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Abstract

Timing Analysis and Optimization for High-PerformanceDigital Circuits

by

Yuji Kukimoto

Doctorof Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Robert K. Brayton, Chair

Meeting performance constraints insynchronousdigital circuits iscmcial sinceaviolation may cause

an unexpected valueto be latched in a memory element. Toguarantee the absence of timingviola

tions the performance ofa design needs to beestimated accurately and verified against given per

formance constraints. This delay estimation iscalled timing analysis. Themain difficulty of timing

analysis forgate-level digital circuits istheexistence offalse paths. Afalse path isa topological path

of a given circuit along which a signal event never propagates. Since false paths do not contribute

to thedelay of a circuit, they need to beexcluded when the performance ofa circuit is estimated.

Although false pathdetection has been researched extensively in the last decade, it has

always been studied in a specific problem, namely arrival time analysis of combinational circuits,

in which theamval times of theoutputs of a circuit are estimated given thearrival times of the in

puts. The main contribution ofthe first part ofthis dissertation istointroduce and present algorithms

for a newproblem: false-path-aware required time analysis of combinational circuits, in which the

required times of the inputs ofa circuit are estimated given the required times of the outputs. This

problem forms the core ofa rich setofnovel timing analysis problems arising inhierarchical designs.

The applicationsinclude false path detectionand removalof combinationalcircuits under unknown

surrounding environments and hierarchical false-path-aware timing analysis.

To meet anaggressive performance goal, timing optimization algorithms play a key role

in exploring a design space systematically. The second part ofthe dissertation focuses on timing

optimization ina logic synthesis step called technology mappings where a technology-independent
circuit is translated to a circuit composed only ofgates in a given gate library. Although the com
plexity of the technology mapping problem for area minimization is well-understood, technology



mapping for delay minimizationhas been tackled using heuristic approaches without knowing its

exact complexity. The contribution of the second part of the dissertation is a linear-time algorithm

that solves the problem optimally under a load-independentdelay model. There is no need to resort

to heuristic approaches since the problem can be solved optimally and efficiently.

Professor Robert K. Brayton
Dissertation Committee Chair
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Chapter 1

Introduction

Performance-oriented design methodology for digital circuits has gained increasing im

portance in the last decade mainly due to the competitive microprocessor market. This trend is ex

pected to continue in the future to push the current performance envelope to the limit. Designing

such a complex digital circuit under tight time-to-market pressure is a daunting task beyond a man

ual design methodology and naturally requires computer-aided design and verificationto manage the

complexity in a short design cycle. The focus of this dissertation is design automation techniques

for performance-oriented designs. Specifically, timing verification and optimization techniques will

be smdied in detail.

A typical design flow of digital circuits starts from a functional description of a design

written in a hardware description language along with other specificationssuch as area, performance,

testability and power dissipation. The initial description can be an abstract behavioral description,

in which the behavior of the design is specified without an explicit hardware configuration. This is

then translated into a register-transfer-level (RTL) description by mapping it to an actual hardware

configuration. Operations in the behavioraldescriptionare scheduledon given hardware resources

to meet given constraints. This step is called high-level synthesis. In the resulting RTL description a

set of registers is explicitly declared and data operations between the registers are performed condi

tionallyunder a controller. Logicsynthesisis the step whichtakes an RTLdescriptionand generates

a gate-level circuit composed only of gates and storageelements available in an actual technology to

be used. This step is followed byphysical design, where all the components of the gate-level circuit

are laid out on a two-dimensional plane to create masks, which are then used to fabricate the circuit

on silicon.

Although performance-orienteddesign and verificationmethodology needs to be addressed



at every level of the design flow, we will restrict ourselves to techniques applicable to the gate level.

The first part of the dissertation deals with timing verification of gate-level circuits. Once

a design is complete, we need to verify if the designmeets a givenperformance constraint. The key

step is to estimate the delay characteristics of the circuit. We assume that the delay of each gate in

the circuit is pre-characterized and wire delays are extracted from the physical layout of the design.

A naive way to estimate the delay of the circuit is to find the topological longest path of the circuit,

where the length of a path is defined as the sum of the delays of all the componentsalong the path.

Although this gives a conservativeestimate of actual delay, accuracy may suffer since the longest

topologicalpath may not be able to propagatea signalevent due to the interactionof the functionality

and the timing of the circuit. A path is calledif it is not responsible for delay. To estimate the

delay of a circuit accuratelywe need to findthe longest topologicalpath that is not false. Although

false path detection has been intensively studied in the last decade, the focus of the research has

been in false-path-aware arrival time analysis(functional arrival time analysis),where arrival times

at the primary outputs of a gate-levelcircuit are estimatedgiven arrival times at the primary inputs

by consideringfalse paths. However, this problemis only one facet of delay analysis issues related

with false paths.

The goal of the first part of the dissertation is to deepen the understanding of false paths

by exploring various timinganalysis problems other thanfunctional arrival timeanalysis.

After giving a background of the previous research on timing analysis in Chapter 2, we

will introducein Chapter3 a new timinganalysis functional requiredtimeanalysis^ which

is an analogue of functional arrival time analysis for required time computation. In functional re

quired time analysis required timesat the primary inputsof a circuitare estimated given required

times at the primary outputs by taking false paths into account. It will be shown that an existing

theory for functional arrival time analysis can be generalized to functional required time analysis.

Exactand approximate algorithms for functional requiredtimeanalysiswillbe presented, the use of

which gives more relaxed requiredtimes than those estimatedby topologicalrequiredtime analysis

unaware of false paths.

Chapter 4 will discuss delay characterization of a combinational module. A combinational

module is a portable combinational circuit that can be used under any surrounding environment. An

intellectualproperty(IP)module,ifcombinational, is anexampleof suchmodules. False-path-aware

delay characterization of a combinational module plays an important role in timing analysis for IP-

based design methodology,where the accuratedelay abstractionof an IP module is required without

disclosing its internal proprietary details. The main difficultyof this problem is in the fact that the



surrounding environment of the module is unknown, i.e. we cannot assume specific arrival times

at the primary inputsof the module. We will show that functional required time analysis studied

in Chapter 3 can be used directlyfor the delay characterization problem. A false-path-aware delay

abstraction of a combinational modulecan be computedwithoutassumingspecific arrivaltime con

ditions.

Chapter 5 will study hierarchical functional arrival time analysis, where a hierarchical cir

cuit is analyzed in a bottom-upway withoutflattening the hierarchy. Note that existing state-of-the-

art functional arrival time analysis techniques in the literature always assume that a circuit under

analysis is flat. Althoughflattening can alwaysbe used to removea hierarchy, this potentiallyforces

us to analyze a huge circuit at one time thereby making functional arrival time analysis of indus

trial circuits difflcult. Moreover, once the use of IP modules becomesprevalent, flattening will not

be an option any more. The hierarchical approach presented in this chapter enables us to perform

false-path-aware timing analysis by respecting a given design hierarchy. The analysis starts with the

computation of a delay abstraction for each module at the lowest level in a hierarchy. The computed

delay abstraction is then used for the analysis at the next higher level. There is no need to analyze

the entire circuit at one time. The hierarchical analysis gives as a byproduct incremental analysis

capability, which is missing in flat analysis.

Chapter 6 will introduce a new criterion, called timing-safe replaceabilityyfor comparing

two combinational modules in terms of performance. A module is said to be a timing-safe replace

ment of another if the former is no slower than the latter under any surrounding environment. This

notion allows us to argue the false-path-aware performance of two combinational modules without

assuming the surrounding environment in which the modules are embedded.

A new class of false paths for combinational modules will be introduced in Chapter 7. A

path in a combinational module is said to be strongly false if it is false under any surrounding en

vironment. This special class of false paths is the only false paths that can be safely assumed to be

false under unknown surrounding environments. An algorithm to detect strongly false paths will be

given.

Chapter 8 will then present an algorithm to remove strongly false paths from a combi

national module without slowing down the module under any environment. The module after the

transformation is provably a timing-safereplacement of the original. The resulting module can be

analyzed more accurately than the original using topologicaltiming analysis, which is much more

efficient than functional timing analysis.

The first part of the dissertation will be concluded by approximate algorithms for flat func-



tional arrival time analysis in Chapter 9. Although flatfunctional arrival time analysis is well-understood

by now, the analysis of industrial circuits with a large number of reconvergences is still CPU-time

intensive computation. We will extend an existing functional arrival time analysis technique so that

delay estimates can be obtained in less CPU time with possible overestimation. Experimental re

sults will be provided to show that the approximation gives a dramatic reduction in CPU time for

benchmark circuits with minor delay overestimation.

The second part of the dissertation is devoted to performance-oriented logic synthesis.

Specifically, we will focus on the final step of logic synthesiscalled technology mapping. The goal

of technology mapping is to take a technology-independent circuit and to generate a functionally

equivalentcircuit composedonly of gates availablein a given gate library so that a given criterion

is optimized. The criterion of our choicein thedissertation is performance.

Wewill firstoverviewthe previousresultsof technologymappingin Chapter 10and illus

tratehow theproblemis solvedby an approximate strategy developed for area-minimal technology

mapping. The overall flow of the mostpopular approach to delay-minimal technology mapping is

to partition a given technology-independent network intoa forest of trees andto map each treeop

timally using dynamic progranuning. This flow makes sense in area-minimal technology mapping

sincewithout the partitioning the problem becomes NP-hard. We will show that thedelay-minimal

technology mapping can be solved optimally for a general technology-independent network with a

DAG structure in timelinearin thesizeof thenetwork under a load-independent delay model. The

algorithm is inspired by delay-optimal technology mapping for FPGAs. This implies that the tree

decomposition essential in area-optimal mapping is notnecessary fordelay optimization. Therela

tionshipbetween library-based mapping and FPGA mapping, which wasnot understood well, will

be clarified.

The dissertation will be concludedin Chapter 11. The summary of the dissertationand

future directions will be given.



Chapter 2

Preliminaries

This chapter overviews timing issues arising in designs of synchronous digital circuits. Af

ter introducing basic terminology on Boolean networks in Section 2.1, we will discuss in Section 2.2

howto realizea synchronization mechanism usingmemory elements, and showthat theunderlying

assumption of this synchronization mechanism requires that certaintimingconstraintsbe met in de

signs. Wewill then illustratein Section 2.3 how thesetimingconstraints are passedto synthesis so

thata synthesized circuit is free from a timing violation. Finally, given anactual implementation ofa

design, oneneedsto verifywhether the implementation meetsallgiventimingconstraints. This task

is called timing analysisj which willbecovered inSection 2.4. We willstartwithclassic topological

timinganalysisandthenintroduce moreaccurate analysis calledfunctional timing analysis. Wewill

give an overviewof functional timing analysisand then suirunarize the XBDO analysis, one of the

most accurate functional timing analysis techniques known so far, which forms the basis of the first

part of the dissertation.

2.1 Boolean Networks

A Boolean network [BRSVW87] is an abstract representationof multi-levelcombinational

circuits. It is a directed acyclic graph, where a nodewithoutanyincoming edgerepresents a primary

input anda node without any outgoing edge lepresents a primary output. Alltheothernodes repre

sent intermediate gates, A Boolean function is associated with each intermediate node. There is an

edge from a node n,- toa node nj if the function associated with nj explicitly depends on n,-.

If there is anedgefrom a nodeni toa node W2, ni is afanin ofa nodeni andni is afanout

ofa node nj. If there is a directed path from ni toni in theBoolean network, ni is a transitivefanin



of n2 and ni is a transitivefanout of np

2.2 Synchronization and Memory Elements

In this dissertation we only consider synchronouscircuits, those controlled by a global

clock'.

Any interesting digital system has memory elements that keep track of previous states.

These memory elementsare synchronously updatedby clock signals. There are two main types of

memory elements:

1. edge-triggered flip-flops and

2. level-sensitive latches (transparent latches).

An edge-triggeredflip-flop has a data inputand a data output. It also hasa control inputconnectedto

an external clock signal. Whenever the control input has a transition from high to low (for falling-

edge-triggered flip-flops)» the data input value at the time is captured and will be available at the

data output until the next falling transition. A level-sensitive latch has the same three terminals as

an edge-triggered flip-flop, but its behavioris different. When the control input is high, the data

output value tracks the data input value (for active-high level-sensitive latches). Once the control

inputtransitions from highto low, thedatainputvalue at themoment is sampled andthedataoutput

will be held at the valueuntil the next time the controlgets high.

In both types of memoryelements,one needs to pay attentionto relative timing of the sig

nals so that the correct data input is sampled. Consider a high-to-low transition of the control in

put. Since the sampling is done by a physical device, the data input value must have been stable

long enough before the samplingtakesplace. This is calleda set-up timeconstraint. The minimum

amount of the set-up time required depends on the circuit structureof a memory element. Given this

constraint, we need to make sure that the data input of the memory element becomes stable early so

that there is enough stable time before the actual sampling transition. Furthermore, it is also neces

sary to hold the data input value even after the sampling transition. This is called a hold time con

straint. There is a minimum amount of time for the data input to be held after the transition edge so

that the correct value is sampled.

' Itispossible to create alocal clock from external clocks and intemal signals. This iscalled gatedclocking and isused
frequently in low-powerdesigns. We will only consider pure external clockingin this dissertation.
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Figure 2.2: Timing Diagram of an Active-High Level-Sensitive Latch

Figures2.1and2.2 illustratethe behaviorsofa falling-edge-triggered flip-flop andan active-

high level-sensitive latch by timingdiagrams respectively.

2.3 Timing Constraints in Synthesis

2.3.1 Impacts of Set-up/Hold Time Constraints on Synthesis

The clock frequency of a digital system is one of the major performancegoals set at the

beginningof a design project. The reciprocal of the clock frequency is called a cycle time, which

is the length of onecycleof theclock. Thecycle time has a deep impact on the circuit design. As

in Section 2.2, weneedto meet a set-up timeconstraint anda holdtimeconstraint for eachmemory

element inordertoguarantee correct synchronization. Therefore anysignal feeding thedatainputof

a memory elementis requiredto be stableearlyenoughand to maintain its value longenoughbefore

andafterevery clocking edgerespectively. We canthen assure thatevery memory element captures

a correct valueat any point in time. Since the data inputsignal of a memory element is typically

generated by a combinational logicblock, the timing constraint is poseddirectly on the logicblock
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Figure2.3: Combinational Blockbetween Flip-Flops

feeding the data input.

Consider a simple casewhere all thememory elements areedge-triggered flip-flops con

trolled by the same clock signal. Figure 2.3 shows that the data input ofan edge-triggered flip-flop is

connected to theoutput ofa combinational logic block whose inputs come from theoutputs ofother

flip-flops. Letc bethecycle time oftheclock. Suppose that theclock falls from high tolow atr = 0.

Thenext fallingedge takesplaceatr = c. Let £fmax be themaximum timefor thecombinational block

totake toget stabilized given all the inputs atr= 0. The output ofthe combinational block, z, gets

stable nolater than t = Lets betheminimum set-up time required. The set-up time constraint

issatisfled if it is satisfled for the worst case, which gives the following inequality.

^ ~ ^max ^ s

Therefore, the combinational blockmustbe designed so that

^max^C —S. (2.1)

Note that c and s are constants.

Consider thehold time constraint. Assume thattheset-up time constraint is met already.

We can then assume that the signal value zfortheprevious clock cycle is stable byr = —s. Atr = 0,

all the flip-flopssample and hold new values. These new values cause the combinational block to re-

evaluate its functionality thereby eventually giving a newfinal value atz. Let ^/min be the minimum

time for ztotake togetdestabilized given all the new input values atr= 0. dlmin isthe earliestpossible

time for z to start changing from its old value. In order to meet the hold time constraint.

^min ^ ^ (2.2)

should hold, where h is theminimum holdtime required forthe flip-flop andis a constant given the

type of the flip-flop.



The two inequalities (2.1) and (2.2) pose constraints on Jmax and t/niin of the combinational

block. The satisfaction of the inequalities guarantees the absence of a set-up time or a hold time

violation^.

2.3.2 Synthesis under Timing Constraints

Various techniques have been studied in the literature to address synthesis of combina

tional blocks under timing constraints. Although the constraints (2.1) and (2.2) for the set-up and the

hold time constraints respectively are equally important for correct synchronization, the hold time

constraint is relatively easier to meet than the set-up time constraint in reality^. Therefore, we will

focus on the satisfaction of set-up time constraints in the rest of the dissertation.

Timing-driven logic synthesis of a combinational circuit takes as input a timing specifica

tion along with a functional specification to generate a circuit satisfactory both in terms of function

ality and timing. The timing specification is given as

1. arrival time at each primary input and

2. required time at each primary output.

Arrival times at primary inputs specify the timing environment under which the circuit is to be used

while required times at primary outputs put a constraint on the speed of the circuit.

Suppose that the combinational block in Figure 2.3 needs to be synthesized. Let us see

how the set-up time constraint (2.1) is translated into this framework. Since a primary input of the

combinational block is fed by the output of a flip-flop, the time when sampling takes place gives

arrival time of the primary input. This sampling time is typically known since it is determined by

an external clock. In our case we can set arrival time of all the primary inputs to r = 0. From (2.1)

the signal stable time at the primary output z must be no later than c - 5, which directly gives the

required time at the output.

^The extension ofthis constraint extraction for the case where different edge-triggered flip-flops are controlled by dif
ferentclock signals is trivial. The use of level-sensitive latchesmakesthis constraintextractionmuchmorecomplexdue
to cycle stealing, and is beyond the scope of the dissertation. For details refer to [She93].

'̂ A hold time violation can be resolved by inserting active delays. Shenoy et al. propose one such technique in
[SBSV93].
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2.4 Timing Analysis

Wehave seen so far thatcombinational logicblocksmust bedesignedso that a set-uptime

constraint and a hold time constraint are met for each memory element. Since the satisfaction of

the timingconstraintsis crucial in correctfunctionality, we need to verifywhethera combinational

block meets thetiming constraints onceit is synthesized. Thissection overviews thebasics of timing

verification.

Consider the problem of estimatingdman and dj^n of a given combinationalcircuit as ac

curately as possible. This problem is called timing analysis or timing estimation. The estimation is

essential in verifyingwhetherthe circuit is free from set-uptime and holdtime violations.The exact

values of dmax and are hard to estimate sincethe timing characteristic of a circuitis determined

bycomplex analog behaviors. Therefore ourgoal istoestimate thevalues conservatively sothat any

timing violation is detected by using the estimatedvalues.

Lot ^max ^0^ estimate ofdmax such that^/max < c?J„ax isguaranteed, i.e. d'^^ never under
estimates dmax,. If the set-up time constraint is satisfied using the estimate d'^^,

^Inax<0-J.

Since ^max ^ ^max'

^max ^ ^max ^C —S.

This shows that if there isno set-up time violation using an overestimate d'^^, it implies the absence

ofset-up time violation under the actual ^fmax- Notice that the condition that t/max never gets underes

timated is thekey inestablishing this result. Any timing analysis technique must meet this condition

to be useful in thecontext of timing verification. Otherwise timing violation could be overlooked,

which defeats the whole purpose of timing verification.

We can obtaina similarresultfor the estimation of This time we require that dj^m

never get overestimated. With thiscondition any holdtime violation canbedetected usingan esti

mate of Jmin-

Conservative estimation of ^^max and i/min is crucial in guaranteeing thatno falsepositive

result is obtained in timing verification. However, if the estimationis far off from the actual value,a

timingviolation may bedetected usingtheestimate although thereis no violation in the real circuit.

This is a false negative result and should be avoided. To minimize such false alarms conservative

yet accurate estimation is desired.
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Although the estimation of minimum delay ^/min is important for the timing correctness

of a digital system, playsa key role in timing-driven designs. Therefore, we will focus on the

estimation of maximum delay f/max in this dissertation.

2.4.1 Gate-level Timing Analysis

The timing characteristic of digital circuits is determined as a result of complex analog

behaviors. Circuit simulation suchasSPICE directly solves a setofdifferential equations tocompute

an output waveform given an input waveform. Althoughaccurate, this approach is computationally

expensive and the applicability is limited to small circuits. Furthermore, since the analysis is only

validfor a given input waveform, one needs to repeat simulations for all inputwaveforms to make

sure that no timingviolationoccurs. The exhaustivesimulationsof all possible input waveformsare

not feasible even for moderate-size circuits^.

This difficultycan be overcome by performing timing analysis at a more abstract level,

i.e. thegate level. A circuitunderanalysis is assumed to begiven at thegatelevel; it is composed of

gates connected by wires. We assume that the delay of each gate in the circuit is pre-characterized

by circuitsimulation and thatthe maximum delayofeachgate is known. Gate-level timinganalysis

then takes thesegate delay values andestimates the maximum delayof thecircuit. Wealsoassume

that each gate can take its maximum delay simultaneously. Although this may not be possible in

reality, the assumption is conservative

2.4.2 Problem Formulation

We formulate the problem of estimating dmax of gate-level combinational circuits.

Let G= (V, E) bea Boolean network. Vcanbe partitioned into threedisjointsets V>/, Vpo

and V/. Vpi and Vpo arethesetsofallprimary inputnodes andprimary output nodes respectively. V/

is the setof all intermediate nodes. Recall thateach intermediate nodecorresponds to a gate.

exhaustive simulationsare not perfonned, Jmax tnay be underestimated.
^For example, itmay not be possible for two gates to take their worst case delays simultaneously since the condition

thatonegatetakes itsmaximum conflicts with thecondition that theother takes itsmaximum. Recent work bySivaraman
andStrojwas [SS97] addressed this issue and showed that more accurate timing analysis is possible by considering this
interdependency of worst-case gatedelaysexplicitly.
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The gate-level arrival time analysis problem: Given

1. a Boolean network G= (V,£) representing a combinational circuit,

2. a delay range [0,d(rt)] for each intermediate noden € V/, and

3. arrival time arr(xi) for each primary inputs, € V/>/,

estimate arrival time arr(zi) for each primary output z,- € Vpo-

Notice that the minimum delay for each internal node is assumed to be zero. Since the

delay value ofa node isnot a constant, but a range, the Boolean network under analysis implicitly

represents a familyof networks, eachof whichisfunctionally andstructurally identicalwithdifferent

gate delays within thegiven upper-bounds. Therefore, any analysis must guarantee that a computed

arrival time ataprimary output isaconservative estimate for allthe members ofthe network family.

This property is calledmonotone speedup or robustness [MB91].

Although a wire has nodelay in this formulation, wire delay canbetaken intoaccount by

assuming on thewirea buffer whose maximum delay is set to thedelay of the wire.

Inthis formulation, each node has a common delay value from any fanin. Inreality delays

aredifferent fordifferent fanins. Also, even forthesame fanin, thedelay can bedifferent between

rising and falling transitions. Although it iseasy togeneralize the subsequent arguments tocapture

these aspects, we will follow theoriginal formulation for ease ofexposition.

2.4.3 TopologicalArrival Time Analysis

A Boolean network represents signaldependencybetween nodes in the network. It is con

servative to assume that each node becomes stable only after all its fanin nodes do. Under this as

sumption one can determine thesignal arrival time atanoutput bydetecting thelongest path from a

primary input nodetoa primary output node, where the length ofa path is defined as thesum ofthe

arrival time at the input and all nodedelaysalong the path [Hit82, HSC82]. This is a well-known

longestpathproblem ondirected acyclic graphs. We can visit nodes inthe network ina topological

orderanddetermine thesignal stable time at node n, arr(n), by

arr(n) = d(n) max flrr(m,).
mi^FANIN{n)
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Since the algorithmruns in time linear in the size of the network, it is applicableto laige industrial

designs.

2.4.4 False Paths

Although topological analysis gives an efficient solution to the arrival time analysis prob

lem, the quality of the result may suffer. The basic assumption in topological analysis is that each

intermediatenode becomesstable only after all its faninnodes becomestable. The functionalityas

sociated with the node is ignored. This is the same as conservatively assuming that all the paths in

the circuit can propagatesignalevents, and are responsiblefor delays. This is not necessarilytrue in

real circuits.

For example, consider a two-inputAND gate n in a network. Assume that both of its fanins

get value zero under an input vector. Since the functionality of the gate is AND, once either fanin be

comes stable to zero, the output of the gate will be stabilized to zero after ^/(n) even if the other fanin

has not yet been stabilized. Therefore, any path leading to the late stabilizing fanin or its extension

is not responsible for delay under this input vector.

As in this example, it may not be possible to propagate a signal event along a path if any

signal event along the path is blocked on its way by other paths. We call such a pathfalse. The ex

istence of false paths in a circuit makes accurate estimation of arrival time difficult for topological

analysis. For example, if the topologicallongestpath is false underall input vectors, the arrival time

estimated by topological analysis overestimates an actual arrival time. The detection of false paths

is only possible by taking into account the Boolean nature of the circuit. Since there are practical

circuits known to have long false paths (e.g. carry-skipadders),arrival time analysis with the capa

bility of false path detection, termedfunctional arrival time analysis, is critical for accurate delay

estimation.

2.4.5 Functional Arrival Time Analysis

Although the existence of false paths has been known for a long time, it was not until the

late 80's that research on systematicdetectionof false paths started. Initially the research focus was

to identify a correct condition for determiningwhether a given path is responsible for delay. Vari

ous path sensitizationconditionshave been proposedin the literature, and the relativeaccuracybe

tween the conditions has been analyzed. Well-accepted path sensitizationconditions such as viabil

ity [MB91] and the floating-mode condition [CD93] were introduced.
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One of the drawbacks of the firstgenerationalgorithms on fiinctionalarrival time analysis

was that falsepath detection was performed for eachpathseparately. Sincea hugenumberof paths

can exist in a circuit, explicitpath enumeration is neverpractical for the analysis of largecircuits.

Devadas et al [DKM93] overcame thisdifficulty by showing that thefalsity of a set of paths can

be determined by a modified automatic test patterngeneration (ATPG), termed timed ATPG. This

breakthrough enlarged the applicability of functional arrival time analysis to industrial circuits.

In the rest of this subsection we will introduce various path sensitization conditions^ to

bereferred to in thesubsequent chapters after giving basic definitions onpaths and controlling/non-

controlling values. Tosimplify the argument we assume that a Boolean network under analysis is

comprised of simplegates although some sensitizationconditions (e.g. viability) canbedefined over

general networks. Simple gates are NOT, AND, OR, NAND and NOR.

Definition 2.1 Apath ina Boolean network isa sequence ofnodes (gates) {goigh- •• where

gi+1 is a fanout o/g,-. (/ = 0,..., m- 1)'.

Definition 2.2 Apaththatstartsfrom a primary input node andends at a primary outputnode isan

input/outputpath or an I/O pathfor short.

Definition 2.3 Let /* = (goj j•••,gm) path. Thefanins ofgi(i = 1,...,m) other than gi^ \ are

called sideinputs ofgialong P. Apathfrom a primary input toa sideinput along P is calleda side

path ofP.

Definition 2.4 Acontrolling valuefor a gate isthe input value thatdetermines the outputofthe gate

independent of the values of the other inputs. The output of the gate determined by a controlling

value iscalled a controlled valuefor the gate. Forexample, the controlling valuefor anAND gate

is0 while the controlling valuefor an OR gate is1. The controlledvaluefor anAND gateis0 while

thecontrolled valuefor an OR gateis1. Anon-controlling value/ora gateis theinput value that is

nota controlling valuefor thegate. A non-controlled value/or a gate is theoutputvaluethat is not

a controlled valuefor thegate. For example, thenon-controlling valuefor an AND gate is 1 while

thenon-controlling valuefor an OR gate is0. The non-controlled valuefor anAND gate is 1 while

the non-controlled valuefor an ORgate is 0.

^We restrict ourselves to single-vector timing analyses, those in which apath sensitization is defined under asingle
input vector. Devadas eta/.[DKMW94] aigued thetruth and thefalsity ofa path given two input vectors. Thefirst vector
is used tosettle down a circuit, andthen thesecond vector isapplied to seeif thepath is responsible fordelay. This canbe
generalized to a multi-vector analysis proposed byLamet al. [LBSV93, LB94]. Although multi-vector analysis is more
accurate thansingle-vector analysis in theory, thelatter is asaccurate as theformer inmost casesin practice.

^We assume that fanins ofanode are distinct. Apath isuniquely identified under this condition.
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Earlyapproaches to thefalsepathproblem werebasedoncaseanalysis [Ous83, Jou83]. A

specific value isapplied toaprimary input and propagated forward asmuch aspossible. Ifa path has

a gatewhose sideinputis set toa controlling value of thegate, thepathis categorized as false. The

underlyingpath sensitizationcondition iscalledstaticsensitization, and was formalized by Benkoski

etal. [BMCM87, BMCM90]. It is thefirst sensitization condition proposed in theliterature to tackle

the false path problem.

Definition 2.5 ApathP = (go, ,. •.,gm) isstatically sensitizable under an input vector x ifall the

• side inputsofgi{i= 1,..., m) are set to the non-controlling value ofgi.

It turned outthat this sensitizationcondition istoo optimistic, i.e. itcan classify a true path

as false thereby underestimating true delay®. As discussed earlier, this flaw is fatal and makes the

condition unusable in timing verification.

Once itbecame clear that static sensitization isincorrect, several new conditions were pro

posed tofix theflaw. Brand and lyengar [BI88] were thefirst group thatgave asensitizationcondition

proven to be correct.

Definition 2.6 Assume that thefanins ofeach gate are linearly ordered. Apath P = (goj ,•••, ^m)
issensitizable in the Brand-Iyengar condition under aninput vector x ifallthe side inputs ofgi{i =

1,... ,m) that are after g/_i in thefanin ordering ofgi have the non-controlling value ofgi.

Depending on the fanin orderings used, theaccuracy of delay estimates undertheBrand-

Iyengar condition varies. However, itisguaranteed [BI88] that no underestimation occurs under any

fanin ordering and any arrival time condition. Notice that the Brand-Iyengar condition is a purely
Boolean condition independent ofgate delays and arrival times atthe inputs.

McGeer and Brayton [MB91] introduced a sensitization condition termed viability.

Definition 2.7 ApathP= (go,^i, •••,^m) is viable underan inputvectorxifateachgi{i= 1,...,m),
for eachsideinput ofgi eitherofthefollowing two holds.

1. The sideinput hasthe non-controlling value ofgi, or

2. There isa viable pathfrom a primary input to the side input whose arrival time via the path
isno earlier than arr(gQ) -fYj~}^ d(gj).

®Brand and lyengar [BI88] showed asimple example where astatically non-sensitizable path can propagate asignal
event, and thus determine thedelay ofthecircuit. McGeer and Brayton [MB91] also discussed theflaw ofstatic sensiti
zation using the same circuit.
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Viability takes advantage of arrival times at the primary inputs and gate delays to achieve

more accurate delay estimation than the Brand-Iyengar condition.

The floating-mode condition proposed by Chen and Du [CD93] is another sensitization

condition that is known to have the same accuracy as viability for arrival time analysis of networks

composed of simple gates.

Defmition 2.8 A path P = (5o>^h ••• " sensitizablein the floating-mode conditionunder an

input vector x iffor each gi{i= 1,..., m), either

1. gi has a controlledvalueand gi-1 gets the earliest controllingvalueofgi, or

2. gi has a non-controlledvalueand gi- j gets the latest non-controllingvalue ofgi.

Static co-sensitization is a sensitization condition independent of gate delays and arrival

times. This was introduced by Devadas et al. in [DKM93] as a necessary conditionfor a path to be

true under the floating mode condition. Although it is not as accurate as viability or floating-mode,

it is a conservative condition.

Definition2.9 Apath P= {go,gU'",gm) is statically co-sensitizable underan inputvectorx iffor

each = 1,.. .,m) that has a controlledvalue ofgi, gi-\ has a controlling valueofgi.

All the correct sensitizationconditionsintroducedin this sectionmeet the monotonespeed

up property [MB91].

2.4.6 Functional Arrival Time Analysis under the Extended BoundedDelay-0 Model

We review functional arrival time analysis undera delay model called the extendedbounded

delay-0 model (XBDO model), originally proposed by Seger [Seg89] and adapted by McGeer et

al. [MSBSV93]. The rest of the dissertation is built up on top of this delay model. This is the de

lay modelunderlying viability[MB91] and the floating mode [CD93]. The procedurefor functional

arrival time analysis under the XBDO model developed by McGeer et al. [MSBSV93] is one of the

most accurate and the most efflcient algorithms applicable to large circuits.

Sensitization under the XBDO Model

Under the XBDO model, each gate in a network has a maximum positive delay and a min

imum delay which is zero. Sensitization analysis assumes that each gate can take any delay between

its maximum value and zero.
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The core idea of [MSBSV93] is to recursively characterize the set of all input vectors that

make the signal value of a primary output stable to a constant (either 0 or 1) by a given required time.

Once these sets are identified both for values 0 and 1, one can compare these against the on-set and

the off-set of the primary output respectively to see if the output is indeed stable for all input vectors

by the required time. The overall scenario of computing output arrival time is to start by setting the

required time to the longest topological delay minus 5 > 0 and gradually decrease it until some input

vector cannot make the output stable by the required time. The second-to-last required time gives an

approximation to the true arrival time at the output. This process of guessing the next required time

can be sped up and refined by making use of a binary search.

Let us illustrate how we can compute these sets. Let n and d{n) be a node (gate) in a

Boolean network 9\C and the maximum delay of the node n respectively^. Let „ be thecharac

teristic function of the set of input vectors under which the output of the node n becomes stable to a

value V€ {0,1} by r = T. Let /„ be the local functionality of the node n in terms of immediatefanins

mi,..., of n. For ease of explanation, let /„ = mim2, i.e., n is a two-input AND gate. It is clear

from the functionality of the AND gate that to set n to a value 1 by / = x, both of the fanins of n, mi

and m2, are required to be stable at 1 by t = x—d{n). This is equivalent to

yX _ yX-d{n) ^ x-d{n)
A,n,l ^m\,\ ^m2,l

Note that the two %functions for the fanins are ANDed to take the intersection of the two sets. Sim

ilarly, to set n to a value 0 by r = x, at least one of the fanins must be stabilized to 0 by r = x - <i„.

yX ^yX-d{n). x-d{n)
Afl,0 A.wi|,0 ' ^m2,0

Here the two x functions are ORed to take the union of the two sets. It is easy to see that the above

computations can be generalized to the case where the local functionality ofn is given as an arbitrary

function in terms of its fanins as follows.

x:,v= I [IT z::,r-n
pePS mi€p 7nj€p

where and are the sets of all primes of /« and /„ respectively. One can easily verify that the

recursive formulations for the AND gate shown above are captured in this general formulation by

noticing P^ = {mim2},P° = for /« = mim2. The terminal cases are given when thenode

is possible to differentiate rise delays from fall delays. However, we do not distinguish them to simplify exposition.
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n is a primary input x.

txA = ^ if X>arr{x)

= 0 otherwise

Xl,o = X ifX>arr{x)

— 0 otherwise

where arr{x) denotes the arrival time ofx. The above formulas simply say that a primary input is

stableonly after a givenarrival time. The key observation of this formulation is that characteristic

functionscan be computed recursively.

Once characteristic functions for values 0 and 1 are computed at a primary output, two

comparisons are made: one for the characteristic function for 1against the on-set ofthe output, and

the other for the characteristic function for 0 against the off-set ofthe output. Each comparison is

done by creating aBoolean network which computes the difference between two functions and using
a satisfiability (SAT) solver tocheck whether theoutput ofthenetwork is satisfiable'®. TheBoolean

network iscalled a%-network orasensitizationnetwork. Experimental results in[MSBSV93] showed

that this approach can analyze large networks inreasonable computation time.

McGeeretat. [MSBSV93, MSS"*" 92] showed that viability and the floating modecondition
areboth "exact" forfunctional arrival timeanalysis in thesense thatstable timeestimates of thetwo

sensitization conditions are the same as the one with %network analysis for circuits composed of
simple gates.

Optimal Construction of %-Networks

We have mentioned that a x-network is constructed recursively from a primary output.

McGeer etat. discuss further optimization to reduce the size ofx-networks.

Given a required time at a primary output, assume that a backward topological required

time propagation of fAf isdone to primary inputs sothat the list ofall required times ateach inter
nal node iscomputed instead ofthe single earliest required time computed by regular topological

analysis. If the x-network is constructed naively, for each internal node in a distinctnode is to

becreated for each required time inthe list. This, however, isnot necessary since the intemal node

'̂ Larrabee discusses in [Lar92] how to construct aconjunctive-normal-form (CNF) SAT formula which is satisfiable if
and only ifthe outputofagiven networic issatisfiable. An effective heuristic for solving aCNF-SAT problem isalso given.
ACNF formula isaconjunction ofdisjunction ofliterals. Stephan etai [SBSV96] later improved Larrabee's result. The
implementation of [MSBSV93] was built ontopofthe SAT solver byStephan etat.
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Figure 2.4: Example: FunctionalArrivalTime Analysis

may exhibit the same stability behavior at different required times, in which casehaving a single

node in the%-network for therequired times is enough. To detect such a casea forward topological

arrival time propagation from primary inputs to primary outputs isperformed tocompute thelistof

allpotential arrival times ateach node. Note thateach potential arrival time corresponds tothetopo

logical delay of a pathfrom a primary input to the internal node. Thestability of thenodecanonly

changeat those times. In otherwords between two adjacent potential arrival times,one cannot see

any change in the stability of the node.

Consider an intemal node n e iAf. Let /? = (ri,..., r,,) and A = (oi,...,denote the

sorted list of required times and that of arrival times respectively at noden. Consider %function

= 0,1). Let ay € Abethe maximum arrival time such that aj < r,-. Since there is noevent

happening between time aj and r„ xJ'v = Xn^v- Matchings from required times to arrival times are

performed in thisfashion to identify the subsetofA that is required to compute the final x function.

Thisoptimization avoids creating redundant nodes in the%network thereby reducing thesizeof the

Xnetwork without losing any accuracy in analysis. Only those arrival times that have a match with

a required time yield nodes in the %network.

Another type of optimizationsuggested in [MSBSV93] is to generate the list of arrival

times more carefully. Foreach potential arrival time, equivalence between thecorresponding %func

tionandtheon-setor theoff-set (whichever appropriate) is checked bya satisfiability callanda new

nodeiscreated in%network onlyif thetwofunctions aredifferent. Otherwise, theoriginal function

or its complement is used as it is. Although this requires additional CPUtimespenton satisfiability

calls, it is experimentally confirmed that the size reduction of the final %network is so significant

that the the total run-time decreases in most cases.

Example

We illustrate functional arrival timeanalysis undertheXBDO model usinga circuit inFig

ure 2.4. Assume thatboth of the AND gates have unitdelays, and that both of the primary inputs
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arrive at r = 0. The arrival time estimate of output z by topological arrival time analysis is r = 2 since

there is a path of length 2 (;ci ,y,z).

We will compute %functions of z for values 1 and 0 at r = 1 to see if z gets stable by r = 1.

The recursive definition of x functions give:

yl _ yO ,yO
A-Z,! ~ A_y,I AX2,1

— .V®^X\,\

= 0-0*J:2

= 0

Z,0 Ar^,0"'"AjC2,0

,0 '-JCa.O ^X2,0

= 0+0+j^

=

TheXfunction ofz forvalue 1at r = 1 is 0, which means thatno inputvector canmake z stable to 1

by r = 1. The x function for value 0 is3^. Therefore, under (xx.xj) = (0,0) and (1,0) zgets stable

to 0 by r = 1.

The twoXfunctions for values 1and0 arenowcompared against theon-set{x\X2) andthe

off-set (Jf H-^) of z respectively by taking a setdifference.

^•Xz.i = ^1^2

= ^X2

Both formulas are satisfiable. The first formula indicates that z is not stable to 1 by r = 1 under

(jcj ,.^2) = (1,1) while the second indicates that zisnot stable to 0 by r= 1under {xi^X2) = (0,1).
Sincez does not get stable by r = 1 underall inputvectors, the arrival timeof z is later than/ = 1.

