

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FORMAL SPECIFICATION AND VERIFICATION

OF A DATAFLOW PROCESSOR ARRAY

by

Thomas A. Henzinger, Xiaojun Liu, Shaz Qadeer
And Sriram K. Rajamani

Memorandum No. UCB/ERL M99/14

10 March 1999

FORMAL SPECIFICATION AND VERIFICATION

OF A DATAFLOW PROCESSOR ARRAY

by

Thomas A. Henzinger, Xiaojun Liu, Shaz Qadeer and Sriram K. Rajamani

Memorandum No. UCB/ERL M99/14

10 March 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

Formal Specification and Verification of a Dataflow Processor Array

Thomas A. Henzinger Xiaojun Liu Shaz Qadeer Sriram K. Rajamani
EECS Department, University of California at Berkeley, CA 94720-1770, USA

Email:{tah, liuxj , shaz, sriramr}@eecs.berkeley.edu

Abstract

We describe the formal specification and verification of the VGI parallel DSP chip [STUR98], which contains 96
processors with ~30K gates in each processor. Our effort coincided in time with the "informal" verification stage of
the chip. By interacting with the designers, we produced an abstract but executable specification of the design which
embodies the programmer's view of the system. For VGI, the implementation and specification operate at different
time scales: several steps of the implementation correspond to a single step in the specification. We generalized both
the assume-guarantee method and our model checker MOCHA to allow compositional verification for such applications.
We used our proof rule to decompose the verification problem of the VGI chip into smaller proof obligations that were
discharged automatically by MOCHA. Using our formal approach, we uncovered and fixed subtle bugs that were unknown
to the designers.

1 Introduction

The VGI chip [STUR98] is an array of DSP processors designed to be part of a system for web-based image processing
[SSTR97]. The VGI chip contains a total of 96 processorsand has approximately6M transistors. Of the 96 processors,64
are 3-stage pipelined compute processors. Each compute processor has about 30,000 logic gates. Data is communicated
between the processors by means of FIFO queues. No assumption is made about the relative speeds at which data is
produced and consumed in the processors. Hence, to transfer data reliably an elaborate handshake mechanism is used
between the sender and the receiver. In addition, the interaction between the control of the pipeline and the control of the
communication unit is quite complex.

The design was described partly in VHDL and partly in the form of circuit schematics. We translated the design
into the language of ReactiveModules [AH96], which is the input language to our model checker MOCHA [AHM'^98].
After a number of discussions with the designers, we produced a formal specification of the design which embodies the
programmer's view of the system, also in Reactive Modules. The sheer size of the design together with the well-known
state explosion problem precluded the direct use of model checking techniques to verify the implementation against the
specification. Existingtechniques that flatten the design hierarchy and use BDD-based stateexploration [BHSV'''96] can
verify designs with at most 50-60 latches reliably. Clearly, the VGI design, which has about 800 latches per compute
processor, is well beyond the scope of such tools. We demonstrate how model checking can be scaled up using assume-
guarantee reasoning to handle the VGI design. To the best of our knowledge, the largest design that has been ever
verified using model checking has been reported by Eiriksson [Eir98]. Compositional techniques used in that effort for
decomposing the verification task did not readily apply to the VGI, because the implementationand specificationoperate
on different time scales (several consecutive implementation steps realize single a specification step). We developed
novel compositional techniques for decomposing refinement proofs with variable time scales. We then applied these
techniques to obtain proof obligations that were small enough to be discharged automatically by Mocha. In the process,
we found several subtle bugs that were unknown to the designers. Three of these bugs will be explained in the discussion
in Section 5.

Step 1: formal specification. A significant part of the verification effort was invested in producinga correct spec
ification. Only an informal specification of the design existed in the form of English description and elaborate timing
diagrams. This and the fact that no behavioraldescription of the design was available (the datapath was designed directly
in schematic) made the task of producing the specification even more difficult.

