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Abstract

Dynamic resource allocation is an important means to increase the sum capacity
of fading multi access channels. In this paper we consider vector multiaccess channels
(channels where each user has multiple degrees of freedom) and study the effect of
power allocation as a function of the channel state on the sum capacity (or spectral
efficiency) defined as the maximum sum of rates of users per unit processing gain
at which the users can jointly transmit reliably, in an information theoretic sense,
assuming random directions of received signal. Direct sequence code division multiple
access (DS-CDMA) systems and multiple access systems with multiple antennas at the
receiver are two systems that fall under the purview of our model. Our main result
is the identification of a simple dynamic power allocation scheme that is optimal in a
large system, i.e., with a large number of users and a correspondingly large number of
degrees of freedom, for both the ergodic and non-ergodic models. A key feature of this
policy is that, for any user, it depends on the instantaneous amplitude of channel state
of that user alone and the structure of the policy is "waterfilling". In the context of DS-
CDMA and in the special case of no fading, the asymptotically optimal power policy
of waterfilling simplifies to constant power allocation over all realizations of signature
sequences; this result verifies the conjecture made in [27]. We study the behavior of
the asymptotically optimal waterfilling policy in various regimes of number of users per
unit degree of freedom and signal to noise ratio (SNR). We also generalize this result to
multiple classes, i.e., the situation when users in different classes have different average
power constraints.

Index Terms: CDMA, Multiple Antenna Systems, Sum Capacity, Spectral Efficiency, Lin
ear MMSE Receivers, Power Control, Waterfilling.
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1 Introduction

The focus of this paper is multiaccess vector channels; these are multiaccess channels with
multipledegrees offreedom. Two common examples ofsuch systems are Direct sequence Code
Division Multiple Access (DS-CDMA) and a multiple access channel with multiple antennas
at the receiver. The number ofdegree offreedom in DS-CDMA model is the processing gain
and in the antenna model it is the number of received antennas at the receiver. The signal
direction at the receiver ofany user in the CDMA model is its spreading sequence (assuming
flat fading) and in the antenna model it is the vector of path gains from the user to the
different antennas at the receiver. A central problem in this vector multiaccess scheme in
fading channels is how to carry out power allocation to increase the spectral efficiency ofthe
channel. In this paper, we assume that the signal directions of the users are random (but
known at both the transmitter and receiver) and study power allocation policies that aim
to maximize the rates at which users can reliably communicate (in an information theoretic
sense). One fundamental performance measure of a multiaccess channel is sum capacity
(equivalently spectral efficiency), defined as the maximum sum of rates of users per unit
degree offreedom at which the users can transmit reliably. Our focus in this paper will be to
identify simple power allocation policies that allow users to communicate at rates (these are
long term rates averaged over the fading process) such that the sum of rates is arbitraxily
close to the Shannon limit.

Allocation of resources (power, bandwidth, bit rates) in the context of specific multiple
access schemes such as TDMA, FDMA and CDMA, with theperformance criterion typically
being the signal to interference ratio of the users at the receiver, is studied in [4, 7, 9, 28, 22].
In the context of information theoretic power control, existing literature focuses mainly on
scalar channels. For the single user scenario [6] identifies waterfilling to be the optimal
power allocation as a function of the fading state. This allocation maximizes the rate at
which the user can communicate reliably, the rate being averaged over the fading process.
In the multiuser scenario [10] studies power allocation strategies of the users as a function of
the fading state to maximize the sum of rates at which the users can jointly communicate.
It is shown there that the power policy that allows users to achieve sum capacity has the
property that only the user with the best channel at any time transmits (if at all) with
positive power and the users themselves adopt a waterfilling strategy with respect to their
fading states. This paper focuses on multiaccess vector fading channels. Our main results
can be summarized as follows:

1. In the DS-CDMA model, we assume that the spreading sequences of the users are
random and each user experiences independent flat fading. We consider both long and
short signature sequence models: short signature sequences get repeated every symbol
interval while many symbols are transmitted over one duration of a long signature
sequence. Our main result is the identification ofa simple power allocation policy that
is asymptotically optimal (the asymptotic is in the regime of a large number of users
and correspondingly large processing gain). This policy is waterfiUing for each user
and depends solely on the amplitude of that user's instantaneous fading amplitude.
We show that the waterfilling policy is asymptotically optimal for both the long and



the short signature sequence models.

2. Inthemultiantenna model, we assume i.i.d. frequency flat fading from the users to each
of the antennas at the receiver. Our main result is that the constant power allocation
policy (this policy transmits a constant power regardless of the realization of fading
amplitudes of the users) is cisymptotically optimal (the asymptotic is in the number of
users and correspondingly large number ofantennas at the receiver).

These results are rather surprising from the point of view of the scalar multiaccess channel
result in [10] which shows that the spectral efficiency harnessing the multiuser diversity by
allocating positive power only to the user with the best channel (if at all) can be substantially
more than spectral efficiency obtained by allocating constant powers to the users at all fading
states. Our results show that if there are sufficiently many degrees of freedom, the gain in
spectral efficiency by having multiuser diversity vanishes.

In other related work on multiaccess vector channels, [16] and [29] study the allocation
of signature sequences to achieve sum capacity in non fading channels as a function of
the average power constraints of the users. In [8] the authors study the sum capacity of
CDMA systems with random long signature sequences in non fading channels. In [27] the
authors study the sum capacity of CDMA systems with random long signature sequences
for a wide variety of receiver structures: optimal joint detection receivers, linear MMSE
receivers, matched filter receivers, and decorrelator receivers. They assume that the users
are received at the samepower and the channel has no fading. In the special caseof constant
flat fading in the DS-CDMA long signature sequence model, our main result simplifies to
constant power allocation over all realizations of signature sequences and fading states; this
verifies the conjecture made in [27]. Recent results on information theoretic power control
in non-ergodic scalar fading channels are in [2].

In Section 2 we outline the DS-CDMA fading channel model, formulate the problem
and precisely state our main results. In Section 3 we heuristically derive the structure of the
optimal power allocation strategy andsee that it iswaterfilling. This section outlines the key
ideas in the identification of asymptotic optimality of the waterfilling strategy and allows
the more casual reader to gain insight into our result without entering the technicalities
required for the formal proof. In Section 4 we develop the mathematiccd machinery and
some preliminary results required for the proof of our main result. In Section 5 we first
give the simpler proof for the no fading case and then give the formal proof in the general
case of fading channels. In Section 6 we study various regimes of number of users and
SNR and analyze the behavior of the optimal policy in those regimes. We also discuss
natural extensions when there are different classes of users; users in different classes have
different average power constraints. In Section 7 we demonstrate our results by simulating
the different power allocation strategies and plot the corresponding sum capacities achieved
for flat and Rayleigh fading channels under a wide range of loading of users and SNR. In
Section 8, we turn to the multiple antenna model and model the path gains from any user
to any antenna by i.i.d complex random variables (in the flat Rayleigh fading model, the
amplitude of the path gains axe independent Rayleigh random variables). We conclude the
paper in Section 9 with some summarizing remarks and suggestions for future work.



2 Model, Problem Formulation and Main Results

2.1 Model

We consider a single cell in a symbol synchronous CDMA system and focus on the up
link. There are K users in the system and a single receiver. The processing gain is N and
represents the number of degrees of freedom of the multiaccess channel. Throughout this
paper we assume that K = [oA^J where a is a fixed positive number. This assumption
simplifies the analysis and notation though only K/N ^ a a,s N oo along with some mild
restrictions allows us to derive aJl the asymptotic results obtained (asymptotic in N) in this
paper. Following standard notation (see Section 2.1 of [26]), the baseband received signal in
one symbol interval can be expressed as

K

= I]-^i(«)'Si(n)h,(n) + W{n) . (1)
:=1

Here the index n represents timeand the received signal Y is regarded as a vector in C^. Here
s,(n) is the signature sequence of user i regarded as a vector in We consider both long
and short signature sequences (short signature sequences get repeated every symbol interval
while many symbols are transmitted over one duration of a long signature sequence). Thus
in the long signature sequence model s,(n) is an independent realization for every time n
and in the short signature sequence is fixed for all time. We model the signature sequences
as having random i.i.d. entries (the choice and relevance of this model are discussed in
[22] and [27]). Here h,- is the complex fading or path gain from user i to the single base
station (receiver). We write the amplitude squared ofthis complex path gain by hi hih*.
Henceforth, we refer to hi as the path gain and explicitly say "complex path gain" when
referring to h,-. Theuser symbols are represented by the real valued random variables X,-. W
is an additive white complex Gaussian process with variance <7^. Each user has an average
power constraint p. Our assumptions on the path gains h,- are conventional (see Section 2
of [21] and [6] for example): We assume that {{h,(n)}^gp,}.^^ is asequence of independent
and identically distributed stationary and ergodic processes; let us denote the (common)
stationary distribution ofthe amplitude squared ofthe complex fading process byF which is
limited to abounded set 0, A] and has adensity. We write H=(hi,..., /i^) arandom vector
having the same joint stationary distribution as the fading processes {hi(n)}^ ,z= 1... AT.

2.2 Problem Formulation

We first consider short signature sequences. Here the signature sequences, once chosen, axe
fixed and repeated over every symbol interval. We model the signature sequence ofuser i as

(vii,..., ViN) where {u;/} is a collection ofi.i.d. random variables with zero mean,
variance 1, and bounded fourth moment. These random variables are independent of the



fading processes Both the random variables {v^} and {h,} live on the same
probability space, say and we write E[X] to mean J^X dy. for any X in (H,//).
We use the notation Eh to indicate that the integration is carried out only over the fading
parameters. Formally, Eh [X] E [X | Si,..., s^].

Conditioned on one samplepoint or realization of signature sequences, say5i,..., sa' (we
write S = [^i,... ,5a']) the channel model in (1) becomes

K

Y(n} = '£ Xi(n)hi(n)si + W(n) . (2)
i=l

We assume that all the signature sequences (once chosen) are known to both the receiver and
all the users. We also assume that the receiver has perfect side information i.e. has perfect
knowledge of the fading gains at each channel use. For the situation when the transmitter
has no knowledge of the fading gains and the signature sequences are fixed to be Si,..., sa?
the sum capacity of the multiple access channel (MAC) in (2) is:

1
IEh

2N^
log det i I pa

\ t=i

y:hiSisi (3)

The capacity region for single degree of freedom fading channels with no information of the
fading state at the transmitter is in [17] and the intuitive idea behind the proof is in [5] so
we omit the proof of (3).

Our interest is in the situation when the transmitteralso has perfect knowledge of fading
gains. In practice, this knowledge is obtained by the receiver measuring the channels and
feeding back the information to the transmitters (users). Implicit in this model is the as
sumption that the channel varies much more slowly than the data rate, so that the tracking
of the channel variations can be done accurately and the number of bits required for feedback
is negligible compared to that required for transmitting information. By a power allocation
policy, we mean a function from the fading states and signature sequences of the users to
the non-negative reals. We let

denote a power allocation policy for user i and call the tuple V = (Vi^... ,Vk) a power
allocation policy. We say that the power allocation policy is feasible if for every realization
ofthe signature sequences the average power allocated to each user (over the fading process
of the users) is no more than p. Formally, the set of feasible allocations for a fixed realization
of signature sequences S is

(S) = {("Pi,..., Vk) • Eh [Pi (hi,..., hK-, 5)1 < p Vz = 1... K} .

Now, for every power allocation policy V € .^1(5), define the quantity

K

(4)log det (/ +<7 hiSis'iPi (hi,..., Hk, S)
\ t=l



Comparing with (3), Csum {'P,S) can be interpreted as the (random, since it depends on
the specific realization of the signature sequences) sum capacity of the MAC with powers
allocated according to policy V. The following proposition characterizes sum capacity when
transmitters also have perfect knowledge of the fading states.

Proposition 2.1 The sum capacity of the fading Gaussian vector MAC conditioned on a
particular realization of the signature sequences (say S) in (2) when both the users and the
receiver can perfectly track the fading state and know the signature sequences is

Copt {S) = sup Csum (V,S)
•p^fds)

1
= sup —IE« log det (/+2 o- ^hiSis\Vi (Ai5)

t=l
(5)

Aversion of the coding theorem in the above proposition appeared as Theorem 2.1 of [21],
another version of the above result for single user fading channels is in [6] and we omit the
proof. For general 5, no closed form solution to the optimization problem in (5) is known.
We discuss algorithmic computations that get close to the solution in Section 7.

