Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TIMING ANALYSIS AND OPTIMIZATION
FOR HIGH-PERFORMANCE DIGITAL CIRCUITS

by

Yuji Kukimoto

Memorandum No. UCB/ERL M99/42

8 September 1999

TIMING ANALYSIS AND OPTIMIZATION
FOR HIGH-PERFORMANCE DIGITAL CIRCUITS

by
Yuji Kukimoto

Memorandum No. UCB/ERL M99/42

8 September 1999

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Timing Analysis and Optimization for High-Performance Digital Circuits

Copyright 1998
by
Yuji Kukimoto

Abstract

Timing Analysis and Optimization for High-Performance Digital Circuits
by

Yuji Kukimoto

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Robert K. Brayton, Chair

Meeting performance constraints in synchronous digital circuits is crucial since a violation may cause
an unexpected value to be latched in a memory element. To guarantee the absence of timing viola-
tions the performance of a design needs to be estimated accurately and verified against given per-
formance constraints. This delay estimation is called timing analysis. The main difficulty of timing
analysis for gate-level digital circuits is the existence of false paths. A false path is a topological path
of a given circuit along which a signal event never propagates. Since false paths do not contribute
to the delay of a circuit, they need to be excluded when the performance of a circuit is estimated.

Although false path detection has been researched extensively in the last decade, it has
always been studied in a specific problem, namely arrival time analysis of combinational circuits,
in which the arrival times of the outputs of a circuit are estimated given the arrival times of the in-
puts. The main contribution of the first part of this dissertation is to introduce and present algorithms
for a new problem: false-path-aware required time analysis of combinational circuits, in which the
required times of the inputs of a circuit are estimated given the required times of the outputs. This
problem forms the core of arich set of novel timing analysis problems arising in hierarchical designs.
The applications include false path detection and removal of combinational circuits under unknown
surrounding environments and hierarchical false-path-aware timing analysis.

To meet an aggressive performance goal, timing optimization algorithms play a key role
in exploring a design space systematically. The second part of the dissertation focuses on timing
optimization in a logic synthesis step called fechnology mapping, where a technology-independent
circuit is translated to a circuit composed only of gates in a given gate library. Although the com-

plexity of the technology mapping problem for area minimization is well-understood, technology

mapping for delay minimization has been tackled using heuristic approaches without knowing its
exact complexity. The contribution of the second part of the dissertation is a linear-time algorithm
that solves the problem optimally under a load-independent delay model. There is no need to resort

to heuristic approaches since the problem can be solved optimally and efficiently.

Professor Robert K. Brayton
Dissertation Committee Chair

iii

Contents

List of Figures vi
List of Tables viii
1 Introduction 1
2 Preliminaries 5
2.1 BooleanNetworkst 5

2.2 Synchronizationand Memory Elements 6

2.3 TimingConstraintsinSynthesis 7
2.3.1 Impacts of Set-up/Hold Time Constraints on Synthesis 7

2.3.2 Synthesisunder Timing Constraints 9

24 Timing Analysis. e e e e 10
24.1 Gate-level Timing Analysis 11

242 ProblemFormulation. 11

24.3 Topological Arrival Time Analysis. 12

244 FalsePaths i 13

2.4.5 Functional Arrival Time Analysis 13

2.4.6 Functional Arrival Time Analysis under the Extended Bounded Delay-0 Model 16

3 Functional Required Time Analysis 21
31 Example e 22

32 ProblemFormulation 23

3.3 Functional Required Time Analysis 23
331 ExactAnalysis e e 25

3.3.2 Approximate Analysis e 28

3.4 Extraction of Local Timing Constraints by Functional Timing Analysis. 35
341 ProblemFormulation. 35

342 Computing Local Timing Constraints of Subcircuits 37

343 Applications 40

35 ExperimentalResults 42

3.6 Conclusions e e e e e e e 44

iv

4 Delay Characterization of Combinational Modules 47
41 Introduction i it i it e e e e 48
4.2 Delay Characterization by Functional Required Time Analysis 48
43 Example e e e e 50
4.4 Delay Analysis using Delay Abstractions 51
4.5 Comparing Delay Abstractions, 53
4.6 Computing Delay Abstractions by Functional Arrival Time Analysis 55

4.6.1 Delay Abstractions by Path Classification 56
4.6.2 Delay Abstractions based on Arrival Time Differences 66
4.6.3 Refining Delay Abstractions by Multiple Functional Arrival Time Analyses 71
4.7 Delay Abstractions via Approximate Functional Required Time Analysis 72
4.8 Delay Abstractions via Approximate Functional Arrival Time Analysis. 73
4.9 Delay Characterization Independent of Gate Delay Assignments 73
410 Related Work e e 76
411 Conclusions o i i e e e e e e 77

5 Hierarchical Functional Timing Analysis ’ 81
5.1 Hierarchical Topological Timing Analysis 82
5.2 Hierarchical Functional Arrival Time Analvsis. 82

5.2.1 Delay Characterizationof Leaf Modules 83
5.2.2 Hierarchical Delay Computation 83
5.2.3 Delay Characterization of Circuits Composed of Subcircuits 84
524 Incremental Timing Analysis 88
53 Example e e e e e e 88
5.4 TImproved Algorithm for Hierarchical Functional Arrival Time Analysis 92
5.5 Hierarchical Delay Computation using Input-Vector Dependent Delay Abstractions 94
551 Example e 95

5.5.2 Generalized XBDO Analysis for Input-Vector Dependent Delay Abstractions 97
5.5.3 Other Approaches to Delay Computation using Input-Vector Dependent De-

lay Abstractions e 100

5.5.4 Computing Input-Vector Dependent Delay Abstractions of Subhierarchies . 100

5.6 ExperimentalResults 101

57 RelatedWork e e e e 103

58 Conclusions e e e e e e e e e e e e 104

6 Timing-Safe Replaceability for Combinational Modules 107
6.1 Timing-Safe Replaceability 108

6.2 Examples e e e e e e 110
6.3 Application: Concurrent Timing Optimization of Combinational Circuits 112

6.4 Conclusions i i it e e e e e e e e e e e e 114

7 Strongly False Paths in Combinational Modules 117
7.1 Example e e e e e e 118
7.2 StronglyFalsePaths 119

7.3 Algorithm for Detecting Strongly FalsePaths 121

7.4 Relationship with Static Co-sensitization.

7.5 Conclusions

......................................

8 False Path Removal for Combinational Modules
8.1 TheKMSAlgorithm
8.2 MotivatingExamples
8.3 False Path Removal of Combinational Modules
8.3.1 Algorithm for False PathRemoval
832 Examples
84 ExperimentalResults

8.5 - Conclusions

......................................

9 Approximate Functional Arrival Time Analysis
9.1 PreviousWork.
9.2 Limitation of Exact Functional Arrival Time Analysis

9.3 Approximate

Functional Arrival Time Analysis

9.3.1 Reducingthe Sizeof gy Networks
9.3.2 Control/Data Dichotomy in Approximation Strategies
94 ExperimentalResults

9.5 Conclusions

......................................

10 Delay-Optimal Technology Mapping

10.1 Preliminaries

.....................................

10.1.1 Library-Based TechnologyMapping
10.1.2 Technology Mapping for LUT-based FPGAs
1013 Summary e
10.2 Delay-Optimal Technology Mapping for FPGAs
10.3 Delay-Optimal Technology Mapping for Library-Based Designs
10.3.1 Computation of Optimal Delay at Intenal Nodes
103.2 PattermMatching
10.3.3 Constructingan OptimumMapping
10.3.4 Complexity of DAG Mapping for Delay Minimization
10.3.5 Comparison between DAG Mapping and Tree Mapping
1036 Example

10.4 Extensions .

......................................

10.5 ExperimentalResults

10.6 Conclusions
11 Conclusions

Bibliography

......................................

126
129

131
132
134
138
138
140
147
148

149
149
151
151
151
153
156
158

161
162
162
164
164
165
166
166
167
169
170
170
172
175
176
179

181
187

vi

List of Figures

2.1
2.2
23
24

3.1
3.2
33
34
35
3.6

4.1
42
43
4.4

4.5

4.6
4.7
4.8

5.1
52
53
54
5.5
5.6
5.7
5.8

6.1
6.2

Timing Diagram of a Falling-Edge-Triggered Flip-flop 7
Timing Diagram of an Active-High Level-SensitiveLatch 7
Combinational Block between Flip-Flops 8
Example: Functional Arrival Time Analysis 19
Example: Topological Required Time vs. Functional Required Time 22
Example: Functional Required Time Analysis 26
ResynthesisofaSubnetwork 36
Local Timing Constraint of a Subnetwork 37
EXample: AF7 . -« o oo e e e e e e e e e e 39
Timing Optimization of Hierarchical Circuits 41
Example: A CombinationalModule M 50
Proof of Theorem4.7 e 59
Static Co-sensitization vs. Viability/FloatingMode 65
Relative Accuracy of Delay Abstractions Computed by Functional Arrival Time Anal-

ysis: PathClassification., 65
Relative Accuracy of Delay Abstractions Computed by Functional Arrival Time Anal-

ysis: Arrival Time Differences 69
Relative Accuracy of Delay Abstractions. 70
Signal Values of M under Input Vector 001 74
Signal Values of M under Input Vector000 75
Subhierarchy in a Hierarchical Circuit 86
Required Time Analysis of a Subhierarchy 87
2-bitCarry-SkipAdder e 89
4-bit Carry-Skip Adder Composed of Two 2-bitAdders 90
Delay Abstractionofthe2-bitAdder 91
Hierarchical Analysis of the 4-bit Carry-Skip Adder Composed of Two 2-bit Adders 91
Delay Analysis of the 2-bit Adder under arr(c;y) = 5,arr(others) =0 92
A Limitation of Input-Vector Independent Delay Abstractions 95
Example: A Combinational Module M 111

Example: A Timing-Safe ReplacementModule M, 111

6.3
6.4

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

vii

Example: A Timing-Non-Safe Replacement Module M, 111
Concurrent Timing Optimization of Combinational Circuits 113
Example: A CombinationalModule M 118
A Strongly False Path Can Be Statically Co-sensitizable 127
2-bitCarry-SkipAdder 134
Circuit withMultiplexors 135
2-bit Carry-Skip Adder A, before Redundancy Removal 137
2-bit Carry-Skip Adder M,_gr after Redundancy Removal 137
2-bitCarry-SkipAdder M 141
2-bit Carry-Skip Adder M, after Propagating Constant 1 fromcy, 141
False-path-free Circuit with Multiplexors 147
Extractionof a Control Subnetwork 155
Standard Match vs. ExtendedMatch 168
DAGMappingvs. TreeMapping i i i ittt en e 171
Matchingsin DAGMapping it it e e 171
Duplication of Subject-Graph Nodes in DAGMapping 171
Example: DAG Coveringvs. TreeCovering 173
Example: Tree Decomposition 173
Example: Tree Covering o ittt 173
Example: Matches Crossing a Multiple FanoutPoint 174
Example: DAGCoveringt v ittt i e e 174

10.10Example: Delay-Optimal Mapped Circuit 174

viii

List of Tables

3.1 Example: Comparison of Three Required Time Analyses 33
3.2 Required Time Computation — Exact vs. Approximate 43
3.3 Required Time Computation - ISCAS Examples 43
4.1 Delay Characterization by Functional Arrival Time Analysis: Viability 62
4.2 Delay Characterization by Functional Arrival Time Analysis: FloatingMode ... 63
4.3 Generalized Delay Abstraction 76
5.1 Timing Analysis of Carry-Skip Adders - Hierarchical vs. Flat 102
5.2 Timing Analysis of ISCAS Circuits — Hierarchical vs. Flat 102
8.1 ExactDelay AbstractionDof M 143
8.2 ExactDelay AbstractionDoof My oo 144
8.3 Exact Delay Abstraction Do_gr Of Mo_RR - « « + o v o v e e e 145
8.4 ExactDelay AbstractionDyof M}, 146
9.1 Functional Arrival Time Analysis: Exact vs. Approximate (CPU time in seconds on

DEC AlphaServer 7000/610) 157
9.2 Functional Arrival Time Analysis of C6288: Exact vs. Approximate (CPU time in

seconds on DEC AlphaServer 7000/610) 157
10.1 Tree mapping vs. DAG mapping for 1ib2.genlib 176
10.2 Tree mapping vs. DAG mapping for44-1.genlib 178

10.3 Tree mapping vs. DAG mapping for44-3.genlib 178

ix

Acknowledgements

My graduate student life at Berkeley has been supported by many individuals. I would like to thank
them all for their help and encouragement.

Bob Brayton has been my advisor since the very first semester. I learned from him how to
conduct research independently: everything from the ability to carve out a potential research area to
technical writing and presentation skills. He has always been there to listen to my half-baked ideas
patiently and help me polish them up by asking insightful questions. The discussions we have had
in the past years have always been enjoyable and intellectually stimulating.

I am grateful to Alberto Sangiovanni-Vincentelli and Dorit Hochbaum for their construc-
tive comments to my research as the second and the third members of my dissertation committee. I
would also like to thank Jan Rabaey for his feedbacks during my qualification exam.

My interest in computer-aided design started from a research collaboration with Masahiro
Fujita when I was a graduate student in Japan. He introduced me to the research field and got me
aware of research activity outside Japan. If it had not been for him, I would not have come to Berke-
ley in the first place.

Some of the research presented in this dissertation is the result of collaborations with my
colleagues. I would like to thank Wilsin Gosti and Alex Saldanha for their contributions to Chapter 9.
I am indebted to Alex Saldanha and Rick McGeer for various discussions on timing analysis. The
result on technology mapping presented in Chapter 10 was obtained with Prashant Sawkar. I have
been fortunate to be able to work closely with Eugene Goldberg for the last two years although this
research is not included in the dissertation. Some of the results in Chapter 4 were inspired by com-
ments from Daniel Brand. I would like to thank him for generously sharing his idea. I also enjoyed
technical discussions with Hakan Yalcin on the topics of shared interest. The research presented in
Chapter 8 started from Leon Stok’s comment at an SRC meeting.

Stephen Edwards carefully read an early draft of this dissertation and gave me constructive
feedbacks. Thanks to Luca Carloni, Wilsin Gosti and Tiziano Villa for comments.

Harry Hsieh, Rajeev Ranjan, Serdar Tagiran and I came to Berkeley in the same time frame
and prepared for a preliminary exam together. Since then we have been good friends. I would like
to thank them for the friendship.

It has been great pleasure to be part of the VIS team, a joint formal verification project of
Berkeley and University of Colorado. Thanks to all the members of the team.

The interactions with the current and past members of the CAD group have been always

stimulating. I would like to thank Adnan Aziz, Dominique Borrione, Premal Buch, Edoardo Char-
bon, Szu-Tsung Cheng, Ramin Hojati, Adrian Isles, Dirk-Jan Jongeneel, Timothy Kam, Sunil Kha-
tri, Desmond Kirkpatrick, Sriram Krishnan, Andreas Kuehlman, William Lam, Freddy Mang, Ra-
Jjeev Murgai, Amit Mehrotra, Amit Narayan, Mukul Prasad, Shaz Qadeer, Sriram Rajamani, Marco
Sgroi, Tom Shiple, Subarnarekha Sinha, Gitanjali Swamy, Iasson Vassiliou, and Huey-Yih Wang.
Special thanks to Yosinori Watanabe, who helped me adjust myself to the new environment here. I
also enjoyed discussions we have had recently on technology mapping.

The CAD group has been supported by friendly administrative staff. I am grateful to Flora
Oviedo and Brad Krebs for their assistance over the past years.

Murata Overseas Scholarship Foundation provided generous financial support during the
first two years at Berkeley. Without their support I would not have thought of applying to a graduate
school in the states.

The research presented in the dissertation was supported by SRC DC-324. Their support
is greatly acknowledged.

Finally, I would like to thank my parents and my brother for their encouragement.

Chapter 1

Introduction

Performance-oriented design methodology for digital circuits has gained increasing im-
portance in the last decade mainly due to the competitive microprocessor market. This trend is ex-
pected to continue in the future to push the current performance envelope to the limit. Designing
such a complex digital circuit under tight time-to-market pressure is a daunting task beyond a man-
ual design methodology and naturally requires computer-aided design and verification to manage the
complexity in a short design cycle. The focus of this dissertation is design automation techniques
for performance-oriented designs. Specifically, timing verification and optimization techniques will
be studied in detail.

A typical design flow of digital circuits starts from a functional description of a design
written in a hardware description language along with other specifications such as area, performance,
testability and power dissipation. The initial description can be an abstract behavioral description,
in which the behavior of the design is specified without an explicit hardware configuration. This is
then translated into a register-transfer-level (RTL) description by mapping it to an actual hardware
configuration. Operations in the behavioral description are scheduled on given hardware resources
to meet given constraints. This step is called high-level synthesis. In the resulting RTL description a
set of registers is explicitly declared and data operations between the registers are performed condi-
tionally under a controller. Logic synthesis is the step which takes an RTL description and generates
a gate-level circuit composed only of gates and storage elements available in an actual technology to
be used. This step is followed by physical design, where all the components of the gate-level circuit
are laid out on a two-dimensional plane to create masks, which are then used to fabricate the circuit
on silicon.

Although performance-oriented design and verification methodology needs to be addressed

at every level of the design flow, we will restrict ourselves to techniques applicable to the gate level.

The first part of the dissertation deals with timing verification of gate-level circuits. Once
a design is complete, we need to verify if the design meets a given performance constraint. The key
step is to estimate the delay characteristics of the circuit. We assume that the delay of each gate in
the circuit is pre-characterized and wire delays are extracted from the physical layout of the design.
A naive way to estimate the delay of the circuit is to find the topological longest path of the circuit,
where the length of a path is defined as the sum of the delays of all the components along the path.
Although this gives a conservative estimate of actual delay, accuracy may suffer since the longest
topological path may not be able to propagate a signal event due to the interaction of the functionality
and the timing of the circuit. A path is called false if it is not responsible for delay. To estimate the
delay of a circuit accurately we need to find the longest topological path that is not false. Although
false path detection has been intensively studied in the last decade, the focus of the research has
been in false-path-aware arrival time analysis (functional arrival time analysis), where arrival times
at the primary outputs of a gate-level circuit are estimated given arrival times at the primary inputs
by considering false paths. However, this problem is only one facet of delay analysis issues related
with false paths.

The goal of the first part of the dissertation is to deepen the understanding of false paths
by exploring various timing analysis problems other than functional arrival time analysis.

After giving a background of the previous research on timing analysis in Chapter 2, we
will introduce in Chapter 3 a new timing analysis problem, functional required time analysis, which
is an analogue of functional arrival time analysis for required time computation. In functional re-
quired time analysis required times at the primary inputs of a circuit are estimated given required
times at the primary outputs by taking false paths into account. It will be shown that an existing
theory for functional arrival time analysis can be generalized to functional required time analysis.
Exact and approximate algorithms for functional required time analysis will be presented, the use of
which gives more relaxed required times than those estimated by topological required time analysis
unaware of false paths.

Chapter 4 will discuss delay characterization of a combinational module. A combinational
module is a portable combinational circuit that can be used under any surrounding environment. An
intellectual property (IP) module, if combinational, is an example of such modules. False-path-aware
delay characterization of a combinational module plays an important role in timing analysis for IP-
based design methodology, where the accurate delay abstraction of an IP module is required without

disclosing its internal proprietary details. The main difficulty of this problem is in the fact that the

surrounding environment of the module is unknown, i.e. we cannot assume specific arrival times
at the primary inputs of the module. We will show that functional required time analysis studied
in Chapter 3 can be used directly for the delay characterization problem. A false-path-aware delay
abstraction of a combinational module can be computed without assuming specific arrival time con-
ditions.

Chapter 5 will study hierarchical functional arrival time analysis, where a hierarchical cir-
cuit is analyzed in a bottom-up way without flattening the hierarchy. Note that existing state-of-the-
art functional arrival time analysis techniques in the literature always assume that a circuit under
analysis is flat. Although flattening can always be used to remove a hierarchy, this potentially forces
us to analyze a huge circuit at one time thereby making functional arrival time analysis of indus-
trial circuits difficult. Moreover, once the use of IP modules becomes prevalent, flattening will not
be an option any more. The hierarchical approach presented in this chapter enables us to perform
false-path-aware timing analysis by respecting a given design hierarchy. The analysis starts with the
computation of a delay abstraction for each module at the lowest level in a hierarchy. The computed
delay abstraction is then used for the analysis at the next higher level. There is no need to analyze
the entire circuit at one time. The hierarchical analysis gives as a byproduct incremental analysis
capability, which is missing in flat analysis.

Chapter 6 will introduce a new criterion, called timing-safe replaceability, for comparing
two combinational modules in terms of performance. A module is said to be a timing-safe replace-
ment of another if the former is no slower than the latter under any surrounding environment. This
notion allows us to argue the false-path-aware performance of two combinational modules without
assuming the surrounding environment in which the modules are embedded.

A new class of false paths for combinational modules will be introduced in Chapter 7. A
path in a combinational module is said to be strongly false if it is false under any surrounding en-
vironment. This special class of false paths is the only false paths that can be safely assumed to be
false under unknown surrounding environments. An algorithm to detect strongly false paths will be
given.

Chapter 8 will then present an algorithm to remove strongly false paths from a combi-
national module without slowing down the module under any environment. The module after the
transformation is provably a timing-safe replacement of the original. The resulting module can be
analyzed more accurately than the original using topological timing analysis, which is much more
efficient than functional timing analysis.

The first part of the dissertation will be concluded by approximate algorithms for flat func-

tional arrival time analysis in Chapter 9. Although flat functional arrival time analysis is well-understood
by now, the analysis of industrial circuits with a large number of reconvergences is still CPU-time
intensive computation. We will extend an existing functional arrival time analysis technique so that
delay estimates can be obtained in less CPU time with possible overestimation. Experimental re-
sults will be provided to show that the approximation gives a dramatic reduction in CPU time for
benchmark circuits with minor delay overestimation.

The second part of the dissertation is devoted to performance-oriented logic synthesis.
Specifically, we will focus on the final step of logic synthesis called technology mapping. The goal
of technology mapping is to take a technology-independent circuit and to generate a functionally
equivalent circuit composed only of gates available in a given gate library so that a given criterion
is optimized. The criterion of our choice in the dissertation is performance.

We will first overview the previous results of technology mapping in Chapter 10 and illus-
trate how the problem is solved by an approximate strategy developed for area-minimal technology
mapping. The overall flow of the most popular approach to delay-minimal fechnology mapping is
to partition a given technology-independent network into a forest of trees and to map each tree op-
timally using dynamic programming. This flow makes sense in area-minimal technology mapping
since without the partitioning the problem becomes NP-hard. We will show that the delay-minimal
technology mapping can be solved optimally for a general technology-independent network with a
DAG structure in time linear in the size of the network under a load-independent delay model. The
algorithm is inspired by delay-optimal technology mapping for FPGAs. This implies that the tree
decomposition essential in area-optimal mapping is not necessary for delay optimization. The rela-
tionship between library-based mapping and FPGA mapping, which was not understood well, will
be clarified.

The dissertation will be concluded in Chapter 11. The summary of the dissertation and

future directions will be given.

Chapter 2

Preliminaries

This chapter overviews timing issues arising in designs of synchronous digital circuits. Af-
ter introducing basic terminology on Boolean networks in Section 2.1, we will discuss in Section 2.2
how to realize a synchronization mechanism using memory elements, and show that the underlying
assumption of this synchronization mechanism requires that certain timing constraints be met in de-
signs. We will then illustrate in Section 2.3 how these timing constraints are passed to synthesis so
that a synthesized circuit is free from a timing violation. Finally, given an actual implementation of a
design, one needs to verify whether the implementation meets all given timing constraints. This task
is called timing analysis, which will be covered in Section 2.4. We will start with classic topological
timing analysis and then introduce more accurate analysis called functional timing analysis. We will
give an overview of functional timing analysis and then summarize the XBDO analysis, one of the
most accurate functional timing analysis techniques known so far, which forms the basis of the first

part of the dissertation.

2.1 Boolean Networks

A Boolean network [BRSVW87] is an abstract representation of multi-level combinational
circuits. It is a directed acyclic graph, where a node without any incoming edge represents a primary
input and a node without any outgoing edge represents a primary output. All the other nodes repre-
sent intermediate gates. A Boolean function is associated with each intermediate node. There is an
edge from a node »; to a node n; if the function associated with n; explicitly depends on #;.

If there is an edge from a node n; to a node ny, n is a fanin of a node n, and n, is a fanout

of a node n. If there is a directed path from #, to n, in the Boolean network, n is a transitive fanin

of n, and n; is a transitive fanout of n,.

2.2 Synchronization and Memory Elements

In this dissertation we only consider synchronous circuits, those controlled by a global
clock!.

Any interesting digital system has memory elements that keep track of previous states.
These memory elements are synchronously updated by clock signals. There are two main types of

memory elements:
1. edge-triggered flip-flops and
2. level-sensitive latches (transparent latches).

An edge-triggered flip-flop has a data input and a data output. It also has a control input connected to
an external clock signal. Whenever the control input has a transition from high to low (for falling-
edge-triggered flip-flops), the data input value at the time is captured and will be available at the
data output until the next falling transition. A level-sensitive latch has the same three terminals as
an edge-triggered flip-flop, but its behavior is different. When the control input is high, the data
output value tracks the data input value (for active-high level-sensitive latches). Once the control
input transitions from high to low, the data input value at the moment is sampled and the data output
will be held at the value until the next time the control gets high.

In both types of memory elements, one needs to pay attention to relative timing of the sig-
nals so that the correct data input is sampled. Consider a high-to-low transition of the control in-
put. Since the sampling is done by a physical device, the data input value must have been stable
long enough before the sampling takes place. This is called a set-up time constraint. The minimum
amount of the set-up time required depends on the circuit structure of a memory element. Given this
constraint, we need to make sure that the data input of the memory element becomes stable early so
that there is enough stable time before the actual sampling transition. Furthermore, it is also neces-
sary to hold the data input value even after the sampling transition. This is called a hold time con-
straint. There is a minimum amount of time for the data input to be held after the transition edge so

that the correct value is sampled.

"1t is possible to create a local clock from external clocks and internal signals. This is called gated clocking and is used
frequently in low-power designs. We will only consider pure external clocking in this dissertation.

clock | ‘
set—up| hold
- |
P
. S N
input |+ L
output

Figure 2.1: Timing Diagram of a Falling-Edge-Triggered Flip-flop

clock]
set—upj hold
f—] |
I e
. o T T :
input : RN
output

Figure 2.2: Timing Diagram of an Active-High Level-Sensitive Latch

Figures 2.1 and 2.2 illustrate the behaviors of a falling-edge-triggered flip-flop and an active-

high level-sensitive latch by timing diagrams respectively.

2.3 Timing Constraints in Synthesis

2.3.1 Impacts of Set-up/Hold Time Constraints on Synthesis

The clock frequency of a digital system is one of the major performance goals set at the
beginning of a design project. The reciprocal of the clock frequency is called a cycle time, which
is the length of one cycle of the clock. The cycle time has a deep impact on the circuit design. As
in Section 2.2, we need to meet a set-up time constraint and a hold time constraint for each memory
element in order to guarantee correct synchronization. Therefore any signal feeding the data input of
a memory element is required to be stable early enough and to maintain its value long enough before
and after every clocking edge respectively. We can then assure that every memory element captures
a correct value at any point in time. Since the data input signal of a memory element is typically

generated by a combinational logic block, the timing constraint is posed directly on the logic block

*—

clock

Figure 2.3: Combinational Block between Flip-Flops

feeding the data input.

Consider a simple case where all the memory elements are edge-triggered flip-flops con-
trolled by the same clock signal. Figure 2.3 shows that the data input of an edge-triggered flip-flop is
connected to the output of a combinational logic block whose inputs come from the outputs of other
flip-flops. Let ¢ be the cycle time of the clock. Suppose that the clock falls from high to low atz = 0.
The next falling edge takes place at ¢t = c. Let diyax be the maximum time for the combinational block
to take to get stabilized given all the inputs at t = 0. The output of the combinational block, z, gets
stable no later than ¢ = diyax. Let s be the minimum set-up time required. The set-up time constraint

is satisfied if it is satisfied for the worst case, which gives the following inequality.
c—dmax 2§
Therefore, the combinational block must be designed so that
diax < €. 2.1

Note that c and s are constants.

Consider the hold time constraint. Assume that the set-up time constraint is met already.
We can then assume that the signal value z for the previous clock cycle is stable by r = —s. Atz =0,
all the flip-flops sample and hold new values. These new values cause the combinational block to re-
evaluate its functionality thereby eventually giving a new final value at z. Let dp, be the minimum
time for z to take to get destabilized given all the new input values at f = 0. diyy, is the earliest possible

time for z to start changing from its old value. In order to meet the hold time constraint,
dmin 2 h 22)

should hold, where # is the minimum hold time required for the flip-flop and is a constant given the

type of the flip-flop.

The two inequalities (2.1) and (2.2) pose constraints on dpax and dpy, of the combinational
block. The satisfaction of the inequalities guarantees the absence of a set-up time or a hold time

violation?.

2.3.2 Synthesis under Timing Constraints

Various techniques have been studied in the literature to address synthesis of combina-
tional blocks under timing constraints. Although the constraints (2.1) and (2.2) for the set-up and the
hold time constraints respectively are equally important for correct synchronization, the hold time
constraint is relatively easier to meet than the set-up time constraint in reality3. Therefore, we will

focus on the satisfaction of set-up time constraints in the rest of the dissertation.

Timing-driven logic synthesis of a combinational circuit takes as input a timing specifica-
tion along with a functional specification to generate a circuit satisfactory both in terms of function-

ality and timing. The timing specification is given as
1. arrival time at each primary input and
2. required time at each primary output.

Arrival times at primary inputs specify the timing environment under which the circuit is to be used

while required times at primary outputs put a constraint on the speed of the circuit.

Suppose that the combinational block in Figure 2.3 needs to be synthesized. Let us see
how the set-up time constraint (2.1) is translated into this framework. Since a primary input of the
combinational block is fed by the output of a flip-flop, the time when sampling takes place gives
arrival time of the primary input. This sampling time is typically known since it is determined by
an external clock. In our case we can set arrival time of all the primary inputs to # = 0. From (2.1)
the signal stable time at the primary output z must be no later than ¢ — s, which directly gives the

required time at the output.

2The extension of this constraint extraction for the case where different edge-triggered flip-flops are controlled by dif-
ferent clock signals is trivial. The use of level-sensitive latches makes this constraint extraction much more complex due
to cycle stealing, and is beyond the scope of the dissertation. For details refer to [She93).

3A hold time violation can be resolved by inserting active delays. Shenoy et al. propose one such technique in
[SBSV93].

10

2.4 Timing Analysis

We have seen so far that combinational logic blocks must be designed so that a set-up time
constraint and a hold time constraint are met for each memory element. Since the satisfaction of
the timing constraints is crucial in correct functionality, we need to verify whether a combinational
block meets the timing constraints once it is synthesized. This section overviews the basics of timing
verification.

Consider the problem of estimating dmax and dyy;, of a given combinational circuit as ac-
curately as possible. This problem is called timing analysis or timing estimation. The estimation is
essential in verifying whether the circuit is free from set-up time and hold time violations. The exact
values of dmax and dpy, are hard to estimate since the timing characteristic of a circuit is determined
by complex analog behaviors. Therefore our goal is to estimate the values conservatively so that any
timing violation is detected by using the estimated values.

Let dj,,,, be an estimate of dpax such that dmax < dl,, is guaranteed, i.e. d',,, never under-

estimates dpyx. If the set-up time constraint is satisfied using the estimate d’,,,,
dipax S C— 5.

Since dmax < dfayo

This shows that if there is no set-up time violation using an overestimate d',,, it implies the absence
of set-up time violation under the actual dmax. Notice that the condition that dyax never gets underes-
timated is the key in establishing this result. Any timing analysis technique must meet this condition
to be useful in the context of timing verification. Otherwise timing violation could be overlooked,
which defeats the whole purpose of timing verification.

We can obtain a similar result for the estimation of dp;,. This time we require that dppp,
never get overestimated. With this condition any hold time violation can be detected using an esti-
mate of dyy;,.

Conservative estimation of dax and dpip is crucial in guaranteeing that no false positive
result is obtained in timing verification. However, if the estimation is far off from the actual value, a
timing violation may be detected using the estimate although there is no violation in the real circuit.
This is a false negative result and should be avoided. To minimize such false alarms conservative

yet accurate estimation is desired.

11

Although the estimation of minimum delay dp;, is important for the timing correctness
of a digital system, dmax plays a key role in timing-driven designs. Therefore, we will focus on the

estimation of maximum delay dp,y in this dissertation.

24.1 Gate-level Timing Analysis

The timing characteristic of digital circuits is determined as a result of complex analog
behaviors. Circuit simulation such as SPICE directly solves a set of differential equations to compute
an output waveform given an input waveform. Although accurate, this approach is computationally
expensive and the applicability is limited to small circuits. Furthermore, since the analysis is only
valid for a given input waveform, one needs to repeat simulations for all input waveforms to make
sure that no timing violation occurs. The exhaustive simulations of all possible input waveforms are

not feasible even for moderate-size circuits®.

This difficulty can be overcome by performing timing analysis at a more abstract level,
i.e. the gate level. A circuit under analysis is assumed to be given at the gate level; it is composed of
gates connected by wires. We assume that the delay of each gate in the circuit is pre-characterized
by circuit simulation and that the maximum delay of each gate is known. Gate-level timing analysis
then takes these gate delay values and estimates the maximum delay of the circuit. We also assume
that each gate can take its maximum delay simultaneously. Although this may not be possible in

reality, the assumption is conservative 3.

2.4.2 Problem Formulation

We formulate the problem of estimating dpax of gate-level combinational circuits.

Let G = (V,E) be a Boolean network. V can be partitioned into three disjoint sets Vp;, Vpo
and V. Vp; and Vpo are the sets of all primary input nodes and primary output nodes respectively. V;

is the set of all intermediate nodes. Recall that each intermediate node corresponds to a gate.

4If exhaustive simulations are not performed, dimax may be underestimated.

5For example, it may not be possible for two gates to take their worst case delays simultaneously since the condition
that one gate takes its maximum conflicts with the condition that the other takes its maximum. Recent work by Sivaraman
and Strojwas [SS97] addressed this issue and showed that more accurate timing analysis is possible by considering this
interdependency of worst-case gate delays explicitly.

12

The gate-level arrival time analysis problem: Given
1. a Boolean network G = (V, E) representing a combinational circuit,
2. adelay range [0,d(n)] for each intermediate node n € V;, and
3. arrival time arr(x;) for each primary input x; € Vp;,

estimate arrival time arr(z;) for each primary output z; € Vp.

Notice that the minimum delay for each internal node is assumed to be zero. Since the
delay value of a node is not a constant, but a range, the Boolean network under analysis implicitly
represents a family of networks, each of which is functionally and structurally identical with different
gate delays within the given upper-bounds. Therefore, any analysis must guarantee that a computed
arrival time at a primary output is a conservative estimate for all the members of the network family.
This property is called monotone speedup or robustness [MB91].

Although a wire has no delay in this formulation, wire delay can be taken into account by
assuming on the wire a buffer whose maximum delay is set to the delay of the wire.

In this formulation, each node has a common delay value from any fanin. In reality delays
are different for different fanins. Also, even for the same fanin, the delay can be different between
rising and falling transitions. Although it is easy to generalize the subsequent arguments to capture

these aspects, we will follow the original formulation for ease of exposition.

2.4.3 Topological Arrival Time Analysis

A Boolean network represents signal dependency between nodes in the network. It is con-
servative to assume that each node becomes stable only after all its fanin nodes do. Under this as-
sumption one can determine the signal arrival time at an output by detecting the longest path from a
primary input node to a primary output node, where the length of a path is defined as the sum of the
arrival time at the input and all node delays along the path [Hit82, HSC82]. This is a well-known
longest path problem on directed acyclic graphs. We can visit nodes in the network in a topological
order and determine the signal stable time at node n, arr(n), by

arr(n) =d(n) + Mie%)lc”(")arr(m,-) .

13

Since the algorithm runs in time linear in the size of the network, it is applicable to large industrial

designs.

2.4.4 False Paths

Although topological analysis gives an efficient solution to the arrival time analysis prob-
lem, the quality of the result may suffer. The basic assumption in topological analysis is that each
intermediate node becomes stable only after all its fanin nodes become stable. The functionality as-
sociated with the node is ignored. This is the same as conservatively assuming that all the paths in
the circuit can propagate signal events, and are responsible for delays. This is not necessarily true in
real circuits.

For example, consider a two-input AND gate n in a network. Assume that both of its fanins
get value zero under an input vector. Since the functionality of the gate is AND, once either fanin be-
comes stable to zero, the output of the gate will be stabilized to zero after d(n) even if the other fanin
has not yet been stabilized. Therefore, any path leading to the late stabilizing fanin or its extension
is not responsible for delay under this input vector.

As in this example, it may not be possible to propagate a signal event along a path if any
signal event along the path is blocked on its way by other paths. We call such a path false. The ex-
istence of false paths in a circuit makes accurate estimation of arrival time difficult for topological
analysis. For example, if the topological longest path is false under all input vectors, the arrival time
estimated by topological analysis overestimates an actual arrival time. The detection of false paths
is only possible by taking into account the Boolean nature of the circuit. Since there are practical
circuits known to have long false paths (e.g. carry-skip adders), arrival time analysis with the capa-
bility of false path detection, termed functional arrival time analysis, is critical for accurate delay

estimation.

24.5 Functional Arrival Time Analysis

Although the existence of false paths has been known for a long time, it was not until the
late 80’s that research on systematic detection of false paths started. Initially the research focus was
to identify a correct condition for determining whether a given path is responsible for delay. Vari-
ous path sensitization conditions have been proposed in the literature, and the relative accuracy be-
tween the conditions has been analyzed. Well-accepted path sensitization conditions such as viabil-
ity [MB91] and the floating-mode condition [CD93] were introduced.

14

One of the drawbacks of the first generation algorithms on functional arrival time analysis
was that false path detection was performed for each path separately. Since a huge number of paths
can exist in a circuit, explicit path enumeration is never practical for the analysis of large circuits.
Devadas et al. [DKM93] overcame this difficulty by showing that the falsity of a set of paths can
be determined by a modified automatic test pattern generation (ATPG), termed timed ATPG. This
breakthrough enlarged the applicability of functional arrival time analysis to industrial circuits.

In the rest of this subsection we will introduce various path sensitization conditions® to
be referred to in the subsequent chapters after giving basic definitions on paths and controlling/non-
controlling values. To simplify the argument we assume that a Boolean network under analysis is
comprised of simple gates although some sensitization conditions (e.g. viability) can be defined over
general networks. Simple gates are NOT, AND, OR, NAND and NOR.

Definition 2.1 A path in a Boolean network is a sequence of nodes (gates) (80,815---18m), where

8i+1 is a fanoutof gi. (i=0,...,m—1).

Definition 2.2 A path that starts from a primary input node and ends at a primary output node is an
input/output path or an I/O path for short.

Definition 2.3 Let P = (g0,81,...,8m) be a path. The fanins of gi(i = 1,...,m) other than g;_, are
called side inputs of g; along P. A path from a primary input to a side input along P is called a side
path of P.

Definition 2.4 A controlling value for a gate is the input value that determines the output of the gate
independent of the values of the other inputs. The output of the gate determined by a controlling
value is called a controlled value for the gate. For example, the controlling value for an AND gate
is O while the controlling value for an OR gate is 1. The controlled value for an AND gate is 0 while
the controlled value for an OR gate is 1. A non-controlling value for a gate is the input value that is
not a controlling value for the gate. A non-controlled value for a gate is the output value that is not
a controlled value for the gate. For example, the non-controlling value for an AND gate is 1 while
the non-controlling value for an OR gate is 0. The non-controlled value for an AND gate is I while

the non-controlled value for an OR gate is 0.

SWe restrict ourselves to single-vector timing analyses, those in which a path sensitization is defined under a single
input vector. Devadas et al.[DKMW94] argued the truth and the falsity of a path given two input vectors. The first vector
is used to settle down a circuit, and then the second vector is applied to see if the path is responsible for delay. This can be
generalized to a multi-vector analysis proposed by Lam et al. [LBSV93, LB94). Although multi-vector analysis is more
accurate than single-vector analysis in theory, the latter is as accurate as the former in most cases in practice.

TWe assume that fanins of a node are distinct. A path is uniquely identified under this condition.

15

Early approaches to the false path problem were based on case analysis [Ous83, Jou83). A
specific value is applied to a primary input and propagated forward as much as possible. If a path has
a gate whose side input is set to a controlling value of the gate, the path is categorized as false. The
underlying path sensitization condition is called static sensitization, and was formalized by Benkoski
et al. [BMCMB87, BMCMO0]. It is the first sensitization condition proposed in the literature to tackle
the false path problem.

Definition 2.5 A path P = (go,81,...,8m) is statically sensitizable under an input vector X if all the

- side inputs of gi(i=1,...,m) are set to the non-controlling value of g;.

It turned out that this sensitization condition is too optimistic, i.e. it can classify a true path
as false thereby underestimating true delay®. As discussed earlier, this flaw is fatal and makes the
condition unusable in timing verification.

Once it became clear that static sensitization is incorrect, several new conditions were pro-
posed to fix the flaw. Brand and Iyengar [BI88] were the first group that gave a sensitization condition

proven to be correct.

Definition 2.6 Assume that the fanins of each gate are linearly ordered. A path P = (80,&15--+18m)
is sensitizable in the Brand-Iyengar condition under an input vector X if all the side inputs of gi(i=

1,...,m) that are after g;_, in the fanin ordering of g; have the non-controlling value of g;.

Depending on the fanin orderings used, the accuracy of delay estimates under the Brand-
Iyengar condition varies. However, it is guaranteed [BI88] that no underestimation occurs under any
fanin ordering and any arrival time condition. Notice that the Brand-Iyengar condition is a purely
Boolean condition independent of gate delays and arrival times at the inputs.

McGeer and Brayton [MB91] introduced a sensitization condition termed viability.

Definition 2.7 A path P= (go,g1,...,8m) is viable under an input vector x ifateachgi(i=1,...,m),
Jor each side input of g; either of the following two holds.

1. The side input has the non-controlling value of g;, or

2. There is a viable path from a primary input to the side input whose arrival time via the path

is no earlier than arr(go) + Zﬂ-;ll d(g;)-

8Brand and Iyengar [BI88] showed a simple example where a statically non-sensitizable path can propagate a signal
event, and thus determine the delay of the circuit. McGeer and Brayton [MB91] also discussed the flaw of static sensiti-
zation using the same circuit.

16

Viability takes advantage of arrival times at the primary inputs and gate delays to achieve
more accurate delay estimation than the Brand-Iyengar condition.

The floating-mode condition proposed by Chen and Du [CD93] is another sensitization
condition that is known to have the same accuracy as viability for arrival time analysis of networks

composed of simple gates.

Definition 2.8 A parh P = (go,81,--.,8m) is sensitizable in the floating-mode condition under an

input vector X if for each gi(i = 1,...,m), either
1. g has a controlled value and g;_, gets the eariiest controlling value of g;, or
2. gi has a non-controlled value and g;_, gets the latest non-controlling value of g;.

Static co-sensitization is a sensitization condition independent of gate delays and arrival
times. This was introduced by Devadas et al. in [DKM93] as a necessary condition for a path to be
true under the floating mode condition. Although it is not as accurate as viability or floating-mode,

it is a conservative condition.