A number of features are desirable in the specification for the VGI chip. First, the specificationshould be at a level
of abstractionsuch that a high degreeof confidencein its correctness can be establishedby informalmeanssuch as code
review. More specifically, the specificationshould embody the view that the programmer/compilerhas of the VGI chip,

1

which is that ofadataflow architecture with aset of processing elements connected through queues. For this high-level
view, every processing element behaves as ifeach instruction is executed atomically in one step, and the communication
circuitry between the processors processors behaves like FIFO queues. The behavior of a program written with this
high-level view should not depend on the delay in transferring a data token from one processor to another. Such FIFO
queues can be modeled using nondeterministic delay. This makes necessary the availability of nondeterminism in the
speciflcation language.

Second, the specification should have an operational as well as amathematical semantics. Operational semantics per
mits the execution ofspecifications; mathematical semantics permits their formal verification. Executability is especially
desirable in the case ofthe VGI processor, because the design under consideration is part ofabigger system. Provided all
essential features ofthe design that are necessary for correct interaction with the environment have been captured by the
specification, itcan beused inplace of the actual design for simulating the whole system.

Third, the design itself (the "implementation") should be describable in the same language as the specification, and a
refinement operator should be available for relating the implementation and the specification. Inour case, the refinement
operator must relate two different time scales. The implementation has aclock signal elk with activity onboth theHIGH
and LOW phases in different parts ofthe design. For instance, in the execute phase ofthe pipeline abus carries an operand
when elk is HIGH and the result when elk is LOW. Butthe specification does notmention elk at all. Infact, thewhole
computation happens in just one step. Thus, one round inthe specification isequal totwo rounds in the implementation,
one with elk = HIGH and one with elk = LOW. Therefore, our formal notion ofrefinement samples the implementation
whenever elk is low and checks if thesampled behavior ispresent in thespecification.

Reactive Modules, our modeling language for both specification and implementation, hasall thedesirable features
mentioned above —mathematical semantics, executability, and support for nondeterminism and sampling.

Step 2: formal verification. Since VGI isa very big design, model checking cannot be applied directly. Previously,
assume-guarantee methods have been developed for decomposing a refinement verification task into smaller proof obliga
tions that can be discharged automatically with a model checker. In assume-guarantee reasoning [Sta85, CLM89, GL94,
AL95, AH96, McM97, HQR98], the different components ofthe implementation are verified in isolation by making ap
propriate assumptions about their environments. The environment assumptions are then discharged separately. Inorder
to keep the sizes ofthe individual proof obligations within the capacity limits ofmodel checking, it isessential tospecify
the environment assumptions for implementation components abstractly in terms ofspecification signals, using so-called
"abstraction modules" (refinement maps, simulation relations) [AL88, Kui94, Lyn96, AH96, McM97, HQR98].

Inthe case ofVGI, the specification describes the behavior of the implementation only at the sampling instants. Con
sequently, the abstraction modules specify the values of implementation signals only at those instants. But the correct
behavior of implementation components may depend on assumptions about the environment between sampling instants.
Hence, for carrying out refinement-based proofs insituations where the time scales ofthe implementation and specifica
tion differ, we(I) introduce a new sampling operator that cansample thesignal values ofa module with some environment
constraint between sampling instants, and (2) generalize the assume-guarantee proof rule towork with the sampling op
erator. Working with specifications at an abstract level of temporal granularity is not new. Previous work on dynamic
switch-level circuits encountered similar situations, where it is useful to generate gate-level circuits in which the clock
isabstracted out [JBJ95, KSL95]; previous work on reachability checking utilized the efficient exploration of temporal
abstraction hierarchies [AHR98]. However, we are not aware ofany compositional refinement checks between implemen
tations and specifications that operate at different time scales.

In order to handle theproof obligations thataregenerated byournew assume-guarantee rule, weextended themodel
checker MoCHA with the capability for dealing with the sampling operator inrefinement checks. We are not aware ofany
other modelcheckerthat currently offerssuch a capability. Usingthe enhancedversion of MOCHA we discovered several
bugs in the VGI design and fixed them. Inthis process, we found it extremely useful toemploy Mocha asa debugging
tool that supports theconcurrent activities of (re)design and formal (re)verification: design insights would suggest the
definition ofrefinement maps for model checking, and Mocha would produce error traces that suggest corrections tothe
design. In this way, design andformal verification become a single activity ("formal design") thatinvolves similar mental
processes, rather than two decoupled activities, one followed by the other with little interaction.

