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Abstract

The performance of linear multiuser receivers in terms of the Signal-to-Interference Ratio

(SIR) achieved by the usershas been analyzed in a synchronous CDMA systemunder random
spreading sequences. In this paper, weextend these results to a symbol-asynchronous system

and characterize the SIR for linear receivers — the Matched Filter receiver, the MMSE

receiver and the Decorrelator, We first analyze receivers that demodulate a symbol with an

observation window that extends over the duration of symbol of interest and then extend these

results to the multiple symbol observation window. For each of the receivers, we characterize

the limiting SIR achieved when the processing gain is large and also derive lower bounds on

the SIR using the notion of effective interference. Applying the results to a power controlled

system, we derive effective bandwidths of the users for these linear receivers and characterize

the user capacity region: a set of users is supportable by a system if the sum of the effective

bandwidths is less than the processing gain of the system. We show that while the effective

bandwidth of the decorrelator and the MMSE receiver is higher in an asynchronous system

than that in a synchronous system, it progressively decreases with the increase in the length

of the observation window and is asymptotic to that of the synchronous system, when the

observation window extends infinitely on both sides of the symbol of interest. Moreover, the

performance gap between the MMSE receiver and the decorrelator is significantly wider in

the asynchronous setting as compared to the synchronous case.

"This work is supported by AFOSR under grant F49620-96-1-0199 and by a NSF CAREER Award under grant
NCR-9734090
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1 Introduction

Multiuser receivers which utilize the structure of multi-access interference in order to improve

performance among users have gained importance as they perform better than the conventional

matched filter receiver (IS-95) in a spread-spectrum system [5, 6, 7, 8, 12, 13, 17, 21). Much of the
previous work has been focused on the ability of receivers to reject the worst case interference (the
near-far resistance [5, 6]), rather than performance evaluation in a power controlled system.

Recently, [15, 16] characterized the performance of linear multi-user receivers in terms of the
Signal-to-Interference Ratio (SIR) achieved by the users in power-controlled systems, under spread

ing sequences that are random but known perfectly to the receiver. Particular attention is paid

to the linear minimum mean-square error (MMSE) receiver which maximizes the output SIR, al

though parallel results were derived for the conventional matched filter and the decorrelator. The
main result showed that in a system with large processing gain and many users, the interference

across users at the output of each of these linear receivers can be decoupled by ascribing an effec

tive interference term to each interferer. Based on the notion of effective interference, the paper

characterized the user capacity in a power controlled system by the notion of effective bandwidths

of the users which is the fraction of resources consumed by a user for attaining the target SIR.

Related results were independently derived in [20] for a system with equal received powers.

In this paper, we extend the results of [16] to linear multi-user receivers in an asynchronous
CDMA system, where we assume that the receiver not only has acquired perfect knowledge of the
signature sequences of the users but also their relative delays. We first analyze lineaj receivers that

estimate the transmitted symbol by observing the received signal over that symbol interval only,

that is, the observation window of the receiveris limited to one symbol duration. The output SIR

is random, being a function of the random spreading sequences and the random relative delays

between the cisynchronous users. For each of the three receivers, we show that the random SIR
converges to a deterministic limit and we characterize the limit by the solution of a fixed point
equation that dependson the received power and relativedelay distributions of the users. Focusing
on the MMSE receiver, we obtain a lower bound on the limiting SIR using the notion of effective

interference. As in the synchronous case, these results are applied to derive notions of effective
bandwidths in an asynchronous power-controlled system.

In the synchronous case, the output SIR /Ji.sync of user 1 under the MMSE receiver has been
shown to satisfy the fixed-point equation, asymptotically in a large system:

. ^
HI fsync ~

d" ^ Ply Pi,sync)
Jk=2

where A,K are the processing gain and number of users respectively, is the background noise
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power per degree of freedom, Pk is the received power of user fc, and

This quantity can be interpreted £is the effective interference of interferer k on user 1, and it
depends only on the received power Pk of the user to be demodulated, received power Pi of the
interferer, and the attained SIR /?. Thus, the above fixed-point equation says that in a large
system with random spreading sequences, the effect of an interferer at the output of the MMSE
receiver does not depend on the received powers of the other users, except through the attained
SIR. This is surprising given the fact that the MMSE receiver structure depends on the powers of
all users in the system. In the asynchronous case, we will show that an analogous concept arises:
the effective interference of an interferer, with received power Pk and whose symbols are delayed

by a fraction of Tk with respect to the user to be demodulated, is given by:

/(T,Pfc,Pi,/3) + /((l-rfe)Pik,Pi,/?)

The above expression shows that the effect of the asynchrony is approximately equivalent to
splitting each interferer into two virtual users, one for each symbol interfering with the symbol to
be demodulated and with a power proportional to the amount of overlap. Unlike the synchronous
case, however, this only yields a lower bound to the limiting SIR achieved, cilthough numerical
results will show that this bound is very tight.

In order to characterize the user capacity of the system we extend the concept of effective
bandwidth of [16] to the asynchronous system. In an asynchronous system where the relative
delays r^'s are uniformly distributed, the effective bandwidth of a user is given by:

e„;(/?) =;9; =2("l - ; e,„(/?) =2
where 13 is the SIR requirement of the user. The effective bandwidths can be interpreted as the
fraction of the available degrees of freedom consumed by a user: A set of users can be admitted

into the system if the sum of their effective bandwidths is less than the total number of degrees of

freedom in the system. The effective bandwidths for the matched filter and the decorrelator give
an asymptotically exact characterization of the user capacity region, while the effective bandwidth
characterization for the MMSE receiver yields only an inner bound, due to the conservative nature

of the effective interference bound.

We also extend the above results to linear receivers that estimate the transmitted symbol by

observing the received signal over an observation window that spans more than onesymbol interval
and is symmetrical around the symbol to be demodulated. In such a system, we show that the

effective interference of interferer k under the MMSE receiver is given by,

+(T- l)I{P,,Pi,p) +m - n)Pk,PuP)\
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where T is the length of the observation window. The first and last term can be attributed to

the effect of the two symbols peirtially overlapping with the observation window at the two ends,

while the middle term corresponds to the effect of the T —1 completely overlapping symbols.

Just as in the single-symbol observation window case, we use the notion of effective bandwidth to

characterize the user capacity of the system, when the relative delay distribution is uniform. The

effective bandwidths for the MMSE receiver and the decorrelator yield inner bounds to the user

capacity region, and are given by,

T-flCm/(/^) T) —/?; GfnmseifiiT) —̂ edeciP.T) =

where 0 is the SIR requirement of the user. While the matched filter receiver has the same

performance regardless of the size of the observation window, we see that the MMSE receiver and
the decorrelator have an effective bandwidth that decreases as the observation window is enlarged.

As the observation window extends infinitely on both sides, that is, as T oo, we see that the

effective bandwidth is asymptotic to that in the synchronous system:

The results in [16] were derived using the random matrix results in [9, 14]. But in the asyn
chronous system,due to the relativedelays between the users, these results are no longer applicable.
We use some stronger results on random matrices from [1] in order to derive the SIR achieved by
users in an asynchronous system.

All the results stated above were derived under the assumption that the users were chip syn

chronous, though they are symbol asynchronous. This was necessary to simplify the. analysis,
which assumes a chip sampled discrete time model. We present some simulation results which

compare the theoretical results derived here with the SIR achieved by the receivers in the com

pletely asynchronous system. Not surprisingly, the SIR in the chip-synchronous case is lower than
that in the completely asynchronous Ccise. While the difference is small when the number of users
per degree of freedom is small, the gap grows to about 2 dB when the number of users is large.
Using the insights gained from the notion of the effective interference, we propose a heuristic
lower bound for the SIR in the completely asynchronous system. This heuristic bound follows the
simulated SIR pretty well in the sense that the maximum difference between the two is less than
a dB. Another assumption that is made in deriving the results for multiple symbol observation
window is that the signature sequences of users are not only independent across users but also
independent from symbol to symbol for any particular user. Though this is a valid assumption
for long spreading codes, which extend over multiple symbols (as in the IS-95 system), it is not
valid when the signature sequences are repeated from symbol to symbol. So, in order to justify
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the utility of our results, we present some simulation results which show that the SIR achieved
in the case of repeated signature sequences is identical to the theoretically predicted SIR (which
required independence among the signature sequences).

The outline of this paper is as follows: In Section 2, we discuss the model of the asynchronous
multi-access spread-spectrum system and the structure of linear multi-user receivers. In Section 3,
the concept of random spreading sequences is explained, followed by a brief review of the results
in the synchronous system. In Section 4, we present our main result for the MMSE receiver and
the matchedfilter receiver, extending the notion of effective interference to asynchronous systems.
In Section 5, we derive the corresponding results for the decorrelator. In Sections 6, we apply
the results derived to study the performance under power control and define a notion of effective
bandwidths for asynchronous systems. In Section 7, we generalize the above results to a system
where the observation window extends over multiple symbols, to obtain the SIR achieved and to

characterize the user capacity using the notion of effective bandwidths. In Section 8, we present

some simulation results to compare the performance of the completely asynchronous system with
the results derived for the chip synchronous (symbol asynchronous) system. We conclude the

paper with some discussions in Section 9.

2 The Spread Spectrum Model

In a spread-spectrum system^ each user's information is spread over a larger bandwidth by mod
ulation onto its signature or spreading sequence. In this paper, we consider a system that has a
processing gain of A^. In a symbol synchronous situation, a chip-sampled discrete-time model of
the received signal r E in a multi-access spread spectrum system with K users is given by,

K

T= ^XkSk +n (1)
fcr=l

where Xk € M. is the transmitted information symbol and Sk € is the signature sequence of

the user, n is the background Gaussian noise A/'(0,<t^Ia^). The transmitted symbols, Xk are
assumed to be independent and E[a;fc] = 0, E[xJ] = Ft, where Pk is the received power of user k.