In the notation of [20], the MAC with short signature sequences in (2) represents a
non-ergodic channel and the Shannon capacity of the channel is zero; however small the
sum rate the users attempt to communicate at there is a non zero probability that the
realized signature sequences will render the channel incapable ofsupporting therates reliably.
Motivated by the approach in [20] and [12] to such channels, we study the tradeoff between
the supportable rate and outage probability. Formally, the supportable sum rate R at an
outage probability a is the maximum sum rate at which the users caji communicate reliably
with sum rate R for all realization ofsignature sequences but a set S whose total probability
is less than a. In our notation, the supportable rate R!^^) is defined as

= sup {fl : IP [C^, {S)>R]>l-a} (6)

For a family ofvalid power allocations (power allocations for each realization ofthe ]signature
sequences), define the quantity

Ra ({Vs e (5)}5) = sup{R : P[Cs^^ (Ps,S)>R]>1-a} (7)

and interpretingit as the supportable rate with outage probability at most a when the power
allocation policy for the signature sequence realization S is Ps, we have

R:"'>= sup fiaCiT-sIs) (8)

One of the main aims of this paper is to characterize the family of optimal power allocation
policies that "achieves" the maximum supportable rate in (8). Our demonstration of a
simple power policy (that does not depend on the actual realization of signature sequences
and hence the family of power allocations reduce to a single power allocation) that has the
supportable rate asymptotically (in N) equal to the optimal R*(^^ is oneof our main results.



We now turn to long signature sequences. Here, many symbols are transmitted over
one period of the signature sequence. Thus, the simplifying assumption that the signature
sequencesare independent copies of identically distributed sequences for every channel use is
made. Formally, we define s,(n) = (uii (n),... u.w (n))^ where {vu (n)} are i.i.d. random
variables with zero mean and variance 1and finite fourth moment. We retain the assumption
that both the receiver and the transmitters (users) have complete side information, namely
they have perfect knowledge of the signature sequences and fading gains at all times. As
before, power allocation policies are maps from signature sequences and fading states of the
users to the non-negative reals. A policy V = {Vi,... ,Vk) is feasible iffor every user i, the
average (over signature sequences and fading states of the users) of Vi is no more than p.
Let the set offeasible power allocation policies be denoted by Formally we have

^2^^ ={^•E[Pi {hi,... jhx, 5)] <pand Vi (hi,.. .,hK,S) >0a.s. Vi =1...K} .
The Shannon sum capacity of the MAC (recall the channel model in (1)) with perfect side
information at both the transmitters and the receiver is given by

sup
r(^)

K

log det / -I- ^ (J ^hiSiS^Vi (hi,..., hx,S)
t=i

This result was observed in Section 3 of [27]. For V 6 defining the quantity

A'

log det / -1- 51 ^hiSislVi (hi,..., hK, S)
i=l

(9)

(10)

which can beinterpreted as the sum capacity of the fading MAC with random long signature
sequences when powers are allocated using the policy V, from (9) and (10) it follows that

= sup Csum{P) - (11)

In the case of long signature sequences, we are interested in characterizing power allocation
policies that are optimal in the sense of achieving sum capacity equal to Copt-

2.3 Main Results

The main focus of this paper is in characterizing optimal power allocation policies in two
different settings. First, for the long signature sequence model we are interested in the
power allocation policy as a function of the realization of signature sequences and fading
states subject to an average power constraint that maximizes sum capacity of the MAC in
(1). In the second setting, we wish to characterize a family of power allocations as a function
of the fading states of the users subject to an average power constraint that maximize the
supportable rate at some fixed outage probability. Our main result is the identification
of a simple power allocation policy using which both the supportable rate at some outage



probability (when the MAC model involves short signature sequences) and sum capacity
(when the MAC model involves long signature sequences) are "close" to the optimal values
(defined in (8) and (9) respectively). We state this result formally below. Consider the power
allocation policies

m

where we have used the notation (a?)"*" to indicate max{a:,0}. The constant is the
limiting signal to interference ratio (SIR) of a unit received power user using the linear
MMSE estimator in a large system (large processing gain and correspondingly large number
of users) with random signature sequences when all other users are following the power
allocation policy above in (12). The formal definition and proof ofexistence of this quantity
is in sections 3 and 4. In (12), the constant (Kuhn-Tucker coefficient) A is a constant
that is chosen such that E (/li)] = p. Observe that this policy does not depend on
the signature sequences of the users and for any user depends only on the fading state of
that user at that instant (in the special case when there is no fading this implies that this
policy is a static allocation of powers equal to p independent of the signature sequences).
This power allocation policy is waterfilling and generalizes the strategy of [6] for single user
fading channels. To see this generalization, recall the optimalpower allocation policy for the
single user case from [6]:

fW.(l-f)' (13)
where ^ is the SIR seen by a unit received power user in the system (there is only one user
in this scenario). Now the generalization is apparent: replaces

We show that the waterfilling policy of (12) is a "good" power allocation policy for both
the long and the short signature sequence models. We also analyze its behavior in various
regimes of the number of users per unit processing gain and background noise variance.
We enumerate our main results below. We emphasize that these results are true for any
distribution ofthe random variables Vij that satisfies the property ofzero mean, unit variance
and bounded fourth moment and any stationary fading distribution F that has a bounded
support and allows a density.

1. Consider the case of long signature sequences. With long signature sequences we show
that asymptotically the waterfilling strategy is optimal and identify the gap in sum
capacity to be of the order of N~^ where N is the processing gain of the system.
Formally,

Cipi - Csum < O

Note that because of the simplicity of the waterfilling policy, the notation becomes
somewhat deceptive: in this equation, Caum does depend on N.



2. Consider now the case of short signature sequences. Our main result in this scenario
IS

Ra {V'"') < +o(l) .
Thus, in a large system the supportable rate using the waterfilling strategy is within a
factor (1 —a) of the optimal supportable rate. We are interested in very small values
of a (typically, a could be 10"^ or lO"'̂ ) and thus the waterfilling strategy achieves a
supportable rate that is close to the optimal rate.

3. For a single user fading channel, it is intuitive (observe the structure of the optimal
power allocation policy in (13)) that in high SNR (as <7^ —> 0) the loss in sum capacity
by using a constant power (equal to p) allocation policy as compared to the sum
capacity by using the optimal waterfilling policy becomes negligible . In the general
multiple user scenario we show that the policy (12) at high SNR converges and the
limiting policy is the constant power allocation policy for a < 1. Thus the correct
extension of the single user high SNR result is that when a (the ratio of users to
processing gain) is less than unity, the gain in sum capacity in a large system (large
processing gain) over constant power allocation by using an optimal strategy goes to
zero at high SNR. On the other hand, there is a strict loss in using constant power
allocation when there are more users than the processing gain even in the limitof high
SNR. We also give an intuitive explanation of this fact.

4. We have beenable to extend ourresults on the asymptotic optimality ofthe waterfilling
power allocation to the scenario of multiple classes in the situation of long signature
sequences. Users in different classes have different average power constraints. The
asymptotically optimal strategy still has the basic structure of the waterfilling policy
(12) but users in different classes have diflferent threshold levels for their waterfilling
policies.

3 Heuristic Derivation of the Asymptotically Optimal
Power Allocation Strategy

In this section, we first restrict ourselves to long signature sequences channel model and
motivate the reason why we can expect asymptotically the waterfilling structure (12) of the
optimal power allocation policy. Towards this end, we proceed in the following order: we
first review the waterfilling power allocation policy (identified in [6]) for a single user in a
(scalar) fading channel. Then, we show the relationof sumcapacity to linearminimum mean
square error (LMMSE) estimation of users along with successive decoding. We then arrive
at a heuristic expression for the optimal power policy in the multiuser scenario.

We begin with the single user, single degree of freedom scenario. Now, the received
baseband signal in any channel use is (analogous to (1))

y(n) = h(n)A:(n) + W(n)



where {h (n)}„g„ is the complex fading process assumed to be stationary and ergodic. As
before we denote the amplitude squared process by {K}^ having a bounded stationary
distribution F with a density. Wis an additive white complex Gaussian noise process with
variance (7-2. We assume that the receiver and the transmitter have perfect channel side
information, i.e., the fading gains h„ are perfectly known to both the transmitter and the
receiver. The transmitter has an average power constraint p. Then, (Theorem 2.1, [6]) the
capacity of the channel is

^luser = max -E
{P>o-x[v]<p} 2 1.8 ™ (14)

and the power allocation that achieves the maximum above is "waterfilling" (refers to the
visualization of this scheme):

-(i-x)* (14)
where Aisa constant (the Kuhn-Tucker coefficient for the concave function maximization in
(14)) that is chosen such that E[7^* (/i)] = p. Observe that zero power is transmitted when
the fading is below the threshold

We now turn to the multiuser multiple degrees of freedom scenario. We first restrict
our attention to the case when the signature sequences and the fading gains are fixed (to
be si,...,s/f and hi^...,hK respectively). Let the users have average power constraints
Ph'" yPK' Then the channel model (1) focusing on one symbol interval is

K

y = + ^ (16)
1=1

Sum capacity of this channel was explicitly calculated in (4) as a function of the signature
sequences and the user average power constraints as

C(pi, •••, PA-) =2^ log det (/ +̂ a--%s'iPihi) . (17)
The rate tuples in the capacity region are in general achieved by jointly demodulating the
users from the received signal V (joint typical decoding and joint maximum likelihood esti
mation are well studied techniques; this clcissic study is inChapter 14 of[3]). We focus on the
following specific structure of demodulation of the users' symbols from the received signal Y:
Fix an ordering of the users. For every symbol interval, following the ordering of the users,
users are successively decoded (by estimating the symbols by the LMMSE receiver, and the
estimate used to decode that user) and the received signal is stripped off the decoded users.
LMMSE) receiver for user i obtains the optimal linear estimate (in the sense of minimizing
the mean squared error; Chapter 6 of [26] is an excellent reference for this) of the user i
symbol Xi from the received vector Y. It was observed in [25] that this scheme allows the
users to transmit reliably at a sum rate equal to the sum capacity of the systemL We use

^In fact, a stronger statement is claimed in[25]: By changing the ordering ofthe users, this scheme allows
the users to transmit reliably at rate tuples corresponding to all the vertices of the capacity region ofthe
channel in (16), by appropriately choosing the ordering of the decoding.
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this to interpret an increase in sum capacity by an increase in the power of one user: Let
the average power constraint of one user (say user z) be increased by 5. Then the increase
in sum capacity (defined in (17)) is

O(pi,... .. .,pk)-C {pi,"">Pk) = log
-1

1 + 5his\
\

K
-1

/^A'+l I^ ^ ^i^jPihj I Si
j=i

cr'̂ I +£ Sjs]pjh
j=i

(18)
where we used the matrix inversion lemma (^4 + xx^) ^ = A~^ — whenever the
terms exist. We can interpret this increeise in sum capacity as the rate of a fictitious user
(numbered K I) with average power 8, fading gain hi and signature sequence s,- and is
decoded first and then stripped off. The rate achieved by this fictitious user being decoded
first is simply

R- ^log(l +<5/?ir+i/ii)
where SpK^ihi is the signal to interference ratio (SIR) ofthe LMMSE estimateofthe fictitious
user A' + 1. It can be shown that (see Section 2 of [22] or Chapter 6 of [26]) the SIR ofthe
LMMSE estimate of this fictitious A + 1 user is pK+iShi where

(19)

which is consistent with the expression for the increase in sum capacity in (18).

