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Abstract

Fundamental properties of hybrid automata, such as existence and uniqueness of
executions, are studied. Particular attention is devoted to Zeno hybrid automata,
which are hybrid automata that take iniiiiitely many discrete transitions in finite
time. It is shown that regularization techniques can be used to extend the Zeno
executions of these automata to times beyond the Zeno time. Different tjrpes ofreg
ularization may, however, leadto different extensions. A water tank control problem
and a bouncing ball system are used to illustrate the results.
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1 Introduction

Despite considerable recent advances in the area of hybrid systems, fundamental issues, such
as existence and uniqueness of executions of hybrid automata, are still the topic of intense
research activity [19]. To derive local existence and uniqueness conditions for hybrid systems,
one needs to consider issues such as blocking and non-determinism associated with the discrete
dynamics, in addition to the usual conditions associated with the existence and uniqueness
of trajectories for conventional, continuous dynamical systems. Moreover, to ensure that the
executions can be extendedover arbitrarily long time horizons, one also needs to show that an
infinite number ofdiscrete transitions cannot tahe place in a finite amount of time. Executions
that fail to satisfy this property are referred to as Zeno executions, and hybrid automata that
accept such executions are referred to as Zeno hybrid automata. ^

^ The name Zeno refers to the philosopher Zeno of Elea (ca. 500-400 B.C.), whose major work
consisted ofa number ofparadoxes, designed to support his view that the concepts ofmotion and
evolution lead to contradictions. An example is Zeno's Second Paradox ofMotion, in which Achilles
is racing against a tortoise.



The Zeno phenomenon is fundamentally a hybrid phenomenon, since it requires the interaction
of continuous dynamics (in the form of time) and discrete dynamics (in the form of discrete
transitions). Even though it seems hke a mathematical curiosity, the Zeno phenomenon turns
out to be an important consideration when modeHng, analyzing, controlling, and simulating
hybrid systems. Zeno hybrid automata typically arise due to modeHng abstractions, employed
by control engineers in an attempt to derive models that are simpler to analyze and con
trol. However, the presence of Zeno executions may cast aspersions on the vaHdity of most
techniques typically employed for the analysis of hybrid systems. Most of these techniques
(including Lyapunov, model checking, and deductive methods) rely on arguments about the
system behavior along an execution. Though mathematically correct, these arguments provide
no guarantees about the evolution of the system beyond the Hmit of the transition times. If
this Hmit is fimte (as in the case of Zeno executions) the subsequent evolution may be an
important part of the physical process being modeled.

Zeno executions may also arise as the result ofcertain control poHcies. Chattering and relaxed
controls, common in the optimal control of continuous [20] and hybrid [5] systems, can be
intuitively thought of as involving infinitely fast switching among different control actions,
and can therefore be modeled by Zeno executions. Similar behavior appears in variable struc
ture control systems [18] and in relay control systems [11]. Perhaps more importantly, Zeno
executions may also arise in controllers designed to satisfy reachabiHty specifications. Here,
unless special care is tahen, the controller may try to prevent the system from reaching an
undesirable state by forcing it to take an infinite number of transitions in a finite amount of
time [17].

Finally, Zeno type behavior may also aifect the efficiency and accuracy ef the simulations.
Several packages have recently been developed for simulating hybrid dynamical systems, for
example, Dymola [8], OmSim [16], SHIFT [7], and a SimuHnk toolbox [14]. None of these
packages, however, makes special provisions for the case offast switching; as the time intervals
between discrete transitions get smaller, either the simulation slows down or its accuracy
decreases. In some cases, the simulation may even give erroneous results or error messages.

For the purpose of analysis and controller synthesis, theoretical methods for detecting and
ehminating the Zeno phenomenon may be necessary. For the purpose ofsimulation it may be
possible to detect the Zeno phenomenon "on the fly," and therefore circumvent it by appro
priately defining the execution of the system beyond the Hmit time of the discrete transitions.
For certain classes ofhybrid systems, in cases when the switching is closely related to sHding
modes, this possibiHty was recently explored in [15,13]. An efficient and accurate simulation
method was proposed, making use of the concept of FiHppov solutions. Here we propose to
extend this approach to more general classes of Zeno hybrid systems.

