
Optimizing the Performance of Sparse Matrix-Vector

Multiplication

Eun-Jin Im

Report No. UCB/CSD-00-1104

June 2000

Computer Science Division (EECS)

University of California

Berkeley, California 94720

Optimizing the Performance of Sparse Matrix-Vector Multiplication

by

Eun-Jin Im

Bachelor of Science, Seoul National University, Seoul, 1991
Master of Science, Seoul National University, Seoul, 1993

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Katherine A. Yelick, Chair
Professor James W. Demmel
Professor Robert L. Taylor

2000

The dissertation of Eun-Jin Im is approved:

Chair Date

Date

Date

University of California at Berkeley

2000

Optimizing the Performance of Sparse Matrix-Vector Multiplication

Copyright 2000

by

Eun-Jin Im

1

Abstract

Optimizing the Performance of Sparse Matrix-Vector Multiplication

by

Eun-Jin Im

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Katherine A. Yelick, Chair

Sparse matrix operations dominate the performance of many scienti�c and engi-

neering applications. In particular, iterative methods are commonly used in algorithms for

linear systems, least squares problems, and eigenvalue problems, which involve a sparse

matrix-vector product in the inner loop. The performance of sparse matrix algorithms is

often disappointing on modern machines because the algorithms have poor temporal and

spatial locality, and are therefore limited by the speed of main memory. Unfortunately,

the performance gap between memory and processing is steadily increasing, as processor

performance increases by roughly 60% every year, while memory latency drops by only 7%.

Performance is also highly dependent on the nonzero structure of the sparse matrix, the

organization of the data and its computation, and the exact parameters of the hardware

memory system.

This thesis presents a toolkit called Sparsity for the automatic optimization of

sparse matrix-vector multiplication. We start with an extensive study of possible memory

hierarchy optimizations, in particular, reorganization of the matrix and computation around

blocks of the matrix. The research demonstrates that certain kinds of blocking can be

e�ective for both registers and caches, although the nature of that tiling is quite di�erent

due to the di�erences in size between typical register sets and caches. Both types of blocking

are shown to be highly e�ective in some matrices, but ine�ective in others, and the choice

of block size is also shown to be highly dependent on the matrix and the machine. Thus,

to automatically determine when and how the optimizations should be applied, we employ

a combination of search over a set of possible optimized versions, along with newly devised

2

performance models to eliminate or constrain the search to make it practical.

We also consider a common variation of basic sparse matrix-vector multiplication

in which a sparse matrix is multiplied by a set of dense vectors. This operation arises,

for example, when there are multiple right-hand sides in a linear solver, or when a higher

level algorithm has been blocked. The introduction of multiple vectors o�ers enormous

optimization opportunities, e�ectively changing a matrix-vector operation into a matrix-

matrix operation. It is well known that for dense matrices, the latter algorithm has much

higher data reuse than the former, and so can achieve much better performance; the same

is true in the sparse case.

The Sparsity system is designed as a web service, so scientists and engineers can

easily obtain highly optimized sparse matrix routines without needing to understand the

speci�cs of the optimization techniques or how they are selected.

This thesis also reports on an extensive performance study of over 40 matrices

on a variety of machines. The matrices are taken from various scienti�c and engineering

problems, as well as from linear programming and data mining. The machines include the

Alpha 21164, UltraSPARC I, MIPS R10000 and PowerPC 604e. These benchmark results

are useful for understanding the performance di�erences across application domains, the

e�ectiveness of the optimizations, and the costs associated with evaluating our performance

models in applying the optimizations. The conclusion is that Sparsity is highly e�ective,

producing routines that are up to 3.1 times faster for a single vector and 6.2 times faster

for multiple vectors.

Professor Katherine A. Yelick
Dissertation Committee Chair

iii

To my husband, Yongkyung Kwon,

and my parents,

Sookja Lee and Hyungbin Im

iv

Contents

List of Figures vi

1 Introduction 1

2 Background 7

2.1 Locality in Matrix-Vector Multiplication . 7
2.1.1 Dense Matrices . 7
2.1.2 Sparse Matrices . 8
2.1.3 Using Multiple Vectors . 9

2.2 Processor Architectures . 11
2.3 Matrix Benchmark Suite . 13

3 Register Blocking Optimization 15

3.1 Description of Register Blocking . 16
3.2 Determining Register Block Sizes . 17

3.2.1 A Model for Block Size Selection . 18
3.2.2 When and How to Apply Register Blocking 24

3.3 Performance of Register Blocking on Benchmark Suite 25
3.4 Analysis of Overhead . 33
3.5 Summary . 34

4 Cache Blocking Optimization 36

4.1 Description of Cache Blocking . 37
4.1.1 Static Cache Blocking . 38
4.1.2 Dynamic Cache Blocking . 39
4.1.3 Performance Comparison of Static and Dynamic Blocking 41

4.2 Performance of Cache Blocking . 44
4.2.1 Performance on Matrix Benchmark Suite 44
4.2.2 Performance on Random Matrices 46
4.2.3 Measurement of Randomness of a Sparse Matrix 46

4.3 Overhead of Cache Blocking . 50
4.4 Combining Cache Blocking with Register Blocking 52
4.5 Summary . 52

v

5 Multiplication by Multiple Vectors 56
5.1 Register Blocking with Multiple Vectors . 57
5.2 Cache Blocking with Multiple Vectors . 61
5.3 Choosing the Right Number of Vectors . 61
5.4 Performance Evaluation of Multiple Vectors 66

5.4.1 Register Blocking on a Fixed Number of Vectors 67
5.4.2 Register Blocking Using a Predicted Number of Vectors 69
5.4.3 Cache Blocking Using a Fixed Number of Vectors 70

5.5 Evaluation of Two Multiple-Vector Applications 74
5.6 Summary . 79

6 The Sparsity System 81
6.1 Optimization Decisions . 82

6.1.1 Search . 82
6.1.2 Heuristics . 83
6.1.3 Performance Modeling . 84

6.2 Code Generation . 84
6.3 Overview of the Sparsity System . 85
6.4 Sparse Matrix Representations . 88
6.5 Summary and Further Improvements . 91

7 Related Work 93

7.1 Optimization of Dense Matrix Operations 93
7.1.1 Compilers . 93
7.1.2 Hand-Optimized Libraries . 94
7.1.3 Automatic Generation of Libraries 95

7.2 Sparse Matrix Libraries and Optimizations 98

8 Conclusions 102

Bibliography 107

A Nonzero Structure of Test Matrices 114

vi

List of Figures

2.1 Basic data structures in matrix-vector multiplication 9
2.2 Compressed Sparse Row (CSR) representation of a sparse matrix 10
2.3 Basic sparse matrix-vector multiplication code 10
2.4 Summary of processor architectures . 12
2.5 Matrix benchmark suite . 14

3.1 Block compressed sparse row storage format 17
3.2 Register-blocked code . 18
3.3 Loop-unrolled, register-blocked code . 19
3.4 Fill overhead of register blocking . 19
3.5 Performance pro�le of register-blocked code on two machines (A) (an Ultra-

SPARC I and a MIPS R10000) . 21
3.6 Performance pro�le of register-blocked code on two machines (B) (an Alpha

21164 and a PowerPC 604e) . 22
3.7 Validation of performance model . 24
3.8 BLAS performance on various processors . 26
3.9 Performance of register-blocked multiplication on an UltraSPARC I 27
3.10 Performance of register-blocked multiplication on a MIPS 10000 27
3.11 Performance of register-blocked multiplication on an Alpha 21164 28
3.12 Performance of register-blocked multiplication on a PowerPC 604e 28
3.13 Summary of register blocking optimization on an UltraSPARC I 29
3.14 Summary of register blocking optimization on a MIPS R10000 30
3.15 Summary of register blocking optimization on an Alpha 21164 31
3.16 Summary of register blocking optimization on a PowerPC 604e 32
3.17 Pre-computation overhead of register-blocked multiplication 33

4.1 Cache-blocks in a sparse matrix . 37
4.2 Storage format of a cache-blocked sparse matrix 39
4.3 Code for multiplying a cache-blocked sparse matrix 40
4.4 Memory accesses in dynamic cache blocking 41
4.5 Performance of static and dynamic cache-blocking on the LSI matrix 42
4.6 Cache behavior of static cache-blocking on the LSI matrix 43
4.7 Cache behavior of dynamic cache-blocking on the LSI matrix 44

vii

4.8 Performance of cache blocked multiplication on an Ultra SPARC I 45
4.9 Performance of cache blocked multiplication on a MIPS R10000 45
4.10 Summary of cache blocking optimization on an UltraSPARC I 47
4.11 Summary of cache blocking optimization on a MIPS R10000 48
4.12 Performance of cache-blocked multiplication on random matrices 49
4.13 Randomness measure on test matrices . 51
4.14 Overhead of reorganizing the matrix for static cache-blocking on the the LSI

matrix . 51
4.15 Speedup of register and cache blocked multiplication on an UltraSPARC I . 53
4.16 Speedup of register and cache blocked multiplication on a MIPS R10000 . . 54

