

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CONTROLLED INVARIANCE OF

DISCRETE TIME SYSTEMS

by

Rene Vidal, Shawn Schaffert, John Lygeros and
Shankar Sastry

Memorandum No. UCB/ERL M99/65

16 December 1999

CONTROLLED INVARIANCE OF

DISCRETE TIME SYSTEMS

by

Rene Vidal, Shawn Schaffert, John Lygeros and Shankar Sastry

Memorandum No. UCB/ERL M99/65

16 December 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of.California, Berkeley

94720

Controlled Invariance of Discrete Time Systems*

Rene Vidal Shawn Schaffert John Lygeros Shankar Sastry

Electrical Engineering and Computer Sciences
University of California at Berkeley

Berkeley, CA 94720-1774
{rvidaljSms,lygeros,sastry}@eecs.berkeley.edu

December 16, 1999

Abstract

An algorithm for computing the maximal controlled invariant set and the least restrictive controller for discrete
time systems is proposed. Weshow howfor discrete time linear systems the algorithm can be encoded using quantifier
elimination and linear programming. It is proved that for a general discrete-time linear system with all sets specified
by linear inequalities, the problem is semi-decidable. If in addition the system is in canonical controllable form, the
input is scalar and unbounded, the disturbance is scalar and bounded and the initial set is a rectangle, then the
problem is decidable.

1 Introduction

The design of controllers is one of the most active research topics in the area of hybrid systems. Problems that have been
addressed include hierarchical control [20, 5], distributed control [18], and optimal control using dynamic programming
techniques [4, 3, 25, 21] or extensions of the maximum principle [12]. A substantial research effort has alsobeen directed
towards solving control problems with reachability specifications, that is designing controllers that guarantee that the
state of the system remains in a "good" part of the state space. Such control problems turn out to be very important
in applications, and are closely related to the computation of the reachable states of a hybrid system and to the concept
of controlled invariance. The proposed solutions extend game theory methods for purely discrete [27, 22] and purely
continuous [2,15] systems tocertain classes ofhybrid systems: timed automata [17,14], rectangular hybrid automata [29]
and more general hybrid automata [16, 28].

All ofthese techniques are concerned with hybrid systems whose continuous stateevolves in continuous time, according
to differential equations or differential inclusions. Unlike conventional continuous dynamical systems, little attention
has been devoted systems where the continuous state evolves in discrete time, according to difference equations. Besides
being interesting in their own right, this class of hybrid systems can be used to approximate hybrid systems with
differential equations. Indeed, most ofthe techniques that have been proposed for reachability computations for general
continuous dynamics involve some form ofdiscretization of the continuous space [10, 13, 28], followed by a reachability
computation on the resulting discrete time system.

In this paper we study the problem ofcontroller synthesis for hybrid systems whose continuous dynamics are given by
difference equations under reachability specifications. In Section 2, we formulate the problem, introduce the concepts of
controlled invariant set and least restrictive controller, and propose an algorithm for computing them. In Section 3 we
review some concepts of mathematical logic and show how the algorithm can be implemented by quantifier elimination.
Thisimmediately leads to a semi-decidability result for discrete time systems whose continuous dynamics canbeencoded
in a decidable theory of the reals. In section 4, we implement the proposed algorithm for discrete-time linear systems
with all the sets defined by linear inequalities. The implementation is based on a more efficient method for performing
quantifier elimination in the theory of linear constraints using linear programming. We also show that the problem

•Research supported and by ONR under grant N00014-97-1-0946, by DARPA under contract F33615-98-C-3614, and by ARO under
MURI DAAHQ4-96.1-0341.

is decidable when the single-input single-disturbance discrete-time linear system is in canonical controllable form, the
input is unbounded, and the safe set is a rectangle. Finally, in Section 5, we illustrate the proposed method with some
examples.

2 Discrete Time Systems and Safety Specifications

2.1 Basic Definitions

Let y be acountable collection ofvariables and let Ydenote its set ofvaluations, that is the set ofall possible assignments
of these variables. We refer to variables whose set of valuations is countable as discrete and to variables whose set of
valuations is a subset ofa Euclidean space E" as continuous. For a set Y we use Y'̂ to denote the complement of
Y, 2^^ to denote the set of all subsets of Y, Y* to denote the set of all finite sequences of elements of Y, and Y'̂ to
denote the set of all infinite sequences. Since the dynamical systems we will consider will be time invariant we will use
y= {y[«]}ilo <^0 denote sequences. We use Ato denote conjunction, Vto denote disjunction, -• to denote negation, Vto
denote the universal quantifier, and 3 to denote the existential quantifier.

The dynamics of a discrete time system are characterized by a reset relation that, given the current value of the state
and input, returns the possible next states of the system. Moreformally:

Definition 1 (Discrete Time System (DTS)) A discrete time system is a collection H = (A", V, Init,/) consisting
of afinite collection of state variables, X, afinite collection of input variables, V, a set of initial states, iiit CX and
a reset relation, / : X x V —» 2*.

A DTS naturally characterizes a subset of the set of sequences of X x V.

Definition 2 (Execution of DTS) A sequence x = (a;,u) € (X x V)* U(X x is said to be an execution of the
discrete time system H if x[0] € Init, and for allk>0, x[k -t-l] Gf{x[k],v[k]).

To ensure that every finite execution can be extended toaninfinite execution we impose theassumption that f{x,
for all X.G X, VGV; we call such a DTS non-blocking^. We denote thesetofall executions ofH starting at xq GX as
^h{xo), and the set of all executions of H by Eh- Clearly, Sh = \Jxoeinii^H(^o)-
Our goal here is to design controllers for DTS. Assume that we are given a plant, modeled as a DTS, and we would
like to "steer" it using its input variables, so that its executions satisfy certain properties. We assume that the input
variables are peirtitioned into two classes, V = UUD. 17 are assumed to be control variables, that is variables whose
valuations we can specify at will. D, on the other hand, are assumed to be disturbance variables, over whose valuations
we have nocontrol (we say theyare determined bythe environment) and that can potentially disrupt our plans. In this
context a controller can be defined as a feedback map.

Definition 3 (Controller) A controller, C, is a map C : X* -» 2^. A controller is called non-blocking if C(x) / 0
for allx eX*. A controller is called memoryless iffor allx,x' GX* ending at the same state we have C{x) = C(x').

The interpretation is that, given the evolutionof the plant state up to now, the controllerdetermines the set of allowable
controls for the next transition. With this interpretationin mind, we define the set of closed loop causal executions as

^Hc = {(a;,ii,d) G IVfc > 0,u[A;] GC(xi/.)},

where xj.& denotes the subsequence of x consisting of its first k elements. Notice that a memoryless controller can be
characterized by a mapp : X —» 2^, and its set of closed loop causal executions is simply

^Hg = {{x,u,d) e IVA; > 0,ii[fc] G5(x[fc])}.