Definition 2.9 A path P = (go,g\,...,8m) is statically co-sensitizable under an input vector x if for

each gi(i=1,...,m) that has a controlled value of gi, gi~\ has a controlling value of g;.

All the correct sensitization conditions introduced in this section meet the monotone speed-

up property [MB91].

2.4.6 Functional Arrival Time Analysis under the Extended Bounded Delay-0 Model

We review functional arrival time analysis under a delay model called the extended bounded
delay-0 model (XBDO model), originally proposed by Seger [Seg89] and adapted by McGeer et
al. [MSBSV93]. The rest of the dissertation is built up on top of this delay model. This is the de-
lay model underlying viability [MB91] and the floating mode [CD93]. The procedure for functional
arrival time analysis under the XBDO model developed by McGeer et al. [MSBSV93] is one of the

most accurate and the most efficient algorithms applicable to large circuits.

Sensitization under the XBD0 Model

Under the XBD0 model, each gate in a network has a maximum positive delay and a min-
imum delay which is zero. Sensitization analysis assumes that each gate can take any delay between

its maximum value and zero.

17

The core idea of [MSBSV93] is to recursively characterize the set of all input vectors that
make the signal value of a primary output stable to a constant (either 0 or 1) by a given required time.
Once these sets are identified both for values 0 and 1, one can compare these against the on-set and
the off-set of the primary output respectively to see if the output is indeed stable for all input vectors
by the required time. The overall scenario of computing output arrival time is to start by setting the
required time to the longest topological delay minus & > 0 and gradually decrease it until some input
vector cannot make the output stable by the required time. The second-to-last required time gives an
approximation to the true arrival time at the output. This process of guessing the next required time

-can be sped up and refined by making use of a binary search.

Let us illustrate how we can compute these sets. Let n and d(r) be a node (gate) in a
Boolean network A’ and the maximum delay of the node n respectively®. Let Xn,v be the charac-
teristic function of the set of input vectors under which the output of the node n becomes stable to a
valuev € {0,1} by ¢ = 1. Let f, be the local functionality of the node » in terms of immediate fanins
my,...,my of n. For ease of explanation, let f, = m;my, i.e., n is a two-input AND gate. It is clear
from the functionality of the AND gate that to set » to a value 1 by ¢t = 1, both of the fanins of n, m;

and m,, are required to be stable at 1 by r = T —d(n). This is equivalent to

T—d| t-d(n
X=Xt Aot -
Note that the two % functions for the fanins are ANDed to take the intersection of the two sets. Sim-

ilarly, to set n to a value 0 by 7 = 1, at least one of the fanins must be stabilized to 0 by t = T —d,,.

1—d -d
X0 = X+ X
Here the two y functions are ORed to take the union of the two sets. It is easy to see that the above
computations can be generalized to the case where the local functionality of n is given as an arbitrary

function in terms of its fanins as follows.

Giw= 2 [TT %t ™ TT o)

PGPV mEp m'ep

where P} and P? are the sets of all primes of f, and f; respectively. One can easily verify that the
recursive formulations for the AND gate shown above are captured in this general formulation by

noticing P! = {m;my},P? = {7z} for f, = mym,. The terminal cases are given when the node

Ltis possible to differentiate rise delays from fall delays. However, we do not distinguish them to simplify exposition.

18

n is a primary input x.

et = X if T > arr(x)
= 0 otherwise

Xeo = X if © > arr(x)
=0 otherwise

where arr(x) denotes the arrival time of x. The above formulas simply say that a primary input is
stable only after a given arrival time. The key observation of this formulation is that characteristic
functions can be computed recursively.

Once characteristic functions for values 0 and 1 are computed at a primary output, two
comparisons are made: one for the characteristic function for 1 against the on-set of the output, and
the other for the characteristic function for 0 against the off-set of the output. Each comparison is
done by creating a Boolean network which computes the difference between two functions and using
a satisfiability (SAT) solver to check whether the output of the network is satisfiable!®. The Boolean
network iscalled a x-network or a sensitizationnetwork. Experimental results in [MSBSV93] showed
that this approach can anz;lyze large networks in reasonable computation time.

McGeer et al. [MSBSV93, MSS*92] showed that viability and the floating mode condition
are both “exact” for functional arrival time analysis in the sense that stable time estimates of the two
sensitization conditions are the same as the one with network analysis for circuits composed of

simple gates.

Optimal Construction of x-Networks

We have mentioned that a x-network is constructed recursively from a primary output.
McGeer et al. discuss further optimization to reduce the size of -networks.

Given a required time at a primary output, assume that a backward topological required
time propagation of A(is done to primary inputs so that the list of all required times at each inter-
nal node is computed instead of the single earliest required time computed by regular topological
analysis. If the x-network is constructed naively, for each internal node in A/, a distinct node is to

be created for each required time in the list. This, however, is not necessary since the internal node

101 arrabee discusses in [Lar92] how to construct a conjunctive-normal-form (CNF) SAT formula which is satisfiable if
and only if the output of a given network is satisfiable. An effective heuristic for solving a CNF-SAT problem is also given.
A CNF formula is a conjunction of disjunction of literals. Stephan et al. [SBSV96] later improved Larrabee’s result. The
implementation of [MSBSV93] was built on top of the SAT solver by Stephan et al.

19

X1 —— Yy
x2—l__D_|—D—z

Figure 2.4: Example: Functional Arrival Time Analysis

may exhibit the same stability behavior at different required times, in which case having a single
node in the X-network for the required times is enough. To detect such a case a forward topological
arrival time propagation from primary inputs to primary outputs is performed to compute the list of
all potential arrival times at each node. Note that each potential arrival time corresponds to the topo-
logical delay of a path from a primary input to the internal node. The stability of the node can only
change at those times. In other words between two adjacent potential arrival times, one cannot see
any change in the stability of the node.

Consider an internal node n € A(. Let R = (ry,...,r,) and A = (ai,...,aq) denote the
sorted list of required times and that of arrival times respectively at node n. Consider x function
xﬁ"' v(v=0,1). Let a; € A be the maximum arrival time such that a j < r;. Since there is no event
happening between time a; and r;, ¥/, = xﬁ’v Matchings from required times to arrival times are
performed in this fashion to identify the subset of A that is required to compute the final % function.
This optimization avoids creating redundant nodes in the % network thereby reducing the size of the
X network without losing any accuracy in analysis. Only those arrival times that have a match with
a required time yield nodes in the % network.

Another type of optimization suggested in [MSBSV93] is to generate the list of arrival
times more carefully. For each potential arrival time, equivalence between the corresponding func-
tion and the on-set or the off-set (whichever appropriate) is checked by a satisfiability call and a new
node is created in network only if the two functions are different. Otherwise, the original function
or its complement is used as it is. Although this requires additional CPU time spent on satisfiability
calls, it is experimentally confirmed that the size reduction of the final % network is so significant

that the the total run-time decreases in most cases.

Example

We illustrate functional arrival time analysis under the XBDO model using a circuit in Fig-
ure 2.4. Assume that both of the AND gates have unit delays, and that both of the primary inputs

20

arrive att = 0. The arrival time estimate of output z by topological arrival time analysis is ¢ = 2 since

there is a path of length 2 (x),y,2).
We will compute functions of z for values 1 and 0 at# = 1 to see if z gets stable by £ = 1.

The recursive definition of y functions give:

0 0
Xy,l ‘sz,l
— -1 -1 0
- Xxhl 'XXZJ .xxbl

= O'O'Xz

le,l

=0
| — 0 0
Xz,o - Xy,O + sz 0
- -1 -1 0
- xxl 0 + xx;,o + sz,O

= 0+0+x

= Xx2.

The X function of z for value 1 at 7 = 1 is 0, which means that no input vector can make z stable to 1
by 7 = 1. The y function for value 0 is %;. Therefore, under (x;,x,) = (0,0) and (1,0) z gets stable
toObyr=1.

The two functions for values 1 and 0 are now compared against the on-set (x;x,) and the

off-set (X7 +X7) of z respectively by taking a set difference.

Z'xl,l = X1X2

- l — — —

X0 = (1+%)x
= XX

Both formulas are satisfiable. The first formula indicates that z is not stable to 1 by ¢ = 1 under
(x1,%2) = (1,1) while the second indicates that z is not stable to 0 by f = 1 under (x1,x2) = (0,1).
Since z does not get stable by ¢ = 1 under all input vectors, the arrival time of z is later than z = 1.

In fact, the arrival time estimate ¢ = 2 by topological analysis is accurate for this circuit.

21

Chapter 3

Functional Required Time Analysis

As we saw in Chapter 2, the timing requirement of a combinational circuit is typically spec-
ified by arrival times at primary inputs and required times at primary outputs. Once an actual circuit
is designed under a timing specification, we need to verify whether the circuit meets the performance
goal or not. Arrival time analysis discussed in Section 2.4 is one way to validate the timing of the cir-
cuit, in which the arrival times at the primary inputs are propagated through the circuit forward, and
the computed arrival times at the primary outputs are compared against the specified required times
to see if the timing requirement is met. Depending on how much accuracy is required, we have two
types of analyses: topological arrival time analysis and functional arrival time analysis. Functional
arrival time analysis has been studied extensively in the literature as we discussed in Section 2.4.

Although timing analysis based on arrival time computation is a standard technique, that
is not the only way to perform timing verification. Another approach is to propagate the required
times at the primary outputs backward through the circuit to compute the required times at the pri-
mary inputs. By checking whether the arrival time at each input is no later than the corresponding
computed required time the performance of the circuit can be validated. We call this backward prop-
agation of required times required time analysis. A by-product of this approach is the availability of
the criticality of each input at the end of the analysis, which was not the case for arrival time analysis.

Although required time analysis has been used in many synthesis operations such as slack
computation, it has been mainly done by ignoring false paths. Therefore little is known about how to

perform required time analysis by considering false paths!. The goal of this chapter is to leverage the

I'The only work that we are aware of is [BI88], where the authors briefly mentioned that their functional timing analysis
algorithm developed for arrival time computation can be used for required time computation. This is a natural conclusion
since the Brand-Iyengar sensitization condition is independent of arrival times at primary inputs. This will be elaborated
on in Section 4.6.

22

g
A m—— —_

Figure 3.1: Example: Topological Required Time vs. Functional Required Time

understanding of functional required time analysis up to the level of functional arrival time analysis
to make false-path-aware required time computation possible. We will see in subsequent chapters
that functional required time analysis forms the basis for the solution of various timing-related prob-
lems.

This chapter is organized as follows. We start with an example where false-path aware re-
quired time analysis gives a more accurate estimate of required time than topological required time
analysis in Section 3.1. Motivated by the example, the functional required time analysis problem
is formulated in Section 3.2. An exact algorithm and two approximate algorithms are presented in
Section 3.3. Section 3.4 discusses timing constraints of subcircuits and their computation as an ap-
plication of functional required time analysis. Experimental results are given in Section 3.5 and the

chapter is concluded in Section 3.6.

3.1 Example

Consider a circuit shown in Figure 3.1 taken from [BI88]. Assume the unit delay model,
i.e. each gate has a delay of one. Suppose that the output g has a required time ¢t = 3. What is the
required time at each primary input?

Let us first try topological required time analysis. The longest topological path from a to
the output is of length 3. Therefore assuming that this path is responsible for determining the output
value, the required time at a is t = 3 — 3 = 0. The same argument holds for b. As to input c, the
longest path to the output is of length 2. Thus, the required time is 1 = 3—2 = 1. As long as inputs
a,b and c arrive by t = 0,0 and 1 respectively, the output is guaranteed to be stable by ¢ = 3.

Now consider the following arrival times at the inputs: arr(a) = 1,arr(b) = 0,arr(c) = 1.

This arrival time condition does not meet the required times computed by topological analysis since

23

a arrives later than the computed required time of 1 = 0. However, if we perform functional arrival
time analysis of the circuit under this condition, we can confirm that the output is indeed stable at
t = 3, which indicates that req(a) = 1,req(b) = 0,req(c) = 1 are valid required times. Notice that
this required time condition is looser than the one computed by topological analysis since a is only
required at ¢ = 1 while it was required at ¢ = 0 before.

The reason why this more accurate required time condition was overlooked in topological
analysis is that the analysis completely ignores false paths. In this circuit, underarr(a) = 1,arr(b) =
0,arr(c) = 1 the topological longest path from a to the output of length 3 is false and not responsi-
ble for the signal stability of the output. Therefore, the effective delay from a is only 2. However,
topological analysis never detects this.

As is true for arrival time analysis, false path detection is crucial for accurate required time
analysis. We will see in subsequent discussions how required time analysis can be achieved by taking

false paths into account.

3.2 Problem Formulation

Functional Required Time Analysis: Given a Boolean network A, maxi-
mum delay d(n) of each gate n, and required times at the primary outputs, com-
pute required times at the primary inputs by considering false paths. The min-

imum delay of each gate is assumed to be zero as in the XBDO model.

3.3 Functional Required Time Analysis

Required time analysis can be performed efficiently if it is done purely based on topologi-
cal delays. Topological required time analysis first sorts all the nodes in a network in a reverse topo-
logical order. Each node n in the network is then visited in this order and the required time at the
node reg(n) is computed as reg(n) = min,,¢ panouT(n) (req(m) — d(m)). The procedure runs in time
linear in the size of the network. Note that required times are uniquely determined in this algorithm,
which is not necessarily the case once false paths are taken into account as we will see later.

The approach proposed in this section makes use of yf functions introduced in Section 2.4.6.
For each primary output,) functions for values 0 and 1 are computed for a given required time and

they are compared against the on-set and the off-set of the output function respectively to extract con-

24

ditions on required times at primary inputs. The main difference between this problem and functional
arrival time analysis discussed in Section 2.4.6 is that arrival times at primary inputs are unknown
variables in our problem while they are given in the other. In spite of this difference the original
recursive formulation for computing functions almost works. A modification is required only in
terminal cases. Since we do not know when a primary input signal arrives, functions at primary
inputs remain as unknown variables. Henceforth, we call , functions at primary inputs leaf , vari-
ables.

Let x be a primary input. Assume that after recursive construction of functions at primary
outputs, leaf y variables for x are needed at times T) < T, < ... < Tp,(x) for value 1 and at times
<1 <...<7

Polx
vectors under which x is stable by a certain time. Once x becomes stable, it continues to be stable;

) for value 0. Remember that each leaf y variable represents the set of input

thus for any 1, < 1, the set of input vectors for ¢ = T, must be contained in the set of input vectors

for t = 1. Therefore, the following ordering conditions among leaf % variables must hold.

0 C xS CxnYCx 3.1)
v
0 C xCH%HC...CxnCx (3.2)

The formulas above indicate that leaf) variables are

1. non-decreasing with respect to time and

2. bounded above by x and X for value 1 and O respectively.

The first constraint is imposed since, once an input vector becomes stable, it must continue to be
stable. The second constraint is required so that leaf variables are compatible with the on-set and
the off-set of the primary input x.

Let us go back to the original problem. For simplicity, assume that a Boolean network A/
has a single primary output z, whose required time T is given. Generalization to multiple primary
outputsis trivial?>. We are interested in computing required times at the primary inputs of the network.

Suppose that sz, ; and sz,o are computed in terms of leaf y variables at primary inputs, which
we call xx. The goal is to assign Boolean functions Xx(X) of primary inputs X = (xy,...,x,) to
unknown yx variables so that when xx = xx(X),

Xei(x) = 2(X)
Xg:o(XX) = z(X)

21t is just enough to take a conjunction of the Boolean constraints for all the primary outputs.

25

under the ordering constraints between yx variables in Equations 3.1 and 3.2, where z(X) denotes
the functionality of the primary output in terms of primary inputs X>. The sets of input vectors that
make the output stable at value 1 and 0 by r = T are constrained to be equal to the on-set and the

off-set of the output function respectively.

3.3.1 Exact Analysis

One can formulate this problem as solving a Boolean equation where unknown variables

are leaf variables yx. The Boolean constraints to be satisfied are:

i) = zX)
Xeo(xx) = z(X)

foreachxe X : 09%§319~--§x:f,'“’gx
. TII t;'()(x) -
foreachxe X : 0CX0C---CXo CX

It is easy to transform the above set of Boolean equations to a single equivalent Boolean equation of
form F(X,yx) =1 [Bro90] by taking the conjunction of all the constraints. In this equation, xx are
variables to be solved while X are Boolean constants. One can think of F(X,¥x) as the characteristic
function of a Boolean relation [BS89a, BS89b] where X is the inputs and yx is the outputs. Any
function in terms of X, compatible with F, satisfies the timing requirement at z*.

Notice that the notion of required times at primary inputs is significantly generalized here.
For each primary input, its required time is not simply a single constant any more. An inputsignal can
arrive at different times depending on signal values of the other inputs. The analysis is “exact” in the
same sense that viability and floating mode analyses are exact for the XBD0 model. More precisely,
given an input vector x and any arrival time condition A compatible with F for x, functional arrival
time analysis under x and A gives an arrival time at the output no greater than the given required time.
Furthermore, all the latest arrival time conditions that meet the given required time at the output are

guaranteed to be included in F. We will show how to extract the latest arrival time conditions later.

3t is possible to extend the theory to the case where z is specified as an incompletely specified function. If the on-set
and the off-set are z'(X) and z%(X) respectively, the two equations need to be replaced with

X)) = xow)
2X) = xo()-

40ne method for extracting such a function is Boolean unification [Bro90).

26

4

X1 —— y req(z)=2
)c2"'I-_—-:::::)-—1__-:::::}_--__-

Figure 3.2: Example: Functional Required Time Analysis

Let us illustrate this in the circuit shown in Figure 3.2. For simplicity, assume that the max-
imum delay of the AND gate is 1 and the required time at the primary output z is 2. The required time
computed by topological delay analysis is ¢ = O for both inputs.) functions for z can be computed

as follows.

Yor = XpiXayl
= xghlxgz,lx.\l:g,]
%o = AyotXno
- 0 0 1
- Xx|,0+sz,0+xxz,0

These equations along with the ordering constraints give the following Boolean relation.

X1 Xty 1 Xy, Xoxg, 1 Xixy 0%y 0Kz 0

00 {000100,000101,000001,00001 1,00011 1}
01 {000100,001100,011100}

10 {000001,000011,100001,100011}

11 {111000}

The interpretation of the relation as required times is as follows.

X1 X2 (req(x1), reg(x2))

00 {(0,“),(O,l),(”,l),(w,O),(0,0)}
01 {(01”)1(071)1(0’0)}

10 {(e21),(==,0),(0,1),(0,0)}

11 {(0,0)}

Let us examine the relation to see what kind of timing constraint needs to be imposed. For
input vector 00, the first three leaf y variables must be 0 in all the cases. This is natural since these
X variables are for value 1, and neither x; nor x, may become stable to 1 in this case. The first two
and the last vectors correspond to the case where xgl 018 1, ie. x is stable to O by £ = 0. In this
case, z is guaranteed to be stable to 0 no matter how x; behaves. The only constraint to be satisfied

is X2, 0 S X, 0- The third and fourth vectors are for the case X3, o is 0. This time, x; is not stable to

27

0 at ¢ = 0, but as long as x, becomes 0 by = 1, z will be stable by ¢ = 2 (both vectors have 1 in the
last position). Again, the ordering condition xgz‘o - x}z,o must hold.

One can think of this relation as a generalization of the existing notion of required time.
Any signal behavior at primary inputs that is compatible with this relation meets the required time at
the primary output. For example, if we pick 000100, 600100, 600001, and 111000 for input vectors
00, 01, 10, 11 respectively, then leaf y variables will be:

0

Xx, 1 = X1X2
0 —

At = XpX2
l —

sz,l = XX
0 — —
XXLO = 45
0 —
sz,o -

1 —
A0 = X1X2-

To focus on only the stability of signals, we define %, as follows.

Xn = Xn,1 +Xn0

This % function of a node n at ¢t = 7 is the characteristic function of the set of all input vectors that

make the signal n stable either to 0 or 1 by ¢ = 7. For the functions above,

~0 —_
ey, = X1+Xx
=0

A, = X1X2
~1 _

sz = X.

The interpretation of this is that primary input x; must be stable by ¢ = 0 just for the case Xj + x3,
and if x;xz, it can delay forever without violating the given functional and temporal requirements.
Notice that in topological analysis it always has to arrive no later than ¢ = 0.

Let us look into how signal x, should behave. It must be stabilized by ¢ = O for the case
x1x. If ﬁzﬁ = X X3, X has to become stable by = 1. For all the other cases, i.e. if x; = 0, however,
X5 can be indefinitely delayed.

One can easily see that the relation contains a compatible function corresponding to the
required time computed by topological analysis®, which gives the most pessimistic required time

condition.

5Choose the last vector for each input vector in the relation.

28

We have seen that the relation represents all the permissible temporal behaviors, from an
aggressive behavior where a signal never arrives under a certain condition to the most stringent con-
dition exactly corresponding to topological analysis. The next question is how to extract the latest
required time conditions from the relation since the later the required times are, the looser the con-
dition is.

For each input vector the relation gives a set of permissible vectors for leaf y variables.
Since a 1 in a vector means that the corresponding leaf ¥ variable must be stable, having fewer 1°s
requires less stability. For example, under input vector 00 we have two vectors 000100 and 000101.
Since the second vector strictly requires more stability than the first one, the second vector can be
safely dropped. By repeatedly removing vectors that require more stability than another, we eventu-
ally have a subset of permissible vectors in which no vector is subsumed by another. We call these
vectors minimal-stability vectors. The latest required time is now characterized by a subset relation
of the original relation where each input vector can be mapped only to the minimal-stability vectors.
Each minimal-stability vector captures a latest required time condition in the sense that delaying any
primary input from the required time immediately causes the arrival time of the output to exceed the
given required time. For-the working example, the subset relation is shown below on the left while

its interpretation as required times is shown on the right.

Xx2 x,‘?...x,?z,.xiz,nxi’.,ox,‘?,,ox},,o xi1xp | (reg(x1),req(x2))
00 {000100,000001} 00 | {(0,%),(e,1)}
01 {000100} 01 {(0,)}

10 {000001} 10 {(=1)}
11 {111000} 11 {(0,0)}

An important point to notice is that there may be more than one loosest required time even
after an input vector is specified unlike topological analysis where required time is always unique.
In this particular example, either x; arriving by ¢ = 0 or x; arriving by ¢ = 1 is required for x;x, = 00.

Those two conditions are not comparable and each gives a different limiting condition.

3.3.2 Approximate Analysis

Although the exact analysis gives the most accurate information, it is computationally ex-
pensive. We will introduce two approximate analyses, which are less computationally intensive yet
still more accurate than topological required time analysis. Both analyses are conservative approx-

imations to the exact analysis.

29

Approximate Analysis via Simplified Modeling

In the exact analysis, a primary input signal can arrive at different times depending on sig-
nal values of the other inputs. In this first approximate analysis, we give up this flexibility and limit
ourselves to the case where a primary input signal arrives at a fixed time, independent of signal val-
ues of the other inputs. By this modification if an input signal is required early only under a specific
input vector, then the input is required early under many other input vectors since there is no way to
distinguish these vectors. This is how accuracy is lost conservatively. Arrival times for values 0 and
1, however, are still distingnished®. This simplification allows a simpler Boolean modeling which is
more efficient to solve.

In the exact approach, we need to impose the ordering constraints explicitly among leaf
. variables as Boolean constraints. Once we assume the vector-independent signal arrival behav-
ior at a primary input, the constraints can bz directly modeled by introducing additional Boolean
variables. Specifically, Boolean variables oy, ..., oc;I(21 Bly--- B;‘,“(x) are introduced to encode the

ordering constraints in leaf y variables as follows’.

T X
Ll = X
Ty (x)-
Lt = xegos
x:,l] = xaf@...oc;l(x) (3.3)
W _
Ly = B
T - _
y S

7 -
o = FBiB2---Bpyy

Notice that all the ordering constraints are automatically satisfied by the use of the Boolean
variables. The side effect of this encoding is that leaf i variables can now either take x or O for value
1, and either X or O for value O under a 0-1 assignment to the o and B variables while they can take
any function between 0 and x for value 1 and between 0 and x for value 0 in the exact analysis. This,

however, directly corresponds to our new constraint that each primary input arrives at a fixed time

60One can design a more conservative approximation scheme by not distinguishing arrival times for values 0 and 1.
"One can employ a log-based encoding to decrease the number of Boolean variables introduced although this makes
it difficult to extract the loosest required times later.

30

no matter how the other inputs behave. The remaining condition to be satisfied is that the two

functions for the primary output are equal to the on-set and the off-set of the output respectively.

%1 (X,0uB) = 2(X)
Xzo(xaaaﬁ) = m

where o and [are the set of all o variables and the set of all B variables respectively. In the above all
the leaf) variables are substituted by the right-hand side expressions in Equation (3.3). Since these

equations must be true regardless of X, X should be universally-quantified.

VX.[(x71 (X, @ B) = 2(X)) (xZo(X, &, B) = 2(X))]

= VX7, (X, 0,B) = 2(X)IVX.[xDo(X, @, B) = 2(X))

F(a,B)

Any satisfying assignment of F(c,8) meets the timing requirement.
Let us go one step further, as in the exact analysis, to see how we can compute the loosest

required time at primary inputs from F(a,). The following lemmas and theorems are useful.
Lemma 3.1 XZT,1 (xx) and XZT,o(XX) are monotone increasing functions in terms of yx.

Proof By the definition of i functions, each y function can be represented by a Boolean net-
work where the local functionality of each node is monotone increasing in terms of its fanins. Hence,

the claim holds. O

Lemma 3.2 7| (X,a,B) and xI,(X, 0., B) are monotone increasing functions in terms of o and B.

Proof Let 6 and B be 0-1 assignments to o and [respectively. Let ¥x be the functions for
leaf x variables under & and ﬁ By changing a 0 in o and B to a 1, it is easy to see that one cannot

decrease the functions xx. Thus from Lemma 3.1 the claim is proved. O

Lemma 3.3

X-Z:l(X:U':B) |a=(l,...,l),l3=(l,....l) = z(X)
XzT.o(X,asB) la=(1,) B=(ly]) = 2(X)

31

Proof Let A be the Boolean network for XZT,, . Let NL be the list of all the nodes in the network
topologically sorted from primary inputs of £7~\[(leaf i variables) to the primary output sz‘ |- Note that

each node is labeled of the form j, ,. The proof is by induction on these sorted nodes.

Base case (n € X): By settinga=(1,...,1),p=(1,...,1),x; ; =nand x; , =7 forany 1.

Induction (n ¢ X): From the inductive hypothesis, for any fanin of X, ,, say xf,:v‘f "),

-d
y o ® la=(1yen) B=(l) = mM(X)
—d —_—
X:,,,o ®) |a=(1,...,1),[5=(|....,1) = m(X),
where m(X) is the functionality of node m in terms of X in the original network A(. If v=1,
then the local function at the node ;, ; in A is the same as the local function at the node n in

A_ since the former function is just the sum of all the primes of the latter function. Therefore

X1 lo=(1,...1),8=(1,...,1y= #(X). Similarly the local function at the node x}; , in Ais the same as

the complement of the local function at the node n in Al Thus, X} ¢ la=(1,..1),8=(1,...1)= 7(X)-

Hence, %] | la=(1;...1),8=(1)= 2(X)- X2 la=(1,...1),8=(1,...1)= Z(X) can be proved similarly. O

Corollary 3.1

VQ,B:XZ:](X,%B) g Z(X)
VavB:xg,‘O(X1a1B) c m

Proof From Lemma 3.2 and Lemma 3.3. O

Theorem 3.1 F(a.,B) is a monotone increasing function in terms of o and B.
Proof

VX.[(x2,1 (X, &, B) = 2(X)) (X7 0(X, 0, B) = 2(X))]
= VX.(x7,(X,@,B) = 2(X))VX.(x7o(X, 0, B) = 2(X))

F(o.,B)

Consider a 0-1 assignment to o and B, say & and B respectively. From Lemma 3.2 and Corollary 3.1,

it is clear that changing 0’s to 1’s in & and [does not decrease the function value of F (o, B) from 1

32

to 0. Therefore, F(c, B) is a monotone increasing function in terms of o and B. O

We have shown that F(c, B) captures all the required times that meet a given timing con-
straint at the output. Since having less 1’s in an assignment to o and f requires less stability, we are
interested in a satisfying assignment where no assignment of 1 to a variable can be changed to 0 with-
out making the assignment non-satisfying. Since F(c, B) is a monotone increasing function, such an
assignment has a one-to-one correspondence with a prime of F(c, 8). Notice that any prime of the
function has only positive literals. The variables with positive literals in a prime are those which
must be set to 1. Thus, computing the latest required times from F (o, B) is equivalent to computing
all the primes of F(o,). Note that each prime gives a different limiting condition as in the exact
analysis.

Let us go back to the previous example. By introducing o. and [variables, leaf % variables

can be expressed as follows.

Xepl = X105
X0 = IBY
X:lcz,l = x2°‘f2
ng,l = xop’ey?
X;z,o = :V_Z—B?
Xm0 = XBpB3

va).,lxgz,lx;z,l = (x’;'a?@lexz
Xgl,o +X22,o +Xch2,0
= BE BB

= Bi'Em+pBr%

2
x:, 1

2
Xz,o

The F function for this example is:

F(o,B) = Vxp,x.(00' o002 x = x1%) (B]'%1 + B2z = ¥ +%7)
- a’f'OC;ZO!;’Bf'B’fz

33

(req(x1), req(x2))
X)X exact approximate | topological

00 {(01°°)a(°°11)} {(0»1)} {(010)}

01 {(0,%)} {(0,0)} {(0,0)}
10 {(=1)} {(0,1)} {(0,0)}
11 {(0,0)} {(0,0)} {(0,0)}

Table 3.1: Example: Comparison of Three Required Time Analyses

There are two satisfying assignments for the function:
(o' o2 052By! B12B3) = (111110, 111111).

The second assignment corresponds to topological analysis. The only prime of F(o,B)
is o) o202 B B2, which corresponds to the first assignment. Let us look into the first assignment

more carefully. The leaf o variables under this assignment are:

0 _
Xx,l = X1
0 - J—
Xa.,O = X
1 —
xxz,l - x2
0 _
Xt = X2
1 =
X0 = X2
0 _
sz,o = 0.

This constraint means that x; has to arrive by ¢ = 0 under all input vectors while x; has to
arriveby t =0ifxp = 1 butbyt=1if x; =0.

The results of required time analysis of the circuit in Figure 3.2 are summarized in Ta-
ble 3.1. The first column shows a vector applied to the primary inputs. The second, the third and
the fourth columns show the required times computed by the exact algorithm, the approximate al-
gorithm and the topological algorithm respectively. Notice that the required time computed by the
approximate algorithm is more restrictive than that based on the exact algorithm, but is looser than

the required time based on topological analysis.

Approximate Analysis via Functional Arrival Time Analysis

The first approximate analysis was based on a relaxation of the exact formulation. The

second approximate analysis takes a completely different approach, where functional arrival time

34

analysis is used as a subroutine to determine required times under the existence of false paths con-

servatively.

In the exact analysis leaf) variables at different times need to be distinguished at each pri-
mary inputx;. Let R; be the set that contains all those times for primary input x;. For the sake of sim-
plicity assume that R; contains all the times needed for value 1 and those for value 03. Let R = R; X
«.XRy. Letry =(ry1y..-,71L,n) € R where ry ; = minyeg,t. Similarly let rr = (r11,...,774) €R
where r ; = max,eg;t. Let r,7’ € R. A partial order < is defined over R as follows: for Vr,” € R,
r=<r' ifand onlyif Vi € {1,...,n},r; < r;. This partial order forms a lattice over R, where the top and
the bottom elements are rr and r, respectively. Each r € R represents a candidate for the required

time condition at the inputs.

r, corresponds to the required times at primary inputs obtained by topological analysis.
Therefore, if the primary inputs arrive by r , the stability of the primary output by the given required
time is guaranteed. Our goal is to find the largest 7 € R with respect to < that guarantees the stability

of the primary output. r may not be unique as in the first approximate analysis.

One way to find such r is to climb up the lattice gradually from r, by choosing larger r’s in
a greedy fashion. To test if the current r is a valid choice, one can simply perform functional arrival
time analysis of the circuit under the arrival times corresponding to r at the primary inputs. If the
arrival time at the primary output is no later than its required time, r is a safe condition. The largest
r that meets this requirement gives a limiting condition. The search for r can be refined by the use of
backtracking so that all the maximal 7’s satisfying the condition are enumerated. Furthermore, the
greedy search for the next r can be biased so that a specific subset of primary inputs is delayed more
aggressively. This results in more accuracy for those inputs in the subset. For example, the subset

can be set to critical inputs.

The advantages of this second approximate analysis are twofold. First, one can directly
use state-of-the-art functional arrival time analysis as a subroutine. Second, even if an entire analysis
takes a huge amount of time, any validated r looser than topological analysis gives useful information
immediately. Therefore, it is possible to set a time limit and return the largest r validated so far as

an approximate solution.

81t is possible to extend the idea so that required times for values I and 0 are handled separately for each primary input.

35

3.4 Extraction of Local Timing Constraints by Functional Timing Anal-

ysis

In the previous section we discussed how required times at the primary outputs of a com-
binational circuit can be propagated through the circuit backward to obtain required times at the pri-
mary inputs. Specifically we focused on how to do this by considering false paths. Functional arrival
time analysis is a counterpart of this for arrival time computation. Given these two techniques, we
can extract an accurate local timing constraint of a subcircuit from a global timing constraint of an

entire circuit. This issue will be addressed in this section.

Suppose a combinational network and arrival/required times at primary inputs/outputs are
given. Assume that a subnetwork of this circuit is to be optimized. When this subnetwork is resyn-
thesized, arrival times at subcircuit inputs and required times at subcircuit outputs must be specified
along with the functional specification of the subcircuit so that replacing the subcircuit with an opti-
mized circuit automatically preserves the original functional and timing specifications. This scheme
enables us to resynthesize subcomponents locally without violating the functional and timing re-

quirements of the whole system.

A naive solution for this problem is to compute arrival times and required times using topo-
logical delays. This approach is commonly used in most timing optimization algorithms in the liter-
ature. Although this conservative approach gives a quick and conservative approximation to the true
timing constraint, the resulting timing requirement may be more stringent than necessary since false
paths in the surrounding network are completely ignored. Therefore, the timing constraint computed
in this manner may prevent resynthesis from exploring the entire design space thereby leading to an
unsatisfactory circuit. The goal of this section is to solve this problem more rigorously by taking
false paths into account so that a more accurate and thus more flexible timing constraint is computed

for the subnetwork.

3.4.1 Problem Formulation

We restrict our attention to combinational circuits. Sequential circuits using edge-triggered
flip-flops, however, can be easily handled within the same framework by assuming all the flip-flop
inputs and outputs as primary outputs and inputs respectively, where the required times and arrival

times of those are determined by the clock edge minus the setup time and the clock edge itself re-

36

subcircuit input U - subcircuig output V
: \ 7
) /
/
\
primary input X \ / primary output Z
_ i \;’/ .
arr(X) v .

,\ 1 / req(2)

|

1
subnetwork N’

Figure 3.3: Resynthesis of a Subnetwork

spectively®.

Local Timing Constraint Computation: Given a Boolean network A/ and
a subnetwork A’ of N[, characterize the timing constraint of A’ so that resyn-
thesis of the subcircuit can be performed locally without violating the timing
constraint of the entire network A(. Our assumption is that A’ \ A’ remains
unchanged and only A is to be resynthesized. A" must meet the condition

that there is no path leading from a subcircuit output to a subcircuit input.

Letus introduce some notation for ease of explanation. Let X = (xy,...,x,) andZ = (zy,...,2n)
be primary inputs and primary outputs of Al respectively. Let U = (uy,...,up) and V = (v, ..., Vvg)
denote inputs and outputs of A" respectively. (See Figure 3.3.) We assume that arrival times at pri-
mary inputs X and required times at primary outputs Z are given. Our goal is to compute arrival times
at subcircuit inputs U and required times at subcircuit outputs V by considering the effects of false
paths in AL\ A" explicitly. One can think of this as mapping the timing requirement of the entire

circuit onto the subcircuit.

The use of a level-sensitive latch makes required time analysis more complex due to cycle stealing. Depending on
the timing at a latch output, required time analysis needs to cross the latch backward and analyze the previous cycle. This
remains as future work.

37

N_FO

subnetwork N’

Figure 3.4: Local Timing Constraint of a Subnetwork

3.4.2 Computing Local Timing Constraints of Subcircuits

In this subsection, we show that the problem can be solved as a combination of functional
arrival time analysis, which propagates arrival times forward from primary inputs to subcircuit in-
puts, and functional required time analysis introduced in Section 3.3, which propagates required

times backward from primary outputs to subcircuit outputs.

Arrival Time Computation

The first step is to compute arrival times at the subcircuit inputs. The transitive fanin of
the subcircuit inputs is extracted from A/, which we call Af;. (See Figure 3.4.) This network is
then analyzed with a technique similar to functional arrival time analysis'?. Notice that the primary
outputs of A are the subcircuit inputs, and the primary inputs of Nr; are a subset of primary inputs
X of A\. The main difference between this problem and the standard functional arrival time analysis
problem is that in the latter problem we only care about the latest arrival time for each output while
in our problem interactions among arrival times of different outputs are of much interest to capture
timing flexibility accurately!!.

Consider applying function analysis on Afr;. For each subcircuitinput u; € U, we list all

19Tp be precise, the delay of the fanin network is affected by changing its fanout, which is unknown in our setup since
the fanout network is to be resynthesized. In this paper we do not take this load effect into consideration to simplify the
explanation.

"' Bahar et al [BCH* 94] proposed a functional arrival time analysis technique to compute input-vector dependent delay
using ADDs[BFG*93]. This can be used as an alternative to the analysis below.

38

the potential arrival times at u;, which is easily computed by propagating arrival time topologically
from primary inputs to the subcircuit inputs while maintaining not a single latest arrival time but a
set of arrival times at each node. Then, yj, ,,v € {0, 1} is computed for each arrival time 7. Note that
these %, functions are in terms of primary inputs X of . Then X% = X0 Xz, | represents all the
primary input vectors at X that make a signal at u; stable by r = 7. Assume that the list of potential

arrival times at u; is {tj,...,7;}. Now the Boolean space BX| can be partitioned into ! disjoint sets
{S1,...,5;} in terms of arrival times as follows.

S1o= X

S o= KT (k=2,...,)

Note that ¥;. increases as T increases by its construction and S;’s are defined as differences between
time-neighboring functions. The set S (k= 1,...,!) contains all the input vectors at X that make the
signal u; stable by ¢ = 1, but not by ¢ = T;_,, where Tp = —oo.

Once a partition of B! is computed for each subcircuit input, all the partitions are super-
imposed on B! to form a refined partition. This is equivalent to partitioning BX! such that any input
vector in a class has the same arrival time behaviorat U.

The final step is to interpret this arrival time in terms of subcircuit inputs U so that the
timing specification of the subcircuit is given locally in terms of its inputs. Remember that so far
arrival time at U is computed in terms of X. The subcircuit, however, cannot distinguish input vec-
tors applied at X unless they yield different vectors at U. Therefore, it is necessary to reinterpret this
partition in terms of subcircuit inputs U to see what arrival time behaviors can be observed for each
vector at U. This is easily computed from the partition of B! and the functionality of the transitive
fanin network Af;. For each vector u € BVl the set of all the vectors of BIX! yielding u at U is com-
puted from the functionality of Af;. Using the partition of B! computed previously, one can list all
the possible arrival times for the vector u. All the latest arrival times are then extracted from them.

Let us illustrate this analysis with an example. Assume that the network in Figure 3.5 is
N:. For simplicity, we also assume that each gate has a unit delay and all the primary inputs arrive

atr = 0. The y, function analysis gives the following.

X2 =1
X =
¥, =1

~1 -
Xuz = X

39

x1)
se=pe g
x3 ﬁ>—"2

arr(x1) = arr(x2) = arr(x3) = 0

u

Figure 3.5: Example: Af;

The first two equations imply that if x; = 0, u; arrives at # = 1, but otherwise the signal arrives at
t = 2. The last two equations then describe signal stability of u,. If x; = 1, then u, arrives at ¢ = 1,

but otherwise the arrival time is ¢ = 2. This can be summarized in the following table.

X1x2x3 | uyuy | arr(uy) arr(uz)
000 00 (1,2)
001 00 1,2)
010 00 (1,2)
011 01 1,2)
100 01 2,0
101 01 2,
110 01 2,1
111 11 2,1)

Now, notice that the subcircuit which Af; feeds into cannot distinguish x; x,x3 = 011 and
100 since both yield the same vector 01 at u u;. Thus, when the subcircuit is resynthesized, we
can only assume that the arrival time at the subcircuit input is either (1,2) or (2,1) when uju; = 01.
Althoughit is possible to approximate this by having a single arrival time pair (2,2), it is not desirable
since this is an over-constraint!2,

The following table is obtained by folding the table above in terms of the values of u;u;.

uyuy | arr(uy) arr(uy)
00 {a,2)}
01 {(1,2),2.1}
10 { (°°! °°)}
11 {@.n}

121f an arrival time tuple is strictly earlier than another tuple, the former is dropped since the subcircuit A’ must be
synthesized under the worst-case scenario.

40

{(ee,0) } for uju; = 10 means that the subcircuit never observes the vector at the input.
This corresponds to a satisfiability don’t care [BRSVW87] among u, and u;. It is interesting to ob-

serve that functional flexibility is captured in this framework naturally.

Required Time Computation

Computing required times at subcircuit outputs can be performed by analyzing a subnet-
work of A, Ao, with functional required time analysis. Afro is the same network as A except all
the subcircuit outputs V are relabeled as primary inputs. (See Figure 3.4.) Notice that required times
at the subcircuit outputs are of interest. Since arrival times at X are known, there is no need to in-
troduce leaf variables for those primary inputs of Ao which are elements of X. Required time is

computed for each vector v € BVl at subcircuit outputs.

Towards More Accurate Timing Constraints

We consider a special case of the problem where no functional flexibility (e.g. don’t cares)
is explored in resynthesizing the subcircuit. In other words, the functional specification given for the
subcircuit is the same fun;:tionality currently implemented. This allows us to compute a local timing
constraint more accurately.

For arrival time computation at subcircuit inputs, instead of interpreting arrival time in
terms of subcircuit inputs, we can simply keep arrival time in terms of primary inputs X. Required
times at subcircuit outputs are computed for each vector v € BVl in the previous subsection. Since
the functionality of the subcircuit is preserved after resynthesis, the functionality of V in terms of
X remains unchanged. Therefore, it is possible to interpret the required times in terms of primary
inputs X. Now for each primary input vector x € BX! we have a single arrival time at the subcircuit
inputs and possibly multiple required times at the subcircuit outputs. One can then map this timing
constraint to the subcircuit. Since arrival times and required times are coupled through X, analysis
is more accurate compared to the one described before where arrival times and required times are

computed independently.

