

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LATENCY INSENSITIVE PROTOCOLS

by

Luca P. Carloni, Kenneth L. McMillan and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M99/11

1 February 1999

LATENCY INSENSITIVE PROTOCOLS

by

Luca P. Carloni, Kenneth L. McMillan and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M99/11

1 February 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of Califomia, Berkeley

94720

Latency Insensitive Protocols

Luca P. Carlonil Kenneth L. McMillan^ Alberto L. Sangiovanni-Vincentellil

^ University of California at Berkeley +Cadence Berkeley Laboratories
Berkeley, CA 94720-1772 Berkeley, CA 94704-1103

Abstract

The theory of latency insensitive design is presented as the foundation of a new correct by construc
tion methodology to design very large digital systems by assembling blocks of Intellectual Properties.
Latency insensitive designs are synchronous distributed systems and are realized by assembling func
tional modules exchanging data on communication channels according to an appropriate protocol. The
goal of the protocol is to guarantee that latency insensitive designs composed of functionally correct
modules, behave correctly independently of the wire delays. A latency-insensitive protocol is presented
that makes use of relay stations buffering signals propagating along long wires. To guarantee correct
behavior of the overall system, modules must satisfy weak conditions. The weakness of the conditions
makes our method widely applicable.

1 Introduction

The level of integration available today with Deep Sub-Micron (DSM) technologies (0.1/im and below) is
so high that entire systems can now be implemented on a single chip. Designs of this kind expose problems
that were barely visible at previous levels of integration: the dominance of wire delays on the chip and the
strong effects created by the clock skew [Ij. It is predicted that a signal will need more than five (and up
to more than ten!) clock ticks to traverse the entire chip area. Thus it will be very important to limit the
distance traveled by critical signals to guarantee the performance of the design. However, precise data on
wire-lengths are available late in the design process and several costly re-designs may be needed to change
the placement or the speed of the components of the design to satisfy performance and functionality
constraints. We believe that, for deep sub-micron designs where millions of gates are customary, a design
method that guarantees by construction that certain properties are satisfied is the only hope to achieve
correct designs in short time. In particular, we focus on methods that allow a designer to compose
pre-designed and verified components so that the composition formally satisfies certain properties.

In this paper, we present a theory for the design of digital systems that maintains the inherent simplicity
of synchronous designs and yet does not suffer of the "long-wire" problem. According to our methodology,
the system can be thought as completely synchronous, i.e. just as a collection of modules that communicate
by means of channels having a latency of one clock cycle. Unfortunately, the final layout may require more
than one clock cycle to transmit the appropriate signals. Our methodology does not require costly re
design cycles or to slow down the clock. The key idea is borrowed from pipelining: partition the long
wires into segments whose lengths satisfy the timing requirements imposed by the clock by inserting logic
blocks called relay stations, which have a function similar to the one of latches on a pipelined data
path. The timing requirements imposed by the real clock are now met by construction. However, the
latency of a channel connecting two modules is generally equal to more than one real clock cycle. If the
functionality of the design is based on the sequencing of the output signals and not on their exact timing,
then this modification of the design does not change functionality provided that the components of the
design are latency insensitive, i.e., the behavior of each module does not depend on the latency of the
communication channels. We have essentially traded latency for throughput by not slowing down the
clock and by inserting relay stations. In. this paper, we introduce these concepts formally and we prove
the properties outlined above. The framework used for the theory is the Tagged Signal Model of Lee and
Sangiovanni-Vincentelli [3].

The paper isorganized as follows: in Section 2 we give the foundation of latency insensitive design by
presenting the notion of patient processes. In Section 3 we discuss how in a system of patient processes
communication channels can be segmented by introducing relay stations. Section 4 illustrates the overall
design methodology and discusses under which assumption a generic system can be transformed in a
patient one.

2 Latency Insensitivity

To cast our methodology in a formal framework, we use the approach of Lee and Sangiovanni-Vincentelli
to represent signals and processes [4].

2.1 The Tagged-Signal Model

Given a set ofvalues Vand a set of tags T, an event is a member ofVx T. Two events are synchronous
if they have the same tag. A signal s is a set ofevents. Two signals are synchronous if each event in one
signal is synchronous with an event in the other signal and vice versa. Synchronous signals must have the
same set of tags.

The set ofall AT-tuples ofsignals is denoted 5^. Aprocess P is a subset of5^. Aparticular AT-tuple
s e satisfies the process if s € P. A AT-tuple s that satisfies a process is called a behavior of the
process. Thus a process is a set of possible behaviors ^ A composition of processes (also called a system)
{Pi,.. .,Pm}, is a process defined as the intersection of their behaviors P = flmsi Since processes
can be defined over different signal sets, to form the composition we need to extend the set of signals over
which each process is defined to contain all the signals of all processes. Note that the extension changes
the behaviorof the processes only formally.

Let J = (ii,...,ih) be an ordered set of integers in the range [l,yV], the projection of a behavior
6= (si,..., stv) G onto isprojj{b) = {sj^, ••., SjJ. The projection ofa process P C onto S''
is projji^P) = (s I3s GP Aprojj(^s) = s'). A connection C is a particularly simple process where two
(or more) of the signals in the TV-tuple are constrained to be identical: for instance, C{i,j,k) C :
(si,.,.,SAr) GC{i,j,k)^ Si = Sj = sjfc, with i,j,k G[1,TV].

In a synchronous system every signal in the system is synchronous with every other signal. In a
timed system the set P of tags, also called timestamps, is a totally ordered set. The ordering among the
timestamps of a signal s induces a natural order on the set of events of s.

2.2 Informative Events and Stalling Events

As outlined in the Introduction, we start with the basic assumption that the designs follow the synchronous
design methodology and then we proceed to modify it to allow for delays on long wires. Hence, the basic
theory of [4] will now be used in this context.

A latency insensitive system is a synchronous timed system where the set of values V is equal to
EU {r}, where E is the set of informative symbols which are exchanged among modules and r is a special
symbol, representing the absence ofan informative symbol. From now on, all signals are assumed to be
synchronous. An event is called informative if it has an informative symbol t,- as value An event whose
value isa r symbol issaid a stalling event (or r event or, simply, bubble).

Definition 2.1 S{s) denotes the set ofevents ofsignal s white €t{s) and €r{s) are respectively the set
ofinformative events and the set ofstalling events ofs. The k-th event {vk,tk) ofa signal s is denoted

T{s) denotes the set oftimestamps in signal s, while 2^(s) is the set oftimestamps corresponding
to informative events.

Processes exchange useful data by sending and receiving informative events. Ideally only informative
events should be communicated among processes. However, in a latency insensitive system, a process

^For N >2, processes may also be viewed as a relation between theN signids in s.
2We use subscripts todistinguish among the different informative symbols ofE : ii, 12,13,...

may not have data to output at a given timestamp thus requiring the output of a stalling event at that
timestamp.