Our goal is to use controllers to steer the executions of the plant, so that they satisfy certain desirable properties. In
this paper we will restrict our attention to a class of properties known as safetyproperties-, given a set F C X, wewould

^The condition isonly sufficient. It can beeasily refined to a necessary and sufficient condition; however, since the emphasis ofthispaper
is controller synthesis, we will not pursue this direction.

like to find a non-blocking controller that ensures that the state stays in F for ever. We will say that a controller C
solves the problem (if, DF), ifand only ifC is non-blocking and for all (x,u,d) GShc^ a:[fc] € F for all ib > 0. If such a
controller exists we say that the problem (ff, DF) can be solved.

Even though safety properties are not the only properties ofinterest^, they turn out to be very useful in applications.
Many important problems, such as absence of collisions in transportation systems, mutual exclusion in distributed
algorithms, etc., arenaturally encoded assafety properties. Fortunately, it can beshown that for this class ofproperties
one can, without loss of generality, restrict attention to memoryless controllers.

Proposition 1 The problem DF) can be solved by some controller if and only if it can be solved by a memoryless
controller.

Proof; The i/part is obvious. For the only i/part, assume, for the sake of contradiction, that there exists a controller
C =X* —♦ 2^ that solves the problem {H, DF), but there does not exist a memoryless controller that solves the problem.
Therefore there must exist two finite executions Xi = (a^t, Wi, dj) G i = 1,2,ending at thesame state,x, at times fci
and k2 respectively, such that xi # X2j and C{xi) C{x2). Moreover, the information about the way in which the state
Xis reached must be essential for subsequent control decisions. Assume that x is reached via xi, but we choose to ignore
this fact and apply controls after ki asthough x were reached viaX2- Then, there must exist a continuation, x', such that
the concatenation xi = (a;i,ui,di) = xix' ^ leaves the set F. In particular, since xi € Shc and C solves (iif,nF),
there must exist A; > 0 such that liffci -I- A;] ^ F. Notice, however, that the concatenation xi = = X2X' is
also an element of£h- Moreover, X2X' ^ ^Hc Bat 2;2[A;2 + A;] = x'i\ki + A;] ^ F. This contradicts the assumption that
C solves the problem (if, DF). ^

Motivated by Proposition 1, we restrict our attention to memoryless controllers from now on.

2.2 Controlled Invariant Sets and Least Restrictive Controllers

The concept ofcontrolled invariance turns out tobe fundamental for the design of controllers for safety specifications [16].
Roughly speaking, a set of states, W, is called controlled invariant if there exists a controller that ensures that all
executions starting somewhere in W remain in W for ever. More formally:

Definition 4 (Controlled invariant set) A set W C X is called a controlled invariant set ofH if there exists a non-
blocking controller that solves the problem {H\ UW), where H' = (X, V, W, f) (the same as H, but with Init' = W).

Wesay that the controllerthat solves the problem (if', UW), with Init' = W, renders the set W invariant. A useful and
intuitive characterization of the concept of controlled invariance can be given in terms of the operator Pre : 2* —» 2*
defined by

Pre(W) = {x GW I3u GU Vd GD, f{x, u,d) n = 0}.

The operator returns the set of states x £W for which u G U can be chosen such that for all choices of d G D all states
that can be reached from x after one transition are also in W. Thefollowing properties of the Pre operator are easy to
establish and will be useful in the subsequent discussion.

Proposition 2 The operator Pre has the following properties:

1. Pre is contracting, that is for all W C X, Pre(W) C W;

2. Pre is monotone, that is for all W, W C X with W C W', Pre(W) C Pre(W'); and,

3. A setW C X is controlled invariant if and only if it is a fixed point ofPie, that is if and only ifPie{W) = W.

Proof: The first part follows from thedefinition. For the second part, notice that for all x GPre(W) there exists wGU
such that for all d GD, f{x,u,d) C W. Since WC W', this means that for the same u, and for all d, f{x,u,d) C W',
and therefore, x G Pre(W).

Other import&nt properties include liveness properties (ensuring tha.t the stnte eventually reaches a certain set, visits a set infinitely
often, etc.), stability, optimality, etc.

We now turn ourattention to the third partofthe proposition. For the if part, assume Pre(W) = W and consider the
memoryless controller

, X f{w€U|VdeD,/(x,u,d)nw= = 0} xew
^ \u x^W.

By construction g is non-blocking. Consider an execution {x,u,d) e SHg with a:[0] € W, and assume that for all
0 < A:' < A;, a;[A;'] GW. Then x[k + 1] G/(a;[A;],u[A;],d[A:]) C W by construction ofg. Therefore, a;[A;] GW for all A: > 0
by induction.

For the only i/part, notice that by definition Pre(W) C W. Assume there exists a non-blocking, memoryless^ controller,
p, that solves the problem {H'̂ OW) with Init' = W. Consider an arbitrary x ^ W and notice that byassumption there
exists u Gp(a;) such that for all d 6 D and for all x' G/(x, u,d), x' € W. Therefore, x GPre(W) and W C Pre(W). •

Given a set F, a set W C F is called a maximal controlled invariant subset of F, if it is controlled invariant and it is
not a proper subset of any other controlled invariant subset of F.

Lemma 1 The problem {H, DF) con be solved if and only if there exists a unique maximal controlled invariant set, W,
with Init C W C F.

Proof: For the i/part, assume sucha W existsand consider a non-blocking controller g that renders W invariant. Then
Sug CSwg, since Init C W. Therefore, all x ^ ^Hg remain for ever in W, and hence in F.
For the only i/part, assume the problem (iif,nF) can be solved by a non-blocking controller g. Consider the set

/!>0

By definition, Init C W. Since g solves theproblem {H, OF), W C F. Moreover, for any x[0] GW consider an execution
(x,u,d), with arbitrary d GD* and u[A;] € p(x(A;]). Then by definition of W, x[A;] GW for all A: > 0. Therefore the
controller g renders the set W invariant.

Summarizing, if the problem {H, DF) can be solved, then there exists a controlled invariant set W with Init C W C F.
To show that there exists a unique maximal such set, let W be the family of all controlled invariant sets W, with
Init CW CF,Q he the family of the corresponding non-blocking memoryless controllers that render each element of W
invariant, and h iW Ghe the map assigning to each W GW its corresponding memoryless controller g £ G- By the
above discussion, W (and hence G) is non-empty. By the well-ordering theorem [23] there exists a well-ordering relation
for G- We define the memoryless controller

= wiw I® >
where min is taken according to the order on G- Let

W= \J W.
wew

Clearly Init C W C F. If we show that W is also controlled invariant, then the class of controlled invariant sets will
be closed under arbitrary unions, and hence possess a unique maximal element. Let x = u,d) be an execution of H
starting at x[0] GW, with arbitrary d GD* and u[A:] Gff(a;[A;[). Assume, for the sake ofcontradiction, that there exists
A; > 0 such that x[A;'] GW for all 0 < A;' < A;, and x[A; + l]ffW. Since x[A:] 6 W and u[k] G5(a:[A;]), thereexists W eW
such that x[A;] GW and u[A:] Gh{W). By assumption, h{W) solv^ the problem {H',OW) with Init' = W. Therefore
x[A; + 1] GW C W, contradicting the assumption that x[k+ \]^W. a

Many memoryless controllers may be able to solve a particular problem. Controllers that impose less restrictions on
the inputs they allow are in a sense better than controllers that impose more restrictions. For example, controllers
that imposefewer restrictions allow one more freedom if additional safety specifications are imposed, or one is asked to
optimize the performance of the (safe) closed loop system with respect to other objectives. To quantify this intuitive
notion we introduce a partial order on the space of memoryless controllers. We write gi ^ p2 if for all x G X,
ffi(a;) C g2{x).

