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1.0 EMBEDDED SOFTWARE

Embedded software is that which resides in devices that
are not first-and-foremost computers. It is pervasive, appear-
ing in vehicles, telephones, pagers, audio equipment, air-
craft, appliances, toys, security systems, games, PDAs,
medical diagnostics, weapons, pacemakers, television sets,
video production equipment, network switches, printers,
scanners, climate control systems, manufacturing systems,
etc. Embedded software engages the physical world, inter-
acting directly with sensors and actuators.

A technically active person today probably interacts reg-
ularly with more embedded software than conventional pro-
grams. This is a relatively recent phenomenon. Not so long
ago automobiles depended on finely tuned mechanical sys-
tems for the timing of ignition and its synchronization with
other actions. Today, embedded software has taken over
these functions.

Embedded software is traditionally the domain of prac-
ticing engineers, not research scientists. As a software prob-
lem, it has been viewed by some as too small, too “retro” in
its use of quaint techniques such as assembly language pro-
gramming, and too limited by hardware costs. The best soft-
ware technologies, with their profligate use of memory,
layers of abstraction, elaborate algorithms, and statistical
optimization just did not seem applicable. Since the research
results did not fit the problem, the problem was not interest-
ing.

This has changed. Researchers now recognize the impor-
tance of the area and are beginning to retool their research to
address the very real, and very different software problems
of embedded systems.

One reason for the change is simply that hardware capa-
bilities have improved sufficiently that the profligate tech-
niques of old seem within reach for embedded systems.
However, this proves only an enticement to look at the prob-
lem. The techniques need significant adaptation.

A second reason for the change is that embedded soft-
ware has become much harder to design. Embedded systems
are increasingly networked, which introduces significant
complications such as downloadable modules that dynami-
cally reconfigure the system. Moreover, consumers demand
ever more elaborate functionality, which greatly increases
the complexity of the software, making it much more diffi-
cult for a single engineer to accomplish the task by finely
tuning a few tens of kilobytes of assembly code.

1.1 Components

Components are an old concept with a new urgency. It
seems obvious that complex embedded software will have to
be constructed from distinct modules of some sort. Ideally,
these modules are reusable, and embody valuable expertise
in one or more aspects of the problem domain.

Software components for embedded systems are already
a viable business. Many modems and cellular telephones
incorporate software components licensed from third parties
(primarily for the signal processing functions such as speech
coding and the radio modem). While these components do
embody considerable expertise with some very difficult
functionality, their definition is ad-hoc, their architecture
unsophisticated, and their role in a system totally static. They
will not adapt well as these systems are made network aware
and configurable. Networked embedded systems are likely
to dynamically alter their architecture, as agents, changing
service demands, and new software components arrive over
the network.

In software, it is arguable that the most widely applied
component technology is subroutines. Subroutines are finite
computations that take pre-defined arguments and produce
final results. Subroutine libraries are marketable component
repositories.

Subroutines, however, are a poor match for many embed-
ded system problems. Consider for example a speech coder
for a cellular telephone. It is artificial to define the speech
coder in terms of finite computations. It can be done of
course, particularly with the help of syntactic mechanism
such as objects, which facilitate packaging data that persists
across subroutine calls together with those subroutines.
However, a speech coder is more like a process than a sub-
routine. It is a non terminating computation that transforms
an unbounded stream of input data into an unbounded stream
of output data. Indeed, a commercial speech coder compo-
nent for cellular telephony is likely to be defined as a process
that expects to execute on a dedicated signal processor.

Processes, and their cousin, threads, are widely used for
concurrent software design. Indeed, processes can be viewed
as a component technology, where a multitasking operating
system or multithreaded execution engine provides the
framework that coordinates the components. Component
interaction mechanisms, monitors, semaphores, and remote
procedure calls, are supported by the framework. In this con-




text, a process can be viewed as a component that exposes at
its interface an ordered sequence of external interactions.

However, as a component technology, processes and
threads are extremely weak. A composition of two processes
is not a process (it no longer exposes at its interface an
ordered sequence of external interactions). Worse, a compo-
sition of two processes is not a component of any sort that
we can easily characterize. It is for this reason that concur-
rent programs built from processes or threads are so hard to
get right. It is very difficult to talk about the properties of the
aggregate because we have no ontology for the aggregate.
We don’t know what it is.

1.2 Frameworks

In this context, a framework is a set of constraints on
components and their interaction, and a set of benefits that
derive from those constraints'. This is broader than, but con-
sistent with the definition of frameworks in object-oriented
design [43). By this definition, there are a huge number of
frameworks, some of which are purely conceptual, cultural,
or even philosophical, and some of which are embodied in
software. Operating systems are frameworks where the com-
ponents are programs or processes. Programming languages
are frameworks where the components are language primi-
tives and aggregates of these primitives, and the possible
interactions are defined by the grammar. Distributed compo-
nent middleware such as CORBA [9] and DCOM are frame-
works. Synchronous digital hardware design principles are a
framework. Java Beans form a framework that is particularly
tuned to user interface construction. A particular class
library and policies for its use is a framework [43].

For any particular application domain, some frameworks
are better than others. Operating systems with no real-time
facilities have limited utility in embedded systems, for
example. In order to evaluate the usefulness of a framework,
it is helpful to orthogonalize its services.

* Ontology. A framework defines what it means to be a
component. For example, is a component a subrou-
tine? A state transformation? A process? An object? A
consequence of this definition is that an aggregate of
components may or may not be a component. Certain
semantic properties of components also flow from the
definition. Is a component active or passive (can it
autonomously initiate interactions with other compo-
nents or does it simply react to stimulus)?

¢ Epistemology. A framework defines states of knowl-
edge. What does the framework know about the com-
ponents? What do components know about one
another? Can components interrogate one another to
obtain information (i.. is there reflection or introspec-
tion)? What do components know about time? More
generally, what information do components share?
Scoping rules are part of the epistemology of many
frameworks. Connectivity of distributed components
are another part of the epistemology.

¢ Protocols. A framework constrains the mechanisms
by which components can interact. Do they use asyn-

1. This elegant definition is due to Bob Laddaga.

chronous message passing? Rendezvous? Sema- -
phores? Monitors? Publish and subscribe? Timed
events? Transfer of control? In the latter case, the
components are states and their interactions are state
transitions.

¢ Lexicon. The lexicon of a framework is the vocabu-
lary of the interaction of components. For components
that interact by sending messages, the lexicon is a type
system that defines the possible messages. The words
of the vocabulary are types in some language (or fam-
ily of languages, as in CORBA).

Along any of these dimensions, a framework may be very
broad or very specific. The more constraints there are, the
more specific it is. Ideally, this specificity comes with bene-
fits. For example, Unix pipes do not support feedback struc-
tures, and therefore cannot deadlock. The intemet is a
framework that primarily constrains the lexicon (byte
streams) and the protocols (TCP/IP, UDP, and HTTP). These
constraints produce the primary benefit of platform indepen-
dence.

Common practice in concurrent programming is that the
framework components are threads (the ontology), which
share memory (the epistemology), and exchange objects (the
lexicon) using semaphores and monitors (the protocols).
This is a very broad framework with few benefits. In particu-
lar, it is hard to talk about the properties of an aggregate of
components because an aggregate of components is not a
component in the framework.

A framework is often deeply ingrained in the human cul-
ture of the designers that use the framework. It fades out of
the domain of discourse. I will argue that the Turing sequen-
tiality of computation is so deeply ingrained in contemporary
computer science culture that we no longer realize just how
thoroughly we have banished time from the domain of dis-
course.

The key challenge in embedded software research is to
invent frameworks with properties that better match the
application domain. One of the requirements is that time be
re-introduced.

