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Overview

The class willconcentrate on the modeling,analysis, control and simulation of hybrid systems. Hybrid systems
are djmamical systems with interacting continuous dynamics (modeled, for example, by differential equations)
and terete dynamics (modeled, for example, by automata). Hybrid systems axe important in applications
such as CAD, real time software, robotics and automation, and transportation, and have recently attracted
considerable research attention in the control and computer theory communities. A number of theoretical
frameworks have been developed to model hybrid systems, analyze their behavior and synthesize controllers
such that the closed loop system satisfies certain specifications. In some cases the theoretical advances have
been complemented by automatic verifications tools and simulation languages.

In this class we will present recent advances in this area in a unified framework. The discussion will be moti
vated by examples and applications (in particular Automated Highway Systems and Air Traffic Management
Systems). Even though this is a fairly new research area, there is already a substantial volume of literature
dedicated to it. It will not be possible to cover all of it in detsiil in the class. Some topics will be covered
superficially, while others will only be mentioned. Throughout the class we will try to provide references for
further details.

Lecture Schedule

1. Modeling (7 lectures)

• Modeling formalisms

• Executions, existence and uniqueness conditions

• Specifications, safety and liveness properties

2. Verification &; Analysis (9 lectures)

• Model checking

• Deductive approax:hes

• Lyapunov stability analysis

• Verification tools

• Benchmaxk problems

3. Control (9 lectures)



• Reachability specifications, the game theoretic approach

• Optimal control

• Other control problems and approaches

• Topics from Automated Highway Systems and Air Traffic Management

4. Simulation (3 lectures)

• Difficulties of numerical simulation

• Currently available simulation tools

Prerequisites and Requirements

An attempt will be made to keep the class as self contained as possible. Some familiarity with the basic
concepts of dynamical systems and control will be necessary. Familiarity with automata theory and logic will
be helpful.

The grade for the class will be based on homework and a final project. There will be no midterms or final.

We expect to hand out 6 homework assignments, two on modeling, two onverification and two onthe control
ofhybrid systems. The frequency will be roughly one homework every two weeks. The last two weeks there
will be no homework to allow more time for the final projects.

Theprojects can either bein theform ofa review ofa substantial part ofthe literature, or, preferably, involve
the exploration of novel research ideas. Project topics will be chosen in consultation with the instructors.
Projects will be documented in a short report and will be presented to the class during the last week ofthe
semester.

Bibliography

There is no official textbook; the material will be drawn from a number of books and papers. The class will
be based mostly on lecture notes. We will try to have the notes ready as a reader at the beginning of the
semester.
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Course Summary

The class will concentrate on the modeling, analysis, control and simulation of hybrid systems. Hybrid
systems are dynamical systems with interacting continuous dynamics (modeled, for example, by differential
equations) and discrete dynamics (modeled, for example, by automata). Hybrid systems are important in
applications such as CAD, real time software, robotics and transportation, and have recently been at the
center of intense research activity in the control theory and computer theory communities. A number of
theoreticalmethodologies have been proposed to model hybrid systems, analyzetheir behaviorand synthesize
controllers such that the closed loop system satisfies certain specifications. In some cases the theoretical
advances have been complemented by computational tools for automatic verification, controller s3Tithesis and
simulation.

In this course wewill present recentadvances in this area in a unified framework. The discussion will be moti
vated by examples and applications (in particular Automated Highway Systems and Air IVaffic Management
Systems). Even though this is a fairly new research area, there is already a substantial volume of literature
dedicated to it. It will not be possible to cover all of it in detail in the class. Some topics will be covered
superficially, while others will only be mentioned. Throughout the class we will try to provide references for
further details.

Logistics

Presentation: The class will be based mostly on lecture notes. Transparencies will occasionally be used.

Reading Material: There is no official textbook. The material will be drawn from a number of books and
papers. References will be provided throughout. This is a research level graduate class, and it will not be
possible to cover all the material in detail. Students are expected to follow up on any topics that they find
interesting.

Office Hours: John Lygeros will be holding office hours every Monday and Wednesday, 10:00-ll:00am, in
269 Cory Hall. Shankar Sastry will be holding office hours every Tuesday and Thursday, 3:00-4:00pm in 253
Cory Hall. The easiest way to contact us outside office hours is by email, at lygerosQeecs.berkeley.edu
and sastryQeecs.berkeley.edu.

Web Site: All "electronic" course material will be made available on-line at the web page of John Lygeros
http://robotics.eecs .berkeley.edu/'lygeros/ under ee291E.

Prerequisites and Requirements

Prerequisites: We will try to keep the class as self contained as possible. Some familiarity with the basic
concepts of d3rnamical systems and control will be necessary. Familiarity with automata theory and logic will
be helpful.

Homework: We expect to hand out 6 homework assignments, two on modeling, two on verification and two



on the control of hybrid systems. The frequency will be roughly one homework every two weeks. The last two
weeks there will be no homework to allow more time for the final projects. The grade for the homework will
make up 30% of the overall grade of the class.

Midterms and Final: There will be no examination for this class.

Class Projects: The projects can either be in the form of a review of a substantial part of the literature,
or, preferably, involve the exploration of original research ideas. Project topics will be chosen in consultation
with the instructors. Students should provide a short (two page) project proposal by March 31. Projects will
be documented in a short report and will be presented to the class during the last week of the semester. Joint
project proposals will be considered. The grade for the projects will make up 60% of the overall grade of the
class.

Class Participation: Attendance and active participation in the class will make up for the remaining 10%
of the grade. This, among other things, involves serving as a "designated note-talcer" for approximately two
lectures during the semester. The duties of the designated note-taker for a particular lecture include:

• Attending the lecture in question.

• Remaining awake for the entire duration of that lecture.

• Carefully taking notes.

• Asking his colleagues and the instructor for additional input.

• Typing the notes (preferably in latex) and turning them in to the instructor within a week.

The collected notes will be distributed to the class. Please sign up for designated note-taker duty at the end
of the first lecture.

Lecture Schedule

1. Modeling (7 lectures)

• Modeling formalisms

• Executions, existence and uniqueness conditions

• Specifications, safety and liveness properties

2. Verification & Analysis (9 lectures)

• Model checking

• Deductive approaches

• Lyapunov stability analysis

• Verification tools

• Benchmark problems

3. Control (9 lectures)

• Reachability specifications, the game theoretic approach

• Optimal control

• Other control problems and approaches

• Topics from Automated Highway Systems and Air Traffic Management

4. Simulation (3 lectures)

• Difficulties of numerical simulation

• Currently available simulation tools



ee291E Lecture 1; Introduction

John Lygeros

January 20, 1999

Informal Definitions

• Hybrid Systems: Dynamicalsystems that require more than one modelinglanguageto characterizetheir
dynamics.

• Here: Systems with interacting continuous and discrete components

• Continuous dynamics:

- Movement of mechanical systems

- Linear circuits

- Chemical reactions

• Discrete dynamics:

- Collisions in mechanical systems

- Switches in circuits

- Valves and pumps in chemical plants

Example 1: Bouncing Ball (Figure 1)

• Motion characterized by height (xi) and vertical velocity (0:2)

• Continuous changes between bounces

• Discrete changes at bounce times

• Dynamics summarized by:

- q € Q = {0}, a; = (a;i,a;2) € X = Re^
- Init = {0} X{x € |a;i > 0} C Q XX
- x = f{x) - (X2, -g) € TxX,
- Inv{q) = (a;i > 0) C X
- G{q,q) = (xi < 0) C X

- R{q,q,x) = (2:1,-0x2) C X, c e [0,1]

• One can show that the bouncing ball automaton is non-blocking (from any initial condition there
exists at least one execution)

• One can show that (xi > 0) is an invariant property of the bouncing ball automaton (by induction
on the length of the executions)

• One can show that if c < 1 the bouncing ball automaton is Zeno (takes an infinite number of discrete
transitions in finite time). Note that this casts aspersions on our induction proofs.
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Figure 1: Bouncing ball

Example 2: Thermostat (Figure 2)

• Temperature in a room (x), controlled by switching heater on and off.

• Use a thermostat to regulate x around 75°.

• Assume when heater is off for a long time temperature stabilizes at 0° and when heater on for a long
time temperature stabilizes at 100°.

• Thermostat switches heater on between 68° and 70° and off between 80° and 82°

• Dynamics summarized by:

- 9 € Q = {0,1}, X € X = ]R
- Init = {0,1} XE C Q X X

- X = /(?, x) = -X + lOOg € TajX,

- /nt;(0) = (x > 68) C X, InviX) = (x < 82) C X

- G(0,1) = (x < 70) C X, G(1,0) = (x > 80) C X

- i?(0, l,x) = X C X, i2(l,0,x) = XC X

• One can show that the thermostat automaton is non-deterministic (for a given initial state there are
multiple possible executions).

Example 3: Automated Highway Systems (AHS)

• Example of a large scale, multi-agent, distributed system.

• Objective: increase throughput (in number of vehicles per lane per hour) of a highway system without
building new highways (because real estate is expensive) and without compromising passenger safety
and comfort.

• Problem 1: How are throughput, safety, comfort to be interpreted in the presence of faults?

• Temporary Solution 1: Restrict our attention to normal operation. Will have to come back to design
controllers for fault handling and devise a methodology for assessing their effectiveness.
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Figure 2: The thermostat system

Problem 2: Emergent behavior for the overall system to be achieved by control of individual agents.
Potential conflicts of interest: it is unclear whether greedy controller to minimize travel time of individual
vehicle leads to maximum throughput of the system.

Temporary Solution 2: Give up on overall optimality and go for a "heuristic" solution. Will have to
come baok to assess performance of overall system, and tune our heuristics accordingly.

Requirement for throughput (highspeedand close following) in conflict with requirement for safety (low
speed and large spacing).

Platooning scenario achieves a compromise. Vehicles travel in tightly spaced groups {platoons).

Intra platoon spacing is small (1-5 meters), therefore:

- Potential throughput is much higher.

- Intra-platoon collisions (if any) are likely to be at low relative velocities (hence safe).

Inter-platoon spacing is large, to prevent disturbances from propagating between platoons.

Automatic control needed. Hierarchy proposed in [1] shown in Figure 3.

Continuous "state" (for each vehicle): position and velocity (acceleration, manifold pressure,... ).

Discrete "state" (for each vehicle): position in the platoon and lane number (origin, destination, ... ).

Problem 3: "State" of the AHS system "product" of states of individual vehicles. Number of vehicles
very large and dynamically changing. Difficult to even simulate large scale systems efficiently.

Temporary Solution 3: Focus on neighborhoods of vehicles. Achieved by appropriate coordination
protocols. Problem of simulation solved by appropriate programming language [2].

Transition between discrete states through maneuvers (Figure 4). Necessary coordination provided by
communication protocols.

For each discrete state and each transition, invoke a difierent controller to control the continuous states.

Problem 4: Can one show that composite system is safe and efficient^

See [1] for an introduction to AHS control architecture, [3] for a discussion of possible safety problems
due to the hybrid nature of the problem and [4] for one possible solution.
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Figure 3: AHS Control Hierarchy

Classification of Hybrid Behavior

Roadside

Vehide

• Continuous systems with phased operation

—Bouncing ball

—Walking robots

— Circuits with diodes

• Continuous systems controlled by discrete inputs

— Thermostat

— Circuits with switches

— Chemical plants with valves, pumps

—Systems controlled by digital computers

• Control Modes

— Leader mode vs. follower mode for a vehicle on an AHS

—Aircraft autopilot modes: maintain altitude, maintain constant airspeed, maintain angle of attack,
descend at a fixed rate.



OFF

HIGHWAY

Lane Change Left^,_^lane:=lane+1

Join
Entry
lane:=l

Exit

lane:=0

LEADER

Mode

FOLLOWER

Mode

Split

Lane Change Right lane := lane-1

Figure 4: Discrete state of an AHS vehicle

- Normal vs. degraded modes of operation for fault handling

• Coordinating processes

- Communication protocols for AHS maneuvers.

- Conflict resolution for aircraft.

- Multi-agent systems: typically continuous controllers to optimize performance of individual agents,
coordination among agents to resolve conflicts.

Note: "hybrid" phenomena typically introduced for modeling convenience.

References
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Control, vol. AC-38, no. 2, pp. 195-207,1993.
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Transportation Studies, University of California, Berkeley, 1997.

[3] Datta N. Godbole, John Lygeros, and Shankar Sastry, "Hierarchical hybrid control: an IVHS case study",
in Hybrid Systems II, P. Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry, Eds., number 999 in
LNCS, pp. 166-190. Springer Verlag, 1995.

[4] John Lygeros, Datta N. Godbole,and Shankar Sastry, "Verified hybrid controllersfor automated vehicles",
IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 522-539,1998.



ee291E Lecture 2:

Mathematical Background, Continuous and Discrete Systems
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Notation

Basics

• 3 "there exists", V "for all",! "unique", 9 "such that", iff "if and only if.

• A logical "AND", V logical "OR", logical "NOT".

• Subsets of R: [a,6), [a,6], etc.

Variables

• A set of variables, Y, is a set of symbols.

• The set of valuations, Y, of a set of variables, Y, is the set of all possible values these variables can
assume.

• A valuation, y, can be thought of as a map y :Y —• Y.

• We will be concerned mainly with two types of variables:

- Continuous variables, X, with x e X = for some n e N.

- Discrete variables, Q, with q € Q C Z.

Topology

• The discussion in this section is terse, just enough to make the treatment of subsequent material formal.
Students should be familiar with most of these concepts, at least for Euclidean spaces. See [1] for a more
formal treatment.

• Definition: A topological space, (Y,T), consists of a set, Y, and a collection, T, of subsets of Y, such
that

1. 0 € T.

2. Y € r.

3. T is closed under arbitrary unions.

4. T is closed under finite intersections.

• T is called a topology on Y. The elements of T are called the open sets of Y.



• Given a set Y, there are many possible topologies on Y. Given two topologiesT and T' on Y, if T C T',
then T' is finer than T.

• A basis, B for a topology on Y is a collection of subsets of Y such that:

1. Vy e Y, there exists B £ B with y £ B.

2. For each pair Bi,B2^B and Vy G Bi DB2,2B £B with y £ B CBiC\ B2.

• The topology, T, generated on Y by a basis, B, consists of all sets U CY such that for each y £U there
exists B £ B such that y £ B CU. One can show that T is in fact the collection of all unions of sets in
B.

• A subset Y' C Y of a topological space (Y,T), inherits the subset topology, T' from Y, where U' £ T'
if and only if there exists U £T with U' = U DY'.

• The product, X x Y, of two topologicalspaces, (Y, T) and (X, S), is giventhe product topology, generated
by the basis B = {V y.U : V £T hU £ S).

• Definition. A metric on a set Y is a map:

d : Y XY R (1)

with the following properties:

1. Vx,y € Y, d{x,y) > 0 and d{x,y) = 0 only if x = y

2. Vx,y € Y,d(x,y) = d(y,x)

3. Vx,y,z£Y, d{x,y) + d(y, z) > d{x,z)

• R" is given the Euclidean metric topology, generated by open balls in the Euclidean metric. Recall that
the Euclidean metric is given by:

i

^iLi -

\i=l /

and that the open ball centered at x G R" with radius r > 0 is the set:

B(x, r) = {y GR" : d{x, y) < r}

• Countable and finite sets are given the discrete topology, generated by the basis consisting of ail the
singletons. In other words, if Q = {go,9i> •••} then:

^ = {{9o},{gi},...}

• Proposition: In the discrete topology every subset is open and closed.

• For a topological space (Y, T) and a subset iif C Y we denote by:

- |lir| the cardinalityof K (number of elements of K)

- the complement of K (iif® = Y\ K)

- K° the interior of K (largest open set contained in K)

- "K the closureof K (smallest closedset containing K)

- dK the boundaryof K {dK = K\K°)

- 2^ the power set of K (set of all subsets of K)



Functions Sc Continuity

• Consider two topologicai spaces, (Y,T) and (X,«S), and a function / : Y —»• X. / is called continuous
if for aWVeS, f-\V) = {y eY : f{y) e Y} € T.

• Consider two topologicai spaces Y and X, and a bijection / : Y —» X. / is called a homeomorphism if
both the function f and its inverse f~^: X —Y are continuous.

• For a topologicai space (Y,T), a subset K CY and an interval U CE:

- We denote by C^{U,K) the set of continuous functions from U to K.

cusp

X

Figure 1: An example of function / €

If Y = R", we denote by C7*(17,iiC), i = 0,1,..., oo the set of i times differentiable functions from
U to K and by C^{U^K) the set of analytic functions from U to K.

We denote by PC^{U,K) the set of piecewise continuous functions from U to K, i.e. the set of
functions which are continuous for all but a finite number of points in every bounded subset of U
and for which both the left and right limits exists and are finite at all discontinuity points.

f(x)= Sgll(x)

-1

Figure 2: A piecewise continuous function

- If Y = E", we denote by PC*{U,K)^ i = 0,1,... , oo the set of i —1 times differentiable functions
from U to K whose derivative is piecewise continuous and by PC'^{U,K) the set of piecewise
analytic functions from U to K.

For a topologicai space (Y,T), a subset K CY and a set 17C Z we denote by:

- K* the set of all functions from U to K, where U is finite.

- the set of all functions from U to K, where U is infinite.



Continuous Dynamical Systems

• For a formal treatment see [2], chapter 3 (availableat http: //robotics. eecs. berkeley. edu/'lygeros/),
[3] chapter 2, or your favorite ODE book.

• Consider r : M X = IR" and the ordinary differential equation:

dx
—(t) = x{0) = Xo (2)

where / : M" x 1R+ ^ R" is a vector-field.

• An execution of (2) on [0, T] C R+ in the sense of Caratheodory is a piecewise differentiable function
X: [0,T] —> R" such that for all f G [0,r]:

x{t)=XQ-\- f /(x(T),r)dr (3)
Jo

• Questions:

- Do solutions in the sense of Caratheodory exist?

- Over what intervals [0,T] can they be defined?

- Are they unique?

- Are they well behaved?

• Theorem 1: (Local Existence and Uniqueness) Assume f{x,t) is piecewise continuous in t and there
exist L,t,T >0 such that f{x,t) satisfies the Lipschitz condition:

ll/(i, x) - fit, y)|| < L\\x - y\\ (4)

for all r,3/ € S = {r € R" : ||a;—roll < r} and for all t G [0,T], Then there exists 5 > 0 such that the
system (2) has a unique execution (3) on [0,5].

• Theorem 2: (Global Existence and Uniqueness) Assume fix, t) is piecewise continuous in t and there
exist L,h>0 such that fix,t) satisfies the conditions:

Wfit,x) - fit, j/)|| < L\\x - y II .-V
\\fit,xo)\\<h

for all a;,y € R" and for all t G [0,r]. Then the system (2) has a unique execution (3) on [0,r].

• Theorem 3: (Continuous Dependence on Initial Conditions) Assume fix,t) satisfies the conditions of
Theorem 2, and let x, y be two executions of (2) starting at ro and yo respectively. Then for all e, T* > 0
there exists ^ > 0 such that:

IliCo - yoll < ^ ||a;(t) - 2/(t)|| < e (6)

for all f G [0,r].

• In fact ||r(f) —3/(t)|| < ||ro - yoW^^^, so we can choose 6 < c/e^^.

• Remarks :

1. The theorems provide conditions for a continuous system to be non-blocking (in the sense that
solutions exist locally), deterministic (in the sense that solutions are unique) and non-zeno (in the
sense that solutions can be extended over arbitrarily long horizons). As we shall soon see this is
not necessarily the case for hybrid systems.



2. Conditions are "tight", in the sense that there exist systems violating the conditions that fail to
have unique executions.

- / discontinuous in x. Consider:

X= —sgn(a;)

The solution starting at xo = 0 is undefined for all times. In fact, all solutions end up at a; = 0
in finite time and are undefined thereafter.

- / continuous but not Lipschitz in x. Consider:

x = x'^'

Both x{t) = (2t/3)^/^ and x{t) = 0 are solutions for xo = 0.
- / Lipschitz but not globally Lipschitz in x. Consider:

X = —x^

The solution with xq = —1 is x{t) = l/(t —1) and is defined only on [0,r] for T < 1.

3. Theorem 3 (and a similar theorem for continuity of solutions with respect to parameters) allow
one to simulate continuous systems numerically. This can be a problem for hybrid systems (to be
discussed in the tutorial by Karl Johansson).

4. Piecewise continuity in t allows discontinuous inputs in control systems. A control system can be
thought of as a continuous dynamical system:

^(t) =/Wt).«(«)). 1(0) =10 (7)
where u:E->U = E'",m€N. If/ is continuous in u and satisfies the Lipschitz assumptions of
Theorems 1 and/or 2 with respect to x, then for each u piecewise continuous in time, the system
(7) has a unique execution.

Discrete Systems

• For a formal treatment see [4] chapter 2, or [5] chapter 2.

• Restrict our attention to finite automata.

• Finite automata are perhaps the simplest models of computation. Other models (Turing machines,
push-down automata, Petri nets) can exhibit more interesting behaviors.

• A finite automaton, M is a "tuple", {Q,11,A,qQ,F), where:

- Q is a finite set of states

- B is a set of input symbols

- AcQxSxQisa transition relation

- 5o € Q is the initial state

- F C Q is a set of final states

• S* set of strings of finite length of elements of S. Define string of length 0 to be e.

• M accepts a string s € S*, with |s| = n, if there exists a sequence of states q € Q*, with = n +1 such
that:

- 9(0] = 90
- For i = 0,1,... ,n, (^[t],5[i],g[i -I-1]) e A



- q[n + l]eF.

• The language accepted by M, L{M) is the set of all strings accepted by M.

• Two automata, Mi and M2, are equivalent if L{Mi) = L{M2).

• May be blocking (not "accept" certain symbols at certain states) and non-deterministic (take different
transitions from the same state in response to the same symbol).

• A can also be given as a partial map 6 : Q x S 2*^ given by:

= {?' e Q : {q,(T,q') € A} (8)

• A finite automaton is deterministic if ^ is a function, i.e. |^(g',(r)| = 1 for all 9 € Q and all cr G S. In
this case, 8 is called the transition function.

• Theorem 4 (Equivalence of Deterministic and Non-deterministic Finite Automata) For all finite au
tomata there exists and equivalent deterministic finite automaton.

• Remark: "Determinization" may increase the number ofstates from |Q| to 2'* '̂.

• Example: Consider the finite automaton M = (Q, E, A,9o>-^) for Figure 3.

(1)

(1): Anow iadicaies the initial state

(2): bsidc ciiele indicates the final state

Figure 3:

- In this case:

* Q = {qo, 91,92}
* S = {a, 6}
* A = {(9o,a,qi),{qi,b,qo),iqi,b,q2)A92,a,qo)}

*90 = {ao}
* F = {go}

- The language accepted by this automaton is :
L{M) = {c,a6,a6a,o6a6,o6aa6a,...} = ((a6)*(a6a)*)" C S*

- The transition relation in this example is not a function. Given the current state qi and the
input symbol b there are two possiblenext states. The model itself does not determine the choice.
Therefore the automaton is non deterministic. We said that two automata M, N are equivalent if
and only if L(M) = L{N). This definition, combined with the result providedby Theorem 4, states
that there is no difference between deterministic and non deterministic automata. The fact that a
nondeterministic automaton has, in general, considerably less states, may represent an advantage
over the deterministic one because it allows one to express a language in more compact form.
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In this lecture we introduce autonomous hybrid automata, that is hybrid dynamical systems with no inputs.

Definition 1 (Hybrid Automaton) A hybrid automaton H is a collection H = {Q, X, Init, /, I, E, G,
R), where

Q is a set of discrete variables and Q is countable;

X is a set of continuous variables;

Init C Q X X is a set o/ initial states;

/ : Q X X —* rX is a vector field;

Inv : Q —» 2* assigns to each g € Q an invariant set;

£? C Q X Q is a collection of discrete transitions;

G :E assigns to each e = (g,q') € E a guard; and

i? : XX —> 2* assigns to each e = (q,^) € E and x 6 X o reset relation.

Remarks:

1. We refer to (g,x) € Q x X as the state of H.

2. To avoid technicalities with continuous dynamics we impose the following assumption:

Assumption 1 Assume f{q,x) is globally Lipschitz continuous in its second argument.

Example: Consider the thermostat system from Lecture 1.

• Discrete variable Q = {g}, g € {ON, OFF} = Q

• Continuous variable, X = {x}, x € E = X

• Initial states, Init = Q x X

. Vector field, /(?, +joo ,̂ ION^
T • ^ r f \ f{x€E:x> 68} if g = OFF. Invaxiant, Inv(?) =I ^



.OFF
x = -x

x>68

x<:70

x> 80

ON
X = -X + 100

x< 82

80

X 75

70

q ^
_a

Figure 1: The thermostat system

• Discrete transitions, E= {(ON, OFF),(OFF,ON)}

. Guard, (?(e) =I a;>80} if e = (OiV, OFF)
a: <70} if e= (OFF,ON)

• Reset relation, F(e, x) = {x}

The state of hybrid automata evolves by interleaving pieces of continuous execution with discrete transitions.
The times over which the execution of the hybrid automaton can be defined are therefore of the form:

Definition 2 (Hybrid Time Trajectory) A hybrid time trajectory r is a finite or infinite sequence of in
tervals of the real line, r = {/f}, i € N, satisfying the following conditions:

• li is closed, unless t is a finite sequence and li is Hie last interval in which case it is left closed but can
be right open.

• Let li = [n, Tf\. Then for all i, Ti < t[ and for i > Q, Tf = r/_i.

Remarks:

1. Hybrid time trajectories can extend to "infinity" if r is an infinite sequence or if it is a finite sequence
ending with an interval of the form [rjv,oo).

2. We denote by T the set of all hybrid time trajectories.

3. Each r € T is fully ordered by the relation -<, which, for t 6 [rf, r/] € r and t' € [tj, rj] € r is defined as
t ^t' \£i < j or i= j and f < f.

4. For teR and t eT we use f € r asa shorthand notation for "there exists a j such that t € [tj, t^] € r".

5. For a topologies! space K and a r € T, we use k :r K as a. shorthand notation for a map assigning
a value from K to each t &t.

6. We say r = {Ii}iLo € T is a prefix of r' ={^^ write r < r' if either they are identical or r
is finite, M > iV, Jj = Jf for all i = 0,... ,N —1 and In C Jn.

7. We say r is a strict prefix of r' and write r < r', if r < r' and t

8. The prefix relation is a partial order on T.

Definition 3 (Execution) An execution x ^f ^ hybrid automaton H is a collection x —iTt ^iih t eT,
q : r —• Q, and x : r —» X, satisfying



• Initial condition: (?(ro),a;(ro)) G Init;

• Continuous evolution: for all i with Ti < t-, x and q are continuous over and for all t G
x{t) GInv(g(t)) and ^x{t) = f(qit),x{t)); and

• Discrete Evolution: for all i, e= (?('''/),g(ri+i)) GE, x{r-) GG{e), and a;(ri+i) GJ?(e,a;(r,')).

Remarks:

1. For an execution x = we use (goja;o) = (9(^o)ja;(ro)) to denote the initial state ofx-

2. We say x is a prefix ofx' (write X< x') if^ (9(f)>®)(f))(f) = (9'(f)5®'(f)) for all t Gr.

3. We say x is a strict prefix of x' (write X < x') if X ^ x' and x 7^ x'-

4. We say an execution is maximal if it is not a strict prefix of any other execution.

5. The prefix relation defines a partial order on the set of executions.

6. The set of executions is prefix closed.

7. As for finite automata (Lecture 2), the discrete aspect of the dynamics can again be characterized by a
transition relation:

A C (QxX)x(QxX)
A = {((«,x), («',I')) : (9.9") 6 £, a: e G({q, 9-)), x' € B((9,9"),®)} U (1)

{((9.1). (9. a:)) : xelnv(9)}

The transition relation description is more compact notationally, but may be cumbersome when modeling
real systems. The two descriptions are equivalent if one is interested only in reachability properties. The
description of Definition 0.1 is clearer if one also wants to study liveness properties (such as the Zeno
property).

Definition 4 (Types of Execution) An executionx = (t, q,x) of a hybrid automaton H is called:

• Finite, if r is a finite sequence ending in a right closed interval.

• Infinite, if r is an infinite sequence, or 53»(''i —̂ t) = oo.

• Admissible, if it is either finite, or 5Zt(''< — = oo.

• Zeno, if it is infinite and not admissible.

Remarks:

1. A state is called reachable by R if it is the last state of a finite execution of H.

2. We use Reach(if) C Q x X to denote the reachable set of states of H.

3. For a Zeno execution, we define the Zeno time as Too = ~ ^i)-

4. We use 'H{qQ,xo) fo denote the set of executions of H with initial condition (qo>a;o) € Init.

5. We use to denote the set of infinite executions of H with initial condition {qo,xo) GInit.

6. We use 7i to denote the set of all executions of H. Clearly:

«= U «<«,«.) (2)
(9o«a;o)€lnit
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1 Classification of Executions

Recall that:

Definition 1 (Execution) An execution x of ct hybrid automaton H is a collection x —(r, 2:) with t £T,
q :t Qf and a;: r —» X, satisfying

• Initial condition: (g(ro),a;(ro)) € Init

• Continuous evolution: for all i with Ti < t[, x andq are continuous over [Ti,r,'] andfor all t € [Ti,T,0,
a;(t) € Inv(g(t)) and ^x{t) = f(q{t),x{t))

• Discrete Evolution: for all i, e= (9(Ti),9(r<+i)) €E, x(t!) e G(e), and x(Ti+i) i£ jR(e,a;(r/)),

Remarks:

1. Foran execution x = (^,^,2;} we use (90»2:0) = (9(^0)5 ^(to)) to denote the Initial state ofx-

2. We say x is a prefix ofx! (write X< x') il^ snd (g(t),2:)(f))(t) = ((f{t)^x'{t)) for all t € r.

3. We say x is a strict prefixof x' (write x < xO if X< X^ and x ¥" x'-

4. We say an execution is maximal if it is not a strict prefix of any other execution.

5. The prefix relation defines a partial order on the set of executions.

6. The set of executions is prefix closed (i.e. everyprefix of an execution is an execution)

7. The discrete aspect of the dynamics can again be characterized by a transition relation:

A C (Q X X) X (Q XX)
A = {i{q,x),{q',x')) : iq,^)eE,xeGiiq,q')),x'emq.q'U)}U (1)

{((g,2;),(g,a;)) : x € Inv(g)}

The transition relation description is more compact notationally, but may be cumbersome when modeling
real systems. The two descriptions are equivalent if one is interested only in reachability properties. The
description of Definition 1 of Lecture 3 is clearer if one also wants to study liveness properties (such as
the Zeno property).

Definition 2 (Types of Execution) An execution x —ij, g, a;) of a hybrid automaton H is called:

• Finite, if r is a finite sequence ending in a right closed interval.



• Infinite, if r is an infinite sequence, or ~ '̂ i) —oo-

• Admissible, if it is either finite, or —n) = 00.

• Zeno, if it is infinite and not admissible.

Remarks:

1. All infinite executions axe maximal.

2. For a Zeno execution, {rj} is an infinite, convergingsequence.

3. For a Zeno execution, we define the Zeno time as To© = ~

4. We use 'H{qQ,xf,) to denote the set of executions of H with initial condition (90)a;o) € Init.

5. We use to denote the set of infinite executions of H with initial condition {qoyXo) € Init.

6. We use ddote the set of maximal executions of H with initial condition (go>a^o) € Init.

7. We use H to denote the set of all executions of H.

Clearly:

w= U (2)

Unlike conventional continuous dynamical systems, the interpretation is that an automaton H accepts (as
opposed to generates) an execution x = This allows one to consider hybrid automata that accept
no executions for some initial states {blocking), accept multiple executions for the same initial state {non-
deterministic), or do not accept executions over arbitrarily long time horizons {Zeno). Some of these properties
(non-determinism) may facilitate modeling and analysis. Others are mostly a nuisance, and are a consequence
of our desire to make the modeling formalism powerful enough to capture a wide class of hybrid phenomena.

2 Existence Conditions

We prove some facts about the existence and uniqueness of executions for a restricted class of hybrid systems
where the vector field "crosses" the boundary of the invariant set. Some more examples will be given as
homework. To eliminate any problems that may arise strictly as a result of continuous evolution we introduce
the following assumption:

Assumption 1 Assume f{q, x) is globally Lipschitz continuous in its second argument.

Dejfinition 3 (Reachable State) A state {q,x) E Q x X is called reachable by H if there exists a finite
execuUon x = {r,q,x) with r = {[ri,T;]}^o = (^>®)-

We use Reach(iif) C Q x X to denote the set of all states reachable by H.

Definition 4 (Non-Blocking and Deterministic Automaton) A hybrid automaton, H, is called non-
blocking ifkC^Q xo) ^ non-empty for all {qo,XQ) € Init. A hybrid automaton is called deterministic
contains at most one element for all (go»a?o) € Iidt-

In other words:

His non-blocking if |̂ ^(,,xo)| —̂ (^Oja^o) €Init

2



(i.e. there exists at least one infinite execution for every initial condition) and

H is deterministic if njoo

(90,«o)
< 1 for all (go»a;o) € Init

(i.e. there exists at most one maximal execution for every initial condition)

Assume / is analytic in its second argument. For a function (7 : Q x X •
argument, inductively define the Lie derivatives ofa along /, L^a : Q x X

also analytic in its second
m = 0,1,... by

L)(r{q,x) =<j{q,x) and LJ<T{q,x) = ^(T{q,x'̂ f{q,x), for m>0.
We define the pointwise relative degree of a with respect to /, as the function : Q x X —N given by

^(<r,/)(9> {m e N: Lfa^q, x) 51^ 0}

Note that n(ffj)(q,x) = 0 for all (q^x) such that o-(q,x) 9^ 0.

Definition 5 (Transverse Invariants) A hybrid automaton is said to have transverse invariants if f is
analytic in its second argument and there exists a function a : Q x X —* IR, also analytic in its second
argument, such that

• /(g) = {a; 6 X : o-{q, x) > 0} for all q 6 Q; and

• for all (g,a;) € Q XX there exists a finite m 6 N such thatL^(T{q,x) 5^ 0, i.e. i(<r,/)(9»2;) < 00 for all
{q,x).

The transverse invariant condition implies that the invariant sets are closed subsets of X.

Example : (lYeuisverse invariants of the bouncing ball)
Recall that for the bouncing ball automaton introduced in Lecture 1, I{FLY) = {{xi,X2) € K : xi > 0}.
Define (t : Q x X —> IR: <r{FLY, {xi,X2)) = xi. Then

1. / is analjrtic in x (as it is a polynomial function)

2. a is anal3rtic in x (as it is also a polynomial function)

3. I{FLY) = {ixi,X2) € E: (r{FLY, {xi,X2)) > 0}

4. We check for finiteness of the relative degree of all points:

If a;i ^ 0, L^f(T{FLY, {xi,X2)) # 0, therefore n(„,/)(g,x) = 0
8(7

If xi = 0 AX2 # 0, Lfa{FLY, (0,2:2)) = = 2^2 # 0, therefore n(<r,/)(9>2:) = 1

If xi = 0AX2 = 0, L^fa{FLY, (0,0)) = —g^0, therefore n(<r,/)(9> 2;) = 2

Overall, the automaton has transverse invariants.

For an automaton with transverse invariants and

for all g € Q we also define the set

Out(g) := {a: eX: V(g, x) <o} .
Note that I{qy C Out(g).



Lemma 1 A hybrid automaton with transverse invariants is non-blocking if for aJlq € Q and for all {q,x) €
RezLch(fr) with x 6 Out(g), there exists {q,q') € E such that

• Xe G{q,q'); and

• #0.

Proof: Consider an arbitrary initial state (^oj^co) € Init and assume, for the sake of contradiction, that there
does not exist an infinite execution starting at (90, xq). Let x — denote a maximal execution starting
at (90)3;o), and note that r is a finite sequence..

First consider the case r = {[Ti,7^]}2:o^[TArjTAr). Let (qNiXpf) = limi_tTj^(9(t),a;(f)). Note that, by the
definition of execution and a standard existence argument for continuous dynamical systems, the limit exists
and Xcan be extended to x = {T,q,x) with f = {[Tj,r/]}^os 9(Tw) = 9Jv> contradicts
the maximality of x*

Now consider the case r = {[ri,r?]}^o» {Qn,xn) = (9(Tj^),a;(rj^)). Clearly, (qjv.aJiv) e Reajch.{H). U
xn ^ Out(9jv)® = {a; € X : a{q^x) > 0}, then, by the assumption that / and a are analytic in their
second argument, there exists e > 0 such that x can be extended to x = ("^,9,®) with f = r[r7v+i,rjv^i),
Tat+i = Tjv, and = T;\r+i + e, by continuous evolution.

If, on the other hand xn € Out(9iv), then there exists [<f ^x') G Q x X such that (9jsr,9') € £?, xjv € G^(9iv,9')
and x' 6 RiqNtQ'i^N)- Therefore, x can be extended to x = ("^,9,^) with f = {[Ti,ri]} '̂o^, rjv+i = =
rjv, 9(tjv+i) = 9', a;(rjv+i) = x' by a discrete transition. In both cases the maximality of x is contradicted.
•

Loosely speaking, the conditions of Lemma 1 indicate that a hybrid automaton with transverse invariants is
non-blocking if transitions with non-trivial reset relations are enabled along the boundary of the invariant
sets, at points where the continuous fiow forces the state to exit the invariants. The conditions of Lemma 1
are tight, in the sense that blocking automata that violate the conditions exist, but are not necessary, in the
sense that not all automata that violate the conditions are blocking.

Lemma 2 A deterministic hybrid automaton with transverse invariants is non-blocking only if the conditions
of Lemma 1 are satisfied.

Proof: Consider a deterministic hybrid automaton H that violates the conditions of Lemma I, that is there
exists {q'lX') € Reach(i3") such that x € Out(9), but there is no ^ € Q with (9', 9') 6 F?, x' € G{q',q') and

# 0- Since (9',x') € Reach(if), there exists (9o,iCo) € Init and a finite execution, x = €
^(90.10) such that T= {[r<,7^]}2,o and {q',x') = (9(T^),a;(rw)).
We first show that x is maximal. Assume first that there exists x = (t,9,x) with f = {[Ti,r,']}£o^[T//>TAr +e
for some e > 0. This requires that the execution can be extended beyond (9', x') by continuous evolution, which
violates the assumption that x G Out(9). Next assume that there exists x = with f =
with Tff+i = Tff. This requires that the execution can be extended beyond{q',x') by a discrete transition, that
is there exists {q\x') G Q such that (9',9') e E, x' € G{q',q') and x' G 1S((9',9')>®')- This also contradicts
our original assumptions. Overall, x €

Now assume, for the sake of contradiction that H is non-blocking. Then, there exists x' ^

definition, x! € Xi^x' tii© formeris finite and the latter infinite), therefore ^ "(X' x!}-
This contra^cts tW assumption that H is deterministic. •
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1 Example 1: Lie Derivatives and Relative Degree

• Consider the closed unit disc, 5, in :

5 = {a; e : Xi+X2<l}

• Consider a vector field, /, in :

f{x) =

We want to classify the set of points in R^ such that the state can evolve for "a while" along f while
staying in 5; for short, this will be referred to as whether the state can or can not evolve while staying
inS.

• More formally, consider the execution x{t) of the continuous dynamical system:

x{t) = f{x{t)), a;(0) = xq (1)

We want to determine the set of all xq for which there exists e > 0 such that x{ti) € S for all t € [0, c].

• We begin analyzing this by considering three separate sub-sets of the state space, namely:

- xo(t) S

- xo{t) e S"

- X on the boundary of S

• Notation: 5® denotes the interior of the set S. This is the largest open set contained in S.

• Clearly, when xo lies outside of S, we can not evolve while staying in 5, since for all e > 0 there exists
t € [0, e] (in particular t = 0) such that x{t) ^ S.

• Clearly, when xo lies in the interior of S (not on the boundary), the state can evolve while staying in
S. If Xo € 5®, then there exists e > 0 such that x{t) € 5 for all t € [0,e], since 5® is an open set and
x(t) is a continuous function of time.

• When xq lies on the boundary of 5, it is unclear if the state can evolve and remain in 5. Our intuition
leads us to the following conclusions:

- if / points into 5 at xq, the state should be able to evolve while staying in S.

- if / points out of 5 at xo, the state should not be able to evolve while staying in 5.
- if / is tangential to 5 at x©, it is unclear if the state can or can not evolve while staying in 5.



(C)

(d) (e)

Figure 1: The unit disc 5

• We would like to make this intuitive notion precise mathematically. For this reason we introduce the
concepts of the Lie derivative and the relative degree.

• Embed the boundary of S in the level set of a function, cr : —» E

(t{x) = 1- (zf + xl)

• Using a{x), we note that:
a{x) < 0 X ^ S
<7{x) > 0 x£ S
(7{x) = 0 X on the boundaxy of S

We can reformulate our conditions on state evolution as follows:

x^S

x£S^

X on the boundary of 5

{x € : a{x) < 0}
{a: € : cr(a;) > 0}
{x € E^ : a{x) = 0}

the state can not evolve while staying in S (Figure l(j
the state can evolve while staying in S Figure 1(b))

• Let us investigate the situation where x is on the boundary of 5.

• Pick xo such that (7{xq) = 0.

• Consider the execution x{t) of (1), and in particular value of of <7(x(t)). Note that cr(x(0)) = <r(xo) = 0.

• Consider the derivative of o'(x(t)) with respect to time:

= [-2x1 —2x2]

= —2xi

Define the Lie derivative of a along f by £/<r(x) = —2xi.



• If cr{a;o) = 0 but Cfa{xQ) > 0, i.e., if xl+x^ = l and xi < 0, then or is increasing as time is progressing
(i.e., we are moving inside 5), therefore we can evolve while staying in S from xq (Figure 1(c)).

• If o-(a;o) = 0 but Cjaixa) < 0, i.e., if = 1 and xi > 0, then a is decreasing as time is progressing
(i.e. we are moving outside 5), therefore we can not evolve while staying in 5 from xo (Figure 1(d)).

• What if £r(xo) = 0 and £/(7(xo) = 0, i.e. if xf + x^ = 1 and xi = 0?

• Consider the second Lie derivative, i.e.,

^£/<r(x(f)) =£}(T(xit)) =-2

• In thiscase, we cannot evolve while staying in S since <t{xo) = 0,Cfa(xo) = 0, and£y(r(xo) < 0; hence,
the state is bound to move outside S (Figure 1(e)).

• Overall, the state can not evolve while sta3dng in S from the following points:

Out = {xo € : <r(xo) < 0} U
{xo € : (r{xo) = 0 A£/(7-(xo) < 0} U
{xo € : a'(xo) = 0A£/o-(xo) = 0A£j(r(xo) < 0} U

Define the relative degree as the function n : E^ —• N by

n(xo) = <

0 if (t(xo) ^ 0
1 if cr(xo) = 0 A£/cr(xo) # 0
2 if(r(xo) = 0A£/cr(xo) = 0A£^cr(xo) ^ 0

• Then Out can be written more compactly as:

Out = {xo 6 E^ : £"^®°V(xo) < 0}

2 Analytic Functions

Definition 1 (Analytic Function) A function is analytic if it is infinitely differentiable and the function's
Taylor Series converges.

• Considering example 1, we can see that both a{x) and /(x) are analytic.

• Analytic vector fields are important because they produce executions that are analytic as a function of
time.

• Referring to example 1, cr(x(t)) is an analjrtic function of t, since it is the composition of the analytic
function a with the analytic exectution x(f) of the analytic vector field /. The Taylor series expansion
around t = 0:

d (P t^ t^<r(x(t)) = a(xo) + ^or(®o)i + +... = <r(xo) +£/<r(xo)< +£/<t(xo)^ +•..

suggests why the first non-zero Lie derivative of a dictates whether we the state can evolve while stajdng
in 5 or not.
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Figure 2: The water tank system

3 Example 2: The Water Tank System

Consider the water tank system of [1], shown in Figure 2. For i = 1,2, let Xi denote the volume of water in
Tank i, and Vi>0 denote the (constant) flow of water out of Tank i. Let w denote the constant flow of water
into the system, dedicated exclusively to either Tank 1 or Tank 2 at each point in time. The control task is
to keep the water volumes above ri and r2, respectively (assuming that a;i(0) > ri and 0:2(0} > r2). This is
to be achieved by a switched control strategy that switches the inflow to Tank 1 whenever xi < ri and to
Tank 2 whenever X2 <r2' More formally:

Definition 2 (Water Tank Automaton) The water tank automaton is a hybrid automaton with

• Q = {gi, 52} and X = ;

• Init = Q X{a: € X : (xi > ri) A{x2 > r2)}, ri,r2 > 0/

• = {w-Vi,-V2)'^ and f{q2,x) = {-Vi,w - ^2)^, Vi,V2,w > 0;

• •f(?i) = {a: GX : X2> 7*2} and 1(92)= {x € X : Xi > ri};

• = {(91,^2),(92, ?i)};

• <5(91,92) = {x GX : 0^2 < 7*2} and (?(92,9i) = {x GX : xi < ri}; and

• •R(9i,92,ic) = 11(92,91, a;) = {x}.

Recall that:

Definition 3 (Transverse Invariants) A hybrid system H has transverse invariants if:

1. f is analytic in x,

2. 3(7:QxX^K, analytic in x, such that Inv{q) = {a; G X : <7(9, x) > 0}, and

3. 71(9, x) < 00 V(9,x) G Q X X,

Proposition 1 The water tank automaton has transverse invariants.

Proof:

1. / is constant for each q; hence / is analytic in x

4



2. Consider <T{qi,x) = X2 —T2 and (T{g2,x) = xi —ti. Then cr is polynomial (hence analytic) in x and
a-{q,x) > 0 X 6 Inv{q)

3. if (r{q, a;) 0 then:

a-{q,x) ^0 I a- AX2 ^ 7*2 ^j^ejgfQpg n{q,x) =0
^ ^ \ g = 52 A^i #ri

if o-{q, x) = 0 then:

a{q,x) = 0 (g = gi Aa:2 = 7*2) V(g = g2 AXi = n)

Lfa{q,x) = I ifg =g2 ^
In either case, n(q, x) < 1 < 00.

•

Recall that:

Lemma 1 (Non-Blocking Automata) A hybrid automaton with transverse invariants is non-blocking if
for all (g,a;) € Reach{H) with x € Out{q) 3 (g, g') e E:

1. a;6G(g,g')

2. i?((g,g'),aj) #0

Proposition 2 The water tank automaton is non-blocking.

Proof:

• By Proposition 1, the water tank automaton has trnasverse invariants, therefore Lemma 1 can be applied.

• Out for this example can be written as follows:

Out(a'\ = [ ^ = 7-2 A-V2 <0} = {a:2 < 7-2} if g= gil{a;i<ri} ifg= g2

• Condition 1 of Lemma 1 is satisfied:

n.tffn)-! {2^2 <7-2} = (?(gi,g2) ifg = giUut^q) C?(g2, gi) ifg= ga

• Condition 2 of Lemma 1 is satisfied:

'R((gi,g2),a:) =R((g2,gi),a;) = {x}^^
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1 Necessary Conditions for Existence

Lemma 1 of Lecture 4 is a tight sufficent condition: automata exist that violate the conditions of the lemma
and may be either blocking or non-blocking. However, in the case that the automaton is deterministic, the
lemma is sufficent. This was given as Lemma 2 of Lecture 4, but is repeated below:

Lemma 1 A deterministic hybrid automaton with transverse invariants is non-blocking only if the conditions
of Lemma 1 of Lecture 4 are satisfied.

Proof: Consider a deterministic hybrid automaton H that violates the conditions of Lemma 1, Lecture 4:
that is, there exists € Reach(H') such that x € Out(g), but there is no g' € Q with (g',g') € E,
x' e C?(g',g') and R{{q',q'),x') # 0. Since iq',x') € Reach(jEf), there exists (go,xo) € Init and a finite
execution, x = {T,q,x) € 'H{go,xo) such that r = {[ri,r/]}iio and (g',a;') = (g(rjy^),a:(r^)).
We first show that x is maximal, by showing that x cannot be extended without violating our original
assumptions. Assume first that there exists x = {x,q,x) with f = {[Tt,Ti]}2:o^[Tiv,riv + e for some c > 0.
This requires that the execution can be extended beyond (g',x') by continuous evolution, which violates
the assumption that x 6 Out(g). Next assume that there exists x = (x,qyx) with f = with
Tjv+i = This requires that the execution can be extended beyond (g^x') by a discrete transition, that is
there exists (g',x') € Q such that (q',q') € F, a;' € G{q',q') and x' € i2((g',g'),a;'). This also contradicts our
original assumptions. Because x cannot be extended by either continuous evolution or a discrete transition,
X€ ^(gro,®o)'

Now assume, for the sake of contradiction, that H is non-blocking. Then, there exists x' € By
definition, x* € But x 7^ x' (a^the former is finiteand the latter infinite), therefore ^ {x> x'}-
Because there are two maximal executions firom the same initial state, this contradicts the assumption that
H is deterministic. •

2 Uniqueness Conditions

Lemma 2 A hybrid automaton with transverse invariants is deterministic if and only if for all g, g', g" € Q
and all (g,x) € Reach(jS").*

• If xe Ih-en X € Out(g);

• If {QiQ') € E and (g,g") € E with g' g" then x ^ G(q,^) n (x(g,g"); and

• IfiQiQ') € E and x € G^(g,g') then |jR(g,g',a;)| < 1.



Proof: For the "if part, assume, for the sake ofcontradiction, that there exists an initial state (go,a^o) € Init
and two maximal executions x = and x = starting at {qo,xo) with x ¥" X- Let ^ =
ip,P,y) € W(9o,io) denote the maximal common prefix of x and x- Such a prefix exists as the executions
start at the same initial state. Moreover, ^ is not infinite, as x ^ X- Therefore, as in the proofof Lemma
1 in Lecture 4, p can be assumed to be of the form p = {[pi,Pi]}iIo> ^ otherwise the maximality of ^
would be contradicted by an existence and uniqueness argument of the continuous solution along /. Let
{qniXn) = (9(Pjv)»2:(Pjv)) = {qip'ff),x{p'pf)). Clearly, (qjv,X7v) € Reach(f?"). We distinguish the following
cases:

Case 1: p'j^ ^ {r?} and p'j^ ^ p'n ^ aot a time when a discrete transition takes place in either x or x-
Then,by the definition ofexecution and a standardexistence and uniqueness argument forcontinuous dynam
ical systems, there exists e > 0such that theprefixes ofx and x are defined over p = P'n +
and are identical. This contradicts the maximality of

Case 2: p'j^ € {r/} and pjy ^ {f-}, i.e., is a time when a discrete transition takes place in x but not in x-
The fact that a discrete transition takes placefrom in x indicates that there existsq' £ Q such that
{QN,q') € E and Xff € G{qN^q')- The fact that no discrete transition takes place from (qjv,a;jv) in x indicates
that there exists e > 0 such that x is defined over p = {[Pi,Pi]}ilo^bjv>Piv + e). A necessary condition for
this is that xn ^ Out(q). This contradicts Condition 1 of the lemma.

Case 3: p'pj ^ {r,'} and p^ G{ff}, symmetric to Case 2.

Case 4' € {t^} and p^ € {f/}, i.e., p^ is a time when a discrete transition takes plaxie in both x and
X- The fact that a discrete transition takes place from (gjv,a;Ar) in both x and x indicates that there exist
(q',a;0 and {^,x') such that {qN,q') € F, {qNA') € £, Xat € G{qN,q'), xn € G{qN,q')y x' € R{qN,q',XN),
and x' € R{qN,q',xj^). Note that by Condition 2 of the lemma, q' = q', hence, by Condition 3, x' = x'.
Therefore, the prefixes ofx and x are defined over p = {[pi,p-]}g:o[Piv+i,p'iv+i], with p^v+i = p^^j = p'̂ ^,
and are identical. This contradicts the maximality of ip.

This concludes the proofof the "if' part. For the "onlyif part, assume that there exists (g',®') € Reach(JT)
such that at least one of the conditions of the lemma is violated. Since {q',x') € Reach(JT), there exists
(9o,®o) € Init and a finite execution, x = {r,q,x) € 'H(^qo,xo) such that r = {[ri,r/]}g,o and iq',x*) =
(g(r^),a:(rjy^)). If condition 1 is violated, then there exists x and x with f = {[Tt)7i]}jlo^[riv,riv + c), e > 0
and f = t[tjv+i, rjv+i = rjy, such that x<X and x < X- bT condition 2 is violated, there existx and x
with f = f = T[r;tf+i, rjv+i = and g(rjv+i) g(riv+i), suchthat X< X> X< X- Finally, if condition
3 is violated, then there exist x and x with f =_f = r[rjv+i,r]y^i], r^r+i = rjy and x(TAr+i) # x{tn+i),
such that X < X» X < X- In all three cases, let x 6 ^ ^ maximal executions

of which X and x are prefixes of respectively. Since X 7^ X> J therefore > 2, therefore H is
non-deterministic. •

Loosely speaking, the conditions of Lemma 2 can be summarized as follows:

• Discrete transitions must be forced by the continuous flow exiting the invariant set;

• No two discrete transitions can be enabled simultaneously; and

• No point can be mapped onto two different points by the reset map.

Note that these conditions are both necessary and sufficient.

3 Summary

Combining Lemmas 1 of Lecture 4 and Lemma 2 of Lecture 6 give the following theorem:
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Theorem 1 (Existence and Uniqueness of Executions) A hybrid automaton with transverse invariants
accepts a unique infinite execution for all (goj 2^0) € IJiit if it satisfies the conditions of Lemma 1 of Lecture 4
and Lemma 2 of Lecture 6.

Proof; If the hybrid automaton satisfies the conditions ofLemma 1ofLecture 4, then I3,0) I> 1? lor all
(gojico) €Init. Ifit satisfies the conditions of Lemma 2of Lecture 6, then l^(^o,a:o)l ^ (9o>®o) GInit.
But every infinite execution is also maximal, therefore —^Uo.®o)' Therefore, 1 < ^

l''̂ Uo..o)l ^ 1. or " other words = |W(^,,,)I = 1- •
Again, the conditions of the theorem are tight. Similar conditions exist for the case where the invariant sets
are open; these are given in Problem Set 1.

Notice that the conditions of the lemmas mention the set of reachable states, Reach(fr). However, Reach(iif)
can be difficult to calculate explicitly for an actual system. For the purposes of the lemmas and Theorem 1 it
suffices to show that the conditions of the lemmas hold in a set of states that contains Reach(jy) (for example
Q XX). li the conditions of the lemmas hold for that set, then they also must hold for Reach(if) and the
lemmaa can then be applied to the system.

Definition 1 (Invariant Set) A set of states 5 C Q x X is called invariant i/Reach(ir) C 5.

Proposition 1 The class of invariant sets is closed under union and intersection.

Trivially Q x X is an invariant set. More interesting sets axe t3q>ically shown to be invariant by an induction
argument on the length of the system executions.

4 Example: The Water Tank System

Consider the water tank system of [1], shown in Figure 1. For i = 1,2, let Xi denote the volume of water in
Tank i, and u, > 0 denote the (constant) flow of water out of Tank i. Let w denote the constant flow of water
into the system, dedicated exclusively to either Tank 1 or Tank 2 at each point in time. The control task is
to keep the water volumes above ri and rj, respectively (assuming that a;i(0) > ri and 2:2(0) > r2). This is
to be achieved by a switched control strategy that switches the inflow to Tank 1 whenever xi < ri and to
Tank 2 whenever 2:2 <7*2. More formally:

Definition 2 (Water Tank Automaton) The water tank automaton is a hybrid automaton with

• Q = {gi, 52} cmd X =



• Init = Q X {a; € X : (xi > ri) A{x2 > r^)}, ri,r2 > 0;

• /(9i,ic) = (ly-ui,—1;2)^ and f{q2,x) = {-vi,w - V2Y, VuV2,V} > 0;

• I{qi) = {re GX : X2 > 7*2} and I{q2) = {a; € X : rci > ri};

• ^ = {(91,92),(g2,gi)};

• G{qi,q2) = {a; € X : 2:2 < r2} and G(g2,9i) = {a; € X : a;i < ri}; and

• i2(9i,92,ic) =i2(92,9i,ic) = a;.

Proposition 2 (Existence and Uniqueness of Executions) The water tank automaton accepts a unique
infinite execution for each initial state.

Proof: Let <r{qi,x) = X2-r2 and <T{q2^x) = xi-ri. Then L}cr(gi,a:) = -V2 < 0 and Ir}o-(g2,a;) = -vi < 0.
Sinceboth / and a axe analytic functions of x and /(g^) = {a; e X : cr{qi,x) > 0}, the water tank automaton
has transverse invariants.

Note that n(gi,x) = 0 if a;2 #7*2, and 7i(gi,a;) = 1 if 12 = 7*2, therefore Out(gi) = {a; € X : a;2 < r2} =
^^(91,92) (and similarly for g2). This implies that Condition 1 of Lemma 1, Lecture 4 and Condition 1 of
Lemma2, Lecture 6 are satisfied. Moreover, IJ?(gi,g2,a;)| = |i?(g2,gi,x)| = 1, therefore Condition 2 of Lemma
1, Lecture 4 and Condition 3 of Lemma 2, Lecture 6 are satisfied. Condition 2 of Lemma 2, Lecture 6 is also
trivially satisfied. The claim follows by Theorem 1. •
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1 Zeno Executions

• What does "Zeno" mean? The name Zeno refers to the philosopher Zeno of Elea (500-400 B.C.), whose
major work consisted of a number of famous paradoxes. They were designed to explain the view of his
mentor, Parmenides, that the ideas of motion and evolving time lead to contradictions. An example is
Zeno's Second Paradox of Motion, in which Achilles is racing against a turtle.

An execution is called Zeno, if it contains an infinite number of transitions in a finite amount of time.
An automaton is called Zeno if it accepts a Zeno execution.

Definition 1 (Zeno Hybrid Automaton) An execution x = of a hybrid automaton H is called
Zeno if it is infinite, but Too = —Tj) < oo. A hybrid automaton H is called Zeno, if there exists
{qo,XQ) € Init such that W(go,a:o) co'O'tains a Zeno execution.

• Too is referred to as the Zeno time.

• The definition is existential (it is enough for one execution to be Zeno for the automaton to be called
Zeno).

Example: Consider again the water tank system (Figure 1), and recall that it is deterministic and non-
blocking. Therefore it accepts a unique infinite execution for each initial condition {qo,xo). We show that
if

max{'yi,U2} < tu < Ui +V2

then this execution is Zeno. At xi = ri, X2 = r^, trivially it is Zeno. Even if this is not the case, the execution
is still Zeno. Assume initially that xi > ri and 0:2 > ''2, stU executions reach xi = ri and X2 > r2. Without
loss of generality set n = 7*2 = 0. Note that all executions reach a state where g = ft, xi = 0 in finite time
(after at most two transitions). Therefore, consider an execution with:

ro = 0, q{To) = qi, a;i(ro) = 0, a;2(ro) = h > 0

The first transition takes place at:

h h
rj = ri = —, g(ri)=g2, a;i(ri) = (u; - ft)—, 0:2(n) = 0

V2 V2

The second transition takes place at:

Ti =T2 =ri -H q(r2) =gi, Xi(r2)=0, a;2(r2) = ^
ftft V\V2



xl AAAA/V.
A.Ayv./w

r2

rl

i.r nir
f ♦* vl ' v2

x2 xl=w-vl
x2=-v2

x2 >r2

x2 <r2

xl <rl
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The third transition takes place at:

xl=-vl
x2=w-v2

xl >rl

To =rz=T2 +
(w —vi){w —V2)h

, qiTz) = q2, Xi{tz) =
{w —vi)^{w - V2)h

, X2{tz) = 0vivl VlV^

and so on. Overall,

E'*'/-/ ^ . {w-vi)h , {w-vi){w-V2)h .—Ti) 1 1 5 h .. .
.^0 V2 ViV2 ViVl

{w —Vi){'W —U2) V
V1U2

Since w <vi+V2 the infinite sum converges. Therefore:

UIU2 I 1_ J
t=0 \ V\V2 '

Note that this is the time one would expect the tanks to drain.

Vi+Vz—VJ

2 Types of Zeno Phenomena

• Zeno phenomena do not arise in physical systems.

• Zeno phenomena arise as a consequence of modeling over-abstraction.

• They are artifacts of our desire to make the modeling formalism powerful enough to capture a wide class
of hybrid phenomena.

• They are a nuisance in more ways than one, as they lead to:

- Semantical problems: How is an execution to be defined beyond the Zeno time?

- Analysis problems: Induction and reachability proofs become suspect. For example, for the
water tank system one can show that Xi >ri Axz > rz along all executions. Clearly, however, if
ly < ui + U2 the tanks will drain in finite time.



- Controller Synthesis problems:

1. The controller can cheat by forcing time to converge. For example, in the case of the water
tank system, the controller appears to succeed in maintaining the water levels above ri and r2.

2. Some classes of controls, such as relaxed controls and sliding mode controls, are naturally Zeno.

—Simulation problems: Simulation stalls at the Zeno time (refer to lecture by Karl Johansson).

• Classification of the Zeno phenomena:

1. Mathematical curiosities. Example: non-analytic invariants. Consider the hybrid automaton:

- Q = {91,92} and X = M;
- Init = Q X X;

- f{q,x) = 1 for all (9, a:) € Q x X;
- /(91) = {x € X : sin(l/x) < 0} and 7(92) = {x € X : sin(l/x) > 0};
- £? = {(91,92), (92,91)};
- ^(91,92) = {x € X : sin(l/x) > 0} and C?(92,9i) = {x € X : sin(l/x) < 0}; and
- -R(9i,92,a;) = Riq2,qi,x)=x.

The execution of H with initial state (91, —1) exhibits an infinite number of discrete transitions by
Too = 1- The reason is that the (non-analytic) function sin(l/x) has an infinite number of
zeros in the finite interval (—1,0).

2. Discontinuous vector fields. Example: sliding surfaces. Consider the hybrid automaton:

- Q = {^1,52} and X = M;
- Init = Q X X;

- f{qi,x) = -1, f{q2,x) = 1;
- J(9i) = {x e X : X> 0} and 7(92) = {x € X : x < 0};
- £?= {(91,92),(92,91)};

- ^(91,92) = {x € X : X< 0} and ^(92,91) = {x GX : x > 0}; and
- -^(91,92,1) = ^(92,qi,x) = x.

All executions reach x = 0 in finite time and and take an infinite number of transitions from then
on, without any time progress.

3. Non-zero time progress, continuous state. Example: the water tank system.

4. Non-zero time progress, discontinuous state. Example: the bouncing ball.

5. Non-zero time progress, discontinuous state, no limit. Example: Bouncing ball with a switch.
Consider the hybrid automaton:

- Q = {9} andX = M3;
- Init = {9} X{x 6 X : xi > 0 AX3 = 1};
- f{q,x) = (X2, -9,0)^ with g > 0;
- 7(9) = {x € X : XI > 0};

-E = {(9,9)};
~ G{q,q) = {x € X : [xi < 0] V[(xi = 0) A (x2 < 0)]}; and
- 72(9,9, x) = (2^1, —Xz)"^ with c > 1.

Like the boimcing ball system, this system takes an infinite number of jumps until a finite time Too-
However, unlike the bouncing ball, as t —• Tqo the state does not converge (in particular X3 keeps
jumping from 1 to —1 faster and faster).



3 Conditions for Existence of Zeno Executions

The only known conditions to characterize the Zeno phenomenon are fairly trivial

Theorem 1 if Q is finite and (Q, E) is a directed acyclic graph then H is not Zeno.

Proof: If there is no loop in the graph (Q, E) there can only be a finite number of trajisitions in each execution.

(ql.q2)

(ql.q3)

(q2.q4)

(q3,q4)

Figure 2: A directed acyclic graph

Theorem 2 Assume there exists a finite collection of states such that:

1. {qi,Xi) = iqN,XN)

2. there exists i = 1,... ,N, such that {qi,Xi) € Reach(fi)

3. /or i = 1,... , AT - 1, (ft, ft+i) GE, Xi e gi+i) and Xi+i G R(ft, ft+i,x<).

Then H is Zeno.

Proof: Consider the execution, x reaches the reachable (ftjXj), and then takes an infinite number of
transitions around the loop without allowing time to evolve (Figure 3). •

(ql,q2)
(ql,xl)J ^(q2,x2)

(q4,x4)
(q3,q4)

Figure 3: Cycle in transition relations

(q2,q3)

Some better conditions may be obtained for special cases (e.g. discontinuous vector fields).



4 Resolving the Zeno Phenomenon

• In somecases it may be possible to resolve/avoid the Zeno phenomenon by appropriately redefining the
automata or the executions.

—Most mathematical curiosities can be eliminated by analyticity assumptions.

—For discontinuous vector fields introduce new states and consider Filippov solutions.

—Filippov solutionsmotivated by relaxation. Conditions exist under whichrelaxation leads to unique
Filippov solutions.

—This is not always the case with hybrid automata. In some cases regularization seems to lead
to well defined extensions for the Zeno executions (for example in the case of the bouncing ball,
Figures 4 and 5) while in others the extension seems to depend on the details of the regularization
(for example, in the caseof the water tank system. Figures 6 and 7).
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Figure 6: Simulation of spatial regularized water tanks. The upper plot corresponds to hysteresis e = 0.1 and
the lower to e = 0.01. The solid line is xi and the dashed X2-
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Figure 7: Simulation of temporally regularized water tank automaton. The upper plot corresponds to time
delay during switching from one tank to the other of e = 0.1 and the lower to c = 0.01. The solid line is xi
and the dashed xz.
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1 Automata with Inputs and Outputs

1.1 Recap

• Up to now: autonomous hybrid systems, also known as closed hybrid systems, i.e. hybrid automata with
no "inputs" or "outputs".

• Good for:

- Modeling and simulation of small to medium physical systems.

- Analysis, verifying that all executions satisfy certain desirable properties.

• Limited because:

- No sense of "control".

- System must be modeled as a single, monolithic block, which may be cumbersome, wasteful, or
impossible. We would like to be able to build up the system description out of the "composition"
of smaller pieces. For example, in automated highway model each vehicle individually.

1.2 Open Hybrid Automata

• Introduce input and output variables, and define appropriate (imposition operation.

• Big topic, we will only skim the surface here.

• Discussion based on (1, 2], notation changed over to the one used so far in the class.

• Notation: consider a collection of variables X, and a subset X' C X. For any valuation a; € X we
define the restriction of x to X', x\x>, to be a valuation of the variables in X' that agrees with x.

• Example: consider X = {xi,a;2,X3} with X = ]^. Then (zi = l,a:2 = 2,0:3 = = (aJi =
1,0:2 = 2).

• Easily extends to sets of valuations.

Definition 1 (Open Hybrid Automaton) An open hybrid automaton H is a collection H = {Q, X, V,
Y, Init, f, h, Liv, E, G, R), where

• Q is a finite collection of discrete state variables;

• X is a finite collection of continuous state variables;



V is a finite collection of input variables. We assume V = Vd UVq, where Vd contains discrete and Vc
contains continuous variables.

Y is a finite collection of output variables. We assume Y = Yd U Yc, where Yd contains discrete and
Yc contains continuous variables.

Init CQxH is a set of initial states;

/:QxXxV—is a vector field;

Q XX ^ Y is an output map (note: V is not in the domain of h);

Inv ; Q 2*^*^ assigns to eachg € Q an invariant set;

E C Qx Q is a collection of discrete transitions;

G:E^ assigns to each e= {q^q') £ E a guard; and

jR:jBxXxV-+2* assigns to each e = {q, q') € E, x and v € V a reset relation.

Remarks:

1. The term Open Hybrid Automata is not uniformly used for non-autonomous hybrid autonoma through
out the literature.

2. We refer to (g,a:) € Q x X as the state of H, to v eV as the input of H and to y € Y as the output of
H.

3. To avoid technicalities with continuous dynamics we impose the following assumption:

Assumption 1 Assume /(g,a:,v) and h(g,a;) are globally Lipschitz continuous in x and f{q,x,v) is contin
uous in V (iMs is a restriction ofVc, Vd trivially satisfied).

Definition 2 (Execution) An execution x of an open hybrid automaton H € His a collectionx = (t, g,x, v, y)
with r g:r-+Q, a;:r-»X, t;:r—»V and y :t —*Y satisfying:

• Initial condition: (g(To),x(ro)) G Init;

• Continuous evolution: for all i with Ti < g, x, v and y are continuous over [tut[] and for all
t e [ri,r/), (x(t),v(t)) € Inv(g(t)) and ^x{t) = f(q{t),x{t),v{t));

• Discrete Evolution: for all i, either {q{T-),x{Tl)) = (g(T<+i),x(ri+i)), or e, = (g(Tt'),g(ri+i)) € E,
{x{Tl),v{Ti)) e G{ei), andx{Ti+i) GH(ei,a;(r/), v(r/)); and,

• Output Evolution: for all t Gt, y(t) = h{q{t),x(t)).

Remarks:

1. For an execution x = 3?, v,y) we use (go,a;o) = (g(To),a:(To)) to denote the initial state ofx-

2. Two types of transition:

• Internal transitions, where the state changes.

• Environmental transitions, taking place "somewhere else" and affecting only the input variables of
H (if anything).

3. Control can enter in a number of places. We can use v to:
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Figure 1: The Steam Boiler

• Guide the continuous evolution through /.

• Enable internal transitions through G.

• Force internal transitions through Inv.

• Determine the state after a transition through R.

