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Abstract

Image Denoising and Interpolation based on Compression and Edge Models

by

Sai-Hsueh Grace Chang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Martin Vetterli and Professor Bin Yu, Co-Chair

This thesis investigates some innovative approaches to inverse problems in image restoration

and enhancement. The specific problems addressed include image denoising and image

interpolation. Before developing an algorithm, the first step is to find an appropriate image
model to use. To achieve this, we identify two successful domains of image processing,
namely, image compression and edge analysis, from which ideas can be applied to image
denoising and interpolation. The underlying framework for signal analysis and algorithm
development is based on wavelets, which conveniently provides a multiresolution, localized

space-frequency representation of the signal.

Wavelet thresholding is a simple and eflFective denoising method that has been

studied extensively in recently years. Most of the significant insights have stemmed from

thestatistics community, andthus, not much have been researched onfinding anappropriate

model for images and the corresponding wavelet thresholding strategy. We use a Bayesian
model for the distribution of the wavelet coefficients, namely, the Generalized Gaussian

distribution which has been widely used for image compression. Prom this distribution,
we propose a near-optimal threshold selection. This threshold value is used in the various

denoising algorithms in this thesis that incorporate wavelet thresholding with several image
models motivated by compression methods and edge analysis.

One ofthefirst ideas we examine isusing lossy compression for removing noise from
corrupted images. Previously proposed approaches were either unclear about the choice of

the coder or were less than a true lossy compression. We make a connection between lossy
compression and wavelet thresholding, and develop a systematic lossy compression method



to achieve simultaneous compression and denoising.

Next, we develop a spatially adaptive algorithm for image denoising. Images tyjj-
ically consist ofedges, textures and smooth regions. In the wavelet transform domain, the
first two features are characterized by clusters ofhigh energy transform coefficients and the

latter by low energy coefficients. Because edges are among the most important features
in an image, typical coders allocate the most resources for these high energy coefficients.
Distortion due to edge blurring is very noticeable; distortion due to additive random noise,
however, is not as discernible in the edge region. This edge preservation idea from cod

ing can be applied to denoising, with the edge coefficients being only slightly modified to

preserve the edge sharpness, and the fiat region coefficients being significantly smoothed to

guarantee the removal of most of the noise.

To conclude the denoising topic, we investigate the best strategy to combine mul

tiple noisy copies of the same image. Typically, multiple sets of noisy observations of the

same data are averaged to obtain the best estimate of the noiseless version. Since wavelet

thresholding is effective for denoising oneset ofnoisy observations, it is worthwhile to incor

porate it with weighted averaging when multiple noisy copies are available. In particular,

we investigate which sequential ordering of the averaging and wavelet thresholding opera

tion would yield a final result with the lowest mean squared error. The result shows that,

under the assumed Laplacian distribution for the coefficients (a special, simple case of the

Generalized Gaussian), the ordering is dependent on the distribution parameter, the noise
power, ajid the number of noisy copies.

Lastly, we develop an edge-preserving image interpolation algorithm. The available

image is modeled as a low resolution image of some higher resolution image which we wish

to estimate. The additional details needed to obtain the desired image is estimated by

extrapolating edge characteristics from the low resolution image. The problem model and

the edge analysis can be developed very naturally in the wavelet framework.
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Chapter 1

Introduction

Image restoration and enhancement is a useful but often difficult area, due to
the need to estimate and to reverse an unknown degradation process. An image is often
corrupted during anintermediate process such as transmission oracqmsition, and depending
on the specific goals and applications, reversing this degradation may be only partially
achievable. To ameliorate the degradation, it is necessary to first devise a problem model,
including that ofthe degradation process and the image, and then to estimate the original
image from this model. This model ofthe problem and the image is application dependent,
and we investigate two applications in this thesis: image denoising and image interpolation.

The term "denoising" has been coined inrecent years to refer to theclassic problem
ofremoving noise from a corrupted signal, and it has gained a surge ofinterest partially due
toa simple yet effective technique called wavelet thresholding [22, 21,23, 24,16]. The Wiener
filter is a traditional approach which results in the optimal linear least squares estimator of
the original signal. The non-linear wavelet thresholding, when appropriate parameters are
chosen, often yield images visually better than those from Wiener filtering. Many results
on wavelet denoising stem from statistics and provide valuable theoretical insights into the

performance ofwavelet thresholding under different signal and noise models. In this work,
we approach denoising from a more image processing point ofview, and, in ouralgorithms,
combine wisdoms from both the theoretical works and the image processing insights to be
discussed shortly.

Image interpolation, often for purposes of magnification or zooming, is another
classic problem investigated in this thesis. The most simple-minded algorithms are zero-
order hold (or pixel replication) and linear interpolation, both known to produce blurry



and jagged images. Interpolation using higher order polynomials and splines often yield
visually more pleasant images. However, they all assume some smoothness constraints on

the underlying signal, which may not always be valid (such as in the case of interpolating
a step edge). Our approach is to devise constraints adaptive to the local image character
istics (based on an appropriate image model) rather than to employ presumed smoothness
constraints.

The initial step in addressing these restoration and enhancement problems is to

devise an image model. Image modeling is a daunting task in itself, and there is really no
consensus ona general model which canwell describe an arbitrary image. Most of the time,

the model used is application specific. For example, in analyzing and synthesizing texture
images, a combination of deterministic periodic components and random field is frequently
used [25, 26]. This approach, however, may not be suitable for an image which has no
periodic components but with many edges. A lack ofgeneral image models has prompted
us to ask what branches of image processing have been successful. Image compression and

edge analysis are two such branches and they provide the basis for numerous motivations

in this work.

A coder which compresses an image well must provide a good model of the image
since it can represent the imageconcisely. Sucha coder exploits the predictable structures in

a typical image to reduce the redundancy in the coded bits. White noise, on the other hand,

is not compressible because it does not have correlated structures. Thus, compression can

provide a suitable model which distinguishes between a structured data (a typical image)
and a sequence of random noise.

A framework that has enabled excellent performance for both compression and

edgeanalysis is the wavelet analysis. Its ability to provide localized information in the space

and frequency domain and a multiresolution structure has made it an attractive framework.

A notable predecessor ofwavelet-based coders is the pyramid scheme [6]. Later, image com

pression basedon the pjrramid scheme or wavelet analysis (collectively called subband coding)

became popular as its superiority over DCT-based compression became clear (see [67] for

a survey of subband coding). The breakthrough in wavelet-based image compression was

the embedded zerotree wavelet (EZW) coder [55], which was based on the observation that

insignificant transform coefiicients tend to occur in a predictable tree structure. The SPIHT

coder by [53] uses the same intuition. Some later wavelet-based algorithms (for example

[37, 68]) used classification oron-the-fly prediction to adapt thecoder to spatially rbangir^g



energies in the transform coefficients. Wavelets are also the backbone framework for several

top contenders in the JPEG2000 image compression standard. Thus, the wavelet analysis,

along with other ideas and motivations extracted from various compression methods, are

deemed to provide a suitable framework for the image denoising problem.

Edges are among the most important featiures in an image, for they are the com

ponent most accountable for making an object recognizable. Edge analysis, thus, is an

important part in many image processing apphcations. The edge detection methods of

[7, 42] can also be formulated in the wavelet framework [40, 41], as the detection ofsignifi
cant local extrema or ofzero-crossings in the wavelet transform. In [40, 41], keeping these
significant local extrema was used for the purposes of compression or denoising. In the
interpolation problem, edge analysis is important ifone wishes to preserve the regularity of
the edges and not create an overly smoothed image.

In this thesis, the goal isto investigate how ideas from image compression and edge
analysis combined with the wavelet framework can give a new way ofthinking about image
restoration andenhancement. Alarge part isdedicated to developing difierent approaches of

image denoising, within the wavelet thresholding paradigm. We commence with background
materials in Chapter 2, including an introduction ofthe well-known wavelet transform, and
the idea ofwavelet thresholding along with a brief survey ofthat literature. Subsequently,
in Chapter 3 we present our Bayesian approach to wavelet thresholding, tailored for denois
ing images. It has been widely accepted in the image coding community that the subband

coefficients collectively form a histogram which is sharply peaked at zero and symmetric
about zero. This distribution has generally been described by the Laplacian distribution

for simplicity or the more encompassing Generalized Gaussian distribution. Using this dis
tribution, we propose a threshold which is close to the optimal threshold that minimizes

the expected squared error for the soft-thresholding estimator. Building on this result, in
Chapter 4 we develop a lossy compression method which achieves simultaneous denoising
and compression when both features aie desired. The idea of using lossy compression as a

means to denoise has been proposed inseveral work [54, 49,12, 13, 35]. Atypical image has
a predictable structure that canbe highly exploited by a coder, while a sequence of random

noise does not and thus is not compressible. This disparity suggests that a compression
method can distinguish the noise from the image. The compression algorithm for denois
ing developed in this thesis incorporates wavelet thresholding, coefficient quantization, and
entropy coding, of which the decision on certain parameters are based on the Minimum



Description Length principle [50]. In Chapter 5, we investigate the spatial adaptivity of
threshold selection, an area not explored in the literature. This is motivated by the intu

ition that the knowledge of the spatially changing characteristics of the image can yield a

threshold selection adaptive on a pixel-by-pixel base, which in turn generates a significantly
better denoised image than that due to a uniform threshold (measured both visually and

in the mean squared error sense). The adaptivity of the threshold value is based on context

modeling, a commonly used technique in compression methods for adapting the coder on-

the-fiy to local image characteristics. Lastly, in Chapter 6, we extend wavelet thresholding

denoising to situations when multiple corrupted copies are observed. The most straight

forward recovery method is to simply compute a weighted average of the noisy copies. We

explore whether an additional thresholding step would improve the performance, and in

vestigate the preferred ordering (averaging first or thresholding first) which yields a lower

mean squared error.

To conclude this thesis, in Chapter 7 we present an edge-preserving interpolation

algorithm, basedon estimatinghigher resolution information from the available image. The

idea is to observe that extrema points in the wavelet transform propagate across scales, and

the higher resolution information can be obtained by extrapolating this trend into the finer

scale. In Chapter 8, we summarize the findings in this thesis and propose related future

directions.



Chapter 2

Introduction to Wavelet Transform

and Wavelet-based Denoising

The basic analysis tool used in this thesis is the wavelet transform. Its usefulness

and efficient implementation has made it ubiquitous in the signal processing community. It
offers an alternative to Fourier analysis and provides information whichhave been shown to

be suitable for applications such as image compression, denoising and edge characterization

(see, for example, [55, 53, 37, 68, 22, 24, 39, 38] and other work referenced therein). While
wavelets have deep roots in mathematics, in Section 2.1 we only briefly describe here their

notations, functionalities, and implementations, and refer the readers to standard literatmes

for a detailed discussion [19, 20, 39, 58, 60].

Asubstantial part ofthis thesis is based on extensions ofthe wavelet thresholding
technique for signal denoising. Thus, Section 2.2 presents a survey of the different thresh

olding methods proposed in the literature. We flrst describe the seminal work of Donoho

and Johnstone [22] onwavelet thresholding, and its asymptotic near-optimality. ABayesian
approach allows one to incorporate some prior knowledge ofboth the signal andnoise. Thus,

this will be our preferred framework since for a large class of natural images, the wavelet
transform coefficients are often well-described by the Generalized Gaussian distribution,
a piece of information which aids us in making an appropriate threshold selection. Non-

parametric methods such as cross-validation and its variant have been proposed as well. Of

particular interest is the work in [54] which combines thresholding with a non-parametric
model selection criterion based on the Minimum Description Length principle [50]. This



approach is related to our compression-based denoising work described in Chapter 4 and
will be revisited there.

2.1 Multiresolution Analysis and the Wavelet Transform

To introduce the wavelet transform, it is perhaps easiest to make analogies with
the Fourier transform. Just as Fourier analysis is an expansion of a signal into sinusoids

of different frequencies, the wavelet transform decomposes a signal into a wavelet basis of

different spatial and frequency support. For now we will focus on the discrete-time wavelet

series (sometimes also called the discrete-time wavelet transform in the literature) rather
than the continuous-time wavelet transform.

The discrete-time wavelet series expansion can be implemented by an analysis
filter bank shown in Figure 2.1 (a), which isa cascade ofa two-channel filtering. Each stage

of the two-channel bank consists of a highpass filter H\(z) and a lowpass filter and

it is iterated on the lowpass channel. This tree structure, often called an octave-band filter

bank because each successive highpass output contains an octave of the input bandwidth,

achieves the tiling of the time-frequency plane given in Figure 2.2 (shown for a tree ofdepth

four). Each coefiicient in the expansion corresponds to the result ofprojecting onto a basis

representing one of the tiles^ In the first stage of the decomposition, the basis functions

spana short time period, but a large frequency range (from 7r/2 to tt). In the second stage,

the basis functions span a time period twice as long as that in the first stage, but half the

size of the frequency range (from 7r/4 to 7r/2). This recursive iteration thus results in a

logarithmic tiling of the time-frequency plane.

The synthesis part (or the inverse transform) is shown in Figure 2.1 (b), where the

analysis filters, Hq{z) and Hi{z), and the synthesis filters, Hq{z) and H\(z), together must

satisfy the perfect reconstruction property:

Hq(z)Hq{z)Hi{z)Hi(z) = 2

Hq(z)Hq(-z) + Hi{z)Hi(-z) = 0 . (2.1)

^The division of the time-frequency plane is ideal as shown in Figure 2.2 for the sake of illustration. In
reality, it is not possible to be both time-limited and band-limited.
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Figure 2.1: An octave-band filter bank of J stages, implementing the discrete-time wavelet
series expansion. The decomposition spaces Vi and Wi are labelled, (a) Analysis stages
(forward transform), (b) Synthesis stages (inverse transform).

2.1.1 Multiresolution Interpretation

The octave-band filter bank has a multiresolution interpretation that is often useful

for signal analysis. At each stage, the two-channel filter bank splits the input into a lowpass

component (or the coarser resolution part) anda highpass component (orthe finer resolution

part). This recursive application of the two-channel split on the lowpass part results in a
hierarchical structure, called a Tnultiresolution decomposition. The idea of viewing a signal
at variousresolutions has been explored for quite sometime in the computer visionand the

image processing community [66, 32]. Burt and Adelson [6] introduced the pyramid coding
scheme which builds a signal fi:om a low resolution version plusa sequence offiner and finer

details. Daubechies [18] and Mallat [38] provided the first links between signal processing
and the wavelet theory by recognizing that the pyramid scheme isclosely related to wavelet
theory and multiresolution analysis, and also that filter banks and subband coding can



frequency

Figure 2.2: Tiling of the time-frequency plane achieved by the 1-D wavelet transform.

be used for efficient computation of wavelet decompositions. As aforementioned, here we

concentrate on the discrete case, and will introduce the continuous decomposition when it

is relevant to our image interpolation algorithm in Chapter 7.

The formalization of the multiresolution analysis is as follows. Let Vq be the space

of all square-summable sequences,

Vo=t2{Z).

A multiresolution analysis consists of a sequence of embedded closed spaces

Fj c • -• C ^2 C C Fo -

The orthogonal complement of V^+i in Vj is denoted by Wj^i and

Vj = Vj+i ® Wj+i

with Vj+i ± Wj+i. Suppose there exists a sequence poM € Fq such that {go[n - 2k]}kez

is an orthogonal basis for Fi. Then it can be shown that for pjn] = (-l)"ffo[-n + 1],

{9i[n~2k]}kez provides a basis for Wi. That is, {9oln~2klgi[n-2k]}kez is an orthonormal
basis for Fq. Thissplitting oftwo orthogonal subspaces is iterated on Vj, and after J stages,

Fo can be written as

Vo = Wi®W2@---mWj ®Vj.

The space T^ 's are called the approximation spaces and Wj's the detai/spaces. The indexj is

called the scale. At a large (or coarse) scale, one views the signal on a broadglobal level, and



at a small (or fine) scale, one looks at the signal ona local, detailed level. Another important

notion is the resolution of a signal, which, for a finite-length signal, is the minimnTn number

ofa samples required to represent it [60]. This notion can beexplained more clearly through
examples of multirate systems. When a signal is filtered by a halfband lowpass filter, the

scale remains unchanged, but the resolution is said to be halved, since there is a loss of

information ingeneral. When a signal is upsampled by two, followed by a halfband lowpass
filter, the scale is halved (because the frequency has been effectively scaled by 1/2), and the
resolution remains the same (because there is no gain or loss ofinformation). Lastly, when
a signal is filtered by a halfband lowpass filter followed by a downsampler ofa factor of 2,
the scale is doubled and the resolution is halved.

The multiresolution decomposition can be readily computed by the filter bank in

Figure 2.1. Suppose the analysis filters are the time-reversed versions of poW and pi[n],
then the octave-band filter bank computes the inner product of the input with the basis

functions ofWi, W2,...,Wj and Vj. In the synthesis, we start from the component Vj at
the coarsest scale, and sequentially add to it more and more details residing in the space

J •j1. Prom the previous discussion, it is clear that the output of the filter bank
is the expansion onto an orthogonal basis. With this orthogonal basis, this expansion will
be referred to as the orthogonal wavelet transform in this thesis.

2.1.2 Overcomplete Wavelet Expansion

At times, it may be desirable to have an overcomplete expansion, rather than a
basis expansion, of the input signal. That is, the number of functions used in the expan
sion is more than needed for a basis, thus resulting in a redundant representation where
the functions are linearly dependent. For compression purposes, such a redundancy may
not be desirable since it increases the number of transform coefficients to code. In other

applications, an overcomplete expansion may bemore suitable thana basis expansion. For
example, an overcomplete expansion places looser requirements on the filters, and may al
low the design offilters with better firequency selections and/or symmetry properties. The
wavelet expansion implemented by the critically sampled filter bank in Figure 2.1 isa time-
varying system. With a non-subsampled filter bank, for example, this time-variance can be

completely avoided.

The overcomplete expansion that will be relevant for this work is the expansion
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Figure 2.3: 1-D Non-subsampled filter bank, (a) Analysis, (b) Synthesis.

implemented by the non-subsampled filter bank, whose analysis and synthesis parts are

shown in Figure 2.3. Schematically, the only difference between Figure 2.3 and 2.1 is the

removal of the downsamplers in the analysis stageand the upsamplers in the synthesis stage.

For the filters to be perfect reconstructing, they must satisfy

Ho{z)Ho{z)-^H,{z)Hi{z) = l. (2.2)

Note that (2.2) is a less stringent requirement than (2.1). Thus, the filters satisfying the

perfect reconstruction properties of the critically sampled filter bank in (2.1) satisfy (2.2)

as well (up to a scaling factor), but the converse is not true in general.

2.1.3 Two-Dlmensional Wavelet Expansion

The most commonly used 2-D wavelet expansion is accompfished by separable 1-D

filtering in both the horizontal and vertical directions. The separable 2-D filters are easier
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to design and suffice for most applications and thus are used here. Interested readers in

nonseparable filters are referred to [33, 60].

The separable 2-D octave-band wavelet transform is implemented by the filter

bank in Figure 2.4 (a), where each stage is composed of a cascade of horizontal and vertical

filtering. The firequency tiling of a one-stage decomposition is shown as well. Starting

with LLq = /, the original image, the first stage decomposition generates 4 subbands,

HHi,HLi,LHi, and LLi. The labelhng, for example, HLi, means the output from a

highpass horizontal filtering and a lowpass vertical filtering, at stage 1. Subsequent stages

are iterated on LLj,j = 1,2, ...,J. For the sake of visualization and storage, it is often

convenient to arrange the subband coefficients in Figure 2.5. The synthesis filter bank is

also an iterated filter bank, each stage composing of a cascade of vertical and horizontal

filtering (in that order). Figure 2.4 (b) shows one stage of synthesis filter bank.

As with the 1-D case, in some applications it is desirable to have an overcomplete
2-D expansion. The non-subsampled 2-D filter bank is similar to Figure 2.4, but with the

downsampler removed, and one stage of each of the analysis and synthesis filter banks are

shown in Figure 2.6.

2.2 Wavelet Thresholding: Overview of Existing Work

In many engineering problems, for reasons such as finite precision or compression,
it is necessary to consider coefficients below a certain threshold as negligible. This idea of

thresholding coefficients is often more of an art than science. In recent years, this simple
technique has been applied to removing noise from corrupted signals, or "denoising", and
it it has been shown to have near-optimal theoretical properties. The theoretical formaliza-

tion of the threshold denoising technique, particularly in the context of removing noise via

thresholding wavelet coefficients, was pioneered by Donoho and Johnstone [22]. The sim
plicity and effectiveness of wavelet thresholding has spawned much interest in both theory

and practice.