1.3 Models of computation

A particularly useful sort of framework is a concurrent
model of computation. The components in such a model are
entities capable of performing some computation, where
conceptually (and maybe actually) the components perform
their computations in parallel. The model may restrict the
components further by stating, for example, that components
perform finite computations only in response to stimulus
(from other components or from the framework, as for
example when a run-time scheduler is used). The mechanism
by which components communicate is defined by the model
of computation. A model of computation, therefore, defines
the ontology and protocols of a framework, and possibly
some or all of the epistemology, but none of the lexicon.
Later we will give many examples of concurrent models of
computation.



1.4 Domain specificity

Embedded software often encapsulates domain expertise,
particularly when processing sensor data or controlling actu-
ators. Even very small programs may contain very sophisti-
cated algorithms, requiring deep understanding of the
domain and of supporting technologies such as signal pro-
cessing. The emerging embedded software components busi-
ness is a consequence of this. It is very difficult to replicate a
toll-quality speech coder or a radio modem with commodity
programmers.

Partly because it is recent, and partly because of the
domain expertise required, embedded software is often
designed by engineers who are classically trained in the
domain, for example in internal combustion engines. They
have little background in the theory of computation, concur-
rency, object-oriented design, operating systems, and seman-
tics. In fact, it is arguable that these disciplines have little to
offer to the embedded system designer today because of their
mismatched assumptions about the role of time and because
of their profligate use of hardware resources. But these disci-
plines will be essential if embedded software is to become
more complex, modular, adaptive, and network aware.

1.5 Computation

Why do we need to invent new frameworks? There are so
many already. It is helpful to examine the underlying
assumptions in modern approaches to computation to see
what is missing.

e Time has been systematically removed from theories
of computation, since it is an annoying property that
computations take time. “Pure” computation does not
take time, and has nothing to do with time. It is hard to
overemphasize how deeply rooted this is in our cul-
ture. So called “real-time” operating systems have so
little to go on that they often reduce the characteriza-
tion of a component (a process) to a single number, its
priority. Even most “temporal” logics talk about
“eventually” and “always,” where time is not a quanti-
fier, but rather a qualifier [64]). Attempts to imbue
object-oriented design with real-time are far from sat-
isfactory [22]. Variants with more direct temporal rep-
resentations, such as timed 1/0 automata [63],
represent a step in the right direction, and need to be
adapted for the embedded system design culture. Even
the widely used term “synchronous,” despite the
Greek root “chronos,” has little to do with time (as
usually used). It is a logical property of events, a set of
ordering constraints. Embedded systems confront time
the way humans do: as a relentless, measurable march.

* In software practice, management of concurrency is
extremely primitive. Semaphores and monitors are the
assembly language level of concurrency. They are too
difficult to use reliably, except by operating system
experts. Only trivial designs are completely compre-
hensible (to most engineers). Over conservative rules
of thumb dominate (such as: always grab locks in the
same order [53]). Concurrency theory has much more
to offer than concurrency practice, but again it proba-
bly needs adaptation for the embedded system con-

text. For instance, it often reduces concurrency to
“interleavings,” which trivialize time by asserting that
all computations are equivalent to sequences of dis-
crete time-less operations.

¢ In embedded systems, liveness is a critical issue. Pro-
grams must not terminate. In the Turing-Church view
of computation, all non-terminating programs fall into
an equivalence class, implicitly deemed to be a class
of defective programs. In embedded computing, how-
ever, terminating programs are defective. The term
“deadlock” pejoratively describes premature termina-
tion of such systems. It is to be avoided at all costs.

» Type systems are one of the great practical triumphs of
contemporary software. They do more than any other
formal method to ensure correctness of software.
Object-oriented languages, with their user-defined
abstract data types, have had a big impact in both reus-
ability of software (witness the Java class libraries)
and the quality of software. Combined with design
patterns [26) and object modeling [24], type systems
give us a vocabulary for talking about larger structure
in software than lines of code and subroutines. How-
ever, object-oriented programming talks only about
static structure. It is about the syntax of procedural
programs, and says nothing about their concurrency or
dynamics. For example, it is not part of the type signa-
ture of an object that the initialize() method must be
called before the go() method. Temporal properties of
an object (method x() must be invoked every 10ms)
are also not part of the type signature. Work with
active objects and actors [3][4] move a bit in the right
direction by being a bit more explicit about dynamic
properties of the interfaces of components. But they
do not say enough about interfaces to ensure safety,
liveness, consistency, or real-time behavior.

e Computer architecture, which would seem to be closer
to the physical world, and hence closer in spirit to
embedded systems, has been tending towards making
things harder for the designers of embedded systems.
Much of the (architectural) performance gain in mod-
ern processors comes from statistical speedups such as
elaborate caching schemes, speculative instruction
execution, dynamic dispatch, and branch prediction.
These techniques greatly compromise the reliability of
embedded systems the way they are designed today,
and in fact are mostly not used in embedded proces-
sors such as programmable DSPs and microcontrol-
lers. I believe that these techniques have such a big
impact on average case performance that they are
indispensable. But the software world will have find
abstractions that regain control of time, or the embed-
ded system designers will continue to refuse to use
these processors.

The drastic mismatch between many of the modem software
techniques and the needs of embedded systems is not sur-
prising in view of the fact that interfacing to the real world
has only recently begun to extend beyond keyboards and
screens. (We should not forget that even the emphasis on
keyboards and screens is relatively recent.) Computation has
its roots in the transformation of data, not in the interaction



with sensors, actuators, and humans.

1.6 Real time software

Starting when programmable DSPs [51] and microcon-
trollers appeared in the 1970s, functionality has been
steadily shifting from hardware to software. This glib state-
ment actually has profound consequences. What we mean by
“software” is primarily sequential execution, where the
same hardware resources are multiplexed in time to perform
a variety of functions. That is, there is a single instruction
stream. What we mean by “hardware” is primarily parallel
execution, where hardware resources are not shared among
functions (or at least, not as much). Of course, there is a con-
tinuum in between, with parallel execution of software and
multiplexing of hardware function units. Most embedded
systems have significant hardware design as well as signifi-
cant software design, and a major part of the design space
exploration considers the balance between these sequential
and parallel execution styles.

The trend in embedded systems is certainly towards inte-
grated processors that merge a variety of hard-real-time
functions into a single instruction stream, towards the soft-
ware end of the continuum (see for example [77]). However,
much work remains to be done before a single instruction
stream is a viable option for the high performance functions
such as signal processing.

For hard-real-time functions, such as signal processing,
concurrent tasks are often assigned distinct processors. For
example the speech coders and radio modem operations in a
digital cellular telephone use processors distinct from the
microcontroller that handles the overall control logic. Thus,
despite being primarily software components, the speech
coders and radio modems have a hardware nature in that they
require dedicated, unmultiplexed hardware resources.

In theory, as the performance of embedded processors
improves, there should be less need for such hardware spe-
cialization. However, real-time operating systems are not yet
able to reliably handle many hard-real time tasks. In practice,
they are handled today by either dedicated hardware or by
processors that so greatly exceed the minimum performance
capabilities that failure is unlikely despite the unpredictabil-
ity introduced by multitasking.

Before this situation can change, we have to rethink mul-
titasking. First, component interface definitions need to
declare temporal properties. Not just a priority, which is only
sufficient under the rarely applicable assumptions of rate-
monotonic scheduling [60]{48], but they need to declare the
dynamics (phases of execution, exception handling, modes
of operation, and yes, also periodicity where appropriate).
Then compositions of components need to have consistent
and non-conflicting temporal properties, much as today
compositions of objects need to have compatible types
where they interact.

One possible approach views all executing processes as
part of a single application. Since processes can come and
g0, this single application has a dynamically changing soft-
ware architecture. It may be better viewed as a dynamically
changing application than as a set of disjoint applications
with minimal interconnectedness. When components are

composed, methods similar to the compile-time and run-time
type validation of Java need to be applied.