4. Valuation of the input variables is unconstrained:

• Initially, and

• After every discrete transition.

A continuity constraint is imposed during continuous evolution.

5. Possible extensions:

• Input-Output dependencies: h:QxXxV -+Y. Useful for modeling sensors, actuators, etc. See
(21-

• Set valued output maps: h : Q x X —> 2^. Useful for modeling nondeterminism.
• State dependent input constraints: 0 : Q x X 2^. Useful for controllersynthesis, enforcing state

constraints.

• Actions: associated with discrete transitions, can be thought of as discrete variables changing value.
Useful for modeling discrete commands, etc. See [1].

• Synchronous vs. I/O interaction. See [3] or notes of lecture by Tune Simsek.

Example: (Steam Boiler System, Rgure 1) Consider the steam boiler system of [4] (originally introduced
in [5, 6]). The steam boiler consists of a tank containing water and a heating element that causes the water
to boil and escape as steam. The water level in the boiler is denoted by w, and, for the sake of simplicity,
consider only ly > 0. The water is replenished by two pumps which at time t pump water into the boiler at
rates ui{t) and U2{t) respectively. The water boils off at rate r with d a variable that controls the rate of
evaporation: r = d. At every time t, pump i can either be on ('Ui(t) = Pi) or off = 0). There is a delay
Ti between the time pump i is ordered to switch on and the time g, switches to Pi. There is no delay when
the pumps are switched off. We will use three hybrid automata to describe this system, one for the boiler,
B = {Qb, Xb, Vb, Yb, Initfi, /s, Bivb, Eb, Gb, Rb), and one for each of the pumps. Pi = {Qu Xi, Vi,
Yiy Initj, fif hi^ Invj, Ej, Gi, Ri).

The boiler automaton is defined by:

• Qs = {qb}, Qb = {BOILING};

• Xfi = {u;,r},XB = IR2;



• Vb = {ui,U2,d}, Yb = [0,Pi| X[0,P2] X[--01,^2), where Pi,P2,I>i,P2 > 0;

• i^B = {yi,3/2}, Yb = M2;

• Init = {BOILING) x [0, W] x [0,P], where PF,P > 0;

f{BOILINGy w, r, ui,U2,d) =

h{BOILING,w,r) =

• hrviBOILING) = Xb x Vb

• P = 0

Notice that since P = 0, G and R are trivial and need not be explicitly defined.

The automaton for pump i (Figure 2) is defined by:

• Ot = {gi}, Qt = {OFF, GOING.ON, ON)]

• Xi = {Ti), Xi = M;

• Yi = {ci}, Vi = {0,l};

• Yi = {ui}, Yi = [0,Pi];

• Init = {OFF) X {0},

w Ui+U2 — r

f
•

d

' yi r w

[ .

= GOING.ONVqi = ON
OFF

hfn T>i-I ^ ifqi = OFF\/qi = GOING.ON

X<x{ci = 0} if gi = OPP
Inv(gi) = { {Ti< r<} X{ci = 1} if ft = GOING.ON

XiX{ci = l} if ft = ON

P = {{OFF, GOING.ON),{GOING.ON, OFF),{GOING.ON, ON),{ON, OFF))

' X< X{ci = 1} if e = {OFF, GOING.ON)
X< X{ft = 0} if c = {GOING.ON, OFF)
{Ti > Ti) X{ft = 1} if e = {GOING.ON, ON)
Xix{ft = 0} if c = (ON, OPF)

G{e) = {

' {0} if e = {OFF,GOING.ON)
{0} if e = (GOING.ON, OFF)
{Ti} if e = (00/N0.0N, ON)
{0} if e = (ON, OPFO

P(e,ri,ft) = ^



OEF

Ti=l

ui=0

ci=0

Ti:=0

ci=0

ci=l Ti:=0

ON

Ti=l

ui=Pi

ci=l

ci=0

G0ING_0^

fi=l
ui=0

Ti<:TiAci=l

Ti>TiAci=l

Figure 2: The pump hybrid automaton

1.3 Traces

• Consider an execution x — ^>2/) € W of am open hybrid automaton H. To the "outside world"
the only visible paxt of this execution is (r,v,2/).

• A transition is called inert if (^^(Tt'),y(r?)) = (v(rf+i),3/(ri+i)).

• Inert transitions can be eliminated, by concatenating the trajectories either side of the transition.

• More formally, the concatenation of two functions:

(vuyi) : [ri,r;]-.VxY
{V2,y2) : h+i,V XY

with r/ = Ti+i and (u(7^),y(rf)) = (u(ri+i),y(ri+i)), can be defined as the function

(v,y): h,7i+i] V XY

such that (v(t),y(t)) = (vi(i),yi(t)) for all f € [ri,7^] and (v(f),y(t)) = {v2{t),y2{t)) for all t €
[ri+i,7^+i].

• A trace of if is a fibnite or infinite execution of if, restricted to the input and output variables, with all
inert transitions removed and the corresponding trajectories concatenated.

• We use Trace(if) to denote the set of all traces by H.

• Two open hybrid automata and J?2 are comparable if Vi = V2 and Yi = I2.

• We say an open hybrid automaton ifi implements an open hybrid automaton H2 if they are comparable
and Trace(.ffi) C Trace(if2).

• Think of if2 as a specification and of ifi as a proposed "implementation" of that specification (in software
or in hardware).



2 Composition

Definition 3 (Compatible Hybrid Automata) Two open hybrid automata Hi and H2 are called compat
ible if:

{Qi u ^1) n (Q2 u X2 u V2 u Y2) = 0

{Q2UX2) n (Qi uXi u Vi u n) = 0

yiny2 = 0

For two compatible hybrid automata, Hi and H2 define:

Vi = T^ii U 1^12 with Vii =Vi\Y2 and yi2 = VinY2

V2 —V21 U 1^22 with V22 —1^2 \and V21 ~V2V\Yi

For this partition define the maps:

hi2 : Qi X Xi —* V21

{qi,xi) t—^ hi{qi,xi)\y^^
and

h2i • Q2 X X2 —* Vi2

{q2,X2) h2{q2,X2)\vi^

Definition 4 (Composition) The composition of two compatible hybrid automata Hi and H2 is a hybrid
automaton H = Hi\\H2 = {Q, X, V, Y, Init, /, h, Inv, E, G, R), with

• Q = QiU Q2;

• X = Xi\JX2;

• y = (Fi u y2) \ {Yi u y2) = (^1U y2) n (Yi u r2)^;

• r = riuy2;

• Init ={{q,x) €QXX: (gig. , €Initj, for i=1,2};
• / :QxXxV—^ ]K,ni+n2 giyen by:

. r/i(9l<3. .®lx.
h (^9|q, >x\x, •»lv3a .''12 (9l(},. ilx.,

• h:QxX—is a vector field given by:

h{q,x) =(hi (g|g^, J ,^2 [qIq^ ,

• Inv : Q 2*^^ given by:

Inv(g) ={(a:,i;) €XXV: (a;|;f., v\y,, hji (g|g., €Iny<(g|g.), for i,j =
• jB C Q X Q given by:

E - {(g,g')eQxQ
u {(9,g')€QxQ
u {(g,9')€QxQ

(glOi»g'lQi) € Eihq\Q^ = g'loJ
doi = g'ki A(glQasg'lOa) € E2}
(g|<3i»g'lQi) € El A(gloa.g'lQa) ^ ^2}



• Ct : S 2*^^ given by:

G{q,q') ={(a;,v) €XxV : a =(gig., g'lgj eEi=> ,v\y.. ,kji (glg^., €C?»(ei)
for ij = 1,2,2

• J?:ExXxV—^2* defined by:

R{q,q',x,v) ={x' ex : Ci = ,g'lp,) €J5i =J^ €i2i (ef, a;|;f., ulvj. ,/iii (gl^.,

(dp,-» 9'lgi) ^ ^ '̂\xi —Xi

/or i,j = 1,2,2# j }

Remarks:

1. Both interleaving and synchronous transitions are allowed.

2. A transition is forced for the composition if a transition is forced in at least one of the constituents.

3. A transition is enabled for the composition if a transition is enabled in at least one of the constituents.

4. Foran execution x — 9) a?, v,y) of the composition H = Hi \\H2i let x\Hi denote the restriction ofthe
execution to the variables of Hi, i.e. the collection Xi —{Tuqu^ii'^^uyi) where Tx e T, qi : Tx ^ Q,,
Xi : Ti Xi, Vi : n ^ Vi and Vi : n Yi defined by n = r, and for all t € r, gt(t) = g(t)|g.,
Xi{t) = x(t)l;p., 2;i(t) = u(t)|y., yi{t) = 3/(t)|y..

5. The domain of H was earlier restriced to Q x X to disallow self-loops in the composition of systems.

Proposition 1 Let H = fri||R2 be the composition of two compatible hybrid automata Hi and H2. Then
W= {X : x\Hi ^ «= 1' 2}-

Example: In the steam boiler example, since the only shared variables axe 221 and 222:

Proposition 2 B, Pi, and P2 are compatible.

The composition H = B||Pi||P2 can therefore be defined. It is an open hybrid automaton with:

• Q = {qB,qi,q2h IQI = 9;

• X = {22;,r,ri,T2},X = ]R^;

• V = {ci,C2,d}, with y = Vc u Vb, Vc = {d} and Vd = {ci,C2};

• Yb = {yi,y2iUi,u2y,

3 Renaming and Hiding

• Somewhat cumbersome to define each variable individually. Renaming allows us to define a single
automaton, and then use it in different compositions by changing the name of its variables. This
operation does not change the dynamics of the system, only the way it interacts with other systems.

• It may sometimes be desirable to eliminate output variables, especially after it has been ''composed"
with an input variable of another automaton. This operation does not chsmge the dynamics of the
automaton, it just affects its external behavior.

• See [2, 7] for a formal discussion.



4 Receptivity

• Zenoness more difficult to define for open hybrid automata.

• Receptivity. An open automaton is receptive if it accepts an admissible (time divergent) execution for
all input trajectories with a finite number of transitions.

• See [8, 1, 2] for a formal discussion.
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1 Analysis, Synthesis and Validation

• Up to now:

—Modeling of hybrid systems

—Autonomous systems and systems with inputs and outputs

—Properties of models: non-blocking, deterministic, Zeno

• Coming up:

1. Analysis: (Verification) Prove that a hybrid automaton satisfies certain properties

2. Synthesis: (Controller design) Choose controlinputs so that closed loop hybrid automaton satisfy
certain properties

3. Validation: Apply these methods to real systems and test them in experiment or simulation.

• Formalize these notions, starting with "property" and "satisfy"

2 Notation

• Consider a collection of variables W

• Let Hyb(W) denote the set of hybrid sequencesof W:

Hyb(W) = {{t,V}) : t ^T,w :r W}

• Recall that:

Definition 1 (Hybrid Time Trajectory) A hybrid time trajectory r is a finite or infinite sequence
of intervals of the real line, r = {Jj}, i € N, satisfying the following conditions:

~ li is closed, unless r is a finite sequence and li is the last interval in which case it is left closed but
can be right open.

—Let li = [r<,7^]. Then for all i, ri<T- and for i > 0,

• Note that r may also be an empty sequence.

• Example: Consider an open hybrid automaton, H = {Q, X, V, Y, Init, /, h, Inv, E, G, i?). Then:

nCEyh{Q\JXUVuY), Trace(H)CHyb(yuy)



• Given H = (Q, X, V, y, Init, /, /i, Inv, G, J?), we denote by Var(fZ') = QuXuV'uy.

• To simplify the notation we use the term "Hybrid Automaton" to refer to both autonomous and open
hybrid automata. Note that one can interpret an autonomous hybrid automaton as an open hybrid
automaton with V = y = 0.

• For W C Var(Jf) and for a x = {T,q,x,v,y) eHwe use x\w = ^ Hyb(W) to denote the hybrid
sequence of W such that for all f € r, iy(t) = (?(<), 3/(<))|,y.

• We denote by

'^Iw = {(^>^) S Hyb(W) : 3xeH with {t,w) = xlw)

The set ofexecutions ofH restricted to the variables in W. Note that Trace(ff) = Hl^vury

3 Sequence Properties

Definition 2 (Sequence Property) A sequence property is a pair (W, P) of a collection of variables, W,
and a map:

P : Hyb(W) {True,False}

• We say a sequence x satisfies property (W,P) if:

X € Hyb(W) and P{x) = True

• We say a hybrid automaton, H, satisfies a property (W, P) (and write H ^ (W,P)) if:

1. W C Var(fr)

2. P(x\w) — for all X € Ti.

• We will sometimes use Temporal Logic formulas to specify properties.

• Example: Consider a hybrid automaton H = (<5, X, V, Y, Init, /, h, Inv, E, G, R), and a subset
P C Q XX. We define "always P" as the property {QUX, DP), where:

= True iff Vt € r, (g(t),a;(t)) € P

We define "eventually P" as the property {Q UX, OP),

= True iff 3t e r such that {q{t), x{t)) € P

—H satisfies "always P" if along all executions of H the state remains in P.

—H satisfies "eventually P" if along all executions of H the state reaches P at some point.

—More complex combinations lead to different types of properties: DOP ("Responsiveness": always,
eventually in P), ODP ("Persistence": eventually, always in P), etc.

—For a formal treatment see [1, 2]

4 Analysis and Synthesis for Sequence Properties

Problem 1 (Sequence Analysis) Given a hybrid automaton H and a sequenceproperty {W, P) with W C
Var(H') show that H 1= (W,P).



Remarks:

• If this is not the case, find a witness x € such that P{x\w) —False.

• Works for autonomous hybrid automata.

• Can have input variables acting as uncontrollable disturbances. The sequence analysis problem then
requires showing for all possible disturbance sequences, the resulting executions satisfy the desirable
properties.

Problem 2 (Sequence Synthesis) Given a hybrid automaton Hp and a sequence property (W,P) with
W C Var(iir) find a compatible hybrid automaton He such that that Hp\\Hc |= (W^P).

Remarks:

• Hp models the "plant"

• He models the "controller"

• Requires controllable input variables (else there is nothing to control and the S3nithesis problem reduces
to an analysis problem).

• May have both controllable inputs (controls) and uncontrollable inputs (disturbances). The synthesis
problem then becomes a game between the control and the disturbance; we axe looking for a controller
to determine the control sequence such that for all disturbance sequences the resulting executions satisfy
the desired properties.

Example: Analysis of the bouncing ball. Consider the bouncing ball automaton (Figure 1):

• Q = {FLY} andX = E2;

• Init = {FLY} X{a: € X : Xi > 0);

• /(FLY,x) = (X2, -5)^ with 5 > 0;

• /(FLY) = {x € X : xi > 0};

• P = {(FLY,FLY)};

• (?(FLY,FLY) = {x € X : [xi < 0] V[(xi = 0) A(x2 < 0)]}; and

• P(FLY,FLY,x) = (xi,-X2/c)^ with c> 1.

Proposition 1 The bouncing ball automaton satisfies {X, •{xi > —1}).

Proof: We show that in fact H satisfies (X, •{xi > 0}). (Note that •{xi > 0}(x) = True => •{xi >
~l}(x) —True). Let:

Inv = {FLY} X{x € X : xi > 0}, InvpLY = {a^ € X : Xi > 0}

We want to show that for all executions Xi (9(*)>a;(f)) € Inv for all t € r.

• Claim is true at all initial states, Init C Inv.

• If a discrete transition takes place from a state in Inv, the state after the transition will also be in Inv,
since there is only onetransition, e = (FLY, FLY), with G{e) PI Invp^Y = {a; € X : (xi = 0)A(x2 < 0)},
and R{e,x) = (xi, —X2/c)^, therefore:

X€ G{e) n Invpjjy a;) C InvpLy



[x 2< 0]v [(x-^ = 0)A (X2^ 0)]

Figure 1: Bouncing ball

Along continuous evolution one can have xi < 0 only if a:i = 0 A 0:2 < 0 first. If this is the case system
is forced to take a transition, and can therefore not exit Inv along continuous evolution.

Proposition 2 The bouncing hall automaton satisfies (Jf, 0{a;i = 0}).

Proof: After at most one discrete transition, continuous evolution starts. Along continuous evolution, xi{t) =
a;i(0) + X2{0)t —gt^f2, therefore, sooner or later xi(t) = 0. •

Remarks:

• The bouncing ball automaton alsosatisfies (X, •0{xi = 0}). The proof is the same as above. Intuitively,
(X, DOlxi = 0}) requires (X, 0{xi = 0}) to hold as if all reachable states were initial conditions.

• The bouncing ball automaton does not satisfy (X, 00{xi = 0}).

5 Safety and Liveness Properties

• For a formal treatment see [1, 2, 3].

• The above are instances of deductive proof techniques:

—Invariant assertions ((g,x) € Inv)

- Progress functions (xi(t)).

• These proof techniques are typically used to prove certain classes of properties:

- Invariant assertions are used to prove safety properties

—Progress functions are used to prove liveness properties

Definition 3 (Safety Property) A sequenceproperty (W,P) is called a safety property if it is:

1. Non-empty: {x € Hyb(W) : P(x) = True} 0



2. Prefix closed: if P{x) = True then P{x) = True for all x^X-

3. Limit closed: i/xi ^ X2 < ••• is an infinite sequence with P{xi) = True and x = linii^ooXi
P{X) = IVue.

Remarks

• The limit is taken in the successive extension ordering, and is unique.

• Loosely interpreted as meaning "something bawl does not happen".

• In this context, the conditions of the definition cam be thought of as:

1. Non-emptiness: Nothing bad cam happen if nothing happens at all, therefore P((0,iw)) = True.

2. Prefix closure: If nothing bad happens in a sequence, nothing bad could have happened in all
prefixes of that sequence.

3. Limit closure: if something bad happens in a sequence, it has to happen after a finite "time".

• Example: (X, •{xi > 0}) is a safety property for the bouncing ball.

• In fact:

Proposition 3 {W,DF) for F CW with F is a safety property.

• For discrete systems all safety properties are of the form (WiDF). It is unclear whether this is the case
for hybrid systems.

Definition 4 (Liveness Property) A sequence property {W,P) is called a liveness property if for all finite
sequences w € Hyb(PF) there exists w GHyb(PF) such that:

1. w <w

2. P{w) = True

Remarks

• Loosely interpreted as meaning that "something good eventually happens".

• In this context, the conditions of the definition can be thought of as requiring that whatever has happened
up to now, it should still be possible for something good to happen eventually.

• Example: (X, 0{xi = 0}) is a liveness property for the bouncing ball.

• In fact:

Proposition 4 (P7,OF) for F C W with F is a liveness property.

• More classes of liveness properties are possible, DO, OD, etc.

Theorem 1 (W,F) is both a safety and a liveness property if and only if P{x) = True for all x € Hyb(W).

Theorem 2 Let {W, P) be a sequence property such that {x GHyb(W) : P(x) = True} ^ 0. Then there exist
a safety property (W,Pi) and a liveness property (WiFi) such that P{x) = True if and only if Pi{x) = True
and P2ix) —True.
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1 Stability Definitions

Consider an autonomous hybrid automaton H.

Definition 1 (Equilibrium) x = 0 € X is an equilibrium point of H if:

/(9>0) = 0 0^^ Q^ Qf o-nd

2. 6 E) A (0 € G{q,q')) =» R(g,g',0) = {0}.

Proposition 1 if (go>0) € Init and (r,g,a;) € H(g(,,o) then x{t) = 0 for all t Et.

• If the continuous part of the state starts on the equilibrium point, it stays there forever.

• One would like to characterize the notion that if the continuous state starts dose to the equilibrium
point it stays close, or even converges to it.

• Use the definitions of Lyapunov for this purpose.

Definition 2 (Stable Equilibrium) Let a; = 0 € X 6e an equilibrium point of H. x = 0 is stable if for all
e > 0 there exists 6 >0 such thatfor all {r^q,x) e W(go,®o) ll^oll < lk(t)ll < c for all t €t.

• Stability definition captures the notion of "start close, stay close".

• x = 0 is called unstable if it is not stable.

• Stability is NOT a sequence property. The part "||a;o|| < 6, ||a;(t)|| < c for all < € r" by itself is a sequence
property, but not the quantification over e and 6.

• Stability does not imply convergence to the equilibrium.

• To analyze convergence, first consider an infinite execution, x = and let Too = ~ "^t)-
Notice that Too < oo if x is Zeno and Too = oo otherwise.

Definition 3 (Asymptotically Stable Equilibrium) Let x = 0 € X an equilibrium point of H. x = 0
is asymptotically stable if it is stable and there exists 6 >0 such that for all (r,g,x) € 'H'̂ q^xo) H^oll <
limt^Too ®(*) = 0-

• Recall that each r is fully ordered, so the limit is well defined.



• limt_».oo a?(<) = 0 does not necessarily imply stability. As a counterexample consider the continuous
system x'l = Xj — ^2 = 2x1X2-

• limt_».oo = 0 is a liveness property. ||a;o|| < S and limt_»oo = 0 is the intersection of a safety
property and a liveness property. Asymptotic stability is NOT a sequence property, since the stability
part is not.

• There are variants of the stability definitions such as: global asymptotic stability, exponential stability,
uniform stability, permutations thereof.

• See [1, 2] for details.

2 Continuous Systems

• A continuous dynamical system (Lecture 2) can be thought of as a hybrid automaton with |Q| = 1 and
E = t

• For continuous systems we typically use energy arguments to prove stability properties.

• Roughly speaking, if the system "dissipates energy" along its executions it will be stable.

• Statement is clear for mechanical systems because energy has a physical interpretation.

• More generally, we use energy-like functions, known as Lyapunov functions.

Theorem 1 Let x = ^ he an equilibrium point of a continuous system H. Assume that there exists an open
set jb C R" with 0 € D and a continuously differentiable function V : D —> R such that:

1. no)=o,

2. 1^(0;) > 0 for all X e D\ {0}, and

3. ^i^)f{x) < 0for all Xe D.

Then x = 0 is a stable equilibrium of H.

Proof: For r > 0 let Br = {ic € R" : ||a;|| < r}, 5r = {a; €
Given e:

• Choose ri 6 (0, e) such that Bn C D.

• Let ci = miuxes^^ V"(a;).

• Choose C2 e (0,ci). Then flea C Bn Q B«.

• Choose 6 > 0 such that Bg C flea•

Ixll = r} and fir = {ic € V{x) < r}.

li xq € Bg, then V(xo) < C2. Since V is not increasing along the system executions, executions that start
inside Bg can not leave fica- ThereforeVt wehave x{t) 6 fica C C B^. Thus ||a:(t)|| < e. •



Theorem 2 If in addition, ^{x)f{x) < 0 for all x e D \ {0}, then x = 0 is an asymptotically stable
equilibrium point

Example 1 Consider the pendulum equations xi = X2, X2 = ~{9f^)sin(a;i) —{kfm)x2. Consider the energy
of the system as a Lyapunov candidate function, i.e., V{x) = {g/l){i —cos(a;i)) + (l/2)a;2- Clearly V(0) = 0,
V"(a;) 5^ 0Vxi € (—27r, 2'ir) \ {0},VX2 # 0, and V{x) = —{klm)x\ < 0. Thus a; = 0 ts stable.

3 Hybrid Systems

One would expect that a hybrid system for which all individual continuoussystems are stable would be stable,
at least if R{q, q', x) = {a;} for all (g,q") e E and x € G{q, q'). However, this is NOT necessarily the case:

Example 2 Consider the hybrid automaton, H, with:

• Q = {gi,g2} and X = R^/

• Init = Q X {a; € X : ||x|| > 0}/

• /(9i>^) = f{q2,x) = A2a;, with:

Ai =
-1 10

-100 -1
A2 =

-1 100

-10 -1

• /(gi) = {a; € X : a;iX2 < 0} and /(g2) = {a; € X : a;ia;2 > 0};

• £? = {(91.92), (g2,gi)};

• ^(91,92) = {a; € X : X1X2 > 0} and C?(g2,9i) = (x € X : a;ia;2 < 0}; and

• -R(9i,92,a:) = R{q2,qux) = {a;}.

Proposition 2 x = (i is an equilibrium of H.

Proof: /(gi,0) = /(gi,0) = 0 and J?(gi,g2,0) = i2(92,9i,0) = {0}.

Proposition 3 The continuous systems x —AiX for i = \, 2 are asymptotically stable.

Proof: The eigenvalues of both systems are —1 ± jVlOOO. •

However, x = 0 is unstable for HI! (see in Figure 1(c)). Notice that if the switching were done the other way
around the system would be stable (see Figure 1(d)). Therefore, in general we can not expect to analyze the
stability of a hybrid system just by studying the individual continuous systems. We really have to study the
switching.

Theorem 3 Consider a hybrid automaton H with x = 0 on equilibriumpoint, |Q| < 00, and R{q,q', x) = {x}.
Consider an open set D CX. with 0 6 D and a function V : Q x ^ R continuously differentiable in x such
that for all q €Q:

f. V(g,0) = 0,

2. V(g,x) > 0 for all X e D\ {0}, and

lF(9.a;)/(9,a:) < 0for all xeD.



(a) TY-ajectory of x = Aix,x(0) = (1,0)^

(c) Itajectory of jy,x(0) = (1,0)^

(b) TVajectory of x = A2X,x(0) = (1,0)^

(d) Trajectory of ff,x(0) = (1»0)^ with the
switching the other way around

Figure 1: Diiferent trajectories for the system of Example 2

If for all (r,g,a;) € H and all q e Q the sequence {V(5(ri),a;(ri)) : g(ri) = g} is nan increasing, then x = 0
is a stable equilibrium of H

• Can think of Theorem 3 as allowing one Lyapunov function for each g. (See Figure 2)

• When the discrete state g is in g, corresponding Lyapunov function can not be increasing. Lyapunov
functions corresponding to other states could however increase. In any case, every time we switch to a
new discrete state, the value of the corresponding Lyapunov function can not be larger than what it was
last time we switched there.

• More thorough treatment in [3, 4].

Proof: Consider the case Q = {gi,g2}j tbe proofis similar if the system has more discrete states, fi® = {a; €
R" : V"(g, x) < r}. The trick is that since every time weswitch to a discrete state we are belowwhere we were
the previous time we switched to it the only thing that matters is the first time we switch to every discrete
state.

Given c > 0:



V(ql,x)
a

V(ql,x(TO))
V(ql.x(T2))

V(q2.x)

V(q2^(Tl)y
V(q2.x(T3))

tO t1 t2 t3 t4 ^ ^

Figure 2: Evolution of Lyapunov functions

• Choose ri € (0,e) such that C B.

• Setci(g) = minses., V{q,x), g € Q.

• Choose C2(g) € (0,ci(g)). Then C Br,.

• Choose r2(g) > 0 such that Br2(,) C

• Up to now same as individual Lyapunov proofs.

• Set r = ming6Qr2(g).

• If either individual system starts within r of the equilibrium, it stays within r,

• Set C3(g) = mina.65, V{q,x), g € Q.

• Choose C4(g) 6 (0,C3(g)). Then Q Br.

• Choose r4(g) > 0 such that Br^^q) C

• Set 6 = miUggQ r4(g).

Take (r,g,a;) € 'H(^qo,xo)i ll^oll < S and assume without loss of generality that go = gi- By a continuous
Lyapunov argument, x{t) € Q Br for t € [to,To]. Therefore, x{ri) = a;(ro) € By a continuous
Lyapunov argument, x(t) e ^^02(92) — ^ ^ ["'ij'Ti']* By assumption, x{t[) = a;(r2) € By a
continuous Lyapunov argument, x(t) € '̂̂ CA{qi) - ^ The claim follows by induction. •

Note: For the notation used in class please see the notes for Lecture 11.
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1 Proof of Theorem 3, Lecture 10

The following theorem comes from [1]

Theorem 1 Consider a hybrid automaton H with x = 0 an equilibrium point, |Q| < oo, andR{q, q',x) = {x}.
Consider an open set Z? C X with 0 £ P and a function V : Q x P —» E continuously differentiable in x such
that for all q e Q:

1.V{q,0) = 0,

2. V{q,x) > 0 for all x e D\ {0},

^ 0 for all x e P.

If for all (r,g,x) 6 H and all q e Q the sequence {y{q{ri),x{Ti)) : q(Ti) = q} is non increasing, then x = 0
is a stable equilibrium of H

• Can think of Theorem 1 as allowing one Lyapunov function for each q.

• When discrete state in q corresponding Lyapunov function can not be increasing.

• Every time we switch to a new discrete state, the value of the corresponding Lyapunov function can not
be larger than what it was last time we switched there.

Proof: Consider the case Q = {qi,q2}, the proof is similar if the system has more discrete states. Let
^Aq) = {x € 1^ : V{q,x) < r}. Since every time we switch to a discrete state we are bound to be below
where we were the previous time we switched to it the only thing that matters is the first time we switch to
every discrete state. The following construction takes advantage of that fact.

Consider an arbitrary e > 0. We will try to find 8 > Qsuch that for all executions (r,g,x), x(ro) e Bs implies
x(t) € Pc for all t € r.

• Choose r € (0, e) such that Br C P.

• Set a{q) = minaj65^ V{q,x), for all g € Q.

• Choose 6(g) € (0,a(g)). Then ft{,(g)(g) C Bt-

• Choose p(g) > 0 such that C ft6(g)(g).

• Up to now same as individual Lyapunov proofs. If we knew that the system will always stay in one of
the two discrete states, say gi, (i.e. r < [tq, oo) and g(ro) = gi) and we started with x(ro) € Pp(gi) we
would always stay in Ilb{q)iq), therefore in Br, therefore in Bf.



V(q,, x(t))

V((h.x(t))

Figure 1: Lyapunov functions of two linear systems

• Set s = min5gQp((jr).

• K weknew that the system will alwaysstay in one discrete state whichever that may be, i.e. r < [tq,oo))
and we started with x{to) € then we should always stay in Br, therefore B^.

• Still have not taken care of switching. To do this we need to repeat the process.

• Set c{q) = minigs. V'(g,x), for all 9 € Q.

• Choose d{q) € (0,c(g)). Then fid(g)(9) Q

• Choose w{q) > 0 such that Bu,(q) C

• Set 5 = mmq^Qw{q).

Take (r,g,a;) € W(,o,xo)> with ||xo|| < ^ and assume without lossof generality that go = 9i-

• By a continuous Lyapunov argument, x{t) € fid(5i)(gi) QBs C for t € [To,ro].

• If r < [to,00) we are done.

• Otherwise, note that by the assumption on R, a;(ri) = x{rQ) e QBa C ^b{q2){q2)-

• By a continuous Lyapunov argument, a;(t) e ^b{q2){Q2) C Br C B^ for all t € [Ti,r{].

• If r < [To,ro][ri, 00) we are done.

• Otherwise, note that g(r2) = g(To) = gi.

• By the non-increasing sequence condition V(g(r2),a:(r2)) < V(g(ro),a;(ro)) < d(g).

• Therefore, x{t2) € f2d(gi)(gi) Q Be-

• And so on .,. The claim follows by induction.

Remarks

• For IQI > 2 we need to repeat the nested construction |Q| times.



• Continuous aigument needed to:

- Bound the value of the Lyapunov function at the first switching time.

- Guarantee stability if there are a finite number of transitions.

• As a consequence of the last remark, Theorem 1 of Lecture 10 for continuous dynamical systems follows
from Theorem 1 of Lecture 11 as a corollary.

• Some other immediate Corollaries are the following ...

Corollary 1 Considera hybridautomatonH withx = 0 on equilibrium point, |Q| < oo, andR{q,<f,x) = {a;}.
Consider an open set D C X. with 0 £ D and assume there exists a function V : D R continuously
differentiable in x such that:

1. V{0) = 0,

2. V{x) > 0 for all X € D \ {0},

® all q€Q and all x £D.

Then x = 0 is a stable equilibrium of H

Proof; Define : Q x X —» M by = 1^(0;) for all g € Q, a; € X and apply Theorem 1. •

Corollary 2 Consider a hybrid automaton H with x — 0 an equilibrium point, |Q| < oo, and assume
R{q,q',x) is non-expanding. Consider an open set D C X with 0 £ D and a function V : Q x D —> E
continuously differentiable in x such that for all q € Q:

1. V{q,0) = 0,

2. V(g,a:) > 0 for all x £ D\ {0},

<0 for all x £ D.

If for all {T,q,x) £ H and all q £ Q the sequence {V(g(ri),a:(ri)) : q{ri) = q} is non increasing, then a; = 0
is a stable equilibrium of H

R is non-expanding if for all (g,g') € £?, all a;, y € X, all a:' GR{e,x) and all y' € R{e,y):

Ik'-y'll < lk-y||

In particular, setting y = 0 (and recalling that 0 being an equilibrium requires R{e,0) = {0}) non-expanding
implies that for all e € E, for all a; G X, and all x' £ R{e, x)

lla '̂ll < Ikll

Notice that unless the non-expanding assumption is made the proof of Theorem 1 breaks down at the time of
the first jump. I believe that R being a continuous function will also work, but I did not bother to prove so
(it requires some more argument).



2 Other Lyapunov-like Theorems

More general reset relations are also covered by the following theorem (which can be found in [2]).

Theorem 2 Consider a hybrid automaton H with |Q| < oo. Consider an open set D C X with 0 € i? and a
function V : Q x D —• R continuous in x with V(g,0) = 0 and V{q^x) > 0 for all x e D \ {0}. Assume that
for all (r,g,a;) € H the sequence {V(g(ri),x(ri))} is non increasing and that there exists a continuousfunction
p : R"^ —♦ R^ with^(0) = 0, sudi that for all t £ V"(g(t),a;(t)) < p((V'(g(ri),a;(ri)). Then a; = 0 is a
stable equilibrium of H

Remarks:

• The conditions of Theorem 2 are weaker than those of Theorem 1 since:

— R is not constrained.

- y is not required to be decreasing along continuous evolution as long as it remains bounded by g.
K the Lyapunov function happens to be decreasing, ^(a:) = x will work.

• The conditions of Theorem 2 are stronger than those of Theorem 1 since they require the sequence over
all i to be non-increasing (not just the individual subsequences for which q{Ti) = q).

Theorems 1 and 2 can in fact be applied to more general invariant sets.

• Aset5CQxXis called invariant if for all {T,q,x) £ H(qo,xo)i (Qo^^o) € S implies that (g(t),a;(t)) £ S
for all t € r. Watch out for the overloading of the terminology. The term invariant has already been used
twice: in the definition of hybrid automata to describe sets of continuous states for which continuous
evolution at a particular discrete state is allowed, and also to describe sets of states that contain all the
reachable states.

• An equilibrium point a: = 0 is a special case of an invariant set, of the form 5 = Q x {0}.

• For continuous systems, other types of invariant sets include limit cycles, level sets of Lyapunov functions,
etc.

• The above theorems extend to more general invariant sets. The proofs are obtained by replacing the
Euclidean norm || • || by the "distance to the set 5" defined as:

+ \\x - f ||)
(9.a:)€S

where doiq^q) is the discrete metric defined by dDiq^q) = 0 is g = g and dD{q,q) = 1 otherwise.

This and extensions to asymptotic stability, exponential stability, boundedness and converse theorems can be
found in [2].

3 Example

Consider the hybrid automaton, if, with:

• Q = {gi,g2} and X = R^;

• Init = Q X{x € X : ||x|| > 0};



• f{qi,x) = Aix and f{q2,x) = A2X, with

Ai =
-1 10

-100 -1
, A2 =

-1 100

-10 -1

• I{qi) = {a? € X : Cx > 0} and /(ga) = {a; € X : Cx <0} for some 6

• E = {{qi,q2),(q2,qi)};

• G{qi,q2) = {a; e X : Ca; < 0} and G{q2,qi) = {a; € X : Ca; > 0}; and

• R{qi,q2,x) = R{q2,qi,x) = {a;}.

^ Qi

II

•X

X

0
X

IV

0

Cx<0

Cx> 0

Figure 2: The switching system

We show that a; = 0 is a stable equilibrium point of H for all .

Proposition 1 a; = 0 is on equilibrium of H.

Proof: /(gi,0) = /(gi,0) = 0 and i?(g,g',0) = {0}.

Proposition 2 The continuous systems x = AiX for i = 1,2 are asymptotically stable.

Proposition Z If x = AiX is stable, then there exists Pi = > 0 such that AfPi + PiAi = —I.

Proof: See [3].

Recall that Pi > 0 (positive definite) if and only if x'̂ PiX > 0 for all a; ^ 0, and I is the identity matrix.

Consider the candidate Lyapunov function:

y(9,i) =I

x = A«x

Cx< 0

x'^Pix if g = gi
x'̂ P2X if g = g2

Check that the conditions of the Theorem hold. For all g € Q:

1. F(g,0) = 0

2. V(g, a:) > 0 for all a; 7^ 0 (since the P, are positive definite)

3- §^(9>2J)/(g,a;) < 0 for all a; since:

^(9,a;)/(g,a;) = ^V{q,x{t))
dt

X^PiX + X^PiX
x^AfPiX+ x^PiAiX
x'^iAfPi + PiAi)x
—x^Ix

-Wxf < 0



It remains to test the non-increasing sequence condition. Notice that the level sets of x^PiX are ellipses
centered at the origin. Therefore each level set intersects the switching line Ca; = 0 at exactly two points, x
and -X. Assume xln) = x and q{Ti) = qi. The fact that V(gi,a;(t)) decreases for t € [rtjrf] (where q{t) = qi)
implies that the next time the switching line is reached, x{r-) = -xa for some a € (0,1). Therefore,
lk(Ti+i)|| = lk(r/)|| < ||a;(ri)||. By a simUar argument, ||x(ri+2)|l = ||a;(r/^i)|| < ||a;(ri+i)|| and Cx{Ti+2) = 0.
Therefore, g(ri) = q{Ti+2) = qi and V{q{ri),x{Ti)) < V{q{Ti+2),x{Ti+2)).

Remark: For hybrid systems like this, where the dynamics in each one of the discrete states is linear (or affine),
it is possible to obtain piecewise quadratic Lyapunov functions computationally, using convex optimization
techniques (in particular. Linear Matrix Inequalities) [4]. A (strict) linear matrix inequality(LMI) has the
form

m

F{x) = Fo + ^ XiFi > 0, (1)
t=i

where x € is the variable and the symmetric matrices = F^ € i = 0,...,m, are given. In (1),
F(a;) is positive definite. There is also non-strict LMIs, which has the form

F(a;) > 0

For solving the Lyapunov inequality of system x = Ax

A'^P+ PAkO,

A € 1?'^" is assumed to be given, and P = is treated as variable. Let Pi, • ••, Pm be a basis for symmetric
nxn matrices (m = n(n + l)/2), ajid take Fq = 0, P, = —AFPi —PiA.

To find a single Lyapunov function satisfies the conditions as shown in Corollary 1, consider the ''simultaneous
Lyapunov stability problem". We are given Aj € j = 1,..., L, and need to find P satisfying the LMI

P > 0, AJP-fPAj <0, j = 1,...,L,

or determine that no such P exists. In literature, it is called poljrtopic LDIs, Linear Differential Inclusions,
problem where the vector field is a convex combinations of AjX, j = 1,..., L. For details about LMIs, please
refer to [5].
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1 Reachability and Sequence Properties

• After a short aside on stability, we return to sequence properties, to study reachability.

• The problem we will address is, given a hybrid automaton H to compute Reach(jH') C Q x X.

• If we can solve this problem we can also answer questions about safety properties.

Proposition 1 H satisfies {QUX, DG) for G CQxX if and only if Reach(jH') C G.

• The interpretation is that G is a "good" set of state you would always like to stay in. Equivalently
S = G® is a "bad" set of states you would like to keep away from.

• Different methods have been proposed for solving the reachability problem:

1. Optimal Control: See [1, 2]. The role of the "control" is often played by the non-determinism of
the system.

2. Deductive Techniques; See [3, 4, 5]. Establish invariant sets to bound Reach(£r).

3. Model Checking Techniques: See (6, 7,8,9]. Automatically compute Reach(i?). Require one to
be able to "compute" with sets of states. Class of systems to which it applies is inherently limited.

4. Approximation: Works with all of the above.

—For optimal control, approximate by sets and djrnamics for which optimal control problems are
easier to solve, (e.g. ellipsoidal sets and linear dynamics)

—Deductive techniques are inherently based on over-approximation.
—For model checking, approximate by a system you can compute with.

—Also possible to do "brute force" over-approximation, based, for example, on gridding [10,11].

• In all cases you stop once your question has been answered. For example, if your question was "does H
satisfy (Q UX, DG)?", you stop once you find a reachable state outside G.

• For approximation, you typically "over-approximate".

• AU methods are supported by computational tools:

1. Optimal Control techniques typically use optimal control amd convex optimization tools.

2. Deductive techniques typically use theorem provers.

3. Model checking techniques typically use model checkers.

4. Approximation has been done using "gridding" or polynomialmanipulation packages.



• Simulation can also be used for reachability investigations. It is not a formal method however since:

—It is a shot in the dark: We simulate. K £ is reached then fine, else we have to choose another
initial condition and try again.

- There is no termination guarantee.

Still it is the best we can do for many classes of hybrid systems.

2 General Transition Systems

Defibuition 1 (Transition System) A transition system is a collection T = (5, E, So, Sf), where

• S is a set of states;

• E is an alphabet of events;

• —♦C5xExS'isa transition relation;

• SoQ S is a set of initial states; and,

• Sp Q S is a set of final states.

Example: A finite automaton M = {Q,E,A,qo,F), is a transition system with:

• 5=Q

• E the same

• A

• = {go}

• Sp —F

Example: A hybrid automaton H = (Q, X, Init, /, I, E, G, R) and a safety property {QUX, UG) form a
transition system with:

•5=QxX

• E = jE? U{r}

• -♦= { discrete transitions } U{ continuous evolution}, all of which are characterized by G, I and R

• So = Init

• = G'

Problem 1 (Reachability) Given a transition system T, is any state Sf € Sp reachable from a state sq € 5*0
by a sequence of transitions?

Remark: For finite automata we can always "decide" reachability problems by brute force.

Example: Consider for example the finite automaton of Figure 1. This is a transition system with S =
{go,gi," - .ge}, s = {a,6,c}, ->= {(go,a,gi),(go,a,g2), (go,6,go),-"}, -S'o = {go}, Sp = {go,go}- We can
start "exploring" from go and keep going until we either visit a state in Sp or have nowhere else to go (i.e.,
have visited all reachable states).



\

Figure 1: Reachability example for finite automata

• More formally, the set of reachable states for a transition system can be computed using the following
"algorithm":

Algorithm 1 (Reachability)
Initialization:

Reacho = So
Reach_i = 0
i = 0

while Reacht ^ Reachj-i do
begin

Reachi+i = Reachj U{s' € 5 : Bs € Reachijcr 6 S with (s,ir,s') 6—>}
i = i +1

end

• If the algorithm can be implemented, it terminates and upon termination Reach< D = 0, then the
answer to the reachability problem is 'no'.

• For the example of Figure 1, Reach_i = 0, Reach© = {go}> Reachi = {9o>9ij92} and Reach2 = Q.

• Forfinite automata the algorithm con he implemented and always terminates. What properties offinite
automata allow us to do this?

1. We can represent states in a finite way (by enumeration).

2. We can represent transitions amongstates in a finite way (by enumeration)

3. We axe guaranteed that if we start exploring a particular execution, after a finite number of steps
we will either reach a state we have visited already, or a state from which we have nowhereelse to
go, or a final state.

• Remark: Enumeration is a fairly naive way of going about reachability analysis. In practice, sets of
states are not enumerated, but are represented more compactly, e.g. by BDD's.

3 Bisimulation

• In the example of Figure 1, qi and 02 have verysimilar properties, since they can both be reached from
qo by a and all subsequent executions look similar. This suggests that these states are in some sense
"equivalent". In this section we will try to make this statement more precise by introducing the notion
of bisimulation.



• Consider the set of states S. A relation on 5 is a subset of 5 x S.

Definition 2 (Equivalence Relation) A relation ~C S x S is called an equivalence relation if it is:

1. Reflexive: (s,s) for all s € S;

2. Symmetric: (s,s') implies that {s',s) and,

3. Transitive: {s,s') and {s',s") imply (s,s")

• For simplicity we write s ~ s' instead of {s,s') and say that s is equivalent to s'.

• Examples of equivalence relations:

1. Equality

2. 5x5

3. Let 5 be inhabitants of U.S. and x ^ y mean that person x lives in the same state as person y.
Then ~ is an equivalence relation.

• An equivalence relation partitions 5 to a number of equivalence classes:

S= \JSi
i

such that for all s, s' € 5, 5, s' € 5t if and only if s ~ s'.

• Equivalence classes cover 5 (Any 5 6 5 belongs to an equivalence class by reflexivity).

• Equivalence classes are disjoint (Assume 3s € 5 such that s € 5i, s € 52 for 5i 5^ 52. Then 35i € Si
and S2 € S2 such that si ~ s and S2 s. By transitivity, si -^52, which contradicts the assumption.).

• Example of the equivalence classes

1. For equality the equivalence classes are the singletons.

2. For 5x5 there is only one equivalence class, 5 itself.

3. For 3 in the example above, the equivalence classes are the states of U.S.

• Given an equivalence relation let 5/ ~= {5i} denote the quotient space, i.e. the set consisting of all
equivalence classes.

• Given a set P C 5, let Pf ~ represent the part of the quotient space with which P overlaps:

P/~={5< : 5inP#0}C5/~

• H 5 are the states of a transition system, T = (5, S, —5o, 5^), define the quotient transition system
as

T/ ~= (5/ E, So/ Sf/ ~)

where for 5i,52 € 5/ (5i,(r,52) if and only if there exist si € Si and 52 € 52 such that
(51,0-, 52) 6-».

• Notice that the quotient transition system may be "non-deterministic", even if the original system is.

• For a € S define the Pre^ : 2^ 2^ operator as:

Pre<,(P) = {5 € 5 : 3s' € P such that (s,<r,5') 6—

• In the example of Figure 1, if P = {93,94>95>96} then Preff(P) = {91,92}.
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1 Recall that ...

Definition 1 (TVansition System) A transition system is a collection T = {S, S, —So, Sp), where

• S is a set of states (finite or infinite);

• "E is an alphabet of events;

• -^CSxSxSwa transition relation;

• So C S 25 a set of initial states; and,

• Sp C S is a set of final states.

Definition 2 (Equivalence Relation) A relation S x S is called an equivalence relation if it is:

1. Reflexive: (s, s) €~ for all s € S;

2. Symmetric: (5,5') implies that {s',s) and,

3. Transitive: (5,5') €~ and {s',s") imply{s,$")

• For simplicity we write 5 ~ 5' instead of (5, and say s is equivalent to s'.

• An equivalence relation partitions S into a number of equivalence classes:

S= \JSi
i

such that for all s, s' € S, s, s' € Si if and only if s ~ s'.

• Given an equivalence relation let S/ '«-= {Si} denote the quotient space, i.e. the set consisting of all
equivalence classes.

• Given a set P C S, let P/ represent the part of the quotient space with which P overlaps:

P/~={Si GS/-: SinP#0}, henceP/-CS/~

• If S are the states of a transition system, T = (S, S, So, Sp), define the quotient transition system
as

r/ ~= (S/ E, So/ Bp! -)

where for Si,S2 G 3/ (Si,a,S2) G-»~ if and only if there exist si G Si and 82 G S2 such that
(si,flr,S2) G-».

• For <7- GS define the Pre«,. : 2^ -+ 2^ operator as:

Pre<r(P) = {s GS : Bs' GP such that {s,<t,s') G—•}



2 Bisimulation

Definition 3 (Bisimulation) Given T = (S, E, —So, Sp), o-nd an equivalence relation over S, ~ is
called a bisimulation if:

1. So is a union of equivalence classes;

2. Sf is a union of equivalence classes;

3. For all c 6 E, if P is a union of equivalence classes, Preff(P) is also a union of equivalence classes.

• If ~ is a bisimulation, T and TJ ~ are called bisimilar.

• Equality is a bisimulation.

• 5 X 5, the "total relation", is in general not a bisimulation. The only equivalence classes are S, 0.

• In a sense bisimilax transition systems generate the same sequences of transitions (language).

• Therefore, if is a bisimulation, we need not distinguish between the elements of an equivalence class.

• More specifically, if a state in Sp is reachable from a state in 5o, a state in 5f/ ~ is reachable from a
state in Soj

Proposition 1 is a bisimulation if and only if for all (si 52)'

1. (si € So) => (s2 € So);

2. (si € Sp) =>• {$2 € Sp); and,

3. ((si,tr,5'i) €->) ^ 3s2 such that (s'l ~ S2) ^ ((52,<'')S2) €->).

Proof: (=J>-):

1. If for all Si € 5o, Si S2 implies S2 € Sq, then So must be a union of equivalence classes.

2. Similarly for

3. If P is an equivalence class and si € Preo-(P), then S2 G Pre^(P) for all S2 ~ si. Hence Preff(P) must
be a union of equivalence classes.

(•<^): similar •

Aside: More generally, two transition systems, T = (5,E,-4,5o,5j?) and T' = (5',E,->',5o,5'^) are called
bisimilar if there exists a relation 5 x 5' such that:

1. (si ~ S2)A (si € So) ^ (s2 G Sq)',

2. (si ~ S2) A(s2 GSq) (si GSq)]

3. (si S2) A(si GSp) (s2 G5^);

4. (si ~ S2)A (s2 GSp) ^ (si G Sp)]

5. (si S2) A ((si,(7,si) G—•) ^ 3s2 such that (s'l rsj S2) A((S2,<7,S^) G-^0-

6. (si S2) A ((s2,<7,S2) G^') ^ 3si such that (si S2)A((si,<T,si) G-^).



Three of the above conditions are taken caxe of automatically if T' = T/ ~i. To see this simply take an
equivalence relation ~iC 5 x 5 and consider the corresponding T' = Tf defined as usual:

• 5' = 5/ -1

• S'̂ = So!

• S'p = SfI

•

Correspondingly let ~C 5 x S" be the relation (not equivalence since S ^ S') defined by

$1 ^ Si Si € Si-

Namely is the belonging relation €.

Again T and T' being bisimilar can be interpreted as T and T' accepting the samesequences of events.

3 Computing Bisimulations

• Bisimulations look useful since they preserve the language of the transition system.

• How does one find a bisimulation?

Finding an equivalence relation is equivalent to finding the equivalence classes in 5/ Along this line, the
following algorithm tries to determine a partition of 5 so that the corresponding equivalence relation is a
bisimulation.

Algorithm 1 (Bisimulation)
Initialization: 5/ ~= {5o,5j?,S \ (5o U5f)}
while 3P,P' e 5/ ~ and <7 € E such that P n Preff(P') ^ P and P n Pre^(P') do
begin

Pi =PnPre^(P')
P2 = P\PieAP')
5/~= (5/~\{P})U{Pi,P2}

end

• Note: the initialization assumes that 5o n 5f = 0, 'S'o ^ 0 and Sf which is the most interesting case
when doing reachability analysis. If 5oD # 0 we can start by setting Sf {So \ \ ^o, H
5f,5\(5oU5f)}.

• If the algorithm terminates, ~ is a bisimulation, since:

1. 5o is a union of equivalence classes (note that So € 5/ ~ initially, and we only split sets)

2. 5f is a union of equivalence classes (for the same reason).

3. Termination implies that for all P' G 5/ and for all a, PnPre^(P') is either equal to P or equal
to 0, therefore, Pre<r(P') is a union of equivalence classes.

• This is again a pseudo algorithm. Implementation and termination for general transition systems are
not obvious. For finite state systems we can implement the algorithm and guarantee that it terminates
because we can enumerate the states for the finite state system.

• Figure 1 shows the results of appljdng this algorithm to the finite state example of Lecture 12.



@

Figure 1: Bisimulation of previous example

• Why is this an improvement?

1. To test for reax:hability, we need not search through the states, just the equivalence classes. There
fore may have a computational advantage.

2. Extends to systems with infinite states. If the bisimulation quotient can be computed and is finite,
then the reachability computation is decidable.

4 Bisimulations of Timed Automata

• The original definition of a timed automaton, found in [1] is given below. Some extensions will be
discussed in subsequent lectures.

• Consider X = {xi,... ,Xn} a finite collection of variables, each of which takes values in K.

• Let X= (xi,... , Xn) 6 K" = X denote a valuation for all x, € X.

Definition 4 (Clock Constraints) The set, $(X'), of clock constraints of X, is a set of finite logical ex
pressions defined inductively by 6 € $(X) if:

6 := (xi < c) I (xi > c) I -tSi I^1 A^2

where 61,62 £ € X and c>0 is a rational number.

Note: finite means that 6 can involves a finite number of sub-formulas of the form (xf < c) or (xi > c).

• Examples: let X = {xi,X2}.

- (xi < 1) € $(X)

—(0 < xi < 1) € ^(X), since (0 < xi < 1) ^ (xi > 0) A (xi < 1)

—(xi = 1) € since (xi = 1) ^ (xi > 1) A(xi < 1)

- (xi < 1) € $(X), since (xi < 1) -»(xi > 1)

—True € since True -'((xi < 0) A (xi >= 1))

- {Xl<X2)^^iX)

• Given 6 € ^{X), we say x € X satisfies 6 IFF ^(x) = True.



xl<:3'^x2<:2

qi
xl 1=0 xl=l

x2:=0 x2=l

xl :=0

xlscl

Figure 2: A timed automaton

• To each 6 e $(X) we can associate a set:

^= {a; € X : 5(a;) = True}

Definition 5 (Timed Automaton) A timed automaton is a hybrid automaton H = {Q, X, Init, f, Inv,
E, G, jR), where

• Q is a set of discrete variables, Q = •••, 9m};

• X = {xi,... ,Xn}, X = R";

• Init = {{9t} XInitgJ^i where Initg^ € ^(X);

• f{Q,x) = (1,... , 1) for all {q, x);

• Inv(g) = X for all q € Q;

• E C Q X Q;

• G{e) = Ge where Ge € ^(X), for all e = (9,9') € E; and

• For all e, R{e,x) either leaves Xi unaffected or resets it to 0.

Remarks

• Notice that R is single valued.

• Consider a set of final states of the form F = {{9i} x where Fg< € $(X).

• A timed automaton together with a set of final states, F, can be viewed as a transition system, T = (5,
E, So, Sf), with:

- 5 = Q X X;

- S = F U{r}, where r is a symbol denoting time passage;

~ {{Qi^)iO,{q',x')) e-* if e = (9,9') € E, Ge{x) = True and x' e R{e,x).
- {{q, x), r, (g', x')) €-> if g = g', and there exists t > 0 such that x' =x + t(l,... ,1).

- So = Init; and,

- Sf = F.

• The claim is that every timed automaton is bisimilar to a finite state system! This will be proved in
Lecture 14.

References

[1] R. Alur and D. Dill, "A theory of timed automata", Theoretical Computer Science, vol. 126, pp. 183-235,
1994.
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1 Recall that ...

• Let X = {a;i,... , a:„} be a finite collection of variables, each of which takes values in M.

• Let a; = (xi,... ,Xn) € E" = X denote a valuation for all 6 X.

Definition 1 (Clock Constraints) The set, of clock constraints of X, is a set of logical expressions
defined inductively by 6 G ^{X) if:

S := {xi < c)|(a;i > c)|-«5|5i A62

where Xi & X and c>0 is a rational number.

• To each 6 € we can associate a set:

5 = {x € X : S{x) = True}

• The original definition of a timed automaton, found in [1], is given below.

Definition 2 (Timed Automaton) A timed automaton is a hybrid automaton H = {Q, X, Init, f, I, E,
G, R), where

• Q is a set of discrete variables, Q = {^i,.. • ,9m};

• X = {xi,... ,x„}, X = 1";

• Init = {{gi} XInitgJ^i where Init,. € $(X) with x,- > 0;

• /(«. x) = (1,... , 1) for all (9, x);

• Inv(g) = X for all q € Q;

• £? C Q X Q;

• G{e) = Ge where Ge € $(X), for all e = (9,9') € E; and

• For all e, R{e, x) either leaves Xi unaffected or resets it to 0.

• Notice that R is single valued. Also, Xj will always be > 0 from the above definitions.

Example: As an example consider the timed automaton of Figure 1.
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Figure 1: Example of a timed automaton
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Figure 2: Example start of an execution of the timed automaton

• Q = {9}, Q = {91,92};

• A' = {a;i,a;2}, X = M2;

• Init = {(^1,0,0)};

• /(9,a;) = (1,1) for all {q,x);

• Inv(g) = for all g € Q;

• £? = {(gi, 92), (92,91)};

• G(gi,g2) = {x € : (a;i > 3) A(2:2 > 2)}, G(g2,gi) = {a; € : (ii < 1)};

• i2(gi,g2,a;) = {(0,2:2)}, Riqa.qux) = {(2:1,0)}

One possible start of an execution is shown in figure 2. Note that the system is non-deterministic.

1.1 Timed Automata and Transition Systems

• Consider a set of final states of the form F = {{gi} x where € $(X).

• A timed automaton together with a set of final states, F, can be viewed as a transition system, T = (5,
S, So, 5f), with:

- 5 = Q X X;

- S = E U{r}, where r is a sjrmbol denoting time passage;

- ((g,2:),e,(g',2:')) if e = (g,g') € E, Ge{,x) = True and x' € R{e,x).

- ((g,2:), r, (g'j x')) »if g = g', and there exists t > 0 such that x' = x + t(l,... ,1).

- So = Init; and,

- Sf = F.



2 Timed Automata are Bisimilar to Finite Systems

• First, we will show that without loss of generality, all constants can be assumed to be integers.

• Let T be the transition system defined by a timed automaton, H.

• Consider an arbitrary A > 0, rational.

• Let Hx denote the timed automaton obtained by replacing all constants, c, in fT by Ac.

• Let Tx denote the transition system associated with Hx-

Proposition 1 T and Tx are bisimilar.

Proof: Consider the relation (q^x) {q, A®), with C S x Sx' Note that, since A> 0, {xi < c) ^ (Arcf < Ac)
and (aji > c) (Ax, > Ac). Therefore:

(g,a;)€lnit ^ (9,Ax)€lnitA (1)
(g,x) e F ^ (g,Ax) € Fx (2)

{q,x)-^(q',x') (9, Ax)-2-^ (g'.Ax') (3)
(g,x)-^(g',x') ^ (g,Ax)-!^(g',Ax') (4)

For the discrete transition, (g,x) {q',x') if c = {q,q') € E, Ge{x) = True and x' € J?(e,x). Therefore,
(g.Ax) (g'.Ax'), since c = (g,g') € F, GexC^x) = True and Ax' € Rx{e,Xx). For the continuous transition,
recall that (g,x)(g',x') if g = g', and there exists t > 0 such that x' —x + t(l,... ,1). Therefore,
(g.Ax) (g'. Ax') since g = g' and 3t' > 0 : Ax' = Ax + t'(l,... ,1), where = Xt. u

• We can therefore assume all constants are integers. If they are not, we let A be a common multiple
of their denominators and consider the bisimilar system Tx. Recall that clock constraints require all
constants to be rational.

• Let Ci denote the largest constant with which Xj is compared.

• In the above example, ci = 3 and C2 = 2.

• Let [xij denote the integer part of Xj and (xj) denote the fractional part of Xf. In other words, Xj =
LxfJ + (xi), [xij € Z and {x») € [0,1).

• Consider the relation ~C Q x X with (g,x) (g',x') if:

1. g = g';

2. for all Xi, [xjj = [x^J or (xi > c,) A(xJ > Ci)

3. for all Xi,Xj with Xj < Ci and Xj < Cj

((Xi) < (Xj)) ((xJ) < (xJ))

4. for all Xi with Xi < Ci,

({xi) = 0)<^((xi) = 0)

Proposition 2 ~ ts an equivalence relation.

Proof: Probably part of homework 3! •
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Figure 3: Equivalence classes for the example

xl

• What do the equivalence classes look like?

• The equivalence classes are either open triangles, open line segments, open rectangles or points,

• For the example introduced above, they are shown in Figure 3.

• Notice that the number of classes is 2 x (12points + 301ines + ISopen sets). Quite a few, but definitely
finite!

Proposition 3 ^ is a bisimulation.

References
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1 Last time ...

• Introduced timed automata.

• Showed that timed automata can be viewed as transition systems.

• Showed that without loss of generality all constants can be considered as integers.

• Introduced an equivalence relation, '^CQxXxQxX with {q,x) ~ iq',x') iff:

1. q = q'',

2. for all Xi, [a;ij = or {xi > Cj) A(xj > c^)

3. for all Xi,Xj with Xi < c, and Xj < Cj

(te) < {Xj)) {{x[) < ix'j))

4. for all Xi with Xi < Ci,

((ii) = o)-s-((x;) = o)

• Here [a;ij denotes the integer part and {x<) the fractional part of Xi and Cj denotes the largest constant
with which Xi is compared in the guards, initial and final states of the timed automaton.

• In the equivalence classes of are open triangles, open rectangles, open line segments (parallel to
the axes and at 45 degrees), and points.

• For the timed automaton of Figure 1 the equivalence classes are shown in Figure 2.

2 Today ...

Proposition 1 ~ is a bisimulation.

Proof: We need to show:

1. Init is a union of equivalence classes.

2. F is a union of equivalence classes.

3. If P is an equivalence class and e € F, Pree(P) is a union of equivalence classes.
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Figure 2: Equivalence classes for the example

4. If F is an equivalence class, Prer(P) is a union of equivalence classes.

The proof will be somewhat informal.

xl :=0

xl<:l

Figure 1: Example of a timed automaton

x2'

q2

/ / /
/ / /

1 2 3

First, note that if 5 6

^= {a; € X : ^(x) = True}

xl

is "a union of equivalence classes" (for the X variables only). Recall that 6 can be written as the product
of unions and intersections of sets of the form:

{Xi > c},{x< < c},{Xi < c},{Xt > c},{Xi = c}

where c is an integer constant. All these sets are unions of equivalence classes for the X variables.

• This takes care of the requirements on Init and F.

• To deal with Pree(P), let:

P~^(c,P) = {(q,a:) € Q x X : 3(q',x') € P with e = {q,q'),x' € P(e,x)}

• Notice that:

Pre(g,g/)(P) = P-^(q,g',P) n ({q} x G{q,q'))

Proposition 2 IfP is an equivalence class, R~^{e,P) is a union of equivalence classes. HencePiedP)
is a union of equivalence classes.
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Easier to demonstrate by examples. For the timed automaton of Figure 1, consider the equivalence
classes Pi,... , P4 shown in Figure 3. Denote ei = (91,^2)je2 = (92,9i)- Notice that:

Free, (Pi)

Free, (Pi)

Free,(P2)

Free,(P2)

Free,(P3)

Frees(P3)

Freei (P4)

Frees (P4)

= Qi n ({92} X{xi < 1}) = 0
= 0,

= Q2 n ({52} X{xi < 1}) = Q2
= P~^((gi,g2),P3)n({9i} x G{qi,q2)) = 0n({gi} X{xi < IAX2 < 2}) = 0,
= 0

= {gi} X({a;i >0Al<a:2<2}n {a;i < 3 A2:2 < 2}) = {gi} x {0 < xi < 3 A1 < 2:2 < 2},

In all cases the result is a union of equivalence classes.

• Finally, notice that

Prer(P) = {(g,x) e Q XX : 3(g',2;') € P,f > 0 with g = g',2:'= 2; + t(l,... ,1)}

These are all points that if we move in the (1,... , 1) direction we will eventually reach P. If P is an
equivalence class, this set is also a union of equivalence classes.

• For example, in Figure 4, Fxer{P) = P UPi U P2 U P3 UP4 UP5

3 Complexity Estimates and Generalizations

• The above discussion indicates that reachability questions for timed automata can be auswered on a
finite state system, defined on the quotient space of the bisimulation (also known as the region graph).

• What is the "size" of this finite state system?

• For the example, the number of equivalence classes is 2(12points + 301ines + ISopen sets) = 120. Quite
a few!

• For an arbitrary system, one can expect up to 77i(n!)(2") OlLi(2ci + 2) discrete states.

• Of course, in general, one need not construct the entire region graph:
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Figure 4: Examples of Pier computation
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1. On the fly reachability: run the reachability algorithm (Lecture 12). Typically it will terminate,
without constructing the entire region graph.

2. Construct coarser bisimulations: run the bisimulation algorithm (Lecture 13). Typically the bisim-
ulation generated will have fewer equivalence classes than the region graph.

• Still the problem is PSPACE complete!

• The finite bisimulation result is preserved under some simple extensions:

1. I{q) = Ig for some Ig € <&(X).

2. f{q,x) = (All,... ,kn) for some rational A;i,... , A;„ and all {q,x).

3. R mapping equivalence classes to equivalence classes.

4 Rectangular Hybrid Automata

• The largest class of systems of this form that is known to be deddable is the class of initialized rectangular
automata.

• A set i? C 1." is called a rectangle ii R = nr=i ^ where Ri are intervals whose finite end points are
rational.

Definition 1 (Rectangular Automaton) A rectangular automaton is a hybrid automaton H = {Q,
X, Init, /, I, E, G, R), where

- Q is a set of discrete variables, Q = {gi,... ,gm};

- X = {xl,...,Xn},X = ^^;

- Init = XInit(g<) where Init(gi) is a rectangle;

~ fo''' oil {q^x), where F{q) is a rectangle;
- I{q) is a rectangle for all g € Q;

- jB C Q X Q;

- G{e) is a rectangle for all e = (g,g') € E; and
- For all e, R{e, x) either leaves Xi unaffected or resets to an arbitrary value in a rectangle.
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1 Initialized Rectangular Automata

• The largest class of systems of this form that is known to be decidable is the class of initialized rectangvlar
automata.

• A set i? C K" is called a rectangle if R = UiLi where Ri are intervals whose finite end points are
rational.

• Examples: Ri = (l,oo), R2 = [—3,3/4), R3 —{3}, etc.

Definition 1 (Rectangular Automaton) A rectangular automaton is a hybrid automaton H = {Q, X,
Init, /, I, E, G, R), where

• Q is a set of discrete variables, Q = {91, •. • , 9m};

• X = {xi,... ,Xn}, X = 1";

• Init = XInit(5i) where Init(gi) = Initi(gi) x ... x Init„(gi) is a rectangle;

• = ^{q) for all {q,x), where F{q) = Fi{q) x ...x Fn{q) is a rectangle;

• I{q) is a rectangle for ail q € Q;

• E C Q X Q;

• G{e) = Gi(e) X ... X Gn(e) is a rectangle for all e = (g, q') € E; and

• For all e, R{e,x) = Ri{e,x) x ... x Rn{e,x) where:

RiU x) = I
^ \ a fixed (independent of x) interval

Remarks:

• A differential inclusion is a generalization ofa differential equation. Let F 2®". An execution of
the differential inclusion:

X € F{x), x(0) = ro € R**

on [0,r] C M+ is a differentiable function x : [0,r] -* E" with x(0) = Xq such that for all t € [0,T]:

x{t) € F(a;(t))

Notice that differential inclusions are ''non-deterministic", in the sense that many executions may exist
for a single initial condition.



• Differential inclusions axe commonly used as:

1. Abstractions of differential equations, such as a;(t) = f{x) € F{x), for example for reachability or
viability computations [1, 2]. Infact one can show that the readable set ofa Lipschitz differential
equation over a finite time horizon can be approximated arbitrarily closely by the reach set of a
rectangular automaton [3].

2. Abstractions of control systems [1]:

with i;(t) e V(a;(t)) C E"*

is equivalent to:

X= F{x) = Uv6V(x){/(a;, v)}

In particular, a rectangular differential inclusion:

Xe Fi{q) X... XFniq) = [£i(9),!Fi(g)] x ... x [£„(g),F„(g)]

can be thought of as a trivial control system with n inputs:

vi

X = , Vie\FM,Fi{q)]

• There is no coupling between the continuous variables: rectcingles restrict each variable to an interval
which is independent of the values of the other variables.

• For timed automata, if coupling is introduced by allowing comparisons of the form Xi - Xj < c, for some
rational c in #(X), the finite bisimulation property is preserved. This is not the case for rectangular
hybrid automata.

• Init(g), F(g), /(?), G{e) are convex subsets of E".

• We will restrict attention to compact rectangles and trivial invariants (/(g) = X). Discussion holds in
general, but technical points are much more subtle.

Rectangular automata can also be thought of as transition systems. Given a rectangular automaton and a set
of final states of the form:

Final = {g,} x Final(gi)

where for all f, Final(gi) is a rectangle, consider the transition system T = (5, S, —5o, 5jp), with:

• 5 = Q X X;

• E = F U{r}, where r is a symbol denoting time passage;

• ((9)a?),e, (g',a;')) €—• if e = (g,g') € F, a; GG{e) and x' GR{e,x).

• if 9 = q', and either x = x' ot x £ /(g), x' G /(g) and there exists t > 0 such that
^ € F(g).

• Sq = Init; and,

• 5f = Final.

Definition 2 (Initialized Rectangular Automaton) A rectangular automaton is called initialized if for
all transitions e = (g, g') G F;

Fi{q)¥^Fi{q')=^Ri{e,x)^{xi}



2 Decidability Results

Theorem 1 The reachability problem for initialized rectangular automata is complete for PSPACE.

Implications:

• Good: Reachability is decidable, i.e. there exist algorithms that cem compute the set of reachable states
with a finite computation.

• Bad: The computation scales very badly.

It is noteworthy that F{q) 96 F(g') =$• Ri{q,q',x) = [l,w] but not Ri{q,q',x) = {xj}.