5.1 Sequence of steps in single vector code . 58
5.2 Sequence of steps in multiple vector code 58
5.3 Code for multiplying a register-blocked matrix times a single vector 59
5.4 Code for multiplying a register-blocked matrix times 2 vectors 60
5.5 Register-blocked, multiple vector performance on an UltraSPARC I, varying

the number of vectors . 63
5.6 Register-blocked, multiple vector performance on a MIPS R10000, varying

the number of vectors . 64
5.7 Register-blocked, multiple vector performance on an Alpha 21164, varying

the number of vectors . 65
5.8 Performance of register-blocked, multiple vector code on an UltraSPARC I . 67
5.9 Performance of register-blocked, multiple vector code on a MIPS R10000 . . 68
5.10 Performance of register-blocked, multiple vector code on an Alpha 21164 . . 68
5.11 Comparing the dense (kd) and random sparse (kr) matrices to choose the

number of vectors on an UltraSPARC 1 . 70
5.12 Comparing the dense (kd) and random sparse (kr) matrices to choose the

number of vectors on a MIPS R10000 . 71
5.13 Comparing the dense (kd) and random sparse (kr) matrices to choose the

number of vectors on an Alpha 21164 . 72
5.14 Performance of cache-blocked, multiple-vector multiplication on an Ultra-

SPARC I . 74
5.15 Performance of cache-blocked, multiple-vector multiplication on a MIPS R10000 75
5.16 Summary of cache-blocked, multiple-vector optimization on an UltraSPARC I 76
5.17 Summary of cache-blocked, multiple-vector optimization on a MIPS R10000 77
5.18 Performance of the multiple-vector optimization on an Earth Science and

text retrieval matrix on an UltraSPARC I 78
5.19 Performance of the multiple-vector optimization on an Earth Science and

text retrieval matrix on a MIPS R10000 . 78
5.20 Performance of the multiple-vector optimization on an Earth Science and

text retrieval matrix on a MIPS R10000 . 79

6.1 Sparsity system . 86
6.2 Decision tree for choice of optimization in Sparsity system 86
6.3 Example of point-entry sparse matrix representations 90

viii

8.1 Summary of optimized speedup on an UltraSPARC 104
8.2 Summary of optimized speedup on a MIPS R10000 104
8.3 Summary of overhead in Sparsity . 105

A.1 Test matrices: (1)dense1000 (2)raefsky3 (3)inaccura (4)bcsstk35 114
A.2 Test matrices: (5)venkat01 (6)crystk02 (7)crystk03 (8)nasasrb 115
A.3 Test matrices: (9)3dtube (10)ct20stif (11)bai (12)raefsky4 115
A.4 Test matrices: (13)ex11 (14)rdist1 (15)vavasis3 (16)orani678 115
A.5 Test matrices: (17)rim (18)memplus (19)gemat11 (20)lhr10 116
A.6 Test matrices: (21)goodwin (22)bayer02 (23)bayer03 (24)coater2 116
A.7 Test matrices: (25)�nan512 (26)onetone2 (27)pwt (28)vibrobox 116
A.8 Test matrices: (29)wang4 (30)lnsp3937 (31)lns3937 (32)sherman5 117
A.9 Test matrices: (33)sherman3 (34)orsreg1 (35)saylr4 (36)shyy161 117
A.10 Test matrices: (37)wang3 (38)mcfe (39)jpwh991 (40)gupta1 117
A.11 Test matrices: (41)lpcred (42)lp�t2p (43)lpnug20 (44)nasasrb 118
A.12 Test matrices: (45)lsi (46)random . 118

ix

Acknowledgements

First of all, I would like to deeply thank my advisor Katherine Yelick for her guidance and

support through the trials of my graduate study at Berkeley. She has always been available

for discussions and provided insightful opinions so that I could pursue my research in the

right direction. My thesis research has greatly bene�ted from her mentorship and her ability

to abstract general themes from the speci�c details of a project.

I am also very grateful to James Demmel for his constant interest in my thesis topic and

advice. Research done by Professor Demmel and PHiPAC group provided motivation and

insight for this research. I am also grateful to Robert Taylor for reading my thesis at very

short notice.

I would like to thank to Xiaoye Li, Mark Adams, Inderjit Dhillon, and Osni Marques for

their valuable inputs and for providing sparse matrices for my research. I would also like

to thank my fellow graduate students, Ben Liblit, Arvind Krishnamurthy, Rich Vuduc and

Randi Thomas.

I deeply thank my dear family; my parents, father-in-law, sisters, brother and brother-in-

law. And I truly thank my husband, Yongkyung Kwon, for his love, understanding, patience

and constant support throughout my graduate study.

Finally, I acknowledge support from following research grants. This work was supported

in part by the Department of Energy contract no. W-7405-ENG-48 through Memorandum

Agreement no. B504962 and B244823 with Lawrence Livermore National Laboratory, DOE

grant no. DE-FG03-94ER25206, National Science Foundation grant no. CCR-9712410,

NSF Infrastructure grant no. CDA-9401156, Army Research OÆce grant nos. DAAH04-

96-1-0079 and DAAG55-98-1-0153, Defense Advanced Research Projects Agency grant no.

F30602-95-C-0136 and contract no. F30602-95-C0014, by grants from the IBM Shared

University Research (SUR) program and Intel, and by gifts from Sun Microsystems and

Hewlett-Packard. This project also utilized the resources of the National Energy Research

Scienti�c Computing Center which is supported by the OÆce of Energy Research of the

U.S. Department of Energy. The information presented here does not necessarily reect

the position or the policy of the U.S. Government and no oÆcial endorsement should be

x

inferred.

1

Chapter 1

Introduction

Matrix-vector multiplication is an important computational kernel used in scien-

ti�c computation, signal and image processing, document retrieval, and many other ap-

plications. This operation is often used in iterative solvers for linear systems, in explicit

methods for ordinary di�erential equations, and in eigenvalue computations, just to name

a few. Given a sparse matrix A and dense vectors x and y, the problem is to compute

y = A� x+ y. In many cases, the matrices are sparse, meaning that most of elements are

zero. In those cases, only the nonzero elements are stored with extra information regarding

the position of the elements in the matrix.

The performance of sparse matrix operations tends to be much lower than their

dense matrix counterparts, because the memory access patterns are irregular, and there is

more overhead for manipulating the data structure representation. For example, on a 167

MHz UltraSPARC I, the naive implementation of sparse matrix-vector multiplication runs

at 25 Mops for a 1000 � 1000 dense matrix represented in compressed sparse row format.

For comparison, a naive implementation of dense matrix-vector multiplication runs at 38

Mops on the same machine, and the vendor-optimized routine runs at 57 Mops. The

performance is heavily dependent on the nonzero structure of the matrix, and can be as

low as 5 Mops for matrices with a lower ratio of nonzero elements. The primary reason

for this performance di�erence is poor data locality in access to the source vector x in the

sparse case.

Matrix-vector multiplication is a particularly challenging algorithmic kernel. Since

each matrix entry is used only once, the ratio of oating point operations to memory

operations is low. This is true for dense as well as sparse matrices. Using terminology

2

from the well-known Basic Linear Algebra Subprograms (BLAS) standard [22], matrix-

vector operations make up the BLAS-2 class, while matrix-matrix operations make up the

BLAS-3 class. Dense BLAS-2 operations perform O(n2) operations on O(n2) data (n � n

square matrices), while dense BLAS-3 operations perform O(n3) operations on O(n2) data.

The potential for n = n3=n2 fold data reuse in BLAS-3 operations versus little or no

reuse in BLAS-2 operations leads to real performance advantages in practice. For example,

on the same UltraSPARC machine described above, the vendor-supplied dense matrix-

matrix multiplication routine runs at 287 Mops, 5 times faster than the matrix-vector

performance. The reuse of data in sparse matrices is more diÆcult to analyze, because it

depends on the sparsity structure of the matrix, but as we will show, the move from BLAS-2

to BLAS-3 in the sparse setting also has a huge potential performance advantage.

The focus of this thesis is on memory hierarchy optimizations for sparse matrix-

vector multiplication. Like dense matrices, these optimizations depend heavily on details of

the machine microarchitecture, i.e., the size and speed of register set, caches, and memory.

Unlike the dense problems, they also depend on the structure of the matrix, because the

distribution of nonzero elements in sparse matrix determines the memory access pattern.

As a result, much of the optimization must be done dynamically, using either the matrix of

interest or one that reects the sparsity patterns of the application domain. For example, a

structural engineer may use �nite-element modeling for many di�erent structures; although

the structures may change, the number of degrees of freedom in the simulation may be

common across many simulations. The number of degrees of freedom a�ects the density

pattern in the matrix, producing small dense sub-blocks of a particular size, which are

important in optimizing the matrix. Similarly, a document retrieval application for the

web may construct a matrix of documents and keywords on the web. Our experience with

such a matrix indicates a nearly random pattern of nonzeros in the matrix, which is very

large and rectangular. Although the speci�cs of the nonzero pattern and size may change

every time the web is searched, the pattern is likely to have similar characteristics and the

size will change relatively more slowly over time. Thus, our approach is to take certain

characteristics of the matrix into account when performing optimizations, but the resulting

code will run well on a class of matrices with similar characteristics.

