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Abstract

In this paper, a geometric theory of camera self-calibration is developed. The problem of
camera self-calibration is shown to be equivalent to the problem of recovering an unknown
(Riemannian) metric of an appropriate space. This observation leads to a new account of the
necessary and sufficient condition for a unique calibration. Based on this understanding, we
obtain a new and complete critical motion analysis without introducing a projective space. A
complete list of geometric invariants associated to an uncalibrated camera is given. Due to a
new characterization of fundamental matrices, the Kruppa equations are re-derived and directly
associated to the basic (co)invariants of the uncalibrated camera. We study general questions
about the solvability of the Kruppa equations and show that, in some special cases, the Kruppa
equations can be renormalized so as to allow for linear self-calibration algorithms. A further
study of these cases not only reveals generic difficulties in conventional self-calibration methods
based on the nonlinear Kruppa equations, but also clarifies some incorrect results in the literature
about the solutions of the Kruppa equations. Since Kruppa equations do not provide sufficient
constraints on camera calibration, in this paper we give a complete account of exactly what is
missing in Kruppa equations. Our results clearly resolve the discrepancy between the Kruppa
equations and the necessary and sufficient condition for a unique calibration. Self-calibration
for the differential case is also studied in the same geometric framework. It is shown that the
intrinsic parameter space is reduced to the space of singular values of the intrinsic parameter
matrix if only differential epipolar constraints are used. Simulation results are presented for
evaluation of the performance of the proposed linear algorithms.

Key words: geometry of uncalibrated camera, camera self-calibration, invariants of uncalibrated
camera, epipolar geometry, fundamental matrix, the Kruppa equations, Kruppa equation renor-
malization.

1 Introduction

The problem of camera self-calibration refers to the problem of obtaining intrinsic parameters
of a camera using only information from image measurements, without any a priori knowledge
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about the motion between frames and the structure of the observed scene. The general calibration
problem is motivated by a variety of applications in mobile robot navigation and control using
on-board computer vision system as a motion sensor. Many navigation or control tasks, such as
target tracking, obstacle avoidance or map building, require the knowledge of both the camera (or
the object) motion and a full Euclidean structure of the environment, which is possible only when
the intrinsic parameters of the camera are known. Both theoretical studies as well as practical
algorithms of camera self-calibration have recently received an increased interest in the computer
vision and robotics community. The appeal of a successful solution to the camera self-calibration
problem lies in the elimination of the need for an external calibration object [27] as well as the
possibility of on-line calibration of time-varying internal parameters of the camera. The latter
feature is of great importance for active vision systems. The majority of the camera self-calibration
in the computer vision literature have been derived in a projective geometry framework. Here, we
redevelop the theory in a differential geometric framework which enables not only new perspectives
and algorithms but also a resolution of some mistreated problems in self-calibration.

The original problem of determining whether the image measurements "only" are sufficient
for obtaining the information about intrinsic parameters of the camera has been answered in the
computer vision context by [22]. The proposed approach and solution utilize invariant properties
of the image of the so called absolute conic. Since the absolute conic is invariant under Euclidean
transformations (i.e., its representation is independent of the position of the camera) and depends
only on the camera intrinsic parameters, the recovery of the image of the absolute conic is then
equivalent to the recovery of the camera intrinsic parameter matrix. The constraints on the absolute
conic are captured by the so called Kruppa equations derived by Kruppa in 1913.

The derivation of the Kruppa equations was mainly developed in a projective geometry frame
work and its understanding required good intuition of the projective geometric entities (with the
exception of [8]). This derivation is quite involved and the development appears to be rather un
natural since, both the constraints captured by Kruppa equations and the image of(dual) absolute
conic are in fact directly linked to the invariants ofthe group of Euclidean transformation (rather
than projective transformation). We here provide an alternative derivation of Kruppa equations,
which in addition to being concise and elegant, also provides an intrinsic geometric interpretation
ofthe so called fundamental matrices and its associated Kruppa equations. Such an interpretation
is crucial for designing intrinsic optimization schemes for solving the problem (for example, see
[17]).

In spite ofthe fact that the basic formulation ofappropriate constraints, such as the Kruppa
equations, is in place and there are many successful applications [29], to our knowledge, there is
not yet a clear understanding ofthegeometry ofan uncalibrated camera, and there is no complete
analysis ofthenecessary and sufficient condition for a unique solution ofthe self-calibration problem.
This often leads tosituations where the algorithms are applied in ill-conditioned settings or where
a unique solution is not even obtainable. The differential geometric approach we take in this paper
will allow us to fully understand the intrinsic geometric characterization of an uncalibrated camera
and it will easily lead to a clear answer to the questions:

(i) What is the necessary and sufficient condition for a unique solution ofcamera self-
calibration? Do Kruppa equations provide sufficient conditions on the camera intrinsic
parameters?

The first question has been previously studied by [25]. However the analysis is incorrect since it
makes a wrong assumption that one can at best recover the structure up to an arbitrary projective



transformation from uncalibrated images [10]. Therefore, the results given in [25] are incorrect
and have led to a misleading characterization of the necessary and sufficient condition for a unique
solution of self-calibration (see Section 2.3 and 3.6 for a more detailed account). In this paper,
we will give the necessary and sufficient condition in a very clear and compact form. Our results
imply that, in principle, one can recover 3D Euclidean motion and structure up to a one parameter
family from two uncalibrated images, as opposed to an arbitrary projective transformation [10].
Answer to the second question is unfortunately no, as counter examples have been given in the
literature (e.g. [26]). Here we will give a complete account ofexactly what is missing in the Kruppa
equations. As we will see, there exist solutions of the Kruppa equations which do not allow any
Euclidean reconstruction ofthe camera motion andscene structure. After excluding these solutions,
solving Kruppa equations is then equivalent to the necessary and sufficient condition for a unique
self-calibration.

One class of approaches to the design of self-calibration algorithms instead of directly using
the Kruppa equations, solves for the entire projection matrices which are compatible with the
camera motion and structure of the scene [9]. Such methods suffer severely from numerous local
minima. Another class of approaches, as we have mentioned, directly utilizes the Kruppa equations
which provide quadratic constraints in the camera intrinsic parameters. The so called epipolar
constraint between a pair of images provides 2 such constraints, hence it usually requires the total
of 3 pairs of images for a unique solution of all the 5 unknown parameters. The solution proposed to
solve the Kruppa equations in the literature using homotopy continuation is quite computationally
expensive and requires a good accuracy of the measurements [22]. Some alternative schemes have
been explored in [12, 30]. It has been well-known that, in presence of noise, these Kruppa equation
based approaches do not usually provide good recovery of the camera calibration [3]. Thus, it is
important to answer:

(ii) Under what conditions can the Kruppa equations become degenerate or ill-conditioned?
When such conditions are satisfied, how do the self-calibration algorithms need to be
modified?

The answer to the former question is rather unfortunate: for camera motions such that the rotation
axis is parallel or perpendicular to the translation, the Kruppa equations are degenerate (in the sense
that constriants provided are dependent); most practical image sequences are in fact taken through
motions close to these two types. This explains why conventional approaches to self-calibration
based on the (nonlinear) Kruppa equations usually fail when being applied to real image sequences.
However, we further show in this paper that when such motions occur, the corresponding Kruppa
equations can be "renormalized" and become linear. This gives us opportunities to design linear
self-calibration algorithms besides the pure rotation case [9]. Our study also clarifies some incorrect
analysis and results that exist in the literature regarding the solutions of the Kruppa equations [30].
This is discussed in Section 3.5.2.

It has been known that it is possible to develop a parallel set of theory and algorithms for
recoveringcamera motion and scene structure for the discrete and differential (or continuous) cases
[16, 17]. We therefore ask:

(iii) Whether there is a parallel theory and a set of algorithms of self-calibration for the
discrete and differential cases?

The answer is unfortunately no, as was previously pointed out by [4]. Due to certain degeneracy
of the differential epipolar constraint, it is in general impossible to obtain a full calibration from



it while, for the discrete case, full information of camera calibration is already available from
the epipolar constraint only. In this paper, similarities and differences between the discrete and
differential cases are unified in the same geometric framework.

Paper Outline. Section 2 studies the geometry of an uncalibrated camera system. It gives
an intrinsic geometric interpretation of the camera self-calibration problem. The necessary and
sufficient condition for a unique calibration follows from this interpretation. Section 3 studies
practical schemes for camera self-calibration. As a theoretical foundation for the design of self-
calibration algorithms, geometric invariants associated to an uncalibrated camera are studied in
detail. In particular, we show that the (dual) absolute conics are generated by these basic invariants.
Based on invariant theory, we provide a geometric characterization of the space of fundamental
matrices. This characterization naturally associates the Kruppa equations with basic invariants
of the uncalibrated camera. We then study several important cases which allow for linear self-
calibration algorithms. These cases also reveal diflficulties in the conventional Kruppa equation
based approaches. Section 4 provides a brief study of the differential case, as a comparison to the
theory of the discrete case. Some preliminary experiments of proposed algorithms are presented in
Section 5.

2 Geometry for the Uncalibrated Camera

2.1 Uncalibrated Camera Motion and Projection Model

We begin by introducing the mathematical model of an uncalibrated camera in a three dimensional
Euclidean space. Consider that a camera is set in a three dimensional Euclidean space M. Then
M is isometric to This isometry equips M with a global coordinate chart and for a point q in
M, it is assigned a three dimensional coordinate:

9= («'!, 92,93)^ (1)

Sometimes it is convenient to represent the point g € M in homogeneous coordinates as:

9= (91,92,93,1)^ e R\ (2)

In this way, M is viewed as a submanifold embedded in R'̂ . To differentiate the notation, we will
use underlined symbols (e.g. q vs. q) for the homogeneous representation. Let TqM be the set of
all vectors (in a Euclidean space, a vector is defined to be the difference between two points) in M
with thestarting point q {i.e., TqM is the tangent space ofM at q). Arbitrary vectors u € TqM in
homogeneous representation have the form:

w= (ui, U2, U3,0)^ e R"^. (3)

So as a vector space TqM is isomorphic to R^. A non-redundant representation of the same vector
u G TqM is just:

w= (wi, W2, ws)^ GR^ (4)

The Euclidean metric on M is then simply given by:

gq{u, v) = u^v, Vu, V6 TqM, Mq GM. (5)



Sometime we use the pair (M, g) to emphasize that Mis a manifold with a preassigned (Rieman-
nian) metric g.