®Without lossof generality by Proposition 1.

Definition 5 (Least restrictive controller) A memoryless controller p : X —♦ 2^ that solves the problem {H, F) is
a called least restrictive if it is maximal among the controllers that solve {H, OF) in the partial order defined by •<.

Lemma 2 A controller that renders a set W invariant exists if and only if a unique least restrictive controller that
renders W invariant exists.

Proof: The if part is obvious. For the only if part, assume that given a set W a controller g that renders it invariant
exists. Let G be the collection of all controllers that render W invariant and define y : X —» 2^ as

9{x) = U
geG

We claim that g renders W invariant. Let x = (x,u,d) e S/f.(xo) for some Xq € W and assume, for the sake of
contradiction that there exists k>0 such that xfA:'] € W for all 0 < fc' < fc, but x[k+ 1] ^ W. Now, by definition of g,
there exists geG such that u(a;[fc]) € ff(a;[A:]). Since g renders W invariant, and x[/:] e W, then x[k + 1] € W, which
contradicts the assumption that a;[fe +1] ^ W. Therefore, the class of controllers that render W invariant is closed under
arbitrary unions, and hence possesses a unique maximal element. •

Notice that the least restrictive controller that renders a set W invariant must, by definition, allow g{x) = U for all
X^W. Summarizing Lemmas 1 and 2 we have the following.

Theorem 1 The problem (H, OF) can be solved if and only if:

1. there exists a unique maximal controlled invariant set W with Init C W C F, and

2. there exists a unique, least restrictive, memoryless controller, g, that renders W invariant.

Motivated by Theorem 1 we state the controlled invariance problem more formally.

Problem 1 (Controlled Invariance Problem (CIP)) Given a discrete time system H and a set F C X compute
the maximal controlled invariant subset of F, W, the least restrictive controller, g, that renders it invariant, and test
whether Init C W.

2.3 Computation of W and g

We first present a conceptual algorithm for solving CIP for general DTS. Even though there is no straight forward way
of implementing this algorithm in the general case, in subsequent sections we show how this can be done for special
classes of DTS.

Algorithm 1 (Controlled Invariance Algorithm)
initialization: W° = F, W~^ = X, / = 0
while W'-i n (W')'= # 0 do

W+i = Pre(WO
1 = 1 + 1

end while

setW' = n,>„W"

set
^ €u IVd€ D, f(x,u,d) n(WY =0} I e

lu X̂
W

Theorem 2 W is the maximal controlled invariant subset of F and g is the least restrictive controller that renders W
invariant.

Proof: To show that W is controlled invariant we show that it is a fixed point of Pre. By definition Pre(W) C W.
Conversely, consider x € W and assume, for the sake ofcontradiction that x qL Pre(W). Then for all u e U there exists

de D x' € /{re, m, d) such that x'^ W. Therefore, there is an Isuch that x' ^ W^. Hence x^ PrefP^^O = DW
which is a contradiction. Therefore W C Pre(H^). ~ '

To show that Wis maximal, consider a controlled invariant set WCF. Assume, for the sake of contradiction, that
there exists xjO] € \ Therefore, there exists I > 0such that x[0] ff By definition of the operator Pre this
implies that either a;[0] \ or for all u GU there exists d GD and a;' G/(a;[0],u,d) such that x' ^ W'-^. In the
latter case set a;[l] =x'. By induction, for all choices ofu there exists a finite sequence that leaves = F "DW after
at most I steps. This contradicts the assumption that PF is a controlled invariant.

Finally, to show gis least restrictive, consider another controller, g, that renders Winvariant, and assume, for the sake
of contradiction, that there exists a; GXpd uGg{x) \ g{x). By construction of p, a: GW. Since u i g{x), there exists
dGD and a;' G/(a;, u,d) such that x' ^ W. This contradicts the assumption that g renders Wcontrolled invariant. •

To implement the controlled invariance algorithm one needs to be able to:

1. encode sets ofstates, perform intersection and complementation, and test for emptiness,

2. compute the Pre of a set, and

3. guarantee that a fixed point is reached after a finite number of iterations.

For classes of DTS for which 1 and 2 are satisfied we say that the CIP is s6Tni-decida,ble] if all three conditions are
satisfied we say that the CIP is decidable. As an example, consider finite state machines, that is the class of DTS for
which X, U and D are finite. In this case, one can encode sets ofstates, perform intersection, complementation, test for
emptiness and compute Pre by enumeration (or other more eflScient representations). Moreover, by themonotonicity of

and the fact that X is finite, the algorithm is guaranteed to terminate in a finite number ofsteps. Therefore, the
CIP is decidable for finite state machines.

In subsequent sections we show how the computation can be performed for DTS with state and input taking values in
Euclidean space and transition relations given by a certain classes offunctions of the state and input. Before we can
present the details, however, we need to introduce some notation from mathematical logic.

3 Mathematical Logic and Quantifier Elimination

3.1 Languages, Models and Theories

The following discussion is based on [19]. For a more in depth treatment the reader is referred to [9, 8).
A language C= {Hi,... ,Hn, /i,... , /m, Cq ,... ,c/} is a set ofsymbols separated into relations, Hi,... ,Hn, functions,
/ii"' ifmi 3Jid constants, cq,... ,ci. For example, V = {<,+,—,0,1} and H = {<,+,—,',0,1} are languages with
(binary) relation <, (binary) functions +, - and •, and constants 0 and 1.

Given a language C anda set ofvariables {xi,X2,... ,vi,V2, •••}, the terms ofthe language are inductively defined. All
the variables and all theconstants are terms, and if ti,... , are terms and / isan n-ary function, f{ti,... ,t„) is also
a term. For instance, if a, b and c are positive integer constants and xi and X2 are variables, axi - 6x2 + c is a term of
V and axl + 6x1X2 + c is a term of 1Z^.

An atomic formula ofthe language isoftheform ti = <2 or R{ti,... , t„), where Hisa n-ary relation andti,i = l,... ,n
are terms. For example, axi - 6x2 + c < 0 is an atomic formula of V and axf -I- 6x1X2 -I- c = 0 is an atomic formula of
H. First order formulas (or simply formulas) are recursively defined from atomic formulas:

1. atomic formulas are formulas,

2. a <f>, iff are formulas, then so are <f> Aij) and

3. if ^ is a formula and x is a variable, then 3x | 0 is also a formula®.