3.4.3 Applications

Computation of local timing constraints has several practical applications.
The first is performance-oriented resynthesis. Suppose a combinational circuit was synthe-

sized from a specification. Although one can optimize the entire circuit further to speed up late out-

41

flip—flop)|

Figure 3.6: Timing Optimization of Hierarchical Circuits

puts, another promising approach is to extract a subcircuit containing part of critical paths and opti-
mize it locally. This scheme is more likely to give a faster circuit because the circuit fed to synthesis is
smaller. A similar approach is in fact taken in timing optimization techniques [SWBSV88, AMF97]
published in the literature, but their delay computation is based on topological longest paths thereby
failing to capture some of existing timing flexibility. Since our approach computes a local timing
constraint of the subcircuit by considering false paths from the surrounding circuit, larger flexibility,
i.e. less stringent timing requirement, is obtained, which makes resynthesis easier. An interesting
subproblem of this application is to compute the true slack of a gate output, where the slack is cal-

culated by taking false paths into account.

The second practical application is in hierarchical synthesis. Assume that a set of com-
municating sequential circuits does not meet a timing requirement, e.g. they do not satisfy a cycle
time constraint. We now want to optimize component circuits one by one to speed up late signals.
Optimizing the entire circuit as a single chunk is not desirable in this context because it destroys the
hierarchy meaningful to designers and more importantly the whole circuit may be too large to handle
for synthesis algorithms. Since the boundaries of components are not necessarily the inputs or the
outputs of flip-flops, one may have to map arrival/required times for flip-flop inputs/outputs of the
other components to the interface nodes of the component to be optimized. Figure 3.6 shows such a
situation, where two sequential circuits are cascaded. Assume that a cycle time is given as a timing
specification and we want to optimize only the left component with the right component unchanged.
For simplicity, assume that there is a single flip-flop in the right component. The input of this flip-
flop must become stable before the cycle time minus a set-up time. This constraint can be translated
to that of the left component by propagating the required time at the flip-flop input backward through

the combinational gates in the transitive fanin of the flip-flop to the boundary of the two components.

A similar scenario can arise in pure combinational synthesis. Consider a cascaded combi-

national circuit, where the driven circuit contains a fair amount of false paths. To resynthesize the

42

driving circuit effectively for improved performance it is critical to characterize the required times of
the signals feeding the driven circuit as accurately as possible. Required times computed by topolog-
ical analysis may completely mislead resynthesis due to the unawareness of false paths in the driven

circuit.

3.5 Experimental Results

We have implemented on top of SIS[SSM*92] the exact and the two approximate algo-
rithms for required time computation discussed in Section 3.3. The delay model we used in the ex-
periments is the unit delay model. In all the experiments we set the required times of ¢ = 0 at all
the primary outputs and computed required times at primary inputs. All the Boolean operations in
the exact and the first approximate methods are performed using BDDs [Bry86] while in the second
approximate method SAT-based functional arrival time analysis [MSBSV93] is used.

The efficiency of the algorithms is dependent not only on the size of a network but also
on the amount of reconvergence in the network. In the exact algorithm, we introduce one Boolean
variable for each leaf) variable. Thus, the existence of many reconvergences implies manipulation
of y, functions of many input variables'3 in BDDs. The same observation is also true for the first
approximate method, where a Boolean parameter variable is introduced for each leaf) variable.

The second approximate algorithm is more robust than the first since the computation en-
gine is a SAT solver. As mentioned before, an advantage of this approach is that any intermediate
required time validated can be used as a safe approximation to the exact solution.

Table 3.2 shows a comparison between the exact and the approximate algorithms on MCNC
benchmark circuits. CPU times are measured in seconds on DEC AlphaServer 8400 5/300. The ex-
act algorithm and the first approximate algorithm were run with dynamic variable reordering [Rud93]
being enabled. * in the table denotes that the analysis gives a non-trivial required time strictly looser
than topological analysis. The reason why the first approximate algorithm gives a looser constraint
than the second in some exémples is that the required times of values 0 and 1 for each primary in-
put are distinguished in the first algorithm while the current implementation of the second algorithm
only searches for value-independent required times for efficiency.

Table 3.3 shows CPU times of the second approximate algorithm on ISCAS combinational
benchmark circuits. CPU times are measured in seconds on the same machine. The second column

shows whether the algorithm was able to find non-trivial required times or not. The third and fourth

BIn many ISCAS benchmark circuits the number of Boolean variables needed can easily go beyond hundreds.

circuit

b9
dalu
des
k2
rot
481

#PI

41
75
256
45
135
16

#PO | CPU time CPU time CPU time
(exact) | (approximate 1) | (approximate 2)
21 - 1.1x% 1.0
16 - - > 12 hours#
245 - 2439 601.9
45 1632.1% 22.3 86.0
107 - - 139.5%
1 - 30631.2 124

Table 3.2: Required Time Computation — Exact vs. Approximate

circuit Non-trivial CPU time CPU time
required time? | firstr#£ry T'max

(in seconds) | (in seconds)
C432 Yes 79 33.2
C499 No - 40.1
C880 No - 26.7
C1355 No - 26.0
C1908 Yes 1.0 1356.4
C2670 Yes 2.8 2298.1
C3540 Yes 0.5 > 12hours
C5315 Yes 717 359.6
C6288 Yes 1.0] > 12 hours
C7552 Yes 2.5 992.5

Table 3.3: Required Time Computation — ISCAS Examples

43

44

columns show CPU time spent until the first non-trivial required time was found, and CPU time for
the entire analysis respectively. Although the algorithm could not finish on C3540 and C6288 within
12 hours of CPU time, it found non-trivial required times within a second. For C5315 36 primary
inputs out of 178 had required times strictly better than the corresponding topological required times.
For some of the primary inputs the additional accuracy over topological analysis was 3 time units,
i.e. those primary inputs can safely arrive 3 time units later than their topological required times
without violating the required times at the primary outputs. For C7552 70 out of 207 primary inputs
had strictly better required times than their topological required times. The computed required time
for one of the primary input was r = —17 while its topological required time was ¢ = —39. Thisresult

shows that the impact of false paths in required time analysis can be significant.

3.6 Conclusions

We have studied how to perform required time analysis on combinational circuits more
accurately than topological analysis, by taking false paths into account. The techniques proposed in
this chapter, which is developed on top of the theory of functional arrival time analysis, can compute
a more relaxed yet correct required time than the one computed by topological required time analy-
sis. We have then shown that the combination of this functional required time analysis and existing
functional arrival time analysis allows us to characterize an accurate timing constraint of a subcircuit
given a timing constraint of an entire circuit. We will see other applications of functional required
time analysis in the rest of this dissertation.

Even though this approach captures larger timing flexibility, existing timing optimization
algorithms are not able to exploit the flexibility fully since timing specifications handled by timing
optimization algorithms are of much simpler form than value-dependent constraints computed by our
technique. A more sophisticated timing optimization algorithm compatible with the refined timing
constraint proposed here is needed to fill this gap.

Another avenue for future research is to improve the efficiency of functional required time
analysis by further approximations. In the current algorithms we distinguish between all potential
required times at primary inputs. One possible approximation is to group them into clusters of neigh-
boring required times conservatively. Controlling the number of clusters gives a trade-off between
accuracy and CPU time for a more realistic delay model such as the mapped delay model.

In this chapter we have shown how to compute input-vector dependent required times at

the primary inputs of a combinational circuit given traditional input-vector independent required

45

times at the primary outputs. A more general setup is to start with input-vector dependent required
times at the outputs. This scenario naturally arises if functional required time analysis is performed
in a hierarchical fashion. Although it is possible to extend the theory to capture this general case, its

practical impact is yet to be determined.

47

Chapter 4

Delay Characterization of

Combinational Modules

Accurate delay characterization of circuits at various levels of abstraction has always been
one of the main focuses of timing analysis research. This chapter addresses the delay characterization
problem of combinational modules at the gate level. A combinational module is a combinational cir-
cuit that can be used under any arrival time condition at primary inputs. An intellectual-property(IP)
module is one example.

We discuss how to compute a false-path-aware delay abstraction of a combinational mod-
ule. A delay abstraction is a compact representation of the delay information of the module, which
carries pin-to-pin delay for each primary-input/primary-outputpair'. The delay can be dependent on
input vectors provided to the module. The existence of false paths is captured in the delay abstraction
by keeping effective pin-to-pin delays instead of topological delays. The internal structural details
of the module are abstracted aWay.

This chapter is organized as follows. After a brief introduction to the problem in Sec-
tion 4.1, Section 4.2 shows that the false-path-aware delay abstraction of a combinational module
can be computed exactly using functional required time analysis discussed in Chapter 3. A false-
path-aware delay abstraction is given for an example in Section 4.3. Section 4.4 discusses delay
analysis using delay abstractions. After introducing a novel framework for comparing the accuracy

of delay abstractions in Section 4.5, we study a different approach to computing delay abstractions

ITo the best of ourknowledge Note et al. NCGM92] were the first to use delay abstractions of this form. Kuehlman and
Bergamaschi employed this idea later in [KB92]. Kobayashi and Malik [KM95, KM97] studied compact representations
of delay abstractions. However, delay abstractions were independent of input vectors in the previous work.

48

using functional arrival time analysis in Section 4.6. Sections 4.7 and 4.8 discuss approximate com-
putation of delay abstractions based on functional required time analysis and functional arrival time
analysis respectively. Section 4.9 generalizes delay abstractions to the case where gate delays are
variables. Section 4.10 summarizes related work in the literature. The chapter is concluded in Sec-
tion4.11

4.1 Introduction

The major difficulty in computing a false-path-aware delay abstraction of a combinational
module is in the requirement that a delay abstraction be valid and accurate under any arrival time
condition at the inputs. State-of-the-art path sensitizationconditions (e.g. viability [MB91], floating-
mode [CD93] and XBDO [MSBSV93]) exploit arrival times at primary inputs to enable exact false
path detection. Therefore, a direct application of those path sensitization conditions is not appropri-
ate in this context since we cannot assume specific arrival times.

Several sensitization conditions are known such as static co-sensitization [DKM93] and
the Brand-Iyengar condition [BI88] that do not refer to arrival times at the inputs. The use of such
sensitization conditions guarantees the validity of a resulting delay abstraction under all arrival times.
However, they are not as accurate as arrival-time dependent sensitization conditions. It appears that
the two requirements, the validity and the accuracy, conflict with each other.

Our goal is to resolve this conflict positively by showing that an accurate delay abstrac-
tion can be computed under the XBDO model without assuming a specific arrival time condition.
Specifically, we show that the problem is reducible to functional required time analysis discussed in
Chapter 3.

4.2 Delay Characterization by Functional Required Time Analysis

Let M be a single-output combinational module under analysis. Let X = (xy,...,x,) and
z be the primary inputs and the primary output of M respectively.

Consider delay from the primary inputs X to the primary output z. The standard way to
define the delay of a module is by computing the stable time of each output given arrival times at
all the primary inputs. The difference between the output stable time and the arrival time of each
input defines the delay from the input to the output. This approach, however, is not applicable to our
setting since the arrival times at the primary inputs are unknown.

49

Our objective is to capture the timing characteristics of a given module valid and accurate
under any surrounding environment. To achieve this the delay of a module is defined in a different

way.

We first set a required time, say ¢ = 02, to the output and analyze the given circuit to see
when the primary inputs are required to be stable so that the output becomes stable by the required
time®. The delay from an input to the output is then defined as the difference between the required
time at the output (+ = 0) and that of the input. This is exactly the same problem as functional required

time analysis discussed in Chapter 3.

Functional required time analysis gives Z; C B" X R", where a set of timing tuples is given
for each input vector. Given an input vector x € B", each n-tuple T = (¢,,...,t,) such that (x,T) €
7, represents valid required times at the inputs. The interpretation of a tuple T is that the output
is guaranteed to be stable at r = 0 if the primary input vector x = (v,...,v,) arrives at or before
T = (t),...,t,) respectively. We assume that only those timing tuples not subsumed by another are
contained under each input vector in 7; as in Section 3.3.1. Since the required time analysis is done
in the XBDO mddel, required times computed follow the monotone speedup property [MB91], i.e.

if a signal arrives earlier than the required time specified, it never worsens the stability of the output.

Recall that 7; may contain more than one timing tuple for a given input vector, in which
case each of the timing tuples captures a different permissible signal arrival behavior at the primary

inputs. The delay abstraction (timing abstraction) D, of M is then defined as

D, ={(x,(=t1,...,—ta)) | (X, (t1,.--,1n)) € T}.

The sign of required times is flipped in each timing tuple since each required time is subtracted from
0, the required time at the output.

To deal with a multiple-output module, the same analysis is applied to the transitive fanin

cone of each output independently. Each output has its own delay abstraction this way.

50

J g
Q —— —

Figure 4.1: Example: A Combinational Module M

4.3 Example

Consider a circuit shown in Figure 4.1, taken from [BI88]. Assume the unit delay model.

The delay abstraction Dy, computed by functional required time analysis is:

abc dysgdpsgdcsg

000 {(3,=2,2),(—=,3,2)}
001 {(2,2,2)}

010 {(3,-%°,2),(—2,2,~c0)}
011 {(—ee,2,—0)}

100 | {(2,—e0,—%0),(~=,3,2)}
101 {(2, =00, —)}

110 | {(2, =20, —20),(—=o,2, —eo)}
11 | {(2, —e2, —2),(—,2, —0) }

where —eo denotes that the availability of the corresponding input is irrelevant to the stability of the
output.

The delay abstraction is a table indexed by input vectors. Given an input vector, the delay
abstraction gives a set of delay tuples. Each delay tuple captures a distinct delay characteristic of

the module under the input vector. For example, consider an input vector 000. There are two delay

2The absolute value of f = 0 is not important since we are only interested in time differences.

3A similar formulation was used by Min et al. [MZL96], in which path sensitization of combinational networks under
arbitrary input waveforms was discussed without considering a specific arrival time condition at primary inputs. They
used this formulation to compute an input waveform to sensitize a given path. The delay model used was the fixed delay
model, where each gate has a constant delay. The discussion in this chapter is based on the XBDO model. Therefore, we
implicitly assume that once the value of an input waveform changes from an unknown value X to a Boolean constant, it
keeps the constant. In other words, we consider only a specific class of input waveforms, which is natural in synchronous
designs. Consideration of arbitrary input waveforms may be useful in aggressive design styles such as wave pipelining.

31

tuples (3, —ee,2) and (—ee,3,2) under the vector. The first tuple guarantees that the output becomes
stable even without a stable value of b, in which case the effective delays from a and c to the output
are 3 and 2 respectively. All the paths from b to the output can be thought of as false when this delay
tuple is used. The second tuple captures a symmetric case where the roles of a and b are switched. In
this case all the paths from a to the output are false. The key to the accuracy under arbitrary arrival
times is in this capability of maintaining more than one delay tuple for the same input vector. This
flexibility allows us to choose the delay tuple that gives the most accurate delay estimate at the output
under a given arrival time condition.

Let us contrast this with the delay abstraction corresponding to topological delay analy-
sis. Since the longest topological path lengths from a,b and c are 3, 3 and 2 respectively, the delay

abstraction D",pnl(;gical is:

abc | dygdpsgdcsg

000 | {(3,3,2)}

001 {(3,3,2)}

010 {(3,3,2)}

011 {(3,3,2)}
(3,3,2)
(

100| {(3,3,2)}
101 {(3,3,2)}
10| {(3,3,2)}
11| {(3,3,2)}.

Dy potogicat 18 independent of input vectors since topological delay analysis ignores the functionality
of the circuit. No false paths are detected. The accuracy gain in D,y is clear by comparing the two

delay abstractions.

4.4 Delay Analysis using Delay Abstractions

Given an input vector x and arrival times A = (arr(x;),...,arr(x;)) = (ay,...,a,), the
signal stable time at the output z can be determined by using a delay abstraction D. Suppose that D
has multiple delay tuples d, ..., for x. For each delay tuple §; = (d; 1,...,din)(i=1,...,m) the

signal stable time s; at z under &; is computed as

Si = mjax(a.) + dir.l) ¢

52

Since all delay tuples are valid, the signal stable time s at z is determined by taking the earliest time
among s;’s.

s = mins; = minmax(a; +d;)
i ! J

For ease of exposition we introduce a function delay_propagate to compactly represent
this operation. The function takes a delay abstraction D C B” X R", an input vector x € B" and arrival
timesA = (ay,...,a,) € R" as inputs, and returns a signal stable time at the output s € R. The function

is defined in exactly the same way as in the last paragraph.

Definition 4.1

delay_ te(D,x,A) = in ax(a;+d; ;
elay_propagate() i R (aj+d;;)

Consider the circuit in Figure 4.1 again. Let x = 000 and A = (arr(a),arr(b),arr(c)) =
(1,0,0). There are two delay tuples (3, —eo,2) and (—eo,3,2) under input vector 000. If the first

tuple is used, the arrival time estimate s at the output is:
51 =max(1+3,0—e0,0+2) = max(4, —,2) = 4.
If the second tuple is used, the estimate s is:
52 = max (1 —eo,0+ 3,0+ 2) = max(—e,3,2) = 3.
Finally, we choose the best estimate s by taking the minimum of s, and s,.
s = min(sy,s2) = min(4,3) =3

Notice that once the exact delay abstraction of a module is computed, false path analysis

can be performed under any arrival time condition only using the delay abstraction.

Definition 4.2 Givendelaytuples(dy,...,d,) and (d},...,d;) €R", (dy,...,d,) <(d},...,d.) ifand
only ifVi,d; < di(i=1,...,n).

Lemma 4.1 < is transitive.

Proof Trivial from the definition of <. O

We are ready to introduce a notion of reduced delay abstractions.

53

Definition 4.3 A delay abstraction D is said to be reduced if for every input vector x and any pair
of delay tuples (d,,...,d,) and (d,...,d}) under x

(dry-..,dn) A(d,...,d})

This property is automatically satisfied if a delay abstraction is computed by functional
required time analysis. Any delay abstraction can be made reduced by dropping delay tuples sub-
sumed by others under the same input vector. Notice that the reduced delay abstraction has the same
information as the original since the delay tuples dropped during the reduction are never useful in
timing ailalysis. For example, suppose that a delay abstraction D contains delay tuples (d,...,d,)

and (d},...,d,) under an input vector x, where
(dyy-..,dn) Q(d},...,d)).

Under an arrival time condition A = (ay,...,a,), the stable time estimate s of the output using the
first tuple is:
s = max(a;+d;).
J
The stable time estimate s’ under the second tuple is:
s' = max(a;+dj).
i

Since d; < d; for any j, s < s’ for any A. Thus, the second tuple (d},...,d}) can never give a strictly
better estimate, and thus is safe to remove.

From now on we assume that delay abstractions are reduced.

4.5 Comparing Delay Abstractions

In the next section we will present a different approach to computing a delay abstraction
of a combinational module using functional arrival time analysis, and argue its accuracy and cor-
rectness. To make a rigorous argument possible we introduce a criterion for comparing delay ab-
stractions. Specifically a partial order over delay abstractions is defined, where D; < D, intuitively
means that stable time estimate at the output using delay abstraction D is no later than that using
delay abstraction D; under any vector and any arrival time condition at the primary inputs.

Let D,z be the delay abstraction of a combinational module computed by exact func-
tional required time analysis. If a delay abstraction D meets Deyur < D, D is a correct delay ab-
straction since the use of D in delay estimation never underestimates exact stable time at the output

computed by Dy, regardless of a choice of vectors and arrival times at the inputs.

54

On the other hand, if Dz4r Z D, there exists a pair of an input vector and an arrival time
condition at the inputs under which the use of D gives arrival time at the output strictly earlier than
that computed by D,y,;. Since this is a delay underestimation, any delay characterization method
that can give such D is incorrect.

The partial order < over delay abstractions is defined as follows.

Definition 4.4 Let D\ and D, be the delay abstractions of a single-output combinational module
M. D, X D, if for every input-vector/delay-tuple pair (x, (dy, .. .,dy)) € Dy, there exists an input-
vector/delay-tuple pair (x,(d},...,d.)) € D, such that (d}y...,d)) Q(dy,-..,dy).

Theorem 4.1 Vx,A = (ay,...,a,),delay_propagate(D,,x,A) < delay_propagate(D,,x,A) if and
only if D| < D,.

Proof

< Letd=(dy,...,d,) be the delay tuple in D, under x that gives the earliest stable time s, at the
output under A.

sy = delay_propagate(D,,x,A) = mlax(a,- +d)

From the assumption, there exists a delay tuple &' = (d},...,d!) < (dy,...,d,) in D under x.

Therefore, the signal stable time s, at the output is:

5| = delay_propagate(D,,x,A) < m‘ax(a,--i-d,f) < m,ax(a,-+d,~) = 5.

= Suppose for a contradiction that (x, (d}, .. .,ds)) € D; does not have an input-vector/delay-tuple
pair (x, (d},...,dp)) in Dy such that (d,...,d;) 9 (d),...,d,). Let x be this input vector and
A = (—d,,...,—d,). The signal stable time s, at the output under D; is:

52 = delay_propagate(D,,x,A) = 0

by using the delay tuple.

Now consider D;. Let (d},...,d)) be a delay tuple in D, under x. There exists at least one i
such that dj > d; for any choice of (d},...,dy). Therefore, the signal stable time at the output
s is:

s| = delay_propagate(D,,x,A) = (dmilz)max(-d,-+d,f) >0,
N " i

(R

which is later than s,. A contradiction.

55

We prove several properties of <.
Theorem 4.2 < is reflexive.

Proof VD,D < D. This is trivial from the definition. O

Theorem 4.3 < is transitive.

Proof Suppose that Dy < D; and D, < D3. We want to prove that Dy < Dj. Let (x, (dy,...,dy)) €
D;. Since D, X Dj, there exists (x, (d),...,d;)) € D, such that (d},...,d;) < (d,...,d,). Further-
more, since D X D, there exists (x, (dj,...,d;)) € Dy such that (df,...,d}) < (d},...,d}). By
combining the two results with the transitivity of < (Lemma4.1), for any (x, (dy, .. .,d,)) € D3, there
exists (x, (d{,...,dy)) € D such that (df,...,d) < (dy,...,d,). O

Theorem 4.4 < is antisymmetric.

Proof Suppose that D; < D, and D, < D;. We want to prove that D = D,. Since D < D,,
for any (x, (d),...,dn)) € D, there exists (x,(d},...,d;)) € D such that (d},...,d}) < (dy,...,dy).
Furthermore, since D, X D, for (x, (d},...,d})) € D, above, there exists (x, (dY,...,d})) € D, such
that (dY,...,d,) d(d},...,d}). By thetransitivity of I (Lemma4.1) (d},...,d") 4(dy,...,d,). Note
that both of the delay tuples are under x in D,. Suppose (d},...,d;) # (di,...,d,) for a contradic-
tion. This means that under x there are two distinct delay tuples where one is dominated by the other.
This contradicts the assumption that D; is reduced. Therefore, (df,...,d;) = (di,...,d,), and thus
(d},...,d;) = (d1,...,d,), showing that any delay tuple under x in D is also a delay tuple under x

in D,. The symmetric argument proves the other direction. O

4.6 Computing Delay Abstractions by Functional Arrival Time Anal-
ysis

Section 4.2 showed that functional required time analysis of a combinational module di-

rectly gives a false-path-aware delay abstraction of the module without assuming a specific arrival

56

time condition at primary inputs. Since no assumption is made about arrival time conditions at the
inputs, the resulting delay abstraction is valid under any arrival time condition. Furthermore, the
delay abstraction captu~res enough information so that a delay estimate is accurate under any arrival
time condition.

In this section the delay characterization problem is approached from a different angle. We
argued previously that the use of functional arrival time analysis in computing a delay abstraction is
not appropriate. The reason was that state-of-the-art techniques for functional arrival time analysis
take as input an arrival time condition at primary inputs, which can lead to a delay abstraction spe-
cialized for the given arrival time condition. The validity of the delay abstraction is questionable if
it is used under different arrival times.

Suppose a delay abstraction is computed by functional arrival time analysis under a spe-
cific arrival time condition. If we can prove that the use of the resulting delay abstraction never leads
to delay underestimation under any other arrival time condition, it is conservative and thus safe to
use. On the other hand, if there exists some input vector and some arrival time condition under which
the delay abstraction gives too optimistic delay estimation, the possibility of delay underestimation
makes the delay abstraction unsafe. We will formalize this idea and show that the validity of delay
abstractions depends on what path sensitization condition is used in functional arrival time analysis.
Two different approaches will be presented. Throughout this chapter D! denotes a delay abstrac-
tion computed by the first approach while D? denotes a delay abstraction computed by the second

approach.

4.6.1 Delay Abstractions by Path Classification

The first approach is based on the classification of paths into true and false paths under
an arrival time condition. We first choose an arbitrary arrival time condition and perform functional
arrival time analysis using a path sensitization condition thereby classifying all the paths of the circuit
into true paths and false paths. All the false paths are then ignored and the effective delay from an
input to an output is computed as the longest true path between the two terminals. A false-path-aware
delay abstraction is constructed this way by using functional arrival time analysis.

The idea of ignoring false paths in delay analysis has been standard in commercial timing
analysis tools [BS95]. In this scenario designers specify false paths, which are then ignored during
topological analysis. If false paths are identified and ignored under the same arrival time condition,
the approach is clearly correct. However, a typical usage of such a timing analysis tool is that false

57

paths are specified once and for all, which are assumed to be false in all subsequent analyses even
under different arrival times. The correctness of this approach hinges on whether the false paths
specified are conservative enough for any arrival time condition. To the best of our knowledge, the

validity of this type of analysis has never been discussed in the literature.

Arrival-Time Independent Path Sensitization Conditions

Although most of the path sensitization conditions proposed recently refer to arrival times

at primary inputs to determine the falsity of paths, there are some sensitization conditions indepen-
dent of arrival times. Static co-sensitization [DKM93] and the Brand-Iyengar [BI88] conditions are
in the category. For this class of sensitization conditions we do not need to select arrival times in the
first place. Since the correctness of these conditions is guaranteed implicitly under all arrival time

conditions, the resulting delay abstraction is a conservative delay abstraction to D gy,

Theorem 4.5 Let D!,_,,,. be the delay abstraction constructed by static co-sensitization analysis

of a single-output combinational module M. Then D yyey < D}y ons-

Proof See [DKM93]. O

Theorem 4.6 Let D}g, be a delay abstraction constructed by Brand-Iyengar analysis of a single-

output combinational module M under some fanin ordering. Then D xzer < D,',,.

Proof See [BI88]. O

Let us apply these two sensitization conditions to the circuit in Figure 4.1. In the following
we focus on the case where an input vector is 000. Other input vectors can be analyzed in the same
way.

First, static co-sensitization analysis is performed on the circuit. Paths (a,e,g) and (b, e, g)
are false since g has a controlled value 0 of the AND gate while e does not have a controlling value
0. The other three paths are true. Since the longest topological path from each input is still true, the
delay tuple for this vector is (3,3, 2), which is the same as the one computed by topological analysis.

Let us try Brand-Iyengar analysis. Brand-Iyengar analysis requires that a fanin ordering

be given at each gate. Depending on the orderings the accuracy of delay abstractions varies.

58

Suppose a < b at gate d and e < f at gate g*. Paths (a,e,g) and (b, e,g) are false again
since at the fanins of g the other fanin f, which is after e in the ordering, has a controlling value 0.
The topological longest path from a, (a,d, f, g), is also false since at gate d the other fanin b > a has
a controlling value. All the other paths are true. Notice that both of the paths from a are false. This
results in a delay tuple (—oo, 3,2), which is one of the delay tuples in D¢y, under input vector 000.

Let us keep the fanin ordering at 4 and flip the ordering at g to f < e. This change makes
the two paths (a, e, g) and (b, ¢, g), which were false before, true since 0 at f does not block the paths
any more since f < e. The falsity and the truth of the other paths remain the same. The delay tuple
based on this analysis is (2, 3,2), which is less accurate than the delay tuple in the previous analysis
(=e,3,2).

The circuit is symmetric in terms of a and b. Therefore, by flipping the ordering at d, we
obtain the following two tuples for each of the above: (3,—es,2),(3,2,2). (3, —, 2) is the same as
the other delay tuple in D,y under input vector 000.

Depending on fanin orderings, the accuracy of delay tuples varies. It can be as accurate as

one of the delay tuples in Dy, but can be as conservative as the topological delay tuple.

Viability Analysis

Unlike the two sensitization conditions discussed so far, viability [MB91] refers to arrival
times at primary inputs. Thus, the same path can be true under some arrival time condition, but false
under another even for the same input vector. This leads to a question whether a delay abstraction
computed by viability analysis under some arrival time condition is still valid under a different arrival
time condition. Daniel Brand has recently pointed out that viability analysis should give a valid delay
abstraction no matter how arrival times are chosen by observing similarity between viability and
Brand-Iyengar analyses [Bra98]. We will formalize this claim by providing a proof.

Let M be a single-outputcombinational module with primary inputs x; .. ., x, and primary

output z. Consider two arrival time conditions A| = (ay,1,...,a1,) and Ay = (az,1,...,a2,).

Definition 4.5 Let p = (go,...,8) be a path from a primary input go = x; to a gate g;. Let A =

(ay,...,ay) be an arrival time condition. Then,

k
path delay(p,A) =a;+ Zd(gi).

4Since the orderings at e and f are irrelevant for this input vector, we do not specify them to simplify the argument.

59

f| ,
non-controlling

controling ~ Values
values

Figure 4.2: Proof of Theorem 4.7

Theorem 4.7 Let x, A} and A; be an input vector and arrival time conditions chosen arbitrarily.
Let p = (go,.-.,8k) be a path from primary input gy to some node g;. If p is viable for x under A;,
then there exists a path p' from a primary input to gy that is viable for the same vector X under A,
such that path delay(p,A,) < pathdelay(p',A)).

Proof We prove this by induction on the structure of M. More specifically we choose a topo-
logical order of the nodes in M , and prove the theorem inductively on this order. Viability of a path

is always discussed for the input vector x in this proof unless otherwise noted.

Base case: p = (go) consists of only a primary input node. Any such p is viable under any input

vector and any arrival time condition. Therefore, p' = p, and we are done.

Induction: Assume that the last node of p is not a primary input.

If p is viable under A;: p' = p, and we are done.

If p is not viable under A;: We need to construct p' that meets the condition.

Consider the subpath g of p from g to gate g;_;, g = (go, . . ., 8k—1)- By induction, there
existsa path ¢’ from a primary inputto g, _, viable under A, such that path_delay(q,A,) <
pathdelay(q',A;). Let p be the path ¢’ extended by g;.

If j is viable under A,:

pathdelay(p,A\) = pathdelay(q,A1)+d(g)
< pathdelay(q',A1)+d(g)
= pathdelay(p,A;).

60

Therefore, p' = 5 meets the condition.

If j is not viable under A,: Since j is not viable under A,, there exists a non-empty
set S of side inputs at g; with acontrolling value of g;. Let S = {fi,..., fi}. (See Fig-
ure 4.2.) For each f; € S, consider a viable path r; under A from a primary input to f;
thatmaximizes path_delay(ri,A;). Wehave path_delay(q,A,) < pathdelay(r;,A,)
fori=1,...,I since otherwise p would not be viable under A4,.

By induction, for each r;, there exists a viable path r; under A from a primary input
to fi such that path_delay(r;,A,) < path delay(r,,A,).

Now we would like to show that there exists j € {1,...,/} such that r; can be ex-
tended with g; by maintaining viability under A,. Suppose none can be extended
for a contradiction. For each f; let f; = max, path_delay(s,A;), where the max op-
eration is taken over all viable paths s from a primary input to f; under A,. For
8k-1, let o = max path_delay(s,A;), where the max operation is taken over all vi-
able paths s from a primary input to g;_, under A,. Since no r; can be extended,
to<t(i=1,...,1) and g;_, has a controlling value. However, under this condition
p is viable under A,. A contradiction.

From the above, at least one r; can be extended with g; while remaining viable under
Az. Let r; be such 7. Let p’ be the extended path.

pathdelay(q,A1) < pathdelay(r;,A;)
< pathdelay(r;,A,).

By adding d(g;) to the inequality,

path.delay(p,A) path delay(q,A1) +d(g:)
path_delay(r;,A1) +d(g)

path delay(p',A;).

Al

Corollary 4.1 LetA and A; be arbitraryarrivaltime conditions. Foranypathp = (g, ..., 8k) from
a primary input to a primary output viable under x and A\, there exists a path p' from a primary input

to gy viable under x and A; such that path_delay(p,A:) < path.delay(p',A,).

61

The intuitive meaning of Corollary 4.1 is as follows. Let A; be the arrival time condition of
the current interest. Suppose that we have analyzed this circuit under A and classified all the paths
into viable and non-viable under A,. The corollary guarantees that we can safely pretend that this
classification of paths remains the same under A; for the purpose of estimating output stable time.
Even though the stable time may be overestimated, there is no risk of underestimation.

To be more concrete, let p be a viable path under the current arrival time condition. If p
is the longest viable path under A, the actual output stable time is path.delay(p,A;). Now, the corol-
lary guarantees the existence of a viable path p’ under A, where path_delay(p,A;) < path delay(p',A;).
By assuming p' is viable under A, the output stable time under A is estimated as path.delay(p',A,),
which is no earlier than the actual arrival time path.delay(p,A;) by construction of p'. Thus, it is
safe to reuse the classification of viable and non-viable paths under A, to A;.

Notice that A and A, above were chosen arbitrarily. Therefore, if viability analysis is per-
formed under some arrival time condition, the resulting delay abstraction computed by ignoring false

paths under the condition is a valid delay abstraction under any arrival time condition.

Theorem 4.8
Vx,A,A’, delay_propagate(D,l,,-ab,-,,-,y(A) ,X,A) < delay_pro pagate(Dl',,-ab,-,i,y(A') X,A).

Proof In Corollary 4.1, let A} = A and A, = A’. For any viable path p under x and A, there
exists a viable path p' under x and A’ that never gives an underestimate of the delay due to p. Thus

the claim holds. O

Theorem 4.9 For simple-gate circuits:
Vx,A,delay_propagate(Dexacr,%.A) = delay_propagate(Dyipitiry(A) X, A).

Proof Under the same arrival time condition, XBDO analysis gives the same delay estimate

as viability [MSBSV93] for simple-gate circuits. Thus the equality holds. O

Theorem 4.10

VA:Dexacl = D‘l'iability (A)

62

Arrival time condition (arr(a),arr(b),arr(c))
path 0,00) | (1,00) | (0,1,0) | (2,0,0) (0,2,0)

(a,e,g) true true true false false

(b,e,8) true true true false false
(a,d,f,g8) true false true false true
(b,d, f,8) true true false true false

(e, f)8) true true true true true
delay tuple " (3,3,2) | (2,3,2) | (3,2, 2) (—°°a3,2) (3,—2=,2)

Table 4.1: Delay Characterization by Functional Arrival Time Analysis: Viability

Proof From Theorems 4.8 and 4.9,

Vx,A,A',delay_propagate(D et X,A) = delay.propagate(Df,iabi,i,y(A) yX,A)

IN

delay_propagate(Dyqpiiry(A') X, A).

By the only-if part of Theorem 4.1 Dy, < Diw,,,-,,-,y(A’)- Renaming A’ to A completes the proof. O

Now that the coﬁecmess of the approach is proved, let us see how it works in practice using
the example in Figure 4.1. We will analyze the circuit under various arrival time conditions to see
the effect of arrival times to the accuracy of the resulting delay abstractions.

Table 4.1 summarizes the result for input vector 000. The falsity and the truth of paths
vary depending on arrival times, which affects the accuracy of the computed delay tuples. Under
arrival times A = (arr(a), arr(b),arr(c)) = (0,0,0) we obtain the delay tuple the same as topological
analysis while under the last two arrival time conditions the resulting delay tuple is as accurate as
one of the delay tuples in D,,.;. We can confirm that in all the cases the computed delay tuples are

conservative approximations to one of the exact delay tuples.

Floating Mode Analysis

We showed that viability analysis under an arbitrary arrival time condition gives a valid
delay abstraction. The floating mode condition [CD93] is another well-accepted path sensitization
condition known to be as accurate as viability for functional arrival time analysis of networks com-
posed of simple gates. A natural question is whether the floating mode condition has this property
or not. This is resolved negatively by showing that a delay abstraction computed by floating mode

analysis may underestimate true delays.

63

Arrival time condition (arr(a),arr(b),arr(c))
path (0,0,0) (1,0,0) (0,1,0)
(a,e,8) false false false
(b,e,g) false false false
(a,d, f,8) true false true
(b,d,f,8) W true true false
(¢, f,8) false false false
delay tuple || (3,3,—0c0) | (—oo,3,—e0) (3, —o0, —o0)

Table 4.2: Delay Characterization by Functional Arrival Time Analysis: Floating Mode

The circuit in Figure 4.1 is analyzed again using the floating mode condition for input vec-
tor 000. Table 4.2 shows floating mode analysis under three different arrival time conditions. In all
the cases, the resulting delay abstractions are too optimistic. Recall that the delay tuples for this vec-
tor in Dexyer are (3, —oo,2) and (—e,3,2). Under the arrival time condition (0,0,0) the computed

delay tuple is (3,3, —eo). However,

(3,=,2) A (3,3,—)
(==2,3,2) A (3,3,-).

Thus, (3,3, —ee) is a conservative approximation to neither of the exact delay tuples. The same is
true for the other two delay tuples computed by floating mode analysis under different arrival time
conditions.

The problem lies in the fact that if all the fanins of a gate have non-controlling values,
floating mode analysis classifies the paths leading to any of the fanins but the latest as false. This is
correct as far as delay estimation under the arrival time condition is concerned. However, once ar-
rival time conditions change, a path with an early-arriving non-controlling value can potentially give
the last non-controlling value thereby determining the delay up to the gate. Thus, simply assuming
that the path remains false under a different arrival time condition may lead to delay underestimation.
Viability does not suffer from this problem since those paths are classified as viable.

Note that the floating-mode condition does not produce delay underestimation for the case
where a gate has a controlled value. Under this situation only the paths that give the first controlling
value at a fanin of the gate is declared to be true. If we change arrival time conditions, a different
fanin may give the earliest arriving controlling value. However, it is still conservative to assume that
the fanin with the earliest controlling value under the original arrival time condition determines the

stability of the gate output since it is equivalent to assuming that a controlling value, not necessarily

64

the first one, is responsible for the delay of the gate. This only results in delay overestimation. A
similar argument applies to viability and the Brand-Iyengar conditions.

It has been known that floating mode analysis classifies fewer paths as false than viability
analysis although both give the same delay estimation in functional arrival time analysis of networks
composed of simple gates. This fact has been recognized as a favorable property to floating mode
analysis since fewer paths are identified as critical paths. Timing optimization can then be performed
more effectively on those fewer critical paths.

The discussion in this section demonstrates that the definition of false paths in floating
mode analysis is so specialized to a given arrival time condition that the falsity and truth of paths
are not conservative enough to be used under a different arrival time condition. On the other hand,
viability is conservative in this sense by categorizing more paths as true. This creates a sharp contrast

between the two sensitization conditions in favor of viability.

Relative Accuracy between Delay Abstractions

We have studied the correctness of delay characterization methods based on functional ar-
rival time analysis, where a delay abstraction is computed by ignoring false paths under an arrival
time condition. We have identified what sensitization conditions can be safely used in this approach.
The relative accuracy of those correct sensitization conditions is discussed next.

| For functional arrival time analysis the relative accuracy of various sensitization condi-
tions is fully understood [MB91]. The accuracy can be argued by comparing output stable times es-
timated by different sensitization conditions under a given arrival time condition. Our interest here
is different since we want to argue the relative accuracy of stable time estimates by considering all
arrival time conditions.

Let us compare the Brand-Iyengar condition and viability. We showed that depending on
the choice of fanin orderings delay tuples computed by Brand-Iyengar analysis can be as accurate as
one of the tuples in Dy, but can be the same as the delay tuple corresponding to topological analy-
sis. Viability analysis has the same trend as in Table 4.1. The accuracy of delay tuples depends on the
choice of arrival times at primary inputs. Therefore, unlike functional arrival time analysis, where
viability has more accuracy than the Brand-Iyengar condition, there is no < relationship between
Dy, and D}, ,,;;,,, although both are guaranteed to give correct delay abstractions.

Static co-sensitization also gives a correct delay abstraction. In the analysis of the circuit

in Figure 4.1 static co-sensitization gives a delay tuple that is the same as topological path analysis.

65

a0
0
1 Y4
b ——

Figure 4.3: Static Co-sensitization vs. Viability/Floating Mode

1 1 D 1
co-sens B viabilit

g

D
exact

Figure 4.4: Relative Accuracy of Delay Abstractions Computed by Functional Arrival Time Anal-
ysis: Path Classification

As far as this example and the input vector 000 are concerned, it appears that D}, < D},_ ... and
Dbty = D;,_gens hold. However, Figure 4.3 gives a counterexample.

Consider the input vector (a,b) = (0,1). Assume the unit delay model. Under static co-
sensitization only path (a, z) is true. Path (b,z) is false since b does not have a controlling value of
the AND gate. Therefore, the delay tuple based on static co-sensitization is (1, —eo). If we perform
Brand-Iyengar analysis, both paths are true under the fanin ordering a < b, which results in the delay
tuple (1,1). Notice that (1,—eo) I(1, 1), indicating that static co-sensitization gives a more accurate
delay tuple.

Viability can also give a delay tuple less accurate than that of static co-sensitization using
the same example. Assume that a and b arrive at # = 1 and ¢ = O respectively. The path from a is
true since the side input b has a non-controlling value. The path from b is also true since the other
fanin g, although being a controlling value, arrives later than b. Therefore we obtain the same delay
tuple (1, 1) as in Brand-Iyengar analysis.

This example shows that static co-sensitization analysis can give a more accurate delay
abstraction than the Brand-Iyengar condition or viability. Since we have already seen that the con-
verse can happen in the circuit in Figure 4.1, it is concluded that there is no < relationship between
static co-sensitization, Brand-Iyengar and viability.

Figure 4.4 summarizes the results so far. The diagram illustrates < relationship between

different delay abstractions computed by the approach. An edge from D, to D, denotes D, < D;.

66

: 1
Since D,,_pnss

D}, and D",,-ab,-,i,y are all correct delay abstractions, there are edges from D4, to them.
However the three delay abstractions computed by functional arrival time analysis are not compara-

ble to each other since there is no < relationship.

4.6.2 Delay Abstractions based on Arrival Time Differences

In the previous subsection a delay abstraction of a combinational module was computed
by ignoring false paths under a fixed arrival time condition. A set of path sensitization conditions
that can be safely used under this context was identified.

This subsection takes a different approach to computing a delay abstraction. Although it
is still based on functional arrival time analysis under a specific arrival time condition, we focus
on signal stable times at the outputs of the module instead of classifying paths into false and true.
The effective delay from an input to an output is defined as the time difference between tﬁe stable
time of the output and the arrival time of the input. Recall that arrival times at the inputs are chosen
arbitrarily again.

Let us illustrate the difference between this approach and the previous approach using the
example in Figure 4.1. Suppose that viability analysis is performed under (arr(a),arr(b),arr(c)) =
(2,0,0). As in Table 4.1, the resulting delay tuple for input vector 000 was (—e=,3,2) in the first
approach because both paths from a are false.

The new approach is based on stable times. The output stable time estimated by viability
analysis is z = 3. Since a arrives at t = 2, the effective delay from a to the output is computed as
3-2=1. For b, the delay is 3 — 0 = 3. Finally, for c, the difference is 3 — 0 = 3, which can be
safely reduced to 2 since the longest topological path from c to the output is only 2. The resulting
delay tuple is (1,3, 2), which is less accurate than (—eo, 3,2) obtained in the first approach under the
same arrival time condition.