Despite its importance, the Zeno phenomenon is stiU not completely understood. Timed au
tomata with Zeno properties have been analyzed to some extent in [1,10,3,2]. For more general
hybrid automata, however, subtleties in the continuous dynamics make the analysis more chal
lenging. Themain contribution ofthis paper is to illustrate properties ofZeno hybrid automata
through examples, and to propose a method for extending Zeno executions beyond the Hmit
of the transition times, using regularization techniques. Formal definitions ofhybrid automata
and their executions are given in Section 2. Based on these definitions, results on existence
and uniqueness of executions aie derived for a special class of hybrid automata, referred to as



automata with transverse invariants. These results are then used in Section 3, where examples
of Zeno hybrid automata in this class are analyzed, to highhght the different manifestations
of the Zeno phenomenon. Section 4 discusses regularization of Zeno hybrid automata. Using
the examples of Section 3, it is shown that different regulanzations of a Zeno execution may
suggest different extensions. This indicates that, even though regularization may be used to
extend Zeno executions beyond the limit of the transition times, additional information about
the underlying physical process may be needed to select a meaningful extension.

2 Hybrid Automata

Notation

Consider a finite collection Vof variables and let V denote the set of valuations (possible
assignments) of these variables. We use lower case letters to denote both a variable and its
valuation. We refer to variables whose set ofvaluations is countable as discrete and to variables
whose set of valuations is a subset of a Euclidean space as continuous. We assume that
Euclidean spaces, M" for n > 0, are given the Euchdean metric topology, whereas countable
and finite sets are given the discrete topology (all subsets are open). Subsets of a topological
space are given the subset topology and products of topological spaces are given the product
topology. For a subset Cf of a topological space we use 2^ to denote the set of all subsets of
U. We use A to denote the logical "and" and V to denote "or."

Hybrid Automata and Executions

The following definitions are based on [12]. A hybrid system will involve continuous evolution
as well as instantaneous transitions. To distinguish the times at which discrete transitions
take place we introduce the notion ofa hybrid time trajectory.

Definition 1 (Hybrid Time Trajectory)
Ahybrid time trajectory r = {/»}^o ^finite or infinite sequence of intervals of the real Hne,
such that

• for all 0 < 2< iV, /i = [tj,t/] with r,- < r/ = Tj+i;
• if iV < GO, either Ipf = with < c

% I

< < CO, or In = [rjv,r^) with tn < < oo.

The interpretation is that r, are the times at which discrete transitions take place; notice
that multiple transitions may take place at the same time (if n = r/ = r.+i). Hybrid time
trajectories can extend to infinity either ifr is an infinite sequence, or ifit is a finite sequence
en(bng with an interval of the form oo). We denote by T the set of all hybrid time
trajectories. Each r € T is fully ordered by the relation -<, which for t 6 [Ti,r/] 6 r and

^ 6 r is defined as t ^ t' if either i < j oi i = j and t < t'. For t € Mand r GT
we use t € r as a shorthand notation for "there exists a j such that t G G r". For
a topological space if and a r GT, we use Aj : r iif as a shorthand notatioi for a map



assigning values from iif to ail t Gr. We say r = {Ii}fLo 6 ^ is a prefix of f ={^^ and
write r < f if either they are identical or r is finite, M > iV, 7^ = for all i = 0,... , iV —1,
and In ^ J^. The prefix relation is a partial order on T.

Definition 2 (Hybrid Automaton)
A hybrid automaton is a collection H = {Q, X, Init, /, 7, E, G, 72), where

Q is a finite collection of discrete variables;
X is a finite collection of continuous variables with X = M";
Init C Q X X is a set of initial states;
/ : QxX TX isa vector field, assumed to beLipschitz continuous inits second argument;
7 : Q —> 2^ assigns to each g GQ an invariant set;
^ C Q X Q is a collection of edges;
G : E ^ 2^ assigns to each edge e = (5, g') G^ a guard; and
R: E xX-^ 2^ assigns to each edge e = {q, q') GE and a; GX a reset relation.

We refer to (g, s) GQxX asthe state ofH. PictoriaJly, a hybrid automaton canberepresented
by a directed graph, with vertices Q and edges E. With each vertex g G Q, we associate a
vector field /(g,®) and an invariant 7(g). With each edge e e E, we associate a guard G{e)
and a reset relation i2(e, x).

Definition 3 (Execution)
An execution x of a hybrid automaton if is a collection X= (''"» 9} ®) with r GT, g : r —• Q,
and a; : r —• X, satisfjring

• (^("^0), ®(7o)) GInit (initial condition);
• for all I such that Ti < a;(t) is continuously difFerentiable and q{t) is constant for t 6 [r^, r/],

and x{t) G7(g(<)^ and dx(t)/dt = /(g(t),®(t)j for all t G[^t,? '̂) (continuous evolution);
and

• for all I, e= (g(T/),g(ri+i)) ^ ®(t/) G^(e)» and ®(ri+i) G72(e, ®(t/)) (discrete evolu
tion).