Two recent trends make the research presented in this thesis particularly timely.

First, the gap between processor speed and main memory speed grows every year, with

the results that a memory operation on some machines is already equivalent to tens or

3

hundreds of oating point operations. The architectural solution to this problem has been

to increase the number of levels of caches and other memory hierarchy structures. The result

is machines that are very diÆcult to understand and model for the purpose of optimization.

A second trend is the realization within the scienti�c computing community of the need

for sparse matrix libraries which are highly optimized, just as the dense matrix libraries

have been for many years. In particular, a standardization e�ort called the BLAS Technical

Forum is working on a design for a sparse BLAS interface. They have already identi�ed

the need for sophisticated runtime optimization for sparse matrix-vector multiplication, and

therefore allow users to provide hints at matrix construction time about how the matrix

will be used. This approach �ts well with our approach, which will automatically optimize

matrix-vector multiplication as long as the one-time analysis overhead can be amortized

over many operations.

In this thesis we present an optimization framework, called Sparsity, to generate

highly optimized sparse matrix kernels based on information about the matrix structure and

target microarchitecture. In particular,Sparsity generates code for matrix-vector multi-

plication, where the matrix is sparse and there may be one or more dense vectors. The

toolbox takes information about the matrix structure either from the user or from an ex-

ample matrix that reects the structure of a set of problems the user intends to run. In

general, Sparsity uses reorganization of the matrix data structure and computational order

to improve locality at both the register and cache level. Register blocking identi�es dense

sub-blocks in the matrix and stores these contiguously in memory. To save indexing and

branch overhead, a uniform register block size is used across the matrix, which means that

zero values may have to be �lled in to create some of the blocks. A matrix with two or more

natural register block sizes can be written as the sum of two or more matrices, each with

a single, natural register block size, and register blocking can be applied to each indepen-

dently. Cache blocking uses a sparse data structure throughout the matrix, but stores the

each block contiguously. A generalization of matrix-vector multiplication involves a matrix

times a set of vectors. We devise a multiple-vector optimization that can be combined with

either register or cache blocking. This optimization is useful for applications in which a

higher level algorithm has been blocked or there are multiple right-hand sides in solving a

system of equations. In some cases, the application admits only a small number of vectors,

but in other cases, there are many vectors, and the optimized code groups them into smaller

sets.

4

Both register and cache blocking improve memory system performance for certain

matrices and machines if the block sizes are chosen carefully. Similarly, adding multiple

vectors can improve performance if the right number of vectors is used. The main challenges

in this kind of optimization framework are to determine when the optimizations should be

applied and what optimization parameters should be used. We explore a large space of

possible techniques, including both searching over a set of parameters on the machine and

matrix of interest and performance models to predict which parameter settings will perform

well. For setting the register block size, we present a performance model based on some

matrix-independent machine characteristics, combined with an analysis of blocking factors

that is computed by a statistical sampling of the matrix structure. The model works well

in practice and eliminates the need for a large search. For choosing the optimal number

of vectors, in applications where multiple vectors are used, we also devise a method for

choosing the block size automatically. This heuristic works well for many matrices, but

for some, we �nd that searching over a relatively small number of vectors produces much

better results. For cache blocking, we �nd that search over a limited set of sizes is e�ective,

because a block size that is slightly smaller than the optimal size will still perform well.

For each of these optimizations, we present performance data on a large matrix

benchmark suite. The matrices are taken from uid dynamics, structural modeling, chem-

istry, economics, circuit simulation, device simulation, linear programming, and document

retrieval. In addition, we include one dense matrix in sparse format and one randomly

generated sparse matrix, which serve as two extremes on the spectrum of regularity in the

memory access patterns.

Our performance study con�rms our conjecture that the absolute performance and

the e�ectiveness of each optimization is highly dependent on the matrix and the machine.

Roughly speaking, register blocking is most e�ective on problems that have more structure,

whereas cache blocking is most e�ective on matrices that are very large and have a nearly

random structure. For example, register blocking is very e�ective on �nite element problems

with multiple degrees of freedom, while cache blocking is e�ective on a matrix taken from

a web search application. Because the two kinds of matrices are so di�erent, we �nd little

bene�t from combining the two optimizations. However, if multiple vectors are available

in the application, there is an additional payo� to optimizing for them, whether register

blocking, cache blocking, or neither is used. For this optimization, we study two additional

matrices in detail that come from applications involving multiple vectors.

5

This thesis makes several contributions in the areas of memory hierarchy opti-

mizations, understanding of sparse matrix computations, and the e�ectiveness of memory

systems designs for irregular access patterns. We summarize these results as follows:

� We introduce optimization techniques for registers, caches, and multiple vectors. Vari-

ations of the �rst two have been described in the literature, but our research includes

a more thorough study of various data structure representations and computational

organizations to achieve the optimization. We also introduce a third type of optimiza-

tion for multiple vectors.

� We present a comprehensive study of the performance of a large set of matrices across

machines. The machine platforms are the UltraSPARC I, the MIPS R10000, the

Alpha 21164, and the IBM PowerPC 604e. This data is useful in understanding the

performance of sparse matrix applications on these machines and others.

� Using the same matrices and machines, we demonstrate the e�ectiveness of each kind

of optimization.

� We describe automatic and semi-automatic techniques for choosing optimizations and

their parameters. In particular, we de�ne a new performance model for selecting a

register block size given some machine characteristics and the sparsity structure of a

matrix.

� We describe a new system, Sparsity, for automatic tuning and code generation of

sparse matrix kernels, speci�cally matrix-vector multiplication. Sparsity is designed

as a hands-on web-service for users who want fast sparse matrix-vector multiplication

without the need to understand the details of the optimization techniques.

The remainder of the dissertation is organized as follows. Background information

is supplied in chapter 2. This includes a summary of the memory access patterns in matrix-

vector multiplication, the characteristics of the 46 matrices in our benchmark suite, and

a description of the 4 machines in our performance studies. Chapters 3 and 4 present

optimizations for register blocking and cache blocking, along with performance analysis and

techniques to determine the block sizes. Chapter 5 extends these two techniques for multiple

vectors, and looks at the problems of choosing the right number of vectors. Chapter 6

describes the Sparsity system for generating optimized sparse matrix-vector multiplication.

6

Several design choices are also discussed, and there is further discussion of the interface for

using the system as a web application. Chapter 7 discusses related work, and chapter 8

draws some conclusions from our results and presents some ideas on future direction of the

research.

7

Chapter 2

Background

In this chapter, we present background information for our research. In section

2.1 we describe the data access patterns that arise in sparse matrix-vector multiplication to

provide a foundation for understanding how memory hierarchy optimizations may be done.

In section 2.2 we give an overview of the machines that will be used in our performance

studies, focusing particularly on the memory hierarchy characteristics such as cache size.

Finally, we introduce our benchmark suite of 46 matrices in section 2.3, which are taken

from a diverse set of applications and have very di�erent characteristics in terms of the size,

percentage of nonzeros, and regularity of nonzero patterns. All of these will be important

in understanding the performance studies in the chapters that follow.

2.1 Locality in Matrix-Vector Multiplication

We begin by describing the potential for data reuse in dense matrix-vector multi-

plication, and then move to the more relevant case of sparse matrix-vector multiplication.

We present the dense case because it is simpler, and the contrast is useful in understanding

the locality issues in the sparse case. Finally, we will describe how the memory locality

issues change when there are multiple vectors.

2.1.1 Dense Matrices

A common optimization for dense matrix computations is to reorganize the compu-

tation to improve register or cache reuse by computing on a small block of the array before

8

moving onto the next. This optimization is commonly known as blocking or tiling and can be

performed either by an optimizing compiler or a library [44, 71, 26, 50, 19, 14, 15, 17, 22, 1].

Even for dense matrix-vector multiplication, the potential for reuse is relatively

low, because there are only two oating point operations for every element of the matrix.

Figure 2.1 shows the basic data structures in computing y = A � x. If A is stored by

rows, then a natural way to perform the computation is to compute the dot product of x

with each row of A, storing the result in y. In some computations there is an additional

scaling constant or a vector to add to the product, but these have relatively minor e�ects

on the memory hierarchy. Therefore, we will limit discussion to the basic matrix-vector

product for simplicity. The elements of A are used only once, so there is no opportunity for

temporal locality improvements, and spatial locality is already optimal, since the elements

are accessed in sequential memory order. Each element of the destination vector is read at

the beginning of the dot product and written at the end, which is also optimal. The only

potential for locality optimizations are in the source vector. In a dense matrix there is good

spatial locality, because source elements are accessed in order, but no reuse unless the rows

are short enough that source elements from a previous row's computation are still resident

in register or cache when the next dot product is computed. The algorithm can be blocked

or tiled to increase reuse in the source vector, although this has an immediate trade-o� with

increased memory operations on the destination vector.

