging to p», and a sequence (tm) of
positive numbers such that:

00

qm = € G{e') and Too = ^tm < 00.
m—O
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Recall that {(^J} is the (local) flow ofthe vector field X Xj on Dj.
Let Am be the arc tangent to X and connecting pm and qm (i.e. Am is the X-orbit of

and denote by \Am\ its length. Finally, let K C Dj be a compact set containing and Am
for all m > 0. It exists, because pm p*-> ^ rn oo.

The intuition is as follows: we start from po? flow by time /q to when we reach the guard
G{e') and are taken outside of Dj by a reset. We enter Dj again at pi, flow by time ti until
we reach ^i, etc.

To complete the proof, assume p* is an equilibrium for X. Then <14(p*) = p* for all <€ R.
If p € Am^ then p = (l>t(pm) for some 0 <t < tm, so we have:

II^(P)II = II^(P)-^(P.)II
< iiip-p.ii
= - ^,(p.)\\

where L is the Lipschitz constant ofX and C = L max{||Z)<^J(9)|| : 0 < << Too, ^ GA'} < oo.
From this inequality we get that

:= max ||A:(p)| < C\\p„ - p.],

for all m > 0.

Next observe that

\Am\ ^ im IIA [|^^,

SO I^tml/IIATII^^ —>• 0, as m —oo. However, by the non-zero angle requirement in (A2), there
exists a constant a > 0 such that \Am\ > a \pm - p*||, for all m > 0 (cf. Fig. 12). Thus:

- c

a contradiction. Therefore, X(p^) ^ 0. m

Example 5.1 (equilibrium -f cusp = Zeno) Consider the following one-domain hybrid
system:

D = {(a:,y) G : p > 0, -f{y) <x< f(y)}

G = {{-f{y),y) : y > 0}, R{-f(y),y) = (/(cp),cp),
X(x,y) = (-x - p,x - p)^.

Here 0 < c < 1, / : [0, oo) [0, oo) is a smooth function such that /(O) = 0 and for all p > 0,

/(y) < y^-

In particular, f'{0) = 0, which means that D has a cusp at 0.
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fc = <MJPm)

Figure 12: Lemma 5.5.

The vector field X has a spiral sink at the origin, and the time t map of its flow is the
composition of the counterclockwise rotation by t (in radians) and contraction by e~^

Let po be an arbitrary nonzero point on the right side, 5, of D and let x tke execution
starting from po. Let {pm) (a sequence) be the intersection of x with 5; let pm = {f{ym)^ym)-
Let tm be the time it takes for the positive X-orbit of pm to reach G. Then:

Ibm+ill = ce-'"l|p„||,

so
m—1

Ibmll = c"" exp - ^ IIpoII, and y^n < yo-
t=0

Let be the angle between the line Qpm and the positive y-axis and ym the angle between
the positive y-axis and the line OpJ„, where p'̂ ^ is the intersection of the positive X-orbit of
Pm and G. Then

t-m — "I" ym ^ —2 arctan
/(ym) < 2ym < 2c"^ yo.

Therefore, converges and 0 is a Zeno state despite the fact that it is an equlibrium for
X. This shows the importance of geometry of domains and assumption (A2).

Before we proceed, we need to remind the reader of the following flow box theorem for
smooth flows. Namely, cissume that X is a smooth vector field on an open set U C R", p € U
and X{p) ^ 0. Then there exists a neighborhood V of p in C/ (called a flow box for X at p)
such that on V the flow of X i smoothly equivalent to the flow of the vector field i.e. the
flow

{t,Xi,... ,Xn) •-> (Xi -\-t,X2,... ,X„).
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Figure 13: Zeno state at a cusp which is an equilibrium.

This means that in a neighborhood of any of it nonsingular points, the flow of a smooth vector
field has a particularly simple form.

Now we can prove the following theorem.

Theorem 5.6 Suppose H is a hybrid system such that its hybrid flow is smooth. (This
in particular means that its hybrifold Mn is smooth.) Then H admits no Zeno executions or
equivalently, there are no Zeno states in Mn.