In fact, the arrival timeestimate r = 2 by topological analysis is accurate for thiscircuit.
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Chapter 3

Functional Required Time Analysis

As we saw in Chapter 2, the timing requirement ofa combinational circuit is typically spec

ified by arrival times at primary inputs and required times at primary outputs. Once an actual circuit

is designed under a timing specification,we need to verify whether the circuit meets the performance

goal or not. Arrival time analysis discussed in Section 2.4 is one way to validate the timing ofthe cir

cuit, in which the arrival times at the primary inputs are propagated through the circuitforward, and

the computed arrival times at the primary outputs are compared against the specified required times

to see if the timing requirement is met. Depending on how much accuracy is required, we have two

types of analyses: topological arrival time analysis andfunctional arrival time analysis. Functional

arrival time analysis has been studied extensively in the literature as we discussed in Section 2.4.

Although timing analysis based on arrival time computation is a standard technique, that

is not the only way to perform timing verification. Another approach is to propagate the required

times at the primary outputs backward through the circuit to compute the required times at the pri

mary inputs. By checking whether the arrival time at each input is no later than the corresponding

computed required time the performance ofthe circuit can be validated. We call this backward prop

agation of required times required time analysis. A by-product of this approach is the availability of

the criticality of each input at the end of the analysis, which was not the case for arrival time analysis.

Although required time analysis has been used in many synthesis operations such as slack

computation, it has been mainly done by ignoring false paths. Therefore little is known about how to

perform required timeanalysis byconsidering false paths'. Thegoal ofthischapter is to leverage the

'The only work that we are aware ofis[BI88], where the authors briefly mentioned that their functional timing analysis
algorithmdevelopedfor arrival time computationcan be used for requiredtimecomputation.This is a natural conclusion
sincethe Brand-lyengar sensitization condition is independent of arrival times at primary inputs. This will be elaborated
on in Section 4.6.
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Figure 3.1: Example: Topological Required Time vs. Functional Required Time

understanding offunctional required time analysis up to the level of functional arrival time analysis

to make false-path-aware required time computation possible. We will see in subsequent chapters

that functional requiredtimeanalysisformsthe basisfor the solutionof varioustiming-related prob

lems.

This chapter is organizedas follows. Westart withan examplewhere false-pathaware re

quiredtime analysis givesa moreaccurate estimate of required timethantopological required time

analysis in Section 3.1. Motivated by the example, the functional required time analysis problem

is formulated in Section 3.2. An exact algorithm and two approximate algorithms are presented in

Section 3.3. Section 3.4discusses timing constraints of subcircuits andtheircomputation as an ap

plication of functional required timeanalysis. Experimental results are givenin Section 3.5 and the

chapter is concluded in Section 3.6.

3.1 Example

Consider a circuit shown in Figure 3.1 taken from [BI88]. Assumethe unit delay model,

i.e. each gate has a delay of one. Supposethat the outputg has a required time t = 3. What is the

required time at each primary input?

Let us first try topological required time analysis. The longest topological path from a to

the outputis of length3. Therefore assuming that thispathis responsible for determining the output

value, the required time at a is t = 3 —3 = 0. The same argumentholds for b. As to input c, the

longest path to the output is of length 2. Thus, the requiredtime isf = 3- 2= l. As long as inputs

a, b and c arrive by f = 0,0 and 1 respectively, the output is guaranteed to be stable by r = 3.

Nowconsiderthe following arrivaltimesat the inputs: arr(a) = 1,arr(b) = 0,arr{c) = 1.

This arrival time conditiondoes not meet the requiredtimescomputedby topologicalanalysis since
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a arrives later than the computed required time of r = 0. However, if we perform functional arrival

time analysis of the circuitunder this condition, we can confirm that the output is indeed stable at

r = 3, whichindicates that req(a) —\^req(b) = Q^req(c) = 1 are validrequired times. Notice that

this required time conditionis looser than the one computed by topological analysis since a is only

required at r = 1 while it was required at r = 0 before.

The reason why this more accurate required time condition was overlooked in topological

analysis is thattheanalysis completely ignores falsepaths. In thiscircuit,underarr(a) = 1,arr(b) =

0,arr(c) = 1 the topological longestpath from a to the output of length 3 is false and not responsi

ble for the signal stability of the output. Therefore, the effective delay from a is only 2. However,

topological analysis never detects this.

As is true for arrival time analysis, false path detection is crucial for accurate required time

analysis. We will see in subsequentdiscussions how required time analysis can be achieved by taking

false paths into account.

3.2 Problem Formulation

Functional Required Time Analysis: Given a Boolean network maxi

mum delay d (n) of each gate n, and requiredtimes at the primary outputs, com

pute required times at the primary inputs by considering false paths. The min

imum delay of each gate is assumed to be zero as in the XBDOmodel.

3.3 Functional Required Time Analysis

Required time analysis can be performed efficiently if it is done purely based on topologi

cal delays. Topological required time analysis first sorts all the nodes in a network in a reverse topo

logical order. Each node n in the network is then visited in this order and the required time at the

node req(n) is computed as req(n) = vaAn^^pj,j^Quj^„>^[req(m) - d(m)). The procedure runs in time
linear in the size of the network. Note that required times are uniquely determined in this algorithm,

which is not necessarily the case once false paths are taken into account as we will see later.

The approach proposed in this section makes use of%functions introduced in Section 2.4.6.

For each primary output, %functions for values 0 and 1 are computed for a given required time and

they arecomparedagainstthe on-setand the off-setof the outputfunctionrespectivelytoextract con-
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ditions on required times at primary inputs. The main differencebetween this problem and functional

arrival time analysis discussed in Section 2.4.6 is that arrival times at primary inputs are unknown

variables in our problem while they are given in the other. In spite of this difference the original

recursive formulation for computing%functions almost works. A modification is required only in

terminal cases. Since we do not know whena primary inputsignalarrives, %functions at primary

inputsremain as unknown variables. Henceforth, we call %functions at primary inputsleafx vari

ables.

Let be a primaryinput. Assumethatafterrecursiveconstructionof x functionsat primary

outputs, leaf %variables for x are needed at times Xi < T2 < ••• < 'Cp,(jc) for value 1 and at times

x'j < Xj < ... < value 0. Remember that each leaf%variable represents the set of input

vectors under which x is stable by a certain time. Once x becomes stable, it continues to be stable;

thus for any x^ < x^, the set of inputvectors for f = Xa must be contained in the set of inputvectors

for t = Xb. Therefore, the following ordering conditions among leaf%variables musthold.

0 C x::,CxZc...Cx^l">Cx (3.1)
0 c (3-2)

The formulas above indicate that leaf %variables are

1. non-decreasing with respect to time and

2. boundedabove byx and x for value 1 and 0 respectively.

The first constraint is imposed since, once an input vector becomes stable, it must continue to be

stable. Thesecond constraint is required so thatleaf%variables arecompatible with the on-set and

the off-set of the primary inputx.

Let us go back to the original problem. For simplicity,assume that a Boolean network

has a single primary output z, whose required time T is given. Generalization to multiple primary

outputs istrivial^. We are interested in computing required times atthe primary inputsofthe network.

Suppose that%J, andxJq are computed in terms ofleafxvariables at primary inputs, which
we call XX' The goal is to assign Boolean functions XxW of primary inputs X = (;ci,... ,Xn) to

unknownXx variablesso that whenXx = Xx(^)»

3cIi(Zx) = zW

xloiXx) = zW
is just enoughto takea conjunction of the Boolean constraints forall the primary outputs.
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under the ordering constraints between xx variables inEquations 3.1 and 3.2, where z(X) denotes

thefunctionality of the primary output in terms of primary inputs X^. Thesets of input vectors that

make the output stable at value 1 and 0 by f = T areconstrained to be equal to the on-set and the

off-set of the output function respectively.

3.3.1 Exact Analysis

One can formulate this problem as solving a Boolean equation where unknown variables

are leaf %variables xx- The Boolean constraints to be satisfied are:

xliilOc) = z{X)

x[.o(Xx) = iW
for each x€X: 0Cx '̂i £ ... C ^

foreachjr€X: ®£xijo £ ••• £zJlo'''̂ ^

It iseasy to transform theabove setofBoolean equations toa single equivalent Boolean equation of

form F(X,Xx) = 1 [Bro90] by taking the conjunction ofall the constraints. In this equation, Xx are

variables tobesolved while XareBoolean constants. One can think ofF(X,xx) as thecharacteristic

function of a Boolean relation [BS89a, BS89b] where X is the inputs and Xx is the outputs. Any

function in terms of X, compatible with F, satisfies thetiming requirement at

Noticethat the notionof required timesat primary inputsis significantly generalized here.

Foreach primary input, itsrequired time isnotsimply asingleconstantany more. Aninput signal can

arrive at different times depending onsignal values of theotherinputs. Theanalysis is"exact"in the

same sensethatviability andfloating mode analyses areexact fortheXBDO model. More precisely,

given an inputvector x andanyarrival time condition Acompatible withF forx, functional arrival

time analysis under xand Agives anarrival time attheoutputnogreater than thegiven required time.

Furthermore, allthelatest arrival time conditions that meet thegiven required time at theoutput are

guaranteed to be included in F. We will show how to extract the latest arrival time conditions later.

is possible toextend the theory tothecase where z isspecified asanincompletely specified function. If theon-set
and the off-set are z'(X) and z®(X) respectively, the two equations need to be replaced with

z\X) xhiXx)
z^X) => xJio(Xx)-

^One method for extracting such afunction isBoolean unification [Bro90].
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Xl

x2

req(z)=2

_J "
Figure 3.2: Example: Functional Required Hme Analysis

Let us illustrate this in the circuit shown in Figure 3.2. For simplicity, assume that the max

imum delay ofthe AND gate is 1 and the required time at the primary output z is 2. The required time

computed by topological delay analysis is / = 0 for both inputs. %functions for z can be computed

as follows.

Xz.l

Xz,0

ziizij,!
vO v® v'

Xjf2iO

Xx[,0'̂ Xx2,0'̂ Xx2fi

These equations along with the ordering constraints give the following Boolean relation.

XlX2

00

01

10

11

-HJ ^
A.X1.1 ^JC7.1 1^xi ,Q^X').0^X'>,0

{000100,000101,000001,000011,000111}
{000100,001100,011100}

{000001,000011,100001,100011}
{111000}

The interpretation of the relation as required times is as follows.

XlX2 {req{xi),req{x2))
00 {(0,oo),(0,l),(oo,l),(oo,0),(0,0)}
01 {(0,oo),(0,l),(0,0)}
10 {(oo,l),(oo,0),(0,l),(0,0)}
11 {(0,0)}

Let us examine the relation to see what kind of timing constraint needs to be imposed. For

input vector 00, the first three leaf %variables must be 0 in all the cases. This is natural since these

X variables are for value 1, and neither .*:i nor JC2 may become stable to 1 in this case. The first two

and the last vectors correspond to the case where q 1, i.e. jci is stable to 0 by / = 0. In this

case, z is guaranteed to be stable to 0 no matter how JC2 behaves. The only constraint to be satisfied

is xSj.o ^ xi2,o- fourth vectors are for the case q 0. This time, xi is not stable to
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0 at f = 0, but as long as X2 becomes 0 by r = 1, z will be stable by / = 2 (both vectors have 1 in the

last position). Again, the ordering condition q^ xlj.o ^o\d.
One can think of this relation as a generalization of the existing notion of required time.

Any signal behavior at primary inputs that is compatible with this relation meets the required time at

the primary output. For example, if we pick 000100,000100,000001, and 111000for input vectors

00,01,10, 11 respectively, then leaf %variables will be:

zj„l = XiX2

zSj,! = "1X2

Zii,! = -tl-^2

Zj,0 = ^

X%,o = 0

xl^o =

To focus on only the stability of signals, we definexJ as follows.

z;=xj,i+xj,o

This X function of a node n at / = x is the characteristic function of the set of all input vectors that

make the signal n stable either to 0 or 1 by r = x. For the %functions above,

z?, = xr+x2

i&2 =

XX2 = ^i.

The interpretation of this is that primary input jcj must be stable by / = 0 just for the case

and if jcj jc^, it can delay forever without violating the given fiinctional and temporal requirements.

Notice that in topological analysis it always has to arrive no later than r = 0.

Let us look into how signal X2 should behave. It must be stabilized by r = 0 for the case

X\X2. If ~ ^2has to become stable by / = 1. For all the othercases, i.e. if = 0, however,

X2 can be indefinitely delayed.

One can easily see that the relation contains a compatible function corresponding to the

required time computed by topological analysis^, which gives the most pessimistic required time

condition.

^Choose thelastvector foreach input vector in therelation.
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We have seen that the relation represents all the permissible temporal behaviors, from an

aggressive behavior where a signal never arrives under a certain condition to the most stringent con

dition exactly corresponding to topological analysis. The next question is how to extract the latest

required time conditions from the relation since the later the requiredtimes are, the looser the con

dition is.

For each input vector the relation gives a set of permissible vectors for leaf %variables.

Since a 1 in a vector means that the corresponding leaf %variable must be stable, having fewer 1's

requires less stability. For example, under input vector 00 we have two vectors 000100 and 000101.

Since the second vector strictly requires more stability than the first one, the second vector can be

safely dropped. By repeatedly removing vectors that require more stability than another, we eventu

ally have a subset of permissible vectors in which no vector is subsumed by another. We call these

vectors minimal-stability vectors. The latest required time is now characterized by a subset relation

of the original relation where each input vector can be mapped only to the minimal-stability vectors.

Each minimal-stability vector captures a latest required time condition in the sense that delaying any

primary input from the required time immediately causes the arrival time of the output to exceed the

given required time. Forthe working example, the subset relation is shown below on the left while

its interpretation as required times is shown on the right.

XiX2
/yU fyi) Y
^Xi, 1^Xf, 1 I AjCi ,0^*7,0^*7,0 XlX2 {req{xi),req{x2))

00 {000100,000001} 00 {(0,00), (eo,l)}
01 {000100} 01

10 {000001} 10 {Ki)}
11 {111000} 11 {(0,0)}

An important point to notice is that there may be more than one loosest required time even

after an input vector is specified unlike topological analysis where required time is always unique.

In this particular example, either arriving by r = 0 or a:2 arriving by t = 1 is required for a:iX2 = 00.

Those two conditions are not comparable and each gives a different limiting condition.

3.3.2 Approximate Analysis

Although the exact analysis gives the most accurate information, it is computationallyex

pensive. We will introduce two approximateanalyses, which are less computationally intensive yet

still more accurate than topological required time analysis. Both analyses are conservative approx

imations to the exact analysis.
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Approximate Analysis via Simplified Modeling

In the exact analysis, a primary input signal can arrive at different times depending on sig

nal values of the other inputs. In this first approximate analysis, we give up this flexibility and limit

ourselves to the case where a primary input signal arrives at a fixed time, independent of signal val

ues of the other inputs. By this modification if an input signal is required early only under a specific

input vector, then the input is required early under many other input vectors since there is no way to

distinguish these vectors. This is how accuracy is lost conservatively. Arrival times for values 0 and

1,however, arestilldistinguished^. This simplification allows a simplerBoolean modeling which is

more efficient to solve.

In the exact approach, we need to impose the ordering constraints explicitly among leaf

X variables as Boolean constraints. Once we assume the vector-independent signal arrival behav

ior at a primary input, the constraints can be directly modeled by introducing additional Boolean

variables. Specifically, Boolean variables aj,...,Pp •• Pp„(*) introduced to encode the
ordering constraints in leaf%variables as follows'.

^x,l - ^"1
viW-i

x:t =

xZ = (3.3)

•Xfix,T =

= mi

x;5„ =

Notice that all the ordering constraints are automatically satisfied by the use of the Boolean

variables. The side effect of this encoding is that leaf %variables can now either take x or 0 for value

1, and either x or 0 for value 0 under a 0-1 assignment to the a and p variables while they can take

any function between 0 and x for value 1 and between 0 and x for value 0 in the exact analysis. This,

however, directly corresponds to our new constraint that each primary input arrives at a fixed time

^One can design a more conservative approximation scheme by not distinguishing arrival times for values 0 and 1.
^One can employ a log-based encoding todecrease the number ofBoolean variables introduced although this makes

it difhcult to extract the loosest required times later.
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no matter how the other inputs behave. The remaining condition to be satisfied is that the two x

functions for the primary output are equal to the on-set and the off-set of the output respectively.

xJi(A',a,P) = z(X)

xJo(*.a,3) = zW

wherea and p are the set of all a variablesand the set of all p variablesrespectively. In the aboveall

the leaf x variables are substituted by the right-hand side expressions in Equation (3.3). Since these

equations must be true regardless of X, X should be universally-quantified.

F(a,P) = VX.[(zi,(X,a,P) = z(X))(zio(*.a-P) = zW)]

= VX.[z[,(X,a,p) = z(X)]VX.[xi;o(X,a,p) =

Any satisfying assignment of F{a, P) meets the timing requirement.

Let us go one step further, as in the exact analysis, to see how we can compute the loosest

required time at primary inputsfrom F(a, p). The following lemmas and theorems are useful.

Lemma 3.1 xjj (%x) and xlfiiXx) monotone increasingfunctions in terms ofXx-

Proof By the definition of x functions,each %functioncan be represented by a Boolean net

work where the local functionality of each node is monotone increasing in terms of its fanins. Hence,

the claim holds. •

Lemma 3.2 xj j(X, a, P) and x![q(X, a, p) are monotone increasingfunctions in terms ofa and p.

Proof Let a and p be 0-1 assignments to a and p respectively. Let x^ be the functions for

leaf X variables under a and p. By changing a 0 in a and p to a 1, it is easy to see that one cannot

decrease the functions Xx. Thus from Lemma 3.1 the claim is proved. •

Lemma 3.3

la=(l,...,l),p=(I. -.1) =

xIo(*.a.P)la=(i,...,i),Mi.-.I) = ^
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Proof Let !A[ bethe Boolean network for j. Let NL bethe listofallthe nodes inthe network

topologically sorted from primary inputs of (leaf %variables) to the primary output . Note that

each node is labeled of the form y. The proof is by induction on these sorted nodes.

Basecase (n 6 X); By settinga= (l,...,l),p= (l,...,l),xj j =/i and = " foranyt.

Induction {n ^ X): From the inductive hypothesis, forany fanin of Xn,v> say

la=(l
, T-d(n) I 77pr
5C/n,0 la=(I l),p=(1 1) —

where m(X) is the functionality of node m in terms ofX in theoriginal network iAt- If v= 1,

then the localfunction at the node j in is the sameas the localfunction at the node n in

since the former function is just the sum of all the primes of the latter function. Therefore

la=(i,...,i),p=(i,...,i)='̂ (X). Similarly the local function atthe node xj^o is the same as
the complement ofthe local function at the node nin fAf. Thus, xJ,o la=(i,...,i),p=(i,...,i)= "W-

Hence, xj, la=(i,...,i),p=(i,...,i)= zW- xlo la=(i z(*) can be proved similarly. •

Corollary 3.1

Va,P:xI,(X,a,P) C z(X)

Va,P:zJo(*.a,P) £

Proof From Lemma 3.2 and Lemma 3.3. •

Theorem 3.1 F(a, p) is a monotoneincreasingfunction in terms ofcc and p.

Proof

F(a,p) = VX.[(xi;, (;f, a, p) = z(X)) (zi;o(X-«, P) = z(X))]

= VX.(xI,(X,a,p) = z(X))VX.(zi;o(-*^-a,P) = iW)

A

Consider a 0-1 assignmentto a and p, say a and p respectively. From Lemma3.2 and Corollary3.1,

it is clear that changingO'sto I's in a and p does not decreasethe functionvalue of F(a, p) from 1



32

to 0. Therefore, F(a, p) is a monotone increasing function in terms of a and p. •

We haveshown thatF(a, p) captures all the required times thatmeeta given timing con

straint at theoutput. Since having less Ts in anassignment to a andPrequires less stability, weare

interested inasatisfying assignment where noassignmentof 1toa variable canbechanged to0 with

out making the assignment non-satisfying. SinceF(a, p) isa monotone increasing function, suchan

assignment hasa one-to-one correspondence with a prime of F(a, p). Notice thatany prime of the

function has only positive literals. The variables with positive literals in a prime are those which

mustbe set to 1. Thus,computing the latestrequired times from F(a, p) is equivalent to computing

all the primes of F(a, p). Note that eachprime gives a different limiting condition as in the exact

analysis.

Let us go backto the previousexample. By introducing a and p variables, leaf%variables

can be expressed as follows.

zS,,i =

xlo = ^7

zli.i =

Z?2,r = ^207"?

xiifi = ^7

Ao =

Xz,0 Xt|,0 "t'Xi:2,0 "^X*2i0

= p^'JT+Pf^+PfP?^

= p^'JT+P?^

The F function for this example is:

F(a, p) = Vxi ,x2.(aJ'(xj2ot^2j |̂j£:2 = jciX2)(P '̂̂ + pf^ ^+^)



XiX2

ireq{xi),req{x2))
exact approximate topological

00 {(O,eo),(eo,l)} {(0,1)} {(0,0)}
01 {(0.0)} {(0,0)}
10 {HI)} {(0,1)} {(0,0)}
11 {(0,0)} {(0,0)} {(0,0)}

Table 3.1: Example: Comparison of Three Required Time Analyses
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There are two satisfying assignments for the function:

= (111110,111111).

The second assignment corresponds to topological analysis. The only prime of F(a, p)

is ccj'ocj^oc^^p*' p*^ which corresponds tothe first assignment. Let us look into the first assignment

more carefully. The leaf %variables under this assignment are:

yO
^*1,1

vO -Xx|,0 —

Xx2,l ~
yO
A,X2,1 ~

Xx2,0

-^1

•*2

X%.o = 0.

This constraint means that xi has to arrive by r = 0 under all input vectors while X2 has to

arrive by r = 0 if JC2 = 1 but by r = 1 if JC2 = 0.

The results of required time analysis of the circuit in Figure 3,2 are summarized in Ta

ble 3.1. The first column shows a vector applied to the primary inputs. The second, the third and

the fourth colunms show the required times computed by the exact algorithm, the approximate al

gorithm and the topological algorithm respectively. Notice that the required time computed by the

approximate algorithm is more restrictive than that based on the exact algorithm, but is looser than

the required time based on topological analysis.

Approximate Analysis via Functional Arrival Time Analysis

The first approximate analysis was based on a relaxation of the exact formulation. The

second approximate analysis takes a completely different approach, where functional arrival time



34

analysis is used as a subroutine to determine required times under the existence of false paths con

servatively.

In the exact analysis leaf %variables at different times need to be distinguished at each pri

mary input X, . Let /?/be the set that contains all those times for primary input x/. For the sake of sim

plicityassumethat /?, containsall the times needed for value1and thosefor value0®. Let R = RiX

... X/?„. Let rj. = (rx,i,..., rj.,rt) € R where rj.,/= t. Similarly let rj = (ry,!,..., rT,n) € R

where ry,/ = maxt^R. t. Let ry ^ R. A partial order •< is defined overR as follows: for Vr, € R,

r ^ r' if andonlyif Vz € {1, ••., 'i}»• Thispartialorderforms a latticeoverR,wherethe topand

the bottom elements are ry and r_i respectively. Each r G/? represents a candidate for the required

time condition at the inputs.

rj. corresponds to the required times at primary inputs obtained by topological analysis.

Therefore, if the primaryinputsarriveby rx, the stabilityof the primary outputby the givenrequired

time is guaranteed. Ourgoal is to findthe largestr^R withrespectto -< thatguarantees the stability

of the primary output, r maynot be uniqueas in the first approximate analysis.

One way to findsuch r is to climbup the latticegraduallyfrom by choosinglarger r's in

a greedy fashion. To test if the current r is a validchoice, one can simplyperformfunctionalarrival

time analysis of the circuitunder the arrival timescorresponding to r at the primary inputs. If the

arrival timeat the primary outputis no laterthanits required time, r is a safe condition. The largest

r that meets this requirement givesa limiting condition. Thesearch for r can be refined by theuse of

backtracking so that all the maximal r's satisfying the condition are enumerated. Furthermore, the

greedysearchfor the next r can be biasedso that a specific subsetof primary inputsis delayedmore

aggressively. This results in more accuracy for those inputs in the subset. For example, the subset

can be set to critical inputs.

The advantages of this second approximate analysis are twofold. First, one can directly

use state-of-the-art functional arrival time analysis as a subroutine. Second, even if an entire analysis

takes a huge amount of time, any validated r looser than topological analysisgives useful information

immediately. Therefore, it is possible to set a time limit and return the largest r validated so far as

an approximate solution.

8lt ispossible toextend the idea sothat required times for values 1and 0are handled separately for each primary input.
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3.4 Extraction ofLocal Timing Constraints by Functional Timing Anal

ysis

In the previous section we discussed how required times at the primary outputs of a com

binational circuit can be propagated through the circuit backward to obtain required times at the pri

mary inputs. Specifically we focused on how to do this by considering false paths. Functional arrival

time analysis is a counterpart of this for arrival time computation. Given these two techniques, we

can extract an accurate local timing constraint of a subcircuit from a global timing constraint of an

entire circuit. This issue will be addressed in this section.

Suppose a combinational network and arrival/required times at primary inputs/outputs are

given. Assume that a subnetwork of this circuit is to be optimized. When this subnetwork is resyn-

thesized, arrival times at subcircuit inputs and required times at subcircuit outputs must be specified

along with the functional specification of the subcircuit so that replacing the subcircuit with an opti

mized circuit automatically preserves the original functional and timing specifications. This scheme

enables us to resynthesize subcomponents locally without violating the functional and timing re

quirements of the whole system.

A naive solution for this problem is to compute arrival times and required times using topo-

logical delays. This approach is conunonly used in most timing optimization algorithms in the liter

ature. Although this conservative approach gives a quick and conservative approximation to the true

timing constraint, the resulting timing requirement may be more stringent than necessary since false

paths in the surrounding network are completely ignored. Therefore, the timing constraint computed

in this manner may prevent resynthesis from exploring the entire design space thereby leading to an

unsatisfactory circuit. The goal of this section is to solve this problem more rigorously by taking

false paths into account so that a more accurate and thus more flexible timing constraint is computed

for the subnetwork.

3.4.1 Problem Formulation

We restrict our attention to combinational circuits. Sequential circuits using edge-triggered

flip-flops, however, can be easily handled within the same framework by assuming all the flip-flop

inputs and outputsas primary outputsand inputs respectively, where the requiredtimes and arrival

timesof those are determined by the clockedge minus the setup time and the clockedge itself re-
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subcircuit input U subcircult output V
\ L

primary input X primary output Z

arr(X) req(Z)

subnetwork N'

Figure 3.3: Resynthesis of a Subnetwork

spectively^.

Local Timing'Constraint Computation: Given a Boolean network ^ and

a subnetwork of iAt, characterize the timing constraint of sothat resyn

thesis of thesubcircuit can be performed locally without violating the timing

constraint of the entire network iAf. Our assumption is that remains

unchanged and only is to be resynthesized. must meet the condition

that there is no path leading from a subcircuit output to a subcircuit input.

Letusintroduce some notationforease ofexplanation. LetX= (jci,...,x„) andZ= (zi,...,Z/„)
be primary inputs and primary outputs of respectively. Let U= and V= (vj,..., v^)
denote inputs and outputs of fA '̂ respectively. (See Figure 3.3.) We assume that arrival times atpri

mary inputsXandrequired times atprimary outputsZaregiven. Ourgoalis tocompute arrival times

at subcircuit inputs U and required timesat subcircuit outputsVby considering the effects of false

paths in 9{\9{^ explicitly. One can think ofthis as mapping the timing requirement of the entire

circuit onto the subcircuit.

^The use of a level-sensitive latch makes required time analysis more complex due to cycle stealing. Depending on
thetiming ata latch output, required time analysis needs tocross thelatch backward and analyze the previous cycle. This
remains as future work.
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arr(X) req(2:)

subnetwork N'

Figure 3.4: Local Timing Constraint of a Subnetwork

3.4.2 Computing Local Timing Constraints of Subcircuits

In this subsection, we show that the problem can be solved as a combination of functional

arrival time analysis, which propagates arrival times forward from primary inputs to subcircuit in

puts, and functional required time analysis introduced in Section 3.3, which propagates required

times backward from primary outputs to subcircuit outputs.

Arrival Time Computation

The first step is to compute arrival times at the subcircuit inputs. The transitive fanin of

the subcircuit inputs is extracted from which we call fAt/. (See Figure 3.4.) This network is

then analyzed with a technique similar to functional arrival time analysis^^. Notice that theprimary

outputsof 5Vp/ are the subcircuit inputs,and theprimary inputsof fAfr/ are a subsetof primary inputs

X of The main difference between this problem and the standard functional arrival time analysis

problem is that in the latter problem we only care about the latest arrival time for each output while

in our problem interactions among arrival times of different outputs are of much interest to capture

timing flexibility accurately''.

Consider applying x function analysis on For each subcircuit input w, € U, we list all

'̂ To be precise, the delay ofthe fanin network isaffected by changing its fanout, which is unknown in our setup since
the fanout network is to be resynthesized. In this paperwedo not lake this loadeffect intoconsideration to simplify the
explanation.

'' Bahar etai [BCH"^ 94] proposed afunctional arrival time analysis technique to compute input-vectordependent delay
using ADDs[BFG'*'93]. Thiscanbeusedas an alternative to theanalysis below.
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the potential arrival times at m,-, which is easily computed by propagating arrival timetopologically

from primary inputs to the subcircuit inputs while maintaining not a singlelatestarrival timebut a

set of arrival timesat eachnode. Then, v€ {0,1} iscomputed foreacharrival timex. Notethat

these Xfunctions are in terms of primary inputs XoffAf. Then xlg = + Xj, i represents all the
primary input vectors at X thatmake a signal at m,- stable byf = x. Assume thatthe listof potential

arrival times at m,- is {xi,... ,X/}. Now the Boolean space can be partitioned into/ disjoint sets

{5i,..., 5/} in terms ofarrival times as follows.

= xl;

Sk = xltrW {k =2,...,l)

Note that increases as x increases by its construction and S^s are definedas differences between

time-neighboring functions. Theset = 1,..., /) contains all theinput vectors atX thatmake the

signal Ui stable by r = Xjt but not by r = x^t-i, where Xq = —oo.

Once a partition of iscomputed foreach subcircuit input, all the partitions aresuper

imposed on toform arefined partition. This isequivalent topartitioningB'̂ ' such that any input
vector in a class has the same arrival time behavior at U.

The final step is to interpret this arrival time in terms of subcircuit inputs U so that the

timing specification of thesubcircuit is given locally in terms of its inputs. Remember thatso far

arrival time at U is computed in terms ofX. Thesubcircuit, however, cannot distinguish input vec

tors applied atXunless they yielddifferent vectors at U. Therefore, it isnecessary to reinterpret this

partition in terms of subcircuit inputs U to see what arrival time behaviorscan be observedfor each

vector at U. This iseasily computed from the partition ofB''̂ ' and the functionality ofthe transitive

fanin network For each vector u GB'̂ ' the set ofall the vectors ofB'̂ ' yielding u at(/ iscom

puted from the functionality of fA/p/. Using the partition ofB''̂ ' computed previously, one can list all
the possible arrival times for the vector u. All the latest arrival times are then extracted from them.

Let us illustrate this analysiswith an example. Assumethat the network in Figure 3.5 is

fA/p/. Forsimplicity, wealsoassume thateach gate hasa unitdelay and all theprimary inputs arrive

at r = 0. The %function analysis gives the following.

xl, = 1

xi, = ^

= 1

Xu2 ~ •*'



x1-

x2

x3"

o Ul

u2

arr(x1) = arr(x2) = arr(x3) = 0

Figure3.5: Example: fAfr/
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The first two equations imply that if jci = 0, mi arrives at r = 1, but otherwise the signal arrives at

t = 2. The last two equations then describe signal stability of M2- If = 1» then U2 arrives at r = 1,

but otherwise the arrival time is r = 2. This can be summarized in the following table.

X\X2X'i U\U2 arr(Mi) arr{u2)
000 00 (1,2)
001 00 (1,2)
010 00 (1,2)
Oil 01 (1,2)
100 01 (2,1)
101 01 (2,1)
110 01 (2,1)
111 11 (2,1)

Now, notice that the subcircuitwhich iAfr/ feeds into cannotdistinguishJC1X2X3 = 011 and

ICQ since both yield the same vector 01 at u\U2. Thus, when the subcircuit is resynthesized, we

can only assume that the arrival time at the subcircuit input is either (1,2) or (2,1) when U\U2 = 01.

Although it is possible to approximate this by having a single arrival time pair (2,2), it is not desirable

since this is an over-constraint'^.

The following table is obtained by folding the table above in terms of the values of u\ U2.

Wl«2 arr(«i) arr(u2)
00 {(1.2)}
01 {(1,2),(2,1)}
10 {(~.~)}
11 {(2.1)}

an arrival time tuple is strictly earlierthan anothertuple, the former is droppedsince the subcircuit 0^ must be
synthesized under the worst-case scenario.
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{(oojoo)} for M1^2 = 10 means that the subcircuitnever observes the vector at the input.

This corresponds to a satisfiability don't care [BRSVW87] among u\ and U2. It is interesting to ob

serve that functional flexibility is captured in this framework naturally.

Required Time Computation

Computing required times at subcircuit outputs can be performed by analyzing a subnet

work of with functional required time analysis. is thesame network as 9\C except all

the subcircuitoutputsVare relabeled as primary inputs. (SeeFigure3.4.) Notice that requiredtimes

at the subcircuit outputs are of interest. Since arrival times at X are known, there is no need to in

troduceleaf%variables for thoseprimary inputsof fA/po which areelements of X. Required time is

computed for each vector v € at subcircuit outputs.

Towards More Accurate Timing Constraints

Weconsidera specialcase of the problemwhereno functional flexibility (e.g. don't cares)

isexplored inresynthesizing thesubcircuit. Inotherwords, thefunctional specification given forthe

subcircuit is the samefunctionality currently implemented. Thisallows us to compute a localtiming

constraint more accurately.

For arrival time computation at subcircuit inputs, instead of interpreting arrival time in

terms of subcircuit inputs, we can simply keep arrival timein terms of primary inputs X. Required

times atsubcircuit outputs are computed for each vector v € 5'^' in the previous subsection. Since
the functionality of the subcircuit is preserved after resynthesis, the functionality of Vin terms of

X remains unchanged. Therefore, it is possible to interpret the required times in terms of primary

inputs X. Now for each primary input vector x€ R'*' we have asingle arrival time atthe subcircuit
inputs and possibly multiple required times at thesubcircuit outputs. One can then map this timing

constraint to the subcircuit. Since arrival times andrequired times are coupled through X, analysis

is more accurate compared to the one described before where arrival times and required times are

computed independently.

3.4.3 Applications

Computationof local timingconstraintshas severalpracticalapplications.

The first isperformance-oriented resynthesis. Supposea combinationalcircuitwassynthe

sized from a specification. Although onecanoptimize theentire circuit further to speed up lateout-
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ip-flop

Figure 3.6: Uming Optimization of Hierarchical Circuits

puts, another promising approach is to extract a subcircuit containing part of critical paths and opti

mize it locally. This scheme is more likely to give a faster circuit because the circuit fed to synthesis is

smaller. A similar approach is in fact taken in timing optimizationtechniques [SWBSV88,AMF97]

published in the literature,but their delaycomputation is basedon topologicallongest paths thereby

failing to capturesome of existingtimingflexibility. Since our approach computes a local timing

constraint of the subcircuit by considering false paths from the surroundingcircuit, larger flexibility,

i.e. less stringent timing requirement, is obtained, which makes resynthesiseasier. An interesting

subproblem of this application is to compute the trae slack of a gate output, where the slack is cal

culated by taking false paths into account.

The second practical application is in hierarchical synthesis. Assume that a set of com

municating sequential circuits does not meet a timing requirement, e.g. they do not satisfy a cycle

time constraint. We now want to optimizecomponentcircuits one by one to speed up late signals.

Optimizingthe entire circuit as a singlechunk is not desirablein this context because it destroys the

hierarchymeaningfulto designersand moreimportantlythe wholecircuit may be too largeto handle

for synthesis algorithms. Since the boundariesof components are not necessarily the inputs or the

outputs of flip-flops, one may have to map arrival/required times for flip-flop inputs/outputs of the

other components to the interfacenodes of the component to be optimized. Figure 3.6 shows such a

situation, where two sequentialcircuitsare cascaded. Assumethat a cycle time is given as a timing

specification and we want to optimizeonly the leftcomponentwith the rightcomponentunchanged.

For simplicity,assume that there is a single flip-flop in the right component. The input of this flip-

flop must becomestable before the cycle time minusa set-up time. This constraintcan be translated

to thatof the leftcomponent by propagating therequired timeat theflip-flop inputbackward through

thecombinational gatesin thetransitive fanin of theflip-flop to theboundary of the twocomponents.

A similar scenario can arise in pure combinationalsynthesis. Consider a cascaded combi

national circuit, where the drivencircuitcontains a fair amount of false paths. To resynthesize the
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driving circuit effectively for improved performance itis critical to characterize the required times of
the signals feeding the driven circuit as accurately as possible. Required times computed by topolog-
ical analysis may completely mislead resynthesis due to the unawareness offalse paths in the driven

circuit.

3.5 Experimental Results

We have implemented on topof SIS[SSM'̂ 92] theexact and the twoapproximate algo

rithms for required time computation discussed in Section 3.3. Thedelay model weused in theex

periments is the unit delay model. In all the experiments we set the required times of r = 0 at all

theprimary outputs and computed required times at primary inputs. Allthe Boolean operations in

theexactandthe first approximate methods areperformed usingHDDs [Bry86] while in the second

approximatemethod SAT-based functionalarrival time analysis [MSBSV93] is used.

The efficiency of the algorithms is dependent not only on the size of a network but also

on the amount of reconvergence in the network. In the exact algorithm,we introduceone Boolean

variable foreachleaf%variable. Thus, theexistence of many reconvergences implies manipulation

of Xfunctions of many input variables'̂ in BDDs. Thesame observation is alsotrue for the first

approximate method, where a Boolean parameter vaiiable is introduced foreach leaf%variable.

The second approximate algorithm is more robustthan the first since the computation en

gine is a SAT solver. As mentioned before, an advantage of thisapproach is that any intermediate

required time validatedcan be used as a safe approximation to the exact solution.

Table3.2showsa comparisonbetweentheexactand theapproximate algorithmsonMCNC

benchmark circuits. CPU times aremeasured in seconds onDEC AlphaServer 8400 5/300. Theex

actalgorithm andthefirst approximate algorithm wererunwithdynamic variable reordering [Rud93]

beingenabled. * in the tabledenotes thattheanalysis gives anon-trivial required timestrictly looser

than topological analysis. The reason why the first approximate algorithm gives a looser constraint

than the second in some examples is that the required times of values 0 and 1 for each primary in

put are distinguished in the first algorithmwhilethe current implementation of the secondalgorithm

only searches for value-independent required times for efficiency.

Table 3.3 shows CPU times of the second approximate algorithm on ISCAS combinational

benchmark circuits. CPU times are measured in seconds on the same machine. The second column

shows whether the algorithm was able to find non-trivial required times or not. The third and fourth

'*^In many ISCAS benchmark circuits the number ofBoolean variables needed can easily go beyond hundreds.



circuit #PI #PO CPU time CPU time CPU time

(exact) (approximate 1) (approximate 2)

b9 41 21 - 1.1* 1.0

dalu 75 16 - - > 12 hours*

des 256 245 - 243.9 601.9

k2 45 45 1632.1* 22.3 86.0

rot 135 107 - - 139.5*

t481 16 1 - 30631.2 12.4

Table 3.2: RequiredTime Computation- Exact vs. Approximate

circuit Non-trivial CPU time CPU time

required time? first r 7^ rj.
(in seconds)

max

(in seconds)

C432 Yes 7.9 33.2

C499 No - 40.1

C880 No - 26.7

C1355 No - 26.0

C1908 Yes 1.0 1356.4

C2670 Yes 2.8 2298.1

C3540 Yes 0.5 > 12 hours

C5315 Yes 77.7 359.6

C6288 Yes 1.0 > 12 hours

C7552 Yes 2.5 992.5

Table 3.3: Required Time Computation - ISCAS Examples
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columnsshowCPU time spent until the firstnon-trivial required time was found,and CPU time for

the entire analysis respectively. Although the algorithmcould not finishon C3540 and C6288 within

12hours of CPU time, it found non-trivial required times within a second. For C5315 36 primary

inputs outof 178 hadrequired times strictly better than thecorresponding topological required times.