If a difference of output stable time and input arrival time is not positive, the corresponding
input is irrelevant to the stability of the output. Thus, the delay between the two terminals is set to

The two approaches are related to each other. In fact we can prove that if the same path sen-
sitization condition is used under the same arrival time condition, the delay abstraction constructed

by the second approach is a conservative approximation to the one computed by the first approach.

Theorem 4.11 Let A = (ay,...,a,) be arrival times at the inputs. Let D! (A) and D?*(A) be the de-
lay abstractions computed by the first approach and the second approach respectively, by functional

67

arrival time analysis under A using the same path sensitization condition. Then, D' (A) < D*(A).

Proof Since D'(A) and D?*(A) are computed by functional arrival time analysis, they have
only one delay tuple for each input vector. Therefore, it is enough to show that for any input vector
X, (di,1,..,d1n) A (day1y ..., d2,) Where (X, (dy 1,...,d)1,n)) € D' (A) and (x, (d2,)1,. . .,d2,n)) € D?*(A)

Recall that d; ; is the longest true path length from input x; to the output under x and A. Let

s be the output stable time, which is computed as:
s= m,ax(a,-+d,,,-).
Suppose that the maximum is achieved when i = j. Then,
s = aj+d;
Vi,aj+d,; > ai+d,;.
dy; is defined as d, ; = s — a;.
Ifi=j:
dyj=s—aj=(aj+d;)—aj=d;.
Ifi # j:
dyi=s—a;=(aj+d;)—a; 2 4d;

Therefore,
Vi,d,; < dy,

and thus (d 1, ...,d)») <(d2,1,.-.,d2,). Since this holds for all input vectors, D!(A4) < D%(A).
Strictly speaking d5 ; is refined from s — a;. There are two special cases.
If s— a; is non-positive, d, ; is set to —eo. This does not violate the inequality since no path
is true from x;, implying d; ; = —eo. Therefore, even after redefining dy,; to —eo,d| ; < dy ; still holds.
The second case is that if s — g; is greater than the longest topological delay /; from x; to
the output, dy ; is set to /;. Since d, ; is defined as the longest true path length from x; to the output,

it cannot be larger than /;. Therefore, setting dy; to [; still gives d; ; < dy;. O

This theorem immediately guarantees that static co-sensitization, Brand-Iyengar and vi-
ability can be safely used in the second approach without the risk of getting too optimistic delay
abstractions. It also indicates that the delay abstraction computed in the second approach cannot
be more accurate than the one in the first approach if the same sensitization condition and the same

arrival time condition are used for underlying functional arrival time analysis.

68

Floating Mode Analysis

We showed that the use of floating mode analysis in the first approach can result in an
incorrect delay abstraction. Interestingly, if this sensitization condition is used in conjunction with
the second approach, a correct delay abstraction is computed. This is guaranteed by the following

theorem.

Theorem 4.12 Assumethata combinationalmodule is composed of simple gates. Let A = (ay,...,a,)
be arrival times at primary inputs xi, ..., X, respectively. Let D%, ... (A) and D2, ating (A) be the de-
lay abstractions computed by the second approach using viability and the floating mode condition

respectively. Then, Dfiabi,i,),(A) = D},oaﬁng(A).

Proof Consider input vector X. Let Syiapitiry and $ 10aring be the output stable times estimated

by viability and floating mode analysis for x under A. It is known that

Sviability = S floating

from the relative accuracy of the two sensitization conditions for functional arrival time analysis.
Let (dy,1,...,dy,) and (dy,1,...,dy,,) be the delay tuples of D2,

2

y wability(A) and D f laating(A) under x re-
spectively. Since dy,; = Syiaitiny — a; and dy; = Sf1oating — @i, Vi, dyi = dy;. Thus, (dy1,...,dys) =
(df,l 1eee ’df.ﬂ) and Daiability(A) = Df‘laating(A)' o
An important observation in this theorem is that the relative accuracy of delay abstractions

based on two sensitization conditions computed in the second approach is the same as that of the out-

put stable times estimated by the two conditions. This can be generalized to the following theorem.

Theorem 4.13 For simple-gate circuits:

D}(A)

Dexacr j D%iability(A) = D%’loating(A) 5
D go-sens(A)

Proof Similar to the proof of Theorem 4.12. O

Finally, in this second approach, we can also use functional arrival time analysis based on
the XBDO model. Note that we could not use XBDO analysis in the first approach since it does not
classify true and false paths explicitly. However, it can be used in the second approach since only

output stable times are required.

69

2 2
co-sens Bl

2 2 _ A2
XBDO Dv'ability Dioatiny

exact

Figure 4.5: Relative Accuracy of Delay Abstractions Computed by Functional Arrival Time Anal-
ysis: Arrival Time Differences

Theorem 4.14
Dexact < Dippo(A)

Proof Let s be the output stable time estimated by XBDO analysis under A for x. The delay
tuple in D550 (A) forx is (s—ay,...,s —ap).

Now let us use Dy, to estimate the output stable time under A. Clearly,
s = delay_propagate(D.xgci, X,A).

This means that for each x, Dy, has a delay tuple (d,...,d,) such that Vi,d; < s — a;.
Therefore, (d,...,ds) I(s—ay,...,5 — a,) implying Desaer < D3ppo(A). O

Finally, by adding D%g,,,(A) we have the following result on the relative accuracy of delay

abstractions computed in the second approach.

Theorem 4.15 For simple-gate circuits:

Dj(A)
Deexacr X Dyapo(A) = Diapitiry(A) = Dtparing(A) =)
DCO—SCM(A)
Proof The XBDO analysis and viability analysis were shown to have the same accuracy for

functional arrival time analysis [MSBSV93). O

70

2 2
IJco-sens DBl
D 2 = 02 2

%805 Dlioating iability

1 1
Dco-sens I:,v'ability

exact

Figure 4.6: Relative Accuracy of Delay Abstractions

71

Figure 4.5 shows this relative accuracy pictorially. Note that this ordering holds if the same
arrival time condition is used for all the sensitization conditions. If different arrival time conditions
are used for different sensitization conditions, the ordering above is not necessarily true.

Figure 4.6 summarizes the relative accuracy of the two methods.

4.6.3 Refining Delay Abstractions by Multiple Functional Arrival Time Analyses

We presented two approaches to computing delay abstractions using functional arrival time
analysis. A fundamental limitation in these approaches is that the resulting delay abstraction always
has only one delay tuple for each input vector by its definition. The capability of having more than
one delay tuple under the same input vector improves the accuracy of delay estimation by allowing
adaptive choice of a delay tuple given an arrival time condition.

One way to refine a delay abstraction computed by functional arrival time analysis is to
repeat the analysis under different arrival time conditions and enrich the delay abstraction by adding
new delay tuples. For example let D; and D, be the delay abstractions of the same module. Let §;
and &, be the delay tuples of D; and D, under x respectively. Let us improve the accuracy of D; by
combining the information in D,.

If §) 9 8,, &, is subsumed by §; in terms of accuracy. Therefore, no modification is made
to D|. If &, 9§, the situation is reversed. Therefore, we can replace 8, with &, in D, under x.
Otherwise, 8, A3, and 8, A9,. Since §, and &, are not comparable, each delay tuple can be used
to give a better delay estimation than the other under some arrival time condition. Thus, we add &,
to D; under x.

This operation can be defined as follows.

Definition 4.6 Let D| and D, be delay abstractions of a combinational module. Let D = D, U D,,

where

D = {(X,B]) |ﬂ.(x,82) € D, such that82 ﬂ8|}
U{(x,98;) | A.(x,0)) € Dy such that 8, 18,}

Theorem 4.16 Let Dy and D, be delay abstractions of a combinational module. Let D = D U D,.
Then, D <X Dy and D < D,.

Proof We only prove D < D,. D < D, can be proved by a symmetric argument.

72

Let (x,8;) € D,. If the same (input vector, delay tuple)-pair is in D, we are done. Other-
wise, the pair was not included to D since there exists (x,8,) € D, such that 8, < 8;. There exists no
delay tuple &) in D under x such that 8] <8, since otherwise D; would include §; and d) underx,
where the first delay tuple is redundant. Thus, (x,8;) € D. O

By trying more arrival time conditions and accumulating better delay tuples using U op-

eration, the delay abstraction approaches to the exact delay abstraction D,

4.7 Delay Abstractions via Approximate Functional Required Time Anal-

ysis

In Section 4.2 we showed that the exact delay abstraction of a combinational module can
be computed by performing functional required time analysis exactly. The use of approximate func-
tional required time analysis in the same scenario gives an approximate delay abstraction in less com-
putation time.

Consider the approximate functional required time analysis described in Section 3.3.2.
The required time at the output is set to r = 0 as in the exact analysis. The approximate analysis com-
putes input-vector independent required times (¢y,...,t,) for xy,...,x, respectively. The required
times computed are guaranteed to be a conservative approximation to the exact required times. More

precisely, for each input vector x, there exists an exact required time tuple (¢],...,2,) such that
(t1yeeostn) Q152 s10).

Intuitively, this means that the required times computed by approximate analysis are no later than

those computed by exact analysis to be conservative.

An approximate delay abstraction D},,,,,,ox, independent of input vectors, is then defined as

(=11,...,—ts), where the i-th element represents the delay from x; to the output. From the inequality
above, for any delay tuple (~¢,,...,—t,) € D,',,,,,,,,x under x, there exists (—11, ..., —1,) € Dgacs under
x such that

(=thyeey=13) Q(=t1yeney—ty).

1
ThCI'CfOI'e, Dexyer =X Dappmx'

73

4.8 Delay Abstractions via Approximate Functional Arrival Time Anal-
ysis

Approximate algorithms can also be employed in the delay characterization methods using
functional arrival time analysis.

In the first approach based on path classification the falsity of a path was defined for each
input vector separately. By approximating this input vector dependency conservatively, a path can
be defined to be false if it is false under all input vectors. This is a more strict definition of false paths.
The use of this new definition ignores a subset of the paths ignored in the exact approach. This gives
no better delay tuple with respect to < than the exact approach. Hence, the approximation yields a
delay abstraction more conservative than the original with respect to <.

In the second approach, instead of computing output stable time for each input vector sep-
arately it can be conservatively defined as the earliest time when the output is stable under all input
vectors. This results in overestimation of the output stable time under some input vectors. Since
each input/output delay in a delay tuple is defined as the difference between the output stable time
and input arrival time, this overestimation gives a larger delay for each input-output pair, resulting

in a conservative delay abstraction.

4.9 Delay Characterization Independent of Gate Delay Assignments

So far we have studied various delay characterization techniques under the assumption
that a delay assignment to all the gates is known. Because of this assumption, once a delay assign-
ment changes, a delay abstraction needs to be recomputed. If a gate delay decreases, the monotone
speedup property guarantees that the original delay abstraction is at least conservative. However, a
delay increase of a gate invalidates the delay abstraction. In this section, we will show that the exact
delay characterization technique discussed in Section 4.2 can be generalized to the case where gate
delays are unknown. This generalized delay abstraction has a set of delay tuples under each input
vector as before, but a delay number in a tuple is no longer a constant value determined by a given
delay assignment, but a function of path lengths. Therefore, the same delay abstraction can be used
as long as a circuit structure remains the same. One can obtain a delay abstraction specialized for a
given delay assignment by simply evaluating all the delay functions.

Letus take the circuit in Figure 4.1 again as an example. We previously analyzed the circuit

under the unit delay model. Now assume that gate delays are unknown. To distinguish the input-

74

e 1
‘ g
0 Qc——tg — 1
O b d o 1
) >
1 ¢

Figure 4.7: Signal Values of ¢ under Input Vector 001

output paths of the circuit, we name the paths in the following way.

Ppb = a—e—g
P, = boe—g

P, = and->f-og

P, = boad—=fog

PP = cof—g

Consider an input vector (a,b,c) = (0,0,1). Figure 4.7 shows final values of all the in-
termediate signals. Remember that the technique discussed in Section 4.2 was based on functional
required time analysis. We will analyze the circuit backward from primary outputs to primary inputs
as in functional required time analysis, but this time we will do so without using actual gate delays.

The primary output is settled to a constant] under this vector, which is the non-controlled
value of the AND gate feeding the output. To guarantee this value at the output, all the inputs of the
AND gate need to have the non-controlling value 1. Therefore both of the subpaths from the primary
output up to the inputs e and f are responsible for the signal stability of the output.

Let us first examine the input e. e has a value 1 at the end. Since the gate feeding e is
a NOR, it is the non-controlled value of the gate, and again both of the inputs need to present the
non-controlling value 0. Thus, paths P, and P, are responsible for the signal stability of the primary
output.

The other input of the AND gate f is settled to 1, which is fed by an OR gate. Since the
value 1 is the controlled value of the gate, it is just enough to have the controlling value of the gate,
a value 1, at one of its inputs. Since only c gives a value 1, this input value guarantees the output

value 1 at the OR gate. Therefore, path P is responsible for delay while the other paths P, and F;,

75

e 4
g
b d o 0
f
0 ¢

Figure 4.8: Signal Values of M under Input Vector 000

are irrelevant.

By combining the above, it is clear that only paths P,, P, and P, are responsible for delay.
The corresponding delay tuple is (|P,|,|Ps|, |P:|)®, where | P| denotes the path length of P. Note that
under the unit delay model, |P,| = |P,| = |P:| = 2, which gives (2, 2,2). The delay abstraction shown
in Section 4.2 indeed has this delay tuple under input vector 001.

Although we only obtained one delay tuple in the above, in general a set of delay tuples
is computed. For example, consider a different input vector (a,b,c) = (0,0,0). Figure 4.8 shows
signal values under this vector. This time the output value is the controlled value of the AND gate.
Since only the bottom input f has the controlling value O of the gate, any path leading to the other
input e is not responsible for delay. The value O at f is the non-controlled value of the OR gate,
implying both of the inputs need further tracing. Since the bottom input is fed directly from input c,
it is determined that P, is responsible for delay. The other input d is settled to value 0, which is the
controlled value of the AND gate. This time both of the inputs a and b have the controlling value of
the AND gate. Thus, it is enough to have one of those to guarantee the value O at d. This translates
to either P, or P, being responsible for delay. Since P, is responsible independent of this choice, the
delay tuples under this vector are (|P;], —o, |P;|) and (—oo, |P;|, | Fc|).

A similar analysis for the other vectors gives a generalized delay abstraction of this circuit,
which is shown in Table 4.3. The first, second and third columns show input vectors, sets of delay-
responsible paths and sets of delay tuples respectively. Note that the delay abstraction in Section 4.2
is an instantiation of this under the unit delay model.

This delay-assignment-independent analysis has the following property. First, if a path is

statically sensitizable under an input vector, then it is always categorized as a responsible path, and

3If a set of responsible paths has more than one path from the same primary input, the delay from the input is the
maximum over all the paths from the input.

76

abc | responsible paths Aoy gdpygdesg

000 | {{Fz,Pc},{Py,Pc}} | {(IPals—o=: |Pel), (==, [Py, IPe]) }
001 {{FaPy,Fc}} {(IPal, 1Pol, |Pe]) }

010 | {{Fas, P}, {Po}} | {(IPaly ===, |Pcl), (=0, |Po], ~)}
011 {{P}} {(=o0y| Py, —o0)}

100 | {{P, P}, {Pa}} | {(=oos|Pg),|Pel)s (1Pul, =20, —20)}
101 {{F.}} {(|Pul; o0, =)}

10| {{P}{R}} | {(|Pal- =00, —c0),(=oo, |Py], —e0)}
11| {{R} AP} | {(IPal, =00y =2), (=, |P], =)}

Table 4.3: Generalized Delay Abstraction

its path length is referred to in all the delay tuples under the vector. Notice that under input vector
001, P,, P, and P, are all statically sensitizable. Second, if a path is statically co-sensitizable, but
not statically sensitizable under an input vector, then its path length is referred to in some of the
delay tuples under the vector, but not all. Given such a path, there exists a gate on the path where
1) the output is a controlled value, and 2) the input on the path and at least one side input have a
controlling value. Since only one of those controlling values is required to stabilize the output, it
leads to a situation where multiple choices of responsible paths are available as in input vector 000.
Thus, a path that is statically co-sensitizable, but not statically sensitizable under an input vector
contributes to some of the delay tuples under the vector, but not all. Finally, if a path is not statically
co-sensitizable under an input vector, it is never included in the set of responsible paths.
These results are consistent with the observation that static sensitization and co-sensitization

are a sufficient condition and a necessary condition for a path to be responsible for delay respectively.
This analysis also gives us additional information on precisely what subsets of static co-sensitizable

paths have impact on delay.

4.10 Related Work

Das et al. [DJCM89] and Johannes et al. [JCM92, Joh93] discussed delay characteriza-
tion of combinational modules in the context of hierarchical timing analysis. However, static sen-

sitization was used to identify false paths. Since static sensitization can underestimate delays, this

77

approach is not conservative.

Yalcin and Hayes [YH9S5] introduced the notion of conditional delay matrices to represent
input-vector-dependent delay characteristic of combinational modules. This is a restricted form of
our delay abstractions in the sense that each input vector has a single delay tuple for each output in
their conditional delay matrix. They proposed a technique to compute a delay matrix of a module
using functional arrival time analysis under various path sensitization conditions, which is similar
to the approach based on path classification discussed in Section 4.6.1. However they simply con-
sidered the case where all the primary inputs arrive simultaneously at ¢t = 0. They did not argue the
correctness of the approach under arrival-time dependent sensitization conditions such as viability
and floating mode. In this chapter we have proved that viability is a safe condition in this context
while floating mode can give an incorrect delay abstraction.

Belkhale and Suess [BS95] proposed a topological timing analysis technique under known
false subgraphs, where topological analysis is performed by simply ignoring false subpaths specified
by designers. Note that this is the same scenario as the first approach based on path classification
discussed in Section 4.6.1. To validate this approach we need to argue how these false paths of a
combinational module are computed. However, the paper did not discuss the issue. The result of
Section 4.6.1 shows that viability, Brand-Iysngar or static co-sensitization can be used safely for
this purpose.

Bhattacharya et al. [BDB96] presented a timing analysis technique based on path classi-
fication. They partitioned all the paths into a complete determining path set and a nondetermining
path set, and showed that the delay of a circuit can be characterized as the topological longest delay
of all the paths in the complete determining path set. The nondetermining path set may include a true
path if there exists another path in the complete determining path set that gives the same or larger
delay. However, they only gave an algorithm for constructing a complete determining path set from

high-level descriptions.

4.11 Conclusions

We have studied various techniques for computing false-path-aware delay abstractions of
combinational modules. The difficulty of this problem lies in the fact that state-of-the-art functional
arrival time analysis is dependent on given arrival times at primary inputs. Although a direct applica-
tion of the analysis leads to a correct delay abstraction for the arrival time condition under analysis, it

is not clear whether the resulting delay abstraction is valid under other arrival times. Since we do not

78

know up front how a combinational module is used, it is impossible to choose a single representative
arrival time condition.

There are several path sensitization conditions independent of arrival times. Although the
use of such a condition resolves the difficulty, those sensitization conditions have a limited capability
of false path detection. Thus, the accuracy of delay abstractions suffers.

A major contribution of this chapter is to show that the problem can be reduced to func-
tional required time analysis studied in Chapter 3. Since the analysis is performed without any as-
sumption about arrival times at the inputs, it is guaranteed to give a delay abstraction correct under
any arrival time condition. We showed that in the most general form, a delay abstraction not only
depends on input vectors but also needs to carry more than one delay tuple for each input vector,
where a delay tuple is a list of effective delay values from each primary input. This capability of
multiple delay tuples makes accurate delay estimation possible under any arrival time condition by
choosing the best delay tuple adaptively.

We have then studied whether functional arrival time analysis can be used to compute con-
servative delay abstractions, where functional arrival time analysis is performed under an arrival time
condition at the inputs chosen arbitrarily. Two approaches were proposed and the relative accuracy
of various sensitization conditions in this framework was discussed. In the first approach false paths
under the arrival time condition are simply ignored. A delay abstraction is constructed by comput-
ing the longest true path between each input/output pair under the arrival time condition. We proved
that the use of viability in this scenario gives a delay abstraction valid not only for the arrival time
condition under analysis but also for any other arrival time condition. On the other hand, the floating
mode condition was shown to give an incorrect delay abstraction.

In the second approach the time difference between the stable time at an output and the
arrival time at an input is used to define delay between the two terminals. The effect of false paths is
implicitly taken into account by observing reduced output stable time. We showed that this approach
computes a correct delay abstraction for any sensitization condition proven not to underestimate de-
lays for functional arrival time analysis, hence in this case the floating mode condition is correct.

A practical aspect of this issue is worth studying thoroughly. In an actual design environ-
ment it may not be realistic to compute a fully input-vector dependent delay abstraction if a module
has a large number of inputs. One way to alleviate this potential blowup in the size of delay abstrac-
tions is to take an approximate approach, discussed in Sections 4.7 and 4.8, which computes a delay
abstraction independent of input vectors. This can be thought of as the other extreme. It would be

interesting to explore delay abstractions partially dependent on input vectors. For example, if a sub-

79

set of inputs is identified as key variables for determining the timing characteristics of a module, it
may be good enough to restrict vector dependency of a delay abstraction to the inputs in the set.

Yalcin et al. [Yal98] have recently proposed a technique with this flavor, where primary
inputs are partitioned into control inputs and data inputs and vector-dependency is explored only
for control inputs assuming that they have much more stronger influence on delay than data inputs.
Computed delay abstractions are guaranteed to be conservative since the technique can be interpreted
as a variation of Brand-Iyengar analysis, in which different fanin orderings are used for different
input vectors. An idea on the size reduction of delay abstractions was also given.

The techniques presented in this chapter can be easily generalized to sequential circuits
with edge-triggered flip-flops by analyzing the combinational portion of a sequential circuit. The
input and the output of a flip-flop are assumed to be a primary output and a primary input respec-
tively in the analysis. Sequential circuits containing level-sensitive latches cannot be handled in this

approach because of cycle stealing ©. This remains as future work.

Venkatesh et al. [VPMS97] presented an algorithm for creating a delay abstraction of sequential circuits under topo-
logical delays. Although false paths are not taken into account, level-sensitive latches can be handled in the approach by
assuming a maximum transparency.

81

Chapter 5

Hierarchical Functional Timing Analysis

Functional arrival time analysis has been discussed in the literature under the assumption
that a circuit under analysis has a flat gate-level structure without any hierarchy. Therefore, even if
a meaningful hierarchy exists in the circuit, it needs to be destroyed before analysis, which results in
a potentially large circuit being passed to the analysis. Although existing flat timing analysis tech-
niques are practical for circuits with up to thousands of gates, there is a limit in their capacity since
the problem is NP-hard. Moreover, the analysis tends to become too slow for large circuits. Another
serious drawback of flat analysis is that even a small change in a single module forces us to repeat
an entire analysis from scratch. This prevents us from using functional arrival time analysis during
logic synthesis. No incremental analysis method is known for functional arrival time analysis.

In this chapter we study hierarchical functional arrival time analysis, i.e., how to perform
functional arrival time analysis of a hierarchical circuit by respecting the hierarchy. The analysis
proceeds in a bottom up traversal of the hierarchy. The delay of a leaf-level module in a hierarchy is
characterized as a delay abstraction using a technique discussed in Chapter 4. The delay abstraction
is then used in a topological-like delay analysis at a higher level in the hierarchy. Since the delay ab-
straction captures enough timing information of the module, the delay analysis at the higher-level can
be performed using only the delay abstraction without looking at the structural detail of the module.
This hierarchical approach enables us to handle a hierarchical circuit without analyzing the entire
circuit at one time at the gate-level. We discuss how false paths are detected in this analysis.

Hierarchical analysis naturally supports incremental analysis unlike flat analysis. Unless
a module is modified, its delay abstraction computed for previous analysis remains valid and usable.
This is a step forward to the use of functional timing analysis during logic optimization, which is not

currently practiced.

82

This chapter is organized as follows. Hierarchical topological timing analysis is first re-
viewed in Section 5.1. Section 5.2 presents a hierarchical functional arrival time analysis algorithm
where the timing characteristics of leaf modules are captured by false-path-aware delay abstractions
independent of input vectors. The algorithm is illustrated using a simple example of cascaded carry-
skip adders in Section 5.3. Section 5.4 proposes an improved algorithm for hierarchical timing analy-
sis where the construction of false-path-aware delay abstractions is done in a demand-driven fashion.
In Section 5.5 the general case where delay abstractions are input-vector dependent is discussed. Ex-
perimental results are shown in Section 5.6. Related work is discussed in Section 5.7. Section 5.8

concludes the chapter.

3.1 Hierarchical Topological Timing Analysis

In topological timing analysis, hierarchical approaches have been used extensively in prac-
tice to manage the complexity of industrial circuits [NST+82, TON83]. The reason why hierarchical
analysis is prevalent is that the delay of a module under topological analysis is completely indepen-
dent of a surrounding environment since all paths are assumed to propagate signals. This assumption
makes hierarchical analysis trivial. However, false paths are completely ignored in this approach
thereby making accurate analysis difficult.

5.2 Hierarchical Functional Arrival Time Analysis

We first consider the case where a given combinational circuit is composed of subcircuits,
each of which has no hierarchy inside. In other words, the hierarchy depth of the circuit is 1. We
call such a subcircuit without hierarchy a leaf module. No glue logic is in the top level for the sake
of simplicity. We also assume that a topological order of subcircuits exists, i.e. there is no path from
an output of a subcircuit to an input of the same subcircuit!. We will discuss an additional technique
required to analyze a circuit with a multi-level hierarchy in Section 5.2.3.

Hierarchical arrival time analysis is performed in two steps. The first step constructs the
delay abstraction of each leaf module by a direct application of the techniques described in Chapter 3.
Arrival times at subcircuit boundaries are then determined in a topological order from primary inputs

to primary outputs using the delay abstractions.

'Even if there does not exist a topological order among subcircuits, subcircuit outputs can always be ordered topolog-
ically unless combinational cycles exist. Therefore the general case can be handled in a similar way.

83

5.2.1 Delay Characterization of Leaf Modules

Given a hierarchical circuit, we first analyze each leaf module to characterize its timing
property. If there is more than one instance of the same leaf module used in the circuit, it is analyzed
once?. Notice that when we characterize the delay of a leaf module, no information is available on
arrival times at the module inputs. Therefore, a leaf module is a combinational module and various
technique discussed in Chapter 4 are directly applicable here.

Let M be a leaf module. Let X = (x,...,x,) and Z = (z|,...,2) be the primary inputs
and the primary outputs of M respectively. Assume that an approximate delay abstraction inde-
pendent of input vectors in Section 3.3.2 is used for the sake of simplicity. The delay abstraction
D7PP"™* C R" has a set of delay tuples (dy, ...,d,), where d; represents the effective delay from x; to
zj. Remember that D7/”"** may contain more than one delay tuple, in which case each of the delay
tuples captures different timing characteristics of the module. This flexibility will be exploited fully
later. To compute the delay abstraction of M, one can apply the same analysis above for each output
independently. Each output of the leaf module has the corresponding delay abstraction at the end of
this first step.

5.2.2 Hierarchical Delay Computation

Assume that arrival times are given at the primary inputs of the top-level circuit under
analysis. The goal of the second step is to compute the arrival time for each primary output of the
top-level circuit.

Let C; < G < ... < G, be a topological order of the subcircuits. Delay analysis is per-
formed by visiting subcircuits and determining signal stable times at subcircuit outputs in this order.
This guarantees that when subcircuit G is visited, arrival times at the subcircuit inputs are known.
We then combine these arrival times and the delay abstraction of the corresponding leaf module to
compute arrival times at the subcircuit outputs.

The core of this computation is in how arrival times at subcircuit inputs are propagated
through a subcircuit. This has been already discussed in Section 4.4 for the case where a delay
abstraction is input-vector dependent. Assume that G is under analysis. Let X = (xi,...,x,) and

Z = (z1,...,2m) be the inputs and the outputs of C; respectively. Let A = (a;,...,a,) be the arrival

2If a load-dependent delay model is used, delay characterization must be done for each load at an output of the module.
Evenunder a load-independent delay model, delay characterization can be done for each instance so that satisfiability don’t
care (SDC) and cbservability don’t care (ODC) [BHSV90] at the inputs of the instance are taken care of, This yields a
more accurate customized delay abstraction.

84

times at X. Let D be the delay abstraction for the output z;. The arrival time at z; is computed as:

min max(a;+d;;).
8i=(di 1ysdin)€D J J

The max operation corresponds to standard topological analysis under a delay tuple §; in D. The
min operation then examines all the delay tuples in D and chooses the earliest stable time at the
output. The important differences between this analysis and topological analysis are that our false-
path-aware delay abstractions are more accurate than topological delay abstractions and can maintain
multiple delay tuples for an output to preserve accuracy. This min-max computation is linear in n|D|,
where n and |D| denote the number of inputs of the subcircuit and the number of delay tuples in D

respectively. | D| is typically a small constant if D is a delay abstraction independent of input vectors.

Theorem 5.1 The above analysis gives a conservative approximation to the true delay of the entire
circuit under the XBD0 model.

Proof It is enough to show by induction on the topological order of subcircuits that the arrival
time of any subcircuit input/output estimated by this analysis is no earlier than its true arrival time.
This is trivially satisfied at the primary inputs of the entire circuit. Assume that the inputs of subcir-
cuit C; meet the above condition. If the delay abstraction D; of G; meets D' < D;, where Df*<
is the exact delay abstraction of G, arrival time estimates of subcircuit outputs are never underesti-
mated even if exact arrival times are used at subcircuit inputs. Since actual arrival times used at the
subcircuit inputs are the same as or later than the corresponding exact arrival times, the arrival times

at subcircuit outputs are never underestimated. O

5.2.3 Delay Characterization of Circuits Composed of Subcircuits

We have considered the case where a given circuit has a single level of hierarchy. Even if
a circuit has a hierarchy depth more than one, the overall strategy of hierarchical functional arrival

time analysis is still the same;

1. the delay abstractions of subhierarchies are constructed in a bottom-up way from the lowest-

level leaf modules to the subcircuits directly under the top level, and

2. arrival times at the primary inputs are propagated using the delay abstractions of the top-level

subcircuits.

85

An additional task involved in this general case is to characterize the delay abstraction of a subhier-
archy composed of subcircuits whose delay abstractions have been already computed.

To simplify the argument we focus on the case where a subhierarchy under analysis has a
single output®. Assume that the subhierarchy is described as connections of subcircuits Cj, ..., G
without any glue logic. Let C; < G < ... < G, be a topological order of the subcircuits. As in
the delay characterization step in Section 5.2.1, we need to determine the delay abstraction of the
subhierarchy valid under any surrounding environment. The analysis starts by setting a required
time, ¢ = 0, to the output of the subhierarchy. This required time is then propagated backwards using

-the delay abstractions of the subcircuits. If each output of those subcircuits has a delay abstraction

consisting of a single delay tuple, it is just enough to perform standard topological required time
analysis on (,..., G, using the delay abstractions. The absolute value of the required time at each
subhierarchy input gives the effective delay from the input to the output. The delay abstraction of
the subhierarchy has a single delay tuple.

In general the delay abstraction of each circuit can have more than one delay tuple. The
simplest approach is to try topological required time analysis for every combination of delay tuples
and extract the most relaxed required time from the result. Since the number of delay tuples in de-
lay abstractions independent of input vectors is typically a small number*, this explicit enumeration
is still a reasonable strategy in many cases. It is, however, possible to explore all possibilities by
symbolically propagating required times through the circuit.

Assume that the circuit in Figure 5.1 is a subhierarchy under analysis. This circuit consists
of two subcircuits C; and ;. Suppose that each subcircuit has a single output and that the delay

abstractions D) and D; of C) and G, respectively are as follows.

D, = {(2’2)’(311)}
D, = {(1,4),(2,3)}

where in each delay tuple the first value and the second value are the delays from the left and the
right inputs of the corresponding subcircuit respectively. There are 4 possible cases to consider.
Figure 5.2 shows the results of topological required time analysis for each case. A pair of inte-
gers attached to a subcircuit is a delay-tuple used while an integer on an edge denotes the required

time of the connection. The valid required times at the subhierarchy inputs are (req(i;), req(iy)) =

3As in Section 5.2.1, if a subhierarchy has multiple outputs, it is enough to repeat the same analysis for each output
separately.
“We experimentally confirmed this on benchmark circuits.

86

i i2

Figure 5.1: Subhierarchy in a Hierarchical Circuit

(=3,—4),(~4,—4),(~5,-3). Therefore the delay abstraction of this subhierarchy is characterized
as a set of delay tuples {(3,4), (5,3)}. Note that (4,4) has been dropped since (3,4) subsumes (4,4).

We will now show how this analysis can be done symbolically without any explicit case
analysis. The basic idea is to propagate required times along with Boolean conditions so that the
choices of delay tuples are encoded. For example, there are two choices of delay tuples for subcir-
cuit G;. To encode these two possibilities a Boolean variable o is introduced. Let o = 1 and o, = 0
denote the cases where the first and the second tuples are chosen respectively. The required time at
the subhierarchy output is propagated backwards through G, along with a Boolean condition on c.
For example, the required time at x, req(x), is {(—1,), (=2, &)}, in which the first element of each
tuple is a required time while the second element is a Boolean condition associated with the required

time. The required time at y is computed similarly as follows.
req(y) = {("41 a)v (—3,(-1)}

Another Boolean parameter B is introduced for the choice of delay tuples for ;. Let B=1
denote the condition that the first tuple is used and B = O the condition that the second is used. The

conditional required times at /| and z are:

req(il) = {(-3,013),(—4,0‘@3)1(—5,51—3)}
req(z) = {(-2,0B),(-3,08P),(—4,0B)}.

~4 min(-2,-4)=—4

-4 min(-4,-3)=—-4 -5 min(-3,-3)=-3

Figure 5.2: Required Time Analysis of a Subhierarchy

87

88

Finally to determine the required time at i, the minimum of reg(y) and reg(z) is taken symbolically,
which gives
req(iz) = {(~3,3P), (—4,0.+B)}.

All of these symbolic computation can be performed using ADDs [BFG*93] or MTBDDs [CMZ+93].
By combining req(i) and req(i2) symbolically, the following required times at the sub-

hierarchy inputs are determined.

(reg(ir), req(iz)) = {((-3,~4),aB),((-4,~4),a®p), ((-5,-3),0B)}

in which the first element of each tuple is a pair of required times at i; and i, and the second element
is the Boolean constraint associated with it. Enumeration of all distinct required time pairs followed
by removal of dominated required time pairs is the final step necessary to complete the delay charac-
terization of the subhierarchy, which gives D = {(3,4), (5,3)}. Note that the sign of all the required
times is flipped at the end since they are subtracted from ¢ = 0.

This step can be thought of as hierarchical functional required time analysis.

5.24 Incremental Timing Analysis

Incremental timing analysis can be easily incorporated into our formulation. Once the de-
lay abstraction of a leaf module is obtained, it remains valid no matter what changes are made in

other modules. Therefore a modification of a single module only leads to
1. delay characterization of the modified module and
2. top-level analysis.

Even without any change in a given circuit it is likely that one is interested in performing arrival
time analysis of the same hierarchical circuit under different arrival time conditions. If flat analysis
is employed, each arrival time condition requires a separate analysis while in hierarchical analysis
the delay characterization stage can be shared by all the analyses. Thus once the delay abstractions
of all the modules in a given circuit are computed, it is enough to perform top-level analysis for each

case.

5.3 Example

To illustrate the technique proposed in Section 5.2 we take a simple example.

89

c_in _)B s0

D H c_out

9
mux
o)
J

Figure 5.3: 2-bit Carry-Skip Adder

Consider a 2-bit carry-skip adder taken from [KMS91] shown in Figure 5.3. Cascading
this adder n times yields a carry-skip adder of 2n bits. We show how the performance of this cascade
adder can be estimated accurately by hierarchical analysis. Figure 5.4 shows a 4-bit adder composed
of two 2-bit carry-skip adders, where c,,, of the first adder is fed into c;, of the second adder.

Assume that a gate delay of 1 for the AND gate and the OR gate, and gate delays of 2 for
the XOR gate and the MUX gate.

The input-vector independent delay abstractions Dy,,Ds, and D, are:

Cout

D;, = {(2,4,4,—c,—)} (topological delay)
Ds, = {(4,6,6,4,4)} (topological delay)
Dc,,,,, = {(2?8,8’6)6)}

where primary inputs are ordered as c¢;, < ap < by < a; < b;. In this particular circuit each delay
abstraction has a single delay tuple. The delay abstractions for so and s; are exactly the same as
those under topological analysis. D,,,, is more accurate than its topological delay abstraction since
the effective delay from c;, to coy is 2° in D,,, while the longest topological path is of length 65.
Let us proceed to the second step of the analysis. Assume that all the primary inputs of the
cascade circuit in Figure 5.4 arrive at # = 0. We focus on computing the arrival time of c, since it is
the most interesting output in terms of analysis. The arrival times for all the other primary outputs

are the same as their topological arrival times. The arrival time at the intermediate signal tmp is first

s(c,-,,,mux, Cour)
6(cin’86187:891811 ymux, Cow)

90

s2 s3 c4

P4

L 111
R Ml JAK)
| LA

T ‘

¢0 a0 b0 a1 b1

Figure 5.4: 4-bit Carry-Skip Adder Composed of Two 2-bit Adders

computed. Since all the inputs of the first adder arrive simultaneously at ¢ = 0, the arrival time at
tmp is determined as ¢ = 8, where ag and by are critical.

The arrival time of the carry output ¢4 can now be computed by analyzing the second adder.
The arrival time at tmp is t = 8 while the other inputs arrive at = 0. Combining the arrival times
and the delay abstraction D, we see that a path from tmp is critical. This gives the arrival time at
¢4 t = 842 = 10, which matches the result of flat analysis.

It is more intuitive to see the analysis pictorially. Figure 5.5 illustrates D, as a polygon.
The polygon describes the fact that to have the signal ¢, stabilized, inputs c;,, ag, by, a; and b; must
arrive 2, 8, 8, 6 and 6 time units before respectively’. To determine the arrival time of tmp, the
polygon is pushed down from the top as much as possible, as in Figure 5.6, so as not to intersect a
given arrival time constraint. In this example, all the primary inputs arrive simultaneously at t = 0.
Therefore the bottom edges for ag and by first touch the constraint, which gives the arrival time of
t = 8 attmp. Shadowed regions represent arrival time constraints. Next, another polygon of the same
shape for the second adder is stacked on the first polygon. This time the bottom edge of c first hits
the arrival time constraint of zmp. (Note that ¢;, in the module is connected to tmp and all the other
inputs of the modules are connected to primary inputs, whose arrival times are t = 0.) Therefore, the

arrival time of ¢4 is 10.

7If there is more than one delay tuple in a delay abstraction, we have multiple polygons. Whenever arrival times are
propagated through a subcircuit, all the polygons are tried and the best one that gives the earliest arrival time is chosen.

91

c_out
1‘\) 1?)
2
c_in 6 6
8 8
al b1
a0 b0

Figure 5.5: Delay Abstraction of the 2-bit Adder

t
A
c4
0 pPF—————————] A
tmp ZT
8 [~ k KT T
2 6 6
18 8
6 6
g 8

° i]

c0 a0 b0 a1 bt tmp a2 b2 a3 b3

Figure 5.6: Hierarchical Analysis of the 4-bit Carry-Skip Adder Composed of Two 2-bit Adders

It is easy to see from the analysis above that the delay of the last carry output of the circuit
composed of n adders is t = 84-2(n — 1) = 2n+ 6 if all the primary inputs arrive at = 0. We have
verified that this delay estimation matches the results of the flat analysis at least up to n = 8. This

ability of parameterized analysis is missing in flat analysis.

Keutzer ef al. [KMS91] analyzed the circuit in Figure 5.3 under arr(c;,) = 5,arr(ag) =
arr(bo) = arr(a;) = arr(by) = 0. It is easy to see that ap and by are critical in this case from Fig-
ure 5.7. The delay of ¢, ist = 0+ 8 = 8, which is again the same as the result of flat analysis under
the arrival times. From Figure 5.7 we can even claim that delaying c;, by one time unit does not

change the signal arrival time at c,,,, i.e. the slack of c;, is 1. This can be thought of as an “exact”

92

-

c_out
8 —
A
2 |
5 6 6
8 8

c_in a0 b0 a1 bl

Figure 5.7: Delay Analysis of the 2-bit Adder under arr(c;,) = 5, arr(others) = 0

slack available at c;,®. Notice that if the slack of this input is computed topologically, it is —3 indi-
cating that the signal needs to be sped up 3 time units to meet the required time ¢ = 8 at ¢, which
is completely opposite to the above. This is because false paths are completely ignored in the latter

case.

5.4 Improved Algorithm for Hierarchical Functional Arrival Time Anal-

ysis

We have seen a two-step hierarchical timing analysis algorithm where delay characteriza-
tion of leaf modules is followed by arrival time computation. Although this separation makes the
understanding of the entire flow easy, timing analysis can be performed more efficiently by inter-
leaving the two steps in a smart way.

The main computational disadvantage of the two-step approach is that the effective delay
of each input-output pair of every leaf module is computed first even if the input-output paths are
never critical in any instance of the module. Therefore part of the additional accuracy achieved in
resulting delay abstractions may not contribute to the accuracy of the delay estimate of the entire
circuit. In this sense some of the CPU time spent in the computation of delay abstractions is wasted.
Since delay characterization of leaf modules is not always a cheap operation, this loss in CPU time

is not negligible in general.

8Chen et al. [CCHD93] studied false-path-aware slack computation under a fixed arrival time condition.

93

One way to alleviate this is to start from crude delay abstractions based on topological de-
lay analysis and to refine them gradually as we estimate the delay of a given hierarchical circuit. This
way delay abstractions are refined only if additional accuracy is required to get a better delay estimate
of the circuit under analysis. Hence delay abstractions are never more accurate than necessary.

Assume that a circuit of hierarchical depth 1 is given, i.e. the top-level circuit consists of
several leaf modules. Consider a directed acyclic graph G = (V, E), called timing graph, constructed
in the following way. Each input or output of the leaf modules forms a vertex in G. If an output of a
module is connected to an input of another module, these two nodes share the same vertex. A directed
edge is added from a vertex to another vertex if there is a topological path between the corresponding
nodes within a single leaf module. Each edge corresponds to an input-output pair of a single leaf
module. The edge is initially labeled the longest topological path delay between the nodes. The
timing graph is simply an abstract representation of the hierarchical circuit in terms of delays.

We start by assigning to each vertex corresponding to a primary input of the top-level cir-
cuit its arrival time. The arrival times are then propagated forward topologically based on the current
edge weights. Once the latest stabilizing primary output is determined, its arrival time is asserted at
each primary output vertex as a required time. These required times are then propagated backward
topologically through the timing graph again using the edge weights. Once an arrival time and a re-
quired time are computed at each vertex, the slack at the vertex is defined as the difference between
the required time and the arrival time. Any vertex whose slack is zero is on a critical path.

Once the slack computation is done on the timing graph, critical edges of the timing graph
are identified. A critical edge is an edge in the timing graph which connects two vertices whose
slacks are zero. To get a better delay estimate of the entire circuit, one needs to have a better delay
estimate of such critical edges. Therefore each critical edge is examined one by one to see if the
corresponding input-output delay can be improved further by considering false paths. More specifi-
cally, the transitive fanin cone of the corresponding leaf module from the output is examined to see
if the effective delay from the input to the output is smaller than the topological delay between the
two nodes. This can be checked easily by performing functional arrival time analysis of the cone as
follows.

