Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BINARY AND MULTI-VALUED SPFD-BASED
WIRE REMOVAL IN PLA NETWORKS

by

Sunil P. Khatri, Subarmarekha Sinha, Robert K. Brayton
And Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M99/51

29 October 1999

BINARY AND MULTI-VALUED SPFD-BASED
WIRE REMOVAL IN PLA NETWORKS

by

Sunil P. Khatri, Subarnarekha Sinha, Robert K. Brayton
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M99/51

29 October 1999

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Binary and Multi-valued SPFD-based Wire Removal in PLA
Networks

Sunil P. Khatri Subamarekha Sinha Robert K. Brayton
Alberto Sangiovanni-Vincentelli

CAD Research Group, U.C. Berkeley

Abstract

This paper describes the application of binary and multi-valued SPFD-based wire removal techniques for circuit
implementations utilizing networks of PLAs. It has been shown that a design style based on a multi-level network of
approximately equal-sized PLAs results in a dense, fast, and crosstalk-resistant layout. Wire removal is a technique
where the total number of wires between individual circuit nodes is reduced, either by removing wires, or replacing
them with other existing wires. Three separate wire removal experiments are performed. Either wire removal is
invoked before clustering the original netlist into a network of PLAS, or after clustering, or both before and after
clustering. For wire removal before clustering, binary SPFD-based wire removal is used. For wire removal after
clustering, multi-valued SPFD-based wire removal is used since the multi-output PLAs can be viewed as multi-
valued single output nodes. We demonstrate that these techniques are effective. The most effective approach is to
perform wire removal both before and after clustering. Using these techniques, we obtain a reduction in placed and
routed circuit area of about 11%. This reduction is significantly higher (about 20%) for the larger circuits we used
in our experiments.

1 Introduction and Previous Work

Programmable Logic Arrays (PLAs) are being rediscovered as an efficient implementation style for high-performance
circuits. For example, in the Gigahertz processor [1], performance-critical parts of the control were implemented
using single PLAs. Recent work [2] demonstrates that a circuit implementation based on a network of approximately
equal-sized PLAs yields a fast, compact, and cross-talk resistant design. The use of minimum-sized transistors in the

PLA core results in a fast and dense layout, while a structured arrangement of wires guarantees an effective shielding

among signals. The speed and area of each PLA in this design style was reported to be about 50% less than the
corresponding standard-cell based implementation.

In order to reduce the area utilized by such a network, the removal of wires between individual PLAss is effective.
This increases the freedom to place the PLAs and eliminates potential wire congestion in the routing area. In this
paper, we focus on Sets of Pairs of Functions to be Distinguished (SPFDs) as a candidate technique for wire removal.

SPFDs were introduced in [3] in the context of FPGA optimization. In [4] this technique was refined and adapted
to multi-level networks, while its application to logic optimization was described in [5]. The authors of [5] reported
a significant average wire reduction for technology-independent wire removal. However, when technology mapping
was performed on the resulting circuits, the benefits of wire removal were erased. In [6], binary SPFD-based wire
removal was applied to a network of PLAs. However, this work did not utilize the power of multi-valued SPFDs for
the task. Also, results were reported on a small set of benchmark circuits.

In our work, we perform both binary SPFD based wire removal as well as multi-valued SPFD based wire removal.
Binary SPFD based wire removal is done in the manner described in [5]. This flavor of wire removal is performed
before clustering the circuit into a network of PLAs.

In addition, we generalize the notion of SPFDs to multi-valued networks. We observe that (multi-output) PLAs
can be modeled as multi-valued functions. Hence a network of PLAs can be modeled as a multi-level network with
multi-valued nodes. We extend the binary wire removal technique described in [5] to the multi-valued case, and
use this idea to perform wire removal for a network of PLAs. This flavor of wire removal is performed after the
clustering of a circuit into a network of PLAs. We also observe that since each multi-valued node is more complex
than the binary nodes encountered in (5], additional flexibility is obtained in optimizing them, as evidenced by our
results. Although the full flexibility of multi-valued wire removal has not been exploited in our work, we still get good
reductions in layout area.

The organization of this paper is as follows: In Section 2, we describe the circuit implementation style using a

network of PLAs. Section 3 describes binary SPFDs and their use in removing wires in binary networks. Section 4

2

\

-/ \ J

7\ { 7\

Figure 1: Multi-level circuit clustered into a network of PLAs.

introduces multi-valued SPFDs, while section 5 outlines our multi-valued SPFD based technique for wire removal.
Section 6 describes the wire removal experiments performed. Finally, Section 7 concludes the paper and gives some

directions for future work in this area.