Definition 2.2 The set of all sequences of elements in E U {r} is denoted by T>iat- The length of a
sequence <y is |cr| if it is finite, otherwise is infinity. The empty sequence is denoted as e and, by definition,
|6| = 0. The i-th term of a sequence a is denoted <Ti.

Definition 2.3 The function a : S x T- S/at takes a signal s = {(vo,^o).(t'ii<i), •• •} ordered
pair of timestamps {ii,tj), i <j, and returns a sequence € E/at s.t. = Vi,Vi+i,... ,Vj.
The sequence of values of a signal is denoted o'(s). The infinite subsequence of values corresponding to an
infinite sequence of events, starting from timestamp ti is denoted (5o](s).

For example, considering the signal s = (^2,^2), (t2,^4), (t, ^e)} , we have

o-(s) = ti i2 T i-i M T = t2 r L2 cr[t5,t5](«) =

and, respectively, | cr(s) | = 6, | | = 3, | | = 1. To manipulate sequences of values we
define the following filtering operators.

Definition 2.4 :S/at —^ ^ returns asequence <t' —T\a\ s.t. ^^

Definition 2.5 Tr :E/at {t"}* returns asequence a' =Tr[o] s.t. <t\ =| ^o^erwls^ ~
For instance, if t7(s) = li 12 t 12 l\ t , then ^2 ^2 and J>[o'(s)] = t t. Obviously,
I (t(s) I = I .^t[o'(s)] I + I J^r[<^{s)] \. Latency insensitive systems are assumed to have a finite horizon
over which informative events appear, i.e., for each signal s there is a greatest timestamp T G Ti{s) which
corresponds to the "last" informative event. However, to build our theory we need to extend the set of
signals of a latency insensitive system over an infinite horizon by adding a set of timestamps such that all
events with timestamp greater than T have r values. The set of timestamps is assumed to be in one-to-one
correspondence with the set IN of natural numbers.

Definition 2.6 A signal s is strict iff all informative events precede all stalling events, i.e., iff there exists
a fc G IN s.t. I ^T[o'[to,tfc](s)] 1= 0 and | ^t[o-[/fc,/ool(®)] 1= 0* ^ signal which is not strict is said to be
delayed (or stalled).

2.3 Latency Equivalence

Two signals are latency equivalent if they present the same sequence of informative events, i.e., they are
identical except for different delays between two successive informative events. Formally:

Definition 2.7 Two signals si, S2 are latency equivalent Si =7 $2 if and only if (IffjjTi [<7(si)] = .?^[o"(s2)]-

The reference signal Srej of a class of latency equivalent signals is a strict signal obtained by assigning the
sequence of informative values that characterizes the equivalence class to the first timestamps.
For instance, signals si and S2 presenting the following sequences of values

O-(Sl) = Li l2 T li l2 13 T ti 12 T T T .. .

a{S2) = Ll l2 T T li T l2 t3 r Li r L2 T . . .

are latency equivalent. Their reference signal Sref is characterized by the sequence

''•(Sre/) = tl t2 tl l2 ts H 1-2 T T.. .

Latency equivalent signals contain the same sequences of informative values, but with different times
tamps. Hence, it is useful to identify their informative events with respect to the common reference signal:
the ordinal of an informative event coincides with its position in the reference signal.

^Notice that denotes the value of the event at timestamp t,.

Definition 2.8 The ordinal of informative event Ck = ivk,tk) € is ord{€k) = | I " 1-
Let Si and qi be two latency equivalent signals: two informative events ejt(5i) G and ei{qi) G€t{qi)
are said corresponding events iff ord(ejt(si)) = oi'd{ei{qi)). The slack between two corresponding events
is defined as slack{€kisi},ei{qi)) = |A: - /|.

We extend the notion of latency equivalence to behaviors, in a component-wise manner:

Definition 2.9 Two behaviors {si,...,s/v) and (s'l,..., are equivalent iff^i{si =t sJ)- A behavior
^ —(si,...,Siv) is strict iff every signal s,- G b is strict. Every class of latency equivalent behaviors
contains only one behavior which ts strict: this is called the reference behavior.

Definition 2.10 Two processes Pi and Po are latency equivalent, Pi P2, if every behavior of one is
latency equivalent to some behavior of the other. A process P is strict iff every behavior b € P is strict.
Every class of latency equivalent processes contains only one process which is strict: this is called the
reference process.

Definition 2.11 A signal si is latency dominated by $2, si <r §2 iffSi =t S2 and Ti < T2, where Ti is
the greatest timestamp with an informative value for Si, i —1,2.

Hence, referring to the previous example, signal si is dominated by signal S2 since Ti = 9 while T2 = 12.
Notice that a reference signal is latency dominated by every signal belonging to its equivalence class.
Latency dominance is extended to behaviors and processes as in the case of latency equivalence. A total
order among events of a behavior is necessary to develop our theory. In particular, we introduce an
ordering among events that is motivated by causality: events that have smaller ordinal are ordered before
the ones with larger ordinal (think ofa strict process where the ordinal is related to the timestamp; the
order implies that past events do not depend on future events). In addition, to avoid cyclic behaviors
created by processing events with thesame ordinal, we assume that there is an order among signals. This
order in real-life designs corresponds to input-output dependencies. Wecast this consideration in the most
general form possible to extend maximally the applicability of our method.

Definition 2.12 Given a behavior b= (sj,..., s^v), <c denotes a well-founded order on its set ofsignals.
The well-founded order induces a lexicographic order </o over the set of informative events ofb, s.t. for
all pairs of events (61,62) with ei G^^t(s,) and eo GSi{sj)

ei <io 62 ^ [{ord{ei) < ord{e2)) V ((ord{ei) = ord{e2)) A(s,- <c sy))]

The following function returns the first informative event (in signal sj of behavior b) which follows a
given event e G6 with respect to the lexicographic order <io.

Definition 2.13 Given a behavior 6= (si,..., syy) and an informative event e(si) G^t(si), the function
nextEvent is defined as: nextEvent{sj ,e{si)) = minefc(,^) gf^(,^.){e(s,) <io 6fc(sj)}

A stall move isused to postpone an informative event ofa signal ofa given behavior byone timestamp.
Thestallmove is used to account for long delays along wires and to add delays where needed to guarantee
functional correctness of the design.

Definition 2.14 Given a behavior b= (si,.. .,sj,.. .,syv) and an informative event ek{sj) = {vk,tk)t a
stall move returns a behavior b' = stall{ek{sj)) = {si,... ,s'j,.. .,sn), s.t. for / GIN;

A procrastination effect represents the "effect" ofa stall move stall{ek{sj)) onothersignals ofbehavior
b in correspondence of events following 6jb(sj) in the lexicographic order. The processes will "respond"
to the insertion ofstalls in some of their signals "delaying" other signals that are causally related to the
stalled signals.