In this paper, we consider a symbol asynchronous multi-access spread spectrum system with

a processing gain of N. Even though we allow the system to be symbol asynchronous, we will
assume the system to be chip synchronous, to make the analysis tractable. In the first part of the

paper, we also restrict ourselves to receivers that have an observation window of one symbol, N
chips in length: receivers which estimate the user's information symbol by observing the received

signal over N chips of the symbol. Without loss of generality, we focus on a symbol of user 1 and
notice that a typical interferer will have two different symbols interfering with the symbol of user
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"(the (yinbol to be demodul&ted)
Obaervation Window

Typical Interferer

Vk

Figure 1: User 1 and a typical interferer within the observation window.

1 within the observation window, as shown in Figure 1. The observation window is marked in

thick vertical lines and the two interfering symbols of a typical interferer are shown in solid and

dotted line below the reference symbol of user 1. Since the system is corrupted by white noise

and is zissumed to be chip synchronous, the projections onto N waveforms which are matched to

the N chip pulses (an orthogonal basis set) form a sufficient statistic for the received signal [18].
Thus, the sampled discrete-time model for the received signal r G is given by,

K K

r = a:iSi -H ^ XkUk +^ yk^k +n (2)
k=2 k=2

where Xk^yk € E are the two consecutive symbols of the user which overlap with user 1 in
the observation window, as shown in Figure 1. These have effective signature sequences G

and Vfc G E^, respectively. The effective signature sequences are completely determined by the

original signature sequences Sk and the delays relative to user 1. If G denotes the relative
delay in terms of number of chips of the user with respect to user 1, then ujt has its first dk
elements to be the Icist dk elements of Sk and the rest zeros. Similarly, \k has the first dk elements

zero and the Icist N —dk elements to be the first N —dk elements of sjt. That is,

\ 0 N<i<dk
0 i <dk

{sk\i^dk) N <i<dk

i^k)i =

(vA:)i =

The background noise n is still white gaussian, The transmitted symbols Xk and yk
are assumed to be independent of each other and of the transmitted symbols of other users and
E[a:fc] = E[yk] = 0 and E[xl] = = Pk, where Pk is the received power of user k. Notice
that the model for the synchronous system in eqn (1) can be arrived by setting the relative delays
dk = 0 in eqn (2).

In this paper, we restrict ourselves to the study of linear demodulators (receivers), that is, the
estimate is a linear function of the received vector r. Therefore, if xi is the estimate of Xi, the
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symbol transmitted by user 1, then, a linear demodulator is captured by,

xi(r) = c[r

The information symbols transmitted by the user may be coded and in order to facilitate soft
decoding by the channel decoder, we are interested in demodulation rather than symbol detection.
From this point of view, the Signal to Interference Ratio (SIR) of the estimates is a relevant
performance measure [16] and the SIR achieved by the linear receiver in the synchronous case
[7, 18] is given by,

SIR,,,,„c = (3)
(ciCi)or2+ Y, (c\Sk)^ Pk

k=2

The corresponding SIR in the asynchronous case would be,

Pk

SIR. = (4)

(c'lCi) 0-2 +2 f(c'iUt)^ +(c'.Vl:)^
k=2 ^

The synchronous case was analyzed in [16, 20] and in this paper we consider the asynchronous

situation. The conventional matched filter receiver simply projects the received vector onto the

user's signature signature sequence, Si. This matched filter demodulator is optimal only if the
total interference is white, which may not necessarily be the case in a multi-access system. In

general, the MMSE receiver is the optimal linear receiver in the sense that it maximizes the SIR

of user 1 by exploiting the structure of the interference [7, 12, 13]. The estimate xmmse of the

MMSE demodulator [7] is given by,

Pis'i (SiDiS'i + gV)~' r
H-Pis'i(Si£»iSS + <72/)-'s,

and the SIR achieved by user 1 is given by,

SIRi = Pis[ (SiDiS'i + Si (6)

where Si is a TV x 2{K —1) matrix that has the effective signature sequences of the interferers,

U2,... , uk, V2, ... , vk for its columns and Di = diag(P2) ••• , Pk-) F2,... , Pk) which is the

covariance matrix of (0:2,... , xk: 2/2? •• • j VkY'

3 Performance and Random Spreading Sequences

The SIR described in Section 2 can be used to calculate the performance achieved with specific

set of signature sequences assigned to the users. But it does not give any insight as to how

xmmse[^) = , . „ , ^ 1^1
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the users interfere with each other to affect the performance because the output of the MMSE

receiver has a complicated dependence on the powers of the interferers, as given by eqn (6),

even though the interferers axe additive at the input of the receiver. In practice, it is often
more reasonable to assume that the spreading sequences are randomly and independently chosen

[8, 16, 20]. These random sequences can be from a long pseudo-random code or sequences picked
at random from a large look-up table. A similar situation arises when deterministic signature

sequences are transmitted over a channel that has multi-path fadingwhich randomizes the received
signature sequences. Since the signature sequences are random, the SIR achieved /?, being a
function of the signature sequences is a random variable. In this paper, the signature sequences,

though chosen randomly, are assumed to be known to the receiver.

In an asynchronous system, the various relative delays dk a.re also assumed to be random. So,
the performance measure cis a random variable is a function of the random spreading sequences
and random delays. Again, though the delays are random, it is assumed that the receiver hcis
information of the delays of all the users. Practically, this means that the receiver has attained
timing information of different users and this varies at a rate considerably lower than the symbol
rate.

The random signature sequence of the user can be modeled as ^ •••»
where i^ki are i.i.d, zero-mean unit variance random variables. The normalization of ensures

that the signature sequences are of unit norm on an average, that is, E[||sjklp] = 1. For technical
reasons, we also require that the random variables have a finite fourth moment, < oo.

Practical situations like choice of ±1 signature sequences can be obtained as particular cases of

the final result. The results in this paper show that in the asymptotic regime, the SIR achieved is

independent of the distribution of the random variables that constitute the signature sequences.

All the results described in this paper are asymptotic in nature, that is, we consider the limiting

regime where the number of users is large, K oo. This means that the processing gain also
needs to be scaled up, else we will have the SIR to be zero with probability 1. Therefore, we
have a system where N,K oo^ but with a fixed numberof users per degree of freedom, a, that
is, K = [qA^J. As we scale up the system, the empirical distribution of the powers of the users
is assumed to converge to a fixed distribution (Cumulative Distribution Function), F(P). The
empirical distribution of the delays of the different users, relative to the observation window is
also assumed to converge to a fixed distribution (CDF), G(t), where the delay d relative to the
reference user is given by d = [r . In a typical asynchronous system, we can assume that the
arrivals are equally probable to be anywhere in [0, N) and hence uniform delay distribution serves
as a good model for the delays relative to a particular user. This paper analyzes the performance
for a general delay distribution, which is later specialized to the uniform delay distribution.

The cisymptotic performance ina synchronous CDMA system has been analyzed in [16]. Here,
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we review some of the important results of [16] which will help in comparison and also provide
insight into the asynchronous problem.

Theorem 3.1 In a synchronous system, as the processing gain N —¥ oo, the SIR attained by user
1 in the MMSE receiver converges in probability to Pi^ayncy is the unique solution to the fixed
point equation,

a- = LI (7)
{/(p,

where Ep denotes the expectation with respect to the power distribution F{P) and

PP

Heuristically, this means that in a large system, the SIR /?i attained by user 1 is deterministic

and approximately satisfies,

fil,sync « — (8)
2 HPk, Pl.fihsync)
Jb=2

This result has an interesting interpretation: for a large system, the total interferenceat the output

of the MMSE receiver can be decoupled into a sum of the background noise and an interference

term from each of the other users, scaled down by the processing gain N. An important observation

is that the interference term depends only on the received power of the interfering user, the received

power of user 1 and the attained SIR and not on the powers of the other interfering users, except

through the attained SIR, in spite of the fact that the MMSE receiver depends on the received

amplitudes of all the users in the system. Therefore, cis shown in [16], we can term I{Pk,Pi,(3t)

as the effective interference of user at target SIR fir-

The MMSE demodulator can be compared in performance with the commonly used matched

filter receiver. In a matched filter, the asymptotic SIR achieved converges in probability to,

/^r,MF = 55 " (^)
cr^-hafPdF(P)

0

Hence, in a system of large processing gain N, the performance approximately satisfies,

^^ (10)

k=2

Thus, we have the interference term linear in the received powers of the users, which is not

surprising as the interference in a finite system is additive across users. The following section

extends the above results to the asynchronous system.



Kiran and Tse: Effective Interferenceand Effective Bandwidth of Linear Multi-userReceivers in Asynchronous Systems 9

4 The Asynchronous System

In the synchronous system, if S denotes a matrix with the signature sequences of the interferers

for its columns, then S has its elements identically distributed and the random matrix results

of [9] are applied to prove Theorem 3.1. But in an asynchronous situation, some entries of Si
are zero (depending on the delays dk) and we therefore need more powerful results than [9]. As
the processing gain N of the system tends to infinity, if the empirical distribution of powers

converges to a fixed distribution F(P) and the empirical distribution of delays relative to user 1

also converges to a fixed distribution, G(r), then the following theorem gives the asymptotic SIR
achieved by user 1. The proofof this theorem requires some random matrix results from [1].