^Integer constants are generated inductively by repeatedly adding the constant 1 to itself.
^Disjunction, ^ VV, is interpreted as A-1^).
^Universal quantification, Vx | <f>, is interpreted as -•(3x | -i^).

Formulas defined in a language £ are called £-formulas. For example, Mx < p is a.V formula, where M e and
/? € are constants, and a; = (xi,... ,x„) are variables. This becomes clear if we let rriij GQbe the ij element of
M and GQ be the i element of ^ and write Mx < P as

m

/\ [Qi {muXi +...+TTlinXn - Pi) <0] V[ji {muXi +... +rriinXn - Pi) =0]
t=l

where Qi is a positive common denominator of m^-, j = 1,,,. ,n and Pi. With a similar interpretation the following
expression is also a V formula

3u Vd I{Mx < P) A{MAx + Mbu + Mcd < P) (1)

where A, 6, c, M and P are constant matrices with rational coefficients and x, u and d are variables.

The occurrence ofa variable in a formula is free if it is not within the scope of a quantifier| otherwise it is bound. For
example, x is free, and u and d are bound in (1). We often write ^(xi,... ,x„) to indicate that xi,... ,x„ are the free
variables of formula <f>. A sentence is a formula with no free variables.

A model of a language £ consists of a non-empty set 5 and a semantic interpretation of the relations, functions and
constants of£ . For instance, (K, <,-f, —,0,1) and (IR, -,0,1) with the usual interpretation for the symbols
are models ofV and Tl respectively. Every sentence ofthe language is either true or false for a given model. Every
formula, 0(xi,... ,x„), ofthe language defines a subset of5", namely the set of the valuations ofxi,... ,x„ for which
the formula is true. Conversely, we saythat a set y C 5" is definable in £ if there exists a formula in d>(xi x«) in
£ such that

^ = {(oi»• •• , On) € 5" I<f){ai,... ,a„)}

Two formulas 0(xi,... ,Xn) and '0(xi,... ,Xn) are equivalent in a model, denoted by = *0, if for every valuation
(tti,... ,an) of (xi,... ,x„), 0(ai,... ,an) is true if and only if V'(®i>• •• jOn) is true. Equivalent formulas define the
same set.

Every model defines a theory^ as the set of all sentences which hold in the model. For example, we denote by Lin(IR)
the theory defined by the formulas ofV which are true over (IR, <,+, -,0,1); in other words, Lin(IR) is the theory of
linear constraints. We denote by OF(IR) the theory defined by the formulas of 72. which are true over (IR, <,-f-, —, -,0,1);
in other words, OF(E) is the theory of the real numbers as an ordered field.

3.2 Quantifier Elimination and Semi-decidability

The terminology introduced above provides a framework for defining sets of states, by using formulas in an appropriate
theory. It also provides a method for performing intersection and complementation ofsets, by taking conjunction and
negation of the corresponding formulas. One would also like to be able to determine whether a set definable in the
model is empty or not.

For some theories, it is possible to determine the sentences that belong to the theory. The Tarski-Seidenberg decision
procedure provides a way ofdoing this for OF(R). It can be shown [26, 24] that OF(E) is decidable, in other words,
there exists a computational procedure that after a finite number of steps determines whether a 7^-sentence belongs
to OF(E) or not. The decision procedure is based on quantifier elimination. An algorithm is provided that converts
a formula ^(xi,... ,Xn) to an equivalent quantifier free formula ^(xi,... ,x„). Notice that this provides a method for
testing emptiness. Aset y = {(xi,... ,x„) 10(xi,... ,x„)} is empty ifand only ifthe sentence 3xi... 3x„ |^(xi,... ,x„)
is equivalent to false.

To relate this to the problem at hand, we restrict our attention to CIP which are "definable" in an appropriate theory.

Definition 6 (Definable CIP) A CIP, {H,aF), is definable in a theory t/X = E", U CE"", D C E"" and the sets
U, D, Init, f{x,u,d) for allx GX, u GU, d GD, and F are definable in the theory.

If {H,UF) and are definable in OF(E), then

V^(x) = 3u Vd Vx' I|x GW'j A[u GU] A[{d ^D) V(x' ^ /(x, u, d)) V(x' GW')] (2)

is a first order formula in the corresponding language. Therefore, each step of the controlled invariance algorithm
involves eliminating thequantifiers in (2) toobtain a quantifier free formula defining W'+^, complementing theresulting
set intersecting with W' and testing the intersection for emptiness. The fact that OF(E) is decidable
immediately leads to the following.

Theorem 3 For the class of DTS definable in OF(IR) the CIP is semi-decidable.

Moreover, if {H, OF) is definable in OF(E) and W is a controlled invariant set also definable in OF(IR), then the set

{(x,u) IVd 6 D Vrc' e f(x,u,d), x' GW]

describing the least restrictive controller that renders W invariant is also definable in OF(E). Quantifier elimination can
be performed in this formula, to obtain an explicit expression for the least restrictive controller. Finally, the question
W n Inif^ = 0 can be decided. Therefore, if the algorithm happens to terminate in a finite number of steps, the CIP
problem can be completely solved.

The class of GIF definable in OF(E) is fairly broad. The class contains DTS with polynomial constraints on u, d and
Init andreset relations encoded byconstraints onthepossible next statesencoded bypolynomials inx, u andd. Strictly
speaking the problem remains semi-decidable even if we add polynomial state dependent input constraints, i.e. at each
state, a;, allow values of u and d that satisfy polynomial constraints in s, u and d. This includes for example the closed
loop system obtained by coupling the least restrictive controller with the plant.

Although different methods have been proposed for performing quantifier elimination [26, 24,1] inOF(E), and theprocess
can beautomated using symbolic tools [11], the quantifier elimination procedure is in general hard, both in theory and
in practice. For the theory Lin(E) a somewhat more efficient implementation can be derived using techniques from
linear algebra and lineeur programming. The next section shows how quantifier elimination in the theory Lin(E) can be
performed more efficiently for the formula (2) used in the controlled invariance algorithm.

4 CIP for Discrete Time Linear Systems

A linear CIP (LCIP) consists of

• isa Linear DTS (LDTS), that is a DTS with X = E", U = {u € E"- | En < 77} CE"", D = {d e E"-' | Gd < 7} C
E"**, Init = {x e X IJa; < 0} and a reset relation given by /(x,u,d) = {Ax -t- En -I- Gd}, where A €
B € C 6 E G G G 7/ G , 7 G J G and 0 G with 77i„, ma
and TUi being the number ofconstraints on the control, disturbance and initial conditions respectively; and,

• a set E = (x G E" IMx < where M G G <Q^ and m is the number of constraints on the state.