Proof. Assume the contrary and let 2r G Mh be a Zeno state for some point x. Since
the hybrid flow is smooth, it is generated by a smooth vector field on Mh, which we
denote by X. By Lemma 5.5, X{z) ^ 0. Therefore by the flow box theorem, is trivial
in a neighborhood of 2, which implies that 2 = But then is clearly defined
beyond the Zeno time Too(a:), which is impossible. •

In general it may not be easy to check whether, given H, the hybrifold Mh is smooth.
Even if it were, non-smoothness of the hybrid flow may cause Zeno (cf. BB(2)). However,
the following result provides an easily verifiable criterion for smoothness of

Theorem 5.7 Suppose that Mh is smooth and for every e = {i^j) G E, Xi and Xj are
Re-related on G{e). That is, for every p G G[e):

TRe{Xi{p)) = X^(Re{p)). (2)

Then the hybrid flow is smooth.

Proof: Define a vector field Y on Mh as follows. If x G Mh, then x = 7r(p) for some p G D,-.
Set

Y(x) = Ti:(Xi{p)).

We will show that Y is well defined.
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If p is not in GUi? (i.e. ~ is a singlepoint), then there is no ambiguity in the definition
ofy(a;).

If p € GUi?, then the ambiguity arises because p is identified with some p' via an extended
reset map. Assume that p € G(e) for some e ^ E and let p' = Re{p). Since tt o Rg = ir, {2)
and the chain rule yield

Tn(Xj{p')) = TirTR,{Xi(p))
= T(it o R,){Xi(p))
= Tir(Xi(p)).

Therefore, Y is well defined.
Next we show that Y is smooth. Let X the vector field on D which coincides with Xi on

Di for all 2 G Q. Since D,'s are mutually disjoint and each Xi is smooth, X is smooth. The
assumption that Mn is smooth means, in particular, that the projection tt is smooth. By
definition of y, the vector fields X and Y are 7r-related. Therefore, since X and tt are smooth,
so is y.

Smoothness of now follows directly from the fact that Y generates it, i.e.:

for all X G Mh-

d

dt
«-«(!) = K(i),

Example 5.2 Consider Here we have:

Xi{xuX2) = (x2,-g)^ = X2, R{ij){i,XuX2) = (j,a:i,-ca:2),

where {i,j) = (1,2) or (2,1). Therefore,

TR^,a)iXl) = (x2,cgf

SO the hybrid flow for BB{2) is not smooth, as we already knew.

Example 5.3 It is not difficult to check that in case of T^(a)^ (2) is satisfied for every a > 0.
Thus T'^(a) does not admit Zeno, as was already shown above.

Corollary 5.8 IfH is a hybrid system satifying condition (2), then H accepts no Zeno exe
cutions.

Next we discuss two ways of removing Zeno from a hybrid system. They are: smoothing
and suspension.
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Figure 14: Smoothed water tank

5.2 Removal of Zeno

Suppose that H is a regular hybrid system and that 2 € Mh is a Zeno state. We have seen
that Mh in a certain sense has a singularity at z. Consider the following ways of removing
such singularities.

Smoothing. Suppose that Mr can be equipped with a smooth structure which induces the
same topology as the original one and denote the smoothed hybrifold by (cf.
Fig. 14). Note that Mr and are homeomorphic. It is not guaranteed that the
hybrid flow will be smooth on If, however, is smooth with respect to
the differentiable structure on then Theorem 5.6 implies that there are no Zeno
states in We say that we have removed Zeno by smoothing.

Hybrid suspension. ^ The basic idea is to "interpolate" executions between guards and
images of corresponding resets, i.e. to make "instantaneous" discrete transitions given
by reset maps "last" some time e. The constructions goes as follows. Let e > 0 be
arbitrary and assume e = (i, j) € E. Instead of gluing G{e) to im via
enlarge the domain Di by

and then identify

D\ - Di U(G(e) X [0,e]),

(p,e) - Re(p),

first

for every p G G(e). Denote the space obtained by this identification for all e'e E by
S^Mu and by tt' thequotient (i.e. identification) map. On each G(e) x [0, e], consider the
trivial "vertical" flow: {p,s,i) h-)- (p,5+i) [p GC?(e), 0 < s < e, <GR). Denote by
the flow on S^Mn obtained by projecting via tt^ this flow (for each e G£^) as well as
We will callS^Mu the c-suspended hybrid manifold and the associated e-suspended
hybrid flow (see Fig. 15). (This construction resembles the standard suspension of a
map; cf. e.g. [PdM].)

It is immediate by construction that for ever e > 0, accepts no Zeno-type execu
tions.