Proof: (Outline. For details see [4]. More digestible versions of the proof in [5, 6]). Introduce two new classes
of hybrid automata:

1. Singular automata: rectangular hybrid automata where F{q) is a singleton for all q.

2. Stop watch automata: singular automata with Fi(g) 6 {0,1} for all q and i.

Consider two additional types of relations between transition systems:

1. Forward simulation: a transition system T forward simulates a transition system T' if there exists a
relation r C S x. S' such that:

(a) if s' € Sq then there exists s £ So such that (5,s') € r.

(b) for all <7 € E, s'l, Sj € S' and si € 5 such that (si,Sj) € r, if 52 then there exists 52 € 5 such
that {82,82) e r and si $2-

2. Backward simulation: a transition system T backward simulates a transition system T' if there exists a
relation r CS x S' such that:

(a) if s' € Reach(r') then there exists s € Reach(T') such that (s, s') 6 r.

(b) if 5' e Sq, 8 e Reach(r) and (s, s') 6 r, then s € Sq.

(c) for all <7 € E, S2 € Reach(r') and 82 € Reach(r) such that (s2j^2) € r, if si s^ then there
exists Si e Reach(r) such that (si,si) € r and si S2.

If T forward simulates T' then every sequence accepted by T' is also accepted by T. The same is true for
backward simulation. Bisimulation is strictly stronger than forward and backward simulation: it is a forward
simulation of T' by T whose inverse relation is a forward simulation of T by T'.

Build up the proof out of a sequence of Lemmas:

Lemma 1 For every initialized rectangular automaton H there exists an initialized singular automaton Sn
such that Sh forward simulates H and H backward simulates Sh-

The construction doubles the number of continuous variables (for the compact case), but maintains the number
of discrete states. For each Xi introduce two variables U and Ui to keep track of lower and upper bounds on
Xi (Figure ??). For all q:

U=Fi{q), Ui = Fi{q)

Each guard G{e) = [Gi(e),Gi(c)] x ... x [G„(e),Gn(e)] is replaced by:

h < G'»(e) AUi > Gi(e)



^ ^<0

T

Figure 1: Replacing the differential inclusion by its upper and lower bound

a(e)

^e)

ui

^ Time of transition e

Figure 2: Shrinking the lower and upper bounds when a transition is taken

For the reset relations, if ili(e,x) = (Ri(e),Rt(e)] the new reset relation becomes:

1% —Rj(e), Uj —Rt(6)

If Ri{e,x) = {xi}, the new reset relation becomes:

{h < ^t(c) h '•= G.ii^)) A(ui > Gi{e) ^ Ui := Gi{e))

(Figure ??) otherwise, Ui or k remain constant.

Lemma 2 For every singvUar automaton S, there exists a hisimilar stopwatch automaton Ws-

Scale the continuous variables.

Lemma 3 For every stopwatch automaton W, there exists a hisimilar timed automaton Tw-

Add new discrete states to keep track of the value of variables whose rates become 0.

Overall, for every hybrid automaton H thereexists a timed automaton Tws„ that forward simulates H and
is backward simulated by H (hence accepts the same sequences a&H). •



3 Undecidability Results

The class of initialized rectangular automata is, in a sense, at the boundary ofthe class ofhybrid systems for
which reachability is decidable. The problem becomes undecidable if:

1. we allow comparisons between Xi with different rates,

2. we allow non-initialized variables,

3. we allow assignment or continuous variables Xi = Xj,

The rest of the discussion elaboratessomewhat on these points. For details and proofs please refer to [4].

A variable Xi is said to have slopes {ki,...ki} if Fi{q) 6 {[A:i,A;i],... ,[A;/,A:/]} A rectangular automaton is
simple if:

1. All but one Xi have slope 1.

2. Init = {qi} x (0,... , 0) for some qi.

3. If Ri{e,x) is an interval it is of the form [0,0].

4. I{q) is compact and constant.

5. For all q, F{q) is compact.

6. For all e, G{e) is compact.

Theorem 2 For every two rational k\ and k2, the reachability problem is undecidable for simple rectangular
automata with a variable with slopes ki and k2'

An automaton with assignments allows the value of one continuous variable to be assigned to another during
a transition.

Theorem 3 For every rational fc ^ 1, the reachability problem is undecidable for simple rectangular automata
with assignments and a variable with slope k.

An automaton with triangular guards, invariants and resets allows the values of two continuous variables to
be compared in the guards, invariants and resets respectively.

Theorem 4 For every rational k ^ 1, the reachabilityproblem is undecidable for simple rectangular automata
with triangular guards, invariants or resets and a variable with slope k.

An automaton with triangular flow allows the slopes of continuous variables to be compared in F{q). An
automaton is called three-simple if all but 3 of the Xi have slope 1 and it satisfies all the remaining constraints
of a simple automaton.

Theorem 5 The reachability problem is undecidable for three-simple automata with constant triangular flow.
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1 The main idea

• Steer an automaton using input variables, so that the closed loop system exhibits certain desirable
characteristics.

• Characteristics of interest:

1. Stability

2. Optimality

3. Sequence properties

• Here we deal primarily with sequence properties, and in particular safety properties.

• Need inputs to define control problems. Return to definition of open hybrid automata £md introduce
some minor modifications.

—Assume that the full state is measurable. To simplify the notation drop the output variables and
the output map h and treat state variables as outputs.

- Introduce state dependent input constraints.

2 The plant

The plant is modeled by a hybrid automaton of the form H = {Q, X, V, Init, /, I, E, G, R, ^), where

Q is a finite collection of discrete state variables;

X is a finite collection of continuous state variables;

y is a finite collection of input variables. We assume V = Fd U T^, where Vd contains discrete and Vc
contains continuous variables.

Init C Q X X is a set of initial states;

/:QxXxV-+E'* is an input dependent vector field;

/: Q ^ 2*^*^ assigns to each q € Q an input dependent invariant set;

i? C Q X Q is a collection of discrete transitions;

• G :E 2*^^ assigns to eache = {q, g') e E a guard;



• R : E X"K XV 2^ assigns to ea^ e = {q, g') 6 £?, re GX and v € V a reset relation; and,

• : Q XX —» 2^ assigns to each state a set of admissible inputs.

Remarks:

1. Case where full state is not measurable is much more challenging.

2. Formally defining composition if the full state is not measurable and state dependent input constraints
are allowed is also challenging.

The execution can be defined more or less as before: a collection x = with t e T = {[Ti,r/]}^i,
g : r -♦ Q, rr : r —• X, and v : r —• V satisfying:

• Initial condition: (g(To),x(ro)) € Init;

• Continuousevolution: for all i with n < r/, g, x, v and y are continuousover [ri, t-] and for all t 6 [n,r-),
(rc(f),u(t)) € /(g(t)) and £x{t) = f {q{t),x(t),v{t))\

• Discrete Evolution: for all i, either (g(ri),rc(r/)) = (g(ri+i),a:(ri+i)), or a = (g(r/),g(ri+i)) € E,
(a;(rf),v(r[)) € G(e<), and rc(ri+i) € R(ei,rr(r,0,v(r,0); and,

• Input Evolution: for all t € r, v{t) = 0(g(f),rc(t)).

Remarks:

1. To prevent technical problems we assume that ^(g,rc) 7^ 0 and / is Lipschitz in x and continuous in v.
Notice that if 0(g,rc) = 0 execution can not be defined beyond {q,x).

2. We denote by H the set of all executions of fT, by H* the set of all finite executions of H and by X* the
set of all finite execution, projected only on the state vsuiables.

3. Given x = Qi € H and t Gr we use x it to denote the finite prefix of x ending at t.

3 Specifications

• The control objective is encoded by means of a property of the system. Here we restrict out attention
to safety properties.

• Recall that the property {Q UX, DF) (always F) with F C Q x X is defined as:

= Tru®iff Vt e r, (g(t),a;(t)) € F

• Recall that this is a safety property.

• Given a plant hybrid automaton and a property of the form {Q U X, OF), our goal is to choose the
valuations of the input variables so that all executions of the system satisfy the property.

4 Controls and Disturbances & Controllers

• The inputs are chosen by a "controller".

• Typically some input variables can be controlled (i.e. their valuations can be assigned at will by the
controller), while others can not be controlled (their valuations are chosen by the "environment").



• Uncontrollable variables (also known as disturbances) typically represent:

1. Noise in the sensors, numerical computations, etc.

2. External forces, wind for the aircraft, etc.

3. Unmodeled dynamics

4. Uncertainty about the actions of other agents (in examplessuch as air traffic control and highway
systems).

• In the approach presented here the behavior of the uncontrolled input variables is assumed to be ad
versarial. We would like the controllable inputs to guarantee the specification despite the action of the
disturbances.

• In some cases this approach is too conservative. Attempts to relax it (by introducing probabilities for
example axe underway).

• More formally, consider a plant hybrid automaton H and a safety property P = (Q UX, DP).

• Assume the input variables of H are partitioned into controls^ U and disturbances, D:

V = UUD

• Define a controller as a map from state executions to sets of allowable inputs:

C '.X* ^2^

• The interpretation is that given a finite execution, the controller restricts the valuations of the control
input variables that are allowed at the final state.

• The set of closed loop causal executions is defined as:

Wc = {(T,q,x,{u,d)) € H\it € r,u(t) € C((r,g,a;) It)}

• Clearly, He Q H

• We say C satisfies property P if:

•P(x) = True for all x € He
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1 Overview

A control problem involves:

1. A plant

2. A specification

3. A controller

Controller synthesis involves coming up with a methodology for designing controllers that meet the specifica
tion. The discussion in this lecture is based on [1].

Recall that the plant is modeled by an open hybrid automaton, H = {Q, X,V, Init, /, /, E, G, R,<i>), where

Q is a finite collection of discrete state variables;

X is a finite collection of continuous state variables;

V is a finite collection of input variables. We assume V = Vb UVb, where Vd contains discrete and Vc
contains continuous variables.

Init C Q X X is a set of initial states;

/:QxXxV—•E^isan input dependent vector field;

I :Q—* 2*^^ assigns to each g € Q an input dependent invariant set;

£? C Q X Q is a collection of discrete transitions;

G : E 2^^^ assigns to each e = (g,q') € E a. guard;

R:E xXxY ^2^ assigns to each e = (g,gO a;€Xandu6Va reset relation; and,

<f>:QxX-* 2^ assigns to each state a set of admissible inputs.

To avoid technical difficulties we introduce the additional assumption that (f>{q, x) 0 and / is Lipschitz in x
and continuous in v.

Also recall that the control objective is assumed to be encoded by means of a safety property {Q UX, OF)
(always F) with F C Q x X.

Finally recall that we assume the input variables of H are partitioned into controls^ U and disturbanceSf D:
V = U\JD

The disturbances represent uncontrolled inputs such as noise, unmodeled djmamics, the actions of other
subsystems (in a distributed system), etc.



2 Controllers

A controller can be defined as a map from state executions to sets of allowable inputs:

a : A" 2"

The interpretation is that given a finite execution, the controller restricts the valuations of the control input
variables that are allowed at the final state. With this in mind we can define the set of closed loop ca/asal
executions as:

= {{r,q,x,{u,d)) € € T,u{t) € C((r,g,a;) it)}

Clearly, He ^ H. We say C satisfies property {Q UX, DF) if:

•F(x) = True for all x € Tfc

To prevent technical problems, assume that for all ({[Ti,rt]}^o»9>®»^) € 0 # C{x) C {rk))\u.
This ensures that the controller will not attempt to "cheat" by stalling the execution. This is not enough
however. The controller may still be able to cheat by:

1. Blocking the execution at a state (5,0:) by applying u £ <f>iq,x)\u such that for all d € <l>{q^x)\D
{x,(u, d)) ^ I{q) and for all e € F either (a;, (ti, d)) ^ G(e) or J?(e,a;, (u, d)) = 0.

2. Forcing the execution to be Zeno (take infinite number of transitions in a finite amount of time). Recall
the water tanks example.

Both of these caveats have to do with modeling over-abstraction: the model of the plant should be such that
the controller is not able to cheat in this way. The first loophole can be eliminated by fairly simple assumptions
on the plant, similar to the non-blocking assumptions for autonomous hybrid automata. The second loophole
is more difficult to deal with. Typically one assumes that all loops among discrete states require a non zero
amount of time. This assumption may be somewhat restrictive and is difficult to enforce by manipulating the
primitives of the model. Here we will overlook these technical problems.

3 Basic Controller Properties

Given a plant hybrid automaton and a property our goal is to find a controller that satisfies the property.

Memoryless Controllers

A controller, C, is called memoryless (or sometimes pure feedback) if for all x> x' € ending at the same
state, C(x) = C'(x')- -A- memoryless controllers can be characterized by a feedback map:

p : Q XX 2^

To prevent technical problems we again restrict our attention to memoryless controllers such that for all
(g,a;) € Q X X 0 # 9{q^x) C <f>{q,x). Given a plant, H, and a memoryless controller, p, we can defined the
closed loopopen hybrid automaton, Hg = (Q, X, V, Init, /, /, F, G, R, ^p), where ^p(g,x) = 0(q,a;) np(q, x).
It is easy to show that:

Proposition 1 If C is memoryless controller with feedback map g, then Hg = He-

This property allows one to nest controller synthesis problems, provided they can be solved by memoryless
controllers. In general, is unclear whether the set of closed loop causal executions is the set of executions of
some hybrid automaton.

For properties of the form {QUX, CF), it turns out that it it suffices to look for a solution among memoryless
controllers.



Proposition 2 A controller that satisfies property {Q UX, DF) exists if and only if a memoryless controller
that satisfies {Q UX, OF) exists.

Proof: The if part is obvious. For the only if part, assume that there exists a controller C that solves the
synthesis problem (ff, DF), but there does not exist a feedback controller that solves the synthesis problem.
Therefore, there must exist (g,x) € F and two different finite executions xi = € He and
X2 = (r2,92,2:2,(^2,^2)) € He ending in {q,x) such that C(9i,a;i) 7^ ^(92,2:2). Moreover, the "information"
about whether (9,x) was reached via xi or whether it was reached via X2 must be essential for subsequent
control decisions.

More formally, assume {q,x) is reached via X2, and let x' denote a subsequent execution, that is assume
that the concatenation X2X' belongs to H. Note that, since xi also ends in (9,2;), xix! also belongs to H.
Let X2X' = (72,92.4.(^2.4)) and xix' = (7i,9i.4. (4.4))- Assume that for all t € 4 \ r2, a control
u{t) € C((9i,4) it) is applied (instead of a control u{t) € C((^,a;2) it)). Then, as the faot that (9,x)
was reaohed via X2 is essential, there must exist a subsequent execution x! such that X2X' € H (in fact
X2X' ^H\ He) and OF{x2X') = False. This implies that there exists t € such that (4(t).2:2(t)) € F®.
Since C is assumed to solve the synthesis problem and X2 € He, ClF(x2) = True, therefore t € 4 \ r2.

However, sincefor all t € 4 \ 7*2, t^it) € <^((91,4) i<). and (4,9i,4.(4.4)) ^ ^ave that xix' €
But the above discussion indicates that there exists t e 4 (ia fact t 6 4 \ t"!) such that (9i(t),x'i(t)) € F*^.
This contradicts the assumption that C solves the synthesis problem {H, OF). m

Motivated by Proposition 2, we restrict our attention to feedback controllers. For brevity, we refer to the
problem of finding a controller for a plant H that satisfies a specification {Q U X, OF) as the controller
synthesis problem (Jif, OF).

Controlled Invariant Sets

Typically, for a controller synthesis problem one treats the set of initial conditions, Init, as variable and
attempts to establish the largest set of states for which there exists a controller that satisfies the specification.
This set of initial conditions turns out to be a "controlled invariant set".

Definition 1 (Controlled Invariant) A set W C Q x X is called controlled invariant if there exists a
controller that solves the controller synthesis problem {H', OW) when H' is identical to H except for Init'
which is eguai to W.

A controlled invariant set W is called maximal if it is not a proper subset of another controlled invariant
set. We say a controller renders W invariant if it solves the controller synthesis problem (H', OW) where
Init' = W.

Proposition 3 A controller that solves the synthesis problem {H, OF) exists if and only if there exists a
unique maximal controlled invariant W C Q x X such that Init C W C F.

Proof: H there exists any control invariant W C F (in particular, if there exists a unique maximal one) then,
by definition, the synthesis problem (J?, DF) can be solved for I = W.

For the only if part, if the synthesis problem can be solved for some Init, there exists a set Init and a feedback
controller g such that for all d and for all (90,2:0) € Init the execution {T,q,x, (u,d)) with u{t) € g(q(t),x(t))
for all t € r satisfies (q(t),x(t)) € F for all t € r. Consider the set:

W=U U_ U(4f).a:(i))
(«Oi®o)€init

Then clearly W C F. Moreover, for any (90,2:0) € W consider the execution (T,q,x,(u,d)) with arbitrary
d € 2? and u(t) € g(q(t),x(t)). Then, by definition of W, (q(t),x(t)) 6 W for all t € r. Therefore, controller g
renders the set W invariant.



Having established the existence of controlled invariant subsets of F, consider now two such sets W\CF and
W2 C F. We show that their union is also a controlled invariant subset of F. Clearly Wi U W2 C F. For
z = 1,2, as Wi is controlled invariant, there exists a feedback controller gi that solves the controller synthesis
problem (H, •Wi), with Init = Wi. Consider the feedback controller g with:

orfl = if(g,a;)eWi
1 92{q,x) otherwise

Consider an arbitrary {qo,xo) € Wi UW2. Then either {qo,xo) 6 Wi or {qo,xo) € (Wi UW2) \ Wi C W2. In
the first case, all executions are guaranteed to satisfy GWi as renders Wi invariant. For the second case,
consider an arbitrary execution x = (u,d)) with u(t) € 9(q(t),x(t)) for all f 6 r. Since g2 solves the
controller sjmthesis problem (H,GW2) with Init = W2, either G(W2 \ Wi)(x) = True or (g,a;) € W2 \ Wi
until (q,x) € Wi, which brings us back to the first case. Hence, g solves the controller synthesis problem
{H, u W2)) with Init = Wi U W2, and the set Wi U W2 is controlled invariant.

Summarizing, the class of controlled invariant subsets of F is closed under union. Hence, it possesses a unique
maximal element. •

Least Restrictive Controllers

We would like to derive a memoryless controller that solves the problem while imposing minimal restrictions
on the controls it allows. There are at least two reasons why sudi a controller is desirable:

1. As discussed above, safety properties can sometimes be satisfied using trivial controllers (that cause
deadlocks or zeno executions for example). Imposing as few restrictions as possible allows us to find a
meaningful controller whenever possible.

2. In many cases multiple, prioritized specifications are given for a particular problem. Imposing fewer
restrictions on the controls when designing controllers for higher priority specifications allows us greater
fiexibility when trying to satisfy lower priority specifications.

Memoryless controllers that solve the synthesis problem (H, GF) can be partially ordered by the relation:

9i-<92^ ^i(ic) Q 92{x) for all r € X

Definition 2 A memoryless controller that solves {H, GF) is called least restrictive if it is maximal among
the controllers that solve {H, GF).

There is a conjecture that for every controller synthesis problem (H, GF) either there is no solution or there
exists a unique least restrictive controller that solves the problem. As of now there is no proof of this fact
however.

Some Remarks on '^Implementation"

The notion of a controller introduced above may be inadequate when it comes to implementation. For one
thing, the set valued map g allows non-deterministic choices of control inputs. Since in practice only one input
can be applied to the system at any time, this nondeterminism has to somehow be resolved when it comes
time to implement such a controller. The set valued map can in this sense be thought of as a family of single
valued controllers; implementation involves choosing one controller from this family.

Normally, one would "implement" a controller by another hybrid automaton, which, when composed with the
plant automaton yields the desired behavior. To do this one would need to introduce output variables to the
hybrid automaton and define formal semantics for composition, as in Lecture 8. The process is slightly more



complicated for the models considered here because of the presence of the state dependent input constraints,
encoded by <f).

We assume that the entire state is available to the controller. In general this will not be the case. If a
controller is to be implemented by a hybrid automaton, the information the controller has about the plant
is obtained through the valuations of the output variables of the plant, which are not necessarily in one to
one correspondence with the valuations of the state variables. The controller synthesis problem under partial
observation (output feedback) is much more complicated than the full observation (state feedback) problem
addressed here (partly because it makes it harder to define composition as discussed above).
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1 Game Theoretic Controller Synthesis

To guarantee that a safety specification is met despite the action of the disturbanceswecast the design problem
as a zero sum dynamic game. The two players in the game axe the control u and the disturbance d and they
compete over cost a function that encodes the safety specification. We seek the best possible control action
and the worst possible disturbance. Note that if the specifications can be met for this pair then they can also
be met for any other choice of the disturbance.

Consider a controller synthesis problem {H^OF). The game can be cast in the standard min-max setting
by introducing a cost function induced by the discrete metric. The discrete metric is simply a map m :
(Q X X) X (Q XX) —» R defined by:

r»((n rr ^ if (?!, ®l) = (ft, 2^2)

It is easy to check that m satisfies the axioms of a metric. The metric induces a map on subsets of Q x X by
defining:

: 2Qxx X R

(WuWi) ^ min ^ m((9i,a;i),(g2,®2))

In other words, M(Wi, W2) = 0 if DW2 # 0 and JW(Wi, W2) = 1 if n W2 = 0.

Consider an execution, x = (w,d)), of the hybrid automaton H starting at an initial state (go,a?o) S I.
Define the cost of this execution by:

J:n —^ R

X minM({(g(t),a;(f))},F'=)
tcT

Note that J can only take on two values, J{x) € {0,1}. Therefore, J implicitly defines a property of the
hybrid automaton. In fact:

Proposition 1 J{x) = 1 «/ and only if •F(x) = ?Vt4C.

Intuitively, u tries to maximize the cost function J (prevent the state from leaving F). Because we have no
control over the aotions of d, we assume that it tries to minimize J (force the state to leave F). As we would
like to establish conditions under which OF is guaranteed to be satisfied, we bias the game in favor of the
disturbance whenever there is ambiguity over how the game will proceed. For example, multiple executions
may be possible for the same initial condition, control and disturbance trajectories, due to nondeterminism.
Moreover, the order in which the two players play in the game may be important, if one player is assumed to



have access to the decision of the other player before choosing his/her action. In both these caseswe would
like to give the disturbance the "benefit of the doubt".

Consider the max-min solution :

^"'(9o,a;o) =maxmin( min J(x)) (1)
9 d \x=(T,q,x,{u,d))eng J

Motivated by Proposition 1 we restrict our attention to feedback strategies for u in equation (1). Following
the standard game theoretic convention, the "player" who appears first in the right hand side of equation (1)
(the controllerg) is also assumed to play first. The playerwho appears second(the disturbance d) is assumed
to have access to the strategy of the first player, when called upon to make his/her decision. The minimum
over X removes all nondeterminism. Therefore, provided a solution to this equation can be found, J* is a well
defined function of the initial state (go>aJo)- In addition, the minimum over x implicitly restricts attention to
control and disturbance trajectories that satisfy the state based input constraint <f>.

Using J* we define a set W* C Q x X by:

W* = {(go,xo) € Q XX I J'(qo,xo) = 1} (2)

Proposition 2 W is the maximal controlled invariant subset of F.

Proof: We first show W* is controlled invariant. Assume for the sake of contradiction that it is not. Then

for all g there exists an (qc^co) € W*, a d, a x = (r',g,a;, (u,d)) € Hg and a t € r with (q(t),a:(t)) ^ W*. By
Proposition 1, J(x) = 0, which, by equation (1), implies that J*{qQ,XQ) —0. This contradicts the assumption
that (go>aJo) € W*.

Next we show that W* is maximal. Assume for the sake of contradiction that it is not, that is there exists
another controlled invariant W with W* CW CF. Then, by definition, there exists a controller g such that
Hg satisfies DF with / = W. In other words, for all (go>a^o) € W, for all d and for all x = (t, q,x, (u, d)) € Hg,

= True, or, equivalently, J(x) = 1- But, from equation (1) this would imply that j"(go>a^o) = 1- This
contradicts the assumption that W* C W. •

If a solution to equation 1 can be computed, then there exists a feedback controller (namely one that achieves
the maximum) that renders W* invariant. We would like to find a least restrictive such controller. Our ability
to solve the synthesis problem using this technique hinges on finding a solution to equation 1. In some cases
this can be done by brute force; this typically involves guessing a controller and showing that it achieves the
maximum. More systematically, this can be done using optimal control techniques, in particular dynamic
programming.

2 Example: The Steam Boiler

Recall the steam boiler problem from Lecture 8 (Figure 1). The problem was introduced first in [1, 2]. The
model presented here is taken from [3]. The controller synthesis for this model can be found in [4]. The
continuous d3mamics of the boiling process are summarized by the differential equations:

w = Pi+p2—r

f = d

The dynamics of pump i are summarized by the open hybrid automaton of Figiire 2. Notice that pi is both
an output variable of the pump and an input variable of the boiling process. For a formal definition of the
model (with slight differences in the notation) please refer to Lecture 8.

The composite automaton has 4 continuous, real valued state variables:

X= {w,r,Ti,T2) €



OFF

Ti = 0

pi=0
ui=0

Ti:=0

ci=0

P2

m

Figure 1: The Steam Boiler

i:=i

ON

Ti=l

pi=H
ui=l

ui=0

G0ING_0^

fi=l
pi=0

Ti<TiAui=l

Figure 2: The pump hybrid automaton

9 discrete states:

q G{{OFF, OFF),{OFF, GOJNG.ON),{ON, ON)}

2 discrete input variables:

(1*1,^2) € {0,1} X{0,1} = U

and one continuous input variable:

d€[-Di,i?2] = D

As the notation suggests, ui and U2 will play the role of controls and d will play the role of the disturbance.
The additional requirement that r € [0,H] can be encoded by a state dependent input constraint:

rUx[0,T>2] ifr<0
it) = \ U X D if r € (0, i2)

( U X\—Di, o] ifr >

Proposition 3 If Init C Q x Mx [0,i2] x , then for all x = (a <1^ >̂ 2,d) and for all t Et, r(f) € [0, H].

Our goal is to design a controller that keeps the water level in a given range, [Mi,M2], with 0 < Mi < M2].
This requirement can easily be encoded by a safety property {Q UX, DF) with

F = Qx[Mi,M2]xR3



We will try to achieve this goal by treating the situation as a game between (^1,^2) and d over the cost
function J. Recall that this involves solving the equation:

J*(go>aJo) = maxmin f min J(y) j
d \x=(r,q,x,{u,d))€H„ )

Fortunately, for this example, the equation simplihes considerably.

First, notice that the steam boiler system is deterministic, in the sense that for each initial state and each
input sequence consistent with 0 the automaton accepts a unique execution. In this case, we can represent
an execution more compactly by ((go,a?o)» (wi,U2),d) with the interpretation that (tti,U2) and d represent the
entire sequence for these variables. Moreover, if the memoryless controller we pick is single valued, this implies
we need not worry about the innermost minimization.

Next notice that J can be encoded by means of two real valued cost functions:

J\ {x^, ui, ^2, d) = infw{t) and J2(x®, ui, U2, d) = —sup wit) (3)
<>0

Clearly:

J = 1 ^ (Ji > Ml) A(J2 > -M2)

The problem of finding a solution to the game over the discrete cost function (known as qualitative game or
game of kind) reduces to finding solutions to two real valued games (known as quantitative games or games
of degree). Even though there is no obvious benefit to doing this, it allows us to use tools from continuous
optimal control to address the problem.

Start with the game over Ji. Guess a possible solution:

Uiiq, x) =lfor all (g, x), and d'iq, x) =| if r=R
Notice that both players resort to a feedback strategy (a trivial one).

Lemma 1 iui,U2,d*) is globally a saddle solution for the game between {ui,U2) and d over Ji.

Proof: See [4]. •

A saddle solution is a solution to equation (1) for which the order in which the players make their decisions
turns out to be unimportant. In other words, a solution for which for all (q, x):

Ji(g,x) = max minJi((g,x),(ui,U2),d) = inin max Ji((5,x),(ui,U2),d)
(ui,U2) a d (ui,U2}

Or, in other words, a solution for which for all (g,x),ui,U2 smd d:

di((g>3r),(ui, 1^2),d ) < di((g,x), (uj^,U2),d ) < di((g,x), (uj^,U2),d)

The last definition is usually somewhat easier to to work with. It is in fact used to prove the lemma.

The saddle cost:

di'(g,x) = Ji((g,x),(uJ,'u2),d*)

Can be computed in closed form. This allows us then to compute the set of states for which there exists a
control that for all actions of the disturbance prevents draining. This set turns out to be of the form:

W; = {(g,x) : Ji'(g,x)>Mi} = {(g,x) : w>w{r,TuT2))

Two level sets of this function are shown in Figure 3.

The expression for J* also allows us to compute the least restrictive controller that renders the set Wj
invariant. It turns out to be unique:



20>

:• 12=0
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Figure 3: Lower limit on w to avoid draining

Lemma 2 The feedback controllergl given by:

wi € {0,1} and U2 € {0,1} if \w > w{r,0,0)] V[u; < w{t,Ti,72)]
tti = 1 and U2 € {0,1} j/tD(r,0,0) >w> 'w{r,Ti,0)

^*1 € (0,1} and ii2 = 1 «/wir, 0,0) >w> w{r, 0,72)
= 1 and U2 = l ifw = w{t,T\,T2)

is the unique, least restrictive, non-blocking, feedback controller that renders Wf* invariant.

Proof: See [4]. •

Note that the first term applies to states in the interior of the safe set {vu > w(r, 0,0)) as well as all the states
outside the safe set (w < w(r,Ti,T2)). The expression for w (see [4]) suggests that w is monotone in 7i and
72- Therefore, the condition on the last case is enabled if and only if all other conditions fail. The two middle
conditions may overlap, however. Thereforethere is some nondeterminism in the choice of safe controls (some
states may be safe with either one or the other pump on, but not neither).
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1 Geune Theoretic Controller Synthesis

To guarantee that a safety specification ismetdespite theaction ofthedisturbances we cast thedesign problem
as a zerosum dynamic game. The two players in the gameare the control u and the disturbance d and they
compete over cost a function that encodes the safety specification. We seek the best possible control action
and the worst possible disturbance. Note that if the specifications can be met for this pair then they can also
be met for any other choice of the disturbance.

Consider a controller synthesis problem (JT, DF). The game can be cast in the standard min-max setting
by introducing a cost function induced by the discrete metric. The discrete metric is simply a map m :
(Q X X) X (Q XX) —> E defined by:

^((n ^\(n ^\\-i ® = (92,2:2)

It is easy to check that m satisfies the axiomsof a metric. The metric induces a map on subsets of Q x X by
defining:

M : 2^^"* X 2^"^^ —^ E

(WuWb) 1—^ min ^ m((gi,a:i),(92,2:2))
((®i.«i).(92.®2))€Wix W2

In other words, M(Wi, W2) = 0 if DW2 # 0 and M(Wi, W2) = 1 if Wi n W2 = 0.

Consideran execution, x —(^,9,2:, (tt,d)), of the hybrid automaton H starting at an initial state (90,2:0) € I.
Define the cost of this execution by:

J:n —> E

X t—^ ^M({(g(t),a:(t))},F'')

Note that J can only take on two values, J(x) € {0,1}. Therefore, J implicitly defines a property of the
hybrid automaton. In fact:

Proposition 1 J(x) = 1 i/ o.nd only if •F(x) = True.

Intuitively, u tries to maximize the cost function J (prevent the state from leaving F). Because we have no
control over the actions of d, we assume that it tries to minimize J (force the state to leave F). As we would
like to establish conditions under which DF is guaranteed to be satisfied, we bias the game in favor of the
disturbance whenever there is ambiguity over how the game will proceed. For example, multiple executions
may be possible for the same initial condition, control and disturbance trajectories, due to nondeterminism.
Moreover, the order in which the two players play in the game may be important, if one player is assumed to



have access to the decision of the other player before choosing his/her action. In both these cases we would
like to give the disturbance the "benefit of the doubt".

Consider the max-min solution :

J*(go5aJo) = maxmin ( min «/(v)) (1)
9 d \x=(r,q,x,M)€n,

Motivated by Proposition 1 we restrict our attention to feedback strategies for u in equation (1). Following
the standard game theoretic convention, the "player" who appears first in the right hand side ofequation (1)
(the controller g) is also assumed to play first. The player who appears second (the disturbance d) is assumed
to have access to the strategy of the first player, when called upon to make his/her decision. The TniniTnuTn
over X removes all nondeterminism. Therefore, provided a solution to this equation can be found, J* is a well
defined function of the initial state (go^^o)* In addition, the minimum over x implicitly restricts attention to
control and disturbance trajectories that satisfy the state based input constraint <f>.

Using J* we define a set W* C Q x X by:

W* = {(go,xo) € Q XX I r(go,xo) = 1} (2)

Proposition 2 W* is the maximal controlled invariant subset of F.

Proof: We first show W* is controlled invariant. Assume for the sake of contradiction that it is not. Then
for all g there exists an (go, iCo) € W*, a d, a x = (t, g,x, {u, d)) e Hg and a t € r with (g(t),a;(t)) ^W. By
Proposition 1, J(x) = 0, which, by equation (1), implies that J*(go,a;o) = 0. This contradicts the assumption
that (go,a;o) € W*.

Next we show that W* is maximal. Assume for the sake of contradiction that it is not, that is there exists
another controlled invariant W with W* C.W Q F. Then, by definition, there exists a controller g such that
Hg satisfies nF with / = W. In other words, forall (go,xq) € W, forall d and forall x = (t, g,x, (u,d)) € Hg,
•F(x) = True, or, equivalently, J(x) = 1. But, fi:om equation (1) this would imply that J*(go,iCo) = 1- This
contradicts the assumption that W* CW. •

If a solution to equation 1 can be computed, then there exists a feedback controller (namely one that achieves
the maximum) that renders W* invariant. Wewould like to find a least restrictive such controller. Our ability
to solve the synthesis problem using this technique hinges on finding a solution to equation 1. In some cases
this can be done by brute force; this typically involves guessing a controller and showing that it achieves the
maximum- More systematically, this can be done using optimal control techniques, in particular dynamic
programming.

2 Example: The Steam Boiler

Recall the steam boiler problem from Lecture 8 (Figure 1). The problem was introduced first in [1, 2]. The
model presented here is taken from [3]. The controller synthesis for this model can be found in [4]. The
continuous dynamics of the boiling process are summarized by the differential equations:

d) = Pi+P2—r

f = d

The dynamics of pump i are summarized by the open hybrid automaton of Figure 2. Notice that pi is both
an output variable of the pump and an input variable of the boiling process. For a formal definition of the
model (with slight differences in the notation) please refer to Lecture 8.

The composite automaton has 4 continuous, real valued state variables:

X= {w,r,Ti,T2) e



9 discrete states:

OFF

Ti = 0

pi=0
ui=0

Ti:=0

ci=0

m

Figure 1: The Steam Boiler

Ti:=l

ON

Ti=l

pi=ft
m=l

ui=0

Ti>TiAui=l

Figure 2: The pump hybrid automaton

q e {{OFF, OFF), {OFF, GOING.ON), ...,{0N, ON))

(uijUa) € {0,1} X{0,1} = U

2 discrete input variables:

and one continuous input variable:

d G [—— D

As the notation suggests, ui and U2 will play the role of controls and d will play the role of the disturbance.
The additional requirement that r € [0,i?] can be encoded by a state dependent input constraint:{Ux[0,jD2] ifr<0

U X D if r G (0, jR)
U X [—jDijO] if r > jR

Proposition 3 If Init C Q x ffi x [0, jR) x , then for allx = (t, g, a?, ui, U2, d) and for allt€T, r{t) G[0, ii].

Our goal is to design a controller that keeps the water level in a given range, [Mi,Ma], with 0 < Mi < Ma].
This requirement can easily be encoded by a safety property {QUX, DF) with

F = Qx[Mi,Ma]x]R®



We will try to achieve this goal by treating the situation as a game between (ui,U2) and d over the cost
function J. Recall that this involves solving the equation:

J''iQo,xo) = maxmin ( min J(y) )
3 d \x=(T,g,x,(u,d))€'Hfl /

Fortunately, for this example, the equation simplifies considerably.

First, notice that the steam boiler system is deterministic, in the sense that for each initial state and each
input sequence consistent with (p the automaton accepts a unique execution. In this case, we can represent
an execution more compactlyby ((go,iCo),(ui,U2)»<f) with the interpretation that (^1,^2) and d representthe
entire sequence for these variables. Moreover, if the memoryless controller we pick is single valued, this implies
we need not worry about the innermost minimization.

Next notice that J can be encoded by means of two real valued cost functions:

Ji(a:°,ui,U2,d) = inf iy(t) and J2{x^,ui,U2,d) =-s\ii>w{t) (3)
<^0 i>0

Clearly:

J = 1 ^ (Ji > Ml) A(J2 > -M2)

The problem of finding a solution to the game over the discrete cost function (known as qualitative game or
game of kind) reduces to finding solutions to two real valued games (known as quantitative games or games
of degree). Even though there is no obvious benefit to doing this, it allows us to use tools from continuous
optimal control to address the problem.

Start with the game over Ji. Guess a possible solution:

u*(g,x) =1for all {q,x), and d*{q,x) =|
Notice that both players resort to a feedback strategy (a trivial one).

Lemma 1 {ul,U2,d*) is globally a saddle solutionfor the game between (ui,U2) and d over Ji.

Proof: See [4]. •

A saddle solution is a solution to equation (1) for which the order in which the players malce their decisions
turns out to be unimportant. In other words, a solution for which for all (g,x):

Ji"(g,x)= max minJi((g,x),(111,112),d) = min max Ji((g,x),(iti,it2),d)
(ui,U2) d d (ui,ua)

Or, in other words, a solution for which for all (g,a:),ui,i42 and d:

di((g,S'), (^^1,^2), d ) ^ di((g,x), (ui, 1^2), d ) ^ di((g,x), (iXj^, U2), d)

The last definition is usually somewhat easier to to work with. It is in fact used to prove the lemma.

The saddle cost:

Ji'(g,x) = di((g,x),(uj,it^),d*)

Can be computed in closed form. This allows us then to compute the set of states for which there exists a
control that for all actions of the disturbance prevents draining. This set turns out to be of the form:

Wf; = {(g,x) : Jr(g,a;) > Ml} = {(g,x) : w >iv{r,Ti,T2)}

Two level sets of this function are shown in Figure 3.

The expression for J* also allows us to compute the least restrictive controller that renders the set
invariant. It turns out to be unique:

D2 if r < jR
0 ifr = R

(4)
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Figure 3: Lower limit on w to avoid draining

Lemma 2 The feedback controller given by:

ui € {0,1} and U2 € {0,1} if [xw > tt)(r,0,0)] V [^^; < w{r^Ti,Ta)]
ui = 1 and U2 € {0,1} t/tD(r,0,0) >w> it;(r,Ti,0)

ui e {0,1} andu2 = 1 ift&(r,0,0) >w> tD(r,0,22)
ui = 1 and U2 = 1 ifw = w{r,Ti,T2)

is the unique, least restrictive, non-blocking, feedback controller that renders Wi* invariant.

Proof: See [4]. •

Note that the first term applies to states in the interior of the safe set (w > w(r,0,0}) as well as all the states
outside the safe set {w < w{r,Ti,T2)). The expression for w (see [4]) suggests that w is monotone in Ti and
r2. Therefore, the condition on the last case is enabled if and only if all other conditions fail. The two middle
conditions may overlap, however. Therefore there is some nondeterminism in the choice of safe controls (some
states may be safe with either one or the other pump on, but not neither).
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1 Overview

• Abstractly introduced a gaming technique for determining the maximal controlled invariant subset of a
given set and a controller that renders this set invariant.

• Illustrated how the technique can be applied in an example, where the solution to the game can be
guessed.

• In the next few lectures we will show how the solution can be constructed more systematically using
optimal control tools, more specifically dynamic programming.

• We will start by discussing gaming techniques for purely discrete and purely continuous systems and
then show how to extend the results to hybrid systems.

2 Finite State Machines

We begin our wonderous exploration by expressing a purely discrete system using the hybrid formalism. A
purely discrete system can be viewed as a hybrid automaton containing trivial continuous dynamics.

Consider a plant automaton H = ((J, V, Init, /, J, £?, G, R, ^), with:

Q = {q}. IQI < 00 (finite discrete states);

X = {x}, X = {0} (trivial continuous state);

V = {u,d}, |V| < oo (finite inputs);

Init C Q X{0} (drop the trivial dependence on the continuous state from now on);

f{q,x,v) = 0 (trivial continuous d3aiamics);

I{q) = ^ (no time evolution);

E cQxQ;

G{e) C {0} XV (drop the trivial dependence on the continuous state from now on);

i2(e,0,u) = {0}; and,

4>{q,0) = V.



Notice the similaxity between this hybrid automaton and the finite automata considered earlier in the class.
Recall that a finite automaton is a collection (Q, S, A,90)Qf) consisting of a finite set of states, a finite
alphabet, a transition relation, an initial state and a set of final states. Comparing the two definitions we
see that Q plays the same role in both cases, V plays the role of E, Init plays the role of 90, while Qj? = Q
(restrictions on where we should and should not end up will be encoded in terms of the specification later on).
The transition relation is given by:

{q,v,q') € A ({q,q') £ E) A{ve G{q,q'))

Recall that the transition relation can also be encoded by means of a transition map:

S{q,v) = {q' eQ : i{q,q') €E)A{ve G{q,q'))}

To prevent trivial safe solutions we add a non-blocking assumption:

Vg € Q, Vtt € U, 3d € D such that S{q, (u, d)) ^ 0

Remarks:

1. The dependence on the trivial continuous state will be dropped to simplify the notation.

2. Strictly speaking the hybrid automaton definition of a finite state system is slightly more general, since
many initial states are allowed. In any case, Init will not be very important, since we will be trying to
determine the largest set if initial conditions for which a safety specification can be satisfied.

3. All the action takes place at a single point in time (the executions are over time sequences of the form
[0,0][0,0],...). An alternative interpretation is that time has been abstracted away. This can be encoded
by setting /(g) = {0} for all g; the interpretation is that the transition can take pl£ice after an unspecified
amount of delay. In either case, the execution can be reduced down to a pair of sequences, one for the
states (g[f]) and one for the inputs (w[i]) such that:

q[0] e Init and Vf > 0,g[« + 1] € <J(g[f],«^[f])

4. Because time has been abstracted away and (f>{q) = V, the non-blocking assumption eliminates all
possibilities of cheating by the controller (zeno executions axe meaningless in this setting).

5. Players u and d play simultaneously. Subsumes turn based play [1] and priority play [2] (see [1] and [3]).

3 Computation of Controlled Invariant Sets

Consider a set of states F C Q. Try to establish the largest set of initial states for which there exists a
controller that manages to keep all executions inside F. Easiest to demonstrate by means of an example.

Consider a finite automaton with Q = {gi,... ,gio}j U = D = {1,2}, F = {gi,... ,g8}> and the transition
structure of Figure 1 (the inputs are listed in the order (u,d) and * denotes a "wild-card"). Try to establish
the largest set of initial states, W* such that there exists a feedback controller that keeps the execution inside
F. Clearly:

T^'CF={gi,...,q8}

Next, look at states that can end up in F^ in one transition (^4, 55, and gs). Notice that from 54 if u = 1
whatever d chooses to do we remain in F, while from qs and gs whatever u chooses to do we leave F. Therefore:

W c {qi,q2,g3,g4,g6,g7}
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Figure 1: Example of discrete controller synthesis

Next look at states that can leave the above set in one transition (94 and 95)• Notice that from 94 if d = 1
whatever u chooses we leave the set, while from 95 if u = 1 d can choose d = 2 to force us to leave the set
while if = 2 d can choose d = 1 to force us to leave the set. Therefore:

Q {91,92,93,97}

^Rrom the remaining states, if u chooses according to the following feedback map:

f {1} if 9= 97
9(9) = •{ {2} if9€ {91,93}

[ {1,2} if 9= 92
we are.guaranteed to remain in {91,92,93,97} for ever. Therefore,

= {91,92,93,97}

and g is the least restrictive controller that renders W* invariant (proof of both facts is by enumeration).

More generally this scheme can be implemented by the following algorithm [4]:

Algorithm 1 (Controlled Invariant Set)
Initicdization:

W° = F,W^ = 9, i = 0
while # W' do
begin

n {9 € Q : 3u € U Vd € D ^(9, (u,d)) C W*}
i = i — l

end

The index decreases as a reminder that the algorithm involves a predecessor operation.

This is a real algorithm (can be implemented by enumerating the set of states and inputs). The algorithm
terminates after a finite number of steps since:

^i-l g 1^01 ^ |_p| < IQI < 00



4 Relation to Gaming

What does any of this have to do with gaming? Introduce a value function:

J:QxZ_-.{0,l} (1)

Consider the difference equation:

JiQ,0) = {o H-F" (2)
J(q,i-l)- J{q,i) = min{0,maXt,guniind€D[min,.g5(,,(„,d)) - ^(9,01}

We will refer to equation (2) as a discrete Hamilton-Jacobi equation.

Proposition 1 (Winning States for u) A fixed point J* :Q—* {0,1} of (2) is reached in a finite number
of iterations. The set of states produced by the algorithm is W = {a; € X| = 1}.

Proof: We show more generally that W* = {x 6 X| J(x,i) = 1}. The proof is by induction (see [5]). •

This is beginning to look more game-like. Consider what happens when a fixed point of (2) is reached. Ignoring
the outermost min for the time being leads to:

J*{q) = max min min J*{q') (3)
u€Ud6Dff'€5(9.(«,d))

Notice the similarity between this and (excuse the overloading of the notation):

^*(9o,a;o) =maximn( nun J(x)) (4)
9 d \x=(.T,q,x,('u,d))e^g J

The equations look very similar. The only difference is that instead of having to worry about all feedback
controllers, all disturbance trajectories and all possible executions we reduce the problem to a pointwise
argument. Clearly equation (3) is much simpler to work with than equation (4). This is a standard trick in
dynamic programming. Equation (3) is a special case of what is known in dynamic programming as Bellman's
equation, while the difference equation (2) is a form of value iteration for computing a fixed point to Bellman's
equation.

What about the outer min? This is an inevitable consequence of turning the sequence argument of equation
(4) to a pointwise argument. It is there to prevent states that have been labeled as unsafe at some point
from being relabeled as safe later on. If it were not there, then in the example of Figure 1 state gio would be
labeled as safe after one step of the algorithm (i.e. J(gio, —1) = 1). The extra min operation implements the
intersection with W* in the algorithm of the previous section, ensures the monotonicity of W* with respect to
i and guarantees termination.

The fixed point of equation (2) also provides a simple characterization of a least restrictive controller that
renders W* invariant:

_ / {w € U : mindsD ming>^s(q,{u,d)) J*{q') = 1} ifqeW*
if qe{W*y

Notice that g{q) # 0 for all q by construction. Any u € U needs to be allowed outside W* to make the
controller least restrictive.

Summarizing:

Proposition 2 (Characterization of W and g) W* is the maximal contrail^ invariant subset of F and
g is the unique, least restrictive feedback controller that renders W invariant.
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1 Controller Synthesis Problem for Continuous Systems

A continuous system can be though of as a hybrid automaton with:

Q = M, Q = {go};

A' = {x}, X = ]r;

V = {u,d}, U = , D = ;

Init C 1";

/ : X X U X D1";

£7 = 0;

/(go) = X;

<l>{x) = V.

Assumption 1 u and d are piecewise continuous functions of time.

Remarks:

• The trivial dependence on q will be dropped from now on.

• Strictly speakingexecution takes placeovera hybrid time trajectory of the form [tq, Tq] [ti , ri]..., where
u and d are continuous over each interval (refer to lecture 8). Notice that a;(') is continuous and piecewise
differentiable.

• Modulo this technicality, this is a garden variety continuous system with:

a;(0) € Init,

x{t) = f{x{t),u{t),d{t)).

• Since u and d are piecewise continuous execution can be extended over arbitrarily long time horizons.
Notice that the continuous system is by definition non-bloddng (since /(go) = X). The piecewise
continuity assumption eliminates the only other possibility for a controller to "cheat" in a controller
synthesis problem with a reachability specification; under this assumption the system can not be Zeno
either.



Consider a set of states:
Few,

We will try to find the largest set of initial conditions for which u can keep a; in F despite the actions of d.

Assume F is closed and can be characterized by a smooth function I:

l{x) <0 if a; € F'^

l{x) = 0 if a; € 5F

l(a;)>0 ifareF"

We will use optimal control tools to try to maximize the value of I. This is turning a "game of kind" into a
"game of degree". Besides conceptual difference this (fairly trivial) transformation allows us to use optimal
control tools to find a solution to the reachability problem.

2 A Quick Excursion into Optimal Control Theory

Consider a pair of functions

(Xju): [toji/] M" XM"*", such that

x{t) = f(x{t),u{t)), where / : R" x R*"" —♦ R",
^(^o)
^(a;(f/)) = 0, where -0 : R" —• R^

Among this class of functions try to find the one that minimizes the functional:

rif
J{x,u) = <f>{x{tf)) + / L(x{t),u{t))dt,

Jto
where 0 : R" -+ R, and i : R** x R"*" -* R,

This general class of optimal control problems is known as the Boha Problem. A number of variations exist

• Meyer Problem (L = 0)

• Lagrange Problem (0 = 0)

• Fix the final time

• Allow state and input constraints

• Allow time var3ring /, L, <f), -0.

In many cases the various formulations can be shown to to be equivalent by adding auxiliary states, etc. (see
[1. 2]).
Two main approaches exist to solving this problem:

1. Calculus of variations (making use of the Maximum principle);

2. Dynamic programming (making use of the Principle of optimality).

Both involve turning the minimization over the function space to a pointwise minimization. Both involve a
simple observation:



1. For the calculus of variations, the observation is the optimal curve should be such that neighboring
curves do not lead to smaller costs. In a sense the "derivative" of J about the optimal curve should be
zero; one takes small variationsabout the candidate optimal solution and attempts to malce the change
in J zero.

2. For dynamic programming, the observation is that the optimal curve remains optimal at intermediate
points.

We will brieflydiscuss both approaches, without giving the details of any of the theorems.

3 Calculus of variations

Consider a nonlinear possibly time varying dynamical system described by

x = f(x,u,i) (1)

with state x{t) e E" and the control input w € K"*. Consider the problem of minimizing the performance
index

J=<i>{xitf),tf) + [ L{x{t),u{t),t)dt
Jto

(2)

where to is the initial time, t/ the final time (free), L{x,%t) is the running cost, and ^(a;(t/),t/) is the cost at
the terminal time. The initi^ time to is assumed to be fixed and t/ variable. Problems involving a cost only
on the final and initial state are referred to as Mayer problems, those involving only the integral or running
cost are called Lagrange problems and costsof the form ofequation (2) are referred to as Bolzaproblems. We
will also have a constraint on the final state given by

iif{x{tf),tf) = 0 (3)

where ^ : E" x E —• EP is a smooth map. To derive necessary conditions for the optimum, we will perform
the calculus of variations on the cost function of (2) subject to the constraints of equations (1), (3). To this
end, define the modified cost function, using the Lagrange multipliers A € lSF,p{t) € E",

J = <f>{x{tf), tf) + X'̂ il>{x{tf), tf)+ [L{x, u,t) + u,t) - i)] dt (4)
Jto

Defining the Hamiitonian H{x,u,t) using what is referred to as a Legendre transformation

H{x, p,u,t) = L{x, u,t) + p'^fix,u, t) (5)

The variation of (4) is given by assuming that a variation by ju(') produces a variation dx(')i dp(-)i ^

SJ = (Di<^ + Di '̂̂ X)Sx\t, + (£>2^ + D3 '̂̂ X)StU, +
+ (H - p''x)St\t, (6)
+ [DiHSx + D3HSU - p^Sx + {DiH^ - x^Sp]dt

The notation DiH stands for the derivative of H with respect to the i th argument. Thus, for example,

71 rr/ 71 TTf x.\DzHix^p^u^t) =

Integrating by parts for / p^Sxdt jdelds

6j = {Di<f> + Dii}F\ - p'̂ )6x{tf) + (P20 + DzVX + H)6T+
+ jr// [{DiH +p^)8x +DzH6u +p^6x + - x)'̂ 6p] dt



An extremum ofJ isachieved when <5J = 0for allindependent dent variations 5A, Sx, 6u, 6p. These conditions
are recorded in the following

Table of necessary conditions for optimality:

Table 1

Description Equation Variation

Final State constraint il;{x{T),T) = 0 6X

State Equation x = 6p

Costate equation p = Sx

Input stationarity = 0
Boundary conditions Di<f> —p^ = 6x{tf)

H + D2<f> = -D2 '̂̂ X\tf 6tf

The conditions of Table (3) and the boundary conditions a;(to) = xq and the constraint on the final state
ilf{x{tf),tf) = 0 constitute the necessary conditions for optimality. The end point constraint equation is
referred to as the transversality condition:

Di^-p^= -Di'fX ...
H + Di(l>=

The optimality conditions may be written explicitly as

with the stationarity condition reading

,p,t) = 0

and the endpoint constraint ip{x{tf),tf) = 0.

Remarks:

• These are necessary but not sufficient conditions for optimality.

• To decide whether the candidate optimum satisfying this condition is indeed a minimum we have to take
second variations.

• Notice that the number of equations (2n differential equations, 2n constraints on the initial conditions,
m pointwise equations for u, p equations firom 1]) and 1 equation firom H) are equal to the number of
iinknoxim in the problem {2n functions of time for x and p, m values of u along these functions, p real
variables Aand the final time tf)

• The key point to the derivation of the necessary conditions of optimality is that the Legendre trans
formation of the Lagrangian to be minimized into a Hamiltonian converts a functional minimization
problem into a static optimization problem on the function H{x^u,p,t).



• In the presence of input constraints the stationaxity conditions can be replaced by:

Let the optimal control be:

u€U

u*{Xyp) = argminir(a;,p,it)
uSU

• The system of equations for p and x form a two point boundary value problem. Notice that the "initial
condition" for x is givenat time to while the "initial condition" for p is given at time tf. Therefore, this
system of equations can not be solved by straight forward simulation, in fact it may be very difficult to
solve.

• The solution is given "openloop" as a function ofp{t). Typically the calculus of variationsdoes produce
feedback solutions directly.

4 Dynamic Programming

Recall we are trying to minimize

J{XfU) =(f>{x{tf)) + f L{x{t),u(t))dt
Jto

subject to
X= f{x,u),

x{to) = Xo,

if{x{tf)) = 0.

For any arbitrary t € ^md any a; € introduce the value function (also known as optimal return
function or cost-to-go function):

r{x,t) =n^ {<f>{xitf)) +f L(a;(r),u(r))dr}
«(•) Ji

Assume that J* is continuously differentiable as a function of both x and t and consider the followingargument:

• Assume the system starts at x at time t and proceeds for At "seconds" using some arbitrary u.

• At time f + At we find ourselves at x'.

• Assume we move optimally from x' onwards. Then the cost accumulatedby time tf will be J''{x,t+At).

• If At is small enough then x' fsix + f{x,u)At,

• Let J'{x,t) be the total cost of movingfrom (a;,t) to the end via {x',t + At). Then:

J'{x,t) = J*{x\t + At) + L{x,u)At

• Clearly, J*{x,t) < J'{x,t), since J*{x,t) is the minimum cost we could ever hope to achieve starting
from Xat time t. In fact, if the choiceof u over [t, t + At] were the optimal equality would be achieved.



J*{x,t) = min {J*{x\t + At) + L(a;,u)At}

= min {J*(a; + f{x,u)At,t + At)+ L{x,u)At}

dJ* dJ*
if At is small = min { + -^f{x,u)At + -^At + L{x^u)At}

tt€U ^ ox ot

dJ* dJ*—At = - nun{u)At+ L{x, u)At}

Taking the limit as At —» 0, leads to the Hamilton-Jacobi-Bellman partial differential equation:

dJ* . fdJ* . . .

with the boundary condition J*{x,tf) = ^{x) wherever ^(a;) = 0. K a differentiable solution to the equation
exists, then it can be used to produce the optimal control:

dJ*u'{x,t) = argnun {L(a;,u) +

Using the definition of the optimal Hamiltonian from the previous section, the Hamilton-Jaoobi-Bellman
partial differential equation can be written more compactly as:

L{x,u) -H ^f{x,u) =H{x,
dr ,dJ\T

Remarks:

• The relation between the two techniques can be highlighted by observing that plays the role of p.

• The Hamilton-Jacobi-Bellman equation requires one to assume that the value function is continuously
differentiable. This assumption is not necessary to apply the maximum principle. On the other hand,
the Hamilton-Jacobi-Bellman equation naturally leads to feedback controls.

References

[1] Arthur E. Bryson and Yu-Chi Ho, Applied Optimal Control^ Hemisphere Publishing Corporation, 1975.

[2] L.D. Berkovitz, Optimal Control Theory^ Springer-Verlag, 1974.



Lectures in Optimal Control and Dynamical Games

S. S. Sastry

April 20, 1999

1 Optimal Control

There are numerous excellent books on optimal control. Commonly used books which we
will draw from are Athans and Falb [1], Pontryagin et al [3], Young [4], Kirk [5], Lewis [6]
and Fleming and Rishel[7]. The history of optimal control is quite well rooted in antiquity,
with allusion being made to Dido, the first Queen of Carthage, who when asked to take
as much land as could be covered by an ox-hide, cut the ox-hide into a tiny strip and
proceeded to enclose the entire area of what came to be know as Carthage in a circle of
the appropriate radius^. The calculus of variations is really the ancient precursor to optimal
control. Iso perimetric problems of the kind that gave Dido her kingdom were treated in detail
by ToneUi and later by Euler. Both Euler and Lagrange laid the foundations of mechanics in
a variational setting culminating in the Euler Lagrange equations. Newton used variational
methods to determine the shape of a body that minimizes drag, and Bernoulli formulated
his brachistochrone problem in the seventeenth century, which attracted the attention of
Newton and L'Hopital. This intellectual heritage was revived and generalized by Bellman
[2] in the context of dynamic programming and by Pontryagin and his school in the so-called
Pontryagin principle for optimal control ([3]).
Consider a nonlinear possibly time varying dynamical system described by

x = f{x,u,t) (1)

with state x{t) € R" and the control input u e R"*. Consider the problem of minimizing the
performance index

J =<p{xitf), tf)+ f L{x{t), uit), t)dt (2)
Jto

where to is the initial time, t/ the final time (free), L(x, u,t) is the running cost, and
<^(rr(t/),t/) is the cost at the terminal time. The initial time to is assumed to be fixed
and t/ variable. Problems involving a cost only on the final and initial state are referred
to as Mayer problems, those involving only the integral or running cost are called Lagrange
problems and costs of the form of equation (2) are referred to as Bolza problems. We will
also have a constraint on the final state given by

il){x{tf),tf) = Q (3)

^The optimal control problem here is to enclose the maximum area using a closed curve of given length.



where : E" x R —> K? is a smooth map. To derive necessary conditions for the optimum, we
will perform the calculus of variations on the cost function of (2) subject to the constraints
of equations (1), (3). To this end, define the modified cost function, using the Lagrange
multipliers A € W,p{t) € R^,

J = (l>{x{tf), tf) + [L(rc, u, t) +p^(/(x, It, t) - i)] dt (4)

Defining the Hamiltonian H{x,u^t) using what is referred to as a Legendre transfoTmation

jFf(x,p,Uf t) = L{x, u, t) + p^f{x, u, t) (5)

The variation of (4) is given by assuming that a variation by 6u(') produces a variation
so that

5J = + DiiP'̂ X)Sx\tj + iD2^ + D2tl;^X)St\tf + tp'̂ 6X
+ {H-p^x)5t\tf (6)
+ /// [DiHSx +DzH6u - p'̂ Sx +(AiT - xfSp] dt

The notation DiH stands for the derivative of H with respect to the i th argument. Thus,
for example,

dH dH
DsH{x,p,u,t) = — DiH(x,p,u,t) = —

Integrating by parts for / p^5xdt 3delds

5J = (A0 + Diii^X - p'̂ )5x{tf) + {D2(I> + D2'fX + H)5T+ ifdX
+ ili [{DiH +f)5x +DzH5u - p^5x + - xf6p] dt ^^

An extremum of J is achieved when SJ = 0 for all independent variations SX, Sx, 6u, 5p.
These conditions are recorded in the following

Table of necessary conditions for optimality:

Table 1

Description Equation Variation

Final State constraint

3

3
II

o

6X

State Equation X -
— dp Sp

Costate equation P dx Sx

Input stationarity
Boundary conditions

^ = 0
D^,i>-pr = -DxiF\\t^
H + D2^ = -DiilF\\t,

6u

Sx{tf)
6tf



The conditions of Table (1) and the boundary conditions x{to) = xq and the constraint on
the final state ip{x{tf),tf) = 0 constitute the necessary conditions for optimality. The end
point constraint equation is referred to as the transversality condition:

Di<t> -p^ = -Diip'^X

The optimality conditions may be written exphcitly as

(8)

^ dp iP) /Q\
P=

with the stationarity condition reading

dH

du
{x,u',p) = 0

and the endpoint constraint ip(x{tf),tf) = 0. The key point to the derivation of the nec
essary conditions of optimality is that the Legendre transformation of the Lagrangian to
be minimized into a Hamiltonian converts a functional minimization problem into a static
optimization problem on the function H{x,%p,t).
The question of when these equations also constitute sufficient conditions for (local) opti
mality is an important one and needs to be ascertained by taking the second variation of J.
This is an involved procedure but the input stationarity condition in Table (1) hints at the
siifficient condition for local minimality of a given trajectory being a
local TniniTTuim as being that the Hessian of the Hamiltonian,

DlH{x\u%p\t) (10)

being positive definite along the optimal trajectory. A sufficient condition for this is to ask
simply that the rij x Hessian matrix

DlH{x,u,p,t) (11)

be positive definite. As far as conditions for global minimality are concerned, again the
stationarity condition hints at a sufficient condition for global minimality being that

u*(t) = argmin H{x*{t),u,p*{t),t) (12)
{ nun over u }

Sufficient conditions for this are, for example, the convexity of the Hamiltonian H{xj Uyp^t)
in u.

Finally, there are instances in which the Hamiltonian H{Xy w, p, t) is not a function of u at
some values of x, p, t. These cases are referred to as singular extremals and need to be treated
with care, since the value of u is left unspecified as far as the optimization is concerned.



1.1 Fixed Endpoint problems

In the instance that the final time tf is fixed, the equations take on a simpler form, since
there is no variation in 6tf. Then, the boundary condition of equation (8) becomes

= Di(t> + DiiFX\tf (13)

Further, if there is no final state constraint the boundary condition simplifies even further
to

p(tf) = Di((F\tf (14)

1.2 Time Invariant Systems

In the instance that f{x^u^t) and the running cost L(x,u,t) are not explicitly functions of
time, there is no final state constraint and the final time tf is fixed, the formulas of Table
(1) can be rewritten as

State Equation x = = /(x, u*)

Costate Equation p = — = —Dif'^p+ DiL"^

Stationarity Condition 0= ^ = D2L'̂ +
Transversality Conditions Di^ — = —Dit/FX

H{tf) = 0
In addition, it may be verified that

dH* dH% dH* . ^
— = —ix,p)x + —p = 0 (15)

thereby establishing that H{t) = 0.

1.3 Connections with Classical Mechanics

Hamilton's principle of least action states (under certain conditions that a conservative
system moves so as to minimize the time integral of its "action", defined to be the difference
between the kinetic and potential energy. To make this more explicit we define g € to be
the vector of generalized coordinates of the system and denote by U{q) the potential energy
of the system and T(g, q) the kinetic energy of the system. Then Hamilton's principle of
least action asks to solve an optimal control problem for the system

q = u

^Forexample, there is no dissipation or no nonholonomic constraints. Holonomic or integrable constraints
are dealt with by adding appropriate Lagrange multipliers. If nonholonomic constraints are dealt with in
the same manner, we get equations of motion, dubbed vakonomicby Arnold [8] which do not correspond to
experimentally observed motions. On the other hand, if there are only holonomic constraints, the equations
of motion that we derive from Hamilton's principle of least action is equivalent to Newton's laws.

4



with Lagrangian
L{q,u) = T{q,u)-U(q)

The equations (9) in this context have H(q,u,p) = u* = u*(p,q) is chosen
so as to minimize the Hamiltonian H. A necessary condition for stationarity is that u*(p,q)

n 9H dL

The formofthe equations (9) in this contextis that of the familiarHamiltonJacobi equations.
The costate p has the interpretation of momentum.

9= ^(P-9) =«*(P.9)
P=

(17)

Combining the second of these equations with (16) yields the familiar Euler Lagrange equa
tions

1.4 Hamilton Jacobi Bellman Equation

To begin this discussion, we will embed the optimization problem which we are solving in
a larger class of problems, more specifically we will consider the original cost function of
equation (2) from an initial time t € [to,tf] by considering the cost function on the interval
[titf]:

J(x(t), t) = if) +1' T)dT
Bellman's principle of optimality says that if we have found the optimal trajectory on the
interval from [t,tf] by solving the optimal control problem on that interval, the resulting
trajectory is also optimal on all subintervals of this interval of the form [t,t/] with t > to,
provided that the initial condition at time t was obtained from running the system forward
along the optimal trajectory from time t. The optimal value of J{x{t),t) is referred to as
the "cost-to go". To be able to state the following key theorem of optimal control we will
need to define the "optimal Hamiltonian" to be

H*{x,p,t) := H{x,u*,p,t)

Theorem 1 The Hamilton Jacobi Bellman equation
Consider, the time invariant optimal control problem of (2) with fixed endpoint tf and time
invariant dynamics. If the optimal value function, i.e. J*{x{to),to) is a smooth function of
x,t, then J*{x,t) satisfies the Hamilton Jacobi Bellman partial differential equation

t) = t), t) (19)

with boundary conditions given by J*{x,tf) = (p{x,tf) for all x ^ {x : 7p{x,tf) = 0}.



Proof; The proof uses the principle of optimality. This principle says that if we have found
the optimal trajectory on the interval from [t,tf] by solving the optimal control problem
on that interval, the resulting trajectory is also optimal on all subintervals of this interval
of the form [ti,t/] with ti > t, provided that the initial condition at time ti was obtained
from running the system forward along the optimal trajectory from time t. Thus, from using
ti = t + At, it follows that

mm

u{t)
t <T <t-\- At

Taking infinitesimals and letting At ->• 0 yields that

ft+At
j L{x, u, r)dr +J*(x +Ax, t+At) (20)

dJ' min + (21)
dt u(t) \^^dx

with the boundary condition being that the terminal cost is

J*{x,tf) = 0(x,t/)

on the surface ^(x) = 0. Using the definition of the Hamiltonian in equation (5), it follows
from equation (21) that the Hfl.Tni1t.nT> Jacobi equation of equation (19) holds.

•

Remarks:

1. The preceding theorem was stated as a necessary condition for extremal solutions of
the optimal control problem. As far as minimal and global solutions of the optimal
control problem, the Hamilton Jacobi Bellman equations read as in equation (21). In
this sense, the form of the Hamilton Jacobi Bellman equation in (21) is more general.

2. The Eulerian conditions of Table (1) axe easily obtained from the Hamilton Jacobi
Bellman equation by proving that p^{t) := satisfies the costate equations of
that Table. Indeed, consider the equation (21). Since ii(t) is unconstrained, it follows
that it should satisfy

+ = 0 (22)

Now differentiating the definition of p{t) above with respect to t yields

Differentiating the Hamilton Jacobi equation (21) with respect to x and using the
relation (22) for a stationary solution yields

dL^d^r.^df
(^% ^) = -HT + (24)dtdx ' dx dx^ dx



Using equation (24) in equation (23) yields

• (0'^\

establishing that p is indeed the co-state of Table 1. The boundary conditions on p(t)
follow from the boundary conditions on the Hamilton Jacobi Bellman equation.

1.5 Constrained Input Problems

In the instance that there are no constraints on the input, the extremal solutions of the
optimal control problem are found by simply extremizing the Hamiltonian and deriving the
stationarity condition. Thus, if the specification is that u{t) € C/ C then, the optimality
condition is that

H{x\u\p\t)<H{x\u,p\t) "iueU (26)

If the Hamiltonian is convex in u and C/ is a convex set, there are no specific problems with
this condition. In fact, when there is a single input and the set U is a. single closed interval,
there are several interesting examples of Hamiltonians for which the optimal inputs switch
between the endpoints of the interval, resulting in what is referred to as bang bang control.
However, problems can arise when U is either not convex or compact. In these cases, a
concept of a relaxed control taJdng values in the convex hull of U needs to be introduced.
As far as an implementation of a control ?i(t) € convC/, but not in C/, a probabilistic scheme
involving switching between values of U whose convex combination u is needs to be devised.

1.6 Free end time problems

In the instance that the final time t/ is free, the transversality conditions are that

-{D2(t> + D2ip'̂ X)
(27)

1.6.1 Minimum time problems

A special class of minimum time problems of especial interest is miniirmTTi time problems,
where tf is to be minimized subject to the constraints. This is accounted for by setting
the Lagrangian to be 1, and the terminal state cost <^ = 0, so that the Hamiltonian is
H{x^ u,p^ t) = 1-\-p^f{Xy u, t). Notethat by differentiating H{x,u^p^ t) with respect to time,
we get

^ =DiH'x +DiH'ii +DiH-p +^ (28)
at ut

Continuing the calculation using the Hamilton Jacobi equation,

dH' ,dH' .... , dH' dH'
^ (29)

In particular, if H* is not an explicit function of t, it follows that H*{x, Uypj t) = H. Thus,
for minimum time problems for which /(x, u, t) and tp{Xj t) are not explicitly functions of t,
it follows that 0 = H{tf) = H{t).