The problem at hand is that we observe a corrupted image

9ij = /ij + ) i, i = 1,..., iV, (2.3)

where {/y} is the original image we wish to recover, {sy} are independent and identically
distributed (iid) as normal iV(0, <t^) and independent of{/y}, and N is an integral power
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Figure 2.5: The subband coefficients (shown for J = 3) for the filter banks in Figure 2.4
are often arranged in this fashion for ease ofvisualization and storage.

of2. To simplify notations, the image is assumed to be a square of size iV x IV, though it
is not a necessary requirement. The goal is to remove the noise and to obtain an estimate

{fij} of{fij}, or to denoise {p^}.
Let g = f = e = that is, the boldfacedletters will denote

the matrix representation of the signals under consideration. Let Y = Wg denote the
matrix ofthe wavelet coefficients ofp, where W is the two-dimensional orthogonal wavelet
transform operator, and similarly X = Wf and V = We. Note that since the transform

is orthogonal, {Vij} are also iid N{0,a^).

Define the soft-threshold function to be

•qrix) = sgn(a;) •max(|a;| - T,0),

which takes the argument and shrinks it towards zero by the value T, called the threshold.
A popular alternative is the hard-threshold function,

l{|a;| > T},

where !{•} is the indicator function. The hard-threshold function keeps the input if it is
larger than the threshold T; otherwise, it is set to zero.

The wavelet thresholding procedure for denoising as proposed by Donoho and
Johnstone consists of three stages:

1. Take the wavelet transform of the observation: Y = Wg.
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2. Threshold the wavelet coefficients (except the lowest resolution subband LLj) by

either the hard- or soft-thresholding function for a chosen threshold T: Xij = rfr^ij)

3. The denoised estimate f is the inverse wavelet transform of the thresholded coeffi

cients: f = W~^X.

Threshold denoising is especially effective for signals with sparse representations

in the transform domain. Like the Fourier transform, the wavelet transform also has good

energy compaction properties, soingeneral, large coefficients correspond to dominant signal

features, while small coefficients correspond to fine details. When noise isadded, the wavelet

coefficients are perturbed. If the noise energy is low, then the perturbation is small, and

only the very small coefficients should be killed. On the other hand, if the noise energy
is high, only the very large coefficients should be kept so at least the dominant features

are discernible in the recovered signal. The threshold thus acts as an oracle determining
whether a coefficient should be kept or modified (because it has more signal contribution
than noise) or be killed (because noise dominates).

The threshold choice isone ofthemost researched areas inthewavelet thresholding
literature. Depending on the signal and noise models, there are various proposed methods
for selecting a threshold. In the following, we provide a brief overview of several major
methods found in the literature. The following notations are for 1-D signals to make the
notations less cumbersome, but the idea can be extended in a straightforward manner to

2-D signals. That is, for the remainder of this chapter, the noisy observations of the 1-D

signal is

9i = fi + £i t = 1,..., W,

where N is an integral power of 2. The noise samples {e,} is iid N(0,a^), independent of
{/i}, unless mentioned otherwise. The wavelet coefficients of {pj, {/J, and {e,} will be
denoted by {V^}, and {Vf}, respectively.

2.2.1 Deterministic Signal with Random Noise

Donoho and Johnstone [22] proposed an universal threshold Tu = ay/2 log N for
hard-thresholding when N samples have been corrupted by iid noise of iV(0, cr^). This
threshold is chosen because for a large N, the maximum amplitude of the noise coefficients,
{V^}, has a high probability of being smaller than, but close to, ay/2 log N. More precisely,
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for Tu = (7^/2 log iV,

lim Pr
N—¥+00 \ logTV^ 0<i<7v' ' J

Thus, thresholding with Tu has a high probability of removing the noisy coeflScients in

the asymptotic sense, and it is a conservative choice. To assess the performance of the
- u

estimator, X , based on hard-thresholding using the threshold Tu, let us first define the

ideal diagonal projection estimator^. Consider among all diagonal projection estimators of

the form = yiYi with 7^ = 0or 1. The ideal estimator (minimizing E\{X^^ —JC|p) is
obtained by setting 7^ = l{|Xi| > a} and the associated expected squared error, or risk, is

Such an idealestimator cannot be used since it requires the knowledge of the original signal

X, but it serves as an useful benchmark. The estimator X^ can be shown to yield a risk
which satisfies

E\\X" -Xf <(2 log AT +l)(o2 +̂ min(X?,o2)).
i=l

That is, its risk comes to within a factor of logiNT of the risk due to the ideal diagonal

projection estimator. Furthermore, for all estimators of the form Xi = 0(Yi) for any function

0{-).
1 E||X-X||2 ,

—m~2T^—. . '2 2\ ^ 1 as iV -)> 00.X 21ogJVa2 -I- X;imm(X?,c72)

This means that the best estimator X yields a maximum risk over all X that grows

as 2 log N of the ideal risk. Thus, the hard-threshold estimate with Tu is asymptotically

optimal in the minimax sense (minimizing the maximum error). A similar result can also

be obtained for using soft-thresholding with Tu. In [21], X^ was also shown to be near-
minimax for various smoothness classes (such as Besov, Holder, Sobolevand Triebel classes).

The aforementioned method yields a single threshold T for all coefficients, regard

less of the scale and spatial location. Thresholds which are dependent on the scale of the

wavelet transform were also addressed by [24] and [30], with the latter considering corre

lated noise. Another notable threshold, the SURE threshold [23], is derived by TniniTniy.ing

Since the transform is orthogonal, the performance of the estimator can be discussed in either the signal
domain or the transform domain.
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Stein's unbiased risk estimator [57]. The hybrid threshold refers to switching between the

SURE and the universal threshold, depending on the energy level of the coefficients. The

method SureShrink refers to using the hybrid threshold in a scale dependent manner [23],

and it has been foimd to perform better than using the universal threshold, while retaining

asymptotically optimal properties.

2.2.2 Probabilistic Bayesian Modeling of the Signal

A large class of signals and natural images has been observed to have decaying
spectra. This means that most of the signal energy is concentrated in the low frequency

portion, or, visually, the slowly-varying smooth part of the signal. The high frequency

energy corresponds to additional details manifested in sharp transitions such as edges or

busy textures. In thewavelet domain, where the detail coefficients capture the local-varying
nature ofthe signal, this translates to many small value coefficients anda relatively few large

coefficients, resulting in a distribution with a peak at zero and often symmetricabout zero.

It has been widely accepted in the image subband coding community that the coefficients in

each detail subband collectively form a histogram well described by a Generalized Gaussian

distribution (GGD) (see, for example, [64, 39, 56, 37, 68]). This distribution has a density
function

GGa,p{x) = C(a,/3) -oo <x <oo, (2.4)

where C{a,p) = 2r{^) ~ /o°° is the gamma function. In applications of
compression, the estimates of the parameters a and ^ are used to adapt the coder and the

quantizer. For more tractable analysis, this assumption is often simplified to the Laplacian

distribution, which is GGa,\{x) (for example, see [59, 68]).

For denoising applications, Simoncelli and Adelson [56] used GGD to model the

distribution of the wavelet coefficients of the original image, and to find the Bayesian esti

mate of the image. In the statistics community, there have also been many works on using
a Bayesian model on the wavelet coefficients, with distributions mimicking the property
of being symmetric about zero and having a sharp peak at zero. Vidakovic [61] used the
Laplacian distribution to determine the shrinkage factor, which is a number multiplied to
each wavelet coefficient and whose magnitude depends on the magnitude of the considered

coefficient. Clyde et al [15], Chipman et al [14] and Abramovich et al [1] used a scaled
mixture of normal priors to find scale-dependent shrinkage factors for Bayesian estimates.
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Ruggeri and Vidakovic [52] examined thehard-thresholding rule for various combinations of
different distributions for the signal and noise (such as a Laplacian-distributed signal with
Gaussian noise) and found the corresponding thresholds based on minimizing the expected
squared error.

2.2.3 Nonparametric Methods

Cross-validation Cross-validation is a classical statistics method usedin various statistical

settings to automatically choose the parameters of the problem at hand. The general
paradigm is to minimize the prediction error generated by comparing a prediction, based
on a subset of the data, to the remainder of the data. Some general references on cross-

validation can be found in [5, 62]. In the setting of the threshold selection, it allows the
threshold to be selected using the data only, without the knowledge ofthe noise energy,
In [48], Nason used cross-validation to find the threshold for the soft-thresholding rule in
the following manner.

From the noisy observations, {pi,P25• •• a subsequence is formed from the

even-indexed samples:

= z = 1,2,...,JV/2.

Let = 1,2,..., iV/2} be the wavelet threshold estimates of the even samples of
{fi} (using a particular threshold T) based on An interpolated version of the

odd-indexed samples is computed as

-ODD J 2(^21—1 "h p2i-|-l) J 2=1,2, ...,7V/2 1
I \(9i +9N-i) ) i=Ar/2

A similar computation is performed to yield the threshold estimate based on the

odd-indexedsubsequence and the interpolated versionof the even-indexed

samples. A cross-validatory estimate of the mean squared error is

N/2

'̂ (T) =E WtT" - 9.°°")'+-5.-•
i=l

In this way, the threshold estimate based on the even-index of the data is com

pared to the interpolated estimate ofthe odd-index of the data ({pf '̂̂ }), and vice versa.
Let T* be the argument which minimizes M{T). Notice that M(T) relies on the

estimates each of which is based on N/2 data points rather than N
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points. To correct for this sample size^, a heuristic adjustment is made. Specifically, the

threshold T* is multiplied by

to yield the final cross-validatory threshold ofNason, where Cn is the constant satisfying

1'u(N) = Cjsf •Tu{N/2), and Tu{N) = a\/2logN is the universal threshold for N data

points. This cross-validatory threshold has been reported to be close to the optimal one (in
the sense ofminimizing the mean squared error) but tend to overfit the noisy data [61]. It
also does not perform well in heavy-tailed noise distribution [48].

Weyrich and Warhola [65] proposed a generalized cross-validation criterion which

finds a threshold T minimizing the expression

GCV{T) =^11'̂ - '̂?r(y)lP(^)2

where iVo is the number of coefficients that have been set to zero by the thresholding
procedure. Jansen et al [29] showed that this threshold choice is asymptotically optimal in
the mean squared sense. Thatis, the minimizer ofGCV(T) also minimizes themean squared
error for a large N. Other variants of cross-validation and generalized cross-validation can

be found in [63, 28].

Combination with MDL Saito [54] approached the threshold selection problem by pos
ing it as a model selection problem. The two most important issues encountered when

modeling a set of data are the choice of the model family and the order selection of the

model. One solution is to use the MDL principle [50] to make this decision. In [54], a
large library oforthogonal bases is available for the wavelet decomposition and the signal
is denoised by wavelet thresholding. The question becomes which basis to choose and how

many coefiicients to be thresholded to zero. A criterion based on the MDL principle is used

to make these choices. Saito's approach is related to our algorithm in Chapter 4, and will

be discussed in more details therein. Several subsequent works also addressed the threshold

selection problem firom the MDL standpoint [34, 2, 45, 46].

This correction is done to conform to the universal threshold of Donoho and Johnstone which is depen
dent on N and is asymptotically cr-v/2 logN.
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As surveyed in Section 2.2, there are manyworks especially in the statistics litera

ture addressing different signaland noise models and the corresponding threshold selection

or shrinkage factor. Most of these works experimented on one-dimensional signals, and thus

the signal models may not be appropriate for images. Some Bayesian-based works played

with different combinations of probability distributions, more for the sake of trying differ
ent models rather than examining real signals. Thus, due to a lack of models tailored for

images, we proceed to find a threshold more suitable for ourfiramework of image denoising.

Our approach to finding the threshold is Bayesian, where a priori eachdetail subband of the

signal is modeled with the Generalized Gaussian distribution (GGD) with fixed unknown

parameters, also used widely in the image processing hterature [64, 39, 56, 37, 68]. Within

each subband, the goal is to find the threshold which minimizes the mean squared error

simongsoft-threshold estimators. We propose an adaptive estimation of the threshold which

is nearly optimal and is easy to compute. This threshold adapts based on the GGD param

eter estimation for each subband, thus resulting in a different threshold for each subband.

It will also be shown that with the chosen prior, the optimal soft-threshold estimator yields

a lower mean squared error than the optimal hard-threshold estimator, and hence we use

soft-thresholding in the imagedenoising algorithms in this thesis. The Bayesian framework

and threshold selection described in this chapter will be the basis for the various denoising

algorithms developed in Chapters 4, 5, and 6.
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3.1 Signal Modeling and Threshold Selection

Recall that the noisy observation in (2.3) is

Qij fij + iyj = 1,...,

where {e^} are iid noise distributed as N{0,a^), independent of the original signal {fij}.
This is the setting which will be used throughout this thesis. The goal is to obtain an

estimate f of f which minimizes the mean squared error (MSE),

Jf2 ~
hj

Since the wavelet transform we choose is orthogonal, minimizing the MSE in the space
domain is equivalent to minimizing the MSE in the transform domain. Thus, in the sub
sequent text we will work mostly in the wavelet domain. The wavelet coefficients for g, /,

and £ are Y", X and V", respectively.

Firstly, we choose the soft-threshold estimate over the hard-threshold estimate.

In practice, because the hard-thresholding rule tends to yield "blips" (or spikes) in the
recovered image especially when the noise energy is significant, soft-thresholding is pre
ferred here since it yields visually more pleasant images even if it tends to smooth out the

image slightly more. These blips are typically in the forms of ringing around the edges
or shot-noise like appearances in the smooth regions. These artifacts are more apparent
under a hard-thresholding operation because it is a discontinuous function, whereas the

soft-thresholding function is continuous. Furthermore, for the Bayesian prior assumed in
this work, the optimal soft-thresholding estimator yields a smaller MSE than the optimal
hard-thresholding estimator, as will be shown later. While the mean squared error is not
necessarily a good measme for discriminating image qualities, it is nevertheless the most

widely used standard in the literature, and thus will be employed here as well.

With the estimates restricted to the class of soft-threshold estimates, X,- =

TfriYij), thenext step is to find the appropriate threshold T. To do this, we use a Bayesian
setting, where, for a given subband, each coefficient Xj is viewed as a random variable

having the Generalized Gaussian distribution with unknown parameters (see Section 2.2.2
for a qualitative justification for the choice of GGD). For completeness, this probability
density function is repeated here:

GGa,^(a;) = a(a,/?)e-("N)^ , —OO < X< CO , (3.1)
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where C(a^p) = and r(i) = /q°° e~'̂ u^~'̂ du is the gamma function. The parameter /?
controls the shape ofthe density function, and the parameter a controls the spread. With
a probability distribution, the MSE can be approximated by the expected squared error,

~ ^ij)^ « —X)^ ,
ij

where is the number of terms in the particular subband under consideration. The

expectation E{-) is taken with respect to A" GGa,p{x) and V ^ N{0,a^), and the
estimator is A = r^(y), with Y —X + V. The threshold selection then corresponds to
finding the value which minimizes the expected squared error. Note that for each detail

subband, the GGD has a different set of parameters a and /3, thus this procedureresults in

a subbaud-adaptive threshold.

Consider now only coefiicients from one particular detail subband. Let the param

eters a and /3 be known for now. The distortion criterion to be minimized is the expected

squared error, or risk^ rewritten as

R{T) = ExEy^xiX - X)\

where y|A ~ N{x,ct^). The optimal threshold T* is the argument which minimizes R(T).
To our knowledge, there is no closed form solution for T which minimizes R{T) for this

chosen prior. Thus, we resort to numerical calculations to find the optimal answer.

Before examining the general case, it is insightful to consider two special cases of

the GGD: the Gaussian and the Laplacian distributions. The Laplacian case is particularly

interesting, because it is firequently used as the simplified distribution for wavelet coefficients

to make analysis more tractable.

Case 1: (Gaussian) For P = 2 and a parameterized as a = l/{y/2(Tx) (where

ax is the standard deviation), we have the Gaussian distribution, A N{0,al). It is

straightforward to verify that

/CX) roo
/ (Vriy) - x)'̂ p(y\x) p(x)dy dx

•oo J—oo

= (3.2)9
(7^ a

where

_2\ Aw{ai,T) =<7^ + +1- o-J)$ I , ^ 1- 2T{1 + 1+<7^),



with 0(x,a2) = exp(-^) and $(rc) = (f>(t, 1) dt.
A good approximation of the optimal threshold T* is found to be
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T = —. (3.3)
<Jx

Figure 3.1 (a) compares T* and T, parameterized by Cx on the horizontal axis, and a = 1.

Their expected risks are shown in Figure 3.1 (b), where the maximum deviation from the

optimal risk is less than 1% whenusing the thresholdT. For a further comparison, the risk

for hard-thresholding is also calculated. After some algebra, it can be shown that the risk

for hard-thresholding is

r^(T) =<t2 + - <rl)(2T +<j^) +2$( ^J J - 1). (3.4)

By setting to zero the derivative of (3.4) with respect to T, the optimal threshold is found

to be
f

0 if (Jx > <7

Tj^ = < oo if <Tx < cr ,

anything if ax = <7

with the associated risk

a^ if ax < a

Figure 3.1(b) shows that both theoptimal and near-optimal soft-threshold estimators, rfr* (•)
and 7/j.(-), achieve lower risks than the optimal hard-threshold estimator.

The threshold T = o^/ox is not only nearly optimal but also has an intuitive

appeal. For sucha choice, the normalized threshold T/a is inversely proportional to ax, the

standard deviation of A, and proportional to a, the noise standarddeviation. When a/ax
is small relative to 1, the signal is much stronger than the noise, thus T/a is chosen to be

small in order to preserve most of the signaland remove some of the noise; vice versa, when

g/gx is much larger than 1, the noise dominates and the normalized threshold is chosen to

be large to remove the noise whichhas overwhelmed the signal. Thus, this threshold choice

adapts to both the signal and noise characteristics reflected in the parameters a and Gx-

Case 2: (Laplacian) For P = 1 and C{a,P) = q:/2, we have the Laplacian distri

bution LAP(x) = Note that the variance of X is 2/q:^.
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Compare Thresholds for Gaussian Prior Compare Risks for Gaussian Prior

Figure 3.1: Thresholding for the Gaussian prior, with a = 1. (a) Compare the optimal
threshold T*((Tx) (solid —) and the threshold f((Tx) (dotted •••) as a function ofthe standard
deviation ax on the horizontal axis, (b) Compare the risks ofoptimal soft-thresholding (—),
soft-thresholding with T (• ••), and optimal hard-thresholding ( ).

Without loss of generality, let a = 1. The optimal threshold T* foimd by min
imizing the risk^ is plotted against the standard deviation ax = y/^/a on the horizontal
axis in Figure 3.2 (a). The curve corresponding to T* (in solid line —) is compared with

the approximate threshold f = l/ax = a/\/2 (in dotted line •••) in Figure 3.2 (a). Their
corresponding expected risks are shown in Figure 3.2 (b), and the deviation is less than

0.8%. This suggests that the risk at the minimum is not too sensitive to the threshold

value.

For a general value of a, the parameters T and a are replaced by Tja and era,

respectively, and the proposed threshold is

f = — =
tTx V^'

(3.5)

which has the same form as the Gaussian case in Equation (3.3), but with different param

eters.

The threshold choice
2£2

a

^Note that for numericeil czJculation, it is more robust to obtain the Vcilue of T* from locating the
zero-crossing of the derivative, R'{T), than from directly minimizing R{T).
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Compare Risks for Laplacian Prior

(b)

Figure 3.2. Thresholding for the Laplacian prior, with = 1. (a) Compare the optimal soft-
threshold T* (—), the approximation T (• ••), the optimal hard-threshold ( ), and
its approximation fh{ ) as a function of the standard deviation, on the horizontal
axis, (b) Their corresponding risks.

was found independently in [52] for approximating the optimal hard-threshold using
the same prior. Figure 3.2 compares the optimal soft- and hard-thresholds and their ap
proximations, and it shows the soft-thresholding rule to yield a lower risk for this chosen

prior. Infact, for larger than approximately 1.3o-, the risk of hard-thresholding with the
approximate threshold, fh, is worse than if no thresholding were performed (which has a
risk of <T^).

Case 3; (Generalized Gaussian) Similarly, our proposed near optimal threshold
IS

T(a,)0) = — =
r(|)

for the GGD case. Let cr = 1. In Figure 3.3 (a), each dotted line (•••) is the optimal
threshold T*(a,j3) for a given fixed /?, plotted against Oj, on the horizontal axis, with a
varying. The proposed threshold f = l/ax is plotted with the solid line (—). The plot
of the optimal threshold that lies closest to f is the curve for T*(a,l3 = 1), the Laplacian
case, while other curves deviate from f as ^ moves away from 1. Figure 3.3 (b) shows
the corresponding risks. The deviation between the optimal risk R(T*) and R(f) grows
as p moves away from 1, but the error is still within 5% for the curves shown in Figure
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Compare Thresholds for Generalized Gaussian Prior Compare Risks for Generalized Gaussian Prior

Figure 3.3: Thresholding for the Generalized Gaussian prior, with a = 1. (a) Compare the
approximation T = o^la^ (—) with the optimal threshold for ^ = 0.6,1,2,3,4 (• ••). The
horizontal axis is the standard deviation, Ox. (b) The optimal risks for each p are plotted
in (•••)> sind the approximation in (—).