"We thank Morris W. Hirsch for suggesting this idea in a recent conversation.
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suspension of i?(2,i)

suspension of -R(i,2)

Figure 15: e-suspended water tank S^Mwt-

6 Classification of Zeno states in dimension two

We show that in dimension two, every hybrid flow near its Zeno state locally looks like the
hybrid flow of WT near 0.

Theorem 6.1 Let H be a 2-dimensional hybrid system and suppose that z G Mh is a Zeno
state. Then there is a neighborhood U of z in Mh and a neighborhood V of 0 in Mwt such
that ^^It; is topologically conjugate to

Proof: Let 2 be the Zeno state for some xq G Mh, and denote by xo the execution starting
from Xq. Assume

1T-\z) = {21,... ,2/},

and Zj G Dj (if this is not the case, reorder the domains). We can, without loss, zissume that
the execution Xo = 7r"^(xo) visits Di, D2,... , A, ^1, A, ••• respectively.

Denote

Aj = im Bj = G{jJ + 1),

so that Zj GAjfl Bj (1 < j < I). (Here we identify 0 with / and I+ 1 with 1, i.e. i?(o 1) = B.{i 1)
and G(/,/ + l) = G(/,1).)

1. We claim that for each j there exists Vj, a neighborhood of Zj in Dj such that every
execution starting in Aj ^Vj —{zj} reaches Bj C^Vj —{zj}-

To prove this, let Vj be the region in Dj bounded by Aj, Bj and a single arc of Xo, and let
p G Aj n Vj —{2j} be an arbitrary point. The execution x(p) cannot intersect Xo, so it must
reach Bj fl Vj. If it peisses through Zj before it reaches Bj nVj —{zj}, then every execution
starting from a point in Aj between p and Zj must pass through Zj. But this is impossible
since, according to Lemma 5.5, Zj is not an equilibrium of Xj (here we also used the fact that
Xj points inside Dj along Aj). Therefore, x(p) reaches BjC\Vj —{zjj.

Let V = UV^- and U = 7r(K).

2. We now investigate the only two possibilities:
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(A) (B)

Figure 16: Local picture around Zj.

• Case 1: dDj is smooth at zj. Then it follows immediately from (AG) that Xj is tangent
to dDj at Zj. Therefore, by 1., in a smooth flow box around Zj, the local picture is as
in part (A) of Fig. 16, (Recall that Xj extends smoothly to a neighborhood of Dj.)

• Case 2: dDj is not smooth at Zj. Because of 1., it is not difficult to see that the local
picture around Zj looks like part (B) of Fig. 16.

3. In fact, in both cases, up to a continuous change of coordinates, the local picture
around Zj looks like part (B) of Fig. 16, but with Aj and Bj straight line segments. To
construct a topological conjugacy between near Zj and near 0, subdivide Di of WT
into / —1 subdomains D[,... , by / —2 rays from the origin. Let Df = Z)2. Define a
hybrid system WTi by: the domains are D[,... ,Df, the vector fields Xj are therestrictions of
the vector fields of WT to the corresponding new domains, and the resets are identity maps.

It is easily seen that Xj on Vj is topologically conjugate to Xj on Dj. Call the conjugating
homeomorphism hj. Glue the /i/s together to obtain a homeomorphism h between on U
and on a neighborhood of 0. Since is clearly conjugate to the proof of the
theorem is complete. •

7 Stability of Hybrid Equilibria

Recall that if is a local flow generated by a smooth vector field X on some set U (in R"
or any manifold), then p G 1/ is an equilibrium for X (equivalently: for (/>f) if X(p) = 0
(equivalently: if (t>t(p) = p for all t G R). In case of a hybrid system there is usually more
than one vector field at play, and even in the case when there is only one, resets are involved
in generating the hybrid dynamics. Taking this into account we define a hybrid equilibrium
as follows.

Definition 7.1 Let H be a hybrid system. A point x G Mh is called an (hybrid) equilibrium
for the hybrid flow if^^{t,x) = x for all t GJ{x).

Equivalently, x G Mh is a hybrid equilibrium if the hybrid dynamics of H, consisting of reset
maps and local flows of H, map 7r~^(a:) to itself. For example, any Zeno state is a hybrid

28



equilibrium despite Lemma 5.5; however, hybrid dynamics make no time progress at this kind
of equilibrium. The following definition distinguishes those hybrid equilibria which are created
from equilibria of vector fields in H in the standard sense.