The goal of our verification effort is a proof that the implementation of the VGI chip refines its specification. As
a result, a programmer who wishes to find out how the VGI chip would behave with his program can simulate his
program on thespecification of theVGI chip instead. Ourrefinement proofguarantees that thebehaviors produced by
the implementation of the VGI chip conforms to behaviors produced by the specification. An interesting, but different
question is whether thespecification correctly captures theintent ofthedesigner. It isnotpossible toanswer this question
formally, because intentions are informal and imprecise. However, it is possible to check if the specification satisfies

PROCESSOR PI

Regfile/DataQueue

From Process! r P4

From Process! r P5

R7, R3

R4 R5

R6 R7

ControlQueue

PROGRAM

MEMORY

MIRIREG

MIR2REGI

I
CONTROL

T

ALU

I
PROCESSOR P2

Regfile/DataQueue

PROCESSOR P3

ControlQueue

Figure 1: V6I processor configuration with three input and two output queues

specific properties expressed in temporal logics using model checking.
Outline. In Section2, wedescribethe implementation and specification of theVGI chip in moredetail. In Section3,

we describe our notionof refinement basedon a samplingoperatorand introducethe corresponding verification method
ologybasedon assume-guarantee reasoning. Weshowthat the verification of an arbitrary network of computeprocessors
can be reduced to the verification of a finite set of configurations of a single processor. But even a single processor is
too large to be handled by a model checkerdirectly. In Section4, we describethe compositional verification of a single
processorusingassume-guarantee reasoningand Mocha. Weconcludewith a discussionof the bugs found and insights
gained in Section 5.

2 The Problem

2.1 Design implementation

We briefly describe the architecture of the VGI chip. The VGI chip is a DSP processor array comprising 64 compute
processors, 16 memory processors and 16 I/O processors, connectedby a statically programmable hierarchical commu
nication network. The processors are arranged in 16clusters with 4 compute processors, 1 memory processor and 1 I/O
processor in each cluster. There is a single clock variable elk for the chip. To enhance performance, the design uses
a two phase clocking scheme, level sensitive latches of either polarity and gated clocks. In this work, we focus on the
verification of computeprocessors and the data communication amongthem.

A compute processor in theVGI chip hasa pipelined datapath unit,a control unit anda 16-word instruction memory.
There are 6 registers organized in pairs. Each paircould eitherbe configured as two general purpose registers or as a 2-
place inputqueue. Aprocessor canoutput dataandcontrol tokens tomultiple downstream processors. Theinterconnection
between theprocessors isprogrammed statically at the beginning before any computation starts. Each compute processor
can be in one of a finite number of configurations depending on how its input and output are configured. At the input,
each register paircanbe configured either as a queue or as general purpose registers. At theoutput, each output bus can
beused or unused. Forinstance. Figure 1shows theconfiguration when theregister pairR2-R3 is configured as a queue,
and one data output queue and the control output queue are configured to send data and control tokens respectively to
otherprocessors. We do notmodel the configuration logic thatconfigures thenetwork, and the scan logic that is used by
the hardware debugger. Afterthesesimplifications, eachcompute processor model has 1700 variables, of which 800are
latch variables.

PROGRAM

MEMORY

CONTROL

R4 R5

R6 R7

AUXILIARY

VARIABLES

exsend

sendack^

ALU

REHNEMENT

MAPS

Data

Queue

Control

Queue

- send

'sendack

* abus^

'stallpipe
' pipelat^^

Figure 2: Specification module for refinement check

A data flow computation is performedby connecting the compute processors in a network. The instructionmemoryof
each compute processor is programmed individually, and each processor functions as an "actor" in a data flow network,
consuming data and control tokens from its input and producing data and control tokens to its output. Suppose we want
to configure two processors so that one sends data to another. Then, one of the register pairs of the receiver has to
be configured as an input queue and an output bus of the sender should be connected to the input bus of the receiver
by programming the network. No assumption is made about the relative speeds at which data is being produced and
consumed. Hence, an elaborate handshake mechanism is used to transfer data reliably between the sender and the receiver.
Sincean instruction can readfrommultiple inputqueuesand send to multipleoutputqueues,care mustbe takento ensure
thatdata-flow semantics is preserved. Forexample, if an instruction readsdata from two inputqueuesand data is available
only on the first queue and the secondqueue is empty, then the read from the first queue has to be delayed until data is
also available in the secondqueue. Similarly, if an instruction wants to send to two outputqueuesand the secondqueue
is full, then the data is sent to the firstqueue and the processorstalls until the secondqueue has space. Irrespective of the
relative speeds of the processors,data should not be lost and the same data should not be sent multiple times.