Theorem 4.1 If is the SIR attained by user 1 for the MMSE receiver in an asynchronous
system with a processing gain of N and an observation window of one symbol (N chips), then, as
N —> oo, converges in probability to Pl, where 01 is given by.

and

(x) =w

<7^ + aEpEr ^

01 =J 'w(x)di
0

Pi

IIP,Pi,y w(z)dz\ l{r>x)-\-I {p.Pi, j w{z)dz\ 1{t<x)

(11)

(12)

where Ep and Er denote the expectation with respect to the power distribution F(P) and the delay
distribution G(r) respectively. I(P,Pi,0) = p^^pp the effective interference term introduced in
the synchronous case and 1{t>i} is an indicator function that is 1 if t > x and 0 otherwise. The
solution to iy(a;) exists and is unique in a class offunction it;(a:) > 0.

. The above theorem, which is proved in Appendix A gives a way to calculate the asymptotic

SIR for a given distribution of delays and powers of the users. The function u;(a:) can be solved
numerically by the method of iterations, after suitably discretizing it over the interval [0,1]. In a
large system, if I is the chip of user 1 under consideration, heuristicaJly,

Pi
(0w

(13)
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The result can be interpreted as follows: the interferer will have either the first or the second
part overlapping with the chip Iof user 1, depending on the value of the relative delay dk. There
fore, only one of the two indicators is non-zero. Since the users are arranged in the increasing
order of their delays, let Ki be the first set of users who have the second symbol overlapping with
chip I (that is, 4 < / for A: < AT) and K2 = K - Ki he those users who have the first symbol
overlapping with chip I. Therefore, we have,

Pi
w{l)

k=2 \ i=djt+l / k=Ki+l \ j=l /

Therefore, following the argument in [16], we can have the interpretation: the effective interference
of the user at the chip of user 1 is given by 4(Pjb,where.

Pk,PujitMj)) d,>l

i\Pk,Puj^ E '"(i) 1 dk<i
j=ik+l

Ik{Pk,Pul,'w(')) = <

and

w(l)
Pi

1

Pi,;,«'(•))
Jfc=2

(14)

can be interpreted as the SIR achieved at the V'̂ chip and the total SIRis the average of the SIRs
achieved in the N chips.

Hence, the above theorem shows that the interference by the k^^ user at the chip depends
only on the received power of the k*^ user, the received power of user 1 and the SIR achieved by
user I at the various chips. Thus, unlike the synchronous situation where the effective interference

term depends only on the overall SIR achieved, the eisynchronous situation hcis the dependence on
the SIR achieved at the chip level. The following theorem (derived in Appendix C) not only gives

a lower bound on the SIR achieved but also provides simpler insights on how the interference from

other users affects the performance by reducing the dependence to the overall SIR achieved. To

derive the bound, we need to make a weak assumption on the delay distribution: in a common

system, the arrival of a particular symbol hais equal probability of being tN before or after the
interval of the symbol to be demodulated. Therefore, for the purposes of the bound, we assume
(?(t) = I- G(I —r), that is, the probability density function is symmetric about
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Theorem 4.2 In an asynchronous system, if the relative delay distribution G(t) satisfies the

condition G(t) = 1—G(l —r), then the asymptotic SIR Pl attained is lower bounded by 7J, which

is the unique solution of the fixed point equation,

(15)
<T'+aEpEr{I{TP,Pl,',l) + I({l-T)P,Pl,'ll)}

where

PPi
I{P,Pul'i) = Pi + Pll'

is the effective interference of an user ofpower P at SIR as developed in the synchronous case.

Heuristically, in a large system,

^

1 ^
i / (r,Pfc, Pi,tD + / ((1 - r,)P., Pi,tD

k=2

An interesting interpretation can be given to the above expression by making the following obser
vation: the first symbol of the interferer has TkN part of its signature sequence overlapping
within the observation window. This means that it has an effective power of tkPk interfering in

the observation window. Similarly, the second part of the interferer has an effective power

oi [I —Tk)Pk' But since the two parts do not spread over the entire range of N, eqn (7) of the
synchronous case cannot be applied. But the above theorem shows that the effective interference,
assuming that the two parts spread over the entire range, but with a proportionally reduced power
serves as a lower bound to the SIR achieved. Also the numerical calculations and simulation (as

will beexplained in Figure 2 later) in a specific case ofequal powers and uniform delay distribution
show that the bound is very close to the actual SIR achieved. The following proposition helps to

give the interpretation of effective interference.

Proposition 4.3 The equation

Pi (16)X =

+ N H- /((I - Tk)Pk,Pi,x)]
k=2

has a unique fixed point x* and the monotonicity property: x* > x if and only if.

Pi

^ E [I(rkPk.Pux) + /((I - rk)Pk, Pux)]
k=2

> X
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Proof: See Appendix B •

Therefore, if user 1 has an SIR requirement j^t, then it suffices to check,

Pi

^ + [f(TkPk.PuM + m - n)Pk.PuM]
k=2

> /^T

Based on this, we can interpret /((I —Tk)Pk, Pi,7i) and /(r^Pk, Pi,7i) ^ the effective inter
ference oifered by the first (ufc) and second (v^) part of the signature sequence respectively of
the symbols of the user interfering within the observation window. Therefore, the effective
interference of the interferer on user 1 at SIR requirement /?i is given by.

linPk, Pi, A) + /((I - rk)Pk, Pi, A). (17)

In order to compare the performance of the MMSE receiver, we also evaluate the asymptotic
SIR achieved by the conventional matched filter receiver by the following proposition.

Proposition 4.4 If denotes the SIR attained in the asynchronous situation by user 1 in
the matched filter receiver when the spreading sequence is of length N, then, as N oo, jvIf
converges in probability to A.mf

Pl,MF = SS (^^)
(T2 + Q/PdP(P)

0

In a large system, the above theorem can be interpreted as,

A.MF ^ K
^ E Pfc

k=2

The above proposition shows that the matched filter receiver in the asynchronous case has the
same asymptotic performance as in the synchronous situation. From the definition of /(P, Pi,7f),
we observe that/(rfcPjt,Pi,7i*)+/((I - Tifc)Pit, Pi, 7i) < Pfc and hence the MMSE receiver performs
better than the matched filter receiver (which is consistent with the fact that the MMSE receiver
maximizes SIR among all the linear receivers). Another observation to be made is: while the
interferencein the matched filter receiver,being linear in powers of the interferer, grows unbounded

as the received power increases, the MMSE receiver has the total effective interference from any
user bounded by This is the well known near-far resistance of the MMSE receiver [7], which
the matched filter receiver lacks.
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Typically, the relative delays of the symbols with respect to the referenceare equally probable

to be anywhere in [0, A^) and hence uniform distribution is a good exampleof the empirical delay
distribution to consider. A lower bound for the asymptotic SIR achieved by the MMSE receiver

under uniform delay distribution can be derived as a special case of Theorem 4.2. In addition, if

we assume that power control is done and all the users have equal received powers, then, the SIR
achieved by the MMSE receiver is lower bounded by 7J, which is the solution to the following
fixed point equation,

P
7i = ^2 ^ 2^ A_ln(l+7r)^

^ 7? V 7? /

(19)

The first plot in the top left corner of Figure 2 compares the lower bound 7* to the actual
limiting SIR (3* obtained by numerically solving w(x) given by eqn (12) by method of iterations,
when the signal-to-noise ratio ^ = 20dB. The maximum difference between the proposed bound
and the actual SIR is less that half a dB over a wide range of a, the number of users per degree of
freedom. The limiting SIRfor the synchronous case is also plotted for comparison. In the remain
ing three plots, we would like to give a sense ofhow fast the convergence is to the asymptotic limit
P*. The plots compares the actual SIRs attained for several realizations with the asymptotic SIR
achieved. The simulation assumes that the elements of the signature sequences are equiprobable

±1 random variables of variance ^ and the relative delays are uniformly distributed in [0, A).
For different spreading lengths and for each value of o:, 1000 samples of the SIR attained are
computed using eqn (6).We plot the average of the sample points of the simulated SIRs and also
the 1 standard deviation spread around the mean (that is, simulated f3 ± ap). From the plots, we
notice that the average of the simulated SIRs is overlapping with the predicted SIR given by eqn
(12). Moreover, by observing the variance spread in TV = 32,64,128, we notice that the variance
progressively reduces as TV increases (roughly halved on doubling TV). For TV = 128, the spread
is less than a dB around the mean. So, we have that the average of the simulated SIRs coincides

with the predicted asymptotic limit and the variance decreases with increasing TV, thus reinforcing
Theorem 4.1.