Definition 7.2 A point x E Mr is called a standasd equiUbrium for if it is a hybrid
equilibrium and for eachp E 7r~^(x), ifp E Di, thenp is an equilibrium forXi (i.e. Xi{p) = 0/
It is called a pure equilibrium if it is standard and belongs to Tr{intD).

Note that the only dynamics involved in creating a pure equilibrium are those of a single
vector field. We now define the notions of (Lyapunov) stability and asymptotic stability of
hybrid equilibria in analogy with those from dynamical systems.

Definition 7.3 An equilibrium x* is called (Lyapunov)stable if for every neighborhood
U of Xi, in Mr there exists a neighborhood V of x^, in U such that for every x E V,

^"(x) E C/ for all t € [OyTooix)).

If V can be chosen so that in addition to the properties described above,

lim = x»,
i->Too(x)

then x» is cLsymptotically stable.

The following examples serve as a warning.

Example 7.1 (stable + stable = unstable) Let Hgsu be defined as follows (cf. [LLN]):

Di = {1} X{(i,!/) : xy > 0}, £>2 = {2} x {(a;,t/) : xy < 0},

G(l,2) = {1} X{(i,y): X= 0}, G(2,l) = {2} x {(x,j/) :y = 0},

R(i,j){i,x,y) = {j,x,y) where {i,j) = (1,2) or (2,1),
Xi{x,y) = (-X+ 10j/,-100x -y)^, Xi{x,y) = (-x + 100y,-10x - y)'̂ .

Then 0 is a spiral sink for both Xi and X2. However, it is not difficult to see that all executions
spiral away from the origin. In fact, if po is a point on, say, the x-axis, then the execution
starting from po first returns to the x-axis at a point pi such that pi = rjssuPoy where
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Example 7.2 (unstable + stable = stable) Define a hybrid system Huss by (domains are
in polar coordinates):

^i = {l}x{(^^):^>0, OL<e<P}, D2 = {2}x{(r,0) : r > 0, 0 < ^ < a or/? < ^ < 27r},

y) = (-a;, J/)^, X2[x,y) = {-X -y,x- 2/)^,
G(l,2) = {1} X{(x,6a;): a; > 0, 6= tan/?}, G(2,1) = {2} x {(x^ax): a; > 0, a = tana},

^(i.2)(l, a:, y) = (2, x,y), H(2,i)(2, a;, y) = (1, a;, y).

We take 0 < a < /? < 7r/2.
Then 0 is a saddle for Xi and a spiral sink for X2. If po € G(2,1) is an arbitrary nonzero

point let Pi GG(2,1) be the first intersection of the forward execution from po with G(2,1).
It is not difficult to check that pi = rjussPo^ where

„ _ g/?-a-27r /a(l +62)
'fuss — c; 6(1 + a2)*

For a fixed 6(and /?), ?7„55 0 as a,a ^ 0, so we can choose the parameters so that rjuas < 1
Then 0 is an asymptotically stable standard equilibrium for H,

LuSS*

Example 7.3 (unstable + unstable = stable) Define a hybrid system Huus as follows:
keep the domains, guards and resets the same as in the previous example, with a different
choice of parameters which will be specified later. Let

Xi{x, y) = {-X, y)^, X2{x, y) = (a; - y, a: + y)^.

Let Po and pi have the same definition as in the previous example. Then pi = tJuusPo, where

„ _ g27r-/?+o /«(! +

It is not difficult to see that rj^us —^ 0 as a —0 (with 6fixed), so t/uus < 1 for a sufficiently
small. Then 0 is an unstable equilibrium for both Xi and X2 (a saddle for Xi, spiral source
for X2), but an asymptotically stable equilibrium for the hybrid dynamics.

Therefore, the situation is more complicated than in the case of a single dynamical sys
tems. Our next goal is to formulate a stability result in terms of linearized data of the hybrid
system at the equilibrium, which encompasses the above examples.

In the subsequent text, we use the following notation: if X is a vector field on a manifold
M with local flow <l>t and / : A/ —> R a function, Xf will denote the derivative of / in the
direction of X:

f(4>,x) = Tf{X(x)}.(A7)W=,,
0
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G(l,2)

A G(2,1)

Figure 17: Unstable + unstable = stable.