Definition 2.15 A procrastination effect is a poini-io-sei map luliich takes a behavior
stall{ek{sj)) resulting from the application of a stall move on event Ckisj) of behavior b = (si,...,sjv)
and returns a set of behaviors VS[siall{€k{Sj))] s.t. b" = (s'/,.. 6 iff

,s'l = s',:

• Vi G [l,A^],i 7^ j, s" =T Si and <7[to,t,_,](s-') = where ii is the timestamp of event
ei(si) = nexiEvent{si,ek{sj));

• 3A' finite s.t. Vi G[I, N],i ^ j,3ki < K, o-[t,+fc,,oo](s") = o-[t,,oo)(«!•)•

Each behavior in VS[b'\ is obtained from b' by possibly inserting other stalling events in any signal of 6',
but only at "later" timestamps, i.e. to postpone informative event which follow ek(sj) with respect to the
lexicographic order </„. Observe that a procrastination effect returns a behavior that latency dominates
the original behavior.

2.4 Patient Processes

We are now ready to define the notion of patient process: a patient process can take stall moves on
any signal of its behaviors by reacting with the appropriate procreistination effects. Patience is the key
condition for the IP blocks to be combinable according to our method.

Definition 2.16 A process P is patient iff

V6 = (si,..., SA,) G P, Vi G [1,N], Vejt(sj) e S,{sj), (V£[siall{ek{sj))] n P # 0)

Hence, the result of a stall move on one of the events of a patient process may not satisfy the process, but
one of the behaviors of the procrastination effect corresponding to the stall move does satisfy the process,
i.e., if we stall a signal on an input to a functional block, the block will be forced to delay some of its
outputs or if we request an output signal to be delayed then an appropriate delay has to be added to the
inputs.

Lemma 2.1 Lei Pi and P2 be two patient processes. Let 61 G Pi, ^>2 € P2 be two behaviors with the same
lexicographic order s.t. 61 =t 62- Then, there exists a behavior 6' G (Pi H P2), 61 =r b' =t 62-

Proof. The proof is constructive. Let 61 = (ri,...,r//) G Pi and 62 = (9i, --,9n) € P2 be the two
behaviors with" the same lexicographic order. Since 61 and 62 are latency equivalent, each event in 61
has a corresponding event in 62 and vice versa (see definition 2.8). Let n =r gi,. ..,r/v =t gyv- Let
W = {w I 3A; G IN, 3/ G IN { k I A ord{ek{rj)) = ord{ei{qj)) = u;)} be the set of ordinals
associated to pairs of corresponding events of 61 and 62 whose timestamps differ. Define the distance
between behaviors 61,62 as

Mk k \ S maxu,eiy{^} if W 0
= otherwise

This distance is reminiscent of the Cantor metric. Thus, 61 and 62 have distance equal to zero if all
pairs of corresponding events are aligned In this case, 61 and 62 are identical, i.e. they are the SEune
behavior that belongs to (Pi flPz). Now suppose that d{h\,h2) = 2^ ^ 0: in this case, wi is the smallest
ordinal among those which are associated to unaligned pairs of corresponding events. Without loss of
generality, let pi = (cifc(rj), ei(gj)) be the pair of corresponding events whose ordinal is equal to wi and
let I > k. Apply a stall move to ek{rj) to obtain a new behavior b\ = (s'j,..., s^) = stall{ek{rj)) =t bi.
Obviously, slack{ek+i{sj), ei{qj)) = slack{ek{rj), ei{qj)) —1. Note that b'l is not necessarily a behavior of
Pi. However, since Pi is patient, there exists b" = (s",..., s'ff) =t bi s.t. 6" GPE(stall(ek(rj))nPi. Since,
by definition ofprocrastination effect, s" = Sj, then also slack(ek+i(Sj),ei(qj)) = slack(ek(rj), ei(gj)) —1.
Since the procrastination effect may postpone only events following ejk(rj) in the lexicographic order </o,
then all the pairs of corresponding events of b" and 62 with ordinal smaller than w are still aligned.

*A pair of corresponding event is said aligned if the events are synchronous, or, according to def. 2.8, if their slack is 0.

Now, there are two possibilities: ifslack{ek+i{Sj),€i{qj)) = 0, then one more pair heis been aligned and
d{b'{,b2) < d{bi,b2); otherwise, we can reduce by 1 this slack by repeating the same procedure starting
from behavior b'̂ . In any case, after I —k steps of the procedure outlined above, we obtain a behavior
b* =T bi that satisfies Pi and s.t. d{b*,b2) < ^(61,62), because one more pair of corresponding events has
been aligned. We say that we have performed an alignment step.

Now, if d{b\,b2) = 0 then there are no more unaligned pairs, the two behaviors are identical and the
lemma is proven since 6* =r 61. Instead, ifd{b*,b2) = ^ 0 then we consider the next unaligned pair
P2 ofcorresponding events and we execute a second alignment step. Note that at the m-th step, while
aligning pair pm with ordinal Wm, we may increase the slack of some of the pairs following Pm in the
lexicographic order, but we keep aligned all the pairs preceding pm • During this sequence of alignment
steps we obtain two sequences of behaviors (one of behaviors in Pi latency equivalent to 61 and one of
behaviors in P2 latency equivalent to 62), whose distance is decreasing monotonically. Since both 61 and
62 contain the same finite ®number of informative events the set Uof pairs of unaligned corresponding
events is also finite. The slack ofeach of these pair is also a finite number. At the m-th step, we have at
most km sub-steps to align pm, where hm is thestarting slack for pm. In the worst case, each behavior b*
obtained during the sub-steps of the alignment step may have slacks of all the remaining unaligned pairs
increased by at most K (see definition 2.15). Hence, at the end ofthe m-th step [f/| has been decreased by
one, while all theslacks ofits remaining elements have been increased by at most hm •A', a finite number.
Thus for 1171 > I > m, the new slacks for the remaining unaligned pairs is h'l < hi + hm- A'. Globally, we
perform in the worst case \U\ alignment steps and for each ofthem we have a finite number of sub-steps.
Hence, the two sequences ofbehaviors are also finite and the last elements ofthese sequences do not have
unaligned pairs, and, therefore, have distance equal to zero. •

Theorem 2.1 If Pi and P2 are patient processes then {Pi DP2) is a patient process.