2 Two person zero sum dynamicsd games

The theory of games also has a long and distinguished, if not as long a history. Borel
encountered saddle points in a matrix in 1915, but it really took von Neumann to prove his
fundamental theorem about the existence of mixed strategies for achieving a saddle solution
in games in 1936. In a classic book, von Neumann and Morgenstern ([9]) laid out the
connections between static games and economic behavior. Nash, von Stackelberg and others
extended the work to N person non-cooperative games. This work has continued in many
important new directions in economics. Differential or dynamical games showed up in the
work of Isaacs in 1969 and rapidly found fertile ground in the control community where it has
progressed. There are several nice books on the subject of dynamical games, our treatment
is drawn heavily from Basar and Olsder ([10]).
Consider a so-called dynamical, two person zero sum, perfect state information game modeled
by

X= /(x, u, d, t) x(to) = xq (30)

on a fixed duration [to, t/j. Here re € M" models the state of the system and u € , d € R"^
represent the actions of the two players. The game is said to be zero sum if one player seeks
to minimize and the other to maximize the same cost function taken to be of the form

rtf
J = <j>{x(tf),tf)-{- L{x,u,d,t)dt (31)

Jto

We will assume that player 1 (w) is trying to minhnize J and player 2 (d) is trying to
maximize J. For simplicity we have omitted the final state constraint and also assumed the
end time t/ to be fixed. These two assumptions are made for simplicity but we will discuss
the tf free case when we study pursuit evasion games. The game is said to have perfect
information if both players have access to the full state x{t). The solution of two person zero
sum games proceeds very much along the lines of the optimal control problem by setting up
the Hamiltonian

H{x, u,d,p,t) = L(x, u, d, t) + p^/(x, u,d, t) (32)

Rather than simply niinimizmgH(x, w, d,p, t) the game is said to have a saddle point solution
if the following analog of the saddle point condition for two person zero sum static games
holds:

miTi max H{x,Uid,p,t) = max min H{x,u,d,p,t) (33)
u d d u

If the minmax is equal to the maxmin, the resulting optimal Hamiltonian is denoted H*{x, p, t)
and the optimal inputs it*,d* are determined to be respectively,

it*(t) = argmin I max H{x,Ujd,p,t)] (34)
u \ d )

and

d*(t) = argmax I min i?'(x,u,d,p,f) I (35)
d \ u /



The equations for the state and costate and the transversality conditions are given as before

(36)
P= (^-P)

with boundary conditions x{to) = xq and p^{tf) = Di<j>(xtf), and theequation isthefamiliar
Hamilton Jacobi equation. As before, one can introduce the optimal cost to go J*{x{t)^t)
and we have the following analog of Theorem (1):

Theorem 2 The Hamilton Jacobi Isaacs equation
Consider, the two person zero sum differential game problem of (31) withfixed endpoint tf.
If the optimal value function, i.e. J*{x(to),to) is a smooth function of x,t, then J*(x,t)
satisfies the Hamilton Jacobi Isaacs partial differential equation

Fi 7* 8 T*=-H'{x,^ix,t),t) (37)
with boundary conditions given by J*{x,tf) = <j>{x) for all x.

Remarks

1. We have dealt with saddle solutions for unconstrained input signals u, d thus far in the
development. If the inputs are constrained to lie in sets 27, D respectively the saddle
solutions can be guaranteed to exist if

min max H(x,u,d,p,t) = max min H(x,u,d,p,t) (38)
ueU de D deD u€U

Again, if the input sets are not convex, relaxed controls may be needed to achieve the
min-max.

2. The sort of remarks that were made about free endpoint optimal control problems can
also be made of games.

3. In our problem formulation for games, we did not include explicit terminal state con
straints of the form tp{x{tf),tf) = 0. These can be easily included, and we will study
this situation in greater detail under the heading of pursuit evasion games.

4. The key point in the theory of dynamical games is that the Legendre transformation
of the Lagrangian cost function into the HamHtonian function converts the solution of
the "dynamic" game into a "static" game, where one needs to find a saddle point of
the Hamiltonian function H{x, u, d,p, t). This is very much in the spirit of the calculus
of variations and optimal control.



3 N person dynamiced games

When there are N persons playing a game, many new and interesting new possibilities arise.
There is a scenario in which the N agents are non-cooperative, and another in which they
cooperate in teams. Of course, if the information available to each of them is different,
this makes the solution even more interesting. In this section, we will assume that each
of the agents has access to the full state of the system. In this section, we will only dis
cuss non-cooperative solution concepts: first the Nash solution concept and then briefly the
Stackelberg solution concept. Cooperative games with total cooperation are simply optimal
control problems. If there is cooperation among teams, this can be viewed as a noncooper-
ative game between the teams. When however there are side payments between teams the
scope of the problem increases quite considerably.

3.1 Non-cooperative Nash solutions

When there are N players each able to influence the process by controls Ui € =
1,..., W, modeled by

x = f{x,Ui,...,UN,t) (39)

and each cost functional (to be minimized) is of the form

Ji{ui{-),...,UK(-)) = ^i{x(tf),tf)+ Li{x,Ui,...,UN,t)dt (40)
Jto

different solution concepts need to be invoked. The simplest non-cooperative solution strat
egy is a so-called non-cooperative Nash equilibrium. A set of controls = l,...,iV is
said to be a Nash strategy if for each player modifying that strategy, and assuming that the
others play their Nash strategies, results in an increase in his payoff, that is for z = 1,..., iV

Ji{ul..., Ui,..., z/^) > Ji(uJ, uj,) Vui(.) (41)

It is important to note that Nash equilibria may not be unique. It is also easy to see that
for 2 person zero sum games, a Nash equilibrium is a saddle solution.
As in the previous section on saddle solutions, we can write Hamilton Jacobi equations for
Nash equilibria by defining Hamiltonians Hi{x^ Ui,..., Ujv,p, t) according to

Hi(x,uu...,UN,p,t) = Li{x,ui,...,un) + ui,...,UN,t) (42)

The conditions for a Nash equilibrium of equation (41) are there exist u*{x,p,t) such that

Hi{x, Ul, •. ., Ui,..., UNtPi ^) ^ Ni{x, Uj, . . . , Uj , ..., UniP^ ^) (^^)

Then, we have N sets of Hamilton Jacobi equations for the N players satisfying the Hamilton
Jacobi equations with H* = H*{x,uj,..., t). Note that we have changed the costate
variables to Pi to account for different Hamiltonians and boundary conditions.

. _ agfT

%r (44)
Pi= --5^-

with transversality conditions pf(tf) = -Di<j)i{x{tf),tf).

10



3.2 Noncooperative Stackelberg solutions

Stackelberg or hierarchical equilibria refer to noncooperative solutions, where one or more
of the players act as leaders. We will illustrate the solution concept for a two person game
where player 1 is the leader and player 2 the follower. Once player 1 announces a strategy
wj(-), if player 2 is rational he choose his strategy so as to minimize his cost J2 with the
d3mamics

x = f{x,ul,U2,t) (45)

and
f^f

J2{U2) = if) + / Ul{t), U2, t)dt
Jto

Thus, uliui) is chosen to minimize H2(Xj ttj, 142, P2> ^)> wherep2 satisfies the differential equa
tion

dH ^P2 = ^ (2:, «?> U2K).P> t) P2{tf) = tf)
In turn the leader chooses his strategy to be that u\ which minimizes J\ subject to the
assumption that player 2 will rationally play Thus, the system of equations that he
has to solve to minimize Ji subject to

x= /(x,Ui,U2,i) x{to) = xo
Piitf) = Dl<h{x{tj),t}) (46)

0= D3H2{x,Ui,U2,P2,t)

The last equation in (46) is the stationaxity condition for minimizing 1^2' The optimization
problem of the system in (46) is not a standard optimal control in because there is an
equality to be satisfied. Thus, Lagrange multipliers (co-states) taking values in for
t e [to,tf] are needed. We will omit the details in these notes.
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1 Dynamic Programming

Recall that we would like to find functions:

(x,u): K -» E" X E"*

that minimize:

J{x,u) =<p{x{tf)) + f L{x{t),u(t))dt (1)
Jto

subject to:

x{t) = f{x{t),u(t)), x{to) = xo (2)
if{x{tf)) = 0 (3)

where I«: E" x E^ —»^E,0:E"—•E,/:E"xE^—>E" Lipschitz continuous in x and continuous in u and

In Lecture 24 we discussed how this problem can be related to the solution of a partial differential equation,
known as the Hamilton-Jacobi-Bellman equation, by introducing the value function (or "cost to go" function),
7* : E" X E —• E, given by:

J*{x, t) =min {0(a;(t/)) +f L(x(T),u(r))dr}
«(•) Jt

We argued that if a continuously differentiable solution to the Hamilton-Jacobi-Bellman partial differential
equation [1]:

dJ* dJ*-^(a;,t) =-mm{—ix,t)f{x,u) +L{x,u)] (4)

with boundary condition J"'(a:,0) = ^{x) on ip{x) = 0 can be found, then the optimal controls are given by:

dJ*=arginin {-^/(a;,w) -l-X(a:,u)}

Equation (4) can be written more compactly if we introduce the Hamiltonian, J* : E" x E" x E"* E:

H(x,p,u) = L{x, u) + p^f{x, u)

and define the optimal Hamiltonian as:

H*{Xjp) —minH"(a:,p,u)
«6U



Then equation (4) becomes:

Notice that we have effectively turned the problem of optimizing a cost over the space of curves (an infinite
dimensional vector space), to optimizing a cost pointwise over a finite dimensional vector space. Of course to
achieve this we are still required to solve a partial differential equation.

Remarks:

1. The solution is close to the solution obtained through the calculus of variations. Simply replace the
co-state p by

2. On the positive side, dynamic programming (unlike the calculus of variations) inherently leads to feed
back solutions.

3. On the negative side, dynamic programming requires one to assume differentiability of the value func
tions.

4. Differentiability is difficult to guarantee. Even if all the data is '^smooth", the solution to the PDE
may still develop "comers" (known as shocks). The situation is exasperated by the fact that the min
operation is continuous but not smooth.

5. Optimal controls are often hang-hang. Consider the system:

X — S{x) + g{x)u (affine in u)

L : E" —» R (independent of u)

u e [Ui,U2] (compact control set)

Then:

(/9 7* \ B7* 87*X, -^{x,t),uj =L{x) -h -^{x,t)f{x) -h —{x,t)g{x)u

f Ui if ^(a;,%(a;)>0
u*(a:,f) = <^ [UuU2] if |̂ (x,%(a:) =0

I ^2 if ^(a;,t)y(x) <0

Notice thatu* switches between itsextreme values whenever ^(x, t)g{x) changes sign. Therefore, even
if J* is continuously differentiable, H* is continuous, but not continuously differentiable.

6. If U is not compact, then the optimal controls may be undefined pointwise (consider for example the
previous situation with U = (—00,00) or U = (C/i,f72)).

7. The situation may be even worse if U is not convex. The optimal controls may only be defined in the
space of relaxed controls, which are not piecewise continuous as a function of time [2].

8. Finally, both dynamic programming ad the calculus of variations depend on local arguments (small
perturbations about the optimal solution). For certain systems these arguments may fail. For example,
there may be a curve connecting the initial point to a desired final point, but no neighboring curves have
this property. This leads to ahnormal extremalSy which are not captured by the above arguments and
have to be studied separately.

therefore:



2 Game Theory

Gametheory is related to optimal control, with the difference that there are twoplayer (the controlvariables
are divided into two classes) with possibly conflicting objectives. The simplest case is the two player, zero
sum game. Consider again a curve:

{x,u, d): E 1" XE"*" x E"*-^

Assume that d is trying to minimize and u is tr3dng to maximize the function:

J{x,u,d) =(f>{x{tf)) + f L{x{t),u{t),d(t))dt
Jto

subject to:

x{t) = f{x{t),u{t),d{t)), x{to)=xo (5)
fp{x{tf)) = 0 (6)

Definition 1 A pair is called a saddle equilibrium if for all u, d:

J{x,u,d*) < Jix^u^d") < J{x,u*,d)

Dynamic programming arguments can also be used to characterize saddle equilibria [3]. As before introduce
a Hamiltonian:

H(x,p,u,d) = L{x, u,d) + p^f{x,u,d)

Proposition 1 If there exists a continuously differentiable function J* : E" x E -+ E such that:

- IT f A-7r-ix,t) = -maxmmw a;,-T—(a;,t),u,d)
dt^ ' tiGU deD dx^ ' J

= —minmaxfT I
d€D usu \ ^ ' j

= H(x,^{x,t),u*,d*^
then {u*,d*) is a saddle equilibrium.

The proof is similar to the one given in the optimal control case, and relies on the fact that by freezing u to
u* we turn the problem to an optimal control problem for d (and vice versa).

Remarks:

1. The above partial diflerential equation is known as the Isaacs equation, and the minmax = maxmin
requirement is known as the Isaacs condition.

2. Saddle equilibria do not always exist.

3. A variational formulation is adso possible.

4. The same remarks about convexity and compactness of the control and disturbance sets apply.

5. The generalization of the saddle equilibrium concept to multi player games is known as the Nash equi
librium. Assume there are N players, each trying to minimize their own cost function:

Ji{x,ui,... ,un), i = l,...,iV



Definition 2 (tij,... is a non-cooperative Nash equilibrium if for all i and for all ui:

Ji{x^ IZ-l,. •. ,Wj,.. . Wjy) > Ji{x^ ,.. . , .Ujy)

The non-cooperative qualification needs to be introduced, since in this setting it may be possible for
"gangs" to form: players may be able to improve their returns by collaborating with other players. Note
that the safidle equilibrium concept is implicitly non-cooperative, because the game is zero sum.

The solution concept we have in mind for controller synthesis is not as symmetric as the saddle equilibrium,
since we give the benefit of the doubt to the disturbance. The interpretation is that the control picks its
strategy and lets the disturbance know about it. The disturbance then does its best to damage the controllers
plans using this information. Consider a two player game with cost functionals Ji and J2 that players 1 and
2 are trying to minimize respectively. Assume that player 1 is the leader, i.e. decides on a strategy and lets
player 2 know before player 2 has to make a decision. Given a strategy, gi, for player 1 define the rational
responses of player 2 as the set of strategies:

•^2(^1) = {p : M9i^9) < J2i9i,9') for all 52}

Definition 3 gl is a Stackelberg equilibrium strategy for the leader if:

max_ Ji{gl,g) = mm max Ji (^1, g)
g£R2{9i) 9i 5€jR2(pi)

In general, Stackelberg equilibrium strategies are difficult to compute in feedback form, since the concept is
prone to "side payments", "incentives" and "threats". These are all techniques that can be employed by the
leader to make it more appealing for player 2 to adopt a certain strategy. Fortunately, the games considered
for controller sjmthesis wiU be zero sum (Ji = —J2) which ensures means like that can not be employed and
the solution can be computed in feedback form using d3mamic programming.
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1 Problem Formulation

Last time we discussed optimal control and game theoretic problem formulations for continuous dynamical
systems. We also highlighted mathematical tools (calculus of variations and dynamic programming) that may
be used to solve these problems. This time we will see how these tools (in particular dynamic programming)
can be applied to controller synthesis for continuous systems and reachability specifications. Our treatment
follows [1] and [2].

Recall that continuous systems are a special class of hybrid systems with:

Q = {g}, Q = {go} (trivial discrete state);

X = {a;}, X = IR";

V = {u,d}, U C R"*" and D C R*"** (no discrete inputs);

Init C {go} XX (drop the trivial dependence on the discrete state from now on);

/:XxUxD-^R«;

/(g) = X;

£7 = 0 (no discrete dynamics);

<^(go,a;) = V (no state dependent input constraints).

Dropping the trivial discrete dynamics, the system can be more compactly characterized by an ordinary
differential equation:

x{t) = /(a;(t),u(£),d(t))
a;(0) = xo /..v
u{t) € U
d{t) € D

To prevent technical problems, we introduce the following assumption:

Assumption 1 f is Lipschitz continuous in x and continuous in u and d. u and d are piecewise continuous
as functions of time. U and D are convex and compact subsets of R^" and R™** respectively.

We use Ui to denote the set of piecewise continuous functions from an in interval / C R to U and U for
the union of Ui over all I (and similarly for V). The assumptions on /, u and d are needed to ensure that
the system is well posed. Under this assumption the system is (in a sense) deterministic and non-blocking.



since, by a standard existence and uniqueness argument for ordinary dilferential equations, for every xq ^ >
T > 0^ u £ l/[o,T] aJid d € I^[o,T]j there exists a continuous, piecewise differentiable function x : [0,T] —> X
with x(0) = xo and x{t) = f{x{t),u{t),d{t)) for all t where (u,d) is continuous ("almost everywhere"). For
this reason we will use:

X = {xo,u,d)

to denote the unique execution starting at xq € M" under control ueU and disturbance d&V.

In addition, the piecewise continuity assumption prevents the controller from "cheating" by forcing the exe
cution to be Zeno. Strictly speaking, the execution of the system will have to be defined over a sequence of
intervals, where u and d are continuous over eaoh interval (recall that the definition of an execution of an open
automaton from Lecture 8 requires continuity of the input variables over a piece of continuous evolution).
Piecewise continuity of u and d implies that there exists an execution such that every compact interval of
time overlaps with a finite number of such intervals, or, in other words, there can not be an infinite number
of "transitions" (in this case discontinuities in u and d) in a finite amount of time.

The assumptions on U and D will be needed to prevent technical problems when posing the optimal control
and gaming problems (recall the discussion on bang-bang and relaxed controls)

Consider a set of states F C Q. Try to establish the maximal control invariant subset of F, i.e. the largest
set of initial states for which there exists a controller that manages to keep all executions inside F. Somewhat
informally this set can be characterized as:

W = {xo e 1'' : Vd € V, •F(xo,u,d) = Trne}

The only additional caveat is that u is implemented by a memoryless controller (following the discussion of
Lecture 21). To eliminate technical complications we assume that:

Assumption 2 There exists a continuously differentiable function I iW such that:

?(x) >0 if xepo
l{x) = 0 if xedF
l{x) <0 if X € F'^
i(i) = o =i.

The assumption implies that F is a closed set with non-empty interior, whose boundary is a n —1 dimensional
manifold.

2 Dynamic Programming Solution

To apply the optimal control tools introduced in the previous lecture let t/ = 0, consider an arbitrary f < 0
and introduce the value function:

J(x,t)= max min l(x(0))
u€Wit.o]d€D[t.oi

Notice that this optimal control problem involves no Lagrangian {L = 0), just a terminal cost. The game
obtained in this setting falls in the dass of pursuit-evasion games [3]. The (u, d) obtained by the above optimal
control problem is a Stackelberg equilibrium for the game between control and disturbance, with the control
playing the role of the leader. Recall that in general the computation of Stackelberg equilibria in feedback
form may be complicated by the possibility of "incentives" and "threats", employed by the leader to coerce
the other player into a beneficial course of action. In this case the situation is simplified by the fact that the
game is zero sum (any gain achieved by u is equal to a loss suffered by d), so the possibility of incentives and
threats is eliminated.



j can be computed using the dynamic programming tools discussed in the last two lectures. Introduce a
Hamiltonian:

fT : E" X E" X E""" x E""-* —^ E

(a;,p,u,d) I—^ p^f{x,u,d)

Consider the optimal Hamiltonian:

H'ix.p) = maxmia H(XtP,u,d)
^ tx6Ud6D ^ '

Notice again that the minimization over u and d is pointwise, as opposed to over functions oftime. Then, if
J is continuously differentiable it satisfies:

(2)
J(a;,0) = l(x)

Notice that the evolution of the partial differential equation is "backwards" in time.

Consider the set:

Wt = {xo€X : J(xo,t)>0}

This is the set of all states for which starting at x(t) = xo, there exists a controller for u such that for all
disturbance trajectories d € ^ 0 or, in other words, a;(0) 6 F. This is not quite what we need
yet. We would like the set of aU states for which there exists a u such that for all d and for all f' € [t,0],
x{f) € F. This excludes points in Wt which leave F at some point in [t, 0] but re-enter it before time 0. This
requirement can be encoded either after the computation of J, or by modifying the Hamilton-Jacobi equation:

= -H-{x,%{x,t)) (3.
J(i,0) = ((x) ^ '

Compare this with the discrete Hamilton-Jacobi equation from Lecture 23:

= {J (4)
J(g,i - 1) - J{q,i) = min{0,maxu€umind6D[min,/g5(5,(„,d)) J(9',0 - J{q,i)]}

6{q, {u, d)) essentially implements the spatial partial derivative of J along the djmamics of the system. The
innermost minimization is not needed in the continuous case, as the continuous system is "deterministic".
As before, we seek a stationary solution to this equation. Assume that as t ——00, J(x,f) converges to a
continuously differentiable function J* : X E.

Proposition 1 The set W* = {a; € X : J*{x) > 0} is the largest controlled invariant set contained in F.

The solution to the partial differential equation also leads to a least restrictive controller that renders W*
invariant. Consider:

g{x) =[ ^U:mindsD >0j if a; €
\ u ]£ Xe uiw*y

Proposition 2 p is the unique, least restrictive memoryless controller that renders W* invariant.

Notice that no constraint is imposed on u in the interior of W* (we can delay action until we reach the
boundary) and outside W* (its too late to do anything about it, so might as well give up!).



3 Geometric interpretation

For an axbitrary time t < 0 define:

Wt = {xeX : J{x,t) > 0}

Consider and x £ dWt and assume that:

H* (x. ^(x.t)) <0

max mm

dJ

u6U (i€D CfX

f) 7
Vu e U 3d € D such that t)f{x, u,d) <0

But is the normal to the boundary of W< at x, pointing inside Wt- Moreover, ^{x,t)f{x,u^d) is
the inner product between this normal and the vector f{x,u,d). Let $ be the angle between ^{x,t) and
f{x,u,d). Then:

dJ•^{Xit)f{x,u^d) >0 if 6<7r/2
£S T

^(a:,t)/(x,u,d) =0 if 6=1^(2
dJ^(a;,t)/(x,u,d) <0 if ^>7r/2

Therefore, the above statement is equivalent to:

for all u € U there exists d € D such that the normal to dWt at x pointing towards the interior
of Wt makes an angle greater than 7r/2 with f{x,u,d),

or, equivalently:

for all u € U there exists d € D such that f{x,u,d) points outside Wt.

These are points where whatever u does d can force them to leave the set Wt instantaneously. Notice that
the order of the quantifiers in the above expression implies that d may depend on u, in addition to x and t.
The part of the boundary of Wt where B"* < 0 is known as the "usable part" in the pursuit-evasion game
literature.

Returning back to the Hamilton Jacobi equation, we see that for these points:

^ (r, t) = -min 10,Lf (x, ^ {x, t)^ |
=

> 0

Therefore, as t decreases, J also decreases. For these points on the boundary of TVf, J becomes negative
instantaneously, and they "fall out of" Wt.

What if H* >07 A similar argument shows that in this case:

there exists u € U such that for all d € D the normal to dWt at x pointing towards the interior
of Wt makes an angle at most 7r/2 with /(a;, u, d),



or, equivalently:

there exists u € U such that for all d € D, f{x,u,d) either points inside Wt or is tangent to
dWt.

These are points for which there exists a choice or u that for all d forces the state to remain in Wt. Notice
that the order of the quantifiers implies that u may only depend x and t, and not d. For these points:

= 0

Therefore, as t decreases, J remains constant. These are points that want to move towards the interior of
Wf. The role of the outermost minimum is to ensure that the value of J does not increase for these points, so
that Wf does not grow. This is to prevent states that have been labeled as unsafe (can reach jP®) from being
relabeled as safe later on.
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1 Problem Formulation

Last two weeks we discussed controller synthesis for:

• Discrete systems: design characterized by a fixed point of a difierence equation.

• Continuous systems: design characterized by fixed point of a partial diiferential equation.

In either case the solution is characterized as a fixed point of an equation, which we refer to as the Hamilton-
Jacobi equation. Today, we bring the discrete and continuous parts together, and talk about hybrid systems.
Our treatment follows [1] and [2]. See also [3].

Recall that the plant is modeled by an open hybrid automaton, H = {Q, X, V, Init, /, I, E, G, R, (f>), where:

• Q is a finite collection of discrete state variables;

• X is a finite collection of continuous state variables;

• y is a finite collection of input variables. We assume V = Vd U Vc, where Vd contains discrete and Vc
contains continuous variables.

• Init C Q X X is a set of initial states;

• / :QxXxV—•K"isan input dependent vector field;

• J : Q —V 2*^^ assigns to each q € Q an input dependent invariant set;

• JScQxQisa collection of discrete transitions;

• G : E 2^^^ assigns to each e = {q,^) e E a. guard;

• i2:SxXxV—>2* assigns to each e = (q,g') € £?, a; € X and v € V a reset relation; and,

• 0 : Q XX —> 2^ assigns to each state a set of admissible inputs.

Also recall that the set the input variables are partitioned into controls (that can be used to steer the system)
and disturbances (whose values can not be controlled):

Assumption 1 To avoid technical problems we assume that:

1. f is Lipschitz continuous in x and continuous in v.



2. for all {q,x) € Q x X, <j){q,x) = U x D ^ 0.

3. for all q SQ and for all u € V, I{q)\x is an open set.

4' for all (g, a;) G Q x X, and for allu there exists d € D such that:

[(a;, u,d) € /(g)] V[((x, u, d) 6 G(g, q') A{R{q, q',x, u,d) # 0)]

Part 1 is standaxd, and is needed for existence of continuous evolution. Part 2 implies that acceptable control
and disturbance inputs always exists, and that the choice of u can not influence the possible choices of d and
vice versa. Part 3 implies that we need not worry about what happens on the boundary of the invariant set
(otherwise we would have to assume transverseinvariants, define the Out set, etc.). Finally, part 4 (together
with part 3) implies that the controller can not block the system execution. Notice that this assumption is
not symmetric for u and d. The reason is that, since we are dealing with safety specifications it will never be
to the benefit of d to stop the execution.

As beforewe will try to establish the largest controlled invariant subset of a givenset F C Q x X, and design
a controller that renders this set invariant. To avoid technical problems we assume that:

Assumption 2 F is a closed set.

We will again take an adverserial approach and treat the design as a game between u and d. Whenever possible
we will give the advantage to d, in particular:

1. In the order of play {u will be the "leader" of the game).

2. When resolving non-determinism.

2 Definitions of Operators

Notice that the disturbance has two choices. It can:

1. Try to make the system "jump" outside F.

2. Try to "steer" the system outside F along continuous evolution.

The control also has two choices:

1. Try to "jump" to another state in F when the disturbance tries to steer out of F.

2. Try to "steer" the system and keep it in F along continuous evolution.

To charactrize alternative 1 for the disturbance, introduce the uncontrollable predecessor operator, Prej :
2Q>:X —> 2^**, which, given a set iif C Q x X returns:

Pre<£(iiL") = jK"® U{(g, z) G Q x X : Vu G U 9d G D, g' G Q such that
[(a;, u, d) GG{q, g')] A[R{q, q',x,u, d) n /f0]}

For a given K, FTed{K) returns the set of states that are either in the complement of K, or whatever u does
may find themselves in the complement of F by a discrete transition.

To charactrize alternative 1 for the control, introduce the controllable predecessor operator, Preu : 2*^^* —>
2Qxx^ which, given a set /f C Q x X returns:

Prett(iiL') = Kf\ {(g, z) G Q x X : 3u G U such that Vd GD,
[3g' GQ such that {x,u,d) € G{q,q')]A
[{x,u,d) ^ I{q)]A
[{x,u,d) GG{q,<f) -»• R{q,q',x,u,d) C K\}



For a given K, Preu(iif) returns the set of states that are already in K and thereexists a control action that
can force a transition that keeps the state in K.

Some simple facts about these two operators:

Proposition 1 For allK CQx'K, Prett(iif) C K, Fred{K) DK'̂ andPreti(iiC^) HPred(iif) = 0

Remarks:

• The two operators are asymmetric.

• The order of the quantifiers is consistent with u being the leader in the game.

• Since all non-determinism is resolved in favor of d, u has to work harder:

- it has to ensure a transition back into K exists (first condition in the definition of Pre„(ii5r)),
- it has to be able to "force" the transition (no mention of I{q) in the definition of Pred(jK')),
- it has to ensure all possible transitions stay in K (last condition in the definition ofPreti(iif)).

Finally, tocharacterize alternative 2for hot u and dintroduce the reach-avoid operator, Preu : 2^^* —*
2QxX^ which, given two disjoint sets jRT C Q x X and L G Q x X returns:

Reaxih{K,L) = {(go.aJo) € Q x X : Vu € W3d € > 0 such that
[(g(t),z(f)) € K)] A[Vf € [0,£] Mf),x{t')) ^ L]

where (g, re): [0, £] -+ Q x X is a segment of continuous evolution with inputs u and d, i.e.:

(g(0),a;(0)) = {qo,xo) and W € [0,£]
g(£') = go

{x{t'),uit'),d{t')) € /(go)
ic(i') = /(go,a;(£')>^(^').c^(^'))

Given two disjoint sets K and L, the operator Reach returns the set of states for which whatever u does, d
ran chose an appropriate trajectory to bring the state of the systemto K alongcontinuous evolution, without
going first through L.

Proposition 2 For all K,L C Q xX. with K nL = 0, K C Reach(iif, L) C L®.

Notice that the definition of Reach is somewhat informal, since:

• tt is implicitly assumed to be a feedback strategy (in fact, without loss of generality a memoryless
feedback strategy, see Lecture 21).

• u and d are allowed to be piecewise continuous (recall the justification for this given in Lecture 26).

3 Basic Algorithm

Usingthe abovedefinitions,the following algorithm can nowbe formulated for computing the largest controlled
invariant subset of a given set F.

Algorithm 1 (Controlled Invariant Set)
Initialization:

= F, = 0, i = 0
while W* # W*+^ do
begin

^t-i =w'\ Reach(Pred(T^O,Pre„(^0)
i = i — 1

end



Pre/Wj PrejWj

ReacMPrefX'), PreJWb)

Figure 1: One step of the algorithm.

Pictorially, the operations involved in one step of the algorithm is illustrated in Figure 1.

Proposition 3 If the algorithm terminates in a finite number of steps, the fixed point W is the maximal
controlled invariant subset of F.

Proof: Clearly, W C ... C C W* C ... C F. Assume that the algorithm terminates in a finite number
of steps. Then:

W* =W''\ ReachCPred{^-),Pre.,(PF*))

W^'nReaohCPredCTy'j.PreuCPF"))
-S- Ileach(Pred(l^').Pre«(ir"))C(T^")^

{Wy C Pred(W^') C Reach(Pred(W^'),Pre«(W)) C {Wy

Reach(Pred(Ty'),Pre„(iy-)) = Fiea{W') = {Wy

Consider an arbitrary (qo,xo) £ W. Then:

iqo,xo) ^ Reach(Pred(>F"),Pre„(l^"'))

Taking the negation of the expression for Reach this becomes:

3u&U such that Vd e V^t > 0 [(gCt),a:(t)) 0 Pred(T^*))] V[3t' G [0,t] ((g(i');a:Ct')) € Pre„(t^')]

Replacing Pred(T^"') by {W*y and substituting the definition of Preu(W""):

Bu such that Vt > 0 [(g(t),a:(t)) 6 W'jv
[3t' G [0,t] such that 3u(t') G U such that Vd(t') G D,
(3g' G Q such that {x{t'),u{t'),d{t')) G G{q{t'),q'))A
{(x{t'),u{t'),d{t')) i /(g(f')))A
{fx{t'\u{t'\d{t')) GGWU) ^ RWU^m.<t'\d{t')) C W')]



In other works, if (go,a^o) ^ either u cankeep the system forever in W* without any discrete transitions
taking place, or it can drive the system so that (9(Ti),a;(ri)) € W* (the first discrete transition the state is
again in W). Controlled invariance of W* follows by induction.

Toshow maximality, consider an arbitrary (go>2^0) € {W*Y. Then, since the algorithm terminated in a finite
number of steps, there exists i such that:

{qo,xo)eW'\W'-'
(go,aJo) € Reach(Pred(W*),Prett(W*))

, •«. Vu €Wad e I>,« >0such that [(«(t),a:(t)) e Preu(H'')] A(Vt' € [0,t], ((?(«').»(«')) ^ PreuCW''))

Substituting the definition of Prej leads to:

\/ueU3d£V,3t>0 such that [Vf € [0, t] {{q{t'),x{t')) i Pre«(W^O]A
€ (w^O^)v

(Vu(t) € U 3d(f) e D, g' 6 Q such that [(a;(t),«(i),d(t)) € G{q{t), g')]A
[R{qitUMt)Mt),d{t)) n {Wy # 0])

Since C W\ for all j < i, the above shows that in finite time the state may end up either in F® or in
for some j >i whatever the control does, (at best it ends up in Therefore, by induction, the state

leaves F in finite time. •
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1 Controller Synthesis Algorithm Review

Last time an algorithm to compute the largest controlled invariant set contained in a given set F was intro
duced:

Algorithm 1 (Controlled Invariant Set)
Initialization:

W° = F, = 0, i = 0
whUe W* # do
begin

Wi-i = W'\Reax±{?ied{W%?TeuiW*))
i = i — l

end

where the index decreases as a reminder that the algorithm involves a predecessor operation. Recall that
Pred(WO is the set of states that are either already in the complement of W*, or may find themselves in
the complement of W* through a discrete transition, whatever u does through an appropriate choice of d.
Pre«(WO, on theother hand, is theset ofstates that are already in W* and there exists a u that can force a
transition to another state in W^, whatever d does. Finally, Reach(Pre<i(W*),Preu(lV*)) is the set of states
that whatever u does there exists an appropriate response by d that drives the system to Pre(i(W*) without
going through Preti(W*) along continuous evolution.

2 Computation

Thisisa pseudo-algorithm, in the sense that alltheoperators used were defined axiomatically. Therefore, even
though conceptually thealgorithm will produce thelargest controlled invariant set, it can notbe implemented
as it is in practice. To effectively implement it and guarantee termination we need to:

1. be able to store arbitrary sets of states and perform operations on them.

2. compute Pre„ and Pred at each step.

3. compute Reach at each step.

4. ensure that only a finite number of steps are needed.

Finite sets be stored and manipulated by enumeration. The situation is not as simple for continuous
quantities however. Here we will assume that sets of states are stored as level sets of functions. This repre
sentation is convenient conceptually, but is not necessarily effective computationally, as it shifts the problem



from storing sets to storing functions! For certain classes of sets/functions computation is in fact possible (for
example, for polygons, ellipsoids, polynomials, functions encoded by neural networks, etc.). In this lecture we
follow [ij.
The computation of Pret, and Fred is straightforward conceptually, as it involves inverting the discrete tran
sition relation. The way to implement it computationally depends on the representation one uses to store
and manipulate sets, and the sets that encode the discrete transitions (invariants, guards, reset relation).
For certain classes (e.g. linear maps, polygonal sets, etc.) the computation may be feasible using quantifier
elimination or optimal control tools.

Obtaining a representation of Reach is not only computationally involved, but also conceptually. The standard
optimal control and game theory concepts do not deal with this type of problem, where a certain set must
be reached before another. Since q remains constant along continuous evolution, the computation of Reach
can be performed separately for each value of q 6 Q. The computation will involve a modification of the
Hamilton-Jacobi partial differential equation. Freeze the value of q and consider two sets K CX and LCX.
Assume that:

Assumption 1 Assume L is closed, K is open and there exist continuously differentiable functions Zx,: X —»
[0,1] and IjK :X [0,1] such that Ik{^) = 0 for x ^ L, Ijc > 0 for x ^ L and Ik{^) = 1 for x £ K, whereas
Il{^) = 0 for X e K, II > 0 for x ^ K and Il{x) = 1 for x e L.

This assumption is satisfied if, for example, the sets have smooth boundaxies, non-empty interiors and their
closures are disjoint.

Consider the value function J : E" x E_ ^ E governed by the Hamilton-Jacobi equation:

Notice that:

dJ{x,t) .
dt ~ ^

max{o,H'*(a:,^:^J^^)} ifj(a;,t)>l
H*{x,^^ ) if -1< J(a:,t)<l
min|o,H'*(x, )} ifj(x,t)<-l

H*{Xj p) = maxu€U niin<igD P^fig^x,u,d)
J(a:,0) = Il{x)-Ik{x)

(1)

Proposition 1 If for some x € X, J{x,t) < —1 (or J{x,t) > I) for some t < 0 then J{x,f) < -1 (or
J{x,1f) >1) for all t' < t.

The situation J{x,t) < —l corresponds to points for which whatever u does, there exists a response for d such
that the state reaches K by time |t|, without going through L for any 0 < s < |t|. The situation J{x,t) > 1
corresponds to points for which there exists a choice for u such that whatever d does the state reaches L by
time \t\ without going through K for any 0 < s < |t|. Finally, the situation J(x,t) € (—1,1) correspond to
states that are still "undecided" at time t: they may end up in IT or in L by some time |s| > |t| or they
may never reach either set. Notice that the situation is not quite symmetric because of the order of the
quantification. As usual we are looking for a stationary solution to this PDE.

Proposition 2 If a continuously differentiable solution to the above equations exists that converges to a con
tinuously differentiable J* : R as t-*• —oo, then Reach(lir,L) = {x € E"|J*(x) < —1}.

In the limit, the set where J*{x) < —1 consists of states that can ultimately be driven to K without first
going through L, the set where J*{x) > 1 consists of states that can ultimately be driven to L without first
going through K, while the set of states where J*{x) € [—1,1) contains states that can not be forced to reach
neither K nor L.

An alternative characterization of ReajchiK, L) involves two coupled partial differential equations. Assume
continuously differentiable function Ik -X—^R and Il:X-*R exists such that K = {x £ X\Ik{x) < 0} and



L = {a; € Xc\Il{x) < 0}. Consider the following system of coupled Hamilton-Jacobi equations:

(2)

and

dJK{x,t) ^ f H^(x, for {xeX\ JK{x,t) > 0}
dt \ min{0,ifj^(a;, ^{x,t))} for {re GX jJjf(rc,i) < 0}

f\=l ^^ I >°> f31dt'-'' \ vom{0,Sl(x,^^^)} for{sex| J-i(x,t)<0}
where Jjf(rc,t) = Zj^(rc(0)) and Jiix^t) = Il{x{0)), and

TT* (r = / ° for {rc €Z IJi^x^t) < 0}
dx \ maxuguniinrfgD otherwise

rrm( ^
dx^ \ minugumaxdgD^/(aJ,u,d)
dJh^ _ f 0 for {x e X IJK{x,t) < 0}

otherwise
(5)

Equation (2) describes the evolution of the set K under the Hamiltonian This is the solution to the
"maxuinind" game for reachability in purely continuous systems, with the modification that = 0 in
{x € Xc I Jiix^t) < 0}. This ensures that the evolution of Jnix^t) is frozen once this set is reached.
Similarly, equation (3) describes the evolution of the set L under the Hamiltonian H^. Here a "minumax^"
is used, since it is assumed that the control tries to push the system into L, to escape from K. = 0 in
{x € Xc I JK{Xyt) < 0} to ensure that the evolution ofJiix.t) is frozen once this set is reached. One can
show that the resulting set {x GXc | JKix^t) < 0} contains neither L nor states for which there is a control
which drives the system into L; and the set {x GXc | Jbix^t) < 0} contains neither K nor states for which
there is a disturbance which drives the system into K.

Propositions Assume that Jnix^t) (Jhix^t) respectively) satisfies the Hamilton-Jacobi equation (2) ((3)
respectively), and that it converges ast —* —oo toafunction J^{x) (Ji,{x) respectively). Then, Reach{K,L) =
{x GXc IJtci^) < 0}.

As for the first representation of Reach, comments relating the values of and and the "fate" of the
corresponding states can be made.

Remarks:

• Thefirst representation is more compact. It involves solving a PDEin n -1-1 dimensions, as opposed to
the 2n -H 1 dimensions needed for the second representation.

• Thesecond representation is more general. For example, it does not require the closures ofK andL to
be disjoint. This often turns out to be needed in applications.

• In either case, we are still faced with the problem of finding a solution to PDEs. Technical problems
arise since a solution in the conventionalsense does not always exist or may not be umque. For example,
weaker solutions concepts (e.g. viscosity solutions) may be needed if the value function turns out not to
be smooth.

• Even if we decide on an appropriate solution concept, obtaining the solution computationally maystill
be a problem. Computation tools that may be applicable include:

— finite element methods

— method of characteristics

—level set methods (these were studied in detail in the doctoral dissertation ofTomlin [2].
—approximate solution using basis functions

—viability kernel computations
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Figure 1: The two modes of operation.

Each of these techniques has computational advantages and disadvantages and may be applicable in
some problems but not others. They all suffer from the "curse of dimensionality": they typically run
out of steam beyond W.

• Problems may arise even after a numerical solution is computed:

—will the numerical approximation be contained in the controlled invariant set?

—will the numerical approximation be controlled invariant itself?

—can a controller that renders the numerical approximation controlled invariant be S3nithesized?

—or at least, can a controller that renders the largest controlled invariant set invariant be synthesized
using the approximation?

3 Example: Aircraft Conflict Resolution

Consider ffom the dissertationof 0. Tomlin [2], a collision avoidance maneuver for a pair ofaircraft consisting
of two modes of operation: a cruise mode in which both aircraft follow a straight path, and an avoid mode
in which both aircraft follow a circular arc path. When the maneuver is initiated, each aircraft turns 90° to
its right and follows a half circle. Oncethe half circle is complete, each aircraft returns to its originalheading
and continues on its straight path (Figure 1).

In each mode, the continuous dynamics may be expressed in terms of the relative motion of the two aircraft
(equivalent to fixing the origin of the relative frame on aircraft 0 and studying the motion of aircraft 1 with
respect to aircraft 0):

Xr = —Vq + Vi COStpr +

2/r = Vi sin V'r —

'ijjr = Wi —LJq
(6)

in which {xr^Vn'^r) € X[—7r,7r] is the relative position and orientation of aircraft 1 with respect to aircraft
0, and Vi and oji are the linear and angular velocities of each aircraft. In the cruise mode Wf = 0 for i = 0,1
and in the avoid mode = 1 for i = 0,1. The control is the linear velocity of aircraft 0, li = uo € U, and the
disturbance is the linear velocity of aircraft 1, d = vi € D, where U and D denote the range of possiblelinear
velocities of each aircraft. Here we restrict our attention to the case where both U and D are singletons (i.e.
the aircraft maintain the same speed).

The discrete state takes on three possible values, Q = {qi,?2j93}- Qi corresponds to cruising before the avoid
maneuver, 92 corresponds to the avoid mode and 93 corresponds to cruising after the avoid maneuver has been
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Figure 2: Hybrid dynamics of the two aircraft example
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Figure 3: Enabling and forcing boundaiies for 0*0 and the effect of increasing the radius of the turn.

completed. There are two transitions. The first is controllable by a discrete input variable, a, and corresponds
to the initiation of the avoid maneuver. The second transition, corresponding to the completion of the avoid
maneuver, is required to take place exactly when the aircraft have completed a half circle, and is therefore
treated as uncontrollable. The continuous state space is augmented with a timer z € E to force this transition.
We set X = {xr,yr,i'r,2}. The dynamics of the maneuver can easily be encoded by a hybrid automaton,
shown pictorially in Figure 2. The maneuver is safe if the aircraft remain at least 5 nautical miles apart
throughout, that is:

{?i,g2,?3} X{x\xl+yi> 25}

W can be computed following the above algorithm. The computation Reach is simplified by the fact that
the continuous inputs are assumed to be constant, while the computation of Preu and Prej is simplified by
the fact that there are no discrete disturbance inputs. The resulting controller for a is illustrated in Figure
3(a). The transition <7 = 0 until the continuous state reaches the dashed line; at this point the transition is
enabled (cr is allowed to be either 0 or 1), and the transition to state 92 mayoccur. The transition is forced to
occur (by setting (T = 1) when the state reaches the solid boundary of W. Note that there are states which
are not rendered safe by the maneuver. Indeed, in gi, if the initial state is in the dark region, then the aircraft
are doomed to collide. Figure 3(b) displays the result of increasing the radius of the turn in 92- Notice that
the set W increases as the turning radius increases. This implies that the maneuver renders a larger subset
of the state space safe. Figure 3(b) shows the critical value of the turning radius, for which the maneuver is
guaranteed to be safe, provided the confiict is detected early enough.

For more details on the application of hybrid systems to multi-aircraft conflict resolution see [3].
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EE291e Problem Set 1 Due: February 10, 1999

John Lygeros, Spring 1999

Dept. of EECS, U.C. Berkeley

Problem 1: Let xo^x{t) G E", u{t) G M"*, .A € E"'*" B G and u a piecewise continuous function of
time. Consider the matrix exponential function defined by itsTaylor series expansion = I+A+^+^+...,
where I is the identity nxn matrix.
(a) Consider the autonomous, linear dynamical system:

x{t) = Ax{t), x(0) = xo (1)

For an arbitrary T > 0 show that:

x{t) — (2)

is an execution of (1) for t G[0,r]. Can there be another execution, x\ with x'{t) # x{t) for some t G[O,!*]?
(b) Consider the linear control system:

For an arbitrary T > 0 show that:

x{t) = Ax{t) + Bu{t), x(0) = Xo

x{t) =e^*xts +/' e'̂ ('-'''Bu(T)dT
Jo

(3)

(4)

is an execution of (3) for t e [0,r]. Can there be another execution, x', with x'{t) # x(t) for some t G[0,r]?
(Hint: Use the Leibniz rule.)

Problem 2: Consider the finite automaton, M = (Q,S, A,5o,F), with Q = {po>Pi>J'2}, S = {a,6}, A =
{(po,a,Pi), (Pi,6,Po), (Pi,&,P2), (P2,a,Po)}, go = {Po}, F = {Po}- Construct an equivalent deterministic finite
automaton, M'. Your answer should include a justificationof the construction, not just a picture!
(Hint: The fact that ifM has |Q1 states, M' will in general have 2'^' states suggests a relation between states
of M' and sets of states of M.)

Problem 3: Consider the bouncing ball system of Figure 1, where xi,X2 € E and c G [0,1]. Assume that
initially Xi > 0.
(a) Write down a model of the system in the hybrid automaton modeling formalism.
(b) Show that the bouncing ball automaton has transverse invariants.
(c) Show that the bouncing ball automaton is non-blocking.
(d) Show that the bouncing ball automaton is deterministic.
(e) Show that, if c G [0,1), all executionof the bouncing ball automaton are Zeno.

[xi<0]v[(xi=oyv(;^^0)]

Figure 1: Bouncing ball



Problem 4: Consider a hybrid automaton, H, such that the set U,gQ(g,/(g)) is open.
(a) Show that if:

1. for all g € Q, I^qY C U(5,g')g£;G(g,g'); 2ind
2. for all {q,q') € E and for all a; e Cr(g,g')j # 0>

then H is non-blocking.
(b) Show that if:

1. for all g GQ, I{qY D ^{q,q')€EG{q,q');
2. for all (g,g'), iq,q") € E with g' ^ g", (?(g,g') D(x(g, g") = 0; and
3. for all {qy<i) GE and for all x GG(g,g'), |-R((9»?')ja?)| < 1,

then H is deterministic.

(c) Deduce an existence and uniqueness theorem for hybrid automata with open invariant sets.



EE291e Problem Set 2 Due: March 10 , 1999

John Lygeros, Spring 1999

Dept. of BEGS, U.C. Berkeley

Problem 1: Consider two compatible hybrid automata, Hi and i?2, and let H = Hi\\H2 denote their
composition. Show that H = {x^ Hyb(Var(iif)) : xlvar(^o ^ for i = 1,2}.

Problem 2: Show that a sequence property (W,P) is both a safety and a liveness property if and only if
P{X) = ItMe for all X € Hyb(W^).

Problem 3: Consider a sequence property, (W,P), such that {x € Hyb(W) : P{x) = True} ^ 0. Show
that there exist a safety property (W^,Pi) and a liveness property (W,P2) such that P(x) = True if and only
if Pi(x) = True and P2(x) = True.

Problem 4: Consider a hybrid automaton, H = (Q, X, Init, /, I, E, G, R) with transverse invariants, and
a set:

Inv = {(5,a;) € Q x X : 5(^,2;) > 0}

where 5 is a function analytic in x. Let Inv, = {x € X : (g,x) GInv}. Assume that for all (9,x) € Inv,
n(j,,/)(?,a;) < 00 and let:

Outinv = €Inv t <o}
Show that if:

1. Init C Inv

2. For all {q,^) e E and {q,x) € Reach(J?), x € G{q,q') n Inv, ^ R{q,q',x) C Inv,'.

3. (g,x) € Outinv n Reach(P') ^ a; € Out(g).

then H satisfies (Var(P'), Dlnv) (or equivalently Reach(ir) C Inv.

Problem 5: Let H be the water tank automaton of Lecture 5. Consider:

P = {a; G : a;i > n A2:2 > 7*2}

Show that H satisfies (X,DP). What does this tell you about the limitations of deductive proofs?



EE291e Problem Set 3 Due: April 26 , 1999

John Lygeros, Spring 1999

Dept. of EECS, U.C. Berkeley

Definition 1 (Singular Automaton) A compact, singular, initialized, rectangular automaton (singular au
tomaton for short!) is a rectangular automaton such that:

1. Compact; for all e£ E, G{e) and R{e,x) are compact, and for all g € Q, Init(g) and F{q) are compact,
and I{q) = X.

2. Singular; for all g € Q, F(g) = Fi(g) x ... x F„(g) is a singleton, and for all e € F, R{e,x) is o
singleton.

3. Initialized; for all e = (g,g') € E, if Fi{q) ^ Fi(g') then Ri(e,x) 7^

Definition 2 (Stopwatch Automaton) A stopwatch automaton is a singular automaton such that for all
g € Q, Fi{q) € {0,1}.

Definition 3 (Generalized Timed Automaton) A generalized timed automaton is a stopwatch automa
ton such that for all g € Q, Fi(g) = 1.

Problem 1: Show that every singular automaton is bisimilar to an initialized stopwatch automaton. (Hint:
as a bisimulation relation use a time scaling, as in the proof of Proposition 1, Lecture 14).

Problem 2: Show that every initialized stopwatch automaton is bisimilar to a generalized timed automaton.
(Hint: introduce additional discrete states to store the values of stopwatches when they stop.) Given that
generalized timed automataare bisimilar to finite automata(thebisimulation relation used for timed automata
still works!), what can you conclude about the reachability problem for singular and stopwatch automata?

Problem 3: Consider the linear system:

X =

2

3

0 -1
3 0

Let Y = {(2/1,2/2) e : 2/1 = 4 a 2/2 = 3}

1. Characterize PrCr (V) in terms ofa first order formula in OFexp(R) = {IK, 0,1,exp}.

2. Going through the procedure outlined in the notes, show that this formula can also be written in
quantifier free form.

Problem 4: Consider the linear system:

0
X = 3

-I 0

Let again Y = {(2/1,2/2) € : 2/1 = 4 A2/2 = 3}

1. Characterize Prer(y) in terms of a first order formula in OFan(R) = {1K,+,0,1,{/}}. (Recall
that each / represents an analytic function, / : M Mwith its domadn restricted to a compact set).

2. Going through the procedure outlined in the notes, show that this formula can also be written in
quantifier free form.
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Bipedal Gait Modeling Using the Hybrid Formalism

Introduction
The work detailed in diis project concems the application of die Hybrid Systems formalism in

order to generate a realistic model ofbipedal gait. Such models may beofutility inapplications such asthe
design, control andanalysis of autonomous bipedal robots. Potentially, these models mayalso find use in
better understanding the mechanisms by which humans and odier bipedal animals maintain stable limit
cycles during the progression of theirgait To date, most of thebiomechanical depiction of bipedal gait
consists of disparate simple models used to attempt to verify empirical results. It is hoped that the
development of a detailed physical model of controlled gait may shed some light on these issues. Also,
given the potential inherent synergy between the knowledge of human walking and die study of artificial
bipedal robots, this opens up the possibility of extending die research to encompass human/robotic
collaborative systems. These aresystems where botha robot worn about the legs anda human wearer may
cooperate to achievea specifiedgoal.

Part of the motivation for selecting the hybrid formalism to express our gait model was the
intuitive observation that the walking cycle lends itselfto a hybrid model. If one considers the legs as
inverted pendula, then the model of the bipedal walking apparatus may be expressed as a nonlinear
continuous model with impulsive events occurring whenever a legimpacts theground.

Hybrid Model ofBipedal Gait
A simple physical model of a pairof legs is shown at right. Essentially, each

legismodeled as a link in a double inverted pendulum. One legis in stance, meaning it
is attached to die ground, whereas the other leg is free to swing. The mechanism has
two degrees of freedom, in otherwords, its orientation maybe expressed using the two
generalized coordinates thetal (representing the orientation of the ankle of die stance
leg) and theta2 (representing fte orientation of the swing leg). In order to make
controlling diedevice easier, weassume thatthemodel is fully actuated. Essentially we
assume weareable to apply control torques both at die ankle ofdie stance legandat the
hip of die device (the joint between the two legs). This is done to avoid having
uncontrollable subspaces and to make the controllerdesigneasier.

The main reason such a simple physical model of the legs was used was thefact that it was hoped
that die model may be used to shed physical insight into the conditions under which stable walking is
achieved. Given the feet that the model only fouth order one would beable to graph thestate trajectories of
eachleg. Theequations governing the continuous dynamics of thesystemare:

Mx+C(x,x)+ N(x) =u, where u= 'W 'o;
, X =

_"2. Pi.
, and

M =
SmV' 2ml^ cos(^j -0^

2m/^cos(^,-^2)
-3m/sin ^1

C =
ml^ sin(^j - O2 "^2]

ml ŝin(^i - 02 ~ 1

N = g
-m/sin^.



Q- ^Q=\left_stance, rightjstance}
InitcQxX

The hybrid automaton consisted ofa single discrete variable which corresponded towhich legwas
on theground. This variable could takeany of thetwo state valuations l^jstance andright_stance. Note
that there is no statewhich represents the condition when both feetareon the ground. In essence, wehave
collapsed this potion of the cycle to an instantaneous event. This was an unfortunate consequence of the
simplicity of ourphysical model. In comparison widi empirical data of a typical walk cycle, this is an
oversimplification, where it has been routinely shown that the double support phase accounts for about
10%ofa ^ical walk cycle.

Onemay alsowonder whether it would be possible to simplify the discrete portion of die model even
further, and take advantage of the symmetry between the left and right legs such that one wouldonly have
to model a single step in the cycle. It was desired to keepdie model a bit general here due to die fact that
Goswami, stu<fying &e stability of limit cycles for passive mechanisms of this type notes: ''One curious
thinghappens forslightly larger slopes. There is a bifurcation of thesolution andthe robotexhibits a limit
cycle which repeats itself every two cycles. Physically, this means that any two successive steps of the
robot are not idenitical. A local stablility analysis shows that the gait is stable." [1] Hence, in order to
possibly encompass phenomena of this nature, it was decidedto differentiate between fhe successive cycles
ofeach leg.

Guards
The guards for this system represent collisions ofdie feet with the ground. Dueto the fact that the

physical model does not account for the lifting of the swing leg so as not to contact the ground, the
condition for collision was based on the angle ofthe swing leg. Hence, the swing leg ignores the fact that it
has penetrated die grounduntil it reachesa certain angle, wherethe modelregisters a collision.

G{q,qh{e,=e,)

Resets
The resets for the system remap the system state after the discrete transitions. The resets for our

model of gait were physicdly motivated. In this case, they were derived fi'om models of rigid body
collisions for planar l^ematic chains. As in the bouncing ball automaton studied early in the course, after
everydiscretetransition the modelretainsmemoryofits position but losesmemoryof its velocity.

R(.q,q,x)=W)
Unlikethe bouncingball automaton, however, derivingthe collisionresponsedynamics for a

planar kinematic chain of rigidbodies is nota trivial exercise. Thecollision models were thustaken fi'om a
paperbyHurmuzlu et al. In thispaperHurmuzlu et al.model kinematic chains impacting extemal surfaces
with one end ofthe chain in contactwith the surface. In die paper, it is assumed that there is no vertical
motionat the restingend. The modelalso incorporates a coefficientof restitution, whichmodelsthe energy
lostby the system firom the collision. This is an important consideration in determining stability usingthe
Lyapunov methods for hybridsystems, as onemustnot onlyexaminethe behaviorof the Ly^unov
function duringcontinuous evolution, but as the systemjumps fi-om one discretestatetoanotheras well.

An example of the velocity rem^ping functions derivedfor a perfectlyelastic collision of a two
link planar mechanism are as follows:



(0^

(O

/ \ - 4fi?, C0s(2^, - 2^2)+^^2 COs( |̂ - ^2 )]
-3+2cos(2^,-2^2)

/ V_ [~ 2fi), cos(2^, - 2^2)+ ^2 ]
-3 +2cos(26>,-2^2)

A graphicaldepiction of the hybrid automaton is shown at right.

^ right_stance

i(f)=/WO)

Gait Controller Design
Now that we have ourphysicalmodelofthe systemit was necessaryto imbuethe systemwith the

intelligence necessary to enable it to walk. We approach the problem by separately specifying the
objectives for both die stance andthe swing leg.

One conceivable simple modelto designate the behavior of the swing leg is to have it mirror the

angle ofdie stance leg. This condition can beexpressed as = ^2 • Physically this corresponds to
dietorque at thehipattempting tokeep thetriangle formed by thetwo legs isosoles. One may visualize the
system walking as die two legs closiug like a scissor until they perfecdy overlap when they are vertical;
then they open up again until the swing leg collides.

The desired behavior of the stance leg is to pivot over on the ankleto thepoint where the swing
leg can collide with the ground for the next step. Hence, since we have specified ourguards to detect a
collision when 62 =Ojy and given the fact that the swing leg mirrors the stance leg, we may write the
desired ouqiutof our stance legin terms of thecollision angle of the swingleg.

A controller to accomplish thismaybedesigned byspecifying these conditions as outi}uts of the
controller and having the controller attempt todrive these outputs to zero. Given this, theoutput equations
are e:q>ressed as:

=$2 ~^\ "ISO

A feedback linearizing controller was thendesigned in orderto specify theclosed loop continuous
dynamics ofdie system.

Assessment ofStability ofLimit Cycles
Now diat we have designed a controlled walking apparatus, it is desired to analyze certain

properties of the system, most notably the stability of thegait. Different techniques may be employed to
accomplish this- two are detailed in this paper.

Stability Assessment Using the Methods ofLyapunov
These methods follow from the work ofHui Ye on stability dieory for hybrid dynamical systems

[3]. Basically, theircriterion forstabilty is thata Lyapunov function V is required to be monatonically
decreasing everywhere exceptat the instants wherethe discrete transitionsoccur. At everysuch
instantaneous transition the Lyopunovfimction V is only allowed to decrease.



Stability Assessment Using the Method ofPoincare Sections
Due to the fact that stablewalkingexhibitsa limit cycle behaviorin tiie state space, one may also

classify the stability of the system using a Poincare map. This has several advantages over the
aforementioned Lyapunov methods. Forone diing, it is easier to discuss concepts Uke orbital stability of a
periodic orbit ofa differential equation. Rather than having to extend the Lyapunov theory of thestability
of an equilibrium pointto encompass limit cycles by examining thedistance to the trajectory, onemerely
has to examine thestability of thepointwhere thetrajectory crosses die a submanifold of thestatespace.

What follows is a discussion of how to employ the method of Poincare sections to assess the
stability ofa discontinuous limit cycle.

Employing the method ofPoincare sections to assess the stability
ofa limit cycle with a discontinuity

Due to the feet that direct application ofthe method ofPoincare requires that f (x) be continuous
on X, we are only able to currently determine the stability of a walking model witha single discrete state
(stance). This corresponds to the walker having a symmetrical pattem between his left and right legs.
Possible extensions to this work may be to investigate the application of Poincare sectionsto systemswidi
discontinuous dynamics.

Essentially, one is able to apply the method of Poincare sections to a system with a single
discontinuity in the vector field if the discontinuity occurs as a result of the state trajectory impacting an
embedded submanifold S. We then may utilize fee manifold S as our Poincare section for analysis. A
quasi-rigorous explanation offeemethodology follows. Much offeerigorous detail is omitted forfeesake
ofbrevity.

Consider a differential equation:

x(f) =/(x(?)), wife asolution(f, Xq )

Here, f{x{t)) is fee continuous vector field, not including fee discontinuity through fee manifold,
and <p^ (f, Xq ) is fee solution offee differential equation which extends through fee surface S.

Definea function jFf: X —> R, such feat

S:={x6X|/f(x)=0}

Define a map A: iS —> X

Write fee system wife impuse effects as

X* (/) =a(x" (/)) x~(t)eS

Define atime to impact function 7) :X—> R (ooj, by

2?= V V ^ ^^ ,hence, fee delta function is basically your reset relation.

jinf{r>o|̂ ^(f,Xo)€5} if 3f9^^(/,Xo)e5
00 otherwise



In otherwords, Ti is the function that takes any point in the state space that impactsthe sur&ceand tells
you how long it will take to get there.

Given this, we can then define a set

X:=^e X|0 <7} (x)<00 ALjH{p^ (7) (x),x));^ o| ofall continuous states ofthe system which
will collide with the surface in finite time and, once there, do not stay on the sur&ce.

Using this set, we are able to define anodier set

5:=A-'(l)
We then specify the socalled Poincare Return Map, P'.S —> iS, which essentially maps points onthe
sur&ce to points ofdieir first return to the surface.

?W.-=^/(r,(A(A:))tA(x))

From the return map, we may then conclude:

a) IfO isa periodic orbit of the system, then there exists apoint x^ onthesurface thatgenerates O.

b) The orbit Ois stable in the sense ofLyapunov ifX^ is astable equilibrium point ofXj^+j = )•
c) The orbit Oisasymptotically stable inthe sense ofLyapunov if x^ isanasymptotically stable

equilibrium point ofx^^, =P(xjt).

Possible Future Work/Extensions to the Gait Model
Due to the feet that empirical results show that the double support phase generally accoimts for

apprnvimately 10% of the human bipedal walk cycle, it is felt that the modeling of the double support
phase as an instantaneous event is an oversimplification. It is envisioned that future modeling efforts
should focus on extension of themodel to encompass thisstate. In order to accomplish this, however, the
physical leg model would have to be made more complex. In order for the model to exhibit nontrivial
continuous dynamics during die double support phase one would need toadd additional degrees offreedom
to die model. This would take the form of eithw additional prismatic or rotary joints in the leg,
representing the kneesof die device.

Conclusion
Due to thefact thatintuitively itwould seem thatthedynamics ofhuman gait lend themselves to

modeling using the hybrid formalism, an attempt was made todevelop amodel ofbipedal walking using
diis fimnework. Toaccomplish this, a simple model ofthe continuous dynamics ofa pair ofwalking legs
was first developed. Secondly, itwas necessary todevelop the conditions under which the impulses would
occur. Due tothe feet diat theswing leg inour model was kinematically incapable oflifting itselfto avoid
collision with theground, anangle criterion was used forinferring collision oftheswing foot. Reset
relations were derived from rigid body collision response models forplanar kinematic chains.

Once the physics ofthe model was specified, a controller was designed which would enable the
mechanism towalk. This was done byseparately specifying objectives for botii theswing and thestance
leg. These objectives were encoded interms ofthe desired outputs ofacontroller, and a feedback
linearized controller was designed to regulate the system.

Lastly, some methods forassessing thestability of such a system were introduced. More
specifically, both Ly^unov and Poincare methods ofdetermining stability forhybrid systems were
investigated.
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Copier Paperpath Control
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May 1999

This class project is part ofmy current research on copier paperpath control.

The first part ofthe presentation gives the problem description, together with a
high level overview of the current solution approach.

For the class project, I simulated the control strategy, using the tools Simulink
and Stateflow. This is discussed in the second part of the presentation.



Problem Statement

Today's copiers operate mainly in open loop:
- Only small position error and alignment correction possible

- Conservative design

- Only limited range ofmedia properties allowed

- Soft jams reduce productivity

Color printing requires high positioning accuracy.

Enhanced features demand moreflexibility in media handling.

How can we improve the existing technology?

Most copiers rely on standard sheet properties and certain ambient conditions. If
theseassumptions do nothold, the copiermayperform badly. A typical example
is a softjam, whichoccurs when a sheetdoes notpassa sensor within a specified
timerange. Thisdelaycanbe caused by a misfeed or a random disturbance along
the paperpath. In that case, the machine will shut down and will ask the user to
removeall sheetsfrom the paperpath. No physical jam (= hardjam) had occured,
however.

Apart from colorprinting requirements, tomorrows copiers should alsobe able to
reliably handle recycled paper.



Solution Approach

Mechatronics

Hardware redesign

\
A >

Intelligent Control

One possible approach to increase the robustnessof the paperpath is by using a
mechatronics mindset. Redesign the hardware by adding additional sensors and
actuators. The resulting machine becomes more complex, so intelligent control is
needed to manage the additional degrees of freedom and sensor information.



Solution Approach (cont.)
Hardware Redesign:

• 1-2 sections —

Feeder Section I

multiple, independent sections

Oti^ntl doeoment

(toner partielei)

SectionM

Image transfer
section

Pboto-reccptor
'bdt

FEnisner

aterrous

• Sensors: encoders, optical sensors, fax bars

The papeipath is redesignedby splitting it up in multiple sections.Each section is
driven by its own motor.

Additional opticalsenors are usedto detectthe sheets alongthepaperpath.

The figureshowa typicalpapeipathlayout The feederfeeds sheetsat regular
intervals. These sheets are then trasnported to the image transfersection, where
the image (charged toner particles) is transfered onto the sheet Fuser rolls bake
the toner onto the sheet The finsiher staples, sorts, etc...



Solution Approach (cont.)

Intelligent control to:

• match position and velocity ofsheet with image at
image transfer time, despite varying feeder times
and disturbances along the paperpath

• avoid collisions

Combined

approach i=>

Increased robustness by allowing
wider range ofmedia under different
operating conditions

Increased throughput

The goal of the intelligent control strategy is to ensure timely arrival ofall sheets
at the image transfer section.

The sheet position and velocity must match those of its image during image
transfer.

Only then will the image be transfered nicely onto the correct location on the
sheet.



System Model: Constraints

Constraints imposed by system

• Photoreceptorbelt velocity
Vjis constant

Section M

f • •

• Section vs. sheet velocity^

V4-VJ-V4-1J

From top left, counterclockwise.

Constraints imposed on controller

• Synchronization during transfer

No collision

- Thephotoreceptor beltvelocity is kq)t constant dueto some xerographic (laser)
and mechanical (inertia) reasons.

- Sheets in the samesection run at equalvelocity(see later).

- Two sections mustsynchronize during sheet transfer to prevent buckle buildup
or damaging the sheet.

- Collisions are ofcoursenot an option.



System Model: Dynmnics

Hybrid system
Mapping from input to state evolutionchanges discretely.

t°te

C5

x=

r\

. y

k /
cS

t = ttN

Let's ignore the actuatordynamics and considerthe mapping from section
velocities (input) to sheet velocities (state). When sheet 1 is in section 1, its
velocity is determined by section 1.However, as it enters section 2, its velocityis
suddenly determined by section 2 (weassume bothsections synchronize

during sheet transfer, asdictated bytheconstraints). Clearly, themapping from
input to state evolutionchangesdiscretely betweendifferentcontinuous
dynamics or also, the systemis a hybrid system.



Position versus Spacing Control
Opportunities to control are limited:

s, S2_

I
Controllable

Two main approaches: Not Controllable
< \/'
InterSheet Spacing Control (ISSQ
• Try to keep sheets at a desired

relative spacing
• Assumes downstream sheets

arrive with small or no error

• String stability issues

Absolute Reference Tracking Control (ARTC)

Track absolute reference position
Difficult to generate reference
trajectories that satisfy constraints.
Control ofone sheet may introduce
exior for other sheets in the section.

Sheets that are in the same section, cannotbe independently controlled. An
intersheet spacing can only be changed when both sheets completelyreside in
different sections. Note that this

is the reason why the paperpathwas split up into different sections.

ISSCtries to controlthe intersheet spacings. Their reference valuecorresponds to
the spacing between images on the photoreceptor belt.

ARTC triesto control sheets by using an absolute reference trajectory forevery
sheet

The approachused in this researchis mainly ISSC, withARTCfor the first sheet
in the copyjob and when a sheet is the leading sheet in the last section (to avoid
systematic error build-up).



Position/Spacing Error Properties

Relative importance oferrors:

Final error determinesperfonnance

i . A A

Relative size oferrors:

Feeder introduces largesterrors

^ V
Feeder Photorecq>tor Feeder —• Photoreceptor

Section Efierarchy Actuator Hierarchy

The systemperfonnance,and therefore controlgoal, is mainly determined by the
position error ofthe sheet being delivered to the image transfer section. This
error represents the final position error ofthe image on the sheet Errors further
upstream are less critical. Therefore, one assigns a larger weight to downstream
errors.

This leads to section hierarchy (see next slide).

Experiments have shown that the largest errors are introduced when a sheet is
being fed into the paperpath.Alongfiiepaperpath, a sheetwill experienceonly
minor disturbances due to slip and sheet bending effects. Therefore, under closed
loop control, errorsshould typically decrease as the sheets approach the image
transfersection. In the casethat the disturbances alongthe paperpath wouldbe of
comparable size to the feeder errors, the average error size would be more or less
constant and only decrease towards the very end. This will be further addressed
when discussing actuator hierarchy.