Recall the expression of the sum capacity for the long signature sequence model as
an optimization problem in (9):

log det (/ + 2 ^hiSislVi {hi,..., Hk, S)
1=1

In Proposition 4.2 we show that this is a concave maximization problem. Thus there exists
a Kuhn-Tucker coefficient A> 0such that for every realization of/ii,..., /i^, 5 any positive
optimal policy V* satisfies the following constraints:

(^"'(^i,---,^Ar,5')) = A, Vz = 1,...,A

which can be written as

K
-1

s- jcr^/ +^ SjS^hjV] {hi,..., hK, S)) Sihi = A, Vz =1... A, (20)

by using the expression (18) for the increase in the sum capacity by an increase in power of
one user in the derivation of(20). For a similar calculation, see Section 3 of [24]. Here Ais
the Kuhn-Tucker coefficient (the formal existence and definition is in Proposition 4.4) and is

11
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chosen such that the average power constraint of the users is met. Application ofthematrix
inversion lemma to (20) yields

Defining

X •s' (o-V + Sjs'jhjVJ (hi,..., hx, S)) ' Sihi

-1

def t I 2

Vz = 1...A

A = +E (hi,...,hx, S) Si (22)

and observing that pihiP* (hi,..., Hk, S) is the (random) SIR of the LMMSE estimate of
user i when powers are allocated according to V* and substituting in (21), we arrive at the
following structure of an optimal power policy:

'•"•'i-kKr- (^1
Here /?,• is the (random) SIR of the LMMSE estimate of user i when all users are allocating
powers optimally. In general we are not aware ofa closed form expression for the optimal
power allocation in (21). Let us consider the performance of power allocations that have the
structure that for any user the policy depends only on the fading gain for that user, i.e., Vi
IS of the form (hi,..., hK, S) g(hi) for every user i where g is some bounded nonnegative
function into the reals. In this situation. Theorem 3.1 of [22] shows that the (random) SIR
of any user (say, user 1 to be specific) converges pointwise in a large system. Using our
notation we can maJse this statement precise: Pi from (22) with V* (hi,.. .,hK, S) = g(hi)
converges almost surely to P*hi as A oo. The positive constant p* depends on a, the
background noise variance and the function g itself and Theorem 3.1 of [22] identifies p*
to be the unique positive solution of a fixed point equation (in general there is no known
closed form solution to /?*). Thus, in a large system (large N and correspondingly large K)
we see that the power allocation

Vt-.ihu...,hx,S) Is'(hi) ^j^ (24)
satisfies the Kuhn-Tucker conditions in (21) asymptotically. Here /3*y is a positive constant
with the following structure: When every user uses a power allocation policy of this form,
namely:

for some positive real p (and Achosen such that the average power, averaged over the fading,
is p), an application of the central result (Theorem 3.1) of [22] shows that the (random) SIR
of the LMMSE estimateof any (every) user converges almost surely in a large system to a
constant, which we denote by p. Every choice of P results in a unique asymptotic SIR P
of the users giving rise to the map p ^ P. Since P^j denotes the asymptotic SIR of the
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LMMSE estimate of any user, it follows that must be the fixed point of the map /?»->•
Thus, if we assume the existence of the unique fixed point and infer (heuristically) that
the power policy (24) which asymptotically satisfies the Kuhn-Tucker conditions is close to
an optimal power policy, we have heuristically seen the eisymptotic structure of an optimal
power allocation policy. The nontrivial fact that the map has a unique positive
fixed point will follow from Lemma 4.10 in Section 4. We also show that there is a simple
expression that relates this unique fixed point to the corresponding A and propose a
fixed point iteration algorithm to compute the quantities Pljj and the corresponding A. In
the next section, we develop the mathematical apparatus required to present the formal
proof of the asymptotic optimality of the waterfilling power allocation policy we have only
heuristically developed in this section.

Thus we have a heuristic derivation of the structure of the cisymptotically optimal power
allocation policy for the long signature sequence model. Recall the keyfeatures of this policy:
the policy is independent of the realization of the signature sequences and for each user the
policy is waterfilling over the fading process of that user alone. We use this structure to
show that waterfilling power allocation performs very "close" to the optimal policy even
for the short signature sequences model. Towards this end, we make some observations
of the limiting sum capacity when using power allocation policies of the type above, i.e.,
power allocation policies of the form Vf :{hi,, Hk, S) g (hi) where is a non-negative
bounded function. We observe that sum capacity with this policy converges pointwise in a
large system and we make this precise below:

Proposition 3.1

^ log det H ^Sis\hig (/!;)j as AT -> oo . (25)

The proof is found in Appendix A. For the special case when h, = 1 a.s. and g{') = p
(this is the no fading case with equal received powers for every user), there is a closed form
expression for and (9) of [27] gives the explicit expression (denoting the limiting value
as this is the spectral efficiency with static power allocation in the notation of [27]) as:

+

where

T(r, z) = -\-l - \jx (l - y/zf +ij

13



In general, there is no laiown closed form expression for however [18] gives some
expressions to compute With the power allocation being recall the supportable
rate Ra (V^) at outage probability a defined in (7) as the largest rate such that:

^[Csum (V^,S)>R]>l-a.

The reader will observe that we have replaced the family of power allocations in (7) by
the single power allocation since is independent of the realization of the signature
sequences. It follows that

2¥.\\Csum(V',S)-Ci^^ ll
Ra{V') > CLm ^^

a

> C^sum ~ <^(1) 5 using Proposition 3.1 (27)

Thus the supportable rate using the power allocation "P^is asymptotically close to the limiting
sum capacity with power allocation V^. Combined with the formal result of the asymptotic
optimality of the waterfilling strategy, we use this result in Section 5 to show that the water-
filling strategy is also close to the optimal power allocation with short signature sequences.

4 Preliminary Material

In this section we introduce some preliminary results and the mathematical background
needed for the formal derivation ofour main result: asymptotic optimality ofthe waterfilling
strategy. We begin with the scenario of long signature sequences. Since our main focus is on
understanding the optimization problem (9) we begin with some simple observations about
its structure its solution.

4.1 Properties of Optimal Power Allocations

The optimization problem in (9) is on an infinite dimensional set (a closed ball in a Banach
space) ofvalid power allocations and it is not clear a priori if thesupremum in (9) is actually
achieved. In this section, we show that the supremum is actually attained and characterize
the set of the optimal power allocations. We proceed via a series of propositions.

1. Ourfirst step is to show that the optimization problem in (9) is well defined. Formally
we have the following proposition and the proof is in Appendix B.

Proposition 4.1 For every N, < otKc where Kc is a constant independent of N
and a.

2. We next show that the function Csum {P) is concave. Consider the following proposi
tion.

14



Proposition 4.2 For every deterministic /ii,..., Hk and S, the map from the positive
orthant in to the non-negative reals

log det (/ +<7 ^^pihiSiS* (28)
i=l

is concave. Furthermore, if {hiSis', i = 1... K} are linearly independent, then C is
strictly concave.

The proof is in Appendix C. It then follows that

Osum •^2 ^

is also concave.

K

log det / + <T hiSis\Pi {hi,...,hK,S)
i=l

3. We observe that the power allocation policies that are of interest always meet the
average power constraint with equality. Formally, we have the following result:

Proposition 4.3

_

^opt — sup Csum (V)

The following (elementary) proof provides an operational interpretation of increas
ing the average power of one user. Consider V € and E[Pi (/ii,...,/ia*, 5)] =
p —J for some positive 5. Consider the power allocation policy Vi{hi,.. .,hK,S) =
'Pi{hij... ,hKiS) Sand A = V* for z= 2,...,K. By definition V e Then

J_
2N

(V) = —E
^ ^ 2N

log det ^/ +<7 {hi,..., hx, S)
log det (/ +(7-2 52 Sis\hiPl (hi,...,hK,S) +a-HhiSis\E

= Csun,{V)^—V.

> Csum (P) •

log

t=l

(•n % (P")
+ A (P) hiV (/ii,..., /za", S)

(29)

Here /?i {V) hiV (hi,..., hK, S) is the (random) SIR of the LMMSE estimate of user 1
when all users are using the power policy V (an explicit expression for A(P) is in (39))
and (29) follows from the matrix inversion lemma (as in (18)). Thus, the sum capacity
can always be increased by defining a power allocation policy that is pointwise bigger
and meets the average power constraint with equality and the proof of the proposition
is complete. •

15



4. The following proposition allows us to use Lagrange multipliers in this maximization
of a concave function. N is fixed below.

Proposition 4.4 There exists (a Kukn-Tucker coefficient) A> 0 such that

{A ^C'sum (E [P,-(hi,..., 5")] —p)l . (30)
'=1 )

where

jrW >0 and (hi,...,h,,5) Vi =l...A^} . (31)
This claim is completely standard for maximization of concave functions in finite di
mensions. However is infinite dimensional and hence this claim needs a formal
proof, which is supplied in Appendix D.

5. We now use the previous propositions to show that the supremum in the definition of
in (9) is actually achieved by a valid power allocation policy. We state this for

mally in the following proposition and also identify the structure of this optimal power
allocation policy. The problem size N is fixed below and the proof is in Appendix E.

Proposition 4.5 There exists a power allocation policy V* € such that =
Csum (P"). Furthermore, for almost every realization ofhi,...,hK and S, the optimal
power allocation for this realization, denoted by p* V* (hi,.. .,hK, S), i = 1... K,
satisfies the equations

1
T 7 ^i \fi = l...K (32)(0-2/ + •Sjs'jhjpfj Sihi

where Xis the same as that given in Proposition 4-4-

6. It is clear from the symmetry inthe problem that the optimal power policies PJ",..., P^
are symmetric with respect to the signature sequences andthe fading gains. One simple
symmetry is given by Proposition 4.3 which allows us to write

E[P; (/ii,..., hK, S)] = p, Vz = 1... . (33)

Another type of symmetry is in the formal statement below:

Proposition 4.6 Let V* achieve the maximum in (9). Then for every permutation
cr € Sk and Wi = I... K

Pi •••» ^1? •••5̂ iic) '̂ <T{i) •••?l^a{K)j •••) tt.S. (^^)
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Proof For every permutation <t G Sk denote

(^li •••? •••7 ) ~ ^<^(0 (^^"(1)' •••' ^<t(1)7 •••>̂a(K)^
Now,

C'attm (^ ) — 2A''̂ log det +2hiSislVf (hi,..., Hk, S)j (35)
= <?»«». (V) (36)

where (36) follows from theobservation that the random variables are permuted (by a)
in (35) and by hypothesis that hi,... ,hK are exchangeable and 3i,..., 5a' independent
and identically distributed. Since V* is the unique maximizer of (9), we have

(^l7 •••5̂A'7 •••7"SA') •••7̂a{K)j 5<r(l)7 •••7"Sa(Ar)) Q.S.
which completes the proof of the proposition. •

7. From the structure of the optimal power allocation policy in (32), it follows that the
allocations are bounded from above. We need the following technical result that shows
that the allocations are uniformly bounded from above (uniform in N).

Theorem 4.7 Let V* achieve the maximum in (9). Then

V*(hi,..., hx, S) < Kp a.s.

where Kp is some universal constant (that depends on thefading statistics, a andp).

This theorem is proved in Appendix F. Using this, sum capacity can be written as

= max Csum (V) . (37)

Here

^(N) _ V satisfies properties (33) and (34) 1 . .
^ Vi(hi,...,hK,S)^[{),Kp] a.s.yi=l...K ] ' W

4.2 Limiting SIR of LMMSE estimates

In this section we review some recent results about the asymptotic behavior of SIR of the
LMMSE estimate in a random spreading environment. Fix a power allocation policy V G

' Associated with the LMMSE estimate of user i symbol Xi (estimated from the received
signal Y) is the performance measure signal to interference ratio (SIR) defined as the ratio
of the power of the signal to the power of the interference in the estimate. Recalling (19), we
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have that the (random) SIR of the LMMSE estimate of user i is ft (V) hiVi (hi,, Hk, S)
where

T -1

ft" i'P) = (^1? •••) S) Si = (39)

The SIR is random since it depends on the particular realizations of the signature sequences
and the fading. We further focus our attention on the following class of power allocation
policies: V is independent of the signature sequences and has the structure

Vi (hu...,hK, S) 1 '̂ hK, S)>^g (hi)
for each i = I... K where is a non-negative function bounded by Kg. Denote the corre
sponding SIRs of the LMMSE estimates (defined in (39)) of the users cis ft (V^),... ,^a' (^^)-
Then it is straightforward to see that

The random variables ft (V^),..., /?a' (P^) are identically distributed. (40)

In a large system, the central result of [22] shows that the (random) SIRs converge almost
surely to a deterministic constant. Focusing on user 1alone (without loss of generality), we
have the following formal result.

Lemma 4.8 (Theorem 3.1,[22])

asN-^oo (41)

where (3* is the unique positive solution to the integral fixed point equation

+ l}hg{h)-

Recall that F is the (same) marginal distribution of the fading gains ,..., /ia'. Convergence
of ft in measure first appeared as Theorem 3.1 in [22] and the pointwise convergence (a
natural extension) follows as a consequence of the main result in [19] which shows that the
empirical distribution ofthe eigenvalues of the matrix Sislhi almost surely converge in
distribution to a nonrandom limit.

To get a better feel for this result, consider the special case when there is no fading (we
just take hi = 1a.s. ) and g = p a.s. . Let us denote this static power allocation policy by
V. Then Lemma 4.8 particularizes to

ft(^) JLiVft(p,a) (43)
It is easily verified from (42) that (p, a) is the unique positive solution of the fixed point
equation in fi
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and hence (3* (p,a) is the positive root of the quadratic equation (in (S)

cr^/3'̂ p +/? (cr^ +p(a - 1)) - 1=0 (45)
and can be explicitly written out as:

n* /- \ 1 —Q! 1 (1 — 1 + a 1
4o-4 2po-2 4^

4.3 Variations around the mean of limiting SIR

For the power allocation policy we saw in Lemma 4.8 that the SIR ofany user converges
pointwise. Our first simple observation is that this convergence holds in also.

pi(V^) = 5*1 ^0-^/+5i; from (39) (47)
\ j¥i /

< a.s. (48)
-2 K

-

e[(A(7"))'] < (49)
where Ci is a constant independent of N. It now follows from (41) and the dominated
convergence theorem that

(50)
The following result investigates the variation around the mean ofthelimiting SIR (without
loss of generality, focusing only on user 1):

Lemma 4.9

E[(A {vn - /?;)'] <§ (51)
where C2 is some constant independent of N.