2.2 Design specification

Ourgoal is to come up witha specification for an arbitrary (butstatically)programmed network of thecomputeprocessors.
Wedo this by writing a specificationfor the computation and communication parts of the compute processor. The module
ISA is a very simple specification of the computation — data values read either from a register or a queue, results are
computed and output is written to the output queues and/or written back to a register, as a result ofexecuting an instruction.
To write the specificationof the communication, we observe that in the implementation, each queue is actually distributed
between the sender and the receiver with handshake being performed between the two. We specify the distributed queue
as a simple 4-place FIFO buffer. Performing verification against this specification will ensure that the handshake transfers
data reliably from the sender to the receiver. The modules DataQueue and ControlQueue are descriptions of a
4-place FIFO queue different only in the data width.

The specification for any particular processor configuration can be obtained by composing the component specifica
tions of its computation and communication units. For example, the specification for the configuration shown in Figure 1
can be obtained by appropriately composing a module ISA, one instantiation of the module DataQueue and one instan
tiation of the module ControlQueue. This is shown in Figure 2'. The specification of a network of processors can be
obtained by composing the specifications of the individual processors. In Figure 2, note that the register pair R2-R3 is

'The dotted rectangle in the lower portion ofFigure 2 shows refinement maps. We defer their description toSection 4.

missing. Since they have been conhgured as an input queue, they are part of the distributed output queue of an upstream
processor, and will be specified in that processor. Our verification methodology, described in the next section, will let us
prove that an arbitrary network of compute processors satisfies its specification.

3 The Methodology

We model both implementations and specifications as reactive modules [AH96]. For the purposes of this discussion, a
reactive module comprises a finite set of variables, partitioned into external (input) and interface (output) variables, and
rules for initializing them and updating their values in each round of operation. Both the initial value and the update of
a variable can depend on another variable with zero-delay. These zero-delay dependencies impose a partial order on the
evaluation of the variable values in each round. The parallel composition P\\Q of two modules P and Q is obtained by
connecting the variables with the same names and is defined only if 1) the set of interface variables of modules P and
Q are disjoint, and 2) there is no zero-delay cycle in the composition. If P\\Q is defined, then P and Q are said to be
compatible. A state s of a module P is an assignment of values to all its variables. A state s is initial^ if it can result from
executing the initializing rules of P. We write s —t if starting from state s, variables of P can be updated according
to the update rules of P to reach the state t. A finite sequence so> sij S2, • • •, Sn of states is a trace of P if sq is an initial
state and for all i < n, we have that Sj ->p Si+i. The trace language Lp of a module P is the set of all traces of P. Let
P be a module and ip a predicate over the variables of P. The v^-sample of a trace r, denoted by is subsequence of r
obtained by selecting all states of r that satisfy (p. We say that P refines Q, denoted by P ^ Q, if 1) every variable of Q
is in P, 2) every interface variable of Q is an interface variable of P, and 3) the trace language of P projected onto the
variables of Q is a subset of the trace language of Q.

When we discuss the refinement check P ^ Q, we refer to P as the implementation and Q as the specification. The
implementation and specification we are concerned with have been described earlier in Section 2. We would like to prove
that the implementation refines the specification in as automatic a way as possible. Two features of the implementation
make this verification task specially daunting.

• The implementation consists of a possible maximum of 64 compute processors. Each processor is quite big with
around 800 latches and 1700 variables. The sheer size of the implementation precludes a direct use of model
checkingand makescompositionalreasoningessential. In assume-guaranteereasoning, the differentcomponentsof
the implementation can be verified in isolation by making appropriate assumptions about their environment. These
environment assumptions can then be discharged separately. A crucial aspect of this decomposition process is the
use of "refinement maps". We can illustrate this in an abstract setting in the following way. Consider, for example,
an implementation that is the parallel composition of two modules P and Q and let P' and Q' be their respective
specifications. We would like to verify the modules P and Q one at a time. The environment of P might contain
signals that are not present in the specification.Hence, we write abstractdefinitionsof these implementationsignals
in terms of specification signals in the form of a module Rp and use it along with Q' to construct the environment
Ep = Q'\\Rp of P. A similar approach is taken for module Q togenerate itsenvironment Eq. Then, we can use
the following proof rule.