2 Networks of PLAs

In [2], a new layout and design methodology was introduced, motivated by the goal of achieving fast and dense designs
immune to cross-talk, an increasingly important design consideration in deep sub-micron (DSM) technologies. The
circuit being implemented was clustered into a network of medium-sized PLAs, each with between 5 and 10 inputs or
outputs, and approximately 20 product terms. It was shown that this size range for the PLAs constituted an optimal
design point with respect to speed and density. Such PLAs were typically 50% faster, and about 40% smaller than a
comparable standard-cell based implementation. A simple greedy algorithm was introduced to cluster a multi-level

circuit into a network of PLAs.

A sample multi-level circuit, with nodes shown as circles, is shown in Figure 1. The rectangular regions in this

figure represent the clustering of circuit nodes into PLAs.

3 Binary Sets of Pairs of Functions to be Distinguished

3.1 Definitions

Sets of Pairs of Functions to be Distinguished (SPFDs) are a new way to represent the flexibility of a node in a

multi-level network. In this section we focus on SPFDs for binary valued nodes.

Definition 1 A function f is said to distinguish a pair of functions g, and g, if either one of the following two

conditions is satisfied:

& < f<& 0))

& < f<g& ¥3)
Note that this definition is symmetrical between g, and g,. We can think of 1 and 2 specifying two incompletely
specified functions, with g; as the onset and g, as the offset in 1 or vice-versa for 2.

Definition 2 An SPFD

{(g1a,815);- -+ (8na»8nb) }

is a set of pairs of functions to be distinguished.
Definition 3 A function f satisfies an SPFD, if f distinguishes each pair of the set, i.e.

[((81a < F<Bu)+@<FL<ERIA...A

[(gna S f < gnb) + (gnb < f < ?na)]

Hence, an SPFD can be conveniently used to express the flexibility that can be used to implement a node in a network

- the only condition required is that the function implemented at the node satisfies its node SPFD. Note that vertices

4

of a node’s SPFD correspond to the on-set, off-set or dont-care minterms of the node function.

A trivial case is where the set is a single pair. In this case the SPFD represents two incompletely specified
functions (ISF) where one is the complement of the other. If each of the {(g14,815),(824,825):--(8na,8nb)} are
pairwise disjoint, then the SPFD represents 2" ISFs!.

Classically, in computing the flexibility at a node in a Boolean network, don’t cares are computed which represent
a single ISF. These computations can be generalized so that SPFDs are obtained, which provide much more freedom

in optimizing the node.

3.2 Wire Removal/Replacement Using SPFDs

The information content of a wire (which is effectively the set of pairs of minterms it can distinguish) in a network
can be effectively represented by an SPFD. This allows SPFDs to help remove certain “difficult” wires in the network
or to replace them by other wires. The technique of wire removal/replacement using SPFDs works as follows.
Consider a multi-level network, with some nodes n;,m; and 1. Given a wire (n;,1;), its SPFD represents the
pairs of minterms that have to be distinguished by it. Thus, in a sense, the SPFD of (n;,1;) encodes the information
content required of that wire. If the wire (n;,m;) need not uniquely distinguish any minterms i.e. it has no unique
information content required, we can remove it. We can also try to replace it by another wire as long as the second wire
has all the information required of the original. So, a wire (1;,n;) can replace the wire (1,m;) if all the minterms
required to be distinguished by the wire (1,1) are also distinguished by (n,,m;). In other words, the objective is to
replace wire (1, M;) from node 1, to n; with a wire (n;,n;) from node 7 to 1, such that the original SPFD at 1
is preserved, and some gain is realized by this change. In the sequel, we shall refer to this technique as wire_replace.
In [5], it was shown that there can be a substantial reduction in the number of wires (at the technology-independent
level) in the network using the wire_replace algorithm. Note that wire_replace also removes wires whose SPFDs are

empty.

Note that an SPFD cannot represent a single function, it always represents at least a pair. Thus it cannot represent the function 1.

abef

0001 h}
0012+« 4}
0102« i
0110« hj
1001 « h}
1102« h}
1012+ K
11104

Figure 2: A Multi-valued SPFD.

For a detailed exposition on SPFDs and how they are computed and used for wire replacement, see [5].