The lemma is proved in Appendix G.

*

wf4.4 Existence of /?,

In Section 3, we derived heuristically theasymptotic structure oftheoptimal power allocation
policy to be (from (24))

Pr-(hi,...,hK,S) g^j (ft.) Is' ^j^ (52)
19



where was the limiting SIR of the LMMSE estimate when users adopt the above power
allocation policy and Ais a constant chosen such that the average of the power allocation
(average of the fading statistics) is equal to p. We now prove the existence of this quantity

From (42), is the unique positive solution to the integral fixed point equation:

Furthermore, by the average power constraint of p on the power allocation in (52), we have
another equation relating Aand Plj. Denoting the ratio by hthr, the fading threshold
level below which no power is transmitted, we see that the average power constraint in our
notation yields:

1 +

where HM(h) is the "harmonic mean at the level h" defined as

(54)

dFCh)\ 'HM(h) = (l-F{h))[l^ . (55)

Observe that HM(h) > h, &[o, h As observed by the authors who first derived the
fixed point integral equation (42) for the SIR of the LMMSE estimate in [22], in general
there is no closed form solution to this fixed point equation. For the special case when there
was no fading and all the users were received with the same power, the fixed point equation
for the SIR became quadratic (given in (44)) and there is an explicit solution (given by (45)).
However, when the power allocation is in this special form we are able to obtain a closed
form solution to Continuing from (53), we have

'•«' - '-"LI'"-?)''''™ w
(57)

(58)

where (56) uses the definition of hthr as (57) follows from our notation of harmonic
"wf

mean in (55) and we used (54) in (58). Comparing (58) with (44) we see that is equal

®(1 ~ {hthr)fj, the SIR of the LMMSE estimate of aunit power user in a
large system with all other users received at constant power equal to and number
of users per unit processing gain equal to a (1 - F {hthr))- Thus has an explicit form as
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given in (46). Substituting this structure of j3'̂ j in (54), we see that our claim is verified if
we can show the existence of a solution hthr satisfying (54). Denoting

HM(h) , / tN , X

we have to show that hthr is the unique positive fixed point of /C. The following lemma
investigates the fixed points of IC and identifies a convergent fixed point iteration scheme;
the proof is found in Appendix H.

Lemma 4.10 K has a unique positive fixed point hthr- Furthermore, a fixed point iteration
of JC from small enough h converges to hthr-

5 Proof of Main Result

In this section we formally prove the asymptotic optimality of the waterfilling power alloca
tion strategy heuristically identified earlier. We first focus on the scenario when there is no
fading (hi = 1 a.s. ) and begin with the long signature sequences channel. For this scenario,
the authors in [27] conjectured that asymptotically the optimal power allocation policy is
to allocate equal powers to all users independent of signature sequences. The waterfilling
strategy identified earlier indeed simplifies to the constant power allocation when there is
no fading. Our first main result is to show the asymptotic optimality of constant power
allocation formally and furthermore identify the loss in sum capacity to be of the order of
y^- Recall our notation that the policy ofstatic allocation of equal powers is denoted by
V.

Theorem 5.1 For the no fading scenario,

lim^vipVN (Cipt^ - Csum (P)) <oo

Define the function L (the Lagrangian) as

L-.V^ a.™ i-P) - (2^1^) gEP.- (S) -p] .
Here V is any power allocation such that Vi > Oa.s. and is the positive root of the
quadratic in (45). Observe that L is just the sum of Csum and a linear functional and hence
is also a strictly concave function. Furthermore L{V) = Caum (F) over Recall our
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earlier notation (from Section 4) that "P* is the power policy that maximizes Caum over ^3^^
Fix a realization of signature sequences S. Let (recall earlier notation from (126) and (128))

Then, by the concavity of the map C (Proposition 4.2) we arrive at

K
-1

= —EOM ^

A- {P)
(Pi ~ P)2^Sti +A(:P)p

where we used (18) to arrive at (60) and (61) is arrived at by using the definition of A(p)
from (39) (the quantity A(P) Pdenotes (the (random) SIR of the LMMSE estimate of user
i when all the users are transmitting at constant power equal top) and the matrix inversion
lemma. Integrating (61), we arrive at

LiV')-L{P) <^|e
< ils-y^E
- 2Nt

<
- 2N

KKr
-E

A{P) /?•

1+A(^)p 1+i3*P
AjP) p'

.i +A(p)p i +iS'p
A{P) p' \

i+A(^)p i +Ap
<

<

KK,
2N

aKpC2
2v^

E[I A{p) - A I]

H (5) - P)

(61)

(62)

(63)

(64)

(65)

(66)

where (63) follows from Theorem 4.7, (64) from (40), (65) follows from the fact that the map
X is contractive and (66) follows from (43) and Lemma 4.9. Recalling the observation
that L{V*) =Csum i'P*) and L{v^ = Csum (^)» theorem follows. •

We now focus on the short signature sequences model while retaining the assumption of
no fading. The supportable rate at outage probability a with static power allocation

<

iEpopf(^)]
1 — a

MN)
^ opt

1 — a

Csum (P) +O(;;^)
1 — a
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< ^ (70)

< ' ' , ^ (71)
I — a ^ ^

where (67) follows from definition of in (6) and the Markov inequality, (68) is from the
definition of Copt in (9) and the fact that the power allocation policy V defined as (and so
as to be mecisurable in 5)

V : {hi,,.. ,hKjS) Vs{hi,... ,hK) for some Vs e J^i{S)

belongs to ^2^^ V5, we used Theorem 5.1 in (69), (70) comes from Proposition 3.1, and
finally (71) follows from (27). Thus we have

fta (V) < +0(1). (72)
^ ^ 1 — a

Hence in a large system the static constant power allocation fetches supportable rate
which is optimal up to a factor (1 —a). Typical values of a that are of interest in this
framework are very small and thus the supportable rate with static power allocation is very
close to the optimal supportable rate for large N.

We now turn to the general scenario with fading and first consider the long signature
sequences model. The proof of the asymptotic optimality of the waterfilling strategy is
subtler than in the no fading situation but the essential ideas are contained in the proof
of the no fading situation and the heuristic derivation of the waterfilling strategy. Let us
denote the waterfilling strategy of (52) by

-.{ht,..., hK, S) ^ g„j (A.) ^ (73)
t^wf ^hfhr hiJ

Recall that Mr))) and the threshold kthr below which no
power is transmitted is the unique fixed point of JC in (59). The formal statement of the
asymptotic optimality of the waterfilling policy that also identifies the order of the loss
in sum capacity is below:

Theorem 5.2

Urn sup Vn (CipJ - Csum < 00

Qum +^(1) +^ {^)
1 — a

Rg {P) +0{^) +0(1)

Proof Define the function L (the Lagrangian) as

1 ^ - hiPi (7""/)) Vi (A„...,hK, 5)] (74)
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where V is any power allocation such that Vi > 0 a.s.. Observe that L is just the sum
of Csum cuid a linear functional and hence is also a strictly concave function. Recall our
notation from Section 4 of V* that maximizes Csum over We proceed by the following
steps:

1. We show that L is close to L{V*) for large enough N. Formally,

\L(V')-L{V-') . (75)

2. We show that L {V*) > Csum {V*) for large enough N. Formally,

li^inf [l (V*) - Csum [V*)) >0. (76)

Combining the observation that L = Csum with the two steps above proves the
theorem. We first show (75) and then (76).

Analogous to (60), for every realization offading gains /ii,..., /ia' and signature sequences
5, we have from the concavity of the map C (Proposition 4.2) that

c(v (hu...M,s))-c{P (H„...,k„s))<-E ^

, (77)
In (77) we have emphasized the fact that is only a function of hi. Using our notation
in (73) and integrating (77), we arrive at

ICP') _I (^"/) <^ f;, E2iV^
, A(t""-')/!. , '
1(1+A (7""/) %„/(/!.•)) ~

•CP;(h„...,hK,S)-ff^f(hi))] . (78)

In (78) we used the fact (by definition) that gy,/ (hi) l{hi<htkr} = 0- Continuing from (78),

L(P*)-L(P''̂ ) <
2N

A(7""7) hi
' (1+A(^"'7)Ais„;(/m)) ~ (79)

where we used (40) and Theorem 4.7. By definition, is equal to and thus from
Lemma 4.8 we have

as Af oo .

By definition of g^,/ we get

^{hi>hthr}^w/^l n* I 1 /onX
1+f^Zfhigu./ (hi) • (80)
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Using the fact that the map x h->- j— is contractive, (80) and (79) yield

LCP') - L{P '̂) < [A,I A - PI, I]

<

2

aCjK^h

2y/N

where we used Lemma 4.9 to arrive at (81). We have thus shown (75).

To show (76), fix e > 0. Using Lemma 4.9, we have from a Chebyshev bound

PI, '
>1 + 6 <

E[I Pi jV') - Plj I']
PlW

<

Then, using properties (34) and (33) of P' and (40) we have

L(P') = C,,„,(P') +

Consider the case

KPw f

2N
E Pi, ) p:(h,,...,hK,s)

liminfE (hi,, hjr, 5) l{(>,<A,fc,}] =0.
N-^oo

Using Theorem 4.7, (84) leads to

E[CPi* (hi,..., Hk, 5))^ l{A,<w}] ^ ['̂ i •••' I^K,S) 1{a,<w}]
= 0 (85)

Then it follows from (83) that there exists a subsequence such that

L{P')-C,umiP') > -^E[A(7'«'0^r(hi,...,h;f,5)l{A,<A.,,}]

(81)

(82)

(83)

(84)

>

Jiim L > 0

Cthy/Cl r T -E[{PI (hr,...,hK,S)f\iH, <!..,.}] ^(86)
2<t2

where we used the Cauchy-Schwartz inequality and the bound in (49) in arriving at (86)
and we have thus shown (76) (the notation of the superscript N in denotes that
p*{N) ^ Now suppose (84) does not hold and hence we have

(87)
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We evaluate the integral in (83) over the two disjoint sets At (1 +e)|
and A2 = {/?i {V') <I3li (1 +e)}. As usual, 1^. denotes the indicator function over the
set At, 2 = 1,2. We have

E V:(hu-..thKtS){htHr
hiPi \ ^

V
> _:^^E [a u.]

r^VjJ

K-phthf f # - 1

^ ^phth.r\/Ui ( C2

(88)

(89)

(90)

where we used Theorem 4.7 in (88), (48) to derive (89), and (49) combined with the Cheby-
shev bound of (82) in arriving at (90). We also have

E "Pj (hi ...^hfCiS) \ htkr I l{/ii</ithr}l>^2
hi/?i

Plj j
> E[pj (hi,..., Hk, S) (hthr —hi (1 +e)) l{/ii</i,fc,.}l>42]
= EI^Pj (hi,..., hK,S) (hthr —hi) l{/ii</ithr}l>i2] ~ [^1 (hi,..., hfc, S) hil{/i,</i,;,^}l>t2]

—EI^Pj (hi,..., hfc, S) (hthr ~hi) l{/ii</itftr}l-42] ~~ ^hthrh.p

From (87), we have

[Vi {hi,..., Hk, S) {hthr - hi) !{).,<(.,> 0. (92)

Letting e = and combining (90), (91), and (92) we have shown (76) that

liminf(l(7>-)-(?^„(7>-)) >0
N-¥00 ^ '

completing the proof. •

The result regarding short signature sequences is completely identical to the argument
given in the situation of no fading. Completely analogous to (72) we have

Ra {r"') < +"(l)-
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6 Optimal Power Allocation and System Pcirameters

In this section westudy the behavior of the waterfillingpower allocation strategy in different
regimes of the system parameters. In particular we study the effects of the number of users
per unit processing gain a and the variance of the background noise <7^ on the waterfilling
strategy. This exercise allows us to comment on the gain in sum capacity with dynamic
power allocation over the constant power allocation strategy. We also generalize our results
to the situation of multiple classes: users in different classes have different average power
constraints.

6.1 Dependence on the number of users per unit processing gain

Recall the waterfilling power allocation strategy defined in (73):

hK, S) ^ g^i (hi) ^ - 1)^ . (93)
PwJ ^^thr hi/

Here hthr is the level above which no power is transmitted and is the SIR seen by a unit
power user in a large system when all the other users are using the power allocation strategy

. Following the heuristic derivation of the waterfilling strategy, intuitively one expects
that when a is very small there are very few users in a system with a very large processing
gain and thus, the users are essentially orthogonal to each other and hence the policy is very
similar to the single user waterfilling strategy. In the following result we make this intuitive
observation precise:

Proposition 6.1 Recall , the waterfilling power allocation strategy (93), and the single
user waterfilling strategy (15). Then,

hthr and (7~^ as a J, 0 , (94)
hthr t h a.nd J, 0 as a t oo • (95)

The proof is found in Appendix I.