For an execution x=(t, g, ®) we use (go, ®o) = (g(ro), ®(ro)) to denote the initial state of x-
We say x = (r,g,®) is aprefix of x' = {r'̂ q'̂ x') (write X<x') 'r <r' and (g(t),a;(t)) =
(g'(t),®'(<)) for all t Gr. We say x is a strict prefix of x' (write X< x') i^ X^ x' and
X ^ x'- II is easy to show that the set of executions of a hybrid automaton is prefix closed
and partially ordered by the prefix relation.

Unlike conventional continuous dynamical systems, the interpretation is that an automaton
H accepts an execution x = (t, g,®) (as opposed to generates). This difference allows one to
consider hybrid automata that accept no executions for some initial states, accept multiple
executions for the ssime initial state, or do not accept executions over arbitrarily long time
horizons. An execution x = {TiQjx) is called finite if r is a finite sequence ending with a
closed interval, infinite if r is an infinite sequence, or if —Ti) = 00, Zeno if it is infinite
but —Ti) < 00, and maximal if it is not a strict prefix of any other execution of H.
For an infinite execution we define the Zeno time as Too = —n). Clearly, Too < 00
if the execution is Zeno and Too = 00 otherwise. We use ?f(qo,xo) to denote the set of all



executions of H with initial condition G Init, to denote the corresponding
maximal executions, and denote the infinite executions. For aJI (go,®o) GInit, we
have Q^(^o,®o) - ^(9o.®o)> ®i^ce infinite executions cannot be extended (so they must
be maximal) and maximal executions may be blocking (so they need not be infinite). These
sets may be empty or may contain multiple executions.

Definition 4 (Non-Blocking and Deterministic Automaton)
Ahybrid automaton H is called non-blocking if non-empty for all (go, ®o) GInit. It
is called deterministic if contains at most one element for all (go, ®o) GInit.

Existence and Uniqueness of Executions

Next, we derive some simple conditions to characterize non-blocking and deterministic au
tomata. We restrict our attention to a special class of hybrid automata, where the vector
field is, in a sense, transverse to the boundary of the invariant set. Assume / is analytic in
its second argument. For a function c : Q x X M, also analytic in its second argument,
recursively define the Lie derivative of<t along /, Ufa : Q x X ^ M, by

'"X'-

Definition 5 (Transverse Invariants)
A hybrid automaton H is said to have transverse invarizints if / is analytic in its second
argument and there exists a function c : Q x X M, also analytic in its second argument,
such that

• ^(9) = {® GX : <7(g, a;) > 0} for all g € Q; and
• for all (g, ®) GQXX, there exists a finite m6 Nsuch that Ufa{q^ ®) ^ 0.

For a hybrid automaton with transverse invariants we define pointwise the relative degree as
a fimction 71 : Q x X —• N with

7i(g, ®) := min |m €N: Ufo-{q^ ®) ^ 0J .
For all g E Q we also define

Out(9) := {a, eX: i) <o} .
For each discrete state q € Q, the set Out(5) contains the continuous states from which it is
impossible to remain in g by continuous evolution.

The following lemma indicates that a hybrid automaton with transverse invariants is non-
blocking if transitions with non-empty reset relations are enabled along the boundary of the
invariant sets.

Lemma 1

Ahybrid automaton H with transverse invariants is non-blocking, iffor all gGQ and for all
XGOut(g) there exists (g,g') GEsuch that xGG{q,q') and i2((g,gO,®) # 0.



PROOF. Consider an arbitrary initial state (90)®o) € Init and assume, for the sake of con
tradiction, that there does not exist an infinite execution starting at (go, ®o)- Let x = 9, ®)
denote a maximal execution starting at (go,®o), and note that r must be a finite sequence.

First consider the case r = Let (gw.ajjv) = lim,_^^(9(t), j!(t)). Note that,
by the definition of execution and a standard existence argument for continuous dynamical
systems, x can beextended to x = (f, g, ®) with f = {[n, r/]}^,,, q{T^) = g^ and x{t^) = xn-
This contradicts the maximality of

Next consider the case r ={[n,r/]}jlo, and let (?jv. Xf,) = [q(Tlf),. We distinguish two
sub-cases. If

xn e Out(gjv)'̂ =I® eX: ®) >o} ,
(where the strict inequality follows from the transverse invariant assumption) then x can be
extended by continuous evolution. This follows by a standard existence argument for continu
ous dynamical systems: since / and axe analytic in their second argument, there exists e > 0
such that Xcan be extended to %= (f,g,®) with f = + e).