3.3 (b). Because the threshold T depends only on the standard deviation and not on the

shape parameter p, it may not yield a good approximation for other values of p than the

range tested here, and the threshold may need to be modified to incorporate p. However,

since in practice the values of /3 = 1,2 are typically used in modeling wavelet coefficients

of real images, well within the range of p tested here, the simple form of the threshold T

is appropriate for our purpose. The curve of expected squared error is very flat near the

optimal threshold T*, implying that the error is not very sensitive to a slight perturbation

near T*.

3.1.1 Parameter Estimation for Threshold

In the discussion thus far, we have assumed the parameters of the distribution

to be known. We now discuss the estimation of these parameters, which in turn yield

thresholds T adaptive to different subband characteristics.

The first step is to estimate the noise variance, cr^. In some practical cases, it is

possible to measure based on information other than the corrupted observation. If this

is not the case, we estimate it by using the robust median estimator in the highest subband
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of the wavelet transform,

. Median(|yij|) ,, ,
<^=—0.6745 ' subbandggi, (3.6)

also used in [22, 23].

Next, to obtain an estimate of Cx, recall that our model is y = X + V, with X

and V being zero-mean and independent of each other, therefore,

Variance(y) = Variance(X) -I- Variance(V')

2 , 2= + £7^ .

Thus, dx can be obtained by

= max(m2 —0-^,0) ,

where m2 is the estimate of the second moment of y,

ij

and is the number of coefficients in this subband. In the rare case that 6^ > m2, the

threshold is effectively set to oo; that is, all coefficients are set to 0.

For the proposed threshold f = a^/ax, it suffices to have the estimates CTx and
However, to be complete, we describe the method to obtain estimates of a and /3 as well.
These parameters can be found from the second and the fourth moments of the distribution

[56]:

/oo poo
y^p{y)dy and 1714= y'̂ p{y)dy.

•00 J-00

Since Y = X -f V, it can be derived that

The moments are found empirically by

i,j

The parameters a and (3 can be found by solving (3.7) with 7712 and 7714 in place of7712 and
7714.
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Xlie Generalized Gaussian distribution offers more flexibility in the description
of the subband coeflacients. In practice, the Laplacian prior performs well, and it also
leads to simple closed-form equations, thus it is sometimes preferred incoding applications.
For example, Birney and Fischer [4] showed that in image coding, the quantizer based on
the Generalized Gaussian distribution gives marginal improvements over that based on the

Laplacian so they recommend the Laplacian distribution to be used for its simplicity and
analytical tractability. For the Laplacian case, (5 = 1, and 7712 = -|- 4^, the parameter a

can be estimated as

a =

7712 — *

3.2 Summary

In this chapter, we addressed the threshold selection in a Bayesian approach. In

each subband, the wavelet coefficients of the signal is modeledby the Generalized Gaussian

distribution with unknown parameters. We found that the simple threshold

f=
0̂"x

is nearly optimal and is simple to compute. This simple and effective threshold will be

used in the denoising algorithms to be discussed in subsequent chapters, where we will

also show its performance on real images. For now, the threshold is developed with the

assumption that the wavelet transform coefficients in each subband collectively form a

histogram distributed as the GGD. In Chapter 5, the spatially adaptive algorithm will

discuss how to model the coefficients as random fields (with changing parameter), and thus

yield a threshold selection that is not only subband-adaptive, but also pixel-wise adaptive

as well.
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Lossy Compression and Wavelet

Thresholding for Denoising
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An obvious question which arises during denoising ishow one distinguishes between
signal and noise. If appropriate models exist for both the signal and noise, then this can

be done effectively (for example, if the power spectrum of the signal and noise are known,
then Wiener filtering can be used.) However, it is not straightforward to devise a general
model for images, since they are rather complicated objects. Stochastic models are oftened

used to represent an image as samples of a random field. Such models are often used for

image restoration and data compression (see [27] for a survey ofstochastic models and their

applications). While these random field representations can be applied to image restoration
and compression, by themselves they do not amount toa general image model. For example,
a random field representation can describe self-similar ortexture-like images [25, 26], but it
may not predict a sharp transition (such as an edge) because it is an "unexpected" event.

Thus, without additional modeling, a stochastic representation can only model a rather

restrictive class of images.

For a more general model, we look into an area of image processing which has
been rather successful, namely, image compression. Notably, subband coding such as EZW
[55] and its variants have achieved high compression rate with good visual qualities. The
fact that these compression methods are able to capture important image features with a
concise representation implies that they achieve an efficient modeling of the image, where
efficiency is quantified in terms of the description complexity. On the other hand, an image
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ofuncorrelated white noise is hard to compress for any coder, because there is no structural
correlation or redundancy to exploit. Hence, a good compression method can provide a
suitable model for distinguishing between signal and noise.

The idea of using a lossy compression algorithm for denoising has been proposed in
several works [54, 49, 12, 13, 35]. Saito [54] viewed wavelet (hard-) thresholding as a means
to achieve "simultaneous noise suppression and signal compression." The noise suppression
nature ofwavelet thresholding is already clear from the discussion in Section 2.2 and Chapter
3. It also achieves compression because afterthresholding, there areless non-zero coefficients

left to be coded. Natarajan's Occam filter [49] accomplishes denoising by coding the signal
at a distortion equal to the noise strength, a^. The coder is chosen arbitrarily, as long as it
is a "reasonable" one. Liu and Moulin [35] proposed a "complexity-regularized" denoising
method, which codes the signal at a particularslope on the rate-distortion curve. The value

of the slope is derived from an MDL-like criterion, while the coder is chosen also arbitrarily.
To avoid disrupting the flow of this introduction, we save the details of these algorithms
until Section 4.1 where previous works in the literature are surveyed, and also Section 4.2

where they are relevant to our work.

One main purpose of the work in this chapter is to explain and to further sub
stantiate the theory that lossy compression can be appropriate for denoising. Most coders
operatein an orthogonal transform domain such as wavelet or DOT, and this is also what we

assume. Specifically, by posing quantization as an approximation to wavelet thresholding,
we show that quantization (a common step in compression) ofwavelet transform coefficients

achieves denoising. We do not claim that lossy compression is the best way to denoise an
image, but rather we want to show how to achieve both compression and denoising when
both features are desired.

To make analogies between wavelet thresholding and lossy compression, we reit
erate here the essence behind the idea of threshold denoising. The thresholding method
compares the transform coefficients to a given threshold and set it to zero if its magnitude
is less than the threshold; otherwise, it is kept or modified (depending on the thresholding
rule). The idea is that coefficients insignificant relative to the threshold are likely due to
noise, whereas significant coefficients are important signal structures. Thresholding essen
tially creates a region around zero where the coefficients are considered negligible. Outside
of this region, the thresholded coefficients are kept to full precision.

Analogously, in a typical transform domain lossy compression method, negligible
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Figure 4.1: The thresholding function can be approximated by quantization with a zero-
zone.

Wavelet

Transform

Denoising Algorithm

Quantize

(T, A, m)

Estimate

Parameters

Inverse

Transform

Figure 4.2: Problem formulation andproposed method for denoising. The noisy observation
is the signal with additive noise. Denoising is achieved in the wavelet transform domain
by a combination of soft-thresholding and quantizing the wavelet coefficients, with the
specifications based on estimated model parameters.

coefficients are set to zero, creating what is called a "zero-zone" or "dead-zone", and coef

ficients outside of this zone are quantized. Our thesis is that an appropriate quantization

scheme (and hence compression) achieves denoising because it is an approximation to the

thresholding operation (see Figure 4.1). Furthermore, theeffectiveness ofdenoising ismainly
due to the zero-zone, and the full precision of the thresholded coefficients is of secondary

importance. Thus, a comparable level of denoising performance can be achieved by quan
tizing the coefficients with a zero-zone and a few number of quantization levels outside of

the zero-zone.

Theproblem formulation andourproposed denoising method axe shown in Figure
4.2. The noise samples {sij} are iid normal i\r(0,cr^) and independent of the signal [fij}.
Our denoising operation is done in the wavelet transform domain of the observed corrupted
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sigiidJ. In 6SS6nce, it is a. two-stage quantization involving the zero-zone and the region
outside of the zero-zone. Furthermore, the quantization procedure is adaptive to each
subband, where we first estimate parameters to characterize thesubband, and thenuse this
information to determine the quantization specifications. For each subband, the size ofthe
zero-zone is set by the chosen threshold value T, and then the region outside is quantized
with 2m symmetric bins of width A. The quantized coefiicients are then transformed back

to yield the estimate. Thus, the two main issues in the quantization stage are "How to
choose the threshold (and hence the zero-zone) ?" and "How to quantize outside of the

zero-zone?"

We answer thefirst question with the Bayesian threshold we developed in Chapter
3. That is, the transform coefficients from each subband are modeled as random vari

ables with Laplacian distribution (which is more tractable than the GGD). Based on this

characterization, a simple threshold is used in the first stage soft-thresholding.
After being thresholded, the non-zero coefficients are good estimates oftheoriginal

signal and thus close to being Laplacian-distributed. They are then quantized with uniform

bin sizes and centroid reconstruction, and the number of bins is determined by a criterion

derived from Rissanen's MDL principle. This criterion achieves a compromise in the trade

off between the compression rate (from coding the bins) and the distortion, and has a nice

interpretation of operating at a fixed slope on the rate-distortion curve of the coder.

This chapter is organized as follows. In Section 4.1, the other previous works

on lossy compression-based denoising will be discussed in more detail. Next, in Section

4.2 we develop our lossy compression method for denoising, which incorporates wavelet

thresholding, coefficient quantization, and entropy coding. Experimental results on several

test images will be shown in Section 4.3. In Section 4.4, we make some concluding remarks

about our findings and possible future directions.

4.1 Related Previous Work

In Saito's work, the idea is to hard-threshold the wavelet coefficients of the noisy

observation to achieve both denoising and compression. The decision on the number of

coefficients to keep ismade by deriving a criterion based Rissanen's MDL principle [50] (see
(4.3)) and evaluating this criterion. The formulation is related to ours and thus will be

expounded in Section 4.2. While this work proposes an interestingidea, wefeel that it does
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not achieve true compression, since the coefficients are not quantized (which is necessary in

any practical coder).

In the denoising method of Liu and Moulin [35], the MDL criterion is viewed

as a trade-off between rate and distortion during coding, operated at a particular slope

on the rate-distortion curve. Their contribution is finding this slope, but no guidelines is

provided for choosing the coder. Rather, they merely presented a comparison of several

popular coders such as JPEG and SPIHT operated at this slope, against the Occam filter

and Donoho's hard-thresholding with the universal threshold Tu- Their work is also related

to ours and it will be revisited in Section 4.2. In our algorithm, however, we will present a

systematic approach to choosing the coder.

Natarajan's Occam filter [49] removes noise by coding thenoisy observation (with
an arbitrary coder) at a distortion equal to This particular choice of distortion is based

on the following intuition. When the distortion is small, the coder tracks the small details

in the signal (and thus the noise); when the distortion is large, it tracks the more global
structure of the signal. At the distortion point <j^, there is a "knee" on the rate-distortion

curve, representing the change in the tracking behavior of the signal. This knee refers to

a rapid change in the slope of the rate-distortion curve (manifested as the maximum of its

second derivative). Thus, by examining therate-distortion characteristics oftheobservation,
one first estimates by locating the knee, then compresses it at this distortion. One can

also interpret this method as finding anestimate ofthe signal on thehyper-sphere ofradius
a centered at the noisy observation g [31]. The original signal must reside on this hyper-
sphere because it was corrupted by noise of energy o^. However, since the dimensionality
is so large (about a quarter of a million for a typical 512 x 512 image), it may be very
difficult to find an estimate in the vicinity of the original signal. Our experience with the
Occam filter using standard coders such as JPEG and SPIHT [53] has not been satisfactory,
especially with large values of (a range of a values between 10 and 20 were tested for iid

Gaussian noise of Ar(0, o"^), with greyscale test images). The resulting images are extremely
distorted. Furthermore, we have found the knee to exist in the rate-distortion cm-ve of a

noiseless image as well, making the knee argument dubious. Nevertheless, the intuition
posed by this work gives an invaluable insight for motivating compression-based denoising.
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4.2 Quantization and Comprossion using the MDL Principle

If there is no compression required, then the adaptive thresholding rule discussed
in Section 3.1 suffices to effectively denoise the image. To achieve the dual purpose of
denoising and compression, however, there is an additional step of quantization. Recall
that compression achieves denoising because the zero-zone inthe quantization step (typical
in compression methods) effectively removes the noise. Hence, after the zero-zone has been

fixed, there is an additional step of quantizing the thresholded coefficients.

Consider again only one detail subband of the wavelet transform, with the coeffi

cients modeled as Laplacian distributed. Suppose that the parameters cr, a and the thresh

old T* have been estimated (see Section3.1 for the parameter estimation and the threshold

choice f IGx). There remains the questions of how toquantize the coefficients outside
of the zero-zone and how to compress them.

When compressing a signal, two important objectives are to be kept in mind. On

the one hand, the distortion between the compressed signal and the original should be kept

low; on the other hand, the description of the compressed signalshoulduse as few resources

as possible (e.g. use the least number of bits to code). Typically, these two criteria are

conflicting requirements. In order to reach a compromise, there needs to be a criterion

for selecting the most suitable outcome. Rissanen's Minimum Description Length principle

serves exactly this purpose [50].

4.2.1 The MDL Principle

Let M he & library or class of models from which we choose the "best" one to

represent the data. According to the MDL principle, given a sequence of observations, the

best model is one which yields the shortest description lengthfor describing the data using

the model, where the description length is the number of bits needed for encoding. This

description can be accomplished by a two-part code: one part to describe the model and

the other the description of the data using the model. To develop some intuition about

this principle, let us consider several scenarios. In order to minimize the distortion between

the signal and the model, we can choose the signal itself as the model, in which case the

signal is represented exactly, but at the cost of using many bits to encode the signal. In

our case where the input of the coder is the corrupted observation, this choice implies no

denoising, thus it is useless. At the other extreme, we can use the zero function, which



35

needs essentially zero bits to encode, at the expense of high distortion (unless the signal

is also identically zero). In the middle ground, a parametric model (such as polynomial

fitting) may be chosen, yielding a total description length to be the number of bits needed

to code the data given the model (e.g. the residual), plus the bits needed to specify the

number of parameters and the parameter values. The idea is that the chosen model should

establish a compromise between fitting the data well and having low complexity, that is,

having a simple representation or a reasonable number of parameters.

Example 1 For a sequence of discrete random variables, ui,U2,...,upf, with distribution

p(u),u GU, where U is a finite or a countable set, the shortest code-length on average is the

well-known Shannon code, L(u) = —logp(u), with base 2 in the logarithm (for the rest of

the chapter, the log function is of base 2). For the entire sequence, the shortest code-length

is
N N

Hu) = ^L{ui) = -^logp(ui).
i=l i=l

Example 2 Now let us consider when {uj} are continuous variables, with density p{u),

u £ U, and U is a subset of K. The set U can be discretized into equal intervals of size

or precision 6. Let uf be the discretized random variable, then the Shannon code for the
vector is -log(p(it'^) •6^) = -logp(w^) - N\og5. This term can be viewed as the

ideal code-length for coding u at precision 6. With the value 6 fixed, —logp(it) is called the

idealized code-length, Rissanen [50] showed that the optimal 6 is on the order ofl/y/N for

parametric models.

Let us now state the MDL principle. Given the set of observations Y, we wish to

find a modelX to describe it. The MDL principle chooses X which minimizes the two-part

code-length

L{Y,X) = L{Y\X)-\-L{X), (4.1)

where L(Y\X) is the code-length for Y based on X, and L{X) is the code-length for X.

The first term on the right-hand side of (4.1) is the idealized code-length,

L(r|x) = -iogp(y|x). (4.2)

In the original MDL, further truncation of the model parameters is considered. Suppose

that there are K parameters and each parameter Xi is truncated up to precision 6, yielding
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Xf, then Rissanen showed that the optimal precision S* is 1/y/N and

mmxcr, X, 6) =L(Y\X) +£([i:]) +|; log JV +0(K),
where L([X]) denotes the code-length of the integer part of X, and (1/2) log iV bits are
used to represent the decimal part of each of the K parameter values. When K is much

less than iV, the last term 0(K) is negligible, and the MDL criterion is

MDL(Y, X) =HY\X) +L(lX]) +^]oeN. (4.3)
In practice, the parameter values in MDL are rarely optimally truncated but kept to full

machine precision.

In Saito'ssimultaneous compression and denoising method [54], the hard-threshold

function was used to generate the models X = ipTiY), where the number of K non-zero

coefficients to retain isdetermined by minimizing theMDL criterion. Thefirst termL{Y\X)
is the idealized code-length with the normal distribution (see (4.4)), and the second term

L([X]) is taken to be K logN, whichare the bits needed to indicate the location of each non

zero coefficient (assuming a uniform indexing). Although compression has been achieved in

the sense that a fewer number of nonzero coefficients are kept, it still does not address the

issue that in a practical compression setting, the coefficients usually need to be quantized

more coarsely. Thus, our criterion will be developed from a coding point of view, and the

minimization of L{Y,X) is restricted to X belonging to the set of quantizedsignals, whose

construction will become clear in the following.

4.2.2 The MDL Principle for Compression-based Denoising: The MDLQ

Criterion

Consider only one particular subband, which is of size N x N. Since the noisy

wavelet transform coefficients are Y = X -|- V, where Vij are iid iV(0,cr^), then Yij\Xij ~

N{xij^a^). Thus,

N

i(r|x) = -'̂ iosp{Yij\Xii)
i,j=l

= 2^2 £ \log(2»<r2^^). (4.4)
ij=l



37

The second term in (4.4) is a constant, and thus can be ignored in the minimization.

The expression in (4.4) was also derived in [54, 35], though in [54] the estimation of is

integrated into the criterion as well. The main deviation between their works and ours is

the different ways of estimating X.

Let M be the set of quantized coefficients, and X be constrained in M, then

(4.4) (with constant terms removed) becomes

LiYlx"^) = - logp(l^,|X«)
tj=l

~ 2<t2In2 ^
i,j=l

There are many possibilities for the second term L(X^) in (4.1), since there are
many ways for coding quantized coefficients. Here we propose a simple method suitable for

subband coding of images.

Since the observation Yij has Gaussian noise embedded, it is not strictly Lapla-

cian distributed. However, after thresholding as discussed in Section 3.1, the (non-zero)

thresholded coefficients X = ifriY) can be seen to be close to Laplacian distributed (see

the text in Section 4.3 and the referenced plot in Figure 4.4), and thenceforth are quan

tized with this distribution. The problem of quantizing Laplacian random variables has

been well-studied and the design of the entropy-constrained scalar quantizer (ECSQ) for
a Laplacian distribution is discussed by Sullivan [59]. Furthermore, it was shown that the

uniform threshold quantizer (UTQ) achieves nearly the performance of the ECSQ, and has

the additional benefit of being simple to design.

Hencethe UTQ is used here on the non-zero thresholded coefficients, with m levels

of equal intervals of A on each side, and with the centroids being the reconstruction values

(see Figure 4.3). The quantized coefficients are denoted by and there are a total of

2m -f 1 quantization levels (one zero-zone plus m symmetric levels on each positive and

negative side), which are indexed as ^ = -m, -m + l,...,-l,0,l,...,m-l,m. Consider

the positive side and let 6o, 6i,..., denote the boundaries of the quantization bins, with

reconstruction values 7i,72,... ,7m. Note that 6o = 0 and bm = oo. The value of 7£ with
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Figure 4.3: Illustrating the quantizer.
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The negative side is quantized in a symmetric way. Note that the zero coefficients resulting

from thresholding are kept as zeros, and that the quantization of the non-zero coefficients

does not set any additional coefficients to zero. On average, the smallest number of bits
~ Qneeded to code X is the Shannon code, and the code-length for coding the bin indices is

-Q.L(xV.A) =- Y,
£=—m

where Ke is the number of coefficients in bin L The additional parameters m and A need

to be coded also, but we suppose that any positive values are equally likely, thus a fixed

number of bits are allocated for L(m, A).

Now we state our model selection criterion:

1 ^MDLQ(,X'̂ ,m,A) = (V;, - x9f +L(x'̂ lm,A). (4.6)
t.J=l

To find the best model, we minimize (4.6) over values of m and A to find the corresponding

set of quantized coefficients, X^.

This thresholding-quantization scheme is applied to each subband independently.

First the noise variance is estimated. Then the parameter a and the threshold T(d) are
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calculated, and (4.6) is minimized over m and A to find the desired quantized coefficients

X^. The coarsest subband LLj isquantized differently in that it is not thresholded, and the

quantization with (4.6) uses the uniform distribution. The LLj coefficients are essentially

local averages of the image, and are not characterized by distributions with a peak at zero.