The isometry (metric preserving diffeomorphism) group of M is the so called Euclidean group
^(3). The motion of the camera is usually modeled as the subgroup of E(3) which preserves the
orientation of the space Af, i.e., the special Euclidean group SE{2i). SE[Z) can be represented in
homogeneous coordinates as:

SE{S) ={( 01)|p€E3iJ6 50(3)}cE^>='' (6)
where 50(3) is the space of3x3 rotation matrices (orthogonal matrices with determinant +1). We
know the isotropy group of M leaving a point q fixed is the orthogonal group 0(3). 50(3) is the
subgroup of 0(3) which is the connected component containing the identity I. Given an element
h € SE{Z) and a point q € M, h maps the coordinates of q to new ones. In the homogeneous
representation, these new coordinates are given by hq.

A curve h{t) 6 SE{Z),t € K, is used to represent the translation and rotation of the camera
coordinate frame Ft at time t, relative to its initial coordinate frame fto at time Iq. By abuse of
notation, the group element h{t) serves both as a specification of the configuration of the camera
and as a transformation taking the coordinates of a point in the Ft, frame to those of the same
point in the Ft frame. Clearly, h{t) is uniquely determined by its rotational part R(t) € 50(3)
and translational part p{t) G Sometimes we denote h(t) by (i?(t),p(f)) as a shorthand. Let
9(0 == ^ ^he homogeneous coordinates of a point q ^ M with respect to the
camera coordinate frame at time t € K. Then the coordinate transformation is given by:

g(t) = h(t)q{to). (7)

In the above is simply:

q{t) = R{t)q{to) + p{t). (8)

We assume that the camera coordinate frame is chosen such that the optical center of the
camera, denoted by o, is the same as the origin of the frame. Define the image of a point q ^ M
to be the vector x € TqM which is determined by 0 and the intersection of the half ray {0 + A•u |
u = q —o, \ S R"^} with a pre-specified image surfcice (for example, a unit sphere or a plane).
Then both the spherical projection and perspective projection fit into this type of imaging model.
For a point g 6 M with coordinates q = (9i,g2»93i 1)^ € R^, since the optical center o has the
coordinates (0,0,0,1)^ € R^, the vector u = q —o £ TqM is then given by u = (gi,g2, ga)^ € R^-
Define the projection matrix P € R^^^:

/ 1 0 0 0 \
P = 0 1 0 0 . (9)

\ 0 0 1 0 /

Then the projection matrix P gives a map from the space M to ToM:

P'.M ToM (10)

g h-> u = Pq. (11)



According to the definition, the image x of the point q differs from the vector u = Pqhy an
arbitrary positive scale, which depends on the pre-specified image surface. In general, the relation
between q £ M and its image x is given by;

Ax = Pq (12)

for some A 6 M"*". The unknown scalar A encodes the depth information of q and we call A the
scale of the point q with respect to the image x. For perspective projection X = q^; for spherical
projection A= \\q\\. The equation (12) characterizes the mathematical model of an ideal calibrated
camera. Figure 1 illustrates the images of a point q with the camera at two different locations. For
a study of calibrated camera, one may refer to [21, 15, 17, 20].

Il

(R.P)

Figure 1. Two projections Xi,X2 € of a 3D point q from two vantage points. The relative
Euclidean transformation is given by (i2,p) 6 ^^(S).

In this paper, we are going to study an uncalibrated camera. By an uncalibrated camera,
we mean that the image received by the camera is distorted by an unknown linear transforma
tion.^ This linear transformation is usually assumed to be invertible. Mathematically, this linear
transformation is an isomorphism </> of the vector space ToM:

u

ToM

Au,

where A e is an invertible matrix representing the linear map </>. We will refer to it as the
calibration matrix^ of an uncalibrated camera. The actually received image x is then determined
by the intersection ofthe image surface and the ray {o -fA•w} where

u = APq.

Without loss of generality, we may assume that Ahas determinant 1, i.e., Ais an element in 5L(3)
(the Lie group consisting of all invertible 3x3 real matrices with determinant 1). For the image

Although nonhnear transformations have also been studied in the literature, linear transformations give a very
good model of the physical parameters of a camera.

^"Calibration matrix", "intrinsic parameter matrix" and "intrinsic parameters" are different names of the same
thing.



xeE^of^, we have the relation:

Ax = APq (13)

for some scale A € The equation (13) then characterizes the mathematical model of an
uncalibrated camera, as illustrated in Figure 2.

.q'

calibrated

images

uncalibrated

images

Figure 2: The actually received uncalibrated images x^,x^ € of two 3D points and q^. We
here use y^,y^ € IK^ to represent the calibrated images (with respect to a normalized coordinate
system). The linear map </) expresses the transformation between the calibrated and uncalibrated
images.

Comments 1 The calibration matrix A is frequently assumed in the literature of the following
form:

Se Un

A = (14)

The parameters of the matrix A are called "intrinsic parameters^ associated with the camera. Note
that such an A is not necessarily in SL{^). As we will soon see, this choice is practically equivalent
to ours. Moreover, viewing camera calibration as an (unknown) isomorphism on TqM makes it
quite natural to generalize the theory for the Euclidean space to any other Riemannian space (see
[18]).

If we know the linear transformation <f>, i.e., the calibration matrix A, then the problems
associated to an uncalibrated camera can be reduced to those of a calibrated camera, which have
been well understood. The central goal of this paper is hence to study the

Camera Self-calibration Problem: from only the image measurements :s. of a cloud
of 3D points taken by an uncalibrated camera at different vantage points, to what extent
can we recover the unknown camera calibration, i.e., the linear transformation <f> or the
matrix A, and how?



2.2 Intrinsic Geometric Interpretation for Camera Calibration

Before trying to solve the camera self-calibration problem, we first need to know some geometric
properties of an uncalibrated camera: we will see that the study of an uncalibrated camera is equiv
alent to that of a calibrated camera in a (Euclidean) space with an unknown metric. Further, the
problem of recovering the calibration matrix A is mathematically equivalent to that of recovering
this unknown metric. Consequently, the camera intrinsic parameters given in (14) can be geomet
rically characterized as the space 5I'(3)/50(3). Some elementary Riemannian geometry notation
will be used here. Forgood references on Riemannian geometry, we refer the readier to [2, 11, 24].

Let M' be another Euclidean space (isometric to R^) with a Euclidean structure induced as
follows. Consider a map from M' to M:

rp'.M' M

g' (-)• g = A~^q'

where q' and q are 3 dimensional coordinates of the points q' e M' and ^(g') GM respectively.
The differential of the map V' at a point q' € M' is just the push-forward map:

: TqiM' -¥

u 1-^ A~^u.

Then the metric g on M induces a metric on as the pull-back ip*{g)^ which is explicitly given
by:

'fp''{9)q'(u,v) = grf;{q'){M'̂ )iMv)) = Vw,u G \/q' GM'. (15)

We define the symmetric matrix S GR^^^ associated to the matrix A as:

S= A-^A-K (16)
Then the metric ^*(p) on the space M' is determined by the matrix 5. Let KCSL{3) be the
subgroup of 5L(3) which consists of all upper-triangular matrices. That is, any matrix AGKhas
the form:

(an ai2 ai3
0 a22 a23 I . (17)
0 0 033

Note that ifAis upper-triangular, so is A~^. Clearly, there is aone-to-one correspondence between
Kand the set of all upper-triangular matrices of the form given in (14); also the equation (16)
gives a finite-to-one correspondence between K and the set ofall 3 x 3 symmetric matrices with
determinant 1 (by the Cholesky factorization). Usually, only one of the upper-triangular matrices
corresponding to the same symmetric matrix is physically possible. Thus, if the matrix A of
the uncalibrated camera does have the form given by (14), the camera self-calibration problem is
equivalent to the problem of recovering the matrix 5, i.e., the metric i/}*{g) of the space M'.

Now let us consider the case that the uncalibrated camera is characterized by an arbitrary
matrix A G5L(3). A has the QR-decomposition:

A= QR, QgK,Rg50(3). (18)



Then A~^ = R^Q~^ and the associated symmetric matrix S = A~^A~^ = In general,
if A = BR with A,B£ 5Zy(3), R € 50(3) and and Sb are associated symmetric matrices of A
and B respectively, then Sa = Sb- In this case, we say that matrices A and B are equivalent. The
quotient space 5L(3)/50(3) will be called the intrinsic parameter space. It gives an "intrinsic-
indeed" interpretation for the camera intrinsic parameters given in (14). This will be explained in
more detail in the rest of this section.

Without knowing camera motion and scene structure, the matrix A € 5L(3) can only be
recovered up to an equivalence class [A] G SL{S)/SO{S). To see this, suppose B G 5L(3) is
another matrix in the same equivalence class as A. Then A = BRq for some Rq G 50(3). The
coordinate transformation (8) yields:

Aq{t) = ARq(to) + Ap(t) ^ BRoq{t) = BRoR{t)RQ Roq(to) + BRop{t). (19)

Notice that the conjugation:

AdriSE{3) ^ SE{S)

h •-}> rhr~^

is agroup homomorphism where r=^ J Then there is no way to tell an uncali-
brated camera with calibration matrix A undergoing the motion (i2(i),p(£)) and observing the
point q £ M from another uncalibrated camera with calibration matrix B undergoing the motion
{RoR(t)RQ^ RQp{t)) and observing the point Roq G M. We will soon see that this property will
naturally show up in the fundamental matrix (to be introduced) when we study epipolar constraint.

Therefore, without knowing camera motion and scenestructure, the matrix A associated with an
uncalibrated camera can only be recovered up to an equivalence class [A] in the space 5L(3)/50(3).
The subgroup K of all upper-triangular matrices in SL{3) is one representation of such a space,
as is the space of 3 x 3 symmetric matrices with determinant 1. Thus, 5L(3)/50(3) does provide
an intrinsic geometric interpretation for the unknown camera parameters. In general, the problem
of camera self-calibration is then equivalent to the problem of recovering the symmetric matrix
5 = A~^A~^, i.e., the metric of the space M', from which the upper-triangular representation of
the intrinsic parameters can be easily obtained from Cholesky factorization.