If, on the other hand, xn 6 Out(giv), then there exists (g', ®') GQx X such that {q^, q') e E,
®jv GG(qNi q!) and x' Gi2((gjv, q')y ®jNr) •Therefore, xcan be extended by adiscrete transition
to X= {r,q,x) with f = {[ri,r/]}£-J\ tn+i = = rjy, g(rjv+i) = g', and ®(rjyr+i) = ®'. In
both cases the maximality of x is contradicted. •

The following lemma indicates that a hybrid automaton is deterministic if (1) discrete transi
tions are forced by the continuous flow exiting the invariant whenever they are enabled by the
corresponding guard, (2) no two discrete transitions are enabled simultaneously, and (3) no
point can be mapped onto two different points by the reset map.

Lemma 2

A hybrid automaton H with transverse invariants is deterministic if

(1) XGU(g,g')eB ?') iniphes that x GOut(g);
(2) (g, q') GE and (g, g") GE with q' ^ q" imply G(g, g') n (^(g, q") = 0; and
(3) (q^q ) G and ®GG(g,g') imply |i2(g,g',®)| < 1.

PROOF. Assume, for thesake ofcontradiction, that there exists aninitial state (go, ®o) GInit
and two maximal executions x = (t, g, ®) and x = (r, g, ®) starting at (go, ®o) with x 7^ X- Let
V* = ip,P,y) G denote the maximal common prefix ofx and x- Such a prefix exists as
theexecutions start at the same initial state. Note that ij; isnot aninfinite execution, asx ^ X-
Therefore, as in the proof ofLemma 1,p can be assumed to beofthe form p = {[p^, pi]}^Q^ as
otherwise the maximality of^ would becontradicted byanexistence and uniqueness argument
of the continuous solution along /. Let (gjv,®jv) = (g(/>jNr)) ®(/'ir)) = (5(p5v)) ®(p5\r)) •We
distingtush the following cases:

Case 1: ^ {r/} and pjy ^ {^'}, i.e., p'jf is not a time when a discrete transition takes place
in either x or x- Then, by the definition ofexecution and a standard existence and uniqueness
argument for continuous dynamical systems, there exists e > 0 such that the prefixes of x



and X 3-^6 defined over p = {[pi, Pi]}^o^lpNi Pn + 3.nd are identical. This contradicts the
maximality of *0.

Case 2: p'̂ 6 {r/} ajid pjy ^ {f/}, i.e., /ojy is a time when a discrete transition takes place in x
but not in %. The fact that a discrete transition takes place at (gjv, ®iv) in %indicates that there
exists g' GQ such that (qNj<2') GE and xn GG{qffjq'). No discrete transition at in
Xindicates that there exists e> 0 such that x is defined over p = {[pi,p'̂ }^^\pN-,p'N + e)- A
necessary condition for this is that xn ^ Out(g). This contradicts Condition 1 of the lemma.

Case 3: p'^ 0 {r/} and p'j^ G{f/}, symmetric to Case 2.

Case 4'' p'n ^ s-nd pjy G{^/}, i.e., p'j^ is a time when a discrete transition takes place
in both X 3Jid %. A discrete transition at in both x ^-nd x indicates that there exist
(q',x') and (^,x') such that {qN,q') GE, (giv,?) ^ E, xn ^ G(qN,q'), xn G ^(gjv,?),
x' G•R((gjV}g')»®Jv)> ^ •'̂ ((9Ar,g')i®iv)- Note that by Condition 2of the lemma,
g' = ?j hence, by Condition 3, a;' = x'. Therefore, the prefixes of x x s-re defined over
P — PN+\ = p'n+1 —PNi 3,re identical. This contradicts the
maximality of -0. •

Summarizing Lemmas 1 and 2 leads to the following result.

Theorem 1

If a hybrid automaton with transverse invariants satisfies the conditions ofLemma 1 and 2,
then it accepts a unique infinite execution for all (go, ®o) GInit.

3 Zeno Hybrid Automata

Definition 6 (Zeno Hybrid Automaton)
A hybrid automaton H is called Zeno if there exists (go, sq) GInit such that all executions in
^Oao.«o) Zeno executions. ^

We illustrate the Zeno property through examples: an automaton modeling a water tank
system and an automaton modeHng a bouncing ball. First, however, a hybrid automaton that
does not have transverse invariants is discussed.

^ An alternative defrmtion ofa Zeno automaton is to require that at least one execution in
is Zeno. For deterministic hybrid automata, such as the ones discussed in the subsequent examples,
the two definitions coincide.
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Fig. 1. Water tank system and corresponding hybrid automaton.

Non-Analytic Automaton

®1 ^ ''l

Consider the smooth, but non-analytic, function s

ix) =
fe ^/®sin(l/a5)

0

sin(—1/®)

-> M given by

if ® > 0

if ® = 0

if ® < 0.