4 Multi-valued SPFDs

We give a graph-theoretic definition of MV-SPFDs which is a generalization of the definition of binary SPFDs of the

previous section.

Definition 4 An MV-SPFD ¥ (y) on a domain Y is an undirected graph (V,E) where each v € V corresponds to a
unique minterm v = (y1,y2,*++,¥) € Y. An edge (e = (v1,v2)) € E means that the minterms corresponding to the two

vertices vi and v, must have different functional values.

Figure 2 shows a multi-valued node H with k values, and its corresponding MV-SPFD. This MV-SPFD can be
described as a set with k tuples {Ho,H,---,Hi-1}. Each tuple H; consists of several minterms {h},h}, .-,k }.
Each minterm in H; must be distinguished from (i.e. have different functional values than) minterms in each of the

remaining k — 1 tuples. Each Hi; is also referred to as a component.

Definition 5 A function F(y) implements ¥ = (v, E) if F(y) is a valid coloring of ¥, i.e.

FOM#F(*),('.y*) €E

For a function F to implement ¥, F assigns a different value to minterms hf,, and h, for i # j. Thus the chromatic

number of an MV-SPFD is the minimum number of values required to implement the MV-SPFD using a multi-valued

6

function. Each different coloring of this graph represents a different incompletely specified multi-valued function

(ISF). This is the source of flexibility of MV-SPFDs.

S Wire Removal using Multi-valued SPFDs

In a network of PLAs, each individual PLA is a multi-input, multi-output structure. Suppose a given PLA has k
outputS. In that case, it can be modeled as a single output node with 2* values. A multi-valued SPFD can be computed
for each node and can be used to remove wires in its fanin. A network of PLAs can be modeled as a multi-level
network of multi-valued nodes. The binary SPFD techniques for computing and distributing SPFDs using BDDs [7]

can be generalized to MV-SPFD techniques using MDDs [8]. The details of the computation are discussed below.

Consider a node 1; in a multi-level, multi-valued logic network. We know that the MV-SPFD of 1; represents the
set of multi-valued minterms (henceforth equivalently referred to as minterms) that should be distinguished by 7; in
order that it provides enough information to its fanouts. To achieve this, it is necessary that each pair of minterms in
the MV-SPFD of 1 be distinguished by at least one of its fanin wires. Thus, the union of the MV-SPFDs of its fanin
wires should cover the MV-SPFD of n;. Alternately stated, just as in the binary case, the MV-SPFD of a node/wire
gives the information content required of the node/wire. So, all the information contained in a node has to be provided
by its fanins.

We define the minimum MV-SPFD of a wire (1;,m;) to be the set of pairs of minterms of 1; that must be
distinguished exclusively by this wire. In order to ensure that all the pairs of minterms in the MV-SPFD of n; are
distinguished, the wire (;,7;) must distinguish at least these pairs of minterms.

Given the MV-SPFD of the node 1;, we compute the minimum MV-SPFD of each fanin wire. If the minimum
MV-SPFD of a fanin wire is not empty, then we cannot remove this wire since it uniquely distinguishes some pair of
minterms in the MV-SPFD of the node 1;. On the other hand, if the MV-SPFD of a fanin wire is empty, it is a candidate

for removal. However, we cannot simultaneously remove some or all fanin wires whose minimum MV-SPFDs are

7

a) A network of PLAs b) Its corresponding multi-valued network
Figure 3: Multi-valued SPFD based wire removal.

empty. This is because there could be two fanin wires (n;,m;) and (n,m;) with empty minimum MV-SPFDs, such
that both wires distinguish the pair of nxil;terms (m1,my) in the MV-SPFD of 1)}, and no other fanin wire distinguishes
this pair of minterms. In such a situation, at least one of these wires must be retained. If both wires are removed,
(my,my) will not be included in the new MV-SPFD of 1, and hence the resulting network will not be correct.

The procedure for removing wires in a PLA network is explained below. Consider the PLA P, which has m
inputs and n outputs. Figure 3-a shows a sample network of PLAs, in which P resides. Each rectangle in this figure
represents a PLA, with its AND (input) plane on the left, and the OR (output) plane on the right. The PLA P can be
considered equivalently as a multi-valued node with 2" values, and m multi-valued inputs, as shown in Figure 3-b.