Letxy,...,x, be the inputs of the cone and z be the output of the cone. Let /; be the longest
topological path length from x; to z. Assume that x, is the critical input and that the second longest
topological path length from x; to z is /; < l;. Now consider the case where input x;(i # k) arrives
att = —I; and critical input x; arrives atz = —[;. If z still gets stabilized by ¢ = 0 under these arrival

times, the effective input-output delay between x; and z is no greater than I;. We can then update the

94

weight of the edge from /; to [and repeat timing analysis of the timing graph to see which edges are
critical under this refined delay abstraction’. Otherwise the current delay estimation of /s is accu-
rate and cannot be improved since x; is the only primary input that arrives later than its topological
required time, and thus is responsible for the instability of z at # = 0. Therefore the edge is marked
to indicate that no further improvement is possible. Notice that the stabilization check at z can be
realized by performing functional arrival time analysis of the cone under the arrival time conditions
above.

As we refine weights of critical edges this way, a more accurate delay estimate of the entire

circuit is obtained!®. This iterative process stops once all critical edges are marked.

3.5 Hierarchical Delay Computation using Input-Vector Dependent De-

lay Abstractions

We have discussed hierarchical functional arrival time analysis, where the delay of a leaf
module is conservatively characterized with a delay abstraction independent of input vectors. We
showed that by removing input-vector dependency from delay abstractions at the lowest level of the
hierarchy, delay analysis above the level is reduced into a variation of topological analysis and thus
becomes computationally efficient. Since an effective algorithm exists for computing an input-vector
independent delay abstraction of a combinational module, this approach seems to be a practical way
to perform hierarchical analysis.

However, the restriction that a delay abstraction needs to be input-vector independent can
make analysis too pessimistic thereby resulting in delay overestimation. The only false paths de-
tected in this approach are those paths whose subpaths, completely contained in a single leaf module,
are false regardless of input vectors to the module. We call this type of false paths locally false paths
since the falsity of the paths can be determined locally by analyzing the leaf module. They are false
no matter how the the module interacts with other modules.

For example, in the carry-skip adder example in Figure 5.3, the longest topological path
from the carry input to the carry output was locally false and this information was used to compute a
delay abstraction strictly more accurate than the delay abstraction by topological analysis. It turned

out that all long false paths in the circuit are locally false. Therefore we were able to achieve the

%If there is more than one instance of the same module in the given circuit, edge weights are updated in all instances.
1%0nce an edge is assigned a new weight, it never gets increased again in this algorithm. Therefore, a delay abstraction
computed for a module is dependent on the order of edge weight updates.

95

M1

I———_——q

Doy 12

sel

Figure 5.8: A Limitation of Input-Vector Independent Delay Abstractions

same accuracy of flat analysis in the hierarchical analysis even with approximate delay abstractions.

However, not all false paths are locally false. There is a path that is false not simply due to
the falsity of a subpath contained in a single leaf module but due to the interaction of several modules.
We call such false paths globally false paths. To make detection of these false paths possible, delay
abstractions need to be more accurate by carrying input-vector dependent delay information. Delay

analysis is then performed by taking this dependency into account.

5.5.1 Example

We will illustrate how a path becomes globally false using a hierarchical circuit in Fig-
ure 5.8. The circuit has two leaf modules. The leaf module M, is composed of a multiplexer and
an inverter and has two instances. The leaf module M, only consists of an inverter. Assume that the
inverters have delay of 1 while the multiplexers have delays of 2. Suppose that all the primary inputs
arrive at ¢ = 0. Our goal is to estimate the arrival time at the output o.

Flat analysis of this circuit estimates the arrival time as # = 5. This means that the longest

96

topological path of length 6 from a to the output via the two upper subpaths is false.

Let us see if this false path can be detected using the hierarchical analysis in Section 5.2.
We first need to compute input-vector independent delay abstractions of M; and M,. M, is composed
of an inverter. Thus, the exact delay abstraction Dﬁ}m of M, is:

x dyz
0] {(1)}
1 {m}-
Since this is already input-vector independent, we can directly use it as the delay abstraction of M;,

ie. apzprox = {(1)}

The exact delay abstraction Dﬁ'x},c, of M, is:

(s,x,y) s 2dx—20y-,
000 {(2,-2,2)}
001 {(2,-==,2)}
010 | {(2,—°,2),(—2=,3,2)}
011 {(2,—,2)}
100 {(2,3,—9)}
101 {(2,3,—0)}
110 | {(2,3,—2),(—,3,2)}
111 {(2,3,—9)}.

Let us first compute an input-vector independent delay abstraction Dﬁf,‘,,,,,x that is a conservative ap-
proximation to the exact one, i.e. Dﬁ},c, =< D%,‘,,,,,x. Let Df,z,',,m, = {(ds,dx,dy)}. In order to be con-
servative, for any input vector x DML, must have a delay tuple (d',d, dy) such that (d;,d;,d;) <
(ds,dx,dy). Consider input vector 000. The requirement above gives the inequality: (2,—ce,2) <
(ds,dy,dy), implying d; > 2 and dy, > 2. Similarly, input vector 100 gives (2,3, —e0) < (d;, dx,dy),
by which d; and d, are constrained to be d; > 2 and d, > 3. The analysis of these two vectors already
gives DaM,,',,,(,x = {(2,3,2)}, which is the same as the topological delay abstraction. This delay tuple
is a conservative approximation for all the other vectors.

The fact that the input-vector independent delay abstractions of both leaf modules are the
same as the corresponding topological delay abstractions implies that the analysis is only as accurate
as topological analysis. Therefore, the arrival time at the output is overestimated as ¢ = 6, thereby

missing the false path from a of length 6. Although the exact delay abstraction of M; shows that

97

some paths are false conditionally, this information is lost when the delay abstraction of M, is ap-
proximated.

This false path can be detected once we use the exact delay abstractions of the modules.
Let us see how it is detected in detail. The path is decomposed into two subpaths: a path from a to
the output of the left multiplexer # and a path from 7 to the output 0. These subpaths correspond to
the same input-output path from x to z in M. This input-output path of length 3 in M| is true only
if s = 1!, Therefore, the subpath from a to ¢ is true only if sel = 1 while the subpath from ¢ to the
output is true only if se/ = 0. Since these two conditions are conflicting, it is impossible to sensitize
both to make the entire path from a to o true. Since the path is false due to the interaction of multiple

leaf modules, it is a globally false path.

5.5.2 Generalized XBDO Analysis for Input-Vector Dependent Delay Abstractions

Hierarchical analysis using input-vector independent delay abstractions has a limitation
that globally false paths are overlooked thereby potentially overestimating delays. This subsection
shows that delay analysis using input-vector dependent delay abstractions can be formulated as a
generalization of XBDO analysis for flat circuits.

Notice that the delay analysis at the top level of a hierarchy has exactly this situation. Each
subhierarchy at that level can be thought of as a gate with complex functionality. The delay abstrac-
tion of the subhierarchy has been constructed in a bottom-up fashion and is potentially dependent on
input vectors applied to the subhierarchy inputs.

In regular XBDO analysis a circuit under analysis is a flat network composed of gates with
known delay characteristics. In the simplest case the delay of each gate is given as a single de-
lay value independent of input pins and signal directions (rise/fall delays) as in Section 2.4.6'2. In
XBDO analysis this delay value is conditionally used to perform signal stability computation. How-
ever, the actual delay abstraction of a gate underlying in XBDO analysis is not explicitly defined
in [MSBSV93]. It is embedded in the recursive formulation of functions.

Consider a two-input AND gate n for example. We are interested in the delay abstraction

of the gate used implicitly in XBDO analysis. Let m; and m; be the fanins of the gate. Suppose that

''In fact the path can be true under input vector 010. However, it is true only if input s is late. In this example s always
arrives earlier than x and y in both instances. Thus, we can safely ignore this tuple for ease of exposition.

12 Although we did not discuss this aspect in Section 2.4.6, it is easy to generalize the analysis so that gate delays vary
depending on input pins and signal directions.

98

the delay of this gate is d for simplicity. The recursive definition of functions for the AND gate is:

T — N-d N t-d
xn,l - xml,l xmz,l

T _ T—d t-d
Xno = Xm0t Xm0

The first equation for value 1 at n implies that the stability of n at value 1 at r = T is guaranteed if
both fanins are stable at value 1 by ¢ = T —d. Therefore, the equivalent delay tuple is (d,d). The
second equation is for value 0. The interpretation of the equation is that the stability of at value 0
att = 7 is guaranteed if either of the fanins is stable at value 0 by r = t— d. This is captured by two
delay tuples (d, —e0) and (—eo,d). The first delay tuple is applicable if m; = 0 while the second is
applicable if my = 0. If m; = my = 0, both of them are valid.

This observation leads to the following delay abstraction for the two-input AND gate im-

plicitly assumed in XBDO analysis when a delay value d is given.

(ml ymz) dm.—mdmz-m
00 {(d,—e0),(—0,d)}
01 {(d,—=)}
10 {(=e2d)}
11 {(d,d)}.

In the general case where the functionality of a gate is a complex function, the recursive

definition of y function is:
tiw= 2 ([T x5t - TT %5t
pEFy mi€p ni;Ep

where P} and P? are the sets of all primes of f;, and f, respectively. Each prime p € P, gives a delay
tuple (dy,...,dx), where d; = d if m; € p or ; € p, and d; = —co otherwise. The delay tuple is
assigned to all input vectors where p evaluates to 1.

In summary, a gate is assumed to be an atomic functional unit whose output becomes stable
d time units after a subset of fanins that are enough to determine an output value is all stabilized.
Each prime meets the condition of the subset defined above since if all the literals of a prime have
final values, the output of the gate is uniquely determined without waiting for the other inputs to get
stabilized.

We have shown that the delay propagation mechanism of a gate underlying in XBDO anal-
ysis can be captured as an input-vector dependent delay abstraction. Given this, functional arrival
time analysis using functions in Section 2.4.6 can be thought of as a delay analysis algorithm for

99

a network where each gate is characterized as a delay abstraction of a special form. We are inter-
ested in whether it is possible to generalize the algorithm so that it can handle a network of complex
gates each of which is characterized by a delay abstraction of an arbitrary form. Specifically, if the
recursive definition of) functions can be extended so that an arbitrary input-vector-dependent delay
abstraction is allowed, one can simply mimic regular XBDO analysis for all the other tasks.

This generalization is in fact possible. Let n be a gate in a network. Let m,,...,m; be the
fanins of n. Assume that the delay abstraction of this node is available. The recursive construction
of function is modified as follows. Each delay tuple in the delay abstraction gives a condition that
the output is guaranteed to be stable. For example, suppose there is a delay tuple (d|, .. .,d;) under
input vector X = (vy,..., V). Suppose that x is an on-set vector of n. This tuple indicates that if fanin
m; is available at t = T —d; at value v; for all i = 1,...,, the output stability at 1 is guaranteed at
t = 1. This is the same as having [T%, x,‘,,j"fj in the recursive definition of % functions. Since the
output stability to value 1 is guaranteed by any of those delay tuples under on-set vectors, we can
take the disjunction of all the products created from the delay tuples. Thus,

k
1 =)y | J
(%,(dyyeensdly)) ED, o (X)=1 i=1

where X = (v|,..., V). The % function for value O can be defined in a similar way.
k
Xno = > | | o
(%,(d)y-.,dk)) €D, fo(x)=0i=1

Note that y,;. .. = m; if v| = 1 and 7; if v; = 0. This applies if a delay tuple has a delay
value —co under some input. Further simplification is possible in this case. Let (dy,...,d;) be a
delay tuple under x = (vy,...,v). Assume that x is in the on-set of the gate. Suppose dj = —eo,
This means that the functionality of the gate is independent of d ; under x. Thus, we should have the
same delay tuple under input vector x' that is obtained from x by flipping the phase of v ;. The delay

. —d: . —d: —d:
tuple under x gives a product term [T5.; x5! = Xomj; Tl j Kot = 1 TIE | s j Xt~ The delay

tuple under x’ contributes a product term m_,-l'[f.‘= LiZj xf,,;‘f;'. If we take the disjunction of these two
product terms, the result is [T¢ Ligj xf,;(f;'. Therefore, if there is a delay tuple where some component
is —eo, we can safely drop the corresponding input from our consideration in its product term. This
can be generalized to the case where more than one component of a delay tuple is —eo.

Now that we know how to construct ¥, functions for arbitrary delay abstractions, the re-
maining analysis can be performed in the same way as in regular XBDO analysis, where the deter-

mination of a delay estimate is reduced to the satisfiability problem. A potential difficulty of this

100

approach is that each gate in the network generates too many nodes in the X network since the delay
abstraction of a gate can be very complex with many delay tuples. The practicality of this approach

is yet to be determined by experiments.

5.5.3 Other Approaches to Delay Computation using Input-Vector Dependent Delay
Abstractions

The previous subsection showed how regular XBDO analysis can be generalized so that
input-vector dependent delay abstractions are handled in the construction of functions. A similar
generalization is possible for other known techniques for delay analysis.

Devadas et al. [DKMW?93] formulate functional arrival time analysis of flat circuits as a
special type of ATPG, termed timed ATPG, where a pair of a value and a time, called a timed event, is
propagated and justified. In order to see if an output is stable by ¢ = , timed events (0,7) and (1,1)
are asserted at the output and checked to see if either event is justifiable under some input vector
available at specified arrival times. Since the timed ATPG is based on PODEM [Goe81], a timed
event is only propagated forward. Therefore, the use of input-vector dependent delay abstractions in
this framework is simple. We just need to compute an output timed event from timed events at the
fanins of a gate by respecting its input-vector dependent delay abstraction. The only complication
is the possibility of having more than one delay tuple under an input vector. We need to take the
earliest timed event over all the delay tuples applicatle to the situation under analysis.

Yalcin and Hayes [YH95] proposed an algorithm where conditional events are propagated
symbolically. The only restriction is that they can only handle a delay abstraction where each input
vector has one delay tuple. The generalization to the case without this restriction is trivial. We have

only to propagate the earliest event.

5.54 Computing Input-Vector Dependent Delay Abstractions of Subhierarchies

If the depth of a hierarchy is just one, by replacing the delay propagation algorithm in Sec-
tion 5.2 with the generalized XBDO analysis presented in Section 5.5.2 hierarchical analysis can be
performed using delay abstraction dependent on input vectors.

If the depth of a hierarchy is more than one, we need to consider one more problem, i.e.
how to create a delay abstraction of an intermediate subhierarchy from the delay abstractions of the
subcircuits at that level, where all the delay abstractions can be input-vector dependent. A similar

problem was discussed in Section 5.2.3 for the case where delay abstractions are input-vector inde-

101

pendent. Even under this simplified situation, we showed that the possibility of having more than
one delay tuple makes the problem difficult since it is necessary to keep track of which delay tuple is
used for each subcircuit during required time analysis. In the general case where delay abstractions
are input-vector dependent, we need to do the same analysis for each input vector separately. Sup-
pose we have a circuit composed of subcircuits, each of which has an input-vector dependent delay
abstraction. By choosing an input vector of the circuit, the local input vector of each subcircuit is
fixed. By referring to the corresponding delay abstraction under the vector, we can obtain a set of
delay tuples to be used for the subcircuit under this vector. Now a set of delay tuples for the entire
circuit under the global input vector can be computed in the same way as in Section 5.2.3. This ap-
proach is obviously expensive since each input vector needs to be analyzed independently. Whether
there is an efficient algorithm to handle this problem is yet to be seen.

As a special case, if we restrict ourselves to the case where any delay abstraction has one
delay tuple for each input vector, there is no need to keep track of the choice of delay tuples, which
makes the problem easier. All input vectors can be processed symbolically by using ADDs [BFG*93]
or MTBDDs [CMZ+93].

5.6 Experimental Results

We have implemented the improved timing analysis algorithm described in Section 5.4 on
top of SIS [SSM+92]. CPU time reported in this section was measured on DEC AlphaServer 8400
5/300 and is reported in seconds. In all experiments the unit delay model was used.

Table 5.1 shows the results of hierarchical arrival time analysis of various types of carry-
skip adders. Each circuit csan.m is an n-bit adder structured as a cascade connection of n/m m-bit
carry-skip adders. The same circuits were also analyzed by flat timing analysis [MSBSV93] after
expanding out all the existing hierarchy to get equivalent flat circuits. In all the circuits primary
inputs were assumed to arrive at# = 0. Accuracy of estimated delay was fully preserved in all cases.
CPU time saving of hierarchical analysis is significant.

This example of carry-skip adders is suited very well for hierarchical analysis since the
circuit structure is regular, i.e. the same leaf module is used repeatedly. Therefore once the accurate
delay abstraction of a component carry-skip adder is obtained, it can be used many iimes to improve
the accuracy of the delay estimate of the entire circuit.

It is interesting to see how the algorithm performs on hierarchical circuits with irregular

structures. Although ideally this experiment should be done on realistic hierarchical circuits, we

102

circuit || topological delay hierarchical analysis flat analysis
. estimated delay | CPU time | estimated delay | CPU time
csa32.4 82 26 0.3 26 7.1
csa64.4 162 42 0.3 42 334
csal28.4 322 74 0.3 74 173.1
csa32.8 74 26 1.1 26 6.0
csa64.8 146 34 1.1 34 30.5
csal28.8 290 50 1.1 50 151.5
csa32.16 70 38 5.5 38 3.9
csa64.16 138 42 55 42 234
csal28.16 || 274 50 5.5 50 116.2
Table 5.1: Timing Analysis of Carry-Skip Adders — Hierarchical vs. Flat
circuit || topological delay hierarchical analysis flat analysis

estimated delay | CPU time | estimated delay | CPU time

C1908 40 38 62.7 37 5.7

C2670 32 31 5.5 30 19.8

C3540 47 46 24.2 46 8.1

C5315 49 47 7.5 47 22

C6288 124 124 51.0 123 2739

C7552 43 42 4.0 42 1.2

Table 5.2: Timing Analysis of ISCAS Circuits — Hierarchical vs. Flat

103

had no hierarchical benchmark circuit available. Therefore we created artificial hierarchical circuits
from ISCAS combinational circuits in the following way. Each benchmark circuit was partitioned
into two circuits in a cascade structure so that one circuit drives the other. We then assumed that
each partitioned circuit is a leaf module. This way we constructed a simple hierarchical circuit from
a benchmark circuit.

Each hierarchical circuit was then analyzed by the algorithm in Section 5.4. Original bench-
mark circuits were also analyzed by flat timing analysis to compare accuracy of delay estimates and
CPU time. Table 5.2 summarizes the results of this experiment. We were able to confirm that ac-

-curacy is preserved well in hierarchical analysis although small overestimation occurred on some
circuits. In our current approach only locally false paths are detected. Therefore globally false paths
which are false due to the interaction of various leaf modules are overlooked. The fact that accuracy
is maintained reasonably well in this experiment indicates that many false paths in real circuits are
in fact locally false.

Since these circuits are not large enough, flat analysis can finish timing analysis very quickly.
Therefore we could not see any speedup in terms of CPU time for the case where a delay estimate
of hierarchical analysis matches that of flat analysis. In fact, since functional arrival time analysis is
performed repeatedly on smaller circuits in hierarchical analysis, it takes more time to complete the
analysis than flat analysis in many cases. However this result should not be taken negatively. The
underlying algorithm for both hierarchical and flat analyses is functional arrival time analysis of a
flat combinational network. In the hierarchical approach the analysis is performed only on a single
leaf module while it is performed on an entire circuit in flat analysis. Given that functional arrival
time analysis can only be applied to circuits of a limited size, it is clear that hierarchical analysis is

more scalable!3.

5.7 Related Work

Das et al. [DJCM89] and Johannes et al. [JCM92, Joh93] presented hierarchical timing
analysis algorithms based on static sensitization. Since static sensitization can underestimate true

delays, their approach is not conservative for timing verification.

13An alternative is to perform flat analysis of subcircuits in a topological order. The accuracy loss of this method is the
same as that of hierarchical analysis since only locally false paths can be detected. However, each instance of the same
module must be analyzed separately given different arrival times at its inputs. Furthermore incremental analysis capability
is very limited since a modification of a subcircuit invalidates all the analyses for its transitive fanout cone whereas in
hierarchical timing analysis the delay abstractions of the modules in the transitive fanout cone are still valid.

104

More recently Yalcin and Hayes [YH95] studied hierarchical timing analysis using condi-
tional delay matrices. They characterize the delay of a combinational module by functional arrival
time analysis under a fixed arrival time condition. This step is called tagged-mode analysis and is es-
sentially the same as the delay characterization based on path classification studied in Section 4.6.1.
Although they use the resulting delay abstraction for arbitrary arrival time conditions, no argument
was given on the correctness of the approach. As discussed in Section 4.6.1, the approach is not
conservative if the floating-mode condition is used as a path sensitization condition.

In this chapter we have performed hierarchical timing analysis by respecting the hierarchy
of a given circuit. However, hierarchy is typically introduced for designers to simplify design tasks
and thus the given hierarchy may not be suitable for timing analysis to achieve accurate delay esti-
mation. Johannes et al. [JCM93, Joh93] presented how to find a hierarchy appropriate for efficient
and accurate timing analysis. By noticing that a path becomes false due to a structural reconver-
gence, a heuristic was developed for generating a hierarchy effective for timing analysis. The idea

is applicable to our techniques.

5.8 Conclusions

We have proposed a hierarchical functional arrival time analysis technique for combina-
tional circuits. The analysis proceeds in a bottom-up fashion by following the original hierarchical
structure of a circuit. At the lowest level of a hierarchy the delay abstraction of each leaf module is
computed. Various techniques studied in Chapter 4 are directly applicable. False paths inside a leaf
module are correctly identified in this step. We then compute the delay abstraction of each interme-
diate subhierarchy using the delay abstractions of subcircuits directly below that level. At the top
level of the hierarchy delay computation is performed using the delay abstractions of the subcircuits
at the level. If the delay abstractions are input-vector independent, the top-level delay computation
is achieved by a variation of topological analysis. Although it is efficient, only a subset of false paths
can be detected this way potentially resulting in delay overestimation. For the case where the delay
abstractions are input-vector dependent, we have shown that the delay computation problem can be
formulated as a generalization of the XBDO analysis in Section 2.4.6.

Unlike conventional flat analysis the hierarchical approach never analyzes an entire circuit
at the gate level at one time, and thus can potentially handle larger circuits than flat analysis. It is well-
suited for the analysis of industrial circuits whose analysis is difficult or too slow for flat analysis.

The hierarchical approach naturally supports incremental analysis capability, which is completely

105

missing in flat analysis.

We have experimentally shown that the hierarchical approach maintains enough accuracy
on benchmark circuits even if approximate delay abstractions independent of input vectors are used.
Further experiments are necessary to examine the effectiveness of this approach for larger industrial
circuits.

Although the approach has been described for combinational circuits, generalization to
sequential circuits with edge-triggered flip-flops is trivial. An extension of the approach to level-
sensitive latches remains as future work.

Another potential research direction is input vector generation. Although the analysis pre-
sented in this chapter gives the delay estimate of a circuit, an input vector that realizes the delay is
not explicitly generated by the algorithm. Such an input vector can be used in timing simulation at
a lower level of abstraction for detailed analysis, and thus is of practical use.

The delay model assumed in this chapter is a simplistic model where the effect of load and
slew is completely ignored. Adaptation of the hierarchical analysis for a more realistic delay model

is an important research direction yet to be explored.

107

Chapter 6

Timing-Safe Replaceability for

Combinational Modules

Chapter 4 showed that the delay abstraction of a combinational module can be computed
exactly under the XBDO model by considering false paths of the module. The delay abstraction is
dependent on in[;ut vectors so that it can characterize paths conditionally false under some vectors.
In addition, to guarantee the accuracy of the abstraction for arbitrary arrival time conditions at the
inputs, more than one delay tuple, representing effective delays between the inputs and the output,
can be maintained for an input vector. The best delay tuple that gives the most accurate delay estimate

is chosen adaptively given an arrival time condition at the inputs.

The problem addressed in this chapter is how to compare the timing characteristics of two
combinational modules that are functionally equivalent, but have different timing behaviors. Specif-
ically, we are interested in a condition that one module is no slower than the other under any arrival
time condition at the inputs. If this condition holds between two combinational modules, the latter
module can be safely replaced with the former under any surrounding environment without the risk
of deteriorating the original performance. To formalize this idea a new notion called timing-safe
replaceability will be introduced for combinational modules. We will show that whether one is a
timing-safe replacement of the other can be determined given the exact delay abstractions of the two

modules.

This chapter is organized as follows. Section 6.1 introduces the notion of timing-safe re-
placeability and discusses how to determine whether a combinational module is a timing-safe re-

placement of another. Examples are given in Section 6.2 to illustrate the notion. Section 6.3 dis-

108

cusses concurrent timing optimization of combinational circuits as an application of timing-safe re-

placeability. Section 6.4 concludes the chapter.

6.1 Timing-Safe Replaceability

Suppose that we have a combinational module %,g and another combinational module
Miew that is claimed to be a sped-up version of Morg. Assume that they are single-outputmodules and
functionally equivalent. We are interested in verifying whether M,,,, is indeed no slower than M,,g.
More specifically, we need to verify whether using M,,,, instead of M, worsens the delay through
this module under some vector and arrival times at the inputs of the module. If there exist such a
vector and arrival times, M., is not a timing-safe replacement of M,,g since under that particular
situation the use of M, instead of M,,, in fact deteriorates the performance of Moye. Throughout
this chapter we assume that the only timing property that needs to be preserved is when the output
of the module is stabilized. It is acceptable for the output to be available earlier than in the original

module, but it should never become stable later.

Definition 6.1 M., is said to be a timing-safe replacement of Morgr Mew 2m Morg, if there exists
no (input vector, arrival times)-pair at the inputs such that the output becomes stable later in M,,,,
than in M.

The partial order < over delay abstractions was originally introduced in Definition 4.4 to
compare the accuracy of approximate delay abstractions for the same combinational module. We
generalize this partial order so that delay abstractions of functionally equivalent circuits can be com-

pared against each other.

Definition 6.2 Let Dy and D, be the exact delay abstractions of single-output combinational mod-
ules My and M, respectively, where My and My are functionally equivalent and have the same in-
put/outputinterface. D\ X D, iffor every (input vector,delay tuple)-pair (x, (d, . ..,d,)) € D,, there
exists an (input vector,delay tuple)-pair (x,(d,...,d,)) € Dy such that (d},...,d.) 4 (d,...,d,).

The following theorem states that, given two combinational modules, whether one is a
timing-safe replacement of the other can be determined by checking if a certain property holds be-
tween their exact delay abstractions. Note that all the properties proved for < in Chapter 4 still hold

for this new definition of <.

109

Theorem 6.1 Let Dy, and Dy, be the exact delay abstractions of Moy and M.y, respectively.
Moew <M M)rg ifand only if Dyew X Dpg.

Proof Trivial from Theorem 4.1. O

The following properties of <3 can be directly obtained from the corresponding properties
of < proved in Chapter 4.

Theorem 6.2 <y is reflexive.

Proof Trivial from Theorem 4.2. O

Theorem 6.3 < is transitive.

Proof Trivial from Theorem 4.3. O

Theorem 6.4 <y is antisymmetric.

Proof Trivial from Theorem 4.4. O

The notion of safe replaceability was first proposed by Singhal and Pixley [SP94] for se-
quential circuits, where a sequential circuit is said to be a safe replacement of another if the replace-
ment of the latter with the former is never detectable under any surrounding environment in terms
of functionality. This notion allows us to take an arbitrary piece of sequential logic and replace it
with another regardless of the surrounding logic. Timing-safe replaceability proposed here is a nat-
ural extension of the safe replaceability notion to the timing domain since one can safely replace a
combinational module with another without increasing the delay through the module under any sur-
rounding environment (i.e. arrival time condition) if the latter is a timing-safe replacement of the
former.

Aziz et al. [ABBS95] proposed a different notion of timing-safe replaceability, where a
circuit is called a timing-safe replacement of an original circuit if and only if the delay range of the
output is completely contained in the delay range of the original. Note that each gate is given a min-
imum delay and a maximum delay. Our definition is more relaxed since the only delay property of

our interest is maximum delay. Therefore, speeding up a circuit preserves timing-safe replaceability

110

in our definition while it may not in the definition of Aziz e al. Moreover, it is much more expensive
to determine if one circuit is a timing-safe replacement of another in the notion of Aziz et al. than

in the notion defined here.

6.2 Examples

Considera circuit M shown in Figure 6.1 taken from [BIS8]. Assume the unit delay model.
The exact delay abstraction D of M is:

abc dysgdpsgdcsg

000 {(3,—20,2),(—e,3,2)}
001 {(2,2,2)}

010 {(3,—00,2),(=00,2,—0)}
011 {(—0°,2,—20)}

100 | {(2,—o0,—c),(~,3,2)}
101 {(2, =00, —0)}

10 | {(2, o0, =), (—e0,2,—c0)}
11 [{(2,—00,—00), (—00,2,—c0)}.

The input edge of path P, = (a,d, f,g) is both stuck-at-0 and stuck-at-1 redundant. Fig-
ure 6.2 shows the circuit M obtained from M by removing the stuck-at-0 redundancy at the input
edge of path P,. The delay abstraction Dy of M is:

abc s gpsgdcsg

000 {(—ee, =22, 1)}

001 {2,2,1)}

010 {(=o0, =00, 1), (=00,2, —)}

011 {(=,2,~o)}

100 {(2, =00, =), (=00, —e9,1)}

101 {(2,—o0,—c0)}

10 | {(2, o0, =), (—2,2, —00), (=20, —e0, 1)}
111 {(2,—o0, o), (=0,2,—c0)}.

It is easy to see that Dy < D. For example, under input vector (0,0,0), D has two timing tuples,
(3, —°,2) and (—eo, 3,2). Do has a single tuple (—e, —eo, 1) for this vector, which gives (—oo, —c0,1) <

111

Figure 6.1: Example: A Combinational Module M

Figure 6.2: Example: A Timing-Safe Replacement Module %4,

a e

Figure 6.3: Example: A Timing-Non-Safe Replacement Module M

112

(3,—2,2) and (—eo, —o0,1) < (—e0,3,2). All the other input vectors have this property. Therefore,
from Theorem 6.1, Dy < D implies My <y M. My can always be used instead of M under any
environment without having a negative impact on delay.

If we remove the stuck-at-1 redundancy of the input edge instead, another circuit 4] shown
in Figure 6.3 is obtained. The delay abstraction D, of 9 is:

abc dgsgdpspdc g

000 {(—==,2,2)}

001 {(2,2,2)}

010 {(—e,2,~2)}

011 {(—20,2,—20)}

100 | {(2,—o0,—%0),(—2=,2,2)}
101 {(2,—00,—2)}

110 | {(2,—o0, =), (—oe,2, —c0)}
111 | {(2, =00, —o0),(—e°,2,—00)}.

D, 2 D since, for example, under input vector (0,0,0) D has a delay tuple (3, —co,2), but the only
timing tuple is (—eo,2,2) in D), where (—¢e,2,2) A(3,—c0,2). Therefore, if (a,b,c) = (0,0,0) and
(arr(a),arr(b),arr(c)) = (-3,0,—2), the output becomes stabilized at # = 0 in M while under the
same condition the output only becomes stable at t = 2 in M]. D, £ D implies M; £y M.

6.3 Application: Concurrent Timing Optimization of Combinational
Circuits

Consider timing optimization of combinational circuits. Suppose that a combinational net-
work does not meet a given timing constraint and needs to be sped up. Assume that instead of opti-
mizing the network as a single circuit, it is partitioned into subnetworks, each of which is then opti-
mized and replaced with an optimized subnetwork. Farthermore, consider a scenario that the timing
optimization of the subnetworks is performed concurrently not sequentially. This is a realistic sce-
nario in the context of hierarchical synthesis. For example, if a design is partitioned into blocks, it is
often the case that synthesis is performed respecting the partition, i.e. each component is synthesized
separately. In many cases different blocks belong to different designers, and thus they are likely to

be optimized concurrently.

113

Pt 4o

Fit
Pt T

Figure 6.4: Concurrent Timing Optimization of Combinational Circuits

Consider an example shown in Figure 6.4, where two combinational circuits are connected

in cascade. Suppose that we need to speed up the circuit by optimizing M and M, separately.

First, consider timing optimization where delays are estimated by topological delays. Un-
der this delay model, as long as each component is optimized so that the topological delay between
each input-outputpair within the component never increases, the optimized component is never slower
than the original no matter how it is used. Therefore, the use of optimized components always gives

a better performance thereby making concurrent timing optimization easy.

Now assume that the delay of the circuit is estimated more accurately by considering false
paths. This makes the timing interaction of the two components tighter. Suppose M is optimized so
that the outputs of the module arrive no later than the original under the original arrival time condition
at the module inputs. Let M"; be the optimized circuit. Suppose 4 is optimized in the same way.
Let M, be the optimized circuit.

The inputs of M, are primary inputs of the entire circuit. Therefore, the arrival time con-
dition at the inputs is preserved even after the timing optimization. Thus, if we replace M with
My, the signals on the component boundary arrive earlier than before. If we keep M, as it is, the
replacement of M with M’, is guaranteed not to slow down the circuit since the new arrival time
condition at the inputs of %4 is a monotone speed-up of the original, and thus never increases the

delay estimation of 4 at the outputs of the module.

Now suppose M, is concurrently optimized with] assuming that the outputs of the first-

level module arrive in the same way as in the original configuration. It is possible that M, with M’

114

gives performance worse than M, with M'|. The reason is that M, is guaranteed to be no slower
than %4 only under the original arrival time condition. Under a different arrival time condition, the
original circuit 4 can be faster than the optimized circuit M",. This is not desirable since the effort
of timing optimization of /¢, may be nullified depending on the optimization performed for M. We
are interested in a more consistent timing optimization scenario in which the optimization of each
component and the use of the resulting component always gives better performance.

The problem above is that M, was optimized just for a particular arrival time condition
as if it were fixed. In the context of concurrent timing optimization, the arrival time condition at
the inputs of % can change. More specifically, the arrival time condition can be sped up as the
result of timing optimization of M, although the actual arrival time condition is unknown since the
two modules are optimized concurrently. Therefore, in order to guarantee that an optimized circuit
always gives performance no worse than the original, the timing optimization of 4 needs to be
done so that the resulting circuit ", is no slower than M, under any arrival time condition which
is a sped-up version of the original.

The notion of timing-safe replaceability is suitable in this context. Suppose that a new
circuit M, is a timing-safe replacement of M. It is guaranteed that M, is no slower than M,
under any arrival time condition. Although the notion is stronger than necessary' for this application,
timing optimization under the notion of timing-safe replaceability gives the property of consistent
optimization?.

A timing optimization flow based on the notion of timing-safe replaceability is as follows.
A combinational circuit is partitioned into subcircuits, each of which is optimized so that a new sub-
circuit is a timing-safe replacement of the original. All the subcircuits are optimized simultaneously
under this condition. We can then guarantee that a final circuit constructed by any combination of

the optimized subcircuits gives performance no worse than the original.

6.4 Conclusions

A new notion called timing-safe replaceability has been proposed for combinational mod-

ules. If a combinational module is a timing-safe replacement of another, the delay through the former

!'We only need the performance guarantee under sped-up arrival time conditions.

2'I*lming optimization under the notion of timing-safe replaceability has a similar flavor to functional optimization un-
der a compatible set of permissible functions (CSPF) [MKLC89]. The timing constraint posed on a component under
timing-safe replaceability is tighter than that under the case where the component s optimized while all the other compo-
nents are fixed (corresponding to a maximum set of permissible functions (MSPF) [MKLC89] in functional optimization).
However, it allows us to perform concurrent optimization as in CSPF-based logic simplification.

115

module is guaranteed not to be larger than that through the latter under any arrival time condition.
Thus, no matter what the surrounding environment of the original module is, the use of a timing-
safe replacement gives performance no worse than that of the original. The notion of timing-safe
replaceability gives a criterion for comparing the timing characteristics of combinational modules
under unknown arrival times at primary inputs. We have shown that timing-safe replaceability can
be determined if the exact delay abstractions of two modules are given.

Although a decision procedure for timing-safe replaceability was given based on the anal-
ysis of the exact delay abstractions of two modules, the computation of the exact delay abstractions
itself is difficult for large circuits, which creates a bottleneck. An efficient way to verify whether a
circuit is a timing-safe replacement of another needs to be investigated.

Another interesting direction is to study timing optimization techniques whose optimiza-
tion results are provably timing-safe replacements of the original. One timing optimization scheme
that guarantees this property is speeding up gate delays without changing the structure of a net-
work [CDL93]. Due to the monotone speed-up property of the XBDO model, the resulting circuit
is gnaranteed to be a timing-safe replacement of the original. To the best of our knowledge all the
other existing timing optimization algorithms restructure a given circuit under a particular arrival
time condition so that the resulting circuit is faster than the original under the condition. Thus, none
of them meets this requirement. Timing optimization techniques satisfying the requirement allevi-
ates the need for potentially expensive verification of timing-safe replaceability. In Chapter 8, a tech-

nique in this category will be proposed.

117

Chapter 7

Strongly False Paths in Combinational
Modules

Chapter 4 showed that the delay characteristics of a combinational module can be com-
pactly represented in the form of a delay abstraction, in which the effective input/output delay infor-
mation of the module under each input vector is separately stored so that false paths under the vector
are taken into consideration. One of the important observations was that the effective input/output
delay may not be unique even after an input vector is specified, and can vary depending on arrival
time conditions at the inputs. This directly implies that the falsity of a path in a combinational mod-
ule is not a property independent of arrival times at the inputs, but is relative to arrival times at pri-
mary inputs. Therefore, the same input-output path of a module can be true under some arrival time
condition, while false under another. This chapter introduces a more stringent notion of false paths,
termed strongly false paths, where a path is said to be strongly false if it is false under any arrival
time condition. Such false paths can be defined uniquely for a combinational module independent
of arrival times at the primary inputs. Applications of this new class of false paths include false path

removal of combinational modules, which will be discussed in Chapter 8.

This chapter is organized as follows. Section 7.1 starts with a motivating example show-
ing that the falsity of a path is different for different arrival time conditions. We define a new class
of false paths called strongly false paths for combinational modules in Section 7.2 and show that
a strongly false path can be identified by examining the exact delay abstraction of a combinational
module. Section 7.3 then proposes an algorithm for determining the strong falsity of a path with-

out constructing the exact delay abstraction of a module. Relation between strong falsity and static

118

Figure 7.1: Example: A Combinational Module M

co-sensitization is argued in Section 7.4. The chapter is concluded in Section 7.5.

7.1 Example

Consider a circuit M in Figure 7.1. Assume the unit delay model. If the primary inputs
a,b and c arrive at ¢ = 1,0 and 1 respectively, functional arrival time analysis guarantees that the
output g is stabilized at # = 3. Note that the topological delay of this circuit under the arrival time
condition is f = 4(> 3) due to the path P, = (a,d, f,g). Since g is available at t = 3, P, is false.

Consider another path P, = (b,d, f, g). Given an input vector (a,b,c) = (0,0, 0), P, is true

under this arrival time condition.

Now, let us analyze the same circuit under a different condition where a, b and c arrive at
t =0,1 and 1 respectively. The output g is again available at ¢ = 3. Therefore P, is false since oth-
erwise the output would become stable at r = 4. Note that P, was true under the previous condition.

P4, which was false before, is true this time, for example, under input vector (a, b,c) = (0,0, 0).

These two cases clearly demonstrate that the falsity of a path is relative to a given arrival

time condition, and that the same path can be false in one condition and true in another.

One can examine this circuit more systematically by computing the exact delay abstraction

119

of the circuit as described in Section 4.2. The exact delay abstraction D of this circuit is:

abc dgsgdp_sgdcsg

000 {(3,-22,2),(—==,3,2)}
001 {(2,2,2)}

010 | {(3,—0,2),(—00,2,—o0)}
011 {(—e0,2,—0)}

100 | {(2,—0,—c),(—=>3,2)}
101 {(2,—o0,—0)}

110 | {(2, —o0, —0),(—20,2,~c0)}
111 | {(2,—e0, —20),(—e0,2,—c0)}.

In this circuit P, (P,) is the only path of length 3 from a (b) to g. Therefore, the fact that
the delay abstraction has a delay tuple whose first (second) element is 3 means that, given the corre-
sponding input vector, it is possible to make P, (P,) true.

For example under (a, b, c) = (0,0,0), when (arr(a),arr(b),arr(c)) = (1,0, 1), the second
delay tuple (—eo°, 3,2) gives an earlier signal stable time of ¢ = 3 at the outputthan the first delay tuple
(3, —e°,2) giving the stable time of ¢ = 4. As described in Section 4.4, the delay tuple that gives the
earliest stable time can be used in determining the timing behavior of the output. Since the delay from
b to the output in this second delay tuple is 3, the corresponding path P, is true. P, is false since the
delay tuple indicates that input a is irrelevant. If (arr(a),arr(b),arr(c)) = (0,1,1), however, the

first delay tuple gives an earlier stable time than the second, showing that P, is true and P, is false.

7.2 Strongly False Paths

Definition 7.1 Let M be a single-output combinationalmodule whose primary inputs are x,, . . ., Xy.
Let z be the primary output of the module. The path set I1(x;,L) is the set of all input-output paths

that start from x; and end at z and whose topological delays are greater than or equal to L.

Definition 7.2 TI(x;, L) is said to be strongly false under input vector x if no path in T1(x;,L) is re-
sponsible for the stability of the output under X in any arrival time condition at the inputs. T1(x;,L)

is said to be strongly false if T1(x;, L) is strongly false under all input vectors.

The following theorem shows that if the exact delay abstraction of a combinational module

is available, strong falsity of paths can be determined easily.

120

Theorem 7.1 The path set T1(x;,L) of a single-output combinational module M is strongly false
under input vector X if and only if the exact delay abstraction D of M contains no delay tuple where

the delay corresponding to x; is greater than or equal to L under x.

Proof

<= The effective delay from x; to the output is less than L for any choice of the delay tuples under
X. Thus, no path in I1(x;, L) is responsible for the stability of the output for any arrival time

condition at the inputs.

= We prove this by contradiction. Suppose that D has under x a delay tuple (d|, ... ,dn) where the

delay from x;, d;, meets d; > L. Consider two arrival time conditions

A = (arr(xn),...,arr(x,)) = (=d,,...,—d,)

Al = (—dla-'°1—di—l’-di+8,— i+|,...,—dn),

where € > 0. Under A, the output is stable at t = 0. However, if we change the arrival time
condition to A’, where € is a small positive number, the output stable time is delayed tor = &.
Note that we can take € small enough so that no other delay tuple under x gives better delay
estimation than the current delay tuple. The output becomes stable later because some path of
length d; > L in I1(x;, L) determines the output stability. A contradiction.

Corollary 7.1 II(x;,L) is said to be strongly false if and only if the exact delay abstraction D of M
contains no delay tuple in which the delay corresponding to x; is greater than or equal to L under

any input vector.

The idea behind this new definition of false paths is that a path set is said to be strongly
false if all the paths in the set are false under any arrival time condition. This definition of falsity
is more stringent than the standard definition of falsity where the falsity is argued under a specific
arrival time condition.

Under this new definition neither I1(a, 3) = {P,} norI1(b,3) = {P,} in Figure 7.1 is strongly
false since it is possible to sensitize these paths under some arrival time condition as we saw in the
previous section.

We can also define another class of strongly false paths where the strong falsity of a path

set is claimed only under a specific value at an input.