The space M' essentially is also a Euclidean space. But with respect to the chosen coordinate
charts, the metric form is unknown. From (8), the coordinate transformation in the space
M' is given by:

Aq{t) = AR{t)q{to) Ap(t) q'(t) = AR(t)A~^q'{to) + p'{t) (20)

where q' = Aq and p' = Ap. In homogeneous coordinates, the transformation group on M' is given
by:

G=I( '̂ )Ip' € fl €50(3)| CK""* (21)
It is direct to check that the metric ip*(g) is invariant under the action of G. Thus G is a subgroup
of the isometry group^ of M'. If the motion of a (calibrated) camera in the space M' is given by
h'{t) G G,£ G the homogeneous coordinates of a point q' G M' satisfy:

?'(t) = h'(t)q'{ta). (22)

^The isometry group of a space M is the set of all transformations which preserve metric (or distemce).



From the previous section, the image of the point q' with respect to a calibrated camera is given
by:

Ax = P^. (23)

It is then direct to check that this image is the same as the image of g = G M with respect
to the uncalibrated camera, i.e., we have:

Ax = APq. (24)

From this property, the problem of camera self-calibration is indeed equivalent to the problem of
recovering the unknown (Riemannian) metric of a proper space M' assuming a calibrated camera.

2.3 Necessary and Sufficient Condition for Unique Calibration

It is ofgreat importance to know under what conditions the unknown camera calibration A (as
an element in 5L(3)/50(3)), or the metric S of M' can be uniquely recovered. Mathematically,
we can interpret the isometry group G of M' as a representation of the Euclidean group 5£'(3)
induced by the map ij). Any element h GiSF7(3) is hence represented by a corresponding element
h' ^ G given by the conjugation:

h' = aha~^ (25)

where «=^q Jj ^ In the following, unless otherwise stated, we always use ato denote
this 4x4 matrix associated with AGSL{S). Another useful notation we introduce here is that,
for an arbitrary vector p = {pi,P2,P3)^ G we define the skew-symmetric matrix p G
associated to p as:

P=\ Pz 0 -Pi Gso(3). (26)

Then for another vector / 6 R^, the cross-product p x / is equal to pi. This notation will be
frequently used in the rest of this paper.

Suppose that the camera motion is given by a subset Wof SE(Z). If there exists an A 6
5L(3)/50(3) different from I such that W = aWa'̂ is also a subset of SB(3), then there is no
way one can tell a calibrated camera undergoing motion from an uncalibrated camera with
calibration matrix Aundergoing motion W. On the other hand, if, for a given WCSB(3), there
is no AGSL{3)/SO{3) such that aWo, ^C SB{3), then the only possible case is that the camera
is calibrated and undergoing motion W. This leads to the following definition:

Definition 1 (Critical motion) Aset of camera motion WCSB{3) is called critical for self-
calibration if and only if there exists anAe SL{3)/SO{3) different from I such that aWa'^ is also
a subset of SB(3).

Comments 2 If a camera with a calibration matrix A undergoing motion W is confused with B
undergoing motion W, it is equivalent to a camera P-'̂ A undergoing motion W being confused
with a calibrated camera (of calibration matrix I) undergoing motion W. Thus the above definition

10



does not result in any loss ofgenerality. One must note that this definition has little to do with
fundamental matrix or Kruppa equations. A clear relationship between this definition and Kruppa
equations will be given in Section 3.6 when we study self-calibration algorithms.

Now, finding the necessary and sufficient condition for a unique calibration is equivalent to char
acterizing all critical motions. Note that for

we have

'-(? 0 e W (27)

, f ARA ^ Ap \
0 1 j (28)

h' is in SE{S) if and only if ARA ^ is an element in 50(3). We then have

ARA-\A-'̂ R^A^) = I ^ RXR^ = X (29)

where X = A~^A~^. Thus X has to be in the symmetric real kernel of the Lyapunov map:

L :

X X-RXR^. (30)

We will denote this kernel as SRKer(L). According to Callier and Desoer [5], the map L has
eigenvalues 1 —AjAJ, 1 < < 3 where A,-, i = 1,2,3 are eigenvalues of the matrix R. Without loss
of generality, the rotation matrix R has eigenvalues 1, a, a 6 C and corresponding right eigenvectors
w, u,u GC?. Then the (complex) kernel of L is given by:

Ker(I») = sp3.n{Xi = uu*, X2 = vv* ^X^ = vv*} (31)

where, for a vector u G , u is its conjugate and v* is its conjugate transpose. We assume here R
is neither the identity matrix 7 or a 180® rotation, i.e., R is not of the form for some k £ Z
and some w G of unit length. Then only Xi is real and X2 = A'3 are complex, and L has a three
dimensional real kernel but one dimension is spanned by z(A'2-A3) which is skew-symmetric (here
i = %/—1). Therefore, the solution space for a symmetric real A is 2 dimensional and must have
the form A = (3Xi + 7(A2 + A3) with /?,7 G R. Summarizing the above we obtain:

Lemma 1 Given a rotation matrix R not of the form for some k £ Z and some u £ of
unit length, the symmetric real kernel associated with the Lyapunov map L : X X —RXR^
is 2 dimensional. If R is of the form then SRKer[L) is 4 dimensional if k is odd and 6
dimensional if k is even.

Note that the case when the rotation is 180° has no practical significance in real situations,
since no image correspondences are available in this case. Thus, from now on we may assume that

Assumption 1 All rotations that we consider for the camera self-calibration problem are strictly
less than 180° unless otherwise stated.

11



As a direct consequence of Lemma 1, any W C SE{d) with only one element is critical. Suppose,
instead, there are n elements hj^j = 1,.. .n in W. For aWa~^ to be in SE{S), X = A~^A~^ has
to be in the intersection of symmetric real kernels of all the linear maps:

X X-RjXRj. (32)

That is AT € n"_iSRKer(Lj).

Theorem 1 (Necessary and sufficient condition for a unique calibration) A motion sub
set W C 5£'(3) is not criticalfor self-calibration if and only if there are at least two elements of
W whose rotation axes are linearly independent.

Proof: The necessity is obvious: if two rotation matrices Ri and R2 have the same axis, they
have the same eigenvectors hence SRKer(Li) = SRKer(L2) where Li : X X - RiXRj, i = 1,2.
We now only need to prove the sufficiency. We may assume ui and U2 are the two rotation axes
of Ri and R2 respectively and are linearly independent. Since, by assumption 1, both Ri and R2
considered are not 180° rotation, both SRKer(Li) and SRKer(L2) are 2 dimensional. Since ui
and U2 are linearly independent, the matrices uiuj and W2wJ are linearly independent and are in
SRKer(Li) and SRKer(L2) respectively. Thus SRKer(Li) is not fully contained in SRKer(L2) hence
their intersection SRKer(Li) n SRKer(L2) has at most 1dimension. Thus X = I for X e 5L(3).
•

From the above discussion, criticality of a motion set only depends on its rotation components.

Corollary 1 (Critical Lie subgroups) Any proper Lie subgroup of SE(Z) except 50(3) is a
critical subgroup for self-calibration.

According to this corollary, if the motion of the camera falls into any of the Lie subgroups of 5jE'(3),
unique self-calibration is impossible. For a more detailed analysis of to what extend we can still
recover camera calibration, motion and scene structure with respect toany of the Lie subgroups of
5F?(3), one may refer to [20].

Although it has little practical importance, in order to make the theory complete, we also give
the results of self-calibration in presence of rotation of 180° (for simplicity, we here do not give
the proof). Combined with Theorem 1, they give necessary and sufficient conditions for a unique
calibration in the most general case.

Remark 1 Suppose Ri = = 1,2 are elements in W. Ui are vectors of unit length. Let Li
be the Lyapunov map associated to Ri. Then we have the following cases:

uju2 = 0, 1^11 = 1^2! = TT => SRKer{Li) nSRKer{L2) =span{I^ wiwf, ^2^2},
O<|iifw2|<l,|̂ i| = |02| = 7r SRKer(L{)r\SRKer{L2) = span{I,U2Uiu^U2},

U1U2 = 0, l^il = TT, 0 < 1^2! < TT SRKer{Li) n SRKer{L2) = span{I, U2ul},
0 < |«iW2I < 1, l^il = TT, 0< 1^2! < TT => SRKer{L]) n SRKer[L2) = span{I},

Comments 3 Definition 1 and (the derivation of) Theorem 1 apparently contradict the results
given in [25]. The analysis in [25] is based on a stratification scheme of ''projective to affine and
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then to Euclidean". j4s far as the self-calibration problem is concerned, assuming such a scheme
has led to a circular logic: the goal of the study is exactly to discover to what extent one can
recover structure from uncalibrated images. In fact, the very first step of this stratification scheme
is already wrong: the possibility of self-calibration suggests that one can certainly do better than an
"arbitrary" projective reconstruction. Since the assumption of projective reconstruction is wrong,
there is no needfor a discussion of absolute conics not in the plane at infinite. The list of "critical
motion sequences" given in [25] is, therefore, not a correct characterization of all critical camera
motions which do not guarantee a unique camera self-calibration. It is by no means intrinsic to
the self-calibration problem.'̂ Later in this paper (see Section 3.6), in a language offundamental
matrices and Kruppa equations, we will give a clear characterization of solutions of valid Euclidean
reconstruction from (two) uncalibrated images. It will not only justify again Definition 1 but also
suggest a new "stratification" scenario.

3 Camera Self-calibration Algorithms

Although Theorem 1 has established conditions under which a unique self-calibration is guaranteed,
the proof does not yet provide any algorithm for recovering the unknown calibration A or the metric
S of the space M'. This will be the task for the rest of the paper. That is, we will be looking for
algorithms which allow us to recover information of calibration from certain image measurements.

3.1 Geometric Invariants Associated to Uncalibrated Camera

Since isometric transformation (group) of the space M' preserves its metric, invariants preserved
by such transformation are therefore keys to recover the unknown metric. This section will give a
complete account of these invariants. Although the explicit form of the metric of the space M' is
unknown, we know M' is isomorphic to the Euclidean space M through the isomorphism tf): M' -4
M. Thus the invariants of M' under its isometry group G are in one-to-one correspondence to the
invariants of M under the Euclidean group. The complete list of Euclidean invariants is given by
the following theorem:

Theorem 2 (Euclidean invariants) For a n dimensional vector space V, a complete list of basic
invariants of the group SO{n) consists of (1) the innerproduct g{u, u) = u'̂ v of two vectors u,v
and (2) the determinant det[u^,..., u"] of n vectors ... , u" € V.