The MV-SPFD of P, denoted as P(Y), is computed from its original multi-valued function (MVF). This MV-
SPFD must distinguish every minterm in every component of its MVF from every minterm in every other component
of its MVF. After computing P(Y), (here Y is the space of the fanins of P) we re-assign the task of distinguishing

edges of P(Y) to the fanins of P, using the following procedure.
¢ Fanins of P that have non-empty minimum MV-SPFDs, denoted as Y’, are first identified.

o All the edges of P(Y) that are distinguished by these fanins are assigned to these fanins and are removed from

8

P(Y).

e A weighted covering problem is set up between the remaining fanins of P, Y \ Y’, and the edges of the modified
P(Y). The fanins are weighted according to the following heuristic : the smaller the number of fanouts of a
particular fanin, the greater its weight. This means that a fanin with a single fanout has the largest weight and
so has the least likelihood of being included in the solution. Hence the corresponding wire is most likely to be

removed. Let the solution of this weighted covering problem be Y”.

The new fanin space of P is the union of Y’ and Y and will be subsequently referred to as 7. Now, P is modified.
First the image of P(Y) is computed on the primary input space X. This image is projected back to the ¥ space, to
get P(?), the new SPFD of P in terms of its new fanins. We use a coloring algorithm to obtain a new ISF at P. The
connected components of the MV-SPFD are obtained and each component is colored appropriately to obtain a new
ISF. Next we run Espresso-MV [9] to get the new minimiied function of P.

We proceed in a topological order from the inputs to the outputs in the network and perform wire removal on each
node in the network.

In the sequel, we refer to this algorithm as mv_wire_replace.

5.1 Controlling change

As mentioned in the previous section, any valid coloring of P(Y) can be used to obtain an incompletely specified MV
function for P. But, if a node is changed, then its changes must be propagated throughout the transitive fanout of P.
Although this can be done, in practice it can prove to be expensive. So we block the changes in the new function by
its MV-CODCs [10] (a generalization of CODCs [11] for the multi-valued case). Thus, at any point in the algorithm,

the region of change consists of a single node, and possibly its immediate fanins.

5.2 Multi-valued SPFDs vs binary SPFDs

Although MV-SPFDs are a generalization of binary SPFDs, there are some interesting points that they bring up.

9

e In [5], the authors discuss how binary SPFDs could run into the problem of non-bipartition i.e. there could arise
situations where an SPFD can no longer be colored by two colors. This situation arises because during the SPFD
computation, one cannot restrict the chromatic number of an SPFD without losing optimization flexibility. Since
some binary SPFD algorithms exploit their bipartite nature, this could lead to inelegant solutions. MV-SPFDs
are a simple and elegant way to handle this problem, since we do not need to restrict the chromatic number of

an MV-SPFD.

* The coloring of MV-SPFDs gives rise to interesting possibilities. A binary SPFD with n connected components
can be colored in 2" ways. An MV-SPFD with n components can be colored in k;! % - - - *k,!, where k; is the
chromatic number of the ith component. This flexibility can be exploited in many ways. In a network of PLAs,
for instance, re-encoding a node could change the wiring connections between a node and its fanouts. So, if we
expand the region of change to include a node and its fanouts, we can use some encoding algorithm to suitably

modify the wiring between a node and its fanouts. This is a difficult problem and is currently being investigated.

6 Experimental Results

To validate the usefulness wire removal for a network of PLAs, we utilize the two SPFD-based wire removal tech-

niques.

o For wire removal before clustering a circuit into a network of PLAs, we use the wire_replace code detailed in
[5] and in Section 3.2. This computation is done at the level of binary-valued SPFDs, since the logic nodes are

binary valued before clustering into PLAs.

¢ After clustering into a network of PLAs, each PLA can be viewed as a multi-valued node, as described in
Section 5. At this point, multi-valued SPFD-based wire removal is invoked, using mv_wire_replace as described

in Section 5.

10

The clustering and wire removal code was written in SIS [12]. Placement of the network of PLAs was done using
VPR [13], an FPGA-based placement and routing tool. Since all PLAs in the network of PLAs have roughly the
same size, VPR is a good choice for placement. However, routing is not done using VPR since it assumes an FPGA
connection topology. Therefore, routing of the network of PLAs was performed using wolfe [14].