2.1.2 Sparse Matrices

Many applications generate and use matrices in which most of the elements are

zeros. While the dense matrix is simply represented as a two-dimensional array, these sparse

matrices are stored only with nonzero elements along with an additional data structure

which stores information regarding the location of each nonzero element in the matrix.

The formats of sparse matrices are diverse, and they are discussed in more detail in

chapter 7. Among the suggested nine formats in the BLAS Technical Forum standardization

[11] we focus on compressed sparse row (CSR) format in our study because it is general

and relatively eÆcient. As shown in the example in �gure 2.2, in CSR format, the nonzero

elements are stored in rows in the value array along with the matching column index in the

col idx array. The beginning of each row is pointed to by values in the row start array, in

which the last entry points to the end of the last row.

9

y =

xj

i ij j

source vector ’x’

destination
vector

’y’

Σ
j=1

n

A x

ijy Ai

matrix ’A’

Figure 2.1: Basic data structures in matrix-vector multiplication

While there is no data reuse in matrix elements in dense matrix-vector multipli-

cation, the memory accesses are sequential for all data structures, providing good spatial

locality, which helps in machine structures such as caches. Sparse matrix-vector multipli-

cation is more diÆcult because the data structure representing the sparse matrix involves

indirection, and the source vector is not accessed sequentially. So the performance of sparse

matrix-vector multiplication is generally worse than that of dense matrix-vector multipli-

cation. The common factors that a�ect the performance of dense or sparse matrix- vector

multiplication are the size of the matrix and the machine architecture. In addition, the

performance of sparse matrix-vector multiplication also depends on the nonzero structure

of the sparse matrix, because the way in which the source vector is accessed depends on the

location of nonzero elements in the sparse matrix.

2.1.3 Using Multiple Vectors

Some applications of matrix-vector multiplication involve a set of vectors, rather

than a single vector, either because the algorithm has been blocked at some higher level or

because there are multiple right-hand sides in a system of equations. This turns matrix-

10

00

02A 0010 A

0 A

020

20

A
11 0 A 13

=

0 2 4 5row_start

col_idx

value

1 2 1 3 0

A 01 A 02 A11 A 13 A

Figure 2.2: Compressed Sparse Row (CSR) representation of a sparse matrix.

void smvm (int m, double *value,

int *col_idx, int *row_start,

double *x, double *y){

int i,j;

for (i=0;i<m;i++) {

for (j=row_start[i];j<row_start[i+1];j++){

y[i] += (*value++)*x[*col_idx++];

}

}

}

Figure 2.3: Basic sparse matrix-vector multiplication code

11

vector multiplication into something closer to matrix-matrix multiplication, where the �rst

matrix is sparse and the second one (which may have only a few columns) is dense. This

raises the potential for high performance, because each matrix element will now be reused

as many times as there are vectors in the set.

2.2 Processor Architectures

Our experimental data uses the following four processors: UltraSPARC I, MIPS

R10000, Alpha 21164, and PowerPC 604e.

UltraSPARC I The UltraSPARC-I microprocessor is a quad-issue superscalar processor

implementing the SPARC V9 64-bit RISC architecture. Its oating point unit is composed

of �ve separate pipelined functional units with 32 double-precision oating point registers.

The processor has a 16 KB direct-mapped, write-through non-allocating on-chip level 1

(L1) data cache and a 16 KB two-way set-associative instruction cache. The data cache is

organized as 512 lines with two 16-byte sub-blocks of data per line. In our experiments, we

will use a 167 MHz UltraSPARC I with 512 KB o�-chip level 2 (L2) data cache and 512

MB main memory.

MIPS 10000 The MIPS R10000 microprocessor is a quad-issue superscalar processor

implementing the 64-bit MIPS IV instruction set architecture. It has 5 separate execution

units (2 integer unit, 2 oating point, and one load/store unit) with 32 double-precision

oating point registers (64 physical registers that are accessed by register renaming). In ad-

dition to two primary oating point units (an adder and multiplier), it has 2 more secondary

oating point units which handle long-latency operations such as division and square root.

The processor has a 32 KB 2-way set associative on-chip L1 data cache and a 32 KB 2-way

set associative on-chip L1 instruction cache. In the experiments, we use a 200 MHz R10000

processor with a 2 MB uni�ed L2 instruction/data cache.

Alpha 21164 The Alpha 21164 is also a quad-issue superscalar processor. It has two

integer units and two oating point units (an adder and multiplier), with 32 integer registers

and 32 double-precision oating point registers. It has an 8 KB direct-mapped on-chip L1

data cache, and the same for an on-chip instruction cache. Note that the L1 cache is much

12

Processor Clock Number of Number of L1 cache size L2 L3
(MHz) issues/cycle fp registers Data Instr. cache cache

UltraSPARC I 167 4 32 16KB 16KB 512KB

MIPS 10000 200 4 32 32KB 32KB 2MB

Alpha 21164 533 4 32 8KB 8KB 96KB 4MB

PowerPC 604e 200 4 32 32KB 32KB 512KB

Figure 2.4: Summary of processor architectures

smaller than the other machines, but there is an additional 96KB 3-way set associative

on-chip L2 cache which stores both data and instructions. In our experiments, we will use

a 533 MHz 21164 with a 4 MB L3 cache that is o� chip.

PowerPC 604e The PowerPC 604e microprocessor is a 32-bit implementation of the

PowerPC family of RISC microprocessors. The PowerPC 604e is another a quad-issue

superscalar processor. It has 7 functional units, consisting of 3 integer units, 1 oating

point unit, and 3 load/store units. The architecture has 32 integer registers and 32 double-

precision oating point registers. It also has 2 32 KB 4-way set associative on-chip L1

caches, one for instructions and one for data. We used 200MHz PowerPC in the experiment

with a 512KB L2 uni�ed cache.

Comparisons The hardware characteristics are summarized in �gure 2.4. The Alpha

21164, which has the highest clock rate by more than a factor of two, has the highest peak

performance. It also has the most complex memory hierarchy, with three levels of caches,

and as it will be shown that this factor makes performance tuning particularly diÆcult for

this machine. Some of our experiments that require very large memory allocations will

use only the UltraSPARC and MIPS R10000; for these two machines, the MIPS has a

somewhat faster clock rate, but more importantly it has much larger caches for both L1

and L2. In addition, the MIPS has much slower memory access if one misses in both caches:

589 nanoseconds on the MIPS compared to 268 on the UltraSPARC. The MIPS R10000 is

likely to get more speedup from the memory hierarchy optimizations because its worst case

memory performance is not as good as that of the UltraSPARC.

13

2.3 Matrix Benchmark Suite

We will use a set of 46 matrices for the performance measurements of the opti-

mizations. The size, number of nonzero elements, and application area of each matrix in

the set is summarized in �gure 2.5. The matrices are numbered from 1 to 46 in the �rst

column, and the matrices will be referenced by this line number throughout this thesis.

Most of the sparse matrices are collected from Tim Davis's matrix collection [20] at the

University of Florida. For comparison, we have also included the set of sparse matrices

used in Xiaoye Li's thesis [47] in our set. In her thesis, the matrices are used for hand-coded

memory hierarchy optimizations for LU factorization. The �rst matrix is a 1000 � 1000

dense matrix, which was also included in her set. We also added a synthetic 10000� 10000

matrix (matrix 46) with randomly distributed nonzeros and sparsity of 0.15 %.

We have placed the matrices in the table according to our understanding of the

application domain from which is was derived. Matrix 1 is a dense matrix. Matrices 2

through 17 are from Finite Element Method (FEM) applications, which in several cases

means there are dense sub-locks within much of the matrix. Note however, that the per-

centage of nonzeros is still very low, so these do not resemble the dense matrix. Matrices 18

through 39 are from structural engineering and device simulation and matrices 40 through

44 are linear programming matrices. Matrix 45 is a matrix built from the existence of

keywords within documents on the web (which is processed with an algorithm called Latent

Semantic Indexing, or LSI) and matrix 46 is a random matrix with the same density as

matrix 45. Most of the matrices are square except matrices 41 through 45, which are linear

programming matrices and a document retrieval matrix. All the rectangular matrices has

more columns than rows; the number of columns are 5 to 8 times larger than the number of

rows for the linear programming matrices and 26 times for the document retrieval matrix.

The matrices are roughly ordered by the regularity of nonzero patterns, with the

more regular ones at the top. The distribution of nonzero elements of the matrices in the

benchmark suite are shown in appendix A. Note, for example, that the linear programming

matrices (40{44) and the document retrieval matrix (45) have much less structure than

most of those earlier in the list.