1.7 Concurrency

Embedded systems engage the physical world. And in
the physical world, multiple things happen at once. Recon-
ciling the sequentiality of software and the concurrency of
the real world is a key challenge in the design of embedded
systems. Classical approaches to concurrency in software
(threads, processes, semaphore synchronization, monitors
for mutual exclusion, rendezvous, and remote procedure
calls) provide a good foundation, but are insufficient by
themselves. Complex compositions are simply too hard to
understand.

An alternative view of concurrency that seems much bet-
ter suited to embedded systems is implemented in synchro-
nous/reactive languages [10] such as Esterel [13], which are
used in safety-critical real-time applications. In Esterel, con-
currency is compiled away. Although this approach leads to
highly reliable programs, it is too static for networked
embedded systems. It requires that mutations be handled
more as incremental compilation than as process scheduling,
and incremental compilation for these languages proves to
be difficult. We need an approach somewhere in between
that of Esterel and that of today’s real-time operating sys-
tems, with the safety and predictability of Esterel and the
adaptability of a real-time operating system.

1.8 Requirements

For embedded software, we need concurrent models of
computation that are easier to get right than threads, sema-
phores, and monitors. We need to make time a first-class part
of the programming exercise, and talk about the temporal
correctness, not just functional correctness of programs.We
need to discard termination as a criterion for correctness (and
reuse it as a criterion for incorrectness). :

This requires rethinking some concepts. The undecid-
ability of halting has been inconvenient because we cannot
identify programs that fail to halt. Now it should be viewed
as inconvenient because we cannot identify programs that
fail to keep running. “Synchronization” needs to once again
take into account “chronos.” And correctness cannot be
viewed as getting the right final answer. It has to take into
account the timeliness of a continuing stream of partial
answers.

Embedded software design has much in common with
hardware design, so perhaps there are some lessons to be
learned by looking at hardware design. Hardware is highly
concurrent. Conceptually, hardware is an assemblage of
components that operate continuously or discretely in time
and interact via synchronous or asynchronous communica-
tion. Software is an assemblage of components that trade off
use of a CPU, operating sequentially, and communicating by
leaving traces of their (past and completed) execution on a
stack or in memory.

A primary abstraction mechanism in software is the pro-
cedure (or the method). Procedures are terminating computa-
tions. The primary abstraction mechanism in hardware is a
module, such as a chip, that operates fully concurrently with



the other components with which it is combined. These are
very different abstraction mechanisms. Hardware modules
do not start, execute, complete, and return.

Object orientation couples procedural abstraction with
data to get data abstraction. Objects, however, are passive,
requiring external invocation of their methods. Active
objects are more like an afterthought, requiring still a model
of computation to have any useful semantics. Hardware is
active, more like processes than objects, but with a clear and
clean semantics that is firmly rooted in the physical world.

Indeed, the synchronous abstraction that is widely used
in hardware to build large, complex, and modular designs
has more recently been applied to software [10]. Also, hard-
ware models are conventionally constructed using hardware
description languages such as Verilog and VHDL; these lan-
guage realize a discrete-event model of computation that
makes time a first-class concept, information shared by all
components. Discrete-event models are sometimes used for
software systems, particularly in the context of networking.

Conceptually, the distinction between hardware and soft-
ware, from the perspective of computation, has only to do
with the degree of concurrency and the role of time. An
application with a large amount of concurrency and a heavy
temporal content might as well be thought of using hardware
abstractions, regardless of how it is implemented. An appli-
cation that is sequential and without temporal behavior
might as well be thought of using software abstractions,
regardless of how it is implemented. The key problem
becomes one of identifying the appropriate abstractions for
representing the design.

A sophisticated component technology for embedded
software will talk more about processes than procedures. It
will talk about concurrency and the models of computation
used to regulate interaction between components. And it will
talk about time.

1.9 Problems not addressed

There are a number of interesting research problems
related to embedded systems that we do not address here.
Human-computer interaction, for example, is a key part of
making embedded systems pervasive and useful. Ideally, the
embedded software becomes transparent, mediating a natu-
ral and intuitive interaction with the physical world. Also,
configurable hardware offers interesting opportunities and
challenges, and potentially relates strongly to the problem of
selecting appropriate models of computation. Finally, hard-
ware and software design techniques that minimize power
consumption are critical for portable devices. But I focus
here on embedded software construction, leaving for some-
one else to set the agenda on these other important problems.

2.0 MODELS OF COMPUTATION

A model of computation is the “laws of physics” of con-
current components, including what they are (the ontology)
how they communicate and how their flows of control are
related (the protocols), and what information they share (the
epistemology). It is their concurrent semantics.

Agha describes actors, which extend the concept of
objects to concurrent computation [5]. Actors encapsulate a
thread of control and have interfaces for interacting with
other actors. The protocols used for this interface are called
interaction patterns, and are part of the model of computa-
tion. Agha argues that no model of concurrency can or
should allow all communication abstractions to be directly
expressed. He describes message passing as akin to “gotos”
in their lack of structure. Instead, actors should be composed
using an interaction policy.

2.1 Concurrency

Design of networked embedded systems will require
specification and modeling techniques that support
concurrency. In practice, concurrency seriously complicates
system design. No universal model of computation has yet
emerged for concurrent computation (although some
proponents of one approach or another will dispute this). By
contrast, in sequential computation, the Von Neuman model
of computation is a wildly successful universal abstraction.
A key part of this success is that time is reduced to a total
order of discrete events, in which sequencing is sufficient for
correctness. In distributed systems, maintaining such a total
order globally is expensive, except for very small systems. In
practice, events are partially ordered at best. This makes it
difficult to maintain a global notion of “system state,” an
essential part of the Von Neumann model.

In networked embedded systems, communication band-
width and latencies will vary over several orders of magni-
tude, even within the same system design. A model of
computation that is well-suited to small latencies (e.g. the
synchronous hypothesis used in digital circuit design, where
computation and communication take “zero” time) is usually
poorly suited to large latencies, and vice versa. Thus, practi-
cal designs will almost certainly have to combine tech-
niques.

It is well understood that effective design of concurrent
systems requires one or more levels of abstraction above the
hardware support. A hardware system with a shared memory
model and transparent cache consistency, for example, still
requires at least one more level of abstraction in order to
achieve determinate distributed computation. A hardware
system based on high-speed packet-switched networks could
introduce a shared-memory abstraction above this hardware
support, or it could be used directly as the basis for a higher
level of abstraction. Abstractions that can be used include
the event-based model of Java Beans, semaphores based on
Dijkstra’s P/V systems [21], guarded communication [40],
rendezvous, synchronous message passing, active messages
[84), asynchronous message passing, streams (as in Kahn
process networks [45]), dataflow (commonly used in signal
and image processing), synchronous/reactive systems [10],
Linda [18], and many others.

These abstractions partially or completely define a model
of computation, the modular organizational and operational
principles of a system. Applications are built on a mode! of
computation, whether the designer is aware of this or not.
Each possibility has strengths and weaknesses. Some guar-
antee determinacy, some can execute in bounded memory,
and some are provably free from deadlock. Different styles
of concurrency are often dictated by the application, and the



choice of model of computation can subtly affect the choice
of algorithms. While dataflow is a good match for signal
processing, for example, it is a poor match for transaction-
based systems, control-intensive sequential decision making,
and resource management.

It is fairly common to support models of computation
with language extensions or entirely new languages. Occam,
for example, supports synchronous message passing based
on guarded communication [40]. Esterel [13], Lustre [33],
Signal [11], and Argos [65] support the synchronous/reactive
model. These languages, however, have serious drawbacks.
Acceptance is slow, platforms are limited, support software
is limited, and legacy code must be translated or entirely
rewritten.