Thus the uniform distribution is used for generality. The mean is subtracted from the LLj

coefficients to make the distribution centered at zero. The zero-zone is also of width A,

with reconstruction value 0, and the reconstruction values in other zones are the midpoints

of the intervals.

The MDLQ criterion in (4.6) has the additional interpretation of operating at a

specified point on the rate-distortion curve, as also pointed out by Liu and Moulin [35].

For a given coder, one can obtain a set of operational rate-distortion points (i2, D). When

there is a rate or a distortion constraint, the constraint problem can be formulated into

a minimization problem with a Lagrange multiplier, AD -I- R. In this case, (4.6) can be

interpreted as operating at

A= 1
2c72ln2 •

In the related works, Natarajan's coder operates at a constrained distortion, D < [49],

while Liu and Moulin's coder operates at the slope A= 2a^\n 2 curve [35].
Both works merely recommend the use of any "reasonable" coder. In contrast, our work

pinpoints the effectiveness of using compression for denoising to come from the zero-zone

in the compression schemes.

4.3 Experimental Results

The 512 X 512 images "goldhill" and "lena", with various levels of noise a =

5,10,15,20, are used as test data. Daubechies' least asymmetric compactly-supported

wavelet with 8 vanishing moments [19] is used in the wavelet transform, and four levels

of decomposition are computed. The coefficient values of this SymmletS wavelet are listed

in Appendix A.

Firstly, to showthat the thresholded coefficients are nearly Laplacian, the Q-Q plot

of the HLi subband of goldhill is shown in Figure 4.4. The Q-Q plot is an effective statistical

tool to verify that a data set is close to the assumed distribution. Let xi,X2,... ,xn be

the sample values of a: ~ LAP(a), and we order them by increasing magnitude, denoted

by 2/i>2/2, •. •,2/A^, called the order statistics ofthe absolute values. When a = 1, ?/ = |a;| ~
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Figure 4.4: Q-Q plot of subband HLi of goldhill. Compares the original uncorrupted
coefficients (—), the noisy coefficients (— • —), and the non-zero thresholded coefficients

EXP(l) = e~y. The cumulative distributionfunction (cdf) of EXP(l) is i^(o) = e'^dy =

g, and a = F~^{q) is called the g-th quantile. Then o = —ln(l —g). The Q-Q plot graphs

the pairs (?/*;, —ln(l — = 1,2,where the number 0.5 is inserted to keep

the log function well defined at the boundaries. The straighter the line is, the closer the

samples are to the assumed distribution. For a general a, the line is of slope 1/a. Figme 4.4

compares the plot of the original uncorrupted coefficients, the corrupted coefficients, and

the non-zero thresholded coefficients. The thresholded coefficients follows a straighter line

than the noisy observation, suggesting a closer match to the Laplacian distribution. For

this subband, the threshold T is large, thus the lines deviate substantially from each other.

For other subbands where the thresholds are small (also implying that the noise power is

small relative to the signal), the three lines axe close to each other, and show a good match

to the Laplacian distribution.

To assess the performance of soft-thresholding using the adaptive threshold T, we

compare it with soft-thresholding using the oracle threshold defined as

Tore = argimn^(»jr(Vij) - Xij)' (4.7)

where Xij are assumed to be known, and a different Tore is found for each detail subband.
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In Table 4.1, the first column is the MSEs of the noisy observations, and the next two

columns compare the MSEs of soft-thresholding with Tore and T, respectively, averaged

over 20 runs. The MSEs resulting firom T are very close to those fi:om Tore, indicating that

the Laplacian pdf is a good model and that the threshold selection is appropriate. Visually,

the two sets of images axe also very similar, as shown in Figure 4.5 (b) and (c) for goldhill

and <T = 15. These images are also available on the Internet at

http://www-wavelet.eecs.berkeley.edu/'grchang/compressDenoise/.

The fourth column in Table 4.1 shows the MSEs of the quantized signal using T

as the zero-zone threshold. The quantized goldhill image with tr = 15 is shown in Figure

4.5 (d), where the quantization noise is quite visible. The last column of Table 4.1 shows

that, as expected, the quantized signal uses much less bits than the 8 bits per pixel (bpp)

of the original greyscale image, but at the expense of some degradation. On average, the

quantized signal loses about 1-1.5 dB in SNR over the unquantized thresholded signal,

although it still has a much lower MSE than the noisy image. This suggests that mainly

the zero-zone is responsible for filtering the noise. Note that the first-order entropy coding,

L{X '̂|m, A), for the bitrate of the quantized coefficients is a rather loose estimate. With

more sophisticated coding methods (e.g. predictive coding, pixel classification), the same

bitrate could yield a higher number of quantization level m, thus resulting in a lower MSE.

Table 4.2 gives the values of m chosen by MDLQ for each subband of the goldhill

image, a = 15, averaged over 20 runs. Recall that each subband has 2m -I-1 quantization

levels. The MDLQ criterion allocates more levels in the coarser, more important levels, as

would be the case in a practical subband coding situation.

4.4 Summary

In this chapter, we demonstrated the connection between lossy compression and

wavelet thresholding to explain why compression is suitable for denoising. Specifically, it

is the zero-zone in coefficient quantization that is the main agent in removing the noise.

Although the setting in this chapter was the wavelet domain, the idea can be extended to

other transform domains such as DCT, which also relies on energy compaction and sparse

representation properties to achieve good compression. Thus, lossy compression has the dual

purpose ofboth removing the noise and compressing the input intofewer bits. Furthermore,

the denoising experiments using our proposed thresholds for wavelet thresholding images.
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Table 4.1; MSE of (1) the noisy observed image, (2) oracle soft-thresholding, (3) soft-
thresholding with thresholds T, and (4) quantized signal with zero-zone thresholds T. The
last column shows the entropy bitrate (bits per pixel) of the quantized image. Averaged
over 20 runs.

MSE observ. ^orc T T, Quant. bitrate (bpp)
goldhill (7=5 25 16.33 17.72 29.57 1.458

(7=10 100 41.15 41.82 58.64 1.058

(7=15 225 64.85 66.46 87.04 .679

o

II

b

400 86.51 88.98 112.22 .445

lena a=5 25 12.39 13.47 20.66 1.186

(7=10 100 28.15 29.58 42.49 .725

(7=15 225 43.80 45.75 63.73 .490

II

to
o

400 59.13 61.44 83.79 .358

Table 4.2: The value of m (averaged over 20 runs) for the different subbands of Goldhill,
with noise strength cr = 15.

Orientation Scale

1 (fine) 2 3 4 (coarse)

HH 0 2.10 3.65 6.10

HL 2.75 3.95 5.95 20.05

LH 2.70 3.50 6.35 12.05

LL 34.65
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Figure 4.5: Comparing the performance of the various methods. Clockwise from top left:
(a) Original, (b) Noisy image, a = 15. (c) Oracle soft-thresholding, (d) Thresholding with
T(6;). (e) Our method of thresholding followed by quantization.

LX,
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based on Laplacian distribution modeling of the subband coefficients, showed that these

thresholds perform very close to the oracle results.

There are several interesting directions worthpursuing. The current scheme selects

the threshold (i.e. zero-zone size) T and the quantization binsize A in a two-stage process.
In typical image coders, however, the zero-zone is chosen to be the same size or twice

the size as other bins. Thus it would be interesting to jointly select these two values and

analyze their dependencies on eachother. Furthermore, a more sophisticated coder is likely

to produce better compressed images than the current scheme, which uses the first order

entropy to code the bin indices. With an improved coder, an increase in the number of

quantization bins would not increase the bitrate penalty by much, and thus the coefficients

would be quantized at a finer resolution than the current method. The model family M

could also be expanded. For example, one could use a collection of wavelet bases for

the wavelet decomposition, rather than using just one chosen wavelet, to allow possibly

better representations of the signals. Lastly, the combination of the spatially adaptive

thresholding method developed in Chapter 5 with coefficient quantization could yield a

more sophisticated compression-based denoising algorithm. This is likely to both improve

the denoising performance and reduce the bitrate.



Chapter 5

Spatially and Scale-Adaptive

Image Denoising

45

Most of the wavelet thresholding literature thus fax has concentrated on developing

threshold selection methods, with the threshold being uniform or at best using a different

threshold for each subband. Very little has been done on developing thresholds that are

adaptive to different spatial characteristics. Other works investigate the choice of wavelet

basis or expansion for the thresholding framework. One particularly interesting result is

that (uniform) thresholding in a shift-invariant expansion (dubbed translation-invariant

(TI) denoising by Coifman and Donoho [16]) eliminates some of the unpleasant artifacts

introduced by the modification of the orthogonal wavelet expansion coefficients. In this

chapter, we use the wisdom that thresholding in a shift-invariant, overcomplete representa

tion outperforms thresholding in an orthogonal basis, and investigate an issue that has not

been explored, namely, the spatial adaptivity of the threshold value.

To motivate spatially-adaptive thresholding, consider the example in Figure 5.1,

where a square function has been corrupted by additive noise, and the goal is to recover

the original function. The wavelet coefllcients of the original and the noisy function are

displayed in Figure5.1(a). The noisy coefiicients are soft-thresholded by a single thresholdin

Figure 5.1(b), and one can see that, especially in the finest scale, there are some coefficients

corresponding to noise which have not been set to zero, and that some of these noisy

coefficients are larger in magnitude than those coefficients corresponding to the signal.
Thus, with a uniform threshold, it may not be feasible to have both the benefits ofkeeping
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Figure 5.1: Motivation for adaptive thresholds, (a) shows a step function and its noisy
version, along with their wavelet decomposition of 4 scales. The wavelet coefficients are
thresholded by a uniform threshold in (b) and spatially adaptive thresholds in (c). The
original and the reconstructions from (b) and (c) are shown in (d).
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the important signal features and killing the noisy coefficients. On the other hand, one can

reap both benefits with adaptive thresholds by choosing the threshold value to be very small

in the regions of the peaks due to the step function, and largeotherwise (see Figinre 5.1(c))^.

The reconstructed signals are shown in Figure 5.1(d), where it is clear that the adaptively

thresholded reconstruction is much better than that due to uniform thresholding, especially

in the area of the sharp transitions. The question, then, is how can one distinguish between

the coefficients that are mainly due to the signal and those mainly due to the noise? Also,

how should the thresholds be adjusted pixel by pixel? These are the questions that we will

answer in this chapter with our proposed algorithm.

Most natural images havevery different local properties, since they typically con

sist of regions of smoothness and sharp transitions. These regions of varying characteristics

can be well differentiated in the wavelet domain, as can be seen in the wavelet decomposi

tion of the lena image in Figure 5.2. One observes areas of high and low energy (or large

and small coefficient magnitude), represented by whiteand black pixels, respectively. Areas

of high energy correspond to signal features of sharp variation such as edges and textmes;

areas of low energy correspond to smooth regions. When noise is added, it tends to increase

the magnitude of the wavelet coefficient on average. Specifically, in smooth regions, one

expects the coefficients to be dominated by noise, thus most of these coefficients should be

removed, especially since noise is highly visible there. In regions with sharp transitions,

the signal has the main contribution to the high energy coefficients, while noise has less.

These coefficients should be kept, or modified only a little, to ensure that mostof the signal

details are retained, and also because noise is not so visible here. Thus, the idea is to

distinguish between the low and high energy regions, and modify the coefficients using a

spatially adaptive thresholding strategy.

To accomplish spatially adaptive thresholding, we model each wavelet coefficient

as GGD random vaxiable whose parameter is to be estimated. This parameter in turn is

used to find the appropriate threshold. Instead of using one parameter for each subband

level, several wavelet-based image coders have achieved better performances by modeling

the wavelet coefficients as a mixture of GGD random variables with unknown slowly spa

tially varying parameters [37, 68]. The estimation of the parameterfor a given coefficient is

conditioned on a function of its neighboring coefficients, a method called context-modeling

^For the sake of illustrating the effectiveness of varying thresholds, the regions of the true peaks are
assumed to be known in this example.



Figure 5.2: Four level wavelet decomposition oflena. White pixels indicate large magnitude
coefficients, and black signifies small magnitude.

frequently used in compression for differentiating pixels ofvaried characteristics and adapt
ing the coder. Context modeling also allows one to group pixels of similar nature but not

necessarily spatially adjacent, and to gather statistical information from these pixels. Now,

given that one can estimate the parameter for each coefficient, the next step is to use them

to calculate the threshold. In Chapter 3, we found that when the signal coefficients are

modeled as Generalized Gaussian random variables and the noise as Gaussian, the thresh

old T = (T^/ax isa good approximation to the optimal threshold which minimizes the mean

squared error of the soft-thresholding estimator, where cr^ is the noise power, and <7x is the

standard deviation of the signal. The simplicity of this threshold makes it easy to achieve

spatial adaptivity: one uses context modeling to quantify the local characteristic in (Ta:,

which in turn yields a threshold T adaptive on a pixel-by-pixel manner.

Our proposed adaptive algorithm is based on using adaptive thresholding in the

overcomplete wavelet expansion. It outperforms both using only adaptive thresholding in

the orthogonal expansion or using only uniform thresholding in the overcomplete expansion

likethe TI denoising. That is, by combining spatially adaptive thresholding and overcomplete

expansion, we achieve results which are significantly superior than either method alone.

Firstly, the adaptive threshold selection does a good job at removing noise insmooth regions,

while not disturbing too much the edge and texture regions. Secondly, thresholding in

the overcomplete expansion acts as an additional averaging which further attenuates the

remaining noise.
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The organization of this chapter is as follows. In Section 5.1.1, we introduce mod

eling each subband coefficient as a Generalized Gaussian distributed random variable with

a different parameter. Because this threshold selection is based on the iid noise assumption,

the discussion will first be set in the orthogonal wavelet transform. Then context modeling

is introduced in Section 5.1.2to allow the parameters to be estimated on a pixel level, which

in turn yields a spatially adaptive threshold. The final adaptive algorithm will be complete

when we discuss how to extend the adaptive thresholding in the orthogonal expansion to

the overcomplete expansion in Section 5.1.3. There are several alternative approaches and

related work which we have explored and the findings are discussed in Section 5.1.4. In

Section 5.2, we will compare the spatially adaptive results with those from the best uniform

thresholding strategy (in the mean squared error sense, and based on knowing the original

image), in both the orthogonal gmd an overcomplete expansion. Results will show that

the combination of using spatially adaptive thresholding and overcomplete expansion yields

significantly better results in both visual quality and mean squared error.

5.1 Spatially Adaptive Algorithm

The adaptive algorithm will be developed in the following manner. To make this

thresholding approach spatially adaptive, each coefficient (rather than each subband) is
modeled as a GGD random variable with a different unknown parameter which is estimated

via context modeling. This spatial mixture of distributions allows the image characteristics

to be quantified locally in the distribution parameters, which are then used to adjust the

threshold for each coefficient. Lastly, since the aforementioned algorithm is developed in

the orthogonal expansion where the coefficients are uncorrelated, the algorithm will need

to be modified to extend to the overcomplete expansion where coefficients are correlated.

Several remarks will also be made about related alternative approaches.

5.1.1 Coefficient Modeling and Threshold Selection

The corrupted image modeled in (2.3) will be re-iterated here for completeness.

The observed degraded image is

9ij fij ^ij) ^)
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where {fij} is the original image, and {£„} are iid and independent of {/„}.
The observations {gij} are transformed to the wavelet domain for threshold denoising. Let

(5 o){Yij ihJ ~ 1}• ••)denote the wavelet coefficients of {yij} at a particular scale s
and orientation o, where s = 1,2,..., J and oG{HL, LH,HH, LL} (see Figure 2.5). Also
let and denote the wavelet coefficients of the original signal {/y} and
the noise {ey}, respectively. Notice that here we have introduced the extra notations to

denote the scale and orientation of the wavelet decomposition, since they will be needed
in the following. The estimate of each coefficient is the soft-threshold estimator,

= VTij{Yij). The threshold Tij has been written explicitly as a function of the indices
i and j to denote a different threshold for each location.

Let us rewrite the zero-mean Generalized Gaussian distribution (2.4) in a more

convenient form,

GG^,,0(x) = C(a^,/3) (5.1)

where
T 1/2

(3 a(P,Gx)-1
Xa(<^x,/0) =cr

r(^)j

<TX

C(ctx,/3) =
2r(^)

The parameter <7a; is the standard deviation and the parameter ^ is the shape parameter.

As demonstrated in Section 3.1, the optimal threshold T* defined as

T* = aigmmEy^xM'nTiY) - Xf (5.2)

where Y\X <f){y —x,(t^) and X ~ GGa^^0{x), can be well approximated by

f=2i.

This threshold, T, can easily be adjusted to the signal and noise energy as reflected in ax

and a.

To achieve a spatially sidaptive thresholding strategy, the wavelet coefficients are

modeled as components in a discrete random field, with a collection of independent zero-

mean GGD randomvariables whose parameters(3 and Cx are spatiallyvarying. Asdiscussed

previously, mainly the parameter ax is of interest sinceT depends on it, and (3 is assumed

to be in the range for which this threshold is appropriate. In the next section, the technique

of context modehng is used to estimate ax at every pixel, thus yielding adaptive thresholds.
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5.1.2 Context Modeling for Spatial Adaptivity

The parameter ax needs to be estimated for each coefficient to make the threshold

T spatially adaptive. This can be accomplished by context modeling^ an idea used frequently

in image compression for adapting the coder to changingimagecharacteristics. That is, the

statistical modelfor a given coefficient is conditioned on a function of its neighbors. Several

model-based coders have utilizedinformation from causalquantized neighbors to determine

the context model for each coefficient [37, 68]. The coder in [37] estimates the shape and

standard variation parameters by the maximum likelihood (ML) estimator from the quan

tized coefficients within a causal neighborhood, allowing essentially an infinite mixture of

distributions^. Inthe wavelet-based compression scheme in [68], context modeling was used
to classify coefficients into several classes of Laplacian distributions with different values of

cTjc. The conditioning was based on the weighted average of the coefficient magnitude in a

causal neighborhood, and each class was formed by clusteringcoefficients whose associated

weighted averages fall within a specified range. The distribution parameter is estimated

from the coefficients for each class, which is then used to adapt the coder. Since the pa
rameter and the description of each class need to be sent as overhead, only four classes

were used in [68]. For the denoising problem, there is no need to conserve bits, thus it is

not necessary to explicitly classify the pixels, and parameters can be estimated for each

coefficient via a moving window, resulting in virtually an infinite mixture of distributions.

Consider one particular subband with coefficients, To simplify nota

tion, we drop the superscript (s,o) now, and resume its usage when necessary for clarity.

Each coefficient Yij is a random variable whose variance can be estimated as follows. Con

sider a neighborhood ofsize p around Ifj, and place the absolute value of these p elements

in a p X1 vector Uij. One possible choice is the eight nearest neighbors of Yij in the same

subband, plus its parent coefficient (see Figure 5.3 for the definition of parent-

child relationship). To characterize the activity level of the current pixel, we calculate a

weighted average of the absolute value of the neighbors as

Zij tV Vbij.

^To be exact, the shape parameter are restricted to be a member of a discrete set. The quantizer is
pre-designed for a fixed discrete set ofshape parzimeter (3 and slope \/al where Ais determined by the
target rate, so that the coding can be done quickly with the aid of a lookup table.
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Figure 5.3: The parent-child relationship in the orthogonal wavelet transform. Each arrow
points from the parent to itschildren, which are in thesame orientation, but in theadjacent
finer scale (except the children ofcoefficients in LL3). For example, a coefficient in HHz is
the parent ofthe four coefficients in HH2 corresponding to the same spatial location, each
of which is the parent of four coefficients in HHi.

The weight w is found by using the least squares estimate, that is,

WLs = argimn^(|y;j|-u)'ttij)2

= (U'ur'U'\Y\ (5.3)

where C7 is a x p matrix with each row being for all z, j, and Y is the N^xl vector

containing all coefficients Yij. Notice that the absolute values of the neighbors, rather

than their original values, are used in the averaging. This is because orthogonal wavelet

coefficients are uncorrelated, and thus an average of the neighbors does not yield much

information about the coefficient of interest. However, the absolute value or the squared
values of neighboring coefficients are correlated [55], and therefore their averages are useful

in collecting information about other coefficients in the vicinity.