See [28] for a proof of this theorem and see [14] for a more detailed discussion about applications
of this theorem in structure reconstruction. From the theorem, the set of all Euclidean invariants
is the R-algebra generated by these two types of basic invariants. In the uncalibrated camera case,
applying this theorem to the three dimensional space M', we have:

Corollary 2 (Invariants of uncalibrated camera) For the space M', a complete list of basic
invariants of the isometry group G consists of (1) the inner product ^*(flr)(u, u) = u^A~^A~^v
of two vectors u, u 6 TM' and (2) the determinant det{A~^u^,A~^u^,A~^u^] of three vectors
u\u'^,u^ eTM'.

^For example, the class 5 motion is certainly not criticed at edl.
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Then the set of invariants associated to an uncalibrated camera is the R-algebra generated by these
two types of basic invariants. Since

det[A~^u^^A~^u^jA~^u^] = det(A~^) •det[w^, w^],

it follows that the invariant det[A~^u^^A~^v}^A~^u^] is independent of the matrix A. Therefore
the determinant type invariant is useless for recovering the unknown matrix A and only the inner
product type invariant can be helpful.

For any n-dimensional vector space V, its dual space is defined to be the vector space of
all linear functions on F. An element in is called a covector. If e' , i = 1,... , n are a basis for
V", then the set of linear functions Cj, j = 1,..., n defined as:

= (33)

form a (dual) basis for the dual space The pairing between V and its dual is defined to
be the bilinear map:

<-,->:F^xF E (34)
(w, v) 1-^ u(t;). (35)

If we use the coordinate vector u = (ai,..., an)^ € E" to represent a covector u = QjCj €
FV,aj GE, and similarly, v= (i^i,... ,^n)^ € E" to represent v= E?=i Ae' G GE (note
that we use column vector convention for both vectors and covectors in this paper), then with
respect to the chosen bases the pairing is given by:

< u,v >= u^v.

For a linear transformation f i V —> F, its dual is defined to be the linear transformation :
F^ F^ which preserves the pairing:

< w,/(u) >=</^(w),i; >, VwgF^,i;€F. (36)
Let A€ E"^" be the matrix representing / with respect to the basis e\ z= 1,..., n. Since:

< ii, f(v) >= u^Av = (A^w)^u, (37)
it follows that the dual is represented by with respect to the (dual) basis Cj, j = 1,... ,n.

The invariants given in Corollary 2are invariants ofthevector space TM' = E^under theaction
of the isotropy subgroup AS0(3)A-^ of Gon M' (here we identify an element in ASO{S)A-^ with
its differential map). As we know from above, this group action induces a (dual) action on the
dual space of TM', denoted by T*M'. This dual action can then be represented by the group
A-^50(3)A^ since

{ARA'̂ f = A-'̂ R'̂ A^ € A-^50(3)A^
for all 6 50(3). We call invariants associated with the dual group action (on the covectors)
as comvariuiits. As we will soon see, the Kruppa equation can be viewed as such coinvariants.
Consequently we have:

Corollary 3 (Coinvariants of uncalibrated camera) For the space M', a complete list ofba
sic coinvariants of the isometry group G consists of (1) the induced inner product ^AX^7} of two
covectors e T*M' and (2) the determinant det[^i,^2,6] ofthree covectors ^1,^2,^3 GT*M'.
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Note that in the above we use the convention that vectors are enumerated by superscript and
covectors by subscript. One may also refer to Weyl [28] or Goodman and Wallach [6] for a detailed
study of polynomial invariants of classical groups - Corollary 2 and 3 can then be deduced from
the First Fundamental Theorem ofgroups G C GL(V) preserving a non-degenerate (symmetric)
form (see [6]). Note that the induced inner product on T*M' is given by the symmetric matrix

= AA^, the inverse of5 = A~^A~^. As we will soon see, coinvariants naturally show up in
the recovery of S~^ from fundamental matrices.

Next wewant to show that the absolute conic (or the dual absolute conic) is actually a special
invariant generated by inner product type invariants (or coinvariants). In the projective geometry
approach, the absolute conic plays an important role in camera self-calibration.

In order to give a rigorous definition of the absolute conic, we need to introduce the space OP^,
the three dimensional complex projective space®. Let q = (^i, 92? 93? 94)^ € be the homogeneous
representation of a point q in OP^. Then the absolute conic, denoted by fi, is defined to be the set
of points in satisfying:

9i + 92 + 93 = 94 = 0 (38)

Note that this set is invariant under the complex Euclidean group:

B(3,q =|(p ^)|p6C?,i?€f/(3)|cC^X4 (39)

where C/(3) is the space of all (complex) 3x3 unitary matrices. The special Euclidean group 5E(3)
is just a subgroup of E{3, C) hence the absolute conic is invariant under SE{S) as well.

For any q = (91,92,93i QiV € suppose

qj = Uj ivj, Uj, Uj € K, j = 1,... ,4 (40)

where i = y/^. Since U4 = V4 = 0, we obtain a pair of vectors u = (wi, U2, U2,0)^ and v =
(ui, U2, U3,0)^ of the 3 dimensional (real) Euclidean space M (in homogeneous representation).
From (38), these two vectors satisfy:

vFu = v^Vj u^v = 0 (41)

On the other hand, any pair of vectors u,v £TM which satisfy the above conditions (i.e., u and
Vare orthogonal to each other and have the same length) define a point on the absolute conic Q.
Therefore, the absolute conic Q is the same as the set of all pairs of such vectors. Since all the
inner product type quantities in (41) are invariant under the Euclidean group 5^(3), the absolute
conic Q is simply generated by these basic invariants.

In the uncalibrated camera case, if we let 5 = A~^A~^ and ^ = (9i,92j93>94)^ € C^, the
corresponding absolute conic (38) is then given by:

(91,92,93)5(91,92,93)^ = 0, 94 = 0. (42)

Therefore, the camera self-calibration problem is also equivalent to the problem of recovering this
absolute conic (for example see Maybank [21]). It is direct to check that this absolute conic is

is the space of all one dimensional (complex) subspaces in C^, i.e., the quotient space ~ where the
equivedence relation is: {zi,Z2,zz, 24)^ (z •z\,z ' Z2,z •zz,z ' 24)^ for cdl 2 7^ 0.
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generated by basic invariants given in Corollary 2. Define the dual absolute conic to be the set
of points in C3P^ satisfying:

(QuQ2,q3)S (91,92,93) =0, 94 = 0. (43)

Similarly, one can show that it is generated by the inner product type coinvariants given in Corollary
3.

3.2 Epipolar Geometry

Before we can apply the invariant theory given in the previous section to the problem of camera
self-calibration, we first need to know what quantities we can directly obtain from images and
what type of geometric entities they are. Section 3.2 and 3.3 are going to show that fundamental
matrices estimated from the epipolar constraint are in fact covectors. Section 3.4 shows that their
associated coinvariants directly give the Kruppa equations.

The epipolar (or Longuet-Higgins) constraint plays an important role in the study of the ge
ometry ofcalibrated cameras. In this section, we study its uncalibrated version. From (20), for a
point q' 6 M' we have:

q'{t) =AR{t)A-^q'{t^ p\t) => p'(t) Xq'{t) =p'(t) XAR{t)A-^q'{to)
=> q'{to)'̂ A~'̂ R{t)'̂ A'̂ p'(t)q'(t) = 0. (44)

Let Xi € and X2 € be images of q' at time to and t respectively, i.e., there exist Ai,A2 €
R"^ such that AiXi = q'(to) and A2X2 = q'{t). To simplify the notation, we will drop the time
dependence from the motion (AR{t)A-\p'{t)) and simply denote it by (ARA-^,p'). Then (44)
yields:

xjA'"^R^A'̂ P'x2 = 0. (45)
Note that in the above equation the matrix:

Fi =A-'̂ R'̂ A'̂ P e R^^^ (46)
is of particular interest —it contains useful information about camera intrinsic parameters as well
as the motion of camera.

Recall that the motion {ARA-^,p') in the space M' is equivalent to the motion {R,p) in the
space M, with p = A~^p'. Also from (20), we have:

A-'q'(t) =R{t)A '̂{to)+pit) ^ p{t)xA-^q'(t) =p(t)xR(t)A-^q'(to)
=> q'(to)'̂ A~'''R{t)'̂ p{t)A~^q'{i) = 0 (47)

We then have a second form for the constraint given in (45):

xfA"^R^pA~^X2 = 0. (48)
The matrix

F2 = A'̂ ^RFpA'̂ GR^^^ (49)
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iscalled thefundamental matrix in thecomputer vision literature. When A= I^ thefundamental
matrix simply becomes RFp which is called the essential matrix in the literature and plays a very
important role in motion recovery [21]. In fact, the two constraints (45) and (48) are equivalent and
they are both called the epipolar constraint. We prove this by showing that the two matrices
Fi and F2 are actually equal.

Lemma 2 //p G and Ae SL(3), then X^pA = A^p.

Proof: Since both A'̂ (-)A and A~^(-) are linear maps from to R^^^, using the fact
that det(A) = 1, one may directly verify that these two linear maps are equal on the bases:
(1,0,0)^,(0,1,0)^ or (0,0,1)^. .

This simple lemma will be frequently used throughout the paper. By this lemma, we have:

F2 = A-'̂ RFpA-^ = A-'̂ A^A-'̂ pA-^ = A''̂ R^A^p' = Fi. (50)

We then can denote Fi and F2 by the same name F. Define the space of fundamental matrices
associated to A £ 5L(3) as:

F = {A-'̂ R^pA-^ IR € 50(3),pe R^}. (51)

The space F is also called fundamental space.

In the preceding section, we have shown that if two matrices A and B are in the same equivalence
class of 5L(3)/50(3), we are not able to tell them apart only from images. We may assume
B = ARo for some Rq £ 50(3). Then with the same camera motion (F,p), the fundamental
matrix associated with B is:

B-'̂ R^pB-^ = A-'̂ RoR^pF^A-^ = A''̂ [RoR^R^)R^pA-\ (52)

As we noticed, theessential matrix R^pissimply replaced by another essential matrix (RoR^Ro)RoP-
Therefore, without knowing the camera motion, from only the fundamental matrix, one cannot tell
camera B from camera A.