121

Definition 7.3 T1(x;,L) is said to be strongly false for value O (1) at x; if and only if II(x;,L) is

strongly false under all the input vectors that have value 0(1) for x;.

Note that IT(x;, L) is strongly false if I1(x;, L) is strongly false both for value 0 and value
1 at x;.

In Figure 7.1 I1(a, 3) is strongly false for 1 at a since under a = 1 there is no delay tuple
where the delay from a is 3. Likewise I1(b, 3) is strongly false for 1 at b.

This notion of strong falsity of a path set for a constant value at an input! will be exploited
in Chapter 8. Specifically, we will show that any path set that is strongly false under some constant
value can be removed safely without increasing the delay of the module under any arrival time con-

dition.

7.3 Algorithm for Detecting Strongly False Paths

In the previous section we showed that strongly false paths of a combinational module can
be easily identified if the exact delay abstraction of the module is available. However, the computa-
tion of the exact delay abstraction is expensive for large circuits. This section presents an algorithm
for identifying strongly false paths of a combinational module without constructing the exact delay
abstraction of the module. The algorithm reduces the problem to a satisfiability problem, which can
be solved by a SAT solver. The use of functions introduced in Section 2.4.6 forms the basis of this
reduction. Since there are practical SAT solvers available that scale to large problems, this approach
is applicable to the analysis of large networks.

Assume that a combinational module M has primary inputs x,, ..., x, and a single primary
output z. We first compute y functions for values 0 and 1 at z by assuming the required time of t =0
at z as in functional required time analysis in Section 3.3. Let Xgo and xgl denote the ¢ functions.
These functions are in terms of leaf y; variables at the primary inputs. Let /; be the longest topological
path length from x; to the output. We are interested in determining whether all the longest topological
paths from x; of length /;, I1(x;, ;) in the path set notation, are strongly false or not.

Intuitively if either of the two) functions at the outputz is sensitive to the signal stability of
x; att = —1;, the output stability depends on some path in I1(x;, ;). Therefore, I1(x;, ;) is not strongly

IExisting path sensitization conditions also have the notion of falsity under a specific value, but the focus is an output
value. For example, static co-sensitization can be further classified into static co-sensitization to a value 0 and a value
1 [DKM93]. A path is said to be statically co-sensitizable to a value v if it is statically co-sensitizable and the output of
the path is value v. Instead of focusing on output values our classification is based on the value of an input edge.

122

false. Note that the signal stability of x; at r = —; is represented by two leaf % variables x"" and x;’",
for values 0 and 1 respectively. Recall that the two ¥, functions at the output are represented in terms
of leaf i variables including the two leaf ¥ variables above.

On the other hand, if both of the y functions are independent of the two leaf % variables,
the stability of x; at¢ = —I; never affects the output stability at # = 0. Thus, IT(x;, ;) is strongly false.

Notice that neither an arrival time condition at the primary inputs nor an input vector ap-
plied to the module is known. Our goal is to check whether there are an arrival time condition and
a vector at the inputs under which the stability of x; at t = —/; directly determines the stability of z
att = 0. If such a pair exists, I1(x;, /;) is not strongly false since under the condition some path in
I(x;, ;) is responsible for stabilizing the output at ¢ = 0. Otherwise, IT(x;, /) is strongly false.

A key operation here is to determine whether a function is dependent on a variable. This is
required to determine if the x functions at the output, X9 and %2, depend on input variables x;’{) and
Xx, i~ Whether a function f depends on an input x can be tested by checking whether f |x=0 ®f |x=1
is satisfiable, where @ is the XOR operation. This is directly applicable here.

X functions have a special property that they are monotone increasing in terms of leaf

variables by construction (Lemma 3.1). Thus, the following holds.

If Xi =
0
-t C
xz,lexib=0 = xZ,OIx ‘-l
0 c
Xz.l Ixx"ﬁ',=o = Xz,l Ix i =1
Ifx,- =1:
0 0
XZ,OIX;":'I =0 g xz,OI -.li =1
0 c
Xz,l Ixxil,‘l=o —_ XZ,I lx i "l

We can take advantage of this property to simplify the dependency check. Namely it is enough to
check whether either of the following is satisfiable.

Ifx,- =

0 0
XZ,OI °Ii=le,0| "i =0 » or

Xz,ll _|xz,l|x 1—0

123

Ifx; =1:

0 0
XZ,O'X;'_?; = le,le;ifil=o , Or
0 0
-1 ~1
Xz,l |xx1.'l= |xz,| Ixxi.ll =0

Finally leaf variables are not fully independent. The leaf , variables for the same primary
input need to satisfy the ordering constraint discussed in Section 3.3. Therefore, the functions for
the output is tested for its dependency on the leaf variables for x; at t = —{; only under the ordering
constraint.

This idea is generalized into the following theorem.

Theorem 7.2 Let V be the set of all leaf y, variables of x; for value v(v = 0,1) for any time t < —L,
where L < l;. T1(x;,L) is strongly false for value v at x; if and only if neither (x; = v)xgo [vueviu=1
Xgo [Vuev:u=0 nor (x; = v) xgl |vuev-u=1 xgl |vuev:u=0 is satisfiable under the ordering constraints for

the leaf y variables.

Proof

< Theterm Xg,o IVuev-u=1 and Xg,o |vuev-u=0 represent the sets of input vectors that make the output
stable to O by ¢ = 0 if x; arrives at 7 = —/; and at t = —L+ € respectively, where € is a small
positive number. Therefore, the fact that the product term (x; = v)xgo |Vueveu=1 m
is not satisfiable under the ordering constraint means that if x; = v, there are no input vector
and arrival time condition under which the output stability to value 0 is differentiated between
the case where x; arrives at t = —/;, which is early enough to propagate any signal event up
to the output from x;, and the case where x; only arrives atr = —L+¢& > —I;. Thus, no path
in T1(x;, L) is responsible for stabilizing the output to value 0 by r = 0 if x; = v. A similar

argument holds for value 1. Hence, I1(x;,L) is strongly false for value v at x;.

= We prove this by contradiction. Suppose that (x; = V)Xgo Ivueviu=1 m is satisfiable
under the ordering constraint. Let x and a;(j # i) be the input vector and the arrival time at
x;j corresponding to a satisfying assignment respectively. Note that x meets x; = v. Under x
and arr(x;) = a;(j # i), if arr(x;) = —I;, the output is stable to 0 by time O while it is not if
arr(x;) = —L+€. This implies that some path in I1(x;, L) is responsible for the stability of the
output. Thus, IT(x;, L) is not strongly false for value v at x;. A contradiction. The case where

the output is 1 can be handled in the same way.

124

The theorem guarantees that the strong falsity of a path set under an input value can be
determined by performing two satisfiability checks. As in XBDO analysis, we construct a single-
output Boolean network whose output function is equal to a formula under a satisfiability check.
Section 2.4.6 showed that functions can be represented in Boolean networks by following their
recursive definitions.

Let us see how we can construct a Boolean network whose output has the functionality
(xi= v)xg0 IVuevu=1 m. We first make two copies of the Boolean network for xgoz N
for 100 [vuev:u=1 and g for x25 [vuevuu=o-

In order to respect the ordering constraint among leaf y variables, we employ the same
technique used in the approximate required time analysis via simplified modeling in Section 3.3.2.
Namely, each leaf variable is represented as the corresponding input variable with the appropriate
phase multiplied by newly introduced Boolean variables. These Boolean variables referred to as o.
variables and B variables in Section 3.3.2 constrain leaf ¥ variables so that the ordering constraint is
automatically satisfied.

Each leaf variable not for x; is fed by a new node whose functionality is given in Equation
(3.3). Notice that the node is shared between the two networks A§ and Ap. A leaf i variable for x;,
on the other hand, needs to be distinguished between the two networks since different constraints
need to be imposed. Both in A and Ap, each leaf y variable for x; is fed by a new node whose
functionality is defined in Equation (3.3) as before. However, two different sets of o and f variables
are introduced for leaf variables of x; in Aj and Ap. In A] all o and P variables for x; are set to 1
to represent that x; arrives at f = —/;. In A the o and P variables are set properly so that all leaf %
variables of x; for# < — L are 0 while the other leaf i variables of x; are set to either x; or X; depending
on the phase.

Finally, the two networks are connected by inserting an inverter after the output of Ap,
and connecting the output of A} and.the output of the inverter with an AND gate. The primary
input x; is then set to v. The output of this AND gate has the functionality exactly the same as
(= V)Xgo [— m. One can easily create a SAT formula from this network. Note
that the ordering constraint is implicitly imposed in the resulting network with the use of o and
variables. The same construction works for the other formula.

Since there is considerable similarity between A and Aj, the resulting network can be

simplified by sharing subcircuits. The two networks are only different in how the leaf y variables

125

for x; are constrained. Therefore, the portion of 4] that is not in the transitive fanout of the leaf
variables for x; is shared with Ap. This reduces the size of the resulting network, thereby giving a
smaller SAT formula.

To test strong falsity of paths, L is set to /; first. As long as neither of the two formulas
is satisfiable for x; = 0 or x; = 1, L is reduced and the satisfiability checks are repeated. Eventually
either of the formulas becomes satisfiable for x; = v(v = 0,1). It is then concluded that IT(x;,L) is
strongly false for value v at x; for the L next to the last one.

Let us see how the algorithm works on the circuit in Figure 7.1. The % functions at the

output g for values 0 and 1 are:
Xo %7
= (GG +ac])
= (XaX50) e 1Xai +X21)
Xg,o = Xe_,(l) +X—,(l)
= (Xai+xe0) + (Xzoxed)
= (ai+x0)+ (ap + X)%es-

0
xg,l

Consider Il(a, 3). The leaf variables corresponding to this path set are x;% and x;j’
We first check whether I1(a, 3) is strongly false for value 1 at a. If the functions at the
output are sensitive to the leaf y variable X, under a = 1, the path set is not strongly false. The

other leaf i variable X0 is irrelevant since x;’g = 0 under a = 1. Consider xg’l. Ifa=1, x;‘g =0.
Therefore, xg_l = 0 independent of x;? although x 7 is referred to in xg,l. The other function at
the output Xg,o does not depend on X, in the first place. Since both of the output y functions are
independent of the leaf i variable x;j, I(a, 3) is strongly false for value 1 at a, which coincides
with the result in Section 7.2.

To test whether I (a, 3) is strongly false for value 0 at g, the same analysis needs to be done
under a = 0 to see if the output y functions are dependent on x3. X3 is independent of ;3. X0,
refers to x5 and requires further investigation.

Under a =0, %7 , can be simplified as follows.
oo =Xo1 + (Xag + X50)%25-
Boolean parameters are now introduced as in Section 3.3.2.

-2
Xps = bof

126

Xeo = "
Koo = BB
Yoo = o

To see if I1(a, 3) is strongly false for value 0 at g, it is enough to check whether Xg.o is sensitive to
the value of B¢. Recall that the condition B¢ = 1 corresponds to the case where q arrives at t = —3
while the condition B* = 0 corresponds to the case where a arrives later than t = —3. Whether Xg,o
depends on 3¢ can be checked by taking a Boolean difference of Xg,o with respect to %. The Boolean

difference is simplified to:
X9 |po=1 X0 |pe=0 = aEB° (ba® + bP).

Since the difference is satisfiable, the output) function xg,ois indeed sensitive to the leaf ¢ variable
x;,g, and thus I'l(a, 3) is not strongly false for value 0 at a. The Boolean difference is satisfiable under

two cases. The first case is:
a=0,b=0,c=0,p°=0,p°=1,

which corresponds to (a,b,¢) = (0,0,0), arr(b) = and arr(c) = —2. In other words, if b does not
arrive and c arrives at t = —2 under the input vector (0,0,0), the output gets stable if a arrives at
t = -3, but does not if a arrives later. This shows that I(a, 3) is responsible for the stable time of
the output, and thus is not strongly false for value 0 at a. Note that this corresponds to delay tuple

(3, —2°,2) under input vector 000 in the exact delay abstraction. The second case is:
a=0,b=1,c=0,02=0,p=1.

Although b = 1 this time, o = 0 means that the arrival time of b is again set to . Therefore, the
arrival time condition is the same as the previous case. Notice that the exact delay abstraction has a
corresponding delay tuple (3, —e<, 2) under input vector 010.

Preliminary experimental results of this algorithm will be given in Section 8.4.

7.4 Relationship with Static Co-sensitization

Devadas et al. [DKM93] introduced static co-sensitization as a necessary condition for a
path to be responsible for delay under the floating mode condition. This path sensitization condition

is a purely Boolean condition, and independent of gate delays and arrival times at the inputs. If a path

127

—C{

1

Figure 7.2: A Strongly False Path Can Be Statically Co-sensitizable

is not statically co-sensitizable, the path cannot be responsible for delay regardless of gate delays and
arrival times. Thus, any path not statically co-sensitizable is strongly false. However, the converse
is not true; a strongly false path may be statically co-sensitizable.

Consider a circuit in Figure 7.2. Both the AND gate and the buffer have delay of 1. Sup-
pose i = 0. Both of the fanins of the AND gate have controlling values 0, which makes the output of
the gate 0. The upper path and the lower path are both statically co-sensitizable. On the other hand,
the upper path is not strongly false, but the lower path I1(i, 2) is strongly false as we can see from

the exact delay abstraction of this circuit D,

zdi—m
o ()
1] @

Note that the lower path is strongly false, but statically co-sensitizable if i = 0. The reason why
the notion of strong falsity can detect paths not responsible for delay more accurately than static co-
sensitization is that gate delays are taken into account during the analysis while static co-sensitization
ignores this factor. How much difference the two notions make on realistic circuits is yet to be stud-
ied.

Since any path not statically co-sensitizable is strongly false, non static co-sensitizability
can be used to estimate strongly false paths conservatively.

Cheng and Chen [CC96] argued false paths in the context of delay-fault testing. Under the
existence of path delay faults gate delays and wire delays cannot be bounded from above as in timing
analysis. However, if a path is false under all possible delay assignments to gates and wires, a path
delay fault has no effect on the performance of the circuit, and thus there is no need to consider the
path. A path delay fault is said to be f-redundant if the path is false under all delay assignments to
gates and wires. They showed that a path that is not functionally sensitizable under any input vector

is f-redundant, where functional sensitization is defined as follows.

128

Definition 7.4 A path P = (gy,...,gm) is functional sensitizable under an input vector X if for each
8i(i =0,...,m— 1) that has a non-controlling value of gy, all the side inputs of gi+1 have non-

controlling value of g;....

This sensitization condition is in fact equivalent to static co-sensitization?. Thus, the claim
by Cheng and Chen that a functionally unsensitizable path is f-redundant and thus false under any
gate/wire delay assignment is simply a rephrase of a path not statically co-sensitizable being false
under any delay assignment, which was known in [DKM93] already. Notice that arbitrary arrival

time conditions can be realized by changing delays of wires after primary inputs.

Theorem 7.3 A path P = (go,...,gm) is statically co-sensitizable under an input vector x if and only

if it is functional sensitizable under x.
Proof

= If P is statically co-sensitizable under x, for each g;(i = 1,...,m) that has a controlled value of

8i» 8i-1 has a controlling value of g;. Therefore,
Vi€ {1,...,m},g; has a controlled value = g;_; has a controlling value of g;
This is equivalent t(‘x
Vie {1,...,m},gi_; has a non-controlling value of gi = gi has a non-controlled value.

If g has a non-controlled value, all the fanins of g; have non-controlling values of g;. There-

fore,

Vie{l,...,m},
gi—1 has a non-controlling value of g;

= all the side inputs of g; has a non-controlling value of g;.
Hence P is functional sensitizable under x.
< If P is functional sensitizable,
vie {0,...,m—1},
&i has a non-controlling value of g;,,

= all the side inputs of g;, | has a non-controlling value of g;,

= giy1 has a non-controlled value.

2Static co-sensitization was first published in [DKM91] before [CC96). However, Cheng and Chen did not refer to
static co-sensitization.

129

This is equivalent to:
Vie {0,...,m—1},g4) has a controlled value = g; has a controlling value of g |,

showing that P is statically co-sensitizable.

7.5 Conclusions

We have introduced a new class of false paths for combinational modules. These false
paths, called strongly false paths, are the paths that are never responsible for delay under any arrival
time condition. Under the assumption that arrival times at the inputs are unknown as in intellectual
property blocks these are the only paths guaranteed to be false under any surrounding environment.
After showing that strong falsity of a path can be determined by examining the exact delay abstrac-
tion of a module, we showed that the problem is reducible to a satisfiability problem, which makes
it possible to check the strong falsity of a path set without computing the exact delay abstraction.

In Chapter 8 we will discuss the removal of strongly false paths from a combinational mod-
ule without slowing down the module under any arrival time condition, i.e. the resulting module is

a timing-safe replacement of the original.

131

Chapter 8

False Path Removal for Combinational
Modules

Chapter 7 introduced a new class of false paths called strongly false paths for combina-
tional modules. A path in a combinational module is said to be strongly false if it is false under any
arrival time condition at primary inputs. Since the actual environment under which a combinational
module is to be used is unknown, strongly false paths are the only paths that can be safely assumed to
be false for a combinational module. Since they are never responsible for the stability of an output
under any arrival time condition, it may be desirable if they can be structurally removed from the
module by a circuit transformation. If such a transformation is possible, the resulting false-path-free
module can be analyzed more accurately than the original module by topological timing analysis,
which is much more efficient than functional timing analysis. Although this transformation is at-
tractive, we do not want to slow down the original circuit by the transformation especially in the
context of high-performance designs. Thus, the structural transformation also needs to guarantee
that the resulting module #' is no slower than the original M under any arrival time condition. In
this chapter we present an algorithm that removes strongly false paths from a combinational module
M without increasing the delay of the module under any arrival time condition. M’ is proved to be

a timing-safe replacement of M, i.e. M' <y M.

This chapter is organized as follows. Section 8.1 overviews the KMS algorithm. Although
it was originally proposed as a redundancy removal algorithm that does not increase delay, it can be
thought of as a procedure for removing long false paths. We argue why the direct use of the KMS

algorithm is not appropriate in removing false paths from a combinational module. Section 8.2 illus-

132

trates the problems using examples. Section 8.3 presents an algorithm for removing strongly false
paths from a combinational module and proves that the algorithm is guaranteed to give a timing-safe
replacement of the original. Experimental results are given in Section 8.4. The chapter is concluded

in Section 8.5.

8.1 The KMS Algorithm

Keutzer, Malik and Saldanha [KMS91] showed that redundancy is not necessary to reduce
delay. The motivating example for the work was a carry-skip adder. This circuit has a single stuck-at
redundancy, but the direct removal of the redundancy makes a long false path true thereby slowing
down the circuit. The redundancy in the circuit is a by-product of making its longest topological
path false to improve the performance. However, such a redundant circuit is problematic since the
existence of the fault causes the circuit to slow down, but the fault is not detectable by conventional
testing techniques.

A natural question is whether redundancy is necessary to reduce delay in general. They
resolved this issue negatively by giving a constructive algorithm, commonly known as the KMS
algorithm, which transforms a given redundant circuit to a functionally equivalent irredundant circuit
with no penalty in its performance under a given arrival time condition at the primary inputs.

The KMS procedure [KMS91] takes 1) a gate-level redundant combinational circuit and
2) arrival time for each primary input, and returns a functionally equivalent irredundant circuit no
slower than the original under the given arrival times. Suppose that the longest topological path is
true in a given circuit. Then any stuck-at redundancies in the circuit can be removed in an arbitrary
order since this never worsens the delay of the circuit; it is impossible to find a longer path in the
circuit. This approach, however, does not work if the longest topological path is false since redun-
dancy removal can make the false path true thereby slowing down the circuit. The core of the KMS
algorithm consists in how to handle this case.

Given a circuit whose longest topological path is false, the KMS algorithm first checks if a
multiple fanout node exists on the path. If there is no such node, the input edge of this path from the
primary input is guaranteed to be both stuck-at-0 and stuck-at-1 redundant. Furthermore, removing
either of these redundancies does not slow down the circuit since constant propagation from the edge
never deteriorates the delay of the path.

Suppose there is a multiple fanout node on the path. Even if the path itself is still insensi-

tive to the signal value of the input edge, it is possible that it is stuck-at-0 or stuck-at-1 irredundant

133

through other paths branching off from the path under analysis. Thus the simple constant propaga-
tion employed in the previous case is not appropriate. The KMS algorithm first finds the last multiple
fanout node of the path and duplicates the circuit up to the node for all the other paths so that the path
under analysis is isolated as a fanout-free path. Since this transformation reduces the multiple-fanout
case to the previous case, the same approach above then applies.

This process is repeated as long as the longest topological path is false. Once the longest
topological path becomes true, all the remaining redundancies are removed directly.

Since the original algorithm proposed in [KMS91] processed a single path at one time, it
had a severe limitation in the size of circuits. Saldanha et al. [SBSV94] later resolved this complexity
issue by proposing an algorithm which does not require explicit path enumeration!.

The KMS algorithm removes long false paths from a given combinational circuit by a
structural transformation as part of the algorithm. It guarantees that the longest topological path of
the final circuit is true under the given arrival time condition. This property is desirable since the
topological delay of the final circuit matches its exact delay; hence topological timing analysis gives
better accuracy on the transformed circuit than the original circuit. Given a combinational circuit
whose longest topological paths are false under a given arrival time condition, one can simply apply
the KMS procedure to obtain a false-path-free circuit which is no slower than the original. The final
circuit can then be used as a replacement of the original without the risk of slowing down the circuit.
Since false paths have been removed, the circuit can be analyzed accurately even with topological
analysis.

This approach, however, has fundamental limitations to be used for false path removal of
combinational modules.

First, the KMS procedure takes an arrival time condition at the primary inputs of a circuit
and works under this particular condition. Therefore, it is not directly applicable to a combinational
module since the arrival times at the inputs are unknown. If a representative arrival time condition
is chosen and the procedure is applied under the condition, the delay of the resulting circuit is not
guaranteed once it is used under a different arrival time condition.

Second, redundancy removal performed as the final step of the KMS algorithm can in-
crease delay even under the arrival time condition chosen for the analysis if the delay of the circuit

is examined for each input vector separately. Keutzer et al. [KMS91] argued that straight-forward

IChen e al. [CDC92] showed that the original KMS algorithm can be improved by removing false subpaths instead of
false input-output paths. This results in less gate duplication and less area overhead. However, this algorithm still works
on a subpath at one time, and thus inherits the complexity problem in the original KMS algorithm.

134

D c_out

‘ 0

:: ji 3 > | 10 mux
__/

v o) DL ; o
I B
>

Figure 8.1: 2-bit Carry-Skip Adder

redundancy removal cannot slow down the circuit since the topological longest path is true after false
path removal. In this argument the delay of a circuit is defined as the earliest time when all the pri-
mary outputs are stabilized for all input vectors under a given arrival time condition at the inputs.
However, the delay of an output under an input vector can increase as the result of redundancy re-
moval although it never increases so much as to increase the “delay” of the circuit. Under the delay
definition of [KMS91] this local delay increase for an input vector does not cause the increase of the
“delay”. However, since there exists a surrounding environment of the module which can detect this

delay increase, it should be thought of as a delay increase in the context of combinational modules.

8.2 Motivating Examples

This section shows why a simple-minded application of the KMS algorithm is not appro-
priate to remove false paths from combinational modules.

The first example is a carry-skip adder. This is the circuit that motivated the entire research
on the KMS algorithm. Figure 8.1 shows a 2-bit carry-skip adder described in [KMS91]. We focus
on the subcircuit computing the carry output. Assume a gate delay of 1 for the AND gate and the OR
gate, and gate delays of 2 for the XOR gate and the MUX gate. The selector input of the multiplexor
is stuck-at-0 redundant since under the existence of the fault, the circuit simply degenerates into a
ripple-carry adder, which is functionally equivalent to the original circuit. The performance of the
circuit, however, is deteriorated by the fault since the ripple-carry adder is slower than the carry-skip
adder.

135

Figure 8.2: Circuit with Multiplexors

In [KMS91] this circuit is analyzed under the condition where the carry input arrives at
t = 5 and all other inputs arrive at # = 0. In this particular situation the longest topological delay
is 11 by the path of length 6 (cin, 86,87,89,811,MUx, Cour). Since this longest path is false under the
given arrival times, the KMS algorithm is invoked to remove the path.

If the resulting circuit is used under the same arrival time condition, it is guaranteed to be
no slower than tl;e original. However, under a different arrival time condition it is possible that the
performance of the resulting circuit is worse than that of the original.

Saldanha [Sal91](page 69) applied the KMS algorithm to a cascaded carry-skip adder in
such a way that each block is made irredundant by the KMS algorithm assuming that the carry in-
put arrives later than the other inputs. The choice of the arrival times was done in an ad-hoc way.
Apparently he replaced each block with a new irredundant block assuming that the new block is no
slower than the original under any arrival time condition. This assumption is not correct.

Let us analyze the same circuit under different arrival times to see the problem. Assume
that all the inputs arrive at ¢ = 0. The topological longest paths are now the paths of length 8 from ay
and by to c,2. These paths are true under the arrival time condition. Therefore if one simply follows
the KMS procedure, any redundancy can be removed arbitrarily without slowing down the circuit,
which results in a ripple carry adder. Notice that although the effective delay from the carry input to
the carry output has increased in this transformation, the delay of 8 from ag and by still determines
the circuit performance. Thus the transformation is valid under the given arrival times. Now assume
that the resulting circuit is used where the carry input arrives at ¢ = 5 and the other inputs arrive at

t = 0. Obviously we now observe a larger delay of 11 instead of 8. This example clearly shows

2The long path from c;, considered in the previous case has length 6 and is no more the longest.

136

that the delay non-increasing property of the KMS algorithm is only guaranteed for a given arrival
time condition at primary inputs. In order to remove false paths from a combinational module we
are interested in a more robust algorithm which never slows down the circuit under any arrival time

condition.

Consider another example shown in Figure 8.2. The number attached to each gate is the
delay of the gate. Assume that x and sel arrive at t = 0 while y arrives at ¢ = 10. The circuit is fully
irredundant in terms of single stuck-at faults. The longest topological path is the one of length 10
from y to the output via the upper path after the first multiplexor, giving the delay of 20 = 10+ 10.
Since this path is true, the KMS algorithm does nothing to this circuit. Given different arrival times,
however, the path from x to the output through the two upper paths can be false. For example, when
all the primary inputs arrive at ¢ = 0, the path is the longest and false. From the viewpoint of false
path removal, this implies that an arbitrary choice of arrival times is not enough to remove false paths

fully from combinational modules.

Finally consider the carry-skip adder in Figure 8.1 again. Assume that the carry input ar-
rives at t = 5 and all the other inputs arrive at t = 0. The removal of the long false path from the
carry input to the carry output yields the circuit 9 in Figure 8.3. For the sake of simplicity only
the fanin cone of the carry output is shown. Each of the fanin edges of g, is stuck-at-1 redundant. If
one follows the KMS procedure, any of these redundancies can be removed without slowing down
the circuit. If the ag edge is replaced with a constant 1, the circuit My_gz in Figure 8.4 is obtained.
Now that the by edge is not redundant any more, this is the final result of the KMS procedure.

We are now ready to show that this redundancy removal in fact increases the delay of the
circuit even under the arrival time condition analyzed, once the delay is determined for each input
vector separately. Consider the input vector (ag, ay, bo, b1,¢in) = (0,0,1,0,0). In the circuit before
the redundancy removal, the path (ag, g2, 89, 811,MUX,Cou) is the longest true path. Therefore the
delay under this vector is 5. On the other hand, in the circuit after the redundancy removal, the path
({a1,b1},83,89,811,mux, c,u), which was false before the redundancy removal, becomes true and
gives delay 6(> 5). Notice that there exists an input vector that sensitizes the longest topological
path from c;, to ¢, of length 7 in both of the circuits. Therefore, the redundancy removal is safe
under the traditional definition of delay. However, if we need to preserve the performance of the

circuit under any surrounding environment, redundancy removal can worsen the delay.

137

c_in
a0
b0
2) ‘
__/ 9 1 c_out
‘ 11 0 -
b1 10
[ES —
Figure 8.3: 2-bit Carry-Skip Adder M, before Redundancy Removal
c_in

a0
=D

9 D E c_out
al E 3 > J_w\ mux

b1 Y,

Figure 8.4: 2-bit Carry-Skip Adder My_gp after Redundancy Removal

138

8.3 False Path Removal of Combinational Modules

Motivated by the examples in the previous section, we describe how to remove false paths
safely from combinational modules. Our goal is to design an algorithm which takes a gate-level
circuit M and returns a false-path-free circuit M’ such that M’ <3 M. Section 8.2 showed that a
simple-minded application of the KMS algorithm is not enough for our purpose.

The first problem is that the KMS algorithm only removes long false paths under given
arrival times. Because of this strategy, false paths not critical under the situation remain in the circuit.
To make matters worse, those paths can become true long paths after redundancy removal thereby
slowing down the circuit under a different arrival time condition. This was illustrated in the carry-
skip adder and the multiplexer-based circuit in Section 8.2. Moreover, since false paths removed by
the KMS algorithm are not necessarily strongly false, even false path removal alone can slow down
the circuit. We will show an example of this later.

To alleviate this problem all long strongly false paths are removed from each input by a
circuit transformation. As a result, the topological longest path from any input is sensitizable under
some input vector and some arrival time condition.

The second pro-blem is that the final redundancy removal in the KMS algorithm can slow
down a circuit if the delay of the circuit is computed for each primary input vector. This is unaccept-
able for combinational modules since there exists a surrounding environment whose performance is

deteriorated by this delay increase. Therefore the redundancy removal is dropped intentionally.

8.3.1 Algorithm for False Path Removal

We first illustrate the key idea of the algorithm using an example. Consider again the circuit
M in Figure 7.1. We have already shown that I1(a, 3) = {P,} is strongly false for 1 ata in Section 7.2.
This means that if a = 1, this path is never responsible for the signal stability at the output under any
arrival time condition. Therefore, the input edge of the path can be safely replaced with a constant
0 without slowing down the circuit. Notice that the path is fanout-free and this modification cannot
adversely affect the other paths. Propagating this constant through the circuit is also a safe operation.
We already saw in Section 6.2 that the resulting circuit M in Figure 6.2 is a timing-safe replacement
of M.

If the original KMS algorithm is applied to M in Figure 7.1 under (arr(a),arr(b),arr(c)) =
(1,0,1), P, is identified as false. One can then choose either constant 0 or 1 to replace the input edge

of P, with. If a constant 1 is chosen, the circuit M in Figure 6.3 is obtained, which is not a timing-

139

safe replacement of M as discussed in Section 6.2. This example shows that strongly false paths
are the appropriate paths to be removed for combinational modules. Keutzer et al. [KMS91] only
suggest that one pick the constant that gives better simplification of the circuit. However, they use
this choice only as an optimization.

We are ready to prove the correctness of the transformation formally. We need a couple of

definitions.

Definition 8.1 The set of all paths beginning at an primary input edge e and ending at a primary

output is called the path set of e.

Definition 8.2 An L-path disjoint circuit® with respect to primary input x; is a circuit where the path
set of any primary input edge from x; consists of either paths of length > L or paths of length < L.

Given a combinational module, one can always construct a module that is L-path disjoint
with respect to x; by fully preserving the original functional and timing properties. This detail can
be found in [SBSV94]*.

Let M be a single-output combinational module whose primary inputs are xy,...,x,. Let

M be an L-path disjoint circuit with respect to x; that is obtained from M.

Lemma 8.1 If path set 1(x;, L) is strongly false for value v(v = 0,1) at x; in M, the input edge of
the path set is stuck-at-v redundant in M.

Proof Suppose it is not stuck-at-v redundant for contradiction. Then there exists an input vec-
tor x where x; = v such that the output value of M’ is different between the fault-free circuit and
the faulty circuit. Now consider the arrival time condition arr(x;) = —L + € and arr(x;) = -1 if
Jj # i, where [; is the longest topological path length from x; to the output. Suppose we apply the
same vector X to M under this arrival time condition. The fact that x is a test pattern directly implies
that the output of M is different between ¢ = 0 and ¢ = co. Thus, the output of M is not stable by
t =0. Since all the primary inputs except x; arrive early enough, the output is not stabilized because
of the delay in x;. This implies that some path from x; of length > L is responsible for determining

the output under x. This contradicts that IT(x;,L) is strongly false for value v at x;. O

3This definition is a variation of L-path disjoint circuits introduced in [SBSV94].
“The procedure in [SBSV94] is applicable by assuming that x; arrives at s = 0 and all the other inputs arrive atf = —co,
All the paths from the other inputs are ignored effectively this way.

140

Theorem 8.1 Suppose path set I1(x;,L) is strongly false for value v at x; in M. Let M' be an L-
path disjoint circuit with respect to x; obtained from M. Let M" be the circuit obtained from M' by
substituting v for the input edge of I1(x;,L) in M". Finally let M be the circuit obtained from M"
by performing a constant propagation of v. Then M <y M.

Proof From Lemma 8.1 this constant substitution does not change the functionality of the cir-
cuit. Therefore we have only to check if the performance of the circuit is not deteriorated.

Notice that the functions at the output for M and those for M” are exactly the same since
the circuit transformation for L-path disjoint property does not change the timing characteristic of the
circuit. Since I1(x;, L) is strongly false for value v at x; in M, % functions at the outputs xg , and Xgo
are independent of any leaf % variable x;f;' where L' > L. Therefore, setting x;,";,' to 0 does not worsen
the signal stability of the output under any arrival time condition. This exactly corresponds to the
circuit transformation we applied to get M" from M. Notice that if x; = ¥, this transformation has
no effect since the input edge gets the same value as before.

Finally, the effect of the constant propagation is the same as assuming that the value of the
input edge is available at # = —eo, Since the analysis is based on the XBDO0 model, the monotone
speedup property guaraniees that this never worsens the stability of the functions at the output.
Hence M <y M. O

Based on Theorem 8.1 one can design a procedure that takes a single-output combina-
tional module and removes strongly false paths to create a timing-safe replacement module where the
longest topological path from any input is strongly false neither for O nor for 1 at the input. The algo-
rithm examines primary inputs one by one by checking whether the longest topological paths from
a primary input are strongly false for either 0 or 1. If either is true, the circuit is modified based on
Theorem 8.1. This process is repeated until no change is observed. To handle a combinational mod-
ule with multiple outputs the same procedure is applied to the transitive fanin cone of each primary
output separately and the resulting circuits are merged into a single circuit by sharing isomorphic

subcircuits. This step is guaranteed not to change the timing characteristics of the circuits>.

8.3.2 Examples

Figure 8.5 shows the transitive fanin of the carry input of the 2-input carry-skip adder in
Figure 8.1. Assume again a gate delay of 1 for the AND gate and the OR gate and gate delays of 2

3As in [KMS91] we assume that gate delay is independent of loads.

c_in [-—

a0 6

b0 j :> 4
2)

— Da=IDel
at 3 [N\ mux
b1 10)

4\

_/

Figure 8.5: 2-bit Carry-Skip Adder M
c_in
a0

‘._;\\

9 11
al 3 I N\ mux
b1 10)

4)
r_/

Figure 8.6: 2-bit Carry-Skip Adder M, after Propagating Constant 1 from c;,

141

c_out

c_out

142

for the XOR gate and the MUX gate. The analysis of strongly false paths on this circuit indicates
that path set Il(c;s, 6) is strongly false for value 1 at c;,. Therefore, one can safely assert a constant
0 at the input edge of the long path of length 6 from the carry input to the carry output. Note that the
circuit is already L-path disjoint with respect to c;, for L = 6. Figure 8.3 shows the resulting circuit
Mp. The exact delay abstractions D and Dy of the two circuits M and M are shown in Tables 8.1
and 8.2 respectively. Since Dy < D, My <y M, i.e. M, is indeed a timing-safe replacement of M.

In Section 8.2 we showed that redundancy removal on M; does not preserve the timing-
safe replacement property. The exact delay abstraction Do_gg of My_gr is shown in Table 8.3. Since
Dy_gr £ Do, My_gr is not a timing-safe replacement of M.

To see this consider the input vector (ag,ay,bg,b;,cin) = (0,0,1,0,0). Dg has a delay
tuple (5,5, —e,5, —c0) under the vector. Dy_gg only has a delay tuple (—eo,6, —c0,6,—o0). Since
(—e0,6,—22,6,—c0) A(5,5,—22,5,—0), Dy_gg Z Do. Thus, My_gr Zmu Mo.

My_rr is not a timing-safe replacement of the original circuit M either. For example, un-
der input vector (ag, ay, bo, by, cin) = (0,1,1,0,0) D has a delay tuple (6, —ce, —eo, 4, 6). The only de-
lay tuple in Dg_ gg under the vectoris (5,5, 5, 5,2). Since (5,5, 5,5,2) A(6, =, —o0,4,6), My_gr M
M. :

In the original KMS algorithm, this circuit was analyzed under the assumption that c;, ar-
rives at ¢ = 5 and all the other inputs arrive at # = 0. Under this condition the longest path from
the carry input to the carry output is false and it was argued that the input edge of the path can be
replaced with either O or 1. However, since I1(c;,, 6) is not strongly false for value 0, the substitu-
tion of 1 at the input edge of c;, does not give a timing-safe replacement. The resulting circuit M,
is shown in Figure 8.6. The exact delay abstraction of the circuit is shown in Table 8.4. Under the
input vector (ag,a,, by, by,cin) = (1,0,0,0,0) D has a delay tuple (—ee, —eo,6,4,6). However, D,
has only (—e0,6,—c0,6, —00) A(—o0,—0,6,4,6). Thus, D; Z D and M; £y M. This shows that

the removal of conventional false paths under a given arrival time condition is too aggressive®.

Consider the circuit with multiplexors in Figure 8.2. The topological longest paths from
x,y and sel to the output are 14, 10 and 9 respectively. The false path analysis of this circuit shows that
the path set II(x, 14) is strongly false for value 1 at x. A circuit duplication and a constant propagation

SNote that the original KMS algorithm [KMS91] removes statically non-sensitizable paths unlike the improved algo-
rithm [SBSV94] where non-viable paths are removed. A statically sensitizable path is viable, but the converse is not true,
Therefore, the original KMS algorithm is even more aggressive than just removing false paths, and thus has the same
problem of violating the timing-safe replacement property.

Although the constant propagation of value 1 from c;, is not safe in terms of timing-safe replaceability, it does not
increase the delay of the circuit under the same arrival time condition.

143

agabobciy A oua Bty ¢ za By~ Coua Aby = Cona ey o

00000 {(~e0,4,6,—,6)(8,—,8,4,—c0)(6,—0c0, —e0,4,6)(8,4,8, —o0, —o0)
(—e0,—20,6,4,6)(6,4,—c0, —0,6)(—c0,6,—e0,6,—c0) }

00001 {(8,4,8,—c0,—c0)(8,—0,8,4, —e0)(—e0,6, —ce,6, —c0) }

00010 {(—o°,4,6,—00,6)(6,4,—c0, —c0,6)(8,4,8,—c0, —c2) }

00011 {(8,4,8,—c0,—e0)}

00100 {(6,—00,—00,4,6)(—00,6,—c0,6,—~c0)(6,4,—c0,~c0,6)}

00101 {(~2°,6,—c0,6,—0)}

00110 {(5,5,5,5,2)(6,4,—0c0,—,6)}

00111 {(5,5,5,5,2)}

01000 {(6,—o0,—00,4,6)(8,—c0,8,4, —c0) (—c0,—c0,6,4,6)}

01001 {(8,—c,8,4,—)}

01010 {(=o0,5,—00,5,—)(5,4,5,4,—e)}

01011 {(5,4,5,4,—0)(—=°,5,—c0,5,—e0)}

01100 {(6,—o0,—0,4,6)(5,5,5,5,2)}

01101 {(5,5,5,5,2)}

01110 {(=o0,5,—00,5,—)}

01111 {(=,5,—o,5,~o0)}

10000 {(—o0,—20,6,4,6)(—s0,6,—00,6,—00)(—00,4,6,—c0,6)}

10001 {(—o0,6,—20,6,—c0)}

10010 {(5,5,5,5,2)(—o,4,6,—,6)}

10011 {(5,5,5,5,2)}

10100 {(~20,6,—09,6,—)}

10101 {(=00,6,—00,6,—0)}

10110 {(6,6,6,6,—)}

10111 {(6,6,6,6,—0)}

11000 {(—ee,—=0,6,4,6)(5,5,5,5,2)}

11001 {(5,5,5,5,2)}

11010 {(=2°,5,—00,5,—c0)}

11011 {(=20,5,—c,5,—c)}

11100 {(6,6,6,6,—<)}

11101 {(6,6,6,6,—)}

11110 {(5,4,5,4,—c0)(—00,5,—20,5,—c0)}

11 {(===,5,—,5,—)(5,4,5,4,—=)}

Table 8.1: Exact Delay Abstraction D of M

144

agaybobcin Aoy ot Uty —+ Cous Vo= o By ona B o
00000 {(5,—2,5,4,—<)(5,4,5,—c0, —c0)(—o0,4,5,—c0,2)
(5,4, —00, —00,2)(—02,6,~0,6, —00)(—00,5,5,5, —o0)
(5,5,—00,5,—00)(—00,—00,5,4,2)(5,—00,—o0,4,2)}
00001 {(5,5,—2°,5,—c0)(—20,5,5,5,—=0)(5,4,5, =00, —c0)
(—o0,6,—e0,6,—00)(5,—c0,5,4, —c0)}
00010 {(5,4,5,—00,—o0)(5,4, —o0,—0,2)(—00,4,5,—,2)}
00011 {(5,4,5,—00,—o0)}
00100 {(—20,6,—00,6,—00)(5,—00, —00,4,2)(5,5,—00,5, —0)(5,4, —00, —o0,2) }
00101 {(5,5,—20,5,—20)(—00,6,—00,6,—c0) }
00110 {(5,4,—00,—,2)}
00111 {(5,5,5,5,2)}
01000 {(5,—20,5,4,—c<)(5,—00,—e0,4,2)(—00, —0,5,4,2) }
01001 {(5,~,5,4,~=)}
01010 {(5,4,5,4,—00)(—20,5,—c0,5,—c0)}
01011 {(5,4,5,4,—0)(—2,5,—00,5,—c)}
01100 {(5,—00,—=,4,2)}
01101 {(5,5,5,5,2)}
01110 {(—o0,5,—00,5,—0)}
01111 {(—e2,5,—0e0,5,—c0)}
10000 {(—e0,—20,5,4,2)(—=,5,5,5,—00)(—e°,4,5, —00,2)(—o0,6,—00,6,—c0) }
10001 {(—=°,5,5,5,—0)(—o0,6,—00,6,—o0)}
10010 {(—e,4,5,—,2)}
10011 {(5,5,5,5,2)}
10100 {(—=e0,6,—c0,6,—c0)}
10101 {(—o0,6,—00,6,—c0)}
10110 {(5,6,5,6,—)}
10111 {(5,6,5,6,—=)}
11000 {(=oe,—,5,4,2)}
11001 {(5,5,5,5,2)}
11010 {(=,5,~50,5,~e0)}
11011 {(~20,5,—%0,5,—0)}
11100 {(5,6,5,6,~)}
11101 {(5,6,5,6,—)}
11110 {(5,4,5,4,—00)(—20,5,—0,5,—c0)}
11111 {(—o0,5,—00,5,—0)(5,4,5,4,—<)}

Table 8.2: Exact Delay Abstraction Dy of M

145

aga) bobcin Ay €z By~ ¢ g Dby = g By~ ons Bg=+ s
00000 {(—e0,6,—00,6,—c0)(—00, —00,4,4,2)(—00,4,4,—o0,2)
(5,—0,5,4,—c0)(—,5,4,5,—)(5,4,5,—c0,—c0) }
00001 {(5,4,5,—00,—00)(—0,5,4,5,—c0)(—0,6,—00,6,—00)(5,—e0,5,4,—) }
00010 {(5,4,5,—c0,—00)(—0,4,4,—c0,2)}
00011 {(5,4,5,—0,—)}
00100 {(—e0,6,—00,6,—0)}
00101 {(—20,6,—20,6,—0)}
00110 {(5,5,5,5,2)}
00111 {(5,5,5,5,2)}
01000 {(5,—¢=,5,4,—00)(—00,—c0,4,4,2)}
01001 {(5,—2,5,4,—c2)}
01010 {(5,4,5,4,—c0)(—00,5,—e0,5, ~c0) }
01011 {(5,4,5,4,—c0)(—o0,5,—00,5,—00) }
01100 {(5,5,5,5,2)}
01101 {(5,5,5,5,2)}
01110 {(=0,5,—c0,5,—)}
01111 {(=0,5,=2,5,—w)}
10000 | {(—=0,6,—c0,6,—00)(—,4,4,—00,2)(—20,5,4,5, —o0)(—o0, —c0,4,4,2)}
10001 {(=<,5,4,5,~e5)(=c0,6,20,6,—c0)}
10010 {(—,4,4,—,2)}
10011 {(5,5,5,5,2)}
10100 {(~=0,6,—,6,—=)}
10101 {(—0,6,—c0,6,—c0)}
10110 {(5,6,5,6,—=)}
10111 {(5,6,5,6,—)}
11000 {(=o0,~o0,4,4,2)}
11001 {(5,5,5,5,2)}
11010 {(=9°,5,—0,5,—c0)}
11011 {(—0,5,—00,5,—0)}
11100 {(5,6,5,6,—<)}
11101 {(5,6,5,6,—)}
11110 {(—ee,5,—00,5,—0)(5,4,5,4,—c0) }
11111 {(5,4,5,4,—w)(—oo,5,—e°,5,—oo)}

Table 8.3: Exact Delay Abstraction Dg_gr of My—rr

146

apa 1 bobciy Bty g Bty = €0 Doy By =+ o B> ot
00000 {(7,—0,7,4, —ec)(—00,6,—00,6,—)(7,4,7, =00, —c0) }
00001 | {(7,4,7, o0, —e0)(—20,6,—0,6,—)(7, =0, 7,4, —c) }
00010 {(7,4,7,—c0,—c0)}
00011 {(7,4,7,—c0,—c0)}
00100 {(—e2,6,~0,6,—)}
00101 {(—o0,6,—00,6,—c0)}
00110 {(5,5,5,5,2)}
00111 {(5,5,5,5,2)}
01000 {(7,—20,7,4,—0)}
01001 {(7,—2,7,4,—0)}
01010 {(5,4,5,4,—c0)(—0,5,—00,5,—c0) }
01011 {(5,4,5,4,—00)(—0,5,—c0,5, —0) }
01100 {(5,5,5,5,2)}
01101 {(5,5,5,5,2)}
01110 {(=w0,5,—,5,~e0)}
01111 {(=20,5,~0,5,~o0)}
10000 {(=o0,6,—20,6,—2)}
10001 {(~50,6,—0,6,—e0)}
10010 {(5,5,5.5,2)}
10011 {(5,5,5,5,2)}
10100 {(~,6,—,6,—)}
10101 {(~=0,6,—o0,6,—o)}
10110 {(6,6,6,6,~)}
10111 {(6,6,6,6,—0)}
11000 {(5,5,5,5,2)}
11001 {(5,5,5,5,2)}
11010 {(==0,5,—20,5,—0)}
11011 {(—o0,5,—c0,5,—o0)}
11100 {(6,6,6,6,~0)}
11101 {(6,6,6,6,—)}
11110 {(=50,5,—09,5,—2)(5,4,5,4,—e=)}
11111 {(===,5,—=,5,—2)(5,4,5,4,—)}

Table 8.4: Exact Delay Abstraction D; of M,

147

D
s
I>10

o

y—

A A
] 1

se| —&

Figure 8.7: False-path-free Circuit with Multiplexors

gives a circuit shown in Figure 8.77.