14

Name Application Area Dimension Nonzeros Sparsity

1 dense1000 Dense Matrix 1000x 1000 1000000 100
2 raefsky3 Fluid structure interaction 21200x 21200 1488768 0.33
3 inaccura Accuracy problem 16146x 16146 1015156 0.39
4 bcsstk35 Sti� matrix automobile frame 30237x 30237 1450163 0.16
5 venkat01 Flow simulation 62424x 62424 1717792 0.04
6 crystk02 FEM Crystal free vibration 13965x 13965 968583 0.50
7 crystk03 FEM Crystal free vibration 24696x 24696 1751178 0.29
8 nasasrb Shuttle rocket booster 54870x 54870 2677324 0.09
9 3dtube 3-D pressure tube 45330x 45330 3213332 0.16
10 ct20stif CT20 Engine block 52329x 52329 2698463 0.10
11 bai Airfoil eigenvalue calculation 23560x 23560 484256 0.09
12 raefsky4 buckling problem 19779x 19779 1328611 0.34
13 ex11 3D steady ow caculation 16614x 16614 1096948 0.40
14 rdist1 Chemical process separation 4134x 4134 94408 0.55
15 vavasis3 2D PDE problem 41092x 41092 1683902 0.10
16 orani678 Economic modeling 2529x 2529 90185 1.41
17 rim FEM uid mechanics problem 22560x 22560 1014951 0.20
18 memplus Circuit Simulation 17758x 17758 126150 0.04
19 gemat11 Power ow 4929x 4929 33185 0.14
20 lhr10 Light hydrocarbon recovery 10672x 10672 232633 0.20
21 goodwin Fluid mechanics problem 7320x 7320 324784 0.61
22 bayer02 Chemical process simulation 13935x 13935 63679 0.03
23 bayer10 Chemical process simulation 13436x 13436 94926 0.05
24 coater2 Simulation of coating ows 9540x 9540 207308 0.23
25 �nan512 Financial portfolio optimization 74752x 74752 596992 0.01
26 onetone2 Harmonic balance method 36057x 36057 227628 0.02
27 pwt Structural engineering problem 36519x 36519 326107 0.02
28 vibrobox Structure of vibroacoustic problem 12328x 12328 342828 0.23
29 wang4 Semiconductor device simulation 26068x 26068 177196 0.03
30 lnsp3937 Fluid ow modeling 3937x 3937 25407 0.16
31 lns3937 Fluid ow modeling 3937x 3937 25407 0.16
32 sherman5 Oil reservoir modeling 3312x 3312 20793 0.19
33 sherman3 Oil reservoir modeling 5005x 5005 20033 0.08
34 orsreg1 Oil reservoir simulation 2205x 2205 14133 0.29
35 saylr4 Oil reservoir modeling 3564x 3564 22316 0.18
36 shyy161 Viscous ow calculation 76480x 76480 329762 0.01
37 wang3 Semiconductor device simulation 26064x 26064 177168 0.03
38 mcfe astrophysics 765x 765 24382 4.17
39 jpwh991 Circuit physics modeling 991x 991 6027 0.61
40 gupta1 Linear programming matrix 31802x 31802 2164210 0.21
41 lpcreb Linear Programming problem 9648x 77137 260785 0.04
42 lpcred Linear Programming problem 8926x 73948 246614 0.04
43 lp�t2p Linear Programming problem 3000x 13525 50284 0.12
44 lpnug20 Linear Programming problem 15240x 72600 304800 0.03
45 lsi Latent Semantic Indexing 10000x255943 3712489 0.15
46 random Random Matrix 10000x 10000 150000 0.15

Figure 2.5: Matrix benchmark suite: The basic characteristic of each matrix used in
our experiments is shown here. The sparsity column is the percentage of nonzeros, which
is usually less than 1%.

15

Chapter 3

Register Blocking Optimization

In this chapter, we present the results of our study on optimization by register

blocking. In this optimization, we focus mainly on improving locality at the highest level

of the memory, namely register reuse. Register optimizations are di�erent from the other

levels of the memory hierarchy in several related aspects. First, the register contents are

controlled directly by software, so one may choose an arbitrary set of values to be saved

in registers, rather than relying on the mapping of addresses to cache lines, as is typical

in cache structures. Although under software control, register allocation is handled by the

compiler, as we plan to express our optimizations in C code rather than assembler. Thus,

we will not have as much direct control over the way registers are used as we might like

in performing the optimizations. Finally, the set of registers is relatively small, which will

make certain approaches practical that would not be practical for larger memory structures

such as caches.

In section 3.1, we describe the idea and advantage of register blocking and in

section 3.2, we present a performance model to determine whether register blocking should

be applied for a particular matrix as well as its register block size. We then apply register

blocking to a set of test matrices and analyze the performance in section 3.3. There is

considerable overhead associated with transforming a matrix for register blocking, meaning

that this optimization is recommended when the matrix is to be multiplied suÆciently many

times, which is a common case in practice. We quantify that overhead in section 3.4, and

a summary of these results is in section 3.5.

16

3.1 Description of Register Blocking

To optimize for register use, we reorganize the data structure and computation to

improve the reuse of values in the source vector. This optimization is commonly known as

blocking or tiling for dense matrix operations [44, 71, 26, 50, 19, 14, 15, 17]. The optimization

for dense matrices is relatively simple compared to that of sparse matrices because the

block size for a dense matrix is dependent only on the size of the matrix and the machine

characteristics, while the block size for a sparse matrix is dependent on the distribution of

nonzero elements, in addition to the size of the other factors.

The basic sparse matrix-vector multiplication code for CSR format in �gure 2.3

is unlikely to exploit temporal locality of the elements of the source vector x by saving

them in registers across rows, in part because the compiler cannot predict the memory

accesses statically and also because the set of values needed from x for each row is typically

larger than the number of registers. If one identi�es small blocks of non-zeros in the matrix,

however, and reorganizes the representation to store each of these blocks contiguously, values

in the source vector may be reused. The number of registers needed to process an r � c

block of the sparse matrix is at least r values from the destination vector, plus c values from

the source vector, plus one register that is used repeatedly for each value in the r� c block

of the sparse matrix.

The code is not only easier to write, but admits more compile-time optimizations

such as loop unrolling and software pipelining if the values of r and c are �xed over the

entire matrix. Figure 3.1 shows a matrix in compressed sparse block row format, where 2�2

blocks are stored contiguously. The blocked matrix-vector multiplication code becomes a

series of dense r�c matrix-vector multiplications which allow for register reuse; the blocked

storage format also saves storage in the col idx array by a factor of r � c and turns the

loads of indices into simple arithmetic operations, such as integer addition.

We have observed that applications such as Finite Element Methods (FEM) [32]

naturally store small dense blocks in sparse matrix when they construct the matrix. How-

ever, most matrices do not have uniform block structure throughout, so some zero values

are �lled in when constructing the blocked representation. In the example in �gure 3.1, the

original matrix did not have dense 2�2 blocks throughout; in a 2�2 blocked representation,

the 0 after a00 would be �lled in. Such factors mean that we perform more oating point

computations for stored zero values in a blocked sparse matrix computation to the CSR

17

A =

0
BBBBBB@

a00 a01 0 0 a04 a05

a10 a11 0 0 a14 a15

0 0 a22 0 a24 a25

0 0 a32 a33 a34 a35

1
CCCCCCA

row start =
�
0 2 4

�

col idx =
�
0 4 2 4

�

value =
�
a00 a01 a10 a11 a04 a05 a14 a15 a22 0 a32 a33 a24 a25 a34 a35

�

Figure 3.1: Block compressed sparse row (BSR) storage format: The elements of
each dense 2 � 2 block are stored contiguously in the value array. Only the �rst column
index for each block is stored in col idx array, and row start array points to block row
starting positions in the col idx array.

format. Because these operations are not useful, they are not counted in the computation

of the performance of sparse matrix-vector multiplication later in this chapter.

The generic code, bsmvm generic in �gure 3.2, multiplies a register-blocked sparse

matrix with any block size by a vector. The optimized version of this code is shown in

�gure 3.3 when the block size is 2 � 2. This optimized code removes some of the branch

statements and load stalls by reordering instructions. This improves the performance of

register blocked multiplication further. We have written a code generator that produces

loop-unrolled codes for given block sizes, which will be described further in chapter 6.

3.2 Determining Register Block Sizes

Register blocking does not always improve performance if the sparse matrix does

not have small dense blocks. Even when it has such blocks, the optimizer must pick a

good block size for a given matrix and machine. We have developed a performance model

that predicts the performance of the multiplication for various block sizes without actually

blocking and running the multiplication. The purpose of the performance model is to esti-

mate the performance of many possible block sizes so that a good one may be selected. We

will �rst present the performance model and then describe some practical issues associated

with its use in an automatic optimization framework.

18

void bsmvm_generic (int bm, int r, int c,

int *row_start, int *col_idx, double *value,

double *src, double *dest)

{

int i, j, ii, jj;

for (i=0; i<bm; i++,dest+=r){

for (j=row_start[i]; j<row_start[i+1]; j++,col_idx++,value+=r*c){

for (ii=0; ii<r; ii++)

for (jj=0; jj<c; jj+)

dest[ii] += value[ii*c+jj] * src[(*col_idx)+jj];

}

}

}

Figure 3.2: Register-blocked code: Row start, col idx, and value arrays represent the
data structure for a register-blocked sparse matrix. Src and dest represent the multiplier
and result vectors, respectively.