P^Ep ^ Eq
QII-^q ^ Ep

P\\Q :< EpWEq < P'WQ'

The use of circular environment assumptions as shown in the proof template above is crucial for decomposing
verification tasks.

The implementation is based on level-sensitive latches synchronized by a single clock. There are latches of both
kind — transparent high and transparent low, and computation is performed in both phases of the clock in different
parts of the implementation. Moreover, there are a number of gated latches, i.e., latches whose enabling signals
depend on signals other than the clock. We model these phenomena through an explicit clock variable elk that
togglesevery round. Thus, a round in the implementationcorrespondsto half a clock cycle. Being at a more abstract
level, the specification does not mentionthe clock at all and a round in the specification corresponds to two rounds
of the implementation. One way to comparean implementation with a specification that operatesat a coarser time
scale is to sample the values of the implementation signals at appropriate time instants. We would then like to show
that every sampled trace of the implementationis a trace of the specification.

Notice that if the implementation and specification have different time scales, the refinement maps will constrain the
value of implementation signals only at the sampled time instances. But, sometimes a module in the implementation
might depend on the behavior of the environment between sampling points. For example, it might be important that
the environment maintains the value ofa signal constant from one sampling instant to another. Therefore, the sampling
operator might need to constrain the behavior of a module between sampling instants. Let P bea module, T a module
compatible with P, and (p apredicate on the variables ofmodule P. Then, we define the following two sampling operators:

• Sample^(P) is a module with the same set ofexternal and interface variables as P, and with the trace language
given bytheset {t^\t is a trace of P}.

• Sample^(P,T) is a module with the same set ofexternal, interface variables as P, and with the trace language
given bytheset {t^\t is a trace of PUT}.

Note that the module Sample^(P,T) is different from the module Sample^(P||T). The former module has the
same set of interface variables as P while the latter has the same set of interface variables as P||T. We generalized the
assume-guarantee proof rule described above as follows.

Sainple^(P,Tp)||Pp :< Eq
Sample^(Q,Tq)||Pq :< Bp

P\\Q :< TpIITq
Saniple^(PllQ) ^ Ep\\Eq ^ P'\\Q'

Aformal treatment of thecorrectness of thisproofrulecanbefound in [HQR99]. Theintent behind thefirst antecedent
in the above rule is to prove that Sample^(P) refines Eq under a "suitable" environment. A suitable environment
constrains the inputs to P using the specification component Ep. Since Ep operates at a coarser time scale than P, it
can constrain the inputs toP only at the sample points (which are specified by (p). An additional temporal assumption
Tp on the inputs to P is needed, which specifies detailed timing assumptions at the finer time scale, about the abstract
values supplied by Ep. A similar assumption Tq is needed to prove that Sample(Q) refines Ep. Finally, it needs to
be proved that the implementation P\\Q indeed satisfies the assumptions Tp||Tq. We can further decompose this proof
using traditional assume-guarantee reasoning [HQR98] and avoid constructing P\\Q. Note that the first two antecedents
state a refinement relation at an abstract time scale specified by p, and the last antecedent states a refinement relation at
the detailed time scale.