An alternative approach, is to explicitly use models of
computation for coordination of modular programs written
in standard, more widely used languages. In other words,
one can decouple the choice of programming language from
the choice of model of computation. This also enables mix-
ing such standard languages in order to maximally leverage
their strengths. Thus, for example, a networked embedded
application could be described as an interconnection of mod-
ules, where modules are written in some combination of C,
Java, and VHDL. Use of these languages permits exploiting
their strengths. For example, VHDL provides FPGA target-
ing for reconfigurable hardware implementations. Java, in
theory, provides portability, migratability, and a certain mea-
sure of security.

The interaction between modules could follow any of
several principles, e.g., those of Kahn process networks [45].
This abstraction provides a robust interaction layer with
loosely synchronized communication and support for muta-
ble systems (in which subsystems come and go). It is not
directly built into any of the underlying languages, but rather
interacts with them as an application interface. The program-
mer uses them as a design pattern [26] rather than as a lan-
guage feature. Larger applications may mix more than one
model of computation. For example, the interaction of mod-
ules in a real-time, safety-critical subsystem might follow
the synchronous/reactive model of computation, while the
interaction of this subsystem with other subsystems follows
a process networks model. Thus, domain-specific
approaches can be combined.

2.2 Examples of models of computation

There are a rich variety of models of computation that
deal with concurrency and time in different ways. In this sec-
tion, we outline some of the most useful models for embed-
ded systems. All of these will lend a semantics to the same
bubble-and-arc, or block-and-arrow diagram shown in figure
1. The bubbles are components and the arcs between them
are their interconnections. The diagram suggests an episte-
mology where A knows about C but not about B.

2.21

One possible semantics for the syntax in figure 1 is that
of differential equations. The arcs represent continuous func-
tions of a continuum (time). The bubbles represent relations
between these functions. The job of an execution environ-

Differential equations

ment is to find a fixed-point, i.e., a set of functions of time
that satisfy all the relations.

Differential equations are excellent for modeling analog
circuits and many physical systems. As such, they are certain
to play a role in embedded systems, where sensors and actu-
ators interact with the physical world. Embedded systems
frequently contain components that are best modeled using
differential equations, such as micro electromechanical sys-
tems, aeronautical systems, mechanical components, analog
circuits, and microwave circuits. These components, how-
ever, interact with an electronic system that may serve as a
controller and a recipient of sensor data. This electronic sys-
tem may be digital, in which case there is a fundamental mis-
match in models of computation. Joint modeling of a
continuous subsystem with digital electronics is known as
mixed signal modeling.

Differential equations form the model of computation
used in Simulink, Saber, and VHDL-AMS, and are closely
related to that in Spice circuit simulators.

2.2.2 Difference equations

Differential equations can be discretized to get difference
equations, a commonly used model of computation in digital
signal processing. This model of computation can be further
generalized to support multirate difference equations. In
either case, a global clock defines the discrete points at
which signals have values (at the ticks).

Difference equations are considerably easier to imple-
ment in software than differential equations. Their key weak-
nesses are the global synchronization implied by the clock,
and the awkwardness of specifying irregularly timed events
and control logic.

2.2.3 Finite-state machines

In FSMs, bubbles represent system state and arcs repre-
sent state transitions. The simple FSM model of computa-
tion is not concumrent. Execution is a strictly ordered
sequence of state transitions. Transition systems are a more
general version, in that a given bubble may represent more
than one system state (and there may be an infinite number
of bubbles).

FSM models are excellent for control logic in embedded
systems, particularly safety-critical systems. FSM models
are amenable to in-depth formal analysis, using for example
model checking, and thus can be used to avoid surprising

Figure 1. A single syntax (bubble-and-arc or block-and-arrow
diagram) can have a number of possible semantics.




behavior. Moreover, FSMs are easily mapped to either hard-
ware or software implementations.

FSM models have a number of key weaknesses. First, at
a very fundamental level, they are not as expressive as the
other models of computation described here. They are not
sufficiently rich to describe all partially recursive functions.
However, this weakness is acceptable in light of the formal
analysis that becomes possible. Many questions about
designs are decidable for FSMs and undecidable for other
models of computation. Another key weakness is that the
number of states can get very large even in the face of only
modest complexity. This makes the models unwieldy.

The latter problem can often be solved by using FSMs in
combination with concurrent models of computation. This
was first noted by Harel, who introduced the Statecharts for-
malism. Statecharts combine a loose version of synchronous/
reactive modeling (described below) with FSMs [34]. State-
charts have been adopted by UML for modeling the dynam-
ics of software [24]. FSMs have also been combined with
differential equations, yielding the so-called hybrid systems
model of computation [39].

FSMs can be hierarchically combined with a huge vari-
ety of concurrent models of computation. We call the result-
ing formalism “*charts” (pronounced “starcharts”) where the
star represents a wildcard [29]. Thus, they present a promis-
ing model that is capable of abstracting program dynamics.

2.24 Synchronous/reactive models

In the synchronous/reactive (SR) model of computation
[10], the arcs represent data values that are aligned with glo-
bal clock ticks. Thus, they are discrete signals, as with differ-
ence equations, but unlike difference equations, a signal
need not have a value at every clock tick. The bubbles repre-
sent relations between input and output values at each tick,
and are usually partial functions with certain technical
restrictions to ensure determinacy. Examples of languages
that use the SR model of computation include Esterel [13],
" Signal [11], Lustre [19], and Argos [65). Argos is a cleaner
version of Statecharts that assumes SR concurrency seman-
tics.

SR models are excellent for applications with concurrent
and complex control logic. Because of the tight synchroniza-
tion, safety-critical real-time applications are a good match.
However, also because of the tight synchronization, some
applications are overspecified in the SR model, which thus
limits the implementation alternatives and makes distributed
systems difficult to model. Moreover, in most realizations,
modularity is compromised by the need to seek a global
fixed point at each clock tick.

2.2.,5 Discrete-event models

In discrete-event (DE) models of computation, the arcs
represent sets of events placed in time. An event consists of a
value and time stamp. This model of computation is popular
for specifying hardware and simulating telecommunications
systems, and has been realized in a large number of simula-
tion environments, simulation languages, and hardware
description languages, including VHDL and Verilog. Unlike
the SR model, there is no global clock tick, but like SR, dif-

ferential equations, and difference equations, there is a glo-
bally consistent notion of time.

DE models are excellent descriptions of concurrent hard-
ware, although increasingly the globally consistent notion of
time is problematic. In particular, it over-specifies (or over-
models) systems where maintaining such a globally consis-
tent notion is difficult, including large VLSI chips with high
clock rates, and networked distributed systems. A key weak-
ness is that it is relatively expensive to implement in soft-
ware, as evidenced by the relatively slow simulators.

2.26 Cycle-driven models

Some systems with timed events are driven primarily by
clocks, signals with events that are repeated indefinitely with
a fixed time interval. Although discrete-event modeling for
such systems is possible, it is costly, primarily due to the pri-
ority queue that sorts events chronologically. Cycle driven
models associate components with clocks and stimulate
computations regularly according to the clock ticks. This can
lead to considerably more efficient execution.

In the Scenic system [59], for example, the components
are processes that run indefinitely, stall to wait for clock
ticks, or stall to wait for some condition on the inputs (which
are synchronous with clock ticks). Scenic also includes a
clever mechanism for modeling preemption, an important
feature of many embedded systems. Scenic has evolved into
the SystemC specification for system-level hardware design
(see http://systemc.org).