Notice that LDTS are non-blocking and deterministic, in the sense that for every state x and every input (u, d) there
exists a unique next state. Since the sets E, U and D are all convex polygons, and the dynamics f are given by
a linear map, the LCIP is definable in the theory Lin(E), and therefore, according to the discussion in Section 3, is
semi-decidable. We assume that the sets E and U can be either bounded or unbounded, but D is bounded^.

For the LCIP it turns out that, after the 1-th iteration, the set can be described as {x GE*"' \M^x < 0^}, that
is, remains a convex polygon. Obviously, 'mP = m, = M and 0° - 0. Letting A' = M^A, = M'E and
G' = M'G, equation (2) becomes

if'{x) = 3u Vd I[Af'x < /?'] A[Eu < 77] A[(Gd > 7) V(A'x + B'u+ G'd < 0')]
= [M'x < /?'] A[3u I{Eu < 7/) A(Vd | (Gd > 7) V(A'x + E'u -I- G'd < /?'))]

Thus, in each step of the algorithm, we need to be able to eliminate variables u and d from the inner formulae, intersect
the new constraints with the old ones and check if the new set is empty. Notice that not all of the new constraints
generated by quantifier elimination may be necessary to define the set Also, some of the old constraints may
become redundant after adding the new ones. Hence we need to check the redundancy of the constraints when doing
the intersection.

^The theoretical discussion can be extended to unbounded D sets,but the computational implementation is somewhat more involved.

4.1 Quantifier Elimination

We first perform quantifier elimination on d over the formula

<l>\x, u) = Wd \{Gd > 7) V(A'x + B^u + &d < .

Let af, bj and cf be thei-th row of4^ B' and respectively. Then, parsing leads to

<^\x,u) = Vd If\{Gd>j)y (afx +bfu +cjd </3l) = Vd | ^(Gd >7) V(cfd <pl - a[x - bju)

Consider 6 :

t=i

3«i A A
p6P' qeQ'

i=l

S"* defined by 5i(C') = max (cfd) for i = 1,... ,m.
d:Gd<'y

Proposition 3 is equivalent to y?'(x,'u) = A^x + B^u < /?' —6{C^)

Proof: If<f>^{x,u) is false then 3d* | (Gd* < 7)A(cfd* > P\—dJx —bJu) for some i. Since 6i{C^) >cjd*, we conclude
that -10' ^ hence ^0'. Similarly, if (p^lx,u) is false, 3d* | (Gd* <7) A(cfd* > afx- bfu) for some i.
Thus0' is false and 0' =»> y?'. n

The elimination of the V quantifier can be done by solving a collections of linear programming problems. Since we
have assumed that D is bounded, such an optimization problem is guaranteed to have a solution, and hence <5(-) is well
defined. Since ^(•) is applied to each row ofG', in the sequel we will use ^i(G') and 6{cf) interchangeably. Notice that,
strictly speaking, ^(•) is not part Lin(E), but we use it as a shorthand for the constant obtained by solving the Unear
programs.

Next, we perform quantifier elimination on u over the formula

0'(j:) =3« I{Eu <r,)A (i'l+B'u <0'- 6{C')) = I(f £)(«)^("' ~
We will discuss two methods to eliminate u: the first is known as Fourier Elimination^ and the second, attributed to
Cernikov [6], is an applicationof Farkas Lemma on duality [7].

For the first method, assume we want to eliminate ui first. Let e, be the i-th unit vector in E*""*""*",

Thus 0'(a;) = 3u |H'u < '̂(x). Also define P' = {p |Pjj > 0} , Q' = {g |Pji < 0} and P' = {r|Pji = O}, where Hfj
refers to the i, j element of the matrix P"'. Then 0'(a;) is equivalent to

1 ^ 1

^91 j=2 ^Pl 3=23=2

Therefore, after the elimination of u\ we obtain

A A
r€P' 3=2

3=2 ^qj'̂ 3^
(4)

Therefore, the elimination of the 3 quantifier is performed by taking nonnegative linear combinations of all pairs of
constraints so as to cancel the quantified variable. Note that if all the coeflScients of the quantified variable are positive
(negative), then 0' is true, and we need not eliminate the remaining variables. Otherwise, after ui has been eliminated,
we apply the ssune procedure to the constraints in (4), so as to eliminate M2, ••• ,w„„. Since the procedure is based on
nonnegative row operations, it is clear that

0'(x) =A' ^ ^<A' ^ • (5)

where A' 6 Q '̂5<(m+m„) jg matrix with nonnegative entries such that A'J?' = 0, m' is the number ofconstraints
obtained through quantifier elimination, M' € <Q^ and 6 .

Although Fourier Eliminationis attractive because of its simplicity, it is quite ineflBcient. In general, it generatesmany
new constraints, and in the worst case the method is exponential. This diflSculty can be partially remedied since many
of the inequalities are likely to be redundant [7]. An alternative method [6] gives the same result, but computes A' in a
different way. In fact, the rows of h} are the extreme points of the set {A' 6 | A'̂ iif' = 0AA^ > 0}. By extreme
points we mean points in the boundary of the first orthant of with m + —rank{H^) —1 components set to
zero.

4.2 Intersection, Emptiness and Redundancy

The quantifier elimination presented above allows us to compute the set of states that can be forced by u to transition
into W' as | Mx < To obtain this set must be intersected with itself. Since both sets are convex the

intersection can be carriedout bysimply appending M and p to and /?' respectively. This however is likely to lead to
a much larger description than necessary, sincemany of the new resultingconstraintsmay redundant (implied by other
constraints). We propose the following algorithms eliminating the redundant constraints and checking the resulting set
for emptiness.

Algorithm 2 (Redundancy Algorithm)

initialization M' =^ ^^ ^= 0, =D» ceQ" arbitrary.
m* = max{c^a; | M'x < /?}
if problem infeasible

W = 0
terminate controlled invariance algorithm

else

for i = 1 to m' + m do
rp

m\ = «-th row of M'
/3| = i-th row of /?'
remove m\ from M' and from 0'
m* = max{mj^x | M'x < P'}
if m* > I3'i

add to and to 0'"^^
add m'i^ to M' and 0'̂ to0'

end if

- end for

end if

ifM'+i = M^and/3'+i=/3
W = W^
terminate controlled invariance algorithm

end if

In the above [] denotes an empty matrix. The idea behind the algorithm is that = 0 if and only if the
optimization jproblem maximize <Fx subject to M'x < 0 \s infeasible for all c 6 Q". If, in particular, the problem
maximize m'̂ x subject to M'x <0is feasible, and the constraint m'^x < 0'̂ is not redundant, then the optimal value
is 0'i. Moreover, by removing the non-redundant constraint m'^x < 0'̂ from the optimization problem, the new optimal
value m* satisfies m* > 0'̂ .