Proof. Let 6 = (si,. ..,sjv) be a behavior in Pi n P2- Consider behaviors 61 = (ri,,..,rAr) € Pi and
h = (gi,...,gjv) € P2, s.t. 61 = 62 = b. For all j 6 [l,N] and for all Ar € IN, let ek{sj) €
Since 61 = 62 = b, then ek{rj) G^lO'j) and ek{qj) € ^i{qj)- Let b' = staU{eii{sj)) =r b. Similarly,
61 = stall{ek(rj)) =r bi and 62 = staU{ek{sj)) =t ^2- Since Pi is patient there exists a behavior b'̂ =7. 61
s.t. 6'/ GP^[6'i] n Pi and since P2 is patient there exists a behavior b'̂ =t 62 s.t. 63 G n P2.
Notice that 61 = 62 implies that b" =t 63, however, it is not necessarily the case that 6'/ = 62'. In fact,
procrastination effects may have misaligned pairs of corresponding informative signals which come after
(cfc(rj), ei;(sj)) with respect to lexicographic order Since 61 = 62 share the same lexicographic order,
by lemma 2.1, there exists a behavior b" =7- b" =7- 63 b" GPiOPj. The construction ofb" given in the
proof oflemma 2.1 involves only unaligned pairs ofcorresponding events between b'{ and b'{ and all these
unaligned pairs correspond to informative events which come after ek{sj) with respect to lexicographic
order <to. Further, since the number ofinformative events is finite, the number ofunaligned pairs is also
finite. Hence, each signal s(' of6" is obtained by inserting afinite number ofstalling events not earlier than
timestamp t,, with e,(s,) = nextEventisi.ekisj)). Therefore, by definition 2.15, b" GVSisialliekisj)).
Since we have already seen that b" GPi n P2, then (Pi n P2) is a patient process. •

The following theorem shows that, for patient processes, the notion oflatency equivalence ofprocesses
is compositional. Figure 1illustrates the proof for the case when the two behaviors are just1-tuple signals.

Theorem 2.2 For all patient processes Pi,P2, P/,P^, if Pi =7. P[and P2 =r P^ then

(PinP2) =r (Pi'np^)

Proof. Let 6 = (si,...,Sjv) be a behavior in Pi n P2. Latency equivalence implies that there must be
behaviors bi = (ri,...,rjv) G P/ and 62 = (Qif-'tQN) € P2 such that 61 =7 b=7 62- Since 61 and 62
are latency equivalent and P{ and Pj are patient, lemma 2.1 guarantees that there must be a latency
equivalent behavior b' G(P/ DP^). The other direction of the proofis symmetric. •

Therefore, we can replace any process in a system ofpatient processes by a latency equivalent process,
and the resulting system will be latency equivalent. A similar theorem holds for the replacement ofstrict
processes with patient processes.

^Recall that thenumber ofinformative events for every behavior considered inlatency insensitive designs isfinite.

b* = T T UT l,T T I.

b, =i, T l. T T I.

''ref = h h ^3 h h •••

Figure 1: Sketch for proof on compositionality of latency equivalence.

Theorem 2.3 For all strict processes Pi, P2 and patient processes P/, Po? If Pi =t P/ and Po =t Po then

(PiDPo) =. (Pi'np^)

Proof. The argument that every behavior in (Pi DPo) has an equivalent in (Pi' HP^) is as in theorem 2.2.
For the other direction, let b' be a behavior in P{ fl Pj. Latency equivalence implies that there must be
behaviors hi G Pi and 62 € P2 such that 61 =t b' =r 62. Since Pi and P2 are strict, 61 and 62 are also
strict. Being latency equivalent, they must therefore be equal. Thus 61 G (Pi n P2). •

This means that we can replace all processes in a system of strict processes by corresponding patient
processes, and the resulting system will be latency equivalent. This is the core of our idea: take a design
based on the assumption that computation in one functional block and communication among blocks
"take no time" (synchronous hypothesis) i.e., the processes corresponding to the functional blocks and
their composition are strict, and replace it with a design where communication does take time (more than
one clock cycle) and, as a result, signals are delayed, but without changing the sequence of informative
events observed at the system level, i.e., with a set of patient processes.

3 Latency Insensitive Design

As explained in Section 1, one of the goal of the latency insensitive design methodology is to be able
to "pipeline" a communication channel by inserting an arbitrary amount of memory elements. In the
framework of our theory, this operation corresponds to adding some particular processes, called relay
stations, to the given system. In this section, we first show how patient systems (i.e. systems of patient
processes) are insensitive to the insertion of relay stations and, then, we discuss under which assumption
a generic system can be transformed into a patient system.

3.1 Channels and Buffers

A channel is a connection ^ constraining twosignals to be identical.

Definition 3.1 A channel C{i,j) C ,i,3 G[l,N] is a process s.t. b= (si,..., s^) GC{i,j) ^ s,- = sj.

Lemma 3.1 A channel C{i,j) C is not a patient process.

Proof: Let b = (si,...,S7v) be a behavior of a channel C(i,j) and, without loss of generality, suppose
that Si <c Sj. Consider a pair of corresponding informative events in s,- and sj: ejt(s,) = {vi,tk) and
ejk(sj) = (u2,fib). Since b G C{i,j) then s,- = sj and, therefore, vi = V2 ^ r. Moreover, s,- = Sj
implies that ord(ejfc(s,)) = ord{ek{sj)) and, since s,- <c sj, ek{sj) = nextEvent{sj, ek{si)). Without loss
of generality, suppose that ejb(s,) and ek{sj) are followed by (/ —1) > 0 stalling events, i.e., formally,
that for / > 1, I •^tk[tk,<fc+(,_j,](s»)] I = I «fc+(i_i,](si)] I = 0- Then, consider informative event
efc+/(si) = (ufc+/,<fc+/). By definition 2.13, ejk+/(s,) = nextEvent{si,ek{sj)). Now, let b' = (si,...,Sjv) =
stall{ek{sj)) be the behavior obtained by applying a stall move on ejfc(sj). At timestamp tk, Sj presents

^In other words, communication and computation are completedin one clockcycle.
^See section 2.1 for the definition of connection.

a stalling event, while the event of s'j corresponding to ejt(sj) is ejt+i(5j) = (i'2.'iSr+i), which occurs
at timestamp tk+i. Then, consider any behavior b" = (s",...,syv) G Vf.[b']. By definition 2.15, since
ct-+/(Sf) = nextEvent{si,ek{sj)), then = qto,«fc](sO = «*](««)• In particular, =

^ ^•nd therefore, <7"[(fc,tfc](s") ^ ^[tk.<*](«"), which, finally, implies that s" 7^ Sj. Hence,
V6" GT£[b'] {b" ^ C{iJ)) and, by definition 2.16, C{i,j) is not patient. •

Definition 3.2 A buffer with capacity c > 0, minimum forward latency // > 0 and minimum
backward latency /t > 0 is a process s.t "dij G [l,N]: b = (si,...,sn) G B? .{ij) iff (s,- Sj) and
VibG IN ^

^ h<o,t(fc-,^)] («i)] I - I kho.tk] (Sj)] I (1)
C > (s,)] I - \T, [qto.t(k-,,)] (®i)] I (2)

By definition, given a pair of indexes iJ G [1,A^], for all lb,lf,c > 0, all buffers Bf^ ,^{i,j) are
latency equivalent. Observe also that buffer coincides with channel C(i,j). In particular, we
are interested in buffers having unitary latencies and we want to establish under which conditions such
buffers are patient processes.