The initial blif netlist for the benchmark circuit is clustered into nodes with up to 5 inputs. This new netlist is the

starting point for all wire removal experiments. We now perform one of 4 wire removal experiments:

o For no wire removal, NOWR) we cluster the netlist into a network of PLAs. This network is now placed and

routed as described above.

o For wire removal after clustering, (WRA) we follow the clustering step by a wire removal step, using multi-

valued SPFD-based wire removal. The result of this step is then placed and routed.

e For wire removal before clustering, (WRB) we perform binary-valued SPFD-based wire removal on the netlist,

and then cluster the resulting netlist into a network of PLAs. This network is then placed and routed.

e For wire removal before and after clustering, (WRBA) we perform binary-valued SPFD-based wire removal
on the netlist, and then cluster the resulting netlist into a network of PLAs. This is followed by multi-valued

SPFD-based wire removal. The resulting netlist is placed and routed as described above.

We constrain the clustering step by imposing a maximum width and maximum height constraint on the PLAs. In
this section we report the results of experiments with two such combinations which utilize a PLA height constraint of
15 and 20, and a PLA width constraint of 40. The total number of outputs of each PLA is constrained to be no larger
than 5.

Table 1 reports the results of wire removal on some benchmark circuits. All examples in this table use a PLA
height constraint of 15, and a PLA width constraint of 40. Table 2 reports the results of wire removal where all

examples use a PLA height constraint of 20 and a PLA width constraint of 40. Each PLA has 5 or less outputs in both

11

Circuit NOWR WRA | Improve % WRB WRBA | Improve % | NOWR-WRA% | NOWR-WRB% | NOWR-WRBA% | BEST
vda 11110252 | 9226156 16.96 10135268 | 8894264 12.24 16.96 8.78 19.95 19.95
frg2 6446700 | 5696732 11.63 5963900 | 5450492 8.61 11.63 749 15.45 15.45

C1908 5638308 | 5608980 0.52 4577608 | 4328608 5.44 0.52 18.81 23.23 23.23
apex6 4449572 | 4038000 9.25 4406096 | 4250136 3.54 9.25 0.98 4.48 9.25

x3.blif 4423560 | 4340580 1.88 4588100 | 4409520 3.89 1.88 -3.72 0.32 1.88

toolarge 4306372 | 4296808 0.22 4398404 | 4355300 0.98 0.22 -2.14 -1.14 0.22
x1 2046140 | 1874444 8.39 1805672 | 1859528 -2.98 8.39 11.75 9.12 11.75
x4 2040556 | 2127220 -4.25 1938784 | 1938784 0.00 -4.25 4.99 4.99 4.99
alu2 1624412 | 1473920 9.26 1647092 | 1629860 1.05 9.26 -1.40 -0.34 9.26
C432 1372412 | 1345680 1.95 1227940 | 1236696 -0.71 1.95 10.53 9.89 10.53
terml 1252120 | 1052248 15.96 960876 | 878036 8.62 15.96 23.26 29.88 29.88

apex7 991728 | 853688 13.92 952448 | 923612 3.03 13.92 3.96 6.87 13.92
2 529568 | 448240 15.36 519304 | 508664 2.05 15.36 1.94 3.95 15.36
count 364000 | 315832 13.23 367920 | 315832 14.16 13.23 -1.08 13.23 13.23
pcle 272392 | 264808 2.78 272392 | 264808 2.78 2.78 0.00 2.78 2.78

decod 175192 | 175192 0.00 175192 | 175192 0.00 0.00 0.00 0.00 0.00

AVERAGE 7.32 392 7.32 5.26 8.92 11.35

Table 1: Wire Removal Experiments - max width 40, max height 15

cases. In both tables, the final layout area of the circuit is measured in units of square grids. All reported numbers
include the area for the actual PLA logic plus the routing area. For each table, the first column reports the circuit
name. The second column reports the resulting layout area using no wire removal (NOWR), while the third column
reports layout area using MV-SPFD based wire removal after clustering the circuit into a network of PLAs (WRA).
The fourth column reports the improvement in layout area by performing WRA (compared to the NOWR case). The
fifth column contains layout area results when binary-valued SPFD based wire removal is performed before clustering
into a network of PLAs (WRB). The sixth column reports layout area when SPFD based wire removal is performed
both before and after clustering into a network of PLAs (WRBA). The seventh column reports the area improvement
of the sixth column over the fifth. The eighth, ninth and tenth columns represent the percentage area improvements
of WRA, WRB and WRBA over the NOWR case, respectively. Finally, the eleventh column represents the best area

improvement from the preceding three columns.