Each compute processor in VGI starts computation in the positive phase ofthe clock and finishes the computation in
the negative phase ofthe clock. We decided to sample at the end ofeach computation. Hence, the sampling predicate
p is elk = LOW. In the rest of this section, we use p to refer to elk = LOW. In the previous section we showed how to
obtain aspecification for an arbitrary network ofprocessors. Our goal is toverify that an arbitrary network ofprocessors
implements its corresponding specification, using refinement checking. Let Pi, P2, • •, be the compute processors in
an arbitrary network, and let Qi, Q2,..., Qn betheir respective specifications. For the correct functioning ofa processor
it is essential that all input signals to it change only when elk is HIGH. Let Ti bea module that says that all external
signals of Pi change only when elk is HIGH. The verification problem hereis to check

Sample^(Pi||P2||... ||P„) ^ Q1IIQ2II... ||Qn

Wecan provethe aboveby applyingour new assume-guarantee rule as follows:

Sample^(Pi, Ti) •< Qi for all 1 < z < n
Pl||P2||...||Pn ^ Ti||T2||...||Tn

Sainple^(Pi||P2||...|lP„) ^ Q1IIQ2II •••||Qr

The second antecedent says that the inputs of any processor in the network change only when elk is HIGH. Since
any input toa processor has tobe the output ofsome other processor, this antecedent can bedischarged easily by proving
that for all 1 < z < n, the outputs of Pi change only when elk is HIGH. This is an easy proof local to each processor
and computationally trivial. In the first antecedent, there are n symmetric proof obligations, onefor each Pi. Each Pi
can be in any oneof a finite number of configurations. Moreover, if Pj and Pjt are in the same configuration, then the
yth and ktU proofs are identical except for variable renaming. Let Cvgi bethe finite setofconfigurations for the compute
processors. For X 6 Cvgi» letY beitsspecification and Tx be theenvironment constraint that says that all inputs change
only when elk is HIGH. Then, itsuffices to prove that for each X GCvgi, we have that Sample^(X, Tx) Thus, we

decompose the proof of a 64 processor network to proofs about individual processor configurations that have 800 latches
each. This is still beyond the scope of monolithic model checking. In the next section, we show how we discharged this
proof for a single processor configuration, with further applications of the generalized assume-guarantee rule described
earlier. We implemented support for the Sample operator in MoCHA, in order to carry out this refinementcheck.

4 The Proof

In this section, we describe the compositional proof for the configuration in Figure I. The block diagram for the specifi
cation is given in Figure 2. We describe a compute processor in more detail. The processor has a 3-stage pipeline — the
fetch stage IF, the execute stage EX, and the communicate stage COM, with pipelat latches between IF and EX,and
lout latches between EX and COM. There is feedback from the EX stage to the IF stage. The IF stage is controlled by
mirlreg and fetches data from the input queues, the register file or the feedback. The signal stallempty is asserted
if an instruction wants to read from an input queue that is empty. The EX stage contains the ALU and is controlled by
mir2reg, a delayed version of mirlreg. The output of the ALU abus_r can be written back to the register file or
sent out on one or more queues. For receiving data/control tokens, the downstream processor should have a register pair
configured as a 2-place queue. Every data or control token that is computed is latched into lout. If the first send fails,
then the COM stage keeps on sending the data in lout until the send succeeds. Signals send and sendack are used for
handshake between the sender and the receiver. In the meantime, other instructions might be executing in the EXstage of
the pipeline. The pipeline is stalled and a signal stallpipe asserted when COM stage is trying to send a token and the
instruction in EX stage also wants to send out a token.

The specification of the computation is an ISA- in a single cycle, data values are read either from a register or a
queue, results are computed and output is written to the output queues and/or written back to a register. The invariant that
synchronizes the operation of the specification and implementation is the following: the instruction being executed by the
ISA is the instruction in the IF stage of the implementation. The specification for data communication is a 4-place FIFO
buffer.

To decompose the proof, we wrote refinement maps for send, sendack, abus_r, stallpipe and pipelat_a_s
as shown in the dotted rectangle in Figure 2. In order to write refinement maps for send and stallpipe, we had to
add auxiliary history variables exsend, num and sendackp. exsend is true whenever the the current instruction in
the EX phase wants to send, num keeps track of the number of items in the receiver's two place input queue, sendackp
predicts the implementation's sendack. The refinement map for abus_r is written in terms of the two stall signals
and the output of the ALU in the specification. Using these refinement maps, the proof can be deconiposed nicely in the
reverse direction of the flow of data in the processor.

1. The output queue is verified using the refinement maps for abus_r, send and stallpipe. Intuitively, this
means that data written into the queue is not lost, no data is written twice, and correct behavior is preserved going
into and coming out of stalls (either stallempty or stallpipe).