The controlled invariance algorithm terminates if the redundancy algorithm concludes that either = 0 (in which
case W = 0), or all the new constraints are redundant (in which case W' = = W)®. Otherwise, upon termination
ofthe redundancy algorithm, the process is repeated for Anobvious optimization ofthe code involves terminating
both algorithms if, after all new constraints in Mx < 6 have been tested, and are still empty.

®Note that any redundant constraints in theoriginal description ofF will beeliminated the first time the redundancy algorithm is invoked
by the controlled invariance algorithm.

10

The proposed implementation shows that for all I the set is a convex polygon as claimed. Summarizing:

Theorem 4 The LCIP problem is semi-decidable.

In the next section we study situations where the algorithm is guaranteed to terminate in a finite number of steps. In
section 5, we will provide and example which actually converges afteran infinite number of iterations.

4.3 Decidable Special Cases

We first summarize some of the observations made so far about situations where the algorithm terminates in a finite
number of steps.

Proposition 4 For an LCIP with U= E"-, if either one of the columns ofMB does not change sign, or ifrank{MB) =
min{m,7i}, the algorithm terminates in a finite number ofsteps.

Proof: Kone of the columns ol MB does not change sign, there is no A> 0 such that X'̂ MB = 0. Thus W= F,
g{x) = U for all XGX, and the algorithm terminates in the first iteration. If rank{MB) = m, the only solution
of A^MP = 0is A= 0, thus we obtain the same result as in the previous case. Finally, if rank{MB) = n, then
AMB = Q^ X^MA = 0. Thus, if A^(;5 - 6{MC)) > 0, we have W= F and g{x) = Ufor all x 6 X; otherwise, we
have W= 0 and g{x) = U for all x GX. Again, the algorithm terminates in the first iteration. •

Next, we limit our attention to the case where F = [oi, A] x•••x[««, CE" with ai < pi and [«», A] CE, i = 1... n,
wGE, and d G[^1,^2] C E. To remind ourselves of the fact that u and d are scalar, we use band c instead ofB and
C. We also assume that (4,6) is in canonically controllable form, that is

/ 0
0

x[k + 1] =

0

\ ®nl On2

In this case 1IA (x) is equivalent to

0 0

1 0

0 \ (0 ^ (ci y
0 0 C2

* a;(fc] + ; u[k] + \

1 0 ^—1

®nn J ^ 1 Cn /

d[k]

7* n

3u I /\{aj< Xj <Pj) A/\- (5(-Cj_i) <Xj <pj.i - 6(cj_i)) A
i=i j=2

^ n n ^
ttn - ^ anjXj - 6{-Cn) <U< Pn-"^ OnjXj - 6{Cn)

j=l j=l

Prom the last expression, it is clear that given xi e[ai,Pi], XjJ = 2...n exists ifand only if

a}=max(a,,aj.,-S(-cj-i)) < mia(/3j,i(cj-i)) = j3}, j =2...n
and u exists if and only if

ttn - S{-Cn) <Pn- S{Cn)

Thus, after one iteration ofthe algorithm, variables Xj,j = 2...n getrestricted, which means that we have to doanother
iteration. It is straightforward to see that in the l-th iteration (1 < / < n) W' is defined by:

W = (aJ./J?) X\al,0\] X... X x [ai+i,/3,'+,] x x
where

a? = a•3 - = max(a5. ^, a^._\ - 6(cj_i)) l-\-l<j <n
= min {P^-\P^Z\ - 6(cj_i)) /+ 1< j < n

(6)

This means that after n iterations, the maximal controlled invariant set remains unchanged, and the least restrictive
controller is given by the last constraint ofequation (7), but with a„, /?„ replaced by This result can be
summarized as follows:

11

Lemma 3 Given system (6) with F = [q!i,/3i] x ... x [an,/3„] C K", U = 1 and D = [^1,^2] C E, the solution to the
CJPproblem, obtained after at mostn iterations of the algorithm, is given by:

9{x) =

0 otherwise

fUIa" ^—̂j—i 0.njXj —tf(—Cn) <W</?^ ^ 0>njXj —̂(Cn)| ifXGW
u otherwise

Theorem 5 Forsystems ofthe form (6) with F = [a,p] = [q:i,)9i] x ... x [a„,/?n] C E", U = Mand D = [^1,^2] C E,
the LCIP problem is decidable.

Note that if at the first iteration, we compute

a} = ai, aj = max(Q!j-, - <5(cj_i)) 2<j<n
Pi = Pi, Pj = min {Pj,Pj^i - 6{cj.i)) 2<j<n

then the problem can be solved in one iteration.

The above conditions for decidability are somewhat demanding. If, for example, u is bounded, that is, n € U =
[wi, ^2] C E, then thenew constraints added tox during each iteration may change thebounds on x toa non-rectangular
polyhedron. For example, in the first iteration, the following constraints are added to x:

Q!n -^ anjXj - 6{-Cn) <̂ 2 jA(^ ~
< J=1 / \ i=l

In thiscase, the CIP problem is nolonger decidable, andthe system falls intothe more general class ofsystems described
in section 4. We conjecture that the LCIP is decidable in a much more general setting, using a completely different
algorithm that exploits the stabilizability ofthe pairs {A,B) and {A,C) and the observability ofthe pair (A,M).

5 Experimental Results

The algorithm proposed above was implemented in MATLAB. In this section, we present three examples that were
solved using this implementation. The first two examples are also worked out analytically to validate the MATLAB
program.

5.1 Example 1

The linear system is defined by

with u[A:] GU = E and d[k] GD = [-1,1].

1. Initialization = M, /?° = /? .

2. Iteration 1

(a) Computing A, b, c

A =

(1
-1

1

V -1

1 N
•1

•1

1/

,i0 =

(so \
40

80

V 70 y

2 \ / 1 \ (2 N
2 -1 -2

0
b =

-1
c =

0

0 J V 1/ I

12

(7)

(b) Computing possible new constraints. Here = {1,4}, = {2,3} and = 0

(1 i)(-i -ly < (1 i)(^)
=>• 0 < 116 Redundant

(11)(-; °)x < (1 i)(«°)-(i i)(°)
=?• 2x2 < 158 => Redundant

(1 1)(-} -2)x < (1 1)(2)
—2x2 < 108 =*• Not Redundant

(11)(-} i)x < (1 i)(2)
0 < 150 => Redundant

(c) Computing new M and /?