For someof the primary inputs the additional accuracy over topological analysis was 3 timeunits,

i.e. those primary inputs can safely arrive 3 time units later than their topological required times

without violating therequired times at theprimary outputs. ForC7552 70outof 207 primary inputs

hadstrictly betterrequired times than theirtopological required times. Thecomputed required time

foroneof theprimary inputwasr = -17 while its topological required timewasr = -39. Thisresult

shows that the impact of falsepaths in required timeanalysis can be significant.

3.6 Conclusions

We have studied how to perform required time analysis on combinational circuits more

accurately thantopological analysis, by taking false paths intoaccount. Thetechniques proposed in

this chapter, which isdeveloped ontopofthetheory offunctional arrival time analysis, cancompute

a morerelaxed yet correctrequired timethanthe onecomputed by topological required timeanaly

sis. We have then shown that thecombination of this functional required time analysis and existing

functional arrival timeanalysis allows us tocharacterize anaccurate timing constraint ofa subcircuit

given a timing constraint of an entire circuit. We will seeother applications of functional required

time analysis in the rest of this dissertation.

Even thoughthis approach captures laigertimingflexibility, existingtimingoptimization

algorithms arenot able to exploit theflexibility fully since timing specifications handled by timing

optimization algorithms areofmuch simplerform thanvalue-dependentconstraints computed byour

technique. A moresophisticated timing optimization algorithm compatible with the refined timing

constraint proposed here is needed to fill this gap.

Another avenue for future research is to improve the efficiencyof functional required time

analysis by further approximations. In the current algorithms we distinguish between all potential

requiredtimesat primaryinputs. Onepossibleapproximation is to groupthemintoclustersof neigh

boringrequired timesconservatively. Controlling the number of clusters givesa trade-offbetween

accuracy and CPU time for a more realistic delay model such as the mappeddelay model.

In this chapter we have shown how to compute input-vector dependent required times at

the primary inputs of a combinationalcircuit given traditional input-vector independent required
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times at the primaryoutputs. A more general setup is to start with input-vectordependentrequired

times at the outputs. This scenarionaturallyarises if functional required time analysis is performed

in a hierarchicalfashion. Althoughit is possibleto extendthe theoryto capture this generalcase, its

practical impact is yet to be determined.



Chapter 4

Delay Characterization of

Combinational Modules
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Accurate delay characterization of circuits at various levels of abstraction has always been

one ofthe main focuses of timing analysis research. This chapter addresses the delay characterization

problem of combinational modules at the gate level. A combinationalmodule is a combinational cir

cuit that can be used under any arrival time condition at primary inputs. An intellectual-property(IP)

module is one example.

We discuss how to compute a false-path-aware delay abstraction of a combinational mod

ule. A delay abstraction is a compact representation of the delay information of the module, which

carries pin-to-pin delay foreach primary-input/primary-outputpair'. Thedelay canbedependent on

input vectors provided to the module. The existenceof false paths is captured in the delay abstraction

by keeping effective pin-to-pin delays instead of topological delays. The internal structural details

of the module are abstracted away.

This chapter is organized as follows. After a brief introduction to the problem in Sec

tion 4.1, Section 4.2 shows that the false-path-aware delay abstraction of a combinational module

can be computed exactly using functional required time analysis discussed in Chapter 3. A false-

path-aware delay abstraction is given for an example in Section 4.3. Section 4.4 discusses delay

analysis using delay abstractions. After introducinga novel framework for comparingthe accuracy

of delay abstractions in Section4.5, we study a differentapproach to computingdelay abstractions

'To the bestofourknowledgeNoteetat. [NCGM92] were the first tousedelay abstractions ofthis form. Kuehlman and
Bergamaschi employed this idealaterin [KB92]. Kobayashi andMalik [KM95, KM97] studied compact representations
of delayabstractions. However, delay abstracdons wereindependent of inputvectors in the previous work.
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using functional arrival time analysis inSection 4.6. Sections 4,7 and 4.8 discuss approximate com

putation ofdelay abstractions based onfunctional required time analysis and functional arrival time

analysis respectively. Section 4.9 generalizes delay abstractions to the case where gate delays are

variables. Section 4.10 summarizes related work in theliterature. The chapter is concluded inSec

tion 4.11

4.1 Introduction

Themajor difficulty incomputing a false-path-aware delay abstraction ofa combinational

module is in the requirement that a delay abstraction be valid and accurate under any arrival time

condition atthe inputs. State-of-the-art path sensitizationconditions(e.g. viability [MB91], floating-
mode [CD93] and XBDO [MSBSV93]) exploit arrival times atprimary inputs toenable exact false

path detection. Therefore, adirect application ofthose path sensitization conditions isnot appropri

ate in this contextsince wecannotassume specific arrival times.

Several sensitization conditions are known such as static co-sensitization [DKM93] and

the Brand-Iyengar condition [BI88] that do not refer toarrival times atthe inputs. The use ofsuch

sensitizationconditionsguarantees thevalidity ofaresultingdelay abstraction underallarrival times.

However, they are not as accurate as arrival-time dependent sensitization conditions. Itappears that
the tworequirements, the validity and the accuracy, conflict witheach other.

Ourgoal is to resolve this conflict positively byshowing that an accurate delay abstrac

tion can becomputed under the XBDO model without assuming a specific arrival time condition.

Specifically, we show that the problem isreducible tofunctional required time analysis discussed in

Chapter 3.

4.2 Delay Characterization by Functional Required TimeAnalysis

Let Mhtdisingle-output combinational module under analysis. Let X= (xi,...,x„) and
z be theprimary inputs and theprimary output of 9\/[ respectively.

Consider delay from the primary inputs X to theprimary output z. Thestandard way to

define thedelay of a module is by computing thestable time of each output given arrival times at

all the primary inputs. The difference between the outputstable timeand the arrival time of each

input defines the delay from the input tothe output. This approach, however, isnot applicable toour

setting sincethe arrival times at theprimary inputs areunknown.
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Our objective is to capture the timing characteristics of a given module valid and accurate

under any surrounding environment. To achieve this the delay of a module is defined in a different

way.

We first seta required time, say t = 0^, to theoutput and analyze thegiven circuit to see

when the primary inputs are required to be stable so that the output becomes stable by the required

time^. The delay from an input to the output is then defined as the difference between therequired

time at the output{t = 0) and that of the input. This is exactly the same problem as functional required

time analysis discussed in Chapter 3.

Functional required time analysis gives %CB"xR", where a set of timing tuples is given

for each input vector. Given an input vector x € 5", each n-tuple T = (ri,... ,r„) such that (x, T) €

% represents valid required times at the inputs. The interpretation of a tuple T is that the output

is guaranteed to be stable at r = 0 if the primary input vector x = (vi,..., v„) arrives at or before

T = (ti,..., r„) respectively. We assume that only those timing tuples not subsumedby another are

contained under each input vector in % as in Section 3.3.1. Since the required time analysis is done

in the XBDO model, required times computed follow the monotone speedup property [MB91], i.e.

if a signal arrives earlier than the required time specified, it never worsens the stability of the output.

Recall that % may contain more than one timing tuple for a given input vector, in which

case each of the timing tuples captures a different permissible signal arrival behavior at the primary

inputs. The delay abstraction (timing abstraction) Dz of is then defined as

Dz= {(x, (-/i,...,-t„)) I (x, (ti,...,r„)) e

The sign of required times is flipped in each timing tuple since each required time is subtracted from

0, the required time at the output.

To deal with a multiple-output module, the same analysis is applied to the transitive fanin

cone of each output independently. Each output has its own delay abstraction this way.
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Figure 4.1: Example: A Combinational Module

4.3 Example

Consider a circuit shown in Figure 4.1, taken from [BI88]. Assume theunitdelay model.

The delay abstraction Dexact computed by functional required timeanalysis is:

abc ^a-^g^b-^g^c-^g

000 {(3,-oo,2),(-««,3,2)}

001 {(2,2,2)}

010 {(3,-oo,2), (-00,2, -00)}

Oil {(-00,2, -00)}

100 {(2,-oo,_oo),(_eo,3,2)}

101 {(2,-oo,-eo)}

110 {(2,-«»,-«»), (-«, 2,-00)}
111 {(2, -*»),(-00,2, -co)}

where denotes that the availability ofthe corresponding input is irrelevant tothe stability ofthe

output.

Thedelay abstraction isa table indexed byinput vectors. Given an input vector, thedelay

abstraction gives a setof delay tuples. Each delay tuple captures a distinct delay characteristic of

the module under the input vector. For example, consider an input vector 000. There are two delay

^The absolute value of/ = 0isnot important since we are only interested intime differences.
Asimilar formulation was used byMin et aL [MZL96], inwhich path sensitization ofcombinational networks under

arbitrary input waveforms was discussed without considering a specific arrival time condition atprimary inputs. They
used this formulation tocompute aninput waveform tosensitize agiven path. The delay model used was the fixed delay
model, where eachgatehasa constant delay. Thediscussion in thischapter is based ontheXBDO model. Therefore, we
implicitly assume thatoncethevalue of aninput waveform changes from anunknown value X to a Boolean constant, it
keeps the constant. Inother words, we consideronly aspecific class ofinput waveforms, which isnatural insynchronous
designs. Consideration ofarbitrary input waveforms may beuseful inaggressive design styles such aswave pipelining.
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tuples (3,-00,2) and (-00,3,2) under the vector. The firsttupleguarantees that the outputbecomes

stable even without a stable value of b, in which case the effective delays from a and c to the output

are 3 and 2 respectively. All the paths from b to the output can be thought of as false when this delay

tuple is used. The second tuple captures a symmetric case where the roles of a and b are switched. In

this case all the paths from a to the output are false. The key to the accuracy under arbitrary arrival

times is in this capability of maintaining more than one delay tuple for the same input vector. This

flexibility allows us to choose the delay tuple that gives the most accurate delay estimate at the output

under a given arrival time condition.

Let us contrast this with the delay abstraction corresponding to topological delay analy

sis. Since the longest topological path lengths from and c are 3, 3 and 2 respectively, the delay

abstraction Dt„p„iogicai is:

abc da-^gdb-^g^c-¥g

000 {(3,3,2)}

001 {(3,3,2)}

010 {(3,3,2)}

Oil {(3,3,2)}

100 {(3,3,2)}

101 {(3,3,2)}

110 {(3,3,2)}

111 {(3,3,2)}.

Dfopoiogicai is independent of inputvectors sincetopological delayanalysis ignores the functionality

of the circuit. No false paths are detected. The accuracy gain in Dexaci is clear by comparing the two

delay abstractions.

4.4 Delay Analysis using Delay Abstractions

Given an input vector x and arrival times A = {arr{xi),...,arr(xn)) = the

signal stable time at the output z can be determined by using a delay abstraction D. Suppose that D

has multiple delay tuples 61,..., 6^ for x. For each delay tuple 5, = ,..., (/ = 1,..., m) the

signal stable time Si at z under 6/ is computedas
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Since all delay tuples are valid, the signal stable time 5 at z is determined by taking the earliest time

among 5/'s.

s = min^/ = minm^(fly

For ease of exposition we introduce a functiondelay-propagate to compactly represent

thisoperation. Thefunction takesa delayabstraction D C 5" x /?", an inputvectorx € B"andarrival

timesi4 = (ai,..., a„) 6 /?" as inputs, andreturns a signalstabletimeat theoutput.? GR. Thefunction

is defined in exactly the same way as in the last paragraph.

Definition 4.1

delay-propagate{D, x,A)= min max(a/+ di /)

Considerthe circuit in Figure4.1 again. Let x = 000 andA = {arr(a),arr(b),arr(c)) =

(1,0,0). There are two delay tuples (3,—oo,2) and (—«>,3,2) under inputvector 000. If the first

tuple is used, the arrival time estimate at the output is:

.?! = max(H-3,0 —oo,0+2) = max(4,—«»,2) = 4.

If the second tuple is used, the estimate .y2 is:

^2 = max(l —00,0+3,0+2) = max(—<»,3,2) = 3.

Finally,we choose the best estimate s by taking the minimumof.?! and .S2-

s = min(ji, S2) = min(4,3) = 3

Notice that once the exact delay abstraction of a module is computed, false path analysis

can be performedunder any arrival time conditiononly using the delay abstraction.

Definition 4.2 Given delay tuples (^/i,..., J„)and{d[,..., d'„) eR", (di,,,.,d„)<{d[,..., d'„) ifand

onlyif\fi,di<d\{i=\,...,n).

Lemma 4.1 < is transitive.

Proof Trivial from the definition of <. •

We are ready to introduce a notion of reduced delay abstractions.
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Definition 4.3 A delay abstraction D is said to be reduced iffor every input vector x and any pair

ofdelay tuples (^/i,..., dn) and (dj,..., d'^ underx

This property is automatically satisfied if a delay abstraction is computed by functional

required time analysis. Any delay abstractioncan be made reduced by dropping delay tuples sub

sumed by others under the same input vector. Notice that the reduced delay abstraction has the same

informationas the original since the delay tuples droppedduring the reduction are never useful in

timing analysis. For example, suppose that a delay abstraction D contains delay tuples ,..., dn)

and ,..., d'jf} underan inputvectorx, where

Under an arrival time conditionA = (aj,... ,a„), the stable time estimates of the output using the

first tuple is:

s = m.'^(aj-\-dj).

The stable time estimate^ under the secondtuple is:

s' = max(ai-f-<i;).
j ^

Since dj< d'j for any j, s<^ for any A. Thus, the second tuple (^/'i,..., d'„) can never give astrictly
better estimate, and thus is safe to remove.

From now on we assume that delay abstractions are reduced.

4.5 Comparing Delay Abstractions

In the next section we will present a differentapproach to computinga delay abstraction

of a combinational module using functional arrival time analysis, and argue its accuracy and cor

rectness. To make a rigorous argument possible we introduce a criterion for comparing delay ab

stractions. Specifically a partial orderoverdelayabstractions is defined, whereDi :< Di intuitively

means that stable time estimate at the outputusingdelay abstraction D\ is no later than that using

delay abstraction D2 underany vectorandany arrival timecondition at the primary inputs.

Let Dexact be the delay abstraction of a combinational module computed by exact func

tional required time analysis. If a delay abstraction D meets Dexaa D, Z) is a correct delay ab

straction since theuseofD indelay estimation never underestimates exact stable time at theoutput

computed by Dexact regardless of a choiceof vectors and arrival timesat the inputs.
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On the otherhand, if Dexact i thereexistsa pair of an inputvectorandan arrival time

condition at the inputs underwhich theuseofD gives arrival timeat theoutput strictly earlier than

that computed by Dexact- Since this is a delay underestimation, any delay characterization method

that can give such D is incorrect.

The partial order < over delay abstractions is defined as follows.

Definition 4.4 L^tD\ and D2 be thedelay abstractions ofa single-output combinational module

D\ •< D2 iffor every input-vector/delay-tuple pair (x,(d\,...,dn)) e D2, thereexists an input-

vector/delay-tupiepair (x, {d\,.. .,d'„)) € Di such that (d\,, ..,d'„) <{di,. ..,d„).

Theorem 4.1 Vx,i4 = (ai,...,a„),delay.propagate(Di,x,A) < delay-propagate(D2,\^A) ifand

only ifD\ •< D2.

Proof

Let6 = (i/i,..., bethedelay tuple in D2 under x that gives theearliest stable time ^2 at the

output under i4.

^2 = delay.propagate{D2, x,A) = max (a,- + di)
I

From the assumption, there exists a delay tuple 51 = (d[,... ,d'„) < (di,...,d„) inDi under x.

Therefore, the signal stable time at the output is:

Si = delay.propagate(Du\^A) < max(a/+4-) < max(fl/ + rf/) = ^2-
i /

Suppose fora contradiction that(x,(,..., J„)) € D2 does nothave an input-vector/delay-tuple

pair(x,(cf'i,..., d'̂ )) inD\ such that (d\^...^d'„) <(d\,...^dn). Let x be this input vector and

A= {—d\—d„). Thesignal stable time S2 at theoutput under D2 is:

^2 = delay.propagate(D2^x,A) = 0

by using the delay tuple.

Now consider Di. Let (d\,... be a delay tuplein D\ underx. Thereexists at leastone i

such thatd\ > diforany choice of (^/J,...,dli). Therefore, thesignal stable time at theoutput

.ri is:

= delay.propagate(Di,x,A) = min max(-di-\-dl) > 0,

which is later than S2. A contradiction.
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We prove several properties of

Theorem 4.2 •< is reflexive.

Proof VZ),Z) •< D, This is trivial from the definition. •

Theorem 4.3 X is transitive.

Proof Suppose that D\ •< Di and D2-<D-i. We want toprove that D\-<Dy Let (x,(t/i,..., ) €

Dt,. Since I>2 ^3> there exists (x,(f/j,...,d'^) 6 D2 such that ,..., ,...,dn). Further

more, since D\ < D2, there exists {x,(d",...,d'!^)) 6 D\ such that (d",...,d'l) < (d\,...,dl,). By

combining thetworesults with thetransitivity of < (Lemma 4.1), forany(x,(di,...,d„)) € D3, there

exists (x,(d'/,. ..,<)) 6 such that (d'/,.. <(dj,. ..,d„). •

Theorem 4.4 ^ is antisymmetric.

Proof Suppose thatDi ;< D2 andD2-<D\. We wantto provethatZ)i = D2. SinceD\ :< D2,

for any (x, ,..., ) e £>2 there exists (x, {d[,...,d'„)) e Di such that (d\,...,dn) <(di,...,d„).

Furthermore, since D2 :< Di, for (x,{d[,...,d'„))eD\ above, there exists (x,(d'{,..., J")) G£>2 such

that{d", ...,dll)<{d\,..., d'„). Bythetransitivity of< (Lemma4.1) (d",...^ d")<{di,...^dn). Note

that both of the delaytuplesare underx in £>2. Suppose {d",...,d") ^ {di,..., d„) for a contradic

tion. This means that underx thereare twodistinctdelaytupleswhereone is dominatedby the other.

This contradicts the assumption that D2 is reduced. Therefore, (d",... = (^/i,and thus

{d\j... ,d'„) = (di,... ,d„), showing that any delay tuple under x in£>2 is also a delay tuple under x

in Di. The symmetric argument proves the other direction. •

4.6 Computing Delay Abstractions by Functional Arrival Time Anal

ysis

Section 4.2 showed that functional required time analysis of a combinationalmodule di

rectly gives a false-path-aware delay abstraction of the module without assuming a specific arrival
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timecondition at primary inputs. Since no assumption is made about arrival timeconditions at the

inputs, the resulting delay abstraction is valid under any arrival time condition. Furthermore, the

delay abstraction captures enough information sothat a delay estimate isaccurate under any arrival

time condition.

Inthis section thedelay characterization problem isapproached from adifferent angle. We

argued previously thattheuseoffunctional arrival time analysis incomputing a delay abstraction is

not appropriate. The reason was that state-of-the-art techniques for functional arrival time analysis

take as input an arrival time condition atprimary inputs, which can lead to a delay abstraction spe

cialized for the given arrival time condition. The validity ofthe delay abstraction isquestionable if
it is used under different arrival times.

Suppose a delay abstraction iscomputed by functional arrival time analysis under a spe
cific arrival time condition. Ifwe can prove that the use ofthe resulting delay abstraction never leads

to delay underestimation under any other arrival timecondition, it is conservative and thus safe to

use. Ontheotherhand, if thereexistssomeinputvectorandsomearrival timecondition underwhich

the delay abstraction gives too optimistic delay estimation, the possibility ofdelay underestimation

makes the delay abstraction unsafe. We will formalize this idea and show that the validity ofdelay

abstractions depends on what path sensitization condition is used in functional arrival time analysis.
Two different approaches will be presented. Throughout this chapter D' denotes a delay abstrac
tion computed by the first approach while eP" denotes a delay abstraction computed by the second
approach.

4.6.1 Delay Abstractions by Path Classification

The first approach is based on the classification ofpaths into true and false paths under
an arrival time condition. We first choose an arbitraiy arrival time condition and perform functional

amval time analysis using apath sensitizationcondition thereby classifying all the paths ofthe circuit

into true paths and false paths. All the false paths are then ignored and the effective delay from an
input to an output iscomputed as the longest true path between the two terminals. Afalse-path-aware
delay abstraction isconstructed this way by using functional arrival time analysis.

The idea ofignoring false paths indelay analysis has been standard incommercial timing

analysis tools [BS95]. In this scenario designers specify false paths, which are then ignored during
topological analysis. If false paths areidentified and ignored under thesame arrival time condition,

the approach isclearly correct. However, a typical usage ofsuch a timing analysis tool is that false
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paths are specified once and for all, which are assumed to be false in all subsequent analyses even

under different arrival times. The correctness of this approach hinges on whether the false paths

specified are conservative enough for any arrival time condition. To the best of our knowledge, the

validity of this type of analysis has never been discussed in the literature.

Arrival-Time Independent Path Sensitization Conditions

Although most of the path sensitization conditions proposed recently refer to arrival times

at primary inputs to determine the falsity of paths, there are some sensitization conditions indepen

dent of arrival times. Static co-sensitization [DKM93] and the Brand-Iyengar [BI88] conditions are

in the category. For this class of sensitization conditions we do not need to select arrival times in the

first place. Since the correctness of these conditions is guaranteed implicitly under all arrival time

conditions, the resulting delay abstraction is a conservative delay abstraction to Dgxact-

Theorem 4.5 Let be the delay abstraction constructed by static co-sensitizationanalysis

ofa single-output combinationalmodule Then Dgxact ^lo-sens-

Proof See [DKM93]. •

Theorem 4.6 Let be a delay abstraction constructed by Brand-Iyengar analysis ofa single-

Kxact ^ ^BI'output combinational module under somefanin ordering. Then Dgxact

Proof See [BI88]. •

Let us apply these two sensitization conditions to the circuit in Figure 4.1. In the following

we focus on the case where an input vector is 000. Other input vectors can be analyzed in the same

way.

First, staticco-sensitizationanalysisis performed on thecircuit. Paths (a, e,g) and (b,e,g)

are false since g has a controlledvalue 0 of the AND gate whilee does not have a controllingvalue

0. The other three paths are true. Since the longest topological path from each input is still true, the

delay tuplefor thisvectoris (3,3,2), whichis the sameas the onecomputedby topologicalanalysis.

Let us try Brand-Iyengaranalysis. Brand-Iyengaranalysis requires that a fanin ordering

be given at each gate. Depending on the orderings the accuracy of delay abstractions varies.
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Suppose a <b^i gate d and e < f at gate g^. Paths (a,e,g) and (b,e,g) are false again
since at the fanins ofg theother fanin /, which is after e in theordering, has a controlling value 0.

Thetopological longest path from a, (a, /, g), is also false since at gate d theother fanin b> a has

a controlling value. All theotherpaths are true. Notice thatboth of thepaths from a arefalse. This

results ina delay tuple (—<», 3,2), which is one of thedelay tuples in Dexact under input vector 000.

Letus keepthe fanin ordering at d andflip theordering at g to / < e. Thischange makes

the two paths (a,e,g)and (b, e,g),which were false before, true since 0at/ does not block the paths

anymore sincef <e. Thefalsity andthe truth of theotherpaths remain thesame. Thedelay tuple

based onthis analysis is (2,3,2),which is less accurate than the delay tuple inthe previous analysis

(—,3,2).

Thecircuit is symmetric in terms ofa andb. Therefore, by flipping theordering at d, we

obtain the following two tuples for each ofthe above: (3, -oo, 2),(3,2,2). (3, -<», 2) is the same as

the other delaytuple in Dexaci underinputvector000.

Depending on faninorderings, the accuracy of delaytuplesvaries. It can be as accurate as

oneof thedelay tuples in Dexact^ butcan beasconservative as thetopological delay tuple.

Viability Analysis

Unlikethe twosensitization conditions discussed so far, viability [MB91] refersto arrival

timesat primary inputs. Thus, thesamepathcanbe trueundersomearrival timecondition, butfalse

under another even for thesame input vector. This leads to a question whether a delay abstraction

computed by viability analysis under some arrival time condition is still valid under a different arrival

time condition. Daniel Brand has recently pointed out that viability analysis should give a valid delay

abstraction no matter how arrival times are chosen by observing similarity between viability and

Brand-Iyengar analyses [Bra98]. We will formalize this claim byproviding a proof.

Let beasingle-outputcombinational module with primary inputsa:i ,... j-'Cn andprimary

output z. Consider two arrival time conditions i4i = (ai,i,...,«i,n) andA2 = (^3!2,i,--M^»2,n)-

Definition 4.5 Let p= (go, ...,gk) be a pathfrom a primary input go = xj to a gate gk- Let A=

(a\^...^an) be an arrival timecondition. Then,

k

pathjielay{p,A) = aj-\-^d{gi).
1=1

^^Since the orderings ateand / are irrelevant for this input vector, we do not specify them to simplify the aigument.
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Theorem 4.7 Letx, Ai and A2 be an inputvector and arrival time conditions chosen arbitrarily.

Letp= (go, ...igk) bea pathfromprimary input go tosome node g^. If p is viablefor x underA\,

then thereexists a path p' from a primaryinputto gk that is viablefor the samevectorx underA2

such that pathjielay(p,A\) < pathjlelay(p\A{).

Proof We prove thisbyinduction onthestructure of More specifically wechoose a topo-

logical order ofthe nodes inM, and prove the theorem inductively onthis order. Viability ofa path

is always discussed for the inputvectorx in this proofunlessotherwise noted.

Base case: p = (go) consists of only a primary input node. Any such p is viable under any input

vector and any arrival time condition. Therefore, p' = p, and we are done.

Induction: Assume that the last nodeof p is not a primary input.

If p is viable under A21 p' = p, and we are done.

If p is not viable under A2I Weneed to constructp' that meets the condition.

Considerthe subpathqofp fromgoto gategk-1, <? = (go, •••,8k-1)• By induction,there

exists apathq' from aprimary inputtogk-\ viable underi42 suchthatpathjdelay{q,A1) <

pathxielay(^,Ai). Let p be the pathq' extended by gk-

If p is viable under A2''.

path^elay(p,A\) = pathjdelay{q,A\)+d{gk)

< pathAelay(q\Ai) +digk)

= pathxielay{p^Ai).
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Therefore, p' = p meets the condition.

If p is not viable under A21 Since p is notviable under >42, there exists a non-empty

setSofsideinputs at with acontrollingvalue of LetS= {/i,...,//}- (See Fig

ure4.2.) Foreach fi € S,considera viable path r,- underA1 from a primary input tofi

thatmaximizespflr/i^e/fly(r„Ai). pathAelay{q,A{) < pathjdelay(ri,A{)

for / = 1,..., / since otherwisep would not be viableunder A1.

Byinduction, foreach ri, there exists a viable path rj- under A2 from a primary input

iofi such thatpathjielay(ri^A\) < pathjdelay(r^^^Ai).

Now we would like to show that there exists 7€ {1,..., such that /j can be ex
tended with gjk by maintaining viability underA2. Suppose nonecan be extended

fora contradiction. Foreach fi letr,- = maXspathJelay{s,A2), where the max op

eration is taken over all viable paths s from a primary input to fi underA2. For

let/o = maxspath^elay{s,A2)y where the max operation is taken overall vi

able paths s from a primary input to under A2. Since no rj can be extended,

to < ti(i= and 1has a controlling value. However, underthiscondition

p is viable under A2. A contradiction.

From theabove, atleast one canbeextended with gk while remaining viable under

A2. Let r^j be such rj. Let p' be the extended path.

pathAelay(q,A\) < pathjielay(rj,A\)

< pathjielay(r^jyA\).

By addingd(gk) to the inequality,

pathjdelay(p,A{) = pathAelay(q,A\)-\-d(gk)

< pathMlay(fj,Ai) + d(g^)

= pathjdelay(p\A\).

Corollary 4.1 LetA\andA2 bearbitraryarrival time conditions. Foranypath p= (go, •••, gk)from
a primary input toa primaryoutputviable under xandA\, there exists apathp'from a primaryinput

togk viable under x andA2 such thatpathjielay{p,Ai) < pathAelay{p\A\).
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The intuitive meaning of Corollary 4.1 is as follows. Let Aj be the arrival time condition of

the current interest. Supposethat we have analyzed this circuitunderA2 and classified all the paths

into viable and non-viableunder A2. The corollary guaranteesthat we can safely pretend that this

classification of paths remains the same under A1 for the purpose of estimating output stable time.

Even though the stable time may be overestimated, there is no risk of underestimation.

To be more concrete, let p be a viable path under the current arrival time condition. If p

is the longestviablepathunderA1, theactualoutputstabletime ispathjdelay(p^A\). Now, thecorol

laryguarantees theexistenceofa viablepathp' underA2 wherepathjielay(p^A 1) < pathjdelay(p',A1).

Byassuming p' isviable underA1, theoutput stable time underA1 isestimated aspathjielay(p' Â\),

which is no earlier than the actual arrival time pathjdelay(p^A\) by construction of p^ Thus, it is

safe to reuse the classification of viable and non-viable paths under A2 to A1.

Notice that A1 and A2 above were chosen arbitrarily. Therefore, if viability analysis is per

formed under some arrival time condition, the resulting delay abstraction computed by ignoring false

paths under the condition is a valid delay abstraction under any arrival time condition.

Theorem 4.8

Vx,A,A',delay.propagate{DliabiiityW»< delay.propagcae(Dliabiii,y(A'),x,A).

Proof In Corollary 4.1, let Ai = A and A2 = A'. For any viable path p under x and A, there

exists a viable path p' under x and A' that never gives an underestimate of the delay due to p. Thus

the claim holds. •

Theorem 4.9 For simple-gate circuits:

Vx,A, delay.propagate{Dexach = delay.propagate(DliabiiiiyW^ •

Proof Under the same arrival time condition, XBDO analysis gives the same delay estimate

as viability [MSBSV93] for simple-gate circuits. Thus the equality holds. •

Theorem 4.10

^^j^exact ^viabilityi^)
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path
Arrival timecondition (arr(a),arr(b)^arr(c))

(0,0,0) (1.0,0) (0,1,0) (2,0,0) (0,2,0)
true true true false false

true true true false false

{a,dj,g) true false true false true

(h,dj,g) true true false true false

(cj^g) true true true true true

delay tuple (3,3,2) (2,3,2) (3,2,2) (-«=»,3,2) (3,-~,2)

Table 4.1: Delay Characterization byFunctional Arrival Time Analysis: Viability

Proof From Theorems 4.8 and 4.9,

Vx,A,A', delay.propagate(Dexact, x,A) = delay.propagate(Dliahiiity(A), x,A)

< delay.propagate(Dliai,iii^(A'), x,A).

By the only-if part of Theorem 4.1 Dexact ^iiabiUtyi '̂) •Renaming A' to Acompletes the proof. •

Now that the correctness ofthe approach isproved, let us see how itworks inpractice using
the example in Figure4.1. We will analyze the circuitundervarious arrival timeconditions to see

theeffect ofarrival times to theaccuracy of the resulting delay abstractions.

Table 4.1 sununarizes the result for input vector 000. The falsity and the truth of paths
vary depending on arrival times, which affects the accuracy ofthe computed delay tuples. Under
arrival timesA= {arr{a),arr{b),arr{c)) = (0,0,0) we obtain the delay tuple the same as topological

analysis while under the last two arrival time conditions the resulting delay tuple is as accurate as
one ofthe delay tuples in Dexact- We can confirm that in all the cases the computed delay tuples are

conservative approximations to oneof theexactdelaytuples.

Floating Mode Analysis

We showed that viability analysis under an arbitrary arrival time condition gives a valid

delay abstraction. The floating mode condition [CD93] isanother well-accepted path sensitization

condition known tobeasaccurate asviability for functional arrival time analysis ofnetworks com

posed ofsimple gates. Anatural question iswhether the floating mode condition has this property
ornot. This is resolved negatively by showing that a delay abstraction computed byfloating mode

analysis may underestimate true delays.



path
Arrival time condition{arr{a),arr{b),arr{c))

(0,0,0) (1,0,0) (0,1,0)

(a^e,g) false false false

false false false

(a^dJ,g) true false true

{b,dj,g) true true false

(cj^g) false false false

delay tuple (3,3,-oo) (-00,3,-oo) (3,-00, -00)

Table4.2: DelayCharacterization by Functional Arrival Hme Analysis: Hoating Mode

63

Thecircuit inFigure 4.1 is analyzed again using thefloating mode condition forinputvec

tor 000. Table 4.2 shows floating mode analysisunder three differentarrival time conditions. In all

thecases, theresulting delay abstractions aretoooptimistic. Recall thatthedelay tuples for thisvec

tor in Dexact are (3,-®o,2) and (-«>,3,2). Under thearrival time condition (0,0,0) thecomputed

delay tuple is (3,3, —«»). However,

(3,—,2) ^ (3,3,-oo)

(—,3,2) (3,3,-oo).

Thus, (3,3, -oo) is a conservative approximation to neither of theexact delay tuples. Thesame is

true for the othertwo delay tuples computed by floating mode analysis underdifferent arrival time

conditions.

The problem lies in the fact that if all the fanins of a gate have non-controlling values,

floating modeanalysis classifies thepaths leading to anyof the fanins but the latestas false. This is

correct as far as delay estimation under the arrival time condition is concerned. However, once ar

rival time conditions change, a path with anearly-arriving non-controlling value can potentially give

the last non-controlling value thereby determining the delay upto the gate. Thus, simply assuming

thatthepath remains false undera different arrival time condition may lead todelay underestimation.

Viability doesnotsuffer from thisproblem sincethose paths areclassified as viable.

Notethatthe floating-mode condition doesnotproduce delayunderestimation for thecase

where a gate has a controlled value. Under this situation only the paths that give thefirst controlling

value at a fanin of the gate isdeclared to be true. If wechange arrival time conditions, a different

fanin may givetheearliest arriving controlling value. However, it isstillconservative to assume that

thefanin with theearliest controlling value under theoriginal arrival time condition determines the

stability ofthe gate output since itisequivalent toassuming that acontrolling value, not necessarily
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the first one, is responsible for the delay of the gate. This only results in delay overestimation. A

similar argument applies to viability andtheBrand-Iyengar conditions.

Ithas been known that floating mode analysis classifies fewer paths asfalse than viability

analysis although both give the same delay estimation infunctional arrival time analysis ofnetworks

composed of simple gates. This fact has been recognized as a favorable property to floating mode

analysis since fewer paths are identified ascritical paths. Timing optimization can then be performed

more effectivelyon those fewer criticalpaths.

The discussion in this section demonstrates that the definition of false paths in floating

mode analysis is so specialized toa given arrival time condition that the falsity and truth ofpaths

are not conservative enough to be used undera different arrival timecondition. On the otherhand,

viability is conservative in this sense by categorizing more paths as true. This creates asharp contrast
between thetwo sensitization conditions infavor of viability.

Relative Accuracy between Delay Abstractions

Wehave studiedthe correctnessof delaycharacterization methodsbasedon functionalar

rival time analysis, where a delay abstraction is computed by ignoring false paths under an arrival

time condition. We have identified what sensitization conditions can be safely used in this approach.
The relative accuracy of those correct sensitizationconditions is discussednext.

For functional arrival time analysis the relative accuracy of various sensitization condi

tions isfully understood [MB91]. The accuracy can be aigued by comparing output stable times es

timated bydifferent sensitization conditions under a given arrival time condition. Ourinterest here

is different since we want to argue the relative accuracy ofstable time estimates by considering all
arrival time conditions.

Let uscompare the Brand-Iyengar condition and viability. We showed that depending on
the choice offanin orderings delay tuples computed byBrand-Iyengar analysis can beasaccurate as

one ofthe tuples inDexacu but can be the same asthe delay tuple corresponding totopological analy

sis. Viability analysis has the same trend as inTable4.1. The accuracy ofdelay tuples depends on the

choice of arrival times at primary inputs. Therefore, unlike functional arrival time analysis, where

viability has more accuracy than the Brand-Iyengar condition, there is no •< relationship between

and although bothareguaranteed to givecorrect delay abstractions.

Static co-sensitization also gives a correct delay abstraction. In theanalysis of thecircuit

inFigure 4.1 static co-sensitization gives a delay tuple that isthe same as topological path analysis.
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Figure 4.4: Relative Accuracy of DelayAbstractionsComputedby FunctionalArrival Time Anal
ysis: Path Classification

As far as this example and the input vector 000are concerned, it appears thatDgj •< and

^viability —̂ co-sens ^^Id. However, Figure 4.3 gives a counterexample.
Consider the input vector (ayb) = (0,1). Assume the unit delay model. Under static co-

sensitization only path (a,z) is true. Path (/>,z) is false sinceb does not havea controlling valueof

theAND gate. Therefore, thedelay tuple based onstatic co-sensitization is (1,—<»). Ifweperform

Brand-Iyengaranalysis, both paths aretrueunder thefanin ordering a<b, which results in thedelay

tuple (1,1). Notice that(1,—«») <(1,1), indicating that static co-sensitization gives a more accurate

delay tuple.

Viability canalsogivea delay tuplelessaccurate than thatof static co-sensitization using

thesame example. Assume thata and b arrive at r = 1 and r = 0 respectively. Thepath from a is

true since the side input b has a non-controlling value. The path from b is also true since the other

fanin a, although being a controlling value, arrives later than b. Therefore weobtain thesame delay

tuple (1,1) as in Brand-Iyengar analysis.

This example shows that static co-sensitization analysis can give a more accurate delay

abstraction than theBrand-Iyengar condition or viability. Since wehavealready seen that thecon

verse canhappen in thecircuit inFigure 4.1, it is concluded thatthere is no •< relationship between

static co-sensitization, Brand-Iyengar and viability.

Figure 4.4 summarizes theresults so far. Thediagram illustrates < relationship between

different delay abstractions computed bytheapproach. Anedge from Di to Dj denotes D\ ^ D2.
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Since and are all correct delay abstractions, there are edges from Dej^acr to them.
However the three delay abstractions computed by functional arrival time analysis are not compara
ble toeach other since there isno :< relationship.

4.6.2 Delay Abstractions based on Arrival Time Differences

In the previous subsection a delay abstraction ofa combinational module was computed
by ignoring false paths under a fixed arrival time condition. Aset ofpath sensitization conditions
that can be safely used under this context was identified.

This subsection takes adifferent approach to computing adelay abstraction. Although it
is still based on functional arrival time analysis under a specific arrival time condition, we focus
on signal stable times at the outputs of the module instead ofclassifying paths into false and true.
The effective delay from an input toan output isdefined as the time difference between the stable

time of the output and the arrival time of the input. Recall that arrival times at the inputs are chosen
arbitrarily again.

Let us illustrate the difference between this approach and the previous approach using the
example in Figure 4.1. Suppose that viability analysis is performed under (arr(a),arr(b),arr(c)) =
(2,0,0). As in Table 4.1, the resulting delay tuple for input vector 000 was (—OO^ 3,2) in the first
approachbecause both paths from a are false.

The new approach is based on stable times. The output stable time estimated by viability
analysis is r= 3. Since a arrives at r = 2, the effective delay from a to the output is computed as
^-2=1. For b, the delay is 3- 0 = 3. Finally, for c, the difference is 3- 0 = 3, which can be
safely reduced to 2since the longest topological patli from cto the output is only 2. The resulting
delay tuple is (1,3,2), which is less accurate than (-«>, 3,2) obtained in the first approach under the
same arrival time condition.

Ifadifference ofoutputstable time and input arrival time is not positive, the corresponding
input is irrelevant tothe stability ofthe output. Thus, the delay between the two terminals isset to
—oo^

The two approaches are related to each other. In fact we can prove that ifthe same path sen
sitization condition isused under the same arrival time condition, the delay abstraction constructed
by the second approach is aconservative approximation to the one computed by the first approach.

Theorem 4.11 LetA = (ai,...,a„)be arrival times at the inputs. Let Z)' (A) andI^(A) be the de
lay abstractions computedby thefirst approach and the secondapproach respectively, byfunctional
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arrival time analysis under A using the same path sensitization condition. Then, (A) ^

Proof Since i)'(A) and D^(A) are computed by functional arrival time analysis, they have

only one delay tuple for each input vector. Therefore, it is enough to show that for any input vector

X, .,.,dx^n) < (^^2,1,..',d2,n) where (x,(dx^u• •• (A) and (x, ••.,^2,«)) €Z)^(A)

Recall that d\^i is the longest true path length from input Xi to the output under x and A. Let

s be the output stable time, which is computed as:

s —max{ai-\-di,).
I '

Suppose that the maximum is achieved when i = j. Then,

j = aj-\-dij

^i,aj-\-dij > ai-\-di^i.