3.3 Geometric Characterization of the Space of Fundamental Matrices

In this section, we give a geometric characterization of the space of fundamental matrices. It will
be shown that this space can be naturally identified with the cotangent bundle of the matrix Lie
group i450(3)A~^, therefore, fundamental matrices by their nature can be viewed as covectors.
This characterization is quite different from the conventional way of characterizing fundamental
matrices as a degenerate matrix which represents the epipolar map between two image planes (for
example see [12]), but it directly connects a fundamental matrix with its Kruppa equation, as we
will soon see in Section 3.4.

We define a metric g on the space R^^^ as:

p(B,C) = tr(B^5C), VB,CgR^^^ (53)

where 5 = A~^A~^. It is direct to check that so defined g is indeed a metric. This metric may be
used to identify the space R '̂̂ ^ with its dual (R^^^)^ (the space oflinear functions on R^^®). In
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other words, under this identification, given a matrix C G we may identify it as a member in
the dual space through:

C C^ = 5(.,C).

From the metric definition (53), can be represented in the matrix form as = SC. Since 5 is
non-degenerate, the map / is an isomorphism and it induces a metric on the dual space as follows:

= g(B,C) = tr((B^)^5-iC^). (54)

Atangent vector oftheLie group A50(3)A~^ has theform AR^pA'̂ GE^^^ where R G50(3)
and p GE^. By restricting this metric to the tangent space of A50(3)A~\ i.e., T(ASO(Z)A~^),
the metric g induces a metric on the Lie group A50(3)A~^:

g(AR^PiA~^,AR'̂ P2A~^) = g(ApiA~^, Ap2A~'̂ ). (55)
The equality shows that this induced metric on the Lie group A50(3)A"^ is left invariant.

The cotangent vector corresponding to the tangent vector ARi^pA'̂ GT{AS0{3)A~^) isgiven
by:

(AR^pA'̂ y = SAR^pA'̂ = A~'̂ R'̂ pA~^. (56)
Note that the matrix A ^R^pA ^is the exact form of afundamental matrix. Therefore, the space
of all fundamental matrices can be interpreted as the cotangent space of the Lie group A50(3)A"\
i.e., r*(A50(3)A"^). There is an induced metric on the cotangent bundle:

A-'̂ r!Fp2A-^) = 5''(^i,p^) (57)
where pj = Api and P2 = Ap2- Since a fundamental matrix can only be determined up to scale,
we may consider the unit cotangent bundle T2*(A50(3)A~^). Define the space ofunit fundamental
matrices to be:

•^1 = {A-'̂ R^pA-^ IRG50(3),pG E^p^(Ap, Ap) = 1}. (58)
The space Ti is also called unit fundamental space. The relation between the unit fundamental
space Ti and the unit cotangent bundle ri*(A50(3)A~^) is given by:

Theorem 3 (Geometric characterization of fundamental space) The unit cotangent bun
dle T^(ASO{S)A~^) is a double covering ofthe unit fundamental space T\.

The proof essentially follows from the fact that the unit tangent bundle ri(50(3)) is a double
covering of the space of (normalized) essential matrices (see[16]). For a fixed matrix A GSL{3),
the normalized fundamental space .Fi is a five dimensional connected compact manifold embedded
in E3x3

Comments 4 Usually the eight point algorithm can still be used to estimate the fundamental ma
trix. However, the matrix directly obtained from solving the LLSE problem may not be exactly in
the fundamental space.

After all the preparation in geometry, we are now ready to investigate possible schemes for
recovering the unknown intrinsic parameter matrix A, or equivalently, the symmetric matrix 5 =
A-^A-i.
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3.4 The Kruppa Equations

We first assume that both the rotation R and translation p are non-trivial, i.e., R ^ I and p ^ 0
hence the epipolar constraint (45) is not degenerate and the fundamental matrix can be estimated.
The camera self-calibration problem is then reduced to recovering the symmetric matrix S from
fundamental matrices, i.e., recovering S = A~'̂ A~^ from matrices of the form F = A~^pA~^.
It turns out that it is easier to use the other form of the fundamental matrix F = A~^R^A^j/
with y = Ap. From the fundamental matrix the epipole vector p' can be directly computed as
the null space of F. Without loss of generality, we may assume ||p'|| = 1. The corresponding
fundamental matrix F is then called a normalized fundamental matrix (to be separated from
the unit fundamental matrix). In this section, all vectors (by their nature) are covectors hence will
be denoted with subscripts - but we always use column vector convention to represent them unless
otherwise stated. Suppose the standard basis of is:

ei = (l,0,0)'', e2 = (0,l,0)^ 63 = (0,0,1)^ € (59)

Now pick any rotation matrix Rq € 50(3) such that Rop' = e^. Using Lemma 2, we have:

p' = R^e3Ro. (60)

Define matrix D € E^^^ to be

D = RoFRI = (RqA)-'̂ R^[RoAf e3. (61)

Then D has the form D = (d\,d2,0) with di, ^2 € E^ as the first and second column vectors of D.
From the definition of D we have:

di = {RoA)-'̂ R^(RoAfe2, ^2 = -(RqA)-'̂ R^{RoAfei. (62)

Define matrix K = RqA G SL{3). Note that (62) is in the form of a transformation on covectors
that we discussed in Section 3.1. According to Corollary 3, coinvariants of the group /<'50(3)/l'~^
(i.e., the invariants of the dual group K~^S0(3)K^) give:

{difKK'^di = (e^fKK'^ei,
(difKK'^di = (63)
(difKK'^di =

Note that KK^ = RoAA^I^ = where as usual S = A~^A~^. If we know K^K, the
symmetric matrix S can be calculated from the chosen Ro. By defining covectors $i,I21 lii Vs €
as:

^l = Rldi, ^2 = Rod2; Vl = -Ro^l^ 772 = i?o«2,

then (63) directly gives constraints on 5"^ as:

= r/j5"^7/2,
= r]JS-^r)u (64)
= vIs-%.

We thus obtain three homogeneous constraints on the matrix 5~^, the inverse of the matrix 5.
These constraints can be used to compute S~^ hence 5.
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The above derivation is based on the assumption that the fundamental matrix F is normalized,
i.e., IIp'II = 1. However, since the epipolar constraint is homogeneous in the fundamental matrix
F, it can only be determined up to an arbitrary scale. Suppose Ais the length of the vector p' €
in jP = A~^A^p'. Consequently, the vectors d\ and d2 are also scaled by the same A, as are
^1 and ^2- Then the ratio between the left and right hand side quantities in each equation of (64)
is equal to A^, This gives two independent constraints on 5~^, the so called Kruppa equations
(due to their first discovery by Kruppa in 1913):

x2 _ ^ ^2 S-^^2 . .
77J5-I7/2 ViS-'̂ Vi 5-1772"

Alternative means of obtaining the Kruppa equations are by utilizing algebraic relationships be
tween projective geometric quantities [22] or via SVD characterization of F [8]. Here we obtain
the same equations from a quite different approach. Equation (65) further reveals the geometric
meaning of the Kruppa ratio: it is the square of the length of the vector p' in the fundamental
matrix F. In general, each fundamental matrix provides at most two algebraic constraints on S~^.
Since the symmetric matrix 5 has five degrees of freedom, in general at least three fundamental
matrices are needed to uniquely determine 5.

Comineiits 5 One must be aware that solving Kruppa equations for camera calibration is not
equivalent to the camera self-calibration problem in the sense that there may exist solutions of
Kruppa equations which are not solutions of a "valid^ self-calibration. Given a non-critical set
ofcamera motions, the associated Kruppa equations do not necessarily give enough constraints to
solve for the calibration matrix A. See Section 3.6for a complete account.

The above derivation of Kruppa equations is straightforward, but the expression (65) depends
on a particular rotation matrix Rq that one chooses —note that the choice of Rq is not unique.
However, there is an even simpler way toget an equivalent expression for the Kruppa equations in
a matrix form. Given a normalized fundamental matrix F = A-'̂ R'̂ A'̂ p, note that the element
A-'̂ R'̂ A^ 6 A-^50(3)A^ acts on each column of the skew matrix p'. It is then natural to view
the fundamental matrix E as an cotangent vector (of the group A50(3)A—i) with appropriate
coinvariants associated to it. Applying Corollary 3, one directly gets the matrix equation:

F^5-'F =?''s-9. (66)
We call this equation the normalized matrix Kruppa equation. It is readily seen that this
equation is equivalent to (64). IfF is not normalized and is scaled by A€ K, i.e., F = XA-'̂ R^A^p,
we then have the matrix Kruppa equation:

F^S-'F = (67)

This equation is equivalent to the scalar version given by (65) and is independent of the choice of
the rotation matrix Rq.

3.5 Solving the Kruppa Equations

Algebraic properties of Kruppa equations have been previously studied in [22, 30]. However, con
ditions on dependences among Kruppa equations obtained from a fundamental matrix have not
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been described systematically. Therefore it is hard to tell in practice whether a given setofKruppa
equations provide a unique solution for calibration. As we will soon see in this section, for a very
rich class ofcamera motions (which commonly occur in many practical applications), the Kruppa
equations become degenerate. Moreover, since the (matrix) Kruppa equations (65) or (67) are
highly nonlinear in most self-calibration algorithms which are based on directly solving the
Kruppa equations suffer from being computationally expensive or having multiple local minima
[13, 3]. These reasons have motivated us to study the geometric nature of Kruppa equations and
to gain a better understanding of the difficulties commonly encountered in camera self-calibration.
Our attempts to resolve these difficulties will lead to simplified algorithms forself-calibration. These
algorithms are linear and better conditioned for a specific class of camera motion.

Given a fundamental matrix F = A~^R^A^p' with p' of unit length, the normalized matrix
Kruppa equation (66) can be rewritten in the following way:

- ARA-^S-^A-'̂ R^A^)p = 0. (68)

According to this form, if we define C = A~^R^A^, a linear (Lyapunov) map a : ^ R^^^ as
<T : X X —C^XC^ and a linear map r : —¥ R^^^ as t :Y ^ p' Yp', then the solution 5"^
of equation (68) is exactly the (symmetric real) kernel of the composition map:

roa: R^""^ R^^^ R^^^ (69)

This interpretation of Kruppa equations clearly decomposes effects of the rotational and transla-
tional parts of the motion: if there is no translation i.e., p = 0, then there is no map r; if the
translation is non-zero, the kernel is enlarged by composing the map r. In general, the symmet
ric real kernel of the composition map r o tr is 3 dimensional - while the kernel of a is only 2
dimensional, due to Lemma 1.