3.2.1 A Model for Block Size Selection

There is a trade-o� in the choice of block size for sparse matrices. In general, the

computation rate will increase with the block size up to some limit at which register spilling

becomes necessary. In most sparse matrices, the dense sub-blocks that arise naturally are

relatively small: 2 � 2, 3 � 3 and 6 � 6 are typical values. When a matrix is converted

to a blocked format, some zero elements are �lled in to make a complete r � c block as

shown in �gure 3.4. These extra zero values not only consume storage, but tend to increase

the number of oating point operations, because they are involved in the sparse matrix

computation. (Placing branches in the code to avoid these extra operations proves to

provide worse results than computing them.)

We use a simple performance model to determine the block size for a given matrix

and machine, based in part on pro�ling information for that machine. The model has two

basic components:

1. An approximation for the Mop rate of a matrix with a given block size.

2. An approximation for the amount of unnecessary computation that will be performed

due to explicitly represented zeros in the blocked matrix.

19

void bsmvm_2x2 (int bm,

int *row_start, int *col_idx, double *value,

double *src, double *dest)

{

int i, j;

for (i=0; i<bm; i++,dest+=2)

{

register double d0, d1;

d0 = dest[0];

d1 = dest[1];

for (j=row_start[i]; j<row_start[i+1]; j++,col_idx++,value+=4)

{

d0 += value[0] * src[*col_idx+0];

d0 += value[1] * src[*col_idx+1];

d1 += value[2] * src[*col_idx+0];

d1 += value[3] * src[*col_idx+1];

}

dest[0] = d0;

dest[1] = d1;

}

}

Figure 3.3: Loop-unrolled, register-blocked code: Row start, col idx, and value arrays
represent the data structure for a register-blocked sparse matrix. Src and dest represent
the multiplier and result vectors, respectively.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
��� ���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

1 1

11

1

1

1

1 1

11

1

1

1

0

0

0

0

0

Figure 3.4: Fill overhead of register blocking: The BSR format in the right �gure
stores �ve extra zero values to make the 2� 2 block dense.

20

The �rst component cannot be exactly determined without running the resulting

blocked matrix (or one with equivalent nonzero structure) on each machine of interest. We

therefore use an upper bound for this Mop rate, which is the performance of a dense

matrix stored in the blocked sparse format. The approximation is better for large block

sizes than for small ones, as the cost of computing on the dense blocks dominates the other

data structure manipulations.

The second component requires the nonzero information about the matrix. How-

ever, we prefer to avoid constructing and measuring every blocked variation of the matrix.

Even performing this unnecessary computation exactly is very expensive, given that we need

to compute this for an entire range of block sizes under consideration. Multiple sweeps over

the array or complex data structures must be designed to compute the exact number of

zero �lls for a set of block sizes. Instead, we develop an approximation that can be done in

a single pass over only a subset of the matrix.

Approximating the Performance of a Blocked Sparse Matrix

To approximate the performance of a blocked matrix, we will use a dense matrix in

sparse format with the speci�ed number of blocks. While this requires a signi�cant amount

of computation to perform for each block size, it will be done once for each machine, not

for each matrix.

Figures 3.5 and 3.6 show the performance of sparse matrix vector multiplication for

a dense matrix using register-blocked sparse format, (i.e., a dense matrix in sparse format),

on di�erent processors: an UltraSPARC I, a MIPS R10000, a Alpha 21164 and a PowerPC

604e. We vary the block size within a range of values for r and c until the performance

degrades. Each line shows a particular value of r (number of rows) and each point on the

x-axis shows a value for c (number of columns). These graphs are platform dependent. The

performance is relatively insensitive to the total matrix size as long as the matrix does not

�t in cache but does �t in main memory; the data in the �gure uses a 1000 � 1000 dense

matrix.

We make several observations here. First, the performance is fastest on an Alpha,

and slowest on a PowerPC. This is because the clock rate of an Alpha is very fast (533

MHz) compared to clock rates of other processors, as shown in �gure 2.4. Second, the 1�

line, which had no blocking in the vertical direction, is clearly lowest on all machines except

21

1 2 3 4 5 6 7 8 9 10 11 12
10

15

20

25

30

35

40

45

50

55
Register blocking performance

columns in register block

M
flo

ps
/s

ec
.

 1x
 2x
 3x
 4x
 5x
 6x
 7x
 8x
 9x
10x
11x
12x

1 2 3 4 5 6 7 8 9 10 11 12
10

15

20

25

30

35

40

45

50

55
Register blocking performance

columns in register block

M
flo

ps
/s

ec
.

 1x
 2x
 3x
 4x
 5x
 6x
 7x
 8x
 9x
10x
11x
12x

Figure 3.5: Performance pro�le of register-blocked code on an UltraSPARC I
(left) and a MIPS R10000 (right): These numbers are taken for a 1000 � 1000 dense
matrix represented in sparse format. Each line is for a �xed number of rows (r), varying
the number of columns (c) from 1 to 12.

the Alpha, because there is no reuse in the source vector. Third, on each machine the

highest performance is roughly 1.5 to 2 times faster than the lowest performance, which is

always the non-blocked performance (block size 1� 1). This indicates signi�cant potential

for speedup.

We view the absolute performance as an approximate upper bound on the perfor-

mance of a register-blocked sparse matrix-vector multiplication on each machine, because

matrices that are truly sparse are likely to have worse locality at lower levels of the memory

hierarchy than a dense matrix in sparse format.

Approximating Fill Overhead

To approximate the unnecessary computation that would result from register

blocking, we estimate the number of zeros to be added. This will use a single compu-

tation over the matrix of interest, producing an estimate for all block sizes in a particular

range.

The number of added zeros in the blocked representation are referred to as �ll,

and the ratio to the original matrix size as �ll overhead:

22

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100
Register blocking performance

columns in register block

M
flo

ps
/s

ec
.

 1x
 2x
 3x
 4x
 5x
 6x
 7x
 8x
 9x
10x
11x
12x

1 2 3 4 5 6 7 8 9 10 11 12

10

15

20

25

30

35

40

45

50

55
Register blocking performance

columns in register block

M
flo

ps
/s

ec
.

 1x
 2x
 3x
 4x
 5x
 6x
 7x
 8x
 9x
10x
11x
12x

Figure 3.6: Performance pro�le of register-blocked code on an Alpha 21164 (left)
and a PowerPC 604e (right) These numbers are taken for a 1000 � 1000 dense matrix
represented in sparse format. Each line is for a �xed number of rows (r), varying the number
of columns (c) from 1 to 12.

�ll overhead =
number of elements stored in register blocked format

number of true nonzeros

The �ll overhead is 1 when the matrix has dense blocks of the chosen size spread

throughout the matrix; the matrix may still be sparse, but every nonzero is within a block.

For sparse matrix-vector multiplication, the number of oating point operations is linear in

the number of stored elements (i.e., one multiplication and one addition), so the �ll overhead

is a good estimate of computation overhead.

We have computed the �ll overhead for several benchmark matrices and several

block sizes, but the computation time was too high to consider using it as part of an

automatic optimization system. To approximate �ll overhead, separate computations are

made for a column blocking factor and row blocking factor by sampling a fraction of the

matrix entries. First, every entry in k rows of the matrix is examined to determine the

column blocking factor. (In our implementation, k is chosen to be 100, providing reasonably

accurate �ll overheads.) A block column index for each element in the matrix was computed

by dividing the column index of each nonzero element in the row by the block size in

consideration. This gives us an estimate of the total number of blocks for each block size,

and thus the �ll overhead. For the column block size c, the �ll ratio is estimated to be:

23

estimated �ll overhead for column size c =

number of blocks� c

number of nonzero elements in the examined rows

An estimate of �ll overhead for various row sizes is computed independently by

an analogous algorithm, namely, examining every 1 out of k columns and computing the

number of blocks that would result from a r � r block for that column.

Instantiating the Model

Given the approximations of performance for a given machine and overhead for a

given matrix, we now choose a block size by maximizing the predicted real performance.

Since performance was measured in Mops, real performance was calculated by including

only those oating point operations that would have been needed in the unblocked code.

Using these estimates, this performance is predicted as:

predicted performance for column size c =

performance of a dense matrix in c� c sparse blocked format

estimated �ll overhead for column size c

predicted performance for row size r =

performance of a dense matrix in r � r sparse blocked format

estimated �ll overhead for row size r

Column blocking factors c in the range from 1 to cmax were considered in which

cmax was the column size with the maximum performance for a dense matrix in sparse-

blocked format. Within this range, we chose c by maximizing the predicted performance,

and independently did the same to choose the row size r.