2. The refinement map for send is verified using the refinement map for sendack.

3. The refinement map for sendack is verified using the refinement maps for stallpipe and send.

4. The refinementmap for stal Ipipe is verified using refinementmaps for send and sendack of both the control
and data queues.

5. The refinement mapfor abus-r is verified usingthe refinement mapfor pipelat_a_s signals,which are an input
to the EX stage. Since the bus is generatedby the data path of the implementation, this proof amountsto verifying
the correctnessof the data path. At the time of writingthis paper, we havenot been able to completethis proof. We
believe that this is essentially a combinational verification problem and existing techniquesgeared for it can easily
prove it.

6. The refinement map for pipelat_a_s refinement is verified using the refinement map for abus_r. This lemma
amounts to verifying the correctness of feedback from the EX stage to the register file and the pipelat_a_s
registers.

In each lemmadescribed above, the part of the implementation under investigation wassampled at elk equal to LOW
undersome timing assumptions on the inputs between sampling instants. For example, in Lemma 1, it wasassumedthat

send signal does not change value when elk changes from LOW to HIGH, and all signals at the receiver end such as
read, save_d change values only when elk is HIGH. All such assumptions were discharged separately. Notice the
circular dependencies between Lemmas 1, 2,3 and 4, and also Lemmas 5 and6. ForLemmas 2, 3, 4, 5 and 6, we also
wrote supporting refinement maps for mirlreg and mir2reg. These supporting refinements were verified separately.
In total, about 35 lemmas need to be proved. In every lemma except Lemma 5, we used symmetry arguments [McM98]
to reduce the datapath width to just 1 bit. In Lemma 5, the symmetry is broken because of arithmetic operations and
hence the full datapath width of 16 bits needs tobe considered. Thus, assume-guarantee reasoning provides a very clean
separation between the verification of the datapath and control of the processor. It is very clear in the overall proof that
the datapath width is irrelevant in verifying the control that ismoving data around. This also suggests that compositional
reasoning provides a formal framework under which combinational verification of thedatapath and FSM verification of
the control can coexist. None ofthe individual lemmas took more than a few minutes ona 625 MHz DEC Alpha 21164.

5 Discussion

In this section, we describe the bugs we found in thedesign. We fixed all the bugsand verified our fixes with Mocha.
Our fixesare currently being reviewed by the designers.

1. If thesending processor writes two successive values into the queue and the receiving processor waits foronecycle
and then does two successive reads, the second read returns an incorrect value.

2. Suppose stallempty is asserted in cycle n but released incycle n + 1. Also, suppose send to anoutput queue
fails in cycle n 4-1. Then although stallpipe should be asserted in cycle n + 2, it is not and as a result the
instruction in EX stage gets clobbered.

3. A particular sequence ofevents involving 4 sends and 4 reads interleaved ina specific way, with a stall at a precise
moment clobbers thedata in the lout register. Thisresults in the lossof an output token. Theerrortrace that led
to the discovery of this bug had ten steps in it.

We now describe the process by which wefound these bugs and the insights wegained about the interaction between
design and verification. We found all these bugs while doing the proof of Lemma 1, the lemma stating the correctness
of the data transfer between the sender and the receiver. Recall that we needed refinement maps for the environment
signals abus_r, send and stallpipe. Initially, we tried to write therefinement maps based onthedefinitions of these
signals in the implementation. But, we got error traces. We kept on strengthening the maps till we got no error trace.
At this point, we had correctabstractdefinitions of theseenvironment signalsthat we could translate down to definitions
in terms of implementation signals. These design fixes were quite complicated and we actually had to do some logic
design ourselves. Atthis point, we were using Mocha asa debugging tool that would test our proposed fix by throwing
at it all possible sequences of events. If it generated an eiror trace then we could look at it and refine the fix. Thus, the
distinction between verifying and designing gets blurred and actually both activities proceed in parallel. We believe that
design and verification are symbiotic activities in the sense that the designer's intuition embodied in refinement maps
aids verification and theihodel checker aids thedesigner by testing his proposed solution by throwing at it all possible
situations. We believe that themental processes involved in doing verification exist when thedesign is being created and
therefore, given the right interface to theverification tool, it is nota big burden to do "formal design".