5 The Decorrelator

The previous sections compared the performance of the MMSE receiver with the conventional
matched filter receiver. But among all the linear multi-user detectors, the first receiver to be
proposed was the decorrelator [5, 6]. This receiver was shown to be optimal in the worst case
scenario^ when the powers of the interferers tend to infinity, in the sense that it attains the
optimal near-far resistance, both in the synchronous and asynchronous systems [5, 6]. In the
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Figure 2: Comparison ofthe randomly generated SIRs (for processing gains N = 32,64,128) with
actual SIR achieved and the bound proposed.
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synchronous case, the SIR achieved by user 1 in the decorrelator, cis the processing gain N oo,

converges in probability to 0ldec,sync g^^en by,

(20)

This shows that the decorrelator in the synchronous system has an SIR which decreases linearly

(with a slope of 1) with the increase in the number of users per degree of freedom. In an asyn
chronous system, the received signal with the reference fixed to the demodulated symbol of user
1 is given by eqn (2),

K K

r = xisi -I- ^ XkUk -I- ^ ym +n
k=2 k=2

If we define a N x 2K-1 matrix S which has the signature sequences Si, Ui, U2,... , u^, V2, V3,. • • ,

Wfi for its columns and z = [a;i,a;2,... ,xki y2i--- ^VkY to be the vector of the corresponding
information symbols, then, we have,

r = Sz -I- n (21)

The decorrelating filter [5, 6] can be described by an overall filter (SS^)~^ (if the inverse
does not exist, then the pseudo-inverse is used in its place). In the absence of the external noise

n, this would give perfect estimates of the information symbols and hence is a zero-forcing linear
filter [5, 18]. Ifw = (SS^) ^S^n denotes the colored noise at the output of the filter, then it heis
a covariance matrix S = (SS^)~^ cr^. Therefore, we can describe the effect of the overall system
as corrupting the information symbol Zk by noise Wk, a zero mean gaussian random variable of
variance Sjti. The SIR attained by user 1 is therefore given by,

SIRi =p- (22)
^11

Theorem 5.1 In an asynchronous system, ®decorrelator for user 1, then,
as the processing gain iV -> 00, converges in probability to given by,

( ailrM a < i
0'id.c=\ \ (23)\ 0 a > i

Proof: See Appendix D •

Thus, we have that the SIR of the decorrelator for an asynchronous system also decreases
linearly with the increase of number of users per degree of freedom, but with a slope of 2. Unlike
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SIR achieved by the MMSE receiver in the Asynchronous system.

SIR achieved by the decorrelator in the Asynchronous system.

Lower bound on the SIR achieved by the MMSE receiver in the
— Asynchronous system, derived from the notion of effective interference.
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Figure 3: Comparison of the SIR achieved in the MMSE receiver and the decorrelator in an
asynchronous system with equal received powers and ^ =20dB.
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Theorem 4.2 where the SIR of the MMSE receiver derived was a lower bound, the SIR derived for

the decorrelator in Theorem 5.1 is the actual SIR achieved by user 1.

In order to compare the performance of the MMSE receiver and the decorrelator, we plot the

SIR achieved in the two receivers for a special case of ±1 signature sequences and uniform delay

distribution in Figure 3. The received powers of all the users are equal and the users have an
SNR 4 = 20dB. The SIR achieved by the MMSE receiver is plotted by numerically solving for

<T*

w(x) in eqn (12) in Theorem 4.1 and the SIR for the decorrelator is given by Theorem 5.1. The
bound as given by eqn (15) is also plotted in the figure. We notice that the performance of the
MMSE and the decorrelator are very close when the number of users per degree of freedom is
small. But as the number of users per degree of freedom increases, the decorrelator degrades
very rapidly and Pdec ->• 0 as a whereas, the MMSE receiver performs significantly better
than the decorrelator in that region and beyond a = |. The MMSE receiver has a more graceful
degradation than the decorrelator and is therefore preferred in a system that needs to operate
when the number of users form a significant fraction (roughly around 0.4 or higher) of the total
processing gain of the system.

6 User Capacity and Performance under Power Control

In the previous sections, we analyzed the SIR achieved when the interferers had arbitrary received
powers. We now apply the results to analyze the performance in a power-controlled system. For
given SIR requirements of the users and given received power constraints, we characterize the
number of users that can be admitted into the system under appropriate power control. We define

the user capacity of the system as the number of users that can be admitted into the system
without any power constraints. The capacity regions ofthe various demodulators will be analyzed
in the asymptotic regime, when the processing gain TV —> oo. We first focus on the case when all
users have a common SIR requirement /?, and then extend the results to the case when users can

have different requirements.

The matched filter receiver has exactly the same SIR in the synchronous and asynchronous

cases and hence the derivations for the capacity region are identical to those found in [16]. It
can be shown that the asymptotic minimal power solution is to assign equal received powers to
all users. For a given power constraint P, the maximum number of users with requirement 0
supportable can then be obtained by solving eqn (18) for a:

otmaxMF{P,P) =̂ ~̂ of freedom.
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Therefore, the user capacity of the matched filter receiver as P —^ oo is,

Cmf(0) =4 users per degree of freedom. (24)

For the MMSE receiver, we find that the actual limiting SIRachieved, given by Theorem 4.1,
does not allow easy calculations of the capacity region. Therefore, we use the lower bound on
the SIR proposed in Theorem 4.2 and calculate the above mentioned quantities. So, the actual
capacity region would be larger than the one derived from the bound, that is, more users can
be admitted per degree of freedom than suggested by the bound. But in common situations,
the difference between the bound and the actual SIR attained is shown by numerical calculations

(Figure 2) to be small and hence, we can expect the user capacity to be only slightly greater than
the one derived below.

In an asynchronous system, the relative delay with the reference window fixed to different users
may be different, resulting in different expressions for the SIRs of different users. But in what
follows, we consider the situation when the relative delay distributions are same for all the users

and the uniform delay distribution is the delay distribution that satisfies this condition. Moreover,
in a large system, the removal of any one user does not affect the empirical power distribution,
and hence we have similar expressions for the SIRs of each user, with the ratio of the SIRs being

equal to the ratio of the received powers. Thus, for the scenario when the users have common SIR
requirement, it suffices to assign equal received powers to all users. Since the SIR achieved in the
MMSE receiver is a decreasing function of a, we can expect it to saturate just like the matched
filter receiver, but at a possibly higher value of a. Indeed, for a given power constraint P, a lower
bound on the number of users with requirement /3 supportable can be obtained by setting P = P

and solving eqn (19) for a:

(^maxi^P1 —2(l - users per degree of freedom.

Hence, the user capacity of the MMSEreceiver without power constraints is lower bounded by

Cmmse{P) = 2(l -
users per degree of freedom. (25)

Contrasting eqns (24) and (25), we note that if a is feasible for both the matched filter and
the MMSE receivers, the MMSE receiver achieves the target SIR with a lower power consumption

than the matched filter receiver and also yields a higher capacity. Also, if a < 2, then arbitrarily

high SIRs P can be achieved without saturating the MMSE receiver, whereas the matched filter
receiver saturates as the required SIR P
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In case of the decorrelator, if all the users require an SIR of /? and power control is employed,

then we can deduce from Theorem 5.1 that the maximum number of users supportable at require

ment /? and power constraint P is

Qmax,dec(P,0) =^ ^ users per degree of freedom
Thus, the user capacity of the decorrelator is.

Cdec =^users per degree of freedom. (26)

It is important to note that the above expressions for the decorrelator are exact unlike those for
the MMSE receiver. Contrasting with the user capacity of the decorrelator in the synchronous

system [16], we note that the effect ofasynchrony in the decorrelator is to reduce the user capacity
of the system by a factor of 2.

The above results for the single class of users can be generalized to a system where there are

J classes of users, with the class requiring an SIR of Pj. Let the number of users in the

class be denoted by [ctjN\ and we consider the regime where N oo. The synchronous situation
was analyzed and the effective bandwidths of the matched filter, the MMSE receiver and the
decorrelator were derived in [16].

In an asynchronous system, the matched filter receiver has the same performance as the syn
chronous system and hence the same user capacity region in terms of the users per degree of
freedom, that is. The capacity constraint on the feasible values of (ai,... ,qj) in the matched
filter receiver is linear.

If there is no power constraint, then the user capacity region is given by

Va.-ft < 1 (27)

If class j user has a power constraint of Pj, then.

ajpj < mm
i<j<J

(28)

Hence, as explained in [16], the above equation tells that a class user consumes pj part of
the resources, that is, the effective bandwidth of the matched filter receiver is.

emf(Pj) = Pj degrees of freedom per user. (29)
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Using the effective interference lower bound on the SIR under the MMSE receiver, we can
obtain an inner bound on the user capacity region. Assuming a uniform delay distribution, it can
be deduced from Theorem 4.2 and the monotonicity property of the fixed-point equation that an
SIR of at least (3j can be achieved ifwe cissign powers Pj to users in class j such that:

Pk

i=i

2ajPk

Pk
1 -

= Pk, for A; = 1,... , J (30)

The above equations implies ^ is a constant across the classes and further simplification yields,

Pk<^^
Pk =

i=i

Hence, if the linear constraint:

ln(l -btM\
'i )

for A: = 1,... , J. (31)

(32)

is satisfied, then the SIR requirements can be attained with some received powers. Thus, this
constraint specifies an inner bound on the interference-limited user capacity region, i.e. when
there are no power limitations, if class j user has a power constraint of Pj such that Pj Pj for
all users in class j, then the sufficient condition for the SIRrequirements to be satisfied becomes

(33)
\n(l-\-Pj)

ai < mm
i<j<J

Note that the constraints are linear in (ai,... ,aj) and therefore, the MMSE receiver (under
uniform delay distribution) has an effective bandwidth^

.(/?) = 2 1-
ln(l4-/?)

P ) degrees of freedom per user.

The actual capacity region for a requirement of Pk will at least be the region given above.
The decorrelator always consumes 2 degrees of freedom per user and hence we have,

^deciP) = 2 degrees of freedom per user.

and the capacity region is given by.

E2a^<l

(34)

(35)

(36)
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in the absence of power constraint and

E2oti < mm
j=i

1 _

J
(37)

when the class user hsis a power constraint of Pj.