It should be noted that the purpose of using the performance model was to �nd the

right block size, rather than to predict the actual performance accurately. The usefulness

of the model was validated by running an exhaustive search to �nd the best performance

for a subset of test matrices. Figure 3.7 compares the performance of the block size chosen

by the model (in the middle bar) with the block size chosen by an exhaustive search (in

the right bar). The ten matrices used in the experiment were matrices 11, 15, 4, 6, 7, 10,

8, 14, 5, and 29 from table 2.5. The block size chosen by the model and that chosen by

exhaustive search are same in many cases, and even when they were di�erent (in the second,

24

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40
Performance of register blocked code on an UltraSPARC

matrices

M
F

LO
P

S

2x2(1.23)
2x2(1.23)

2x2(1.35)
2x1(1.00)

6x6(1.19)
3x3(1.06)

3x3(1.00)
3x3(1.00)

3x3(1.00)
3x3(1.00)

2x2(1.21)
2x2(1.21)

3x3(1.11)
3x3(1.11)

2x2(1.33)
2x1(1.17)

4x4(1.00)
4x4(1.00)

1x1(1.00)
1x1(1.00)

Base performance
Performance of blocked code (chosen size)
Performance of blocked code (best)

Figure 3.7: Validation of performance model: Comparison of the performance of the
block size chosen by the performance model (in the middle bar) with the block size chosen
by an exhaustive search (in the right bar). on an UltraSPARC I. The left bars indicate
unoptimized performance. The upper row of numbers above the bars are the block sizes
chosen by the model and the lower row of numbers above the bars are the block sizes chosen
by exhaustive search.

third, and eighth matrices), the di�erence in performance was small (less than 6 % of the

performance).

3.2.2 When and How to Apply Register Blocking

We have observed that the performance model described in the previous section

generally made a reasonable selection of block size, but the model sometimes selected a

block size that was not optimal. At times, register-blocked multiplication with the chosen

block size ran slower than unblocked multiplication. So, we made a further decision as to

whether to perform register-blocking optimization on a given matrix or not.

The decision process works in the following way. Using the performance model,

if any of the predicted performances was better than unblocked performance, the matrix

became a candidate for register-blocking optimization. The register block size with the

highest predicted performance of multiplication was chosen as the block size, and the matrix

was blocked for that size. If after running the multiplication on a blocked matrix and

measuring the real performance, the measured performance is shown to be better than

25

non-blocked performance, optimization with register blocking was performed.

It would have been possible to use an exhaustive search by blocking the matrix

repeatedly for each block size and measuring the real performance, instead of predicting

the performance using a model. However, we developed and used the performance model

for the following reasons. First, blocking the matrix in hundreds of possible ways too time-

consuming. Second, since the performance graph of multiplication for varying block sizes

is quite jagged, it was impossible to speed up a search using heuristics such as hill-climbing

to �nd a maximum.

3.3 Performance of Register Blocking on Benchmark Suite

Figures 3.9 { 3.12 show the e�ect of register blocking 1 for 46 matrices listed in

table 2.5. As it is mentioned in chapter 2, the matrices near the bottom of the list have less

structure.

On the Alpha 21164 and the PowerPC 604e, the multiplication performance of

some large matrices were measured by fragmenting the whole matrix into smaller matrices

due to memory restrictions on these systems. Figures 3.13 { 3.16 give the details of the

performance data and show the block size that was selected.

As a reference, optimized dense BLAS operation performance on various proces-

sors are shown in table 3.8. The table is drawn from a LAPACK user's guide (3rd. edition)

[2]. It shows DGEMV (dense matrix vector multiplication) and DGEMM (dense matrix

matrix multiplication) performances for two matrix sizes, 100�100 and 1000�1000. GEMV

performance is lower than DGEMM performance since matrix-vector multiplication does

not reuse matrix elements. The ratio of DGEMV performance to DGEMM performance is

shown in each third column. Even though the matrices are dense, when the ratio is large,

we conjecture that we can expect higher speedups for sparse matrix vector multiplication

through any kind of memory hierarchy optimization on that processor. If we focus on the

larger 1000 � 1000 matrix in the last column, we can see the MIPS and Power3 (which we

have no experimental data on) had fairly high ratios (0.38 and 0.48, respectively). This

corresponds to the fact that the best speedups were obtained on the MIPS R10000 (�g-

1Each �gure shows a Mop rate comparison (left) and the corresponding speedup (right). The Mop
rate was calculated using only those arithmetic operations required by the original representation, not those
induced by �ll from blocking. The speedup was calculated by dividing the optimized Mop rate by the
unoptimized rate, or equivalently, the unoptimized runtime by the optimized runtime.

26

Processor Clock n = m = k = 100 n = m = k = 1000

Speed DGEMV DGEMM (A) DGEMV DGEMM (C)
(MHz) Mops(A) Mops(B) /(B) Mops(C) Mops(D) /(D)

UltraSPARC I 200 124 302 0.41 57 287 0.20
UltraSPARC II 300 267 474 0.56 86 527 0.16
MIPS 12000 300 216 563 0.38 210 555 0.38
Alpha 21164 533 66 543 0.12 36 584 0.06
Alpha 21264 500 376 522 0.72 112 500 0.22
PowerPC 604e 190 23 160 0.14 25 212 0.12
Power 3 630 200 304 567 0.54 350 722 0.48

Figure 3.8: BLAS performance on various processors

ure 3.10). The UltraSPARC-I had a fairly high ratio of 0.20, and our speedup for the

UltraSPARC (�gure 3.9) follows behind the MIPS R10000, while the Alpha 21164 and the

PowerPC 604e with low ratios (0.06 and 0.12 respectively) exhibit small speedups in our

optimizations (�gures 3.11 and 3.12).

As shown in the tables 3.13 { 3.16, the matrices were not register-blocked when the

model predicted performance degradation. In the table, the speedups for those matrices are

not exactly 1, since we have used slightly di�erent codes for measuring unblocked code and

1�1 blocked code. The latter code is generated by our source code generator and as the table

shows, the code performs slightly better for some architectures (R10000 and PowerPC), and

slightly worse for others (UltraSPARC). Architecture and compiler speci�cs contribute to

this discrepancy. There is also a small amount of run-time overhead for register blocking in

multiplying blocks. In some cases, the small amount of predicted speedup is overwhelmed

by this overhead as in matrices 16, 17, and 20 in table 3.13. To prevent those matrices from

being register-blocked, Sparsity's automatic optimization system will add an extra step at

the end of the register-blocking optimization, in which the performance of unblocked and

register blocked multiplications are measured and compared. If the performance of register-

blocked multiplication is worse than that of unblocked multiplication, register blocking will

not be applied.

The 43rd matrix, which arises from a linear programming problem, has a nearly

dense band starting from the �rst column to the 25th column, and 1� 4 blocks near the di-

agonal. This kind of matrix confuses our sampling strategy for estimating �ll overhead, and

the performance was degraded after register blocking because of the incorrectly estimated

�ll overhead in predicted performance.

27

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60
Performance of register blocked code: UltraSPARC I

matrices

M
F

LO
P

S

Base performance
Performance of blocked code

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Speedup of register blocked code: UltraSPARC I

matrices
S

pe
ed

up

Figure 3.9: Performance of register-blocked multiplication on an UltraSPARC I

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60
Performance of register blocked code: MIPS R10000

matrices

M
F

LO
P

S

Base performance
Performance of blocked code

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Speedup of register blocked code: MIPS R10000

matrices

S
pe

ed
up

Figure 3.10: Performance of register-blocked multiplication on a MIPS 10000

28

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

Performance of register blocked code:Alpha 21164

matrices

M
F

LO
P

S

Base performance
Performance of blocked code

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Speedup of register blocked code:Alpha 21164

matrices
S

pe
ed

up

Figure 3.11: Performance of register-blocked multiplication on an Alpha 21164

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60
Performance of register blocked code:PowerPC 604e

matrices

M
F

LO
P

S

Base performance
Performance of blocked code

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Speedup of register blocked code:PowerPC 604e

matrices

S
pe

ed
up

Figure 3.12: Performance of register-blocked multiplication on a PowerPC 604e

29

Matrix Block Size Fill Overhead Mops Speedup

1 45 8x8 1.00 40.91 1.83
2 40 8x8 1.00 34.96 1.72
3 38 6x6 1.12 28.68 1.44
4 4 6x6 1.19 29.49 2.20
5 37 4x4 1.00 27.18 1.97
6 6 3x3 1.00 33.41 1.67
7 7 3x3 1.00 28.47 1.42
8 16 3x3 1.11 24.85 1.57
9 1 3x3 1.13 24.67 1.52
10 8 2x2 1.21 22.84 1.26
11 39 2x2 1.23 22.16 1.22
12 43 2x2 1.24 21.19 1.18
13 41 2x2 1.28 20.87 1.03
14 25 2x2 1.33 20.49 1.06
15 44 2x2 1.35 18.84 1.04
16 26 2x2 1.39 20.63 0.99
17 19 2x2 1.79 14.41 0.71
18 23 2x2 1.79 12.39 0.96
19 24 2x1 1.01 27.03 1.45
20 11 1x2 1.17 17.01 0.97
21 36 1x2 1.36 16.84 0.78
22 2 1x1 1.00 12.66 0.96
23 3 1x1 1.00 13.64 0.89
24 5 1x1 1.00 18.17 0.92
25 9 1x1 1.00 11.69 0.92
26 17 1x1 1.00 11.12 0.94
27 18 1x1 1.00 15.22 1.10
28 20 1x1 1.00 16.47 0.95
29 21 1x1 1.00 10.63 0.95
30 28 1x1 1.00 23.35 0.95
31 29 1x1 1.00 23.59 0.93
32 30 1x1 1.00 28.96 0.91
33 32 1x1 1.00 17.48 0.94
34 33 1x1 1.00 19.48 0.97
35 34 1x1 1.00 19.55 0.94
36 35 1x1 1.00 10.13 1.01
37 42 1x1 1.00 10.76 0.97
38 27 1x1 1.00 40.36 0.70
39 31 1x1 1.00 15.92 0.74
40 10 1x1 1.00 17.33 0.98
41 12 1x1 1.00 14.02 1.00
42 13 1x1 1.00 15.18 0.96
43 14 7x1 3.20 10.84 0.48
44 15 1x1 1.00 10.76 0.91
45 22 1x1 1.00 4.06 0.95
46 46 1x1 1.00 14.60 0.93