Section Hierarchy

Since the error ofits leading sheet is more important, the downstream section
dictates the velocity that two sections will run at during sheet tranter.
The upstream section becomes the SLAVE ofthe downstream section.

Slave Master

Upstream Downstream

When a sheet is about to be transfered from one section to the next, both sections
must start to synchronize. The common velocity is dictated by the downstream
section, as the error of its leading sheet is more important This follows from the
fact the section is located closer to the image transfer section.

10



Actuator Hierarchy
Upstream sections are assigned larger acceleration and velocity limits.
This guarantees decreasing errors towards image transfer section.

Worst case reachability
analysis {(fynamU: game)
corresponds to expected
size oferrors.

Siz'

S 0.12

|E|H» IHBS

m

1 13 2
PosWonalong popetpah [ri]

We assign larger acceleration and velocity limits to upstream sections. Assume
double integrator dynamics (current controlled DC motor). A backwards
reachability analysis under worst case conditions allows us to calculate the
allowable spacing error in every section that can definitely be reduced to zero
before the sheet in that section will reach the image transfer section.

The analysis is based on a game theoretic approach, where the downstream
section is considered the adversary (it will do the worst possible action to try to
increase the spacing error). The results are conservative, as the worst case
scenario is unlikely to happen, but they guarantee performance independentof
the action ofthe disturbance(downstream section).Note that we have ignored the
additional (assumed small) disturbances due to slip etc.

The endresult corresponds to the expected size ofthe errors alongthe paperpath,
which justifies the approach. As mentioned before, ifdisturbances could
introduce equally large errors across the paperpath, varying the actuator
capabilities as detailed above, would not be a good choice.

Note that this strategy guarantees that the spacing error will decrease when
transferinga sheet firom one sectionto the next, independentofthe action ofthe
downstreamsection, which is a performanceguarantee.

11



Hierarchical Hybrid Control Strategy

Discrete States

Feedback

Data

High Level Control Modes
Empty ISSC

ARTC Slave

I S«c(te»l

Low Level Section Control

Position & Velocity Tracking
(distmbance rgection)

(*) some details have been omitted (extra discrete modes)

Modes

T

Continaous

Control

The proposedcontrollerstructureis fairly similarto the PATHproject (AHS)
architecture.A finite automatonsteps through severalhigh level control modes.
Every high level mode corresponds to and generates setpoints for a lower level
control loop (PD, PID, etc).

This corresponds to abstracting the controltasksas you moveup the hierarchy.

Note that there is an extradiscrete mode, whichis not shownin this diagram. See
the discussion on dynamic funnel tracking.

12
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Dynamic funnel tracking

Ijsin

:
?Tmn

Unsafe Unsafe Unsafe

Funnel shaped limitation on section velocity guarantees
section synchronization during sheet transfer.

As a sheet approaches the next section, the velocity difference between both
sections must become smaller. This is due to the fact that both sections must

synchronize during sheet transfer and accelerations are limited. Remember that
we assume double integrator models for all sections.

One way to approach this problem is to again assume a worst case scenario. For a
given distance ofthe leading sheet to the entrance ofthe next section and the
velocity ofthat section, one can calculate the allowable velocity bounds ofthe
section driving the sheet.

The bounds ensure synchronization even ifthe downstream section starts to
accelerate/decelerate at maximum pace. The derivationuses the saturation levels
imposedby the actuatorhierarchy. The endresultis a funnel shapedbound on
velocity.

The extramode mentionedin the previousslide, corresponds to a "funnel
tracking" mode, which overwrites the control action to ensure that a section does
not leavethe velocity funnel. Bydoingso, twosections will always synchronize
during sheet transfer, independentofthe control actionfor die downstream
section.

Note that the tip of the funnel equalsthe velocity of the downstream section.

13



High Level Modes

✓ "

Empty
Synchronize with upstream
section to prepare for sheet

arrival

;For last section or first sheet:

ARTC

Track absolute reference

position

Ifissc '
Track desired intersheet

spacing

Ihiring sheet transfen

Slave

Synchronize witii
downstream section

The high level modes are fairly intuitive. Note that ARTC is needed for the first
sheet. Since there is no sheet in front, ISSC is not possible. Also, for the last
section, we want to avoid a build-up of systematic errors, so the last section is
controlled withARTC withreference signal equal to the position of the imageon
the photoreceptorbelt, projectedonto the paperpath.

Note that the emptymodemakes it easier for the upstreamsectionto satisfythe
funnel constraint.



Simulation Environment

,Simulink* for continuous state evolution

I •Standard block diagram notation " ^
f • Controllers represented by enabled subsystems

Stateflow* for discrete control logicI* Extension to Simulink
• Allows to graphically model finite automata
• Automaton outputs trigger enabled subsystems

The actual project work consisted of simulatingthe proposed control strategy,
using Simulink and Stateflow.

The controlstategywas mainly developed duringfall 98 and earlyspring 99.
After that, it took about2 months to read through all the Matlab manuals,set up
the simulation structure and actually code it up. Apart from stateflow, the
simulation uses C-MEX s-fimctionsand the real-time workshop (RTW).



Stateflow design environment
i ^in^ciii>w (cnoii) Cor.tcosirr lilot*^"./ocpciv<iOfy Co^i/oHc/Hifjh level Lonuol

This slide shows a typical Stateflow design window. It illustrates the high level
controller for a paperpath withup to 6 sections. States, transitions, default
transitions are created by simple clickanddragoperations. Note the state
hierarchy.



Control logic in Stateflow for single section:
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This finite automaton is a zoomed in version of the previous slide. Stateflow
allows to define states, transitions, events, guards, state entry actions and much
more. It is very versatile. Apart fi-om the graphical interface, one can also define
local variables and input and output data/events to interact with other simulink
blocks.

In the example above, modes[j] corresponds to thej_th entryof the output vector
"modes". Settingthis to one, will enablemodej of that sectionby enabling an
enabled subsystem in the simulink part of the simulation. This will be shown in
the actual block diagrams.



Copier Paperpath Block Diagram

rmOaPiMu

teuFwdflg

Sectionwbois
CDtaol«|«ite

Hybrid hierarchical
controller

ToWortapud

ir
Paperpath with hybrid

dynamics

Similarto stateflow, Simulink allows to hierarchically modeldynamic blocks.
Thisslideshows thehighest level in the simulation. It consists of the "computer
part" (the controller) and the "physicalpart" (the sections, feeder, sheets and
image transfer section).

Note that perfect state knowledge is assumed for now.
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Inside the controller block

G>

QD—I
MFMdngSMFMdng

m—
SMftPaCAOM

ISSSfl

Supirviicfy Cofttdtar
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RiImim Potfton GtMOKcr

Supervisory Controller
+ Reference Generator

Low.UmI CoBtdlirt

tr

loWMupMtf

-•C 2 1
ConCmlSgrtrii

-KID

Ix)w level Controllers

Thesupervisory controller block contains thestateflow diagram shown before.
Note that the controlmodes output ofthe block is what steers the lower level
controller blocks. Thelower level controller contains velocity andposition
control loops and the funnel trackingcontrol logic.
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Inside the paperpath block

CI>
Coovdlepua

CwM ViiBkiM

•
ttwetPedtow

>

ClMMVMxiiM

•1
SUM

D"^

tr
Section dynamics
and feeder block

Sheets

—KID
SulicnVolocitia

=3>

The sheets blockcontains another stateflow diagram thatmodels thehybrid
mapping fromsection to sheetvelocities, as discussed beforeundersystem
modeling.
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Some simulation results
Evolution ofintersheet spacing versus position along paperpath
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The plot shows the evolutionofthe intersheet spacingsversus

position along the paperpathfor a copyjob consistingof4 sheets.The desired
intersheet spacing is 0.1 m. The first sheet is fed on time. Sheet 2 is fed late and
its initial spacingw.r.t. sheet 1 is 0.2 m. Sheet3 is fed too early (.05m error) and
sheet 4 is again fed too late. The simulation showshow all errorsgradually
reduce to zero. Note that intersheet spacing errors remain constantinside a
section until the sheet becomes the first sheet ofthat section.
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Simulation Results (cent.)
Section velocities s and control modes
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This slide gives on overview ofthe section velocities and section control modes
forthecopjgob scenario of theprevious slide. Allsections initially startup in the
empty mode. The first sheet is fed at 2 seconds. Section 1 switches to ARTC
mode(1stsheet). Whensection 1 delivers the sheetto section2, it switches to
slave mode and section 2 simultaneouslyswitchesto ARTC mode. Once sheet 1
leaves section 1,section 1switches to ISSC mode, since sheet 2 is already inside
the section and now becomes the leading sheet. When sheet 2is transfer^ to
section 2, section 1 switches again to slave mode, and so on.

The velocity profiles show thecontrol action to correct thespacing errors. Note
that all velocities synchronizeduring sheet transfer.
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Simulation Results (cent.)
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/

^1

tilde

This is a close-up on the control action for section 1. The first sheet reaches the
entrance ofsection 1 a little after t=2 seconds, x denotes the distance of the

leading sheet in section 1 to the entranceofsection 2. The four triangular shaped
Xprofiles correspondto the 4 sheets in the copyjob, since each ofthem is at
somepoint the leading sheet in section 1. The bottom plot shows the evolutionof
the spacingerror. Notice how the slope ofthe spacing error becomes zero when x
approacheszero, due to the velocity synchronization(funnel tracking mode). The
velocities of section 1 and 2 indeed synchronizewhen x becomes zero as shown
by the plots on the top.
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Simulation Results (cent.)
Evolution of Intersheet spacing versus position along paperpath
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The control algorithmhandles any copyjobcomplexity. The initial conditions
and machine parameters determine whether all sheets make it or not.



Simulation Results (cent.)
Evolution ofx- versus time
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Thisplot showsthe deviation ofthe sheetpositions froma straightline reference
trajectory for the random copyjob shownon the previousslide. Due to the
intersheet pacing control, ^ sheet remain at a safe distance from eachother,so
collisions are not likely to occur.
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Future Work

Implementationon experimental setup

Introduce cooperation among sections

Add observer and sensor integration

Improve dynamical model (currently 1/s^)

String stability issues may surface

Jam clearance

♦ Anexperimental setup, consisting ofa paperpath loop with three sections, will
be usedto evaluate the control strategy in practice.

♦ Thealgorithm does notallow sections to cooperate. This means that a section
only considers theerror of itsleading sheet and does notworry about how
upstream sections aredoing. Avariation with cooperation has been developed
and submitted to CDC 99.

♦ The current simulation results were based on prefect state knowledge. In
practice, we will have to rely on an observer.

♦The double integrator model should beextended toinclude the dynamics
introduced by timing belts and fiiction.

♦ String stability issues could become an issue when using more complex
models. This would have tobehandled bythesupervisory controller, who has
access to all variables in the machine.

♦ Afar-future goal is to introduce jam clearance and according job rescheduling
in the papeipath. Jams could becleared for example bydriving a sheet
backwards, making it exit and speeding upitsupstream nei^bors.
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Overview

In the article by Bemporad and Morari on which I have based my
final project, the authors describe the use of mixed logical
dynamical models for systems whose description may include
logical rules. These models make use of transformations of the
logic into linear equalities and inequalities involving binary
variables, which is a convenient structure for applying mixed
integer quadratic programming techniques to find optimal
trajectories.

In this report I review some of the main points in the article
and give a numerical example in which the technique is applied to
optimal control of a *lunar lander'. As most of the article was
described in the oral presentation, I place more emphasis here on
the example.

Preliminaries

The types of systems of interest to the authors are those whose
operation is influenced by interacting dynamics and logical
rules; e.g. on/off switches, gear selectors, if then else rules,
etc. Following the general hybrid systems modeling paradigm
presented in this course, these systems may be modeled by
appropriate definition of discrete states and guards. In this
paper however, an altemative approach is investigated in which
the transition logic is converted into a set of linear
inequalities and the dynamic relations associated with each
discrete state are reduced to a single equation.

The result is a mixed logical dynamical model (MLD) which is

composed of linear dynamic and output equations and a set of

mixed integer inequalities. In this form, existing and efficient

numerical optimization procedures can be applied, which

constitutes the main advantage of the technique. The optimization

problem presented in the article is termed the mixed integer
quadratic programming problem (MIQP), as it involves both
continuous and integer variables and has a quadratic cost

function subject to linear constraints. The authors comment that



the MIQP problem is widely investigated, and that there exist
various algorithms for finding solutions. In general, these

algorithms can be classified into four groups:

• Cutting plane methods: which make use of additional

constraints or "cuts" to reduce the feasible domain.

• Decompositional methods: employing variable partitioning,
duality and relaxation methods

• Logic-based method: using disjunctive constraints

• Branch and Bound methods: via construction of a binary tree

and branch elimination. This method is generally considered

the most succesful for solving mixed integer linear programs,

and is the one used by Ip solve 2.3, which is the software

used in the 'lunar lander' example.

The MLD modeling method, coupled with predictive control

strategies, is a popular approach in process control

applications, due to the mentioned numerical advantages and
because it readily permits incorporation of soft constraints and
hauristic rules. The authors identify 6 types of systems which

are appropriate for MLD modeling:

• Linear hybrid systems

• Finite state machines

• Certain nonlinear dynamic systems

• Certain discrete event systems

• Constrained linear systems

• General linear systems

Concepts in propositional calculus

In section 2 of the article, some background on prepositional

calculus is given. A good source on this topic is H.P. Williams
"Model Building in Mathematical Programming" in which a couple

chapters are dedicated to the use of logical variables in integer
programming. Three main concpets are defined:



• Literal: A statement which is assigned a "truth value"; either
true or false, e.g. "x>0" ; "temperature is hot"

• Connective: operators which take one or two literals and form
a new literal with a truth value prescribed by a truth table.

• Logical variable: A binary variable (6e{0,l}) related to a
literal X, which takes the value 1 if X is true and 0 if X is
false.

With the use of connectives, literals can be combined to form

compound literals. As will be seen, compound literals are used to
encode logic rules. Although no formal procedure of operator

elimination is given, a few easily verifyable examples illustrate

the translation of compound literals into linear inequalities.

Xi V X2 translates into Si + S2

Xi A X2 translates into = 1, <52 ~ ^

Xi -> X2 translates into ~ ^2 —^

Xi X2 translates into Si - S2 = 0

This technique is now employed to translate statements which

involve variables of the continuous dynamics. In general,

statements may contain both continuous and logical variables and

we would like to represent them in a simlilar manner as was

previously shown. Again, the approach is illustrated by example:

[f(x) < 0] A = 1] translates into f{x) - S < -1 + m{l —<5)

[f(x) < 0] V[^ = 1] translates into f(x) < M<5"

- [f(x) < 0] translates into f(x) > s

[f{x) < 0] -> [S = 1] translates into f(x) > f + (m- s)S
r f(x) < m(i - s)

[f(x) ^ 0] ^ = 1] translates into > <. +(m- s)S



Here, the continuous variables (x) appear in literals of the

form:

[f(x)^0]

where f(x) is a linear function and posseses over and

underestimates: M and m. More general functions, such as

nonlinear functions and functions of the form f(x,8) are not

mentioned. ^

Auxiliary varibales

In order to preserve linearity, it is necessary to eliminate

products of logical variables (8162) and of logical and continuous

variables (f(x)8). This is done with the aid of auxiliary

variables which replace the product and are defined by literals

as shown:

• Logic X logic: <^3 = ^1^2

[^3=i]'«^[<y,=i]A[<y2=i]

is equivalent to

is equivalent to

' -S^+Si<Q
-S,+S,<0

S,+S2-S,<1

• Continuous x logic: z = f(x)

[^1 = 0] [z = 0] A [<?! = 1] -> [z

z<lAS^

= f(x)]

Hence, the general form of a MLD system is:

x(t+ 1) = AtX(t) + BitU(t) + B2t ^(t) + B3tZ(t)

y(t) = CtX(t) + Dj tU(t) + D2 t <5(t) + D3 t2(t)

E2t ^(t) + E3tZ(t) < EitU(t) + E4tX(t) + Ejt

...dynamic equation

...output equation

...inequalities



where t is a rational, x(t) is the state vector, y{t) is the

output vector, u(t) is an input vector, and 6(t) and z(t) are
auxiliary logical and continuous variables.

It is noted that, given x(t) and u(t), 5(t) and z(t) may not be
uniquely defined by the set of inequalities. When modeling a
determinate system however, we would like x{t+l) and y(t) to be
uniquely given by x(t) and u(t). This motivates the concept of a
"well posed system", as one in which x(t+l) and y(t) are
uniquely prescribed by x(t) and u(t). This definition implies
that, for a well posed system, any indeterminate components of

6(t) and x(t) bear no influence on x(t+l) and y(t).

Next, the authors develops a series of examples illustrating

different systems which can be represented as MLDs. The examples

are fairly detailed and include: systems with piece-wise linear

dynamics, piece-wise linear outputs, discrete inputs, qualitative

outputs, bilinear systems, and finite state machines.

In section 4 of the paper, the concept of stability is defined

for MLD systems. A state and input are said to be an equilibrium

pair (Xe.Ue) if

•^(t, ^ ti ^ Cq

where the notation denotes the state at time t which has been

applied the control Ue from an initial condition x© at to- A

standard e-6 definition of stability of the equilibrium pair is

also given. The point to notice is that the auxiliary and logic

variables {6 and z) do not appear in these definitions. It is

therefore conceivable that, due to the nonlinear nature of the

dependence of 5(t) and z(t) on x(t) and u(t), that they may

continue to oscillate as the state x(t) converges. This behavior

may become an important issue when selecting a cost for the



optimal control problem, since inclusion of such an auxiliary

variable may overwhelm the cost upon convergence of other terms.

Application exan^le; Modeling a Lunar Lander

The lunar lander is an example of a dynamical system, which only
accepts inputs from a finite set of values. The lander is
equipped with thee thrusters, two horizontal and one vertical.
These can either be *on' or ^off and it is assumed that both

horizontal thruster cannot be *on' simultaneously. The lander is

placed in a vertical gravitational field in which it is always
free to move in any direction without crashing. The values of the
momentum provided by the horizontal and vertical thrusts are
denoted T^ and T^ respectively. The goal here is to apply the MLD
modeling paradigm to represent the dynamics of the lander and to
use this model to find optimal trajectories.

The discrete time dynamical model for this system is:

x(t+l)

Vt,{t+1)

h(t+l)

V^(t) + Ui(t)

x(t) + V^{t)

V^it) + U2(t)

h(t) + V}j(t)

- 9

with
Ul(t) e {- T^,0,T^}
U2(t) € {0,7^}

where the state [V^ x Vh h] is the horizontal velocity and position
and the vertical velocity and position.

First, to denote the on/off condition of the thrusts, define
logical variadjles: 51, 52, 53, al

[5i=l] [zi = O]

[62=1] [zi =

[63=1] [zi - 2r^]
[ari=lj [z2 = '̂ h]
[ai=0\ -> [z2 = 0]

right thrust on

thrusts off

left thrust on

vertical thrust on

vertical thrust off



Here I have used two different methods for encoding the same type
of logic rule. For the horizontal thrusts, a logical variable was
defined for each condition. The fact that only one of these is
permitted at any given time requires an additional rule;

© 5^

On the other hand, the two conditions for the vertical thrust are
represented with a single logical variable and the exclusive or
is removed. This reduces the number of variables in the system
but with the loss of an equality constraint which may help the
numerical algorithm. In general, the choice of logic
representation may depend on the problem as well as on the
numerical method.

Also, the values taken by zl range from 0 to 2Tx and not from -T^
to Tx as ul. This is because the MILP package used to obtain
solutions only considers positive values. The shift is accounted
for in the new MLD equation.

Upon s\ibstitution of the auxiliary variables, the linear dynamic
equation becomes:

\{t+l) = V^it) + Zi(t) -
x(t+l) = x(t) + V^(t)

V),(t+1) = Vj,(t) + Z2(t) - g

hUt+l) = m + V^it)

subject to the following linear inequalities:

Zl < (5i-l) (-2Tx)

Zl S Tx + (52-1) (Tx)

Zl < Tx + (52-1) (-Tx)
Zl > 2Tj( + (63-1) (2Tx)

Z2 S Th + (ai-1) (Th)

Z2 < Th + (ai-1) (Th)

5i + 62 + §3 = 1



Optimal control of MLD^s

The optimal control problem considered in this article is the
mixed integer quadratic programming problem, stated as follows:

Given an initial condition x(0) and a final time T, find the

control sequence u(t) which minimizes

J(Uo, Xo) = I ||u(t) - +||̂ (t) - Sf\^2 +
t=0

|2(t) - Zfigg +lx(t) - +ly(t) - yflgj
subject to x(r) = Xf and a set of linear mixed integer inequality

constraints.

In our application example, the objective of the optimal control
problem is to tramsfer the Isuider from an initial to a final
state (position and velocity) with minimum fuel consumption. The
final time is specified (T) and the cost fxinction is defined as:

J = E(i + lX^i(i) + ^3(i) +
1=0

The inclusion of the weight (i+1) is an attempt to make the
lander reach its destination as quickly as possible by giving
preference to earlier thrusts. This is in part in anticipation of
the predictive control problem in which only the first few
control commands will be applied. The fuel consumption cost used
here is linear, which makes the problem much easier to solve than
the general MIQP problem. Notice however that, since the only
variables included in the cost are logical variables, the problem

is in fact a MIQP.

The terminal state constraint can be expressed explicitly by:

X(T) = A^X(0) + Z A^{SiU(T-l-i) + B25(T-l-i) + Bjzff-l-i)}
i=0
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i(zi(T-l-i) - Tx)
z2(T-l-i) - g
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x(r) - x(0) - + i T^nr-i) = (r-i)zi(O) + (r-2)zi(i) +
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m - «0) - vi,(0)r +i r^r(r-i) = (r-i)z2(0) +(r-2)z2(i) +

- T•'•X

0

- g

0

These 4 equality constraints imply 4 necessary conditions for
existence of a solution to the problem. For example, in the first
equation, the terms on the right hand side are all multiples of T^. On
the left-hand side, TT^ is also a multiple of T^. Therefore, it is
required that V^(T)-Vx{0) be a multiple of T^:

mod( Vx(T)-Vjj(0), Tx )=0 is a necessary existence condition.

Similarly,

mod( x(T)-x(0)-TVx(0) , ) =0

mod(Vh(T)-Vh(0)+Tg, T^ ) =0

mod( h(T)-h(0)-TVH(0) , T^ ) =0

are necessary existence conditions



These conditions however are not sufficient. They can be used to
construct a map of reachable states from a given initial state. The
missing condition to assure feasibility is that T be an appropriate
value.

SOLUTION SOFTWARE

To solve the problem/ I used Ip^solve 2.3 (Author: Michael
j which is a publicly available linear mixed integer program

solver. The software is C-based and takes input files written in the
MPS format. The coding was done using MATLAB/ with the aid of Ipmex
(Author: Jeffrey Kantor)/ which is a set of routines designed to
interface MATLAB with lp_solve by constructing the MPS file/ calling
the solver and interpreting the output files. The code can be found in
the appendix.



Solution exanple

Following are some example solutions to the optimal control problem:

Exanple 1) X(0) = [O - 8 0 4j X(T) = [o 0 0 Oj T = 8
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Predictive control

The next issue addressed in the paper is how MLD systems can be
controlled to track a reference state. As was mentioned before,
oscillation of auxiliary variables may preclude their use in
infinite horizon optimizations. Also, it is desirable to include
feedback of the actual state in the control law. Predictive
control is suggested as a strategy which combines the
optimization algorithm with state feedback, and thus provides a
good solution to the tracking control problem.
In short, predictive control is a scheme in which optimal control
commands are computed online over a specified time window. Only a
portion of these input commands are actually applied (in the
article the authors use only the first command), after which the
process is repeated. This control law is referred to as mixed
integer predictive control (MIPC) and is shown to converge when
the equilibrium state is admissible.
In applying MIPC to the lunar lander, special considerations had
to be taken to account for the previously mentioned existence

conditions. Because it is important that the online optimization

always be feasible, it was generally impossible to apply the
terminal equality constraints outlined in the previous section.
This problem was fixed by finding the closest reachable state to
the desired final state, with the aid of the 4 existence

conditions (see code). Even with this adjustment, the

optimization time window was at times too small. In these cases,
the optimization was repeated with a larger final time until a
solution was found or a maximum final time was reached.

Following are some example runs. The objective is to track a sine
wave position reference (with appropriate cosine velocity
reference) using predictive control. The three plots show

solutions obtained when varying the minimum optimization time
window (Twin) and the control application time (Tapp).
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Conclusions

The paper presentes an alternative approach to modeling certain
hybrid systems, which is especially useful when applying online
optimization techniques. It is not clear to me however how this
optimal control problem con^ares to the one obtained when
emploting the hybrid systems concepts of EECS 291e, or if they
are actually not very different. The technique of incorporation
of logic rules does have the interesting advantage of allowing
for '^soft" constraints and heuristic rules, represented by
disjunctive constraints in the MIQP.
j\s for numerics, Ip solve proved to be a very efficient and user*
friendly software for solving problems of this size. The average
optimization had approximately 50 variables, 100 inequality
constraints and 20 equality constraints and took 1 or 2 seconds

to complete.
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%%%% LANDER.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This routine uses calls to Ipmex functions to
% construct formulate the MIQP and solve for
% optimal lander trajectories

global T

1=12;

g-1;
2lm=2;

z2m>=2;

% final time

% gravity
% horizontal thrust

% vertical thrust

za[0 0];
tduchobjB2; ^choice of objective function
EPS=0.01;

vxo»0; % initial state

xo «-8;

vho^O;
ho =4;

vxf=-4; % final state

xf "0;

vhf=0;
hf -4;

land=l^ex ('make__lp', 0, 6*T);

% Check necessary existence conditions
% and relax necessary boundary conditions
%

cl=0.5*zlm;

c2«=vxf-vxo;
if( (mod(c2#cl)>EPS) & (c2~=0) )

display('The prob. does not meet cond. #la')
if (mod (c2, cl) >=»cl/2)

vxf=vxf-mod(c2/cl)+cl
else

vxf=vxf-mod(c2,cl)
end

end

c2=xf-xo-vxo*T;

if( (mod(c2,cl)>EPS) & (c2-'«0) )
display('The problem does not meet cond #2a')
if (mod(c2/ cl)>»cl/2)

xf'sxf-mod (c2, cl) +cl
else

xf-xf-mod(c2,cl)
end

end

cl'»z2m;

c2«g*T+vhf-vho;
if((mod(c2,cl)>EPS)&(c2-«0))

display('The problem does not meet cond #3a')
if (mod(c2,cl)>«cl/2)

vhf«vhf-mod(c2, cl)+cl
else

vhf=vhf-mod(c2«cl)
end

end

c2-0.5*g*T*(T-1)+hf-ho-vho*T;
if( (mod(c2,cl)>EPS) <<(c2~=0) )

display('The problem does not meet cond #4a')
if(mod(c2,cl)>-cl/2)

hf"hf-mod(c2,cl)+cl
else

hf=hf-mod(c2 / cl)
end

end

Xf=[vxf xf vhf hf);
clear cl c2

%CONSTRAINTS

ZRow = zeros(1,6*T); % generic empty row

% Inequality constraints for z's
for i=l:T

%% zl %%

row»ZRow;

row(GetI2 (' z', 1, i)) «"1/
row(6etI2( 'd', l,i) )'=zlm;
Ipmex('add_constraint',land,row,0, zlm);

row»ZRow;

row(6etI2('z',l,i))=1;
row(GetI2('d',3,i))=-zlm;
Ipaex('add_constraint',land,row, 2,0);

rowsZRow;

row(GetI2('z',l,i) )«=1;
row(GetI2( 'd',2,i) )=-0.5*zlm;
Ipaex (' add_constraint', land, row, 2,0);

row=ZRow;

row(GetI2('z',l,i))=1;
row(GetI2( 'd',2,i) )'=0.5*zlm;
Ipmex (' add__constraint', land, row, 0, zlm);

%% z2 %%

row=ZRow;

row(GetI2( 'z',2,i) )=1;
row(6etI2('a',l,i) )=z2m;
Ipmex('add_constraint',land,row, 2, z2m);

row=ZRow;

row(GetI2( '2',2,i) )'=1;
row(GetI2('a',1,i))"z2m;
Ipmex('add_constraint',land,row, 0, z2m);

end

% Equality constraints for logical varijUales
for i=l:T

row^ZRow; deltas %%
row(GetI2('d',l,i) )'=1;
row(Getl2('d',2,i) )<>1;
row(GetI2('d',3,i))=1;
Ipmex('add_constraint',land, row, 1,1);

end

% Bounds for logical variables
for i=l:T

row^ZRow; deltas %%
row(GetI2('d',l,i) )=»1;
Ipmex('add_constraint', land, row, 0,1);
IfMex (' add_constraint', land, row, 2,0);

row^ZRow;

row(GetI2('d',2,i))=1;
Ipmex('add_constraint*,land,row,0,1);
Ijmiex (' add_constraint', land, row, 2,0);

row=ZRow;

row(GetI2('d*,3,i))"1;



Ipmex('add_constraint',land,row,0,1);
Ipmex('add_constraint', land,row,2,0);

rovfoZRow;

row(GetI2<'a',l,i))=1;
Ipmex('add_constraint',land,row,0,1);
Ipmex('add~con3traint',land, row,2,0);

end

%% alphas %%

% Terminal condition

rowloZRow;

row2«=ZRow;

row3«ZRow;

row4nZRow;

for i-ltT

rowl(GetI2(•z•,1,i))=1;
row2 (Getl2 (• z M, T-i+1)) =i-l;
row3{GetI2(•z',2,i))=1;
row4(GetI2('z•,2,T-i+1))=i-l;

end

Ijaaex ('add_constraint', land, rowl, 1,vxf-
vxo+0.5*zlm*T);
Ipmex('add_constraint',land,row2,1,xf-xo-
vxo*T+0.25*zlm*T*(T-1));
Ipaex ('add_constraint *,land,row3,1,vhf-vho+T*g);
Ijmiex (• add_constraint', land, row4,1, hf-ho-
vho*T+0.5*g*T*(T-1));

if (1—0)
vxwin»0;

xwino^ncwin;
vhwin»0;
hwin^vhwin;

Ipmex('add_constraint',land,rowl,0,vxf-
vxo+0.5*zlm*T+vxwin);
Ipmex('add_constraint',land,rowl,2,vxf-
vxo+0.5*zlm*T-vxwin);
Ipmex(* add_constraint',land,row2,0,xf-
xo+0.25*zlm*T*(T-1)-vxo*T+xwin);
Ipmex (' add__constraint', land, row2,2, xf-
xo+0.25*zlm*T*(T-1)-vxo*T-xwin)
Ifsnex (' add_constraint', land, row3,0, vhf-
vho+T*g+vhwin);
Ipmex('add^constraint',land,row3,2,vhf-vho+T*g-
vhwin); "*
Ipmex('add_constraint',land,row4,0,hf-
ho+0.5*g*T*(T-1)-vho*T+hwin);
Ipaex (' add^constraint', land, row4,2, hf-
ho+0.S*g*T*(T-1)-vho*T-hwin);
end

% They're all integers
for i-liT

Ipmex (' set_int', land, Getl2 ('d',l,i),l)
Ipmex(• set_int',land,GetI2('d',2,i),l)
Ipmex('set_^int', land,GetI2 ('d', 3,i), 1)
Ipmex(' se t~int', land, GetI2 ('a',l,i),l)

en

% Objective function
row=ZRow;

for i"l:T
if (whichobj—1)

thrust

row(Getl2Cd',l,i))-l;
row(GetI2('d',3,i))=l;
row(GetI2( 'a',l,i) )=1;

end

% minimize total

if(whichobj==2) % minimize thrust
and time

row(GetI2(•d',l,i))=i;
row(GetI2('d',3,i))=i;
row(6etl2(*a', 1,i))=i;

end

end

Ipmex('set_obj_fn',land,row);

% Solve the problem
result^lpmex('solve',land);
if(result==0)

(obj,X,duals]^Ipaex('get_solution', land);
z = [x{4*T+l) x(5*T+l)];

else

error('The problem is infeasible')
end

% commute and plot the state
S=[0;xo;0;ho};
dl

d2

d3

al

zl

z2

[x(l:T);x(T)];
[x(T+l:2*T);x(2*T));
[x(2*T+l:3*T);x(3*r)];
tx(3*T+l:4*T);x(4*T)l;
Ix(4*T+l:5*T);x(5*T)];
(x(5*T+l:6*T);x(6*T)];

for i=»l:T
S(:,i+l)=[S(l,i)+zl(i)-0.5*zlm;

S(2,i)+S(l,i);
S(3,i)+z2(i)-g;
S(4,i)+S{3,i)J;

end

figured), clf
plot(S(2,:),S(4,:),'-o');
xlabel('x position')
ylabel(*h position')
title('Landing Trajectory')

figure(2), clf

subplot(311)
stairs((0;T], zl-0.5*zlm,'k+-')
hold on

stairs(IO:T],z2, 'k*—')
axis([0 T -max(zlm, z2m)-0.5 max(zlm, z2m)+0.5])
legend('horiz.','vert.',4)
ylabel('thrust')

subplot(312)
plot([0:T],S(l, :), 'k'
legend('vx', •vh',4)
ylabel('velocity')

I0;T],S(3,:), 'k—')

subplot(313)
plot([0:T3,S(2,:), 'k', [0:T},S(4, :), 'k—')
legend('x ','h ', 4)
xlabel('TIME')
ylabel('position')

figure(3), clf

subplot(411)
stairs([0;T],dl,'k')
ylabel('\delta 1')
axis([0 T -0.5 1.5])
title('Logical variables')



subplot(412)
stairs( [0:T]/d2, 'Jc')
ylabel('\delta 2')
axisdO T -0.5 1.5])

subplot(413)
stairs([0:T],d3, 'k')
ylabelCXdelta 3*)
axis([0 T -0.5 1.5])

subplot(414)
stairs([0:T],al, 'k')
ylabel('\alpha 1')
axis([0 T -0.5 1.5])
xlabel(*TIME')

%Save to file

save dat

Ipmex('delete_lp•,land)

Pred.m

% Predictive controller for thrust lander
% Makes succesive call to the optimizer %(land3.m/ which is the same as lander.m/ but
% without the plots) to try to track a reference % signal defined by ref.

global T zlm z2m g
zlmB2;

z2m»2;

g"l;

% Create the reference trajectory
t»l:100;

for i=l:length(t)
ref (i,: )'=(1 i cos(i/10) 10*sin(i/10) ];

end

% Iteratively call optimization
timewin=l; % number of applied control commands
Imax'^lS; % maximum optimization window
Tmin=10; % minimum optimization window

x=[0 0 0 0]; % initial state
i=l;
imax-'length (t);

while i<length(t)
T=Tmin;
repeat«»l;
vdiile ((repeat~=0) &(T<=Tmax))

[z repeat]=land3(X(i,:),ref(min(i+T-l,length(t)),:));
if(repeat-"0)
display('Increasing window size');
T=T+1

end

end

if (repeat»«>0)
for j"l:timewin

x(i+j/:)=[x(i+j-l,l)+z(j,l)-0.5*zlm ...
x(i+j-l,2)+x(i+j-l,1) ...
x(i+j-l,3)+z(j,2)-g ...
x(i+j-l,4)+x(i+j-l,3)];

end

i"i+timewin;

else

display('Could not solve the problem')
imax«i;

break

end



end

X'^x(l:iinaX/:);
ref=ref(1:imax,:);
t»t(l:iinax);

%% PLOTS

figure(1)« clf
subplot(411)
plot{t,ref(:,1),* —', t,x(;,l))
ylabel(•horizontal velocity')

subplot(412)
plot(t,ref(:,2), ' — •,t,x(:,2))
ylabel('horizontal position')

subplot(413)
plot(t,ref (;,3),' — ',t,x(:,3))
ylabel('vertical velocity*)

subplot(414)
plot(t,ref(:/4),,t,x(;, 4))
ylabel('vertical position'}
xlabel('time')

figure(2), clf
plot(x(:,2),x(:,4),ref (:,2),ref (:,4),' —•)

%Save the data to a file

save data
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Abstract. In order to study control problems for hybrid systems, we
generalize hybrid automata to hybrid games - say, controller vs. plant. If
wespecify the continuous dynamics by constant lower and upper bounds,
we obtain rectangviar games. We show that for rectangular games with
objectives e3q)ressed in Ltl (linear temporal logic), the winning states
for each player can be computed, and winning strategies can be syn
thesized. Our result is sharp, as already reachability is undecidable for
generalizations of rectangular systems, and optimal - singly exponential
in the game structure and doubly exponential in the L/tl objective. In
this way weare able S3rstematically to generalizethe theory of hybrid sys
tems from automata (single-player structures) [8] to games (multi-player
structures).

1 Introduction

A hybrid automaton [1] is a mathematicalmodel fora systemwith both discretely
and continuously evolving variables, such as a digital computer that interacts
with an analog environment. An important special case of a hybrid automaton
is the rectangular automaton [13], where each discrete variable ranges over a
finite domain, the enabling condition for each discrete change is a rectangular
region of continuous states, and the first derivative of each continuous variable
X is bounded by constants from below and above; that is, x € [a, &]. Rectan
gular automata are important for several reasons. First, they generalize timed
automata [2] (for which a = 6= 1) and naturallymodel real-time systems whose
clocks have bounded drift. Second, they can over-approximate with arbitrary
precision the behavior of hybrid automata with general linear and nonlinear
continuous djmamics, as long as all derivatives satisfy the Lipschitz condition
[10,17). Third, they form a most general classof hybrid automata for which the
Ltl model-checking problem can be decided: given a rectangular automaton A
and a formula ip of linear temporal logicover the discrete states of A, it can be
decided in poljmomial space if all possible behaviors ofA satisfy tp [13].

Since hybridautomata are oftenused to model digital controllers for analog
plants, an important problem for hybrid automata is the Ltl control problem:
given a hybrid automaton % and an Ltl formula can the behaviors of %
be "controlled" so as to satisfy y>? However, the hybrid automaton per se is
an inadequate model for studying this problem because it does not differentiate
between the capabilities of its individual components - the controller and the



plant, if you wish. Since the control problem is naturally formalized in terms
of a two-player^ game, we define hybrid games. Because our setup is intended
to be as general as possible, we do not distinguish between a "discrete player"
(whichdirects discrete state changes) and a "continuousplayer" (whichadvances
time); rather, in a hybrid game, each of the two players can itself act like a hybrid
automaton. The game proceeds in an infinite sequenceof rounds and produces an
a;-sequence of states. In each round, both players independently choose enabled
moves; the pair of chosen moves either results in a discrete state change, or
in a passage of time. In the special case of a rectangudar game, the enabling
condition of each move is a rectangular region of continuous states, and when
time advances, then the derivative of each continuous variable is governed by a
constant difiterential inclusion. Now, the Ltl control problem for hybrid games
asks: given a hybrid game TZ and an Ltl formula ip over the discrete states
of TZ, is there a strategy for player-1 so that all possible outcomes of the game
satisfy (fii

Our main result shows that the Ltl control problem can be decided for rect
angular games. This question had been open. Previously, beyond the finite-state
case, control problems have been solved only for timed games [5,14,15], and
for rectangular games under the assumption that the controller can move only
at integer points in time [12] (sampling control). Control algorithms have also
been proposed for linear and nonlinear hybrid games [20,21], but in these cases
convergence is not guaranteed. For timed games and sampling controllers, con
vergence is guaranteed because the underl3ring state space can be partitioned into
finitely many bisimilarity classes, and the controller does not need to distinguish
between bisimilar states. Our result is, to our knowledge, the first controUar
bility result for infinite-state systems which does not rely on the existence of
a finite bisimilarity quotient. Our result is sharp, because the control problem
for a class of hybrid games is at least as hard as the reachability problem for
the corresponding class of hybrid automata, and reachability has been proved
imdeddable for several minor extensions of rectangular automata [13]. The com
plexity of our algorithm, which requires singly exponential time in the game TZ
and doubly ^qponential time in the formula (p, is optimal, because control is
harder than model checking: reachability control over timed games is Exptime
hard [12]; Ltl control over finite-state games is 2exptime hard [18].

For the solution of infinite-state model-cheddng problems, sudi as those of
hybrid automata, it is helpful if there exists a finite quotient space that preserves
the properties under consideration [8]. Specifically, every timed automaton is
bisimilar to a finite-state automaton [2]; every 2d rectangular automaton (with
two continuous variables) is similar (simulation equivalent) to a finite-state au
tomaton [9]; and every rectangular automaton is trace equivalent to a finite-state
automaton [13]. Since Ltl model checking can be reduced to model checking on
the trace-equi^ence quotient, the decidability ofLtl model checking for rect
angular automata follows. The three characterizations are sharp; for example.

^ For the sake of simplicity, in this paper we restrict ourselves to the two-player case.
All results generalize immediately to more than two players.



the similarity quotient of 3d rectangular automata can be infinite [11], and
therefore the quotient approach does not lead to branching-time model-checking
algorithms for rectangular automata.

We show that for appropriate generalizations of the state equivalences, the
results for rectangular automata carry over to rectangular games. The proof of
our main result, the decidability of Ltl control for rectangular games (Theo
rem 8), is structured as follows. Wefirst introduce the notionsof a single-player
structure a two-player structure and the single-player structure Tg cor
responding to Q. Next, we describe state equivalences for these structures, in
particular trace equivalence with observable moves and game trace equivalence.
We note that if = is a trace equivalence with observablemoves on Tg^ then = is
a game equivalence on Q (Proposition 1). Further, if = is a (finite] game trace
equivalence on then an appropriately defined (finite) quotient Ql= may be
used to answer the Ltl control problem, and to sjmthesize controllers (Propo
sition 2). Finally, we observe that the proofs of [13] actually show that for the
singleplayer structure Tg^ corresponding to a rectangular game 7^, trace equiv
alencewith observable moves is finite. Our main theoremfollows. Along the way,
we argue that singular and timed hybrid games have finite game bisimulations
and that 2d rectangular hybrid games have finite game simulations. Together,
these results cleanly generalize the theory of rectangular hybrid automata to
rectangular games.

2 Symbolic Game Structures

A transition structure (or single-player structure)

T —(Q, IT, ((•)), Moves^ Enabled^ S)

consists of a set Q of states, a set 27 of observations, an observation function
((•))• Q —> 2^ which maps each state to a set of observations, a set Moves
of moves, an enabling function Enabled: Moves —> 2^ which maps each move
to the set of states in which it is enabled, and a partial transition function 6:
QXMoves 2^ which maps each move mand e^ state in Enabled(m) toa
set ofsuccessor states. A step of is a, triple q-^q' such that q € EnabUdim)
and €^.<5(g,m). A run o/.F is an infinite sequence r = soSiS2... of steps
8j = qj-^i^j sudh that = gj for all j > 0. The corresponding trace, denoted
by {('•))» is the infinite sequence ((go))((9i))((92)) ••• ofobservation sets. The corre
sponding trace withobservable moves, denoted by ((r))©^,, is the infinitesequence
((go))m°((gi))m^ {{q2))m^... ofalternating observation sets andmoves. For a state
g, the outcome 21' from q is the set of all runs of T which start at g. For a set
R of runs, we write ((21)) for the set {((r)) | r € 22} of corresponding traces, and
similarly for traces with observable moves.

2.1 Game Structures and the LTL Control Problem

A (two-player) game structure

Q= (Q,27, ((•)), Movesi, Moves^, Enabledi,Enabled^, <5)



consists of the same components as above, only that Movesi {Move$2) is the set
of moves of player-1 (player-2), Enabledi maps Movesi to 2^, Emhledz maps
Moves2 to 2^, and the partial transitionfunction S:Qx Movesi x Moves2 2^
maps each move mi of player-1, each move m2 of player-2, and each state
in Enahledi{mi) D Enahled2{m2) to a set of successor states. .For i = 1,2,
we define movii Q 2^®®®®' to yield for each state q the set movi{q) =
{m € Movesi | q € Enahledi{m)} of player-t moves that are enabled in g. With
the game Q we associate the underlying transition structure

= {Q,n^ {{•)), Movesi X Moves2, Enabled,S') ,

where Enabled{mi, m2) = Enabledi{mi) DEnabled2{m2) and <5'(g, (mi,m2)) =
6{q,mi,m2).

At each st^ of a game, player-1 chooses a move mi which is enabled in
the current state q, player-2 independently chooses a move m2 which is enabled
in q, and the game proceeds nondeterministically to a new state in d{q, mi, m2).
Formally, a st^ of ^ is a triple q^-^^q" such that is a step of J^g.
The runs and traces (with or without observable moves) of games are defined
as for transition structures.

A strategy for player4 is a function /<: ^ 2^®"®®* such that fi{w •g) C
movi{q) for every state sequence w ^ Q* and state g 6 Q. The strategy /» is
memory-free if fi{w •g) = fi{w' •q) for a]lw,w' € Q* and q 6 Q. Let fi (/z) be a
strategy for player-1 (player-2). The outcome from state q€Q for fi and
/2 is a subset of the ruris of G which start at g: a run soSiS2... is in if

for all j > 0, if sj = qj then mj € /t(go9i •••Qj) for i = 1,2 and go = g.
The formulas of linear temporal logic (Ltl) are generated inductively by the

grammar

(p ::= TT I -1^? I V v?2 I Qtp I (piU<p2 ,

where tt E i7 is an observation. The Ltl formulas are interpreted over the traces
of ^ in the usual way [6]. Player-1 can control the state q^Q for (p if there exists
a strategy fi of player-1 such that for every strategy /z of player-2 and every run
r € ({'•)) satisfies tp? In this case, we say that the strategy fi witnesses
the player-1 controllability of q for (p. The Ltl control problem asks, given a
game structure G and an Ltl formula (p, which states of G can be controlled
by player-1 for (p. The Ltl controller synthesis problem asks, in addition, for
the construction of witnessing strategies. If the game structure G is finite, the
Ltl control problem is PTiME-complete in the size of G and 2EXPTlME-complete
in the length of ip [3,18]. Whereas for simple Ltl formulas such as safety (e.g.
•tt for IT € U) controllability ensiures the existence of memory-firee witnessing
strategies, this is not the case for arbitrary Ltl formulas [19].

^ Our choice to control for Ltl formulas rather than, say,a;-automata [19] is arbitrary.
In the latter case, only the complexity results must be modified accordingly.



2.2 State Equivalences and Quotients for Game Structures

State Equivalences on li'ansition Structures. Consider a transition struc
ture !F = Moves^Enabled^5). A binary relation C Q x Q is a
(forward) simulation if p 9 implies the following two conditions:

1. <(p)> = {{q)) ;
2. Vm € mov{p). Vp' € S(p,m). 3m' € mov{q). 3g' e S{q,m'). p' X® q' .

We say that p is simulated by q, in symbols p 9, if there is a simulation ^®
with p ^® g. We write p g if both p g and g p. The relation is
called similarity. A binary relation on Q is a bisimulation if is a symmetric
simulation. Definep g if there is a bisimulation with p g. The relation

is called bisimilarity. A binary relation ^~® on Q is a backward simulation
if p •<-'> q implies ((p)) = ((g» and

Vp' € Q. Vm € mot;(p'). p € S(p',m) ^
3g' e Q. 3m' e mov(g'). g e 6{q',m') Ap' g' .

A binary relation on Q is a trace containment 'dp-^ q implies C
Define p g if there is a trace containment with p g. Wewritep g if
bothp-<^ q andg p. Therelation is called trace equivalence.

We also define stronger versions of these equivalences, where the moves axe
observable. Asimulation ^® has observable moves ifcondition (2) is strengthened
to

2a. mov(p) C mov{q) ;
2b. Vm e mov{p). Vp' € 6(p,m). 3g' € <5(g',m). p' ^® g' .

Similarity unth observable moves, denoted —is the kernel of the coarsest
simulation with observablemoves; and bisimUarity unth observable moves, —
is the coarsest sjrxDmetric simulation with observable moves. Two states p and
g are trace equivalent with observable moves, written p =^i,g q, if {{R^))obs =
{{R^))ob8' Throughout, we say that equivalence relation =1 refines equii^ence
relation =2 if p =1 g implies p =2 and that the equivalence relation = is
finite if = has finitely many equivalence classes. Clearly, refines and

r^nes ="^. The relations with observable moves refine the corresponding
relations without observable moves. In general, all refinements are proper.

State Equivalences on Game Structures. Consider a gamestructure Q=
(Qj((•))> Movesi, Moves2, Enabledi,Enabled2,S). A binary relation C Q x
Q is a game simulation if p g implies the following conditions:^

1. {(P» = W ;
2a. TOOt;i(g) = movi(p) and mov2(p) = mov2(g) ;
2b. Vmi € movi{q). Vm2 € mov2(p). Vp' G<5(p,mi,m2). 3g' 6 <5(g,mi,m2).

P' ^ .

®Our results would still hold ifcoudition (2a) were weakened to nioi;i(g) C movi(p)
and mov2(p) C mov2{q). We usethe current stronger version for simplicity, in par
ticular so that game simulations need not be parameterized by a player.



A relation on Q is a game trace containment p dig Q. implies that for
all strategies /i of player-1, there exists a strategy f[ of player-1 such that
for all strategies /2 of player-2, there exists a strategy /2 of player-2 such that
{{Rf^j^))oba Q {{R%,f2^)oba' From this, game similarity =|, game bisimilarity

and game trace equivalence are defined in the familiar way.

It is not difiScult to check that refines and that refines and

that these inclusions are proper.^ The following proposition, which follows im
mediately &om the definitions, characterizes the game equivalences in terms of
the underlying transition structure: if the moves are observable, then the game
structure can be flattened.

Proposition 1. Two states p and q of a game structure Q are game bisimUar
(game similar, game trace bivalent) if p and q are bisimilar (similar, trace
equivalent) with observable moves in the underlying transition structure Tg.

It follows that usual partition reflnement algorithms [9,16] may be applied to
Tg to compute the game bisimilarity and the game similarity quotients.

We will now show that the game equivalences on a game structure sug
gest quotient structures that can be used for control.® Let = be an equivalence
relation that reflnes =f. The quotient structure 0/= of Qwith respect to = is
the game structure (Q/=,27, ((•»/=, Movesi,Moves2,Enabledif=,EnabledTj-,d/=)
with

- Q/= = {[g]^ Iq € Q} is the set of equivalence classes of =;
- ({[gr]^))/= = ((g)) (note that ((•))/= is well deflned since ((•)) is uniform within

each equivalence class);
- [g]= € Enabled\l^{m) if 3p € [g]=. p € Enabledi(m) (note that this is equiv

alent to Vp € [g]=. p € Enabl^\{m) since = rdfines S^), and analogously
for Enabled2j={rn)\

- M= € d(b]=,mi,m2)/= if 3p' € [g']=. 3p € [g]=.p' € (5(p,mi,m2).

The following proposition reduces control for Ltl formula ip in. Q to control in
the quotient structure 5/=.

Proposition 2. Player-1 can control q E Q for ip in Q if and only if player-
1 can control [g]^ for q> tn Ql=. Moreover, if the strategy fi witnesses the
player-1 controllability of [g]_ for (p in Q/^, then the strategy f{ defined by
/i(po •••Pfc)=/i([Po]= •••bfc]=) witnesses Hie player-1 controllability of q for tp
in Q.

^ In fact, , ^g, and=f refine the corresponding alternating equivalence relations
introduced in [4].

®In contrast, alternating equivalences do not suggest such quotient structures. It is
easy to construct a game structure such that player-1 can control for Dtt at states
gi and g2 with gi alternating bisimilar to g2, but player-1 cannot control for Dtt in
a reasonably defined quotient.



3 Rectangular Games

In this section, we apply the techniques developed in the previous section to a
particular class of infinite-state game structures: rectangular hybrid games. For
infinite-state games, algorithms for computing control strategies may often be
guaranteed to terminate only if the state space has a suitable finite quotient.
We show that such quotients do exist for all rectangidar games, and thus that
the Ltl control and controller sjrnthesis problems are decidable for rectangular
games.

We generalize the rectangular automata of [13] to rectangular games, which
are suitable for the study of control problems. A subset of r of R" is rectangular
if it is the cartesian product of n intervals, all of whose (finite) endpoints are
rational. For the sake of simplicity, in this paper we restrict ourselves to the
case where all rectangles are closed and bounded.® Let 5R" denote the set of
all rectangles. Denote by rj the projection of t on its ith coordinate, so that
t = For i = 1,2, let Movesf"*® = Movesi y {time}, where time is a
special sjmibol not in Movesi or Moves2. A rectangular game

It = (X,X, Movesi>Move82, Enabledi, Enahled2,Flow,E, Jump, Posi)

consists of

- a finite set L of locations;
- a set X = {xi, ...,«„} of real-valued variables;
- for i = 1,2, a set Movesi of moves of player-i;
- for i = 1,2, a function Enabledi : Movesf"^^ 2^^^^, which specifies for

each move mi of player-i and each location £, the rectangle in which mj is
enabled when control is at ^ (we require that for all mf € Movesf^^ and
i&L, the set {(^,t) € Enabledi{mi)} is a singleton;

- a function Flow: L -4 K" which maps each location ^ to a rectangle which
constrains the evolution of the continuous variables when control is at

- a set E C (X XMovesi x Moves""*® x X) U(X x Moves""*® x Moves2 x X)
of edges which specifies how control may pass from one location to another;

- a function Jump : E -4 2f '̂*"'**l which maps each edge to the indices of
continuous variables which are reset upon jumping along that edge; and

- a function Post: jE? ->• Si" which constrains the values of the continuous
variables after a jump.

The dimension o/ 72. is n, the munber of continuous variables. We define the
invariant region inv(£) of location £ to be Enabledi{time,£)nEnabled2(time,£).
The set of states ofH. is defined to be {(€,a:) | x € mv(^)}.

Informally, when a rectangular game is in state {£, x), time can progress as
longas both players choose time, and the system is in the invariant region inv{£).
In addition, each player is allowed to choose a discrete move that is enabled at
the current state. During discrete steps, for each i in the jump set Jump{e), Xi

®The general case can betreated analogously to [13].



is nondeterministically assigned a new value in the postguard interval Post{e)i.
For each i ^ Jump{e), Xi is unchanged, and must lie in Post{e)i.

We now formally define the semantics of rectangular games. With the n-
dimensional rectangular game H we associate the underlying game structure

Qti = L, {(•)), MovesMoves""*®, Enabledi,Enahled^^ S) ,

where {{{i,x))) = {^}, and e 6{{£,x),mi,m2) if either

—[Timestep of duration f > 0] ^' = £; {mi,7712) = {time, time); a;' = ® 1•s,
where 3€ Flow{i); and for all 0< ^ < t, (® +f •s) 6 inv{i);

—[Discrete step] there exists an edge e = {i,mi,m2,i') € E such that for
i = 1,2, mi e movi{£,x), x' e Post{e), and = ®t for aU i 0 Jump{e).

For a rectangular game H, and an Ltl formula (p, the Ltl control problem
asks which states of Qn can be controlled for ip. Since the divergence of time
can be e3q>ressed in Ltl, when studying the Ltl control problem there is no
need to restrict our attention to the runs of a rectangular game along which the
sum of durations of all time steps diverges. To express the divergence of time
in Ltl, we add an additional real-valued variable Xn+i, and for each location
i, we add a new location Call the set of locations added L'. For all ^ €
LUL', we set Flow{£)n+i = [1,1]. Our new invariant region inv{£) requires that
®n+i < 1; when Xn+i = 1, each player is allowed to make a move reset with
{£, reset, reset, £') now added to E. Upon jumping to £', a;„+i is reset to 0, and
a jump back to £ is forced immediately in a similar manner. The property that
time diverges may be expressed in Ltl as DO

Let Xi be a variable of a rectangular game The variable is a dock if for
each location £, Flow{£)i = [1,1]; and 2; is a finite slope variable if for each loca
tion £, Flow{£)i is a singleton. The rectangular game 71 has deterministic jumps
if for each edge e, and each coordinate i G Jump{e), the interval Post{e)i is a
singleton. The rectangular game 7L is initialized if for every edge e = {£, *, -,£')
and every coordinate i, if Flow{£) # Flow{£') then i € Jump{e). 1£ H has deter
ministic jumps, then 7^ is a timed game if every variable is a clock, and 7^ is a
singular game if every variable is a finite-slope variable. In what follows, we shall
only consider initialized rectangular gameswith deterministic jumps.*^ Without
loss of generality, we assiune that all constants appearing in the definition of a
rectangular game are integers.

The game bisimilaiity (similarity, language-equivalence) quotient of a rect
angular game K is defined to be the game bisimilarity (similarity, language-
equivalence) quotient on the underlying game structure Qn- In what follows, we
shall speak ofone rectangular game simulating another rectangular game ,
with the understanding that this refers to a simulation relation on the disjoint
union of the states of Qrii and the states of Ghh i*e- a game simulation relation
:<l c (Li X ) X{L2 Xsr^).

^ For non-initialized games, the reachability problem is already undeddable [13].



3.1 Game Bisimilarity for Singular Games

To see that every singular «S game has a finite game bisimilarity quotient, we first
define the region equivdence relation as follows [1,2]. Let a = (oi,... ,an)
be an n-tuple of integers. For a real number a;, let fract{x) denote the firactional
part of X. For a vector x, let fract{x) denote the vector whose ith coordinate is
fract{xi). Define a; =« j/ ifffor i = 1,..., n, (1) \aiXi\ = [oil/tj»(2) fract{aiXi) =
0 iff fract{(iiyi) = 0, and (3) for j 5^ i, fract{aiXi) < fract{ajXj) iff jraciiaiyi) <
fradifljyj). For each Xi € X, let Cf denote the largest rational constant that
appears as the ith (finite) coordinate of any rectangle in the definition of S.
Two states {i^x) and (f',®') are region equivdent if (1) ^ = i'; (2) for all
Xi € X, either [scij = [ajJJ or both [xj and [xJJ are greater than Cf; and
(3) fract{x) =a jract{x'), where ttj = fef if Floio{i)xi = h 7^ 0, and Ot = 1
if= 0. Note that a = (1,1,..., 1) for a timed game, and that the number of
equivalence classes of may be e:)q)onential in the size of the description of S.
The arguments of [1,2] show that the region equivalence is a bisimulation
with observable moves on the single-player structure Fqs associated with Qs.
Using Proposition 1, we may conclude that is a game bisimulation on 5,

Theorem 3. For every singular game, the region equivdence refines the
game bisimilarity

It follows that every singular game has a finite quotient structure with respect
to game bisimulation. The game bisimilarity quotient of a singular game may
have an exponential number of equivalence classes (regions). Since it refines
game trace equivalence, by Proposition 2, the finite quotient can be used for
Ltl controller sjmthesis.

Corollary 4. Given an Ltl formula (p, the Ltl controlproblemfor a singular
game S is ExPTlME-compZcfe in the size of the description of S and 2EXPTIME-
complete in the length of <p.

Singulargamesare a maximalclass of hybrid games for which finitegame bisim
ilarity quotients exist. In particular, there exists a 2d rectangular game H such
that the equality relation is the only game bisimulation on Qn [7].

3.2 Game Similarity for 2D Rectangular Games

We define the double-region equivdence relation on the states of a 2d rect
angular game T as the intersection of two region equivalences, as follows. Let =0
and =b be two equivalence relations as defined in Sect. 3.1. Call the intersection
of these two relations =a,6- Let c be the largest rational constant that appears
in the definition of T. For a location £ with Flow{i) = [oi,6i] x [02,62], let
01 —(02,61) and 6/ = (62,01). Two states {i,x) and {£',y) ofa 7" rectan^ar
game are double-region equivdent, in symbols (^,x) (f',j/), if (1) f = £',
(2)fract{x) =ae,bt fTact{y), and (3) for i = 1,2 either [xjj = \_yi\ or both x,- > c
and yi > c. Note that the number of equivalence classesof is exponential in



the size of the description of T. The arguments of [9] show that the region equiv
alence is a simulation with observable moves on the single-player structure
associated with Gt- Using Proposition 1, we may conclude that is a game
simulation on T.

Theorem 5. For every 2d rectangular game, Hie double-region equivalence
refines the game similarity

This implies that every 2d rectangular game has a finite quotient structure with
respect to game similarity. The game similarity quotient may have an exponential
number of equivalence classes. Since the game similarity quotient refines game
trace equivalence, by Proposition 2, the finite quotient can be used for Ltl
controller sjmthesis.

Corollary 6. Given an Ltl formula (p, the Ltl control problem for a 2d rect
angular game F can be solved in time exponential in the size of the description
of T, and is 2EXPTiME-comp/ete in Hie length of ip.

2d rectangular games are a maximal class of hybrid games for which finite game
similarily quotients exist. In particular, there exists a 3d rectangular game %
such that the equality relation is the only game simulationon Gn [H]*

3.3 Game Trace Equivalence for Rectangular Games

Although initialized rectangular games do not have finite game similarity quo
tients, we can show that they have finite game language-equivalence quotients.
To prove this, we sketch how to translate an n-dimensional rectangular game 7^
into a 2n-dimensional singular game Sr such that 7^and Sr are game language
equivalent. For details, see [13]. The game &r has the same vertex and move
setsas 71, We replace each variable Xi of71 bytwo finite-slope variables Ci(i) and
Ct,(i) such that when FlowR{v){xi) = [Arj,A;„], then FlowsTi{v){ci(^i)) =
and Flows^{v){Cu^i)) = [A:tt,A:«]. Intuitively, the variable c/(<) tra^ the least
possible value of Xi and the variable Cn(i) tracks the greatest possible value of
Xi, With each edge step, the values of the variables are appropriately updated
so that the interval [c/({),Cu(t)] maintains the possible values of Xi,

To prove that 71 and Sr are game trace equivalent, we define a map 7 :
Qsii 2^* which maps each state of5;^ to a set of statesof 7Z, by7(£, a:) =
{£} X Call a state (f,«) € Qs-k. mi upper-half state of Sr i£
for every index i € {1,...,n}, we have x^^i) < Notice that we are only
interested in upper-half states of Sr. We set 7(9) = 0 if 9 is not an upper-
half state of Sr. The argum^ts of [13] show that a state q of the sin^e-player
structure associated with Sr forward simulates with observable moves any state
P € 7(g) of 7^, and any state p G 7(g) backwards simulates g with observable
moves. Using this, and Proposition 1, we have:

Lemma 7. Let 71 be a rectangular game, let q be a state of the singular game
Sr, and letp e 7(g) be a corresponding state of 71. Thenp is game simulated
by q, and q is backward game simulated by p.



The above result also holds when the durations of the time moves are also

observable. Note that the above lemma only ensures equivalence for finite traces.
However, since the rectangles used in the definition of rectangular games are
compact, it follows (as in [13]) that the language of the TZ is limit closed.®
Hence, the above lemma is sufiicient to show game trace equivalence.

Theorem 8. For every rectangular game TZ, every state q of the singular game
Sji, and every state p 6 7(g) ofTZ, the states p and q are game trace equivalent.

Since the singular game Sn has a finite game trace equivalence, it follows that
the rectangular game TZ has a finite quotient structure with respect to game trace
equivalence. The game trace-equivalence quotient of TZ can be used for controller
synthesis (Proposition 2). It may have an exponential number of equivalence
classes (corresponding to the regions of «S7t).

Corollary 9. Given an Ltl formula (p, The Ltl control problem for a rectan
gular game TZ is ExPTlME-comp/cfe in the size of TZ and 2EXPTlME-complete in
the length of (p.

Rectangular games are a maximal class of hybrid games for which finite game
trace-equivalence quotients axe known to exist. In particular, for triangular games.,
wheresomeenablingconditions for moves have constraints of the form Xi < xj,
the reachability problem, and therefore the safety control problem, are undecid-
able [13]. Wealso note that the shape ofa witnessingstrategy for the Ltl control
of rectangular games, even for the safety control of timed games, is not neces
sarily rectangular, but may requiretriangular constraints of the form Xi < xj to
determine which move to apply in a given state. Hence, the synthesized controller
may not be implementable as another rectangular automaton. This is in contrast
to the timed case, where the timed automata uoith triangular enabling conditions
are reducible to finite quotients [2] and closed under controller synthesis [5,15].

We conclude with an observation that is important for making the control of
rectangular games practical. For a set 5 C L x E" of states, define the uncon
trollable predecessors upre{S) of S to be

{X€inv{l) A 1
(f,a;)€lfXE" Vmi € mot;i(£,s). 3m2 € mot;2(f,aj}. > .

<J((f,®),mi,m2) n5# 0 J
For the safety control of a rectangular game TZ, rather than constructing the re
gion equivalence quotient of Sr,, it is computationally much preferable to iterate
a sjrmbolic upre operator directly on TZ. In other words, to compute the set of
states at which player-1 can control for •(fi^ V•••Vff,.), compute

00

-• U upre* ({(£,«) €LXE^ If ^{fi,,... Aa e wv(f)}) .
i=0

®An Ci;-language L b limit closed iffor every infinite word p,ifevery finite prefix ofp
is a prefix of some word in L, then p is also in L.



This algorithm is being implemented in HyTech. Since upre{S) is a union of
game languageequivalence classes when S is, this iteration always terminates.

Theorem 10. The symbolic algorithm for safety control terminates when ap
plied to rectangular games.

4 Conclusions

Our results for two-player hybrid games, which extend also to multiple players,
are summarizedin the right columnof the table below. They can be seen cleanly
to generalize the known results for hybrid automata (i.e., single-player hybrid
games), which are summarized in the center column. The number of equivalence
classesof all finite equivalencesin the table is exponential in the given automaton
or game. The infinitary results in the right column follow immediately &om the
corresponding results in the center column.

Table 1. Summary of results

Timed, smgular
2d Rectangular

Rectangular

Itiangular
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1 Introduction

In the conventional formulation of hybrid system (See, for example, [5]),
there is no place for randomness . Although the deterministic framework
captures many charateristics of the real systems in applications, in other
cases, the missing flavor of randomness will indeed be a fatal flaw because of
the inherant uncertainty in the environment in most real world applications.

The idea of introducing stochastic hybrid system is not new. Different re
searchers have tried to propose different models from their own perspectives.
For the most recent, and I believed, most relevant literature, the readers are
referred to [1, 4, 7, 2, 8]. The most important difference lies in where to
introduce the randomness.

One obvious choice is to replace the deterministic jumps between discrete
states by random jumps governed by some prescribe probabilistic law. Hence
the evolution of the dicrete states constitutes a time homogenous Markov
chain. The question remained then is when does such jump occur? In [1],
the jumps occur every e time, and the effect when e -> 0 is studied. In [7],
however, the transitions follow a continous time Markov process. In both
papers, the discrete random transitions are assumed to be independent of
continuous dynamics, therefore the models can actually be better viewed as
an extension of Markov process with some continuous states attached whose
evolutions follow state-dependent differential equations.



Another choice is to replace the deterministic dynamcs inside the invariant
set of each discrete state by a stochastic differential equation. Therefore,
even if we keep the deterministic discrete transition part, starting from a
fixed initial state, different guards can be ativiated depending on the real
ization of the solution stochastic proecess, thus different discrete transitions
occurred randomly. More general models can be proposed by blending the
above two choices.

This report is organized as following: in Section 2, we will try to give a
general definition of hybrid system based on the second choice mentioned
above. An example will be shown in Section 3 together with its analysis. In
Section 4, the idea will be applied to a more general framework, in which we
will approximate the solution of the stochastic differential equation in by
the stochastic hybrid automata obtained from state space discretization.

2 General Definition

Definition 1 (Stochastic Hybrid System) A stochastic hybrid system
(or automata) is a collection H = {Q,XJnv,f,gjG,R) where

• Q is a discrete variable takingcountably many values w Q = {gi, ^2? •**}/

• X is a continuous variable taking values in X = for some N;

• Inv : Q —)• 2* assigns to each q € Q an invariant open subset ofX;

• /> fl' • Q X X -> TX are vector fields;

• G : E = Q xQ -^2^ assigns to each e EE a guard G{e) such that

—For each e = (g,g') GE, G(e) is a meansurable subset of dlnv{q)
(possibly empty);

- For each g G Q, the family {(?(e) : e = (g, g') for some g' G Q}
is a disjoint partition of dlnv{q).

• R : E xX -¥ P(X) assigns to each e = (g,g') G E and x G G{e)
a reset probability kernel on X concentrated on Inv{(^). Here V(X.)
denote the family of all probability measures on X. Furthermore, for
any measurable set A Clnv{q'), R{e,x){A) is a measurable function in
X.



Remark The measurability assumption on R in the preceding definition
is made to ensure that the events we encounter later are measurable w.r.t.

the underlying a-field, hence their probabilities make sense.

Definition 2 (Stochastic Execution) A stochasticprocess(X{t),Q{t)) E
X X Q is called a stochastic execution iff there exists a sequence of stopping
times To = 0 < Ti < r2 < • • • such that for each n 6 N,

• In each interval [t„, Tn+i), Q{t) = Q{Tn) is constant, X(t) is a (con
tinuous) solution to the stochastic differential equation

dX(t) = f{Q{Tn),X{t)) dt+ g(Q{Tn),X{t))dB{t)

where B{t) is the standard Brownian motion in R;

• Tn+i = mf{t > Tn I X{t) ^ Inv{Q{Tn))};

• ^(^n+i) ^ G{QM,Q{rn+i)) where X{t~^^) denotes limtfm+i X(t);

• The probability distribution of X{Tn+i) given is governed by
the law R{en,X{T-^i)), where e„ = iQirn),Q{rn+i)) € E.