We define a hybrid automaton, denoted NA, by

Q = {91,92} and X = M;
Init = Q X X;
/(9, ®) = 1 for aJI (g,s) GQ XX;
^(^1) = {® GX : s(x) < 0} and 7(^2) = {s E X : s(x) > 0};
•® = {(ft. 92). (92.91)};
<5(91,92) = {® € X : s(x) > 0} and G(g2, gi) = {a 6 X : 3(2.) < 0}; and
•^((91,92).®) =-^((92.91).®) ={®}-

It is easy to see that the infinite execution of NA with initial state (gi, —1) exhibits an infinite
number of discrete transitions by Too = 1. The reason is that the non-analytic function s has
an infinite number of zeros in the bounded interval (—1,0).

Water Tank Automaton

Consider the water tank system of [2] shownin Figure 1. For i= 1,2, let ®,- denote the volume
of water in Tank i, emd Vi > 0 denote the (constant) flow of water out of Tank z. Let w
denote the constant flow of water into the system, directed exclusively to either Tank 1 or
Tank 2 at each point in time. The objective is to keep the water volumes above 7*i and r2,
respectively (assuming that ®i(0) > ri and ®2(0) > 7*2). This is to be achieved by a switched
control strategy that switches the inflow to Tank 1 whenever ®i < ri and to Tank 2 whenever
X2 <r2. More formally, the water tank automaton is a hybrid automaton, denoted WT, with



Q = {9ij92} and X = IR^;
Init = Q X{® GX : (a;i > ri) A{x2 > r2)}, ri,r2 > 0;
f{qi,x) = {w-vi,-V2) and f{q2,x) = {-Vi,w-V2), Vi,V2,w > 0;

= {x eX: X2>r2} and 7(52) = {a; GX : sci > ri};
^ = {(91,92), (92,91)};
^(91,92) = {aJ GX : a;2 < 7*2} and G{q2, gi) = {a; GX : Xi < ri}; and

((91,92),®) =^((92,91),®) ={®}.
We show that the water tank automaton is non-blocking, deterministic, and Zeno.

Proposition 1
The water tank automaton WT accepts a unique infinite execution for each initial state.

PROOF. Let <r(gi,a;) = X2 - T2 and o-(g2,®) = Xi —ti. Then L)<T(qi^x) = -V2 < 0 and
•^/^(92,®) = —< 0. Since both / and cr are analytic functions ofx and /(g,) = {® GX :
cr(g,-, a;) > 0}, the water tank automaton has transverse invariants.

Note that n(gi,x) = 0 if ®2 ^ 7*2, and 7i(gi,aj) = 1 if 22 = 7*2, therefore Out(gi) = {a; GX :
®2 < 7*2} = C?(gi,g2) (and similarly for g2). This implies that Conditions 1 of both Lemma 1
and Lemma 2 are satisfied. Condition 2 of Lemma 2 is trivially satisfied. Moreover, since
|-^((9i,92),®)| =[^((92,91),®)! =1, Condition 2of Lemma 1and Condition 3of Lemma 2
are also satisfied. The proposition follows from Theorem 1. •

Proposition 2
If max{vi, V2} < w < v\ -\- V2i then the water tank automaton WT is Zeno. The Zeno time is

Too = (®i(0) +®2(0) —T\ —7*2) j(vi +U2 —w)j where (a;i(0), ®2(0)) is the continuous part of
the initial state.

PROOF. By straightforward calculation. •

Bouncing Ball Automaton

Consider a simple model of £in elastic ball bouncing on the ground, losing a fraction of its
energy with each bounce. Let ®i denote the altitude of the ball and ®2 its vertical speed. A
hybrid automaton, BB, describing this system is shown in Figure 2 and is defined by

Q = {g} and X =
Init = {g} X{aj GX : ®i > 0};
/(9, ®) = (®2, -5^) with g > 0;
J(g) = {® GX : aji > 0}
^ = {(9,9)};
0(qy g) = {® GX : < 0] V[(®1 = 0) A(»2 < 0)]}; and
-'2((9,9),®) ={(®i,-®2/c)} with c> 1.

We show that also BB is non-blocking, deterministic, and Zeno.



aji < 0 V
®2 := —X2IC

®i = 0 A a;2 < 0

Fig. 2. Hybrid automaton for a simple model of a bouncing ball.

Proposition 3
The bouncing ball automaton BB accepts a unique execution for each initial state.

PROOF. Let o"(qr, aj) —®i. Then Zr^o'(5, aj) —X2 and ZfyO"(g, a;) = —g ^ 0. Since both / and
a- are analytic functions of x and I{q) = {a; GX : (r{q, x) > 0}, the bouncing ball automaton
has transverse invariants.