Lemma 3.2 If Si,Sj are two signals s.t. s,- =r Sj and Si <c sj, then

• Vflf GIN s.t. eg{si) G£t{si), nextEvent{sj, eg{si)) is the corresponding event ofeg{si) in sj.

• VA G IN s.t. eh{sj) GSi{sj), nextEvent(si,eh{sj)) = nextEvent{si,eg{si)), where e^(s,) is the
corresponding event of eft(sj) in Si.

Theorem 3.1 Let = /y = 1. For all c> 1, Bl i{i,j) is a patient process iff s,- <c Sj,

Proof.: First, if /j = /^ = 1 then inequalities (1) and (2) become:

0 < W]| - (3)
C > \^t k[to,tk] M] I - \^1 k[fo.t(fc_j)] {Sj)] I (4)

("only if" part]: By contradiction: we prove that if s,- sj then Bl i{i,j) is not a patient process.
Suppose Si Sj. For all c > 1, let 6= (si,..., Sjv) be a behavior ofBf i{i,j) s.t. o"(St) = to r r r...
and (r(sj) = r lq li r t r.... Let 6' = {s\,.. .,s'j^) = 5ta//(eo(s,)),'with eo(si) = (to,fo). Clearly,

^ because inequality (3) does not hold for A; = 1 since s'j = Sj. Further, for all b" =
(«i> --,SAr) € 'PS{stall{eo{si))) we can prove that b" ^ In fact, since = sJ, b" G

B"!-' consider that ord(eo(s,)) = ord(ei(sj)) and, since s,- Sj, then eo(sl) £io
ei(sj). Further, ord(eo(si)) = ord(e2(sj)) - 1. Therefore, e2(sj) = nextEvent(sj ,eo(si)). Recall that, by
definition 2.15 of procrastination effect, where ti is the timestamp of event
nextEvent(sj,eo(si)). Hence, in our case, ii = t2 and Since s'j = Sj, (r[t,\t,]{sj) =

= to 7^ r. This implies that b" ^ j). Hence, 'Pi^[sfa//(eo(s,))]nHf_i'(t,i) =0
and Bi i{i,j) is not patient.

["if" part]: We prove that if s,- <c Sj then j(t, j) is patient.
For all c > 1, let 6= (si,..., syv) be a behavior ofBf i(i, j). For all ^ GIN, such that ej(s,) G£^t(s,),

let 6' = (s'l,..., s^) = stall{eg{si)) =t b. Since s'j = Sj, 6' ^ ^1,1 («.i) inequality (3) does not hold for
some fc GIN. In fact, b' satisfies the other two conditionsof definition 3.2, because b' =t b and to insert a
stalling event on s,- (while Sj remains the same) can not induce a violation ofinequality (4). Now, suppose
first that b' satisfies also inequality (3) for all GIN: then, there exists at least a behavior which belongs to
P^:[sta//(e^(s,))]nBf i(i,j) and this behavior is b', because, V(/Vi, stall{eg{si)) GV€[stall{eg{si))]. Amore
interesting case is when inequality (3)does not hold: in this case b' ^ Bf ^(i, j). Then, consider a behavior
b" = (s",..., s^v) s.t. Vn G[1, iV], n ^ j, (sJ,' = s(»), while s'j' is obtained from s'j by inserting a stalling
event at timestamp th, where ih is also the timestamp ofevent eft(sj) = nextEvent{sj ,eg{si)). Clearly,
this construction guarantees that b" GV€[stall{eg{si))]. It remains to be proven that b" G Bf i(t,i).
First, by construction, b" =r b. Then, check whether s'/,s'j' satisfy inequalities (3) and (4) for all ik GIN.

First, since s,- =j Sj and s,- <c sj, by lemma3.2, €h{sj) = nexiEvent{sj, e^(sj)) is the corresponding event
of ey(s,) in Sj. Hence orcl{€g{si)) = ord{eh{sj)) = or(/(e,(s-')) = ord{eh{Sj)) and, recalling definition 2.8,
I I = I) I- Since, by hypothesis, s,-,5j satisfy inequality (3) for all ^ € IN. then
g < h. Compare s'/ and s'J respectively with s,- and sj: s" has been derived by Si inserting a r at while
Sj has been derived by sj inserting a r at Hence, we can derive the following 4 equations. Further
each term in these equations can be bounded using the fact that Si,Sj satisfy inequalities (3) and (4) for
all ifc G IN:

VA:G [0,^-1], I = I < l^tkho.U-ilUj) I+ c (5)
VArG[fir,oo[, I I = I I < I I + ^ (6)
yke[0,h-l], (7)
\fke [h,oo[, I = l^th«o.<k-i](«j) I < I (8)

Now, keeping in mind that g < h, it is easy to prove that:

• using inequality (7) and equation (5), s'/,Sj satisfy inequality (3), "ik E [0,^—1].

• using ®inequality (7) and equation (6), s",Sj satisfy inequality (3), VA: E[g,h —1].

• using inequality (8) and equation (6), s'/^s" satisfy inequality (3), Vk E [/i,oo[.

• using inequality (5) and equation (7), s'/,Sj satisfy inequality (4), VA: E [0,fir —1].

• using inequality (6) and equation (8), sj',s" satisfy inequality (4), VA; E [g,h— 1[.

• using inequality (6) and equation (8), s'/,Sj satisfy inequality (4), VA: E [/i,oo[.

Therefore, b" E Bf i(i,j).
Consider now b' = (sj,...,s^) = staU{eh{sj)) =t b, where for all /i E IN, e/,(sj) E Let

e,(si) = nexiEveni(si, e/i(sj)) and ep(s,) be the corresponding event of eh(sj) in s,-: then, since s,- =t Sj
and Si <c Sj, by lemma 3.2, eg{si) = 7iextEvent{si,ep{si)). Now, construct b" = {s",...,s'jq) in such
a way that Vn E [l,iV],n ^ = Sn)> while s" is obtained from s(- by inserting a stalling event at
timestamp ig, where g = minfcg(ft+i_oo({^ I ejk(s») G ^«(si)}- Hence, \{ q > h then eg{si) = 6^(5,) else
69(50 <io ^g{si)- In both cases, this construction guarantees that b" E VS[siall{eh{sj))]. It remains
to be proven that b" E First, by construction, 6" =t b. Then, check whether s'/,Sj satisfy
inequalities (3) and (4) for all A? E IN. Compare s" and s" respectively with «,• and sj: s" has been derived
by Si inserting a r at while s" has been derived by sj inserting a r at <h. Hence, previous relations (5-8)
hold also in this case. Now, keeping in mind that here h < g, it is easy to prove that:

• using inequality (7) and equation (5), satisfy inequality (3), VA: E [0,h— 1].