3. Iteration 2

(a) Computing A, 6, c

A =

=

/I 1\ / 80 \
-1 -1 40

1 -1 80

-1 1 70

V 0 -2^ ^ 108/

/I 2 \ / 1 \ / 2 \
-1 -2 -1 -2

-1 0 6 = -1 c = 0

1 0 1 0

^-2 -2/ ^ -2/ ^ -2/
(b) Computing possible new constraints. Here = {1,4}, = {5} and = f^

(• '>(1 D- ^ <• '>(»)-(• "(1)
2x2 < 266 => Redundant

(1 2)(-2 < (1 0)(W8)-(1 2)(2)
—2x2 < 246 Redundant

(c) Therefore W and g{x) converge to

W =

P(®) =

Figure 1 shows the plot obtained by MATLAB

x|

/I n / 80 \
-1 -1 40

1 -1 X < 80

-1 1 70

V 0 -2/ ^ 108/
'{u € UIu > max(-38 - xi - 2x2, -80- xi,-52 - xi - X2)

u < min(78-xi - 2x2,70-xi)} ifx€Tl^
U otherwise

13

100

80

40

20

-20

-40

-60

-80

-100 •-
-100

Initial Set

WO=F

-50 100

100

80

40

20

-20

-40

-60

-80

-100"-
-100

Final Set

W1=W

-50 100

Figure 1: Iterations of the algorithm for Example 1

5.2 Example 2

In this example, we use the system defined in example 1, but with

(\ 1 ^
-1 -3

1 -I

V-3 1 /
M =

1. Initialization = M, = /? .

2. Iteration 1

(a) Computing A, b, c

A =

f 1 2\
-3 -4

-1 0

V I -2/

(100 ^
-50

ICQ

V -50/

i3 =

6 =

/ 1 \
-3

-1

1/

c =

(2 N
-4

0

V -2/

(b) Computing possible new constraints. Here = {1,4}, = {2,3} and = 0

(1 1)(-1

(^ ')("l -2)''

(1!)(-;

^){\)
2x2 < 240 ^ Redundant

(• •)(!:)-(• •)(;)
=> 2x2 < 198 =>• Redundant

< (• »)(:IS)-(. .)(S)
—10x2 < —210 =» Not Redundant

(• •)(™)-c •)(;)
—2x2 < 48 =>• Redundant

14

(c) Computing new M and /?

3. Iteration 2

(a) Computing A, 6, c

A =

Afi =

/ 1 1 ^
-1 -3

1 -1

-3 -1

I 0 -10 yi

f 100 \
-50

100

-50

V -210)

1 2 \ (1 ^ (2 \
-3 -4 -3 -4

-1 0 6 = -1 c = 0

1 -2 1 -2

-10 -10 y ^ -10 y ^ -10/
(b) Computing possible new constraints. Here = {1,4}, = {5} and = 0

(. •.)(-•; -s)

(. -II)

(c) Computing new M and p

M^ =

(1
-1

1

-3

0

\ 0

s (• -ids)-!. ..)(*;)
10a;2 < 760 =»• Redundant

—30x2 < —740 =>• Not redundant

1 ^
-3

-1

-1

-10

-30)

0^ =

f 100 >
-50

100

-50

-210

-740 y
4. Iteration I: note that when adding the new non-redundant constraint, the one added in the previous iteration

becomes redundant, but the algorithm is not checking for that.

(a) Updated M and from iteration / —1.

/ 1 1 \ /
-1 -3

1 -1

-3 -1

(b) Computing A, 6, c

A =

= 0 -10

0 -30

V 0 mi)

1

-3

-1

1

2 N
-4

0

-2

-10 -10

-30 -30

\ mi mi j

6 =

15

/3'-i =

1 N
-3

-1

1

-10

-30

\ mi)

100 N
-50

100

-50

-210

-740

V 01 J

(

c =

2 N
-4

0

-2

-210

-740

V)

(c) Computing possible new constraints. Here P' = {1,4}, Q' = {/+ 3} and iJ' = 0

(1 -m,)("•] < (1 -n«i)(ioo)-(1
=> —771/12 < A —97771/

(. -»)("; ~)' 5 (• -.)(_«)-(>
=J>- 3771/12 < A + 53771/

In order to check for both redundancy and convergence of the constraint on X2, we consider the second
constraint first. We have 77i/+i = Zmi,mi = -10, and /3/+i = /?/ + 53771/,/?i = -210. Thus mi = 77ii3'~\
and /?/=/?! + 537711 (3'~^ —l)/2. Thus the second constraint becomes X2 > 26.5 —5.5/3'. This means that if
the first constraint is redundant V/, then the second constraint is always not redundant and converges after
an infinite number of steps to X2 > 26.5. Thus the only thing we need to check is the redundancy of the
first constraint, which is a;2 < 70.5 + 5.53'"^ Since the top vertex of W has X2 = 62.5, the first constraint is
redundant VZ, and converges to X2 < 70.5.

(d) Therefore after an infinite number of iterations, W and g{x) converge to

W =

9{x) =

/I \\
-1 -3 -50

1 -1 X < 100 •

-3 -1 -50

\ 0 -2) ^ -53 y >

{u € U Iu > max(18 -xi- 4x2/3,-100 - xi, -55/2 - xi - X2)
u < min(98 —x —1 - 2x2, -52 - xi + 2x2)}

U

Figure 2 shows the plot obtained by MATLAB for the first three iterations.

5.3 Example 3

Finally, we consider a multi-input multi-disturbance example. The system is defined by:

/ 3 1
-1 3

1 -1

-1 -1

-1 0

0 \
0

0

0

1

ifx€ W

otherwise

(100 \
100

100

100

100

V 100 /

A = ,B = ,C = ,M = ,/? =

V 0 0 -1 /

Eu < 7j] where E and r} areThe bounds on the control, U, are defined by U = {u €

£; =

/I 1 \ f 1000 \
1 -1 1000

0 1 V =
1000

\0 -i>i I, 1000 /

The bounds on the disturbance, D, aredefined by D = {d6 | GcZ < 7} where G and 7 are

G =

/ 1 1 0 \ (1 \
-1 0 0 1

0 1 0 1

0 -1 0 1 =
1

0 0 1 1

\ 0 0 -1 ^ 1 /

16

(8)

(9)

(10)

Initial Set First Iteration

80

40 40
W1

20 WO=F

-20
100

-20
100100

Second Iteration Third Iteration

80

W2 40 W3

20

-20
50 100

-20
100

Figure 2: Iterations of the algorithm for Example 2

Using Matlab, this example converges in two iterations. Each iteration has severalstages. Information about each stage
is shown in Table 1. First, 6{C) is determined by solving several LP problems. Next, the constraints on x and u are
grouped together for quantifier elimination. After quantifier elimination is performed, several constraints on x remain
that must be checked for redundancy. After eliminating the redundant constraints, the remaining constraints are added
to the previous set of constraints and the process is repeated. After two iterations, the constraints on x converge, and
we find the maximal controlled invariant set and the least restrictive controller.