The matched filter receiver has an effective bandwidth linear in the SIR required. So, the

matched filter receiver cannot provide axbitrajy high SIRs when the number of degrees of freedom

per user are restricted. But the effective bandwidth in the MMSE receiver is upper bounded

by 2 degrees of freedom per user and hence arbitrary high SIRs can be achieved if the number

of users are less than the half the total degrees of freedom available. Moreover, the MMSE

receiver coincides with the decorrelator when arbitrary high SIRs are required. These facts are

effectively captured in Figure 4, whereweplot the effective bandwidths of the three linear receivers

analyzed in the synchronous and asynchronous systems. From the plot, we notice that when the

SIR requirement is small, the matched filter receiver has a lower effective bandwidth than the
decorrelator, but when the SIR requirement is large, the decorrelator outperforms the matched

filter. This cross-over occurs at a higher value of required SIR in the asynchronous system than in

the synchronous system. The MMSE receiver follows the matched filter receiver for small values of

SIR and is asymptotic to that of the decorrelator when the SIR requirement is high. Observealso
that the improvement gain of the MMSE receiver over the decorrelator is more significant in the
asynchronous case than in the synchronous ceise. This is because while the decorrelator loses an
entire degree of freedom in the asynchronous system due to an additional interfering symbol per
user, the MMSE receiverfares better as it talces advantage of the fact that the overlappingsymbols

are only partial and hence their energy is only a fraction of that of the interfering symbol in the
synchronous case. This can also be seen directly from the expression for the effective interference

eqn (17).

7 Multiple Symbol Observation Window

In the previous sections, we considered the observation window limited to the symbol to bedemod
ulated and analyzed the performance of different receivers. In this section, we extend the results
to a situation when the observation window spans more than one symbol, that is, we estimate the

symbol of interest by observing over T symbols intervals.
The observation window is assumed to be symmetric about the symbol to be demodulated,

that is, iftheobservation window extends over T symbols, then T is an odd integer and thesymbol
to be demodulated has ^ symbols on either side of it. This kind of demodulation (compared
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effective bandwidth of the MMSE receiver in the Asynchronous system.

effective bandwidth of the decorrelator in the Asynchronous system.

effective bandwidth of the MMSE receiver in the Synchronous system.

effective bandwidth of the decorrelator in the Synchronous system.

effective bandwidth of the Matched Filter receiver in the
Synchronous and the Asynchronous systems.
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Figure 4: Comparison of the effective bandwidths of the linear multi-user receivers in synchronous
and cisynchronous systems.
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Ob.erv.tion Window T = 3 <»emodu>eed)

I
Typical Interferer

Xfc[-3J *!,(->]

Figure 5: User 1 and a typical interferer within the observation window, T = 3.

to the single-symbol observation window) leads to a delay of symbols, increased complexity
and an increase in the order of the filter which results in a slower rate of convergence when an

adaptive system is used. In spite of the above drawbacks, enlarging of the observation window

might be a good compromise if the performance can be significantly improvedin an asynchronous
system. Figure 5 shows xi[0], the symbol to be demodulated and an observation window (marked
in the figure by solid vertical lines) that spans 1 symbol on either side (i.e. T = 3). A typical
interferer has T-fl symbols, Xfc[2], i •♦ • , ^ interfering within the observation window,
with effective signature sequences that are non-zero only over a particular span (shown in the
figure by the corresponding solid/broken line) which is determined by the relative delay dk of the

user and the symbol Xik[z] interfering. The T —1 symbols of user 1 (that is, a:i[—1] and Xi[l]
in Figure 5) interfere with effective signature sequences that are non-zero only over a span of N
chips.

The symbols transmitted by the users are assumed to be independent, with the power of the
user being constant over the observation interval, that is, E[a:jfc[z]] = 0, E[xfc[i]3;/[j]] = Pk^ki^ij-

As explained in Section 3, the spreading sequences are assumed to be randomly chosen. In what
follows, we assume that the spreading sequence of any user is independentfrom symbol to symbol,
in addition to being independent of the signature sequences of the other users. This is a valid
assumption in the case of long spreading codes which extend over many symbols, as in the IS-
95 standard. But in some situations, it is more reasonable to choose a signature sequence and

repeat it from symbol to symbol. We will analyze the system where the signature sequences are
independent from symbol to symbol and then compare the results by means ofsimulation to that
of a system with repeated signature sequences. The signature sequences have unit norm on an
average, that is, E[||s/i:|p] = 1 and the relative delays are also assumed to be random. As usual,
the receiver is assumed to have knowledge of the signature sequences and relative delays.

Theorem 7.1 If denotes the SIR attained by user 1 for the MMSE receiver in the asyn
chronous system ofprocessing gain N and an observation window ofT>l symbols (T being an
odd integer), symmetric about the symbol to be demodulated, then as N oo, (3\^^ converges in
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probability to Pl, where Pl is given by,

where ?i;(x) > 0 in [0, T] is given by

r-i
2

iu(x) = -7— j ^ (39)
a2 +aEpE,/(P,Pi, / w(z)dz)

\ Jcix,T) J

the region of integration C(x,t) is given by,

( [0,t] xG[0,t]
C(x, t) = < [r 4- 2—1, T-1- i] a; 6 [r + i —1, T+ i] for z= 1,... , (T —1)

[ [r+T-l,r] x€[TH-T-l,r]

and Ep, Er denote the expectations with respect to the power distribution F(P) and the delay
distribution G(t) respectively. I(P,Pi,P) = is the effective interference introduced in the
synchronous case. The solution to w{x) exists and is unique in a class offunctions w{x) > 0.

The above theorem is an extension of the results in Section 4. The proof of Theorem 7.1

is analogous to the proof of Theorem 4.1 and follows on the same lines from the results of [1],
lemma A.l, Theorem A.2, and lemma A.3, with the regions of integration C{x,t) depending on
the regions where the signature sequence of interferer's symbols have non-zero interfering power,
which in turn dependson the relative delays. Following the derivation in the last part of Appendix

C, we have a lower bound for the SIR achieved, which is given by the following theorem.

Theorem 7.2 If the delay distribution satisfies G{t) = G{1 - t) and the observation window is
an odd integer T > 1, symmetric about the symbol to be demodulated, then the asymptotic SIR
achieved by the MMSE receiver can be lower bounded by 7J, which is the unique solution of the
fixed point equation.

Pi
7i = <7^ +^EpE, [I(tP,P„Yi) +(T- l)/(P,F„7r) +/((!- •r)P,Pi,7r)]

where /(P,Pi,7j') = is the effective interference of an user of power P, at SIR 7J.

Heuristically, in a large system,

Pi
7i ~ f

<7^ +^i2ii(rkPk,Pu7:)+(T- i)/(Pt,Pi,7r)+m - n)Pk,Pu'v:)]
k=2

(40)

(41)
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The first part of the interference in the denominator is from noise. The remaining three can

be explained by referring back to the Figure 5 : The first term is due to dk = [TkN\ part of the
symbol interfering within the observation window, the second term is due to the (T —1) complete

symbols interfering and the last term is due to the N —dk chips of the interfering symbol in

the observation window. Therefore, just as in the single symbol observation case, we have that

the bound has virtual interferers which have power proportional to the fraction of the interfering

symbol within the observation window. Since,

we have that a better SIR is achieved by a longer observation window. Since eqn (41) above hcis

the monotonicity property as required by Proposition 4.3, we have the interpretation that

+ (T- l)/(Pi,P,,/3,) + /((I - n)Pk,PuPi)] (42)

is the effective interference of the user at SIR requirement /?i. This gives a picture on how the

interfering users affect the performance. As observed in the other cases, the effective interference
depends only on the received power of the interferer, the received power of the user and the SIR
achieved.

Since the decorrelator can be obtained from the MMSE receiver when the SNR ^ oo for
each user, we can use Theorem 7.1 to obtain a lower bound for the performance achieved when

the observation window spans over T symbols. It should be noted that while the bound is tight

for r = 1, it is not for T > I.

Proposition 7.3 In an asynchronous system of processing gain N, if the decorrelator estimating

the symbol of user 1 by observing over T symbols attains an SIR processing

gain N oo, l3[^dlc converges in probability to '̂ hich is lower bounded by 'yi^^ec 9^^cn by,

7Uc =<^ ^4' (43)
0 Q >

From eqns (40) and (43), we notice that as T oo, that is, as the observation window
extends infinitely on both sides of the symbol of interest, the SIR achieved is asymptotic to the
corresponding SIR achieved in the synchronous system.

In orderto compare the above results, we obtain the SIRachieved by the matched filter receiver.
Since the symbols which do not overlap with the symbol to be demodulated are orthogonal to the
effective signature sequence of the symbol to be demodulated and the matched filter receiver
simply projects the received vector onto the direction of the signature sequence of the symbol to
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be demodulated, we have that the matched filter does not gain in performance by theobservation
window being increased to more than one symbol. Therefore, the asymptotic SIR achieved is
exactly the same as the asynchronous and the synchronous systems, given by eqn (9).

In a common system, since the empirical delay distribution converges to a uniform delay
distribution, we can specialize the above results to this delay distribution. In addition, if we
consider all users to have the same power P, the MMSE receiver attains an SIR that is lower
bounded by 7*, which satisfies the fixed point equation,

P
7 = — . (T-l\ ( P \ ,2aP ln(l+7^)^*

+" J Itt?j +TV V—
(44)

In order get a feel for the advantage of increasing the observation window to more than one
symbol, we plot some numerical results in Figure 6. In these, we consider a system that has a
users per degree of freedom, all with equal received powers and the relative delay distribution is
uniform. The actual SIR achieved for a particular T is computed by numerically solving for u;(i)
in eqn (39) for a specific case ofuniform delay distribution. The bound was evaluated by solving
for 7* in eqn (44). In each of the four plots, apart from the actual SIR and the bound on the SIR
for a particular T, we also plot the SIR achieved in the synchronous system, in order to help in
comparison. From the plots, we note that when the observation window is increased from T = 1
to T = 3, there is a very large gain in the performance achieved by the user and the incremental
gain achieved reduces as T is increased further. Therefore, we note that a delay of 2-3 symbols
in demodulation and increased complexity may be a good compromise as we can achieve an SIR
that is very close to the one achieved in a synchronous system.