• using inequality (8) and equation (5), satisfy inequality (3), VA: E [h,g— 1].

• using inequality (8) and equation (6), s'/,Sj satisfy inequality (3), VA: E b,oo[-

• using inequality (5) and equation (7), s'/,Sj satisfy inequality (4), VA: E [0,h —1].

• using ®inequality (5) and equation (7), s'/,Sj satisfy inequality (4), VA; E [h,g —1[.

• using inequality (6) and equation (8), s'/,Sj satisfy inequality (4), VA: E [fl',oo[.

Therefore, in this case too 6" E Bf i(i,i).
Finally, for all n E ([1,-/Vj/li,j}) let b' = (s'j,..., s'̂ ^) = s<a//(e/,(s„)) =r b, where for all /i E IN,

eft(sj) E i^t(sn)- Then, trivially, b' E VS[siall{ek{Sn))] H Bf In conclusion, we have that V6 =
(si,...,Siv) G Vn E [1,7^], Vejb(s„) E ^«(sn), (VS[stall{ekisn))] C) B^ 0). Hence,
Bi is patient. •

®Recadl that = t.
^Recall that

Consider a strict system PstrUt = flLi Pm with Nstrict signals As explained in sec
tion 2.1, processes can be defined over different signal sets and to compose them we may need to for
mally extend the set of signals of each process to contain all the signals of all processes. However,
without loss of generality, consider the particular case of composing M processes which are already
defined on the same N signals. Hence, any generic behavior bm = (Sm,, •••, Sm;v) of is also a
behavior of Pstrict iff ^ot a,\\ I S ^ m process Pi contains a behavior 6/ = s.t.
Vn G[1, N]). In fact, we may assume to derive system Pgtrict by connecting the processes with
{M-l)-N channel processes C(/„, (/-|-1)„), where / G[1, (M - 1)] and n G[l,N]. Further, we may also
assume to "decompose" any channel process C(m„,/„) with an arbitrary number A' of channel processes
C(m„, xi), C(xi, X2),..., C(xx-i, /n), by adding A'̂ —1auxiliary signal, each of them forced to be equal to
rUn = In. The theory developed in section 2 guarantees that ifwe replace each process P^ GPgtrict with
a latency equivalent patient process and each channel C{i,j) with a patient buffer we obtain
a system Ppatient which is patient and latency equivalent to Pgtrict- In fact, "having a'paiieni buffer in
a paiieni sysiem is equivaleni io having a channel in a sirici sysiem". Since "decomposing" a channel
C{i,j) has no observable effect on a strict system, we are therefore free to add an arbitrary number of
patient buffers into the corresponding patient system to replace this channel. Since we use patient buffers
with unitary latencies, we can distribute them along that long wire on the chip which implements
in such a way that the wire gets decomposed in segments whose physical lengths can be spanned in a
single physical clock cycle.

3.2 Relay Stations

The following Lemma 3.3 proves that no behaviors in 5} may contain two informative events of
Si, Sj which are synchronous: this implies that the maximum throughput across such a buffer is 0.5, which
may be considered suboptimal. Instead, buffer j(i,j) is the minimum capacity buffer which is able to
"transfer" one informative unit per timestamp (maximum throughput =1).

Lemma 3.3 Buffer i{i,j) is ihe minimum capacity buffer with /y = /j = 1 s.t

^b* ={s*i,...,s%)eBl^{i,j) ABkeJN, {Ckis^) e £,{s^) Aeik(spG^:,(sp) (9)
Proof.: Relation (9) says that i(i,j) is the minimum capacity buffer with // = = 1 containing
a behavior b* where s,- and Sj present at least a pair of synchronous informative event (i.e., the two
informative event have the same timestamp ffc). Notice that the only buffer with /y = = 1 having
capacity less than B^ ^[i,j) is Bj j(i,j). We first show that Bj j(f,j) contains at least one behavior b*
satisfying relation (9) and then we prove that the same is not true for any behavior of Bj It is
easy to construct an example ofsuch a behavior: for instance, consider a behavior 6 = (si,. ..,sjv) s.t.
<7(5*) = n i2 T r r... and that o"(sJ) = r li 12 r r r... Clearly, s* s* and inequalities (3) and (4)
are satisfied for any kGIN. Hence, bGBj j(i,j). Moreover, at timestamp ii both s* and s'j present an
informative event.

Now, consider B} ^(i,;). Ifc= 1, combining inequalities (3) and (4) we obtain that Vik GIN:

I [''•[<0,<(*_!)] («;•)] I+ 1 > \Pt kho.<fcl (®t)] I > k[to,«(fc+,)] («j)] I
I hto.t(k_o] (««•)] I > I hto.tk] (Si)] I > I («i)] I- 1

Hence, for all behaviors b= (si,.. .,S7v) GBj j(?, j), signals Si,Sj are not only latency equivalent but also
correlated according to a very regular pattern (see Figure 2) which can be summarized in two properties:
(i) there are no two synchronous informative events in s,,Sj; (n) for all timestamps, informative events
appear alternately on Si and on Sj. Property (f) is a negation of relation (9). •

Definition 3.3 The buffer Bf ^ is called a relay station RS.

10

Si = L\ T l2 T L2 T T T T T T 1-; T Is T T T r l\Q T . .

So = T L\ T L2 T Ls T T T T T Ls T Li T Ls T T T r L\0 T

5^ — L\ io ^3 ^ ^ ^4 ^5 ^6 T T T T Iq ^10 • * •

$2 = 7" to ^3 ^ ^ ^4 7" 7" ^5 ^6 ^7 ^8 ^9 ^10 • • •

Figure 2: Comparing two possible behaviors of finite buffers S} j and j.

4 Latency Insensitive Design Methodology

In this section, we move towards the implementation of the theory introduced in the previous sections.
To do so, we assume that:

• the pre-designed functional blocks are synchronous processes;

• there is a set of signals for each process that can be considered as inputs to the process and a set of
signals that can be considered as outputs of the process, i.e., the processes are functional]

• the processes are strictly causal (a process is strictly causal if two outputs can only be different at
timestamps that strictly follow the timestamps when the inputs producing these outputs show a
difference

• the processes belong to a particular class of processes called stallable, a weak condition to ask the
processes to obey.