We observe that the best area reduction using any flavor of wire removal is above 11% for both tables. Also note
that the best area reduction is in excess of 19% for the three largest examples. This suggests that SPFD-based wire

removal is very effective for larger circuits.

12

Circuit NOWR WRA | Improve % WRB WRBA | Improve % || NOWR-WRA% | NOWR-WRB% | NOWR-WRBA% | BEST
vda 12436252 | 10270940 17.41 11312344 | 9509604 15.94 17.41 9.04 23.53 23.53
frg2 3421528 | 4817176 11.15 5504856 | 5073732 7.83 11.15 -1.54 6.42 11.15
C1908 6681500 | 5834776 12.67 5179324 | 4491136 13.29 12.68 22.48 32.78 32.78
apex6 4856400 | 4692516 3.37 4773860 | 4456872 6.64 3.38 1.70 8.23 8.23
x3.blif 4992788 | 4487352 10.12 4655196 | 4745676 -1.94 10.12 6.76 4.95 10.12
toolarge 4714168 | 4681740 0.69 4670440 | 4679008 -0.18 0.69 0.93 0.75 0.93
x1 2110856 | 2098096 0.60 2069732 | 2103604 -1.64 0.60 1.95 0.34 1.95
x4 2061840 | 2028516 1.62 2158952 | 2230680 -3.32 1.62 -4.71 -8.19 1.62
alu2 1706600 | 1591744 6.73 1827148 | 1543940 15.50 6.73 -1.06 9.53 9.53
C432 1556960 | 1466576 5.81 1325088 - - 5.81 14.89 - 14.89
terml 1300096 | 1126408 13.36 939400 | 858520 8.61 13.36 27.74 33.97 33.97
apex7 1030580 | 971280 5.75 1077320 | 1026528 4.71 5.75 -4.54 0.39 5.75
12 599540 523240 12.73 595232 | 573344 3.68 12.73 0.72 4.37 12.73
count 483360 406192 15.96 483360 | 416368 13.86 15.97 0.00 13.86 15.97
pcle 310312 302728 2.44 310312 | 310312 0.00 2.44 0.00 0.00 244
decod 204472 204472 0.00 204472 | 204472 0.00 0.00 0.00 0.00 0.00
AVERAGE 7.53 5.19 7.53 4.27 8.18 11.60

Table 2: Wire Removal Experiments - max width 40, max height 20

Comparing the wire removal techniques in isolation, we observe that WRBA provides the best average improve-
ment in area (8.92% and 8.18% for Table 1 and Table 2 respectively). In both these tables, WRBA improves on WRB

by an average of 3.92% and 5.19% respectively. The least effective of the three wire removal flows is WRB.

Furthermore, the results reported in [6] indicated that wire removal applied to traditional standard-cell based
designs results in no area improvement, since wire removal obtained by such techniques is negated by the technology
mapping step required in such a design style. This suggests that using a network-of-PLAs design methodology has
additional advantages over the standard-cell based design methodology. The reason for this is that in the network-of-
PLAs design style, there is a more direct relationship between the cost function being optimized during synthesis, and
the actual implementation of the logic. This is because there is no technology-mapping step required in this design
style.

Among the three wire removal experiments conducted, the most effective are WRBA and WRA. These two ex-
periments together contributed to a majority of the best case results (column 11). In Table 1, in the cases in which
WRB contributed the best result, either WRA or WRBA had improvements very close to this. For the C432 example
in Table 2, WRB contributed the best result, and the improvement provided by WRA trailed it significantly. However,

WRAB was not able to complete on this example, so we are not sure if WRAB could have matched this result if the

13

example had completed.

We performed another study where all four experiments used a series of 9 values of maximum PLA height and
width. The maximum height varied from 15 to 25 in steps of 5, and the maximum width varied from 40 to 60 in steps
of 10. The maximum number of outputs was restricted to 5. We used the best area from each of these 9 cases for
each example, and compared the results just as in the tables above. The results obtained were substantially similar
to those reported in Tables 1 and 2. This is primarily due to the fact that the two combinations of maximum width
and height used in Tables 1 and 2 accounted for the best results for most examples. In this study, the average best
case area improvement due to any flavor of wire removal was 11.12%. WRBA once again was the most effective wire
removal style, with an average improvement of 9.22%. WRA and WRB had an average improvement of 7.58% and
5.82% respectively. The detailed resuits of this experiment are not included, since they substantially track the results

reported in this section.