We also note that the effective interference bound in T = 3,5 is not as close as in the single

symbol observation window. The is because of the fact that the bound gives equal weight to the
interference from the symbols that directly overlap with the symbol of interest and to those that

are farther away from the reference symbol. Since the bound does not take into account the fact
that effect of the symbols that are overlapping with the symbol to be demodulated have a higher
effect than the rest of the symbols, it is not very tight. But again as T increases, the relative
contribution from these tail symbols goes down and the bound gets tighter, and finally converges

to the SIR achieved in the synchronous system.

In order to compare the the various kinds of receivers analyzed so far, we derive the effective
bandwidths for the three linear receivers for an observation window that extends over T symbols.

The results here follow from similararguments as in Section 6. We consider a systemconsisting of
J classes of users, with the class requiring an SIR of ft- and the number of users in the class
equal to The effective bandwidth characterization of the capacity region without power.
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SIR achieved by the MMSE receiver over T-symbol observation window in
an Asynchronous system.

The bound on the SIR attained using Effective Interference for the MMSE
receiver over T-symbol observation window in an Asynchronous system.

SIR achieved by the MMSE receiver in the Synchronous system.

T=1 T=3

T=5 T=7

S' 10
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Figure 6: Comparison of the SIR achieved by users in a system of equal received powers and
4 =20dB for observation windows spanning over 1, 3, 5 and 7 symbols.
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constraint is of the form: ^

i=i

and with received power constraints Pj is given by

Y^e(Pj,T)aj < mm
i=l

1 -
Pi

where the effective bandwidth function e(/?, T) depends on the receiver:

emf{0^ T) = /3 degrees of freedom per user.

'.{P.T)=- (T-l)
1+/?

+ 2 1-
ln(l + ^)

degrees of freedom per user.

edec(0,T) =
r + 1

degrees of freedom per user.

28

(45)

(46)

(47)

It is worth emphasizing again that while the characterization for the matched filter receiver is
asymptotically exact, those for the MMSE receiver and the decorrelator are inner bounds on the
user capacity region and are therefore conservative.

If we look at the expressions for the effective bandwidths of the MMSE receiver and the
decorrelator given by eqns (46), (47), we notice that the effective bandwidths decrease with the
increase in the length ofthe observation window T and asT —> oo, the MMSE and the decorrelator
have the effective bandwidth asymptotically approaching the respective effective bandwidths in a
synchronous system:

= eXU/7) =j^; er'(/J) =l-
All the analysis in this section was made with the assumption that the signature sequences

are independent across users and across symbols of any particular user. Here, we compare the
theoretical results obtained above with simulation results for the sequences that are random and

independent across users, but repeated for each user. In Figure 7, we consider an asynchronous
system in which the users have equal received powers and a SNR ^ = 20dB, with an observation
window of r = 3. The actual SIR, on the assumption that the signature sequences are independent

across symbols is calculated by numerically solving for w(x) in eqn (39). In the plot, we compare

this with the average of the simulated SIRs (500 sample points) for the case when the signature
sequences were randomly chosen once and then repeated for the other symbols transmitted by the
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Average of the simulated SIR achieved by the MMSE receiver over
a 3-symboI observation window in an Asynchronous system,
when the signature sequences are repeated.

Theoretically predicted SIR achieved by the MMSE receiver over
a 3-symbol observation window in an asynchronous system,
assuming independent signature sequences.
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Figure 7: A comparison of the SIR achieved for an observation window ofT = 3 with the system
when the signature sequences axe repeated.
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user within the observation window. The figure shows that the results derived above are almost
identical to the performance in the case of repeated signature sequences. The variance of the
simulated SIRs for the case of repetition codes is found to reduce with increasing N, similar to
those shown in Figure2.

8 Chip Synchronous versus Completely Asynchronous

In all the sections so far, we analyzed the asynchronous CDMA system with the assumption that
the users were chip synchronous. In this section, we compare the results derived for the chip
synchronous system with some simulations of the chip asynchronous system. In addition to this,
based on some insights gained in the previous sections, we also propose a heuristic lower bound
for the SIR achieved in the chip asynchronous system.

In Figure 8, we compare the SIR achieved by the MMSE receiver under different assumptions,
when the observation window is one symbol duration and the received powers of all the users are
equal. The curve plotted in the chip synchronous system is the result derived in this paper for a
single symbol observation window, when the relative delay between users in terms of number of
chips is an integer which is uniformly picked in [0, N), The SIR achieved in thesynchronous system
as derived in [16] is also plotted for comparison. The solid curve for the completely asynchronous
system is the average of 500 sample values of the SIR achieved by user 1 in a simulation when
the processing gain is A" = 64 and the relative delay is a real number uniform in [0,1]. In all
these cases, the SNR for each user is assumed to be ^ = 20dB. From the figure, we notice that
the results in the chip synchronous system, is tight for small a and in general form a conservative
estimate for the SIR achieved in the completely asynchronous system.

In order to show the dependence of the SIR achieved by the receivers for large values of q,
in Figure 9, we plot the performance achieved by the matched filter and the MMSE receivers in
the chip synchronous and the chip asynchronous systems when all the users have equal received
powers and the background noise is such that ^ = 20dB. The average of the simulated (500
sample points each) SIRs for the chip synchronous and the completely asynchronous systems with
JV = 32 under the assumptions stated in the previous paragraph is also plotted. From the figure,
we notice that for small values of a, the SIR achieved by the MMSE receiver in the completely

asynchronous system is close to the SIR achieved in the chip synchronous system and for large
values of a, the performance is similar to that of the matched filter receiver.

In Figure 9, we notice that at large a, the completely asynchronous system has an SIR about
1.76dB greater than that in the chip synchronous system. This can be explained as follows: when
Qis large and the attained SIR is small, the MMSE receiver heis a performance close to that ofthe
matched filter receiver. In [11], it was shown that thematched filter has a performance inwhich the
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SIR achieved by the MMSE receiver in an Asynchronous system,
when the users are allowed to be chip asynchronous.

SIR achieved by the MMSE receiver in an Asynchronous system,
when the users are chip synchronous.

SIR achieved by the MMSE receiver in the Synchronous system.

Heuristic bound on the SIR achieved in the completely asynchronous
system, based on the notion of effective interference.
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Figure 8: Comparison of the SIR achieved by users in a system of equal received powers and
4 =20dB.
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-10

-15

SIR achieved by the MMSE receiver in an Asynchronous system,
when the users are allowed to be chip asynchronous.

SIRachieved by the matched filter receiver in an Asynchronous system,
when the users are allowed to be chip asynchronous.

SIR achieved by the MMSE receiver in an Asynchronous system,
when the users are chip synchronous.

SIR achieved by the matched filter receiver in a Synchronous system.
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Figure 9: Comparison of the SIR achieved by users in a system of equal received powers and
4 =20dB.
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interferers in a completely asynchronous system have an effective power of Therefore, for large

values of a, the matched filter (and hence the MMSE receiver) in the completely asynchronous

system hcis an SIR that is about 1.76dB (101ogio(3/2)) greater than that in the chip synchronous

system. Based on this and the notion of effective interference, we propose a heuristic lower bound

for the SIR achieved by the MMSE receiver in the completely asynchronous case. Since a user of

power P interferers with an effective power of ^ in a chip asynchronous system for the matched
filter, we can heuristically predict the effective interference, at the output of the MMSE receiver

for user 1 due to an interferer of power P and relative delay r, at a target SIR of /?i to be,

(r^-,Pu|3l'j +/((!-
This is plotted as the dotted line in Figure 8. As seen in the figure, it is a decent lower bound to

the simulation results, with the maximum difference being less than a dB. The heuristic bound as

expected approaches that of the matched filter receiver as a —>• oo.

In the case of a decorrelator, as shown in Figure 10, we plot the SIR achieved when the system

is chip synchronous and chip asynchronous. The system is assumed to have users with equal
received powers and an input SNR of ^ = 20dB. The plots show that the results derived in
the previous sections under the assumption that the users are chip synchronous is coincident with
the mean (of 500 sample points simulated ai N = 64) of the SIR achieved when the users are
completely asynchronous. Therefore, with the decorrelator as the receiver, in an asynchronous

system of processing gain A^, we can admit approximately y users.

9 Summary of results and Conclusion

In an asynchronous CDMA system, we have characterized the Signal-to-Interference Ratio of the
users by the notion of effective interference and the user capacity of the system by the notion

of effective handwidths. To conclude the paper, we compare the three receivers, the matched
filter receiver, the MMSE receiver and the decorrelator in terms of their effective interference and

handwidths, in the single symbol and multi-symbol observation windows. When the observation
window spans over the symbol to be demodulated, the effective interference of the matched filter
receiver is equal to the power of the interfering user in the asynchronous system (exactly as in
the synchronous system). In the MMSE receiver, the effective interference term is non-linear and
depends on the received power as well as the SIR attained. In the synchronous case, it was given

by,

P P
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SIR achieved by the decorrelator when the users are allowed
to be chip asynchronous.