6.2 Dependence on SNR, the background noise variance

We begin with thesingle user situation. It is intuitive that at high SNR (very low background
noise variance o^), there is so much power available that the waterfilling strategy gains very
little over the static power allocation policy, namely equal power allocation over all fading
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states. This was observed in [6] through simulation studies with Rayleigh and Nakagami
fading examples. We make this statement precise and use it to find the structure of the
waterfilling strategy at high SNR in the general multiuser scenario. Recall the single user
capacity formula from (14):

max C(V)^= max
{7>>0:E[P]<p> ' {^>0:EtPl<P> 2

and the optimal power allocation (water filling) from (15) as:

(««)

Proposition 6.2 In high SNR, the optimal power allocation (96) converges to the constant
power policy and further more the loss in capacity by using the constant power policy goes to
zero. Formally, as 0,

V ^ p (97)
C{V*)-C{p) —> 0. (98)

The proof is ^completely elementary. As cr^ 0, to meet the average power constraint we
must have ^ P- Thus the waterfilling strategy converges to the static power allocation
strategy at high SNR showing (97). The gain with waterfilling strategy at any realization of
the fading gain h is

h(V'{h)-p)

^ olog 1+ r-; (99)

where we used the definition of P*(h) as the single user waterfilling policy in (15). Thus by
the dominated convergence theorem and (97) we have shown (98).

We now turn to the multiuser scenario. Based on the single user result above one guesses
that when a is very small at high SNR there is not much to gain by using the waterfilling
strategy over the static power allocation policy of equal powers at all fading states. The
correct extension of this intuition to the multiuser scenario is that when a < 1 the number
of users is less than the degrees of freedom available and each user can essentially null out
the other users and we are back in the single user situation. If a > 1, this strategy fails
and there will be a strict loss with constant power allocation even at high SNR. The precise
statement is below and the proof is in Appendix J.

Proposition 6.3 For every N, at high SNR (i.e., as
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L For a <1, we have kthr i 0and t oo. FurthermoTe, Csum —Csum ("P) —>• 0.

2. For a> 1 we have hthr I ho > 0 and t < oo. Here ho is the unique positive
point of the map

, . HM{h){a{l-F{h))-l)^
^ ail-F{h))

In this case, there is a strict loss in sum capacity by using the equal power allocation
scheme.

We would like to give an intuitive explanation as to why this result is a priori feasible: Recall
that successive decoding using the LMMSE receiver achieves sum capacity. At high SNR,
the LMMSE receiver behaves as a decorrelator (Chapter 5 in [26]) and nulls out the multiple
access interference. When a < 1, the entire multiple access interference can be nulled out and
thus we are back to the single user channel situation and we have the result that waterfilling
makes little difference compared to constant power allocation in this situation. However,
when a > 1, the multiple access interference is not completely nulled out and the structure
of the power strategy of the other users is still relevant. Having provided this intuition,
we now dispel another explanation: at first sight it might appear that as N grows large
the signature sequences of the users are orthogonal for a < 1 and are not orthogonal for
q; > 1 and hence provide the intuition for this result. However, as N grows, the users axe
orthogonal even when a > 1. In fact, when the random variables Vij are Gaussian, a simple
calculation shows that

max 0 as N oo
i^j \ j

and K grows polynomially in N.

6.3 Multiple Classes

We now turn to a generalization of our model by allowing users to have different average
power constraints. In particular, we assume that there are L classes of users; users in class I
have average power constraint p/ for / = 1... L. We assume that the number of users of class
I'ls KI = [Wq!/J). For the regime of large N a close observation of the heuristic derivation in
Section 3 shows that much of the analysis remains valid in this case also. In particular, when
there is no fading, the constant power policy is asymptotically optimal. In the general case
of fading, the structure of the optimal power policy based on the asymptotic calculation is
still waterfilling (73) but now the Kuhn-Tucker coefficient Ais different for users of different
classes and is chosen such that the average power constraints axe met: For any user i ofclass
/, the policy is

"••• ('• (100)

where /?*y is the SIR of a unit power user in a large system with users adopting this power
strategy and is thesolution to thefixed point equation (by anappeal to Lemma 4.8; analogous
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to (53)):

(101)

Analogous to the continuation in Section 3 for the single class case, we will sketch an argu
ment that ensures the existence of the quantities Plj and A/ and also demonstrates a simple
fixed point iteration algorithm that converges to the desired quantities. We will only discuss
the major changes from the corresponding steps in Section 3. Denoting *= the level
below which no power is transmitted by users of class /, analogous to (54) we have, from the
average power constraint on the power policy in (100), that is the solution to the fixed
point equation:

' _ / - /M \ r^^

_ HM (5,'2.)
P

Continuing from (101), analogous to (56), (57) and (58), we have using (102) that

=1- Ea, (1 - f (e))+t o, • (103)
In the single class case we were able to observe that was equal to the solution of a
quadratic equation (44). The natural extension is the following. Consider a system with
processing gain N where Ki users are received with the same power pi (this is equivalent to
transmit power pi but the fading is degenerate, i.e., hi(n) = 1) for / = 1... T. ks N oo,
assuming that ^ oci for every class /, it follows from Lemma 4.8 that the asymptotic SIR
of a unit (received) power user is a positive constant (3* ({p/, a/} / = 1... L) that satisfies the
fixed point equation (analogous to (44)):

Comparing (103) with (104) we observe that

g,. O-({f(>£))}:'. r.. l) , (105)
Analogous to the fixed point iteration of the map in (59) for the single class scenario, we
define the following maps for each class /:

ir /L L \ HM(hi)

^ 1+ ({^1"(1 -e^O)}
It follows from (102) and (105) that

Analogous to Lemma 4.10, we justify the existence of h\2r by the following proposition:
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Proposition 6.4 Consider the fixed point iteration:

hi (0) = 0 V/ = 1... L

/i;(n + l) *= /C/(/ii (n),... ,/i£, (n)) Vn > 0 , V/= 1... L .

Then {hi (n)}„ is an increasing sequence that converges to h\2r for each I = I... L .

Thus /ij2r exist as the limits of the fixed point iteration above. We omit the proof of this
proposition while pointing out the replacement of the key observation (163) in the proof of
Lemma 4.10: For every / = 1... L,

where

)Ci (hi,.. .jhL)>h

^ . f(h.hA{p,h +"') ^ +g p,h +b^mf(/,, hi)

This also shows the uniqueness of h[2r' The formal statement of the optimality of this power
allocation solution, analogous to Theorem 5.2 is below and the key ideas of the proof are all
contained in the proof of Theorem 5.2.

Theorem 6.5

lim sup VN (cipt^ - Csum I= I... L)) <oo and Ki = [a/ATJ .
N-¥oo ^ '

Extensions of the observations made in Section 6.2 to the multiple class scenario are natural.
Constant power allocation (equal to pi for users ofclass /) to the users incurs no loss in sum
capacity as compared to the waterfilling scheme at high SNRif and only if < 1.

7 Numerical Examples

In this section we demonstrate the value of our theoretical results by simulating different
power control strategies in a Rayleigh fading channel and plotting the corresponding sum
capacities achieved for various parameters of loading and SNR. We assumed that the com
ponents of the signature sequences are distributed as zero mean, unit variance Gaussian
random variables (our theoretical results show that the actual distribution does not matter;
so long as it has zero mean, unit variance and bounded fourth moment). In Fig 1, we plot
sum capacity with the constant power allocation and also with the optimal power allocation
policy (this policy depends on the actual realization ofthe signature sequences). We observe
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Figure 1: No fading scenario. Sum Capacity is plotted with the optimal allocation and the
constant power allocation policies with N = 32.

that there is very little difference in sum capacity between these two policies. Thus N = S2
is already large enough for the difference to be very small. Assuming Rayleigh fading, Fig 2
and Fig 3 plot sum capacity with three different power allocation policies: the asymptot
ically optimal waterfilling policy, the optimal power allocation policy (which is a function
of the realization of the signature sequences and fading) and the constant power allocation
policy, for different values of SNR and number of users equal to N/2 and N respectively.
The first observation from Fig 2 and Fig 3 is that the sum capacity with the asymptoti
cally optimalpolicy of waterfilling is already very close to that with the optimal policy even
at AT = 32. Furthermore, from Fig 2 we observe that with the number of users per unit
processing gain being small (a = 0.5) the difference in sum capacity by using one of these
two policies as compared with the constant power allocation policy (constant for all fading
levels and realizations of signature sequences) is fairly small. Fig 3 shows that this difference
increases when a is increased to 1. This observation is in concord with the observation in
[6] that waterfilling gains very little over constant power allocation policy in a single user
fading channel for reasonably high SNRs. Proposition 6.3 predicts that the penalty in sum
capacity by using the constant power allocation policy grows with the number of users per
unit processing gain. We observe this behavior in Fig 4 where we have plotted sum capacity
for fixed SNR (5dB) versus the number of users: while there is very little difference in sum
capacity between the optimal power allocation and waterfilling policies, the penalty by using
constant power allocation policy grows with the number of users.

Even though closed form solutions are not known for the optimal power allocation policy
(these depend in general on the instantaneous realizations of the signature sequences and fad
ing gains), we can compute numerically the sum capacity with the optimal power allocation.
We used the software maxdet available in [31] to arrive at the optimal power allocation;
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Figure 2: Rayleigh fading scenario with N = 32 and K = 16. Sum capacity in bits/s/Hz is
plotted with the optimal allocation, asymptotically optimal waterfilling allocation and the
constant power allocation policies.

the software provides an interior point algorithm to solve the determinant maximization
problem:

max I (pi,... ,pA',Ai,..., Aa')
Pi>0

(107)

f K \ ^where I (pi,...,pA', Ai,..., Aa') log det I/ +^ SislhiPi) +^ A,- (p,- - p)
\ t=i / t=i

We obtained sum capacity at power prices Ai,...,Aa: by averaging the scaled (by 1/2N)
maximal value of the optimization problem above (107). Sum capacity is then the smallest
value over all power prices (the corresponding prices are known as "equilibrium power prices"
or Kuhn-Tucker coefficients; this is from standard Lagrange theory in convex analysis - see
Corollary 28.4.1 in [14]). From the proof of Theorem 5.2, we have a good guess for the
Kuhn-Tucker coefficients: Ai = ••• = Aa' = Pl^jhthr- The actual power prices were found by
a line search. The solution to the optimization problem (107) with the equilibrium power
prices gives the optimal power allocation and thus we arrive numerically at sum capacity
with the optimal power allocation policy.

8 Multiple Antenna Systems

We now turn to the multiple antenna model and refer the reader to Section 8 of [22] for
a discussion of the standard model and advantages of this diversity scheme. A baseband
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Figure 3: Rayleigh fading scenario with = 32 and A' = 32. Sum capacity in bits/s/Hz is
plotted with the optimal allocation, asymptotically optimal waterfilling allocation and the
constant power allocation policies.
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Figure 4: Rayleigh fading scenario with N = IQ and SNR = 5dB. Sum capacity is plotted
with the optimal allocation, asymptotically optimal waterfilling allocation and the constant
power allocation policies versus number of users.
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model for a synchronous multiaccess antenna array channel is

K

K(n) = X^X,Hh.(n) + W(n). (108)
»=1

Here, n denotes the time of channel use, Xi (n) is the transmitted symbol at time n of user
i and Y (n) is a. N dimensional vector of received symbols at the N antenna elements of
the array at the receiver. The vector h,- (n) represents the fading of the ith user at time
n at each of the antenna array elements and the entries are independent and identically
distributed complex stationary and ergodic processes. W (n) is an additive white proper
complex Gaussian noise process. Making the cissumption that the channel fading of the
users can be measured and tracked perfectly (implicit is the notion that the time scale at
which the path gains change is much slower than thesymbol rate of the system) and that both
the transmitter and receiver know the fading state, the multiple antenna MAC model is very
similar to that in the long random signature sequence model with no fading (i.e. A,- = Ic.s.
in (1)). The key difference is that the entries of the signature sequences s, are scaled by ^
in the CDMA model (1) while the entries of h,- are not. Thus defining s,- = we arrive
at the following expression for the sum capacity of the multiple antenna MAC (analogous to
(9) and (10)):

sup sup
K

2N
log det I/ + A" ^ cr '̂ SiS^{Pi (5)

i=l

Some remarks about this expression are now in order: The power allocation policy V now
depends only on 5=y/N j^hi,..., Ha'] and the sum capacity with the power allocation policy
V in nats/s/antenna is written as {V). The sum capacity ofthe MAC is (as in (9)) the
supremum over all valid power allocation policies. The difference in the expression for sum
capacities when compared to that of the CDMA model is that the received power is scaled
by N?