Lemma 3 Given a fundamental matrix F = A ^R^ A^p' with p' = Ap, a real symmetric matrix
X € R^^^ is a solution of F^X
E^YE = X^p^Yp with E = R^p.
X € R^^^ is a solution of F^XF = X'̂ pi^Xp' if and only ifY = A ^XA~^ is a solution of

The proof is trivial. This simple lemm^, however, states a very important fact: given a set
of fundamental matrices Fi = A~^RfA^p'- with p'- = Api,i = 1,... ,7i, there is a one-to-one
correspondence between the set of solutions of the Kruppa equations:

F7XFi =\]9fX9i, i=l n, (70)
and the set of solutions of the equations:

Bfy£. = A?pfypi, (71)

where F, = R^Pi are essential matrices associated to the given fundamental matrices. Note that
these essential matrices are determined only by the camera motion. Therefore, conditions of unique
ness of the solution of Kruppa equations only depend on the camera motion.

3.5.1 Pure Rotation Case

From the decomposition of the (normalized) Kruppa equation given by (69), it is natural to first
study the kernel of the map <j. This corresponds to the case that the camera undergoes pure
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rotational motion. This case has been previously studied in the vision literature [9]. Here, we give
a brief review of the main results associated with this case.

In the pure rotation case, corresponding image pairs (xj,X2),j = 1,... ,n satisfy:

= ARA~^ X{x{, (72)
for some scales Aj, Aj, j = 1,... ,n. Then the image correspondences satisfy a degenerate version
of epipolar constraint:

St{ARA~^x{ = 0 (73)
for j = 1,..., n. From these linear equations, in general, 4 pair ofimage correspondences uniquely
determine the matrix ARA~^.

Information about the matrix A is therefore encoded in the conjugate group ASO{S)A~^ of
50(3). It will be useful tounderstand the relation between the two groups: 50(3) and ASO(Z)A~^.
In particular, we need to study the problem: given an element, say matrix C € in the group
ASO(Z)A~^, how much does it tell us about the matrix A1 Since C GASO(Z)A~^, there exists a
matrix R G50(3) such that C = ARA~^. As usual, let 5 = we have:

5 - C^SC = 0. (74)
That is, 5 has to be in the symmetric real kernel ofthe Lyapunov map:

^.^X3 ^x3

X ^ X-C'^XC. (75)
As a direct corollary to Theorem 1, we have:

Corollary 4 Given two matrices Cj = ARjA-^ GAS0{3)A-\j =1,2 where Rj = with 9j's
not equal to kw^k GZ, then SRKer(Li) r\ SRKei\L2) is 1 dimensional if and only ifui and U2 are
linearly independent.

According to this corollary, the simplest way to calibrate an uncalibrated camera is to rotate it
about two diiferent axes. The self-calibration algorithm in this case will be completely linear and
a unique solution is also guaranteed.

3.5.2 Fundamental Matrix and Kruppa Equation Renormalization

In a more general situation when the translational motion is present, the problem ofsolving Kruppa
equations is no longer as easy as in the pure rotation case. From the derivation of the Kruppa
equations (65) or (67), we observe that the reason that they are nonlinear is because we usually do
not know the scale A. It will be helpful to know under what conditions the matrix Kruppa equation
has the same solution as the normalized one. Here we will study two special cases for which we are
able to know directly what the missing Ais for the fundamental matrix. Therefore, the fundamental
matrix can be renormalized and we can solve the camera calibration from the normalized matrix
Kruppa equations (which are linear). These two cases are when the rotation axis is parallel or
perpendicular to the translation. That is, if the motion is represented by (R.p) GSE{S) and
ti GE^ is the axis of R, then the two cases are when u is parallel or perpendicular to p. As we will
soon see, these two cases are of great theoretical importance: not only the calibration algorithms
become linear, but also they reveal certain subtleties of the Kruppa equations and explain when
the nonlinear Kruppa equations are most likely to become ill-conditioned.
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Theorem 4 (Kruppa equation renormalization) Consider a camera motion {R,p) € SE(S)
where R = with u of unit length. If 0 < 0 < tt and u is parallel or perpendicular to p, then the
matrix Kruppa equation: p^RYR'̂ p = X^p^Yp has the same positive definite solutions ofY as the
normalized matrix Kruppa equation: p^RYRFp = p^Yp.

Proof: For the parallel case, let x € be a vector of unit length in the plane spanned by
column vectors of p. All such x are on a unit circle. There exists xq € on the circle such that
x'̂ Yxq is maximum. We then have x^RYR^xq = X^x^Yxq, hence < 1. Similarly, if we pick
xq such that x^Yxq^ is minimum, we have > 1. Therefore, A^ = 1. For the perpendicular case,
since the columns ofp span the subspace which is perpendicular to the vector p, the eigenvector u
of R is in this subspace. Thus we have: u^RYR^u = X'̂ u^Yu =4> u^Yu = X'̂ u'̂ Yu. Hence A^ = 1
if y is positive definite. a

Under the conditions given by the theorem, there is no solution for A in the Kruppa equation
(67) besides the true scale of the fundamental matrix. The following lemma allows to directly
compute this A for such a fundamental matrix:

Lemma 4 Given a fundamental matrix F = XA'^R^A^p' with ||p'|| = 1, ifp = A~^p' is parallel
to the axis of R, then X^ is ||Fp'F^||,® and ifp is perpendicular to the axis of R, then Xis one of

'^T
the two non-zero eigenvalues of the matrix Fp' .

Proof: Fust we prove for the parallel case. It is straightforward to check that, in general,
FpfF^ = X^ART'p. Since now the axis of R is parallel to p, we have Fp'F^ = A^p'. For the
perpendicular case, let w€ be the axis of R and let p = A~^p'. By assumption p is perpendicular
to u. Then there exists u 6 such that u = pA~^v. Then it is direct to check that p'v is the
eigenvector of Fp' corresponding to the eigenvalue A. •

Then each fundamental matrix can be immediately normalized by dividing by the scale A. Once
the fundamental matrices are normalized, the problem of solving the calibration matrix S~^ from
normalized matrix Kruppa equations becomes a simple linear one! A normalized matrix Kruppa
equation in general imposes 3 linearly independent constraints given by (64) on the unknown
calibration. However, this is no longer the case for the special motions that we are considering
here.

Lemma 5 Consider a camera motion {R,p) € SE{S) where R = with u of unit length. If
0 < ^ < TT and u is parallel or perpendicular to p, then the normalized matrix Kruppa equation:
P^RYRFp = p^Yp imposes only 2 linearly independent constraints on the symmetric matrix Y.

Proof: For the parallel case, by restricting Y to the plane spanned by the column vectors of p,
it is a symmetric matrix Y in The rotation matrix R € 50(3) restricted to this plane is a
rotation R 6 50(2). The normalized matrix Kruppa equation is then equivalent to:

y - RYR^ = 0. (76)

Since 0 < 0 < tt, this equation imposes exactly 2 constraints on the 3 dimensional space of 2 x 2
real symmetric matrices. The identity 72x2 Is the only solution. Hence the normalized Kruppa
equation imposes exactly 2 linearly independent constraints on Y.

®Here || • || represents the 2-norm.
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For the perpendicular case, since u in the plane spanned by the column vectors of p, there
exist V€ such that (u, u) form an orthonormal basis of the plane. Then the normalized matrix
Kruppa equation is equivalent to:

fRYR^p = fYp ^ (u,v)^RYR?'(u,v) = (u,v)^Y[u,v). (77)

Since liFu = u, the above equation is equivalent to:

v^RYu = v^Yu, v^RYR^v = v^Yv. (78)

These are the only two constraints given by the normalized Kruppa equation, •

According to this lemma, although we can renormalize the fundamental matrix in the case
when rotation axis and translation are parallel or perpendicular, we only get two independent
constraints from the resulting (normalized) Kruppa equation corresponding to a single fundamental
matrix. Hence, for these motions in general, we need 3 such fundamental matrices to uniquely
determine the unknown calibration. Consequently, if wedo not renormalize the fundamental matrix
in this case and directly use the Kruppa equations given by (65) to solve for calibration, the two
nonlinear equations given by (65) are in fact algebraically dependent! Therefore, one can only
get 1 instead of 2 constraints on the unknown calibration S~^ from one fundamental matrix.
Although, mathematically, such motions are only a zero-measured subset of 5£'(3), they are very
commonly encountered in real applications: most images sequences are in fact taken through planar
or orbital motions whose rotation axis and translation are unfortunately perpendicular to each
other, orthrough the so called screw motions whose rotation axis and translation are parallel! This
observation may explain why self-calibration based on directly solving the Kruppa equations (65)
is most likely to be ill-conditioned when being applied to real image sequences taken under such
motions. Our analysis, however, shows that such motions do not always mean trouble: once the
fundamental matrix or Kruppa equations are renormalized, linear equations can be obtained.

Comments 6 Interestingly, for a walking human, the main rotation of the eyes and the head is
yaw and pitch whose axes are perpendicular to the direction of walking. As the theorem suggests,
self-calibration in this situation is linear hence more robust to noise. Similar cases can also often
be found in vision-guided navigation systems, on-board planar mobile robots. The screw motion, on
the other hand, shows up very frequently in motion ofaerial mobile robots such as an autonomous
helicopter.

Comments 7 From Lemma 5, we can see that some of the analysis and results given in [30] are
incorrect. Claims ofLemma 5 are direct counter examples to the claims ofPropositions B.5 hence
B.9 in [30]. the solutions of the normalized Kruppa equations when the translation is parallel or
perpendicular to the rotation axis is always 4 dimensional as opposed to 2 or 3 respectively. If
one allows the rotation to be 180°, solutions of the normalized Kruppa equations are even more
complicated. For example, we know e^^^p = -p ifu is of unit length and parallel to p (see [15]).
Therefore, ifR= e , the corresponding normalized Kruppa equation is completely degenerate and
imposes no constraint on the solution of calibration.

R.emnrk 2 Although Lemma 4claims that for the perpendicular case Ais one of the two non-zero
eigenvalues ofFp' , unfortunately, there is no way to tell which one is the right one - simulations
show that it could be either the larger or smaller one. Therefore, in algorithm, for given (more than
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3) fundamental matrices, one needs to consider all possible combinations.' According to Theorem
4, in the noise-free case, only one ofthe solutions can be positive definite, which corresponds to the
the true calibration.