^ SIR achieved by the decorrelator when the users are chip synchronous.
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Figure 10: Comparison of the SIR achieved by users in a decorrelator, when the users have equal
received powers and ^ =20dB.
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In the asynchronous system, when the observation window spans over T symbols, we have that

the effective interference of the MMSE receiver is given by,

Ir(P,PuP) = f lI(rP,PuP) +(T- l)/(P,P„/3) + /((I - t)P,PuP)]

Therefore, as the observation window is enlarged, the MMSE receiver and the decorrelator have an

effective interference term that is decreasing and is finally asymptotic to the effective interference

in the synchronous system when T -> oo. The dependence of the effective interference on the

length of the observation window in the MMSE receiver is captured in Figure 11, where we plot

the effective interference for various lengths of the observation window, when the received powers

of all the users are equal to P. For comparison, we also plot the corresponding effective interference

term in the synchronous system. The effective interference of the MMSE receiver is asymptotic

to that of the decorrelator as oo.

Assuming perfect powercontrol, wehave been able to define effective bandwidths which charac

terize the amount of resource consumed by a user to achieve the target SIR. When the observation

window extends over T symbols, we have,

—i '̂i ^mmseiP) —
,rr. XI I- I ln(l+/3)(T- 1) ' » . o / 1 V -T-/-;

1 + /?/ V

In Figure 12, we compare the effective bandwidths of the MMSE receiver in the synchronous

system and the asynchronous system for different lengths of the observation window. We note

that the effective bandwidth of the MMSE receiver decreases with the increzising length of the

observation window and is asymptotic to that of the synchronous system as T —> oo. On the

other hand, the matched filter receiver has the same effective interference in the synchronous and

asynchronous systems. As the SIR requirement (3 increases, the effective bandwidth under the

MMSE receiver approaches that under the decorrelator. However, the performance gap between

these two receivers is wider when T is small.

This paper analyzed the asynchronous CDMA system with the assumption that the users were

chip synchronous and characterized the limitingSIR for linear multiuserreceivers. We provided a
heuristic lower bound for the completely asynchronous system and compared the results derived

by meansof simulation (Figure8). The bounds derived in the multiplesymbol observation window
{T > 3, Figure 6) are not as close as in the single symbol observation window. The notion of
effective interference might prove of great utility in deriving tighter bounds on the asymptotic
SIR, which will give better characterization of user capacity regions.

T+ 1
edec(/?) =
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Synchronous
Asynchronous

T= 1
— —

Asynchronous

r = 3

Asynchronous
T = 5
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Figure 11: Effective Interference for the MMSE receiver in Synchronous and Asynchronous sys
tems.

Figure 12: Effective Bandwidths for the MMSE receiver in Synchronous and Asynchronous sys
tems.
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A Proof of the Theorem 4.1

Theorem 3.1 in [16] was proved using the results of convergence of the empiricsd distribution of
eigenvalues for large random matrices as derived in [9, 14). But these results require the random

matrices to have i.i.d entries, which is not satisfied by the matrices that arise in an asynchronous

system because of the relative'delays between users. Hence, in this section, to prove Theorem

4.1, we use some stronger results from [1], where large random matrices with non-i.i.d random

variables are treated.

The SIR achieved by user 1 in the MMSE receiver for an asynchronous system is given by eqn

(6). If Ka = SiDiSj + <7^/ denotes the covariance matrix of the interference, then we have that
the SIR of user 1 is given by,

A = PislKj'si (48)

When the signature sequences are randomly chosen, the above performance measure depends in
a simple way only on the eigenvalues of the covariance matrix which captured by the following

lemma which is proved in [9].

Lemma A.1 If Si = where are i.i.d zero mean, unit variance random

variables with finite fourth moment, and independent of A, a N x N symmetric matrix, then,

Efs'Asl = AL J yy

and

Var[s'As] <

for some constant C\ which depends only on the fourth moment of uu.

The above lemma is true for any N x N symmetric matrix A which is independent of Si. Since

Si is independent of K«, applying the above lemma to the SIRof user 1 in eqn (48), we have,

E[sjKj's,] =1e [tr KJ']
Since Xmax(KJ') < ^, we have that Var[s^As] -¥ 0 as N -¥ co and from Chebychev's inequality,

s\K:\ - ^tr KJ* A 0 (49)
Therefore, ifwe could get the limiting value of^tr KjS then, we have an expression to which the
limiting SIR converges in probability. Since the elements of Si are not i.i.d, the results of [9, 14]
cannot be applied. The following theorem captures theessence ofCorrolary 10.1.2 of [1], which is
the key tool in proving Theorem 4.1.
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Theorem A. 2 Let An be a nx m„ matrix with independent random entries which have zero-mean

and satisfy the condition

Vn{x,y) = nVar(An)ij < B

for some uniform bound B < oo and ^ < x < and ^ n —> oo, if^-^c and

v{x,y) = lim Vn{x,y) for ^<x< and ^ < y<
n-foo

is a bounded function for a; € [0,1],y € [0,c], then, the limiting eigenvalue distribution H{x) of
AnAjj is given by,

oo 1

J(I-\-tx)~^dH{x) =J u{x,t)dx (50)
0 0

and u(x,t) satisfies the equation,

u(x,t) = (51)

1+t f dy
0 1-\-t J u{z,t)v(x,y)dz

0

The solution of eqn (51) exists and is unique in the class of functions u{x,t) > 0, analytical on t
and continuous on x € [0, Ij.

In an asynchronous system, if the received powers of the users belong to a set with finite

number of discrete power levels, then, we can use the above theorem to find the limiting SIR

achieved by user 1. Assume that os N oo, the limiting power distribution of the users has M

discrete power levels. Pi,... , Pm occuring with probability masses qi,... ,qM respectively. We

also have that the empirical relative delay distribution converges to G(r). Now, if we rearrange

the SiD^ matrix by grouping users ofdifferent power levels into different blocks and within each
block, arranging the users in the increasing order of their delays, then from the Strong Law of
Large Numbers, we have,

r ^ i Bm 0<X<G(t) ^
i^(a^5y)='S . if2Q2]9« -2agm <y <2aX;9t-Qf9m

I 0 Otherwise t=i t=i

J Pm G{t) <X<1 -ro ^ ^ ^
. v{x, y)={ ^ if 2a XI 9. - otqm < y < 2a X 9t

0 Otherwise 1=1 t=i
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for m = 1,... , M. Therefore, for a system that has M discrete power levels, from Theorem A.2,

1

1 + t
v(x,y) dy

c

/
0 1 + i / UM{z,t)v{x^y)dz

0

M

I at^ Er
m=l

1 + CktEpEr

Tt>x 4"

1-^tPm J UM{z,t)dz I -\-tPm j UM{Zit)dz
0 T

1

1t>x 4" It<x

I + tPJ UM{zyt)dz 1_j_ ip j UM{z^i)dz

T<X

where Ep is the expectation with respect to the probability masses qi. Therefore, from Theorem
A.2, we have that the limiting eigenvalue distribution of SiI^iSj converges for the system which

has finite number of power levels. From lemma A.l, we derived eqn (49) which showed that the

limiting SIR achieved by user 1 converges in probability to the trace of Since the trace of
K~^ depends on the eigenvalue distribution of SiDiS\, we have the following lemma which is
derived in [16].

Lemma A.3 As N^K -> oo, with ^ = a, the SIR converges in probability to 0^,
CO

where H" is the limiting eigenvalue distribution of the random matrix SiDiSj

Now, using eqn (50), in a system with M power levels, we have that the limiting SIRconverges
in probability to given by.

1

P I 1

Now, if we define wm{x) = &u(x,1/cr^), then.

wm{x) =
Pi

<7^ 4- OfEpEr <I 11{t>i} +̂ I j WM(s)dz J
(52)
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and the SIR of user 1 converges in probability to

1

=J WM(x)di

42

(53)

In order to extend the above result to a more general case where the limiting powerdistribution

is F(P), we start by approximating F{P) by staircasefunctions, thus reducing it to the case where
there are finite number of power levels. For a given M, we can define upper and lower staircase

approximations for F{P), of step height ^ by
2

Pm = sup{P '• F(P) < ^ }occurring with probability for m=1,.., ,M
771 1

P_ = inflP : F(P) > —) occurring with probability = — for tti = 1,... , M
M M

From the above construction of the staircase functions, we have that Pm —Pm ^ These two

approximations will have corresponding F^(a:,j/), wm{x) and u^(a;,7/),
defined and from the derivations above, as N oo,

1

=yWM(x)dx
0

where wm(x) satisfies the fixed point equation,

wm[x) =
Pi

+ aEpEr <

and

where

=

+ aEpEr <

Î ,Pu jWM(z)dzj l^r>x}-^ I j'WM{z)dzj
1

Pi

Iip,Pl, j Mr>x) +I Ip,Pu j
and Ep,E£ are expectations with respect to the upper and lower staircase distributions. From

the definition of /(P,Pi,^), and the fact that Pm —Pm < we have.

I(p,Pi,y wM(z)dz \- /1 p,Pi,y <1
- M
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and

Therefore, we have

/I JWM(z)dz j- /IP,Pi, J

lim \(3 -/3*| = 0
M-¥oo —

< —
- M

43

(54)

The SIR achieved by user 1 at any spreading length N, as given by eqn (6 is monotonically non-
increasing with the increasing powers of the interferers. Therefore, since Pm > ^e have that

Moreover, if denotes the SIR achieved by user 1 in the system which has a

power distribution F(P), we have,

f-M

Since limsupand liminf/?^^! > ^5]^, from eqn (54), we have, that as N,M oo,

where

u;(a;) =

(P" -f orEpE,- <

1

p* =J w(x)dx

Pi

IIP,Fl,j iy(2r)d2j 1{t>x} +/IePu j W{z)dz\ l{r<T}
and Ep is expectation with respect to F(P) to which the upper and lower staircases converge
weakly to as M —> oo. ^

B Proof of Proposition 4.3

Define a function f(x),

f(x) =X +^((1 - n)Pk,Pux)]
k-2

The function f(x) is continuous and strictly increasing in x. To prove that it has a fixed point
solution x", we note that /(O) = 0 and /(oo) = oo and hence, there is at least one point such that
f (x) = 1. Since the function is strictly increasing, the fixed point solution is unique. From the
monotonicity of /(a:), we have.
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x* >x ^ f(x) < 1

^
Pi

K

+ [lirkPk, Pux) + /((I - rt)Pt, Pux)\
k=2

> X

44

C Proof of Theorems 4.2 and 7.2

We prove the bound proposed for the SIRachieved inTheorem 4.2 bynoting some ofthe properties
of when G(t) = 1 —G(l—r), which are given by the following lemma.