We expect the result of Theorem 5.1 to hold in this case also in some appropriate sense,
i.e., the power allocation policy ofconstant power over all fading levels isasymptotically (in
the number of antennas at the receiver and corresponding number of users) optimal. We
retain our earlier notation of V to denote the static power allocation policy and formalize
this result below:

Theorem 8.1

Umsup (N) - (P)) <

^In the underlying physical model, the received power does not arbitrarily increase as N increases. As
N becomes too large, either the size ofthe antenna forces the received power to become constant (since the
spacing between the antennas axe at least half the wavelength apart) or the distance from the antennas to
the users increases (allowing us to keep the same size of the antennas) forcing the received power to become
constant. For small values ofAT, thislinear increeise in received power isjustified. We look at theasymptotic
ofsum capacity in the regime of large N in this scenario nevertheless since we believe that the asymptotic
value ofsum capacity is reached even for small values of N. Then linear increase in received power is the
relevant model since we are primarily interested in the regime of small number of antennas.
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Figure 5: Sum Capacity in bits/s with 1 antenna at the receiver is plotted versus number of
users at a fixed SNR level of 5dB with both the optimal and constant power allocations.

Here Kp is some constant independent of N. We relegate the proof of this result to Ap
pendix K. This result is rather surprising from the context of the results for the case of
A = 1, the single antenna scenario. When there is only one antenna the optimal power al
location policy is to let only the user with the best channel amplitude transmit and for that
user to follow the waterfilling power policy [10]. The gain in sum capacity by following this
strategy over the suboptimal policy of constant power allocation to the users at all fading
levels can be substantial; the larger the number of users, the larger this multiuser diversity
gain is. Fig 5plots the sum capacity with both these power policies assuming i.i.d. Rayleigh
fading from the users to the single antenna. We can see that with an increasing number of
users, the gain in sum capacity is widening. However, when there are a substantial number
ofantennas, thegain by utilizing multiuser diversity vanishes and the constant power alloca
tion policy performs just as well. In Figure 6, we plot the sum capacity as a function of the
SNR of the users when following the optimal policy as well as when following the constant
power allocation policy. In practice, a small number of antennas is considered practical at
the receiver (to validate our assumption that the paths from any user to each antenna have
independent fading, the antennas have to be at least half a wavelength apart and this gen
erally implies a strict restriction on the number of antennas given the size of the receiver).
We assume N = b antennas for our simulations. In this simulation we assumed further that
each component of h,- (n) is i.i.d. complex Gaussian with zero mean and variance 1. We
observe that the loss in sum capacity with the constant power allocation policy as compared
to the optimal power allocation policy is not huge even when N is very small (A" = 5 in this
simulation example).
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Figure 6: Sum Capacity in bits/s with 5 antennas at the receiver is plotted versus the SNR
of the users with both the optimal and constant power allocations.

The antenna model of (108) implicitly assumes that the users are approximately equidis
tant from the antenna array. The vector of path gains from any user i to the antenna array
can more generally be modeled by h,hi where h is as before and h,- is a scalar complex
number that is independent of the vector h,- and models the (slowly varying, when compared
to the components of h,) component of the overall path gain that captures the distance of
user i from the receiver and the shadowing loss of the signal of user i. Then the received
signal at the antenna array in symbol interval n is

K

Y{n) = Y, ^i(n)hihi (n) + W(n) .
t=l

This model is now very similar to the DS-CDMA model in (1). The asymptotically optimal
power allocation policy in this model, analogous to the results we have for the DS-CDMA

A

case, is waterfilling. This policy depends only on the slowly varying component h,- for user i
and some constants that depend on the statistics of the stationary fading distributions. The
formal result will be analogous to Theorem 5.2 and we do not pursue this here for brevity.

9 Conclusions

Though we have identified the asymptotic structure of the optimal power allocation policy,
it remains an important open problem to find a closed form expression for the exact optimal
solution for every finite system size N and fixed signature sequences and path gains. A
closed form expression for the optimal powers as a function of the signature sequences and
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path gains appears to be unattainable. In fact, exactly this optimization problem (a finite
dimensional generalized version of (9)) is considered in [24] where the authors derive interior
point algorithms that converge to the optimal allocation; these algorithms have worst-case
polynomial (in N, the system size) run time complexity. A software routine that implements
the ellipsoidal algorithms for determinant maximization is available in [31]. Nevertheless,
the waterfilling power policy identified in this paper is very appealing practically, due to its
simplicity and the computation requirements to arrive at it is practically nil. The fading
statistics can be estimated and used to adaptively compute the threshold level of the water-
filling strategy using the fixed point iteration outlined in the paper. Though our estimate
for the gap in sum capacity between this policy and the optimal policy is of the order of y/N
for large A, our simulation studies suggest that this gap is very small, even for reasonably
small values of N. In the context ofmultiple antenna systems, we saw this for a very small
number of antennas (N = bin our example). Thus, even if closed form expressions could be
found for the optimal power allocation policy, it might not be worthwhile to implement the
optimal allocation because of its complexity.

Another natural extension of the problem formulation in this paper is to characterize
power policies that maximize any lineax functional ofthe rates at which the users can jointly
reliably transmit. This problem was addressed and solved in [21] for multiple access fading
channels with a single degree of freedom. The extension of this result to multiple degrees of
freedom remains an important open problem.

A Proof of Proposition 3.1

We first recall a special case of the central result of [19] regarding the convergence of the
empirical distribution of eigenvalues of a random Hermitian matrices: Let Gn be the em
pirical distribution function of the eigenvalues of Sis\hig {hi) (there are N eigenvalues).
Then 0^ converges almost surely in distribution to a deterministic distribution G* where
the Stieltjes transform m (z) of G* satisfies the fixed point equation:

Here the Stieltjes transform of a distribution function G is defined as

mo (2) =j j^dG(\) .
It also follows from [19] that the support of G* is bounded above by Kgh (1 -f y/a)^ where
Kg denotes the upper bound on the function g. Applying Theorem 1.1 and its corollary of
[1] to our case and denoting Ks = IKgh (1 ^/a)^, we have that

IP [Gtv (Ka) = 1 for all large A/^] = 1 .
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Thus we have that

1

2N̂
log det ^/ +2<7 ^Sis'ihig {hi)j = ^̂ log (l +Act dGff (A)

^ lJios{l +A<7-^) dG' (A) (109)
^sum

We now show convergence to in the first moment. We have

1

2N

1 ( ^ \ I ^—log det +S <^~'̂ Sis\hig (ft.)j < ^ £ log (l +<7"^ft,ff (ft,)s-Si) (110)

< 2^Elog(l+^"'̂ ^. '̂̂ .) (Ill)
< 3'a-

1=1

where (110) follows from the Hadamard inequalityand (111) follows from the fact that hi < h
and g is bounded above by Kg. Since

1 ^ nJ- V—^ f a.s.,L*

t=l

the proposition follows from the pointwise convergence result above (109) and the dominated
convergence theorem. •

B Proof of Proposition 4.1

We have

1 ^^ ^ EE [log (i+cT-^sihiV: (ft„..., hK, 5))]

= [log (l +u-'̂ s\sih{Pl {hi,..., Hk, 5))]

- W + (112)
2

where the derivation of these inequalities is completely straightforward. Using Jensen in
equality conditionally on hi^si, we have from (112) that

<^sup {e [log (l +slsihiP (/ll5{5i))]} (113)
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where the set T2 is defined as

T2 = >-> E^7^ .
Now, for every "P 6 ^2 we have

E[log (1 +s\sihiV (/iisi^i))] < log2 +E[log {2his\siV (AisJsi))]
< 2log 2+log (e [AisJsi]) +log (e [7^ (^i-SiSi)])
< 2log 2+log (hp) (114)

where we used Jensen inequality in the derivation of the last but one step. Now combining
(114) and (113) we have shown Proposition 4.1 by denoting Kc =log2 + |log (hp). •

C Proof of Proposition 4.2

This result is fairly well known: [20] shows the concavity of a somewhat modified map but
the reference is slightly obscure. The authors in [24] consider a slightly generalized version of
the map (28) and mention that the map is known to beconcave. We offer the following proof
beginning with some notation: For any a: = (xi,... ,x„)' € M", let xjij > ••• > denote
the components of x in decreasing order, called the order statistics of x. Majorization is a
partial order on the elements ofR" and makes precise the vague notion that the components
of a vector x are "less spread out" or "more nearly equal" than are the components of a
vector y by the statement x is majorized by y.

Definition C.l For r, p GR", say that x is majorized by y (ory majorizes x) if

Ef=ia:[i] < Ef=i2/W, h = l,..n-l
Er=i ^[i\ = Er=i y[i\

A simple (trivial, but important) example of majorization between two vectors is the follow
ing:

Example C.l For every a G R" such that E?=i = 1;

(ai,..., arff majorizes f-, i,...,
\n n nj

Real functions on R" that are monotone nonincreasing in majorization order are called Schur-
concave functions. Formally,
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Definition C.2 A real valued function ^ : K" —J- IR w said to be Schur-concave if for all
x,y E 7^" such that y majorizes x we have <l>{x) > <l>(y).

An important class of Schur-concave functions is the following (Theorem 3.C.1 in [11]):

Example C.2 Ifg :R R is strictly concave then the symmetric concave function ^{x) =
Z)?=i 9 (®t) Is Schur-concave.

Let A and B be two symmetric matrices of dimension n x n. Let and A^ denote the
vectors of eigenvalues of A and B respectively. The following result (Theorem 9.G.1 in [11])
shows that the eigenvalues of A -f 5 (the components of the vector A"^"*"^) axe less spread
out than the sum of the order statistics of the eigenvalues of A and B:

Lemma C.l For any two symmetric matrices A and B,

..., is majorized by (A(5| -|- A^j, ...,Af^j -|- A |̂)*

We now use these results to show that the map C is strictly concave. Fix and in the
positive orthant in For every rj E (0,1) we have

T] log det £P^^hiSis'̂ +(1 -v) log det j
=1Slog (l + + (1 - l)E log (l + (115)

i=i j=i

<2 log (l +1 +(1 - »?) (116)
i=i

<Elog(l +Af') (117)
i=i

=log det l"/ -j- H- (1 - r/) /liS.sA (118)
\ j=i

where (Aj^^ ..., AjJ^) is the vector of eigenvalues of the matrix (/ 5,s|/iipf for t =
1,2. Also, (Ap\ ,.,,AjJ^) is the vector ofeigenvalues of the matrix H- Efei (wl'' +(1 - »7)Pi '̂) hiSis{\
Then (115) follows from recalling that Apj,..., A[;v] are the order statistics of the Ai,..., Xn.
The inequality in (116) follows from concavity of the logarithm function and is strict unless
Ap]^ = A[Jj^ for every j =1...N. The inequality in (117) follows from Lemma C.l and from
Example 0.2. This inequality is strict unless the two matrices {[/ + }
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have the same eigenvectors (i.e., the two matrices commute) and if the eigenvalue corre
sponding to an eigenvector for <= 1is A[?j^ then the eigenvalue for i = 2corresponding to
the same eigenvector is A[^j^ for every j = The equality (118) is just definition of
the eigenvalues A^^). Thus, we have shown the map in (28) to be concave (in fact, we have
shown that the map in (28) is Schur-concave). Furthermore we have shown that the map is
strictly concave if and only if i = 1... FT} are linearly independent. •

D Proof of Proposition 4.4

'opt

»f from (31). Define functions /o,..., /a from
reals as follows

fo-V ^ CZ^-C^^(V)
t .T, . . E(7'j)-p ,/i •^ 2W ' 1 ^ •

We first observe that the functions fj are finite on the domain Now, by definition of
Ckpt\ the system of equations

fo{V)<0Ji{V)<0,...jK{V)<0

has no solution V G Consider the following claim:

K

I
i=o

We fix N throughout this proof. From Proposition 4.1 we know that is finite. Recall
the definition of from (31). Define functions /o,... ,/a- from to the non-negative

3Ao, Ai,..., Aa > 0, not all zero such that Aj/j {V) > 0, VP G . (119)

Suppose this is true. Our first observation is that Ao ^ 0since (P) > 0is impossible
for all P G Thus dividing throughout by Aq, (119) can be rewritten as

Csum (P) - E (E [Pi] -P)< VP G
3=1

and hence
K

> sup Csum CP) - ^ ^ (120)

By the symmetry among the users, it follows from (120) that for every permutation a e Sk
we have

sup |c..„(P)-i:^(E[7>,(/».,...,/iK,5)]-p)| . (121)
( j=i J
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Observe that the map on the positive orthant of

sup \c^,„{V)-Y,^{n[Vj{hu...,hK,S)\-p)

is concave. Defining A= a-nd using in (121) the concavity of the map above we
arrive at

m ^
~ {P:V

Now we have for every A > 0 that

^opt ^ >sup_^ AT) (''I' •••• 5)] -p)| . (122)

<a.m (^) - ^ E(Em- p). VT' 6jpi"'
Since C we have for every A > 0

sup ja.m(^)-5^i:(E[7',]-p)l (123)
j=l )

Combining (122) and (123) the proof is complete. It remains now to show (119). To see
this, define

Ci = {z =(r,o,...,VK):3V€:Fi''̂ 3fiiV)<r,i,Vj=:0...K}
C2 = {2; = (7?0,...,7?A'):'?J <0? Vj = O...A'} .