Under some not-so-stringent assumptions, the existence and uniqueness of
stochastic execution up to distribution can be established. We omit the
proof here.

Definition 3 (Embedded Mairkov Chain) In the notation of previous
definition, define Qn = Q(r„), = X(r„). Then {(Q„,Xn),n > 0} is
called the embedded Markov chain for the stochastic execution (X(i),Q(t)).

The following lemmas can be easily checked.

Lemma 1 {{QmXn)} defined above is indeed a MC (Markov chain) with
transition probabilty:

•P(Qn+l —9 }Xn+i —X\Qn —9? X-n —x)

= [ R{e,y){x')P(Y^{r,) =y)dy
JG{e)

where e = {q, q'). Yx {t) is the solution to the stochastic differential equation

dY(t) = f{q,Y(t))dt + g{q,Y[t))dB(t)

with initial condition y(0) = a:. 77 = inf{i > 0 : ^^(t) ^ Inv(q)} is the first
escape time ofYx(t) from the invariant set Inv{q),



o o

d,

o o\ / \ XJ

Xi
ds

A v

Figure 1: AHS example

Lemma 2 If the reset kernel R{(q,q')yX) = R{q') does not depend on q or
X, then {Qn} itself is a MC with transition probability (n > I):

P{Qn+i =g'lQn =?) = / P(yx('?) e<;(e))ij(g)((ia:)
JInv{q)

(2)

where e^Yx^ri is defined in the previous lemma. For n = 0, the transition
probability depends on the initial distribution of X (0).

The reason we introduce the embedded MC is that in most cases, it is hard
if not impossible to get an explict expression of the stochastic execution for
a stochastic hybrid system. If aJl we are interested in is the reachability
analysis of the discrete states transitions, then {Qn} will capture all the
necessary information. This is the case if a subset of the discrete states
is defined to be the "bad" states and a controller is designed to minimize
the probability of reaching these states within a given time horizon. Or
alternatively, some states are defined to be safe and we want to maximize
the probability that the execution will remain in these states for as long
as possible. At first sight these observation does not seem to be applicable
in general, since in most cases, the definition of bad states and safe states
involveboth the discrete and continuous states. However, by breaking up the
corresponding invariant sets and adding more discrete states and trivial reset
kernels, we can always reduce the original system to a new one satisfying the
above conditions, at least in the case when the support of any reset kernel
is contained exclusively in safe or bad set.

3 A Simple Example

To fix idea, consider the following simple example. Two cars, labeled 1 and
2 with car 2 in the lead, are moving from left to right on a highway (See
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Figure 2: Diagram for the stochastic hybrid system

Figure 1). Due to various random factors such as road condition, wind, and
the presence of human being, the motions of both cars are stochastic. If we
absorb all the randomness into the motion of car 1 and ignore the possible
occurrence of emergency brakings, then the motion of car 2 can be modeled
as having a constant speed U2.

We propose the following simple control scheme for car 1: Let Ax be the
distance between the two cars. Let do > di > d2 > > 0.

1. Chasing: If Ax > ^2) then car 1 will try to move at speed ui > V2.
So the perturbed motion of car 1 is governed by

— = v, + w{t)

where is the white noise with power spectral density 1;

2. Keeping: If do < Ax < di, then car 1 will try to move at V2\



3. Braking: If Ax < ds, then car 1 will brakes according to some pre
scribed procedure until Ax = do.

For a diagram of the corresponding stochastic hybrid system ff, see Figure
2. It consists of3 discrete states {1,2,3}corresponding to chasing, keeping
and braking respectively. The invariant sets and guards for each discrete
state are also shown. The reset kernels are trivial, or more precisely, jR(e, x)
is concentrated at x for any e = (g, g') 6 B and any x 6 0(e).

It is easily seen that if satisties the condition of Lemma 2. Hence the
successive visits to the discrete states {Qn} is a MC.Actually its probability
transition matrix is

P =

where

_ d2 - ds
^ di-da

The first and third row of P is obvious and the second row follows from the
following lemma:

Lemma 3 Let Bt be a standard EM. For a, 6 > 0, define T-a = inf{t > 0 :
Bt = —a}, Tb = inf{t > 0 : = 6}. Then

1. P(T., < n) =

2. E(T-a ATb) = ab. Here T-a ATb means min(r_a,T^)

Proof: See [3]. •

Calculation shows that the stationary distribution for P is:

_ _ f_±_ 1
^3-p' 3-p' 3-p^

Therefore by ergodicity theorem and strong law of large number [3], the
fraction of time the system spends in each discrete state is distributed as:

^ ^ (l-p)ETz
3-p' Z-p '

6
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Figure 3: Discretization of state space

where

ETi =^^^, ET2={di-d2){d2-d3), ET3 =t3
V\ — V2

are the expected sojourn time in each discrete state respectively.

In practice, we want to maximize the time the stochastic hybrid system
spends in the keeping state and minimize the time it spends in braking
state. This can be done by adjusting the thresolds ^0,^1,^2,^3 properly.
Sometimes this choice is restricted by other physical constraints. However,
we can always use more thresolds and thus more complex stochastic hybrid
controller to achieve the goal within the various physical contraints. This
technique will be illustrated in the next section.

4 State Discretizion of 1-D Stochastic DifTerential

Equation

Consider the following stochastic differential equation in R:

dX{t)
dt

= f{X{t)) + wit), A-(0) = 0 (3)

where / : R ^ R is smooth and w{t) is white noise with spectral density 1.
Define a series of stopping times as: (tq = 0)

r„ = inf{t > r„_i : |A'(t) - A'(r„_i)| = S}

Let Sji = X{Tn). Then {5n} is a MC taking values in 5 •Z. Sn captures
many sample path properties of the solution process A"(t), for example,
wether X (t) is recurrent, or less obviously, wether X (t) crosses an interval
of length less than 5 infinitely many times.

Define Tt = sup„{rn : r„ < t} and let Yt = X(Tt). Then Yt is piecewise
constant with value 5„ in time interval [r„,r„+i). Define Z{t) to be the
solution process to the stochastic differential equation:

^ =f(Y,) +w(t) (4)



Comparing equation (3) and (4) and noticing that during time interval
["^71) |A'(t) -Yt\ < by the definition of r„'s and / is continuous,
we can expect that as <5 ->• 0, Z{t) approaches X(t) in distribution, hence
Z{t) is a good approximation to X(t) which is often impossible to calculate
explictly. However, it is still difficult to solve equation (4) since Yf depend
on the original solution process X{t) through r„'s and S„'s. So to solve
equation (4), theoretically we still have to solve equation (3) first.

One way to get out of this loop is to use the fact that X(t) can be ap
proximated by Z(t), hence rn's and 5n's can also be approximated by the
corresponding random variables defined from Z{t). This will lead to the
discretized stochastic hybrid system (DSHS) defined below.

Definition 4 (Discretized Stochastic Hybrid System) Thediscretized
stochastic hybrid system for equation (3) is H = {Q^XJnv, G, R) where

• Q = Zif X —K/

• Inv(k) = ((/? - 1)^, {k-f-1)^) for any k € Q;

• /(fc,.) = f{k6), g{k, •) = 1 constant functions;

• G{k, k - 1) = {(/; —1)5}, G{k,k-jr 1) = {(A: + 1)5} are singleton and
G{k^k) = 0 otherwise;

• Reset kernels are trivial.

Since H satisfies the condition of Lemma 2, {Qn} defined as in section 2 is a
MC. By discussion at the beginning of this section, it is expected that {Qn}
approximates the MC {5„} defined from the solution X(t) to equation (3).
In the following development, we will use Hs to stress the dependency of H
on the discretization step 5 if neccesary.

Obviously {Qn} has probability transition matrix of the form:

Q =
p-i

0

0

0 q-i

Po 0
0 Pi

go

0

0

0

Qi



or equivalently, Vi, j 6 Z,

Q{hj)= <

Pi if j = i- 1;

9i = 1 - Pi if j = i + 1;

0 otherwise.

The following lemma is needed in the calculation of pk^s.

Lemma 4 Let Bt be a l-D standard EM with Bt = 0. Then B^ = Bt + fit
is the BM with drift fi. For any 6 € E, define = inf{t > 0 : Bf = 6} to
be the first time Bf hits b. Then

P(Tti < T^) = < T?") = <Tl)

In other word, < T^) only depends on bp.

Proof: This is a direct implication of the scaling invariant property of
BM (see [3]), i.e. for any A> 0, {j^B{XH),t > 0} has the same distribution
as {Bt,t> 0}. •

We will denote <f){bp) = P{Tt^ < T '̂̂ ). Then <f> :R (0,1) is decreasing
and <^(0) = 5 bysymmetry. The exact closed form expression of^ is difficult
to obtain, yet there are various ways to estimate it.

Coming back to the calculation of pk- Since the solution to the stochastic
differential equation

dY{t) = f(k6) dt + dBu y (0) = k5

15 Y{t) = k6 + f(kS)t + Bt, by equation (2),

Pk —P{Qn+l = k —l|Qn = k)
= P(Y(£) reaches {k —1)5 before it reaches {k+ 1)<5) (5)

= mim

After the probability transition matrix Q is obtained, the natural questions
we will ask ourself are: Under what conditions is {Qn} recurrent? tran-
scient? Are these conditions connected in any way with the stability of the
deterministic part of equation (3)?



Since we won't have enough spaoe and time for a thorough discussion, we
restrictour attention on the case when / is odd, i.e. f(—x) = -f{x) In this
case, pk = q-k for Ar 6 Z (In particular, po = 9o = |)-

Define Gn = IQnl? w= 0,1,3, •••, then by symmetry, we have

Lemma 5 For any initial distribution of {Qn}, {<Jn} is a MC with state
space N and transition probability matrix G defined by

gi = t +

0 otherwise.

Moreover, {Gn} is (postive) recurrent if and only if {Qn} is.

Notice that the transition matrixG has the propertyg{i, j) = 0 when \i—j\ >
1. This kind of chain is called birth and death chain. The following lemma
is a standard result from probability theory (see [3]):

Lemma 6 Let po = 0, define a sequence

n—1 m

m=Q j=:l

(The product is interpreted as 1 when m = 0^. Then the birth and death
chain {Gn} is recurrent if and only if ip(n) oo as n-¥ oo.

Assembling what we have so far, we get

Theorem 1 (Recurrency of DSHS) Under the assumptions on f in the
preceding paragraphs, the embedded MC of the discretized hybrid system is
recurrent if and only if

10
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Figure 4: DSHS for a gradient system

5 Future Direction

Several possible extensions to the above effort are listed below:

• The criteria proposed in (6) is not easy to check for a given / since
our knowledge of 4> is limited. However it is a very interesting (and
challenging as well) problem to estimate the rate at which 4>{x) -¥ |
as a; 0, since that is where the boundary between recurrent and
transcient lies. In other word, we are interested in how fast should
f(x) decay to 0 as s —)• oo such that {Qn} is still recurrent. (If /
has compact support, i.e. if f{x) = 0 for x outside a compact subset
of R, then it is readily shown that {Q-n} is recurrent but not postive
recurrent which is the boundary case).

• If the deterministic part of equation (3) is a gradient system ([6]) of
the form:

^ =/(«) =-grad V(a:) (7)
for some V G C^(R), then each local minimum of V{x) corresponds
to a strongly interacting group (SIG) of the embedded MC {Qn} of

11



the DSHS Hs (See Figure 4). A typical execution of {Qn} is as the
following: it jumps inside one SIG for some time and then jumps
to another SIG and so on. The mean sojourn time in each SIG is
of interest to us since usually we will make some of the SIG's our
"desired" valley, while some others the undesired trap.
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Introduction

Two vehicle string models were investigated. In [1], a representation ofa string ofvehicles was developed using the
Hybrid Input / Output Automaton formalism. Necessary and sufficient conditions were derived for vehicle safety in
the context ofan emergency deceleration maneuver. Adescription based on interactions ofa pair ofvehicles was

presented in [2], along with computational tools designed for collision and throughput analysis ofan automated
highway. Numerical experiments were conducted to estimate the number and severity ofcollisions that could result

from an emergency braking maneuver. An attempt was made to compute collision statistics via random sampling of
the braking distributions of[2], for the case of2 vehicles. Time was invested towards the development ofavehicle
string simulation in SHIFT (ahybrid systems modeling language), but the code requires further troubleshooting
before it can produceany meaningful results.

Vehicle String Model

The vehicle string model of[1] was developed in the Hybrid Input/Output Automaton (HIOA) modeling formalism.

From [3], a hybrid I/Oautomaton is described as follows:

H = (a X. Y, X'", I'"'. e.D.W), where

V= lJ<jXyjY is the set of all variables. U,X, and Yare input, internal, and output variables, respectively,

V is the set ofvaluations for the variables in V,

Z =Z"'ul'"' is the set of actions for H. Foran HIOA,actions encodethe discretedynamics of the system.

Thus, when an action occurs, the system state jumps immediately to a new value. Z'"', Z"'" are the input,
internal,and output actions, respectively,

0c V is the set of initial states,

D c VxiTxV is the set ofdiscrete transitions for the automaton, and

W isthe set oftrajectories over V. In this formalism, a trajectory is a mapping from an interval ofthe time axis to

some Zc V. For a trajectory tobe in fV, itmust satisfy three axioms (existence ofpoint trajectories, closure under

subintervals oftime, and prefix closure oftrajectories). There are also restrictions on 0 and £> which I will not

reiterate here. According to[3], the HIOA formalism isuseful for performing compositions ofhybrid automata, and

for carrying outanalysis ofhybrid systems atvarious levels ofabstraction.

The vehicle string model developed by Lygeros & Lynch in[1] represents N vehicles traveling one behind

another in a single lane, with the first vehicle labeled 0 and the last N-1. The plant is a hybrid I/O automaton,

p = (c//., x,>, Y,>. z,r. z,r. z,r"', 0,>. d,>, Wp).

The set ofinput variables is t//» = {«}, w=[mo, •••.«n-i] . where u, is the commanded acceleration for vehicle /. The
commanded acceleration is assumed tolie within a closed interval, u\{t) e [a!"'". • Another assumption on the

model is that both negative and positive acceleration values are allowed: a"""< 0<a, Xp = {x, c/cc, Touching)



is the set ofinternal variables, withx =[ [Ax© v©], , [Axn-i vn.|]], acc =[acco,, accN-i], and Touching -
{Touchingi,, TbacW/igN-i}. The variable A*i is the spacing between vehicles /and /-/, and Vj is the velocity of
vehicle /. The actual acceleration acc-, ofvehicle / may differ from the commanded acceleration u-, ifother vehicles

are in contact with /. Touching is aset ofBoolean variables; Touching, is true whenever vehicle / is touching vehicle
/-/. The automaton has no input oroutput actions: Zp" =Zp*"" =0, but does have internal actions: Zp =
{Collision,,..., CollisionN-i, Touch,,..., Touchw-i, Separate,,..., SeparateN-,}. The model is such that an action
takes place whenever its precondition (described on the valuation space Vp) becomes true, at which point continuous
evolution stops in order to allow the action to occur. The effect ofan action (in Vp xVp) describes allowable states

before and after the transition. It isassumed that theinitial state oftheplant satisfies Ax, (0)10, v, (0) >0, and

Touching0) = False.

Adefinition for string safety is established in [1 ]. Based earlier safety analysis, the threshold for "safe'
collisions istaken to be = 3m/s. That is, any collisions occurring with relative velocity at or below Va are

considered safe. More formally, a string isdefined tobes(rfe if, for all i=l,...,N-l, [(Ax, =0)=> (v, <v,., + Va)] is

an invariant property. Aproperty is a function on Vp (the set ofvaluations ofthe state variables) that maps states of
P to {True, False}, and a property is invariant if it istrue atall reachable states.

The question ofsafety isimportant when considering emergency braking ofastring ofvehicles. In the

situation proposed in [1], the first vehicle inthe string applies its maximum deceleration until itcomes toa stop,

perhaps due toamalfunction or other abnormal condition. This presents hazard to the remaining vehicles in the
string, as it is possible that the followers may not have greater braking capability than the leader. The emergency
deceleration maneuver used for analysis in [1] was characterized bythefollowing de&uit deceleration strategy: (1)

attime t=0, lead vehicle applies maximum deceleration a©™" until itstops (at which point its commanded

acceleration becomes 0); (2)after delay d,, /*vehicle applies maximum deceleration a"'". Lygeros and Lynch

arrived at safety conditions fora stringof length N. Some preliminary definitions:

Near-uniform-mass string: all coefficients ofrestitution are equal (ai^ =a), and aMit., <M|t < Mk.,/a If this

condition issatisfied, vehicles willnotendupgoing backward due to a collision. The minimum and maximum

values of the deceleration are dmi„ = min©s*s w., Ok""". 4nax = niax©sksn-i ^k"'"

Ax

Sufficient Condition: A near-uniform-mass string of N vehicles is safe if initially /'(Ax,y,v„vy) = (vj - (dmax'' 4ntn) v, -
Va) 5 0 for all ij with 0 < / <7 < N-1.
The sufficient condition can be proved by induction.

Necessarv Condition: Ifall strings ofN vehicles satisfying a!"'" €[a/, A/, €[A//, A/„], and a, s 1, aresafe under the
default deceleration strategy, then initially (/',(Ax,y,v,v)) v (F2(Ax,y,v,v)) is true for all i,j with 0 ^ i <j <N-1 and for
all a, , Of a„j.
The necessary condition can beproved constructively. According to [1], this condition essentially means that if any
two vehicles in the string are not safe, then string may be unsafe.



Collision Analysis

In the vehicle model used by Godbole and Lygeros in [2], four vehicles follow one another in a single lane. The
vehicles are labeled C, A, B, D, where Disthe lead vehicle. Afourth-order model was used todescribe the

interaction of the pair A-B using state vector

x=[xa ^AB ^abJ ^2 *3
The velocity and acceleration ofvehicle Aare denoted by x, and X2, respectively. The spacing and relative velocity
between Aand Bare given by X3 and X4. The system can be modeled as ahybrid automaton, as in [4], with 3
discrete states: one inwhich A ismoving without touching B,another where both vehicles are moving while

pushing against one another, and one where Ais stopped. The form ofthe continuous dynamics depends on the
discrete state oftheautomaton. When thevehicles aremoving freely, theacceleration ofeach vehicle isgiven by

thecommanded acceleration; inthestate where the vehicles aretouching and pushing against oneanother, the

acceleration ofeach vehicle may be modeled as a weighted average ofthe commanded accelerations, as in[1].

Another kind ofhybrid representation could include 2^*' discrete states for astring ofNvehicles; one state accounts
forthecase where all vehicles aremoving freely without touching, andtheother states give allpossible

combinations of touching vehicles.

The collision tool was used in[2] to estimate thenumber and severity of collisions for a string ofvehicles

undergoing an emergency deceleration maneuver. The default deceleration strategy was: attime t=0, the lead

vehicle applies maximum deceleration ao"*". and (for ahop-by-hop communication architecture) after adelay 5; =/6,
the vehicle applies maximum deceleration (similar to the strategy proposed in [1]). The collision tool of[2]
takes as input initial spacings, velocities, acceleration levels, masses, delays, and coefficients ofrestitution for the
vehicles. It determines the smallestcollision time, solvesfor statesof vehicles after collision, and iterates untilno

more collisions are possible. The output includes relative velocities at impact for allcollisions. To perform a

statistical analysis ofcollisions caused by emergency deceleration, knowledge ofthe braking capability distribution
for the vehicles was required.

Pessimistic and optimistic braking distributions were compiled, asshown in[2] p.12. To obtain collision

statistics, the collision tool was run for allpossible assignments ofdeceleration capability for Nvehicles. This was

possible since the probability distributions were divided into a finite number ofbins; only a finite number of
capability values were considered. Exact expected values for collision data were calculated by weighting the
outcomes by their corresponding probabilities. For either distribution, there were 11 possible values for maximum
braking, which required 11^ collision tool runs tocapture all scenarios.

An alternative method proposed by[5] was toestimate collision statistics byrandom sampling ofthe

capability distribution. This is related to the idea ofMonte Carlo simulation, wherein the expected value ofa
function/of an N-dimensional random variable x is estimated by taking mrandom samples ofx: x/. ..., and

calculating the average value E={I/m){f{xi) + ... +Xx«)). The estimate is then within eofthe true value £

(|£ - £| £f) with aprobability ofat least 1- [6]. If this reasoning holds for collision calculations, the



random sampling method would have the advantage ofbeing independent ofnumber ofvehicles N, with a
corresponding decrease in confidence in the accuracy ofthe results.

Asimplified collision analysis was performed for the case N=2 using random sampling ofthe capability
distributions. The initial conditions were the same as in (2], p.16; velocities v^(0) =Vfl(0) =25 m/s, accelerations

«/i(0) =a^O) =0m/s^, initial spacing =1m, initial relative velocity =0m/s. The setup was as before with vehicle
Afollowing vehicle B. At t=0, Bapplies maximum deceleration as^ (superscript, not squared). Aapplies its
maximum deceleration 5 = 0.05 seconds later. AMatlab function was coded tosolve the spacing equation

X3(t) =(a/2)^ +bt +c+xsCO) for the times ofpossible collisions given input deceleration values OA^and . In the
event ofacollision, the relative velocity was calculated from X4(t) =at+ />. The coefficients a, by and c were special
cases ofthe parameters on p. 26 of[2], in agreement with the preceding initial conditions.

The probability distributions (shown in Figures 1and 2) were represented in Excel based on my visual
approximation ofthe distributions of[2]. The discrete probability values sum to 1for both cases, but it is not clear
how close these values are tothe original distributions. Bach selected deceleration value was my estimate ofthe

number occurring at the center ofthe corresponding bar in [2]. For each discrete density fimction, 50 random (oa^,
Ob) pairs were generated and input to the collision calculator. Some results are listed in Table I, along with values
from [2].

Table 1: Collision Statistics

Optimistic
(random)

Pessimistic

(random)
Pessimistic

(combinatorial)
Ref. [2] (N=2)

Worst-case c. speed -1.4146 -1.6920 -1.6920 -2.4

Efv,.,) -0.7153 -0.7882 -0.4134 -0.8955

Prob ofno collision 0.46 0.44 0.4545 0.41

The first two columns show results forrandom sampling of thebraking distributions, fortheoptimistic and

pessimistic cases, respectively. The values in the third colunm are a result ofmy interpretation ofthe method used
in [2], with the pessimistic distribution ofFigure 1. The collision calculation was performed for allpossible

decelerationassignments (121 calculations for N=2).

Thefirst rowliststhe worst-case collision speed; forcolumns 1-3, this wascalculated as the Vki resulting

from assigning Athe worst possible deceleration and Bthe best possible deceleration for the specified distribution.

Thus it was notcalculated as a probabilistic quantity. Theworst-case speed in [2]hasmagnitude 1.4times larger

thanthatobtained from the distribution of Figure 1;tiiiscould indicate a large discrepancy in my estimation of the

support ofthe distribution, orthere could beanerror inthe collision calculator. All worst-case collision speeds are

below the "safe" threshold of3m/s.

Inthe secondrow,the expected valueof the relative velocity at collision is given. Forcolumns 1and 2,

thisvalue wascalculated by averaging Vrei forall collisions thatdid occur. Forthe combinatorial case, the expected

value was calculated as a sum ofthe Vn.] for all collisions, with each value weighted by the probabilityof its

occurrence. 1assumed that the deceleration assignments were independent, so thejoint probability of a given pair

was computed by P(aA^ =X, =Y) = P(afA^ =X)P(aB^ =Y). Itwas hoped that the expected v^i values ofcolumns



2and3wouldbeinbetteragreement.Possiblesourcesoferrorincludeamistakeinmymethodofcalculating

E(vrei)forthecombinatorialcase,oraproblemwiththegenerationofrandomvaluesfromthepessimistic

distribution.TheEVincolumn4wasestimatedfromtheN=2relativevelocitydistributionof[2].

Thethirdrowshowstheprobabilityofnocollisionoccurring.Forcolumns1-3thiswastakenastheno-

collisionfrequency(totalnumberofnon-collisions/numberoftrials).Thefactthatthesenumbersareallnear40%

doesnotinspiremuchconfidenceinlightofotherdiscrepancieswithresultsof[2].

Duetothespacingbetweendiscretevaluesofthedistributions,somecollisionscenarios(accountedforby

thecollisioncalculator)werenotrealizable.Forinstance,itispossibleforAandBtocollidewhenthedeceleration

ofAisslightlymorenegativethanthedecelerationofB(i.e.,evenifAcandeceleratemorequicklythanB,itisnot

alwaysenoughtopreventacollision).Thissituationcannotbeobservedunderthecurrentdiscretization.

Futureworkshouldincludefurtherdevelopmentanddebuggingofthecollisioncalculator.Itwasintended

tocomputecollisionsforlongerstrings(N>2)byresolvingcollisionspairwiseuntilitwasnolongerpossibleforany

vehicletoovertakeanother.Thecalculatormustbeenhancedtoincludethemomentumandrestitutionequationsso

thatthestateofvehiclesaftercollisioncanbeknown.Eventually,acompletedvehiclestringmodelinSHIFTcould

beusedtoconductstatisticaltrialswithrandomassignmentofbrakingcapabilities.
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function out = coll_l(accn2A, accn2B)

%calculate relative velocity of
%collisions that result from emergency deceleration maneuver

%acceleration trajectories
%maximum deceleration values are assumed to be negative

al_A = 0;
a2_A = accn2A;
al_B = 0;
a2_B = accn2B;

%initial conditions
xl_A = 25; %initial velocity of A (m/s)
x2_A = 0; %initial acceleration of A (m/s''2)
D_AB = 1; %inital spacing (m)
D_AB_dot = 6; %initial relative velocity (m/s);
m_A = 1500; %mass of vehicle A (kg)
m_B = 1500; %mass of vehicle B (kg)
alpha = 1; %coefficient of restitution
del = 0.05; %delay (sec)

A = (a2_B - a2_A)/2;
B = a2_A*del;
C = 1 - a2_A*del''2/2;
dis = B'^2 - 4*A*C;

t_temp = sqrt(-2*D_AB/a2_B);

if (del ~= 0)
aB_critical = -2/del'^2;

else

aB_critical = 0;
end

collision_flag = 0;

%first check if a collision can occur before del seconds
%have elapsed (before A begins to brake)

if (t_temp <= del)
t c = t_temp; %time of collision
v~rel = a2_B*t__c; %relative velocity at collision time
collision_flag =1;

else

%find any collision times that occur after del seconds
if (A == 0)&(B -= 0)

t_c = -C/B;
collision_flag = 2;

elseif (A == 0)&(B == 0) %no solution
t_c = 0;
collision_flag = 3;

elseif (dis < 0) %roots will be imaginary
t_c = 0;
collision_flag = 4;

elseif (dis == 0)
t_c = -B/(2*A);
collision_flag = 5;

elseif (dis > 0)
t_c = (-B - sqrt(B'^2 - 4*A*C) ) / (2*A) ;
collision_flag = 6;

end

if (t c > 0)
v_rel = ((a2_B - a2_A)/2)*t_c + a2_A*del;

else

v_rel = 0;
end



end

out = [collision_flag t_c v_rel del aB_criticall;
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1 Introduction

It is simple to show the stability of linear systems using
a LMI. One only need only find a P such that

^^P + P>1<0 (1)

The purpose of this work is to find similar LMI condi
tions that guarantee the stability of more complex sys-
tems. In particular, we focus on hybrid systems with vec
tor fidds characterized by linear difierential inclusions,
afi&ne guards, and afiSne reset relations. This work is
an extension of [1] and [2]. These works develop LMI
conditions for the stability of piecewise linear systems,
and hybrid systems with trivial reset relations (trivially
meaning the reset relation is equal to the identity map.)
Therefore the main contributions of this work is the abil
ity to deal with non-trivial reset relations, and also the
fact that the development has been put into the notation
used throughout the EE291e course.

We begin by formulating the problem in Section 2. In
Section 3 we develop the LMI conditions in a casual, easy
to understand manner. In Section 4, we state the theo
rem, and prove the theorem in Section 5. Note that most
of the proof given in Section 5 is original work. Section 6
gives an example of how to apply the theorem. Finally,
Section 7 makes some final remarks, and discusses some
of the other directions that were explored whiledoing this
project.

2 Problem Formulation

Consider the hybrid automaton H —(Q, X, /, Init, /,
E, G, R) with the followring properties:

• Define Qo = {q€Q : 0 € /(g)}, Qi = Q/Qo

/(«)£{» is ^ I "
vector valued and > is defined element by element. I L^ ^ J

> 0 X€ X} where Lq

Also, Lq = \^ Lq Iq ] and lq = 0 whenever q £Qo

• /(g,®) e CbkeK{g){Aqk + aqk}

where = 0 if g € Qo and Aqk - Aqk 0.qk
0 0

V(g,r) e E

<5(g,r) = {a; : = 0} if g € Qo aad r e Qo

qrG(g,r) = {x : mi = 0} if g e Qi or r e

V(g,r)€E

P(g,r,x) = NqrX if g e Qo and r € Qo

P(g,r,x) '
1

qr if g 6 Qi or r € Qi

Our problem will be to find sufBcient conditions that
guarantee the exponential stability of H. Our approach
wiU be to show the existence of L3rapunov function,
V(g(f),x(t)) with the following properties:

• a||x(t)||2<y(x(t),g(f))<^||x(t)||2

• < ""7INP for almost all t

• y(x(t),g(t)) decreases during Discrete Transitions

In the section that follows, we will derive sufi&cient con
ditions for the existence of a Lyapunov function that sat
isfies each of the above three properties.

3 Development of Conditions

In the development that follows, we consider Lyapimov
functions of the form:

{
X^PqX if g € Qo

if g e (3i



We will motivate the conditions inthe upcoming theorem Even though its not p.d., the value ofx^PqX is positive
statement in the remainder of this section by just study- for x € /(?), as illustrated in Figure 1. Indeed Equation
ing the discrete states in Qo* Amore rigorous treatment (3) allows for such a Ij because we can find a value of
is given in Section 5where the theorem is proven. Wg that makes Pg —L'̂ WgLg positive definite.

3.1 Conditions For a||a;(t)||^ < y(a;(<),g(t))

One sufiicient condition to guarantee that there exists an
a such that a||a;(f)||^ < V(a;(f),g(t)) would be if

0<Pj Vg€/(g) (2)

However, this condition is stronger than necessary. We
only need x'̂ PgX > 0 for allx € /(g) If we knew of some
matrixS withx'^Sx > 0 for allx 6 I{q) and possibly < 0
outside I{q) we could write a LMI that might possiblybe
easier to satisfy.

0<Pg-S

We Can Parameterize a family of matrices to serve as S

x'̂ L'̂ W,L,x>0 Vxe/(?)

Where Wg is our "firee" matrix and is symmetric with all
non-negative entries.

Thus a less conservative LMI condition than (2) is

0< P, - L'̂ WgLg (3)

We illustrate why this is less conservative than (2) with
an example. Consider a discrete state q with /(gr) defined
as

I{q) — {x : LgX > 0}
1 -2

1 2
L, A

The I{q) region is shown as the shaded area of Figure 1.
A valid choicefor Pg is

1 0

0 -1

0<P,-Lj'

xPx>0

0

0.25

0.25

0

xPxxO

Figure 1: I{q) and a Pg that is not p.d.

(4)

3.2 Conditions for '̂ V{x(t),q{t)) < —7||a;||̂
for almost all t

One sufficient condition to guarantee that there exists a 7
such that '̂ V{x{t),q{t)) < —7||x|p for almost allt would
be if

+ VkeK{q) (5).

Yet we only need -^{x^Pqx) < 0 for all x € I{q). Ifwe
knew ofsome matrices Sk withx^SkX > 0 forallx € /(g)
and possibly < 0 outside I{q) we could write a less strict
LMI

0>AjkP, + P,A,t + Sk VkeKiq)

We Can Parameterize a family of matrices to serve as Sk

x'̂ L'̂ UgkLgX >0 Vx e /(g)

Where Ugk is a "free" matrix and is ^onmetric with all
non-negative entries. Thus a less conservative LMI con
dition than (5) is

0> AjtP, +P,A,k + L'̂ U,kL, Vi e Jf(g)



3.3 Conditions for V{x,q) to decrease
during Discrete Transitions

Suppose the event (g,r) occurs at time r?. To meet our
condition, we require:

0 < x(T-)^Pgx(rl) - a:(ri+i)^Pra;(r<+i)

Substituting the Reset Relation,

0 < x(T-)^PgX(Tl) - x(Ti)^NgrPrNgrX(ri)

This Suggests the following LMI Test to guarantee that
V(Xf q) decreases during Discrete Transitions:

0 < Pg - N^^PrNgr (6)

But we don't need x'̂ {Pg —N^j.PrNgr)x > 0 to be true
for any x. Just any x € G{q,r). If we could find an S
with x^Sx = 0 for all a: e G{q,r) and possibly > 0 for x
outside the guard, a less conservative LMI would be

0<Pg-N^PrNgr + S

We can parameterize a family of matrices to serve as S

5 = nigrt^j. + tgrml^

Where tgr is a "firee" vector. Note that x'^Sx = 0 for
all z € G{q,r) as required. Thus a less conservative LMI
condition than (6) is

0<Pg- Nf^PrNgr + +tjrmJ

4 Theorem Statement

0 > Ajf.Pg + PgAgk+L'̂ UgkLg
0 < Pg-L'̂ WgLg

Q€ Qo k € K{q)

0 > Al^P, + P,A,k + LjU,tL,

q €Qi k£ K{q)

0 < Pg-L^WgLg

0 < Pg N^Pr^qr'̂ fTlgr '̂gr ^qrf '̂gr
{q e Qo) A (r e Qo)

(7)

(8)

(9)

0 < Pq - NgrPrNgr+mgrtlj,+tgrmJj. (10)
{qe Qi) V (r e Qi)

Where

P9 =

Ngr =

Pg 0 •
0 0

Ngr 0

0 1

for g e Qo

for g e Qo

then H is Exponentially Stable.

4.1 Theorem Proof

We develop the proof of the theorem in a series of 4 lem
mas. The first 3 lemmas are original work, while Lemma
4 is taken from [1].

Lemma 1 Their exists a> 0 and P > 0 such that

a||»(t)|p <V(x(«),«(t))<^|lx(«)|P

for all t and for all X eH

(11)

Proof: First consider the case where g € Qi and x e
L'jsOi•7(g)

By construction,

[x^ l]L';WgL, >0 Vx € /(g) (12)

Suppose H is non-blocking, non-zeno, has no attractive ^ ^consequence of (8) we have
sliding modes. Also suppose there exists positive definite
matrices Pq> Pq. symmetric matrices with non-negative _ __
entries, Ugk, Wg, andvectors tgr such that: P9 ~ ^q > Qg (13)



For some positive definite Qq. Combining (13) and (12), Elvaluating the derivative of the Lyapunov function we
find,

[x^ 1]P, > [ 1 ] <3, Vi € 1(g)

(14) -V(t) = [ (a:(t)^A(t) + a'') 0 ] P,x(t)

+x(t)^PgBecause Qq is positive definite, we have V(x,q) >
+1) Va; € /(g) for some > 0. We can wekken

the inequality to conclude, V(a;,g) > ag||a;|p

Because « = 0 is not in the compact region Uo€Qi/(9) » . ^ ^ ,
there must exist some minin...n, distance d, suA that if ^consequence of condition (8) of the theorem
®eu,e<5,/(9)then W>(i.

Also, we can observe that V(a:,g) < ^q{\\x\\^ + 1) Va; e
/(g) for some ^ >0(Siinply pick4, to be larger than the +LTU,tL,) =-Q,^ Vk eK(g) (
largest singular ralueofP,.) Now define = (l+l/<P)y3,

Thi!T(^SiiS^ By construction,
The case where g € Qo follows similarly. The final a
and P in the lemma statement are found by computing
minggQ ocq and maxggQ ^q.

Lemma 2 There exists 7 > 0such that •^V{x{t)yq{t)) <
"TII^IP almost all t along all X in H

Proof: We consider the case where g € and x €
Ug6Qi/(g) There exists functions A*,(t) such that Ajfe(t) <

J2k€K(q)
/(g,X(t)) = ^k^JC(q) Afc(t)(Ag/.x(t) 4- Ogk)
It is useful to define

A(t) 4 ^k(t)A,t
*€K(g)

k€K(q)

A{t) a{t)
0 0

A(t) A

so that we simply have

/(9,®(t)) = A(t)

(15)

(16)

To simplify notation in the remainder of the proof of this
lemma, we define

x(t) =
x(t)

1
(17)

= x(tf(A^(t)Pq+PqA(t))x(t) (18)

[x^ 1] L^UqkLq

combining (20) and (19),

A(t)x(t) + a
0

>OVa;€ J(g)

we

(20)

x(t)^[AJfe{t)Pq + PqAqk (t)lx(<) < -x{t)'̂ QqX{t) . .
Vife e K{qyix e /(g) ^ '

Because Qqk is positive definite, there exists 7g*. > 0 such
that x(t)^Qqx{t) > 7flib(l|ic||̂ +1) Vx G/(g)

multipljdng (21) by AA;(t) pairwise for each k, summing
the result, and combining with (18), we conclude

dVjxitUit))
dt

< -TalNI^ (22)

where jq is mmk^K{q) 7gfc-

The analysis for the case where g GQo and x GUg€Q5/(g)
is very similar. The final 7 in the statement of the lemma
is foimd by finding ming^Q 7g

Lemma 3 For any execution of H, every discrete tran
sition satisfies the following

(g(r^+^),x(r^+l)) 96 (g(r^),x(rO) =?•
^(ic(T<+i),g(ri+i)) < V(x(r,0,g(r0) (23)



Proof: if (gCTi+i),a:(Ti+i)) # {g(rf), x(r;)) then there
exists an event {g,r) € E such that 2:(r,-) € G{q,r) and
x(ri+i) € Riq,r,x{Ti))

Now suppose either 9 € Qi or r € By our definitions
of G() and jR() we have

and thus

[ x{ii) 1 ] = 0

^(•Ti+i) 1 _
1

V(x(T;),g(Tn) - V{x{Ti+i),qin^,)) =

[xwr 1 (26)

Multiplying 10) on the left with [ x{t-)^ 1 ] and on

the right by we arrive at

^(ic(r-),?(r|)) - V(a:(ri+i),g(Ti+i)) > 0 (27)

The proof for the case when q € Qo and r € Qo follows
similarly. •

The following lemma, which is provenin [1], that can also
be proven using basic Lyapunov theory given in [3] will
be used to complete the proof of our theorem.

Lemma 4 Let x{t) ; [0,oo) -> R" and let V{t) :
[0,00) -> R 6e a nonincreasing and piecewise function
satisfying

j^V{t) < -j\\x{tW (28)

for some 7 > 0 and some p > 0, almost everywhere on
[0,oo)

If there exists a>0 and 0>O

a||x(f)||2 < V(x(t),?(f)) < /3||x(f)|p (29)

then }|x(t)|j tends to zero exponentially.

Proof of Theorem; The proof of the theorem involves
checking that the conditions of Lemma 4 hold. First we
observe that for all executions, x{t) is indeed defined for
t € (0,00) because H is assumed to be non-blocking and
non-zeno. Next, we observe that V{t) is a nonincreasing
function, for any execution of H, because we have shown
that it decreases along both discrete and continuous evo
lution. Next, we observe that Equation (28) is true for
some 7 as we verified this with Lemma 2 {p —2 here).
Finally, we observe that Equation (29) is true, because
this was verified with Lemma 1. Thus, we conclude that
under the conditions of our theorem, l|x(f)|| tends to zero
exponentially. •

5 Example

Figure 2: Spring Driven Bouncing Ball

We illustrate the theorem with the example of a spring
driven bouncing ball. The system is illustrated in Fig
ure 2. The height of the ball above the block is defined
to be xi and the ball's velocity is defined to be X2. The
forces acting on the ball are the spring tension, equal to
kxi, and the drag from air friction, equal to dx2. When
the ball hits the block, it rebounds with a velocity equal
to —01x2.

We model the spring driven bouncing ball as a hybrid
system with two discrete states. The first we call "Fly
Down" and assign it the value q — I. The other we call
"Fly Up" and assignit the value q —2. A state diagram of
the hybrid system is shown in Figure 3. The vector fields
in each discrete are f{x,l) = Aix and f{x,2) — .<42a;
where

Ai = A2 =
—k —d

The guard for the (1,2) event is the set of states where
xi = 0, and the guard for the (2,1) event is the set of



l?'ly Down"

Xi = X2

X2 = —kx\ —dX2

xi > 0
X2 < 0

G: xi = 0

R: X =
0

—^
Fly Up

/
Xi = X2

X2 Ajxi ^ dxi

xi > 0
X2 > 0

G; X2 = 0
R: X = X

Hgure 3: State Diagram of the Spring Driven Bouncing Ball.

states where X2 = 0.
the vectors,

mi2 =

Thus, these guards aredescribed by 6 Final Itemarks

and 77121 =

The matrices that describe the reset relations for the (1,2)
event and the (2,1) event are

iVl2 =
1 0

0 —a
and Nil = T

Finally, the matrices that describe the invariants of state
1 and 2 are

Li [o -1. and Li =
1 0

0 1

We now pick reasonable values for the parameters: d =
0.1, a = 0.8 , A; = 1. To use the theorem to show this
^stem is exponentially stable, we must search for Pi , P2
, Wi , W2 1 Ui j Ui i tii , *21 that satisfy the theorem
conditions. Through search, we find the following values.

Pi =
1.005

0.05

*12 =

0.05 •
1

0.5

-0.9

and P2 =
1.206

0.06

and *21 =

Wi=Wi=Ui = Ui=0

0.06

1.2

satisfy the conditions for the theorem. Thus, the spring
driven bouncing ball is exponentially stable.

When I first began my EE291e class project, the first
direction I tried was to derive a simultaneous parameter
ization of Lyapunov function and state feedback matrix,
so that one could pose the question of stabilizability us
ing an LMI. This is possible with pure linear systems, and
the LMI takes the form

QA'̂ + AQ+ BR + R^B < 0 (30)

Where Q —P~^, and R = KP~^ (P is the Lyap\mov
matrix, K is the state feedback matrix). However, I was
imable to reduce the simultaneous parameterization in
the hybrid system case to an LMI. The trick of writing
the LMI in terms of P~^ doesn't work because Equation
(9) cannot be written in terms of P"^ and remain an
LMI. Also (7) ends up having 2nd order terms between
Q and Wq. Indeed, [1] reported the same diflBiculty.

Another direction I explored was using this framework
to write conditions for observability. The approach was
to show that the LMI's imply the stability of the error
dynamics of some observer, as is done in the analysis of
linear systems. Indeed, one can do this for hybrid ^tems
of the form outlined in Section 2, but only if one assiunes
perfect knowledge of the discrete state. Also, if one tries
to simultaneously search for Lyapunov functions and ob
server feedback matrices, one runs into exactly the same
difficulty as discussed earlier - the stability conditions are
no longer LMIs.

The extension of the results in [1] and [2] to nontrivial
reset relations was the final direction I tried, and led to
the work presented here. A useful future extension of this
work would be to develop conditions that allow for reset



relations to be any matrix in the convex hull of some set
of matrices.

Also, one may also try using relaxed conditions on the
Lyapunov function, as developed in [4]. [4] essentially
shows that a system is stable iiV{q,x) has a lower value
each time the system switches into discrete state q, and
V{q^x) decreases along continuous evolution in state q.
Therefore in the frameworkof [4], it is not required that
V{qyx) decrease during every discrete transition. Devis
ing a scheme to book-keep the value of V{q,x) every time
the system enters state q would be the principle challenge.

Even without these future extensions, the work presented
here permits Lyapunov analysis of a rich variety of hybrid
systems exhibiting both interesting discrete and continu-
oiis dynamics.
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Abstract

Drilling process always involves contact of a drill to the surface of a workpiece, and there exists a
hybrid control problem,;which is similar to the contact stability problem of a manipulator's
contacting a surface. This study utilizes the game theoretic approach of hybrid control design to
obtain the initial condition and Ae control law for the drilling of compositematerials with allowable
thrust force and maximal speedwhen the drill start drilling.

1. Introduction

Although composite materials provide
distinctive advantages in manufacture of
advanced products, they are easily damaged
unless machining is performed properly. The
typical damage is'delamination during drilling
when the drilling force exceeds a threshold
value at critical stages. A quantitative model
based on a delamination! f^cture mechanics
approach was suggested, by Hocheng and
Dharan [1]. Their model relates delamination
damage of die laminate to drilling parameters
and composite material jproperties: i.e. the
critical thrust force at the onset of crack
propagation at the exit is

(1)

and the critical cutting force at the onset of
delamination at the entrance is

F =A:slope 7t.
SG^EH'
3(l-v^)

where H is the thickness of the laminate, h is
the uncut depth under the tool, and Gjc is the
critical crack energy release rate. E is the
modulus of elasticity and v is the. Poisson's

1-| (2)

ratio, ksiope is a constant defined by X(the helix
angle at the drill tip) and p (the coefficient of
fiiction between tool and work). Eqs. (1) and
(2) show that the thrust force must be small at
the exit and at the entrance to preclude drilling
damage.

The best approach to control the thrust force to
be less than the value suggested by (1) and (2)
is force controlled drilling. On the other hand,
the drill must be simply position- or velocity-
controlled before and after the drilling. Hence,
there needs the existence of hybrid controller
around the transient phase between force-
controlled region and position/velocity-
controlled region.

Cavusoglu, Van and Sastry proposed a hybrid
system approach to contact stability and force
control in robotic manipulator [2]. They
applied the game theoretic approach of hybrid
control design to synthesize the least
restrictive control law for a robotic
manipulator to establish and maintain contract
with a surface, while keeping interaction
forces within specified bounds. If the drilling
mechanism of the material is added to the



model of the robotic manipulator, the design
method can be similarly applied to the case of
hybrid controlled filing of composite
materials.

This paper explores thedevelopment of hybrid
control strategies, especially at the upper
surface, i.e. the transient from position control
to force control, in the drilling of composite
materials, by applying the game theoretic
approach.

2. Game Theory Approach to Hybrid
Control Design

This chapter briefly introduces the game
theory approach to hybrid control design. This
is a summary of 'Chapter j2: Game Theory
Approach to Hybrid Control Design' of the
paper written by Cavusoglu; et al. [2]. Some
textbooks on game theory explain more
mathematically about the content of this
chapter. ([3], [4])

Consider a dynamical systeih
x = f(x,u,d,t) (3)

where x{f) is the state, «(/) is the control input
and d{t) is thedisturbance. The game is played
between the control input aitd the disturbance
as the opponent. Disturbances can be the
environmental disturbances, control inputs
from higher level controller, etc. A cost
function, »/(x(0), w, is defined as the
objective of the game, a desired behavior that
the controlled dynamical system is desired to
satisfy. Suppose u is trying to achieve .

J<C, (4)
while d is trying to maximize it. The system is
said to admit a saddle solution if there exists a
u (0 and d*' (r) such that
J{x{^\u\d) ^J{x{0\u\d*) ^J{x{(f),u,d*)

(5)
If the system admits a saddle solution, the
analysis gives the optimunii control strategy
u{t) and a set of safe states in which the

control can win the game regardless of the
disturbance:

S = {x&X:J{x,u\d')<C,} (6)
Given that the initial condition is in the safe
set, the least restrictive control law to achieyg
J < C, is to useu when x{t) is at theboundary
of S, without any restriction on the control action
when x{t) is inside the safe set.

3. Controller Design for Drilling
3-1 Initial Condition

The drilling process is modeled with the force-
position characteristic given by

f 0,x<0

where C{x) (CmaxW> C{x)> CminW) multiplied
bythevelocity of thedrill is the thrust force of
'drilling, and is considered as a disturbance.
The system is governed by the differential
eauation

7?ix + C(x)x = r(r) (8)

where r(/) e[~r„,r„] is the control input.
The costfunctions the thrust force of the di^,
and the controller tries to achieve
F{x)< (x) at any time, where Fmax(x) is
the mavimal thrust force. The initial condition
is given by x(0)=0 and the initial velocity

The initial energy of the system is:
1 .
2

EQ=i:mx(Oy (9)

The energyinput is until the position x is
X

=\'̂ ix)dx =r{£)x (10)
for some f€[0,x].
The kinetic energy at x when is

(11)

The energy consumed imtil theposition x is



=\C(x)xdx (12)

Byapplying the energy conservation law:
(a:)+ £,„,(x) (13)

to these four values of (9) - (12), we can
obtain

1 1 '-mx{Qif-^T{s)x ='—mx{t^y-^^C{x)xdx
2 2 (I

(14)
Then, the saddle solution is obtained from

(15)

X (tj =

C{x)x = F^{x)

hence,

^OTi(0)^=r„x+im
2 2

I.e.

x(0) = T„x + —m
. 2

^BWX (^) >
+

(16)

(17)

X

jF,^ix)dx

(18)

X

lF^(x)de

(19)
This is the critical speed at the beginning of
drilling where the force at x can be the same as
^maxOO'

3-2 Initial Condition for Special Case

If ^max (Jf) is constant, then the safe set of
initial condition with respect to any drill
position Xis expressed as

i:(0)<

= g(^)

2>

s, Qnax ("*) J

(20)

As a typical example for the drilling of
composite materials, the follovsdng two
conditions can be added (the first is above
mentioned):

T^max (x)= Fmax (constant) (21)
C^(x)=^a +fix (22)^

where (21) comes from the fact that Fmax does
change inside the first layer of the surface of
the material, and (22) comes from general
empirical equation. Then

m^J-
m

(.x„+F^)x+-m
r F.

2\

{ia +j3x))

=g(x) (20)
is the safe set of initial conditions with respect
tox.

If cx ^ is satisfied, then
V^m+^max

Xc/ = 0 (21)
(when the drill toughed the surface of the
material) is the critical position, and g(0) is the
smallest value. On the other hand, if

a<i ^ then
T +F

m max

^c2 =
r„ + F..

(22)

is the critical position, and g{xc2) decides the
maximum approaching speed ofthe drill.

3-3 Controller Design during Drilling

By modifying the content of 3-1, the relation
between two arbitrary positions xi and X2 (xi <
xi) can be expressed as

^OTX(r„)^+T(«)(jCj -X,)
1=—/7uc(/,2)^+ ^C{x)xdx (23)
^ x\

hence,

m

1J ^max(^2)
7 \C^ax('*2),

^n,X2 l +

= g(^ (24)
for any position X2(>xi) is the safe set for the
velocity at x\. If the velocity is strictly less



than this value for any X2, then the controller
can choose r(0 = to make the drilling
speed faster until equality of (24) can be
satisfied for at least one of;c2> but should never
exceeds g(x) for anyvalue for X2 •

4. Conclusions and Discussion

Game theory was applied to calculate the drill
approaching speed that will not cause
problems such as delamination of composite
materials. The optimal controller design during
drilling in the first layer of the composite
materials was also examined. The same
approach can be used for the exit ofthe drill at
the lower surface of the workpiece. Drilling of
metals without burr formation can be also the
objective of that approach.
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Reachability Calculation for hybrid systems

Arnab Nilim

1 Introduction

Reachability calculation is very important for the verification ofhybridsystems. Ifwecan solve
the reachability problem, we can answer a lot of important questions about safety properties.
But so fax, the reachability calculation for the hybrid system is not a completely solved problem.
In the continuous system, reachability calculation is performed by the procedure based on the
ellipsoidal approximation. The calculation of the tight external ellipsoidal approximations of
readi sets and reach tubes for the linear time -invariant control is already performed [1]. But the
extension of this model for the hybrid system is yet to be done.Our work is to extend this model
for the hybrid system. We also will use Linear Matrix Inequalities technique to take care the
discrete transition [4]. The cleiss of system we are dealing with is the open hybrid automation.

2 Problem Statement

The system is an H is an open hybrid automation. There are various discrete states in this
system which are called and the differential equation governing eax:h discrete state di
is,

X= Ai{t)x -f- Bi[t)u (1)

where r € 3?" is the state and u € 3i"*is the control. A(t) and B(t) are both continuous and
the system is completely controllable. The I nit C 3?** and let it is approximated by an outer
ellipsoid E(x^^X^), The quadratic form,

W{r, a) = /"(/, A(r, s)Bi(s)B;(s)X'(r, s)l) ds (2)
J<r

where / € 5ft" and W(r, a) is positive definite for any r > <7. Here, A(f, s) is the transition matrix
for the homogeneous system (1),

6X{t,s)/St = Ai(t)X{t,s) (3)

where ^(5,5) = I where I is the identity matrix. For a linear time invariant system Ai{t) =
At = const, X{t,s) = exp{Ai{t —s)).

The control u = u(t) is any measurable function restricted by the hard bounds u € P{t) for
almost all t. The set valued boundPi(f) is a non degenerate ellipsoid in t,P,(<) = Qt(t)),
where



E{qi(t), Qi(t)) = {u:(u- qi{t), QT^(t){u - g;(f)) < 1} (4)

with qi € 5?"^ (thecenter ofthe ellipsoid) and positive definite matrix Qi{t) G (the matrix
of the ellipsoid) continuous in t.

We have to find, given position {to? 2;°}, the reach set x(2", a;°)at time t > to from this
position is the set, xM = xC''", ^o, 2;°) = {x[r]} of all states x[t\ = a:(r, to, 2;°)reachable at time r
by system 1, with a;(<o) = through all possible controls u that satisfy the constraint.
The set valued function r ^ x[^] = x(2',^o,2;°) is the reach tube.

The reach set x('̂ »^o,2;°) ( at time r from set set x° = x(^o)) is the union x(2",to,^°) =
U{x(7*»to,2;°) Ix^ € x°} • The set valued function r xM = x(2-, to, 2;°)is the reach tube from
set x°. . . 1

Here, we arefirst calculating the reach set and reach tube for the continuous state. As we know
the each continuous region belonged by its corresponding discrete state, we can easily calculate
the the reach set for the discrete state if we have the reach tube for the continuous state. We
know the discrete transition takes place when there is a change in vector field. The boundary
between the different vector fields is also known, which distinguishes one discrete state from
another.

In this work we are using ellipsoidal technique [1] to calculate the reach set within a discrete
state. We then get an optimal ellipsoid by Linear Matrix inequality(LMI) such that it contains
the reach set and it is of the minimum volume. We further calculate the portion of the boundary
between two discrete states that is intersected by the optimal ellipsoid over all time, which can
be further approximated optimally by an ellipsoid (using LMI technique). This ellipsoid which
is in the boundary be restated as the initial condition for the next state. And if we know
the ellipsoid that contains initial condition within adiscrete state(with bounded control), we can
calculate the reach set by the previous procedure described in [1]. In this way, we will be able
to take care the discrete transition in a hybrid system and carry out our calculation for a hybrid
system.

2.1 E/Uipsoidal approximation of reach set within a discrete state

The initial set E{x^,X^)) and the control set E{qi{t),Qi{t)) are ellipsoids. But the reach set
x[t] = x(f, ^0, Ej(x^^ -^°)) will not generally bean ellipsoid. As indicated in [2] , the reachability
set x[f] niay be approximated both externally and internally by ellipsoids E- and £?+, with
E- C E C E+ implies E = E+

Theorem 2.1 The reach setxW = x(<^ fo, ^(2;°, A"®)) is a convex compact setin , continuous
int.([2]). .j. r.

Definition 2.1 The support function of an ellipsoid is [3],

p{l \E(qi,QI(t)) = max{(l,x)\x £ E{qi(t),Qi(t))} (5)
= (6)

And the continuity in Q{t)meaxis that its support function p{l \ Qit)) is continuous in t
uniformly in 1 with (/,/) < 1.



Now the problem is, given a unit vector /(i),(/,/) = 1, continuously differentiable in t, we
will have to find an external ellipsoid E^^[t] 2 xW that would ensure Vt > to , the equality
p{l{t) IxM) = p{l(t) I E+[t]) = so that the supporting hyper plane for x[t] generated
by l{t) , namely the plane {x - x^{t)J{t)) = 0 that touches xl^Jat point x^{t) would also be
supporting hyper plane for E!^[t] and touch it at the same point.

Theorem 2.2 The class E = {E+} consists of ellipsoids that approximate the reach set x[t]
externally and are of the form E+ — where vector I is given andx' satisfies the
equation,

x^ = Ai(t)x^ + qi{t) (7)

where x^(0) = x^,t > to and With the controllability assumption we will further assume , without
loss ofgenerality, that B{t) = /.( To obtain the case B(t) ^ /, we will have to substitute Q{t) by
B(t)Q{t)B\t)). And ifwe assume that the function /(t) is ofthe following form l{t) = X{to,t), /,
for the time invariant case l{t) = exp(-A'{t - to)l). Then Xl[t] can be determined by the
following diiferential equation,

ii = Mt)K + X'+Am + + (7r'(t))-'(?;(t) (8)
where X^{to) = X^ and

n>(i) = (I, Xito, W)X'{to, XMf" (9)

which can be further simplified as following,as done in

w
Theorem 2.3 Under the above assumption the solution to the the problem is given by E^\t\ =

A"J.[t]) where x^ satisfies the equation 7 and X^[t])is a solution to the equation 8 and
10.(X+[t]depends on the vector 1)[1]

Theorem 2.4 For any t>to the reach set x[^] ma-y be described as

x[<] = n{£(x',xtW)M :(/,/) = !} (11)

With the equations given above we can calculatethe reachability of a systemin the ith discrete
state. Right now, we will try to extend it if we want to calculate the reachability in the (i + 1)
the state.

2.2 Extension of calculation incorporating the (i + l)th discrete state

As we have seen that,the reach set is the intersection of all the ellipsoids with different vector
1. It is proved [1] that if we take infinite ellipsoids like this, the intersection of all ellipsoids will
converge to the real reach set.It will be cleared with the figurel.

Right now , the problem lies in determining the part of the boundary of the two discrete states
which is reachable from state i. And that will be the initial condition for the (i + 1) th state.
Let us assume that assume that,
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time=0

timet

Reach Set

Figure 1: Reach set approximated by the intersection ofellipsoids

1. The boundary of the two discrete state qi and qi+i is a straight line/plane/hyper plane.

2. Reach set does not intersect with more than two discrete states. Or reach tube just inter
sects with one boundary.

3. In all the discrete states, vector fields are linear time invariant.

Intersection of the ellipsoids is not an ellipsoid. Though it is a convex set. it does not have a
well defined shape which makes it very hard to determine its intersection with the boundary. So
we will approximate it with an ellipsoid that contains it with a minimum volume.

2.3 Ellipsoidal Approximation of the intersection of ellipsoids

The problem offinding thesmallest volume that contains a polytope described by a setoflinear
inequalities , i.e., {x \ ajx < bi,i = l,....,p}is solved by using Linear Matrix Inequalities as in
[4]. This problem is np hard. And this problem is equivalent to the general concave quadratic
programming problem. ^

If we consider subsets formed by the intersection of ...., .We approximate the
set by an ellipsoid Eq. We can describe the ellipsoid E!f. in the following way.
E!1 = {x\ Ti(x) < 0}, where Ti{x) = x^Pi^x + 4- r/,.
And P/i = > 0and qJP/J^ - n- > 0 (which ensures that is nonempty and does not reduce
to a single point). ^

We want to calculate a small ellipsoid Eq that covers the union of the ellipsoids P+SP+,P+
...., P^, the convex hull of the intersection. We will describe the ellipsoids by the associated
quadratic functions Ti{x) = x^P^x + 2a;^g/- + r^. We have

Po 2 (12)

Which holds and given that Pi,P^,P^ ...., P^fand Po are all np complete. So finding Pq is a
Linear Matrix Inequzdity problem.



There axe two ways in which we can calculate the optimal ellipsoids for this problem solving
convex problems. The first procedure uses 5-procedure to derive an LMI that is sufificient for
the above condition to hold.

As we know, Eq = {x \To(a:) < 0} where To{x) = x'̂ PoX-\-2x'̂ qo-\-ro. Since our representation
of Eo is homogeneous, we will now normalize Poi^Oj in n convenient way such that qoPo^qo —
ro = 1. In other words we set,

ro = qoPo^qo-1 (13)

From the iS'-procedure there exists positive scalaxs ri,r2,r3, ....Tp such that

Pq qo 0 ^
9o -1 9o
0 ^0 —Pq J

p ( Pli Qii 3
-Sn 9/T n, 0 I <0 (15)

•=1 V 0 0 0

which can be rewritten as the LMI (in variables Pq, qo and ro and ri,r2,r3, ....Tp)

The LMI is sufficient but not necessary for 23 to hold. We can find the best such approxima
tion (i.e. the smallest volume) by solving the convex problem.

Minimize logdetPo^ subject to, Pq > 0,ti > 0,r2 > 0,..rp > 0.(which is solved in any LMI
tool box directly). SO solving this optimization problem, we will get the optimalellipsoid Eq.

2.4 Using LMI Ellipse for the Reachability calculation of the Hybrid system

In the previous section, we have calculated Eq which comprises the intersection of all the
ellipsoids with the least volume. So Eo{t) also consists of the reach set x[^]
for the ith discrete state. Right now we have to extend the reach set for the {i + l)th discrete
state. The situation can be well visualized in the following figure.

As in the figure, the boundary between the ith state and the (i -H l)th the state is defined by
M. As long as the ellipsoid jBo(0^s in the left side of the boundary M, it is in the state i. The
transition can talce place as soon as Eo{t) hits the boundary M. As Eo{t) can be calculated at
every time instant, we can calculate the time ti at which Eq touches the boundary M for the
first time. So any time, t > ti the trajectory can be in the either state. Right now, we need to
calculate the portion of M that can be reached by the system. The vector field is different in
the two sides of the boundary. So whenever the ellipse Eq crosses the boundary, different parts
of it are in different vector fields. But for the sake of calculation, let's calculate the time <3 ( it
is the time when the ellipse Eq has just completely crossed the boundary M) using the vector
field of the ith state. So at any time t such that ti < t < <3, the ellipse Po(0
boundary. And at any time t > <3, the Eo{t) is completely in the (z -|- l)th state. In each time
instant ti < t < <3, the boundary M intersects with the ellipsoid .

Theorem 2.5 If an n-dimensional ellipsoidintersects with a plane, the intersection is a (n —l)th
dimensional ellipsoid (unless it is tangential where it will be an ellipsoid of dimension n —2).



Altunel

dX
— =AJX+BJu
dt

^ =A_(H-l)X+B_(i+l)o

Figure 2: LMI Approximation of the reach set

Proof. Without the loss of generality, let the ellipsoid is x^Mx = 1 (a; G € 9fJ"^")where,
( \a\

M =

1

k /
The plane H'̂ x = 0whereff € As a: Gnull{H'̂ ) we can write x as, a; = aiVi + a2V2 +
+ OLn—iVn^i where ui,U2) 3-^6 theeigenvalues ofH. So we can write x as,

/ ui \

X = ( ai a2 .. a„_i 0)
V2

Vn-l

\ 0 y
intersection is an (n - 1) th dimensional ellipsoid. The result can be easily further generalized
even if the center ofthe ellipsoid is not the origin and the plane not containing the origin.

Again intuitively it can be understood very easily. Any ellipsoid x^Ax = 1can be transformed
into an unit sphere with a linear transformation^ As x'̂ Ax = 1 is an ellipsoid, Ais positive
definite and can be represented as A= P. Let, Px —y and this linear transformation will
yield = 1or = 1which is a sphere). As plane remains as a plane in
a linear transformation, our original system transforms into a sphere intersecting with a plane.
As we know that if an n dimensional sphere intersects with a plane , it will be a sphere with
n-l dimensions. And with the linear transformation(P-^y = x) the intersection will be an
ellipsoid(sphere is an special type of ellipsoid) with one less dimension. But if it intersects
tangentially, then the dimension will be n-2.

From the above theorem, it is clear that at any time ti < t < is, the ellipsoid Eo intersects
the boundary and the intersection is a reduced dimensional ellipsoid.

So if our sample calculation time interval is m, there will be approximately (t3-<i)/m+l = k
no of (n —1) dimensional ellipsoids generated by the intersection of Eo and the boundary M.

Plugging this value of x in x^Mx = 1 shows that the



Let's define M such that,
M = U,6(,..„)(£'o(<) n M) (16)

M is not an ellipsoid as it is the union of the ellipsoids. As we will see that we can calculate
the LMI ellipsoid that will contain M with having the minimum volume. The concept can be
well visualized in the figure 2,

M

E_0(l_3)

En (t)

t l<t<t_3

Figure 3: LMI Approximation of the reach set

2.5 Outer Approximation of the union of ellipsoid

We seek a small ellipsoid ^ that covers the union of ellipsoid (£^0(^1)? (•£'0(^2)5that
ran also be calculated by the LMI technique. We can describe these ellipsoidswith the associated
quadratic functions T{(a;) = x^EiX + 2x^fi Qi =• {x \T{x) < 0} . We have to get,

where T(x) = x^Ex + 2x^f + g.

There exists nonnegative scalars ri, ....r^ such that for every x,

T{x) —TiTi < 0,2 = 1,2...A;.

We can normalize Ej and p in a convenient way such that g = f^(E)~^f —1.

(17)



Using the scour complements,

f E f 0 \
f -1 -Til /.• ft 0 <0 (18)

V 0 f-E /

where i =1,2,^
With the normalization, the volume of V' is proportional to the vdetM^. Thus we can find

the smallest volume ellipsoid containing the union ofellipsoid (^0(^1), (£7o(^2)) ""{Eo{tk) by solv
ing the convex problem

Minimize logdetM'^ subject to M > 0 , n > 0, r2 > 0,...., > 0. We can get the ellipsoid
This is called Lowner-John ellipsoid.

So we can calculate an LMI approximation of the union ofellipsoids ^ such that,

^ 2 M (19)

where , M = HM). And ^ is the minimum volume that contains it.
So ^ is within the boundary and it contains the reach of the ith state. And as ^ is a convex

set, we can further continue our calculation to get the reach set within the state (i+ 1) where
the initial condition lies within So we will use the following equations,

+ Qi+i (t) (20)

Xi = Ai+i(t)Xl + XiAi+i(t) + ir'(t)Xl + (7r'(t)r'Qi+i(t) (21)
where A'̂ (to) = AT® and

7r'(i) = {l,Xito,m+At)X'(to,t)lY'%X4tW'^ (22)
The center of the ^ is the initial condition for the equation 28 and ^ is the initial condition

for equation 29. So we can calculate the reach set of {i + l)ih state by solving above equations
for various 1. But there will be two problems. Firstly, we will have to reset the time after every
discrete transition. We will have to fix one time from which we will carry out our calculation
for (i + 1) the state.But it will not cause any problem in determining the reach tube. But in
the iFuture work we will investigate the optimal way of handling this issue. Secondly, we have a
(n - 1) dimensional ellipsoid as an initial set with the system of dimension n. So there will be
a problem of singularity. So we will derive an equation of ellipsoid with the n dimensions which
will contain this (n —1) dimensional ellipsoid and have the minimum volume.

2.6 Converting an (n-1) dimensional ellipsoid to an n dimensional ellipsoid withminimum
volume

Let the equation of the (n -1) dimensional ellipsoid which is the initial condition for (i + l)th
state is Px = 1. But the matrix P will be singular in this case. After diagonalizing the
matrix P, let us assume that we will get only one eigenvalue of P as 0.Let the eigenvalues of
the matrix is, ai, 02,03, ...On-i and 0(The eigen vector corresponds to the 0 eigenvalue value is

8



the direction which is perpendicular to the plane). And let the corresponding eigenvectors are
vuV2-,vz', ""Vn-uVn. Un is the eigenvector corresponding to the 0 eigenvalue. If we diagonalize
the matrix , we will get,

Oil 0 .. .. 0

0 0:2 0 .. 0

0 0 Qfn-I 0

0 0 0 0 0

[ Vi V2 " Vn ] [ Vi V2
..

So to make P nonsingulax, we will put a very small value €(which is close to zero) replacing
the eigenvalue 0. In this way, we will get an nonsingulax matrix P', such that,

/ ai 0 .. .. 0\

Vi V2 Vn ]
0 a2 0 0

0 0.. OCn-l 0

0 0 0 0 e /
In this way,P' will contain P and it's volumewill be lesser as e is really small.

[ Vi V2 .. .. v„]-' =P'.

Algorithm

Our algorithm can be written as follows,

1. (Step 1). Init C Choose a minimum volume ellipsoid that will contain the init.

2. (Step 2). Choose a vector l{t) € . So the problem is, given a unit-vector function /(t),
(/,/) = 1, continuously diiferentiable in t, we will have to find an external tight ellipsoid

2 x[i] (where x[^] is the reach set) that would ensure for all t > to, the equality,

pcwixW) = pm)\Eiit])=.{i(t),x(t))

3. (Step 3). Choose different /i(t), .../p(t) and compute P+(t) for all those different l(t)s.
Reach{Init) C nf_i(P/.)

4. (Step 4).Using the Linear Matrix Inequalities (LMI) technique , we will calculate the ellip
soid Po(t) that will contain the ni_i(P/,-) and have the minimum volume. So at the each
sampling time we have p different ellipsoids associated with the different vectors and the
optimal ellipsoid Eo{t).

5. (Step 5) Caxry out the calculation of Eq till it hits the boundary of the two states M. The
first time it intersects M is ti. We will also get a time tz such that the ellipsoid Eo{t) has
just crossed the boundary using the vector field of ith state .In each time ti > t > tz the
ellipsoid Eo{t) is intersectedby the boundary. Aswe know that if an n dimensional ellipsoid
intersects with a hyper plane, the intersection will be a (n —1) dimensional ellipsoid. If the
sample time interval is m, we will get (tz —ti)/{m) -f 1 = A; number of (n —1) dimensional
ellipsoids.