8.4 Experimental Results

We implemented on top of SIS a procedure to check if a path set is strongly false for a value
(0 or 1) at the corresponding primary input, and to remove such a path set structurally. The proce-
dure determines the strong falsity of a path set without constructing the delay abstraction of a given
module explicitly, and thus is applicable to large networks. Refer to Section 7.3 for the details of the
algorithm. The removal of a false path set is a simple structural transformation, and thus takes negli-
gible time compared with strong falsity checking. We only summarize the result of a representative
circuit, the largest primary output cone of C7552. The cone has 194 primary inputs and 1096 gates.
Recall that the strong falsity of a path set is defined for a single-output network. For each primary
input the strong falsity of the longest paths from the input was tested for both values 0 and 1, and the
paths were removed if they are strongly false. We found out that for 8 out of 194 primary inputs the
longest paths from each primary input are strongly false for either value 1 or 0 at the input. A strong

7 Although the circuit can be further simplified by logic sharing, we keep the left multiplexor as it is so that the corre-
spondence between the old and the new circuit is clear.

148

falsity check for a primary input took 37.5 seconds in the average on DEC AlphaServer 8400 5/6258.
These strongly false paths were then removed by the proposed procedure. The resulting circuit has

1216 nodes, only 11% area increase from the original.

8.5 Conclusions

We have discussed how false paths in a combinational module can be removed without
slowing down the circuit under any arrival time condition. We have shown by examples that a sim-
ple application of the KMS algorithm to a module under some arrival time condition can slow down
the circuit once the transformed circuit is used under different arrival times. This suggests that the
KMS algorithm cannot be used directly to remove false paths safely from combinational modules if
the performance of the circuit needs to be guaranteed under all possible environments. Motivated by
this observation, we have proposed a new approach to removing a specific set of false paths called
strongly false paths with no penalty in circuit speed. The resulting circuit is no slower than the orig-
inal under any arrival times at the primary inputs.

The algorithm has practical importance in hierarchical synthesis, where the proposed tech-
nique can be used to resynthesize a combinational module so that the new module is free from false
paths. No knowledge on arrival times at the primary inputs is required in this circuit transformation,
which makes it possible to resynthesize the module before the surrounding design is fixed. This local
resynthesis enables one to perform more accurate timing analysis on the hierarchy via topological
timing analysis. If the same module is used more than once, the master module can be made false-
path-free once and for all without affecting the performance of any instance.

We have shown that the final redundancy removal in the KMS algorithm can increase the
delay of a circuit if the delay is defined for each primary input vector separately. Therefore the pro-
posed algorithm does not make the circuit irredundant after false path removal. Thus, one of the
advantages of the KMS algorithm, i.e. removing redundancies that cannot be detected by conven-
tional testing, but can adversely affect the timing of the circuit, is absent. Whether redundancies can

be removed without slowing down the circuit under this strict definition of delay is still open.

Swe expect that this CPU time can be further reduced by incorporating existing techniques for generating simplified
SAT formulas developed for functional timing analysis [MSBSV93].

149

Chapter 9

Approximate Functional Arrival Time

Analysis

Motivated by the need for functional arrival time analysis techniques that can handle indus-
trial circuits in reasonable CPU time, we presented in Chapter 5 how functional arrival time analysis
can be performed hierarchically without flattening an existing hierarchy. The hierarchical approach
only performs detailed false path analysis on a leaf module at one time, and thus is better suited to
analyze large circuits than flat analysis. An alternative to the hierarchical approach is approximate
flat functional arrival time analysis, where flat timing analysis is conservatively performed in a less
CPU-time intensive way. In this chapter we will study approximate algorithms for flat functional
arrival time analysis. The goal is to compute a conservative yet accurate enough approximation to
true delays in less computation time to make the analysis of large circuits tractable.

This chapter is organized as follows. Section 9.1 reviews previous research on approxi-
mate functional arrival time analysis. The limitations of flat analysis are summarized in Section 9.2.
Section 9.3 presents algorithms for approximate functional arrival time computation. Experimental

results are reported in Section 9.4. The chapter is concluded in Section 9.5.

9.1 Previous Work

Several researchers have proposed approximate functional arrival time analysis algorithms
in the literature.
Huang et al. [HPS91, HPS94] proposed, as part of optimization techniques used in ex-

act analysis, a simple approximation heuristic, in which a complex timed Boolean expression at an

150

internal node is simplified to a new independent variable arriving at the latest time referred to in
the original expression. This simplification is applied only when the number of terms in the timed
Boolean expression exceeds a certain limit, to control the computational complexity. Accuracy loss
comes from the fact that the original functional relationship is completely lost by the substitution.

They also investigated a more powerful approximation technique in [HPS93, HPS96], in
which each timed Boolean formula is under- and over-approximated by sum of literals and products
of literals respectively so that each sensitizability check, which is a satisfiability problem in the exact
analysis, can be performed conservatively in polynomial time. Since this approximation is fairly ag-
gressive to guarantee the polynomial time complexity, delay estimates do not seem accurate enough
to be useful. Their results, shown in [HPS93], are not clear about the accuracy of approximate de-
lays. They merely showed ratios of internal nodes whose delays match the exact delays at the nodes.
No result was shown on the accuracy of circuit delays.

More recently Yalcin et al. [YHS96] proposed an approximation technique, which utilizes
user’s knowledge about primary inputs. They categorize each primary input either as data or control
and label all internal nodes either data or control using a certain rule. The sensitization condition
at each node is then simplified conservatively so that it becomes independent of the data variables.
The intuition behind this is that the delay of a circuit is most likely determined by control signals
while data signals have only minor effects in the final delay. They showed experimentally that a
dramatic speed-up is possible without losing much accuracy for unit-delay timing analysis based on
static sensitization. However this path sensitization condition is known to underestimate true delays,
i.e. it is not a safe condition, which defeats the whole purpose of timing analysis. More recently they
confirmed that a similar speed-up and accuracy can be achieved for a correct sensitization condition
(floating mode) without losing accuracy under the unit-delay model [Yal97b, Yal97a). Although an
application of the same technique to more sophisticated delay models is theoretically possible, it is
not clear whether their algorithm can handle large circuits under such delay models. Moreover, their
CPU times for exact analysis are much worse than state-of-the-art implementations available, which
cancels some of the speed-up since their speed-up is reported relative to this slower algorithm!.

In this chapter we apply their idea of using data/control separation to a functional arrival
time analysis technique based on the XBDO model [MSBSV93] (see Section 2.4.6) to design approx-
imate algorithms. In addition a novel technique to trade off the complexity of the analysis and the

!One of the reasons why their exact algorithm is slower is that they try to representin a BDD all the input vectors that
activate the longest sensitizable delay while most of the state-of-the-art techniques determine the delay without represent-
ing these input vectors explicitly.

151

accuracy of delay estimates is proposed. The combination of these two ideas leads to a new approxi-
mation scheme, which for some extreme cases shows a speed-up of 70x, while maintaining accuracy

within the noise range.

9.2 Limitation of Exact Functional Arrival Time Analysis

Although the exact algorithm proposed by McGeer et al. [MSBSV93] can handle many
circuits of thousands of gates, it still has a size limitation. If a large network is given and timing
analysis is performed under a detailed delay model such as the technology mapped delay model, it
is likely that the algorithm runs practically forever?. Even if timing analysis is tractable, the compu-
tation time can be too large to be practical.

As seen in Section 2.4.6 the exact timing analysis in [MSBSV93] consists of repeated SAT
solver calls. More precisely, for each candidate arrival time tested at a primary output, a x-network is
constructed such that the network computes the difference between the on-set (off-set) of the primary
output and the set of input vectors which make the primary output stable to value 1 (0) by the given
time. If the output never becomes 1 for any input assignment, i.e. it is not satisfiable, the output
becomes stable completely by the time tested. To test whether this condition holds, a SAT formula
which is satisfiable only if the output is satisfiable is created directly from the y network, and a SAT
solveris called on it. The size of the SAT formula is roughly proportional to the size of the x network.
The main difficulty in the analysis of large networks is that due to a potentially large size of the x
networks, the size of SAT formulas generated can be too large for a SAT solver to solve even after
the optimization discussed in Section 2.4.6 has been applied®. Based on this observation we next

discuss how to trade off the size of y networks and the accuracy of delay estimates.

9.3 Approximate Functional Arrival Time Analysis

9.3.1 Reducing the Size of y Networks

The main reason why networks become large in the exact analysis is that x functions
at many distinct arrival times must be computed for internal nodes. This size increase occurs when

there are many distinct path delays from primary inputs to internal nodes due to the reconvergence

2The algorithm is CPU intensive rather than memory intensive since the core part of the algorithm is SAT.
3Theoretically it is not necessarily true that a smaller SAT formula is easier to solve. However we have observed that
the size of SAT formulas is well correlated with the time the solver takes.

152

of the circuit. Therefore our goal is to control the number of distinct arrival times considered at each
internal node. More specifically only a small number of i functions are created at each internal node.
This strategy avoids the creation of huge x networks thereby controlling the size of SAT formulas
generated.

Although this idea certainly helps reduce the size of % networks, it must be done care-
fully so that the correctness of the analysis is guaranteed. We must never underestimate true delays
since otherwise the timing analysis could miss timing violations when used in the context of timing
verification. Overestimation is acceptable as long as reasonable accuracy is maintained. We guar-
antee this property by selectively underapproximating stability of signals. This underapproximation
in turn overapproximates instability of signals thereby guaranteeing that delay estimates are never
underapproximated.

The key idea on approximation is to modify the mapping from required times to arrival
times discussed in Section 2.4.6 so that only a small set of arrival .times forms the image of the
mapping. Given the sorted set of required times R = (r,...,r,) and the sorted set of arrival times

A = (ay,...,a,) at an internal node n, the mapping f : R — A used in the exact analysis is defined as

maxa; € Asuchthata; <r ifr>a
fn= .

—o0 otherwise
Since the stability of the signal at the node increases monotonically as time elapses by the definition
of x functions, it is safe to change the mapping so that it maps a required time to a time earlier than
the time defined above. This corresponds to underapproximation of the signal stability. Thus, by
modifying the mapping under this constraint so that only a small set of arrival times is required, one
can control the number of nodes to be introduced in the network without violating the correctness
of the analysis. Depending on how the original mapping in the exact analysis is changed several con-
servative approximation schemes can be devised. Two such approximation schemes are described

next.

Topological Approximation

The most aggressive approximation, which we call topological approximation, is to map

required times either to the topological arrival time (a,*) or to —co. More formally, the mapping f7

“To be precise, a, can be earlier than the topological arrival time if an intermediate satisfiability call has already verified
that by time g, the signal is stabilized completely.

153

is defined as follows.
a, ifr>a,

fin=

—oo otherwise
It is easy to see that f7 is a conservative approximation of f. Since ¥, = n and X,% =7, there is
no need to create a new node for the % function in the) network>. Instead the node function or its
complement of the original network can be used for the % function. For the other arrival time —eo,
Xnv = 0 for Vv € {0, 1}. Therefore it is sufficient to have a constant zero node in the , network and
use it for all the cases where the zero function is needed. Since neither of the arrival times needs any
additional node in the) network, this approximation never increases the size of the network. If this
reduction is applied to all nodes, the analysis simply becomes pure topological analysis. Therefore,
this approximation makes sense only if it is selectively invoked on a subset of nodes. A selection

strategy is described later.

Semi-Topological Approximation

The second approximation scheme, called semi-topological approximation, is slightly milder
than the first in terms of the power of simplifying % networks. In this, required times are mapped to
two arrival times again, but the times chosen are different. The times to be selected are 1) the arrival
time, say a,, matched with r; in the exact mapping f and 2) the topological arrival time a,, which
is the same as in the first approximation. The first approximation and this one are different only if
a, # —eo, in which case the second one gives a more accurate approximation. To be precise, the

definition of the new mapping function f3 is as follows.

a, ifr<a
=" !

a, otherwise

If a, # —eoo, the y function for time a, is now computed explicitly, and the corresponding node is
added to the x network. Similar extensions which give tighter approximations are possible by allow-
ing more arrival times to remain after the mapping. A set of various approximations gives a tradeoff

between the compactness of x networks and the accuracy of analysis.

9.3.2 Control/Data Dichotomy in Approximation Strategies

Yalcin ez al. [YHS96] proposed to use designer’s knowledge on control-data separation of
primary inputs for effective approximate timing analysis. They applied this idea to speed up their

SNotice that the % network always includes the original circuit.

154

functional arrival time analysis technique using conditional delays [YH95] by simplifying signal
propagation conditions of data variables. We adapt their idea, of using this knowledge, to the XBDO

analysis to develop a selection strategy of various approximation schemes.

Labeling Data/Control Types

Given data/control types of all primary inputs, each internal node is labeled data or control
based on the following procedure. All the nodes in the network are visited from primary inputs to
primary outputs in a topological order. At each node the types of its fanins are examined. If all of
them are data, the node is labeled data; otherwise it is labeled control. Hence nodes labeled data are
pure data variables with no dependency on control variables, while those labeled control are all the
other variables with some dependency on control variables. This labeling policy is different from
the one used in [YHS96], where a node is labeled data if at least one of its fanins is labeled data.
In their labeling, nodes labeled data are variables with some dependency on data whereas nodes la-
beled control are pure control variables. The difference between the two labelings is whether pure
data variables or pure control variables are distinguished. Our labeling will lead to tighter approxi-

mations.

Applying Different Approximations based on Data/Control Types

Once all the nodes are labeled, different approximation schemes are applied to different
nodes based on their types. The strategy is as follows.

If a node is a control variable, the semi-topological approximation f° is applied while if a
node is a data variable, the topological approximation f7 is applied. The intuition is to use a tighter
approximation for control variables to preserve accuracy while performing maximum simplification

for data variables assuming they have less impact on delays than control variables.

Extracting Control Circuitry for Further Approximation

If the approximation so far is not powerful enough to make analysis tractable, further ap-
proximation is possible by extracting only the control-intensive portion of the circuit and performing
timing analysis on the subcircuit. The extraction of the control portion is done by stripping off all
pure data nodes from the original network under analysis as in Figure 9.1. Note that any circuit can
be decomposed into a cascade circuit where all the nodes in the driving circuit are labeled data and

those in the driven circuit labeled control by the definition of data variables. Therefore, the primary

155

data
data inputs
outputs
control
control inputs
1 extraction
new input
outputs
control
control inputs

Figure 9.1: Extraction of a Control Subnetwork

inputs of the subcircuit include the boundary variables which separate the subcircuit from the pure
data portion. We assume conservatively that delays of the pure data portion of the circuit are the
same as topological delays, which gives arrival times at the new primary inputs of the extracted cir-
cuit. Analysis is then performed on this subcircuit as if it were the circuit given. Notice that this has

a similar flavor to the approximation proposed in [HPS91].

The difference between this approximation and the previous method is that the subcircuit
has a new set of primary inputs, which are assumed independent. However, it is possible that in
the original circuit only a certain subset of signal combinations appears at the boundary variables.
Since this approximation assumes that all signal combinations can show up, the analysis becomes
pessimisticS. For example, if a signal combination which does not appear on the cut makes a long
path sensitizable, it can make a delay estimate unnecessarily pessimistic. Although this method is
more conservative than the one without subcircuit extraction, it reduces the size of a circuit to be

analyzed much more significantly.

SIf the set of all possible signal combinations at the boundary variables can be represented compactly, one can safely
avoid this pessimism by multiplying the additional constraint to the SAT formula generated.

156
9.4 Experimental Results

We implemented the new approximation algorithms on top of the implementation of McGeer
et al. [IMSBSV93] under SIS environment [SSM*92]. To evaluate the effectiveness of the approxi-
mation, we focused on arrival time analysis of mapped ISCAS combinational circuits, which is gen-
erally much more time-consuming than analysis based on simpler delay models. In Table 9.17 the
results on three circuits whose exact analysis takes more than 20 seconds on a DEC Alpha Server
7000/610 are shown®. Each circuit is technology-mapped first with the option specified in the sec-
ond column using the 1ib2 . genlib library. The delay of the circuit is then analyzed using three
techniques. The first one (exact) is the exact method presented in [MSBSV93]. The remaining two
are approximate methods; the second, called approx(1), is the first technique in Section 9.3.2 and
the third, called approx(2), is the second one in Section 9.3.2 which involves subcircuit extraction.
Control/Data specification for the primary inputs of these circuits are the same as those in [YHS96]°.
For each of the three analyses, delay estimates and CPU time are shown in the last two columns. One
can observe that accuracy is preserved in the three examples in both of the approximation methods

while CPU time is reduced significantly.

Table 9.2 summarizes a similar experiment for C6288, an integer multiplier, which is known
to be difficult for exact timing analysis due to a huge amount of reconvergence. Since all the pri-
mary inputs are data variables, the approximate techniques proposed are degenerated into topologi-
cal analysis. To avoid this inaccuracy all the primary inputs were set to control. Note that this sets
all intermediate nodes to control. We then applied the first approximate method under this labeling.
Although the approximation is not so powerful as the original algorithms, this at least enables us to
reduce the size of y networks without giving up accuracy completely. Since there is no data variable
in the network, only approx(1) was tried. Significant time saving was achieved with only a slight
overestimation in terms of analysis quality. The exact analysis is not only more CPU-time intensive
but also much more memory-intensive than the approximate analysis. In fact we were not able to
complete any of the three exact analyses within 150MB of memory. They ran out of memory in a
couple of minutes. These exact analyses were possible after the memory limit was expanded to 1GB.

The last example needs an additional explanation. In this example the delay estimate by the approx-

TTiming analysis was done in the linear search mode [MSBSV93] where the decrement time step is 0.1 and the error
tolerance is 0.01.

81f exact analysis is already efficient, approximation cannot make significant improvement in CPU time; in fact the
overall performance can be degraded due to additional tasks involved in approximation.

9More precisely, C1908(1) and C3540(1) in [YHS96] were used.

157

circuit tech.map | #gates | top. delay | type of approx. | delay estimates | CPU time
exact 34.77 29.1

C1908 -m 1 536 39.25 approx(1) 34.77 8.9
[! approx(2) 34.77 54

exact 35.76 412

C1908 -m 0 602 40.76 approx(1) 35.76 12.0
approx(2) 35.76 5.2

exact 35.66 727.0

C3540 '-n 1 -aFc | 1113 35.88 approx(1) 35.66 559.5
approx(2) 35.66 502.9

Table 9.1: Functional Arrival Time Analysis: Exact vs. Approximate (CPU time in seconds on DEC
AlphaServer 7000/610)

C6288 A!

| circuit | tech.map | #gates | top. delay [type of approx. delay estimates | CPU times |
' -m 1| 2429 127.23 exact ~ 123.87 7850.2 |
approx(1) 123.94 169.2
-m 0| 2371 123.51 exact 119.16 18956.2
approx(1) 119.21 257.1
-n 1 -AFG | 2911 114.62 exact 112.92 15610.5
approx(1) 112.86 1690.9

Table 9.2: Functional Arrival Time Analysis of C6288: Exact vs. Approximate (CPU time in seconds
on DEC AlphaServer 7000/610)

158

imate algorithm is smaller than that by the exact algorithm although in Section 9.3 we claimed that
the approximation algorithm never underestimates exact delay. The reason for this is that the SAT
solver is not perfect. Given a very hard SAT problem, the solver may not be able to determine the re-
sult under a given resource, in which case the solver simply returns unknown. This is conservatively
interpreted as being satisfiable in the timing analysis. In this particular example the SAT solver re-
turned unknown during the exact timing analysis, which resulted in a delay overestimation, while in
the approximate analysis the SAT solver never aborted because of the simplification of % networks
and gave a better overestimation. This example shows that the approximate analysis gives not only
computational efficiency but also better accuracy in some cases.

To compare the exact and the approximate methods further, we examined the total CPU
time of the exact analysis to see how it can be broken down. For the first example of C6288 the exact
analysis took 714.7 seconds to conclude that any path of length 123.93 is false, which is about four
times longer for the approximate analysis to conclude that the delay of the circuit is 123.94. The
situation is much worse in the second example, where the exact analysis took 18390.8 seconds to
conclude that any path of length 119.21 is false while the approximate method took only about 1.4%

of this time to finish off the entire analysis.

9.5 Conclusions

We have studied approximate functional arrival time analysis as an extension to the exist-
ing exact analysis algorithm under the XBDO model [MSBSV93]. Although the exact algorithm is
applicable to large circuits, the performance is not satisfactory for circuits with a large number of
reconvergences. The size of y networks gets large for such circuits, and thus SAT formulas solved
during the analysis become complex.

The core idea of the approximate algorithms was to control the size of i networks used in
the analysis to prevent the size of SAT formulas to be solved from getting large. This simplification
of % networks is performed systematically so that delay estimates are never underapproximated. To
preserve accuracy as much as possible the use of knowledge on data/control separation of primary
inputs originally proposed by Yalcin et al. [YHS96] was adapted to choose an appropriate approx-
imation at each node. We have shown experimentally that the approximate algorithms compute ar-
rival time estimates for large circuits with many reconvergences in significantly less CPU time while
maintaining accuracy well within the accuracy of the delay model.

The approximation scheme presented in this chapter can be used as a replacement of exact

159

functional arrival time analysis whenever the exact algorithm is too slow or cannot complete. Since
functional required time analysis can be performed by using functional arrival time analysis as in

Section 3.3.2, this technique is also applicable to required time analysis.

161

Chapter 10

Delay-Optimal Technology Mapping

We have addressed various timing analysis problems in the first part of the dissertation.
The main focus was how to estimate the timing characteristics of a given design accurately and ef-

ficiently under the existence of false paths.

In the second part of the dissertation we will discuss a synthesis aspect of timing-driven
designs, i.e. how to synthesize a high-speed circuit automatically. Specifically we will focus on a
synthesis step called rechnology mapping. Previous results on technology mapping show that if our
objective function is to minimize the delay of a mapped circuit!, the problem is solvable in poly-
nomial time for Look-up Table (LUT) FPGAs while the complexity of the problem is unknown for
library-based designs. In this chapter this gap will be closed by showing that a polynomial-time al-
gorithm called FlowMap for delay-optimal technology mapping of FPGA designs [CD94a] can be
adapted to library-based designs so that it guarantees delay optimality under a load-independent de-

lay model. The algorithm runs in time linear in the size of a network.

This chapter is organized as follows. Section 10.1 introduces basic concepts of technology
mapping and summarizes previous results in the literature. Section 10.2 gives an overview of the
FlowMap algorithm [CD94a] for delay-optimal mapping for FPGAs. Section 10.3 then discusses
how the FlowMap algorithm can be adapted to library-based technology mapping. Extensions to
sequential circuits are presented in Section 10.4. Section 10.5 gives experimental results of the pro-

posed technique. The chapter is concluded in Section 10.6.

IDelay in this chapter is the longest topological delay. Optimality is argued under this assumption. Delay-optimal
technology mapping aware of false paths is a difficult problem, and no practical approach is known.

162

10.1 Preliminaries

10.1.1 Library-Based Technology Mapping

Logic synthesis [BHSV90] typically consists of two phases. The first step, called technology-
independent optimization, is the step in which a given Boolean network is restructured without know-
ing an actual gate library or technology to be used. Generic optimization such as factoring, resub-
stitution and don’t care minimization is performed to seek a good multi-level structure. This step
is followed by technology mapping, in which the optimized network in the previous step is imple-
mented by only using gates in a given library. The importance of technology mapping is increasing
significantly since it is very difficult in deep sub-micron designs to estimate the effect of a generic

optimization without knowing an actual technology to be used.

Technology mapping was initially performed by rule-based transformations in the early
80’s [DBG*84, GBAGH86]. The approach is ad-hoc and has no guarantee about mapping quality.

Furthermore different sets of transformation rules need to be maintained for different libraries.

In 1987 Keutzer [Keu87] proposed an algorithmic approach to the technology mapping
problem, in which he observed similarity between this problem and the code optimization problem
for programming languages and adapted an existing tree-covering technique for the latter problem
to technology mapping. This approach soon dominated the rule-based approach and became the de

facto standard.

In Keutzer’s formulation a technology-independent circuit and each gate in a given li-
brary are decomposed into circuits only composed of two-input NAND gates (NAND?2) and inverters
(INV). The decomposed circuit is called a subject graph while each decomposed gate is called a pat-
tern graph. Typically all possible NAND2/INV decompositions are generated for each gate in the
library modulo isomorphism so that the gate is utilized maximally in a final implementation. Each
pattern graph is associated with the area, delay and other characteristics of the corresponding gate.
The technology mapping problem can then be formulated as covering the subject graph by using
pattern graphs to optimize a given criterion. A subject graph is a DAG in general since it is derived
from a given network. A pattern graph is a tree for most gates in a typical library while it can be a
DAG for some gates, e.g. an XOR gate and a multiplexor gate. For the sake of simplicity assume

that all the pattern graphs are trees for now.

Keutzer showed that if a subject graph is a DAG, graph covering for minimum area map-
ping is NP-hard [KR89]. Having demonstrated the inherent complexity of the original problem, he

163

considered the case where a subject graph and pattern graphs are trees. It turned out that this special
case can be solved optimally in linear time using dynamic programming. Based on these results he
proposed the three-step approach based on tree covering as an approximation to the DAG covering

problem.
1. Decompose a subject DAG into a disjoint set of trees
2. Solve the technology mapping problem optimally for each tree
3. Glue the results together.

This separation of the problem again has become a standard approach due to the theoretical justifi-
cation about the complexity of minimum-area DAG covering.

Inspired by Keutzer’s result, technology mapping has been studied extensively to optimize
different criteria. Rudell [Rud89] worked on minimum-delay technology mapping and showed that
if loading effects are completely ignored, the minimum-delay mapping problem for subject trees can
be solved optimally by dynamic programming in linear time. He also considered the minimum-delay
mapping problem for trees under loading effects and showed that by maintaining the best mapping
for each possible load at each node the same dynamic programming approach can guarantee opti-
mal results. Touati [TMBW90, Tou90] further refined this idea later by combining the optimal tree
mapping with sophisticated buffer tree construction. An interesting fact is that they directly started
looking at tree covering without studying the complexity of DAG covering for minimum delay. To
the best of our knowledge no one has investigated the exact complexity of the minimum-delay tech-
nology mapping problem where a subject graph is a DAG. Probably it was simply assumed that the
problem is NP-hard without giving much thought.

Now consider the case where some pattern graphs are DAGs. Rudell showed that as long
as those are leaf DAGs, the tree covering approach can be used without any modification [Rud89]. A
leaf DAG is a DAG in which the only nodes with multiple fanouts are primary inputs. An XOR gate
and a multiplexor gate have leaf DAG pattern graphs and thus can be handled without any problem.

So far we have focused on the case where a subject graph is a tree. To conclude this subsec-
tion we review previous work on DAG covering without tree decomposition. Detjens ez al. studied
this problem for area minimization in [DGR*87]. However since a heuristic approach was taken for
covering, the results were not encouraging. In fact the DAG covering approach gave results of lesser
quality than the tree-based approach. Although they also described an idea on node duplication sim-

ilar to [CD94a] to be detailed later, it was apparently only tried for area optimization and no results

164

are reported on this approach in [DGR*87].

Touati [Tou90](page 115) conducted experiments on performance-oriented technology map-
ping by allowing overlaps between trees. The idea is similar to our mapping algorithm presented
later. Although significant delay decrease was observed, he did not pursue this direction any further.

No argument was given on the optimality or the complexity of the algorithm.

10.1.2 Technology Mapping for LUT-based FPGAs

In parallel to the works on library-based technology mapping the emergence of Field Pro-
grammable Gate Arrays (FPGAs) posed a new technology mapping problem in the early 90’s. Due
to their unique architecture the technology mapping problem for FPGAs has been tackled in com-
pletely different ways from library-based technology mapping.

LUT(Look-Up Table)-based FPGAs can implement any function of & inputs by a single
LUT, where k is a fixed constant specific to a given FPGA family. By assuming the existence of a
library containing all k-input functions, one can solve the technology mapping problem for FPGAs
as an instance of the library-based mapping problem. This approach, however, has a serious draw-
back since this virtual library contains 2% gates?. Even though the minimum-area tree covering for
library-based designs can be solved in time linear in the size of pattern graphs, the number of gates in
this virtual library makes the algorithm highly inefficient and impractical. Based on this observation
many ideas have been proposed for the FPGA mapping problem again under different cost criteria.
A survey of FPGA technology mapping algorithms is available in [CD96]. As for minimum area
mapping Levin and Pinter [LP93] and Farrahi and Sarrafzadeh [FS94] proved that the problem is
NP-hard for k = 4 and k > 5 respectively. As in the library-based mapping, once a network is re-
stricted to a tree, the problem can be solved optimally in polynomial time [FS94]. Minimum-delay
mapping, on the other hand, was shown for LUT-based FPGA s to be solvable in polynomial time by
Cong and Ding in [CD92, CD94a]. The given circuit is directly mapped without decomposing its
DAG structure to trees in this algorithm unlike conventional library-based mapping.

10.1.3 Summary

Technology mapping problems for library-based designs and FPGA-based designs have

been investigated almost independently so far although the two problems are closely related to each

2Strictly speaking the library need not contain all the 2% functions since some are equivalent to each other under input
permutation and thus having one representative is good enough. However even after this simplification the library is still
huge.

165

other.

The area-optimal mapping problem for DAG networks is NP-hard both for library-based
designs and FPGA designs. As to the delay-optimal mapping problem, it is solvable in polynomial
time for FPGAs while no polynomial-time algorithm is known for library-based designs. To the
best of our knowledge the exact complexity of the delay-optimal technology mapping problem for
library-based designs has never been discussed in the literature. How to close this gap between the

two problems will be the topic of this chapter.

10.2 Delay-Optimal Technology Mapping for FPGAs

We will have a close look at the FlowMap algorithm proposed by Cong and Ding [CD9%4a])
since this gives the basis of our proposed algorithm.

Assume that a network is decomposed into a k-bounded network [CD94a], which is a Boolean
network where the number of fanins of each node is less than or equal to k. If a given network is not
k-bounded, simple decomposition can yield an equivalent k-bounded network. In the following we
assume that an LUT has a unit delay and that wiring delay is negligible.

The key idea of the FlowMap algorithm is in the labeling procedure that labels each node of
the network its optimal depth achievable. The algorithm visits each node in the network in a topo-
logical order. All primary inputs are labeled 0 assuming that they are available at = 0. At each
intermediate node the goal is to investigate all cuts of size less than or equal to k in the fanin cone of
the node and to find the best delay realizable at the node. Each such cut represents a mapping of the
node. More specifically the node can be implemented by a single LUT whose inputs are the nodes
forming the cut. The constraint on the size of cuts comes from the fact that an LUT can implement
any function of up to k-inputs. Since nodes are visited in a topological order, by the time the current
node is examined, the optimal depths of all the nodes in its transitive fanin are available. Therefore
the optimal depth of the current node x can be computed as follows by dynamic programming.

optimal depth(x) = cutr;r(l'ilr1}|<k iﬂg}{‘(opt imal depth(x;) +1)

Notice that this cost criterion meets the principle of optimality of dynamic programming. The cut X
that realizes the optimal depth is stored at the node along with the depth. Although explicit enumer-
ation of all valid cuts is possible by a brute-force approach, the complexity is pseudo polynomial
O(n*) [CD94a), where n is the number of nodes in a given network. Cong and Ding showed that

166

this optimal depth computation at each node can be formulated as network flow computation whose
runtime is strongly polynomial with respect to k [CD94a].

Once all the nodes have been labeled by their optimal depths, the network is traversed
backward from primary outputs to primary inputs. At each primary output an LUT is created whose
fanins are the same as the best cut stored at the node. The LUT creation is repeated for each of those
fanins. This process is continued until either a primary input or a node whose output is already avail-
able in the mapping is reached. An important fact is that some intermediate nodes are automatically
duplicated in an optimal way to guarantee optimal depths while in tree mapping no duplication is
allowed.

The complexity of the entire algorithm is O(kmn), where m is the number of edges in the

network.

10.3 Delay-Optimal Technology Mapping for Library-Based Designs

Although the FlowMap algorithm was originally developed for FPGAs, the basic principle
of the labeling procedure is not necessarily specific to those architectures®. In this section we will
show how the FlowMap algorithm can be easily adapted to the standard library-based technology
mapping under a load-independent delay model, where each gate has an intrinsic delay and loading
has no effect in delays. This extension leads to a linear-time algorithm for delay-optimal technology
mapping of DAG networks. We assume that a given network is decomposed into a subject DAG as

usual. Therefore, the optimality of delay is claimed with respect to this subject DAG.

10.3.1 Computation of Optimal Delay at Internal Nodes

The only difference between FPGAs and library-based designs is how an internal node is
mapped. In FPGAs all the local mappings that cover an internal node and part of its fanin cone are
examined by enumerating all k-cuts of the fanin cone, which gives the best possible delay realized
at the node. This step needs to be modified for library-based designs so that all successful matches
for a given set of pattern graphs are systematically examined. However this can be easily done by
mimicking the standard pattern matching step used in conventional technology mapping. More pre-

cisely the standard matching procedure against pattern graphs can be applied to the fanin cone of the

Mis interesting to note that Cong and Ding have a comment as follows.
“Qur result makes a sharp contrast with the fact that the conventional technology mapping problem in library-based
designs is NP-hard for general Boolean networks.”(page 2 [CD94a})

167

node to exhaustively check all the successful matches. This way the best delay achievable at each
intermediate node can be computed in a similar way to FlowMap. The only difference is that actual
pin-to-pin delays of gates specified in a given library need to be used in our case instead of unit delay
in FlowMap. As with FPGA mapping, the principle of optimality is still valid here.

Notice that as long as delay is optimized, any DAG pattern graph can be used directly with-
out losing the optimality, i.e. it is not necessary to restrict the library to pattern graphs of trees and

leaf DAGs. General DAG patterns are problematic only in the context of area optimization.

10.3.2 Pattern Matching

‘We now examine how pattern matching is performed between a subject graph and a pattern
graph.

Pattern matching between a subject graph and a pattern graph in the context of technol-
ogy mapping was studied extensively by Keutzer [Keu87] and Rudell [Rud89]. A match between a
subject graph G; = (V;, E;) and a pattern graph G, = (V,, Ep) is defined as follows [Rud89].

Definition 10.1 A (standard) matchof a pattern graph G, = (V;, Ep,) on a subject graph G; = (V;, E;)
is a one-to-one mapping of the pattern graph nodes into the subject graph nodes I : V, — V; such
that:

1. Ve = (e),e) € Ep, (I(e1),1(e2)) € Ey,
2. WEe V,,i(v)| # 0= |i(v)| = |i(I(v))|,where i(v) = {w | (w,v) € E} for G = (V,E).

The first condition requires that the edge relationship in the pattern graph is completely preserved
in the subject graph. The second condition constrains the in-degree of a non-primary-input node in
the pattern graph to be the same as that of the matching node in the subject graph. Notice that it
is allowed for a subject-graph node covered by an intermediate pattern-graph node to have fanout
to nodes which are not covered by the pattern graph. However, in the conventional tree-covering
based approach such a match is invalid, i.e. all the fanouts of a subject-graph node matched with
an intermediate pattern-graph node need to be covered by the same pattern. A match satisfying this

additional constraint is called an exact match [Rud89] and defined as follows.

Definition 10.2 An exact match of a pattern graph G, = (Vp, E,) on a subject graph G = (V;, E;)
Is a one-to-one mapping of the pattern graph nodes into the subject graph nodes I : V, = V; such
that:

168

subject graph pattern grap

Figure 10.1: Standard Match vs. Extended Match

1. Ye= (e;,e2) € Ep,(I(e1),](e2)) € E;,
2. We Vp,[iv)| # 0= |i(v)| = li(I(v))],

3. YWeV,,li(v)|#0and |o(v)| # 0= |o(v)| = |o(I(v))|,where o(v) = {w | (v,w) € E} for G =
(V,E).

Rudell proposed an algorithm called graph_match [Rud89] for the general case where
both a subject graph and a pattern graph are DAGs. We can simply use this matching algorithm to
enumerate all successful standard matches instead of exact matches.

Although a constraint that a mapping is one-to-one is posed in the above two definitions
by Rudell, this can be safely dropped as follows, which leads to the definition of a larger class of

matches.

Definition 10.3 Anextended match of a patterngraph G, = (V,,, E,,) ona subject graph G = (V;, E;)
is a mapping of the pattern graph nodes into the subject graph nodes I : V,, — V; such that:

1. Ve= (el:eZ) € E]H (I(e|)11(e2)) €E,
2. e Vp, [i(w)| # 0= |i(v) = [i(I(v))].

The only difference between extended matches and standard matches is that in extended matches
the requirement of a mapping from the pattern-graph nodes into the subject-graph nodes being one-
to-one is dropped. Therefore extended matches subsume standard matches. This relaxation of the
requirement allows duplication of subject-graph nodes while searching for a match by unfolding a
DAG structure. Figure 10.1 shows an example where a pattern graph is matched successfully as an
extended match but not as a standard match. Assume that a two-input node is a NAND2 gate and

a single-input node is an inverter. Consider pattern matching at the top node of the subject graph

169

shown on the left against the pattern graph on the right. An extended match exists by mapping both
m and m’ to n while a standard match does not since such a mapping violates the one-to-one mapping
property. A simple modification to the graph match algorithm makes the algorithm search all

extended matches instead of all standard matches without changing its asymptotic complexity.

10.3.3 Constructing an Optimum Mapping

Once a (best delay, best gate)-pair is computed at each node, a delay-optimal network can
be constructed in exactly the same way as in FlowMap. We maintain a queue which contains nodes
to be created in the final mapping. This queue is initialized to the set of all primary outputs. A node
is taken from the queue and the best gate at the node is created in the mapping. Each fanin node
of the gate is then inserted to the queue if the fanin is not a primary input and does not yet have a

corresponding gate in the mapping. Once the queue becomes empty, the mapping is complete.

Lemma 10.1 The labeling procedure described in Section 10.3.1 computes the optimum delay achiev-

able at each node n of a subject graph under a load-independent delay model.

Proof We can prove this by an induction on the structure of a given subject graph.

Base case (n is a primary input): The delay value stored at » is the arrival time of n#. Therefore it

is indeed the optimum delay of .

Induction (n is not a primary input): Suppose by inductionthat all the nodes in the transitive fanin
of n have their optimum delay values. Since the delay model is load-independent, the opti-
mum delay value of any node in the transitive fanin of n remains valid regardless of the fanout
structure of the node. Therefore by performing exhaustive pattern matching and choosing the

minimum delay over all the successful matches at n, the minimum delay at n is computed.

Theorem 10.1 The technology mapping algorithm described above gives a mapped circuit whose

delay is optimum under a load-independent delay model.

Proof The construction of a mapped circuit is performed recursively from primary outputs.
During this recursive construction each node is implemented by the gate that achieves the best delay

at the node. Since the delay value computed at each node in the labeling phase is guaranteed to be

170

optimum from Lemma 10.1, the resulting network has an optimum delay. O

10.3.4 Complexity of DAG Mapping for Delay Minimization

An application of graph_match to enumerate all successful matches at a single node
is O(p) [Rud89], where p is the number of nodes in the entire unique pattern graphs 4. Since this
procedure is called once for each node in a subject graph, the complexity of the labeling step is O(sp),
where s is the number of nodes in the subject graph. The final step of constructing a delay-optimal
mapping only costs O(s). Therefore the complexity of DAG mapping is O(sp). Since p is a constant

defined by a given library, the procedure is linear in the size of a subject graph.