For a map h : (A^cIa) {B,dB) between metric spaces, let

LiPpl/) = sup .
,e-4-{p} aA(q,P)

This is the Lipschitz constant of f at p.

Lemma 7.4 (Poincare maps) Suppose Xm £ Mh is an isolated (not necessarily standard)
equilibrium for and

7r~'(x.) = {pi,... ,pi},

where pj 6 Av, . Suppose that for some neighborhood W of x», every execution starting in W
has the same "itinerary", that is, if x £ Dij, then its hybrid trajectory visits

••• , t(A,), t(A, ), ••

respectively, for all
For each j, let

Aj = im%_j,i^.) n TT \W), Bj = G{ij,ij+i) Htt ^(VF),

and define a map

hj : Aj Bj

as follows: hj(p) is the first intersection of the positive Xi^-orbit ofp E Aj with Bj. Let Tj{p)
be the time it takes for this orbit of p to reach Bj, and suppose that Tj is bounded above on
some neighborhood of pj in Aj (for all I < j < I). Let

N = Lipp^/ij,
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Figure 18: Theorem 7.4.

^3 —II^Pj^(tj,ti+i)ll
and

'n = W_N'̂ i-
3=1

If T) < I, then is asymptotically stable. //dimH = 2 and rj > 1, then is unstable.

Proof: For each j define a first-return map Pj : Aj —> Aj by

Pj = hj+i o Rj^i o ' ••oh[ o Ri 0 hi o Ri 0 •" o hj 0

where Rj = Then Pj(pj) = Pj, and

LiPpjPj

Therefore, there exists a ball Vj around pj in Aj such that for all p E Vji

\\Pjip) - Pj(Pj)\\ < Cj\\p - Pill,

where Cj < 1. Thus Pj maps Vj into itself and for all p ^Vj^

WPPip) - pA = WPPip) - PPipAW < cTWp - Pill ^ 0,
as m oo. Since this is true for all j = 1,... , /, and the times Tj are bounded in Vj (if we
take Vj sufficiently small), it follows that in Mh, every execution in 7r(|J V}) converges to x^.

Observe that if dimH = 2, then for all j, Upp.Pj is equal to rj (because the norms is the
absolute value and |a6| = |a||6|), so p > 1 clearly implies instability. •

To see how things (such as boundedness of r and smoothness of h) can go wrong even in
a very simple situation, consider the following example.
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Example 7.4 Let n = 2, p, = 0, X(x,y) = (—a:,y) and thus (j)t{x^y) = e*y). Assume
A is the graph of x x"^ (a; > 0), and B : y = x (x > 0). Then it is not difficult to check
that for p = (a;, ar^) E A —{0}, t{p) = | log which is unbounded as a; —>• 0+, and

h{p) = -7^(1,1),

which is neither smooth not Lipschitz at 0.

In the subsequent text we will use the following notation. For a piecewise smooth (n —1)-
dimensional submanifold A of R" with piecewise smooth boundary dA, and a point p € dA at
which the boundary of A is smooth, denote by A the set of all vectors v € TpA which point
"inside" A. More precisely, v 6 TpA if there exists e > 0 and a smooth curve c : [0, e] —> A
such that c(0) = p, c(0) = v and c(<) G A —dA for all 0 < ^ < e.

Lemma 7.5 Let X be a smooth vectorfield in R" withflow {(f>t}, and assume p» is an isolated
standard equilibrium for X. Let

f:U- {p.} ^ R

be a smooth submersion, where U is a bounded neighborhood of p^. Suppose A and B are two
closed sets which are also (n —1)-dimensional submanifolds of U with boundary, and assume
the following holds:

(a) p, € A n B;

(b) 0 < m_ < Xf < m+ on U —{p»};

(c) a- < f < a+ on A and B = f~^(b), where a+ < b.