6. (Step 6) Using the LMI technique, we will get an (n —1) dimensional ellipsoid tp that will
contain the union ofallthe (n—1) dimensional ellipsoids. Ovip DM =

7. (Step 7) ^ is the (n —1) dimensional ellipsoid . We will calculate an ellipsoid an n dimen
sional xp that contains xp and will be of the minimum volume.

8. (Step 8) We have the initial ellipsoidal set for the (t + l)th state. So we can carry out the
calculation from 1 to 3 and will get reach set in (i + 1) th sX^.te.{Reach{Init C ip))

9. (Step 9) We will carry out our calculation as long as we keep getting new reach sets.

An alternative algorithm will be as follows,

1. Step 1-3 is same as previous.

2. Instead of calculating the LMI optimal ellipsoid, we will use the p different ellipsoids
...E!f ). Each E!^ generates Wi number of {n - l)dimensional ellipsoids in bound

ary when it is intersected with the boundary. If ti is the first time that E^ inter
sects with the boundary and 4 is the first time that E+ intersects with the boundary,
thenW;- = ^ +1

• m

3. Let S{ be each of these ellipsoids that are obtained by the intersection of E+ with the
boundary. So , Reach{Init) Cnf=i(u]^i5/). We can approximate these (n-1) dimensional
ellipsoid by the LMI matrix such that it will contain the ellipsoid with the minimum
volume(first LMI for the unions and then LMI for the intersection) . Let the Ellipsoid is
xp,

4. We will follow step 6-9 of the previous algorithm and we can obtain the reach set.

4 Simulation

The system,

where,

(:S)-(2)
and control l|w|| < 1. And A and B are completely controllable.

We chose 10 different vectors I € . And that gives the parametric family of curves that
cover the reach tube x[-]- At any time instant,nJ°ijEi,. 3 x[-]- Ifwe could do the simulation with
the infinite no of ellipsoid, we could get the exact reach set.

10



The simulation result is given below. The reach set is getting expanded with the time in
crease,(the time chosen are 1 sec, 1.5 sec, 2.0 sec and 2.5 sec).

Due to the unavailability of the LMI tool box (MATLAB) in our lab, we could not implement
our model completely. But we are going to get the LMI soon and will implement our model fully.

2

a 0

-2

a 0

Simulation loaut wtiich cslculM ttio raach act

The inUiioclicotcemptaeo Iha mach lal

Simutatlon raauh which calcutM Iho roach lot

mtonachcn ccnvnses the roach set

Simulalion ratult which calcule* tho roach nt

Tho intanociion conprisaa tho roach ool

tttiSaae

Simulalian rotuS whch calculiat the roach set

Tho Maiioetion'oonipriias the roach qot

ls2.Saoc

5 Conclusion and Future Research scope

We have an algorithm to calculate the reach set for the hybrid system of the class open hybrid
automation.In this work, we have completely implemented the reach set calculation where there
is no discrete transition. The further work should take into account,

1. We will implement our model having the discrete transition. In order to do so, we will use
LMI tool box of MATLAB .

2. In the algorithm, it is assumed that the boundary between two consecutive discrete states
is a plane. But the boundary can have curvature. In that case we might have to use
manifold theory to solve this problem.

11



3. The intersections were only between two discrete states. But it may happen that the
boundaries of the three or more states boundary intersect with the reach set. In that case,
the calculation will be further complex.

4. A calculation should be carried out for the non-linear or time-varying systems.

5. If the center of the ellipsoid dynamics is spiral, the reach tube calculated in our way will
give a much bigger over-approximation. We will look into this issue in our future work.

References

[1] A.B. Kurzhanski and P. Vaxaiya. Ellipsoidal techniques for the reachability calculation,
(preprint), 1998.

[2] Valyii Kurzhanski A.B. Ellipsoidal Calculus for estimation and Control. Birkhauser, Boston,
USA, 1996.

[3] R.T Rockafellar. Convex Analysis. Princeton University Press, New Jersey, USA, 1970.

[4] Eric Feron Stephen Boyd, Laurent El Ghaxjui. Linear Matrix Inequalities in system and
Control Theory. Siam Studies in Applied Mathematics, Philadelphia, 1994.

12



stability issues for the Fast Positive Force Transient
Control

EE291E Spring 1999, Project Report
Prof. S. Sastry h J. Lygeros

C. Pinello

Abstract

The engine control problem can be decomposed into a
set of sub-problems corresponding to regions of oper
ation identified by the settings of the control devices
available to the driver (for example accelerator pedal
angle, selected gear). One of these regions is the so
called Fast Positive Force Transient, where a quick
acceleration is requested, maintaining certain comfort
standards. In [1] this control problem is formulated as
a hybrid control problem and solved by approximation
of an auxilisnry continuous control problem. In this re
port we investigate the stability (convergence) of the
closed loop system.

1 Proposed Solution

In [1] we formulated the fast positive force transient
problem as an hybrid minimum time control problem.
We solved the problem relaxing it to a continuous time
control problem, abstracting away all the dynamics re
lated to the torque generation. So we assumed we had
an ideeJ torque generator, then we inverted the dynam
ics of the system so to have the jerk as input and the
torque as output. In this way the control problem has
onlygot constraintson the input (jerkj 6 [0,imax]) and
the solution can be found relatively easily by means of
Pontryagin's Maximum Principle. The solution is well
known to be a bang-bang control and in the linear case
it corresponds to a state feedback which switches input
values across a given surface.

2 Stability Analysis

In this section we want to investigate what happens
close the desired manifold (the cylinder C^). The dis
cretization of the times at which the control actions
take place, may cause the ideal switching to be delayed
so much that we may actually be past the cylinder. In
this case continuing to apply zero jerk does not steer
the state to C^. This would lead to a violation of the
constraints,^since we need a negative jerk to get backto
the cylinder. The situation is illustrated in figure (1).

So at low engine speed and for some initial condi-

Figure 1: Late switching

tions, trajectories have one admissible switching point
right before the the switching surface (i.e. too early to
switch) and the next one so far from it that the cylinder
cannot be reached.

The proposed strategy to asses stability is to analyze
the reachable sets under the given feed-back law, and
determine sufficient conditions to ensure convergence
to the cylinder.

2.1 Reachable sets of closed loop system
In the closed loop system the state evolves under a
piecewise constant torque, hence the corresponding jerk
cannot be constant. In [1], we devised feedback laws
corresponding to the two desired vaJues of jerk, zero
and jmax-

'Note that once the cylinder is reached, we apply the desired
final torque and we let the system evolve along its naturstl modes.
This meems that the complex modes give rise to longitudinal
oscillation and hence to negative jerk. However this oscillation
hets a magnitude less than the threshold of perception, it is for
this reaison that the constraints on the jerk are a concern only
outside the cylinder.



In particular we devised a closed form for the input
torque, corresponding to desired jerk zero, which keeps
the jerk positive and achieves the zero value only at the
final point.

Claim 1 During the evolution of the closed loop sys
tem, under constant torque u{t) = Uk ^t E
the minimum value of the jerk is always attained at the
end points.

Recall that in [1] we defined the output of the system
as

j = cA C + cb u. (1)

Moreover, sincea the torque u(t) is constant between
two transitions i.e. V< € [ik^tk+i), the state evolution
is given by

C/c+i = C{tk+i) = ACk + buk, where

i = e '̂"; b={A- I)A~^b] t = ik+i - tk-

Then the value of the jerk at the end of the period is

jk+i = cA{ACk + + cb Uk

imposing jk+i = 0 leads to

Uk = -{cAb + cb)~^{cAACk) (2)

which is exactly the value of the torque used in the
proposed feedback law, where the solution to the con
tinuous time optimal control problem calls for j = 0.

We now plot the set of states which are mapped onto
the surface of the cylinder in one step. In figure (2) we

Figure 2: Prelj^Q^^{C^)

plotted the Pre set cylinder under

control (2), assuming constantspeed^(a;c = 1000 rpm).

Points are in the x coordinates, namely the natural
modes decomposition coordinates (Real Jordan form),
more specifically the figure shows the projection onto
the X2, xs plane.

Data are obtained scanning the surface along a set
of circumferences. For various values of xi we projected
backwards for time r the points on the circumference

1 obtaining a curve. Given a point C €
and a timestep r, the preceding point is computed as

Cpre = A~^{C —BdU^), where

is obtained directly from (1).

./.I

Figure 3:

Figure (3) shows the set namely the
set of points that reach C^in three steps under con
trol (2). Finally figure (4) shows sets i're(j=o,Ti)(Q)»
i.e. the Pre sets in multiple steps (a relatively
large number of steps) for engine speeds
1000,3000,5000,7000 rpm.

We =

The curves slightly rotate as Xi changes. We are par
ticularly interested on the verticail portion in the lower
right quadrant, which represents the last points which
will reach the cylinder under (2). The term "last" refers

^In reality engine speed is one of the components of the state
(roughly proportional to £i), so the constant speed assumption is
not exact. However we use this approximation in a conservative
manner. In fact we use the same constamt speed for all initial
conditions of interest, and we determine the minimum speed for
which the closed loop system is convergent. Then we allow the
use of the control scheme only for speeds higher than the mini
mum, thus implicitly eliminating the regions of the space where
the approximation of constant speed was not conservative (in the
reachable sets computation we used a constant speed higher than
the (vaurying) one corresponding to those states).



Figure 4: Prey-o.roC^c)

to the fact that under j = jmax the state evolves from
left to right (increasing valuesof 3:2), so that if the tran
sition is delayed we mayfall outside of Pre(^j=o,T){C^)
and to the right of the interesting portion of the bound
ary dPre(j=o.r)Cc.

From this picture we see how for smaller values of ari we
get (slightly) tighter conditions on the switching accu
racy (the boundary is closer to the switching surface).
So the rest of the analysis will only report the data rel
ative to the smallest value of aji which is of interest in
the application.

2.2 Projection of the Switching Surface
Now we want to check what happens when crossing
the switching surface under j = jmax motion. The
most critical condition corresponds to having one deci
sion point infinitely close to the switching surface but
still before it, so that the next decision point is delayed
with respect to the continuous case, by exactly r sec
onds. Figure (5) shows these projections for various
engine speeds. For higher engine speeds the projection
is further away from the surface itself and the frontier

dPre(j-Q^r){C^) is closer to it. From figure (5) we see
that for engine speed of 1000 rpm and lower the switch
ing surface is projected outside Frc(j_o,r)(C^) and for
engine speed of 3000 rpm and higher it is projected
inside it. Hence there exists a speed a;cmin for which
the projection of the switching surface is tangent to
the frontier dPre^j=o^T){C(;). We performed a binary
search to find such speed (wcmin =— 1685 rpm) and
the corresponding projection is shown in figure (6).

2.3 Stability Ansdysis
Ffom the previous smalysis we can ensure stability of
the closed loop system (convergence to thecylinder C^)

Figure 5: Projection of the switching surface

for engine speed in the range [1685,7000] rpm.

:/ :

'Jh \

I \ :

1 J ! 1

i t

Figure 6: Tangential condition (wcmin —1685 rpm)

However the normzil range of operation of a car engine
can be approximately [800,7000] rpm, so it would be
interesting to modify the switching surfswre so that we
acheive convergencefor lowerengine speed also. Again,
from the analysis of the reachable sets one can see how
"anticipating" the switching surface improves stabil
ity in the sense that the projected points aure inside
the jPre(j=o,T)(Q) for lower engine speed. The origi
nal switching surface was obtained from the minimum
time optimal solution of the continuous time problem,
so moving away from it is supposedly going to reduce
performance of the closed loop system.

One possible choice for the switching surface is the



Figure 7: Using 5Fre(j-o,r)(Cc) ior = 30/7000, as the
switching surface

other boundaryof the set -P»*e(jso,T)(Q) itself, for some
fixed r. Figures (7) and (8) report closed loop trajecto
ries for two different choices of the r parameter, naunely
corresponding to 7000 rpm and 1000 rpm respectively.
Using the first choice we increase the stability range
(evaluated with the binary search algorithm described
above) to [1437, 7000] rpm and with the second choice
it increased to [1120, 7000] rpm. However the second
choice looks inadequate at high engine speed, in fsurt at
higher speed the feedback law is able to keep the jerk
closer to zero and consequently trajectories are steeper.
In particular trajectories happen to cross the switching
surface more tham once hence producing a slower mo
tion and reduced performance.

A better choice is a switching surface that anticipates
the switching at low speed more than it does at high
speed.

2.4 Speed Varying Switching Surface
We want to leave the switching surface unchanged at
high revolution speed and anticipate it at lower speed.
We decided to use the same switching surface as in the
continuous time case only adding a component depend
ing on the xi coordinate. This allows us to maintain
the same slope in —xs plane and avoid multiple
switchings. To pick a "good" anticipation factor, we
used the intersection line of the asymptotic plane
and the 5Pre(j=o,T)(Cc) corresponding to 1000 rpm.
The asymptotic plsme is described by

ft-... ={« €K' I[001]? =-i[001]6{in.ax}
in the modal decomposition coordinates ^ of the in
verse system (the one with jerk as input). This plane

Figure 8: Using 5Pre(j-o,T) (^^c) ior r = 30/1000, as the
switching siuface

is the "slow manifold" under constant jerk j = jmaxj
for the continuous dynamics. The trajectories of the
hybrid system under jmax reach the switching surface
chattering close to this plane. Finally we calculated
the point aitnin on the intersection of the line and plane

and modified the switching surface so that
it passed through this point. The resulting surface
and closed loop trajectories are depicted in figures (9)
and (10). For this choice of the switching surface the
binary search algorithm provides as an estimate of the
stability range [1205, 7000] rpm.

Figure 9: Trajectories of the system in the x state space
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Figure 10: Trajectories of the system in the xi,X2 state
plane

3 Conclusions and Future Work

We assessed the stability of the feedback law proposed
in [1] based on the analysis of the reachable sets. We
devised a binary search algorithm for finding the min
imum speed to acheive convergence. In particular we
gave estimates of the engine speed range for which the
closed loop system converges to the cylinder Cf ([1685,
7000] rpm).

Moreover we modified the switching surface so as to
increase this range and not to loose performance at
high speed. The estimated convergence range is in this
case [1205, 7000] rpm.

We intend to calculate analytical bounds to quantify
how distamt the hybrid solution that we found is from
the continuous time optimal solution, in terms of per
formance (time to reau:h the cylinder). This bound is
also a bound to quantify the distance of the proposed
hybrid solution from the (unknown) optimal hybrid so
lution since, for any fixed initial condition, the follow
ing relation holds

Toptcont ^ "^opthyb ^ Tproposedhyb-

The rightmost relation comes from the definition of op
timal solution and the leftmost comes from the defini
tion of relaxed control problem. In the continuous time
problem in fact, we have less constraints than in the
hybrid problem.

Moreover we would like to include the air dynamics in
the optimal control problem in the continuous case, so
to obtain more realistic (less conservative) estimates of
the time needed to reach Q.
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Abstract

The engine control problem can be decomposed into a
set of sub-problems corresponding to regions of oper
ation identified by the settings of the control devices
available to the driver (for example accelerator pedal
angle, selected gear). One of these regions is the so
called Fast Positive Force Transient, where a quick
acceleration is requested, maintaining certain comfort
standards. In this paper, this control problem is for
mulated as a hybrid control problem and solved by ap
proximation of an auxiliary continuous control prob
lem. The quality of the results is backed by a set of
simulations on a commercial car model.

1 Introduction

Automotive engine control is an important application
domainfor hybrid systems (seee.g. [5]) and for control
in general. We argue that most of the engine control
problems are hybrid control problems since the plant it
self, having discrete as well as continuous components
(e.g. engine cycle and power-train), is described by
a hybrid model. In our approach, the system spec
ifications are captured using a top-level Finite State
Machine (FSM), whose states correspond to different
regions of operation of the engine. The transitions are
determined by driver's actions or by engine conditions.
Each region of operation is characterized by a set of
constraints, related to driving performance like com
fort and safety or gas and noise emission, and a cost
function that identifies the desired behavior of the con

trolled system. The goal of the controller is to act on
the inputs to the plant so that it behaves according to

•the specifications summarized in the FSM.

In previous papers [1, 2], we introduced a hybrid model
for the engine to solve the cut-off control problem, a
sub-set of the control problem corresponding to the

^This research has been partially sponsored by PARADES,
a Cadence, Magneti-Marelli and SGS-Thomson GEIIE, and by
CNR. ISI provided the X-Math environment to carry out the
simulation.
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Fast Negative Force Transient region of operation. In
this paper, in our quest for a general solution to the
engine control problem, we consider the control prob
lem corresponding to the Fast Positive Force Tracking
region of operation. In this state, we have to react to
a fast gas pedal motion that is interpreted as a request
for a fast increase of the torque delivered by the engine
while maintaining a reasonable level of comfort, speci
fied in terms of vehicle acceleration and jerk. The goal
is to control the evolution of the sjrstem from an initial
condition characterized by the delivery of a torque uo
to a final condition characterized by the delivery of a
requested torque ur in minimum time subject to con
straints on acceleration and jerk. The available con
trol actions are on fuel injection, spark ignition and,
since we are considering cars equipped with drive-by-
wire electronics, throttle angle (whichregulates the air
entering the cylinders). Our approach to the hybrid
problem at hand is to first introduce an auxiliary re
laxed problem: a continuous time problem with jerk as
input. This problem is solved optimally. Then the so
lution is mapped back in the hybrid domain obtaimng
feedback laws for the throttle angle, the spark advance
and the fuel iiyection inputs. The quality of the control
law is demonstrated by a set of simulations on a model
of a commercial car.

2 Problem formulation

2.1 Plant mod^

The hybrid model of a vehicle with a 4-stroke N-
qrlinder gasoline engine proposed in [2] is here re
viewed. Such model is the composition of N sub
models, one per cylinder (see Figure 1). Each of them
consists of: a FSM describing internal combustion en
gine's cycle (direct graph); a Discrete Event (DE) sys
tem modeling torque generation (dashed boxes); a Con
tinuous Time (CT) dynamics modeling power-train and
air dynamics (solid boxes).
Power^train model. The power-train behavior is de
scribed by the linear CT dynamics

C = AC+bu (1)
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Figure 1: Hybrid model for a single cylinder engine.

= [010] C (2)

where C components are: the axle torsion angle Oe,
crankshaft revolution q>eed We, and wheel revolution
speed ufpi and denotes the crankshaft angle. The in
put u is the torque acting on the crank. Being a passive
system, dynamics (1) is asymptotically stable and has
a real dominant pole Ai, and a pair of complex poles
A db jfi. Assuming vehicle speed equal to peripheral
wheel speed, vehicle acceleration is a = iZu; u)p, where
Rv, is the wheel radius. Let c € be the product
between and the third row of A, and let j denote
vehicle jerk. Since the third entry in 6 is 0, we have

= cC ,

" ^ =M)C +(c6)u.
(3)

(4)

Cylinder's behavior. The behavior of each cylin
der in the internal combustion engine is represented by
the FSM. State S assumevalues in the set {/, C, E, H)
related to the intake, compression, expansion and ex
haust strokes. State transitions occur when the piston
reaches the bottom or top dead center. Guard con
ditions are written in terms of the piston position ex
pressed by which denotes the absolute value of the
crank angle w.r.t. the upper dead center position. 4>eo
is the angle the crank is mechanically mounted on the
shaft. The torque produced by the cylinder during its
expansion phase is modeled as a constant signal.
Torque generation. The torque generation mech
anism is characterized by a transport process repre
sented by a DE system synchronized with FSM tran
sitions. At each time tk where a transition occurs the
event counter k is incremented by one. The DE output
u(A;) is converted by the zero-order hold block to the
piece-wise constant signal«(t) = «(k) fort e [tjfe|tfc+i),
which feeds the power-train. DE inputs are: the mass
of air g{k) € 91''' loaded in the intake stroke, which
depends on air dynamics; the mix composition factor

0-7803-4394-8/98 $10.00 (c) 1998 IEEE

7(^) G{0}U[7min> 7max] which represents the ratio be
tween the mass of fuel injected and the mass of air
loaded,normalized w.r.t. the stoichiometric value; the
spark modulation factor r{k) e [rmin, 1] due to spark
ignition timing. If 7 = 0 no fuel is injected. At the
H -i- I transition, the maximum amount of torque
achievable during the next expansion phase, from the
given air g(k) and fuel 7(^), is stored in the DE state

€ IR; then at the I -¥ C transition the spark factor
r(l:) is appliedand at the C -> J? transition the torque
u(A:) is output based on the value stored in z.
Air dynamics. The model of the quantity of air en
tering the cylinder during the intake stroke is obtained
from the equation of the flow of a compressible fluid
through a converging nozzle, whosesection is controlled
by the throttle valve [3]. Let p(<),a(/) and g(t) resp.
denote the manifold pressure, the throttle angle, and
the mass of air loaded by the cylinder at time t. We
have

p = a,(6;e,p)p+6g(p)s(or) (5)
g = Cg{u)c,p)p (6)

where s(a) is the so called equivalent throttle area and

a«(«c,p)

&v(p)

Cqi<*^e,p)

Va
4ir{V^ + Vm) »7v(wc,p) (*fc, (7)

_ Patmy/RgTqtm g ( P_\
Vi-hVm ^\Patm)'

= —*7v(wc,p), (9)
qkJtglatm

where Vd, Vm are resp. the displacement and the man
ifold volume, PatmfTatm are the ambient pressure and
air temperature, Rg is the air gas constant, Tjy{ue,p) is
the volumetric efficiency in cylinder intakes and

/ \ 7'^^ .^(P) =

A.
yre

>0-1

irc-i

with 7e = 1^. While in the past the throttle valve was
directly connected to the gas pedal, in modem cars
equipped with drive-by-wire, the throttle valve is con
trolled by the engine control unit.
Engine hybrid model. The overall model of torque
generation for a AT-cylinderengine is the combination
of N PSMs and of N DE systems representing the be
havior of each cylinder. The hybrid model of the com
plete engine is obtained by adding to the torque gen
eration model the power-train CT dynamics (1), (2)
and air CT dynamics (5) which are shared among aU
cylinders. In this paper we focus on the most rele
vant case of a 4-cylinder engine, whose model is re
ferred to as Mqcyi' Mqeyi iuputs are: the throt
tle angle a, a CT signal in the class A^cyi of func
tions IR"'' -> [0,f]; the mix composition factors 7 =
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[7it 72,73,74]^> a signal in the class Q^cyi offunc
tions W -¥ ({0} U [7niin,7xnax])^, with 7,- synchronized
with the t-th DE model; the spark modulation factors
r = [ri,r2,r3,r4]^, a DE signal in the class Tl^cyt of
functions IN -)•[rmm, 1]"*, with r,* synchronized withthe
«-th DE model. M4eyt states are: S = {61,62,33^84),
z = [zi,32,^3,^4]^ and (C»0c,p). The states of 6
are constrained by the mechanics of the four-stroke
engine to the following set: {H,I,C,E), {I,C,E,H),
{C,E,H,I), {E,H,I,C). Without loss ofgenerality, let
^COi —<f>e03 — —4>C04 —0.

2.2 The optimization problem
The objectiveis to steer the system £:oma givenpoint,
characterized by the torque delivered to the crankshaft
«(0) = tio, to a new point with torque value ur > «o
in minimumtime satisfying comfort requirements. The
osdllating component of vehicle acceleration and the
vehicle jerk have been shown experimentally to be the
most important factors in passenger comfort in the
FPFT regionof operation. The control problem is for
mulated as follows: steer the power-train elastic state,
keeping the jerk bounded, i.e..

0 < j{t) < imax (10)

to a point such that the applicationof the new requested
value of transmitted torqueproduces an oscillating ac
celeration evolution a(t) bounded above by a threshold
ofperception 5^^ > 0.
Introduce v = u —ur and the transformed state

= iNTc, (C + i4-^6«R), (11)

with x' € K, « € and iVfa? € such that dy
namics (1),(3),(4) are rewritten as follows

'% • |c ilH+fcl-
_ r Cj,/ Car 1 fz'l , r-cA~^6 Ur

[c^/Ai CgAs\ [xj [ {cb)v

(12)

(13)

with Ag = [* If], hg —N(ab and [<v c®] = c N^J-.
Under constant control v in (12), the oscillating com
ponent of the acceleration can then be expressed as

a = CtB X (14)

Without loss of generality, let in (11) be chosen
such that IIcpII = dth- Consider the manifold

^={[«] €»?!«' €K.« =[^^] .06I0.2t)} (15)
Sincethe norm of x(t) in (12) decreasesover time when
w(t) = 0, if at some time f, the state has been driven
to x(t) € Cg, signal v(t) = 0, i.e. «(<) = ur, keeps

0-7803-4394-8/98 $10.00 (c) 1998 IEEE

the trajectory inside Cg with acceleration d{t) bounded
above by the threshold value ath, for aJl t > t. Let

C( = (feiR''|c = i^.< —A~^bu (16)

with NgQ = and Cg as in (15). The optimal control
problem is:

Problem 1 Given the engine hybrid model M4cyi, for
any Co not inside the r^ion delimited byCq as tn (16),

subject to: i

f
Jo

min / dt
CC 6 A4eyl
7 € Q^cyl
If € T^4eyl

Dynamicsof Hybrid Model M4eyi with
6<'=z{H,J,C,E),
z(0) = [0, Gqo, Gqo, GgoF,
C(0)=Co, ^c(0) = 0, p(0)=po,
C(T)€Cc,
0 < j{t) < imax for all t € [0,1],

(C^, 0)^ power-train dynamics state value at
the initial time and po, go = c(cjc{0),po)po the corre
sponding manifold pressure and mass of air.

3 Relaxed contmuous-time problem

In this section a relaxation of Problem 1 to the

continuous-time domain is defined and solved. The re
laxed problem is concerned with comfort requirements,
as spediied in (10), for minimum time optimal trajec
tories of system (1) to manifold (16), assuming no con
straint on torque signal. The solution is easily obtained
by rewriting dynamics (1) with input j in place of u.
Ftom (1) and (4),

C = (I-b{cb)'^c)AC-i'{cb)-Hj,
u = -{cb)~^{cA)C + {cb)'^j.

•{c« = U€m.'|« = w.j with
x^

X X
€C, }

(17)

(18)

System (17)-(18)corresponds to the inverse of sys
tem (l)-(4). For o = cC = 0, hence for j = 0 (17)
represents the zero-dynamics of ^stem (l)-(4) wMch
has a pole in the origin and two poles equal to the ze
ros of c(s/ —44)~^6. Since, c is proportional to the
third row of A and the third entry in 6 is 0, pole s = 0
of (17) has multiplicity two. Let tj denote the third
real pole. The relaxed problem is easily solved in the
transformed space C= N^^{C+A~H tin)ofthe natural
modes, where dsmamics (17) is written as

C=A^^ 4- b^j with >1^ = [0 0 0j. (19)
Let J" be the class of functions IR'*' [0, imax] and

(20)
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with Nj;^ = and C® as in (15). Define the
relaxed optimal control problem

Problem 2 For any not insideQ as in (20)

min I dt
Jq

subject toI ^(0) = ^0
I

Proposition 1 Let j{l)^ witht € [0,T], be an optimal
solution to Problem2 and let ^{t) be the corresponding
minimum time trajectory to manifold C^. Then, j{i) 6
{Ojimax} for allt £ [0,T] and the final control value is

ifblQ^iT) > 0
if6|'g^(T)<0 (21)

where Q —N^Ni+N^ Ns, with N2, IV3 thesecond and
third row ofN~^, respectively. Moreover there exist at
most two times ti,t2 € [0,7^ where a switching of](t)
takes place. Times t\,t2 are the solution to

(i| + i|(r-«0, 6|e'P'-">]04(T) . (22)
The proof of Proposition 1, omitted here for lack of
space, is based on Pontryagin's Principle [6].
Integrating backwards (19), from a given ^(T) = i €
Q, with final control chosen according to (21) and
switching instants obtained from (22), minimum time
trajectories to in the ^ state space are obtained.
If (22) hasno solutions in (0, T) then] as in (21) for
t 8 [0,2], is optimal. Otherwise, in the badrward in-
t^ation of (19) j switches at time ti, and, if two so
lutions to (22) in (0,2] exist, at time <2. Points ^(ti),
^(^2) belong to 2-<iimensionaI surfaces which define a
partition 5^U ofthesetofpoints controllable to

in time lower than or equal to T, so that the solution
to Problem 2 is expressed as:

0

Jmax

if^esj
if^6 5|" (23)

From (18) and (23),mapping to the physical
state space the minimum time torque is written as:

fi(C) =H
l-t

(24)

4 Hybrid system control scheme

In this Section we propose feasible feedback laws for
throttle angle or(t), mix composition 'Y(lr) and spark
modulation r(i:) such that the torque u generated by

0-7803-4394-8/98 $10.00 (c) 1998 IEEE

Figure 2: Partition 5^, defining the minimum time
jerk, in the {x\ x) spacerepresented in cylindric
coordmate. Manifdd Cx is the plane {|x|| = 1.

the hybrid model M^eyi tracks (24). The main difiS-
culties are:
(а) the generated torque is limited to {0} U

[»*min7mm?j7max?], where the air mass q is subject to
manifold pressure dynamics;
(б) torque generation is synchronized with the power-

train dynamics;
(c) there is a delay betweenthe time at which7 and r

are set and the time at which the torque is generated.
As discussed in Section 2, the spark modulation rm{k),
applied at m-th qrlinder which enters the C state at
time tk, affects torque u{k-4-1) generated at time
while the mass q{k) of air loaded and the mix compo^
sition 7/(^) of the £-th cylinder, which enters the H
state, affect torque u(^ -f 2). Hence, feedbacks for
and ft are expressed in terms of a prediction of the
point reached by Crespectively at times tk+i and tft+2i
obtained by integration of (1). The torque generation
process can be viewed as a MIMO system composed
of two interconnected sub-systems, as depicted in Fig
ure 3. The air mass evolution 9(f) is subject to manifold
pressure dynamics (5), which is controlled by throttle
angle a and depends on the crankshaft revolution speed
(Je- The torque to the crankshaft is provided by a DE
system, whose evolution depends on g{k), with two di
mensional state and inputs 7r(lr), rm(Ar). The coupling
between the DE system and pressure dynamics is given
by the power-traindynamics (1), with input u and out
put u/fi. While the impact on the DE system of signal
q is not negligible, the power-train impact on air dy
namics is weak enough to allow a decentralized control
(see [7]).

4.1 Pressure Dynamics Decentralized Control
The reference evolution q for the air mass is obtained
considering a rigid model for the power-train and solv
ing the minimum time problem assuming = 7r = 1.
bet T^rviMv resp. denote the driveline trsmsmission ra
tio and the vehicle equivalent mass. In the power-train
rigid model, the force acting on the vehicle is
and j = {MvRwTftrv)'̂ ^- bet qtt = wr/G. The mini-
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Figure 3: Torque generation model,

mum time air mass evolution is

V ~ JtaAxWw*^wT|(frv

A decentralized scheme for perfect tracking of reference
trajectory (25) is presented (e.g. [4]). Rewrite (5) as

P = ag(we,p) P+ w . (26)

Considerq{i) as in (25)and introducecr{t) —q{i)—q{t).
From (25), <r(0) = 0. The equivalent control (see [8])

„„ =-a,p+(c, +̂ p)
ensures <r(<) = 0 if <r(0) = 0. While q is known,
Uc is not available. However, power-train weak cou
pling allows us to employ a robust decentralized scheme
where nonlinearities are compensated. Given a value
fjyy Uc of volumetric efficiency and crankshaft speed,
introduce o,i = c,i = and
aqio^cP) = «9(Wc,p) - Oqi, Cq(u)cyP) = Cg(We,p) - Cgi-
If o, = Cg = 0, for any W > 0, the variable structure
control

.9 ^ ^Vivac = -Cgi p+ sign (<r) (27)
Cql Cqi

guarantees a sliding regime along the manifold cr = 0,
during which perfect tracking of 9(i) is achieved.

•

Proposition 2 Assume that p,Uc,u)c,q satisfy p €
[Pl:Potm]> We € [Wi,W2j> |Wc| ^ ^^axt I?! ^ 9max-
Choose a ijv, w and let Ci,Cp, Cu„,Aq be upper bounds

1^1' 1^1' l^^l' «>0/
ifCi -f- CpSfa- < 1 the VSC (27) with

C«1

W =
"J" (Cwc Potm)wmax

+c,iA,p„„ + (1 - C- Cp Hsa)-!< (28)
Cql

guaranty a sliding motion on <r = 0, during which
perfect tracking of q{t) as in (25) is achieved, robustly
w.r.t nonlinearities and power-train evolution.

0-7803-4394-8y98 $10.00 (c) 1998 IEEE

To reduce the undesired chattering, typical in VSC, the
sign function is replaced by where the smooth
ing parameter 5 > 0 is properly tuned so to maintain
satisfactory tracking. The throttle angle feedback is

with cr{t) = Cq{o/c,p) p - q(l).

4.2 Torque Feedback Control
A feedbadc in terms of 'j{k) and r(A;) according to
law (24) is presented in the sequel. Assuming that
crankshaft speed does not chwge signiiicantly, i.e.
tk+i - tfc « = 9r/wc(<fc), since «(t) = u{k) for
I € dynamics (1),(3) are discretized as fol
lows

C(fe + 1) = AC{k) + bu{k) (30)
a(i) = cCik) (31)

where A = , 6= (A—f)A''̂ h. Thejerkmean value
in the time interval can be expressed as:

a(i + l)-o(i) _ c(i-/) . . c8 , .

Hence, the torque law U({(C(ft)) with

MO = (c&)-^c(i - /)C + {ch)-'rk jiO . (32)
where j(C) is chosen according to (23), that is

0 ifC€5j5(0 ={
Jmax ifCe5J" (33)

produces a jerk with mean value J'(C)- However, the
jerk exhibits a ripple on its average value due to the
fact that, being tt(t) piecewise-constant, between two
samples the natural modes of dynamics (1) evolve. Due
to this ripple, the jerk exceeds interval [0,imax], ^d a
moreconservative feedback than (32)has to be devised.

Proposition 3 Define

«c(C) = {cby^Gio - <^c)
ttn(C) = {cAb + c6)"^(3*(C) - cAA^)
^(C) = (c(/ + rkA)b)-^{jmsx - c{I+ 7TfeA)AC),

with 3(C) as in (33). Let jd{t), jc{t), jn{t) and
jm(t} denote the jerk profiles under feedbacks u<i(C(fe)),
«e(C(^)), «n(C(^)) and «m(C(^)) respectively, and as
sume that < 0, V< € [tfc, tfc+i]. The feedback

'max(tic(C),Wn(C)) «/C(^)6Sj
ft^(C) ifid(t*+l) > imax A^(tft+i) > 0

«(*) = «c(C) ifuM > imax A^(tfc) < 0 (34)
(.Wm(C) otherwise

ifC{k) e Sj"""
produces a jerk profile j(t) £ [0,iniax]'
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Feedbsick laws for the spark modulation rm(^) and
mix composition factor which generate the torque
u{k) as in (34) are reported below.

Cft =: qif o q(lic) (powcr>tra}a state aad air mass)
rj c: */IO 1 0] <j^, As ''k, S s (A (discrete model)
ik+1 — ^'g(*) (fatare powcr>tra{n state)

•r(}N'(«(Cjb.fl +X~^bujt)0 > ^tkcs (exiteoaditioni stateCia C^)
+ 1) (as ia (94) evaluated at <jt.^i)

titt

—"R (target torqae U|{ applied)
csdif

r = Oj,+i/r»(fc)
if »• < tkss r m cksif r > 1 tics r s »i«f
**ns(i^) — •* ('park advaace coatrol)

^ ^ fJt 'iW (nextpower-traia state)
if<*+3 €S®ttes

5 = 0
ca4tf

irQ/ir^g.((j^^2 > dtim (exH coadltioa: state ( ia C^)
Ofc^g= 0(k 3) (at ia (94) evalaated at <ik^3)

die

= "R torque u/f applied)
eaiif

0*+3/<O«*)
if 7 < 7min tlss 7 = 7jaiB d»«if 7 > 7max ties y = 7max ««<if
y^Ck) a y (aaix cempetitiea coatrol)

sf(k -f 1) a O 4a 7 (aext peteatial torque)
tjCk •)* i) = *®(k) r (aext predicted torque)

(35)

5 Simulation Results

The performance of the our hybrid control ap
proach has been evaluated in a number of sim
ulations. M4eifi, with feedbacks a as in (29)

7^1 I'm as in (35), has been captured in the
Xmath/SystemBuild environment (by ^tegrated Sys
tems Inc.). Initial conditions C(0) in the set Zo =
{Co = —tiQj Wo = 20,21,... ,45Nm}, correspond
ing to power-train equilibrium points for u = uq, were
considered along with a target value ujt = lOONm.
The performances of the proposed control are evalu
ated by comparing, for all Co € Zo, the optimal solu
tion 7^(Co) to the relaxed Problem 2 and the time
7^*""'(Co) needed to steer Co to C( in model M4eyi
under the proposed control. In fact, for the optimal
solution (^q) to Problem 1, we have

r^«b) < 2^*°^ (Co) <
As ejected for larger uq, i.e. higher crankshaft
speeds, (Co) is closer to 7^(Co) and, hence, to
2^* '̂(Co) (see Figure 4).

6 Conclusions and future work

In this paper, we presented a novel approach to engine
control for the Fast Positive Force Ttaddng problem,
based on a hybrid model of the torque generation and
of the power-train dynamics in a four-stroke engine. A
control problem on this hybrid system is defined and
solved using a sequence of approximations. The prop
erties of the control law so obtained have been charac

terized, thus offering better confidence on the quality
of the results with respect to commonly used heuris
tic approaches. In addition, since the control law is
closed loop, expensive tuning processes can be avoided
yielding a commercially appealing solution.

0-7803-4394-8/98 $10.00 (c) 1998 IEEE

r-M4cyl(^ )

80 26 ao 66 56

Figure 4: Relaxed optimal solution T^f((b) andhybrid
solution (Co) for Co € .?o,vs. uo. (left);
acceleration andjerk for uo = 40Nm (ri^).
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1 Introduction

A hybrid systems formulation of the problem of vision guided landing of an Unmanned Aerial
Vehicle (UAV) is proposed. An unmanned aerial vehicle uses computer vision as a sensor in the
feedback loop in an attempt to land onto a movingtarget. Visionguided landing is naturally posed
as a controller S3rnthesis problem of finding the least restrictivecontroller to keepthe landingtarget
within the field of viewof the camera. The structure of the problem suggests a possible alternative
to solving the Hamilton-Jacobi PDE in the controller synthesis procedure.

The outline of this report is as follows. We first give the movitating example of why we want
to do controller synthesis. Then we review the controller sjmthesis formulation. Then we discuss
how the controller synthesis formulation can be simplified for our class of systems. The analysis
suggests a promising direction for future research of a class of systems where the solution to the
Hamilton-Jacobi PDE is not necessary.

2 Problem Formulation

Our goal is to use computer vision based controller to land an Unmanned Aerial Vehicle onto a
landing target. A cameraon-board the UAV is used to measure image correspondences smd optical
fiow of the landing target. These measurements aure used in a "structure firom motion" algorithm
which recovers the UAV relative position and velocity relative to the langing target. The camera
has limited field of view, thus maintaining view of target imposes constraint set of configurations
where the landing target is visible.

Given a model of the UAV dynamics and the on-board camera, our goal is to compute the
maximal controlled invariant subset of the visibility region of the UAV and find the least restrictive
controller that maintains visibility of the landing target. The maximal controlled invariant set is
important because is allows us to determine firom which configurations it is feasible to initiate the
landing maneuver. The least restrictive controller is important because it can be composed with
other controllers which can try to meet other design considerations such as efficiency with respect
to fuel, time, etc.

The vision sensor imposes a natural safety constraint, which transforms the control design
problemof a purely continous system into an inherent hybrid systems problem. Most visualservo-
ing controllers ignore the visibility constraint and assume that if the initial conditions are "small



enough," then visibility maintained throughout a trajectory generated by the controller. This as
sumption may be valid for a kinematic model of a system such as a 6D0F robot manipulator
arm, but for a dynamic model of a UAV with actuator saturation constraints, this is a dangerous
assumption, since the UAV will not be able to change directions arbitrarily fast.

We give a simple example ofwhy controller synthesis is necessary for landing. In this simulation
shown in figm-e 1, a simple double integrator model of the UAV is assumed, and a standard PD
controller is applied for the purpose of landing. The inverted triangle with vertex at the origin
corresponds to the visibility region of the UAV: when the UAV is within the region, the landing
target is visible from the on board camera. This simulation on the left shows the trajectory
generated by the PD controller when the inputs saturated, and the simulationon the right shows
the trajectory under unbounded inputs. This simulation gives a clear example of why we need to
do controller synthesis.

^ -SO -10 0 10 30 00 40 SO

Input Saturation

\ PD oo»i>cltdti^aDfy
Mti wttoundid tnput

-SO ^ -00 -10 0 10 20 00 40 SO

Unbounded Input

Figure 1: Landing with a PD controller at the same initial conditions with and without input
saturation

3 Controller synthesis background

In this section, we briefly review the hybrid systems notation and controller synthesis formulation
as given in [4].

3.1 Basic Notation

Consider a Hybrid Automaton H = (X, U UD, /, /, E) described by

• State space: X (continous Si discrete states)

• Input spaces: U controls, D disturbances

• Initial states: 7 C X

• Continous evolution: / vector field

• Discrete transitions: E transition relation



We will use the following notation, which is consistent with [4].

• X = ('T) 2?, (w, d)) is an execution of H

• 'H\s the set of all executions

• A feedbax^k controller is a mapping p : X —>• 2^

• Hg is the closed loop automaton

• Hg is set of closed loop executions

Given F C X define an invariance property OF by

\ False otherwise

F is typically the "safety set" that the hybrid automaton tries to maintain. A feedback controller
g solves the controller synthesis problem {H, OF) if and only if •F(x) = True Vx € Hg. A set
W C X is controlled invariant if 3p that solves (if, OW) when I = W. Feedback controllers that
solve the synthesis problem can be partially ordered by the relation:

9i:<92 9i(^) Q 92{x) Vx € X

A controller that solves (H, OF) is least restrictive if it is a maximal element in this partial order.
The controllersynthesis problm can be stated as follows: given a safety specification DF, compute
the maximal controlled invariant W* C F, and the least restrictive controller that renders W*
invariant.

3.2 Game Theoretic Approach

A game theoretic approach is applied towards the controller synthesis problem. The controller
plays a game against the disturbance in order to find the maximal controlled invariant subset of
the safety set. It is assumed that the disturbance d does it's best to drive the state of the system
outside the safety set F.

For F C X define a cost J : K —)• R

€FJfv^ = / ^ if Vt €T, x(t)
\ 0 otherwise

The control and disturbance play zero sum game over J. The controller "wins" if maintains
safety specification, i.e. keeps J = 1, and the distmrbance plays optimally against controller to try
to drive J = 0. Define max-min solution J* : X R by

J*(x°) = maxmin ( min ./(x) 1
9 d \x=(T^,(t<,d))€Wi, /

Define set W* C F by
W' = {x''eF : r(a:") = l}

A proposition proven in [4] shows that W* is the unique maximal controlled invariant subset of F.



Our interest for vision guided landing is the controller synthesis for a purely dynamical system.
When H is a. purely dynamical system, wehave a pursuit-evasion game [1] between the control and
distiurbance. The controller is "captured" by the disturbance if it is driven out of the safety set. In
this case, the hybrid system is simplified to

X= /(a;, u, d), x € X, (u, d) G U x D

Assume the safe set defined by F = {x G X : /(x) > 0} where / : K" R differentiable with
^(x) 7^ 0 on dF. Introduce a value function

J(x°,u,d,t) : R"xl/xI>xK_->R
J(x'^,u,d,0) = /(x®)

Define the max-min solution

J*(x,t) = m^mn J(x,u(-),d(-),t)

Notice that the approach is conservative in that the advantage is always given to the disturbance.
Now introduce the Hamiltonian

if:M"xR^xUxD^R

ir(x,p,u,d) =p^/(x,u,d)

Then the optimal Hamiltonian is given by

fr*(x,p) = maxminff(x,p,u,d)
^ ' u€U d€D ^

If the optimal value function is J*(x,t) is differentiable, we may solve the (modified) Hamilton-
Jacobi PDB:

J*(x,0) = l{x)

dJ*{x,t) 9r{x,t)=min|o,if* ^x.at [ ' ' dx Jj

If J*{x, t) converges as <->• -co to a unique J*(x), may define W* = {x GF : J*(x) > 0}. W* is
maximal controlled invariant subset of F. The least restrictive controller that renders W* invariant
is given by

I u if X€ (wy u (W'Y

In general, finding the of maximal controlled invariant subset and least restrictive controller for
a given system and safety set are very challenging due to the computational issues associated
with solving the Hamilton-Jacobi PDE. In particular when the PDE has a non-smooth right hand
side, the solution may exhibit discontinuities or shocks. Also, numerical techniques which rely on
discretizing the state space become intractible in R" for n > 3.



4 Synthesis for landing

Consider a (very) simplified dynamic model of an Unmanned Aerial Vehicle:

X = Ax + Bu, A =
• 0 •fxx3 D _

0

. 0 0
J-O —

. -^3x3 .
(1)

where X = E® and the input space 6 U C E® is a compact rectangle. This model is a simplified
version of a validmodel for the feedback linearized closed loop dynamics ofa helicopter [3]. Before
considering this case, we look at an even simpler model in order to build a feel for how control
synthesis will work for linear systems of this class.

4.1 Vertical lander

Figure 2: Vertical Lander

The 'Vertical lander" is a version of the above problem when UAV is constrained to only move
vertically. Here, maintaining visibility of the landing pad is equivalent to not going below ground.
Thestate isgiven by a; = (xi,X2)^ GX = E^ andtheinput isu € U = [—1,1]. The stateequations
x = AxBu become

[si-[sjl[sh[; u

The safe set is given by F = {a; G : /(x) = xi > 0}. Notice that since the input is bounded,
the UAV can not change directions arbitrarily fast. Thus if x G dF, then x will remain in F if an
only if /(x) = ^(Ax + Bu) > 0.

Suppose weare given a system governed by the vectorfield x = /(x) + 9ix)u, where /(x) = Ax
and g{x) = B, and a value function y = h{x). Further, suppose the system has relative degree is
7, that is LgUjh(x) = 0for i = 0, ...,7 —2, and LgLj"^ 7^ 0. The Maximum Principle [2] states
that the optimal control u* to maximize the value function h is just:

u* =argm^ |b]!/i(x) +LgLj ^h(x)«J
For the case of linear systems, this means that the optimal control will always be switching a.Tnong
points on the boundary of the input set XJ. This is known as "bang-bang" control.
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Figure 3: Maximal controlled invariant set for vertical lander

Applying the Maximum Principle to the vertical lander the optimal control for maximizing the
l{x) is u* = 1. This is the best the controller can do to maintain visibility of the landing target.
With this optimal control and the method described in section 3 for computing the least restrictive
controller is, it is easy to show the following:

Proposition 1 For the vertical lander, the maximal controlled invariant subset of F = {x :
l{x) = a?! > 0} is given by:

W' =L ={xu X2)'̂ € X : (/(re) > 0A/(rc) > 0) Vrci

The least restrictive controller that renders W* invariant is given by:

[0,1] if l{x) = i(x) = 0
g(x) = 1 if rci = \xl

U otherwise

Now we give an alternative method of computing W*. According to the controller synthesis
method of section 3, the maximal controlled invariant W* C F can be written as:

W* = {xQeF : 3u{-) e U Vd(-) 6 V x{t) € P Vt € r}

For the vertical lander, we can find W* by applying the optimal control u* = 1, and notice that we
get a polynomial flow

rco = (a;i(0),X2(0)) GX

xi{t) = rri(O)+rc2(0)t +

X2{t) = X2(0) +1

Thus, we may define first a order formula in OF(K)

tl;{xi,X2) = Vf : t > 0 A 2rci + 2x2^+> 0

and simply write W* C F in terms of

W* = {(xi,X2) GF : ^(xi,X2)}



4.2 3D Lsmder

For the 3D lander describedin equation (1), consider the input space U = [-1,1] x [—1,1] x [—1,1].
Suppose the visibility region is an inverted pyramid at origin of Euclidean space (the landing target)
described by

4

F = {rr G ^ li(x) > 0}
t=i

ll{x) = Xi-h Xs, l2(x) = -XiX3,

hix) = X2+ Xz, h{^) = —X2 + Xz,

Notice that for this case, a controller that ensures li(x) > 0 will not constrain U2. Also, for each
boundary, the optimal control for uz is always uj = 1. Thus controllers for ui, U2 can be decoupled
and we can study planar lander.

4.3 Planar Lander

Figure 4: Planar Lander

Consider the vertical and horizontal components of the UAV:

X = (xi,a?3, vi,U3) GX = lE^
u = (U1,U3) GU = [-1,1] X [-1,1]

The state equations are Xi = Ui, Uj = Ui for i = 1,3. Let the visibility region be given by F = FinF2,
with Ff = {x G X : li(x) > 0}, /i(x) = rcj + 3:3, ^2(2^) = + 273. We can divide the visibility
region two boundaries and solve for the maximal controlled invariant subset of each boundary as
we did for the vertical lander. Define

Wi* = {x G F;- : Bu{-) G U x(t) GF Vf > 0}

By the Maximum Principle, for Wf, "Bu" becomes (ui,U3) = (1,1)^, and or Wg, becomes
(ui,U3) = (-1,1)^. Then we may compute W* = {x GFj : ifi(x)}, where

^i(x) = Vt: t > 0 A (x3 + xi) + (ws + vi)t +> 0

'̂2(27) = Vt: t > 0 A (x3 —xi) + (i;3 —vi)t +> 0



Analogously to the vertical lander, we may compute the maximal controlled invariant subsets ofFi
to be:

Wi = {x GFi : > 0Aii{x) > 0) V(xs + Xi) > + Ui)^}

W2 ={x eF2 :(h(^) >0A/2(a:) >0) V(X3 - xi) >j(u3 - vi)^}
and the least restrictive controllers for to be:

r [0,l]x[0,l] if /i(x)=/i(x) = 0
= S if + a:i) = 5(^3 + vi)2

( U otherwise
' [-1,0] X[0,1] if l2(x)=i2(x)=0

92(x) = ^ (-1,1)^ if (X3 - Xi) = i(u3 - Vi)2
^ U otherwise

In general, if a safeset is givenas an intersection of basicsafe sets, the maximal controlled invariant
subset of the safe set will be a strict subset of the intersection of the maximal controlled invariant
subsets of the base sets.

Notice that there is a set y C dWj; n dW^ given by y = {x € W{ n W2 : gi{x) Dg2(x) = 0}
where the allowable controls conflict. That is, for all states in Y, there exist a control to keep the
state inside Wi and a control to keep the state inside W2, but no control to keep the state inside
both and W}. Thus it must be that y fl = 0, and ly* C n C F.

Now, safety set is Wi flW2 \ Y, and we can iterate the procedmre. Notice that the safety set is
still semialgebraic. Since the optimal controls lead to polynomial flows, all sets willbe definable in
0F(7J). In general, this procedure may not terminate, but it suggests a possible semidecidability
result.

5 Directions for Future Work

Theexample described in thisreport suggests a possible semidecidable controller synthesis method.
In future work, we will attempt to use the Maximum Principle and bang-bang controls to link the
controller synthesis method ofLygeros et al [4] with results ofPappas [5]. Consider a dynamical
system of the class

X = Ax -f Bu -f-Ed

with XGX = R", and u GU C R**", d GD C R"** where U,D are compact rectangles and
A G is nilpotent and B G , E G . Consider a safety set P* = {x GX : l(x) > 0}
where l{x) is a polynomial.

The controls and distmrbances play a game over the cost /(x). Suppose the relative degree
between both the controls and disturbance to the cost is7. That is, P(x) is the first Lie derivative
of /(•) along the vector field that is a function of u and d. The optimal controls and distiurbances
can be found as:

u* = argmaxmin{n(x)l
«eu d€D '• ^

d* = argminmaxIFfx)}
d€D «€U ^



In general, this may not be a saddle solution. By the Maximum Principle, the optimal controls and
disturbances will be piecewise constant on 5U, 5D. They will also be feedback solutions. From
these optimsd controls we may contruct a hybrid system with 2"" • discrete states, with guards
and invariants governed by the optimal controls, and the identity as the reset map. Within each
state gi, the controls and disturbances are constant. This implies that within each discrete
state the flow is given by

-t

'0

Note that since A is nilpotent we have

x{t) =e^*xo-\- [
Jo

-"-•py
k=0

This implies that within each discrete state, the flow is polynomial Recall that with a polynomial
flow, if a given set Y is definable in Of(It) then PrerCy) is definable in OF(72.). Thus, by quantifier
ehmination, one can analytically compute the reach sets of each discrete state. Thus, the problem
of finding the maximal controlled invariant subset of a safe set can be converted to a reach set
computation that can be solved analytically. This suggests a possible semidecidabihty results for
this class of linear systems, which we will pursue in further research.

References

[1] T. Ba§ar and G.J. Olsder. Dynamic Noncooperative Game Theory. Academic Press, 2nd edition
edition, 1995.

[2] A.E. Bryson and Y. Ho. Applied Optimal Control Hemisphere Publishing Corporation, 1975.

[3] T.J. Koo and S.S. Sastry. Differential flatness based full authority helicopter control design. In
Submitted to 1999 Conference on Decision and Control, 1999.

[4] J. Lygeros, C. Tomlin, and S.S. Sastry. Controllers for reachability specifications for hybrid
systems. Automatica, 1999.

[5] G.J. Pappas. Hybrid Systems: Computation and Abstraction. PhD thesis, UC Berkeley, 1998.



Implementation ofhybrid phenomena in the HCC
simulation language

Adam Sweet

EE291E

May 17,1999

Introduction

Traditionally, systems have been modeled as either continuous systems, described

by continuous differential equations, or discrete systems, described by a set ofstates and

the set oftransitions between the states. However, much recent interest has developed for

hybrid systems, \diich combine elements ofboth the traditional continuous systems and

discrete systems. As hybrid systems become a better-developed area ofresearch, there is

an increasing interest in developing tools to accurately simulate the hybrid systems.

Hybrid systems have several unique characteristics that make it difficult for standard

tools to accurately simulate the systems. This has led to the creation ofmany new hybrid

simulators, each with its own c^>abilities and ability to model these characteristics of

hybrid systems. This report willgive a descriptionofthe characteristics ofhybrid

systemsand discusstheir implementation into one particularsimulation program,HCC.

Development ofHCC

HCC was developed out ofconcurrent constraint programming;the name HCC

stands for Hybrid Concurrent Constraint. Basically, HCC took concurrent constraint

programming and introduced differentialequations to extend it across time. The basic

flow ofHCC is given below in Figure 1. HCC begins by reading in a text file created by

the user. It then parses the constraints and differential equations given there into

memory. The execution ofthe simulation progresses as a series ofpoiat phases and

interval phases. It begins with a point phase, >^ere the initial conditions and constraints

are solved at an instant in time. Next, HCC begins an interval phase, during which time

progresses. The differential equations given in the file are integrated, using one of



several numerical integration methods. Currently, the available methods are Euler, 4*^*
order Runge-Kutta, and order Runge-Kutta with adaptive stepsize.

Input file

Text file ccRitaining
HCC simulation

program

Coistramt violated

Ofchanged

HCC Parser

Reads in text file and adds

the given constraints and
DDEs to memory.

Point phase

Constraints are solved for a
solution at an instant in time.
Inconsistent constraints cause

simulati<m to end.

Interval phase

DDEs are int^rated across time
until a constraint is violated or
changed, cr file end ofthe
simulation is reached.

Figure 1: Basic flow ofHCC

Inomsistent canstralnts

Output file

Text file containing
simulation output

End

ofsimulation

The simulationremains in the intervalphase until a constraint is violated or changed.

Thiscanhappen as a result ofeither thevariables reaching values thatdirectly conflict

withgiven constraints, or bythe variables reaching values that trigger the simulation to

change the equations andconstraints. Theprogram thenreenters a point phase and

attenqits to solve thenew constraints for a solution. Thisprocess is repeated until either a

valid solution cannot be found, or the end ofthe simulation is reached.



Characteristics ofHybrid Systems

There are several general characteristics unique to hybrid systems that must be

represented in any hybrid simulator^ They are:

1) Time events

An event could be generated within the simulation by time crossing a

threshold value. This event needs to be generated by the simulation at the

correct time.

2) State events

- Detection

Ifa condition for generatingan event depends on the system enteringa

particular state, the simulation shoulddetect>^en the systemhas crossedinto

that state.

- Location

Ifa state event is detected, the simulation also should detect the time at >^ch

that event occurred.

3) Reinitialization

The simulationshouldhave an ability to reinitialize the state ofthe system

whenan event is generated. There are two waysto do this:

- E}q>]icit

Explicit reinitialization isused when theuser specifies thereinitialization

function e)q>licitly.

- Integration ofbalance laws

Reinitialization ofthe stateofthe system could alsobedone by automatically

integrating a balance lawfromphysics, suchas conservation ofmomentum.

4) Dirac pulses

Dirac pulses are most commonly are used to represent collisions in systems,

but could be used in other circumstances as well.

5) Event iteration

' Source: Mostennan, PieterJ. "An Overview of HybridSimulatioi Phenomena andTheirSiq)port by
Simulation Packages", HSCC *99. LNCS 1569,pp. 165-177,1999.



Itis possible for events in the simulation to instantly generate additional
events. There are two possibilities for updating the state vector when this

happens:

- Update

Inan updating mode, the state vector is changed by each event as the events
propagate.

> Invariant

In an invariant mode, the state vectoris held constant untileventsstop.

6) Simulationmodel events

- Add/removeprogramblocks

Some events can require that blocks ofthesimulation beadded or removed.

This abilityshouldbe reflected in the simulation.

- Resort equations

When the blocks are added or removed, it can often change the conq)utational

dependencies ofthe equations, and the equations must beresorted.

- Resolve equations

Also, v^en theequations are changed, it canresult ina larger setof equations

thatwillrequire index reduction to be dealtwitheffectively.

7) Chattering

Ifthedifferential equations fortwo separate states ofa hybrid areboth driving

the system backto theboundary between states, chattering between the states

will occur. This will at least slow down a simulation.

Implementation into HCC

Many butnotallof thecharacteristics listed above are inplemented into HCC.

The following describes the method ofimplementation of the characteristics.

Time events:

Time events are dealt with by simply ending an intervalphase and beginning a

new point phase when the event occurs. If thesimulation is using adaptive stepsize

integration, the integration is simply halted, as shownin Figure 2:



Time at which event

occinred, generating new
point phase

HH 1 i

Time at which next

integration step would
have occurred

Figure 2: How time events are bandied in HCC

Including time events in HCC is usually accon:q)lished with the command, wait x do A.

State events:

As all statements are represented in HCC as constraints, state events are generated

by these events being violated or changed. HCC will detect these events, and it will

backtrack to detect when the event occurred (to the best ofits resolution). The time at

>^ch the constraint was violated is foimd by finding the zeros ofa cubic spline

interpolation to the constraint function. Theprocess is iteratedimtil the time location of

the event is foimd. This is depicted in Figure 3:

Spline interpolaticni

Time

Actual function

Figure 3; How state events are detected and localized in HCC



Reinitialization:

HCC only supports explicit reinitialization ofthe state variables. Automatic

integration ofbalance laws isnot supported. When collisions occur, the laws of

conservation ofmomentum andenergy mustbe explicitly statedin the model

formulation. Anexample ofreinitialization isthe Newton's cradle, shown below in

Figure 4:

00
Figure 4: Newton's cradle

Afterthe ball on the left is released, it swings downand ini^acts on the middle

ball, generating a state event. This event isdetected, and the state vector isreinitialized

so that the momentumofthe first ball is transferred to the second. Again, this reset ofthe

state must be specified explicitly in the simulation.

Dirac pulses:

Dirac pulses are not currently implemented in HCC. Thereason is thatDirac

pulses arenotyet mathematically rigorous objects. They arecommonly used in

engineering to represent collisions, ^ere a significant change of momentum occurs inan

insignificant amount oftime. Thus, they could beused insimulating theNewton's cradle

example ofFigure 4.

Event iteration:

HCC supports stateupdating event iteration, not state invariant event iteration.

Again, theNewton's cradle isa good exan[q>le of the state updating event iteration. After



the first ballhasswung down andcollided with the second ball, it generated a state event,

andthe stateof the system wasupdated to transfer the momentum to the second ball.

However, as the secondball was touching the thirdball, it will instantlycollideand

transfer its momentumto the third ball. HCC implementsthis by using the construct

nextO, which introduces another point phase immediately following the current point

phase. When nomore discrete events areneeded, then HCC will finally begin thenext

interval phase.

TheHCC output oftheNewton's cradle example is given below in Figure 5.

Notethat it gives the expected results: Ball 1 is initially pulled awayandthenreleased. It

travels down to collide with Ball 2. Ball 2 instantly collides with Ball 3, transferringthe

momentum to it. Therefore, Ball 2 does not move, and Ball 3 then begins to move

continuously. Themodel does not include damping, so the process will berepeated

forever.

Output of Newton's Cradle

0.50-

Ball3.x

c 0.20

o 0.10-

0
-0.10-

-0.20-

Be 2.x

Ba 1.x

12100

Time (s)

Figure 5: HCC results ofthe Newton's Cradle example



HCC does not in general support state invariant event iteration. It will not

determine automaticallywhether the state vector should be held invariant or updated as

the eventsprogress. Special cases couldbe madeexplicitly, with the reinitialization for

the event not occurring ifthere will be additional events generated. However,these of

course must be considered on a case-by-case basis.

Simulation model events:

HCCdoes support dynamic additionand removal ofprogramblocks. To

illustrate this, consider the cat and mouse example plotted in Figure 6:

Cat and Mouse position vs time

c
o

V

o
Q.

120

100

60
Cat

Mouse

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time(s)

Figure 6: Catand mouse example, showing theaddition andremoval of blocks

The simulation is begunwitha mouseat position = 0. Whenthe mouse reaches

position 50, a cat object iscreated inthesimulation. The cat chases after the mouse, and

when it reaches the mouse, the mouse object is removed fi*om the simulation. This is a

simple example, butthesame structure would beused for more complicated simulations,

such as cars coming onto and leavingan automatedhighway system.



With the addition and removal ofequations from a simulation, the conq)utational

dependencies withinthe equations mightalso change. HCC does supportresorting of

equations, as in everypoint phasethe constraints are solvedfor a consistent solution.

However, it does not perform index reductionon the new set ofequations.

Chattering:

Chattering is not supported by HCC. Ifa systemis chattering, the simulation can

onlyprogress if the simulator overshoots the time location ofthe state eventby a small

error. Then, the systemwill proceed in a zig-zagfrishion along the boundary betweenthe

states. Thisprocess is muchslowerthan ifthe simulation progressed directly alongthe

boundary. However, HCC cannot simulatesystemswith chatter, because it attenq)ts to

find the exact time at >^ch a state event was generated. In the best case, HCC will begin

an infinite loop wiiere the systemis only generating successive point phases, and not

progressingin time. In the worst case, HCC will crash. Either way, chattering of

systems must be avoided in HCC.

HCC in comparison with other simulators:

A table with a conq)arisonbetweenHCC and manyother existing hybrid

simulationprograms is listed in Table 1. As evident from the table, HCC has aU ofthe

characteristics ofmost hybrid simulation programs. There is one additional note about

the table. This list ofcharacteristics was first made in a paper from LDR

Obeipfoffenhofen, from Wessling, Germany. Hybersim is the language that fiilfiUs most

ofthe characteristics listed here: it was developed at the same university. It could

therefore be possible that the author ofthe original paper was biased when creating the

list ofdesired characteristics. Many ofthe hybrid characteristics listed above are not

strictly necessary to inclement in a simulator. Ifa system has a characteristic not

supported by a simulator, it could often be modeled in a slightly different way to take into

account the capabilities ofthe hybrid simulator used.



Table 1: HCC in con]|)arison to other hybrid simulationlanguages :

X A B D D g H 0 s s 2 H

B a 0 y p y in H I 0 C

A S 0 m R b 0 I M s C

C
•
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u P s 1 M s a T L M
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m

I

N

K

State events Detection •J V y y y y y y y y y
Location •J y y y y y y y y

Time events y y y y y y y y y
Simulatiem model Add/ronove V y y y y y y y y y

Resort y y y y y y y
Resolve y

Reinitialization explidt V y y y y y y y y y
int^raticn y

Event iteratian invariant y
iqnlate •j y y y y y y y y

Dirac pulses y
chattering

Additional advantages ofHCC

There are characteristics ofHCCthat werenot mentioned in the abovediscussion.

The first is that HCC isa declarative language, as wellas an object-oriented language.

This gives the user agreat amoimt offlexibility. Also, every variable in HCC is actually
represented as an interval This gives HCC the ability todo linear and nonlinear
optimization problems, as well as modeling physical systems. The interval nature of
HCC also makes itpossible todo differential inclusions inthe models. Asimple

differential inclusion was simulated to create Figure 7:

^Source: Mostennan, Pieter J."An Overview ofHybrid Simulation Phenomena and Their Support by
Simulation Packages", HSCC '99, LNCS 1569, pp. 165-177, 1999.
HCC colunrn added fOT current repent.



Simulation of differential inclusion in HCC

140.00 -r---

120.00 -

100.00

80.00 -

60.00 -

40.00 -

20.00 -

0.00 ^ 1 1 1 1 —' '

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Time (s)

Figure 7: Results ofdifferential inclusion x' = [1.5,2.5]

The differential inclusion was a simple one. There are limitations on HCC's

ability to produce differential inclusions. Whenthe system has several nonlinear,

coupled differential inclusions, the variable intervalsbecome arbitrarily large. Also, care

must be taken v4ien using the same intervalvariables in constraintswith non-interval

variables.

Lower bound

Upper bound

Conclusion

HCC includesthe abilityto model most ofthe potentialcharacteristicsofhybrid

systems. Many ofthe characteristicsthat are not implemented into HCC can be worked

around by modifying the model ofthe system. While HCC is a relatively new hybrid

system simulation language, it measures well against the most hybrid simulation systems

available today. In addition, it includes some additional characteristics that are not

included in most other simulation programs. All in all, HCC is a well-developed

language to use in modeling hybrid systems.



// HCC code for Cat and Mouse example

always Mouse = (vel)[pos]{
pos = 0,

hence pos' = vel,
sample(pos)

}. .

always Cat = (vel)[pos]{
pos = 0,

hence pos' = vel,
sample(pos)

)r

Arbiter = (C, M){
always if prev(C.pos) = prev(M.pos) then Wincat,
always if prev(M.pos) = 120 then Winmouse

do {
Mouse(M, 10),

when (M.pos = 50) do Cat(C, 20)
} watching (Wincat || Winmouse),
Arbiter(C,M)



11 HCC code for Newton's Cradle

#define radius 0.05

#SAMPLE_STYLE 1
#ROUNDOFF 10

Ball = (xinit, xcenter_init, stiffness)
[x, V, center, k, Change, Reset] {

X = xinit,

V = 0.0,

StoreNumVal(center, xcenter_init),
StoreNumVaKk, stiffness),

always {

unless Change then v' = k*(center - x),
X' = V

*/

Collision =0 {

always forall Ball(A) do forall Ball(B) do
if (A != B) then //not the same ball
if ((A.x - B.x)'^2 = 4*radius'^2 ) then

{
if ( (A.x < B.x) && (prev(A.v) > prev(B.v)) ) then

{
A.Change, B.Change,
A.v = prev(B.v),
B.v = prev(A.v) ,

forall Ball(C) do

if (C != A && C != B) then {
if ((A.x - C.x)'^2 = 4*radius'^2 &&

(A.x > C.x) ScSc (A.v < C.v) ) then

next Bounce,

if ((B.x - C.x)^2 = 4*radius^2 &&

. (B.x < C.x) ScSc (B.v > C.v)) then

next Bounce

}

}

Reset = (new_xvalue) {
Change,
X = new_xvalue,
V = 0.0

sample (x, v)

BalKBalll, -0.3, 0.0, 5),

Ball{Ball2, 0.10, 0.10, 5),



Ball(Ball3, 0.20, 0.20, 5),
Collision(),

always {
SetNumVal = (var, value) {

var = value,

do hence var = value

watching var J= value

SetVal = (Var, Value) {
Var = Value,

do hence Var = Value

watching Var != Value

StoreNumVal = (var, value) {
evale3q>r temp = value in {

realvar(temp),

SetNumVal(var, temp)

}
}

}
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SYNTHESIS USING FINITE ELEMENT METHOD
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1. Introduction

Aerial vehicles are able to perform complex maneuvers in the air by composition of elementary flight
modes. Flight modes represent different modes of operation of the Aerial Vehicle and correspond to
controlling different variables of the vehicle dynamics [5]. At a higher level composition of complex
behaviors, ability to react to the information coming from the environment by changing behavior is
essential to successfully achieve any kind of mission. The complex interaction between continuous
dynamics and discrete logic can be modeled by using hierarchical structure within the hybrid systems
framework. Flight Management Systems (FMS) werefirst proposed for smart air-crafts in future Air
Traffic Management Systems (ATMS)[5] for decentralized air traffic control. FMS are responsible
for

planning of the flight path, generating a proper sequence of flight modes, calculating a feasible
trajectory and regulating an Unmanned Aerial Vehicle (UAV) along the nominal trajectory.

• switching among different modes ofoperation to handle situations like conflict resolution among
UAVs, obstacle avoidance, and flight envelope protection.