<^2,/ is defined as di^i = s —a,.

If/Vy:

Therefore,

dij —̂ aj —{aj-\-dij) aj —dij.

d2,i = s-ai= {aj-\-dij) -a-, > d\^i

^ ^2,i}

and thus (d\^\,....,dx^n) ^ (<^2,11 ••-1^2,«)• Since this holds forall input vectors, D^(A) < D^(A).

Strictly speaking^2,,- is refined from s —a,-. There are two specialcases.

If .s - a, is non-positive, £?2,i is set to -<». Thisdoesnotviolatetheinequality sinceno path

istrue from x/, implying di,, = -00. Therefore, even after redefining d2,i to -«>, d\^i < d2,i stillholds.

The second case is that if j - a, is greater than the longest topologicaldelay /, from x, to

the output, d2,i is set to /,. Since dij is defined as the longest truepath length from x,- to the output,

it cannot belarger than /,-. Therefore, setting d2j toIt still gives dx^i < d2,i. •

This theorem inunediately guarantees that static co-sensitization, Brand-Iyengar and vi

ability can be safely used in the second approach without the riskof getting too optimistic delay

abstractions. It also indicates that thedelay abstraction computed in the second approach cannot

be moreaccurate than the one in the first approach if the samesensitization conditionand the same

arrival timecondition areused forunderlying functional arrival timeanalysis.
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Floating Mode Analysis

We showed that the use of floating mode analysis in the first approach can result in an

incorrect delay abstraction. Interestingly, if this sensitization condition is used in conjunction with

the second approach, a correct delay abstraction is computed. This is guaranteed by the following

theorem.

Theorem 4.12 Assume thata combinationalmoduleiscomposedofsimplegates. LetA= {ai,...,a„)

be arrival times atprimary inputsx\,... respectively. Let l^iabmtyW ^nd be the de
layabstractions computed by thesecond approach using viability and thefloating mode condition

respectively. Then. 1)1^11,^) = ^pomingW-

Proof Consider input vector x. Let Syiabnity and sfixating be the output stable times estimated

by viabilityand floating modeanalysisfor x underA. It is knownthat

^viability~ ^floating

from the relative accuracy of the two sensitization conditions for functional arrival time analysis.

Let and {df^i,...,df^„) bethedelay tuples of and underx re

spectively. Since dy^i = Syiabmty ~ and dfj = Sfipoii^g ~ flt/, ^^i^dyj = dfj. Thus, (dy^it •••j^v,«) —

{df^l,.. .jdf^n) and DliabUUyW = ^floatingi^)-

Animportantobservation in this theoremis that therelativeaccuracy of delayabstractions

based on twosensitization conditions computed in thesecond approach isthesameasthatof theout

put stabletimesestimated by the twoconditions. Thiscan be generalized to the following theorem.

Theorem 4.13 For simple-gate circuits:

Inexact ^ ^viabilityW — hatingW,2 /A\ t\2 ! a\ ^

^co—senX^

Proof Similar to the proof of Theorem 4.12. •

Finally, in this second approach, we can also use functional arrival time analysis based on

the XBDO model. Note that we couldnot use XBDO analysis in the first approach since it does not

classify true and false pathsexplicitly. However, it can be used in the second approach since only

output stable times are required.
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D ,
exact

Figure 4.5: Relative Accuracy of Delay Abstractions Computed by Functional Arrival Time Anal
ysis: Arrival Time Differences

Theorem 4.14

Dexact

Proof Let s be the output stable time estimated by XBDO analysis under A for x. The delay

tuple in for x is (j - ,..., j .

Now let us use Dexact to estimate the output stable time under A. Clearly,

s = delay.propagate(Dexact A).

This means that for each x, Dexact has a delay tuple (di,...,dn) such that V/,di<s- a,.

Therefore, (i/i,..., < (j - aj,..., j - a„) implying Dexact :< D^bdo(^)• °

Finally, by adding D^^do(A) we have the following result on the relative accuracy ofdelay

abstractions computed in the second approach.

Theorem 4.15 For simple-gate circuits:

Dexact ^XBDoW = ^liabilityW = ^^floatingW ^
^co—sensi.^^

Proof The XBDO analysisand viability analysiswere shown to have the same accuracy for

functional arrival time analysis [MSBSV93]. •
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Figure 4.6: Relative Accuracy of Delay Abstractions
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Figure 4.5 shows this relative accuracy pictorially. Note that this ordering holds if the same

arrival time condition is used for all the sensitization conditions. If different arrival time conditions

are used for different sensitization conditions, the ordering above is not necessarily true.

Figure 4.6 summarizes the relative accuracy of the two methods.

4.6.3 Refining Delay Abstractions by Multiple Functional Arrival Time Analyses

We presented two approaches to computing delay abstractions using functional arrival time

analysis. A fundamental limitation in these approaches is that the resulting delay abstraction always

has only one delay tuple for each input vector by its definition. The capability of having more than

one delay tuple under the same input vector improves the accuracy of delay estimation by allowing

adaptive choice of a delay tuple given an arrival time condition.

One way to refine a delay abstraction computed by functional arrival time analysis is to

repeat the analysis under different arrival time conditions and enrich the delay abstraction by adding

new delay tuples. For example let D\ and Di be the delay abstractions of the same module. Let 6i

and 62 be the delaytuplesof £>1 andDi underx respectively. Letus improve the accuracy of Di by

combining the information in D2.

If 61 < 62, 62 is subsumedby 61 in terms of accuracy. Therefore,no modification is made

to Di. If 62 < 61, the situation is reversed. Therefore, we can replace 5| with 82 in D\ under x.

Otherwise, 61 ^^62 and 62 /^6i. Since 61 and 82 are not comparable, each delay tuple can be used

to give a better delay estimation than the other under some arrival time condition. Thus, we add 82

to £>1 under X.

This operation can be defined as follows.

Definition 4.6 Let D\ and D2 be delay abstractions ofa combinational module. Let D = D\U £>2,

where

D = {(x,8i) |^.(x,82) € D2 5Mc/r r/wzr 82 <81}

U{(x,82) |^.(x,8i) GD\ such thath\ <82}

Theorem 4.16 Let D\ and D2 be delay abstractions ofa combinational module. Let D = Di UD2.

Then, D<D\ andD < D2.

Proof We only prove D :< Di. D < D2can be proved by a symmetricargument.
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Let (x,5i) 6 I>i. If thesame (input vector, delay tuple)-pair is inD, wearedone. Other

wise, thepairwas not included toD sincethere exists (x,62) 6 D2 such that62 < 61. There exists no

delay tuple 6| in D\ under x such that 6j < 82 since otherwise D\ would include 61 and 5| under x,
where the first delay tupleis redundant. Thus, (x,62) € D. •

By trying more arrival timeconditions and accumulating better delay tuples using Uop

eration, the delay abstraction approaches to the exact delay abstraction Dexact-

4.7 DelayAbstractions viaApproximate Functional Required TimeAnal

ysis

In Section 4.2 we showed that the exact delay abstraction of a combinational module can

becomputed byperforming functional required time analysis exactly. The useofapproximate func

tional required time analysis inthesame scenario gives anapproximatedelay abstraction inlesscom

putation time.

Consider the approximate functional required time analysis described in Section 3.3.2.

Therequired timeat theoutputis setto/ = 0 asintheexact analysis. Theapproximate analysis com

putes input-vector independent required times (fi,...,?«) for ,... ,jc„ respectively. The required

times computed areguaranteed to beaconservative approximation to theexactrequired times. More

precisely, foreach input vector x, there exists an exact required time tuple (tj,... ,/i) such that

,..., //t) ^ (/j,..., .

Intuitively, this means that the required times computed by approximate analysis are no later than

those computed by exact analysis to be conservative.

An approximatedelay abstraction independentof input vectors, is then definedas

—trt), where thei-thelement represents thedelay from x/ to theoutput. From theinequality

above, forany delay tuple (-ti under x,there exists (-rJ,..., -t'n) 6 Dexact under

X such that

Therefore, t)exact ^ t^appmx'
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4.8 Delay Abstractions via Approximate Functional Arrival Time Anal

ysis

Approximate algorithms can also be employed in the delay characterization methods using

functional arrival time analysis.

In the first approach based on path classification the falsity of a path was defined for each

input vector separately. By approximating this input vector dependency conservatively, a path can

be defined to be false if it is false under all input vectors. This is a more strict definition of false paths.

The use of this new definition ignores a subset of the paths ignored in the exact approach. This gives

no better delay tuple with respect to < than the exact approach. Hence, the approximation yields a

delay abstraction more conservative than the original with respect to

In the second approach, instead of computing output stable time for each input vector sep

arately it can be conservatively defined as the earliest time when the output is stable under all input

vectors. This results in overestimation of the output stable time under some input vectors. Since

each input/output delay in a delay tuple is defined as the difference between the output stable time

and input arrival, time, this overestimation gives a larger delay for each input-output pair, resulting

in a conservative delay abstraction.

4.9 Delay Characterization Independent of Gate Delay Assignments

So far we have studied various delay characterization techniques under the assumption

that a delay assignment to all the gates is known. Because of this assumption, once a delay assign

ment changes, a delay abstraction needs to be recomputed. If a gate delay decreases, the monotone

speedup property guarantees that the original delay abstraction is at least conservative. However, a

delay increase of a gate invalidates the delay abstraction. In this section, we will show that the exact

delay characterization technique discussed in Section 4.2 can be generalized to the case where gate

delays are unknown. This generalized delay abstraction has a set of delay tuples under each input

vector as before, but a delay number in a tuple is no longer a constant value determined by a given

delay assignment, but a function of path lengths. Therefore, the same delay abstraction can be used

as long as a circuit structure remains the same. One can obtain a delay abstraction specialized for a

given delay assignment by simply evaluating all the delay functions.

Let us take the circuit in Figure4.1 againas anexample. Wepreviouslyanalyzed the circuit

under the unit delay model. Now assumethat gate delays are unknown. To distinguish the input-
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0 a

0 b

Figure 4.7: Signal Values of 9\4. under Input Vector 001

output paths of the circuit, we name the paths in the following way.

Pa =

Pb =

K =

Pi, =

Pr =

a-^ e—y g

b-^ e—¥ g

a-^d-)- f-^ g

b-^ d-^ f-¥ g

Consider an input vector (a^b^c) = (0,0,1). Figure4.7 shows final values of all the in

termediate signals. Remember that the technique discussed in Section 4.2 was based on functional

required timeanalysis. We willanalyze thecircuit backward from primary outputs toprimary inputs

as in functional required timeanalysis, but this timewe willdo so without usingactual gate delays.

The primary output is settled to a constant 1 under this vector, which is the non-controlled

value of the ANDgatefeeding the output. Toguarantee this value at theoutput, all the inputs of the

ANDgateneedto havethenon-controlling value1. Therefore bothof thesubpaths fromtheprimary

output up to the inputs e and / are responsible for the signal stability of the output.

Let us first examine the input e. e has a value 1 at the end. Since the gate feeding e is

a NOR, it is the non-controlled valueof the gate, and again both of the inputsneed to presentthe

non-controlling value 0. Thus, paths Pa and are responsible for the signal stability of the primary

output.

The other input of the AND gate / is settled to 1, which is fed by an OR gate. Since the

value 1 is the controlled value of the gate, it is just enough to have the controlling value of the gate,

a value 1, at one of its inputs. Since only c gives a value 1, this input value guarantees the output

value 1 at the OR gate. Therefore, path Pc is responsible for delay while the other paths and
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are irrelevant.

By combining the above, it is clear that only paths Pa^Pb and Pc are responsible for delay.

The corresponding delay tuple is (|/a|, |Fz,|, |/c|)^, where |F| denotes thepath length ofP. Note that

underthe unitdelay model, | | = | | = | | = 2, whichgives (2,2,2). Thedelayabstraction shown

in Section 4.2 indeed has this delay tuple under input vector 001.

Although we only obtained one delay tuple in the above, in general a set of delay tuples

is computed. For example, consider a different input vector (a, b, c) = (0,0,0). Figure 4.8 shows

signal values under this vector. This time the output value is the controlled value of the AND gate.

Since only the bottom input / has the controlling value 0 of the gate, any path leading to the other

input e is not responsible for delay. The value 0 at / is the non-controlled value of the OR gate,

implying both of the inputs need further tracing. Since the bottom input is fed directly from input c,

it is determined that Pc is responsible for delay. The other input d is settled to value 0, which is the

controlled value of the AND gate. This time both of the inputs a and b have the controlling value of

the AND gate. Thus, it is enough to have one of those to guarantee the value 0 at d. This translates

to either or being responsible for delay. Since Pc is responsible independent of this choice, the

delay tuples under thisvector are (1^|, —«*, |Fc|) and (-«»,1/^1, |Pc|).

A similar analysis for the other vectors gives a generalized delay abstraction of this circuit,

which is shown in Table 4.3. The first, second and third columns show input vectors, sets of delay-

responsible paths and sets of delay tuples respectively. Note that the delay abstraction in Section 4.2

is an instantiation of this under the unit delay model.

This delay-assignment-independent analysis has the following property. First, if a path is

statically sensitizable under an input vector, then it is always categorized as a responsible path, and

^If a set of responsible paths has more than one path horn the same primary input, the delay from the input is the
maximum over all the paths from the input.
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abc responsible paths da-^gdb-^gdc-^f.

000 {(ra,—.l^c|),(-oo,|/>;|, !/>,!)}
001 {(\Pami\Pc\)}
010 {(Kl,—,|P£,|,-«>)}
Oil {W}
100 i{n,Pc],{Pa}] {(—,—)}
101 {W}
110 {{PaUPl,}] -H, (-«>, l/'fel, -«)}

111 {W-W} {(l^fll. -'«)}

Table 4.3: Generalized Delay Abstraction

its path length is referred to in all the delay tuples underthe vector. Notice thatunder inputvector

00\, Pa^Pb and Pc are all statically sensitizable. Second, if a path is statically co-sensitizable, but

not statically sensitizable under an input vector, then its path length is referred to in some of the

delay tuples under the vector, but not all. Givensuch a path, thereexistsa gate on the path where

1) the output is a controlled value, and 2) the inputon the path and at leastone side inputhave a

controlling value. Since only one of those controlling values is required to stabilize the output, it

leadsto a situation where multiple choices of responsible pathsare available as in inputvector000.

Thus, a path that is statically co-sensitizable, but not statically sensitizable underan input vector

contributesto some of the delay tuplesunder the vector, but not all. Finally, if a path is not statically

co-sensitizableunder an input vector, it is never includedin the set of responsible paths.

These results are consistent with the observation that static sensitization and co-sensitization

are a sufficientconditionand a necessaryconditionfor a pathto be responsiblefordelayrespectively.

This analysis also gives us additionalinformation on preciselywhat subsetsof staticco-sensitizable

paths have impact on delay.

4.10 Related Work

Das et al. [DJCM89] and Johannes et al. [JCM92, Joh93] discussed delay characteriza

tion of combinational modules in the context of hierarchical timing analysis. However, static sen

sitization was used to identify false paths. Since static sensitization can underestimate delays, this
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approach is not conservative.

Yalcin and Hayes [YH95] introduced the notion of conditional delay matrices to represent

input-vector-dependent delay characteristic of combinational modules. This is a restricted form of

our delay abstractions in the sense that each input vector has a single delay tuple for each output in

their conditional delay matrix. They proposed a technique to compute a delay matrix of a module

using functional arrival time analysis under various path sensitization conditions, which is similar

to the approach based on path classification discussed in Section 4.6.1. However they simply con

sidered the case where all the primary inputs arrive simultaneously at / = 0. They did not argue the

correctness of the approach under arrival-time dependent sensitization conditions such as viability

and floating mode. In this chapter we have proved that viability is a safe condition in this context

while floating mode can give an incorrect delay abstraction.

Belkhale and Suess [BS95] proposed a topological timing analysis technique under known

false subgraphs,wheretopologicalanalysisis performed by simplyignoringfalse subpathsspecified

by designers. Note that this is the same scenario as the first approach based on path classification

discussed in Section 4.6.1. To validate this approach we need to argue how these false paths of a

combinational module are computed. However, the paper did not discuss the issue. The result of

Section 4.6.1 shows that viability, Brand-Iyengar or static co-sensitization can be used safely for

this purpose.

Bhattacharya et al. [BDB96] presented a timing analysis technique based on path classi

fication. They partitioned all the paths into a completedeterminingpath set and a nondetermining

path set, and showed that the delay of a circuit can be characterized as the topologicallongest delay

of all the paths in the completedeterminingpathset. The nondetermining path set may includea true

path if there exists another path in the complete determining path set that gives the same or larger

delay. However, they only gave an algorithmfor constructinga complete determining path set from

high-level descriptions.

4.11 Conclusions

We have studied various techniques for computing false-path-aware delay abstractions of

combinational modules. The difficultyof this problem lies in the fact that state-of-the-art functional

arrivaltimeanalysisisdependentongivenarrivaltimesat primary inputs. Althougha directapplica

tionof the analysis leadstoa correctdelayabstraction forthearrival timeconditionunderanalysis, it

is not clear whether the resultingdelay abstraction is valid under other arrival times. Since we do not
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know up front howacombinational module isused, it is impossible tochoose a single representative

arrival time condition.

Thereare severalpath sensitization conditionsindependent of arrival times. Althoughthe

useofsuchacondition resolves thedifficulty, those sensitizationconditions havea limited capability

of false path detection. Thus, the accuracy of delay abstractions suffers.

A major contribution of this chapter is to show that the problem can be reduced to func

tional required time analysis studied in Chapter 3. Since the analysis is performed without any as

sumption aboutarrival timesat the inputs, it is guaranteed to give a delayabstraction correctunder

any arrival time condition. We showed that in the most general form, a delay abstraction not only

depends on input vectors but also needs to carry more than one delay tuplefor each inputvector,

where a delay tuple is a list of effective delay values from each primary input. This capability of

multiple delay tuples makes accurate delay estimation possible underanyarrival timecondition by

choosingthe best delay tuple adaptively.

Wehave thenstudiedwhetherfunctional arrivaltimeanalysiscan be used tocomputecon

servativedelayabstractions, wherefunctional arrival timeanalysis is performed underanarrival time

condition at the inputs chosen arbitrarily. Two approaches were proposed and the relative accuracy

of various sensitization conditions inthisframework wasdiscussed. In thefirst approach falsepaths

under the arrival timecondition are simply ignored. A delayabstraction is constructed by comput

ingthelongest truepathbetween each input/outputpairunderthearrival timecondition. We proved

that the use of viability in this scenariogives a delay abstraction valid not only for the arrival time

conditionunderanalysisbut alsofor anyotherarrivaltimecondition. Onthe otherhand,the floating

mode condition was shown to give an incorrect delay abstraction.

In the second approach the time difference between the stable time at an output and the

arrival timeat an inputis usedto define delaybetween the twoterminals. The effectof falsepathsis

implicitly takenintoaccount by observing reduced outputstabletime. Weshowedthatthisapproach

computes a correct delay abstraction for any sensitization condition proven not to underestimate de

laysfor functional arrival timeanalysis, hencein thiscase the floating modecondition is correct.

A practical aspect of this issue is worth studying thoroughly. In an actual design environ

ment it may not be realistic to compute a fully input-vectordependent delay abstraction if a module

has a largenumber of inputs. One way to alleviatethis potentialblowupin the size of delay abstrac

tions is to take an approximateapproach,discussedin Sections4.7 and 4.8, whichcomputesa delay

abstraction independent of input vectors. This can be thought of as the other extreme. It would be

interesting to explore delay abstractions partially dependent on input vectors. For example, if a sub-
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set of inputs is identified as key variables for determining the timing characteristics of a module, it

may be good enough to restrict vector dependency of a delay abstraction to the inputs in the set.

Yalcin et al. [Yal98] have recently proposed a technique with this flavor, where primary

inputs are partitioned into control inputs and data inputs and vector-dependency is explored only

for control inputs assuming that they have much more stronger influence on delay than data inputs.

Computed delay abstractions are guaranteed to be conservative since the technique can be interpreted

as a variation of Brand-Iyengar analysis, in which different fanin orderings are used for different

input vectors. An idea on the size reductionof delay abstractions was also given.

The techniques presented in this chapter can be easily generalized to sequential circuits

with edge-triggered flip-flops by analyzing the combinational portion of a sequential circuit. The

input and the outputof a flip-flop are assumed to be a primary outputand a primary input respec

tively in the analysis. Sequential circuits containing level-sensitive latches cannot be handled in this

approach because of cycle stealing This remains as future work.

V̂enkatesh et al. [VPMS97] presented an algorithm for creating adelay abstraction of sequential circuits under topo-
logical delays. Although false paths are not taken into account, level-sensitive latches canbehandled inthe approach by
assuming a maximum transparency.
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Chapter 5

Hierarchical Functional Timing Analysis

Functional arrival time analysis has been discussed in the literature under the assumption
that a circuit under analysis has a flat gate-level structure without any hierarchy. Therefore, even if

a meaningful hierarchy exists inthe circuit, itneeds tobedestroyed before analysis, which results in

a potentially large circuit being passed tothe analysis. Although existing flat timing analysis tech

niques are practical for circuits with up to thousands ofgates, there is a limit intheir capacity since
the problem isNP-hard. Moreover, the analysis tends to become too slow for large circuits. Another

serious drawback offlat analysis is that even a small change in a single module forces us to repeat
an entire analysis from scratch. This prevents us from using functional arrival time analysis during
logic synthesis. No incremental analysis method isknown for functional arrival time analysis.

In this chapter we study hierarchicalfunctional arrival time analysis, i.e., how to perform
functional arrival time analysis ofa hierarchical circuit by respecting the hierarchy. The analysis
proceeds in abottom up traversal ofthe hierarchy. The delay ofaleaf-level module in ahierarchy is
characterized as adelay abstraction using atechnique discussed in Chapter 4. The delay abstraction
is then used in atopological-like delay analysis at ahigher level in the hierarchy. Since the delay ab
straction captures enough timing informationofthe module, the delay analysis atthe higher-level can
beperformed using only the delay abstraction without looking atthe structural detail ofthe module.

This hierarchical approach enables us to handle a hierarchical circuit without analyzing the entire
circuit atone time at the gate-level. We discuss how false paths are detected in this analysis.

Hierarchical analysis naturally supports incremental analysis unlike flat analysis. Unless
amodule ismodified, its delay abstraction computed for previous analysis remains valid and usable.
This is astep forward to the use offunctional timing analysis during logic optimization, which is not
currently practiced.
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This chapteris organized as follows. Hierarchical topological timinganalysis is first re

viewed in Section 5.1. Section 5.2presents a hierarchical functional arrival timeanalysis algorithm

where thetiming characteristics of leafmodules arecaptured byfalse-path-aware delay abstractions

independent ofinput vectors. Thealgorithm isillustrated using a simple example ofcascaded cany-

skipadders inSection 5.3. Section 5.4proposes animproved algorithmforhierarchical timinganaly

sis where the construction of false-path-awaredelay abstractionsis done in a demand-drivenfashion.

InSection 5.5thegeneral casewhere delay abstractions areinput-vectordependent isdiscussed. Ex

perimental results are shown in Section 5.6. Related work is discussed in Section 5.7. Section 5.8

concludes the chapter.

5.1 Hierarchical Topological Timing Analysis

In topologicaltiminganalysis,hierarchicalapproaches have beenusedextensivelyin prac

ticetomanage thecomplexity of industrial circuits [NST+82, TON83]. Thereason whyhierarchical

analysis is prevalent is that thedelay ofa module undertopological analysis is completely indepen

dentofa surrounding environment sinceallpaths areassumed topropagate signals. Thisassumption

makes hierarchical analysis trivial. However, false paths are completely ignored in this approach

thereby making accurate analysis difficult.

5.2 Hierarchical Functional Arrival Time Analysis

Wefirstconsider the case wherea givencombinationalcircuit is composedof subcircuits,

each of which has no hierarchy inside. In otherwords, the hierarchy depth of the circuit is 1. We

call sucha subcircuit without hierarchy a leafmodule. No glue logicis in the top levelfor the sake

of simplicity. Wealsoassume thata topological orderof subcircuits exists,i.e. thereis no path from

an output ofa subcircuit toaninput ofthesame subcircuit'. We will discuss an additional technique

required to analyze a circuit with a multi-level hierarchy in Section 5.2.3.

Hierarchical arrival time analysis is performed in two steps. The first step constructs the

delayabstraction ofeachleafmodule bya directapplication of thetechniquesdescribed inChapter3.

Arrival timesat subcircuitboundaries arethendetermined ina topological orderfrom primary inputs

to primary outputs using the delay abstractions.

'Even ifthere does not exist atopological order among subcircuits, subcircuit outputs can always be ordered topolog-
icallyunlesscombinational cyclesexist. Therefore the generalcase can be handled in a similarway.
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5.2.1 Delay Characterization of Leaf Modules

Given a hierarchical circuit, we first analyze each leaf module to characterize its timing

property. If there is more than one instance of the same leaf module used in the circuit, it is analyzed

once^. Notice thatwhen wecharacterize thedelay of a leafmodule, no information is available on

arrival times at the module inputs. Therefore, a leaf module is a combinational module and various

technique discussed in Chapter 4 are directly applicable here.

Let be a leaf module. Let X = (jci,..., jc„) and Z = (zi,... ,Z;„) be the primary inputs

and the primary outputs of respectively. Assume that an approximate delay abstraction inde

pendent of input vectors in Section 3.3.2 is used for the sake of simplicity. The delay abstraction
j^approx g ^ tuples (Jj,..., , where di represents theeffective delay from Xi to

Zj. Remember that may contain more than one delay tuple, in which case each of the delay

tuples captures different timing characteristics of the module. This flexibility will be exploited fully

later. To compute the delay abstraction of one can apply the same analysis above for each output

independently. Each output of the leaf module has the corresponding delay abstraction at the end of

this first step.

5.2.2 Hierarchical Delay Computation

Assume that arrival times are given at the primary inputs of the top-level circuit under

analysis. The goal of the second step is to compute the arrival time for each primary output of the

top-level circuit.

Let Ci < C2 < ... < Cy, be a topological order of the subcircuits. Delay analysis is per

formed by visiting subcircuits and determining signal stable times at subcircuit outputs in this order.

This guarantees that when subcircuit Q is visited, arrival times at the subcircuit inputs are known.

We then combine these arrival times and the delay abstraction of the corresponding leaf module to

compute arrival times at the subcircuit outputs.

The core of this computation is in how arrival times at subcircuit inputs are propagated

through a subcircuit. This has been already discussed in Section 4.4 for the case where a delay

abstraction is input-vector dependent. Assume that Q is under analysis. Let X = (jci,.. and

Z = (zi,..., Zm) be the inputs and the outputs of Q respectively. LetA = (ai,..., a„) be the arrival

^Ifa load-dependentdelay model isused, delay characterization must bedone for each load atanoutput ofthe module.
Evenundera load-independentdelaymodel,delaycharacterization canbedoneforeach instanceso thatsatisfiability don't
care (SDC) and observabilitydon't care (ODC) [BHSV90]at the inputs of the instance are taken care of. This yields a
more accurate customized delay abstraction.
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times at X. Let D be the delay abstractionfor the output Zk- The arrival time at Zk is computed as:

min max(a;+f/;/).
5, j

The max operation corresponds to standard topological analysis under a delay tuple 6/ in D. The

min operation then examines all the delay tuples in D and chooses the earliest stable time at the

output. The important differences between this analysis and topological analysis are that our false-

path-awaredelay abstractions are moreaccurate than topologicaldelay abstractionsand can maintain

multipledelay tuplesfor an outputto preserveaccuracy. Thismin-max computation is linear inn|D|,

where n and |D| denote the number of inputs of the subcircuit and the number of delay tuples in D

respectively. |D| is typically a small constant ifD isa delay abstraction independent of inputvectors.

Theorem 5.1 Theaboveanalysis givesa conservative approximation to the true delay ofthe entire

circuit under the XBDO model.

Proof It is enough to show by inductionon the topologicalorder of subcircuitsthat the arrival

time of any subcircuit input/output estimated by this analysis is no earlier than its true arrival time.

This is trivially satisfiedat the primary inputs of the entire circuit. Assumethat the inputs of subcir

cuit Q meet the above condition. If the delay abstraction D/ of Q meets :<Di, where

is the exact delay abstraction of Q, arrival timeestimatesof subcircuitoutputsare never underesti

mated even if exact arrival times are used at subcircuit inputs. Since actual arrival times used at the

subcircuit inputs are the same as or later than the corresponding exact arrival times, the arrival times

at subcircuit outputs are never underestimated. •

5.2.3 Delay Characterization of Circuits Composed of Subcircuits

We have considered the case where a given circuit has a single level of hierarchy. Even if

a circuit has a hierarchy depth more than one, the overall strategy of hierarchical functional arrival

time analysis is still the same;

1. the delay abstractions of subhierarchies are constructed in a bottom-up way from the lowest-

level leaf modules to the subcircuits directly under the top level, and

2. arrival times at the primary inputs are propagated using the delay abstractions of the top-level

subcircuits.
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An additional task involved in this general case is to characterize the delay abstraction of a subhier-

archy composed of subcircuitswhosedelay abstractions have been alreadycomputed.

To simplify the argument we focus on the case where a subhierarchy under analysis has a

single output^. Assume that the subhierarchy is described as connections ofsubcircuits Ci,...,Cp
without any glue logic. Let Cj < C2 < ... < Cy, be a topological order of the subcircuits. As in

the delay characterization step in Section 5.2.1, we need to determine the delay abstraction of the

subhierarchy valid under any surroundingenvironment. The analysis starts by setting a required

time, / = 0, to the outputof the subhierarchy. This requiredtime is thenpropagatedbackwardsusing

the delayabstractions of the subcircuits. If each outputof thosesubcircuits has a delay abstraction

consisting of a single delay tuple, it is just enough to perform standard topological required time

analysis on Ci,..., Cy, using the delay abstractions. The absolute valueof the required timeat each

subhierarchy input gives the effective delayfrom the input to the output. The delay abstraction of

the subhierarchyhas a singledelay tuple.

In general the delay abstractionof each circuit can have more than one delay tuple. The

simplest approach is to trytopological required time analysis forevery combination ofdelay tuples

andextract the most relaxed required time from the result. Since thenumber of delay tuples in de

lay abstractions independent of input vectors is typically a small number"^, this explicit enumeration

is still a reasonable strategy in many cases. It is, however, possible to explore all possibilities by

symbolicallypropagating required timesthroughthe circuit.

Assume that thecircuitinFigure5.1 is a subhierarchy underanalysis. Thiscircuitconsists

of two subcircuits Q and C2. Suppose that each subcircuit has a single output and that the delay

abstractions Di and £>2 of Q and C2 respectively areas follows.

Di = {(2,2), (3,1)}

D2 = {(1,4), (2,3)}

where in each delay tuple thefirst value and thesecond value are the delays from the leftand the

right inputs of the corresponding subcircuit respectively. There are 4 possible cases to consider.

Figure 5.2 shows the results of topological required time analysis for each case. A pair of inte

gers attached toa subcircuit is a delay tuple used while an integer onanedge denotes the required

time ofthe connection. The valid required times at the subhierarchy inputs are {req{i\),req{i2)) =

'As in Section 5.2.1, if asubhierarchy has multiple outputs, it is enough to repeat the same analysis for each output
separately.

'̂ We experimentally confirmed this onbenchmark circuits.
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Figure 5.1: Subhierarchy in a Hierarchical Circuit

(-3, -4), (-4, -4), (-5, -3). Therefore the delay abstraction ofthis subhierarchy ischaracterized
as aset ofdelay tuples {(3,4), (5,3)}. Note that (4,4) has been dropped since (3,4) subsumes (4,4),

We will now show how this analysis can bedone symbolically without any explicit case

analysis. The basic idea is to propagate required times along with Boolean conditions so that the

choices ofdelay tuples are encoded. For example, there are two choices ofdelay tuples for subcir-

cuit Ci. To encode these two possibilities a Booleanvariablea is introduced. Let a = 1 and a = 0

denote the cases where the first and the second tuples are chosen respectively. The required time at

the subhierarchy output is propagated backwards through Ci along with a Boolean condition ona.

Forexample, therequired time atx, re^(x), is{(-l,a), (-2,a)}, in which thefirst element ofeach

tuple isa required time while the second element isaBoolean condition associated with the required

time. The required timeat y is computed similarly as follows.

re^(y) = {(-4,a),(-3,a)}

AnotherBoolean parameter p is introduced forthechoice ofdelay tuples forQ. LetP= 1

denotethe conditionthat the first tupleis used and p = 0 thecondition that the secondis used. The

conditional required times at I'l and z are:

i-Mh) = {(-3,aP),(-4,aeP),(-5,o$)}

reg(z) = {{-2,aP),(-3,0!®P),(-4,ap)}.
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C2)(1.4) (1.4)

(2.2 C1 (3.1)

-3 min(-3,-4)=-4 -4 min(-2,-4)=-4

C2 2,3) 02) (2.3)

(2.2) C1 (3.1)

-4 min(-4,-3)=-4 -5 min(-3,-3)=-3

Figure 5.2: Required HmeAnalysis of a Subhierarchy



Finally to determine the required time at (2 the minimum ofreq{y) and req{z) is taken symbolically,
which gives

reqiii) = {(-3,aP), (-4,a+p)}.

All ofthese symboliccomputation can be performed usingADDs [BFG+93] orMTBDDs [CMZ+93],

Bycombining req{ii) and req(i2) symbolically, thefollowing required times at thesub-

hierarchy inputs are determined.

(re^(/,),re^(i2)) = {((-3,-4),aP),((-4,-4),a®p),((-5,-3),b5)}

inwhich thefirst element ofeach tuple isapairofrequired times at /j and (2 and the second element

is the Boolean constraint associated with it. Enumeration ofall distinct required time pairs followed
by removal ofdominated required time pairs isthe final step necessary tocomplete the delay charac

terization ofthe subhierarchy, which gives D= {(3,4), (5,3)}. Note that the sign ofall the required
times is flipped at the end since they are subtracted fromt = 0.

This step can bethought ofashierarchical functional required time analysis.

5.2.4 Incremental Timing Analysis

Incremental timinganalysis can be easilyincorporated intoour formulation. Oncethede

lay abstraction ofa leaf module isobtained, it remains valid no matter what changes are made in

other modules. Therefore a modification ofa single module only leads to

1. delay characterization of the modified module and

2. top-level analysis.

Even without any change ina given circuit it is likely that one is interested in performing arrival

time analysis ofthe same hierarchical circuit under different arrival time conditions. Ifflat analysis
isemployed, each arrival time condition requires a separate analysis while inhierarchical analysis
the delay characterization stage can beshared by all the analyses. Thus once the delay abstractions
ofall the modules in agiven circuit are computed, itisenough to perform top-level analysis for each

case.

5.3 Example

To illustrate thetechnique proposed inSection 5.2wetake a simple example.
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c in

c out

mux

Figure 5.3: 2-bit Carry-Skip Adder

Consider a 2-bit carry-skip adder taken from [KMS91] shown in Figure 5.3. Cascading
this adder n times yields a carry-skip adder of2nbits. We show how theperformance ofthis cascade

adder can beestimated accurately by hierarchical analysis. Figure 5.4 shows a4-bit adder composed

of two2-bitcarry-skip adders, where Cout of the first adderis fed into Ci„ of the second adder.

Assume thata gate delay of 1fortheAND gate and theORgate, and gatedelays of 2 for

the XOR gate and the MUX gate.

The input-vector independent delay abstractions and Dc,^ are:

= {(2,4,4,-00,-00)}

Ds, = {(4,6,6,4,4)}

= {(2,8,8,6,6)}

(topological delay)

(topological delay)

where primary inputs are ordered as c,„ < oq < bo < ai < bi. In this particular circuit each delay

abstraction has a single delay tuple. The delay abstractions for jq are exactly the same as
those under topological analysis. Dc^ is more accurate than its topological delay abstraction since
the effective delay from Ci„ to Cpui is 2^ in Dc„^ while the longest topological path isoflength 6^.

Let us proceed tothe second step ofthe analysis. Assume that all the primary inputs ofthe
cascade circuit inFigure 5.4arrive atr = 0. We focus oncomputing thearrival time ofC4 since it is

the most interesting output in terms ofanalysis. The arrival times for all the other primary outputs
are the same astheir topological arrival times. The arrival time atthe intermediate signal tmp isfirst

^{ci„,mux,c„ui)
Hcin>86t87t89,8\U'nux,Cout)
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Figure 5.4: 4-bit Carry-Skip Adder Composed of Two 2-bit Adders

computed. Since all the inputs of the first adder arrive simultaneouslyat r = 0, the arrival time at

tmp is determined as / = 8, where qq and are critical.

The arrival time of the carry output C4 can now be computed by analyzing the second adder.

The arrival time at tmp is r = 8 whilethe other inputsarriveat t = 0. Combining the arrival times

and the delay abstraction Dc^, we see that a pathfrom tmp is critical. This gives the arrival time at

C4 / = 8 -f 2 = 10, which matches the result of flat analysis.

It is moreintuitive to see the analysis pictorially. Figure 5.5 illustrates Dc^ as a polygon.

Thepolygon describes thefact thattohavethesignal Cout stabilized, inputs Ci„, ao,bo, ai andbi must

arrive 2, 8, 8, 6 and 6 time units before respectively'. To determine the arrival time of tmp, the

polygonis pusheddownfrom the top as muchas possible, as in Figure5.6, so as not to intersecta

given arrival time constraint. In thisexample, all the primary inputsarrive simultaneously at r = 0.

Therefore the bottom edges for ao andbofirst touch the constraint, which givesthe arrival timeof

t = 8 at tmp. Shadowedregionsrepresentarrivaltimeconstraints.Next,anotherpolygonof the same

shapefor the secondadderis stacked on the first polygon. This timethe bottomedgeof cqfirst hits

the arrival time constraintof tmp. (Note that Ci„ in the module is connectedto tmp and all the other

inputs of the modules are connected to primary inputs, whose arrival times are / = 0.) Therefore, the

arrival time of C4 is 10.

^If there ismore than one delay tuple in adelay abstraction, we have multiple polygons. Whenever arrival times are
propagated through a subcircuit, all the polygons are tried and the best one that gives the earliest arrival time is chosen.
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cO aO bO a1 b1 tmp a2 b2 a3 b3

Figure 5.6: Hierarchical Analysis ofthe 4-bit Carry-Skip Adder Composed ofTwo 2-bit Adders

It iseasy toseefrom theanalysis above that thedelay ofthelastcarry output ofthecircuit

composed of n adders is r = 8-f- 2(n—1) = 2n-f 6 if all theprimary inputs arrive at r = 0. We have

verified that this delay estimation matches theresults of the flat analysis at least up ton = 8. This

ability of parameterized analysis is missing in flat analysis.

Keutzer etal. [KMS91] analyzed the circuit inFigure 5.3 under flrr(c/„) = 5,arr(ao) =

= arr(a\) = arr(b\) = 0. It iseasy tosee that oq and ba are critical in this case from Fig
ure 5.7. The delay ofCout isr= 0-|- 8= 8, which isagain the same as the result offlat analysis under

the arrival times. From Figure 5.7 we can even claim that delaying c/n by one time unit does not

change the signal arrival time at i.e. the slack ofc/n is 1. This can be thought ofas an "exact"
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Figure 5.7: Delay Analysis of the 2-bitAdderunderarr(c/„) = 5,arr(others) = 0

slackavailable at Noticethat if the slackof this inputis computed topologically, it is —3 indi

cating that the signal needs to be sped up 3 timeunitsto meet the required timer = 8 at Cout^ which

is completely opposite to theabove. Thisis because false paths arecompletely ignored in the latter

case.

5.4 Improved Algorithm for HierarchicalFunctionalArrival Time Anal

ysis

Wehave seen a two-stephierarchicaltiming analysisalgorithmwheredelay characteriza

tion of leaf modules is followed by arrival time computation. Although this separation makes the

understanding of the entire flow easy, timinganalysis can be performed more efficiently by inter

leaving the two steps in a smart way.