Table 1: Results of Example 3

Iteration 1 2

Number of LP problems for QE on d 6 10

Number of constraints on (x,u) before QE on u 10 14

Number of new constraints on x after QE on u 281 614

Number of new non-redundant constraints on x 4 0

Total number of constraints on x after iteration 10 10

17

W and g(x) are found to converge to

W =

g(x) = i

/ 3 1 ON / 100 N
-13 0 100
1 -1 0 100

-1 -1 0 100

-1 0 1 100

0 0-1
X <

100

-720 -1360 -160 25720
360 680 80 29220

720 1360 160 26340
\ 720 1360 160 y ^ 23760 y

4 \
2

0

-2

-2

1

1920

960

1920

1920

1

-1

1

-1 /

< u I

10

10

-2

-6

-1

-1

-7040

3520

7040

7040

1

1-

0

0

u <

75

75

93

84

98

96

7160

20540

8980

6400

1000

1000

1000

1000

+

2

-4

2

0

4

-5

-160

80

160

160

0

0

0

0

U

28

4

4

-12

-5

-3

-11680

5840

11680

11680

0

0

0

0

4

2

0

-2

0

-1

-2240

1120

2240

2240

0

0

0

0

a: > ifx eW

otherwise

6 Conclusions and Future Work

We showed that the problem of computing the maamal controlled invariant set and the least restrictive controller
for discrete time systems is well posed and proposed a general algorithm for carrying out the computation. We then
specialized the algorithm to discrete time linear systems with convex polygonal constraints, and showed how it can
be implemented using linear programming. The decidability of the problem was also analyzed, and some simple, but
interesting cases were found to be decidable.

We are currently working on sufficient conditions under which the problem is decidable. So far, it seems that the
decidability property is not only dependent on the system itself, but also on the initial set, as shown by Example 2.
Another topic of further research, is the application of these algorithm to hybrid discrete time systems, where some
states and inputs take values in finite sets, while others in subsets ofEuclidean space. It is easy to show how this class
of systems is a special case of the more general class of DTS. Therefore, all the conclusions of Sections 2and 3 directly
extend to them. Unfortunately the implementation ofthe controlled invariance algorithm is more complicated, even in
the case where the continuous state evolves according to a linear difference equation.

References

[1] D.S. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic decomposition I: the basic algorithm. SIAM
Journal on Computing^ 13(4):865-877, 1984.

[2] T. Ba§ar and G. J. Olsder. Dynamic Non-cooperative Game Theory. Academic Press, second edition, 1995.

18

[3] A. Bensoussan and J.L. Menaldi. Hybrid control and dynamic programming. Dynamics of Continuous, Discrete
and Impulsive Systems, (3):395-442,1997.

[4] Michael S. Branicky, Vivek S. Borkar, and Sanjoy K. Mitter. A unified framework for hybrid control: Model and
optimal control theory. IEEE Transactions on Automatic Control, 43(l):31-45,1998.

[5] RE. Caines and Y.J. Wei. Hierarchical hybrid control systems; A lattice theoretic formulation. IEEE Transactions
on Automatic Control, 43(4):501-508, April 1998.

[6] R.N. Cernikov. The solution to linear programming problems by elimination of unknowns. Soviet Mathematics
Doklady, 2:1099-1103,1961.

[7] Vijay Chandru. Variable elimination in linear constraints. The Computer Journal, 36(5):463-472,1993.

[8] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, third edition, 1990.

[9] D. Van Dalen. Logic and Structure. Springer-Verlag, 3rd edition, 1994.

[10] T. Dang and 0. Maler. Reachability analysis via face lifting. In S. Sastry and T.A. Henzinger, editors. Hybrid
Systems: Computation and Control, number 1386 in LNCS, pages 96-109. Springer Verlag, 1998.

[11] A. Dolzman and T. Strum. REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bulletin, 31(2):2-9,
1997.

[12] G. Grammel. Maximum principle for a hybrid system via singular pertrubations. SIAM Journal of Control and
Optimization, 37(4):1162-1175,1999.

[13] M.R. Greenstreet andI. Mitchell. Integrating projections. In S. Sastry andT.A. Henzinger, editors, Hybrid Systems:
Computation and Control, number 1386 in LNCS, pages 159-174. Springer Verlag, 1998.

[14] Michael Heymann, Feng Lin, and George Meyer. Control synthesis for a class of hybrid systems subject to
configuration-based safety constraints. In Hybrid and Real Time Systems, number 1201 in LNCS, pages 376-391.
Springer Verlag, 1997.

[15] Joseph Lewin. Differential Games. Springer-Verlag, 1994.

[16] John Lygeros, Claire Tomlin, and Shankar Sastry. Controllers for reachability specifications for hybrid systems.
Automatiai, pages 349-370, March 1999.

[17] O.Maler, A. Pnueli, and J. Sifakis. Onthesynthesis ofdiscrete controllers for timed systems. In Theoretical Aspects
of Computer Science, number 900 in LNCS, pages 229-242. Springer Verlag, 1995.

[18] A.Nerode and W. Kohn. Multiple agent hybrid control architecture. In Robert L. Grossman, Anil Nerode, Anders P.
Ravn, and HansRischel, editors. Hybrid Systems, number 736 in LNCS, pages 297-316. Springer Verlag, New York,
1993.

[19] George J. Pappas. Hybrid Systems: Computation and Abstraction. PhD thesis. Department ofElectrical Engineer
ing, University of California, Berkeley, 1998.

[20] George J. Pappas, Gerardo Lafferriere, and Shankar Sastry. Hierarchically consistent control systems. In IEEE
Conference on Decision and Control, pages 4336-4341, Tampa, PL, December 1998.

[21] Benedetto Piccoli. Necessary conditions for hybrid optimization. In IEEE Conference on Decision and Control,
pages 410-415, Phoenix, Arizona, U.S.A., December 7-10 1999.

[22] P.J. G. Ramadge andW. M. Wonham. Thecontrol ofdiscrete event systems. Proceedings ofthe IEEE, Vol.77(l):81-
98, 1989.

[23] H. L. Royden. Real Analysis. MacMillan, third edition, 1988.

[24] A. Seidenberg. A new decision method for elementary algebra. Annals ofMathematics, 60:387-374,1954.

[25] Hector J. Sussmann. A maximum principle for hybrid optimal control problems. In IEEE Conference on Decision
and Control, pages 425-430, Phoenix, Arizona, U.S.A., December 7-10 1999.

19

[26] A. Tarski. A decision method for elementary algebra and geometry. University ofCalifornia Press, second edition,
1951.

[27] W. Thomas. On the synthesis of strategies in infinite games. In Ernst W. Mayr and Claude Puech, editors,
Proceedings ofSTAGS 95, Volume 900 ofLNCS, pages 1-13. Springer Verlag, Munich, 1995.

[28] Claire Tomlin, John Lygeros, and Shankar Sastry. Computing controllers for nonlinear hybrid systems. In Frits W.
Vaandrager and Jan H. van Schuppen, editors, Hybrid Systems: Computation and Control, number 1569 in LNCS,
pages 238-255. Springer Verlag, 1999.

[29] Howard Wong-Toi. The synthesis ofcontrollers for linear hybrid automata. In IEEE Conference on Decision and
Control, pages 4607-4613, San Diego, California, USA, December 10-12 1997.

20

	Copyright notice 1999
	ERL-99-65