It is seen that Ci is a convex nonempty set in and Ci H C2 ^ 4>- By the separation
theorem for convex sets (Theorem 11.3 in [14]) there exist Aq, ..., Xk-, not ail zero and real
a such that

K

Y^Xj7}j > a, VzGCi, (124)
i=o

K

J2Xj7)j < a, \/zeC2' (125)
i=o

Now (125) implies that a > 0 and Xj >0, = 0... K. Fix V 6 Since fj (V) is finite
for every j = 0... K we have for every 6 > 0 that

(fo i'P) Ik (V) e) 6 Ci

and substituting this in (124) we have

E -^1 UjCP) + £) > 0, v« > 0, yv e .
j=0

Since this is true for every arbitrary e > 0, we have shown (119). This completes the proof
of Proposition 4.4. •
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E Proof of Proposition 4.5

Fix one realization of fading gains /ii,..., /i/c and signature sequences S. Since the map C
in (28) is concave, any tuple of of powers (denoted by (pj, •••,Pa')) ^^^-t maximizes

A ^
C(pi,---,Pk)-(126)

in the positive orthant of has the following structure

dpi

Pi =

-^{Pi,---,Pk) = (127)

1 1

s| (<t2/ + Sjs'jhjp'̂ ' Sihi f \li=l...K . (128)

The derivation of (128) from (127) is completely analogous to that of (21). If the realization
hij.. .^hxyS is such that 2= 1... K} is a linearly independent set then C is strictly
concave and the solution Piin (128) is unique. In general the solution set is a
nonempty convex set.

We now construct a power allocation policy that is equal to pj,... at the realization
hi,..., hK,S. If there are no point masses in the distribution F and in the common distri
bution ofVij then with probability 1 we have {hiSiS^ 2= 1... /sT} are linearly independent
and C is strictly concave. In this case the tuple (Pi,...,p^) is uniquely defined almost
everywhere (the value depends on the realization of fading gains and signature sequences).
In this scenario, we define the power allocation V* for every user i as:

Vnhu...,hK,S)'̂ 'pr. (129)
If there axe point masses in F and the common distribution of Vij such that there is apositive
probability of i = l...K} being linearly dependent, then on these realizations, the
solution set (pj,... ,pjj.) is closed and convex and we select any of these points to be V* at
that realization of fading gains and signature sequences. Since there is ambiguity in V* only
on point masses, we still have V* a measurable function of hi,... ,hK,S foi each 2= 1... A'.
More generally, we can appeal to general measurable selection theorems ([30] is a good
review on these results; Theorem 3.1 is relevant to our case) to select a measurable V* that
satisfies the property (128) at almost every realization offading gains and sequences. Since
for (almost) every realization of fading states and signature sequences V* is the maximizer
of the map in (126), it follows from Proposition 4.4 that

= Lx (V*) = sup Lx (V) (130)

where Lx maps to the reals as

A ^Lx'-V^ Csum C"^) - ^ S (E [Pi (hi, ...,hK, 5)] - p) .
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Furthermore, it follows for any V € that

Lx{V) < C^i for Vnot satisfying (128) on realizations of positive measure. (131)

Thus if wecan showthe existenceofa powerallocation policyV* € wherethe supremum
of (9) is achieved, the claim of this proposition follows from Proposition 4.3 and (131). We
now show the existence of such a power allocation policy.

Fix a realization hi,..., Hk-, S and consider pj,... defined in (128). Since each of the
PI is bounded from above (by A~^) it follows that V* € and furthermore

E[^r(hi,...,hA'.5)] = --. = E[^i.(hi,...,hA-,5)]>p

for each z = 1... /if. We used Proposition 4.3 in the observation that E[P*] cannot be less
than p for any z= 1... A^. From (130) we conclude that if we can show that E[P^] = p, we
have proved the claim of this proposition that

= Ia (V) = (V) .

Fix p > 0 and let us denote the (measurably selected) power allocation policy P*^ which
maximizes in In the previous notation P* maximizes L\. We begin with the
following claim for any 0 < a < 6:

p : p H-)- E[Pi^(hi,..., /za', 5)] is continuous on p € [a, b] . (132)

Suppose true. Now p(p) < i and thus as p ^ oo we arrive at g (p) ->• 0. From Proposi
tions 4.4 and 4.3 we have, for every p > 0, that there exists Pp > 0 such that g(pp) > p.
Using (132), given pwe have Asuch that g(a) =p. Observe that

^opt ~ sup Csum (^) ^

< sup L-,{V) <L-Jv')

where we have used the hypothesis that g(^*^) =pin the derivation of the last step. Thus

(7"') . (133)

We will now show that Amust equal A(proposed by Proposition 4.4) and complete theproof.
By the concavity ofL\, for any P G that does not satisfy (32) on realizations (of fading
gains and signature sequences) with positive probability measure, we have L\{P) < L\ {P*).
Using (133) and Proposition 4.4 we arrive at A = A. It only remains to show the claim in
(132). We only show this for thecase when C is strictly concave for almost every realization
of /zi,... The extension to the general case when there are realizations of positive
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measure which lead to non-strict concavity of C is not pursued here. Fix 0 < a < 6 and a
realization of /ii,..., Hk-, S. We first observe that the map

(pf,• •.,Pk) ='C'(pi,• ••,PJ^) - ^E(?•• -p)
is continuous for every realization oi hi,..., Hk, S such that C is strictly concave. For such
realizations, G is invertibleand we have (from (32))

4 +2 ^iPTsis\^ Sjhj = =l...K . (134)
Fix a < /i < 6 and consider ^ ^jl m [a,h] as n -> oo. Observe that the image of
[a,b] under G in the positive orthant of is contained in the box [0,a~^] x
Furthermore, the image isclosed (using (134)) and thus compact. Now consider thesequence

")}„>! in the compact image G[a,h\. There exists a subsequence
and some jj, e [a, 6] and such that p*"'". From the continuity of the inverse of
G (using (134)) we arrive at pi„ ^ p. By hypothesis, Pn fJ- and thus p = p allows us to
conclude that G(pn) -)• G(p) showing the continuity ofG. Thusfor almost every realization,
we have shown continuity ofG. Fix e > 0and by Egoroff's theorem (Theorem 3.6.23 in [15]),
we have uniform continuity of the map

on a set S such that P[(/ii,..., Hk, S) ^ S] < Hence there exists no such that Vn > no,
we have on £,

IT>'̂ . -V"'\{hu...,hK,5) <I. (135)
Then,

|p(Pn)-p(p)| < E[\-P""'-V"'\]

< e, Vn > no

where we used (135) in the last step and the fact for every a < p < b that V*^ < a~^ in the
second step. Since e is arbitrary, we have completed the proof of (132). •

F Proof of Theorem 4.7

Fix the processing gain N and the numberof users K = [aN\. From the argument following
Proposition 4.4 and (128) we know that any optimal power allocation has the following
structure:

v:{hu...,hK,s)=\^-— ^—I —
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Here the notation emphasizes the dependence of (the Kuhn-Tucker coefficient) Aon N.
Thus we have V* < a.s. and if we can show that

inf{A('̂ );Ar>0}W^>0
the proof is complete. We now show that A^^^ is uniformly lower bounded (uniform in N).
Denote (static) power allocations that alloj:ate constant power (say p) for every realization
of the fading and signature sequence by V(p) . The sum capacity with this static power
allocation converges pointwise to a nonzero constant in a large system. Formally,

Osum (p)) ^^sum (p) ^ ^ OS N OO . (136)
Using results about eigenvalues of large random matrices, we show a more general version
ofthis result in Proposition 3^1 and (p) has an explicit expression given in (26). It also
follows from this result that (p) —>• oo as p —>• oo. Some simple monotonicity properties
of Csum and axe follows:

^sum (•P(pi)) > ^sum (P2)) whenever pi >p2 for each fixed N. (137)
^Lm(Pi) > (P2) v/henever Pi > p2 (138)

We fix p such that

> a (Kc + 0.5) (139)

where Kc is equal to log2 +| log (hp) defined in the proof of Proposition 4.1. Defining the
function on the positive reals

ffw (m) = sup ICsum - p) I
we recognize from (123) that Piv(/i) > > 0- By definition of A*"', from (30) we
conclude that

9N (a'̂ ') = minpjv (/<) = . (140)
Now suppose infyv A^^^ = 0. Then there is a subsequence {zn}„ such that lim„_).oo A^*"^ = 0
and an integer no such that A^*"^ < p for all n > no. By definition, we arrive at

=fl.. (P (3^)) - I . (141)
In (141) the power allocation V allocates constant power equal to for every
realization ofsignature sequences and fading states (recall notation from Section 4.2). Fur
thermore,

liminfa.„ (^ (^)) > \MCsumip{j
P.

= (^) (142)
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where we used (136) and (137). Combining (141), (142) and (139) wearriveat a contradiction
to Proposition 4.1. Thus the Kuhn-Tucker coefficient is uniformly (in N) lower bounded
and denoting the lower bound as K~^ the proof is complete. •

G Proof of Lemma 4.9

The essential ingredients of the proof are all contained in Lemmas 4.3 and 4.4 of [23] and
we only indicate the key points of departure. In particular, a close study of Lemmas 3.2,
4.3 and 4.4 of [23] reveals that the statement made as Lemma 4.9 in this paper is true for
the situation when hi = 1 a.s. and g{-) = 1. Below, we keep consistency with the notation
of [23] and point out the main steps in generalizing the results to the general case here. We
use KpjCiji = 2, ..,21 to denote constants that are independent of N.^

Let =slZr^Si where, (recall notation from (47)) Zi = (a^I + sis^hig (h/)). Let

where Z- Zi-\- Sis\hig (hi). Let and P^^^ denote E[/?P^] and E[pi^^] respectively. In
this notation, we need to prove that

[(-T'-ftflsf. (i«)E

We show (143) by the following sequence of bounds:

E [W"'-/)!")"] < I (14.)
VTpD < § (I«i)

IeK'I-"'! S %• (»e)N

Now, from Lemma3.2 of [23], it follows that

E[(or-r')"i-i «,Hj < ^(Ai„(v)')
< 9iL
- N

showing (144). To show (145) we closely follow the proof ofLemma 4.3 of [23]. Let A=
and Aj = ^Z\ —SjSjhjg [hjfj for j > 2. Let ]E^- [•] denote the conditional expectation

®The constant Kp used in the proof of this lemma is unrelated to the uniform upper bound Kp on the
optimal power policies which was identified inTheorem 4.7; we use it here to keep consistency inournotation
with that of [23].
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E[- ISi, hi, 2 < I < j]. We denote the received powers as qj = hjg(hj) and q= Using
the matrix inversion lemma,

K

EtrA - trA = ^ (E; - E;_i)
j=2 ^ "h

Denoting

~ ^ ~ 5 ~ "TT t~A ' ~ i -\t iTn4.—T"
^ ^ 1 + 1 + qN-^m.vAj

Cj = s]AjSjqj - qN-^nvAj , Q= s^AjSjqj - qN-HiAj
and using some algebra only slightly modified from that in the proof of Lemma 4.3 in [23],
we get

Efe -i^-i)i,V' = ho]3=2 ^ + ^j^jSjQj j=2 3=2
K

~^N ^2 ~ [^jO ~
3=2

W1-W2-W3 .

Since is uniformly (in N) upper and lower bounded (since hj is bounded by h and p is a
bounded function, bounded by Kg), it suffices to estimate E[Wi/bN] and ElW^/bj^] , i =
2,3. We begin with the following key estimates, for p = 2,4:

E[la,n <C7 . (147)

E[1 Ci I"] <Cs . (148)
EllOn <C9 . (149)

From Lemma B.l of [23] (as in Eq (33) of ([23])) we have for p = 2,4

E - iV-'tr^l)'] <CioN-i . (150)
To see (147) with p = 2, observe that

Eh] = E Eh] - E[(iV-HrAf)']
= ® Ehj'+E[(iV-'trAf)'] (e [9?] - 9^)

yv (78

where we used (150) and the fact that trAj < in the derivation of the last step. This
shows (147) for p = 2. Also,

Ehi = E[hA^Sj)'] Eh] - 3E [(iV-HrA?)'] ^
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+6E (iV-'trv4|)^] fE [9?] - 4E [(4'4j-5j)' iV-4rA|] p [9?]
= E +3E [(Af-'trA?)'] (e [9^] -

-6E [(4/l|s,)' (Af-'tr4f)'] (e [9I] - 9% [9?])
+4E (e [9I] - m[<?!])

rl6
a'

where we used (150) in the last step. This shows (147) for p = 4.