Note that n{q,x) = 0 if aJi 0, n{q,x) = 1 if (ajj = 0) A(aj2 0), and n{q,x) = 2 if
(aji = 0) A(aj2 = 0). Therefore, Out(g) = {a; GX : [a;i < 0] V[(a;i = 0) A(aj2 < 0)] V[(aii =
0) A (aj2 = 0)]} = ^(9, ^). This implies that Conditions 1 of both Lemma 1 and Lemma 2
are satisfied. Condition 2of Lemma 2is trivially satisfied. Moreover, since g), aj)| = 1,
Condition 2 of Lemma 1 and Condition 3 of Lemma 2 are also satisfied. The proposition
follows from Theorem 1. •

Proposition 4
If 0 1, the bouncing baU automaton BB is Zeno. The Zeno time is

_ 22(0) , (c + 1)^X2(0)' + 2ga!i(0)

where (®i(0),a52(0)) is the continuous part of the initial state.

PROOF. The first bounce occurs at time n = Tq = (a;2(0) +^®2(0)2 +2flfa;i(0))/g. The
next bounce occurs at time T2 = Tj = t\ +2a52(Ti)/g. More generally, bounce N occurs at time
T/v = 7i + 2®2(Ti)/(gc*'~^). Since c > 1the series on the right hand side converges to the
value of Too given in the proposition. •

Discussion

The three examples introduced above have some similar properties but shed light on different
aspects of the Zeno phenomenon. The type of Zeno execution observed in the first example
cannot occur in hybrid systems with transverse invariants. However, in many cases the invari
ants cannot be described as /(g) = {® GX : ^(g>®) ^ 0}, for some c analytic in x. This is



for example the case with polygonal invariant sets. Zeno executions related to these types of
systems are the topic of current research, but wiU not be discussed further here.

The water tank automaton and the bouncing ball automaton both have transverse invariants.
In these examples, the Zeno phenomenon is due to modehng simpHfications. In the water tank
example the dynamics of switching the input flow from one tank to the other are abstracted
away, while in the bouncing ball example the possibly compHcated bounce dynamics are
replaced by a simple reset map. A way of resolving the Zeno phenomenon by reintroducing
some of these physical considerations through the process of regularization is discussed in the
next section. The bouncing ball example is the only one with a non-trivial reset map, which
leads to discontinuities in the evolution ofthe continuous state. The water tank automaton, on
the other hand, demonstrates a situation where analysis and controller synthesis techniques
may fail in thepresence ofZeno executions. It is easy to show (for example, by induction) that
along all executions of the water tank automaton the water in both tanks remains above the
desired levels. Clearly this is not the case for the physical system the automaton is supposed
to model.

In all of the above examples, an inflnite number of transitions takes place in the time interval
(7*00 —e.Too) for any e > 0. There are, however, also Zeno hybrid automata for which there exists
an interval (too —e,roo) in which no transitions take place, while an inflnite number of tran
sitions takes place at Too- One such example is the obvious hybrid automaton that describes
the evolution of the discontinuous differential equation dx/dt = —sgn®. More generally, dif
ferential equations of the form dxjdt = F{x)^ where F is piecewise continuous, tend to exhibit
this kind of Zeno behavior. The classical way of analyzing such systems is by introducing the
notion of shding modes [9,18].

4 Regularization

Reguleirization is a standard technique for dealing with differential equations whose solutions
are not well defined. We propose a similar approach to extend Zeno executions beyond the
Zeno time, primarily for the purpose ofsimiJation. The formal treatment of how to regularize
general Zeno hybrid automata is the topic of current research. Here we limit ourselves to
specific regularizations of the water tank and bouncing ball automata introduced above. All
regularizations are motivated by physical considerations of the underlying systems. For the
water tank automaton, it is interesting to notice that different regularizations suggest different
extensions of the executions. For the bouncing ball automaton, all extensions considered here
are consistent with one another and with physical intuition.