3.6 Beyond the Kruppa Equations?

The proofof Lemma4 suggestsanother constraint that can be derived from the fundamental matrix

^ with ||p'|| = 1. Since FpT^ = X'̂ AR'̂ p, we can obtain the vector X^AR^p which
is also equal to X^AR^A~^p'. Let us call this vector a € Then it is obvious that the following
constraint for S = is satisfied:

a^Sa = X'̂ p'̂ Sp'. (79)
Notice that this is a constraint on 5, not like the Kruppa equations which are constraints on S~^.
Combining the Kruppa equations given in (65) we have:

,2 ^ _ gi'5-'C2 _ _ h'^Sa
V2^~^V2 VlS-^Vl VlS-^7f2 \l P''̂ S]/'

Is the last equation algebraically independent of the two Kruppa equations? Although it seems to
be quite different from the Kruppa equations, it is in fact dependent on them.® The necessary and
sufficient condition for a unique camera calibration given by Theorem 1 claims that two general
motions with rotation along diflferent axes already determine the calibration. However, it seems
that every effort of looking for the third constraint on S from fundamental matrix only has failed.
We hence need to know what information is missing in the Kruppa equations.

Another constraint on the calibration actually lies in the fact that not all 5 which satisfy the
Kruppa equations may give valid Euclidean reconstructions of both the camera motion and scene
structure. Suppose that a camera motion is {R,p) GSE{d) and its associated essential matrix is
E = R'̂ p. If there exist Y = such that: E'̂ YE = X^p^Yp for some A6 K. Then the
matrix F = = A~^R^A'̂ p' is also an essential matrix with p' = Ap. That is, there
exists R ^ SO{S) such that F = R^j/ (see [21] for an account ofproperties ofessential matrices).
Under the new calibration A, the coordinate transformation becomes:

A2AX2 = AiAi2A~^(Axi) +p'.

Since F = R^j/, we have ARA~^ = R + p'o"^ for some v e M®. We then have:

A2AX2 = Ai^(Axi) + Xip'v^{Axi) + p'.

Let /3 = Ait;^(Axi) € Mand we have:

A2AX2 = Ai^(Axi) + pp' + p'. ^ AiAx2^(Axi) = (/? -j- 1)p'Ax2.

Now we prove by contradiction that u ^ 0 is not possible for a Euclidean reconstruction. Suppose
that u ^ 0 and let C M® to be the plane {q e R®|u^9 = -!}• Then for all AiAxi e N, we have
P = —I hence:

Ax2^(Axi) = 0
^There are 2" combinations for n fundamental matrices.
®We haveshown this numerically.
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for all points on the plane N. If the motion (R,p') allows a valid Euclidean reconstruction. Then,
we have:

72>1x2 = JiRAxi + p'

for some positive scales 71,72 € Combining the two equations, we have:

p'R{Axi) = 0

for all ^xi e N. This is impossible since the null space of p'R is only 1 dimensional. So the
relationship cannot hold for all points on the plane N. Therefore we conclude that v has to be
zero! We have in fact proved the following theorem:

Theorem 5 (Beyond Kruppa Equations) Given a camera with calibration matrix I and mo
tion (R,p), among all the solutions Y = of the Kruppa equation E'̂ YE = X^p^Yp
associated to E = R '̂p, only those which guarantee ARA~^ e SO(3) may provide a valid Euclidean
reconstruction of both camera motion and scene structure. Any other solutions always push some
plane in to the distance at infinite.

Comments 8 According to Theorem 5, from two uncalibrated images, we, inprinciple, can recover
the camera calibration, motion and 3D structure up to a one parameter family, as opposed to an
arbitrary projective transformation claimed by [10]. For a more detailed discussion of this family
of solutions, we refer the reader to [20].

Theorem 5 explains why we get only two constraints from one fundamental matrix even in the
cases when the Kruppa equations can be renormalized —the extra one is imposed by the structure
reconstruction. The theorem also resolves the discrepancy between the Kruppa equations and the
necessary and sufficient condition for a unique calibration: the Kruppa equations, although conve
nient to use, do not provide sufficient conditions for a valid calibration which allows a Euclidean
reconstruction ofboth the camera motion and scene structure. In fact Theorem 5issimply another
way of justifying Definition 1 and the proof of Theorem 1 in the language of fundamental (or es
sential) matrix and Kruppa equation. It claims again that, as far as a Euclidean reconstruction is
concerned, it is only the rotational motion that determines the condition for a unique calibration,
asopposed to the results given in [25]. However, the conclusion given in Theorem 5 is very hard to
harness in algorithms. For example, in order to exclude invalid solutions, one needs feature points
on the plane N. It is not yet clear what we can do if such feature points are not available. This
remains a subject of our future research.

4 Differential Case

So far, we have understood camera self-calibration when the motion of the camera is discrete —
positions of the camera are specified as discrete points in SE{3). In this section, we study its
differential (or continuous) version. Define the angular velocity 0 = R(t)R'̂ (t) e so(3) and linear
velocity v= —t*^p(t)+p(t) GR^ and. Let v' = Av GR^, a;' = Aoj GR^. Differentiating the equation
(20) with respect to time t, we obtain:

f = AQA~^r + v' (81)
where, to simplify the notation, we use r to replace the original notation q' GM'.
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4.1 General Motion Case

By the general case we mean that both the angular and linear velocities w and v are non-zero. Note
that r = Ax yields r = Ax -f Ax. Then (81) gives:

r = AOA~^r-^v' => (u'-|-x) x f = (u'-f x) x Aa)4~^r
=> x^4~^u4~^x -f- x^4~^4DuA~^x = 0. (82)

The last equation is called the differential epipolar constraint. Let s € to be s =
5(a;u-f utD). Define the differential fundamental matrix F' € to be:

F' can therefore be estimated from as few as eight optical flows (x,x) from (82) (see [16]).

Note that v' = A~'̂ vA~^ and a;' = A~'̂ QA~^. Applying Lemma 2 repeatedly, we obtain

A~^sA~^ =^A~^{Qv -}- vO)A~^ =^{A~^OA^v' +v'AQA~^) =i(u;'5~^u' +v'S'̂ u'). (84)
Zt Zt z

Then the differential epipolar constraint (82) is equivalent to:

x^u'x -1- x^i(a;'5"^u' -b u'5~^a;')x =0. ^ (85)

Suppose 5~^ = for another B G5L(3), then A= BRq for some Rq 6 50(3). We have:

x^v'x -b x^i(a;'5~^u' -b v'S~^(jj')x =0

^ x^v'x -b x^^(u'BB^v' +v'BB^u)')x =0
z

^ x^B~^RqvB'̂ x -b x^B~^RqojRqvB'̂ x = 0. (86)

Comparing to (82), one cannot tell the camera A with motion (a;, u) from the camera B with motion
(Rouj,Rov). Thus, like the discrete case, without knowing the camera motion the calibration can
only be recovered in the space 5L(3)/50(3), i.e., only the symmetric matrix S~^ hence 5 can be
recovered.

However, unlike the discrete case, the matrix 5 cannot be fully recovered in the differential
case. Since S~^ = AA^ is a symmetric matrix, it can be diagonalized as:

5"^ = it:i€50(3) (87)

where S = diag{o'i, <72, <73}. Then let uj" = Riu' and v" = Riv'. Applying Lemma 2, we have:

9 = RjiP'Ri

z z

Thus the differential epipolar constraint (82) is also equivalent to:

{Riif{?'{Rix) +(Rixfh '̂Sv" +v"ti?'){Rix) =0. (89)

27



From this equation, one can see that there is no way to tell a camera A with AA^ = Ei2i from
a camera B = R\A. Therefore, only the diagonal matrix E can be recovered as camera parameters
since both the scene structure and camera motion are unknown.

Note that E is in SL(3) hence a\a20z = 1. The singular values only have two degrees of
freedom. Hence we have:

Theorem 6 Consider an uncalibrated camera with an unknown calibration matrix A € SL[3).
Then only the eigenvalues ofAA^ can be recovered from the bilinear differential epipolar constraint.

If we define that two matrices in SL(Z) are equivalent if and only if they have the same singular
values. The intrinsic parameter space is then reduced to the space SL(S)/ where ~ represents
this equivalence relation. The fact that only two camera parameters can be recovered was known
to Brooks et al. [4]. They have also shown how to do calibration for certain matrices A with only
two unknown parameters. But the intuitive geometric reason was hidden in their arguments.

Comments 9 It is a little surprising to see that the discrete and differential cases are different
for the first time, especially knowing that in the calibrated case these two cases have almost exactly
parallel sets of theory and algorithms. We believe that this has to do with the map:

B H-). ABA^

where A is an arbitrary matrix in Let so(3) be the Lie algebra ofSO{3). The restricted
7^ |5o(3) is an endomorphism while ja |50(3) is not. Consider ja |so(3) io the first order

approximation of'yA 150(3)- information about the calibration matrix A does not fully
show up until the second order term of the map '̂ a- This also somehow explains why in the discrete
case the (Kruppa) constraints that we can get for A are in general nonlinear.

Comments 10 From the above discussion, if one only uses the (bilinear) differential epipolar
constraint, at most two intrinsic parameters of the calibration matrix A can be recovered. However,
it is still possible that the full information about A can be recovered from multilinear constraints on
the higher order derivatives of optical flow. A complete list ofsuch constraints are given in fill or
[!]•

4.2 Pure Rotation Case

Since full calibration is not possible in the general case when translation is present, we need to know
if it is possible in some special case. The only case left is when there is only rotational motion, i.e.,
the linear velocity v is always zero. In this case the differential fundamental matrix is no longer
well defined. However from the equation (81) we have:

r = Au}A~^r Ax + Ax = 4a;AA"^x

=> Sac = Sc4cDi4~^x. (90)
This is a degenerate version ofthe differential epipolar constraint and it gives two independent con
straints on the matrix AioA ^for each (x, x). Given n > 4optical flow measurements {(x,*, x,)}^j,
one may uniquely determine the matrix AQA'̂ by solving a linear equation:

Mc = b (91)
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where M € R^nxQ jg matrix function of {(xi,x,)}f^j, 6 € K® is a vector function ofx,x,'s and
c € is the 9 entries of AbjA~^. The solution is given by the following is lemma:

Lemma 6 J/ a; = 0, then AujA~^ = Cp — where Cp G is the matrix corresponding to the
least square solution of the equation Me = band 7 is the unique real eigenvalue ofCp.