The variance of the random variable Yij is estimated from other coefficients whose

contexts lie in an intervalaround Zij. Todevelop an intuition for this, it is helpfulto examine

Figure 5.4, which plots the pairs {Zij,Yij], i,j = The points are clustered within a

cone shape whose peak is at the origin. Taking aninterval ofsmall valued Zy, the associated
coefficients {yj^} have a small spread; on the other hand, an interval of large valued Zij has
corresponding {1^^} with a larger spread (the intervals are ofdifferent widths to capture the
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Figure 5.4: Asample plot of Yij), where Yij is the noisy wavelet coeflficient, and Zy is
its context. A collection ofYij withsmall values ofZ^ have a smaller spreadthan those with
large values of Zy, suggesting that context modeling provides a good variabihty estimate
ofFy.

histograms of Y[iJ]
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same number of points). This suggests that the context provides a good indication of local

variability. Thus, for a given Fiojo at location [io? we place an interval around

and the variance of Yi^j^ is estimated from the points Yij whose context falls within this

window. In particular, we take L closest points above and L closest points below,

resulting in a total of 2L + 1 points, where we choose L = max(50,M^/10) to ensure that

enough points are used to estimate the variance. Note that this is a moving window rather

than the fixed classes in [68], and thus allows a continuous range of estimate values. Let

^iojo denote the set of points {Yij} whose corresponding {Z^} fall in the moving window.
The estimate of the variance jo] is then

io] =max jI ^ \ 0)
\ \ } /

(5.4)

The term needs to be subtracted because [Yij] are the noisy observations, and the noise

is independent of the signal, with variance The threshold at location [zq, jo] is then

f- .•'toJo ~ \1 • V
<7x[205J0J

Calculating the threshold Tij for every location [i,j] yields a spatially adaptive threshold.
In the implementation, {Zy} are first sorted, and a moving window is placed over them, so
the set Bij and the variance estimate d-l[i,j] can be updated efficiently. The noise variance
can be estimated by the median estimator in (3.6).
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5.1.3 Thresholding in Overcomplete Expansion

Thresholding in the orthogonal wavelet domain has been observed to produce
significantly noticeable artifacts such as Gibbs-like ringing and blips. To ameliorate this

unpleasant phenomenon, Coifman and Donoho [16] proposed the translation-invariant (TI)
denoising. Let Shiftk^^[g] denote the operation ofcircularly shifting the input image g by
k indices in the vertical direction and I indices in the horizontal, and let Unshiftj. ^[g] be a
similar operation but in the opposite direction. Also, let Denoise[g,T] denote the operation

of taking the DWT of the input image g, threshold it with a chosen uniform threshold T,

then transform it back to the space domain. Then TI denoising yields an output which is

the average of the thresholded copies over all possible shifts:

1

f = Unshiftk^^[Denoise[Shiftk^i[g],T]] .
k,e=o

The rationale is that since the orthogonal wavelet transform is a time-varying transform and

thresholding the coefficients produces ringing-like phenomena, thresholding a shifted input

would produce ringing at diflferent locations, and averaging over all different shifts would

yield an output with more attenuated artifacts than a single copy alone. TI denoising can

be shown to be equivalent to thresholding in the overcomplete representation implemented

by the non-subsampled filter bankas discussed in Section 2.1.3, shown in Figure 2.6, up to

a scaling in the thresholds. It has been shown empirically to remove some of the ringing

artifacts, becausedenoising in the redundant expansion can be interpreted as an additional

averaging. Thus we proceed to extend our spatially adaptive algorithm to this redundant

expansion.

The adaptive algorithm in the orthogonal basis described above can easily be ex

tended to the overcomplete expansion. Now consider the same orthogonal filters but used

in a filter bank without downsampler. The filters are renormalized by l/y/2 so that co

efficient energy stays the same. This decomposition is a redundant representation, and

there axe correlations between the decomposition coefficients. For example, at the first

level of decomposition, the odd and even coefficients (in each direction) are correlated.

Thus, we can separate the coefficients into four sets of uncorrelated coefficients, namely,

{^2i,2j+i}j {y2i+i,2j} and {y2i+i,2j-i-i}- For the s-th level decomposition, the coeffi
cients can beseparated into 2^^ sets, each containing uncorrelated coefficients, and they are

{y2'i+ki,2'>j+k2}id, Aji, ^2 = 0,1,..., 2® —1. Since each set contains uncorrelated coefficients.
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the noise are also iid within each set as well, and thus the adaptive algorithm can be used

for each set of coefficients. This approach lets us still use the independent noise assumption

and circumvent the issue of denoising correlated signal coefficients with correlated noise,

which is not an easy task. That is, if the coefficients are correlated, then one can conceivably

do better than thresholding each coefficient independently; one could look at the numerous

correlated coefficients and do a joint thresholding. This is still an open problem and is worth

investigating. For correlated noise, near-optimal minimax properties were derived in [30]

for a modified imiversal threshold, o-(®V21ogJV, where is the standard deviation of the

noise at the decomposition level s. The framework is for a deterministic signal, however,

and not the Bayesian framework used here. Thus, for simplicity, weseparate the coefficients

into groups of uncorrelated coefficients before using the thresholding algorithm.

There are two other minor details in this implementation. Firstly, one needs to

alter the noise power at each decomposition scale to due to the renormalization

of the filters. Secondly, the definition of the parent coefficient used in the neighborhood of

the context is slightly changed: the parent of a coefficient at [i,j] in scale s is simply the

coefficient at the same spatial location [z, j] in scale s + 1.

5.1.4 Alternative Methods

There are several other possible alternative approaches which will be discussed

below.

One may ask why the local varianceis not estimated from, say, a local window around

Yij (as in [37]), but rather from an indirect way of grouping the coefficients first via

its context. Estimating from a local neighborhood is simple, and, as demonstrated by

the good performance of the image coder in [37], it yields an estimate good enough

for adapting the coder. However, our experience with noisy images shows that such

an estimate yields considerably more unreliable variance estimates, aJ[z,j], and also

a blotchily denoised image. This is because the estimate is highly sensitive to the

window size we choose: a smallwindow contains few points and thus yields unreliable

estimates; a large window adapts slowly to changing characteristics. The context-

based grouping allows one tocongregate those coefficients with similar context though
not necessarily spatially adjacent. It also allows a large number of coefficients to be

used in the variance estimation, thus yielding a more reliable estimate. Simulations
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show that the performance is not sensitive to the neighborhood choice Bij and the
weight w used inthe context calculation, as a simple equally weighted average ofthe
eight nearest neighbors in the same subband yield approximately the same result.

2. The method we have proposed is a two-pass process: the first pass calculates the

weighted average {Zij} of the absolute values of the neighboring noisy coefficients,
and then {Zij} are sorted; the second pass collects the noisy coefficients with similar

values of Zij^ estimates the signal variance, cr^[i,j], from the noisy coefficients and

then the thresholds for the thresholding function. It is worthwhile to investigate the
algorithm performance when the context modeling and the parameter estimation are

performed on the denoised coefficients instead, since, intuitively, if the coefficients are

really denoised, they should yield more reliable information. This simple intuition is,

however, not as straightforward to implement as it seems. To do this in a two-pass

algorithm is difficult, since Zij is a weighted average of neighboring denoised coeffi

cients, but the threshold used to denoise these coefficients are estimated from other

denoised coefficients with similar context. A simple-minded alternative solution is to

use a one-pass modification of our algorithm, where the conditioning and estimation

are based on the causal, denoised coefficients, much along the same philosophy as one-

pass compression methods conditioning on causal quantized data [37, 68]. Assume a

scanning order of row by row, and initialize the first coefficient as already denoised,

that is, Xi^i = li^i. For every new coefficient at location [i,j], the context is condi

tioned on Zij = w^Uij where Uij is now the vector containing the absolute value of

denoised coefficients Xij in a causal neighborhood, and the elements of w are simply

the equal weights. These choices axe made for simplicity since the denoising perfor

mance is not too sensitive to the neighborhood selection and weight vector w. The

GGD parameter crx[ij] is estimated from past denoised coefficients whose contexts

axe similar, and 2L -I-1 coefficients axe used (or all of the available coefficients so fax

if less than 2L -I-1 coefficients have been denoised.) Since the coefficients axe already

denoised, the estimation of (Tx[i,j] is

insteadof (5.4). Simulations show this approach to run into problems especially when

the noise power is large, causing many coefficients to be denoised to zero. Having
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too many consecutive zero coefl&cients is likely to cause to be zero, which then

translates to an infinite threshold (i.e. Yi^ is thresholded to zero). This in turn may

cause all the subsequent coefficients to be thresholded to zero. This phenomenon

is frequently encountered in backward adaptive compression methods which adapts

based on causal quantized coefficients: a run of zero coefficients may cause all subse

quent coefficients to be quantized to zero as well. Some work amehorate this problem

by looking ahead to identify unpredictable sets, coefficients whose neighbors are zero,

but who should not be quantized to zero [37, 68]. This logic can be applied to the

denoising framework as well. When the algorithm computes it identifies the lo

cations [k,^ in the causal neighborhood Bij for which Xki = 0 but \Yki\ > cr, and

these Yki are substituted for the zero Xke to be used in the computation of Zij and

^x[iij]- Simulations show the resulting images to yield slightly worse MSEs than the

previously proposed method, and they are visually considerably more noisy.

Another variation is to use the denoised coefficient for context modeling, but the ob

served noisy coefficients for estimating (Tl[i,j] as in (5.4). Again, without takingsome

caution about the runs of zero coefficients, the variance estimate may be inadequate

for several rows (recall the scanning is row by row) before having enough non-zero

causal neighbors for collecting valid information. The denoised images are also similar

to the ones described above, having slightly worse MSEs than the proposed two-pass

algorithm, and axe visually more noisy.

3. A central part of our spatially adaptive algorithm is based on modeling the variance

crj[i, j] to be non-constant and varying throughout the image. This is reminiscent of
the heteroscedasticity, or non-constant variance, problem in statistics. Let {Yij} be

the observed noisy wavelet coefficients, and each yij a random variable whosevariance

jfj is non-constant. Acommon approach tothe heteroscedasticity problem is to model
7?- as a function ofsome design vector, Uij. Traditionally there are two approaches in
estimating this function: parametric and non-parametric. Since we have an assumed

distribution on the wavelet coefficients (i.e. GGD), the parametric approach will be

used here. The readers are referred to [8, 47] and related literatures for more details

on heteroscedasticity models. Using a parametric function to describe the variance

7? has the advantage that it allows a compact representation of the non-constant

variance, useful for image analysis and understanding. In contrast, although the non-
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parametric approach described in Section 5.1.2 works well, it does not lend itself to

any tractable analysis.

In the previous section, we have described the noisy coefficient Yij as a sum of two
random variables, Xij ~ GGD and Vij ~ Gaussian. Unless Xij is a Gaussian dis
tributed random variable, there is no closed form expression for the distribution of

Yij. However, often one observes the wavelet coefficients for images to be sharply
peaked at zero, better described by the Laplacian density function. Furthermore, the
noisy coefficients also form a histogram which is sharply peaked at zero. Thus, for
simplicity and for the sake of tractable analysis, we assume the noisy coefficient Yij to
be Laplacian distributed, or, alternatively, \Yij\ be exponentially distributed. Similar

to the context modeling framework inSection 5.1.2, let the design vector Wy at loca
tion [ij] be the vector containing the absolute value ofthe eight closest neighboring
(noisy) coefficients, w be the unknown regression parameter (i.e. the weights for the
weighted average of the neighboring coefficients contained in Uy), and the variance
for Yij be a function of w^Uij. Formally, our heteroscedasticity model is

lij

where the standard deviation is

lij = Kgiw^Uij),

^ smoothfunction such as a polynomial of order r, with unknown parameter
(r + 1) X1 vector 6. Modehng 'yij as a function of w^Uij can again be justified
by observing that the plot of{(tn*Wij, often resides within a cone shape (see
Figure 5.4), implying that the variability ofYij depends highly on w^Uij.

To estimate the parameters 0 and lu, we use the likelihood approach. The negative

log-likelihood of |yij| is

\o%K0(w'-Uij) +
Kgita'uij)

For the negative log-likelihood, or the likelihood function, is
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The likelihood function is minimized over both parameters 6 and w to find their

optimal values. One way to do this is to start with an initial w being the linear least

squares estimate, wls, in (5.3). Then 0 is estimated as

6 = argminL(^, m£,5).
0

The regression parameter w is refined one step further as

w = axgininL(0, m).

After obtaining wand 0, the standard deviation ofYij is estimated by 7^- =K^{w^Uij),
and the variance estimate of the clean coefficient Xij is j] = max(0,7j?- ~ ^^)-
The threshold is then calculated as before to be Tij = j].

Polynomials of order r = 1,2 for 0 are experimented with, and a different set of

polynomial parameters is found for each subband. Simulations show this parametric

estimation of7^ to differentiate well between regions ofhigh energy (e.g. edges and
textures) and smooth areas. That is, the variance estimate is larger in the edge and
texture region, and smaller in the smooth regions. However, these values are not ap

propriate since the subsequently calculated variance estimate of Xij, dj[i,j], results
in zero in many subbands, which in turn translates to killing all the coefficients in

the thresholding. This phenomenon may be due to the disparity between this para

metric modeling of the non-constant variance and the noisy observation modeling:

in the parametric approach, the observed noisy coefficients are modeled as Lapla-

cian distributed, whereas in the original framework, the observations are sums of a

Laplacian and Gaussian random variable. Nevertheless, the likelihood approach to

the heteroscedasticity problem may be valuable to other applications.

5.2 Experimental Results

We use the images barbara and lena as test images, iid Gaussian noise at different

levels of are generated using randn in MATLAB. For the orthogonal wavelet transform,
four levels ofdecomposition are used, and thewavelet employed isDaubechies' symmlet with
8 vanishing moments [19]. Thereare four methods that we compare, and the MSB resultsare

shown in Table 5.1. The AdaptDWT method refers to the proposed adaptive thresholding
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using the orthogonal transform DWT, and AdaptNS refers to adaptive thresholding using
the non-subsampled wavelet transform. These two are compared against the best uniform
thresholding techniques (in theMSE sense) when theoriginal uncorrupted image isassumed
to beknown. For thresholding with DWT, ineach subband, we find theoracle threshold Tore
as in (4.7). Thismethod is labeled OrcUnifDWT in Table 5.1. Similarly, this isextended to

the non-subsampled wavelet transform, where a different threshold is found for each set of

uncorrelated coefficients within each subband (thus 2^® thresholds for a subband at scale s).
This method islabeled OrcUnifNS. Figure 5.5 shows a magnified region in the barbara image
for cr = 25and the lenaimage fora = 22.5. The AdaptNS methodoutperforms all the other

methods in both visual quahty and MSE performance. It yields significantly less ringing
artifacts and blotchiness than the methods using DWT. The OrcUnifNS method using

uniform thresholds in the non-subsampled framework still shows significant noise in the

smooth background. Thus, it is both the spatiallyadaptive thresholds and the overcomplete

representationthat contribute to the superiorqualityof the AdaptNS method. The adaptive

methods denoise better especially in the fiat regions, where the uniform methods yields

images with much noise and "blips". Note that although the MSEs for the lena image is

similar between the adaptiveand uniform oracle methods, the visual quality in the adaptive

method is far superior as it produces a denoised image that is smooth in the fiat regions and

has lessartifacts around the edges as well. Interested readers can find Figure 5.5 availableon

the website http: //www-wavelet. eecs. berkeley. edu/'grchang/SpatialDenoise.html.

5.3 Summary

We have proposed a simple and effective spatially and scale-wiseadaptive method

for denoising via wavelet thresholding in an overcomplete expansion. The adaptivity is

based on context-modeling which enables a pixel-wise estimation of the signal variance and

thus of the best threshold. The issue of spatially adapting the threshold values has not been

addressed much in the literature. As we have shown in this chapter, adapting the threshold

values to local signal energy allows us to keep much of the edge and texture details, while

eliminating most of the noise in smooth regions, something that may be hard to achieve with

a uniform threshold. The results showed substantial improvement over the oracle uniform

thresholding assuming the original image known, both in visual quality and mean squared

error.
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Table 5.1: Comparing the MSE of the spatially adaptive algorithm with optimal subband
uniform threshold in the DWT and the overcomplete expansion for various test images and
cr.

a 12.5 15 17.5 20 22.5 25

barbara

AdaptDWT 61.4 78.3 94.0 111.6 127.5 144.8

OrcUnifDWT 62.2 80.7 99.2 117.3 136.8 155.0

AdaptNS 43.5 56.0 68.7 83.1 97.5 112.2

OrcUnifNS 51.2 66.3 81.0 96.7 112.0 128.2

lena

AdaptDWT 36.1 42.7 50.2 58.1 66.5 72.9

OrcUnifDWT 36.1 43.7 51.3 58.8 67.4 73.7

AdaptNS 27.5 32.7 38.4 44.1 51.1 56.5

OrcUnifNS 29.8 35.9 42.3 48.7 55.7 61.2
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Figure 5.5: Comparing results of various denoising methods, for lena corrupted by noise
a = 22.5 and barbara by noise a = 25. Clockwise from top left: original, noisy observation,
adaptive thresholding in DWT basis [AdaptDWT), uniform thresholding in DWT basis
[OrcUnifDWT), spatially adaptive thresholding in overcomplete expansion (AdaptNS), and
uniform thresholding in overcomplete expansion (OrcUnifNS).



Chapter 6

Multiple Copy Image Denoising

via Wavelet Thresholding
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Most of the threshold denoising literatures are for applications in which there is

only one set of observations (i.e. one sequence of time series or one still image). However,

in numerous applications there are multiple copies of the same or similar images, thus it

is necessary to investigate denoising techniques for removing noise from multiple corrupted

copies of the same signal. For a corrupted video sequence, suppose that there are several

consecutive frames in which the motion is not significant and that the registration problem

has been corrected, one can view the frames as multiple noisy copies of the same image.

Another example is when one scans a picture, but with unsatisfactory result, thus one

does multiple scans, and then combines these copies to obtain the most noise-free copy

possible. Since wavelet thresholding has worked well for one copy, it is natural to consider

its extension to multiple copies.

The standard method for combining the multiple copies is to simply compute their

weighted sum. One can only do better by incorporating a thresholding step. The question

is, which ordering is better, thresholding first or averaging first, and what is the threshold

value for each method? These are the issues to be addressed in this chapter. With the

coeflacients of each subband modeled as samples of a Laplacian random variable and the

noise as samples of a Gaussianvariable, wewill show that the optimal ordering (in the mean

squared error sense) depends on the number of available copies and the ratio between the

noise power and the signal power. Moreover, we propose near-optimal subband adaptive
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thresholds for both orderings. Results show that with the optimal or the proposed near-
optimal thresholds, the two methods yield very similar performance, and both outperforms
weighted averaging substantially.

6.1 Denoising Algorithm

The noisyobservation model is the same as (2.3), but we add an additional index

to denote the various noisy copies. Let f denote the N x N matrbc of the original image
to be recovered. The signal / has been transmitted over a Gaussian additive noise channel

M times, and at the receiver we have M copies of noisy observations.

For the m-th copy, the pixels are iid Gaussian iV(0,cr^), where is the variance

of the m-th copy of noise. The noise samples between different copies are also assumed

independent. The goal is to find an estimator / which minimizes the mean squared error

(MSE),
Asin previous chapters, the image recovery isdone in the orthogonal wavelet trans

form domain (at least the thresholding part of the algorithm). Let the wavelet transform of

the noisy observation be denoted by = X + Coefficients from

each detail subband of X are modeled as samples of a centered Laplacian random variable

with an unknown parameter. In this chapter, the subband coefficients are modeled using the

Laplacian distribution, rather than GGD, for tractability. That is, the coefficients Xij and
at location index [ij] are modeled as random variables X ~ p(x) = LAP(a) =

and ~ iV(a;,cr^), respectively. In the following, the most straightforward method
of weighted sum will be discussed first. Subsequently, we investigate the estimators which

minimizes the expected square error for the two thresholdingstrategies, and compare their

performance.

6.1.1 Recovery by Weighted Averaging

When there are multiplecopies available, the standard method is to use the (pixel-

wise) weighted average as the estimate. To simplify the notation, the subscript ij denoting

the pixel indices will be dropped, since it should be clear that the denoising algorithm

combines pixels of the same indices from the multiple copies.
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Let Ft"") ~ Ar(0, ,m= 1,..., M, be the random variables representing the m-
th copy noise, define Z to be the weighted sum of the M random variables

Z=J2 Anl''""' =^ + E AnF'"*',
m=l m=l

where 53m~ optimal values of jSm are found by minimizing

subject to = 1 (by using a Lagrange multiplier and setting to zero the derivatives

with respect to m = 1,..., M), and they are

1

with the resulting MSE

1 ' ^ —Ij ••• j^ } (6-1)
l^i=l

"liel =Var(Z -X) =Var (£ J .̂ (6.2)
\m=l / 2-tm=l oHT

Tn

Now let us incorporate thresholding into averaging. The weighted sumZ is essen
tially a new random variable and Z\X ~ -^( '̂̂ ^total)* i® exactly the setting for
one copy thresholding, the next straightforward step is to simply find the best threshold

and apply it on Z. However, can we do better than that? More specifically, since we have
two operations here —averaging and thresholding —it is natural to ask which ordering is
best in the mean squared sense.