10.3.5 Comparison between DAG Mapping and Tree Mapping

In the past, performance-oriented technology mapping has been done by a combination of
tree covering and buffer tree construction [Tou90]. The fundamental limitation of this conventional
tree-covering approach is that the search space is highly limited by the structure of a given subject
graph since multiple-fanout points in the subject graph are completely preserved in the final results.
On the other hand, since DAG mapping does not respect initial multiple-fanout points at all, it can
explore a strictly larger search space. In other words multiple-fanout points are created as the result of
delay optimization as we will see later in Figures 10.2, 10.3 and 10.4. Buffering techniques proposed
in the literature can be directly used in conjunction with DAG covering to speed up such multiple-
fanout points.

Another major difference is how subject-graph nodes are duplicated during technology
mapping. DAG mapping can duplicate subject-graph nodes while creating final mappings whereas
in tree mapping no duplication is allowed since each subject-graph node is covered only once by a
single pattern. In some sense, subject-graph node duplication is limited to the buffer tree construc-
tion phase in the tree-mapping-based approach.

Figure 10.2 illustrates how duplication of subject graph nodes helps reduce the delay of a
mapping. Consider a subject graph shown on the left. Suppose that a pattern graph on the right is
available in a given library. If tree mapping is invoked on this subject graph, the pattern graph is of

no use since there is no exact match between the subject graph and the pattern graph. If, on the other

“4Note that p is not equal to the number of nodes in the entire pattern graphs since during matching a single pattern
graphis tried for all possible permutations of its inputs. p is thus the number of nodes in the expanded pattern graphs. See
[Rud89] for details.

171

subject graph pattern graph

Figure 10.2: DAG Mapping vs. Tree Mapping

Figure 10.3: Matchings in DAG Mapping

Figure 10.4: Duplication of Subject-Graph Nodes in DAG Mapping

172

hand, DAG mapping is employed, the two output nodes in the subject graph are matched with the
pattern graph as in Figure 10.3. The mapped circuit corresponding to these matchings is shown in
Figure 10.4. The shaded nodes in the subject graph in Figure 10.3 are duplicated in this mapping,

which makes effective use of the pattern graph possible.

This example also illustrates how multiple-fanout points are created in DAG mapping.
Since the middle node of the subject graph with multiple fanouts is an internal node of each of the
matchings in Figure 10.3, the mapped circuit does not inherit the multiple fanout point. On the other
hand, the two primary inputs of the subject graph in the middle have multiple fanouts in the mapped

circuit while each of the inputs has a single fanout in the subject graph.

10.3.6 Example

Figure 10.5 shows a subject graph and pattern graphs. We will take this example to show
the effectiveness of the DAG mapping compared with the conventional tree covering. Assume that
each gate in the library has a unit delay for any input-output pair, and that the primary inputs of the

circuit arrives at t = 0. The goal is to synthesize the fastest mapped circuit.

The subject graph has a multiple fanout point in the middle. Therefore in the conventional
approach the subject graph is partitioned into three trees as in Figure 10.6. Each tree is mapped opti-
mally by dynamic programming in a topological order. Figure 10.7 shows the optimal delay achiev-
able at each node under the tree covering approach. The best implementation found in the tree cov-
ering is a mapped circuit where each subject-graph node is implemented by the corresponding gate

in the library. The top and the bottom outputs are available at # = 3 and ¢ = 4 respectively.

The use of the DAG mapping does not require the initial tree decomposition. This makes it
possible to find matches crossing the multiple fanout voint shown in Figure 10.8. These matches are
never found in the tree covering. Figure 10.9 shows the optimal delay at each node under the DAG
mapping. Both of the outputs are available at # = 2. The resulting mapped circuit is in Figure 10.10.
Note that the NAND gate and the inverter marked with 4/ in Figure 10.9 are duplicated in the final
circuit in Figure 10.10.

173

subject graph pattern graphs

——D)H}__
//'[

1 >
>0
muitiple fanout point :D)_DOFDD-

Figure 10.5: Example: DAG Covering vs. Tree Covering

——— —

// \\
4 D \
_v—‘
N ’—,//

——— s " T ey el

(> P

)} T T

N //// T ~
{

/) S<ZI____-7

multiple fanout point

~—,— ———

Figure 10.6: Example: Tree Decomposition

e

1 //"'_h\\

Ll oy
/ N 3 4 7

multiple fanout point

Figure 10.7: Example: Tree Covering

174

— —— — —

Figure 10.10: Example: Delay-Optimal Mapped Circuit

175

10.4 Extensions

The approach of Section 10.3 can be generalized to sequential circuits so that optimal cycle
time is guaranteed in conjunction with retiming [LS83, LS91]°. We only consider sequential circuits
with edge-triggered latches all of which are controlled by a single clock.

This problem was studied for LUT-based FPGAs by Pan and Liu [PL96, PL98]. Given a

k-bounded network consider the following three-step transformation.
1. Retime an initial circuit
2. Perform technology mapping of the combinational portion of the circuit
3. Retime the resulting mapped circuit.

Pan and Liu proposed a polynomial-time algorithm for computing the minimum cycle-time mapping
among all the mapped circuits obtained by the above transformation, which was later improved by
Cong and Wu [CW96, CW98a]. The key ingredient is a polynomial-time decision procedure which
determines whether there exists a mapping whose cycle time is less than or equal to a given value.
This procedure is used repeatedly to guide a binary search to determine the minimum cycle time
achievable by retiming and optimal technology mapping. The core of this decision procedure is again
a labeling scheme quite similar to the one used in FlowMap. All k-cuts at each intermediate node
are explored by considering retiming possibility. This is again done implicitly by converting the
original problem to a network flow problem. This step of examining all k cuts can be replaced by
pattern matching as was done for combinational mapping. All the other theories hold without any
modification.

More recently, Cong and Wu proposed a new optimal FPGA mapping algorithm for se-
quential circuits where only forward retiming is explored [CW98b). This restriction makes the com-
putation of the initial states of retimed circuits easy. The algorithm can also be easily adapted to
library-based designs in a similar way.

So far optimality is guaranteed in terms of a subject graph constructed arbitrarily from a
given circuit by decomposition. Since a single subject graph is chosen among a huge number of
different decompositions without knowing an actual library to be used, it is likely that many poten-
tially good mappings are simply not explored due to this initial choice. Lehman et al. [LWGH95,

SGrodstein et al. [GLH*94] considered retiming in the context of technology mapping for library-based designs and
proposed an area-optimal algorithm for trees.

176

tree | DAG || tree | DAG || tree | DAG
C432 || 12.13 1 1029 || 442 | 484 |[0.5 0.5
C499 || 10.16 | 8.03 | 904 | 960 || 0.9 1.1
C880 || 943 | 787 | 710| 755 0.8 0.9
CI1355 || 13.06 | 9.66 |} 1146 | 1488 || 1.1 1.2 “

circuit Delay Area " CPU time

C1908 [13.87 | 10.71 || 1223 | 1572 || 15| 1.7
C2670 |{ 11.54 | 9.43 || 1552 (2008 || 23| 2.6
C3540 || 17.20 | 14.00 h 2075 | 2926 {| 3.1 | 3.7
C5315 |[16.55 | 13.04 || 3687 | 4275 || 54| 6.0
C6288 || 56.99 | 41.95 || 4107 | 9291 || 49| 5.9
C7552 || 1423 | 11.06 |[4983 | 6452 || 6.8| 8.4

Table 10.1: Tree mapping vs. DAG mapping for 1ib2 .genlib

LWGH97] have recently resolved this issue by encoding various decompositions into a single ex-
tended subject graph called mapping graph® and performing technology mapping on it. Since this
technique is orthogonal to our technique, the two can be combined to produce even better results.
In fact, we have recently become aware [Wat97] that the actual implementation of Lehman et al.
performed DAG covering similar to ours although they discussed their algorithm for subject trees
in [LWGH97]. It is interesting to know how much delay improvement in [LWGH97] is due to DAG

covering.

10.5 Experimental Results

To show the effectiveness of this approach the technology mapper of SIS [SSM+92] was
extended so that delay-optimal mapping is obtained for combinational circuits by DAG covering ’.
As discussed in the previous sections, the delay model used in this experiment is the intrinsic delay
model where a fixed, load-independent delay is given between each input and the output of a gate.
This is in fact the delay model used in [LWGH97]. Although loading effects are certainly an impor-
tant factor in delays, there are several justifications. In design scenarios where continuous sizing of

any gate is permissible, one way to capture this flexibility in technology mapping is to approximate

They showed that the flexibility of retiming can be encoded in a mapping graph at the expense of the size increase of
the graph. The relationship between this approach and the adaptation of Pan-Liu’s algorithm is yet to be clarified.

7In this experiment we used graph_match for finding only standard matches instead of extended matches. Therefore
the optimality of the results is claimed with respect to standard matches. So far we have not been able to see any major
difference in mapping quality between the use of standard matches and extended matches.

177

this flexibility by having many discretely sized gates. Unfortunately this approach is known to be
very expensive. The approach taken in [LWGH97] is to pick a single delay for each gate and perform
technology mapping by ignoring loads. Each gate in the final mapping is then continuously sized by
considering actual loads so that the delay matches the one associated with the gate. Even without
the capability of continuous sizing, the buffer tree construction methods of [BCD89, SSV90, Tou90]
can be used later at multiple fanout points to reduce load dependence. Therefore the use of this de-
lay model is at least justified as an approximation to the minimum-delay mapping problem under

realistic delay models.

Table 10.1 shows the comparison of the quality of final circuits between the DAG map-
ping approach proposed in this paper and the standard tree mapping approach. In this experiment
each benchmark circuit was first decomposed into a subject graph. We then applied the DAG map-
ping algorithm and the tree mapping algorithm on this same subject graph using MCNC gate library
1ib2.genlib®. No technology independent optimization was applied to benchmark circuits be-
fore technology mapping. No fanout optimization was used. The effectiveness of the DAG mapping
algorithm is clear. We were able to obtain significantly faster circuits. CPU time was obtained on
DEC AlphaServer 8400 5/300 and is reported in seconds. The increase of CPU time from tree map-
ping to DAG mapping is reasonable.

The same experiment was repeated using different libraries to see how the DAG mapping
algorithm performs on rich libraries. MCNC libraries 44-1.genlib and 44-3.genlib were
used in this comparison. The former library only contains 7 gates while the latter library has 625
gates, many of which are complex gates with many inputs °. 44-3 .genlib is a strict superset of
44-1.genlib. Table 10.2 and Table 10.3 summarize the results of 44-1 and 44 -3 respectively.
We can see that the difference in mapping quality between the DAG and tree mapping approaches

is further pronounced with the use of richer libraries.

It is interesting to observe that DAG mapping can generate faster and smaller results in
some cases, for examples in C1355 and C6288 in Figure 10.2. The reason is that complex gates are
used more frequently in DAG mapping, which leads to area effective covering in some cases in spite

of potential node duplication.

8Each gate has a non-zero load-dependentdelay specifiedin 1ib2.genlib. In the experiment this was simply as-
sumed to be zero.
9The largest gate has 16 inputs.

178

circuit Delay Area CPU time
tree | DAG || tree | DAG | tree | DAG
C432 | 24 19 || 784 | 1006 || 0.4 04
C499 | 25 16 || 1772 | 2220 || 0.8 0.8
C880 | 20 15 | 1250 | 1337 || 0.7 0.7
C1355 | 27 22 || 2100 | 1546 ” 1.0 1.0
C1908 | 37 24 |1 2251 | 3058 || 1.3 1.3
C2670 | 27 18)| 2998 | 4568 || 2.0 2.0
C3540 | 42 30 || 4007 | 6640 || 2.7 2.8
C5315 | 46 33 || 6817 | 8352 | 4.6 4.8
C6288 | 125 | 120 || 7782 | 7121 || 4.3 44
C7552 | 39 28 || 9552 | 11149 || 6.0 6.3

Table 10.2: Tree mapping vs. DAG mapping for 44-1.genlib

circuit Delay Area CPU time

tree | DAG || tree | DAG tree | DAG
C432 | 21 11 624 1094 [21.5| 385
C499 | 18 9| 1324 | 1910 | 353 | 68.9
C880 | 18 8| 946 | 1466 || 352 | 559
C1355| 26 10 || 1796 | 2440 || 41.5| 69.3
C1908 | 28 11 || 1755 | 2587 || 57.2 | 123.5
C2670 | 22 10 || 2314 | 3943 || 92.2 | 159.7
C3540 | 28 13 || 2983 | 6148 || 128.2 | 255.6
C5315 | 31 15 || 5115 | 6685 {| 220.4 | 341.5
C6288 | 125 42 || 7694 | 14775 || 155.1 | 229.5
C7552 | 27 13 || 7062 | 13267 || 248.7 | 491.0

Table 10.3: Tree mapping vs. DAG mapping for 44-3 .genlib

179

10.6 Conclusions

We have shown that the delay-optimal technology mapping problem can be solved opti-
mally under load-independent delay models without decomposing a subject DAG into trees. The al-
gorithm is an adaptation of a polynomial time algorithm for delay-optimal mapping of look-up table
type FPGAs, and runs in time linear in the size of a subject graph. This is the first result showing that
the delay-optimal technology mapping problem for library-based designs is solvable in polynomial
time for general DAG networks. We have experimentally shown that the proposed approach gives
significant improvement in delay compared to conventional tree mapping. Extensions of this tech-
nique to sequential circuits have also been discussed. The relationship between technology mapping
problems for library-based designs and FPGA designs has been clarified.

In this chapter we focused on delay minimization without any area consideration. There-
fore at each intermediate node the fastest mapping is simply created no matter how critical the node
is. By constructing slower but smaller mapping for non-critical subnetworks a better control over
area increase can be achieved. Cong and Ding proposed heuristics to address this issue in [CD94a]
for FPGA mapping. They also have results on area-delay tradeoff based on the FlowMap algo-
rithm [CD94b]. éhaudhary and Pedram [CP92, CP95] studied area-delay tradeoff for library-based
technology mapping. Touati e al. [TSB91, Tou90] gave an area-recovery heuristic applicable to
technology-independentdelay optimization. The incorporation of these ideas remains as future work.

The use of load-independent delay models has been assumed in this chapter. Although the
capability of continuous gate sizing justifies such a delay model in theory, sizing is only allowed up
to a specified limit in reality. Buffer tree construction needs to be used in conjunction with DAG
mapping in this case. Interaction between buffer tree construction and DAG mapping is yet to be
studied.

181

Chapter 11

Conclusions

We have studied various problems arising in timing analysis and optimization of high-
performance digital circuits. The contribution of the dissertation is summarized below.

The first part of the dissertation focused on timing analysis of gate-level circuits. The goal
of timing analysis at the gate level is to estimate timing characteristics of a given gate-level circuit
under the assumption that the delay of each gate in the circuit has been pre-characterized by detailed

simulation at a lower level. Two procedures essential in gate-level timing analysis are:

1. arrival time analysis, in which given arrival times at the primary inputs of a circuit are propa-

gated forward to compute the arrival time at a primary output, and

2. required time analysis, in which given required times at the primary outputs of a circuit are

propagated backward to compute the required time at a primary input.

A major difficulty in accurate gate-level timing analysis is in detection of false paths. A
false path is a topological path not responsible for the signal stability of an output. Since false paths
have no impact on the delay of a circuit, they need to be excluded when timing analysis is performed.
Detection of false paths is crucial in accurate delay analysis. Timing analysis with the ability of false
path detection is called functional timing analysis.

Although functional arrival time analysis has been studied extensively in the last decade,
little was known about functional required time analysis. This problem was studied in Chapter 3.
We showed that the underlying theory of an existing functional arrival time analysis technique can
be extended to functional required time analysis. The consideration of false paths in required time
analysis led to a generalized notion of required times, where an input of a circuit is required at differ-

ent times under different input vectors. We further showed that input-vector dependent required time

182

is not necessarily unique even if an input vector is specified unlike topological required time anal-
ysis. An exact algorithm for functional required time analysis was presented for the XBDO model,
followed by a set of approximate algorithms applicable to the analysis of large circuits.

Chapters 4 to 8 dealt with various timing analysis problems for combinational modules.
A combinational module is a combinational circuit which can be used under any surrounding envi-
ronment.

Chapter 4 discussed delay characterization of a combinational module. The goal of the
delay characterization is to compute a compact delay abstraction of the module that captures the
timing characteristics of the module accurately. The fact that the arrival times at the primary inputs
are unknown makes false-path-aware delay characterization difficult since state-of-the-art functional
arrival time analysis techniques are dependent on arrival time conditions at the inputs. Our major
contribution in this chapter was to show that the problem can be solved by a direct application of
functional required time analysis. The resulting exact delay abstraction is valid and accurate under
any arrival time condition. We then discussed several other methods of computing a delay abstraction
of a combinational module using functional arrival time analysis. Accuracy and correctness of these
methods were clarified. .

Chapter 5 discussed hierarchical functional arrival time analysis as an application of the
delay characterization techniques for combinational modules in Chapter 4. A common assumption
in existing functional arrival time analysis techniques is that a circuit under analysis has a flat struc-
ture without any hierarchy. Therefore, if a hierarchical circuit is given, we need to flatten it before
analysis, potentially resulting in a huge circuit. Chapter 5 addressed hierarchical functional arrival
time analysis where timing analysis is performed in a bottom-up fashion by respecting a given hi-
erarchy. The false-path-aware delay characterization techniques presented in Chapter 4 are directly
applicable to compute a delay abstraction of a module used in the lowest level of a hierarchical cir-
cuit. The assumption made in Chapter 4 that the surrounding environment of a combinational mod-
ule is unknown played a key role. Timing analysis was then performed at each level of the hierarchy
in a bottom-up way to compute a delay abstraction of the level from the delay abstractions of sub-
hierarchies. This hierarchical approach naturally supports incremental analysis capability, which is
missing in traditional flat analysis.

Chapter 6 introduced a notion of timing-safe replaceability applicable to combinational
modules. A module is said to be a timing-safe replacement of another if the former is no slower than
the latter under any arrival time condition and any input vector. If a new module is a timing-safe

replacement of a module, we can safely replace the original module with the new without deterio-

183

rating the performance regardless of how the module was used originally. We showed that whether
a module is a timing-safe replacement of another can be determined by examining the exact delay
abstractions of the two modules.

False paths in a combinational module are known to be relative to arrival time conditions
at the inputs. Therefore, a false path under some arrival time condition can be true under another.
Chapter 7 introduced a more stringent notion of false paths, called strongly false paths, which can
be uniquely defined independent of arrival time conditions. A path is said to be strongly false if the
path is not responsible for the stability of the outputs of a module under any arrival time condition.
These false paths can be safely assumed to be false for combinational modules. After showing that
strongly false paths can be determined from the exact delay abstraction of a module, we presented
an algorithm to detect such paths without an explicit computation of the delay abstraction.

Based on the results of the previous two chapters Chapter 8 addressed false path removal
from combinational modules. An algorithm to remove strongly false paths from a combinational
module was presented, which is guaranteed to give a timing-safe replacement of the original. Since
the module after the transformation is false-path free, it can be analyzed more accurately with topo-
logical analysis than the original. The resulting module has timing characteristics no worse than the
original under any surrounding environment. Thus this can be thought of as a timing optimization
technique for combinational modules.

The first part of the dissertation was concluded in Chapter 9, where an approximation scheme
for flat functional arrival time analysis was investigated. Although flat functional arrival time anal-
ysis is well understood as the result of intensive research in the past decade, flat analysis of large
circuits with a large number of reconvergences is still CPU time intensive. We adapted an exist-
ing functional arrival time analysis technique based on satisfiability so that the size of a satisfiability
problem created during timing analysis is controlled by introducing conservative approximation. We
experimentally confirmed that the approximation technique is effective in reducing CPU time only
with minor overestimation of delays.

The second part of the dissertation addressed timing optimization of digital circuits. Specif-
ically, delay optimization in technology mapping was discussed. Technology mapping takes a tech-
nology-independent Boolean network and generates a functionally equivalent network in which ev-
ery gate is a member of a given gate library. The most prevalent technology mapping technique
currently used for delay optimization is based on tree matching, where a technology-independent
network is partitioned into trees and each of them is mapped separately to minimize delay. Although

the delay-minimal technology mapping problem for trees has been known to be solvable optimally,

184

this approach is suboptimal because of the initial partitioning step. No optimization crossing tree
boundaries is possible. In Chapter 10, inspired by a previous work on technology mapping for FP-
GAs, we presented a delay-optimal technology mapping algorithm applicable to DAG networks and
showed that a delay-optimal mapping can be computed in time linear in the size of a given network
under a load-independent delay model. This result implies that tree partitioning of an initial network
is not necessary for delay optimization unlike area optimization, where without the partitioning the

problem becomes NP-hard.

Future Work

The recent advent of deep-submicron designs has provided various new challenges at al-
most every level of design methodology. Since various analog effects play a larger role in timing
behaviors, timing analysis under more refined delay models such as a slew-sensitive delay model
and a table-lookup delay model needs to be investigated to achieve desirable accuracy under indus-
trial environments. It would be interesting to see how the timing analysis and optimization results
obtained in the dissertation can be extended to a more realistic delay model.

Among various analog effects crosstalk is becoming one of the most critical issues at logic
synthesis level and below. If two wires are running in parallel only a small distance apart, the signal
behavior of one wire can be affected by that of the other. This is called a crosstalk. For example,
if the values on both wires are rising from O to 1 almost simultaneously, the effective capacitance
between the two wires is smaller than the one without any interaction. Therefore, the delays of the
wires decrease. On the other hand, if both wires are switching in different directions, the delays in-
crease. Existing timing analysis techniques are not capable of taking into account this crosstalk effect
accurately since the delays of gates and wires are assumed to be independent. Although conservative
analysis is possible by assigning the worst possible delay under crosstalk to each gate or wire, this is
likely to give too pessimistic results since crosstalk can only happen conditionally. Recent progress
on crosstalk-aware functional arrival time analysis and delay modeling can be found in [Kir97] and
[TKB97].

We have studied input-vector dependent delay abstractions and their implications to timing
analysis in this dissertation. Although different delays can be associated with different input vectors
under this framework, the effect of relative arrival times at the fanins of a gate is still ignored. In dy-
namic circuits, frequently used in high-end designs, even if a gate receives the same input vector at

its fanins, the delay characteristics of the gate may vary depending on the relative arrival times of the

185

fanins. This is because the configuration of pull-down conducting paths is sensitive to the relative
arrival times of the fanins. Furthermore, the amount of charges to drain depends on the input vector
previously applied, and has a direct impact on the delay of the gate. To capture these behaviors ac-
curately more refined analysis is required. Gray et al. [GLRKCI94] and Sun et al. [SDC94, SDC98]
have preliminary results for this problem.

Delay fault testing is a methodology for testing whether a manufactured circuit has a timing
violation or not. The goal of delay fault testing is to generate a pair of input vectors, the application
of which in that order can verify whether there is a delay fault on a given path by observing the
response at primary outputs. Unlike timing analysis we cannot assume any upper bound for gate
delays. Although the problem is different from timing analysis, the two problems are related with
each other. For example false paths play a major role in delay testing since if a path is false under
all delay assignments to the gates, there is no need to test the path in the first place. Although inter-
related, the two research problems have been studied almost independently, and thus the connections
between the two are far from clear. Recent work by Sivaraman and Strojwas [SS97] is one example

that applied a result in delay fault testing to timing analysis.

187

Bibliography

[ABBS95]

[AMF97]

[BCD89]

[BCH*94]

[BDB96]

[BFG*93]

[BHSV90]

A. Aziz, R. K. Brayton, FE Balarin, and V. Singhal. Timing-safe replaceability for
combinational designs. In Proceedings of TAU 95: ACM/SIGDA International Work-
shop on Timing Issues in the Specification and Synthesis of Digital Systems, pages
121-128, November 1995.

R. Aggarwal, R. Murgai, and M. Fujita. Speeding up technology-independent timing
optimization by network partitioning. In Proceedings of IEEE/ACM International
Conference on Computer-Aided Design, pages 83-90, November 1997.

C.L.Berman, J. L. Carter, and K. E. Day. The fanout problem: From theory to prac-
tice. In C. L. Seitz, editor, Advanced Research in VLSI: Proceedings of the 1989 De-
cennial Caltech Conference, pages 69-99, March 1989.

R. 1. Bahar, H. Cho, G. D. Hachtel, E. Macii, and F Somenzi. Timing analysis of
combinational circuits using ADD’s. In Proceedings of the European Design and
Test Conference, pages 625-629, March 1994.

S. Bhattacharya, S. Dey, and F Brglez. Fast true delay estimation during high level
synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(9):1088-1105, September 1996.

R. 1. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
E Somenzi. Algebraic decision diagrams and their applications. In Proceedings
of IEEE/ACM International Conference on Computer-Aided Design, pages 188-191,
November 1993.

R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel logic
synthesis. Proceedings of the IEEE, 78(2):1062-1081, February 1990.

188

[BISS)

[BMCMS7]

[BMCM90]

[Bra98]
[Bro90]

[BRSVWS7]

[Bry86]

[BS89a]

[BS89b]

[BS95]

[CC96]

D. Brand and V. S. Iyengar. Timing analysis using functional analysis. JEEE Trans-
actions on Computers, 37(10):1309-1314, October 1988.

J. Benkoski, E. Vanden Meersch, L. Claesen, and H. De Man. Efficient algorithms
for solving the false path problem in timing verification. In Proceedings of IEEE In-
ternational Conference on Computer-Aided Design, pages 44—47, November 1987.

J. Benkoski, E. V. Meersch, L. J. M. Claesen, and H. De Man. Timing verification
using statically sensitizable paths. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 9(10):1073—-1084, October 1990.

D. Brand. Personal communication, March 1998.
E M. Brown. Boolean Reasoning. Kluwer Academic Publishers, 1990.

R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang.
MIS: A multiple-level interactive logic optimization system. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 6(6):1062-1081,
November. 1987.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation. /EEE
Transactions on Computers, C-35(8):677-691, August 1986.

R. K. Brayton and F. Somenzi. Boolean relations and the incomplete specification of
logic networks. In G. Musgrave and U. Lauther, editors, VLSI 89: Proceedings of
the IFIP TC10/10.5 International Conference on Very Large Scale Integration, pages
231-240. North Holland, August 1989.

R. K. Brayton and E. Somenzi. An exact minimizer for Boolean relations. In Proceed-
ings of IEEE International Conference on Computer-Aided Design, pages 316-319,
November 1989.

K. P. Belkhale and A. J. Suess. Timing analysis with known false sub graphs. In Pro-
ceedings of IEEE/ACM International Conference on Computer-Aided Design, pages
736-740, November 1995.

K.-T. Cheng and H.-C. Chen. Classification and identification of nonrobust untestable
path delay faults. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 15(8):845-853, August 1996.

[CCHD93]

[CD92]

[CD93]

[CDY%4a)

[CD94b]

[CD96]

[CDC92]

[CDL93]

[CMZ*93]

189

H.-C. Chen, S. W. Cheng, Y.-C. Hsuy, and D. H.-C. Du. A path sensitization approach
to area reduction. In Proceedings of IEEE International Conference on Computer
Design, pages 73-76, October 1993.

J. Cong and Y. Ding. An optimal technology mapping algorithm for delay optimiza-
tion in lookup-table based FPGA designs. In Proceedings of IEEE/ACM International
Conference on Computer-Aided Design, pages 48-53, November 1992.

H.-C. Chen and D. H.-C. Du. Path sensitization in critical path problem. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 12(2):196—
207, February 1993.

J. Cong and Y. Ding. FlowMap: An optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(1):1-12, January 1994.

J. Cong and Y. Ding. On area/depth trade-off in LUT-based FPGA technology map-
ping. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2(2):137-
148, June 1994.

J. Cong and Y. Ding. Combinational logic synthesis for LUT based field pro-
grammable gate arrays. ACM Transactions on Design Automation of Electronic Sys-
tems, 1(2):145-204, April 1996.

H.-C. Chen, D. H. C. Du, and S. W. Cheng. Circuit enhancement by eliminating long
false paths. In Proceedings of 29th Design Automation Conference, pages 249-252,
June 1992.

H.-C. Chen, D. H.-C. Dy, and L.-R. Liu. Critical path selection for performance opti-
mization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 12(2):185-195, February 1993.

E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforma-
tion for large Boolean functions with application to technology mapping. In Proceed-

ings of 30th Design Automation Conference, pages 54—60, June 1993.

190

[CP92]

[CP95]

[CW9I6]

[CW98a]

[CW9I8b]

[DBG+84]

[DGR*87]

[DICM89]

[DKMO91]

K. Chaudhary and M. Pedram. A near optimal algorithm for technology mapping
minimizing area under delay constraints. In Proceedings of 29th Design Automation
Conference, pages 492498, June 1992.

K. Chaudhary and M. Pedram. Computing the area versus delay trade-off curves in
technology mapping. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 14(12):1480-1489, December 1995.

J. Congand C. Wu. An improved algorithm for performance optimal technology map-
ping withretiming in LUT-based FPGA design. In Proceedings of IEEE International
Conference on Computer Design, pages 572-578, October 1996.

J.Cong and C. Wu. An efficient algorithm for performance-optimal FPGA technology
mapping with retiming. JEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(9):738-748, September 1998.

J. Cong and C. Wu. Optimal FPGA mapping and retiming with efficient initial state
computation. In Proceedings of 35th Design Automation Conference, pages 330-335,
June 1998.

J. Darringer, D. Brand, J. Gerbi, W. Joyner, and L. Trevillyan. LSS: A system for
production logic synthesis. IBM Journal of Research and Developments, 28(5):537-
545, September 1984.

E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli,and A. Wang. Technol-
ogy mapping in MIS. In Proceedings of IEEE International Conference on Computer-
Aided Design, pages 116-119, November 1987.

P. Das, P. Johannes, L. Claesen, and H. De Man. Hierarchical timing view generation
including accurate modeling for false paths. In Proceedings of IEEE 1989 Custom
Integrated Circuits Conference, pages 13.3.1-13.3.4, May 1989.

S. Devadas, K. Keutzer, and S. Malik. Delay computation in combinational logic
circuits: Theory and algorithms. In Proceedings of IEEE International Conference

on Computer-Aided Design, pages 176-179, November 1991.

[DKM93]

[DKMW93]

[DKMW94]

[FS94]

[GBAGHS6)

[GLH*94]

[GLRKCI9%4]

[Goe81]
[Hit82]

[HPS91]

191

S. Devadas, K. Keutzer, and S. Malik. Computation of floating mode delay in com-
binational circuits: Theory and algorithms. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 12(12):1913-1923, December 1993.

S. Devadas, K. Keutzer, S. Malik, and A. Wang. Computation of floating mode de-
lay in combinational circuits: Practice and implementation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 12(12):1924-1936, De-
cember 1993.

S. Devadas, K. Keutzer, S. Malik, and A. Wang. Certified timing verification and the
transition delay of a logic circuit. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2(3):333-342, September 1994.

A. Farrahi and M. Sarrafzadeh. Complexity of the lookup-table minimization problem
for FPGA technology mapping. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 13(11):1319-1332, November 1994.

D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel. Socrates: A system for auto-
matically synthesizing and optimizing combinational logic. In Proceedings of 23rd
Design Automation Conference, pages 79-85, June 1986.

J. Grodstein, E. Lehman, H. Harkness, H. Touati, and B. Grundmann. Optimal latch
mapping and retiming within a tree. In Proceedings of IEEE/ACM International Con-
Jference on Computer-Aided Design, pages 242-245, November 1994.

C. T. Gray, W. Liu, and H.-Y. Hsieh R. K. Cavin III. Circuit delay calculation con-
sidering data dependent delays. Integration, the VLSI Journal, 17(1):1-23, August
1994.

P. Goel. An implicit enumeration algorithm to generate tests for combinational logic
circuits. IEEE Transactions on Computers, C-30(3):215-222, March 1981.

R. B. Hitchcock. Timing verification and the timing analysis program. In Proceedings
of 19th Design Automation Conference, pages 594604, June 1982.

S.-T. Huang, T.-M. Pamg, and J.-M. Shyu. A new approach to solving false path
problem in timing analysis. In Proceedings of IEEE International Conference on
Computer-Aided Design, pages 216-219, November 1991.

192

[HPS93]

[HPS94]

[HPS96]

[HSC82]

[JCM92]

[JCM93]

[Joh93]

[Jou83]

[KB92]

[Keu87]

S.-T. Huang, T.-M. Parng, and J.-M. Shyu. A polynomial-time heuristic approach
to approximate a solution to the false path problem. In Proceedings of 30th Design
Automation Conference, pages 118-122, June 1993.

S.-T. Huang, T.-M. Parng, and J.-M. Shyu. Timed Boolean calculus and its applica-
tions in timing analysis. JEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(3):318-337, March 1994.

S.-T. Huang, T.-M. Parng, and J.-M. Shyu. A polynomial-time heuristic approach to
solving the false path problem. IEEE Transactions on Circuits and Systems I: Fun-
damental Theory and Applications,43(5):386-396, May 1996.

R. B. Hitchcock, G. L. Smith, and D. D. Cheng. Timing analysis for computer hard-
ware. IBM Journal of Research and Development, 26(1):100-105, January 1982.

P. Johannes, L. Claesen, and H. De Man. Performance through hierarchy in static
timing verification. In Proceedings of IFIP 12th World Congress, pages 703-709,
September 1992.

P. Johannes, L. Claesen, and H. De Man. On the use of reconvergence analysis for
efficient hierarchical static sensitizable path analysis. In Proceedings of TAU 93:
ACM/IEEE International Workshop on Timing Issues in the Specification and Syn-
thesis of Digital Systems, 1993.

P. Johannes. Delay Characterization and Hierarchical Timing Verification for Syn-
chronous Circuits. PhD thesis, Katholieke Universiteit Leuven, Belgium, January
1993.

N. P. Jouppi. TV: An nMOS timing analyzer. In R. Bryant, editor, Proceedings of the
Third Caltech Conference on Very Large Scale Integration, pages 71-85. Computer

Science Press, 1983.

A.Kuehlman and R. A. Bergamaschi. Timing analysis in high-level synthesis. In Pro-
ceedings of IEEE/ACM International Conference on Computer-Aided Design, pages
349-354, November 1992.

K. Keutzer. DAGON: Technology binding and local optimization by DAG matching.
In Proceedings of 24th Design Automation Conference, pages 617623, June 1987.

[Kir97]

[KM95]

[KM97]

[KMS91]

[KR89]

[Lar92]

[LB94]

[LBSV93]

[LP93]

[LS83]

[LS91]

193

D. A. Kirkpatrick. The Implications of Deep Sub-micron Technology on the Design of
High Performance Digital VLSI Systems. PhD thesis, University of California, Berke-
ley, December 1997.

N. Kobayashi and S. Malik. Delay abstraction in combinational logic circuits. In
Proceedings of the ASP-DAC 95/ CHDL 95/ VLSI 95, pages 453458, August 1995.

N. Kobayashi and S. Malik. Delay abstraction in combinational logic circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
16(10):1205-1212, October 1997.

K. Keutzer, S. Malik, and A. Saldanha. Is redundancy necessary to reduce delay?
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
10(4):427-435, April 1991.

K. Keutzer and D. Richards. Computational complexity of logic synthesis and opti-
mization. In Proceedings of International Workshop on Logic Synthesis, May 1989.

T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Transactions
on Computers-Aided Design of Integrated Circuits and Systems, 11(1):4-15, January
1992.

W. K. C. Lam and R. K. Brayton. Timed Boolean Functions: A Unified Formalism
for Exact Timing Analysis. Kluwer Academic Publishers, 1994.

W. K. C. Lam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Circuit delay mod-
els and their exact computation using timed Boolean functions. In Proceedings of

30th Design Automation Conference, pages 128—134, June 1993.

I. Levin and R. Y. Pinter. Realizing expression graphs using table-lookup FPGAs.
In Proceedings of the European Design Automation Conference, pages 306-311,
September 1993.

C. E. Leiserson and J. B. Saxe. Optimizing synchronous systems. Journal of VLSI
and Computer Systems, 1(1):41-67, 1983.

C.E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algorithmica, 6(1):5~
35, 1991.

194

[LWGH95)

[LWGH97)

[MB91]

[MKLC89]

[MSBSV93]

[MSS+92]

[MZL96]

[NCGM92)

[NST*82]

E. Lehman, Y. Watanabe, J. Grodsteir, and H. Harkness. Logic decomposition dur-
ing technology mapping. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 264-271, November 1995.

E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. Logic decomposition during
technology mapping. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 16(8):813-834, August 1997.

P. C. McGeer and R. K. Brayton. Integrating Functional and Temporal Domains in
Logic Design. Kluwer Academic Publishers, 1991.

S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The Transduction method —
design of logic network based on permissible functions. /EEE Transactions on Com-
puters, 38(10):1404—1424, October 1989.

P. C. McGeer, A. Saldanha, R. K. Brayton, and A. Sangiovanni-Vincentelli. Delay
models and exact timing analysis. In T. Sasao, editor, Logic Synthesis and Optimiza-
tion, pages 167—189. Kluwer Academic Publishers, 1993.

P. C. McGeer, A. Saldanha, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Delay models and sensitization criteria in the false path problem. Tech-
nical Report UCB/ERL M92/63, University of California, Berkeley, 1992.

Y. Min, Z. Zhao, and Z. Li. An analytical delay model based on Boolean processes.
In Proceedings of 9th International Conference on VLSI Design, pages 162—-165, Jan-
uary 1996.

S. Note, E Catthoor, G. Goossens, and H. J. De Man. Combined hardware selec-
tion and pipelining in high-performance data-path design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 11(4):413-423, April
1992.

M. Nomura, S. Sato, N. Takano, T. Aoyama, and A. Yamada. Timing verification
system based on delay time hierarchical nature. In Proceedings of 19th Design Au-
tomation Conference, pages 622-628, June 1982.

[Ous83]

[PL96]

[PL98]

[Rud89]

[Rud93]

[Sal91]

[SBSV93]

[SBSV94]

[SBSV96]

[SDC9%4]

195

J. K. Ousterhout. Crystal: A timing analyzer for nMOS VLSI circuits. In R. Bryant,
editor, Proceedings of the Third Caltech Conference on Very Large Scale Integration,
pages 57-69. Computer Science Press, 1983.

P.Pan and C. L. Liu. Optimal clock period FPGA technology mapping for sequential
circuits. In Proceedings of 33rd Design Automation Conference, pages 720-725, June
1996.

P. Pan and C. L. Liu. Optimal clock period FPGA technology mapping for sequential
circuits. ACM Transactions on Design Automation of Electronic Systems, 3(3), July
1998.

R. Rudell. Logic Synthesis for VLSI Design. PhD thesis, University of California,
Berkeley, April 1989. UCB/ERL M89/49.

R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Pro-
ceedings of IEEE/ACM International Conference on Computer-Aided Design, pages
4247, November 1993.

A. Saldanha. Performance and Testability Interactions in Logic Synthesis. PhD thesis,
University of California, Berkeley, October 1991. UCB/ERL M91/100.

N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni- Vincentelli. Minimum padding to
satisfy short path constraints. In Proceedings of IEEE/ACM International Conference
on Computer-Aided Design, pages 156~161, November 1993.

A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Circuit structure re-
lations to redundancy and delay. /EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 13(7):875-883, July 1994.

P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinational test
generation using satisfiability. IEEE Transactions on Computers-Aided Design of In-
tegrated Circuits and Systems, 15(9):1167-1176, September 1996.

S.-Z. Sun, D. H. C. Du, and H.-C. Chen. Efficient timing analysis for CMOS circuits
considering data dependent delays. In Proceedings of IEEE International Conference
on Computer Design, pages 156-159, October 1994,

196

[SDC98]

[Seg89]

[She93]

[SP94]

[SS97)

[SSM+92]

[SSV90]

[SWBSV8S]

[TKB97]

S.-Z. Sun, D. H. C. Du, and H.-C. Chen. Efficient timing analysis for CMOS circuits
considering data dependent delays. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 17(6):546-552, June 1998.

C.-I. Seger. A bounded delay race model. In Proceedings of IEEE International Con-
Jerence on Computer-Aided Design, pages 130-133, November 1989.

N. V. Shenoy. Timing Issues in Sequential Circuits. PhD thesis, University of Cali-
fornia, Berkeley, December 1993. UCB/ERL M93/97.

V. Singhal and C. Pixley. The verification problem for safe replaceability. In Pro-
ceedings of 6th International Conference on Computer-Aided Verification, CAV’%4,
pages 311-323, June 1994.

M. Sivaraman and A. J. Strojwas. Timing analysis based on primitive path delay fault
identification. In Proceedings of IEEE/ACM International Conference on Computer-
Aided Design, pages 182-189, November 1997.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Sequential circuit design using synthesis and optimization.
In Proceedings of IEEE International Conference on Computer Design, pages 328-
333, October 1992.

K. J. Singh and A. L. Sangiovanni-Vincentelli. A heuristic algorithm for the fanout
problem. In Proceedings of 27th Design Automation Conference, pages 357-360,
June 1990.

K. J. Singh, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Timing
optimization of combinational logic. In Proceedings of IEEE International Confer-

ence on Computer-Aided Design, pages 282-285, November 1988.

S. Tagiran, Y. Kukimoto, and R. K. Brayton. Computing delay with coupling using
timed automata. In Proceedings of TAU97: ACM/IEEE International Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems, pages 232-242,
December 1997.

[TMBW90]

[TON83]

[Tou90]

[TSB91)

[VPMS97]

[Wat97]

[Yal97a]

[Yal97b]
[Yal98]

[YHO95]

[YHS96]

197

H. Touati, C. W. Moon, R. K. Brayton, and A. Wang. Performance-oriented technol-
ogy mapping. In W. J. Dally, editor, Advanced Research in VLSI: Proceedings of the
Sixth MIT Conference, pages 79-97. MIT Press, April 1990.

E. Tamura, K. Ogawa, and T. Nakano. Path delay analysis for hierarchical building
block layout system. In Proceedings of 20th Design Automation Conference, pages
403-410, June 1983.

H. J. Touati. Performance-Oriented Technology Mapping. PhD thesis, University of
California, Berkeley, November 1990. UCB/ERL M90/109.

H. J. Touati, H. Savoj, and R. K. Brayton. Delay optimization of combinational logic
circuits by clustering and partial collapsing. In Proceedings of IEEE International
Conference on Computer-Aided Design, pages 188-191, November 1991.

S. V. Venkatesh, R. Palermo, M. Mortazavi, and K. A. Sakallah. Timing abstraction of
intellectual property blocks. In Proceedings of Custom Integrated Circuit Conference,
pages 99-102, May 1997.

Y. Watanabe. Private communication, October 1997.

H. Yalcin. Hierarchical Timing Analysis of Digital Circuits. PhD thesis, University
of Michigan, 1997.

H. Yalcin. Private communication, March 1997.
H. Yalcin. Private communication, June 1998.

H. Yalcin and J. P. Hayes. Hierarchical timing analysis using conditional delays.
In Proceedings of IEEE/ACM International Conference on Computer-Aided Design,
pages 371-377, November 1995.

H. Yalcin, J. P. Hayes, and K. A. Sakallah. An approximate timing analysis method
for datapath circuits. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 114-118, November 1996.

	Copyright notice 1999
	ERL-99-42