Consider a non-blocking and deterministic hybrid automaton H and assume that for every
(90} ®o) € Init the execution x ^ Zeno. Regularization of H involves constructing
a family ofdeterministic, non-blocking, and non-Zeno automata He, parameterized by a real
valued parameter e > 0. The continuous map

^ : Qg X Xg —> Q X X

relates the state of each Hg to the state of H. Given 2in execution Xc = (rg,qg, ajg), we use



<^(Xe) as a shorthand notation for the collection (r,?,®) with r = and (g(t),a;(t)) =
<^(9e(0> ®e(^)) for all t Gr. Note that in general <^(xe) wiU not be an execution of H. However,
the construction of the family should be such that tends to if as e tends to 0, in the
sense that if (ge,,, »£(,) 6 Inite, then <^(9eoj ®eo) ^ if Xe is an execution of with initial
condition (9eo>®co)j then ^(xe) converges to x ^ over all compact subintervals of
[tojT-oo), where the convergence is taJcen in the Skorohod metric [4,6].®

Water Tank Automaton

We first study temporal and spatial regularizations of the water tank automaton. Throughout,
we assume that max{vi, V2} <w <vi-\-V2, so that the automaton is Zeno.

Physically, temporal regularization represents asituation where there is adelay, e> 0, between
the time the inflow is commanded to switch from one tank to the otherand the time the switch
actually takes place. The temporal regularization of the water tank automaton, (shown
in Figure 3) is given by

• Q = {91, 92,92} and X = M®;
• Init = {gi,g2} x {» GX : (ii > n) A(®2 > 7-2)};
• /(91.®) = (u'-»i,-V2,0), fWi,x) = («,/(gj,a!) = and

/(92.®) = (—"i.if-i'2,1);
• = {® € X : I,- > r;} and I(gl) = {x e X : 13 < e} for i = 1,2;
• = {(?!.90.(91.92). (92.90. {92.91)};
• <5(91.90 = {a; € X : X2 < rj}, = {x 6 X : X3 > e}, G(g2.90 = {® 6 X ; xj <

J-i}, and G(gJ, gi) = {x e X : ®3 ^ e}; and
• -^((91,91'))®) ={(®ij®2,0)} for i=1,2 and -ff ((9i, 92), ®) =^((92,91),®) ={®}.
It is easy to show that WT^ accepts a unique non-Zeno execution for each initial state.
Overloading the notation somewhat, we can express the relation between the states of WT^
and the states of WTthrough the map

^(9i.(®i.®2.®3)) =^(9i.(®i.®2.a!3)) =(9i.(a!i.a!2)), for i=1,2.
If we set 7*1 = 7*2 = 1, ui = 2, V2 = 3, and u; = 4, and assume that initially aji(O) = a;2(0) —2
and q(0) = qi, then Too = 2. Figure 4 shows simulation results for WT^; xi and ®2 are
plotted as functions of time for two values of e, 0.1 and 0.01. Notice that as edecreases, the
execution of WT^ converges over the interval (ro,r«,) = (0,2) to the execution of WT, in
the sense discussed above. For t > Too, the continuous part ofthe execution of WT^ tends to
(®iW,®2(t)) = (l,l-(<-r«,)).
The spatial regularization of the water tank automaton corresponds to a situation where
the measurement of xi and X2 is based on floats, which have to move a certain distance
e to register a change. It can be implemented by introducing a miniTmiTn deviation in the

®Formally, we need to eliniinate all "inert" transitions from r, that is, replace all [Ti,7^][ri+i,r/. J
for which ^(9c(7"/), ^cW)) = ^(9e(7t+i), ®e(7'i+i)) by a single interval



®2 < 7*2

X3 := 0 X3 > €

®3 > € ®1 <

X3 := 0

Fig. 3. Temporal regulzirization of the water tank automaton.
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Fig. 4. Simulation of temporally regularized water tank automaton

continuous statevariables between the discrete transitions. The regularized automaton,
(shown in Figure 5) is given by

Q = {^ij 92} and X =
Init = {gi, ^2} X{® GX : (®i > n) A(®2 > ^2) A(®3 = ri) A(®4 = r2)};
/(91,®) = (w - vi,-V2,0,0) and f (q2,x) = (-Vi,u; - ^2,0,0);
/(gi) = {® GX : ®2 > »4 - e)} and 7(52) = {® GX : ®i > ®3 - e)};
-£^ = {(9i,g2),(g2,gi)};
^(9i> 92) = {® GX : ®2 ^ ®4 ~ c} and G{q2, gi) = {® GX : ®i < ®3 —e}j and
•^((91)92))®) ={(®i>®2) ®3»®2)} and ^2^(92) 9i)}®) ={(®i) ®2»®i)®4)}.

Again one can show that WT^ accepts a unique non-Zeno execution for each initial state. We



®2 < ®4 - e

®i < ®3 - e

®3 •= ®1

Fig. 5. Spatially regidarized water tank automaton W7f.
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Fig. 6. Simulation of the spatially regularized water tank automaton .

can relate the state of WT^ to the state of WT through

^(ft,(®i,®2,®3,«4)) = (9t,(®i,®2)), for 2=1, 2.