6.1.2 Thresholding and Averaging

Consider the special case when cri = <72 = ••• = cta/ = a. Thus, /?i = ... = —
To make references more convenient, let A{-) denote the weighted average operation

and T(-) the threshold operation, and we give the following notation to the two possible
orderings of these operations:

,yc^)}}: x^r{T) = i

r(.4(y('),..., y(*'))): Xta(T) =irr{-^ Em=i •



The MSE or risk of the A{T{')) method is

RatC^) = ^xEY{i)^_y(M)\x(^AT(T) —X)
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= j^ExEY\x(nr(Y) -xf+^^Bx [EY\x(ftr(Y) - J^)]^ (6.3)
where Y\X N(x^a^) and (6.3) follows from the fact that conditioned

on X are independent. The risk of T(A(')) is

Rta(T) = = ExEz^xiVriE) —

where Z\X ~ N(x^ ^). The optimal threshold is the argument which minimizes the risk,

that is,

TJ47- = argimni?^7-(T) and Tj-^ = argnunjR7-^(T) .

To compare the risks of these two methods, we look at the scaled MSE difference

RAT(Tlr)-RTA(T^A)
cr2

as a function of M (the number of copies available) and of the ratio cTx/a, illustrated in

Figiure 6.1. For each M < 5, there is a cutoff point, Cm. below which >

RtaCE^j^-) and above which Rj^T['E\f) < RtaCE^a). For M > 5, however, the T(A(-))
method is better for any value of Oxja. The values of is tabulated in Table 6.1. This

finding indicates that the best method depends on the relative power between the noise and

signal, and also on the value of M. With the optimal thresholds, the improvement of one

method over the other is small, on the order of 10~^cr^. The T(A(-)) method requires

much less computation than the A{T{')) method, since the former can be implemented by

computing the wavelet transform once, whereas the latter computes it M times. Thus if

computation is an issue, the T{A{')) method is preferred.

We do not have closed form solutions for and Tat^ thus their values would

need to be numerically computed each time or be tabulated. However, we have found

that they can be well approximated by simple closed form expressions. For the T{A(-))

estimator, the threshold is simply a modification of T for one copy denoising, but with a

change in the noise variance,

Tta = —(6.4)

For the A(T(')) method, we use the approximation



67

O-0.S

a„/o

Figure 6.1: Scaled MSB dijBference (il^7-(T^.y-) — Ias a function of M and

The exponent 3/4 in (6.5) yields a good fit to T^j-, though it is by no means an optimal
result. Notice that the threshold for A{T{-)) decreases as M increases, even though at the
thresholding stage, each copy is thresholded independently of the other copies. To explain

this, the inner expectation of is written as

[vT{y) - EYixnriX)]^ + [^Y\x'nT{y) - A"] ^(6.6)

Thefirst termin (6.6) isthevariance due to thresholding, while thesecond termisthesquare

of the bias. The optimal threshold is obtained from the tradeoff" between the variance term

(which decreases with increasing T) and the bias term (which increases with increasing T).
As M becomes larger, the variance term decreases due to the 1/M factor while the bias

term stays the same. Thus, T needs to be decreased as well to obtain the minimum total.

Figure 6.2 compares the optimal and approximate thresholds for both methods

as a function of M, for c = 1 and o-x = 1. Using the approximate thresholds and

T47- results in less than .2% loss of MSB optimality for any M. Figure 6.3 compares the

optimal threshold tXt and the approximation Tj\q- as a function of(Tx/ct for M = 2,..., 6.

It shows that the approximation is good for large ax/a but not as well for very small ax/a,
especially for large M. The loss of MSB optimaUty is less than 3.5% for ax/a < 1 and
less than 0.1% for ax/a > 1. However, since typically the signal power is much larger than
the noise power, inaccurate approximations for small ax/a are acceptable. The use of the
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Threshold Comparison

C0.4

M copies

Figure 6.2: Comparing ( ) versus Tta (* ••), and T^r (—) versus Tat ( ),
when a = 1 and ax = 1.

Figure 6.3: Comparing (—) and Tat (• ••) for cti = •••, ctm = o- as a function of ax/a
and M = 2,..., 6.
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Table 6.1: CutoflF values (in unit ax/cr) for each iV, where CJy is the cutoff value for when
using the optimal thresholds, and Cn (listed only for iVT < 5) is the cutoff value when using
the proposed thresholds, T47- and Tr-4-

Ch On

N = 2 .6367 .1379

N = 3 .7154 .7654

N = 4 .9601 .9466

N = b 1.9768 1.0884

N>b 00 > 1.23

thresholds and f^r yield a different set of cutoff values Cm (tabulated in Table 6.1),
but the scaled MSE difference {Rj[j-{'̂ At) ~ RTA{'iTA))f( '̂̂ is similar to the curves shown

in Figure 6.1 for optimal thresholds and is of the same order of magnitude. Thus, the use

of the approximations and Tj^j- does not perturb the previous results substantially.

Parameter Estimation We now discuss how to estimate the noise variance, <t^, and the

standard deviation, ctx, of the signal from the noisy observations. For both methods, these

two parameters are estimated the same way for a fair comparison. First the noise variance,

cr^, ofthe m-th copy is estimated by the robust median estimator in (3.6), then is taken
to be the average of these M estimates. Since the noise is independent from the signal,

Var(Z) = Var(A') + cr^/M = + o^/M .

1 ^Thus, for each subband oi Z ——^ the sample variance estimate of Var(Z) is
m=l

calculated, and the estimate of the standard deviation of the signal is

<Jx = ^(Var(Z) - (T^/M) .

Note that as in previous chapters, the estimate of cr^ and the threshold selection is done for

each subband to yield subband-adaptive thresholds.

Heterogeneous Noise Variances Now consider the case when the noise variances

are different. This extension is straightforward in the T(A(-)) case. The multiple copies

are averaged with the coefficients in (6.1), and the threshold is Tta in (6.4) but with

ct^/M replaced by <ta] (6-2)-
For the A{T(-)) method, one needs to find the optimal threshold for each copy
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^xEY(\)^_y{M)\x
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with respect to pi^Pm subject to = 1, and alsowith respect to Ti,...,T^, one

can find their optimal values. The optimal values of Prn are found to be very close to those

in (6.1), and the optimal thresholds can be approximated by

1/2 / ,

which yields Tjj- in (6.5) when ai = <J2 = ••• = aM- For a given set of o-^'s, this

approximation is good for the threshold corresponding to the smallest am, and it worsens

for thresholds corresponding to larger am- This inaccuracy is mitigated by the fact that the

weights /3^'s for copies with large cTm's are small, thus the overall MSB is still close to the

optimal MSB.

6.2 Experimental Results

To validate the theory, we take as the test image a 256 x 256 block from the image

barbara, with ai = ... = aM = cr = 30, using Daubechies' least unsymmetric wavelet with

8 vanishing moments (tabulated in Appendix A) and 4 scales of wavelet transform. The

parameters ax and a are estimated as in the previous discussion. We compare the MSBs

of four methods for a range of M: averaging, .A(T(-)), T{A{-)), and switching between

the two thresholding methods (only for M < 5) with cutoff values Cm (thus the switching

method becomes A(T(-)) for M > 5). The resulting MSBs are shown in Figure 6.5. The

three thresholding methods show significant improvement over merely averaging, ranging

from 70% to 30% reduction in MSB for M varying from 2 to 30. The removal of noise due

to thresholding is also visually significant, especially for small M (see Figure 6.4, also avail

able at http: //www-wavelet. eecs. berkeley. edu/^grchang/multThreshlmages. pgm).

Among the thresholding methods, the T(A(-)) method is the best in terms of MSB, even

better than switching, suggesting that perhaps the .4(T(-)) method is more sensitive to

model errors and threshold estimation errors. For 1 < M < 5, the switching method yields

MSBs that are between those of A(T(-)) and T(A(')). Visually, one does not discern any
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difference between the results from these three thresholding methods. The T(A(-)) method

also requires the least amount of computation since it can be implemented with only one

wavelet transform. Thus, in practice, this method suffices to combine multiplenoisy copies.

It is interesting to investigate if an additional stage of thresholding can have a

significant improvement. It cannot do worse, since we can always choose the second stage

threshold to bezero. To test this idea, we taketheoutput ofA(T(')) andoptimally threshold

it assuming that we have the original. The resulting MSE is only slightly better than the

^(•^(•))> suggesting that thresholding of the weighted sum yields a sufficiently denoised
image already. Furthermore, finding the optimal thresholds of a two-stage thresholding
operation is difficult.

6.3 Summary

In this chapter we addressed the issue of image recovery from multiple copies of

noisy images, and explored the idea ofcombining the wavelet thresholding technique with
the more traditional averaging operation. The investigation showed that the optimal order
ing of these two operations is not so straightforward and is in fact a function of the number

of available copies and of the relative energy between noise and signal. We also proposed

near-optimal thresholds for each ordering. With these thresholds, the performances were

similar, andfor computational reasons, averaging followed by thresholding is recommended.

Furthermore, all of these thresholding methods showed substantial improvement over mere

averaging, both visually and in the MSE sense.
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Figure 6.4: Denoised images, for M —5. From top left, clockwise: original, noisy image
with a = 30, averaging, switching, >1(T(-)), and T{A{')).

M (number of copies)

Figure 6.5: Comparing for each M the MSE (on a log 10 scale) of averaging { ),
A{T{-)) ( ), T(^(-)) (•••}- and switching (—), for a = 30. Note that the latter two
curves are overlapped.
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Chapter 7

Wavelet-based Image Interpolation

The classic problem of image interpolation refers to extracting information from

the given image to fill in the extra pixels whose values we wish to know. It is useful for

magnification and zoomingpurposes, which are the applications we have in mind here. The

challenge is to process the image in such a way as to keep the magnified image looking
sharp. Traditional methods such as bilinear and spline interpolations inherently assume

smoothness constraints on the signal. As a result, they typically generate blurred images
since they do not try to preserve some important image features. For example, a sharp edge
in the smaller image would become a gradual ramp in the interpolated image when using
these methods without taking precautions to keep it a sharp edge. To deblur these images,
one could use the standard approach ofunsharp masking [27] or other filtering techniques to

boost the high frequencies needed to make the image look sharper. These post-processing
approaches are somewhat ad hoc, however. In this chapter, we propose a wavelet-based

method which extracts information ofedges or points ofsharpvariations and preserves this

information in the magnification process.

Points of sharp variations, or singularities, are among the most meaningful fea
tures of a signal. For images, these points typically correspond to edges, or boundaries

between regions, and for many image enhancement applications, it is important to detect

these points. Information about these points can be obtained by multi-scale edge detection
methods developed in the computer vision community [51, 42, 66, 7]. The multiscale edge
detection can be formulated in the wavelet framework, as the Canny edge detector [7] is
equivalent tofinding the local maxima inthe wavelet transform. This multiscale edge char
acterization framework will be used here, as it allows both a convenient analysis of edges
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and a model for the interpolation problem which will be introduced shortly.
Information about sharp variation points can be obtained from examining the evo

lution ofthewavelet transform across scales. For a family ofwavelets, thewavelet transform
modulus maxima capture the sharp variation points of a signal, and their evolution across

scales can be characterized by the local Lipschitz regularity of the signal [43, 40, 41]. For
example. Figure 7.1 shows a 1-D signal and itswavelet transform for several scales. This sig
nal includes singularities such as a step and an impulse, and other sharply varying regions.
Each of these sharp variations induces peaks in the wavelet transform across scales, and
the values of these peaks can be characterized by a mathematical equation with unknown

parameters.

The interpolation problem can be viewed as estimating some "higher resolution"

information. That is, the given image resides in the approximation space Vq, and the

"desired" image is an element of the higher resolution space VLi. Thus the essence of

the problem is to estimate the detail signal in Wq (recall from Section 2.1 that VLi =

Vb 0 Wb). In the context of the previous discussion on propagating peaks in the wavelet

transform, theestimation ofthedetail signal entails theextrapolation ofthispropagation to
thefiner resolution. With thisinmind, we now describe a regularity-preserving interpolation

algorithm.

The proposed interpolation algorithm will first capture and characterize sharp

variation points based on the multiscale wavelet analysis. This characterization is then

used to estimate the higher resolution information necessary to preserve the regularity of

the edge points. From the modelof the problem, one can identify constraints on the estimate

and thus refine the estimate iteratively.

The chapter is organized as follows. Section 7.1 will introduce the wavelet trans

form framework, and relate the multiscale edge detection to the wavelet analysis. The

discussion will start in continuous time, followed by issues due to discretization. In Section

7.2.1, details of the interpolation problem model and algorithm will be discussed in the

one-dimensional case for clarity. This algorithm is extended to reconstructing 2-D images

in Section 7.2.3. Results and comparisons with traditional interpolation methods will be

shown in Section 7.3.
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Figure 7.1: A 1-D waveform and its wavelet transform for three scales, showing the propa
gation of extrema points across the scales.

7.1 Multiscale Edges

In this section, we introduce the relationship between edge detection and the

wavelet transform, and the characterization of multiscale edges. The readers are referred

to [42, 51, 66, 7] for more details on edge detection, and [43, 40, 41] for multiscale edges in
wavelet analysis. This section contains the background review and notations of multiscale

edge and wavelet transformas presented in [41], and readers famihar with this material can

peruse it and skip forward to Section 7.2.

7.1.1 Edge Detector and its Relation to the Wavelet Transform

Most traditional edge detectors extract sharp variation points by examining the
first or second derivatives of the signal or its smoothed version. This is because an inflection

point indicates a neighborhood of signal variation, and an inflection point in the signal
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domain correspond to the local extremum of its first derivative and to the zero-crossing of
its second derivative. Furthermore, local extrema points (of the first derivative) with large
magnitude correspond to regions ofsharp variation in the signal domain, while those with
small magnitude correspond to regions of slow transition. This edge detection strategy can
be formulated in the wavelet firamework as follows.

Define a smoothing function d(x) which satisfies

lim 0(x) = 0 ,
x->±oo

and /oo
0{x)dx = 1 .

•oo

Assume that6(x) is difiierentiable and define a function il)(x) as the first derivative of6(x) :

, . de{x)
.

dx

A wavelet isdefined to beany function which integrates to 0. Hence, i/j{x) canbe considered

as a wavelet. Now let ipsix) denote the dilated version of the wavelet function

ipsix) = ,
s s

where s is the scale. The wavelet transform of f{x) at scale s and position x is denoted by

Wsf{x)^ where

Wsf{x) = f{x)* ipsix) ,

and * is the convolution operator^ Prom the linearity ofconvolution and differentiation, it
is easy to verify that

Wsf(x) =f{x) * =s-^(f *0s)(a;) , (7.1)
where 0s(aj), the dilation of6{x)^ is defined similarly as ips{x). In words, equation (7.1) says

that taking the wavelet transform of the signal at scale s is equivalent (up to a constant)

to taking the first derivative of / * 0^, the signal smoothed at scale s.

As elucidated in [32], the notion of viewing an image at different scales is very

natural for its understanding and analysis. The role of the scale s determines how global

or local the signal features are that we want to capture. When s is small, the smoothing

^This is the continuous wavelet transform, with continuous scale and space parameter. It is different
from the discrete-time wavelet series introduced in Section 2.1
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function 0s(-) is localized in space and thus provides little smoothing, and Wsf(x) yields

information about localfluctuations in f{x). On the other hand, whens is large, 05(-) has a

largespatial support and removes smalllocalfluctuations, thus Wsf{x) conveys information

of signal variation on a more global scale. At a given scale, an extremum point in Wsf(x)
of large magnitude has the physical meaning of locating a sharp transitionregion in f

while an extremum of small magnitude indicates a region of relatively slow variation. One

canalso define a wavelet which is the second derivative of0{x), and use the zero-crossing to

detect edges. However, using the local extrema has added advantages since the magnitude

oftheextrema points conveys how sharply the signal ischanging, whereas the zero-crossings
do not. In the case that 9{x) is Gaussian, the detection of zero-crossings correspond to the

Marr-Hildreth edge detector [42], and extrema points correspond to theCanny edge detector
[7]. Furthermore, a Gaussian 0(-) is the unique function with the property ofnot creating
additional spurious extrema points at larger scales [32]. Therefore, for edge characterization,
it is important to choose a filter which is Gaussian or approximately Gaussian.

The extension of the multiscale edge detection to two dimensions is straightfor

ward. Let 9{x,y) be a smoothing fimction which integrates to 1 and converges to 0 at
infinity, and let 6s{x,y) denote the dilation of 0(x,y),

Ss{x,y) =4^(^.7)-
s s

The image /(x, y) is smoothed by9s{x,y), and its gradient V{f*9s){x, y) is computed. The

direction of the gradient vector at (x, y) is the direction at which /(x, y) has the sharpest

variation. An edge point is defined to be a point (xo,yo) at which |V(/ *9s)(x,y)\ is the

maximum along the direction of the gradient vector, and it is an inflection point of / * 0^.

To relate multiscale edges to the 2-D wavelet transform, first define

j. . d9{x,y) , ,2/ N 99{x,y)
^ = dx =—5^ •

The wavelet transform of / (x, y) consists of two components,

^sfi^^y)=f*'^l{x,y) and w^f{x,y) = f * '̂̂ {x,y),

and it is related to the gradient vector by

. w!nx,y) _
— s

m{f*Gs){x,y)

^{f*Os){x,y)
= sV{f *9s)(x,y)
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The edge points axe where the modulus^

MsS{x,y) = VI»V/(®>J/)P + |W?/(a:,!/)P,

is maximum in the direction ofthe gradient vector. In the rest ofthe paper, these points
will be referred to as the modulus maxima. The time-domain regions represented by these
modulus maxima will be called loosely as edge points, singularities, or sharply-varying
points, interchangeably.

7.1.2 Characterizing Multiscale Edges

Prom the previous discussion, it is clear that the value of the wavelet transform at

scale s measures the smoothness of the signal smoothed at scale s. Furthermore, a sharp

variation induces a local maximum (in the absolute value of the wavelet transform) which
propagates across scales. To illustrate, we return to Figure 7.1 which shows a waveform and

its wavelet transform at the dyadic scales s = 2 '̂, for j = 1,2,3. This waveform consists of

a step edge, an impulse, their smoothed versions, and one row taken from the image Lena.

Each isolated singularity produces extrema points which propagate across scales, and this

evolution can be characterized in the wavelet transform by the local Lipschitz regularity,

which measures the smoothness and differentiability of a continuous function.

Definition 1 Let 0 < a < 1. A function f{x) is uniformly Lipschitz a over an interval

(a,6) if and only if there exists a constant K such thatfor any xo,xi 6 (a,6)

\fM-f{xi)\<K\xo-xi\'^ .

The uniform Lipschitz regularity of f(x) is the supremum oq over all a for which f{x) is

uniform Lipschitz a.

The value of the uniform Lipschitz regularity measures the differentiability and

smoothness of the function in a local neighborhood. For example, if f{x) is differentiable

at ro, then it is Lipschitz regularity 1. The larger the a, the more regular or smooth

the function is. If f{x) is discontinuous but bounded in the neighborhood of xq^ then

ao = 0. A step function is Lipschitz0 at the discontinuity. The following result states that

the Lipschitz exponent can be measured from the evolution of the absolute values of the

wavelet transform across scales [43].
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Theorem 1 A function f{x) is uniformly Lipschitza over an interval {a^b) if and only if

there exists a constant K > 0 such that for all x € (o, 6), the wavelet transform satisfies

\Wsf{x)\<Ks'' . (7.2)

Note that the values K and a depend on the particular singularity at x.

The above result for functions with Lipschitz regularity a 6 [0,1] can be extended

to tempered distributions such as a Dirac function, whichhas a negativeLipschitzexponent,

a = —1. That is, a distribution f(x) is said to have a uniform Lipschitz regularity equal to

a on (a, b) if and only if its primitive is o; + 1 on (a, b). The primitive of a Dirac function

at xq is a step function at xq, which has a = 0, and thus a Dirac has a = —1. The results

in Theorem 1 can be proven for negative Lipschitz regularity as well.

Often signals have points of sharp variations rather than discontinuities. An ex

ample is the smoothed edge in Figure 7.1. The previous discussion can be extended to

smoothed singularities as well. Suppose a local smooth sharp variation at xq is modeled

as the result from convolving a singularity at xq with a Gaussian function with variance

tr^. That is, a signal f{x) with a sharp variation at xq is modeled as f{x) = h *ga{x),
where h(x) has a local singularity at xq whose uniform Lipschitz regularity is otoj and g^ix)
is a zero-mean Gaussian function with variance cr^. Further suppose that the smoothing

function 9{x) is close to Gaussian in the sense that 0s *pa(a;) « 9sq{x) where sq = Vs'̂ -b a^,

then the wavelet transform of f(x) and h{x) can be related by

Wsf{x) =s-^(<f) *0so)W= (7.3)
Thus, by combining (7.3) and (7.2), the results in Theorem 1 can be extended for the

smoothed sharp variation in f{x) for any scale s > 0:

\Wsf{x)\ < Ks ' where sq = \/s2 + 0-2.