2.2.7 Synchronous message passing

In synchronous message passing, the components are
processes, and processes communicate in atomic, instanta-
neous actions called rendezvous. If two processes are to
communicate, and one reaches the point first at which it is
ready to communicate, then it stalls until the other process is
ready to communicate. “Atomic” means that the two pro-
cesses are simultaneously involved in the exchange, and that
the exchange is initiated and completed in a single uninter-
ruptable step. Examples of rendezvous models include
Hoare’s communicating sequential processes (CSP) [40] and
Milner’s calculus of communicating systems (CCS) [68].
This model of computation has been realized in a number of
concurrent programming languages, including Lotos and
Occam.

Rendezvous models are particularly well-matched to
applications where resource sharing is a key element, such as
client-server database models and multitasking or multiplex-
ing of hardware resources. A key weakness of rendezvous-
based models is that maintaining determinacy can be diffi-
cult. Proponents of the approach, of course, cite the ability to
model nondeterminacy as a key strength.

22.8 Asynchronous message passing

In asynchronous message passing, processes communi-
cate by sending messages through channels that can buffer
the messages. The sender of the message need not wait for
the receiver to be ready to receive the message. There are
several variants of this technique, but I focus on those that



ensure determinate computation, namely Kahn process net-
works [45] and dataflow models.

In a process network (PN) model of computation, the
arcs represent sequences of data values (tokens), and the
bubbles represent functions that map input sequences into
output sequences. Certain technical restrictions on these
functions are necessary to ensure determinacy, meaning that
the sequences are fully specified. Dataflow models, popular
in signal processing, are a special case of process networks
[57). Dataflow models are also closely related to functional
programming, although stylistically the two often look very
different.

PN models are excellent for signal processing. They are
loosely coupled, and hence relatively easy to parallelize or
distribute. They can be implemented efficiently in both soft-
ware and hardware, and hence leave implementation options
open. A key weakness of PN models is that they are awk-
ward for specifying control logic.

Several special cases of PN are useful in certain circum-
stances. Dataflow models construct processes of a process
network as sequences of atomic actor firings. Synchronous
dataflow (SDF) is a particularly restricted special case with
the extremely useful property that deadlock and bounded-
ness are decidable [47][52][54]{55]. Boolean dataflow
(BDF) is a generalization that sometimes yields to deadlock
and boundedness analysis, although fundamentally these
questions remain undecidable [16]). Dynamic dataflow
(DDF) uses only run-time analysis, and thus makes no
attempt to statically answer questions about deadlock and
boundedness [42][46][71].

22.9 Timed CSP and timed PN

CSP and PN both involve threads that communicate via
message passing, synchronously in the former case and
asynchronously in the latter. Neither model intrinsically
includes a notion of time, which can make it difficult to
interoperate with models that do include a notion of time. In

" fact, message events are partially ordered, rather than totally
ordered as they would be were they placed on a time line.

Both models of computation can be augmented with a
notion of time to promote interoperability and to directly
model temporal properties (see for example [74]). In the
Pamela system [82], threads assume that time does not
advance while they are active, but can advance when they
stall on inputs, outputs, or explicitly indicate that time can
advance. By this vehicle, additional constraints are imposed
on the order of events, and determinate interoperability with
timed models of computation becomes possible. This mech-
anism has the potential of supporting low-latency feedback
and configurable hardware.

2.2,10 Publish and subscribe

The publish and subscribe (PS) model of computation
uses notification of events as the primary means of interac-
tion between components. A component declares an interest
in a family of events (subscribes), and another component
asserts events (publishes). Some of the more sophisticated
realizations of this principle are based on Linda [6][18], for
example JavaSpaces from Sun Microsystems, which is built

on top of a network-based distributed component technology
called Jini [85]. A more elementary version can be found in
the CORBA Event Service APL

The PS model of computation is well-suited to highly
irregular, untimed communications. By “irregular’ we mean
both in time (sporadic) and in space (the publisher need not
know who the subscribers are, and they can be constantly
changing). Schmidt has extended the CORBA Event Service
with notions of time (at the level of standard real-time oper-
ating systems), making the model particularly well suited for
coordinating loosely coupled embedded components [79).

2.2.11 Unstructured events

The Java Beans, COM, and CORBA frameworks all pro-
vide a very loose model of computation that is based on
method calls with no particular control on the order in which
method calls occur. This is a highly flexible model of com-
putation, and forms a good foundation for more restricted
models of computation (such as the CORBA Event Service).
It has a key advantage that since no synchronization is built
in, then unsynchronized interactions can be easily imple-
mented with no risk of deadlock. A major disadvantage,
however, is that if synchronization is required, for example
to enforce data precedences, then the programmer must build
up the mechanisms from scratch, and maintaining determi-
nacy and avoiding deadlock become difficult.

2.3 Choosing models of computation

The rich variety of concurrent models of computation
outlined above can be daunting to a designer faced with hav-
ing to select them. Most designers today do not face this
choice because they get exposed to only one or two. This is
changing, however, as the level of abstraction and domain-
specificity of design practice both rise. We expect that
sophisticated and highly visual user interfaces will be needed
to enable designers to cope with this heterogeneity.

An essential difference between concurrent models of
computation is their modeling of time. Some are very
explicit by taking time to be a real number that advances uni-
formly, and placing events on a time line or evolving contin-
uous signals along the time line. Others are more abstract
and take time to be discrete. Others are still more abstract
and take time to be merely a constraint imposed by causality.
This latter interpretation results in time that is partially
ordered, and explains much of the expressiveness in process
networks and rendezvous-based models of computation. Par-
tially ordered time provides a mathematical framework for
formally analyzing and comparing models of computation

Many researchers have thought deeply about the role of
time in computation. Benveniste et al. observe that in certain
classes of systems, “the nature of time is by no means
universal, but rather local to each subsystem, and
consequently multiform” [11]. Lamport observes that a
coordinated notion of time cannot be exactly maintained in
distributed systems, and shows that a partial ordering is
sufficient [50). He gives a mechanism in which messages in
an asynchronous system carry time stamps and processes
manipulate these time stamps. We can then talk about
processes having information or knowledge at a consistent



cut, rather than “simultaneously”. Fidge gives a related
mechanism in which processes that can fork and join
increment a counter on each event [25). A partial ordering
relationship between these lists of times is determined by
process creation, destruction, and communication. If the
number of processes is fixed ahead of time, then Mattern
gives a more efficient implementation by using “vector
time” [67]. All of this work offers ideas for modeling time.

How can we reconcile this multiplicity of views? A
grand unified approach to modeling would seek a concurrent
model of computation that serves all purposes. This could be
accomplished by creating a melange, a mixture of all of the
above, but such a mixture would be extremely complex and
difficult to use, and synthesis and validation tools would be
difficult to design.

Another alternative would be to choose one concurrent
model of computation, say the rendezvous model, and show
that all the others are subsumed as special cases. This is rela-
tively easy to do, in theory. Most of these models of compu-
tation are sufficiently expressive to be able to subsume most
of the others. However, this fails to acknowledge the
strengths and weaknesses of each model of computation.
Process networks, for instance, are very good at describing
the data dependencies in a signal processing system, but not
as good at describing the associated control logic and
resource allocation. Finite-state machines are good at model-
ing at least simple control logic, but inadequate for modeling
data dependencies in numeric computation. Rendezvous-
based models are good for resource management, but they
overspecify data dependencies. Thus, to design interesting
systems, designers need to use heterogeneous models.

Certain architecture description languages (ADLs), such
as Wright [8] and Rapide [62], define a model of computa-
tion. The models are intended for describing the rich sorts of
component interactions that commonly arise in software
architecture. Indeed, such descriptions often yield good
insights about design. But sometimes, the match is poor.
Wright, for example, which is based on CSP, does not
cleanly describe asynchronous message passing (it requires
giving detailed descriptions of the mechanisms of message
passing). I believe that what we really want are architecture
design languages rather than architecture description lan-
guages. That is, their focus should not be on describing cur-
rent practice, but rather on improving future practice.
Wright, therefore, with its strong commitment to CSP,
should not be concerned with whether it cleanly models
asynchronous message passing. It should intend take the
stand that asynchronous message passing is a bad idea for
the designs it addresses!