From Eq (34) of [23] we have, for p = 2,4,

E - Ar-'trA,)'] <C„iV-f .
Observing the similarity in definition of aj and Qand in equations (150) and (151), we have,
completely analogous to the calculation for aj above.

rl6

E
J J —

^ C„A^A-| ^h'̂ Kl
N

thus showing (148).

Now,

E a <

0 - c-

<7^

Cn 3h^K^ 4h*K*E
Af2 <78

IP _

N
(tMj-E[tMj]) I"

< I^Mj +eM,])!"

^ &)'•
and an appeal to (148) shows (149).

(151)

We now return to the estimates on Wi,i = 1,2,3. As in the proof of (Lemma 4.5,[23]), we
have that {E,- [0^]} is a martingale difference sequence and using the Burkholder inequality
(Eq (30),[23]), we have, identical to Eq (32) of [23],

^[wiiy's] < k^e E(iEbK])'
3=1

< a'.EeH]
3=2

< aKj,C7N
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where we used (147) in the last step. We have that |lE^- [ajCi]} ^martingale difference
sequence and using the Burkholder inequality (Eq (30),[23]), we have as in [23]

= E E;
J=2

A

< C12E

2C

2®7-i [(^i [^iO]) I"f" ( '̂ [^iO])
j=i ^ ^

<

<

PEe
j=l

2cxCi2Cs
N (153)

where we used (148) in the last step. The bound involving W3 is very similar and we have
as in [23],

E[Wi/b%] = E
K3=2

K

Thus we conclude that

< Ci3 (e [a^jCj] +E[Cj-
i=2

= Ci3(A--l)(E[a2C|]+E[C2^])
< C13Q CgCj +Cg^ N.

Var(A^^^) = ;^Var(trA)
= [(Wi - W2 - W3)^]
<

C 14

N

(154)

where we used (152), (153) and (154) in the last step. This completes the proof of (145).

To see (146) we closely follow the proof ofLemma 4.4_in [23] and indicate below only the
major deviations. Using the fact that hi is bounded by h and that g is a, bounded function
(bounded above by Kg), following the proof of Lemma 4.4 in [23] we get

Var <% and | >- m l< ^ ^ .
/ - TV ' (t^N N

Writing we obtain as in Eq (41) of [23]
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Recalling equation (27) of [22] relating the SIRs attained with we have, almost surely,
as in Eq (39) of [23],

In our notation, (157) can be written as

^ î 1+ +Af) h,g iK) =̂
Writing ^ ^e have

l+/3o hig{hi)

1+ +Af') /i.s (A.) 1+pi^hig (hi) ' 1+ ^.5 (/i.)

for some f,- G[O, U Now

and

and thus (1 + Cig. Substituting this upper bound in (159) and integrating (158) we
arrive at

>

~ I(hi)
-1

cr^ + hig (hi)

_ Jl dF{h) |< 921

, r'k 0i^^hg(h)dF{h) , C20
'-l Ji'iLni 'i^T-

Now consider the map

+ Phg{h)

From (160) and Lemma 4.8 we have

/ (/3f') l< % ViV and / (/?;) =0. (161)
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Now,

/(«-/») .

I/(-9^0 -/ (-9;) I>I '-;9; I|<7^ +ajT' ftff (ft) c(F (ft)I
> Cn 1,3f' - /?; I • (162)

Combining (161) and (162) we have shown (146) completing the proof of Lemma 4.9. •

H Proof of Lemma 4.10

A key observation from the quadratic f3* (p, a) satisfies (in (45)) is the following:

a: (ft) >ft +aj h-F(ft) - ^dF{ho)^ >1. (163)
To see this, define

Now,

d^f PHM (ft) -drf ^ ^ X
(l - F(ft)) ^ ^

IC(h)>h HM(h)>h +phj3'(p,a)
HM (ft) - ft

hp
>l3'ip,a) (164)

1+P—

<7^
HM fft) - ft HM fft) - ft

+ a '' > 1
ftp HM (ft)

where (165) follows from (164) and (44). Now the claimin (163) follows directly from (166).
The following statements now follow from the key observation (163).

< 1 —TTTT <1, V/i > A> AGsup(F) (167)
/C(A) ~ ic{h)
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h

5c~(^ ~^ ^ 5c~(A) ~ sup(F) (168)
/C (/i)—>• 0, as h—yJi (169)

If HM{0) > 0 we have /C(0) > 0, it follows from (169) and by the continuity of F that fC
has at least one fixed point. We show that /C has a fixed point hthr by explicit construction
of a sequence of points that converges to hthr and in the process uniqueness will follow.
Consider the following iteratively defined sequence {/i(w)}„gj^. Let /i(0) = 0. and h(n) =
/C(/i(n —1)), n > 1. We have /i(l) = /C(/i(0)) > /i(0) = 0. We show by induction that
h(n)>h{n-l). Suppose h{k)>h{k-\),\/k<n. Now, substituting h = h = h{n) and
h = h{n —1) \i follows from (167) that

h(n) _ h{n)
1C{h{n)) /i(n + l)

This shows that {h (n)}^ is an increasing bounded sequence (bounded using (169) and re
calling that K is continuous) and hence h (w) t hthr for some hthr in the support of F and
hthr is afixed point of K. Furthermore, for h6 (hthr,^-, it follows from (168) that

2^ hthr ^ h
K,{h) K{h)

and hence K{h) < h for all h e Now suppose HM{0) = 0 and thus /C(0) = 0.
We need to show that for small enough h, we have JC{h) > h and thus the fixed point
iteration can start from such small enough nonzero h. Substituting ^ in (163) we arrive
at K > h for some ^ > 0 if we show that

I'h (x ~^) ' (170)
Observe that the integrand in (170) is the waterfilling power allocation policy in (15) and
maximizes the single user capacity in (14). Suppose

I-so ^h 1^0 yh>0

for some constant Kd- Then, we have

'lu5er (h) = \JMo, (l +koa-^ (I(ho)
< log 2-{- i log (hKd) , >0 (171)

where we used a technique similar to that used in the proof of Proposition 4.1 to derive
the last step. Since Ciuser can be made arbitrarily large by choosing the average power
constraint of the power policy p arbitrarily large and for every choice of p the corresponding
single user capacity Ciuser is achieved by the waterfilling policy of the form (^ — we
have a contradiction to (171). Thus there cannot be a uniform bound Kd and we have shown
(170). This shows that hthr is the unique fixed point ofJC and a "fixed point iteration" from
small enough h converges to hthr- •
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I Proof of Proposition 6.1

The proof is quite elementary. We first show (94). Recall the map K in (59) of which
hthr is the unique positive fixed point (Lemma 4.10). Our first observation is that the map
JC ss a, function of a (denoted by /C^) is strictly increasing pointwise with increasing a.
Furthermore, for each a the map /C^ is continuous.

Consider the following claim:

Ka (h) J. /Co (h) V/i € [o, h] as a J, 0uniformly in h. (172)
where

Kq: ^ ^1 I pcr~^HM(h)
^ 1-F{h)

To see this claim, let us define

~def pHM (/l) ^ ZP/L\\
^~ (t2(1 -F(A)) - "(1 -FW)

Observe that V/i € [o, h],

(h) —/Co (h) < HM (h) (p —(T^pP* ^))

= 2 (^p(H-o:) +1- (1 - a) H-2pd +lj (173)
< HM(h)Pa

h^p< -J-a (174)
where (173) is by definition of (3* (p, a) in (46). The final upper bound in (174) shows the
claim in (172) that Ka converges pointwise uniformly. It follows from (15) and the constraint
on the average power to beequal to p that is the unique positive solution of the following
fixed point equation:

From (175), we see that h^j is the unique positive fixed point of the map /Co- We now claim
that the fixed points of the maps Ka themselves decrease monotonically with decreasing
a. Let denote the unique fixed point of the map Kq. Fix Q2 > oti. Define sequences
{^t (n)}„>o for 2 = 1,2 as follows: hi{0) = 0 and hi{n) /Ca, (/i, (n - 1)). Then, from
Lemma 4.10 it follows that hi (n) f as n f oo for i = 1,2. Thus we have hi (n) < /12 (n)
for every n > 0 and we conclude that h^H^^ < h[l^\ Thus is a decreasing sequence
cis Of is decreasing and converges to, say, ho. Now Vo,

h'̂ l =Ka (aS) >Ko (aS) .

55



Taking limits as a —>• 0 and using the continuity of the map Ko we have

ho > Kq (ho) . (176)

Also, from (174) we have, for every a.

_ lW)
— ^thr T~

(7^

and taking limits as a —> 0, continuity of Ko yields

^0(ho) > ho . (177)

Now (176) and (177) show that ho = Ko (ho) and thus ho = h^j, the unique fixed point of
/Co. Following the definition of P* (p,a) in (45), we have

(pHM{h^£)
— as a 0 . (178)
cr

Observing that for every a

' 1 / 1 iV
E = P

we have that h[^l decreases monotonically with a implies that increases monotonically
with a. Since we had already observed that the limit of is cr"^ in (178), we have shown
(94). An identical argument now shows (95). •

J Proof of Proposition 6.3

The proof is not too different from that of Proposition 6.1. We observe by definition of
P* (p,a) in (45) that, as —>• 0,

P*(p, a)
p(ci - 1)"^

This implies that (as in (172)), as -> 0,

K(h) Ko (h) = {a {1 - F(h))-!)•*•
' ^ ' a{l-F(h))

As in the proof of Proposition 6.1, hthr converges to the fixed point ofKo ais <t^ -i- 0, denoted
by ho. When a < 1, we easily identify ho = 0and when a > 1that ho > 0. The monotonicity
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arguments follow easily. From the limiting values of hthr and we have for each user i that

(hi) p as cr^ 0 and when a > 1 the limiting value of is different from that of
constant power allocation policy and thus there is a strict loss in sum capacity by using the
constant power allocation policy as compared to the waterfilling strategy. It still remains
to show that when a < 1 the gain in sum capacity with waterfilling strategy over constant
power strategy goes to zero in high SNR. We follow the proof of Proposition 6.2. Fix a < 1
and processing gain at N and the number of users a.t K = [oJ. From the limiting values
of hthr and we already have that p as <7^ —>• 0. We establish a bound akin to
(99) and appeal to the dominated convergence theorem concluding the proof:

h K ^

where we used the bound that (hi) < by definition ofthe waterfilling strategy (73)
in (179) and the Hadamard inequality in (180). Analogous to the proofof Proposition 3.1,
an application of the dominated convergence theorem completes the proof. •

K Proof of Theorem 8.1

We follow the general approach adopted in the proof of Theorem 5.1. Our first observation
is the following replacement of Proposition 3.1:

(v)^sum J a.s.

log N

To see this we use the notation developed in the proof of Proposition 3.1 cind write:

. (181)

^sum (^) 1 /• log (1 +NpX)
logiV - 2]—

Jlog?+1/ ^logA+ IdG^ (A)

where in the last step, we used the following arguments: any mass G* might have at A= 0
does no contribute to the integral. Theorem 1.1 and its corollary of [1], and an application of
the dominated convergence theorem as in the proof of Proposition 3.1. In this case, G* has
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very well known (in the random matrix literature) quarter circle density (Proposition [26])
and thus can be explicitly expressed as

c?
dX

The replacement of Proposition 4.1 is the following:

,VAf>0

where Kc is some constant independent of N. The proof of this claim follows very closely
that of Proposition 4.1 and we omit it here. Any optimal V* (5) has the following structure:

^;(^)= T-

and Theorem 4.7 is still valid:

^;< A'p,V2 = 1...7r, V7V

for a possibly different constant Kp than the one used in Theorem 4.7. In this scenario, the
SIR of user i with the constant power allocation policy is given by /?,• {P^ pwhere

-1

Define the (Lagrangian) function:

{V) - ^ E(Epi('?)] -p) .
As in the proof of Theorem 5.1,

L(V')-L{v) a

^ 2^

<
aK,
2p

aKr

-E

A{P) 1,
1+I3i(v)p p

1

i +A{v)p
1

< -E2^ [a (P)
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Now

-1a(^) =•s'l ^^+pE«i4j

where /?* (^,a, o-^) has an explicit expression in (46). Continuing we have

l™infA(p) >sup/?-(p,a,^j
p(a- 1)"^ '

Substituting this in (182) shows that

limsup L(P')-L (P) <
AT-foo ^ ^ 2p

The observation that L{V*) = {N) and L{P^ = {V^ completes the proof.
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