References

[AH96] R. Alur andT.A. Henzinger. Reactive modules. In Proceedings of the 11th Annual Symposium on Logic in Computer
Science, pages 207-218. IEEE Computer Society Press, 1996.

[AHM'̂ '98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran. Mocha : Modularity in model
checking. In A. Hu and M. Vardi, editors, CAV 98: Computer Aided Verification, Lecture Notes in Computer Science,
pages 521-525. Springer-Verlag, 1998.

[AHR98] R. Alur,T.A. Henzinger,and S.K. Rajamani. Symbolic exploration of transitionhierarchies. In B. Steffen, editor, TACAS
98: Tools and Algorithms for Construction and Analysis of Systems, Lecture Notes in Computer Science 1384, pages
330-344. Springer-Verlag, 1998.

[AL88] M.Abadi andL. Lamport. Theexistence of refinement mappings. In Proceedings ofthe3rdAnnual Symposium on Logic
in Computer Science, pages 165-175. IEEE Computer Society Press, 1988.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming Languages and Systems,
l7(3);507-534.1995.

[BHSV'"96] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri,
Y. Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Shiple, G. Swamy, and T. Villa. VIS: A System for
Verification and Synthesis. In R. Alur and T.A. Henzinger, editors, CAV96: Computer Aided Verification, Lecture Notes
in Computer Science 1102, pages 428-432. Springer-Verlag, 1996.

(CLM89] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositionalmodel checking. In Proceedings of the 4th Annual Sympo
sium on Logic in Computer Science, pages 353-362. IEEE Computer Society Press, 1989.

[Eir98] A.T. Eiriksson. The formal design of 1M-gate ASICs. In G. Gopalakrishnan and P.Windley,editors, FMCAD98: Formal
Methods in Computer-Aided Design, Lecture Notes in Computer Science 1522, pages 49-63. Springer-Verlag, 1998.

[GL94] O. Grumberg and D.E. Long. Model checking and modular verification. ACM Transactions on Programming Languages
and Systems, 16(3):843-871, 1994.

[HQR98] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. Youassume, we guarantee: methodology and case studies. In A. Hu and
M. Vardi, editors, CAV 98: Computer Aided Verification, Lecture Notes in Computer Science, pages 440-451. Springer-
Verlag, 1998.

[HQR99] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. Assume guarantee refinement between different time scales. In CAV99:
Computer Aided Verification(to appear). 1999.

[JBJ95] S. Jain, R.E. Bryant, and A. Jain. Automatic clock abstraction from sequential circuits. In Proceedings of the 32nd
Design Automation Conference, pages 707-711, 1995.

[KSL95] A. Kuehlmann, A. Srinivasan, and D.P. LaPotin. Verity - a formal verification program for custom CMOS circuits. IBM
Journal on Research and Development, 39(1-2): 149-165,1995.

[Kur94] R.P. Kurshan. Computer-aided VerificationofCoordinating Processes. Princeton University Press, 1994.

[Lyn96] N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

[McM97] K.L. McMillan. A compositional rule for hardware design refinement. In O. Grumberg, editor, CAV 97: Computer-Aided
Verification, Lecture Notes in Computer Science 1254, pages 24-35. Springer-Verlag, 1997.

[McM98] K.L. McMillan. Verification of an implementation of Tomasulo's algorithm by compositional model checking. In A. Hb
and M. Vardi, editors, CAV 98: Computer-Aided Verification,Lecture Notes in Computer Science. Springer-Verlag, 1998.

[SSTR97] V.P. Srini, Spartan-Team, and J.M. Rabaey. An architecture for web-based image processing. In Proceedings of the SPIE
Conference 3166, 1997.

[Sta85] E.W. Stark. A proof technique for rely/guarantee properties. In Proceedings of the 5th Conference on Foundations
ofSoftware Technology and Theoretical Computer Science, Lecture Notes in Computer Science 206, pages 369-391.
Springer-Verlag, 1985.

[STUR98] V.P. Srini, J. Thendean, S.Z. Ueng, and J.M. Rabaey. A parallel DSP with memory and 1/0 processors. In Proceedings
ofthe SPIE Conference 3452, 1998.

	Copyright notice 1999
	ERL-99-14