2.4 Visual syntaxes and visualizing dynamics

A major part of designing robust networked embedded
systems will be ensuring that the designers understand their
behavior. Achieving this understanding in the face of
mutating software architecture, concurrency, and real time
will be difficult. Visual depictions of systems have always
held a strong human appeal, making them extremely
effective in conveying information about a design. Many of
the models of computation described above can use such
depictions to completely and formally specify models.

These visual depictions offer an alternative syntax to
associate with the semantics of a model of computation.
Visual syntaxes can be every bit as precise and complete as
textual syntaxes, particularly when they are judiciously com-
bined with textual syntaxes.

Visual representations of models have a mixed history. In
circuit design, schematic diagrams used to be routinely used
to capture all of the essential information needed to imple-
ment some systems. Schematics are often replaced today by
text in hardware description languages such as VHDL or
Verilog. In other contexts, visual representations have
largely failed, for example flowcharts for capturing the
behavior of software. Recently, a number of innovative
visual formalisms have been garnering support, including
visual dataflow, hierarchical concurrent finite state
machines, and object models. The UML visual language for
object modeling, for example, has been receiving a great
deal of attention [24].

A subset of visual languages that are recognizable as
“block diagrams” represent concurrent systems in domain-
specific ways. There are many possible concurrency seman-
tics (and many possible models of computation) associated
with such diagrams. Formalizing the semantics is essential if
these diagrams are to be used for embedded system specifi-
cation and design.

3.0 REAL TIME

Virtually all embedded systems, as well as many
emerging applications of desktop computers, involve real-
time computations. Some of these have hard deadlines,
typically involving streaming data and signal processing.
Examples include communication subsystems, sensor and
actuator interfaces, audio and speech processing subsystems,
and video subsystems. Many of these require not just real-
time throughput, but also low latency.

In general-purpose computers, these tasks have been his-
torically delegated to specialized hardware, such as Sound-
Blaster cards, video cards, and modems. In embedded
systems, these tasks typically compete for resources. As
embedded systems become networked, the situation gets
much more complicated, because the combination of tasks
competing for resources is not known at design time.

Some such embedded systems incorporate a real-time
operating system, which in addition to standard operating
system services such as I/O, offers specialized scheduling
services tuned to real-time needs. The schedules might be
based on priorities, using for example the principles of rate-
monotonic scheduling [60][48], or on deadlines. There
remains much work to be done to improve the match
between the assumptions of the scheduling principle (such as
periodicity, in the case of rate-monotonic scheduling) and
the realities of embedded systems. Because the match is not
always good today, many real-time embedded systems
contain hand-built, specialized microkernels for task
scheduling. Such microkernels, however, are rarely
sufficiently flexible to accommodate networked
applications, and as the complexity of embedded
applications grows, they will be increasingly difficult to
design. The issues are not simple.



3.1 Reactive Systems

Reactive systems are those that react continuously to their
environment at the speed of the environment. Harel and
Pnueli [36] and Berry [12] contrast them with interactive
systems, which react with the environment at their own
speed, and transformational systems, which simply take a
body of input data and transform it into a body of output
data. Reactive systems have real-time constraints, and are
frequently safety-critical, to the point that failures could
result in loss of human life. Unlike transformational systems,
reactive systems typically do not terminate (unless they fail).

Robust distributed networked reactive systems must be
capable of adapting to changing conditions. Service
demands, computing resources, and sensors may appear and
disappear. Quality of service demands may change as condi-
tions change. The system is therefore continuously being
redesigned while it operates, and all the while it must not
fail.

A number of techniques have emerged to provide more
robust support for reactive system design than what is pro-
vided by real-time operating systems. The synchronous lan-
guages, such as Esterel [13], Lustre [33], Signal [11), and
Argos [65], are reactive, have been used for applications
where validation is important, such as safety-critical control
systems in aircraft and nuclear power plants. Lustre, for
example, is used by Schneider Electric and Aerospatiale in
France, and Esterel is used by Dasa. Use of these languages
is rapidly spreading in the automotive industry, and support
for them is beginning to appear on commercial EDA (elec-
tronic design automation) software.

Most of these uses of synchronous languages have only
needed fairly small-scale monolithic programs, although
there have been investigations into distributed versions. For
examiple, extensions to Esterel support processes that do not
obey the synchronous hypothesis [14]. Processes communi-
cate via channels with rendezvous. This has been subse-
quently extended to add process suspension and resumption.

These languages manage concurrency in a very different
way than that found in real-time operating systems. Their
mechanism makes much heavier use of static (compile-time)
analysis of concurrency to guarantee behavior. However,
compile-time analysis of concurrency has a serious draw-
back: it compromises modularity and precludes adaptive
software architectures.

3.2 Scheduling

Although scheduling is an old topic, it is certainly not
played out. A real-time scheduler provides some assurances
given certain properties of the components, such as the
period of their periodic invocation, or the deadlines associ-
ated with certain tasks. Rate monotonic scheduling princi-
ples [60][48] translate the first of these into priorities.
Priorities may also be given based on semantic information
about the application, for example reflecting the criticality
with which some event must be dealt with.

A key problem in scheduling is that most methods are not
compositional. That is, even if assurances can be provided
individually to a pair of components, there are no systematic
mechanisms for providing assurances to the aggregate of the
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two, except in trivial cases. A chronic problem with priority-
based scheduling, known as priority inversion, is one mani-
festation of this problem.

Priority inversion occurs when processes interact, for
example by entering a monitor to obtain exclusive access to
a shared resource. Suppose that a low priority process has
access to the resource, and is preempted by a medium prior-
ity process. Then a high priority process preempts the
medium priority process and attempts to gain access to the
resource. It is blocked by the low priority process, but the
low priority process is blocked by the presence of an execut-
able process with higher priority, the medium priority pro-
cess. By this mechanism, the high priority process is
effectively blocked by the medium priority process.

Although there are ways to prevent priority inversion, the
problem is symptomatic of a deeper failure. In a priority-
based scheduling scheme, processes interact both through
the scheduler and through the mutual exclusion mechanism
(monitors) supported by the framework. These two interac-
tion mechanisms together, however, have no coherent com-
positional semantics. It seems like a fruitful research goal to
seek a better mechanism.

4.0 COMPONENT INTERFACES

A proper agenda for research should detail some specific
promising directions, some for the near term and some more
speculative. On the more speculative side, I believe that type
system concepts can be extended to drastically change the
design of concurrent components in a real-time context. At
its root, a type system constrains what a component can say
about its interface, and how compatibility is ensured when
components are composed. Mathematically, type system
methods depend on a partial order of types, typically defined
by a subtyping relation or by lossless convertibility. They
can be built from the robust mathematics of partial orders,
leveraging for example fixed-point theorems to ensure con-
vergence of type checking, type resolution, and type infer-
ence algorithms.

With this very broad interpretation of type systems, all
we need is that the properties of an interface be given as ele-
ments of a partial order, preferably a complete partial order
(CPO) or a lattice [80]). I suggest first that dynamic proper-
ties of an interface, such as the protocols used by a compo-
nent to interact with other components, can be described
using nondeterministic automata, and that the pertinent par-
tial ordering relation is the simulation relation between
automata. I also speculate that various timed automata exten-
sions can perhaps be used in similar ways to define much
more completely the temporal properties of an interface than
what is common practice today.