The main computationaldisadvantageof the two-stepapproachis that the effective delay

of each input-output pair of every leaf module is computed first even if the input-output paths are

never critical in any instance of the module. Therefore part of the additional accuracy achieved in

resulting delay abstractions may not contribute to the accuracy of the delay estimate of the entire

circuit. In this sense some of the CPU time spent in the computation of delay abstractions is wasted.

Since delay characterization of leaf modulesis not alwaysa cheap operation, this loss in CPU time

is not negligible in general.

^Chen etal. [CCHD93] studied false-path-aware slack computation under a Axed arrival time condition.
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One way to alleviate this is to start from crude delay abstractions based on topological de

lay analysis and to refine them gradually as we estimate the delay of a given hierarchical circuit. This

way delay abstractionsare refinedonly if additionalaccuracyis requiredto get a better delay estimate

of the circuit under analysis. Hence delay abstractions are never more accurate than necessary.

Assume that a circuit of hierarchical depth 1 is given, i.e. the top-level circuit consists of

several leaf modules. Considera directedacyclicgraph G = (V,£), called timinggraph, constructed

in the followingway. Each input or outputof the leaf modulesforms a vertex in G. If an output of a

module is connected to an input of anothermodule, these two nodes share the same vertex. A directed

edge is addedfroma vertexto anothervertexif there is a topologicalpath betweenthe corresponding

nodes within a single leaf module. Each edge corresponds to an input-output pair of a single leaf

module. The edge is initially labeled the longest topologicalpath delay between the nodes. The

timinggraph is simply an abstract representation of the hierarchical circuit in termsof delays.

We start by assigningto each vertexcorresponding to a primary input of the top-levelcir

cuit its arrival time. Thearrival timesarethenpropagated forward topologicallybasedonthecurrent

edge weights. Once the lateststabilizingprimaryoutputis determined, its arrivaltime is assertedat

each primary output vertex as a required time. These required times are then propagated backward

topologically throughthe timinggraph againusing the edge weights. Once an arrival time and a re

quired time are computed at each vertex, the slack at the vertex is defined as the difference between

the required timeand thearrival time. Any vertex whose slack is zero is ona critical path.

Once theslack computation isdone onthetiming graph, critical edges of thetiming graph

are identified. A critical edge is an edge in the timing graph which connects two vertices whose

slacks are zero. Togeta better delay estimate of theentire circuit, one needs to havea betterdelay

estimate of such critical edges. Therefore each critical edge is examined one by one to see if the

corresponding input-outputdelay canbe improved further byconsidering false paths. More specifi

cally, the transitive fanin cone of thecorresponding leafmodule from the output is examined to see

if theeffective delay from the input to theoutput is smaller than the topological delay between the

twonodes. Thiscan bechecked easily byperforming functional arrival time analysis of theconeas

follows.

Letj:i,..., be theinputs of theconeandz be theoutput of thecone. Let /, bethe longest

topological path length from xi toz. Assume that is thecritical input and thatthesecond longest

topological path length from xjt toz is /][ < 4. Now consider the case where input jc, (i 7^ k) arrives

St^= —I't and critical input arrives atr = —/]^. Ifz still gets stabilized byr = 0 under these arrival
times, theeffective input-output delay between xjt and zisnogreater than We can then update the
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weight of theedge from 4 to and repeat timing analysis ofthetiming graph toseewhich edges are

critical under this refined delay abstraction^. Otherwise the current delay estimation of is accu

rateandcannot be improved since is the only primary inputthatarrives laterthan its topological

required time, and thusis responsible for theinstability of z at r = 0. Therefore the edgeis marked

to indicate that no further improvement is possible. Notice that the stabilization check at z can be

realizedby performingfunctionalarrival time analysisof the cone under the arrival time conditions

above.

As we refineweightsof criticaledgesthis way,a moreaccuratedelayestimateof the entire

circuit is obtainedThis iterative process stops onceallcritical edges aremarked.

5.5 HierarchicalDelay Computation using Input-Vector Dependent De

lay Abstractions

We have discussedhierarchical functional arrival time analysis, where the delay of a leaf

module is conservatively characterized with a delay abstraction independent of input vectors. We

showedthat by removinginput-vectordependency fromdelayabstractions at the lowest level of the

hierarchy, delay analysis abovethelevel is reduced intoa variation of topological analysis andthus

becomes computationallyefficient. Sinceaneffective algorithmexistsforcomputinganinput-vector

independent delay abstraction of a combinational module, thisapproach seems to bea practical way

to perform hierarchical analysis.

However, the restrictionthat a delay abstractionneeds to be input-vectorindependentcan

make analysis too pessimistic thereby resulting in delay overestimation. The only false pathsde

tectedin this approachare thosepathswhosesubpaths, completely contained in a singleleaf module,

arefalseregardless of inputvectors to themodule. We callthistypeoffalsepathslocallyfalse paths

sincethe falsity of the pathscan bedetermined locally byanalyzing the leafmodule. Theyarefalse

no matter how the the module interacts with other modules.

For example, in the carry-skip adder example in Figure 5.3, the longest topological path

fromthe carryinputto thecarryoutputwaslocally falseandthis information wasusedto computea

delay abstractionstrictlymore accuratethan the delay abstraction by topological analysis. It turned

out that all long false paths in the circuit are locally false. Therefore we were able to achieve the

^If there is more than one instance ofthe same module in the given circuit, edge weights are updated in all instances.
'̂ Once an edge isassigned anew weight, itnever gets increased again inthis algorithm. Therefore, adelay abstraction

computed for a module is dependent on the order ofedge weight updates.
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Figure 5.8: A Limitation of Input-VectorIndependent Delay Abstractions

same accuracy of flat analysis in the hierarchical analysiseven with approximatedelay abstractions.

However, not all falsepathsare locallyfalse. Thereisa paththat is falsenot simplydue to

the falsityof a subpathcontainedina singleleafmodulebutdueto the interactionof severalmodules.

Wecall suchfalsepathsgloballyfalse paths. Tomake detection of thesefalsepathspossible, delay

abstractions needto be more accurate bycarrying input-vectordependent delay information. Delay

analysis is then performed by taking this dependency into account.

5^.1 Example

We will illustrate how a path becomes globally false using a hierarchical circuit in Fig

ure 5.8. The circuit has two leafmodules. The leafmodule M\ is composed of a multiplexer and

an inverter and has two instances. The leaf moduleA/2 only consistsof an inverter. Assume that the

inverters have delay of I while the multiplexers have delays of2. Suppose that allthe primary inputs

arrive at r = 0. Ourgoal is toestimate thearrival time at theoutput o.

Flatanalysis of this circuit estimates thearrival time asr = 5. This means thatthe longest
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topological pathof length 6 from a to the output via the twouppersubpaths is false.

Let us see if this false path can be detectedusing the hierarchical analysis in Section 5.2.

We first need tocompute input-vector independent delay abstractions ofM\ andM2. M2 iscomposed

ofan inverter. Thus, the exact delay abstraction D^^act of^2 is:

X dx-^z

0 {(1)}
1 {(!)}.

Since this is already input-vector independent,we can directly use it as the delay abstraction of

i.e.Dj'̂ W = {(l)}.
The exact delay abstraction D^rac/ of is:

ds-^zdx-^zdy-^z

000 {(2,-oo,2)}

001 {(2,-eo,2)}

010 {(2,-oo,2),(-oo,3,2)}

oil {(2,-oo,2)}

100 {(2,3,-00)}

101 {(2,3,-00)}

110 {(2,3,-00), (-00,3,2)}

111 {(2,3,-00)}.

Let us first compute an input-vector independent delay abstraction D^ppwx that is aconservative ap
proximation to the exact one, i.e. ^ppmx- Let D^ppwx = {(ds,dx,dy)}. In order to be con
servative, for any input vector xD^ct ™tist have adelay tuple (d'̂ ^d'̂ ^dy) such that JJ) <
(ds^dx^dy). Consider input vector000. The requirement above gives the inequality: (2,—«»,2) <

(ds^dx^dy)y implying ds>2 and dy > 2. Similarly, input vector 100 gives (2,3,-«>) < (ds,dx,dy),

by which ds and dxare constrained to beds >2 and > 3. The analysis of these two vectors already

gives Dajiprox = {(2,3,2)}, which is thesame as thetopological delay abstraction. Thisdelay tuple

is a conservative approximation for all the other vectors.

The fact that the input-vector independent delay abstractions of both leaf modules are the

same as the corresponding topological delay abstractions implies that the analysis is only as accurate

as topological analysis. Therefore, the arrival time at the output is overestimated as r = 6, thereby

missing the false path from a of length 6. Although the exact delay abstraction of M\ shows that
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some paths are false conditionally, this information is lost when the delay abstraction of M\ is ap

proximated.

This false path can be detected once we use the exact delay abstractions of the modules.

Let us see how it is detected in detail. The path is decomposed into two subpaths: a path from a to

the output of the left multiplexert and a path from t to the output o. These subpaths correspond to

the same input-output path from jc to z in M]. This input-output path of length 3 in M\ is true only

if .s = 1Therefore, the subpathfrom a to / is true only if sel = 1 while the subpath from t to the

output is true only if sel = 0. Since these two conditions are conflicting, it is impossible to sensitize

both to make the entire path froma too true. Since thepath is falsedue to the interactionof multiple

leaf modules, it is a globally false path.

5.5.2 Generalized XBDO Analysis for Input-Vector Dependent Delay Abstractions

Hierarchical analysis using input-vector independent delay abstractions has a limitation

that globally false paths are overlooked therebypotentially overestimating delays. This subsection

shows that delay analysis using input-vector dependent delay abstractions can be formulated as a

generalization of XBDO analysis for flat circuits.

Notice that the delay analysis at the top level of a hierarchy has exactly this situation. Each

subhierarchy at that levelcan be thought of as a gatewithcomplex functionality. Thedelayabstrac

tionof thesubhierarchy hasbeen constructed ina bottom-up fashion andis potentially dependent on

input vectors applied to the subhierarchy inputs.

In regularXBDO analysis a circuitunderanalysisis a fiat networkcomposedof gates with

known delay characteristics. In the simplest case the delay of each gate is given as a singlede

lay value independent of input pinsandsignal directions (rise/fall delays) as in Section 2.4.6'^. In

XBDO analysis thisdelay value is conditionally usedto perform signal stability computation. How

ever, the actual delay abstraction of a gate underlying in XBDO analysis is not explicitly defined

in [MSBSV93]. It is embedded in the recursive formulation of x functions.

Considera two-input ANDgaten for example. Weare interested in the delayabstraction

of thegate used implicitly inXBDO analysis. Let mi and m2 bethe fanins ofthegate. Suppose that

'' In fact the path can be true under input vector 010. However, it is true only ifinput s is late. In this examplesalways
arrives earlier than x and y inboth instances. Thus, we cansafely ignore this tuple foreaseofexposition.

'̂ Although we did not discuss this aspect in Section 2.4.6, it is easy to generalize the analysis so that gate delays vary
dependingon input pins and signaldirections.
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thedelay of thisgate isd forsimplicity. Therecursive definition ofx functions fortheAND gate is:

/i,l ^mi,l

w,0 ~

The first equation for value 1 at n implies that thestability of n at value 1at r = t is guaranteed if

both fanins are stable at value \by t = T-d. Therefore, theequivalent delay tuple is {d,d). The

second equation is for value0. The interpretation of theequation is that the stability of n at value 0

at t = Tis guaranteed if eitherof the fanins is stable at value Obyt = x-d. This is captured by two

delay tuples (J, —«>) and (—<», J). The first delay tupleis applicable if mi = 0 while the second is

applicable if m2 = 0. If m\=m2 = 0, both of them are valid.

This observation leadsto the following delayabstraction for the two-input ANDgate im

plicitlyassumed in XBDO analysis whena delayvalued is given.

(mi,m2) ^m\-^ndm2-*n

GO

01

10

11 {(d.d)}.

In the general case where the functionality of a gate is a complex function, the recursive

definition of %function is:

zj,v= s[nzm7,f'nz»7.o]
nii^p nti^p

where and are thesetsofallprimes of /„ and/„ respectively. Each prime p^P^ gives a delay

tuple {di,...,dii), where di = ^/ if m, € p or ^ € p, and di = —«» otherwise. The delay tuple is

assigned to all input vectors where p evaluates to 1.

In summary,a gate is assumedto be an atomic functionalunit whoseoutput becomes stable

d time units after a subsetof fanins that are enough to determine an output value is all stabilized.

Each primemeets the condition of the subsetdefined abovesince if all the literals of a prime have

final values, the outputof the gateis uniquely determined without waiting for theotherinputs toget

stabilized.

We have shown that the delay propagationmechanismof a gate underlying in XBDO anal

ysis can be captured as an input-vector dependent delay abstraction. Given this, functional arrival

time analysis using %functions in Section 2.4.6 can be thought of as a delay analysis algorithm for



99

a network where each gate is characterized as a delay abstractionof a special form. We are inter

ested in whetherit is possible to generalize thealgorithm so that it can handlea networkof complex

gateseach of which is characterized by a delayabstraction of an arbitrary form. Specifically, if the

recursive definition of%functions canbeextended so thatanarbitrary input-vector-dependent delay

abstraction is allowed, one can simplymimicregularXBDO analysisfor all the other tasks.

This generalization is in factpossible. Letn be a gate in a network. Let mi,..., mjt be the

fanins of n. Assume that the delay abstraction of this node is available. The recursive construction

of%function ismodified asfollows. Each delay tuple inthedelay abstraction gives a condition that

the output isguaranteed tobe stable. For example, suppose there isa delay tuple (^/i,...,<4) under

input vector x= (vi,..., vjk). Suppose that x isan on-set vector ofn. This tuple indicates that if fanin

nii is available at / = x— at value v/ for all / = 1,..., the output stability at 1 is guaranteed at

t = X. This is the same as having nf=i XmT.vj in the recursive definition of%functions. Since the
output stability to value 1 is guaranteed by any of those delay tuples under on-set vectors, wecan

take thedisjunction of all theproducts created from thedelay tuples. Thus,

k

'OT/.V/= X Hz''''
(x,(</|,...,rf4))€Z>,/„(x)=I 1=1

where x = (vi,..., vjt). The %function for value 0 can be defined ina similar way.

k

rV
•m-nVi-^0= X fix""''

(x,(</i,...,</t))€Z),/n(x)=Oi=l

Note that Xmi,Vi —if vi = 1 and rnj if v, = 0. This applies if a delay tuple has a delay

value -oo under some input. Further simplification is possible in this case. Let (diy...,dk) be a
delay tuple under x= (vj,...,vjj.). Assume that x is in the on-set ofthe gate. Suppose dj = —«».
This means that the functionality ofthe gate isindependent ofdj under x. Thus, we should have the
same delay tuple under input vector x'that is obtained from xby flipping the phase ofVj, The delay
tuple under xgives aproduct term n?=, = mj The delay
tuple under x' contributes aproduct term ^nf=i,iyyXm7,vJ- If we take the disjunction of these two
product terms, the result is nLi,»>£y Therefore, ifthere is adelay tuple where some component
is -«>, we can safely drop the corresponding input from our consideration in its product term. This
can be generalized tothe case where more than one component ofa delay tuple is —«>.

Now that we know how toconstruct %functions for arbitrary delay abstractions, the re
maining analysis can be performed in the same way as in regular XBDO analysis, where the deter
mination ofa delay estimate isreduced to the satisfiability problem. Apotential difficulty ofthis
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approach is that each gate in the network generates too many nodes in the %network since the delay
abstraction ofagate can be very complex with many delay tuples. The practicality ofthis approach
is yet to be determined by experiments.

5.5.3 OtherApproaches toDelay Computation using Input-Vector Dependent Delay
Abstractions

Theprevious subsection showed how regular XBDO analysis can be generalized so that

input-vector dependent delay abstractions are handled inthe construction ofx functions. A similar

generalization is possible for otherknown techniques fordelay analysis.

Devadas et al [DKMW93] formulate functional arrival timeanalysis of flatcircuitsas a

specialtypeof ATPG, termed timedATPG, where a pairofa valueanda time,calleda timedevent,is

propagated and justified. Inorder tosee if an output is stable byr = x, timed events (0, x) and (1, x)

are asserted at the output and checked to see if either event is justifiable under some inputvector

available at specified arrival times. Since the timed ATPG is based on PODEM [GoeSl], a timed

event isonly propagated forward. Therefore, the useofinput-vectordependent delay abstractions in

this framework is simple. We just need to compute an output timed event from timed events at the

fanins ofa gate by respecting its input-vector dependent delay abstraction. The only complication

is the possibility of having more than one delay tuple under an input vector. We need to take the

earliest timed event over all thedelay tuples applicable to the situation under analysis.

Yalcin andHayes [YH95] proposed an algorithm where conditional events arepropagated

symbolically. The only restriction isthat they can only handle a delay abstraction where each input

vector has one delay tuple. The generalization to the case without this restriction is trivial. We have

only to propagate the earliest event.

5.5.4 Computing Input-Vector Dependent Delay Abstractions of Subhierarchies

If thedepthofa hierarchy isjustone,byreplacing thedelay propagation algorithm inSec

tion 5.2with thegeneralized XBDO analysis presented inSection 5.5.2 hierarchical analysis can be

performed usingdelayabstraction dependent on inputvectors.

If the depth of a hierarchy is more than one, we need to consider one more problem, i.e.

how to create a delay abstraction ofanintermediate subhierarchy from thedelay abstractions of the

subcircuits at that level, where all thedelay abstractions can be input-vector dependent. A similar

problem was discussed inSection 5.2.3 forthecase where delay abstractions areinput-vector inde-
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pendent. Even under this simplified situation, we showed that the possibility of having more than

one delay tuple makesthe problemdifficult since it is necessaryto keep trackof whichdelay tuple is

used for each subcircuit during required time analysis. In the general case where delay abstractions

are input-vector dependent, we need to do the same analysis for each input vector separately. Sup

pose we have a circuit composed of subcircuits, each of which has an input-vector dependent delay

abstraction. By choosing an input vector of the circuit, the local input vector of each subcircuit is

fixed. By referring to the corresponding delay abstraction under the vector, we can obtain a set of

delay tuples to be used for the subcircuit under this vector. Now a set of delay tuples for the entire

circuitunder the global input vectorcan be computed in the same way as in Section5.2.3. This ap

proach is obviously expensive since each input vectorneeds to be analyzed independently. Whether

there is an efficient algorithm to handle this problem is yet to be seen.

As a special case, if we restrict ourselves to the case where any delay abstraction has one

delay tuple for each input vector, there is no need to keep track of the choice of delay tuples, which

makesthe problemeasier. All inputvectorscan beprocessedsymbolicallybyusingADDs [BFG"^93]

orMTBDDs [CMZ+93].

5.6 Experimental Results

Wehave implemented the improvedtiminganalysisalgorithmdescribedin Section 5.4 on

topofSIS [SSM'̂ 92]. CPU time reported in this section was measured on DEC AlphaServer 8400

5/300 and is reportedin seconds. In all experiments the unit delay model wasused.

Table5.1 showsthe results of hierarchical arrival timeanalysis of various typesof carry-

skip adders. Each circuit csart.m is an n-bit adder structured as a cascade connection of n/m m-bit

carry-skip adders. The same circuitswerealso analyzed by flat timinganalysis [MSBSV93] after

expanding out all the existing hierarchy to get equivalent flat circuits. In all the circuits primary

inputs wereassumed to arrive at / = 0. Accuracy ofestimated delay wasfully preserved in all cases.

CPU time saving of hierarchical analysis is significant.

This example of carry-skip adders is suitedvery well for hierarchical analysis since the

circuit structure is regular, i.e. thesame leafmodule is used repeatedly. Therefore oncetheaccurate

delay abstraction ofacomponent cany-skip adder isobtained, itcan beused many times to improve

the accuracy of the delay estimate of the entire circuit.

It is interesting to seehow thealgorithm performs onhierarchical circuits with irregular

structures. Although ideally this experiment should be done on realistic hierarchical circuits, we
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circuit topological delay hierarchical analysis flat analysis
estimated delay CPU time estimated delay CPU time

csa32.4 82 26 0.3 26 7.1

csa64.4 162 42 0.3 42 33.4

csal28.4 322 74 0.3 74 173.1

csa32.8 74 26 1.1 26 6.0

csa64.8 146 34 1.1 34 30.5

csal28.8 290 50 1.1 50 151.5

csa32.16 70 38 5.5 38 3.9

csa64.16 138 42 5.5 42 23.4

csal28.16 274 50 5.5 50 116.2

Table 5.1: Timing Analysis of Carry-Skip Adders - Hierarchical vs. Flat

circuit topological delay hierarchical analysis flat analysis
estimated delay CPU time estimated delay CPU time

C1908 40 38 62.7 37 5.7

C2670 32 31 5.5 30 19.8

C3540 47 46 24.2 46 8.1

C5315 49 47 7.5 47 2.2

C6288 124 124 51.0 123 273.9

C7552 43 42 4.0 42 1.2

Table 5.2: Timing Analysis of ISCAS Circuits —Hierarchical vs. Hat
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had no hierarchical benchmark circuit available. Therefore we created artificial hierarchical circuits

from ISCAS combinational circuits in the following way. Each benchmark circuit was partitioned

into two circuits in a cascade structure so that one circuit drives the other. We then assumed that

each partitioned circuit is a leaf module. This way we constructed a simple hierarchical circuit from

a benchmark circuit.

Each hierarchical circuit was then analyzed by the algorithm in Section 5.4. Original bench

mark circuits were also analyzed by flat timing analysis to compare accuracy of delay estimates and

CPU time. Table 5.2 summarizes the results of this experiment. We were able to confirm that ac

curacy is preserved well in hierarchical analysis although small overestimation occurred on some

circuits. In our current approach only locally false paths are detected. Therefore globally false paths

which are false due to the interaction of various leaf modules are overlooked. The fact that accuracy

is maintained reasonably well in this experiment indicates that many false paths in real circuits are

in fact locally false.

Since these circuits are not large enough, flatanalysis can finish timing analysis very quickly.

Therefore we could not see any speedup in terms of CPU time for the case where a delay estimate

of hierarchical analysis matches that of flat analysis. In fact, since functional arrival time analysis is

performed repeatedly on smaller circuits in hierarchical analysis, it takes more time to complete the

analysis than flat analysis in many cases. However this result should not be taken negatively. The

underlying algorithm for both hierarchical and flat analyses is functional arrival time analysis of a

flat combinational network. In the hierarchical approach the analysis is performed only on a single

leaf module while it is performed on an entire circuit in flat analysis. Given that functional arrival

time analysis can only be applied to circuits of a limited size, it is clear that hierarchical analysis is

more scalable^^.

5.7 Related Work

Das et al. [DJCM89] and Johannes et al. [JCM92, Joh93] presented hierarchical timing

analysis algorithms based on static sensitization. Since static sensitization can underestimate true

delays, their approach is not conservative for timing verification.

'-^An alternative is to perform flat analysis ofsubcircuits in atopological order. The accuracy loss ofthis method isthe
same as that of hierarchicalanalysis since only locally false paths can be detected. However,each instance of the same
modulemust be analyzedseparatelygivendifferentarrivaltimesat its inputs. Furthermoreincrementalanalysiscapability
is very limited since a modification of a subcircuit invalidatesall the analyses for its transitive fanout cone whereas in
hierarchical timing analysis the delay abstractions of the modules in the transitive fanout cone are still valid.
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More recentlyYalcin and Hayes [YH95] studiedhierarchical timinganalysisusing condi

tionaldelay matrices. They characterize the delayof a combinational module by functional arrival

timeanalysis undera fixed arrival timecondition. Thisstepiscalledtagged-modeanalysisandis es

sentially the same as the delay characterization basedon path classification studied in Section 4.6.1.

Although theyuse the resulting delay abstraction for arbitrary arrival timeconditions, no argument

was given on the correctness of the approach. As discussed in Section 4.6.1, the approach is not

conservative if the floating-mode condition is used as a path sensitization condition.

In this chapterwehaveperformed hierarchical timinganalysisby respectingthe hierarchy

of a given circuit. However, hierarchy is typically introduced fordesigners to simplify design tasks

and thus thegiven hierarchy may notbesuitable for timing analysis to achieve accurate delay esti

mation. Johannes et at. [JCM93, Joh93] presented how to find a hierarchy appropriate forefficient

and accurate timing analysis. By noticing that a path becomes false due to a structural reconver-

gence, a heuristic was developedfor generating a hierarchy effectivefor timing analysis. The idea

is applicable to our techniques.

5.8 Conclusions

We have proposed a hierarchical functional arrival time analysis technique for combina

tional circuits. The analysis proceeds in a bottom-up fashion by following the original hierarchical

structure of a circuit. At the lowest level of a hierarchy the delay abstraction of each leaf module is

computed. Various techniques studiedin Chapter4 are directlyapplicable. False paths inside a leaf

module are correctly identifiedin this step. Wethen compute the delay abstractionof each interme

diate subhierarchy using the delay abstractions of subcircuits directly below thatlevel. At the top

level of thehierarchy delay computation is performed usingthedelay abstractions of thesubcircuits

at the level. If the delay abstractions are input-vector independent, the top-level delay computation

is achieved bya variation of topological analysis. Although it isefficient, onlya subsetof false paths

can be detectedthis waypotentially resulting in delayoverestimation. For the case wherethe delay

abstractions are input-vector dependent, wehaveshown thatthedelay computation problem can be

formulated as a generalization of the XBDO analysis in Section 2.4.6.

Unlikeconventionalflatanalysis thehierarchicalapproachneveranalyzesan entire circuit

at the gate levelatone time,and thuscanpotentiallyhandlelargercircuitsthanflatanalysis. It iswell-

suited for the analysisof industrial circuitswhoseanalysis is difficult or too slow for flat analysis.

The hierarchical approach naturally supports incremental analysis capability, which is completely
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missing in flat analysis.

We have experimentally shown that the hierarchical approach maintains enough accuracy

on benchmark circuits even if approximate delay abstractions independent of input vectors are used.

Further experiments are necessary to examine the effectiveness of this approach for larger industrial

circuits.

Although the approach has been described for combinational circuits, generalization to

sequential circuits with edge-triggered flip-flops is trivial. An extension of the approach to level-

sensitive latches remains as future work.

Another potential research direction is input vector generation. Although the analysis pre

sented in this chapter gives the delay estimate of a circuit, an input vector that realizes the delay is

not explicitly generatedby the algorithm. Such an input vectorcan be used in timing simulation at

a lowerlevel of abstraction for detailedanalysis, and thus is of practicaluse.

The delay model assumed in this chapter is a simplistic model where the effect of load and

slew is completely ignored. Adaptation of the hierarchical analysis for a more realisticdelay model

is an importantresearch directionyet to be explored.
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Chapter 4 showed that the delay abstraction of a combinational module can be computed

exactly under the XBDO modelby considering false paths of the module. The delay abstraction is

dependent on input vectorsso that it can characterizepaths conditionallyfalse under some vectors.

In addition, to guarantee the accuracy of the abstractionfor arbitrary arrival time conditions at the

inputs, more than onedelay tuple, representing effective delays between the inputs and the output,

canbemaintained foran inputvector. Thebestdelaytuplethatgivesthemostaccurate delayestimate

is chosen adaptively givenan arrival timecondition at the inputs.

The problemaddressed in thischapteris howto compare the timingcharacteristics of two

combinational modules thatarefunctionally equivalent, buthave different timing behaviors. Specif

ically, weare interested in a condition thatonemodule is no slower thantheotherunderanyarrival

time condition at the inputs. If this condition holds between two combinational modules, the latter

modulecan be safelyreplacedwith the formerunderany surrounding environmentwithout the risk

of deteriorating the original performance. To formalize this idea a new notion called timing-safe

replaceability will be introduced for combinational modules. We will show that whether one is a

timing-safe replacement of theothercanbedetermined given theexact delay abstractions of thetwo

modules.

This chapter is organized as follows. Section 6.1 introduces thenotion of timing-safe re

placeability and discusses how todetermine whether a combinational module is a timing-safe re

placement of another. Examples are given in Section 6.2 to illustrate the notion. Section6.3 dis-
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cusses concurrent timing optimization ofcombinational circuits asanapplication of timing-safe re-

placeability. Section6.4 concludes the chapter.

6.1 Timing-Safe Replaceability

Suppose that we have a combinational module and another combinational module

ew that isclaimed tobe asped-up version of!Morg- Assume that they are single-outputmodules and
functionally equivalent. We are interested in verifying whether 9\/(new is indeed noslower than

More specifically, we need toverify whether using ^f\/{new instead of worsens the delay through

this module under some vector and arrival times at the inputs of themodule. If there exist such a

vector and arrival times, 0\{new is not a timing-safe replacement of^Morg since under that particular
situation the use of instead of9\/(org in fact deteriorates the performance of9\4^rg- Throughout
this chapter we assume that the only timing property that needs tobe preserved iswhen the output

ofthe module isstabilized. It isacceptable for the output to beavailable earlier than inthe original

module, but it should never become stable later.

Definition 6.1 9\/[new is said to be a timing-safe replacement offHtrg, Hiew :<m ^rg, ifthere exists
no (input vector, arrival times)-pairat the inputssuch that the outputbecomes stable later in fM„ew

than in 9if,rg.

The partial order :< overdelayabstractions wasoriginally introduced in Definition 4.4 to

compare the accuracy of approximatedelay abstractionsfor the same combinational module. We

generalize thispartial order sothatdelay abstractions offunctionally equivalent circuits canbecom

pared against each other.

Definition 6.2 Let D\ and be the exact delay abstractions ofsingle-output combinational mod

ules and51^ respectively, where (M.\ and51^ arefunctionally equivalent andhave the same in

put/output interface. D\ •< Di iffor every (input vector,delay tuple)-pair (x, {d\,...,dn)) ^ D2, there
exists an (input vector,delay tuple)-pair (x, ,..., ) € Di such that {d[,...,d'„) <{du...,d„).

The following theorem states that, given two combinational modules, whether one is a

timing-safe replacement of the other can bedetermined by checking ifa certain property holds be

tween theirexactdelay abstractions. Note thatall theproperties proved for < inChapter 4 stillhold

for this new definition of -<.
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Theorem 6.1 Let Dorg and Dnew be the exact delay abstractions of Mgrg and respectively,

-^^ew ^^)rg Ifandonly ifDnew Dorg-

Proof Trivial from Theorem 4.1. •

The following properties of can be directly obtained from the corresponding properties

of < proved in Chapter 4.

Theorem 6.2 Is reflexive.

Proof Trivial from Theorem 4.2. •

Theorem 6.3 is transitive.

Proof Trivial from Theorem 4.3. •

Theorem 6.4 is antisymmetric.

Proof Trivial from Theorem 4.4. •

The notion of safe replaceability was first proposed by Singhal and Pixley [SP94] for se

quential circuits, where a sequential circuit is said to be a safe replacement of another if the replace

ment of the latter with the former is never detectable under any surrounding environment in terms

of functionality. This notion allows us to take an arbitrary piece of sequential logic and replace it

with another regardlessof the surroundinglogic. Timing-safe replaceability proposed here is a nat

ural extension of the safe replaceability notion to the timing domain since one can safely replace a

combinational module with another without increasing the delay through the module under any sur

rounding environment (i.e. arrival time condition)if the latter is a timing-safe replacement of the

former.

Aziz et al. [ABBS95] proposeda different notion of timing-safe replaceability, where a

circuit is called a timing-safe replacement of an original circuit if andonlyif thedelay range of the

output is completely contained in thedelay range oftheoriginal. Notethateach gateis given a min

imum delay anda maximum delay. Ourdefinition is more relaxed sincetheonlydelay property of

ourinterest is maximum delay. Therefore, speeding upa circuit preserves timing-safe replaceability
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in our definition while itmay not in the definition ofAziz etal. Moreover, it is much more expensive
to determine if onecircuit is a timing-safe replacement of another in thenotion ofAziz et al. than

in the notion defined here.

6.2 Examples

Consideracircuit Mshown in Figure 6.1 taken from [BI88]. Assume the unit delay model.
The exact delay abstraction Dof is:

abc ^a-^gt^b-¥g^c-^g
000 {(3,-00,2), (-00,3,2)}

001 {(2,2,2)}

010 {(3,-00,2), (-00,2,-00)}

Oil {(-00,2,-00)}

100 {(2, 3,2)}
101 {(2,-00,-00)}

110 {(2,-«>, -«), (-00,2,-00)}
111 {(2,-«>, -00), (-00,2, -00)}.

The input edge ofpath Pa = {a,d,f,g) isboth stuck-at-0 and stuck-at-1 redundant. Fig
ure 6.2 shows the circuit IMq obtained from by removing the stuck-at-0 redundancy at the input
edgeof pathPa. Thedelay abstraction Do of Odo is:

abc

000

001

010

011

100

101

110

111

^a-*gtib-¥g^c-*g
{(_eo,-oo,l)}

{(2,2,1)}

{(-oo,-««,l), (-00,2,-00)}

{(-00,2,-00)}

{(2, -00,-00), (-00, _oo, 1)}

{(2,-00,-00)}

{(2,-00,-««),(-00,2, -00), (_oo, -00,1)}
{(2,-00,_oo), (_oo,2, -00)}.

It is easy to see that Do D. For example, under input vector (0,0,0), Dhas two timing tuples,

(3>~®®,2) and (—00,3,2). Dohasasingletuple(—00,—00,1) for this vector, which gives (—00, —00,1) <
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Figure 6.1: Example: A Combinational Module 9A.

D
Figure6.2: Example: A Timing-Safe Replacement Module

a _p> o

Figure 6.3: Example: ATiming-Non-Safe Replacement Module
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(3, —2) and (—«>, —<», 1) < (—«»,3,2). All the other input vectors have this property. Therefore,
from Theorem 6.1, Do ^ D implies !Mq <14 9i/{. !Mo can always beused instead of under any

environment withouthavinga negative impact on delay.

Ifweremove thestuck-at-1 redundancy of theinputedgeinstead, anothercircuitfWi shown

in Figure 6.3 is obtained. The delay abstractionDi of fAfj is:

abc ^a-¥gdb-^gdc-^g

000 {(—,2,2)}

001 {(2,2,2)}

010 {(-00,2,-eo)}

Oil {(-00, 2,-co)}

100 {(2, -oo,-oo),(_oo,2,2)}

101 {(2,-co,-00)}

110 {(2,- -«'),(-®«,2, -co)}

111 {(2,- —),(-«>, 2,-«>)}.

Dj 2< D since, for example, under input vector (0,0,0) Dhas a delay tuple (3, 2),but the only

timing tuple is (-«>,2,2) inDj, where (-«»,2,2) y^(3,-«»,2). Therefore, if (a,^,c) = (0,0,0) and

{arr{a),arr{b),arr{c)) = (-3,0, -2), theoutput becomes stabilized at r = 0 in while under the

same condition the outputonly becomes stableat / = 2 in . Di implies

6.3 Application: Concurrent Timing Optimization of Combinational

Circuits

Considertimingoptimization of combinational circuits. Supposethata combinational net

workdoes not meeta giventimingconstraint andneedsto be spedup. Assumethat insteadof opti

mizing thenetwork as a singlecircuit, it is partitioned intosubnetworks, eachof which is thenopti

mizedand replacedwithan optimizedsubnetwork. Furthermore, considera scenariothat the timing

optimizationof the subnetworks is performed concurrently not sequentially. This is a realistic sce

nario in the contextof hierarchical synthesis. Forexample,if a designis partitionedinto blocks, it is

oftenthecasethatsynthesis is performed respecting thepartition, i.e. eachcomponent is synthesized

separately. In many cases differentblocksbelong to differentdesigners, and thus they are likely to

be optimized concurrently.
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PO

M2

M1

Figure 6.4: ConcurrentTimingOptimizationof Combinational Circuits

Consideran exampleshowninFigure6.4, wheretwocombinationalcircuitsare connected

in cascade. Suppose that we need tospeed upthe circuit byoptimizing fW] and fJVfe separately.

First, consider timing optimization where delays are estimated bytopological delays. Un

der this delay model, aslong aseach component isoptimized so that the topological delay between

each input-outputpairwithin the component never increases, the optimizedcomponent isneverslower

than the original no matter how itisused. Therefore, the use ofoptimized components always gives

a better performance thereby making concurrent timing optimization easy.

Now assume thatthedelay ofthecircuit isestimated more accurately byconsidering false

paths. This makes the timing interaction ofthe two components tighter. Suppose isoptimized so

that the outputsofthemodulearrive nolater than the original under the original arrival time condition

atthe module inputs. Let iM'i be the optimized circuit. Suppose isoptimized in the same way.
Let be the optimized circuit.

The inputsof are primaryinputsof the entire circuit. Therefore, the arrival time con

dition at the inputs is preserved even after the timing optimization. Thus, if we replace 9i{i with

fW'I, the signals on the component boundary arrive earlier than before. Ifwe keep as itis, the
replacement of fWj with fM' i is guaranteed not to slow down thecircuit since thenew arrival time

condition at the inputs of isa monotone speed-up of the original, and thus never increases the

delay estimation of at theoutputs of themodule.

Now suppose isconcurrently optimized with assuming that the outputs ofthe first-
level module arrive in the same way as in the original configuration. Itispossible that i^'2 with
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gives performance worsethan with The reason is that i^'2 is guaranteed to be no slower

than Ml only under theoriginal arrival time condition. Under a different arrival time condition, the

original circuitMi canbe fasterthantheoptimized circuit M'2- Thisis notdesirable sincetheeffort

oftiming optimization ofMi may benullified depending on the optimization performed for M\. We

are interested in a more consistent timing optimization scenario in which the optimization of each

component and the use of the resulting component always gives better performance.

The problem above is that Mi was optimized just for a particular arrival time condition

as if it were fixed. In the context of concurrent timing optimization, the arrival time condition at

the inputs of Mi can change. More specifically, the arrival time condition can be sped upas the

resultof timing optimization of M\ although the actual arrival timecondition is unknown sincethe

two modules are optimized concurrently. Therefore, in orderto guarantee that an optimized circuit

always gives performance no worse than the original, the timing optimization of Mi needs to be

done so thattheresulting circuit M'l isnoslower than Mi under any arrival time condition which

is a sped-up version of the original.

The notion of timing-safe replaceability is suitable in this context. Suppose that a new

circuit M'l is a timing-safe replacement of Mi. It is guaranteed that M'l is no slower than Mi

under any arrival timecondition. Although the notion isstronger than necessary' forthis application,

timing optimization underthe notion of timing-safe replaceability gives the property of consistent

optimization^.

A timing optimizationflow basedon the notionof timing-safereplaceabilityis as follows.

A combinational circuitis partitioned intosubcircuits, eachof which isoptimized so thata newsub-

circuit is a timing-safe replacement of theoriginal. All thesubcircuits are optimized simultaneously

under this condition. We can thenguarantee that a final circuit constructed by any combination of

the optimized subcircuits givesperformance no worse thanthe original.

6.4 Conclusions

A new notion called timing-safe replaceability has been proposed for combinational mod

ules. Ifa combinationalmodule isa timing-safe replacement ofanother, thedelaythrough theformer

'We only need the performance guarantee under sped-up arrival time condidons.
^Uming opdmizadon under the notion oftiming-safe replaceability has asimilar flavor to functional optimization un

der a compatible setof permissible functions (CSPF) [MKLC89]. Thetiming constraint posed ona component under
timing-safe replaceability istighter than that under thecase where thecomponent isoptimized while alltheother compo
nentsarefixed (corresponding toa maximum setofpermissible functions (MSPF) [MKLC89] infunctional optimization).
However, it allows us to perform concurrent optimization as in CSPF-based logic simplification.
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module is guaranteed not to be laiger than that through the latter under any arrival time condition.

Thus, no matter what the surrounding environment of the original module is, the use of a timing-

safe replacement gives performance no worse than that of the original. The notion of timing-safe

replaceability gives a criterion for comparing the timing characteristics of combinational modules

under unknown arrival times at primary inputs. We have shown that timing-safereplaceabilitycan

be determined if the exact delay abstractions of two modules are given.

Althougha decisionprocedurefor timing-safereplaceability wasgiven based on the anal

ysis of the exact delay abstractions of two modules, the computation of the exact delay abstractions

itself is difficult for largecircuits, which creates a bottleneck. An efficient way to verify whethera

circuit is a timing-safe replacement of anotherneeds to be investigated.