Figure 6 shows simulation results for with e = 0.1 and 0.01 and the parameters given
above. As for the temporal regularization, theexecution of converges to the execution of
WT over the interval (tq, Too). For t > Too, however, the execution converges to ®i(t) = ®2(t) =
—(^ —'̂ oo)/2 + 1, which is different from the limit in the case oftemporal regularization.

Bouncing Ball Automaton

Next, we consider temporal and dynamic regtdarizations of the bouncing ball automaton.
Throughout we assume c > 1 so that BB is Zeno.

Temporal regularization corresponds to a situation where each bounce of the ball takes time
e > 0. The temporally regularized automaton, (shown in Figure 7) is given by

• Q = {?, q'} 2Uid X =



®1 < 0 V

Ki = 0 A ®2 < 0
X3> €

X2 := 0
X2 := -X2IC

Fig. 7. Temporal regularization of the bouncing ball automaton.
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Fig. 8. Simulation of the temporal regularization of the bouncing ball.

• Init = {9} X {® G X : a;i > 0};
• /(?, ®) = (®2, -g, 0) and f(q', aj) = (0,0,1);
• I{q) = {a: G X : aji > 0} and I{q') = {a; GX : aja < e};
• E = {(q,^),(q',q)y,
• ^(9) g') = {® ^ ^ • [®i < 0] V[(xi = 0) A(xa < 0)]} and G{q', g) = {x G X : xs > e}; and
• ={(®ij®2,0)} and i2((g',g),x) ={(xi,-xz/cjXa)}.

One can show that accepts a unique non-Zeno execution for each initial state. The state
of BB^ is related to the state of BBby

^(9,(®1,®2,®3)) =<^(9',(®1,®2,®3)) = (g,(xi,X2)).

If we set g = 10 and c = 2 and assume that initially xi(0) —0 and X2(0) = 10, then Too = 4.
Figure 8 shows simulation results for BBJ] xi and xa are plotted as a function of time for
e = 0.1 and 0.01. As e decreases, the execution of BB^ converges to the execution of BBfor
t G (0,roo). For t > Too the execution of B^ converges to the constant Xi(t) = X2(t) = 0,
which is physically intuitive.



Finally, consider a dynamic regularization ofthebouncing ball automaton, where theground is
modeled as a stiff spring with spring constant 1/eand no damping. The dynamic regularization
of the bouncing ball automaton, , is shown in Figure 9 and is given by

Q = {q,q'} andX = IR2;
Init = {g} X {a; 6 X : ®i > 0};
/(g,®) = (®2,-g) and f{q\x) = (®2,-®i/e);
I(q) = {® GX : ®i > 0} and I{q') = {® GX : ®i < 0};
^ = {(9,90,(9', 9)};
<^(9, gO = {® ^ X : [®1 < 0] V[(®1 = 0) A(®2 < 0)]} and G{q\ g) = {® GX : Xi > 0}; and
•R((9>9').®) =W and R[{q',q),x) ={(ai, -12/c)}.

One can show that BJ^ is deterministic, non-blocking, and non-Zeno. The state of BB^ is
related to the state of BB by

<^(9,(«i,®2)) =^(9',(®i,®2)) =(g,(a;i,®2)).

Figure 10 shows simulation results for BBf with e = 0.01 and 0.0001, and the parameter
values given above. As e decreases, the execution of BB^ converges to the execution oi BB
before Too, and to (®i(t),®2(0) = (0,0) after Too. Notice that the limiting behaviors of the
temporal and dynamic regularizations for the bouncing ball are consistent with one another
and with physical intuition.

5 Conclusions

We gave anintroductory discussion on Zeno hybrid automata. We showed how Zeno executions
can anse as a result of modeling over-abstraction, and discussed their importance for the
analysis, controller synthesis, and simidation of hybrid automata.

In some cases (for example, in simulation) it may be desirable to extend a Zeno execution
beyond the Zeno time. Ifthe Zeno execution is a result of modeling over-abstraction, the ex
tension should be motivated by intuition about what amore detailed model of the underlying
physical process may involve. We proposed a method for performing such extensions using
regularization techniques. Unfortunately, our examples indicated that in some cases the ex
tension obtained through regularization may be non-unique, and may depend on the specific
assumptions made about the detailed model.

The work presented here is just a first step towards a more complete understanding of the
Zeno phenomenon. Current research focuses on deriving conditions to determine when an
automaton is Zeno, and classifying different tjrpes ofZeno executions. In parallel we are work
ing towards formalizing the notion of an extension and investigating different approaches to
perform extensions for simulations, including regularization, averaging and Filippov solutions.
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Fig. 9. Dynamic regularization of the bouncing bail.
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