(d) There exists > 0 such that
e-^(r+A) C T+B,

•p,.!-!.. J.p^4

Then for every p £ A, the forward X-orbit of p, 0+(p), reaches B, defining a map

h-.A-^B

by

Kp) = 0+(p) nB = (f>r{p){p),
where r(p) is the smallest t > 0 such that 4>t[p) € B. Moreover, t is bounded, h is Lipschitz
and its Lipschitz constant at p* is

Lip,./t = II It,.>,11 (3)

= (4)

where A^ax denotes the largest (in absolute value) eigenvalue, and S is an n x {n —1) matrix
whose columns form an orthonormal basis ofTp^A and belong to T^A.
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Proof: Let us first show that for all p GA —{p*}, the forward orbit of p reaches B. Since
f{p) G [a_,a+], we have, for t > 0,

KM = m +l\xf)(ct>,p) ds
Jo

G [a_ + + m+^],

so since / is continuous on U - and a+ < 6, there exists a unique t(p) G
such that /(<^t(p)P) = ^and f{<l>tp) < 6, for all t G[0, r(p)). This shows that 0+(p) reaches B
as well as that r is a bounded function on A —{p»}; namely,

b-a+ ^ ^ ^h~a.
—— < r{p) < .

m_

Next, let us show that t{jp) —>• r* as p —> p*. Observe that (j>T,A and B are tangent to each
other at p». Therefore,

d{h{p),p^)
as p -> p^, where ^(<^rP, <l>sP) denotes the arclength of the indicated segment of the X-orbit of
p. So in particular ^(<^f.p,/i(p)) = '̂ (^t.P, <^t(p)P) -> 0 cis p —)• p^, and thus, for p GA—{p»}
we obtain:

\f[^r.p) - f{h{p))\ < m+ i((j>r,p, h{p))
0,

as p —p». Hence:

"i- Hp) -r.\< \f (Xf){<l>tp) dt = \f(^T.p) - fih{p))\ ->• Oi

as p p^. This shows that r(p) r».
By the implicit function theorem, r and h are smooth functions on A- {p»}, and

Tph(v) = dT{v)X{h{p)) + Tp<t)r(p)(v), (5)

for all p G^ —{p*} and v GTpA. Since r is bounded, it follows that

p •-). ||Tp</),.(p)||

is bounded, so to prove that h is Lipschitz it remains to show that \\dr{v)X{h(p))\\ is bounded
(or better: converges to 0) at p*, with |i;| = 1.

Let 5f : y R be a submersion defined on some neighborhood V of p^ such that g
is constant on B and S := infpgy inf|,;|=:i |dp^(?;)| > 0. This means that the "co-norm" or
"minimum norm" of dpg is bounded below by Son V. Then dg(Tph{v)) = 0 and by (5)

dT(v){Xg){h{p)) = -dgiTp(f)rip){v))
—» —dg(e '̂̂ v)
= 0, (6)
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Qs p p^. Therefore, for p GA —{p»}, v GTpA, |u| = 1:

||dr(«);f(ft(p))|| = |dT(v)(X5)(/i(p))|

0,

asp p*. This proves that h is Lipschitz as well as formula (3). The expression for le'̂ '̂ |rp,yi||
in (4) follows from the following lemma. •

Lemma 7.6 Let F : R" R" be a linear isomorphism and let E be a k-dimensional subspace
o/R" where 0 < k < n. Choose an n x k matrix S whose columns form an orthonormal
(relative to the standard Euclidean inner product on R"^ basis for E. Define the norm of the
restriction of F to E by:

||F|je;|| = sup{|F(u)| :ve E, \v\ = 1}.

Then:

iiFUii = Vw(W^-

Proof: Note first that S'^S is the k xk identity matrix. If u G then v = Su for a unique
u GR*^, so if |u| = 1, then 1= v'̂ v = u^S^Su = u^u = \u\^, hence |u| = 1 also. Therefore we
have:

as claimed.

\\F\e\\ = sup{|F(u)| :veE, \v\ = 1}
= sup{|F5(u)| : u GR'̂ , |u| = 1}
= sup{\/u^5^F^F5u : u GR^ |u| = 1}
= sup{\/(5^F^F5u) •u : u GR^, |u| = 1}

= y/K.A{FSyFSl

The following main theorem is an analog of the linearization theorem for stability of
equilibria of a single dynamical system. In the hybrid case, the linearized data include, besides
the derivatives of the vector fields at the equilibrium, the tangent spaces at the equilibrium
of guards and images of resets involved in the hybrid dynamics near the equilibrium.