7.1.3 Discretization Issues

In practice, any implementationmust be discrete, and thus the previous discussion

in the continuous space and scale domain needs some discretization considerations. These

issues include the discretization ofa continuous-time signal and its wavelet transform, and
the discrete implementation.



80

For discrete processing, any continuous-time signal must also be sampled before
being processed. Thus, a signal is measured at a finite resolution. Its wavelet transform

can only be computed over a countable and finite range ofscales. In many applications,
it sufl&ces to compute the wavelet transform at the dyadic scale, s = 2^, with j = 1,2,...,
which also allows a fast discrete computation. The fast computation algorithm, the design
of the discrete filters and their relations with the continuous filters 6(x) and are well

explained in [41], to which the readers are referred for more details. Here only the necessary
results and notations will be introduced.

Thus, let the finest scale be s = 1, and the coarsest scale computed be s = 2'̂ .

Define a smoothing operator at scale s = 2^ to be

S2jf{x) = f*<f>2j(x), j = 0,l,...,J .

The function <f){x) satisfies certain properties such that the difference, or details^ between

S2}f and S^+\f is / defined in (7.1). Now let D = {dn}nez be a discrete sequence such
that there exists a (non-unique) continuous function f(x) GjL2(1R) satisfying

S\f(n) = Vn € Z.

Hence, we assume that the underlying signal is the continuous function f(x), but only the

discretized version, Sif(n)^ is available for processing. For a particular class of wavelets,

one can compute from the discrete sequence D = {Sif{n)}nez tbe uniform sampling (in x)

of the wavelet transform of f{x) at dyadic scales s > 1. Let the following notations denote

these discrete samples,

^23 f ~ {^23 /('^ + ^)}n€Z and S^f = {S2j f{n-\- e)}ngz

where e is the shift due to convolution with ^2i and 1/323. The set of signals

is the discrete dyadic wavelet transform of D = {«S'i/(n)}„gz. Henceforth the discussion

will concern discrete sequences, thus to simplify notations, the discrete sequence f[n] will

denote the samples 5i/[n], and will denote the discrete dyadic transform of f[n]

(note the omittance of the superscript "d").

The discrete dyadic wavelet transform allowsa fast implementation to be described

below and whose 1-D filter bank interpretation is shown in Figme 2.3. We describe the
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algorithm here, not to be repetitive, but because there is the issue of the multiplicative

constants which was not a concern before, but is important for estimating the Lipschitz

regularity in discrete-time.

The forward transform is characterized by two filters: a lowpass filter ho[n] and a

highpass filter hi[n]. Let liQ^n] and be the filters obtained by upsampling ho[n] and
hi[n], respectively, by a factor of 2^ (i.e. inserting 2^ - 1 zeros between the coefficients).
The wavelet transform of a signal f ehi^) can be computed through the convolution with

and in a recursive manner:

W2if =

s.f = t./.e"
where Sif = /, = ho, and = hi. Let the wavelet transform operator W denote

the linear operator mapping / to {Sgj/, W2jf,j = 1,..., J}. The operator W can be im

plemented by the octave-band non-subsampled filter bank shown in Figure 2.3(a), provided
the multiplication with Xj aie incorporated appropriately. The multiplicative constant Xj
appears here because discretization introduces deviation in the estimation of the Lipschitz

regularity, and scaling factors are needed to make the correction. More specifically, the

constants Xj are multiplied to the detail levels of the wavelet transform, Wjjj/, and these

constants are found empirically so as to make the discrete timestep function have Lipschitz

regularity a = 0. Obviously, the values of Xj are dependent on the chosen wavelet. The

quadratic spline filters (see [41] for the derivation) are used for our work because they ap

proximate coarsely the Gaussianfunction and its first derivative and they also can be used

in the fast implementation of the discrete dyadic wavelet transform. These filters are shown

in Figure 7.2. Their coefficients and the associated constants Xj are tabulated in Appendix
A.

For perfect reconstruction to be possible, it is necessary and sufficient that there

exists a synthesis pair ho[n] and hi[n] which satisfy the perfect reconstruction condition

Hoiz)Ho{z) + Hi{z)Hi{z) = 1 , (7.5)

where Ho{z),Hi(z),Ho{z), and Hi{z) are the ^-transform of the filters ho[n],hi[n],ho[n],
and hi[n], respectively. The inverse wavelet transform reconstructs the original signal by
progressively adding finer and finer details onto the coarse residual signal It can be
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Figure 7.2: The quadratic spline wavelet and smoothing function used in this work. The
continuous-time smoothing function <l)(x) in (a), and wavelet in (b). The corresponding
FIR coefficients of the smoothing function (lowpass filter /io[n]) in (c), and of the wavelet
(highpass filter /ii[n]) in (d).

calcidated recursively as

= + j = (7.6)

where = Jiq sind = hi. The inverse wavelet transform operator can be
implemented as a non-subsampled synthesis octave band filter bank in Figure 2.3 (b). Note

again that the Xj constants are needed to offset the scaling in the wavelet transform equation

(7.4).

The discrete dyadic wavelet transform is an overcomplete, or redundant, repre

sentation of a function. An arbitrary set of sequences is not necessarily the

wavelet transform of some function / in /2(Z). It is the wavelet transform of some function

/ 6 Z2(Z) if and only if

W(W({Si},=i,...,J+i)) = J+1 (7.7)

If the set ofsequences {gj]j=i,...,j+i satisfies (7.7), then we say that it belongs to the range



83

of the wavelet transform operator W. The operator is thus the projection operator

onto the range of the wavelet transform.

In practice, there are only a finite number N of available samples /[n], which

creates a problem at the boundary in the computation of the wavelet transform. To miti

gate this problem, the signal is extended with mirror symmetry. This periodization avoids

creating a spurious discontinuity at the boundaries.

For the 2-D wavelet transform, a particular class of 2-D wavelets is used here.

Specifically, we choose separable filters for the2-D wavelets, where the1-D filters Hq, Hi, Hq,
andHi arethesame asinthe1-D wavelet transform. An additional filter L isneeded, whose
Fourier transform satisfies

^ l + go(a;)go(a;)

The 2-D forward and inverse wavelet transform can be computed in a recursive

manner similar to the 1-D case, implemented with the non-subsampled filter banks shownin

Figure 7.3. Filtering with Hi(zx), for example, means convolving with hi[n] inthehorizontal
direction. Similarly, filtering with Hi{zy), for example, denotes convolving with hi[n] in
the vertical direction. Note that this filter bank is diflferent firom the 2-D non-subsampled
filter bank discussed inSection 2.1.3. In Section 2.1.3, each stage has 4 channels ofoutput.
Here each stage of the filter bank has 3 channels, and it emulates the horizontal and vertical

derivatives and the lowpass versions of the image at various scales.

7.1.4 Edge Points as Signal Representation

Several works have proposed to reconstruct a signal based ononly the information
about its edge points, characterized as modulus maxima or zero-crossing representations
in the wavelet domain^ [3, 41, 17]. The zero-crossing representation includes the location

of the zero-crossings, and the integral values between each pair of zero-crossings. Marr
and Mallat conjectured that such the local extrema or zero-crossings representation defines
uniquely a signal, a belief which was later disproved by a counter-example from Meyer [44]
and Herman [3] (the latter in discrete analysis). The completeness of this representation
depends on the chosen wavelet, and is unstable at high frequencies.

With the quadratic splinewavelet used in this work, the wavelet transform modu

lus maxima representation does not provide a complete representation. Nevertheless, recon-
Of course, different families of wavelets need to be used for these two representations, namely, functions

which are thefirst- and second-derivatives, respectively, ofa smoothing function.
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Figure 7.3: The 2-D discrete dyadic wavelet transform, (a) Theforward transform, (b) The
inverse transform.

struction from this representation has been shown to be satisfactory and has been applied

to image coding [41, 17]. In [41], the local maxima of the absolute value of the wavelet

transform (or local modulus maxima in 2-D) are kept in the representation, because local

minima correspond to slowly varying regions. This creates a diflficulty in the reconstruction

since the representation is not a convex set. In [17], both the local maxima and miniTna.

of the wavelet transform are kept to allow a convex representation, which then allows a

simpler reconstruction algorithm. Also, the 2-D case is treated as separable 1-D problems.

In this work we adopt the latter representation, so that a simple reconstruction algorithm

could be used.



fo

original
high resolution

signal

H,(z)

Hoiz)
fu f

available
signal

Estimator
9u

Hi{z)

fu
Interpolator Ho{z)

85

Figure 7.4: Interpolation problem model for 1-D. The available signal / is modeled as the
subsampled lowpass component ofa higher resolution signal /o, which is the desired signal.

7.2 Enhancement Algorithm

The enhancement algorithm is first explained in one-dimension for clarity before

extending it to the two-dimensional case. Thediscussion concentrates onmagnification bya
factor of2, although larger magnifications (for factor which arepowers of2) can beachieved
through iteratively performing this algorithm. First the main concepts will be introduced

in Section 7.2.1, and the details will be given in Section 7.2.2. The 2-D algorithm will be
developed in Section 7.2.3.

7.2.1 Algorithm Overview

The model ofthe interpolation problem isshown inFigure 7.4. The available signal
{/[n], n = 0,..., N—l} is modeled to be obtained from the high resolution signal {/o[n], n =
0,..., 2N —1} which we wish to recover, by lowpass filtering followed by downsampling by
a factor of2. This is a reasonable model since a higher resolution signal is often lowpassed
before sampling to avoid aliasing. Naturally, one does not assume the exact knowledge
of the lowpass filter used in the sampling process. We conjecture that as long as it is
reasonable (i.e. a good lowpass/highpass pair offilters), the result ofour algorithm will not
depend strongly on the choice of filters. Furthermore, we have at our disposal a pair of a
lowpass filter Ho{z) and a highpass filter Hi{z) such that the two filters, together with a
synthesis pair Ho{z) and Hi{z), constitute a perfect reconstruction non-subsampled filter
bank (i.e. they satisfy the perfect reconstruction condition (7.5)). With this model, the goal
of the interpolation algorithm is to estimate the signals /„ and at the output of Ho{z)
and Hi{z), and then reconstruct an estimate of fo via the synthesis filters. The algorithm
consists of two stages: initial estimation and refinement.
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Initial Estimation

An initial estimate /„ of the low frequency component can be obtained by
simply interpolating / using, for instance, linear or spline interpolation. To find an initial

estimate of the high frequency component first notice that it contains information that

would add "sharpness" to /. That is, if there were a sharp edge in the length 2N signal

/o, then the length N component / would contain a smoothed edge in this region. The

reconstruction based solely on /„ would not be as sharp as the original edge in /q. The

information about the additional sharpness resides in whose essence is well captured

by local extrema points (supposing that the filters used are appropriate for multiscale edge

characterization). Thus the central part of the initial estimation is to find the values and

positions of the local extrema in The detailed procedures are illustrated in Figure 7.5.

The first step in estimating Qu is to identify the edge regions via analysis of the

available signal /. This identification is based on extracting local extrema of the wavelet

transform of / which propagate across scales, and estimating the parameters in Equation

(7.2) which characterize this propagation. The knowledge ofan edge location in / conveys

knowledge about the edge location in as well (up to a possible ambiguity of ±1 in

location), since the wavelet transform of / is the decimated version (by a factor of 2) of the

wavelet transform of /o starting from the scale s = 2^ (see Figure 7.6):

W^2i/o[2n] = Wai-i/N, j = 2,3,... (7.8)

An edge information at f[xo] extracted from the analysis of and charac

terized in the parameters K and a of (7.2) translates to an edge at fo[2xo]. That is, an

extremum in VF21/0 can be estimated to be

W2ifQ[2xo] = W2of[xo] = K .

Naturally, the downsampling operation in (7.8) introduces some ambiguity which needs

to be addressed in the estimation process. More specifically, the true extrema points of
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Figure 7.6: Illustrating the equivalence between the wavelet transform of / and the deci
mated version of the wavelet transform of /o starting from scale s = 2^.

{^2i/o}j=i,...,j+i may not have been sampled in the downsampling process. Thus the edge
identified at f[xo] may actually be at one of {fo[2xo - l],/o[2xo],/o[2a;o + !]}• In Section
7.2.2, we willdiscuss constraints which allow possible corrections to this ambiguity.

The edge characterization allows the estimation ofsignificant extrema points of pu.

To obtain an initial estimate of pu that may be closer to the real p„, the points in between

are then filled in by linearly interpolating between the extrema points.

Refinement by Alternating Projection

The initial estimates of fu and 9u can be further refined by identifying constraints

which they should obey. These constraints define convex sets and one can utilize the

POCS (projection onto convex sets) method to find a solution existing in the intersection

of these sets, called the reconstruction set The POCS method alternatingly projects the

signal onto the various convex sets until it converges to a solution in the reconstruction set
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Figure 7.7: The projection operator, Pv, onto the subspace V, the range of the wavelet
transform.

(provided that it is nonempty). Any solution in the reconstruction set is called a consistent

reconstruction gmd it satisfies all the imposed constraints. There are three convex sets

identified, labelled by V, S and 5, respectively:

1. V: The waveforms must belong to the subspace V of/2(Z), where V denotes

the range of the wavelet transform.

2. S: fu must belong to a set S, which comprises of length 2N signals whose downsam-
pled version is consistent with /, the available signal.

3. 8: The edge points of fo (estimated from the analysis of /) should be reflected in

local extrema of £ comprises ofsignals whose structure isconsistent with the edge
information, and Qu should reside in £.

The first two items are hard constraints in that they follow from the consistency of the
problem model in Figure 7.4. The third constraint is based on the estimation of how

the signal should be at finer scales, and its purpose is to enhance the resolution of the

reconstructed signal beyond that achieved by the first two constraints.

Tospeakofprojections, it ismore convenient to define the projection operatoronto

each convex set. The projection operator fV ofthe subspace Vis theoperator in (7.7) and
is pictorially illustrated in Figure 7.7: it puts the pair (/u,p„) through the synthesis filter
bank, followed by the analysis filter bank, where the filters obey the perfect reconstruction

property in (7.5).

The projection operator Ps for the convex set S needs to ensure that /„ is con

sistent with the available signal /. At the very least, fu[2n] = /[n] must hold. In practice,

better performance could be achieved by placing restrictions such as smoothness constraints

on the odd samples fu[2n + 1] as well, especially in regions of sharp variation. The details

of this operator will be discussed in the implementation section.
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The high frequency component must reside in the set which consists of signals

that are consistent with the estimated edge information. However, only the estimated edge

information is available and thus one must allow some error tolerances. In Section 7.2.2, we

discuss the structure of the set E which allows varying degrees of leniency on the values and

locations of the wavelet transform extrema, and finding a corresponding projection operator

Ps which projects Qu onto 8,

The enhancement algorithm iteratively improves the estimates with the three pro

jection operators, and Ps. Let {fu\9u^} denote the initial estimates of and Qw
At the end of the A;-th iteration, the estimates of /„ and are

7.2.2 Implementation Details

This section addresses the implementation details of the algorithm. The associ

ation of extrema points across scales and the characterization of Lipschitz regulaxities are

not so simple and straightforward when we deal with real data. Wavelet transform extrema

points due to closely-spaced sharp variations may interfere with each other and make as

sociation difficult. This interference also complicates the estimation of the parameters in

(7.2), and these complications will be discussed. The estimation of will be elaborated, as

well as the the exact structure of the set S and S and their respective projection operators.

Associating Extrema Across Scales

To extrapolate the extrema points, we need to first select important singularities

and associate the corresponding extrema points across scales. Since H21/ contains an

abundance of extrema which are not necessarily due to global structures, extrema selection

is, instead, done at a coarser scale, s = 2^. For each extremum at scale s = 2^, the algorithm

searches in the other scales for extrema points to associate to those in scale 5 = 2^.

Due to various reasons, only some extrema are observed to propagate fi:om scale

2^ to 2^^^. Extrema points at fine scales induced by closely spaced singularities may merge
into one extremum point at coarse scales. Also, because the wavelet transform is discretized

in both scale and space, one may not always observe the extrema points evolve across scales.

For these reasons, it is sometimes difficult to associate the extremapointsand thus some ad

hoc rules are used. Suppose we are analyzing the m-th singularitywhich induces extrema
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points at location in scale s = 2^. The values of are unknown except for x^,
since the association starts from x^n in scale s —2^. We search in other scales in a
small neighborhood around x^^ to find extrema points which obey several rules. These
extrema must be of the same sign and must all be maxima (or minima). Furthermore, it
is reasonable to assume that the extrema values should not differ by too much from scale

to scale (i.e. they are approximately of the same order of magnitude), thus we restrict
the ratio between two extrema points ofconsecutive scales to be within a range: 1/2^*® <

^]| ^ 2 '̂®. If the chain of extrema cannot be associated for at
least the first two scales, then the search is aborted.

Estimating high frequency component

Let us first rewrite (7.2) in discrete-time and explicitly show the dependence of

the local Lipschitz parameters on the different singularities. This results in

flxg>] = j = (7.9)

where is the location of the local extremum at sctde 2' corresponding to the m-th

singularity, am is the Lipschitz regularity of / at the singular point, and Km is a nonzero

constant. The objective is to estimate Km sind Om? s-nd then extrapolate to an extremum

point at scale 5= 2° through estimating its location and value W2of[xii\ Recall that
the relation between pu, W^2j /o and W2jf is

W2i*ifo[2n] = W2if[n] and 9u(2n] = W'ji/opn] = Wjo/N-

Thus this extrapolation provides the firststep in obtaining an estimateof the highfrequency

component W21/0 (or Qu) by first estimating W2of.

For those singularities whose sequence of extrema, W2jf[x^],j = 1,...,J, is
available, the parameters am and Km in (7.9) can be estimated via linear regression on

log2(I^2j /W^]) = log2 Km + jam , j = 1,. . . , J .

An initial estimate of the extremum point of the wavelet transform of f at scale 2° is then

given by

W^f[xW] = K^ = s„[2i(»)] .

The extrema location in scales s = 2° and 5 = 2^ are assumed to be the same, that is, we
let x^^ =
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The extrema extrapolation yields an estimate of the extrema positions and values

in Aninitialestimateofthe remaining pointsare obtainedby linearlyinterpolating

between consecutive extrema points.

Projection operator Ps for S

Prom the problem model in Figure 7.4, it follows that Ps must, at the very least,

assign /«[2n] = f[n]. In practice, this constraint alone does not prevent the spurious

oscillations which often occur in sharp variation regions. To ameliorate this artifact, each

oddsample /u[2n+1] isbounded within an interval determined bythesmoothness of/u[2n]
in that vicinity.

Let /uM be a length 2N cubic spline interpolated version of f[n]. Also let the

discrete Laplacian gradient off[n] bedefined as V/[n] = /[n] - i(/[n - 1] + /[n +1]). The
upper bound on the odd samples of /„ is made to be

Hl/J2n + 1] = U[2n + 1] + e * (|V/[n]| + |V/[n + 1]|).

The value of e = .5 was used. Similarly, the lower bound LO[2n + 1] is calculated as

L0/„[2n + 1] = /„[2n + 1] - e*(|V/[n]| + |V/[n+ 1]|).

Tosummarize, the operator Ps modifies by assigning the even samples to f[n]

and bound the odd samples to within the interval [L0/„[2n + l],HIy^„[2n + 1]].

Projection operator Ps for €

Being the highpass component, the waveform should reflect sharp variations

in /o. Prom the analysis of the wavelet transform of /, we have some knowledge of the

extrema values and positions in Qu. Hence, the set £ can be thought of as the set of

waveforms minimizing a specified cost function which penalizes when the extrema values do

not conform to this knowledge. The operator Ps modifies Qu in a way such that the result

has a lower cost.

This edge information, however, is estimated, and thus prone to inaccuracy espe
cially when using data containing more than just isolated singularities. The downsampling
process introduces errors as well. Knowing that a certain set of points are edge points
imply that the other points are not. Thus, one needs to be careful to prevent additional
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spurious edges from being created during the reconstruction. With this in mind, there are

various degrees of leniency that can be employed when constructing the cost function. We

can either (a) constrain Qu to retain the initial estimates throughout the reconstruction, (b)
allow the values to be within an allowable range, or (c) have no constraints at all on the

values. Approaches (a) and (c) axe extreme cases, assigning either infinite cost for wrong
values or no cost at all. The allowed interval ofapproach (b) serves as a moderation, and
yields better results. In the following, we will not construct explicitly an analytical cost
function, but rather describe how Ps modifies the input to conform to theedge information.

Extrema Location Because the initial estimate of isobtained by interpolating
from the estimate of the subsampled waveform g, the sampling may be such that we miss

the true extrema and obtain instead the adjacent points. Thus for each extremum of

the points immediately next to it are also allowed to be extrema points to account for this

ambiguity. More specifically, if we initially determine to be an extremum point in
the length-iV signal g (which translates to location in ^u), then after the projection
P5 oPy, may not be an extremum point of g^ any longer. If the point of interest is a

maximum (minimum) point, then the abscissa corresponding to the greatest (smallest) of
{9u[2x\ri^ - l],pu[2a;^^],5u[2a;$S^ +1]} is assigned as the new local maximum (minimum).