Anotherinteresting direction is to studytiming optimization techniques whoseoptimiza

tionresults are provably timing-safe replacements of theoriginal. Onetiming optimization scheme

that guarantees this property is speeding up gate delays without changing the structure of a net

work [CDL93]. Due to the monotone speed-up property of the XBDO model, the resulting circuit

is guaranteed to be a timing-safe replacement of the original. Tothe bestof our knowledge all the

otherexistingtiming optimization algorithms restmcture a given circuitundera particular arrival

timecondition so thattheresulting circuit is fasterthan theoriginal underthecondition. Thus,none

of themmeets this requirement. Timing optimization techniques satisfying the requirement allevi

atestheneedforpotentiallyexpensive verification oftiming-safe replaceability. InChapter 8, a tech

nique in this category will be proposed.
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Chapter 4 showed that the delay characteristics of a combinational module can be com

pactly represented in theform ofa delay abstraction, inwhich theeffective input/outputdelay infor

mation ofthemodule under each input vector isseparately stored sothat false paths under thevector

are taken into consideration. One of the important observations was that the effective input/output

delay may notbe unique even after an input vector is specified, and can vary depending onarrival

time conditions atthe inputs. This directly implies that the falsity ofa path in a combinational mod

ule isnot a property independent ofarrival times atthe inputs, but isrelative toarrival times atpri

mary inputs.Therefore, thesameinput-output pathof a module can be trueundersomearrivaltime

condition, while false under another. This chapter introduces a more stringent notion offalse paths,

termed stronglyfalsepaths, where a path is said tobestrongly false if it is false under anyarrival

time condition. Such false paths can be defined uniquely for a combinational module independent
ofarrival times atthe primary inputs. Applications ofthis new class offalse paths include false path

removal of combinational modules, which will bediscussed inChapter 8.

This chapter isorganized asfollows. Section 7.1 starts with a motivating example show
ing that the falsity of a path is different for different arrival timeconditions. Wedefine a new class

of false paths called strongly false paths for combinational modules in Section 7.2 and show that

a strongly false path can be identified by examining the exact delay abstraction ofa combinational

module. Section 7.3 then proposes an algorithm for determining the strong falsity ofa path with
out constructing the exact delay abstraction ofa module. Relation between strong falsity and static
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Figure 7.1: Example: A Combinational Module M

co-sensitization is argued in Section 7.4. Thechapteris concluded in Section 7.5.

7.1 Example

Consider a circuit 9\/[ in Figure 7.1. Assume the unit delay model. If the primary inputs
a^b and c arrive atr = 1,0and 1respectively, functional arrival time analysis guarantees that the

output g is stabilized at r = 3. Note that the topological delay of this circuit under thearrival time

condition is r = 4(> 3) dueto thepath Pq = {a,d,f,g). Since g is available at / = 3, Pa is false.

Consideranother path Pb = {b, /, g). Given an input vector (a, b,c) = (0,0,0), Pb istrue
under this arrival time condition.

Now, letus analyze thesame circuit under a different condition where a,band c arrive at

r = 0,1 and 1 respectively. Theoutput g is again available at r = 3. Therefore Pb is false since oth

erwise the output would become stable atr = 4. Note that Pb was true under the previous condition.

Pa, which was false before, istrue this time, for example, under input vector {a, b, c) = (0,0,0).

These two cases clearly demonstrate that thefalsity ofa path is relative to a given arrival

timecondition, and that the same pathcan be false in one condition and true in another.

One can examine this circuitmore systematically bycomputing the exact delay abstraction



of the circuit as described in Section 4.2. The exact delay abstraction D of this circuit is:

abc da-*gdb-¥g^c-¥g

000 {(3,—,2),(-00,3,2)}

001 {(2,2,2)}

010 {(3,-oo,2),(-oo,2,-eo)}

Oil {(-oo,2, -co)}

100 {(2, -oo,-oo), (-00,3,2)}

101 {(2, -oo,-oo)}

110 {(2, -«»), (-«», 2, -oo)}

111 {(2, -oo, -oo), (-00,2, -oo)}.
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In this circuit Pq {Pb) is the only path of length 3 from a {b) to g. Therefore, the fact that

the delayabstraction has a delaytuplewhose first(second) element is 3 means that, giventhe corre

sponding input vector, it is possible to make Pq iPb) true.

Forexample under(a, c)= (0,0,0), when {arr{a),arr{b),arr(c)) = (1,0,1), thesecond

delay tuple (—<», .3,2) gives anearlier signal stable time of/ = 3attheoutputthan thefirst delay tuple

(3,—CO, 2) giving thestable time ofr = 4. Asdescribed inSection 4,4, thedelay tuple that gives the

earlieststabletimecanbeusedindetermining thetiming behaviorof theoutput.Sincethedelayfrom

b to theoutputin thissecond delay tupleis 3, thecorresponding pathPb is true. Pa is false sincethe

delay tuple indicates that input a is irrelevant. If {arr{a)^arr{b),arr{c)) = (0,1,1), however, the

first delay tuplegives an earlier stable time thanthesecond, showing that Pa is trueandPb is false.

7.2 Strongly False Paths

Definition 7.1 Let 9i{ bea single-outputcombinationalmodule whoseprimary inputsarex\,...,

Letz be theprimary output of themodule. The pathset n(x/,Z/) is theset ofall input-outputpaths

thatstartfrom x/ and endat z andwhose topological delays aregreaterthan or equaltoL.

Definition 7.2 n(A:,,L) issaid tobe strongly false under input vector x ifno path inn(A:,,L) is re
sponsiblefor the stability ofthe output under x inany arrival time condition at the inputs. n(x/,L)
is said to bestronglyfalse ifYi(xi.,L) is stronglyfalse underall inputvectors.

The followingtheoremshowsthatif theexactdelayabstraction of acombinational module

is available, strong falsity of paths canbe determined easily.
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Theorem 7.1 The path set U{xi,L) ofa single-output combinational module M is stronglyfalse
under input vector xifand only ifthe exact delay abstractionDof9^contains no delay tuple where
thedelaycorresponding toXi is greaterthanor equaltoL underx.

Proof

The effective delay from xi to the output is less than Lfor any choice ofthe delay tuples under
X. Thus, no path in n(x/,L) isresponsible for the stability ofthe output for any arrival time

condition at the inputs.

=> We prove this by contradiction. Suppose that Dhas underxadelay tuple {di,...,d„) where the
delay from di, meets di > L. Consider two arrival time conditions

A = (arr{xx),...,arr{xn)) = (-dx,...,-dn)

where e > 0. Under A, the output is stable atr = 0. However, if we change the arrival time

condition to A', where e isasmall positive number, the output stable time is delayed to r= e.
Note that we can take e small enough so that no other delay tuple under xgives better delay
estimation than the current delay tuple. The output becomes stable later because some path of
length di > L inIl{xi,L) determines theoutput stability. Acontradiction.

•

Corollary 7.1 n(jc„ L) is said to be strongly false ifand only ifthe exact delay abstraction DofM
contains no delay tuple in which the delay corresponding tox,- isgreater than or equal toLunder
any input vector.

The idea behind this new definition offalse paths is that a path set issaid to be strongly
false ifall the paths in the set are false under any arrival time condition. This definition offalsity
is more stringent than the standard definition of falsity where the falsity is argued under a specific
arrival time condition.

Underthisnewdefinitionneithern(fl,3) = {?«} norn(^,3) = {Pf,} in Figure 7.1 isstrongly
false since it is possible to sensitize these paths under some arrival time condition as wesaw in the

previous section.

We can also define another class ofstrongly false paths where the strong falsity ofa path
set is claimed onlyunder a specific value at aninput.
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Definition 7.3 n(^/,L) is said to be strongly false for value 0 (1) at jc, if and only ifTl(xi,L) is

stronglyfalse under all the input vectors that have value O(l)forxi.

Notethat n(A:,,L) is strongly false if n(jf/,L) is strongly falsebothfor value 0 and value

1 atxi.

In Figure 7.1 n(a, 3) is strongly false for 1 at a since undera = I thereis nodelay tuple

where the delayfroma is 3. Likewise Tl{b, 3) is strongly falsefor 1 at b.

This notion ofstrong falsity ofa path setfor a constant value atan input' will beexploited

in Chapter 8. Specifically, wewillshow thatanypath set thatis strongly false undersome constant

value can be removed safely without increasing thedelay of themodule underanyarrival timecon

dition.

7.3 Algorithm for Detecting Strongly False Paths

In theprevious section weshowed thatstrongly falsepathsof a combinational modulecan

beeasily identified if the exact delay abstraction ofthe module isavailable. However, the computa

tion of the exact delay abstraction isexpensive for large circuits. This section presents an algorithm

for identifying strongly false paths ofacombinational module without constructing the exact delay

abstraction of themodule. The algorithm reduces theproblem toa satisfiability problem, which can

be solvedby a SAT solver. Theuse of%functions introduced inSection 2.4.6forms thebasisof this

reduction. Since there are practical SAT solvers available that scale tolarge problems, this approach

is applicable to the analysis of largenetworks.

Assume that acombinational module has primary inputsxi^...,x„ and asingleprimary

output z. We first compute x functions forvalues 0 and 1atz by assuming therequired time ofr = 0

at zas in functional required time analysis in Section 3.3. Let x^q x^ \ denote the x functions.
These functions are interms ofleaf%variables atthe primary inputs. Let /,- be the longest topological

path length from x, tothe output. We are interested in determining whether all the longest topological

paths from x/of length //, 11(jc/, /,) in the path setnotation, are strongly false ornot.

Intuitively ifeitherofthe two xfunctions atthe outputz issensitive tothe signal stabilityof
Xj ait = —li, the output stability depends on some path in n(x/, /,). Therefore, n(x/, //) isnot strongly

Existing path sensitization conditions also have the notion offalsity under aspecific value, but the focus is an output
value. Forexample, static co-sensitization can be further classified into static co-sensitization to a value 0 and a value
1[DKM93]. Apath is said to be statically co-sensitizable to avalue vifitis statically co-sensitizable and the output of
the path is value v. Instead offocusing on output values our classification is based on the value ofan input edge.
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false. Note that the signal stability ofj:/ at?= —/,• isrepresented by two leaf%variables and

for values 0 and 1respectively. Recall that the two x functions atthe output are represented interms

of leafXvariables including the two leafx variables above.

On theother hand, if both of the%functions are independent of the two leaf%variables,

the stability ofXi atr = -/,•never affects the output stability atr = 0. Thus, n(jc„ //) isstrongly false.

Noticethatneitheran arrival timecondition at the primary inputs nor an inputvectorap

plied to the module is known. Our goal is to check whether there are an arrival time condition and

a vector at the inputs underwhich the stability of jc, at r = -// directly determines the stability of z

at r = 0. If such a pairexists, n(x/, //) is notstrongly false since under thecondition some path in

U{xi, li) isresponsible for stabilizing the output atr = 0. Otherwise, n(x/,/,) is strongly false.

A key operation hereis todetermine whethera function isdependent ona variable. Thisis

required to determine ifthe xfunctions at the output, x°o Xz, i»depend on input variables xZ'o

Xxi,\' Whether a function / depends onan inputx can betested by checking whether / |;f=o \x=i
is satishable, where 0 is theXOR operation. This is directly applicable here.

Xfunctions have a special property that they are monotone increasing in terms of leafx

variables byconstruction (Lemma 3.1). Thus, the following holds.

If Xi = 0:

X°ol,-',_o £Aar,-,0—" •

x°iL-',_o £ x°iU_.
Xjt,•,()-"

If JC, = 1:

%z,oL-'i_o — 5Cz,oL-'i_i

x°iL-',_o £ 3^iU_,

We can take advantage of this property to simplify the dependency check. Namely it is enough to

check whether either of the following is satishable.

If Xi = 0:

X°ol^«=,4olx;;j,=o •
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If jc, = 1:

Finally leaf%variables arenotfully independent. Theleafx variables forthesame primary

input need to satisfy the ordering constraint discussed inSection 3.3. Therefore, the %functions for

the output istested for itsdependency on the leaf%variables for a:, atr = -// only under the ordering

constraint.

This idea is generalized into the following theorem.

Theorem 7.2 Let Vbe the set ofall leafxvariables ofxifor value v(v = 0,\)for any time t < —L,
where L< /,-. n(A:/,L) isstronglyfalsefor value vatxi ifand only ifneither {xi = v)x®q |v«6V:m=i

Xz.o \vu€V:u=o nor {xi = v)x®| |v«€V:«=i \vuey:u=iO Is satisfiable under the ordering constraintsfor
the leafx variables.

Proof

<= The term IVmsV:k= i and Xz,o IVtt€V:«=o represent the sets of input vectors that make the output
stable to 0 by/ = 0 ifXi arrives at / = —/,• and at / = —L+e respectively, where e is a small

positive number. Therefore, the fact that the product term (jc,- = v)%°q |vii6V:«=i Xj oIvm€V:m=o
is not satishable under the ordering constraint means that if jc, = v, there are no input vector

andarrival timecondition under which theoutput stability to value 0 isdifferentiated between

the case where Xj arrives atr = —which isearly enough to propagate any signal event up

to the output from j:,-, and the case where jc, only arrives atr = —L+e > —/,. Thus, no path

in n(A:, ,L) is responsible for stabilizing the output to value 0 by / = 0 if jc,- = v. A similar

argument holds for value 1. Hence, n(jc,-,L) is strongly false for value v at a:,-.

We prove this by contradiction. Suppose that {xi = |v«€V:«=i Xz,o lv«€V:«=o is satisfiable
under the ordering constraint. Letx and aj{j ^ i) be the input vector and the arrival time at

Xj corresponding to a satisfying assignment respectively. Note thatx meets jc,- = v. Under x

and arr(xj) = aj{j /), if arr{xi) = the output is stable to0 by time 0 while it isnot if

arr{xi) = —L+e. This implies that some path in n(jc,-, L) is responsible for the stability ofthe
output. Thus,n(A:,-,L) is not strongly falsefor value v at jc,-. A contradiction. Thecase where

theoutput is 1canbe handled in thesame way.
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The theorem guarantees that the strong falsity of a path setunder an input value can be

determined by performing two satisfiability checks. As in XBDO analysis, we construct a single-

output Boolean network whose output function is equal to a formula under a satisfiability check.

Section 2.4.6 showed that %functions can be represented in Boolean networks by following their

recursive definitions.

Let us see how we can construct a Boolean network whose output has the functionality

{xi = v)%°o lv«€V:«=i Ivh€V:«=o- We first make two copies of the Boolean network for x%' ^
5Cz,o Ivm€V:«=i and fAt for xJq |vh€V:«=o-

In order to respect the ordering constraint among leaf%variables, weemploy the same

technique used in the approximate required time analysis via simplified modeling in Section 3.3.2.

Namely, each leaf%variable isrepresented as the corresponding input variable with the appropriate

phase multiplied by newly introduced Boolean variables. These Boolean variables referred to as a

variables and p variables inSection 3.3.2 constrain leaf%variables sothat the ordering constraint is

automatically satisfied. .

Each leaf%variable notforx/isfed by anew node whose functionality isgiven inEquation

(3.3). Notice that the node is shared between the two networks fAfi and 9^. Aleaf %variable forx,-,

on the other hand, needs to be distinguished between the two networks since different constraints

need to be imposed. Both in fA^ and fA^, each leaf %variable for x,- is fed by a new node whose

functionality isdefined inEquation (3.3) as before. However, two different sets ofa and Pvariables
are introduced for leafvariables ofxi in fAfi and fA^. In !A/i all (X and P variables forx/ are set to 1

to represent that x,- arrives at / = —//. In fA^ the a and Pvariables are set properly sothat all leaf %

variables ofx,- for t < —L are 0while the other leaf%variables ofx/ are settoeitherx,- orx7 depending

on the phase.

Finally, the two networks are connected by inserting an inverter after the output of !A6,

and connecting the output of lAfi and. the output of the inverter with an AND gate. The primary

input X, is then set to v. The output of this AND gate has the functionality exactly the same as

(-Ti = v)x°o lv«€V:«=i X% |vu€V:m=0' One can easily create aSAT formula from this network. Note
that the ordering constraint is implicitly imposed in the resulting network with the use of a and p

variables. The same construction works for the other formula.

Since there is considerable similarity between fAfi and the resulting network can be

simplified by sharing subcircuits. The two networks are only different in how the leaf %variables
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for X, are constrained. Therefore, the portionof iAfi that is not in the transitivefanout of the leaf %

variables for x/ is shared with 9^. This reduces the size of the resulting network, thereby givinga

smaller SAT formula.

To test strong falsity of paths, L is set to /,• first. As long as neither of the two formulas

is satisfiableforx,- = 0 orx/ = 1, L is reducedand the satisfiability checks are repeated. Eventually

eitherof the formulas becomes satisfiable forx/ = v(v = 0,1). It is thenconcluded that n(x/,I/) is

strongly false for value v at x, for the L next to the last one.

Let us see how the algorithm works on the circuit in Figure 7.1. The x functions at the

output g for values 0 and 1 are:

vO - v-'v"'Ag.l — Xe,lX/,l

(X„.oXM)(3Crf,i+Zc,i)

X?,0 = zJ+Z/,i

= (Za,i+Z<,j) + (Zrf,SZc,o)

= (Zjj+zr,i) + (TUfl+Xbl)TUl-

Consider n(a, 3). The leaf %variables corresponding to this path set are %~q and x~j.
Wefirst check whether IT(a,3) is strongly false for value 1 at a. If the%functions at the

output are sensitive to the leaf %variable xj J under a= 1, the path set is not strongly false. The
other leaf %variable x~q is irrelevant since xj^o ~ ®under a =1. Consider x°^i. Ifa = 1, X~\ = 0.
Therefore, =0independent of xjj although x~j is referred to in Xg^p The other xfunction at
the output x^^o depend on x^J iu the first place. Since both of the output xfunctions are
independent of the leaf x variable x^j, n(a,3) is strongly false for value 1at a, which coincides
with the result in Section 7.2.

Totestwhether IT(a,3) is strongly false forvalue 0 ata, thesame analysis needs tobedone

under a= 0to see if the output %functions are dependent on x~o- is independent of xJq- %go
refers toxj^o requires further investigation.

Under a = 0, x^^q i'® simplified as follows.

Zfto=zjj+(z;,o+

Boolean parameters are now introduced as in Section 3.3.2.

Zij = bci'
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z;,o = «P°

Zm = sp'

Zc'o = cP"

To see ifn(a,3) is strongly false for value 0at a, itis enough to check whether x® qis sensitive to
the value of p". Recall thatthecondition p"= 1corresponds to thecase where a arrives at / = —3

while the condition P" = 0corresponds to the case where a arrives later than t = -3. Whether x° q
depends on p" can be checked by taking aBoolean difference of qwith respect to p^. The Boolean
difference is simplifiedto:

xlo lp»=i Zg,o lp"=o =^P''(ta''+63'').

Since the difference issatisfiable, the output %function x°gis indeed sensitive tothe leaf x variable

5Ca,o' n(a, 3)isnotstrongly false forvalue 0ata. The Boolean difference issatisfiable under
two cases. The first case is:

a = 0,fe = 0,c= 0,p^ = 0,P'̂ = 1,

which corresponds to (a,b,c)= (0,0,0), arr(b) = ©o and arr(c) = —2. Inother words, if b does not

arrive andc arrives at r = -2 under the input vector (0,0,0), the output gets stable if a arrives at

f = —3, butdoesnot if a arrives later. This shows thatn(fl, 3) is responsible for the stable timeof

the output, and thus isnot strongly false for value 0 ata. Note that this corresponds todelay tuple

(3,-oo,2) under input vector 000in theexact delay abstraction. Thesecond case is:

fl = 0,l>=l,c = 0,a^ = 0,p'^=l.

Although b = 1 this time, = 0 means that the arrival time of b is again set to ©©. Therefore, the

amval timecondition is the same as theprevious case. Notice thattheexact delay abstraction hasa

corresponding delay tuple (3, -««, 2) under input vector010.

Preliminaryexperimentalresults of this algorithmwill be given in Section 8.4.

7.4 Relationship with Static Co-sensitization

Devadas et al. [DKM93] introducedstatic co-sensitizationas a necessarycondition for a

pathto be responsible fordelayunderthefloating modecondition. Thispathsensitizationcondition

isapurely Boolean condition, andindependentofgatedelays andarrival times at theinputs. If a path
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Figure7.2: A StronglyFalsePath Can Be StaticallyCo-sensitizable

isnot staticallyco-sensitizable, the path cannot be responsible for delay regardless ofgate delays and

arrival times. Thus,any path not statically co-sensitizable is strongly false. However, the converse

is nottrue; a strongly false path may bestatically co-sensitizable.

Consider a circuit inFigure 7.2. Both the AND gate and thebuffer have delay of 1. Sup

pose / = 0. Both ofthefanins of theAND gate have controlling values 0, which makes theoutput of

thegate0. Theupperpathandthe lower patharebothstatically co-sensitizable. On theotherhand,

theupper path is not strongly false, but the lower path !!(/, 2) is strongly false as wecansee from

the exact delay abstraction of this circuit D,

/

0 (1)
1 (2).
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Note that the lower path is strongly false, but statically co-sensitizable if / = 0. The reason why

the notionof strongfalsity candetectpathsnot responsible for delaymoreaccurately than staticco-

sensitization is thatgatedelays aretakenintoaccount duringtheanalysis whilestaticco-sensitization

ignores thisfactor. How much difference thetwonotions make onrealistic circuits is yetto be stud

ied.

Sinceanypathnot statically co-sensitizable is strongly false, nonstaticco-sensitizability

can be used to estimatestronglyfalse pathsconservatively.

Cheng andChen [CC96] argued false paths in thecontext ofdelay-fault testing. Under the

existence ofpath delay faults gate delays and wire delays cannot bebounded from above asintiming

analysis. However, if a path is false under all possible delay assignments togates and wires, a path

delay fault has no effect on the performance of the circuit, and thus there is no need to consider the

path. A path delay fault is said to bef-redundant if the path is false under all delay assignments to

gates and wires. They showed that apath that isnotfunctionally sensitizable under any input vector

is f-redundant, where functional sensitization is defined as follows.
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Definition 7.4 ApathP = {gQ,..., g^) isfunctional sensitizable under an input vector x iffor each

gi{i = 0,...,m - 1) that has a non-controlling value ofgi^\ all the side inputs ofgi+i have non-
controlling value ofgi+i.

Thissensitizationcondition is infactequivalent tostaticco-sensitization^. Thus, theclaim

by Cheng and Chen that a functionally unsensitizable path is f-redundant and thus false under any

gate/wire delay assignment is simply a rephrase ofa path not statically co-sensitizable being false

under any delay assignment, which was known in [DKM93] already. Notice that arbitrary arrival

time conditions can berealized by changing delays ofwires after primary inputs.

Theorem 7,3 Apath P= (go, •••, gm) isstaticallyco-sensitizableunderaninputvectorxifandonly
if it is functional sensitizable under x.

Proof

IfP isstatically co-sensitizable under x,for each g, (/= 1,...,m) that has acontrolled value of

gh gi-i has a controllingvalueof g/. Therefore,

V/ G{1,...,m}, g/ has acontrolled value g/_ i has acontrolling value ofg,

This is equivalent to:

V/ € {1,..., m}, g/_1has anon-controlling value ofg, => g, has a non-controlled value.

Ifg,- has a non-controlled value, all the fanins ofg,- have non-controlling values ofg,-. There
fore,

V/ G{l,...,m},

g/_1has a non-controlling valueof g,

=> all thesideinputs ofg/ has a non-controlling value ofg,.

Hence P is functional sensitizable under x.

<= If P is functional sensitizable,

V/ G 1},

gi has a non-controlling valueof g,+i

=$• all the side inputs ofg,+1 has a non-controlling value ofg,+1

g,+i has a non-controlled value.
2«Static co-sensitization was first published in [DKM91] before [CC96]. However, Cheng and Chen did not refer to

static co-sensitization.
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This is equivalent to:

V/ 6 {0,...,m - 1},^,+1 has a controlled value gi has a controlling valueof ,

showing that P is statically co-sensitizable.

7.5 Conclusions

We have introduced a new class of false paths for combinational modules. These false

paths, called strongly false paths, are the paths that are never responsible for delay under any arrival

time condition. Under the assumption that arrival times at the inputsare unknown as in intellectual

property blocks these are the only paths guaranteed to be false under any surrounding environment.

After showingthat strongfalsityof a pathcan be determined by examining the exact delay abstrac

tionof a module, we showed thatthe problem is reducible to a satisfiability problem, which makes

it possibleto check the strongfalsity of a path set withoutcomputingthe exact delay abstraction.

In Chapter8 we willdiscusstheremovalofstronglyfalsepathsfroma combinationalmod

ule without slowing down the module underany arrival timecondition, i.e. the resulting module is

a timing-safereplacementof the original.
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Chapter 8

False Path Removal for Combinational

Modules

Chapter 7 introduced a new class of false paths called strongly false paths for combina

tional modules. A path in a combinational module is said to be strongly false if it is false under any

arrival time condition at primary inputs. Since the actual environment under which a combinational

module is to be used is unknown, strongly false paths are the only paths that can be safely assumed to

be false for a combinational module. Since they are never responsible for the stability of an output

under any arrival time condition, it may be desirable if they can be structurally removed from the

module by a circuit transformation. If such a transformationis possible, the resulting false-path-free

module can be analyzed more accurately than the original module by topological timing analysis,

which is much more efficient than functional timing analysis. Although this transformation is at

tractive, we do not want to slow down the originalcircuit by the transformation especially in the

context of high-performance designs. Thus, the structural transformation also needs to guarantee

that the resulting module 9^' is no slower thantheoriginal M underanyarrival timecondition. In

thischapterwe presentan algorithm thatremoves strongly falsepathsfroma combinational module

M without increasing the delay ofthe module under any arrival time condition. 9/(' isproved tobe
a timing-safe replacementof My i.e. M' <14 M.

Thischapter is organizedas follows. Section8.1overviewsthe KMSalgorithm. Although

it was originally proposed as a redundancy removal algorithm thatdoesnot increase delay, it can be

thought of as a procedurefor removing long false paths. We argue why the direct use of the KMS

algorithmis not appropriatein removing falsepathsfroma combinational module. Section8.2 illus-
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trates the problems using examples. Section 8.3 presents an algorithm for removing strongly false

paths from a combinational module and proves that the algorithm is guaranteed to give a timing-safe

replacement of the original. Experimental results are given in Section 8.4. The chapter is concluded

in Section 8.5.

8.1 The KMS Algorithm

Keutzer, Malik and Saldanha [KMS91] showed that redundancy is not necessary to reduce

delay. The motivating example for the work was a carry-skip adder. This circuit has a single stuck-at

redundancy, but the direct removal of the redundancy makes a long false path true thereby slowing

down the circuit. The redundancy in the circuit is a by-product of making its longest topological

path false to improve the performance. However, such a redundant circuit is problematic since the

existence of the fault causes the circuit to slow down, but the fault is not detectable by conventional

testing techniques.

A natural question is whether redundancy is necessary to reduce delay in general. They

resolved this issue negatively by giving a constructive algorithm, commonly known as the KMS

algorithm, which transforms a given redundant circuit to a functionally equivalent irredundant circuit

with no penalty in its performance under a given arrival time condition at the primary inputs.

The KMS procedure [KMS91] takes 1) a gate-level redundant combinational circuit and

2) arrival time for each primary input, and returns a functionally equivalent irredundant circuit no

slower than the original under the given arrival times. Suppose that the longest topological path is

true in a given circuit. Then any stuck-at redundancies in the circuit can be removed in an arbitrary

order since this never worsens the delay of the circuit; it is impossible to find a longer path in the

circuit. This approach, however, does not work if the longest topological path is false since redun

dancy removal can make the false path true thereby slowing down the circuit. The core of the KMS

algorithm consists in how to handle this case.

Given a circuit whose longest topological path is false, the KMS algorithm first checks if a

multiple fanout node exists on the path. If there is no such node, the input edge of this path from the

primary input is guaranteed to be both stuck-at-0 and stuck-at-1 redundant. Furthermore, removing

either of these redundancies does not slow down the circuit since constantpropagation from the edge

never deteriorates the delay of the path.

Suppose there is a multiple fanout node on the path. Even if the path itself is still insensi

tive to the signal value of the input edge, it is possible that it is stuck-at-0 or stuck-at-1 irredundant
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through other paths branching off from the path under analysis. Thus the simple constant propaga

tion employed in the previous case is not appropriate. The KMS algorithm first finds the last multiple

fanout node of the path and duplicates the circuit up to the node for ail the other paths so that the path

under analysis is isolated as a fanout-free path. Since this transformation reduces the multiple-fanout

case to the previous case, the same approach above then applies.

This process is repeated as long as the longest topological path is false. Once the longest

topological path becomes true, all the remaining redundancies are removed directly.

Since the original algorithm proposed in [KMS91] processed a single path at one time, it

had a severe limitation in the size ofcircuits. Saldanha et al [SBSV94] later resolved this complexity

issue byproposing an algorithm which does notrequire explicit path enumeration'.

The KMS algorithm removes long false paths from a given combinational circuit by a

structural transformation as part of the algorithm. It guarantees that the longest topological path of

the final circuit is true under the given arrival time condition. This property is desirable since the

topological delay of the final circuit matches its exact delay; hence topological timing analysis gives

better accuracy on the transformed circuit than the original circuit. Given a combinational circuit

whose longest topological paths are false under a given arrival time condition, one can simply apply

the KMS procedure to obtain a false-path-free circuit which is no slower than the original. The final

circuit can then be used as a replacement of the original without the risk of slowing down the circuit.

Since false paths have been removed, the circuit can be analyzed accurately even with topological

analysis.

This approach, however, has fundamental limitations to be used for false path removal of

combinational modules.

First, the KMS procedure takes an arrival time condition at the primary inputs of a circuit

and works under this particularcondition. Therefore, it is not directlyapplicableto a combinational

module since the arrival times at the inputs are unknown. If a representative arrival time condition

is chosen and the procedure is applied under the condition, the delay of the resulting circuit is not

guaranteed once it is used under a different arrival time condition.

Second, redundancy removal performed as the final step of the KMS algorithm can in

crease delay even under the arrival time condition chosen for the analysis if the delay of the circuit

is examined for each input vectorseparately. Keutzer et al. [KMS91] argued that straight-forward

'Chen etal [CDC92] showed that the original KMS algorithm can be improved by removing false subpaths'msti^d of
falseinput-output paths. This results in lessgateduplication andlessareaoverhead. However, thisalgorithm still works
on a subpathat onetime,andthusinherits thecomplexity problem in theoriginal KMS algorithm.
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Figure 8.1: 2-bit Carry-Skip Adder

redundancy removal cannot slow down the circuit since the topological longest path is true after false

path removal. In this argument the delay of a circuit is defined as the earliest time when all the pri

mary outputs are stabilized for all input vectors under a given arrival time condition at the inputs.

However, the delay of an output under an input vector can increase as the result of redundancy re

moval although it never increases so much as to increase the "delay" of the circuit. Under the delay

definition of [KMS91] this local delay increase for an input vector does not cause the increase of the

"delay". However, since there exists a surrounding environment of the module which can detect this

delay increase, it should be thought of as a delay increase in the context of combinational modules.

8.2 Motivating Examples

This section shows why a simple-minded application of the KMS algorithm is not appro

priate to remove false paths from combinational modules.

The first example is a carry-skip adder. This is the circuit that motivated the entire research

on the KMS algorithm. Figure 8.1 shows a 2-bit carry-skip adder described in [KMS91]. We focus

on the subcircuit computing the carry output. Assume a gate delay of 1 for the AND gate and the OR

gate, and gate delays of 2 for the XOR gate and the MUX gate. The selector input of the multiplexor

is stuck-at-0 redundant since under the existence of the fault, the circuit simply degenerates into a

ripple-carry adder, which is functionally equivalent to the original circuit. The performance of the

circuit, however, is deteriorated by the fault since the ripple-carry adder is slower than the cany-skip

adder.
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sel

Figure 8.2: Circuit with Multiplexors

In [KMS91] this circuit is analyzed under the condition where the carry input arrives at

t = 5 and all other inputs arrive at r = 0. In this particular situation the longest topological delay

is 11 by the path of length 6 (cin^geigT^gg^gnyfnux^Cout)- Since this longest path is false under the

given arrival times, the KMS algorithmis invokedto remove the path.

If the resulting circuit is used under the same arrival time condition, it is guaranteed to be

no slower than the original. However, under a different arrival time condition it is possible that the

performance of the resultingcircuit is worsethan that of the original.

Saldanha [Sal91](page 69) applied the KMS algorithm to a cascaded carry-skip adder in

such a way that each blockis made iiredundant by the KMS algorithm assuming that the carry in

put arrives later than the other inputs. The choice of the arrival times was done in an ad-hoc way.

Apparentlyhe replacedeach block witha new iiredundantblockassumingthat the new block is no

slowerthan the original underany arrival timecondition. This assumption is not correct.

Let us analyze the same circuitunder differentarrival times to see the problem. Assume

thatall theinputs arriveat r = 0. Thetopological longest pathsarenowthepaths of length 8 from oq

and bo to These paths aretrue under thearrival time condition. Therefore ifonesimply follows

the KMS procedure, any redundancy can be removed arbitrarily without slowing down the circuit,

which results ina ripple carry adder. Notice thatalthough theeffective delay from thecarry input to

the carry outputhas increased in this transformation, the delayof 8 from oqand bostill determines

thecircuit performance. Thus thetransformation isvalid underthegiven arrival times. Now assume

that theresulting circuit isused where the carry input arrives at r = 5 and the other inputs arrive at

^= 0- Obviously we now observe a larger delay of 11 instead of 8. This example clearly shows

^The long path from considered in the previous case has length 6and is no more the longest
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thatthedelay non-increasing property of theKMS algorithm is only guaranteed fora given arrival

time condition at primary inputs. In order to remove falsepaths from a combinational module we

are interested in a morerobustalgorithm which neverslows downthecircuitunderany arrival time

condition.

Consider another example shown in Figure 8.2. The number attached to eachgate is the

delay of thegate. Assume that and sel arrive at / = 0 while y arrives at / = 10. Thecircuit is fully

irredundant in terms of single stuck-at faults. Thelongest topological path is theoneof length 10

from y to the outputvia the upperpathafter the first multiplexor, giving the delay of 20= 10-MO.

Since this path is true, the KMS algorithmdoes nothing to thiscircuit. Givendifferentarrival times,

however, thepath from x to theoutput through thetwo upper paths canbefalse. Forexample, when

all the primary inputs arrive at r = 0, the path is the longest andfalse. From the viewpoint of false

pathremoval, thisimplies thatanarbitrary choice ofarrival times isnotenough to remove falsepaths

fully from combinational modules.

Finallyconsid^ the carry-skip adderin Figure8.1 again. Assume that thecarry inputar

rives at r = 5 and all the otherinputs arrive at r = 0. The removal of the longfalse path from the

carry input to the carry outputyields the circuit in Figure 8.3. For the sake of simplicity only

the faninconeof the carryoutputis shown. Eachof the fanin edgesof g2 is stuck-at-1 redundant. If

onefollows the KMS procedure, any of these redundancies canbe removed without slowing down

the circuit. If the gqedge is replaced witha constant 1, the circuit^-rr in Figure8.4 is obtained.

Now that the edgeis not redundant anymore, this is thefinal result of the KMS procedure.

We are now ready to show that this redundancy removal in fact increases the delay of the

circuitevenunderthe arrival timecondition analyzed, oncethe delay is determined for each input

vectorseparately. Considerthe inputvector{ao,a\,bo, bi, c/„) = (0,0,1,0,0). In the circuitbefore

the redundancy removal, the path (ao,g2,g9,gii,mux,c„ut) is the longest true path. Therefore the

delayunder this vectoris 5. On the otherhand, in thecircuitafter the redundancy removal, the path

{{^Iibi}^g3i89i8ii}fnux,c„ut)y which wasfalse before the redundancy removal, becomes trueand
gives delay 6(> 5). Notice that thereexists an input vectorthat sensitizes the longesttopological

path from c,>, to Cout of length 7 in both of the circuits. Therefore, the redundancy removal is safe

under the traditional definition of delay. However, if we need to preserve the performance of the

circuitunder any surroundingenvironment, redundancy removal can worsen the delay.



c_in

aO

bO

a1

b1

c_in

aO

bO

a1

b1

137

ESyt"
fv

Figure 8.3: 2-bitCarry-Skip Adder ^ before Redundancy Removal

f

tiYTV

Figure 8.4: 2-bitCany-Skip Adder9\/(q-rr afterRedundancy Removal

c out



138

8.3 False Path Removal of Combinational Modules

Motivated by the examples in the previous section, we describe how to remove false paths

safely from combinational modules. Our goal is to design an algorithm which takes a gate-level

circuit and returns a false-path-free circuit such that 9i{' -<m Section 8.2 showedthat a

simple-minded application of the KMS algorithm is not enoughfor our purpose.

The first problem is that the KMS algorithm only removes long false paths under given

arrival times. Because of this strategy,false pathsnot criticalunder the situation remain in the circuit.

To make matters worse, those paths can become true long paths after redundancy removal thereby

slowing down the circuit under a different arrival time condition. This was illustrated in the carry-

skip adder and the multiplexer-based circuit in Section8.2. Moreover, since false paths removedby

the KMS algorithmare not necessarilystronglyfalse, even false path removalalonecan slow down

the circuit. We will show an example of this later.

To alleviate this problem all long strongly false paths are removed from each input by a

circuit transformation. As a result, the topologicallongestpath from any input is sensitizableunder

some input vector and some arrival time condition.

The second problem is that the final redundancy removal in the KMS algorithm can slow

down a circuit if the delay of the circuit is computedfor each primary input vector. This is unaccept

able for combinational modules since there exists a surroundingenvironmentwhose performance is

deterioratedby this delay increase. Thereforethe redundancy removal is dropped intentionally.

8.3.1 Algorithm for False Path Removal

Wefirst illustrate the key idea of the algorithm using an example. Consider again the circuit

M inFigure 7.1. We havealready shown that 11(a,3)= {Pq} isstrongly false for 1ata inSection 7.2.

This means that if a = 1, this path is never responsible for the signal stability at the output under any

arrival time condition. Therefore, the input edge of the path can be safely replaced with a constant

0 without slowing down the circuit. Notice that the path is fanout-ffee and this modificationcannot

adversely affect the other paths. Propagating this constant through the circuit is also a safe operation.

Wealready saw in Section 6.2 that the resultingcircuit 5Wo in Figure 6.2 is a timing-safereplacement

ofM.

If the originalKMSalgorithmisappliedto inFigure7.1under (arr(a), arr(b), arr(c)) =

(1,0,1), Pais identified as false. Onecan thenchooseeitherconstant0 or 1to replacethe inputedge

of Pa with. If a constant 1 is chosen, thecircuit f^i in Figure 6.3 is obtained, which is not a timing-
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safe replacement of fTlf as discussed in Section 6.2. This example shows that strongly false paths

are the appropriate paths to be removed for combinational modules. Keutzer et al. [KMS91] only

suggest that one pick the constant that gives better simplification of the circuit. However, they use

this choice only as an optimization.

We are ready to prove the correctness of the transformation formally. We need a couple of

definitions.

Defiiiition 8.1 The set ofall paths beginning at an primary input edge e and ending at a primary

output is called the path set of e.

Definition 8.2 An L-path disjoint circuit^ with respect toprimary input jc, isa circuit where thepath

set ofany primary input edgefrom Xi consists ofeitherpaths oflength > Lor paths oflength < L

Given a combinational module, one can always construct a module that is L-path disjoint

with respect to Xi by fully preserving the original functional and timing properties. This detail can

be found in [SBSV94]4.

Let lA{'b& a single-output combinational module whose primary inputs areJC|,..., jc„. Let

jf\f' beanL-path disjoint circuit with respect toXi that is obtained from

Lemma 8.1 Ifpath set 11(j:,, L) is stronglyfalsefor value v(v = 0,1) at xi in the input edge of

the path set is stuck-at-v redundant in iM'.