7 Conclusions and Future Work

We have demonstrated that binary and multi-valued SPFD based wire removal are effective techniques for reducing
the wiring, and therefore the overall layout area, of a circuit implemented as a network of PLAs. Our main findings

are summarized below:

® Wire removal results in a best case layout area reduction on average of about 11%.

o This reduction increases to 19% or higher for larger examples, further suggesting the effectiveness of the tech-

nique.

® By choosing the best result among WRA and WRBA, we obtain an improvement which is almost as good as
the best case improvement over all 3 wire removal styles. These two styles of wire removal account for the best

case improvement in a majority of the examples.

14

In the future we plan to use wire removal after placement as well. After placement, we may have critical wires in
the sense that if these wires are removed, there would be a reduction in layout area. Performing wire removal directed
at such wires should further improve the results obtained.

Also, in our current implementation, the height of the PLAs is allowed to grow when we perform multi-valued
SPFD-based wire removal. We plan to remove this restriction, which should probably result in further area savings.

As mentioned in Section 5.2, we also plan to investigate ideas to further exploit the flexibility of MV-SPFD based

wire removal.

8 Acknowledgements

This research was supported partially by the SRC (under grant number 683), the GSRC/Marco center at Berkeley, and

the California micro program with our industrial sponsors, Motorola, Fujitsu, Synopsys, and Cadence.

References

{11 S. Posluszny, N. Aoki, D. Boerstler, J. Bums, S. Dhong, U. Ghoshal, P. Hofstee, D. LaPotin, K. Lee, D. Meltzer, H. Ngo, K. Nowka,
J. Silberman, O. Takahashi, and 1. Vo, “Design methodology for a 1.0 ghz microprocessor,” in Proceedings of the International Conference

on Computer Design (ICCD), pp. 17-23, Oct 1998.

[2] S. Khatri, R. Brayton, and A. Sangiovanni-Vincentelli, “A VLSI design methodology using a network of PLAs embedded in a regular

layout fabric,” Tech. Rep. UCB/ERL M99/50, Electronics Research Laboratory, University of California, Berkeley, May 1999.

(3] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to express functional permissibilities for LUT based FPGAs and its applica-

tions,” in Proceedings of the International Conference on Computer-Aided Design, pp. 254-61, Nov 1996.

[4] R. Brayton, “Understanding SPFDs: A new method for specifying flexibility,” in Workshop Notes, International Workshop on Logic

Synthesis, (Tahoe City, CA), May 1997.

(5] S. Sinha and R. Brayton, “Implementation and use of SPFDs in optimizing boolean networks,” in Proceedings of the International

Conference on Computer-Aided Design, pp. 103-10, Nov 1998.

15

[6] S. Khatri, S. Sinha, A. Kuehlmann, R. Brayton, and A. Sangiovanni-Vincentelli, “SPFD based wire removal in a network of PLAs,” in

Workshop Notes, International Workshop on Logic Synthesis, (Tahoe City, CA), May 1999.
[7] R.Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE Trans. Computers, vol. C-35, pp. 677-691, Aug. 1986.

[8] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton, “Algorithms for Discrete Function Manipulation,” in Proc. of the Inil. Conf. on

Computer-Aided Design, pp. 92-95, Nov. 1990.

[9] R. Rudell and A. Sangiovanni-Vincentelli, “Espresso-mv: Algorithms for multiple-valued logic minimization,” in Proceedings of the

IEEE 1985 Custom Integrated Circuits Conference, pp. 230-4, May 1985.
(10] W.Jiang and R. Brayton, “Don’t cares and multi-valued logic minimization,” Internal Report, CAD Group, UC Berkeley, May 1999.

{11] H. Savoj, Don’t Cares in Multi-Level Network Optimization. PhD thesis, University of California Berkeley, Electronics Research Labo-

ratory, College of Engineering, University of California, Berkeley, CA 94720, May 1992,

[12] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “SIS: A System for Sequential Circuit Synthesis,” Tech. Rep. UCB/ERL M92/41, Electronics Research Lab,

Univ. of California, Berkeley, CA 94720, May 1992.

[13] V.Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA research,” in Proceedings of the International Workshop

on Field Programmable Logic and Applications, 1997.

(14] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Placement and Routing Package,” IEEE Journal of Solid-State Circuits,

1985.

16

	Copyright notice 1999
	ERL-99-51