Between Extrema Points The pointsbetween adjacent extrema points needalso

to beconstrained to prevent spurious oscillations during the reconstruction. For example, by

definition, the points between a pair ofadjacent maximum and minimuTn points should have

values bounded by these extrema values, and, furthermore, the slopes of these in-between

points should be monotonicso that there is no other extrema among them. Sucha consistent

reconstruction can be achieved by a simplealgorithm proposed in [17] which reconstructs

a signal from only its wavelet extrema points. For the interpolation problem, it has been

found experimentally that these constraints are too restrictive for reconstructing since

the extrema information is estimated and more leniency should be allowed. Therefore,

"softer" constraints will be described.

In predicting the extrema points of only a subset of them could be extrapolated

from the coarser scales, due to the fact that coarser scales typically have less extrema than

finer scales. Thus, for each extremum predicted in gu, we only assume that it is valid

locally. For each maximum (minimum) examined, the points in small neighborhood around

it (a centered window of 7 is used here) are clipped to be less (greater) than or equal to

this maximum (minimum) point. Since we are working with greyscale images, another
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and the upsampled version of |V/[ni,n2]| (upsampled by a factor of 2 in each direc

tion). The lower bound L0/y[ni,n2] is defined similarly, but with a subtraction sub

stituting the addition in (7.11). The operator Ps then bounds fu[ni,n2] to be within

[L0/„[ni, n2], HI/„[m, 712]].

Each of the 2N available rows of the row component gi^u and the 2N available

columns of the column component ^2,« is treated as a separate 1-D problem, and is project

onto S using the 1-D operator Pe described in Section 7.2.1.

7.3 Experimental Results

The performance of the algorithm willbe comparedagainst severalstandard meth

ods such as bilinear interpolation, bicubic spline interpolation, and bicubic spline followed

by unsharp masking [27]. Unsharp masking is a commonly used method for boosting the
high frequency portion ofa signal. The general operation is to take the input /[ni, 712] and
yield

v[ni,n2] = /[ni,7i2] + \u[ni,n2]

where A > 0 and ii[7ii,n2] is a defined gradient at location [711,712]. A commonly used

gradient is the discrete Laplacian defined in (7.10), and a commonly used value for Ais 1.

The filters used in the wavelet decomposition are tabulated in Appendix A, and three levels

of decomposition are computed.

In order to obtain MSE or PSNR measurements in addition to the visual judge

ment, we take a 2N x 2N image, /o[711,722], filter it with some lowpass filter, 9?[7ii,n2],
and downsample it to obtain the available N x N image, /[721,722]. The choice of the filter

¥'[711,722] is a parameter which we wish to test to see how sensitive the algorithm is to this
choice.

The reconstructed image generally does not change much after 7-8 iterations, both
in visual quality and in PSNR measurements. But to see its best performance, the mea
surements listed and images displayed are after 15 iterations.
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Portions from the images Barbara^ Lena, and Baboon are extracted as the original
high resolution image /o, shown in Figure 7.9. Each 2-D lowpass filter y>[ni, 712] is aseparable
filter, <^[ni,n2] = ^[n\](p[n2]. The three choices of(p[n] are

(p\[n] : 12-tap symmetric lowpass filter generated by MATLAB firl(ll, 0.5)

^p2[n] : 11-tap symmetric lowpass filter generated by MATLAB fir1(10, 0.5)

: the same filter /io[n] used in the wavelet analysis.

Theeven-length filter has a delay of1/2, while the odd-length filter has delay 0. The reason
for choosing (p2[n] is toobtain a benchmark, to see how well thealgorithm can perform when
we "cheat" by pretending to know the nature of degradation from fo to f.

Each set ofexperiments consist of taking one ofthe four test image and one of the

three ipi[n] lowpass filters, and interpolate theimages using four different interpolation meth
ods. Here only one set of experiment for each test image will be shownand interested read

erscanview the rest at the website http: //www-wavelet. eecs .berkeley. edu/'grchang/

Interpolation.html . The Barbara experiment with filter ip\[n] is shown in Figure 7.10,

Lena with (p2\n] in Figure 7.11, Baboon-A with (p2[n\ in Figure 7.12, and Baboon-B with

(pz[n] in Figure 7.13. In all the experiments, the wavelet interpolation approach yields
images considerably sharper than those from finear and cubic spline interpolation. The un-

sharp masking method comes very close to producing images almost as sharp as thosefrom

the wavelet method, though in high frequency images such as Baboon-A, one can see that

the imsharp masking method is slightly more blurry than the wavelet method. Visually,

experiments from the three different filters <l)i[n] yield very similar results and conclusions,

though the PSNR tells quite a different story. Though the PSNR is not a good indication

of image quality, it is nevertheless frequently used, and the results are tabulated in Tables

7.1, 7.2, and 7.3. The best numbers are highlighted in bold. Note that in the Barbara

experiments, the interpolated images show aliasing on the scarfs. This is through no fault

of the interpolation algorithms, but rather that the downsamplingoperation used to obtain

the test image / already introduced aliasing.

The PSNR results are very sensitive to the choice of lowpass filter ipi[n]. For

the even-length filter, (pi[n], the methods with the highest PSNR are either the wavelet

or the linear method. When the odd-length filter, ip2[n], is used, unsharp masking yields

the highest PSNR. With ipz[n] = ho[n], not surprisingly, the wavelet approach yields the

highest PSNR.
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Figure 7,8: Interpolation problem model for 2-D.

optimization is to clip all the pixel values to be within [0,255], These constraints are very

lenient, and we prefer them over the more restrictive ones when analyzing real data, where

it is difficult to ensure the robustness of capturing all the extrema points. In our previous

work in [10], we used strict constraints such as bounding extrema values to be within an

estimated range, and enforcing monotonicity between consecutive extrema points. This

sometimes resulted in images with some unpleasant artifacts such as overly pronounced

edges or small streaks. Here we find that the softer constraints yield much more pleasant

looking results.

7.2.3 Enhancement Algorithm for 2-D Images

In general, analyzing a 2-D problem by treating the two coordinates independently
is not an optimal approach. However, for computational reasons, we propose here to treat

the two coordinates separately. The problem model for the 2-D case is analogous to the
1-D case, and is illustrated in Figure 7,8 for clarity. To iterate, the goal is to extrapolate

from / informatic

components of /q.

Initial estimates

from / information about gi^u = ^1,2^ fo and 52,u = 1^2,21/05 which axe the necessary

In the wavelet transform, the data is filtered by the separable 2-D filter bank as

discussed earlier. The wavelet transform generates the row components {kFj 2j/}j=i,...,jj
the column components and the low resolution component Sjf, all of
which axe N xN. Bicubic spline interpolation is used to obtain the initial estimate of size

2N X2N signal The i-th rows of{IFi,2i/}j=i,...,J are used to estimate the i-th row of
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the scale s = 2° row component as in the 1-D case. The columns are processed likewise.
After interpolating this row to length 2N, we have an initial estimate of the 2z-th row of

W^i.21/0.

Having only extrema constraints on the even lines may result in jagged edges

during the reconstruction process. To ameliorate this artifact, we estimate the extrema of

an odd row based on its two neighboring even rows. Typical images have smooth contours

which traverse through numerous rows or coliunns. Thus, for a given extremum on the 2i-th

row, if there is an extremum on the (2i + 2)-th row which is of the same type (i.e. both

maxima or both minima) and same sign, and is in a close proximity (within ±4 pixels),

then we assume there is an extremum of the same type and sign on the (2i + l)-th row.

The location and value are taken to be the average of the corresponding extrema on the

neighboring rows. For simplicity, averaging is used rather than fitting a smoothed curve

across these lines, since the considered neighborhood is small, and the difference in location

is not significant.

A similar analysis is also done on the columns of obtain an

estimate of H^2,2i/o-

Alternating projections

The estimates and 52,u are iteratively refined using constraints analogous

to those proposed in the 1-D case. The 2-D version of Pi;, P5 and Ps will be described.

The projection operator Pi; is simply a one-level 2-D inverse wavelet transform

followed by a one-level 2-D forward wavelet transform. The operator Ps first makes the

assignment /u[2ni, 2n2] = /[ni,n2] for the even samples. To constrain the odd samples, we

define to be a 2N x 2N bicubic spline interpolated version of /[ni,n2]. Also let

the discrete Laplacian gradient of /[ni, 722] be

V/[ni, 712] = /[ni, 712] - j(/[ni -1,712] +f[n\ +1,712] +/[7ii, 712 -1] +/[7ii, 712 +1]). (7.10)

The upper bound on the samples of /u['̂ i5»^2] is taken to be

HI/„[711,712] = /„[7ii,7i2] + t«[7ii,7i2] *Upsample(|V/[7ii,7i2]|), (7.11)

where the second term is the convolution between a weighting function w[ni,n2] depicted
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Figure 7.10: Interpolation of the Barbara image, with the even-length lowpass filter (pi[n].
Prom left to right, top to bottom: (a) Original 256 x 256 image, (b) Lowpass, available
image, 128 x 128. (c) Wavelet-based interpolation, (d) Cubic spline interpolation with
unsharp masking, (e) Linear interpolation, (f) Cubic spline interpolation.
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Figure 7.11: Interpolation ofthe Lena image, with the odd-length lowpass filter (p2[n]. From
left to right, top to bottom: (a) Original 256 x 256 image, (b) Lowpass, available image,
128 X128. (c) Wavelet-based interpolation, (d) Cubic spline interpolation with unsharp
masking, (e) Linear interpolation, (f) Cubic spline interpolation.
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Figure 7.12: Interpolation of the Baboon-A image, with the odd-length lowpass filter vp2[7i].
From left to right, top to bottom: (a) Original 256 x 256 image, (b) Lowpeiss, available
image, 128 x 128. (c) Wavelet-based interpolation, (d) Cubic spline interpolation with
unsharp masking, (e) Linear interpolation, (f) Cubic spline interpolation.
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unsharpmasking,(e)Linearinterpolation,(f)Cubicsplineinterpolation.
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Table 7.1: Comparing PSNR of different methods when the given image is downsampled
after lowpass filtering by the even-length filter ¥>i[n].

Image Wavelet Cubic Linear Cubic -f UnsharpMask
Barbara 21.36 21.20 21.36 20.50

Lena 22.71 21.44 21.69 20.86

Baboon-A 21.86 21.66 21.90 20.91

Baboon-B 19.80 19.56 19.71 18.96

Table 7.2: Comparing PSNR of different methods when the given image is downsampled
after lowpass filtering by the odd-length filter

Image Wavelet Cubic Linear Cubic + UnsharpMask
Barbara 24.64 26.79 26.55 27.34

Lena 27.48 32.16 31.07 32.69

Baboon-A 25.32 27.37 26.98 27.79

Baboon-B 22.41 23.59 23.31 23.92

Figures 7.14 shows the PSNR as a functionof the iteration number for the images

Barbara, Lena, Baboon-A, and Baboon-B. Each plot shows three curves, for the three choices

of lowpass filter (pi\p\. As mentioned previously, the reconstructed image remains visually

indistinguishable after 7-8 iterations. The PSNR also shows quick convergence, though

it is not always monotonically increasing. For filters y?i[n] and (p2ln], the PSNR actually

decreases after the 3rd or 4th iteration, but for ^3[n], it is monotonically increasing. Again,

we want to stress that these PSNR numbers axe not necessarily a good measure, and the

visual quality of the wavelet approach is the best in all cases.

7.4 Summary

We have proposed a wavelet based method for image interpolation which preserves

the regularity of edge points. By characterizing edge points via the wavelet transform, we

extrapolate the extrema needed at a finer scale for reconstruction of a higher resolution

image. The result shows that the enhanced image is significantly sharper than simple

schemes such as linear and cubic spline interpolation, and still noticeably sharper than

unsharp masking.

The better performance comes at an expense of higher complexity and more com-
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Table 7.3: Comparing PSNR of different methods when the given image is downsampled
after lowpass filtering by the filter —/loM-

Image Wavelet Cubic Linear Cubic + UnsharpMask

Barbara 26.94 24.99 24.86 25.14

Lena 32.46 27.86 27.49 28.13

Baboon-A 27.57 25.53 25.35 25.72

Baboon-B 26.06 24.62 24.45 24.76

putation than the linear methods, and the nonlinearity of our method makes it difficult to

characterize the behavior of the algorithm analytically. Because the theoretical framework

is geared towards isolated singularities, this method is not necessarily appropriate for, say,

texture images.

For future research, we could explore the potential of processing the image with

2-D neighborhoods instead of a separable 1-D approach. Since the method proposed here is

for isolatedsingularities, a morecomprehensive interpolationalgorithmwould be to segment

the images into regions of isolated singularities and textures and process them differently.



104

P- -o- ,

(c) (d)

Figure 7,14: PSNR as a function of iterations. The curves are for images with (H h),
<P2 —°)j aJid y?3 (*•••*). (a) Barbara, (b) Lena, (c) Baboon-A. (d) Baboon-B.
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Chapter 8

Conclusion

This thesis explored various aspects of image denoising and interpolation. We

sununarize here the findings and possible future research directions.

8.1 Models for Image Restoration

Many ideas and techniques which have worked well in image compression and

edge anedysis were adapted to image restoration problems in this thesis. Results showed

considerable success over conventional methods and some recent works in literature. These

successes led to the conclusion that good image coders and edge analysis do provide good

image models applicable to other areas of image processing. Our algorithms present a

break-away from the more traditional filtering or stochastic modeling approaches in image

restoration. While filtering and stochastic modeling are still important components of our

algorithms, the combination with adaptive and non-linear techniques in image modehng

and analysis make these algorithms outperform conventional methods. The basic analysis

framework used the wavelet decomposition, which allowed viewing images in a natural

multiresolution fashion and provided a convenient basis for the problem models. In the

following text, the details of the various results are described.

8.1.1 Bayesian Approach to Threshold Selection

There have been many works in the literature addressing the issue of threshold

selection for wavelet threshold denoising. We felt that none ofthem are ideal for real image
denoising, thus weproposedour ownapproach to this problem. Our firamework wasto model
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the signal coefficients as random variables with Generalized Gaussian distribution and to

find the thresholdwhich minimizes the meansquarederror usingthe soft-threshold estimate.

We proposed a near-optimal threshold which is effective, intuitive, and easy to compute.

This threshold selection provided the basis for the subsequent denoising algorithms.

8.1.2 Lossy Gompression for Denoising

Based on the intuition that typical images have predictable structures more easily

compressible than random noise, several works have proposed using lossy compression to

distinguish between signal and noise for noise removal. Such an approach also achieves the

"kill two birds with one stone" benefit of simultaneous compression and denoising. Prior

works were fuzzy on choosing a coder or did not achieve compression in a practical sense.

In our work, we made the connection between compression and the wavelet thresholding

denoising operation, and developed a systematic approach to achieve both denoising and

compression. Results showed that, though some quantization noise was introduced, lossy

compression did remove a considerable amount of the observation noise, especially when

the noise was significant.

8.1.3 Spatially Adaptive Denoising Algorithm

Most successful image processing applications employ spatially adaptive algo

rithms, since images typically have changing spatialcharacteristics. Thus, we investigated a

spatially adaptive version of the wavelet thresholding technique. The manner of adaptation

is based on context modeling, a frequently used method for adapting coders to changing

signalcharacteristics. The other part of the algorithm is based on smoothing the corrupted

signal in its overcomplete expansion, which essentially provides an additional averaging for

reducing the noise. The spatial adaptivity and overcomplete expansion together yielded

results significantly better than either one alone, both in visual quality and mean square

error measurements.

8.1.4 Multiple Noisy Copies Denoising

For applications where a receiver has available multiple noisy copies of the same

image, we investigated the optimal orderingof averaging and wavelet thresholdingfor com

bining them into one denoised image. The finding showed that the ordering is less than
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obvious, and it depends on the noise power, the signal model, and the number of copies

available.

8.1.5 Edge-Preserving Interpolation

Conventional interpolation or magnification algorithms assume some smoothness

constraints on the underlying image. This assumption may yield overly blurredimages. We

proposed a regularity-preserving interpolation algorithm which adapts to the local regular

ity. The available image was modeled as a lowresolution image, from which we wished to

obtain a higher resolution image. Edge analysis and extrapolation was performed on the

available image to estimate the needed details. The experiments produced images much

sharper than those fi:om the conventional spline and linear interpolation. Furthermore, the

problem model provided a justified framework for estimating the high frequency component,

rather than an ad hoc post-process sharpening such as unsharp masking.

8.2 Research Directions

During the course of the thesis, there emerged many relevant issues which would

be natural extensions of our work thus far. Below are some of these issues.

8.2.1 Other Noise Models

In order to obtain some theoretical results, we have assumed the iid Gaussian

noise model. While many practical problems are modeled this way, there are other practial

problems with very different noise behaviors. Examples include shot noise and "snow" noise

(as on the television). Sometimes the noise samples may be correlated among each other,

and may also be correlated with the image. Such is the case for a lossy-compressed image,

where the error residuals shows a strong correlation with the image along the edge regions.

Another example is the block-based compression (such as JPEG), which, at low bitrates,

yields considerable artifacts along the boundaries of the blocks. It would be interesting to

see if our methods are suitable or can be adapted to these different noise characteristics.
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8.2.2 Texture Modeling

Many of the intuitions used in our algorithms (especially the edge-preserving in

terpolation) is based on isolated edge analysis. For textures, another paradigm of modeling

would be required. Typically, a piece of texture is decomposed into a deterministic compo

nent and a random field component, which is a useful representation for characterizing and

synthesizing. It merits an investigation to extend this representation to, say, the interpo

lation and denoising firamework. For the interpolation problem, since the high resolution

image and the available image is related by a lowpass filter followed by a downsampler,

knowledge of the deterministic and stochastic behavior of the available image can be ex

tended to the high resolution image as well. We did some preliminary studies towards this

direction in [9], but did not probe it deep enough. For the denoising problem, one can

extract the textmre regions and denoise it with a texture model. We used a primitive image

segmentation method in [11] to separate the image into different regions and denoise them

differently. It showed promising results, and this idea can potentially be greatly improved

with a more sophisticated image segmentation method and texture model.

8.2.3 Restoration from a Blurred and Noisy Image

Another domain of image restoration deals with recovering an image which has

been degraded by both a blurring function and additive noise. Practical applications in

clude removing the blur due to camera out-of-focus, motion blur, scatter blur (from X-ray,

for example), to name a few. A simple-minded inversion of the blurring operator, even

when it is known, is a bad idea since the inversion of a lowpass filter (which is essentially

what a blur is) amplifies the high frequency noise. Thus, restoration typically comes in

the form of regularization^ where the blur and the noise are decreased little by little in

a regularized fashion. We have done some preliminary experiments on using compression

methods as regiilarization and the results were promising. That is, from the compressibility

of the degraded image, we estimate how compressible the original image is. During the

recovery process, this estimated information is kept consistent with the estimated image.

This framework presents a very interesting approach to the image restoration and warrants

further investigations. A similar idea has also been proposed independently by Liu and

Moulin [36].
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Appendix A

Wavelet Filter Coefficients

Daubechies'symmletwith 8 vanishingmoments [19] has 16coefficients as displayed

below:

Symmlet 8 = { 0.002672793393,

0.005386388754,

-0.073462508761,

0.680745347190,

0.010758611751,

-0.004783458512}

-0.000428394300,

0.069490465911,

0.515398670374,

•0.086653615406,

0.044823623042,

-0.021145686528,

-0.038493521263,

1.099106630537,

-0.202648655286,

-0.000766690896,

The filter coefficients of Hi, Hq, Hi and L corresponding to Mallat's quadratic

spline wavelets [41], used in the interpolation algorithm in Chapter 7, are tabulated in Table

A.l.

Table A.l: Filter coefficients of the quadratic spline wavelets.

n Ho Hi Ho Hi L

-3 -0.001953125 0.0078125

-2 0.125 -0.01367125 0.046875

-1 0.125 0.375 -0.04296875 0.1171875

0 0.375 0.5 0.375 0.04296875 0.65625

1 0.375 -0.5 0.125 0.01367125 0.1171875

2 0.125 0.001953125 0.046875

3 0.0078125
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Note that the filters Hi and are diSerent from those listed in [41] because we
have normalized them such that = —1) = 1.

The multiphcative constants, A^ 's, used in the non-subsampled filter bankin Chap

ter 7 are listed in Table A.

Table A.2: Multiplicative constants used in the non-subsampled filter bank using the
quadratic spline wavelet.

3 A,-
0 1.0

1 0.75

2 0.6875

3 0.6719

4 0.6680

5 0.6670

6 0.6668
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