The basic ideas are as follows. Composing a set of pre-designed synchronous functional blocks in the most
efficient way is fairly straightforward if we assume that the synchronous hypothesis holds. This composition
corresponds to a composition of strict processes since there is a priori no need of inserting stalling events.
However, as we argued in the introduction, it is very likely that the synchronous hypothesis be not valid for
communication. If indeed the processes to be composed are patient, then adding an appropriate number
of relay stations yields a process that is latency equivalent to the strict composition. Hence, if we use
as the definition of correct behavior the fact that the sequences of informative events do not change, the
addition of the relay stations solve the problem. However, requiring processes to be patient at the onset
is quite strong. However, in practice, a patient system can be derived from a strict one as follows: first,
we take each strict process Pm and we compose it with a set of auxiliary processes to obtain an equivalent
patient process P'^- To be able to do so, all processes Pm must satisfy a simple condition (the processes
must be stallable) specified in the next section. Then, we put together all patient processes by connecting
them with relay stations. The set of auxiliary processes implements a "queuing mechanism" across the
signal of Pm in such a way that informative events are buffered and reordered before being passed to Pm '•
informative events having the same ordinal are passed to Pm synchronously.

In the sequel, we first introduce the formal definition of functional processes. Then, we present the
simple notion of stallable processes and we prove that every stallable process can be encapsulated into a
wrapper process which acts as an interface towards a latency insensitive protocol.

4.1 Stallable Processes

An input to a process P C is an externally imposed constraint Pj C such that PjOP is the total
set of acceptable behaviors. Commonly, one considers processes having input signals and output signals:
in this case, given process P, the set of signals can be partitioned into three disjoint subsets by partitioning
the index setas{l,...,A'^} = /U0U/2, where I is the ordered set of indexes for the input signals of P, O
is the ordered set of indexes for the output signals and R is the ordered set of indexes for the remaining
signals (also called irrelevant signals with respect to P). A process is functional with respect to (/, O) if
for every behavior b £ P and b' € P, where projj{b) = projj{b'), it follows that projoib) = projoib').

^°For a more formal definition see [3].

11

Si = l\ ia T 13T T ... S4 = T li T 13 l[T 13 • • •

So = T

00

is • - • — S5 = T 1.^ T I -is T is • • •

S3 = r is is 7- 19 T ig ... S6 = r /5 T is ip T i6 • • •

Figure 3: Example of a behavior of an equalizer E with I = {1,2,3} and O = {4,5,6}.

In the sequel, we consider only strictly causal processes and for each of them we assume that the
well founded order <c of definition 2.12 subsumes the causality relations among its signals, i.e. formally:
yieiyjeO,{si<cSj).

Definition 4.1 A process P with I = {1,...,Q} and O = {Q + 1 ,7V} is stallable iff/or all b =
(si,.. .,sq,sq+i, .. .,SAr) G P and for a// Ar GIN ;

^ = "t) <=> Vj GO (o-[tfc+i,ffc+,](S;) = r)

Hence, while a patient process tolerates arbitrary distributions ofstalling events among its signals (as
long as causality is preserved), a stallable process demands more regular patterns: r symbols can only
be inserted synchronously (i.e., with the same timestamp) on all input signals and this insertion implies
the synchronous insertion of r symbols on all output signals at the following timestamp. To assume that
a functional process is stallable is quite reasonable with respect to a practical implementation. In fact,
most hardware systems can be stalled: for instance, any sequential logic block that has a gated clock or
a Moore finite state machine M with an extra input, that, if equal to r, forces M to stay in the current
state and to emit r at the next cycle.

4.2 Encapsulation of Stallable Processes

Now, our goal is to define a group of functional processes that can be composed with a stallable process
P to derive a patient process which is latency equivalent to P. We start considering a process that aligns
all the informative events across a set of channels.

Definition 4.2 An equalizer E is a process, with 7= {1,..., Q} and O= {Q1,... ,2 Q}, s.i. for all
behaviors 6= (si,..., sq,sq+i ,..., S2.q) GE: Vf G7,(s,- =r sg+i) and VJk GIN ;

Vi,i GO (((T[,^,t^](si) = r) (<^[tk,tfcl(sj) = t))
min{ |P, I} - f^{\^c[(r[t,,t,]{sj)]\} >0

The first relation forces the output signals to have stalling events only synchronously, while the second
guarantees that at every timestamp the number of informative events occurred at any input is always
greater than the number of informative events occurred at any output. In particular, the presence of a
stalling event at any input at a given timestamp forces the presence ofa stalling event on all outputs at
the same timestamp. Figure 3 illustrates a possible behavior of an equalizer.

Definition 4.3 An extended relay station £1ZS is a process with I = {i} and O = {/,/}, i j ^ I s.t.
signals Sq,S2 are related by inequalities (1) and (2) of definition 8.2 (with // = fj, = 1 and c = 2) and
VAr G IN;

(fc, fcH,) ^ Q otherwise

Definition 4.4 Astalling signal generator SSQ is a process with I = {1,.. .,Q} and O = {Q + 1} s.t.
V6 = (si,.. .,SQ+i),Vfc GIN,Vi G[1,Q], ((<^[tfc,tk](si)] G[0,1]) and

Q otherwise

12

As illustrated in Figure 4. any stallable process P can be composed with an equalizer, a stalling signal
generator and some extended relay stations to derive a patient process which is latency equivalent to P.

Definition 4.5 Lei P be a siallable process with Ip = {p'l ^p'm) Op = {/i, •••, A wrapper
process (or, shell process^ of P is ike process with Iw = - Ow = {li, •• -,Qn}
which is obtained composing P with the following processes:

• an equalizer E with Ip = {pi, ••-,Pm,Pa/+i} and Oe = {Pi. •••.Pa/'Pm+i)>

• N extended relay stations S'R.Si,SlZS2, ••.jSIZSn s.t. Ij = {q'j} and Oj = {qj,rj}, with j E [l,N]

• a stalling signal generator SSG with /<? = {n,.. .,rAr} and Oc = {pa/+i}-

Theorem 4.1 Let W{P) be the wrapper process of definition 4-5. Process W = pfojj^yuOwi^i^)) a
patient process that is latency equivalent to P.

Proof: Throughout the proof we follow the index notation of definition 4.5.
f"iy =r P" part]; We first prove that W=r P. Let b' = {Sp'̂ ,..., Sp>^^, ,..., Sg'̂) be a behavior

of P and 6 = (sp,,•.,.. -, Vi'• ••>Vm+i ' ' •••• •' •' ^ behavior of W{P).
Further, let bw = pi'ojiwyjOw(^) = (®pi >•••i^pm> >•••> be the corresponding behavior of W. Then,
by definition 4.2ofequalizer, Vi E =t sJ), and, by definition of relaystation, Vi E [l,//],(s5, =t Sq>).
Therefore, bw =j b.