An FMS operates in a mission critical environment, where reliability and safetyare more important
criteria than performance. Conflict resolution, obstacle avoidance need to be guaranteed They have
a higher priority than performance optimality criteria. From here comes the need for a supervisory
control that can switch to a different operation mode to guarantee safety. Protecting the flight
envelope is one of the important flight mode needs to be switched from one to another in order to
cope with the situation.

Using the Hybrid System formalism, safety properties can be easily described and a procedure for
synthesis ofa safety controller which makes use ofoptimal control techniques can be derived [1].
The aim of this project is to protect the flight envelope for an helicopter in forward flight. Previous
work has been conducted by Lygeros et al. [1]. A flight envelope control for aircraft control has been
synthesized using optimal control techniques. In particular the problem for a simple twodimensional
system of the aircraft has been solved by using Hamilton-Jacobi partial differential equation and
solving it analytically. Aside from particular cases an analytical solution cannot be found. In this
project we will also address this problem by proposing theuse ofFinite Element Theory for computing
a numerical solution to the Hamilton-Jacobi equation.

Section 2 will formulate the problem offlight envelope controller synthesis for an helicopter. Section
3 will introduce the Finite Element Method. In section 4 we will give conclusions and perspective
for future work.
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2. Helicopter model

In order to illustrate the flight envelope protection, we adopt a planar helicopter model. Only the
motion along longitudinal and vertical axes is considered. The a:,2:-axes of the spatial frame are
pointing to north and down directions. The body ar-axis is defined from the center of gravity to
the nose of the helicopter, and body a:—axis is pointing down from the center of gravity. The state
vector is defined as x = [pxiPx,Pz,Pzi € 3?®. The inputs vector is defined as u= [Tm, € 3?^.
The equations of motion can be expressed as:

—Tm sin a
(2.1)

(2.2)

Px

Pz

(9 = —(Ma/c + sin a)
h

+ —Tm cos a + [:i

where a = ^ —7 is the angle of attack, 7 = tan (̂pz/Px) is the flight path angle, D = is the
drag force. The output equation is the following:

(2.3) yi = V
(2.4) y2 = Pz

where V represents the ground speed V = y/p^+ pi and flight path angle as 7 = tan (̂pz/Px) •

The system, as shown above, is six dimensional. As a first approximation, we will consider the
dynamics of 9 with respect to the control a fast enough to consider 6 itself as an input. After this
assumption the system will still have four states.

The dynamic equations become:

I:] =(2.5)
-D

0
+

—Tmsin 6
—Tmcos 9

The Flight Management System (FMS) is responsible for planning and controlling the operation of
the UAV, which is equipped with a detector for the detection and investigation of obj'ects of interest
The FMS consists of four layers, the strategic, tactical, and trajectory planners, and the regulation
layer, as described in Figure 1[4].

The Strategic Planner is concerned with the planning and execution of the central UAV mission.
It designs a coarse, self-optimal trajectory, which is stored in form of a sequence way-points, gives
a list of way points that are planned for the mission. This layer also takes care of the transition
between the points, by acknowledging the completion of a subtask and scheduling the next one.

The Tactical Planner is responsible for the coordination and execution of behaviors, and is able to
overrule the behavior proposed by the strategic planner, in case of safety critical situations such as
collision avoidance. Tactical planner functions as a supervisory control. Safety must be guaranteed
at this level. Conflict resolution is the mode with higher priority, followed by the Flight Envelope
Protection mode and finally the goal of the mission.

The Trajectory Planner uses a detailed dynamic model, sensory input, and the output trajectory,
to design a full state and nominal input trajectory for the UAV, and the sequence of flight modes
necessary to execute the dynamic plan. The trajectory planner, given the information about the
type of flight mode chosen by the tactical planner, executes it choosing the corresponding outputs
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Figure 1. System Architecture

and the appropriate controllers. Several types of trajectories can interpolate the way points. Each
basic flight mode has then associated with it a particular combination of control actions. Each time
an elementary flight mode becomes active the corresponding type of controls are requested to be
used at the regulation layer.

2DSUaieht

Figure 2. Transitions diagram

The Regulation Layer, together with the plant, represents the continuous part of the system. The
regulation layer has access to sensory information about the actual state of the UAV to generate
control signal to regulate it on the given trajectory. It consists of the so-called auto-pilot, which
receives the flight mode and computes the input signals to the vehicle according to the system state.

The Detector has limited range of detection capability. This block constitutes the connection
between the helicopter and the environment. It is crucial for investigation mission, and for obstacle
detection.

For envelope protection purposes the unsafe set is shown in figure 3:

The figure shows a qualitative representation ofthe unsafe sets. The dimension ofthe region depends
on theparameters ofthe helicopter. Avery detailed description ofthe flight envelope for anhelicopter
can befound in [3]. The two regions shown above are the unsafe sets. In case ofengine failure there
are control actions that allow the helicopter to safely perform an emergency landing. In the vertical
set it is impossible to demonstrate safe auto-rotative landings. Thehorizontal set (high speed portion
of the unsafe set) is simply a warning that a power failure at high speed close to the ground is a
dangerous situation.lt is therefore an empirical curve designed based upon what is considered to be
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Unsafe set

V

Figure 3. Flight Envelope

prudent, non analytical method has been developed for constructing this portion of the diagram. In
our approach we will omit it.

3. Flight Envelope Protection Controller Synthesis

For a formal treatment of controller synthesis for safety specification, please refer to[l]. The safe set
can be described as a first order approximation by the following set:

F = {i € I V > 0, + (A - Ao)^ - > 0, V < V,nar, A< A,(3.1) :}

By setting bounds on maximal velocity and height F is a compact set. The state is not included
in the specification of the safe set and all the other states are decoupled from it. For the synthesis of
our controller we will consider a third order system derived from 2.5 by dropping the state p^. We
are therefore left with a three dimensional optimal control problem. In the rest of the section we
will formulate the flight envelope controller synthesis as an optimal control problem. Consider the
system (2.5) over the time interval [i, 0], where << 0. The value function is given by

(3.2) J(a:,ti(.),f):«"xUx»_^«

The value function represents the cost of the trajectory. Notice that the cost depends only on the
final state, i.e. there is no running cost. Optimal cost is given by;

(3.3) J'(x,t)= max

The optimal Hamiltonian is given by:

(3.4) H'(x,p) = p^f{x,u)
uGU

where f(x,u) is the vector field described in equation 2.5.
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The evolution of J*(x^t) follows the Hamilton-Jacobi equation.

(3.5) = inin{0,ff-(:r,2:q^)}
^ ' J'"(a;,0) = J^x)

The equation in the form of 3.5 is not solvable analytically. A numerical method is needed in this
case. In the next section we will propose the use of Finite Element Method (FEM) for numerically
evaluating the solution to the Hamilton-Jacobi equation.

4. Finite Element Approach

The Finite Element Method represents a general tool for numerical solution of partial diiferential
equations. Finite dimensional approximations are very important from a computational point of
view, since they allow for numerical solution to problems in the continuum otherwise intractable.
Several methods exist. In this section we will propose FEM approach by using the method of
weighted residuals in the Galerkin formulation. For more details on the method please refer to[2].
Never before Finite Element Method had been applied to the solution ofan optimal control problem
in the Hamilton-Jacobi PDEformulation. In order to validate the approach we will face the problem
ofaircraft flight envelope protection controller synthesis solved by Lygeros et al. in [1]. An analytical
solution is given there. In this context we can make a comparison between the real solution and the
approximated one for the purpose ofevaluating the novel approach. A detcdled description offlight
envelope protection controller synthesis for the aircraft case can be found in [1].
In the use ofFEM the basic idea consists in partitioning thestate space with finitely many elements,
solving the PDE for each element and then assemble each element in the mesh by specifying the
appropriate boundary conditions. Theflight envelope for the aircraft case is a rectangle. Differently
from [l] we will introduce a disturbance d{x^t)^ which is attributable to the approximation error.
For simplicity we will consider it constant for the rest of the discussion. We will play a game with
the approximation error.

(4.1) r(x,t) = [J"(i,ti(-), «) + <«(•)]

The Hamilton-Jacobi PDE then becomes:

/.ON dJ*ix,t) , . ,dJ*{xA)(4.2) — = mm{0, mm „(.)) + i(rf(.))}}

We will use a masterelement of the type depicted in figure4.

Next we will define an isoparametric mapping between the (^, 77) and the (x, y) coordinates in the
following way. Given the coordinates ofthe four corner points on the element with i = 1..4,
all the other points are computed through the following transformation:

(4.3) ®
y = ELiNiiii

Notice that the Ni are of the following form:



(4.4)
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Figure 4. Master Element

Niitv) = j(l-?)(l-'7)
mi,v) = 1(1+0(1-'?)
Nzitv) = 1(1 + 0(1 + '?)
N4{^,V) = j(l-0(l + '?)

Also ELi at,- = 1,V(^,0 6 [-1, 1].
With this construction the knowledge of the function J at the edges will be sufficient to know the
function in every point in the element:

(4.5) Je(x,t) = ^Nk{^,7))Jk{t)
1

The weighted residual formulation of the differential equation F{x, t) is the following:

(4.6)

(4.8)

(4.9)

T

w{x) F(x, t) da;j dt =0,
0

Let's choose the weighting functions a;(a:) to be:

(4.7) w{x) = ^ Nk(^, rj)wk,
k

where Wk, are arbitrary constants that give each node a weight.

Notice that:

dX

dx

fc=i

w
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where B £ B = with Nij = i = 1,2, j = Let's consider first the inner
integral of equation 4.6.

(4.10) [a;i---a;4] J
• iVi • / "ii"

: [iVi-.-iVj 1

. ^4 . I J4,
+min 10, ?w) +^ dx

As we said above the weighting functions are arbitrary. We will use the same weighting factor for
each node, i.e. we will set the w,- to 1. We will also assume 6 constant. Substituting equations 4.8
and 4.9 into 4.10 yields:

Ni ' ' Ji ' " Ni ' /
; 1 +/ min

Nt . ) h
J

12^
. . \

—S, max < Vy u)B

L^4 J
• \J\d^dr}

where \J\ is thedeterminant ofthejacobian ofthe isoparametric transformation. Applying Gaussian
quadrature the integrals can be solved. After integration we are left with the following integro-
diflferential equation:

-T

(4.12) I Wt

/ " ii" ' Ji ' \

r 1 + A ;

\ . ^4. . . /

df = 0

After solving theequation above for each element in themesh we need to assembly in order to satisfy
the conditions at the boundary of each component. Each node has a local and a global index. A
good assembly process will provide a sparse matrix with small bandwidth, with non zero element
around the diagonal. Such a configuration will be fundamental for fast implementation.

5. Conclusions

In thisproject we presented a novel approach to solve optimal control theory using FEM as numerical
tool. The formulation is intended to deal with those problems for which an analytical solution
cannot be found. The approximation error is treated as a disturbance in order to have a conservative
approximation of the safe set. The ultimate goal is to design a flight envelope protection controller
for a two dimensional helicopter model. In future work we will implement the proposed formulation
and apply it to the aircraft case. Results will becompared with the analytical solution for validation
purposes.
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1 Introduction

This project addresses the problem of controlling a swarm of autonomous agents in the pursuit of multiple evaders
in 2.5D. To this effect we develop a probabilistic framework for pursuit-evasion games involving multiple ground
agents and an eye-in-the-sky (e.g. an aerial reconaissance vehicle). The problem is nondeterministic because the
motions of the pursuers/evaders and the devices they use to sense their surroundings require probabilistic models.
It is also assumed that when the pursuit starts the map of the region is unknown. A probabilistic framework for
pursuit-evasion games avoids the conservativeness of deterministic worst-case approaches.

Pursuit-evasion games[l, 2] arise in numerous situations. Typical examples are search and rescue operations,
localization of (possibly moving) parts in a warehouse, search and capture missions, etc.

Deterministic pursuit-evasion games on finite graphs have been well studied [3, 4]. In these gaimes, the region
in which the pursuit takes place is abstracted to be a finite collection of nodes and the allowed motions for the
pursuers and evaders are represented by edges connecting the nodes. An evader is "captured" if he and one of the
pursuers occupy the same node. A question often studied within the context of pursuit-evasion games on graphs is
the computation of the search number s(G) of a given graph G. By the "search number" it is mesint the smallest
number of pursuers needed to capture a single evader in finite time, regardless of how the evader decides to move.
It turns out that determining if s(G) is smaller than a given constant is NP-hard [4, 5].Pursuit-evasiongsunes on
graphs have been limited to worst-case motions of the evaders.

The pursuit-evasion games were extended to known polygonalenvironments [6] and simply-connected, smooth-
curved, two-dimensional environment [7], based on the principle that for every graph G there is a polygonal free
space F such that game on G is equivalent to the game on F, when "capture" is defined as having an evader in
one of the lines of visibility of pursuers.

Until recently the literature on pursuit-evasiongames alwaysassumed the regionon which the pursuit takes place
(beit a finite graphor a continuous terrain) is known. When the region is unknown a prioria "map>-leaming" phase
is often proposed to precede the pursuit. However, systematic map lesurning is time consuming and computationally
hard, even for simple two-dimensional rectilinear environments with each side of the obstacles parallel to one of the
coordinate sods [8]. In practice, map learning is further complicated by the fact that the sensors used to acquire the
data upon which the map is built are not accurate. A probabilistic framework is also natural to take into account
the fact that sensor information is not precise and that only an inaccurate a priori map of the terrain may be
known. Recent work [9] combined exploration (or map-learning) and pursuit in a single problem in a proha.hilist.ir
framework to avoid the conservativeness inherent to worst-case assumptions on the motion of the evader. It was
proven that in pursuit-evasion games with partial observations and obstacles under mild asumptions, there exists
a pursuit policy with certsun "persistency" which guarantees to find an evader in finite time with probability one,
or the expected time needed to find the evader is finite. Thus the answer to reachability question(can the fleet of
pursuers can catch the random evader?) is almost sure[10].

1



Here we expand this previous work into 2.5-dimensional gameswith multiple evaders.

2 Rules of the Game

In this section we describe a specific pursuit-evasion game with partial observations and obstacles to which the
pursuit policies can beapplied. In this game the pursuit takes place in a rectangular two-dimensional grid with ric
square cells numbered from 1 to tic. We say that two distinct cells xi, ^2 € ^ = {1,2, •••, nc} are adjacent if they
share one side or onecorner. In the sequel we denote byA{x) C X the set ofcells adjacent to some cell x eX. Each
A{x) will have, at most, 8 elements. The position ofobstacles are represented by obstacle map m : {0,1}
that takes the value 1 precisely at those cells that contain an obstacle. The motion of the ground pursuers and
evaders is constrained in that each can only remain in the same cell or move to an emp^ cell adjacent to its present
position. This means that ifat a time t eT the pursuers are positioned in the cells v= {vi,V2,.. .,Vnp} then
the subset ofII consisting of those lists of cells to which the pursuers could move at time <+ 1, were these cells
empty, is given by

U{v) ={{i5i,V2,--.,Vnp} eU .Vie

Each pursuer iscapable ofdetermining itscurrent position and sensing thecells adjacent to theone it occupies for
obstacles/evaders. The pursuers are also able to distinguish between the enemies in the game. Each measurement
y(t)) t G7", therefore is a triple {v(<),e(<),o(f)} where v(f) e U denotes the measured positions of the pursuers,
e(<) CA' aset of cells wher^each evader was detected, and o{t) CXaset ofcells where obstacles were detected. For
this game we then have y —li y. 2^ y. 2^. For simplicity, we shall assume that v(t) reflect accurate measurements
and therefore v(f) = x(t), t e T. We also assume that the detection of evaders is perfect for the cells in which
the pursuers are located, but not for adjacent ones. To acount for imperfect sensors for evawler detection, we
introduce the probability offalse positives and q the probability offalse negatives: the probability p e [0,1] of a
pursuer detecting an evader in a cell adjacent to its current position, given that none was there, and the probability
9 G[0,1] of not detecting an evader, given that it was there. For calculational simplicity we shall assume that the
sensors used for obstacle detection are perfect in that o{t) contains precisely those cells adjacent to the pursuers
that conteun an obstacle.

Theobservations andmovements of the eye-in-the-sky are somewhat different from those ofthe pursuers. Most
importantly, the eye-in-sky cannot 'capture' an evader. The eye-in-the-sky is allowed to occupy the samecell as an
obstacle (think of this as flying over the obstacle). We also allow the eye-in-the-sky to have a larger set of points
over which it can detect evaders, A{A{x)) (basically a region of radius two centered euround its present location)
and assume that it has perfect sensors for the detection of enemies. At the saune time, we decided to prevent the
eye-in-the-sky from making any observations in cells adjacent to obstacles, >t(w), where u is the set of obstacle
positions (think of this as a situation where the evader is hiding under a tree top). Since the eye-in-the-sky cannot
accurately pinpoint obstacle locations, we do not allowit to update the obstacle map. Refer to the measurements
made by the eye-in-the-sky as a(f), t e 7", which is a double {va(<),ea(t)} where Va(t) e U denotes the measured
position of the eye-in-the-sky and €«(<) C a set of cells where each evader was detected. As with the pursuers
assume that Va(f) reflect accurate measurements and therefore Va(f) = x(t), <€ T. As long as the eye-in-the-sky
does not detect an enemy, it maintadns a motion in which it sweeps out the entire map. Once an enemy is sighted,
the eye-in-the-sky uses the simplepursuit strategy of moving towards the locationat which the enemy wasdetected,
until the enemy is no longer detected (captured by a pursuer or hiding next to an obstacle) at which timeit returns
to its 'sweeping' strategy.

Pursuers assume a Markov model for the motion of the evaders. The model is completely determined by a scalar
pcursuneter p e [0,1/8] that represents the probability of the evader moving from its present positionto an adjacent
cell with no obstacles. This probability is independent of the specific pursuit policy being used. This means that,
for each x,x e X, n e {0,1,..., 8},

P(xe(<-bl) = X IXe(<) = X, m(x) = 0, no(x) = n) = ^
p Xe A(x) and m(x) = 0
1—(|-4(x)| —n)/> x = x
0 otherwise

(1)



where |^(x)| € {3,5,8} denotes the number of cells adjacent to x and no(£) G{0,1,..., 8} the number of obstacles
in A(x). This models a situation in which the moving evaders are not actively avoiding detection.

3 Updating Probability

We describe next how to compute the (conditional) posterior probabili^ pe(i)(x,Yt) of the evader i being in cell
X at time t + 1, given the measurements Yt = Yt taken up to time t = |yt|. These steps are repeated for each
enemy (left) in the game, to update the unique probabilistic location map of eaoh enemy. As e2u:h of these maps
are developed independently, the subscripts for the particular enemy are omitted for the rest of the discussion. The
derivations below axe independent of the specific pursuit policy ff in use and we therefore drop the subscript g in
the probability measure. For computational efficiency Pe(x,Yt) is computed recursively in two steps:

1. A measurement step The probability P (xe(t) = x | Yt = Yf) of the evader being in cell x at time f, given
the measurements Yt = Yt taken up to f, is computed based on the probability pe{x^Yt-i) = P (xe(<) =
XIYt_i = Yt_i) of the evader being in cell x at timet, given the measurements Yt_i = Yt-i taken up to
<—1, and the last measurement y{t) in the sequence If. The sensor model is used in this step, we use Bayes'
rule repeatedly to write

P(xe(f) = x| Yt=yt)

xGo(<)Uv(t)\e(<)or3x7tx:xGt;(<)ne(t)
^ ape(x, Yt-i) (2)

where a is a normalizing constant, chosen so that P (xe(f) = x IYt = Yt) = 1. And ki is the number
of pursuers that reported in e{t) seeing the evader at cells other than x that are adjacent to their one (false
positives); kz is the number of pursuers that reported in e(f) not seeing the evader at cells other than x that
are adjacent to their one (true negatives); kz is the number of pursuers that reported in e{t) not seeing the
evader at the cell x adjacent to their one (false negatives); and k4 is the number of pursuers that reported in
e(t) seeing the evader at the cell x adjacent to their one (true positives). ki + k2 + kz-\- k^ must be equal to
the number of cells adjacent to any of the pursuers positions in v(<).

2. An eye-in-the-sky update step was added here for the cases in which an eye-in-the-sky was part of the game.
This update was purposely put after the pursuers measurement step to give the eye-in-the-sky's observations
higher authority.

P (x,(«) = r IY, = y.)

P ( I y ^ ^ ^ f3^^ ^ ^ |0 XG>l(>t(uo(t))) \^(w) if not using greedy strategy

where a is again a normalizingconstant chosen as above. ^ Furthermore, if Cg (t) ^ 0

P (xe(<) = XIYt = Yt)

=QP(xe(f) =x|Yt=Yt)|̂ XGea{f)1^0 XGAT \ ea(<) ifnot using greedy strategy

- if an enemy is found, the position in which it was foimd is set to have probability one, and the rest of the
map has probability zero (if not using the greedy strategy^).

^this is a blatant abuse of notation amdconvention done for simplicity - think of these update equations in the sense of a computer
program

^to be described in the following section



3. Aprediction step The probability ps{x,Yt) = P (xe(t +1) = x | Yt = Yt) ofthe evader being incell x at time
t + 1, given the measurements Yt = Yt taken up to time t, is then computed from P (xe(t) = x | Yf = Yt).
The evader's motion model is used in this step.

Pe(a;, Yt) = ^ P(xe(< + 1) = X, Xe{t) = X, in(x) = 0IYt = Yt)

« P (Xe(t + 1) = XIXe{t) = X, Yt = Yt) P (xe(<) = X| Yt = Yt)
+ ^ P(xe(t + 1) = a; |xc(t) = x, m(x) =0, Yt = Yt)

seAix) p ^ j IY, ^ Yt) P (m(x) = 0 | Yt = Yt)

Here, we used the fact that Xe(<) = x automatically implies that m(x) = 0, and also the lowobstacle density
assumption to conclude that m(x) is approximately independent of the position Xc(< + 1) = x of the evader,
when X^ X. Ftom (1) and the low obstacle density assumption, we conclude that

P«(«, >t) « (1 - M(l)|p)P (xe(<) = I IYt = y,)
+/>P(m(i) =0|Y. = y,) Y!, P(x.(<) = x|Y,=y,). (5)

x6.A(x)

P (m(x) = 0\ Yt=Yt),xeX can be computed recursively, similar to the computation of the pe(x, Yt).
Since we are assuming that the sensor used for obstacle detection is perfect and obstacles do not move, we
simply have

P (m(x) = 0 IYt = Yt) =
1 X^ o(t) and is in or adjacent to an element in v(<)
0 X€ o(t) and is in or adjacent to an element in t;(i)
P (in(x) = 0 IYt_i = Yt_i) otherwise

It is critical to keep in mind that these steps are done independently for each enemy left in the game and that
these steps depend only on information of that particular enemy (i.e. it's unique probabilistic history and whether
or not it was sighted during the last time instant).

4 Pursuit Policy

As mentioned earlier, a distinct map is maintained for each enemy in the game. Once an enemy is captured its map
is not updated nor is it observed by the pursuers or eye-in-the-sky again. A couple of different pursuit algorithms
were experimented with in order to reduce capture time of the enemies

4.1 Greedy Policy

The original strategy implemented by Hespanha and Kim [9] was a greedy policy in which each pursuer moved
to the adjacent cell (or possibly did not move at all) which had the highest probability of containing the enemy
(recall, the originaJ work only had one enemy in the game). Our extension of this strategy was fairly simple, each
pursuer moved to the adjacent cell (or remained in its current location) with the highest probablity of containing
an enemy over all the enemy maps.

x(t + 1)= maxenemiesmax^(x(f))Pe(0{x, Yt) (6)

where again, Pe(t)(®>^«) represents the probability ofenemy i being at position x at timet + 1.^
When using the greedy search strategy, we had the eye-in-the-sky set a high value in positions where it detected

an enemy, otherwise it did nothing. Ideally, we would have liked to set the enemy map values at the locations
where the enemy was not sighted to zero, but this would effectively create a buffer zone of low probability around
a sighted enemy through which an agent following a greedy strategy would not pass.

^The appropriate exception hauidling was added to prevent an pursuer from moving into a cell with em obstacle or a cell already
occupied by another pursuer



4.2 Global Maximum Policy

In order to have the pursuer more efFecively respond to the sighting of an enemy, we implemented a global maximum
search strategy, where each pursuer set a trajectory to the global location with the greatest (weighted) probability
of there being an enemy at the next time instant."^

x(t + 1) = trajectory(maa;enemies"ia®a:€;tg(x(t), a:) *Pe(f)(®>^«)) C^)

trajectory is just a function to determine which discrete cell location to move to in order to follow a path to the
desired location. To still encourage local search, a weighting, g, is also added to the algorithm. Three different
weightings were tested:

9o(x(<),a:) = 1 (8)
1

d((x(t),x))
I

d((x(<),a;))2

gi(x(<), x) = (9)

92(x(f),x) = (10)

(11)

where d((x(t),x)) is the distance between the pursuers current position and the desired position calculated as:

diiyuy2)A^u ^2)} = rnaxQyi - zi\,\y2 - Z2\) (12)

When using the global maximumsearch strategy, we have the eye-in-the-sky set to zero the value of all map positions
in which it does not see an enemy and set to one those positions is which it does see an enemy. Additionally, if the
eye-in-the-sky does see an enemy, it sets the rest of the map for that particular enemy to zero elsewhere.

4.3 Combined Policy

The major drawback to the global maximum strategy is that the system frequently evolves to the state where
all the pursuers eire going to a common position and then subsequently they begin to act as one joint pursuer as
oppossed to a number of independent ones. To remdey this problem a combined greedy-global msodmum policy
was instituted. Basically the pursuers followed a global maximum sewch strategy unless a pursuer was directed to
go to a specific location to which another pursuer was already heading. In this case the later pursuer switched over
to just using a greedy search strategy. Despite the movement strategy a particular pursuer was using, the updates
of the eye-in-the-sky were based on the global maximum policy.

5 Simulation & Results

Figures(l-3) shows a run of the combined policy (with weighting 91) for the case of three enemies and an eye-in-the
sky. Pursuers are represented as ★ (not filled), enemies as ♦, the eye-in-the-sky as a and obstacles as *. The
shading of each map represents the probability of the enemy being in that location (daurker = higher probability).
Figure(l) is a snapshot before any movements have taken place. The map for enemy 1 is white because the eye-
in-the-sky has detected it (enemy 1 is located in the same spot as the dark square). The map for enemy 2 is
darker than that of enemy 3, because the pursuer in the upper left has falsely detected enemy 3, thereby (wrongly)
reducing the probability of it appearing anywhere else. Also note that the eye-in-the-sky does not have full vision
over its maximum possible range because of obstacles. Figure(2) shows the capture of enemy 1. Notice that not all
the pursuers were not following it. Figure(3) shows the capture of the last enemy, enemy 3. Here, all the pursuers
were converging on it. Note that the maps of the enemies do not update once they have been caught and that is
why there axe inconsistencies between the maps in Figure(3).

For each of the seaxch strategies 100 simulation runs were performed for both the case with and witout an eye-
in-the-sky for each of one through five enemies being present. The average capture time of all enemies are shown in
Tables (1-3). Without an eye-in-the-sky, the greedy strategy shows the best performance axid the globalmaximum

^Again, the proper exception handlingwais added to preventa pursuerfrom moving into a cell with smotherpursuer or an obstacle
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capture time capture time
# of enemies w/o eye-in-the-sky with eye-in-the-sky

1 20.75 34.50

2 42.10 35.50

3 46.70 48.60

4 58.45 48.80

5 57.90 53.00

Table 1: Greedy Policy

capture time capture time
# of enemies w/o eye-in-the-sky with eye-in-the-sky

1 55.87 24.28

2 84.48 39.90

3 88.80 60.24

4 117.01 67.02

5 150.03 75.04

able 2: Global Maximum Policy (using weighting function g

capture time capture time
# of enemies w/o eye-in-the-sky with eye-in-the-sky

1 30.54 20.98

2 45.21 35.15

3 50.04 40.11

4 57.55 43.81

5 69.65 49.38

Table 3: Combined Policy (using weightingfunction gi)

capture time w/ capture time w/ capture time w/
# of enemies go weighting fn gi weighting fn g2 weighting fn

1 27.50 24.28 27.50
2 50.14 39.90 42.72

3 61.54 60.24 51.11

4 66.17 67.02 66.31

5 83.36 75.04 77.47

Table 4: Various Weighting Functions for Global Maximum Policy

the worst. All the strategies shown an improvement with the addition of an eye-in-the-sky, with the performance of
the global maximum strategy signifcantly better (but this is still worse than either of the other strategies without
one). The combined global maximum-greedy policy shows the fastest capture time with an eye-in-the-sky, but the
improvement over the greedy algorithm alone is still somewhat minimal.

In an attempt to improve performance of the global maximum search strategy, different weightings, q, were
experimented with. The average capture time of 100 runs of the algorithmunder each weighting (and always with
an eye-in-the-sky) are shown in Table (4). The different weightings do not seem to improve (effect) the performance
of the algorithm.



6 Conclusions & Future Resecirch

A multipleagent pursuit-evasion game was extended to include multiple evaders and a 2.5 D environment. It was
seen that the addition of an eye-in-the-sky can be utilized to reduce the time required to capture a set of enemies.
A numberof heuristic strategies were implemented in an effort to reduce capture time.

The next big challenge on the theoretic level is the derivation of an optimal search policy for evaders. On a
more experimental level, the addition of artifical intelligence to the pursuers or creating intelligent evaders would
also be of interest.
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Maximal controlled invariant set and

least restrictive controller

for discrete-time linear systems

Shawn Schaifert Rene Vidal

May 17, 1999

Abstract

In this project, an algorithm for computing the maximal controlled invariant set and least restrictive
controller for discrete-time linear systems with a scalar input and distimbance is proposed, and the decid
ability of the problem is analyzed. It is proved that if the system is in canonically controllable form and the
initial set is a rectangle, the problem is deddable. It is also shown that for a general discrete-time linear
system and an initial set spediied by linear inequalities, the problem is semi-deddable. The proposed
algorithm is also illiistrated with two examples.

1 Introduction

Consider the discrete time system

+ = /(«(<)>w(0.d(t)) (1)

where x G M" is the state, tt G U = IR is the control 2w:tion, d G D C M is a bounded disturbance and
/ : R" X R XK —> E" is continuous map.

Definition 1 (Controlled invariant set) A set W ^ R" is calleda controlled invariant set of (1) 5Vd
(x,DW^), that is, x(0) G => x(<) € W 'it. Additionally W is called maximal if it is not a proper subset of
another controlled invariant set, that is, for all controlled invariant sets W, we have W C W.

Definition 2 (Memoryless controller) A controllerC : X* 2^, where X* is the set of all finite execu
tions of (1) projected onto the state space, is called memoryless if for all finite executions X,X' ending at the
same state, C{X) = C{X'). A memoryless controllercan he characterized by a map U ; X 2^.

Definition 3 (Least restrictive controller) A memoryless controller U 2^ is called a least restric
tive controller if it is maximal among the controllers that solve the problem {x,UW), that is, for all U' that
solve (XyOW), U'{x) C U{x) Vx G W. A controller is said to solve the problem {x,OW) if it makes the
trajectories of the system satisfy {x,UW).

Using these definitions, the problem of finding the maximal controlled invariant set W and the least restrictive
controller U{x) for (1), namely controlled invariant problem (CIP), can be stated as follows:

Definition 4 (CIP) Given a set F 0, find, if there exists, W C F and U{x) such that W and U{x) are
the maximal controlled invariant set and least restrictive controller of (1), respectively.



The following algorithmgives an intuitive way of computing such sets.

Initialization

while W^-'^ do
begin

Therefore,

W" = F, W-i = 0, U''{x) = U Vi € F, ; = 0

w'+'- = {xeW }3uVdf{x,u,d)^W'}

\U xi W"+'
I = / + 1

end

set W = W^ and U{x) = £/'(x)

In general, there is nostraightforward way ofimplementing the formula 3uVd/(x, u,d)^WK Forsome special
systems, however, this implementationcan be carried out. Here weconsider discrete time linear systems, that
is, systems of the form

x{t + 1) = Ax{t) + 6it(t) + cd[i) (2)

In section 2, wewill prove that the CIP problem is decidable when the pair (A,b) is in canonically controllable
from and F is a rectangle. In section 3, we will extend these results to the case in which F is defined by a set
of lineax inequalities.

2 Rectangular case

In this section, we consider the case where both D and F are bounded rectangles, that is d € [di,d2] = D and
F = [a,/?] = [ai,/?i] X... X[a„,/?n] with q,- < /?,• and C = 1.. .n. We also assume that {A,b) is
in canonically controllable form.

2.1 One dimensional case

Here F = [a, /?] and

x{t+ 1) = ax{t) + bu(t)+ cd(t) 6^0 (3)

= {x ?3ii Vd (a < X< ^) A(a < ax + bu+ cd < /^)} (4)
= {x53it V'̂ (x,tt,d)} (5)

17^(x) = {« 9Vd (a < X</?) A(a < ax + 6tt + cd</?)} (6)
= (u ?i/>^(x,u,d)} (7)

In order to do quantifier elimination on d, we define the function <5:MxIRxIR->IR

S(c,d„d2) = h (8)
di otherwise



Thus ip^{x, Uyd) is equivalent to

{a < X< ^) A{a —ax —cJ(—c) <bu < —ax —c^(c)) (9)

where we have written ^(c) instead of (5(c, ^1,^2) ^ a- shorthajid notation.

From the last expression, it is clear that given a: G [a,/?], u exists if and only if

a —cS{—c) < 0 —cS{c) \c\{d2 —di) < —a (10)

Note that this condition is independent of a:, therefore, if the condition is satisfied, after one iteration the set
does not change. Thus the CIP problem can be solved in one iteration if (10) is true. If false, no solution

exists. This result can be summarized as follows.

Lemma 1 Given system (3) with F = [a,j0] C M and D = [^1,^2] C K, the solution to the CIP problem,
obtained after one iteration, is given by:

^ _ ({x3a<x<f3} if\c\{d2-di)<^-a
1^0 otherwise

, 1{u 3 Q: —ax —c<J(—c) < 6u </? —ax —c^(c)} ifx^W

= \U " " otherv,ise

2.2 Two dimensional case

Here F = [a,yd] = [Qri,/?i] x [a2,id2] and (2) is assumed to be in canonicallycontrollable form, i.e.

Extending the definition of V'̂ (') to x Mx Mwe get that ^^(x, u, d) is equivalent to

(ori < xi < A (a2 <X2< ^2) A (ori —ci<y(—Ci) <X2<0i —ci^(ci))A

(a2 —a2lXi —a22®2 —C2S{—C2) <^<p2 —0'2lXi —022X2 —C2<y(c2)) (14)

From the last expression, it is clear that given xi € [cei,Pi], X2 exists if and only if

((ai-ci<i(-ci) </?2) A(a2 < A-ci(5(ci)) A (ori - Ci<y(-Ci) </?i - ci<y(ci)))

t (15)
{ocl = max{a2,ai-ciS{-ci)) < min{02,^i - ciS{ci)) = 0l)

emd u exists if stnd only if

Q;2 - C2<y(-C2) <02- C2S{C2) (16)

Therefore, after the first iteration we have:

Wi _ U{xi,X2) ?ai<xi<0iAal<X2<0l} if <0\ A\c2\{d2 - di) <02 - a2
|0 otherwise

U^{x) = ^̂ 2 - Ei=l - C2<J(-C2) <U<02- EjLl ^2jXj - C2<y(C2)} ifX€
l^U otherwise

Thus after one iteration vauriable X2 gets restricted, which means that we have to run a second iteration.

In order to run this second iteration, we consider the valuations of and 02 and check conditions (15) and
(16) for the new values of 02 and 02- It is straightforward to check that:



1. If Qr2 —0.2 and ^2 —021 then W — and U{x) = U^{x). Thus the algorithm converges in one
iteration.

2. If02 = Oi —ci<J(—ci) and /?2 = 02, then condition (15) remains the same and condition (16) transforms
to ci<J(—ci) + |c2|(d2 —di) < 02 —oci. Thus the algorithm converges in two iterations to Wand U{x) as
in (18), but with 02 replaced by oi - Ci(5(—Ci).

3. Ifaj = 02 and 01= 0i~ ci<y(ci), then condition (15) remains the same and condition (16) transforms
to ci<y(ci) + |c2|(d2 —di) <01 —02. Thus the algorithm converges in two iterations to W and U{x) as
in (18), but with /?2 replaced by /?i - cid(ci).

4. Ifa\ = oci —ci<y(—ci) and 02 = 0\ —cid(ci), then condition (15) remains the same and condition (16)
transforms to (|ci| + |c2|)(d2 —di) <0\—oi\. Thus the algorithm converges in two iterations to W and
U[x) as in (18), but with 012 replaced by ai - ci<J(-ci) and /?2 replaced by /?i - ci<J(ci).

This result can be summarized as follows:

Lemma 2 Given system (IS) with F = [a,0\ = [aa,/?i] x [02,/?2] and D = [di,d2] C M, the solution to the
CIP problem, obtained after two iterations at most, is given by:

^ _ {{{xuX2)^ocl<Xl<fil^a\<X2<0\} ifoc\<Pl\\c2\{d2-di)<Pl-ot\
1^0 otherwise

U{x) = J{"^°'2-Ei=l«2i«i-C2d(-C2) <«</?J-X]]=ia2i®i-C2d(C2)} ifx^W
[U otherwise

2.3 n dimensional case

Here F = [a,0\ = [qi,0i]x ...x [ocn,0n] and is (2) assumed to be

0 0 10

ar(t+ 1).=

0

\ ani a„2

Extending the definition of V'̂ (-) to M" x R x R we get that d) is equivalent to

n n

A ^ ^ ^3) ^ A ~ Cj-i<y(-Cj_i) < Xj <fij-i - Cj_i5(cj_i)) A
i=l i=2

(Oifi ĵ^njXj Cn<y('~Cn) <U<Pn —̂̂anjXj —Cn^(Cn) 1
i=l i=l /

Promthe last expression, it is clear that given xi € [cei, ^i], xj, j = 2.. .n exists if and only if

aj = max{aj,aj^i - Cj.iS{-Cj.i)] < min{l3jjj.i - Cj.i6{cj.i)) = /?), j = 2...n

and u exists if and only if

OCn Cnd( Cn) < 0n —Cnd(Cn)

0 \ ( 0 ^ / ci \
0 0 C2

i x(t) + j u(f) +
1 0 Cn-1

Oljin ) 11 y \ Cn )

d{t)

(19)

(20)

(21)

(22)

(23)

(24)

(25)



As in the two dimensional case, after one iteration variables Xj^j = 2... n get restricted, which means that
we have to run a second iteration. It is straightforward to see that in the l-th. iteration {I < n) W is defined
by:

^ = [ociJi] X[alJl] X•••X X x [^[+2^^1+2] x •••x (26)
where

oj = max{a\-^, aj"\ - Cj_i<y(cj_ 1)) 3>1 + 1 (27)
/?j = - Cj_i<J(cj_i)) i > / + 1 (28)

This means that after n iterations, the maximal controlled invariant set remains unchanged, and the least
restrictive controller is given by equation (23), but with aj, 0j replaced by j = 2.. .n. This result
can be summarized as follows:

Theorem 1 Given system (21) with F = [a,/?] = [ai,)0i] x ... x [an,(3n] ond D = [di,d2] C K, the solution
to the CIP problem, obtained after at most n iterations of the algorithm, is given by:

1^0 otherwise

[/(a.) f{«3Q^n"^-Ei=iani®i-c„(y(-c„) -Cn«y(c„)} ifx^W
[U otherwise

Note that if at the first iteration, we compute

a\ = ai (31)
= A (32)

a] = maa;(aj-,a)_i-Cj_i<y(cj_i)) j>2 (33)
/?] = -Cj_i<J(cj_i)) j>2 (34)

then the problem can be solved in one iteration.

3 Linear inequality case

In this section, we consider the case where F is a convex polygon defined by F = {x GK" ? Mx < where
M € IR'"xn jmd ^ g ]^m being the number of constrains.

Therefore

(x, u, d) = MAx + Mbu + Mcd < 0 (35)

= Ax + bu + cd < ^ (36)

= bu < 0 —Ax —cd (37)

= hu < 0i—Cid —ajx 2= 1...m (38)
where aJ is the i-th row of A = MA.

Define

= {pf e{!,... ,m} 36pj >0},
€{1,... ,m} 3bgi <o} ,
e{l,...,m}56,.i =0},



and let = |/^ | and = |/^°|. Then m= 4- r^. With these definitions ijj^[x,u,d) is
equivsJent to

17 ('''y {l^Pi -'p'A'pO - ^p)') «' =1•••?'.; = (39)
1j Pi

A dJiX < 0rl —CriS{CriJ Ar =1...(40)

These equations give the following constrains on x:

^ ^P] / \ Cpj<5(cpj) ' ^
(41)

Ar =

Therefore, after the first iteration gets reduced by up to new linear constraints.

Now we have to check the redundancy of each new constraint. In order to do that, lets define M^x < as
the set of linear constraints defining W' after the l-th iteration. Clearly = M and /?° = fi. Also define
a' = Af'A, V= M^b, c' = Af'c, and P , 7^°, p{-, r^, p', q' and r', as usual, by replacing the I's by
Vs. Now let g'' x < y' be the s'-th new constraints (if one exists), s' = 1.. .p'g' + r'. Ifthis constraint is
redundant, then W' C{x 5g'̂ «<t''}> or equivalently, n|z 3g''̂ x >7'' J=0. In order to deal with
intersection of sets, we solve the following linear programming problem:

mm / X

s.t. M^x < (P (42)
s'^ s'g X >Y

7for any vector / 9^ 0. If 3a;* = argmin(/' x), then the constraint is not redundant, otherwise it is.
7However, linear programming algorithms usually don't manage open constraints such as x > 7'', and be

cause of this, we are forced toconsider the relaxed problem with g'* This relaxation technique might,
however, give a solution for x even though the new constraint is redundant (see Figure 1(a)). Nevertheless,
is it straightforward to check that, in this case, the solution ofthe optimization problem satisfies g'̂ x* = 7.
However it is not necessarily the case that if g' x* = 7, then the new constraint is redundant as can be seen
in Figure 1(b). This last problem can besolved by cleverly choosing vector f ——g''.

As a conclusion, the algorithm for checking redundemcy is the following: at every iteration I and for each new

constraint g'' x < y'' we solve the optimization problem:

s'^
mm —g x

s.t. M'x < /?' (43)

If 3x* = argmin(-jr'' x) satisfying g'' x* > 7'', then the constraint is not redundant, otherwise it is.
Then we define our new M and 0 by adding all non-red\mdant new constraints.

-9 « < -7



Finally, is is clear that if at some iteration no new constraints are added, then we have found the controlled
invariant set and the least restrictive controller as:

W = (44)

=I" ^̂ ~ ^^~ ^̂ ^̂ ^^~^|
\ P t /

for i = 1.. .p'*, j = 1... g'*.

Thus we have proposed an implementation of the algorithm to solve the CIP problem. However, we have not
cuialyzed whether this implementation converges or not in a finite number of steps. In the following section,
we will provide and example which actually converges after an infinite number of iterations. Thus we conclude
the following.

Theorem 2 Given system (2), with F = {x 5 Mx < 0} and D = [^1,^2] C K, the CIP problem is semi-
decidable.

new

constraint

opdmal soluQoa

(a) Redundant constreiint

gx=constaiit

new

constraint

(b) Not redundant construnt

Figure 1: Checking the redundancy of new constraints

4 Experimental results

In this section, we present two examples to test the the MATLAB implementation of the algorithm proposed
in the previous section. Both examples are worked out analytically and the results cire compared to that of
the MATLAB program. Both examples use the same discrete-time linear system, but with a different F set.
The linear system we consider is

x{t 4- 1) = I J J +
with d{i) € D = [—1,1].



4.1 Example 1

In this example, F is defined as F = {x 9 Mx < /?} with

M =

y 1 1\ ( 80 ^
-1 -1 40

1 -1 /? =
80

1-1 1 y V70 ^

1. Initialization = M, = /?

2. Iteration 1

(a) Computing A, 6, c

A =

/ 1 2 ^
-1 -2

-1 0

1 0 )

b =

( 1 \
-1

-1

1}

c =

( 2 ^
-2

0

V oy

(b) Computing possible new constraints. Here 7^"'" = {1,4}, /^~ = {2,3} and 7^*^ =

1)(~1 i)^ ^ (1 l)(8o)-(l 0
0 < 116 =>• Redundsint

(1 1)(-| °)x < (1 1
•=i>- 2x2 < 158 => Redundant

(1 i)(-i < (1 1)
=> —2x2 < 108 => Not Redunda]

(1 i)(-i i)x < (1 1)
=> 0 < 150 Redundant

(c) Computing new M and ^

3. Iteration 2

(a) Computing A, 6, c

=

( 1 l\ / 80 ^
-1 -1 40

1 -1 /?' = 80
-1 1 70

i, 0 -2^ I 108 ;

(I 2 N ( 1 ^ ( 2^
-1 -2 -1 -2

-1 0 h- -1 c = 0

1 0 1 0

^-2 -2^ V-2y



(b) Computing possible new constraints. Here = {1,4}, = {5} and =

(• ')(11) X < ('')(»)-('')(?)
2x2 < 266 Redundant

(1 0)(1?«)-(1 2)(2)
=> —2x2 < 246 =>• Redundant

(c) Therefore W and U(x) converge to

W = X 3

/I I \ / 80 \
>

-1 -1 40

1 -1 X < 80

-1 1 70

\ 0 -2) 108

{u € U 3 tt > max(—38 —xi —2x2, —80 —xi, —52 —xi —X2)
u < min(78 —xi —2x2,70 —xi)} if x 6

U otherwise

U{x) = i

Figure 2 shows the plot obtained by MATLAB.

Initial Set

100

-20

-40

-60

-80

-100 •—
-100

WO=F

-50-50 100

100

40

-20

-40

-60

-80

-100 «-
-100

Final Set

W1=W

-50

Figure 2: Iterations of the algorithm for Example 1

4.2 Example 2

In this exaunple, F is defined as f = {x 3 Mx < /?} with

M =

( 1 1 \ / 100 \
-1 -3

0 =
-50

1 -1 100

V-3 1 ) ^ -50 J

9

100



1. Initialization = M, ^

2. Iteration 1

(a) Computing A, 6, c

A =

/ 1 2 \ ( 1\
f-A-3 -4

b =
-3

-1 0 -1
c =

0

\ 1 -2/ ^ ly ^ -2 /
(b) Computing possible new constraints. Here = {1,4), = {2,3} and = 0

(• >)(11)

(• ')(•! ;)• s (•')(™)-(..)(;)

(• ')(1:;)

( 1 1

a: < ( 1 3

=>

7«)-c •)
2a;2 < 240 => Redundant

'(1-5)

=> 2x2 < 198 =>• Redundant

=> —10x2 < -210 =i>' Not Redundant

^ —2x2 < 48 =» Redundant

(c) Computing new M and 0

3. Iteration 2

(a) Computing A, 6, c

A =

=

/I 1 \ / 100 \
-1 -3 -50

1 -1 0' = 100
-3 -1 -50

V 0 -loy I -210 /

/I 2\ ( ^ ^ ( 2 \
-3 -4

b =

-3 -4

-1 0 -1 c = 0
1 -2 1 -2

\ -10 -10 y v-loy -10 y

(b) Computing possible new constraints. Here = {1,4}, P~ = {5} and P° = 0

(1

(1 10 )(

-10

2

10x2 < 760 Redundant

< (1 10)(-™)-(l 10)(1°)
^ —30x2 < —740 Not redundant

10



(c) Computing new M and

=

/ 1 1 \ / 100 N
-1 -3 -50

1

-3

-1

-1

100

-50

0 -10 -210

I 0 -30 ^ -740 j
4. Iteration I: note that when adding the new non-redundant constraint, the one added in the previous

iteration becomes redundant, but the algorithm is not checking for that.

(a) Updated M and (3 from iteration / —1.

(b) Computing ^4, 6, c

A=:

=

/I 1 \ / 100 \
-1 -3 -50

1 -1 100

-3 -1 -50

0 -10 -210

0 -30 -740

\ 0 mi ) I A/

/I 2 \ ( 1 ^ ( 2 \
-3 -4 -3 -4

-1 0 -1 0

1 -2 1
c =

-2

-10 -10 b = -10 -210

-30 -30

o•
CO

1

-740

\ m/ mi ) V ) \ "»/ /

(c) Computing possible new constraints. Here = {1,4}, = {/-f 3} and = 0

(1 < (1 -"")("!)
=>• —miX2 < 01 —97m/

(1 < (1 -^)( -n.,)(-l)
=> ZmiX2 < A + 53m/

In order to check for both redundancy and convergence of the constraint on X2^ we consider the
second constraint first. We have m/+i = 3m/,mi = —10, and A+i = A + 53m/,A — —210.
Thus m/ = mi3'"^ and A = A + 53mi(3'"^ —l)/2. Thus the second constraint becomes X2 >
26.5 —5.5/3'. This means that if the first constraint is redundant V/, then the second constraint is
always not redundant and converges after an infinite number of steps to X2 > 26.5. Thus the only
thing we need to check is the redundancy ofthe first constraint, which is X2 < 70.5 + 5.53'"^. Since
the top vertex of W has X2 = 62.5, the first constraint is redundant Vf, and converges to X2 < 70.5.

11



(d) Therefore after an infinite numberof iterations, W and [/(x) converge to

W = X ?

(I l\ ( ^
-1 -3 -50

1 -1 X < 100

-3 -1 -50

\ 0 -2) \-33 )
j

{u € U 3u > maa:(18 - a?i - 4x2/3, -100 - xi, -55/2 - Xi —X2)
u < mm(98 —x —1 —2x2,-52 —xi + 2x2)} if x eW

U otherwise

I7(x) = ^

Figure 3 shows the plot obtained by MATLAB for the first three iterations.

60

-20

-20

Initial Set

W0=F

Second iteration

W2

100

80

60

40

20

-20

80

60

40

20

-20

First Iteration

W1

50

Third Iteration

W3

Figure 3: Iterations of the algorithm for Example 2

100100

100

5 Conclusions and Future Work

In this project, an algorithm for computing the maximal controlled invarieintset and least restrictive controller
for discrete-time linear systems with a scalar input and disturbance was developed, and the decidability of
the problem was analyzed. It was proved that if the system is in canonically controllable form and the initial
set is a rectangle, the problem is decidable. It was also shown, that for a general discrete-time linear system
and an initial set specified by a set of linear inequalities, the problem is semi-decidable. In the future, it
would be interesting to extend these results to systems with multiple inputs and disturbances. It would also
be interesting to determine under which conditions on the system the problem is decidable. So far, it seems
that the decidability property is not only dependent on the system itself, but also on the initial set, as shown
by Example 2.
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1 Hybrid Automaton

In this section we present the basic background material.
For a finite collection V of variables, let V denote the set of valuations of these variables. We

use lower case letters to denote both a variable and its valuation. We refer to variables whose set
of valuations is finite as discrete and to variables whose set of valuations is a subset of a Euclidean
space as continuous. We assume that Euclidean spaces, K" for n > 0, are given the Euclidean metric
topology, whereas countable and finite sets are given the discrete topology (every subset is an open
set). Subsets of a topological space are given the induced topology and products of topological spaces
are given the product topology. The Euclidean norm is denoted ||•|| and the convex hull co{*}. For a
subset 17 ofa topological space we use Uto denote its closure, U° its interior, dU its boundary, 17^
its complement, jl7| its cardinality, and 2^ theset ofall subsets of U.

Defiinition 1 (Hybrid Automaton)
A hybrid automaton H is a collection H = (Qj X, Init, f, I, E, G, R), where

• Q is a Unite collection of discrete variables with |Q| < oo;

• X b a Unite collection of continuous variables with X =

• Init C Q X X is a set of initial states;

• / : Q XX —^ TX is a vector held, Lipschitz continuous in its second argument;

• / : Q —> 2* assigns to each g € Q an invariant set;

• jEcQxQ is a collection of edges;

• G : E -¥2^ assigns to each edge e = (q, q') £ E a guard; and

• R : E xX->2^ assigns to each edge €= (q,q^) £ E and x £X a reset relation.

We refer to (q,x) £ Q x X as the state ofH. Pictorially, a hybrid automaton can be represented
by a digraph (Q,jE), with vertices Q and edges E. With each vertex ^ € Q, we associate a set of
continuous initial states Init^ = {x £X : (g, x) € Init}, a vector field /(g, ®), and an invariant set
I(q). With each edge e £ E, we associate a guard G(e) and a reset relation R{e,x). In the following
part, we assume that the vector field is Lipschitz continuous unless otherwise stated.



Definition 2 (Hybrid Time Trajectory)
A hybrid time trajectory r = {/J^o ^ finite or infinite sequence ofintervals of the real line, such
that

• li = [n, r/] for i < N;

• Ti < T- for i>0 and ti = r/_i for i > 0; and

• In = or In = [7-Ar,r^) UN < oo.

Note that hybrid time trajectories can extend to infinity if r is an infinite sequence or if it is a finite
sequence ending with an interval of the form [tn,oo). We denote by T the set of ail hybrid time
trajectories. Basically, we will study the nontrivial hybrid automaton whose time trajectory r has
positive measure, otherwise, it can be investigated as a Finite State machine.

Definition 3 (Execution)
An execution x of a hybrid automaton H is a collection x = ®) t ^ T, q : r -¥ Q, and
a:: r -4 X, satisfying

• (9(^o)>®('n3)) € Init (initial condition);

• for all i with Ti < t-, x{t) is absolutely differentiable and q{t) is constant for t € [r,-, t-\, and
a;(t) € /(^(t)) and dx[t)/dt = f{q{t),x{t)) for all t G[Tt,r/) (continuous evolution); and

• for all i, e= (g(T/),^(ri+i)) GE, ®(t/) GG(e), and xfyi+i) Gi2(e,x(r/)) (discrete evolution).

We say a hybrid automaton admits an execution x- For an execution x = (r*, q,x), we use (qo, xq) =
(g(ro), ®(7b)) to denote theinitial stateofx- An execution isfinite if r is finite sequence ending with
a closed interval; it is called infinite if it is either an infinite sequence or if S,(t/ - r,) = oo.

Definition 4 (Non-Blocking and Deterministic automaton)
A hybrid automaton H is called non-blocking if it accepts at least one infinite executions for all
(qoyXo) GInit. It is called deterministic if it accepts at most one infinite execution for all (qo,xo) €
Init.

Definition 5 (Reachable State)
A state (9,«) G Q XX is called reachable by H, if there exists a finite execution x = ("r, q^ x) with
•<- - {[n.r/Dilo an** (?(^w)i®(^)) = (9.®)-
The set of states reachable by H is denoted Reach(H) C Q x X.

A hybrid automaton is said to be invariant preserving if x(t) G I[q{t)) for all executions x =
(r, q, x) and for all t > 0.

Proposition 1
A hybrid automaton is invariant preserving if

• xo 6 I(qo) for all (qo,xo) G Init; or after finite discrete transitions, there exists some N such
that Xrjf e liqrif)

• R(q, ((, x) C I{q^) for all {q, q') GE and x GG(q, q") n /(g).



For proof, see Karl's paper.
Consider a hybrid automaton with / : Q x X TX Lipschitz continuous in its second argument,

then for every € Q, a? € IK", there exists some c,- > 0 such that

ll/te»a;)|| < Ci(\\x\\ + l) < c(||x|| + l),

where c = maxcf. We say the reset relation R is non-expanding if there exists some <5 G[0,1] such
that for all e = (g, g') € E, all x € G{e), all x' € i?(e, x),

Ik'll < %ll-

In particular, non-expanding implies i2{e, 0) = 0. When 0 < 5 < 1, we say that R is contracting.
In the continuous systems, the Lipschitz continuity assumption on the vector held excludes the

possibility offinite escape time. For the hybrid systems, we have the similar results as follows.

Lemma 1 (Bellman-Gronwall, Shankar's book)
Let z(-), a(-), «(•) :R+ -»• R be given positive functions denned on [0,oo) and let T > to >0j then
iffor aJlt 6 [toj 21, ^

z{t) <u{t) -h f a{T)z{T) dr,
Jto

we have that for t G[to,21

z{t) <u{t)f a(r)w(r)e2r®('')''̂ dr.
Jto

Proposition 2
Given a hybiid automaton with non-expanding reset, for every execution x —("^,9, inhere exists
some c> 0 such that for allt£T,

lkWII<(ll®('-o)ll + l)e'""®'-l-

Proof: For r,- < t < r/,

i(t) =i(ri) +f f(q(Ti),x{T)) dr,
Jri

then, using the triangular inequality,

INWII ^ll®(''i)ll+ /
Jri

There exists some c> 0 such that

ll/(9(n),a^(r))|| < c(|l®(r)|l-f-l).

Thus, it follows that

l|xWI|<IWn)||+ f'c{\\x(r)\\ +l)dT.
Jri



Let z(t) = ||a;(t)|| + 1, «(t) = \\x{Ti)\\ + 1, a(t) = c. Applying Bellman-Gronwall lemma, we have

lliWII +1 < (ll®(n)ll + t e [n, r/].

Since by non-expanding assumption, ||®(r{)|| < ||a;(T/_i)||, we deduce that

Proceeding further,

that is.

lkWII<(lk('-o)ll + iK<'-'»'-i.

Strictly speaking, the continuous trajectory of a hybrid automaton execution is not a function
of time, since it takes more than one value at switch time t = r/. However, on every closed interval
[tj, t^, it is a continuous diflFerentiable function. Therefore we can treat x(') as a function.

2 Zeno Hybrid Automaton

In this section we discuss the Zeno hybrid automaton.

Definition 6 (Zeno Hybrid Automaton)
An infinite execution is called Zeno if ~ "^t) bounded. The time Tqo = W"" ^
Zeno time. If all executions are infinite and Zeno for some initial state, then the automaton is called
a Zeno hybrid automaton.

Now we will present some particular features of Zeno Executions. First we introduce the notion
of Zeno state.

Definition 7 (Zeno State)
A state (g,i) € Q x X is called a Zeno state of a Zeno execution x = if there exists a
sequence $i 6 [r,*, r/], for all N > 0 and c> 0, q(0i) = Qand ||®(^,) —«|| < € for some i> N.

In other words, the set of Zeno states consistsof all cluster points of sequence {(9(^1)1 ®(^»)}£o'
The discrete part of the Zeno state will be visited infinitely often. We use Zq© C Q x X to denote
the set of Zeno states.

Example 1
• Q = {gi, 92} and X =

• Init = {gi} X{a: e R^ : 0 < xi < 3);

• /(?) = (®2) -10)^> for all (g, a;) GQ x X;

• f(gi) = {a: € X : a;i > 0} and /(g2) = {a; GX : ari > 3};

• {(gi,g2),(g2,g2),(g2,gi)};



Xi := 0
X2 —C®2

2.9 < xi < 3
a;2 < 0

Figure 1: Example 1

A jr\

LA..ii..k^AjA.kbi.UAiy\.i

e io

4.9 < iCi < 5

X2<0

X\ 1= 3

X2 := —CX2

14 16

Figure 2: Simulation for Example 1: Xi solid, ®2 dotted

• <3(91,?2) = {i € X : -0.1 < ®i < 0}, <3(92,92) = {a: € X : 4.9 < ii < OA®, < 0},
<3(92,9i) = {i e X : 2.9 < ii < 3a®, < 0};

• fl(9i,92,®) = (5,-ca:2)'', R{q2,q2,x) = (S.-cij)^, fi(92,9i,®) = (0,-<a:2)^, for some c e
(0,1).

The Zeno states are {91, (0,0)^}, {92, (3,0)^} and {92, (5,0)^.

Example 2
Consider a Zeno execution with Zoo = {(9»®)}i modify this hybrid automaton by extending two
extra continuous states {xejXf) with

Xe = 0,

x/ = 0,

and reset maps (Xe\ / cos^ sin^"^ f^e\
xj) sin^ cosd) \Xf)

where Bf2i: is irrational, and the initial condition Xe(0) = 0, x/(0) = 0. Then the Zeno state set is

Zoo —{?} ^ '• (Xe, Xy) € 5 }.



The above examples illustrate that the Zeno state set of could be either a finite set or an un
countable set. And also, one discrete Zeno state may correspond to multiple continuous Zenostates.

A Zeno hybrid automaton may have Zeno executions with no Zeno states. Here we will give an
example with non-Lipschitz continuous vector field.

Example 3
Consider the hybrid automaton if, defined by

• Q = {gi, ^2} and X =

• Init = Q X X;

• /(?j = (Ij^2)^1 all (g, x) € Q XX;

• /(gi) = {a; € X : xi sin < 0} and /(ga) = {a; € X : a;i sin > 0};

• E=^{(qi,q2),{q2,qi)}\

• G(quq2) = {x €X: xisin ]^ >0} and G{q2,qi) = {x €X: xisin ^ < 0};

• = R{q2,qi,x) = {x}.

Theexecution ofH with initial state (gi, (—1,1)^) exhibits an infinite number ofdiscrete transitions
by Too = 1 and X2{t) = 1/(1 -1), for all t € [0, Too). However, for all {^t}£o» ^ ?•/], the sequence
{®2(^t)}So strictly monotonic increasing and unbounded. Therefore, H has no Zeno state.

Example 4
Similar to example 2, if we have a Zeno execution with Zoo = {(9j augment an extra continuous
state Xe with trivial continuous dynamics Xe = 0, reset map Xg := 2xe and the initial condition
Xe(0) = 1. The iteration of this map gives Xe(^t) = 2*, for all Bi € Evidently, the modified
hybrid automaton has no Zeno state.

In example 3, the Zeno execution has no Zeno state because / is not Lipschitz continuous, whereas
in example 4, it is due to the exploding reset map. It is clear that the continuous dynamics and the
reset map are crucial to the Zeno state.

When x(') is bounded, Weierstrass theorem says that {g(^t)j®(^i)}So» ^
one cluster point. Thus if the Zeno hybrid automaton satisfies the condition in Proposition 2, it has
at least one Zeno state.

Proposition 3
Consider a Zeno hybrid automa.ton with R{q^ q\ x) = {x} for all (g,g') € E, for every Zeno execution
X = (r, g, x), it holds that Zoo = Qoo X{®} for some Qoo C Q and x € X.

Proof: Since the reset is non-expanding, from Proposition 2, for Zeno execution x =
Vt 6 [ro.roo), we have

IWt)ll<(IW^o)|| + l)e'"-'>''-l.



Then it is dear that ®(t) is bounded on [ro,roo], so for ail g,- 6 Q, all t G[ro,roo], there exists some
Ki > 0 such that ||/(9t,a;(t))|| < Ki. Let K = max/C,, for all {^,}So> G it follows that

fBi
x(0i) = x(r,) + / f{q(Ti),x{T)) dr

Jri

= a;(n) + (Oi - Ti)f(q{Ti),x{^i)),

for some e [rj, r/]. Hence for all A; > / > 0,

x($k) = x{$i) + (r/ - ^/)/(g(r/),a;(^/))
k-l

t=/+l

+ (0k-n)f{q{rk),x{^k)),

which gives that
k

Since ]C£o(''i "" it follows thatfor all c> 0there exists M > 0, such that kyl > M implies
that ||a;(^jfe) < c- Hence, {a;(^»)}£o ^ ^ Cauchy sequence. The space X = E" is complete, so
the sequence has a limit x = lim,_>oo •

The merit of the above proposition is that as far as i2 is non-expanding, the continuous part of
Zeno states set is a singleton. Furthermore, if J? is contracting, we can prove that the singleton is
just {0}.

Proposition 4
Considera Zeno hybrid automaton with contractingreset, for every Zeno execution x =
holds that Z^o = Qoo x {0} for some Qoo Q Q-

Proof: Same as above, for all qi € Q, f(qii^(t)) is bounded by some K > 0. For all {^t}Soj
0i G [r,-, r/], we have

l|i(«i)ll <ll®(n)|| +II / •f(9(Ti),x(r)} drli
JTi

< ||®(rf)|| + iif(T/-ri).

Using the fact that ||a;(r,)|| < <5||a;(r/_i)||, it follows that

IW^i)ll<<5|k«_i)|| + ii:(r/-n)

=<5||a;(ri-i)-H /' ' f(q(Ti.i),x{T)) dT\\ +K{tI - Vi)
Jn-i

< <5||®(ri.,)l| + KS(tU - n-i) + K{Tt - n).

By induction,

|i(tf.)|| < «ik(ro)|| +KY2 - '•m)-
m=0

7



Let Si = EL=:0 - T-m), from Abel's Test, Si converges as i -4- oo. And also, notice that

=EE
t=0 t=:0 m=0

\Tn=0 / \ j=0

"Too
< oo

1-5

Therefore, as z oo, 5,- -J-0, which yields that ||x(^,)|| 0, hence x = 0. •

Proposition 5
Consider a Zeno execution with Zoo = {?} x Xo©, forsome g € Q, X©© QX, if R(q, g, x) is a function
and for some 5 € (0,1),

11-^(9) y) II ^ ^11® - yII > for aJlx.ye <?(g, g),

then Zoo = {(g,«)} for some x € X.

Proof: By hypothesis, i?(g, g,x) is a contracting mapping, thus it has a unique fixed point x* € X.
We claim that x* is the continuous part of the Zeno state, i.e., x = x*. There are two steps in the
proof.

1) We start by showing that /(g, x(t)) is bounded for Zeno execution x = 2;)
Since g is the only discrete state defining Z©©, there exists iV > 0 such that for all t € [t/v,Tbo),

q(t) = q. For tq <t < rjv, x{t) is continuous on [r,-, r/], VO < z < AT - 1, hence x(t) is bounded. For
Tt < i < T-j i> N,

There exists some c> 0, such that

it) =x(Ti)+ f /(g,x(r))dr,
JTi

llxW - x'W <||x(r,) - x'W +f c(||x(r)|| +l) dr
JTi

=||a(ri) - x*|| +c(||i*|| +!)(«- r.) +f c||x(r) - i*|| dr.
JTi

Let
z(J)= ||l(f)-X*||,

u(t) = ||i(t,) - x'll + c(||a:*|| + l)(t - n),
a(i) = c.

Applying Bellman-Gronwall lemma, we have

llx(t). - x'll < ||x(r<) - x'll + (||x-|| + 1) - l)
^llxCrO-x'll + dlx'll + l)^'''-"'.



Since a;(r,) = i2(g,9, (aj(r/_i)) and r(x*) = x*,

MTi}-x^\\<6\\x{TU)-xT

Now , .
||IW - I-II < - x'W + (lli-ll +

Proceeding further,
||a:(t) - I'll < ||i(rj,_i) - i*|| + (||i*||+

then

Mm < ||i(r;,_i) - I'll + (lli'll + + lli'll.

We can now define x(roo) such that

lk(roo)|| < ||x(rj;,_.) - I'll + (lli'll + + ||i'||.

Then ®(f) is bounded on [ro,roo], and there exists jK" > 0, ||/(9t>«(t))|| < K.
2) Next, for all {^t}go> ^ ^

||i(«i) - ®1l <ll®(n) - I'll +II / /(?. i(i-)) M\
JTi

< ||a;(ri) - x*\\ + K{Oi - n),

then , .
MOi) - < S\\x(rU) - ^11 + K{t( - Ti)

= ^llx(ri-i) + / /(g, x(r)) dr - x*\\ + K{tI - r;)
JTi-l

< i||i(r.-i) - I'll + K5{tU - Ti-i) + K(t; - Ti).

So we can derive
t

||i(d.) - I'll < i'- |̂|®(rAr)|| +kJ2 - '••»)•
m=N

Similar to the proof in the Proposition 4,

||x(^,) - x*|| -»• 0, as i ^ CO,

hence, x = x*. •

Proposition 6
Consider an invar/ant preserving Zeno hybrid automaton with Zoo = {(9ti®t)}t6/> where I is some
index set. If G(qjq') n /(g)® = 0 for all q,q' € Qoo = {gOt'e/ ^ ^ ^
Xi 6 dl(qi). Furthermore, ifx,= x, Vi € I, then x €



Proof: Note that for all (gnX,), there exists a subsequence {0tn}^o»^tn € such that
9(^tn) = qi and ||«(^,„) - ®t|| 0. Since

IkW'n) - a;(rin)|| < KWdi^ - TiJ\ -¥ 0,

we have ||®(7tn) ~®* ll —^ ® ^*n* assumption the automaton is invariant preserving, ®(^tn) ^
When n is large enough, all the iscrete transitions will only take place in Qoo- Otherwise, if

for all n there exist some e„ ^ Qoo will happen after t = r-^, then we can find some e 6 {cn}S=o
that appears infinitive often, which contradicts to e ^ Qoo' So there exists some gj € Qoo such that
®(n„) € G(gi, ^), hence €C?te,^)n/(g,). Since G(qi,q<}nl(giy = 0, we have ®(n-J Gdl(qi).
Notice that dl(qi) is a closed set, so that x = lim„-^oo»(Ti„) € dl(qi). The second part is obvious.

Proposition 7
An invariant preserving hybrid automaton with non-expanding reset has no Zeno execution if

• G{q, g') n /(g) c dl(q) for ail (g, g') € E,

• nil, 91{qi) = 0.
Proof: Assume the hybrid automaton has Zeno execution x = (^>g>®)» from Proposition 3, we
know that Zoo = Qoo X {«} for some Qoo ^ Q and i G X. By virtue of Proposition 6, we have
XGDill ^Hqi) = which gives the contradiction. •
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