Theorem 7.7 (Stability via Linearization) Let x» G Mh be an isolated standard equilib
rium for and

7r-^(x.) = {pi,... ,p/},
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where pj € Di^ and 1 < j < 1. Suppose that there exists a bounded neighborhood W of and
for each 1 < j < / a smoothfunction

fj : Uj —{pj} —>• R,

where Uj is a neighborhood ofDi -fl 7r-^(W^) in {ij} x R", such that:

(^) Pj € n Bj, where

Aj = n Uj, Bj = G(ij,ij+i)nUj,

for all 1<j < L Assume further that Aj and Bj are differentiable at pj.

(b) ttj <fj <flt on Aj, and Bj =fj ^{hj), for all j, for some numbers af <af <bj.
(c) 0<mT<XiJj<mf onUj-{pj} (l<j<lj.

(d) For each j there exists Tj > 0 such that

C T+Bj,

where Lj = Tp-Xi^.

For 1<J < let Sj be an n x [n —1)-matrix whose columns form an orthonormal basis for
j and belong to T^jAj. Let

and

Define
I

rjH( '̂) = Y[pji^j
j=i

If n¥i(x,) < 1, then X, is an asymptotically stable hybrid equilibrium. //dimH = 2 and
> 1, then is unstable.

Remarks.

(i) Condition (b) says that Bj is the closure of a level set of fj while Aj is "almost" a level
set of fj. The function fj measures the progress trajectories of Xi- make towards Bj,
starting from Aj.

(ii) Condition (c) says that the time-r^ map of the linearization of the flow of Xi^ at pj (i.e.
^4*i) maps Tp.Aj to T^.Bj. This means that at least on the level of linearizations, Bj
is reachable from Aj in a bounded amount of time.
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(iii) Note that we do not require I > 2, i.e. there may be only one state involved in creating
the hybrid dynamics near a;*. However, the theorem doesn't work for pure equilibria
(that is, we do not allow x* Gint Mh).

Proof: Follows immediately from lemmas 7.4 and 7.5. •

Let us now test the above theorem on our warning examples given at the beginning of the
section.

Example 7.5 It is not difficult to see that Hssu; Huss and Huus satisfy the conditions of
Theorem 7.7, with the function arctan(y/x) as fj (for all j). A simple computation shows:

(0) = "Hssu ^ 1? ^Hu3B (®) ~ Vtiss I? and ^Hulb (®) "OtiUS 1?

affirming the statements made in those examples.

Example 7.6 Define a 3-dimensional hybrid system H by: Di = {1} xS, D2 —{2} xR —5,
where

S = {(x,!/,z): X> 0, y> X^ ze R}U{(x,y,x): x < 0, y> -x(i-c), 2e R},

and

G(l, 2) = {(x, y,zeDi:y = x^}, G(2,1) = {(x, y,z) &Di'.y = -x(x - c)},

for some constant c. Let Xi(x,y,z) = (—x—y,x—y, —A12) and X2{x,y, z) = {x—y,x+y, Ajz),
where 0 < A2 < 1 < Ai. Then it is not difficult to check that

1h(0) =

where 7 = arctan c, so if c> 0, then 0 is asymptotically stable.

Example 7.7 The following example illustrates some limitations of the stability theorem.
Let H be a 3-dimensional hybrid system with

Di = {1} XK XR and D2 = {2} x R^ —K x R,

where K —[0,00) x [0,00). Let

G(l,2) = {{x^y^z) GDi : X= 0}, G(2,1) = {(x,j/,2) GD2 : y = 0},

and

Xi(x,y,z) = (x- y, X-h y, -A12:), A'2(x, y, z) = (-x - y, x - y,A22:),

where Ai, A2 > 0. The resets are identity maps.
Then the full trajectories of X\ are spirals around the 2-axis which increase in radius

and converge to the xy-plane. The full trajectories of X2 are also spirals around the 2:-axis,
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but they decrease in radius and diverge from the xy-plane. It is not difficult to check that,
with notation from Theorem 7.7, fii = gQ rjuiO) > 1 and the theorem is
inconclusive.

However, the flows can be decoupled into their xy- and 2:-parts the analysis of which shows
that if Ai > 3A2, then 0 is an asymptotically stable hybrid equilibrium of H. The reason
Theorem 7.7 does not provide the same answer, intuitively speaking, is because it is not able
to measure the small amount of contraction around 0 in the flows of both Xi and X2, which
turns out to be sufficient for asymptotic stability. Namely, on G{2,1) the flow of Xi contracts
in only one direction (and expands in the other) and similarly for the flow of X2 on G(l, 2).
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