["W patient" part): Recalling definition 2.16, we need to prove that: V6 =
(Sp,, . . ., Spi^, Sq^ , . . ., Sqf,j) E Vj E Iw UOiv, VeA:(sj) E (VS[stall{ek{sj))] H W # 0).
Consider first stalling any input signal of W: for all Sp,,i E [l,Af] and all eg{Sp^) E ^t(sp,), let b' =
(Spj,..., Sp^, ,..., s'g^) = siall{eg{spj). By analyzing the interrelationships among the components of
W, it is easy to verify that b' 0 W. In fact, the insertion of a stalling event on input Sp, at tg implies that:

1. all the output signals of equalizer E have a stalling event at tg,

2. all the output signals of P have a stalling event at ig+i and

3. all the output signals s,,,..., have a stalling event at <^+2-

Hence, Vj E N, 6^+2(5?^) C) must be alsostalled. Then, since move stall{ek(sp^)) does not affect any
other signal but Sp, ,b'^W. However, since ord{eg+2{sqj)) = nextEvent{{Sqj), eg{sp-) the insertion ofone
stalling event on each of the wrapper outputs at <*,+2 is compatible with the definition of procrastination
effect and, therefore, VS[stall{ek{sp,))] n W ^ 0.

Next, consider stalling any output signal of W: for all Sqj,j E [1,A^] and all eh{sqj) E £i{sqj), let
= («p. = stall{eh{sqj)). By definition of stall move, Vm E [1,M], = Sp„)

and Vn E [l,JV],n ^ j, {Sg^ = Sg„). Hence, again, b' ^ W. In fact, the insertion ofa stalling event
on signal Sg- at </, has an impact on signal Srj of STlSj, set to 1 at ih and signal Sgi,, constrained
to stall event eh+i{Sg'̂) E Si{sg'.). Note that, by definition 3.3, eh+i{sg'.) must be stalled even though
VA: E [h + l,/i 4- / —1]> (o'[tfc,tfc](s9p = "J")- Therefore, without loss of generality, we may assume I = 1.
Then, Srj = 1 forces the output Spjvy+, of SSQ to be a r symbol at th'. this implies that all the equalizer
outputs have a stalling event at th (but, no stalling events are forced on the remaining inputs of SSG)
and, finally, all the outputs of the stallable process must have a stalling event at th+i according to
constraint Ti = t- While no other stalling events are forced on Sg<. of ZHSj at th+i+i,
all the remaining relay stations STZSr,r E [l,Ar]/{j} must stall their E Again,
since stall{eh{sgj)) does not affect any other signal but Sg^, b' ^ W. However, Vr E since
ord{eh+i+i{sq^)) = n€xiEveni{sq,.,eg{sg'̂)), where 6^(5,/) = nextEvent{sq'̂ ,eh{sq^)), then eh{sq^) <io
eh+i+i{sq,.). Hence, the insertion of one stalling event on each wrapper output Sg^, r E ([!»A^j/0}) at
tk+h+i is compatible with the definition ofprocrastination effect. Therefore, V£[stall{eh{sg,))] DW^ (b.
•

Our latency insensitive design methodology can then be summarized as follows:

13

ERS

Sq'
ERS,

M-fl

SSG

W(P)

Figure 4: Encapsulation of a stallable process P into a wrapper W{P).

1. Begin with a system of M stallable processes and N channels.

2. Encapsulate each stallable process to yield a wrapper process.

3. Using relay stations decompose each channel in segments whose physical length can be spanned in
a single physical clock cycle.

This approach clearly "orthogonalizes" computation and communication: in fact, we can build systems
by putting together hardware cores (which can be arbitrarily complex as far as they satisfy the stalling
assumption) and wrappers interfacing them with the channels, by "speaking" the latency insensitive pro
tocol. While the specific functionality of the system is distributed in the cores, the wrappers can be
automatically generated around them Finally, the validation of the system can now be efficiently de
composed based on assume-guarantee reasoning [5, 2]: each wrapper is verified assuming a given protocol,
and the protocol is verified separately.

5 Conclusions and Future Work

A new design methodology for large digital systems implemented in DSM technology has been presented.
The methodology is based on the assumption that the design is built by assembling blocks ofIntellectual
Properties (IPs) that have been designer and verified previously. Themain goal is to develop a theory for
the composition ofthe IP blocks that ensures the correctness ofthe overall design. The focus is on timing
properties since DSM designs suffer (and will continue to suffer even more for theforeseeable future) from
delays on long wires that often cause costly redesigns. Designs carried out with our methodology are called
latency insensitive design. Latency insensitive designs aresynchronous distributed systems andarerealized
by assembling functional modules exchanging data on communication channels according to a latency-
insensitive protocol. The protocol guarantees that latency insensitive designs composed of functionally
correct modules, behave correctly independently of the wire delays. This allow us to pipeline long wires
by inserting special memory elements called relay stations. The protocol works on the assumption that
the functional block satisfy certain weak properties.

The method trades-off latency for throughput, hence it is important to optimize the amount of latency
that we must allow to obtain correct designs. This optimization leads to the concept ofspeculative latency
insensitive protocols which will be the subject of a future paper.

We are in the process of applying the method to industrial strength designs to demonstrate its appli
cability and its properties to the digital design community. Preliminary results indicate that the method
yields highly efficient designs and fully delivers on its promises.

"This is the reason why wrappers are also called shells: they just "protect" the intellectual property (ike pearl) they
contciin from the "troubles" of the external conununication architecture.

14

6 Acknowledgments

We wish to acknowledge the discussions with Luciano Lavagno and Alex Saldanha that led to the theory
of latency insensitive designs. Patrick Scaglia gave us strong support based on his experience as a designer
of highly complex digital systems and continuous encouragement. Finally this research has been partially
sponsored by Cadence Design Systems, SRC and by CNR.

References

[1] D. Matzke. Will Physical Scalability Sabotage Performance Gains? IEEE Computer, 8(9):37-39,
September 1997.

[2] T.A. Henzinger, S. Qadeer, and R.K. Rajamani. You Assume, We Guarantee: Methodology and
Case Studies. In Proceedings of the 10th International Conference on Computer-Aided Verification,
Vancouver, Canada, July 1998.

[3] E. A. Lee and A. Sangiovanni-Vincentelli. Comparing Models of Computation. In Proc. Intl. Conf.
on Computer-Aided Design, pages 234-241. IEEE, November 1996.

[4] E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Modelsof Computation. IEEE
Transactions on Computer-Aided Design, 17(12):1217-1229, December 1998.

[5] K. L. McMillan. A Compositional Rule for Hardware Design Refinement. In Proceedings of the 9th
International Conference on Computer-Aided Verification, Haifa, Israel, July 1997.

15

	Copyright notice 1999
	ERL-99-11