Proof Supposeit is not stuck-at-v redundantfor contradiction. Then thereexists an input vec

tor Xwhere x, = v such that the output value of is different between the fault-free circuit and

the faulty circuit. Now consider the arrival time condition arr{xi) = —L + e andarr{xj) = —Ij if

j /, where Ij is the longest topological path length from jCy to the output. Suppose we applythe

same vector \tolA{ under this arrival time condition. Thefact that x isa testpattern directly implies

that the outputof is different between t = 0 and / = «». Thus, the outputof IJif is not stableby

/ = 0. Since all the primary inputsexceptjc, arriveearlyenough,the outputis not stabilizedbecause

of thedelay in Xi. This implies that some pathfrom Xi of length > L is responsible for determining

the outputunderx. This contradicts that n(jc„L) is strongly falsefor valuev at Xi. •

•^This definition isavariation ofL-path disjoint circuits introduced in [SBSV94].
'̂ The procedure in [SBSV94] is applicable by assuming that jc,- arrives at r=0and all the other inputs arrive at / = -<».

All the pathsfrom theotherinputs are ignored effectively thisway.
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Theorem 8.1 Suppose path set n(jc,-,L) is stronglyfalse for value v at jc, in M. Let be an L-

pathdisjoint circuit with respect toXi obtainedfrom M. Let bethe circuit obtainedfrom M' by

substituting vforthe input edge o/n(jc,,L) in M'. Finally let 0^ be the circuit obtainedfrom

byperforming a constant propagation ofv. Then M

Proof FromLemma 8.1 thisconstant substitution doesnotchange thefunctionality of thecir

cuit. Therefore we have only to check if the performanceof the circuit is not deteriorated.

Notice thatthe%functions at theoutput for andthosefor iW areexactly thesamesince

thecircuittransformation forL-path disjointproperty doesnotchangethetimingcharacteristic ofthe

circuit. Since n(x/,L) isstrongly false for value vatx,- in 51^, %functions atthe outputs and %Jo
areindependent ofanyleaf%variable where L! > L. Therefore, setting to0doesnotworsen

the signal stability of the outputunder any arrival time condition. This exactlycorresponds to the

circuit transformationwe applied to get from Notice that if x, = v, this transformation has

no effect since the input edge gets the same value as before.

Finally, the effect of the constant propagation is the same as assuming that the value of the

input edge is available at r = —<». Since the analysis is based on the XBDO model, the monotone

speedup property guarantees that this never worsens the stability of the x functions at the output.

Hence :<m 1^41. O

Based on Theorem 8.1 one can design a procedure that takes a single-output combina

tionalmodule andremoves strongly falsepathstocreatea timing-safe replacement module wherethe

longest topological pathfrom anyinputis strongly falseneither for0 norfor 1at theinput. Thealgo

rithmexamines primary inputsoneby one by checking whether the longesttopological pathsfrom

a primary input are strongly false for either 0 or 1. If either is true, the circuit is modified based on

Theorem 8.1. This process is repeated until no change is observed. To handle a combinational mod

ule withmultiple outputs thesameprocedure is applied to the transitive fanin coneof eachprimary

output separately and the resulting circuits are merged into a single circuit by sharing isomorphic

subcircuits. This stepis guaranteed not to change the timing characteristics of thecircuits^.

8.3.2 Examples

Figure 8.5 shows the transitivefanin of the cany input of the 2-inputcarry-skipadder in

Figure 8.1. Assume again a gate delay of 1 for the AND gate and the OR gate and gate delays of 2

-^As in[KMS91] we assume that gate delay is independent ofloads.
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Figure 8.6: 2-bitCarry-Skip AdderfWi afterPropagating Constant 1 from Ci„
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for the XOR gate and the MUX gate. The analysis of strongly falsepathson this circuit indicates

that path set n(c,„, 6) is strongly false for value 1 at Ci„. Therefore,one can safely assert a constant

0 at the inputedge of the longpathof length6 from thecarry inputto the carryoutput. Note that the

circuit is alreadyL-pathdisjoint with respect to c,n for L=6. Figure 8.3 shows the resultingcircuit

iMo. Theexactdelay abstractions D andDq of the twocircuits and fMo are shown in Tables 8.1

and 8.2respectively. Since -<m M, i.e. 9\/(q is indeed a timing-safe replacement of M.

In Section 8.2 we showed that redundancy removal on does not preserve the timing-

safereplacement property. Theexactdelayabstraction Dq-rr of^-rr isshowninTable8.3. Since

^o-RR 2? Dq, !A^o-rr is nota timing-safe replacement of fWo.

To see this consider the input vector (ao,a\,bojbi,Ci„) = (0,0,1,0,0). Dq has a delay

tuple (5,5, -«>,5, -oo) under the vector. Dq-rr only has a delay tuple (-«>,6, -«»,6, -«>). Since

(-00,6,-00,6,-00) 25(5,5,-oo,5,-oo),£)o_/w2<Z)o- Thus,f?l<)_^

is not a timing-safe replacement of the original circuit either. For example, un

der input vector (aqjaib ^1 >Qn) = (0)1j1j0» 0) has a delaytuple (6, -00, -00,4,6). The onlyde

laytuple inDq^rr underthe vectoris (5,5,5,5,2). Since (5,5,5,5,2) ^ (6, -00, -00,4,6),

In the original KMS algorithm, this circuit was analyzed under the assumption that Cm ar

rives at r = 5 and all the other inputs arrive at r = 0. Under this condition the longest path from

the carry input to the carry output is false and it was argued that the input edge of the path can be

replaced with either 0 or 1. However, since n(c/„,6) is not strongly false for value 0, the substitu

tion of 1 at the inputedgeof c,„ does not givea timing-safe replacement. The resulting circuit fMi

is shown in Figure 8.6. The exact delay abstraction of the circuit is shown in Table 8.4. Under the

input vector (aoi«ii^o»^hCin) = (l>0)0>0j0) ^ has a delay tuple (—«>,—00,6,4,6). However, D\

has only (-«>,6, —<»,6,—«») /5(—«»,-«',6,4,6). Thus, D\-^D and This shows that

theremoval ofconventional false paths under a given arrival time condition is too aggressive^.

Consider the circuit with multiplexors in Figure 8.2. The topological longest paths from

jc, y and sel to the outputare 14,10 and 9 respectively. The false path analysis of this circuit shows that

the path setH(x,14) is stronglyfalsefor value 1at jc. A circuitduplicationanda constantpropagation

^Note that the original KMS algorithm [KMS91] removes statically non-sensitizable paths unlike theimproved algo
rithm [SBSV94] where non-viable paths are removed. A statically sensitizable path is viable, but the converse is not true.
Therefore, the original KMS algorithm is even more aggressive than just removing false paths, and thus has the same
problem of violating the timing-safe replacement property.

Although the constant propagation of value 1 from Cm is not safe in terms of timing-safe replaceability, it does not
increase the delay of the circuit under the same arrival time condition.



a^^^bobiCin ^OQ-*Cota^O\ -¥Caul^biy-*Coul^b\-^Cottt^C{)-*Coul

00000 {(-00,4, 6,-oo, 6)(8,-oo, 8,4,-eo) (6,-oo,-oo, 4,6)(8,4,8,-oo,-oo)

(_oo,-co, 6,4,6) (6,4,-oo,-oo, 6)(-<»,6,-oo, 6,-««)}

00001 {(8,4,8, -oo, -oo)(8, -oo,8,4, -00)(-00, 6, -oo, 6, -oo)}

00010 {(-00,4,6,-oo, 6)(6,4,-oo,-oo, 6)(8,4,8,-oo,-oo)}

00011 {(8,4,8,-00,-00)}

00100 {(6,-00, -00,4,6)(-oo, 6,-00,6, -oo)(6,4, -00, -00,6)}

00101 {(-00,6,-00,6,-00)}

00110 {(5,5,5,5,2)(6,4,-oo,_oo,6)}

00111 {(5,5,5,5,2)}

01000 {(6, -00, -00,4,6) (8,-00,8,4, -00)(-00, -00,6,4,6)}

01001 {(8,-00,8,4,-00)}

01010 {(-oo,5,-oo,5,-oo)(5,4,5,4,-oo)}

01011 {(5,4,5,4,-00) (-00,5,-00,5,-00)}

01100 {(6,-oo,-oo,4,6)(5,5,5,5,2)}

01101 {(5,5,5,5,2)}

OHIO {(-00,5,-00,5,-00)}

01111 {(-00,5,-00,5,-00)}

10000 {(_oo,-00,6,4,6) (-00,6,-00,6,-00) (-00,4,6,-00,6)}

10001 {(-00,6,-00,6,-00)}

10010 {(5,5,5,5,2)(-oo,4,6,-00,6)}

10011 {(5,5,5,5,2)}

10100 {(-00,6,-00,6,-00)}

10101 {(-00,6,-00,6,-00)}

10110 {(6,6,6,6,-00)}

10111 {(6,6,6,6,-00)}

11000 {(_oo,-oo,6,4,6)(5,5,5,5,2)}

11001 {(5,5,5,5,2)}

11010 {(-00,5,-00,5,-00)}

11011 {(-00,5,-00,5,-00)}

11100 {(6,6,6,6,-00)}

11101 {(6,6,6,6,-00)}

11110 {(5,4,5,4, -oo)(_oo,5,-00,5,-00)}

11111 {(-oo,5,-oo,5,-oo)(5,4,5,4,-oo)}

Table8.1: ExactDelayAbstraction D of M
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aoa\bob\Cin ^ao-¥Coui ^ai ^bQ-*c„ui ^b\ -*^Com
00000 {(5, 5,4, -«»)(5,4,5, -oo, -oo)(-00,4,5, 2)

(5,4, -oo, -oo, 2)(-00,6, -oo, 6,-oo) (-00,5,5,5, -oo)

(5,5,-oo,5,-oo)(-oo,-oo,5,4,2)(5,-oo,-oo,4,2)}

00001 {(5,5,-oo,5,-oo)(-oo,5,5,5,-oo)(5,4,5,-oo,-oo)

(_oo,6, -oo, 6, -oo)(5, -oo, 5,4, -oo)}

00010 {(5,4,5,-oo,-oo) (5,4,-oo,-oo, 2)(-00,4,5,-oo, 2)}

00011 {(5,4,5,-00,-00)}

00100 {(-00,6,-00,6,-00) (5,-00,-00,4,2) (5,5,-00,5,-00) (5,4,-00,-00,2)}

00101 {(5,5,-00,5,-00) (-00,6,-00,6, -00)}

00110 {(5,4,-00,-00,2)}

00111 {(5,5,5,5,2)}

01000 {(5,-00,5,4,-00) (5,-00,-oo, 4,2) (-00,-00,5,4,2)}

01001 {(5,-00,5,4,-00)}

01010 {(5,4,5,4,-oo)(-oo,5,-oo,5,-oo)}

01011 {(5,4,5,4,-oo)(-oo,5,-oo,5,-oo)}

01100 {(5,-00,-00,4,2)}

01101 {(5,5,5,5,2)}

OHIO {(-~> 5,-00,5,-00)}

01111 {(-00,5,-00,5,-00)}

10000 {(-oo,-oo,5,4,2)(-oo,5,5,5,-oo)(-oo,4,5,-oo,2)(-oo,6,-oo,6,-oo)}

10001 {(-00,5,5,5, -oo)(-oo, 6, -00,6, -00)}

10010 {(-00,4,5,-00,2)}

10011 {(5,5,5,5,2)}

10100 {(-00,6,-00,6,-00)}

10101 {(-00,6,-00,6,-00)}

10110 {(5,6,5,6,-00)}

10111 {(5,6,5,6,-00)}

11000 {(-00,-00,5,4,2)}

11001 {(5,5,5,5,2)}

11010 {(-00,5,-00,5,-00)}

11011 {(-00,5,-00,5,-00)}

11100 {(5,6,5,6,-00)}

11101 {(5,6,5,6,-00)}

11110 {(5,4,5,4,-00) (-00,5,-00,5,-00)}

11111 {(-oo,5,-oo,5,-oo)(5,4,5,4,-oo)}

Table8.2: Exact Delay Abstraction Do of fH)



aQa\bobiCin -♦■Couf^bo-*Cota -*Cma ^CQ-*c„ut
ooooo" { 6, -co, 6, -oo) (-00, -eo, 4,4,2) {-oo,4,4, -oo, 2)

(5,-oo,5,4,-eo)(-oo,5,4,5,-oo)(5,4,5,-oo,-oo)}

00001 {(5,4,5,-oo,-oo)(-oo,5,4,5,-oo)(-oo,6,-c«o,6, -oo)(5,-eo,5,4,-«)}

00010 {(5,4,5,-oo,-oo)(-oo,4,4,-oo,2)}

00011 {(5,4,5,-00,-00)}

00100 {(-00,6,-00,6,-00)}

00101 {(-00,6,-00,6,-00)}

00110 {(5,5,5,5,2)}

00111 {(5,5,5,5,2)}

01000 {(5, 5,4, -00)(-00, -00,4,4,2)}
01001 {(5,-00,5,4,-00)}

01010 {(5,4,5,4,-oo)(_oo,5,-00,5,-00)}

01011 {(5,4,5,4,-oo)(-oo,5,-oo,5,-oo)}

01100 {(5,5,5,5,2)}

01101 {(5,5,5,5,2)}

OHIO {(-00,5,-00,5,-00)}

01111 {(-00,5,-00,5,-00)}

10000 {(-00,6, -00,6, -00)(-00,4,4, -00,2) (-00,5,4,5, -00)(-00, -00,4,4,2)}

10001 {(-00,5,4,5, -00)(_oo, 6, -00,6, -00)}

10010 {(-00,4,4, -00,2)}

10011 {(5,5,5,5,2)}

10100 {(-00,6,-00,6,-00)}

10101 {(-00,6,-00,6,-00)}

10110 {(5,6,5,6,-00)}

10111 {(5,6,5,6,-00)}

11000 {(-00,-00,4,4,2)}

11001 {(5,5,5,5,2)}

11010 {(-00,5,-00,5,-00)}

11011 {(-00,5,-00,5,-00)}

11100 {(5,6,5,6,-00)}

11101 {(5,6,5,6,-00)}

11110 {(-oo,5,-oo,5,-oo)(5,4,5,4,-oo)}

11111 {(5,4,5,4,-00) (-00,5,-00,5,-00)}

Table8.3: Exact DelayAbstraction Do_/w? of ^-rr
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aQa\bQb\Cin ^ao-*Coui ^a\ -*Cout ^hfi-^Cou, ^CQ-^Coa
00000 {(7,-oo,7,4, -co)(_oo, 6,-oo,6,-oo)(7,4,7, -oo, -oo)}
00001 {(7,4,7, -oo,-«)(-00,6,-oo,6,-oo)(7,-oo,7,4, -00)}

00010 {(7,4,7,-00,-00)}

00011 {(7,4,7,-00,-00)}

00100 {(-00,6,-00,6,-00)}

00101 {(-00,6,-00,6,-00)}

00110 {(5,5,5,5,2)}

00111 {(5,5,5,5,2)}

01000 {(7,-00,7,4,-00)}

01001 {(7,-00,7,4,-00)}

01010 {(5,4,5,4,-00) (-00,5,-00,5,-00)}

01011 {(5,4,5,4,-oo)(-oo,5,-eo,5,_oo)}

01100 {(5,5,5,5,2)}

01101 {(5,5,5,5,2)}

OHIO {(-00,5,-00,5,-00)}

01111 {(-00,5,-00,5,-00)}

10000 {(-00,6,-00,6,-00)}

10001 {(-00,6,-00,6,-00)}

10010 {(5,5,5,5,2)}

10011 {(5,5,5,5,2)}

10100 {(-00,6,-00,6,-00)}

10101 {(-00,6,-00,6,-00)}

10110 {(6,6,6,6,-00)}

10111 {(6,6,6,6,-00)}

11000 {(5,5,5,5,2)}

11001 {(5,5,5,5,2)}

11010 {(-00,5,-00,5,-00)}

11011 {(-00,5,-00,5,-00)}

11100 {(6,6,6,6,-00)}

11101 {(6,6,6,6,-00)}

11110 {(-oo,5,-oo,5,-oo)(5,4,5,4,-oo)}

11111 {(-00,5,-00,5,-00) (5,4,5,4,-00)}

Table 8.4: Exact DelayAbstractionD\ of 9\/[\
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sel

Figure 8.7: False-path-firee Circuit with Multiplexors

givesa circuitshown in Figure 8.7^.

8.4 Experimental Results

Weimplemented ontopofSISa procedure tocheckifa pathset isstrongly falsefora value

(0 or 1)at thecorresponding primary input, and to remove such a path set structurally. Theproce

dure determines thestrong falsity ofa path setwithout constructing thedelay abstraction ofa given

moduleexplicitly, and thus is applicable to largenetworks. Referto Section7.3 for the details of the

algorithm. Theremoval ofa false path setisa simple structural transformation, and thus takes negli

gible time compared with strong falsity checking. We only summarize theresult ofa representative

circuit, the largest primary output cone ofC7552. The cone has 194 primary inputs and 1096 gates.

Recall thatthestrong falsity ofa path set is defined fora single-output network. Foreach primary

inputthestrong falsity of thelongest paths from theinputwas tested forboth values 0 and1,andthe

paths were removed if they are strongly false. We found out that for 8out of194 primary inputs the

longest paths from each primary input are strongly false for either value 1or0atthe input. Astrong

^Although the circuit can be further simplified by logic sharing, we keep the left multiplexor as it is so that the corre
spondence between the old and the new circuit is clear.
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falsity check fora primary input took 37.5 seconds intheaverage onDEC AlphaServer 8400 5/625®.

These strongly false paths were then removed bytheproposed procedure. Theresulting circuit has

1216 nodes, only 11%area increase from the original.

8.5 Conclusions

We have discussed how false paths in a combinational module can be removed without

slowing down thecircuit under anyarrival time condition. We have shown byexamples thata sim

ple application of the KMS algorithm to a module under some arrival time condition can slow down

thecircuit once the transformed circuit is used under different arrival times. This suggests thatthe

KMS algorithm cannotbe useddirectly to remove falsepathssafelyfrom combinational modules if

theperformance ofthecircuit needs tobeguaranteed under allpossible environments. Motivated by

thisobservation, we have proposed a new approach to removing a specific set of false paths called

strongly false paths with nopenalty incircuit speed. Theresulting circuit isnoslower thantheorig

inalunderany arrival timesat the primary inputs.

Thealgorithm haspractical importance inhierarchical synthesis, wheretheproposed tech

nique can be used to resynthesize a combinational module so that the new module is free from false

paths. Noknowledge onarrival times at theprimary inputs is required inthiscircuit transformation,

which makes it possible toresynthesize themodule before thesurroundingdesign isfixed. Thislocal

resynthesis enables one to perform more accurate timing analysis on the hierarchy via topological

timing analysis. If the same module is used more than once, the master module can be made false-

path-free once and for all withoutaffecting the performance of any instance.

Wehave shown that the final redundancy removalin the KMS algorithmcan increase the

delay ofa circuit if thedelay is defined foreach primary input vector separately. Therefore thepro

posed algorithm does not make the circuit irredundant after false path removal. Thus, one of the

advantages of the KMS algorithm, i.e. removing redundancies thatcannot be detected by conven

tional testing,butcan adversely affectthe timingof the circuit, is absent. Whetherredundancies can

be removed withoutslowingdownthe circuitunderthis strictdefinition of delay is still open.

^We expect that this CPU time can be further reduced by incorporating existing techniques for generating simplified
SATformulas developedfor functional timinganalysis[MSBSV93].
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Motivated by theneedforfunctional arrival timeanalysis techniques thatcanhandleindus

trial circuits in reasonable CPU time, wepresented inChapter 5how functional arrival time analysis

canbe performed hierarchically without flattening anexisting hierarchy. Thehierarchical approach

only performs detailed false path analysis on a leaf module at one time, and thus is better suited to

analyze large circuits than flat analysis. An alternative to thehierarchical approach is approximate

flat functional arrival time analysis, where flat timing analysis isconservatively performed in a less

CPU-time intensive way. In this chapter we will study approximate algorithms for flat functional

amval timeanalysis. Thegoal is to compute a conservative yetaccurate enough approximation to

truedelays in lesscomputation timeto make the analysis of large circuits tractable.

Thischapter is organized as follows. Section 9.1 reviews previous research on approxi

matefunctional amval timeanalysis. Thelimitations of flatanalysis are summarized in Section9.2.

Section 9.3 presents algorithms forapproximate functional arrival time computation. Experimental

resultsare reportedin Section9.4. The chapter is concludedin Section9.5.

9.1 Previous Work

Several researchers have proposedapproximate functional arrival time analysis algorithms

in the literature.

Huang et al. [HPS91, HPS94] proposed, as part of optimization techniques used in ex

actanalysis, a simple approximation heuristic, in which a complex timed Boolean expression at an
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internal node is simplified to a new independent variable arriving at the latest time referred to in

the original expression. This simplification is applied only when the numberof terms in the timed

Boolean expression exceeds a certain limit, tocontrol thecomputational complexity. Accuracy loss

comes from the fact that the original functional relationshipis completely lost by the substitution.

They also investigated a more powerful approximation technique in [HPS93, HPS96], in

which each timed Boolean formula isunder- and over-approximated bysum of literals and products

of literals respectively sothateach sensitizabilitycheck, which isa satisfiabilityproblem in theexact

analysis, canbeperformed conservatively inpolynomial time. Since this approximation is fairly ag

gressive to guarantee thepolynomial time complexity, delay estimates donotseem accurate enough

to be useful. Theirresults, shown in [HPS93], arenotclear about theaccuracy of approximate de

lays. They merely showed ratios ofinternal nodes whose delays match theexact delays at thenodes.

No result was shown on the accuracy of circuit delays.

More recentlyYalcin etal. [YHS96] proposedan approximation technique,whichutilizes

user's knowledgeaboutprimaryinputs. Theycategoiizeeachprimaryinputeitheras data or control

and label all internal nodes either data or control using a certain rule. The sensitizationcondition

at each node is then simplifiedconservatively so that it becomesindependentof the data variables.

The intuition behind this is that the delay of a circuit is most likely determined by control signals

while data signals have only minoreffects in the final delay. They showed experimentally that a

dramatic speed-up is possible without losing much accuracy forunit-delay timing analysis based on

static sensitization. However thispath sensitization condition is known tounderestimate truedelays,

i.e. it isnota safecondition, which defeats thewhole purpose oftiming analysis. More recently they

confirmed that a similar speed-up and accuracy can be achieved for a correct sensitization condition

(floating mode) without losing accuracy under theunit-delay model [Yal97b, Yal97a]. Although an

application of the same technique to more sophisticated delay models is theoretically possible, it is

not clearwhethertheiralgorithm canhandlelargecircuitsundersuchdelaymodels. Moreover, their

CPUtimesfor exactanalysis are much worsethanstate-of-the-art implementations available, which

cancels someof the speed-up sincetheirspeed-up is reported relative to this sloweralgorithm'.

In this chapter we apply their idea of using data/control separation to a functional arrival

time analysis technique based ontheXBDO model [MSBSV93] (see Section 2.4.6) todesign approx

imate algorithms. In addition a novel technique to trade off thecomplexity of theanalysis and the

'One ofthe reasons why their exact algorithm is slower is that they try to represent in aBDD all the input vectors that
activate thelongest sensitizabledelay while most ofthestate-of-the-art techniques determine thedelay without represent
ing these input vectors explicitly.
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accuracy of delay estimates is proposed. The combination of these two ideas leads to a new approxi

mation scheme, which for some extreme cases shows a speed-up of 70x, while maintaining accuracy

within the noise range.

9.2 Limitation of Exact Functional Arrival Time Analysis

Although the exact algorithm proposed by McGeer et al. [MSBSV93] can handle many

circuits of thousands of gates, it still has a size limitation. If a large network is given and timing

analysis is performed under a detaileddelay model such as the technology mappeddelay model, it

islikely that the algorithm runs practically forever^. Even if timing analysis istractable, the compu

tation time can be too large to be practical.

As seenin Section2.4.6theexact timinganalysisin [MSBSV93] consistsof repeatedSAT

solvercalls. Moreprecisely, foreachcandidate arrival timetested at a primary output,a /-network is

constructedsuch that the networkcomputesthe difference betweenthe on-set(off-set)of the primary

outputand the set of input vectorswhichmake the primary outputstable to value 1 (0) by the given

time. If the outputnever becomes 1 for any inputassignment, i.e. it is not satisfiable, the output

becomes stable completely by the time tested. To test whether this condition holds, a SAT formula

which is satisfiable onlyif theoutput issatisfiable iscreated directly from the/ network, anda SAT

solver iscalled onit. Thesize oftheSAT formula isroughly proportional tothesizeofthe/ network.

The main difficulty in the analysis of large networks is thatdue to a potentially large size of the %

networks, the size of SATformulas generated can be too largefor a SATsolver to solve even after

the optimization discussed in Section 2.4.6 has been applied^. Based on thisobservation we next

discuss howto trade off thesizeof / networks andtheaccuracy of delay estimates.

9.3 Approximate Functional Arrival Time Analysis

9.3.1 Reducing the Size of %Networks

The main reason why / networks become large in theexact analysis is that%functions

at many distinct amval times must be computedfor internalnodes. This size increase occurs when

there are many distinct path delays from primary inputs tointemal nodes due tothe reconvergence

^The algorithm is CPU intensive rather than memory intensive since the core part of the algorithm is SAT.
•Theoretically it is notnecessarily truethata smaller SAT formula is easierto solve. However wehaveobserved that

the size of SAT formulas is well correlated with the time the solver takes.
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of the circuit. Therefore our goal is to control the number of distinct arrival times considered at each

internalnode. More specihcallyonlya smallnumberof x functionsarecreatedat each internalnode.

This strategy avoids the creation of huge%networks thereby controlling the size of SAT formulas

generated.

Although this idea certainly helps reduce the size of x networks, it must be done care

fully so that the correctness of the analysis is guaranteed. Wemustneverunderestimate true delays

sinceotherwise the timing analysis couldmiss timing violations when usedin thecontext of timing

verification. Overestimation is acceptable as long as reasonable accuracy is maintained. Weguar

antee this propertyby selectivelyunderapproximating stabilityof signals. This underapproximation

in turn overapproximates instability of signals thereby guaranteeing thatdelay estimates are never

underapproximated.

The key idea on approximation is to modify the mapping from required times to arrival

times discussed in Section 2.4.6 so that only a small set of arrival times forms the image of the

mapping. Given the sorted setof required times R= (ri,..., r^,) and thesorted setof arrival times

A= (fli,...,at an internal noden, themapping f'.R-¥ Ausedin theexactanalysis is defined as

M =
max a, 6 A such that a,- < r iir>a\

-oo otherwise

Sincethe stabilityof thesignalat thenodeincreases monotonically as timeelapses by the definition

of Xfunctions, it is safe to change the mapping so that it mapsa required time to a timeearlier than

the time defined above. This corresponds to underapproximation of the signal stability. Thus, by

modifyingthe mappingunder this constraintso that only a small set of arrival times is required,one

can control the number of nodes to be introduced in the x network without violating the correctness

of the analysis. Dependingon howthe originalmapping in theexactanalysisis changedseveralcon

servative approximationschemes can be devised. Two such approximation schemesare described

next.

Topological Approximation

The most aggressive approximation, which we call topological approximation^ is to map

required times either to the topologicalarrival time or to —<». More formally, the mapping

'̂ To be precise, Oq can beearlier than the topological arrival time ifan intermediate satisfiability call has already verified
that bytime Oq thesignal is stabilized completely.
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if r >

—oo otherwise

It is easy to see that is a conservative approximation of /. Since = n and ~

no need to create a new node for the%function in the%network^. Instead thenode function or its

complement of the original network can be used for the %function. For the other arrival time -«»,

%n,r = 0 fo*" Vv € {0,1}. Therefore it issufficient tohave a constant zero node inthe %network and
use it for all the cases where the zero function is needed. Since neither of the arrival times needs any

additional node in the %network, this approximationnever increases the size of the %network. If this

reduction is applied to all nodes, the analysis simply becomes pure topological analysis. Therefore,

this approximation makes sense only if it is selectively invoked on a subset of nodes. A selection

strategy is described later.

Semi-Topological Approximation

The second approximation scheme, called semi-topologicalapproximation, is slightly milder

than the first in terms of the power of simplifying%networks. In this, required times are mapped to

two arrival times again, but the times chosen are different. The times to be selected are 1) the arrival

time, sayOg, matched with ri in theexact mapping / and 2) thetopological arrival time Og, which

is the same as in the first approximation. The first approximation and this one are different only if

aei=- -oo, in which case the second one gives a more accurate approximation. To be precise, the

definition of the new mapping function is as follows.

I Og Otherwise

If Qg ^ the %function for time Og is nowcomputed explicitly, and the corresponding node is

addedto the%network. Similarextensions which givetighterapproximations arepossibleby allow

ingmorearrival timesto remain afterthemapping. A set of various approximations givesa tradeoff

betweenthe compactness of %networksand the accuracy of analysis.

9.3.2 Control/Data Dichotomyin Approximation Strategies

Yalcin et al. [YHS96] proposed tousedesigner's knowledge oncontrol-data separation of

primary inputs for effective approximate timing analysis. They applied this ideato speed up their

^Notice that the %network always includes the original circuit
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functional arrival time analysis technique using conditional delays [YH95] by simplifying signal

propagation conditions of data variables. We adapt their idea, of using this knowledge, to the XBDO

analysis to develop a selection strategy of various approximation schemes.

Labeling Data/Control Types

Given data/control types of all primary inputs, each internal node is labeled data or control

based on the following procedure. All the nodes in the network are visited from primary inputs to

primary outputs in a topological order. At each node the types of its fanins are examined. If all of

them are data, the node is labeled data; otherwise it is labeled control. Hence nodes labeled data are

pure data variables with no dependency on control variables, while those labeled control are all the

other variables with some dependency on control variables. This labeling policy is different from

the one used in [YHS96], where a node is labeled data if at least one of its fanins is labeled data.

In their labeling, nodes labeled data are variables with some dependency on data whereas nodes la

beled control are pure control variables. The difference between the two labelings is whether pure

data variables or pure control variables are distinguished. Our labeling will lead to tighter approxi

mations.

Applying Different Approximations based on Data/Control Types

Once all the nodes are labeled, different approximation schemes are applied to different

nodes based on their types. The strategy is as follows.

If a node is a control variable, the semi-topological approximation is applied while if a

node is a data variable, the topological approximation is applied. The intuition is to use a tighter

approximation for control variables to preserve accuracy while performing maximum simplification

for data variables assuming they have less impact on delays than control variables.

Extracting Control Circuitry for Further Approximation

If the approximation so far is not powerful enough to make analysis tractable, further ap

proximation is possible by extracting only the control-intensiveportion of the circuit and performing

timing analysis on the subcircuit. The extraction of the control portion is done by stripping off all

pure data nodes from the original network under analysis as in Figure 9.1. Note that any circuit can

be decomposed into a cascade circuit where all the nodes in the driving circuit are labeled data and

those in the driven circuit labeled control by the definition of data variables. Therefore, the primary
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Figure 9.1: Extraction of a Control Subnetwork

inputs of the subcircuit include the boundary variables which separate the subcircuit from the pure

data portion. We assume conservatively that delays of the pure data portion of the circuit are the

same as topological delays, which gives arrival times at the new primary inputs of the extracted cir

cuit. Analysis is then performed on this subcircuit as if it were the circuit given. Notice that this has

a similar flavor to the approximation proposed in [HPS91].

The difference between this approximation and the previous method is that the subcircuit

has a new set of primary inputs, which are assumed independent. However, it is possible that in

the original circuit only a certain subset of signal combinations appears at the boundary variables.

Since this approximation assumes that all signal combinations can show up, the analysis becomes

pessimistic^. Forexample, if a signal combination which does notappear on thecut makes a long

path sensitizable, it can make a delay estimate unnecessarily pessimistic. Although this method is

more conservative than the one without subcircuit extraction, it reduces the size of a circuit to be

analyzed much more signiflcantly.

^If the set ofall possible signal combinations atthe boundary variables can be represented compactly, one can safely
avoid this pessimism by multiplying the additional constraint to the SATformulagenerated.
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9.4 Experimental Results

Weimplemented the new approximationalgorithmson top of the implementationof McGeer

et al. [MSBSV93] under SIS environment [SSM'̂ 92]. To evaluate theeffectiveness of theapproxi

mation,wefocusedon arrival timeanalysisof mappedISCAS combinational circuits,whichis gen

erally much moretime-consuming thananalysis based on simpler delay models. In Table 9.1^ the

results on three circuits whose exact analysis takes more than 20 seconds on a DEC Alpha Server

7000/610 areshown^. Each circuit is technology-mapped first with theoption specified in thesec

ond column using the lib2 . genlib library. The delay of the circuit is then analyzedusing three

techniques. The first one (exact) is the exact methodpresented in [MSBSV93]. The remaining two

are approximate methods; the second, called approx(l), is the first technique in Section 9.3.2 and

the third, called approx(2), is the second one in Section 9.3.2 which involves subcircuit extraction.

Control/Dataspecification fortheprimary inputs of these circuits arethesame as those in [YHS96]^.

For each of the three analyses, delay estimates and CPU time are shown in the last two coluirms. One

can observe that accuracy is preserved in the three examples in both of the approximation methods

while CPU time is reduced significantly.

Table 9.2 summarizes a similarexperiment forC6288, an integermultiplier, which is known

to be difficult for exact timing analysis due to a huge amount of reconvergence. Since all the pri

mary inputs are data variables, the approximate techniques proposed are degenerated into topologi-

cal analysis. To avoid this inaccuracy all the primary inputs were set to control. Note that this sets

all intermediatenodes to control. Wethen appliedthe first approximate methodunder this labeling.

Although the approximation is not so powerful as the original algorithms, this at least enables us to

reduce the size of %networkswithoutgivingup accuracycompletely. Since there is no data variable

in the network, only approx(l) was tried. Significant time savingwas achieved withonly a slight

overestimation in terms of analysis quality. The exact analysis is not only more CPU-time intensive

but also much more memory-intensive than the approximate analysis. In fact we were not able to

complete any of the three exact analyses within 150MB of memory. They ran out of memory in a

couple of minutes. These exact analyseswere possibleafter the memorylimit was expanded to 1GB.

The last example needs an additional explanation. In this example the delay estimate by the approx-

^Timing analysis was done in the linear search mode [MSBSV93] where the decrement time step is0.1 and the error
tolerance is 0,01.

exact analysis is already efficient, approximation cannot make significant improvement in CPU time; in fact the
overallperformance can be degradeddue to additional tasksinvolvedin approximation.

'More precisely, €1908(1) and €3540(1) in [YHS96] were used.
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circuit tech.map #gates top. delay type of approx. delay estimates CPU time

exact 34.77 29.1
C1908 -m 1 536 39.25 approx(l) 34.77 8.9

approx(2) 34.77 5.4

exact 35.76 41.2
C1908 -m 0 602 40.76 approx(l) 35.76 12.0

approx(2) 35.76 5.2

exact 35.66 727.0
C3540 -n 1 -AFG 1113 35.88 approx(l) 35.66 559.5

approx(2) 35.66 502.9

Table 9.1: Functional Arrival Time Analysis: Exact vs. Approximate (CPU time inseconds onDEC
AlphaServer 7000/610)

circuit tech.map #gates top. delay type of approx. delay estimates CPU times

-m 1 2429 127.23 exact 123.87 7850.2

C6288
approx(l) 123.94 169.2

-m 0 2371 123.51 exact 119.16 18956.2

approx(l) 119.21 257.1
-n 1 -AFG 2911 114.62 exact 112.92 15610.5

approx(l) 112.86 1690.9

Table 9.2: Functional Arrival Time AnalysisofC6288: Exact vs. Approximate (CPU time in seconds
on DEC AlphaServer7000/610)
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imate algorithm is smaller than that by theexact algorithm although inSection 9.3 weclaimed that

the approximation algorithm never underestimates exactdelay. Thereason for this is that the SAT

solver is notperfect. Given a very hard SAT problem, thesolver may notbeabletodetermine there

sultunder a given resource, in which case thesolver simply returns unknown. Thisisconservatively

interpreted as being satisfiable in the timing analysis. In this particular example theSAT solver re

turnedunknown duringtheexact timing analysis, which resulted in a delayoverestimation, whilein

the approximate analysis the SAT solvernever aborted because of thesimplification of %networks

and gave a betteroverestimation. Thisexample showsthat the approximate analysis gives not only

computational efficiency but also better accuracy in some cases.

To compare the exact and the approximate methods further, we examined the total CPU

timeof theexactanalysis to seehowit canbe broken down. For thefirst example ofC6288theexact

analysis took 714.7 seconds to conclude that any path of length 123.93 is false, which is about four

times longer for the approximate analysis to concludethat the delay of the circuit is 123.94. The

situation is much worse in the second example, where the exact analysis took 18390.8seconds to

concludethat any path of length 119.21 is false whilethe approximate methodtook only about 1.4%

of this time to finish off the entire analysis.

9.5 Conclusions

We have studied approximate functional arrival time analysis as an extension to the exist

ingexactanalysis algorithm underthe XBDO model [MSBSV93]. Although the exactalgorithm is

applicable to large circuits, the performance is not satisfactory for circuits with a large numberof

reconvergences. The size of %networks gets large for such circuits, and thus SAT formulas solved

during the analysis becomecomplex.

The core idea of the approximatealgorithmswas to control the size of %networksused in

theanalysis to prevent thesizeof SAT formulas to be solved from getting large. Thissimplification

ofXnetworks is performed systematically so thatdelay estimates areneverunderapproximated. To

preserve accuracy as much as possible the use of knowledgeon data/control separationof primary

inputs originallyproposedby Yalcin et al. [YHS96] was adaptedto choosean appropriate approx

imation at each node. Wehave shownexperimentally that the approximate algorithms compute ar

rivaltimeestimatesfor largecircuitswithmanyreconvergences in significantly less CPUtimewhile

maintaining accuracy well within the accuracy of the delay model.

The approximationschemepresentedin this chaptercan be used as a replacementof exact
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functional arrival time analysis whenever the exact algorithm is too slow or cannot complete. Since

functional required time analysis can be performed by using functional arrival time analysis as in

Section 3.3.2, this technique is also applicable to required time analysis.
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Chapter 10

Delay-Optimal Technology Mapping

We have addressed various timing analysis problems in the first part of the dissertation.

The main focus was how to estimate the timing characteristics of a given design accurately and ef

ficiently under the existence of false paths.

In the second part of the dissertation we will discuss a synthesis aspect of timing-driven

designs, i.e. how to synthesizea high-speed circuit automatically. Specifically we will focus on a

synthesis step calledtechnology mapping. Previous resultson technology mapping showthat if our

objective function is to minimize thedelay of a mapped circuit^ theproblem is solvable in poly

nomial timefor Look-upTable (LUT) FPGAs whilethe complexity of the problemis unknown for

library-based designs. In thischapter thisgap willbeclosed by showing thata polynomial-time al

gorithmcalled FlowMap for delay-optimal technology mapping of FPGA designs [CD94a] can be

adapted to library-based designs so thatit guarantees delayoptimality undera load-independent de

lay model. The algorithm runs in time linear in the size of a network.

Thischapter is organized asfollows. Section 10.1 introduces basicconcepts of technology

mapping and summarizes previous results in the literature. Section 10.2givesan overview of the

HowMap algorithm [CD94a] for delay-optimal mapping for FPGAs. Section 10.3 then discusses

how the FlowMap algorithm can be adapted to library-based technology mapping. Extensions to

sequential circuits arepresented inSection 10.4. Section 10.5 gives experimental results of thepro

posed technique. The chapter is concluded in Section 10.6.

'Delay in this chapter is the longest topological delay. Optimality is aigued under this assumption. Delay-optimal
technology mapping aware of false paths is a difficult problem, andnopractical approach isknown.
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10.1 Preliminaries

10.1.1 Library-Based Technology Mapping

Logic synthesis [BHSV90] typically consists of two phases. The first step, called technology-

independentoptimization,is the stepin whichagivenBooleannetworkis restructuredwithoutknow

ing an actual gate library or technologyto be used. Generic optimizationsuch as factoring, resub-

stitution and don't care minimization is performed to seek a good multi-level structure. This step

is followed by technologymapping, in which the optimized network in the previous step is imple

mented by only using gates in a given library. The importance of technology mapping is increasing

significantly since it is very difficult in deep sub-micron designs to estimate the effect of a generic

optimization without knowing an actual technology to be used.