Lemma C.l The function w{x) is symmetric about | for all delay distributions which satisfy
G(r) = 1—G(1 —r) {that is, have probability density function symmetric about ^ ).

Proof:

To prove that u;(a:) is symmetric about half, we need to prove w{x) = iy(l —x). From eqn
(12), we have.

iz;(l —x) =
Pi

+ aEpEr < Ilp,Pi,fw{z)dz\ 1{t>i-i} +/(P)Pi, J w(z)dz \1{t<i-s
Pi

+ aEpEr < I(p,Pi, jU)(2)<f2j ^ jw(z)dzj
Pi

+oEpE,- iy(l —z)dz I1{t<x} +f 'y I

The second equalityfollows from the fact that G(r) = 1—G(1 —r). Since u;(l —x) also satisfies
the above fixed point equation which has a unique solution iy(x), we have, ii;(l —x) = w{x), that
is, u;(x) is symmetric about i. ^

Lemma C.2 The function iz;(x) is a non decreasing function in x G[0, |].
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From lemma C.l, this implies that the function iy(x) is non-increasing in [5,1].
Proof:

Since Theorem 4.1 gives an expression for iy(x), to prove the above theorem, it suffices to show,

<X2 <^ tv(xi) <w(x2)
Notice that the dependence on the argument x ineqn (12) appears only within the two expectations
in the interference terms. If we denote Qx(P,Pi,t) to be,

^x(F,Pi,r) =Î P.PuJ w{z)d^ 1{t>x} +I Jw{z)d^ 1{t<x},
if xi < X2-, then.

^x,(P,Pi,t)-^x2(P,Pi,t) = l(p,PuJ u;(2:)d2j -/|p,Pi,Jw(z)d2
J *

The function w(x) is symmetric about I and we have 2J w(z)dz = f w(z)dz. From the fact
0 0

It t 1

that iy(a;) > 0for x € [0,1], we have /1^(2)^2: > 2/ w(z)dz ifr < i, that is, f w{z)dz < J w(z)dz
00 Or

if T < I. Now from the decreasing property of /(P,Pi,j/) with respect to y, we have.

/ P ',Pi,y w(z)dz \-/IP,Pi, Jw(z)d2 1 > 0 for all r < -

and thus Qxx{P,Pi,t) - Qx^{P,Pi,t) > 0 for all t < | and xi < X2 < \
Therefore, ifxi < X2 < |, we have ly(xi) < w{x2) < iy(|): w{x) is increasing in x € [0, |]. •

Lemma C.3 Let G(x) denote the distribution of the random variable X andfor some odd integer
T, let g(t) denote a non-negative function fort € [0,r] which isnon-decreasing in [0, y], symmetric

T

about L and has an area f g(t)dt = g.. Among all such functions, g{t) = ^ for all t G [0,T]
0

minimizes the function,

/ \

•P(p) =

T-l

1 + / g(t)dt
0

1

x+i

1+ f
\ X+t-1

+
1

1+ j
X+T-1
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Proof:

The above lemma is proved using the concept of majorization [10] : u = (ui,... ,u„) GR" is
said to majorize v = (ui,... , t;„) € K",

Vkig) =

u V if ^

k k

2 ^ H A: = 1,... , n - 1
1=1 1=1

n n

E«m = E^io

Jg(t)dt
0

c+« _±_ 1

/ g{t)dt i = 2,...,T-l and •^(s) = y^7V"
•i-i r-f 1 +!/

f gWdi
, x+T-1

i=l 1=1

where (u[i],... denotes the elements of u arranged in decreasing order, it[i] > ♦•• > u[„].
Now, define y[g) such that.

1 = 1

i = T

^ 1+ yk(g)

T

The function V is schur convex and therefore from the properties of majorization,
i+j/fe

k=l

J^(9i) < H92) if y(9i) y(P2).

that is, ^(5^1) < J^(g2) if y{gi) majorizes y(p2).

Among all non-negative functions g(t) that are symmetric about non-decreasing in [0, |]
and a constant area it can be seen that g{t) = ^ has the property,

y(^) y(9) for all g (55)

Therefore, g(t) for all t € [0,r] minimizes the function T{g). °
Lemma C.3 plays a important role in attaining the bound on the SIR. If we set T = 1, then,

the above lemma proves that between two functions gi{t) and 5^2(0 with same area in [0,1], J'ig)
is lesser for the one which has more area concentrated in the regions near zero and one. That is,

X X

2-J^ J92(t)dt Va; <i =» T(gi) <J^ig2)
0 0

Proof of Theorem 4.2

The three lemmastated above provide enough footing to derive the bound from the actual SIR

attained. To prove Theorem 4.2, we begin from eqn (12),

Pi
iy(x) =

0"^ -1" oEpEr IiIp,P„J W[z)dz J +IIP, Pi ,y w(z)dz I1{t<x}
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Cross multiplyingand integrating both sides with respect to x from 0 to 1,

1

cr^ J w(x)dx
0

1

= Pi —OC J EpEr <
0

IIf, Pu j w{z)dz I +/IP,Pl, Jw(z)dz I • w{x)dx

= Pi —aEp

= Pi —ctEp

1 j—PPi w(x)—I I—PPi tlG(T)elx
0 X Pi + Pf w(z)dz 0 0 Pi -h pf w(z)dz

T A

1 PPi f w(x)dx 1 PPi f w(x)dx
1 ^ dGir) +/ dG(T)
i Pi +P/ w(z)dz i Pi +Pf w(z)dz

where the last step follows from the fact that the first integral is over the triangular area r = [0, x]
and X= [0,1], which is equivalent to the integral over x = [r, 1] and r = [0,1]. The second integral
follows from a similar argument over the other half of the square in r —x plane. Therefore,

1

J w{x)dx =(1 —2q')Pi +aPi EpEr + (56)
Pi + P / w(z)dz Pi + P / w(z)dz

Setting T = 1 in lemma 0.3, we have that the right hand side is minimized when U7(a:) =
1 1

f w(z)dz for all x e [0,1]. Using this, and since = / w(z)dz, we have,
0 0

aVr > Pi - ap'iEpEr {/(rP,Pj,/?-) + / ((1 - r)P, Pu(3'i)}

Therefore, using the monotonicity property of proposition 4.3, is lower bounded by the

unique solution 71 of the fixed point equation,

A
(7^ + aEpEr [I (tP, Pull) + /((!- t)P, P,,7,*)]

where /(P, Pi•,11) is the effective interference from an interferer of power P at SIR 7? defined as

I{P,Pi,ll) =
PPi

Pi + Pll
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Proof of Theorem 7.2

In the case ofmultiple symbol observation window, we observe that the function w(x) defined
in eqn (39) is symmetric about j and is non-decreasing in [0, y]. If we cross-multiply the two
sides of eqn (39) and integrate between 0 and T, we have,

T T / \

.•/.Wd. . pj-./e,,./ f.fi, / w(z)dz jw(x)dx
0 0 V C(x,t) /

= TPi - (T+ IjAa + aP^Ep,r

T-1

Pi + P J w(z)dz
0

+ E
1

+
1

T"^t T

'=1 Pi-\- P f w(z)dz Pi-\- P f w(z)dz
T+i—l x+T—1

From lemma C.3, we have that the right hand side is minimized when w(x) = fj w(z)dz for all
0

X€ [0, T] and hence,

^ 1 rp
2 ^

J w(x)dx ~^J
T-\ 0

2

Thus, we arrive at the bound as stated in Theorem 7.2
•

D Proof of Theorem 5.1

To prove this theorem, we shall rely on a geometric interpretation of the decorrelator.The decor-
relator can be defined as a linear function of the received vector, r, which maximizes the SIR,

subject to the constraint that the estimate is independent of the other interfering symbols. So, if
®dec(r) denotes the estimate of user I's information symbol, then.

Xdec(r) = cV

= (c*si)a;i +^ {xkC^Uk +ytcVjt) -1- c*n
K

k=2
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Since the estimate is independent of all the interfering symbols, X2, ••• we have

c*Uk = cWk = 0 for aJH = 2,... ,K. Therefore, if we define C = span{u2, •.. V2,... , v/v-}-*-,
then, the decorrelator can be obtained by constraining the vector c £ C and maximizing the SIR

achieved. From the fact that ||si —c|p = Ifsilp + ||c||^ —2c*Si, we have that the maximum is
achieved when c is the projection of Si on to the subspace C and has a norm ||c||. If we denote

this optimal c by h, then the SIR of the decorrelator is given by.

When the spreadingsequences are independently and randomlychosen, C (comprising oi2{K —
1) signature sequences) will have a dimension of m£Lx{Ar —2{K —1),0}, with high probability,
as N 00. Moreover from the independence of the signature sequences, we have that Si is

independent of the subspaceC. Hence, from lemma A.l, we have that h*h —> 1—2q in probability

as A,-> CO, ^ = Q and a < 1. If a > 1, then, h^h ^ 0 in probability, thus proving the
theorem. ^
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