The proof is straightforward. Then the self-calibration problem becomes how to recover S =
A~^A~^ or S~^ = AA^ from matrices of the form ACjA~^. Without loss of generality, we may
assume uj is of unit length. Notice that this problem is exactly a differential version of the discrete
pure rotation case.

Let C = ACjA~^ € Then we have:

SC = = & (92)

where u' = Auj. Thus SC = —(5C')^, i.e., SC + (C')^5 = 0. That is, S has to be in the kernel
of the Lyapunov map:

2^/.^x3 ^ ^X3

X ^ (CfX^-XC (93)

If a; ^ 0, the eigenvalues of a; have the form 0, ia, —ioc with a G R. Let the corresponding
eigenvectors are w, w, u G<C?. According to Callier and Desoer [5], the null space of the map V has
three dimensions and is given by:

Ker(L') = span{5i = A~^a>u;'"A~\ 52 = A~^uu*A~^,Sz —A~^uu*A~^}. (94)

As in the discrete case, the symmetric real 5 is of the form 5 = /35i +7(52+53), i.e., the symmetric
real kernel of L' is only two dimensional. We denote this space as SRKer(L'). We thus have:

Lemma 7 Given a matrix C = AcDA"^ with a; G 5^, the symmetric real kernel associated with
the Lyapunov map V : (C)'^X - XC is 2 dimensional.

Similar to the discrete case we have:

Theorem 7 Given matrices Cj = AcDjA"^ GR^^^, j = 1,..., n with ||a;j|| = 1. The real symmet
ric matrix S = A~^A~^ G5L(3) is uniquely determined if and only if at least two of the n vectors

= 1,... ,n are linearly independent.

5 Simulation Results

In this section, we test the performance of the proposed algorithms through different experiments.
The error measure between the actual calibration matrix A and the estimated calibration matrix
A was chosen to be:

error = x 100%
ll^ll

Table 1 shows the simulation parameters used in the experiments.® The calibration matrix A is
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Table 1: Simulation parameters

Parameter Unit Value

Number of trials 100

Number of points 20

Number of frames 3-4

Field of view degrees 90

Depth variation u.f.l. 100 - 400

Image size pixels 500 X 500

simply the transformation from the original 2 x 2 (in unit of focal length) image to the 500 X500
pixel image. For these parameters, the true A should be:

/ 250 0 250

>1= I 0 250 250
V 0 0 1

The ratio of the magnitude oftranslation and rotation, or simply the T/R ratio, is compared at
the center ofthe random cloud (scattered in the truncated pyramid specified by the given field of
view and depth variation). For all simulations, the number of trials is 100.

Pure rotation case; Figures 3, 4 and 5 show the experiments performed in the pure rotation
case. The axes ofrotation are JC and Y for Figures 3and 5, and X and Z for Figure 4. The amount
of rotation is 20®. The perfect data was corrupted with zero-mean Gaussian noise with standard
deviation cr varying from 0 to 5 pixels. In Figures 3 and 4 it can be observed that the algorithm
performs very well in the presence of noise, reaching errors of less than 6% for a noise level of 5
pixels. Figure 5 shows the effect oftheamount oftranslation. This experiment is aimed to test the
robustness of the pure rotation algorithm with respect to translation. The T/R ratio was varied
from 0 to 0.5 and the noise level was set to 2 pixels. It can be observed that the algorithm is not
robust with respect to the amount of translation.

Figure 3: Pure rotation algo
rithm. Rotation axes X-Y.

u.f.l. stands for unit of focal length.
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rithm. Rotation axes X-Z.



Figure 5: Rotation axes X-Y, a = 2.

Translation parallel to rotation eixis: Figures 6 and 7 show the experiments performed when
translation is parallel to the axis ofrotation. '̂' The non-isotropic normalization procedure proposed
by Hartley [7] and statistically justified by Miihlich and Mester [23] was used to estimate the
fundamental matrix. Figure 6 shows the effect of noise in the estimation of the calibration matrix
foT T/R = 1 and a rotation of ^ = 20® between consecutive frames. It can be seen that the
normalization procedure improves the estimation of the calibration matrix, but the improvement is
not significant. This result is consistent with that of [23], since the effect of normalization is more
important for large noise levels. On the other hand, the performance of the algorithm is not as
good as that of the pure rotation case, but still an errorof5% is reached for a noise level of2 pixels.
Figure 7 shows the effect of the angle of rotation in the estimation of the calibration matrix for a
noise level of 2 pixels. It can be concluded that a minimum angle of rotation between consecutive
frames is required for the algorithm to succeed.

Without nocmshzfttkx)
With normatiZAtkm

NoMltMlfpM

Figure 6: Rotation parallel to translation
case. 0 = 20®. Rotation/Translation axes:
XX-YY-ZZ, T/R ratio = 1.

Afrounl ol recMion

Figure 7: Rotation parallel to translation
case, a = 2. Rotation/Translation axes:
XX-YY-ZZ, T/R ratio = 1.

Translation perpendicular to rotation axis: Figures 8 and 9show the experiments performed
when translation is perpendicular to the axis of rotation. It can be observed that this algorithm

^°For specifying the Rotation/Translation eixes, we simply use symbols such as ^^XY-YY-ZZ^ which means: for
the first pair of images the relative motion is rotation £Jong X and translation along Y\ for the second pmr both
rotation and translation are along Y; and for the third pair bothrotation and treinslation are along Z,
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is much more sensitive to noise. The noise has to be less than 0.5 pixels in order to get an error
of 5%. Experimentally it was found that Kruppa equations are very sensitive to the normalization

" Tof the fundamental matrix F and that the eigenvalues Ai and A2 of Fp' are close to each other.
Therefore in the presence of noise, the estimation of those eigenvalues might be ill conditioned
(even complex eigenvalues are obtained) and so is the solution of Kruppa equations. Another
experimental problem is that more than one non-degenerate solution to Kruppa equations can be
found. This is because, when taking all possible combinations of eigenvalues of Fp' in order to
normalize F, the smallest eigenvalue of the linear map associated to "incorrect" Kruppa equations
can be very small. Besides, the eigenvector associated to this eigenvalue can eventually give a
non-degenerate matrix. Thus in the presence of noise, you can not distinguish between the correct
and one ofthese incorrect solutions. The results presented here correspond to the best match (to
the ground truth) when more than one solution is found. Finally it is important to note that large
motions can significantly improve the performance of the algorithm. Figure 9 shows the error in
the estimation of the calibration matrix for a rotation of 30®. It can be observed that the results
are comparable to that of the parallel case with a rotation of 20®.

Figure 8: Rotation orthogonal to translation
case. 9 = 20®. Rotation/Translation axes:
XY-YZ-ZX, T/R ratio = 1.

Figure 9: Rotation orthogonal to translation
case. 9 = 30®. Rotation/Translation axes:
XY-YZ-ZX, T/R ratio = 1.

Robustness: In order tocheck how robust the algorithms are with respect to the angle <f> between
the rotation axis and translation, we run them with <f> varying from 0® to 90®. The noise level is 2
pixels, amount of rotation is always 20® and the T/R ratio is 1. Translation and rotation axes are
given by Figure 10. Surprisingly, as we can see from the results given in Figure 11, for the range

<4>< 50®, both algorithms give pretty close estimates. This is because, for this range of angle,
numerically the eigenvalues of the matrix Fp' are complex and their norm is very close to the
norm of the matrix Fp'F'̂ . Therefore, the computed renormalization scale Afrom both algorithms
is very close, as is the calibration estimate. For (f) > 50®, the eigenvalues ofFp' become real and
the performance of the two algorithms is no longer the same.

6 Discussions and Future Work

In this paper, we have proposed a geometric approach for the study of camera self-calibration.
Based on a new geometric interpretation of the camera calibration, we give a clear account of
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Pi

Figure 10: The relation of the three rota
tion axes and three translations

Pl^V2^PZ'

ParsQel case

A/iC^ MwMn transMon and «l raiiSon

Figure 11: Estimation error in calibration
w.r.t. different angle <f>. Noise level <t = 2.
Rotation and translation axes are shown by
the figure to the left. Rotation amount is al
ways 20° and T/R ratio is 1.

the necessary and sufficient condition for a unique calibration and clarify some misunderstanding
existing in the computer vision literature. By the study of the cases when the rotation axis is
parallel or perpendicular to the translation, we discovered generic difficulties in the conventional
self-calibration schemes based on the nonlinear Kruppa equations. The results not only clarify some
incorrect claims in the literature but also provide brand new linear algorithms for self-calibration.
As in several of our other papers [16, 15, 14], we have investigated differential case as the limit
of the discrete case. For camera self-calibration, although essential similarities still exist between
these two cases, there is no differential version of the Kruppa equation. The differential epipolar
constraint is a degenerate one which can only determine (at most) two intrinsic parameters of the
camera. This also explains the nonlinearity of the Kruppa equations in the discrete case.

In [20], subgroups of 5E(3) are systematically studied for the purpose of recovering camera mo
tion, calibration and scene structure altogether. Roughly speaking, the ambiguities in the recovery
can be represented as certain groups acting on the overall configuration of the camera system. In
this paper, we have assumed that the calibration matrix A (or the intrinsic parameters) is always
constant. The results obtained here certainly help to study the case when A is time-varying (such
as changing focal length) and the associated Kruppa equations become time-varying. Since, in real
applications, the camera is usually pre-calibrated and only some of the camera intrinsic parameters
may be unknown or time-varying, such as the focal length, a detailed study of the geometry for
such a camera system is also of great theoretical and practical importance. In this paper, only basic
simulations have been presented. We will give a more detailed report of the performance of the
proposed algorithms through more extensive simulations and experiments on real image sequences.

Although the self-calibration theory has only been developed for the Euclidean case, most
theorems can be easily generalized to a larger class of Riemannian manifolds (forexample see [18]).
In fact, it can be shown that in general, multi-view geometry is about studying certain intrinsic
geometric properties of certain Lie groups (isometry groups of the corresponding spaces). Most
of the important objects encountered in multi-view geometry can then be interpreted intrinsically.
In a three dimensional Euclidean space for example, the associated Lie group is SE{3) and the
associated isotropy subgroup 50(3). Multi-view geometry in this space is then about the study of
the quotient space 5E(3)/50(3). For an axiomatic formulation of multi-view geometry based on
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Lie groups, one may refer to [19].
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