Technology mapping was initially performed by rule-based transformations in the early

80's [DBG+84, GBdGH86]. The approach is ad-hoc and has no guarantee aboutmapping quality.

Furthermore different sets of transformation rules need to be maintained for different libraries.

In 1987 Keutzer [Keu87] proposed an algorithmic approach to the technology mapping

problem, in which he observed similarity between this problem and the code optimization problem

for programming languages and adapted an existing tree-covering technique for the latter problem

to technology mapping. This approach soon dominated the rule-based approach and became the de

facto standard.

In Keutzer's formulation a technology-independent circuit and each gate in a given li

brary are decomposed intocircuits only composed of two-input NAND gates (NAND2) and inverters

(INV). The decomposed circuit is called a subject graph whileeach decomposed gate is called a pat

tern graph. Typically all possible NAND2/INV decompositions are generated for each gate in the

library modulo isomorphism so that the gate is utilized maximally in a final implementation. Each

pattern graph is associated with the area, delay and other characteristics of the corresponding gate.

The technology mapping problem can then be formulated as covering the subject graph by using

pattern graphs to optimize a given criterion. A subject graph is a DAG in general since it is derived

from a given network. A pattern graph is a tree for most gates in a typical library while it can be a

DAG for some gates, e.g. an XOR gate and a multiplexor gate. For the sake of simplicity assume

that all the pattern graphs are trees for now.

Keutzer showed that if a subject graph is a DAG, graph covering for minimum area map

ping is NP-hard [KR89]. Having demonstrated the inherent complexity of the original problem, he
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considered the case where a subject graph and pattern graphs are trees. It turned out that this special

case can be solved optimally in linear time using dynamic programming. Based on these results he

proposed the three-step approach based on tree covering as an approximation to the DAG covering

problem.

1. Decompose a subject DAG into a disjoint set of trees

2. Solve the technology mapping problem optimally for each tree

3. Glue the results together.

This separation of the problem again has become a standard approach due to the theoretical justifi

cation about the complexity of minimum-area DAG covering.

Inspired by Keutzer's result, technology mapping has been studied extensively to optimize

different criteria. Rudell [Rud89] worked on minimum-delay technologymapping and showed that

if loading effects are completely ignored, the minimum-delaymappingproblem for subject trees can

be solvedoptimallyby dynamicprogramming in lineartime. He alsoconsideredthe minimum-delay

mapping problem for trees under loadingeffects and showed that by maintainingthe best mapping

for each possible load at each node the same dynamic programming approach can guarantee opti

mal results. Touati [TMBW90, Tou90] further refined this idea later by combiningthe optimal tree

mapping with sophisticatedbuffer tree construction. An interestingfact is that they directly started

lookingat tree covering without studying the complexity of DAG covering for minimum delay. To

the best of our knowledgeno one has investigated theexactcomplexity of the minimum-delay tech

nologymapping problem where a subject graphis a DAG. Probably it was simplyassumed that the

problemis NP-hardwithoutgiving muchthought.

Now consider the case where some patterngraphs are DAGs. Rudell showed that as long

as thoseare leafDAGs, thetreecovering approach canbeusedwithout anymodification [Rud89]. A

leafDAGis a DAG in which the onlynodes withmultiple fanouts areprimary inputs. AnXORgate

anda multiplexorgatehave leafDAG pattern graphs andthuscanbehandled without anyproblem.

So far wehavefocused on thecasewherea subjectgraphisa tree. Toconcludethis subsec

tion wereview previous work onDAG covering without tree decomposition. Detjens etat. studied

this problem forarea minimization in [DGR"*"87]. However since a heuristic approach was taken for

covering, theresults were notencouraging. Infact theDAG covering approach gave results of lesser

quality than the tree-based approach. Although they also described an ideaonnode duplication sim

ilarto [CD94a] tobedetailed later, it was apparently only tried for area optimization and noresults
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are reported on this approach in [DGR"^87].

Touati [Tou90](page 115) conducted experiments onperformance-oriented technology map

ping by allowing overlaps between trees. The idea is similar to ourmapping algorithm presented

later. Although significant delay decrease was observed, hedidnotpursue thisdirection any further.

No argument was givenon the optimality or the complexity of the algorithm.

10.1.2 Technology Mapping for LUT-based FPGAs

In parallel to the works on library-based technologymappingthe emergenceof Field Pro

grammable GateArrays (FPGAs) poseda newtechnology mapping problem in the early90's. Due

to their unique architecture the technologymappingproblem for FPGAs has been tackled in com

pletelydifferent waysfrom library-based technology mapping.

LlJT(Look-Up Table)-based FPGAs can implement any function of k inputsby a single

LUT, where ^ is a fixed constant specific to a given FPGA family. By assumingthe existenceof a

library containing all /:-input functions, onecansolve thetechnology mapping problem for IT'GAs

as an instanceof the library-based mapping problem. This approach, however, has a seriousdraw

back since this virtual library contains 2^* gates^. Even though the minimum-area tree covering for
library-based designs canbesolved intimelinearinthesizeofpattern graphs, thenumberofgates in

thisvirtuallibrarymakes the algorithm highlyinefficient andimpractical. Basedon thisobservation

many ideas have been proposedfor the FPGA mappingproblemagain under differentcost criteria.

A survey of FPGA technology mapping algorithms is available in [CD96]. As for minimum area

mapping Levin and Pinter [LP93] and Farrahi and Sarrafzadeh [FS94] proved that the problem is

NP-hard fox k = Aand k> 5 respectively. As in the library-based mapping, once a network is re

strictedto a tree, the problem can be solvedoptimally in polynomial time [FS94]. Minimum-delay

mapping, ontheotherhand, was shown forLUT-based FPGAs to besolvable inpolynomial timeby

Congand Dingin [CD92, CD94a]. The given circuitis directly mapped without decomposing its

DAG structure to trees in thisalgorithm unlike conventional library-based mapping.

10.1.3 Summary

Technologymapping problems for library-based designs and FPGA-based designs have

beeninvestigated almostindependently so far although the twoproblems are closely related to each

^Strictly speaking the library need not contain all the 2^* functions since some are equivalent to each other under input
permutation and thus havingone representative is goodenough. Howevereven after thissimplification the libraryis still
huge.
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other.

The area-optimal mapping problem for DAG networks is NP-hard both for library-based

designs and FPGA designs. As to the delay-optimal mapping problem, it is solvable in polynomial

time for FPGAs while no polynomial-time algorithm is known for library-based designs. To the

best of our knowledge the exact complexity of the delay-optimal technology mapping problem for

library-based designs has never been discussed in the literature. How to close this gap between the

two problems will be the topic of this chapter.

10.2 Delay-Optimal Technology Mapping for FPGAs

We will have a close look at the FlowMap algorithm proposed by Cong and Ding [CD94a]

since this gives the basis of our proposed algorithm.

Assume that a network is decomposed into a /:-bounded network [CD94a], which is a Boolean

network where the number of fanins of each node is less than or equal to k. If a given network is not

^-bounded,simpledecomposition can yieldan equivalent/:-bounded network. In the followingwe

assume thatanLUThasa unitdelay andthatwiring delay is negligible.

The key idea of the FlowMap algorithm is in the labelingprocedure that labels each node of

the network its optimaldepth achievable. The algorithm visitseach node in the network in a topo-

logical order. All primary inputs are labeled 0 assuming that they are available at / = 0. At each

intermediate nodethe goalis to investigate all cuts ofsize less thanor equalto k in the faninconeof

the node and to find the bestdelay realizable at the node. Each suchcut represents a mappingof the

node. More specifically the nodecan be implemented by a singleLUT whoseinputs are the nodes

forming the cut. Theconstraint on the sizeof cutscomes from thefact thatan LUTcan implement

any functionof up to A:-inputs. Sincenodesare visitedin a topological order, by the time the current

node is examined, the optimal depths of all the nodes in its transitive fanin are available. Therefore

the optimal depth of thecurrent nodex canbecomputed as follows by dynamic programming.

optimaljdepth{x)= min mwiioptimaljdepth{xi)-\-\)
CUtX:\X\<kXi&X^ /- V y

Notice thatthiscostcriterion meets theprinciple ofoptimality ofdynamic programming. ThecutX

that realizes the optimal depth isstored at the node along with the depth. Although explicit enumer

ation of all valid cuts is possible by a brute-force approach, the complexity is pseudo polynomial

[CD94a], where n is thenumber of nodes in a given network. Cong and Ding showed that
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this optimal depth computation at each node can be formulated as network flow computation whose

runtime is strongly polynomial with respect to k [CD94a].

Once all the nodes have been labeled by their optimal depths, the network is traversed

backward from primary outputs to primary inputs. At each primary output an LUT is created whose

fanins are the same as the best cut stored at the node. The LUT creation is repeated for each of those

fanins. This process is continued until either a primary input or a node whose output is already avail

able in the mapping is reached. An important fact is that some intermediate nodes are automatically

duplicated in an optimal way to guarantee optimal depths while in tree mapping no duplication is

allowed.

The complexity of the entire algorithm is 0(kmn), wherem is the numberof edges in the

network.

10.3 Delay-Optimal Technology Mapping for Library-Based Designs

Although the FlowMap algorithm was originally developed for FPGAs, the basic principle

of thelabeling procedure is notnecessarily specific to those architectures^. In this section we will

show how the FlowMap algorithm can be easily adapted to the standard library-based technology

mapping under a load-independent delay model, where each gate has an intrinsic delay and loading

has no effect in delays. This extension leads to a linear-time algorithm for delay-optimal technology

mapping of DAG networks. We assume that a given network is decomposed into a subject DAG as

usual. Therefore, the optimality of delay is claimed with respect to this subject DAG.

10.3.1 Computation of Optimal Delay at Internal Nodes

The only difference between FPGAs and library-based designs is how an internal node is

mapped. In FPGAs all the local mappings that cover an intemal node and part of its fanin cone are

examined by enumerating all A:-cuts of the fanin cone, which gives the best possible delay realized

at the node. This step needs to be modified for library-based designs so that all successful matches

for a given set of pattern graphs are systematically examined. However this can be easily done by

mimicking the standard pattern matching step used in conventional technology mapping. More pre

cisely the standard matchingprocedure againstpattern graphscan be applied to the fanin cone of the

-^It is interesting tonote that Cong and Ding have a comment asfollows.
"Our result makes a sharp contrast with the fact that the conventional technology mapping problem in library-based

designs is NP-hard for general Boolean networks."(page2 [CD94a])
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node to exhaustively check all the successful matches. This way the best delay achievable at each

intermediate node can be computed in a similar way to FlowMap. The only difference is that actual

pin-to-pin delays ofgates specified in a given library need to be used in our case instead ofunit delay

in FlowMap. As with FPGA mapping, the principle of optimality is still valid here.

Notice that as long as delay is optimized, any DAG pattern graph can be used directly with

out losing the optimality, i.e. it is not necessary to restrict the library to pattern graphs of trees and

leaf DAGs. General DAG patterns are problematic only in the context of area optimization.

10.3.2 Pattern Matching

Wenowexamine how pattern matchingis performed betweena subject graph and a pattern

graph.

Pattern matching between a subject graph and a pattern graph in the context of technol

ogy mapping was studied extensively by Keutzer [Keu87] and Rudell [Rud89]. A match between a

subject graph Gs = anda pattern graph Op = (Vp^Ep) isdefined asfollows [Rud89].

Definition 10.1 A(standard)matchofapatterngraph Op = (Vp^Ep) ona subjectgraph Gg = (V,, Eg)

is a one-to-one mapping of thepatterngraph nodes intothesubject graph nodes I :Vp—>Vg such

that:

1. Ve= (^1,^2) € € Eg,

2. Vve ypAi{v)\^0=^ l'M|= \i(l{v))\,wherei{v) = {w\ (w,v) eE]forG= (V,£).

The first condition requires that the edge relationship in the pattern graph is completely preserved

in the subjectgraph. The second condition constrains the in-degree of a non-primary-input node in

the pattern graph to be the same as that of the matching node in the subjectgraph. Notice that it

is allowed for a subject-graph nodecovered by an intermediate pattern-graph node to have fanout

to nodes which are not covered by the pattern graph. However, in the conventional tree-covering

basedapproach such a match is invalid, i.e. all the fanouts of a subject-graph node matched with

an intermediate pattern-graph nodeneed tobecovered by thesame pattern. A match satisfying this

additional constraint is called an exact match [Rud89] and defined as follows.

Definition 10.2 An exact match ofa pattern graph Gp = iVp^Ep) ona subject graph Gg = {Vg^Eg)

isa one-to-one mapping ofthe pattern graph nodes into the subject graph nodes I :Vp—¥Vg such

that:
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subject graph pattern grap

Figure 10.1: Standard Match vs. Extended Match

1. Ve= (ei.ea) € Ep,(I(ei)J(e2)) eE„

2. Vv€Vp,|,(v)|#0=^|,(v)| = |/(/(v))|,

3. Vv e Vp, |i(v)|^Oand |o(v)| ^ 0^ I^MI= |o(/(v))|,vi'Aereo(v) = {w| (ViVv) € E}forC =

(V,E).

Rudell proposed an algorithm called graph-match [Rud89] for the general case where

both a subjectgraphand a patterngraphare DAGs. Wecan simply use this matching algorithm to

enumerate all successful standard matches instead of exact matches.

Although a constraint that a mapping is one-to-one is posed in the above two definitions

by Rudell, this can be safely dropped as follows, which leads to the definition of a larger class of

matches.

Definition 10.3 An extendedmatchofapatterngraph Gp = (Vp, Ep) onasubjectgraph Gs = (Eg)

isa mapping of thepatterngraphnodes into thesubject graphnodes I '.Vp-^Vg such that:

1. Ve= [ex.ei) e Ep,(I(e{)J(e2)) eEg,

2. Vv€ V/„|/(v)|7^0=i^ l*(v)l= l'(/(v))|.

The only difference between extended matches and standard matches is that in extended matches

the requirement of a mapping from the pattem-graph nodesinto the subject-graph nodesbeing one-

to-one is dropped. Therefore extended matches subsume standard matches. This relaxation of the

requirement allows duplication of subject-graph nodes while searching for a match by unfolding a

DAG structure. Figure 10.1 shows an example where a pattern graph is matched successfully as an

extended match but not as a standard match. Assume that a two-input node is a NAND2 gate and

a single-input node is an inverter. Consider pattern matching at the top node of the subject graph
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shown on the left against the pattern graph on the right. An extended match exists by mapping both

m andm' to n whilea standardmatchdoes not sincesuch a mappingviolatesthe one-to-onemapping

property. A simple modification to the graph-match algorithm makes the algorithm search all

extended matches instead of all standard matches without changing its asymptotic complexity.

10.3.3 Constructing an Optimum Mapping

Once a (best delay, best gate)-pair is computed at each node, a delay-optimal network can

be constructed in exactly the same way as in FlowMap. We maintain a queue which contains nodes

to be created in the final mapping. This queue is initialized to the set of all primary outputs. A node

is taken from the queue and the best gate at the node is created in the mapping. Each fanin node

of the gate is then inserted to the queue if the fanin is not a primary input and does not yet have a

corresponding gate in the mapping. Once the queue becomes empty, the mapping is complete.

Lemma 10.1 Thelabelingproceduredescribedin Section 10.3.1 computes the optimumdelayachiev

able at each node n ofa subject graph under a load-independent delay model.

Proof We can prove this by an induction on the structure of a given subject graph.

Base case (n is a primary input): The delay value stored at n is the arrival time of n. Therefore it

is indeed the optimum delay of n.

Induction (n is not a primary input): Supposeby inductionthat all the nodes in the transitivefanin

of n have their optimum delay values. Since the delay model is load-independent, the opti

mum delay value of any node in the transitive fanin ofn remains valid regardless of the fanout

structure of the node. Therefore by performing exhaustive pattern matching and choosing the

minimum delay over all the successful matches at n, the minimum delay at n is computed.

•

Theorem 10.1 The technology mappingalgorithmdescribed above givesa mapped circuit whose

delay is optimum under a load-independent delay model.

Proof Theconstruction of a mapped circuit is performed recursively from primary outputs.

Duringthis recursive construction eachnodeis implemented bythe gate thatachieves the bestdelay

at the node. Since the delay valuecomputed at each node in the labeling phaseis guaranteed to be
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optimum from Lemma 10.1, the resultingnetworkhas an optimumdelay. •

10.3.4 Complexity of DAG Mapping for Delay Minimization

An application of graphjnatch to enumerate all successful matches at a single node

is 0(p) [Rud89], where p is the number of nodes in the entire unique pattern graphs Since this

procedure is called once for each node in a subjectgraph, thecomplexityof the labelingstep is 0(sp),

where s is the number of nodes in the subject graph. The final step of constructinga delay-optimal

mapping onlycostsO(^).Therefore the complexity ofDAGmapping is 0(sp). Sincep is a constant

definedby a given library,the procedureis linear in the size of a subjectgraph.

10.3.5 Comparison between DAG Mapping and lYee Mapping

In the past, performance-oriented technology mapping has been done by a combination of

tree covering and buffer tree construction [Tou90]. The fundamental limitation of this conventional

tree-covering approach is that the search space is highly limited by the structure of a given subject

graph since multiple-fanout points in the subject graph are completely preserved in the final results.

On the other hand, since DAG mappingdoes not respect initial multiple-fanout points at all, it can

explore a strictly larger search space. In other wordsmultiple-fanoutpoints are created as the result of

delayoptimizationas we will see laterinFigures 10.2,10.3 and 10.4. Bufferingtechniquesproposed

in the literaturecan be directlyused in conjunction with DAG coveringto speed up such multiple-

fanout points.

Another major difference is how subject-graph nodes are duplicated during technology

mapping. DAG mapping can duplicate subject-graph nodes while creating final mappings whereas

in tree mapping no duplication is allowed since each subject-graphnode is covered only once by a

single pattern. In some sense, subject-graphnode duplication is limited to the buffer tree construc

tion phase in the tree-mapping-basedapproach.

Figure 10.2 illustrates how duplication of subject graph nodes helps reduce the delay of a

mapping. Consider a subject graph shown on the left. Suppose that a pattern graph on the right is

available in a given library. If tree mapping is invoked on this subject graph, the pattern graph is of

no use since there is no exact match between the subject graph and the pattern graph. If, on the other

"^Note that p isnot equal to the number ofnodes inthe entire pattern graphs since during matching a single pattern
graph is tried for all possiblepermutationsof its inputs, p is thus the numberof nodesin the expandedpatterngraphs. See
[Rud89] for details.
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subject graph pattern graph

Figure 10.2: DAG Mappingvs. TreeMapping

Figure 10.3: Matchings in DAG Mapping

N

Figure 10.4: Duplication ofSubject-Graph Nodes inDAG Mapping
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hand, DAG mapping is employed, the two output nodes in thesubject graph arematched with the

pattern graph as in Figure 10.3. Themapped circuit corresponding to these matchings is shown in

Figure 10.4. The shaded nodes in the subject graph inFigure 10.3 are duplicated in this mapping,

which makes effectiveuse of the pattern graph possible.

This example also illustrates how multiple-fanout points are created in DAG mapping.

Since the middlenode of the subject graph withmultiple fanouts is an internal nodeof each of the

matchings inFigure 10.3, themapped circuit does not inherit themultiple fanout point. Ontheother

hand, thetwoprimary inputs of thesubject graph inthemiddle have multiple fanouts in themapped

circuit while each of theinputs has a single fanout in thesubject graph.

10.3.6 Example

Figure 10.5showsa subject graphandpatterngraphs. Wewill take this example to show

the effectiveness of theDAGmapping compared withtheconventional treecovering. Assume that

eachgate in the library has a unit delay for any input-output pair, andthatthe primary inputs of the

circuitarrives at / = 0. The goal is to synthesize the fastest mapped circuit.

The subject graph has a multiple fanout point in the middle. Therefore in the conventional

approachthe subjectgraph is partitionedinto three trees as in Figure 10.6. Each tree is mappedopti

mallyby dynamic programming in a topological order. Figure10.7showstheoptimal delayachiev

able at each nodeunder the tree coveringapproach. The best implementation found in the tree cov

eringis a mapped circuitwhere eachsubject-graph nodeis implemented by the corresponding gate

in the library. The top andthe bottom outputs areavailable at r = 3 andr = 4 respectively.

The use of the DAG mapping does not require the initial tree decomposition. This makes it

possible to findmatches crossing the multiple fanout point shown in Figure 10.8. These matches are

never found in the tree covering. Figure 10.9 shows the optimal delay at each node under the DAG

mapping. Both of the outputs are available at / = 2. The resulting mappedcircuit is in Figure 10.10.

Note that the NAND gate and the inverter marked with yj in Figure 10.9 are duplicated in the final

circuit in Figure 10.10.
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t>

multiple fanout point

Figure 10.5: Example: DAG Covering vs. Tree Covering

multiple fanout point

Figure 10.6: Example: Tree Decomposition

multiple fanout point

Figure 10.7: Example: Tree Covering
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Figure 10.8: Example: Matches Crossing a Multiple Fanout Point

Figure 10.9: Example: DAG Covering

Figure 10.10: Example: Delay-Optimal Mapped Circuit



175

10.4 Extensions

The approach ofSection 10.3 can be generalized to sequential circuits so that optimal cycle

time isguaranteed inconjunction with retiming [LS83, LS91]^. We only consider sequential circuits

with edge-triggered latches all of which are controlled by a single clock.

This problem was studied for LUT-based FPGAs by Pan and Liu [PL96, PL98]. Given a

/:-bounded network consider the following three-step transformation.

1. Retime an initial circuit

2. Perform technology mapping of the combinational portion of the circuit

3. Retime the resulting mapped circuit.

Pan andLiu proposeda polynomial-time algorithmforcomputing the minimum cycle-timemapping

among all the mapped circuits obtainedby the above transformation, which was later improved by

Cong and Wu [CW96,CW98a]. The key ingredientis a polynomial-timedecision procedure which

determines whetherthere exists a mapping whosecycle time is less than or equal to a given value.

This procedure is used repeatedly to guide a binary search to determine the minimum cycle time

achievable byretiming andoptimal technology mapping. Thecoreofthisdecision procedure is again

a labeling schemequite similarto the one used in HowMap. All /:-cuts at each intermediate node

are explored by considering retiming possibility. This is again done implicitly by converting the

original problem to a network flow problem. Thisstepof examining all k cutscan be replaced by

patternmatching as was done for combinational mapping. All the other theories hold withoutany

modification.

More recently, Congand Wu proposed a new optimal FPGA mapping algorithm for se

quential circuitswhereonlyforward retiming is explored [CW98b]. This restriction makes thecom

putation of the initial states of retimed circuits easy. The algorithm can also be easily adapted to

libraiy-based designs in a similar way.

So far optimality is guaranteed in terms of a subject graph constructed arbitrarily from a

given circuit by decomposition. Since a single subject graph is chosen among a huge number of

different decompositions without knowing an actual library tobe used, it islikely that many poten
tially good mappings are simply notexplored dueto this initial choice. Lehman et al [LWGH95,

^Grodstein et al. [GLH'*'94] considered retiming in the context of technology mapping for library-based designs and
proposed an area-optimal algorithm for trees.
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circuit Delay Area CPU time

tree DAG tree DAG tree DAG

C432 12.13 10.29 442 484 0.5 0.5

C499 10.16 8.03 904 960 0.9 1.1

C880 9.43 7.87 710 755 0.8 0.9

C1355 13.06 9.66 1146 1488 1.1 1.2

C1908 13.87 10.71 1223 1572 1.5 1.7

C2670 11.54 9.43 1552 2008 2.3 2.6

C3540 17.20 14.00 2075 2926 3.1 3.7

C5315 16.55 13.04 3687 4275 5.4 6.0

C6288 56.99 41.95 4107 9291 4.9 5.9

C7552 14.23 11.06 4983 6452 6.8 8.4

Table 10.1: Tree mapping vs. DAG mapping for lib2. genlib

LWGH97] have recently resolved this issue by encoding various decompositions into a single ex

tended subject graph called mapping graph^ and performing technology mapping on it. Since this

technique is orthogonal to our technique, the two can be combined to produce even betterresults.

In fact, we have recentlybecome aware [Wat97] that the actual implementation of Lehman et al

performed DAG covering similar to ours although they discussed their algorithm for subject trees

in [LWGH97]. It is interesting toknow howmuch delay improvement in [LWGH97] is dueto DAG

covering.

10.5 Experimental Results

To show the effectiveness of this approach the technology mapperof SIS [SSM'̂ 92] was

extended so that delay-optimal mapping is obtained for combinational circuits by DAGcovering

Asdiscussed in theprevious sections, thedelay model used in thisexperiment is theintrinsic delay

model where a fixed, load-independent delay is given between each input and theoutput of a gate.

This is in fact thedelay model used in [LWGH97]. Although loading effects arecertainly an impor

tantfactor indelays, there are several justifications. In design scenarios where continuous sizing of

any gate is permissible, one wayto capturethis flexibility in technology mapping is to approximate

^They showed that the flexibility ofretiming can be encoded in amapping graph at the expenseofthe size increaseof
thegraph. Therelationship between thisapproach andtheadaptation ofPan-Liu's algorithm is yettobeclarified.

' In this experiment we used graph_inatch for finding only standard matches instead ofextendedmatches. Therefore
theoptimality of theresults is claimed with respect tostandard matches. Sofarwehave notbeen able to seeany major
difference in mapping quality between the use of standard matches and extended matches.
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this flexibility by having many discretely sizedgates. Unfortunately this approach is known to be

very expensive. Theapproach taken in [LWGH97] istopicka singledelay foreach gateandperform

technology mapping by ignoring loads. Eachgatein the final mapping is thencontinuously sizedby

considering actual loads so that the delay matches the one associated with the gate. Even without

thecapability ofcontinuous sizing,thebuffertreeconstruction methods of [BCD89, SSV90, Tou90]

can be used later at multiplefanout points to reduce load dependence. Thereforethe use of this de

lay model is at least justified as an approximation to the minimum-delay mapping problem under

realistic delay models.

Table 10.1 shows the comparison of the quality of final circuits between the DAG map

ping approach proposed in this paper and the standard tree mapping approach. In this experiment

each benchmark circuit was first decomposed into a subject graph. We then applied the DAG map

ping algorithm and the tree mapping algorithm on this same subject graph using MCNC gate library

lib2 .genlib^. Notechnology independent optimization was applied to benchmark circuits be

fore technology mapping. No fanout optimization was used. The effectiveness of the DAG mapping

algorithm is clear. We were able to obtain significantly faster circuits. CPU time was obtained on

DEC AlphaServer 8400 5/300 and is reported in seconds. The increase of CPU time from tree map

ping to DAG mapping is reasonable.

The same experiment was repeated using different libraries to see how the DAG mapping

algorithm performs on rich libraries. MCNC libraries 44-1 .genlib and 44-3 .genlib were

used in this comparison. The former library only contains 7 gates while the latter library has 625

gates, many of which are complex gates with many inputs 44-3 . genlib is a strict superset of

44-1. genlib- Table 10.2 and Table 10.3 summarize the results of 44-1 and 44-3 respectively.

We can see that the difference in mapping quality between the DAG and tree mapping approaches

is further pronounced with the use of richer libraries.

It is interesting to observe that DAG mapping can generate faster and smaller results in

some cases, for examples in C1355 and C6288 in Figure 10.2. The reason is that complex gates are

used more frequently in DAG mapping, which leads to area effective covering in some cases in spite

of potential node duplication.

®Each gate has a non-zero load-dependentdelay specified in lib2. genlib. In the experiment this was simply as
sumed to be zero.

^The largest gate has 16inputs.
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circuit Delay Area CPU time

tree DAG tree DAG tree DAG

C432 24 19 784 1006 0.4 0.4

C499 25 16 1772 2220 0.8 0.8

C880 20 15 1250 1337 0.7 0.7

C1355 27 22 2100 1546 1.0 1.0

C1908 37 24 2251 3058 1.3 1.3

C2670 27 18 2998 4568 2.0 2.0

C3540 42 30 4007 6640 2.7 2.8

C5315 46 33 6817 8352 4.6 4.8

C6288 125 120 7782 7121 4.3 4.4

C7552 39 28 9552 11149 6.0 6.3

Table 10.2: Tree mapping vs. DAG mapping for 44-1. genlib

circuit Delay Area CPU time

tree DAG tree DAG tree DAG

C432 21 11 624 1094 21.5 38.5

C499 18 9 1324 1910 35.3 68.9

C880 18 8 946 1466 35.2 55.9

C1355 26 10 1796 2440 41.5 69.3

C1908 28 11 1755 2587 57.2 123.5

C2670 22 10 2314 3943 92.2 159.7

C3540 28 13 2983 6148 128.2 255.6

C5315 31 15 5115 6685 220.4 341.5

C6288 125 42 7694 14775 155.1 229.5

C7552 27 13 7062 13267 248.7 491.0

Table 10.3: Tree mapping vs. DAG mapping for 44-3. genlib
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10.6 Conclusions

We have shown that the delay-optimal technologymappingproblem can be solved opti

mallyunder load-independent delay modelswithoutdecomposing a subject DAG into trees. The al

gorithm is an adaptationof a polynomialtime algorithmfor delay-optimal mappingof look-up table

typeFPGAs,and runs in timelinear in the size of a subjectgraph. This is the firstresult showingthat

the delay-optimal technology mapping problem for library-based designsis solvablein polynomial

time for general DAG networks. Wehave experimentally shown that the proposed approach gives

significant improvementin delay compared to conventionaltree mapping. Extensions of this tech

nique to sequentialcircuitshavealso beendiscussed. The relationshipbetweentechnologymapping

problems for library-based designs and FPGA designs has been clarified.

In this chapter we focused on delay minimization without any area consideration. There

fore at each intermediate node the fastest mapping is simply created no matter how critical the node

is. By constructing slower but smaller mapping for non-critical subnetworks a better control over

area increase can be achieved. Cong and Ding proposedheuristics to address this issue in [CD94a]

for FPGA mapping. They also have results on area-delay tradeoff based on the FlowMap algo

rithm [CD94b]. Chaudhary and Pedram [CP92, CP95] studied area-delay tradeoff for library-based

technology mapping. Touati et al. [TSB91, Tou90] gave an area-recovery heuristic applicable to

technology-independentdelay optimization. The incorporationof these ideas remains as future work.

The use of load-independent delay models has been assumed in this chapter. Although the

capability of continuous gate sizing justifies such a delay model in theory, sizing is only allowed up

to a specified limit in reality. Buffer tree construction needs to be used in conjunction with DAG

mapping in this case. Interaction between buffer tree construction and DAG mapping is yet to be

studied.
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Chapter 11

Conclusions

We have studied various problems arising in timing analysis and optimization of high-

performance digital circuits. The contribution of the dissertation is summarized below.

The first partof thedissertation focused ontiminganalysis of gate-level circuits. The goal

of timing analysisat the gate level is to estimate timingcharacteristics of a given gate-levelcircuit

underthe assumption that thedelayof eachgate in thecircuithasbeenpre-characterized by detailed

simulation at a lower level. Two procedures essential in gate-level timing analysis are:

1. arrival time analysis, in which given arrival times at the primary inputs of a circuit are propa

gated forward to compute the arrival time at a primary output, and

2. required time analysis, in which given required times at the primary outputs of a circuit are

propagated backward to compute the required time at a primary input.

A major difficulty in accurate gate-level timing analysis is in detection of false paths. A

false path is a topological path not responsible for the signal stability of an output. Since false paths

have no impact on the delay of a circuit, they need to be excluded when timing analysis is performed.

Detection offalse paths is crucial in accurate delay analysis. Timing analysis with the ability of false

path detection is called functional timing analysis.

Although functional arrival time analysis has been studied extensively in the last decade,

little was known about functional required time analysis. This problem was studied in Chapter 3.

We showed that the underlying theory of an existing functional arrival time analysis technique can

be extended to functional required time analysis. The consideration of false paths in required time

analysis led to a generalized notion of required times, where an input of a circuit is required at differ

ent times underdifferentinput vectors. Wefurthershowedthat input-vectordependentrequired time
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isnot necessarily unique even if an input vector is specified unlike topological required time anal

ysis. An exact algorithm forfunctional required time analysis was presented for the XBDO model,

followed by a set ofapproximate algorithms applicable tothe analysis of large circuits.

Chapters 4 to 8 dealt with various timing analysis problems for combinational modules.

Acombinational module isa combinational circuit which can beused under any surrounding envi

ronment.

Chapter 4 discussed delay characterization of a combinational module. The goal of the

delay characterization is to compute a compact delay abstraction of the module that captures the

timing characteristics ofthe module accurately. The fact that the arrival times atthe primary inputs
are unknownmakesfalse-path-aware delaycharacterization difficult sincestate-of-the-art functional

arrival time analysis techniques are dependent on arrival time conditions at the inputs. Our major

contribution in this chapter was to show that the problem can be solved by a direct application of

functional required time analysis. Theresulting exact delay abstraction is valid andaccurate under

anyarrival timecondition. We thendiscussed several othermethods ofcomputing adelay abstraction

ofa combinational module using functional arrival time analysis. Accuracy andcorrectness of these

methods were clarified.

Chapter 5 discussed hierarchical functional arrival time analysis as an application of the

delay characterization techniques for combinational modules inChapter 4. Acommon assumption

inexisting functional arrival time analysis techniques is that a circuit under analysis hasa flat struc

ture without any hierarchy. Therefore, if a hierarchical circuit is given, we need to flatten it before

analysis, potentially resulting in a hugecircuit. Chapter5 addressed hierarchical functional arrival

time analysis where timing analysis is performed ina bottom-up fashion by respecting a given hi

erarchy. The false-path-aware delay characterization techniques presented inChapter 4 are directly

applicable to compute a delay abstraction of a module used in the lowest level of a hierarchical cir

cuit. Theassumption made inChapter 4 thatthesurrounding environment ofa combinational mod

ule isunknown played akey role. Timing analysis was then performed ateach level ofthe hierarchy

in a bottom-up way to compute a delay abstraction of the level from thedelay abstractions of sub-

hierarchies. This hierarchical approach naturally supports incremental analysis capability, which is

missing in traditional flat analysis.

Chapter6 introduced a notionof timing-safe replaceability applicable to combinational

modules. A moduleis saidto be a timing-safe replacement ofanotherif theformer is no slowerthan

the latter under any arrival time condition and any input vector. If a new module is a timing-safe

replacement of a module, we can safely replacethe originalmodulewith the new withoutdeterio-



183

ratingthe performance regardless of howthe module wasusedoriginally. Weshowedthat whether

a moduleis a timing-safe replacement of anothercan be determined by examining the exact delay

abstractions of the two modules.

False paths in a combinational module are known to be relative to arrival time conditions

at the inputs. Therefore, a false path under some arrival time condition can be true under another.

Chapter 7 introduced a more stringent notion of false paths, called strongly false paths, which can

be uniquely defined independent of arrival timeconditions. A pathis saidto be strongly false if the

path is not responsiblefor the stabilityof the outputsof a moduleunder any arrival time condition.

These false paths can besafely assumed to befalse forcombinational modules. After showing that

strongly false paths can bedetermined from theexact delay abstraction ofa module, wepresented

an algorithm to detect suchpaths without an explicit computation of thedelay abstraction.

Basedon the results of theprevious twochapters Chapter 8 addressed falsepath removal

from combinational modules. An algorithm to remove strongly false paths from a combinational

module waspresented, which is guaranteed to givea timing-safe replacement of theoriginal. Since

themodule after the transformation isfalse-path free, itcan beanalyzed more accurately with topo-

logical analysis thantheoriginal. Theresulting module hastiming characteristics no worse thanthe

original under any surrounding environment. Thus this can bethought ofasa timing optimization

technique for combinational modules.

Thefirst partofthedissertation was concluded inChapter9,where anapproximation scheme

forflat functional arrival time analysis was investigated. Although flat functional arrival time anal

ysis is well understood as the result of intensive research in the past decade, flat analysis of large

circuits with a large number of reconvergences is still CPU time intensive. We adapted an exist

ing functional arrival time analysis technique based on satisfiability sothat the si2» ofasatisfiability

problem created during timing analysis iscontrolled by introducingconservativeapproximation. We

experimentally confirmed that the approximation technique iseffective inreducing CPU time only
with minor overestimation of delays.

The second part ofthedissertationaddressed timingoptimizationofdigital circuits. Specif
ically, delay optimization in technology mapping was discussed. Technology mapping takes a tech

nology-independentBoolean network and generates a functionally equivalent network inwhich ev-
ery gate is a member ofa given gate library. The most prevalent technology mapping technique
currently used for delay optimization is based on tree matching, where a technology-independent
network is partitioned into trees and each ofthem is mapped separately to minimize delay. Although
the delay-minimal technology mapping problem for trees has been known to be solvable optimally.
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this approach is suboptimal because of the initial partitioning step. No optimization crossing tree

boundaries ispossible. InChapter 10, inspired by a previous work on technology mapping for FP-
GAs, we presented adelay-optimal technology mapping algorithm applicable toDAG networks and

showed that a delay-optimal mapping can be computed intime linear inthe size ofa given network

under a load-independent delay model. This result implies that tree partitioning ofan initial network

isnot necessary for delay optimization unlike area optimization, where without the partitioning the

problem becomes NP-hard.

Future Work

Therecent advent of deep-submicron designs has provided various new challenges at al

most every level of design methodology. Since various analog effects play a larger role in timing

behaviors, timing analysis under more refined delay models such as a slew-sensitive delay model

and a table-lookup delay model needs to beinvestigated toachieve desirable accuracy under indus

trial environments. It would be interesting to seehow thetiming analysis and optimization results

obtained in the dissertation can beextended toa more realistic delay model.

Among various analog effects crosstalk is becoming oneofthemost critical issues at logic

synthesis level and below. If two wires are running inparallel only a small distance apart, thesignal

behavior of one wire can beaffected bythat of the other. This is called a crosstalk. Forexample,

if the values on both wires are rising from 0 to 1 almost simultaneously, the effective capacitance

between the two wires is smaller than theone without any interaction. Therefore, the delays of the

wires decrease. Ontheother hand, if both wires are switching indifferent directions, thedelays in

crease. Existingtiminganalysistechniques arenotcapableof takingintoaccountthiscrosstalkeffect

accurately sincethedelays ofgatesandwires areassumed tobeindependent. Althoughconservative

analysis ispossible byassigning theworst possible delay under crosstalk toeach gate orwire, thisis

likely to give too pessimistic results since crosstalk can only happen conditionally. Recent progress

on crosstalk-aware functional arrival timeanalysis anddelay modeling can be found in [Kir97] and

[TKB97].

Wehavestudiedinput-vectordependent delayabstractions andtheirimplications to timing

analysis in thisdissertation. Although different delays canbeassociated with different inputvectors

underthis framework, theeffect of relative arrival times at thefanins of a gateis stillignored. Indy

namic circuits, frequently usedin high-end designs, even if a gatereceives the same inputvector at

itsfanins, thedelaycharacteristics of thegatemay varydepending ontherelative arrival times of the
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fanins. This is because the configuration of pull-down conducting paths is sensitive to the relative

arrival times of the fanins. Furthermore, the amount of charges to drain depends on the input vector

previously applied, and has a direct impact on the delay of the gate. To capture these behaviors ac

curately more refined analysis is required. Gray et al. [GLRKCI94] and Sun et al. [SDC94, SDC98]

have preliminary results for this problem.

Delay fault testing is a methodology for testing whether a manufactured circuit has a timing

violation or not. The goal of delay fault testing is to generate a pair of input vectors, the application

of which in that order can verify whether there is a delay fault on a given path by observing the

response at primary outputs. Unlike timing analysis we cannot assume any upper bound for gate

delays. Although the problem is different from timing analysis, the two problems are related with

each other. For example false paths play a major role in delay testing since if a path is false under

all delay assignments to the gates, there is no need to test the path in the first place. Although inter

related, the two research problemshave been studiedalmost independently,and thus the connections

between the two are far from clear. Recent work by Sivaraman and Strojwas [SS97] is one example

that applied a result in delay fault testing to timing analysis.
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