4.1 Strongly typed languages

Type systems in modern languages serve to promote
safety through static (compile time) and dynamic (run time)
checking. In a computation environment, two kinds of run-
time errors can occur, trapped errors and untrapped errors.
Trapped errors cause the computation to stop immediately. A
run-time handler can attempt to recover gracefully.
Untrapped errors, which may go unnoticed (for a while) and



later cause arbitrary behavior, can be disastrous for an
embedded system. Moreover, they are less likely to be
detected in testing. Examples of untrapped errors in many
general purpose languages are jumping to the wrong address,
or accessing data past the end of an array.

Strongly typed languages help prevent both trapped and
untrapped errors. Many errors are detected at compile time,
and run-time support for the type system can help ensure that
the remaining errors are trapped. This helps prevent arbitrary
behavior, but it only deals with certain aspects of program
behavior. Moreover, run-time support for the type system,
which can be provided systematically through preconditions
and contracts, may incur substantial overhead.

Modem languages, such as Java and ML, emphasize
avoiding untrapped errors. There is significant run-time
overhead incurred in the required safety checks. Several
researchers have shown that in many cases, this overhead
can be eliminated through compile-time analysis (see for
example [87]). The approach is to augment the type system
to include such properties as array size, and then to annotate
the generated code with assertions of safety. A run-time
environment can thus bypass the safety checks.

Ousterhout [70] argues that strong typing compromises
modularity and discourages reuse.

“Typing encourages programmers to create a vari-
ety of incompatible interfaces, each interface
requires objects of specific type and the compiler
prevents any other types of objects from being used
with the interface, even if that would be useful.”

The alternative he advocates is languages without strong typ-
ing, such as Lisp and Tcl, where safety can only be achieved
by extensive run-time checking. However, since type check-
ing is postponed to the last possible moment, the system
does not have fail-stop behavior, so a system may exhibit
erroneous behavior only after running for an extended period
of time after the error has occurred. Identifying the source of
the problem can be difficult, and guaranteeing the code may
be impossible.

Ousterhout raises a valid point, but the solution is not to
discard strong typing. Particularly for embedded systems,
the extra degree of safety offered by strong typing over-
whelms even the desire for modularity and reuse. How can
we achieve modularity and reuse without discarding strong
typing? One solution is to use polymorphism, reflection, and
run-time type inference and type checking.

Strong typing and type resolution have other benefits in
addition to the ones mentioned above. Strong typing helps to
clarify the interfaces of components and makes libraries
more manageable. Just as typing may improve run-time effi-
ciency in a general-purpose language by allowing the com-
piler to generate specialized code, type information can be
used for efficient synthesis of embedded hardware and soft-
ware configurations. For example, if the type checker asserts
that a certain polymorphic component will only receive inte-
gers, and that component is to be implemented in config-
urable hardware, then only hardware dealing with integers
needs to be synthesized.

In general-purpose strongly-typed languages, such as
C++ and Java, static type checking done by the compiler can
find a large fraction of program errors in object-oriented pro-
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grams. However, with networked embedded systems where
parallel execution, agents, migrating code, and software
upgrades are all possibilities, static type checking does not
do enough. Some of the type checking must be done at run
time. Java’s run-time type identification (RTTI) system
together with its reflection package specifically addresses
this problem by supporting run-time queries of type con-
straints and run-time verification of type compatibility.

Type systems in modern programming languages, how-
ever, do not go far enough. Many errors that in principle may
be detectable at compile time are not within the scope of the
type system. Several researchers have proposed extending
the type system to handle such errors as array bounds over-
runs, which are traditionally left to the run-time system [87].
But many are still not dealt with. For example, the communi-
cation protocols between concurrent processes are not type
checked. Yet failures in concurrency and synchronization are
common causes of critical system failures in embedded sys-
tems.

4.2 Process-level type systems

The first-order mechanism for assurance is that the
designer understand the system. But generally the designer
needs a great deal of help. Object-oriented programming, for
example, helps a designer understand the static structure of a
software architecture by providing syntactic features of the
language supporting object-oriented design, and by
providing a compiler that checks types. I suggest that
extended types that include dynamic properties of an
interface will require novel syntactic language support as
well as new compiler and run-time techniques.

The best parts of UML (especially the static structure
diagrams) are those that are directly supported by the lan-
guage syntaxes used by designers (especially C++ and Java).
The syntactic structure of a program directly reflects the
object model, and the compiler assures consistency in the
model. The weakest parts of UML (especially its variant of
Statecharts for state diagrams and its modeling of concur-
rency) are those with no syntactic support in the widely used
languages. Few tools are available for ensuring consistency
between programs and their models and for validating the
models. Perhaps eventually code generation from these mod-
els will ameliorate this, although this really amounts to
defining new languages with graphical syntaxes, a non-triv-
ial challenge.

Extended type systems could, in principle, capture the
following aspects of a system:

» protocols for communication between processes (e.g.
rendezvous, asynchronous message passing, streams,
events);

* models of time (e.g. a continuum, discrete, clocked,
partially ordered); and

¢ flow of control (e.g. synchronous, scheduled firings,
process scheduling, real-time).

This can be done without modifying the underlying lan-
guages, but rather by overlaying on standard languages
design patterns that make these types explicit. These will be
polymorphic, offering a systematic approach to tolerant
interfaces. A key part of the research here is to identify the



syntactic language support for such types.

Note that there is considerable precedent for such aug-
mentations of the type system. For example, Lucassen and
Gifford introduce state into functions using the type system
to declare whether functions are free of side effects [61].
Martin-L6f introduces dependent types, in which types are
indexed by terms [66]. Xi uses dependent types to augment
the type system to include array sizes, and uses type resolu-
tion to annotate programs that do not need dynamic array
bounds checking [87]. The technique uses singleton types
instead of general terms [38] to help avoid undecidability.
While much of the fundamental work has been developed
using functional languages (especially ML), there is no rea-
son that I can see that it cannot be applied to more widely
accepted languages.

Another innovative use of type systems is that of Necula,
who describes the use of proof-carrying code [69). Here, a
program includes with it a proof of validity or compliance to
some requirement, such as safety. If the code type checks,
then it is valid. This is used primarily for security. The main
drawback appears to be in the difficulty of constructing the
proofs. We may face a similar drawback in our use of depen-
dent types for capturing real-time properties in that con-
structing the real-time properties may prove difficult.

4.3 On-line type system

Static support for type systems give the compiler
responsibility for the robustness of software [17). This is not
adequate when the software architecture is dynamic. The
software needs to take responsibility for its own robustness
[49]. This means that algorithms that support the type system
need to be adapted to be practically executable at run time.

ML is an early and well known realization of a “modern
type system” [31][81][86]. It was the first language to use
type inference in an integrated way [41], where the types of
variables are not declared, but are rather inferred from how
they are used. The compile-time algorithms here are elegant,
but it is not clear to me whether run-time adaptations are
practical.

Many modem languages, including Java and C++, use
declared types rather than type inference, but their extensive
use of polymorphism still implies a need for fairly sophisti-
cated type checking and type resolution. Type resolution
allows for automatic (lossless) type conversions and for opti-
mized run-time code, where the overhead of late binding can
be avoided.

Type inference and type checking can be reformulated as
the problem of finding the fixed point of a monotonic func-
tion on a Jattice, an approach due to Dana Scott [78]. The lat-
tice describes a partial order of types, where the ordering
relationship is the subtype relation. For example, Double is a
subtype of Number in Java. A typical implementation refor-
mulates the fixed point problem as the solution of a system
of inequalities [68). Reasonably efficient algorithms have
been identified for solving these systems of inequalities [75],
although these algorithms are still primarily viewed as part
of a compiler, and not part of a run-time system.

Iteration to a fixed point, at first glance, seems too costly
for on-line real-time computation. However, there are sev-
eral languages based on such iteration that are used primarily
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in a real-time context. Esterel is a notable one of these [13).
Esterel compilers synthesize run-time algorithms that con-
verge to a fixed point at each clock of a synchronous system
[11]. Such synthesis requires detailed static information
about the structure of the application, but methods have been
demonstrated that use less static information [23]. Although
these techniques have not been proposed primarily in the
context of a type system, I believe they can be adapted.

4.4 Reflecting program dynamics

Object-oriented programming promises software
modularization, but has not completely delivered. The type
system captures only static, structural aspects of software. It
says little about the state trajectory of a program (its
dynamics) and about its concurrency. Nonetheless, it has
proved extremely useful, and through the use of reflection, is
able to support distributed systems and mobile code.

Reflection, as applied in software, can be viewed as hav-
ing an on-line model of the software within the software
itself. In Java for example, this is applied in a simple way.
The static structure of objects is visible through the Class
class and the classes in the reflection package, which
includes Method, Constructor, and various others. These
classes allow Java code to dynamically query objects for
their methods, determine on-the-fly the arguments of the
methods, and construct calls to those methods. Reflection is
an integral part of Java Beans, mobile code, and CORBA
support. It provides a run-time environment with the facili-
ties for stitching together components with relatively intoler-
ant interfaces.

However, static structure is not enough. The interfaces
between components involve more than method templates,
including such properties as communication protocols. To
get adaptive software in the context of real-time applica-
tions, it will also be important to reflect program state. Thus,
we need reflection on the program dynamics.

The first question becomes at what granularity to do this.
Reflection intrinsically refers to a particular abstracted repre-
sentation of a program. E.g., in the case of static structure,
Java's reflection package does not include finer granularity
than methods, nor coarser granularity than objects.

Process-level reflection could include two critical facets,
communication protocols and process state. The former
would capture in a type system such properties as whether
the process uses rendezvous, streams, or events to communi-
cation with other processes. By contrast, Java Beans defines
this property universally to all applications using Java
Beans. That is, the event model is the only interaction mech-
anism available. If a component needs rendezvous, it must
implement that on top of events, and the type system pro-
vides no mechanism for the component to assert that it needs
rendezvous. For this reason, Java Beans seem unlikely to be
very useful in applications that need stronger synchroniza-
tion between processes, and thus it is unlikely to be used
much beyond user interface design.

Reflecting process state could be done with an automaton
that simulates the program. (We use the term “simulates” in
the technical sense of automata theory.) That is, a component
or its run-time environment can access the “state” of a
process (much as an object accesses its own static structure



in Java), but that state is not the detailed state of the process,
but rather the state of a carefully chosen automaton that
simulates the application. Designing that automaton is then
similar (conceptually) to designing the static structure of an
object-oriented program, but represents dynamics instead of
static structure.

Just as we have object-oriented languages to help us
develop object oriented programs, we would need state-
oriented languages to help us develop the reflection
automaton. These could be based on Statecharts, but would
be closer in spirit to UML'’s state diagrams in that it would
not be intended to capture all aspects of behavior. This is
analogous to the object model of a program, which does not
capture all aspects of the program structure (associations
between objects are only weakly described in UML'’s static
structure diagrams). Analogous to object-oriented languages,
which are primarily syntactic overlays on imperative
languages, a state-oriented language would be a syntactic
overlay on an object-oriented language. The syntax could be
graphical, as is now becoming popular with object models
(especially UML).

Well-chosen reflection automata would add value in a
number of ways. First, an application may be asked, via the
network, or based on sensor data, to make some change in its
functionality. How can it tell whether that change is safe?
The change may be safe when it is in certain states, and not
safe in other states. It would query its reflection automaton,
or the reflection automaton of some gatekeeper object, to
determine how to react. This could be particularly important
in real-time applications. Second, reflection automata could
provide a basis for verification via such techniques as model
checking.

This complements what object-oriented languages offer.
Their object model indicates safety of a change with respect
to data layout. But they provide no mechanism for
determining safety based on the state of the program.

When a reflection automaton is combined with
concurrency, we get something akin to Statechart’s
concurrent, hierarchical FSMs, but with a twist. In
Statecharts, the concurrency model is fixed. Here, any
concurrency model can be used. We call this generalization
**charts,” pronounced “starcharts”, where the star represents
a wildcard suggesting the flexibility in concurrency models
[29]. Some variations of Statecharts support concurrency
using models that are different from those in the original
Statecharts [65][83]. As with Statecharts, concurrent
composition of reflection automata provides the benefit of
compact representation of a product automaton that
potentially has a very large number of states. In this sense,
aggregates of components remain components where the
reflection automaton of the aggregate is the product
automaton of the components. But the product automaton
never needs to be explicitly represented.

Ideally, reflection automata would also inherit cleanly.
For example, a component that derives from another inherits
its automaton and refines the states of the automaton (similar
to the hierarchy, or “or” states in Statecharts).

In addition to application components being reflective, it
will probably be beneficial for components in the run-time
environment to be reflective. The run-time environment is
whatever portion of the system outlives all application com-
ponents. It provides such services as process scheduling,
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storage management, and specialization of components for
efficient execution. Because it outlives all application com-
ponents, it provides a convenient place to reflect aspects of
the application that transcend a single component or aggre-
gate of closely related components.

5.0 FRAMEWORK FRAMEWORKS

In order to obtain certain benefits, frameworks impose
constraints. As a rule, stronger benefits come at the expense
of stronger constraints. Thus, frameworks may become
rather specialized as they seek these benefits.

The drawback with specialized frameworks is that they
are unlikely to solve all the framework problems for any
complex system. To avoid giving up the benefits of special-
ized frameworks, designers of these complex systems will
have to mix frameworks heterogeneously.

There are several ways to mix frameworks. One is
through specialization (analogous to subtyping) where one
framework is simply a more restricted version of another.
For example, a Unix application that involves multiple pro-
cesses might use pipes in situations where the benefits of
pipes are desired. But it might not always use pipes, or not
use pipes throughout the application. The subsystem that
uses pipes, ideally, is assured the benefits of pipes, such as
freedom from deadlock. The rest of the system has no such
assurance.

A second way to mix frameworks is hierarchically. A
component in one framework is actually an aggregate of
components in another. This is the approach taken in the
Ptolemy project [20). The challenge here is to avoid having
to design each pairwise hierarchical combination of frame-
works.

The approach we take in the Ptolemy project is to use a
system-level type concept that we call domain polymor-
phism. In Ptolemy software, a model of computation is real-
ized by a software infrastructure called a domain. A
component that is domain polymorphic is one that can oper-
ate in a number of domains. The objective is that the inter-
face exposed by an aggregate of components in a domain is
itself domain polymorphic, and thus the aggregate can be
used in any of several other domains with clear semantics.

Initially, we constructed domain polymorphic compo-
nents in an ad hoc fashion, using intuition to define an inter-
face that was as unspecific as possible. More recently we
have been characterizing these interfaces using nondetermin-
istic automata to given precisely the assumptions and
requirements of the interface. The services provided by each
domain are also characterized by automata. A component
can operate within a domain if its interface automata simu-
late those of the domain.

A few other research projects have also heterogeneously
combined models of computation. The Gravity system and
its visual editor Orbit, like Ptolemy, provide a framework
framework, one that mixes modeling techniques heteroge-
neously [2]. A model in a domain is called a facet, and heter-
ogeneous models are multi-facetted designs [7]. Jourdan et
al. have proposed a combination of Argos, a hierarchical
finite-state machine language, with Lustre [33], which has a
more dataflow flavor, albeit still within a synchronous/reac-



tive concurrency framework [44]). Another interesting inte-
gration of diverse semantic models is done in Statemate [35],
which combines activity charts with statecharts. This sort of
integration has more recently become part of UML. The
activity charts have some of the flavor of a process network.
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