Figure 3.13: Summary of register blocking optimization on an UltraSPARC I

30

Matrix Block Size Fill Overhead Mops Speedup

1 45 11x11 1.00 25.65 2.80
2 40 8x8 1.00 24.09 2.46
3 38 6x6 1.12 17.63 1.73
4 4 6x6 1.19 20.41 2.72
5 37 4x4 1.00 22.73 2.34
6 6 3x3 1.00 22.53 2.25
7 7 3x3 1.00 21.52 2.95
8 16 3x3 1.11 17.02 1.75
9 1 3x3 1.13 16.25 1.69
10 8 3x3 1.57 14.56 1.54
11 39 2x2 1.23 15.19 1.72
12 43 3x3 1.46 12.68 1.76
13 41 3x3 1.52 15.33 1.53
14 25 3x3 1.60 18.12 1.60
15 44 2x2 1.35 12.07 1.54
16 26 3x3 1.69 17.60 1.52
17 19 3x3 2.36 9.85 1.02
18 23 2x2 1.79 10.27 1.09
19 24 2x1 1.01 15.94 1.63
20 11 3x3 2.35 4.90 0.56
21 36 3x3 2.38 9.76 1.03
22 2 2x2 2.71 6.86 0.80
23 3 2x2 2.02 9.58 0.98
24 5 2x2 2.08 7.71 0.82
25 9 2x2 2.45 7.19 0.87
26 17 2x2 2.96 5.32 0.66
27 18 2x2 2.34 6.05 0.80
28 20 1x1 1.00 9.05 1.06
29 21 2x2 1.98 7.19 0.91
30 28 1x1 1.00 10.81 1.11
31 29 2x2 2.31 9.63 1.02
32 30 3x3 1.64 16.69 1.70
33 32 2x2 2.99 7.31 0.82
34 33 2x2 3.09 7.52 0.77
35 34 2x2 2.53 8.84 0.92
36 35 2x2 2.31 7.01 0.96
37 42 2x2 1.98 8.83 1.19
38 27 2x2 1.96 11.83 1.03
39 31 1x1 1.00 10.93 1.12
40 10 2x2 2.33 7.98 0.97
41 12 2x2 2.52 7.28 0.91
42 13 2x2 2.61 6.64 0.89
43 14 4x5 2.68 12.25 1.10
44 15 1x2 1.77 6.11 0.80
45 22 1x1 1.00 6.97 1.23
46 46 1x1 1.00 10.56 1.11

Figure 3.14: Summary of register blocking optimization on a MIPS R10000

31

Matrix Block Size Fill Overhead Mops Speedup

1 45 8x8 1.00 186.05 3.10
2 40 8x8 1.00 87.25 1.44
3 38 2x2 1.12 67.68 1.42
4 4 2x2 1.07 66.93 1.31
5 37 2x2 1.00 66.49 1.35
6 6 2x2 1.23 59.61 1.15
7 7 2x2 1.22 60.04 1.14
8 16 2x2 1.10 64.38 1.24
9 1 2x2 1.25 59.24 1.16
10 8 2x2 1.21 57.41 1.08
11 39 2x2 1.23 61.17 1.37
12 43 2x2 1.24 55.94 1.05
13 41 2x2 1.28 59.83 1.16
14 25 2x2 1.33 113.30 1.00
15 44 2x2 1.35 46.72 1.06
16 26 2x2 1.39 108.17 1.00
17 19 2x2 1.79 41.29 0.77
18 23 2x2 1.79 67.28 1.11
19 24 2x1 1.01 79.67 1.00
20 11 1x2 1.17 79.76 0.71
21 36 2x2 1.81 51.97 0.80
22 2 1x1 1.00 50.94 1.00
23 3 2x2 2.02 75.94 1.17
24 5 1x1 1.00 99.51 1.00
25 9 1x1 1.00 38.72 1.03
26 17 1x1 1.00 54.63 0.90
27 18 1x1 1.00 60.20 1.12
28 20 1x1 1.00 82.28 1.10
29 21 1x1 1.00 70.88 1.17
30 28 1x1 1.00 61.00 1.00
31 29 1x1 1.00 61.00 1.00
32 30 1x2 1.40 49.92 1.00
33 32 1x1 1.00 48.10 1.00
34 33 1x1 1.00 67.86 1.00
35 34 1x1 1.00 53.58 1.00
36 35 1x1 1.00 30.44 1.06
37 42 1x1 1.00 70.87 1.17
38 27 2x2 1.96 58.54 0.50
39 31 1x1 1.00 72.33 1.00
40 10 1x1 1.00 42.57 1.01
41 12 1x1 1.00 69.54 1.22
42 13 1x1 1.00 65.76 0.94
43 14 2x1 1.52 120.59 1.00
44 15 1x1 1.00 54.19 1.33
45 22 1x1 1.00 16.41 0.92
46 46 1x1 1.00 51.43 1.00

Figure 3.15: Summary of register blocking optimization on an Alpha 21164

32

Matrix Block Size Fill Overhead Mops Speedup

1 45 11x11 1.00 17.86 1.68
2 40 4x4 1.00 14.96 1.49
3 38 3x3 1.12 13.18 1.33
4 4 3x3 1.06 14.01 1.43
5 37 4x4 1.00 13.34 1.48
6 6 3x3 1.00 14.90 1.52
7 7 3x3 1.00 16.37 1.56
8 16 3x3 1.11 13.39 1.36
9 1 3x3 1.02 14.88 1.49
10 8 2x2 1.21 11.63 1.17
11 39 2x2 1.23 10.09 1.10
12 43 2x2 1.24 11.38 1.15
13 41 2x2 1.28 10.81 1.10
14 25 2x2 1.33 14.52 1.23
15 44 2x2 1.35 8.98 1.06
16 26 2x2 1.39 12.02 0.87
17 19 2x2 1.79 7.70 0.80
18 23 2x2 1.79 7.01 0.82
19 24 2x1 1.01 22.12 1.33
20 11 1x2 1.17 10.34 1.07
21 36 2x2 1.81 7.55 0.77
22 2 1x1 1.00 8.49 1.00
23 3 2x2 2.02 6.55 0.76
24 5 2x2 2.08 6.80 0.70
25 9 1x1 1.00 7.80 1.01
26 17 1x1 1.00 7.72 1.03
27 18 2x2 2.34 5.39 0.65
28 20 1x1 1.00 9.02 1.00
29 21 1x1 1.00 7.88 1.00
30 28 1x1 1.00 20.33 1.20
31 29 1x1 1.00 16.94 1.00
32 30 3x2 2.05 13.86 0.67
33 32 1x1 1.00 20.03 1.50
34 33 1x1 1.00 28.27 1.50
35 34 1x1 1.00 14.88 0.83
36 35 1x1 1.00 7.09 1.02
37 42 1x1 1.00 8.05 1.01
38 27 2x2 1.96 16.25 0.67
39 31 1x1 1.00 24.11 1.00
40 10 1x1 1.00 8.55 0.99
41 12 1x2 1.56 5.86 0.82
42 13 1x1 1.00 7.15 1.03
43 14 3x2 2.39 6.29 0.56
44 15 1x1 1.00 6.25 1.02
45 22 1x1 1.00 4.31 0.99
46 46 1x1 1.00 7.06 1.04

Figure 3.16: Summary of register blocking optimization on a PowerPC 604e

33

1 2 3 4 5 6 7 8 9 10
0

5

10

15
Register blocking overhead in time

matrices

se
co

nd
s

overhead of computing fill overhead
overhead of reorganizing the matrix

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

1100
Ratio of overhead to time saved

matrices

ov
er

he
ad

/(
un

op
tim

iz
ed

 ti
m

e−
op

tim
iz

ed
 ti

m
e)

overhead of computing fill overhead
overhead of reorganizing the matrix

Figure 3.17: Pre-computation overhead of register-blocked multiplication on 10

sparse matrices taken on a 167 MHz UltraSPARC: The left �gure shows the time
used to perform each of the two steps, determining the block size and reorganizing the
matrix. The right �gure shows the same values divided by the savings of blocked vs.
unblocked code; this tells us the number of times a matrix-vector multiplication would have
to be performed to amortize the overhead.

3.4 Analysis of Overhead

As we have seen, there are overheads in performing register blocking. The over-

heads can be distinguished by whether it is a run-time overhead that is paid every time the

multiplication is performed, or a preprocessing overhead that is paid only the �rst time the

matrix structure is used. In iterative solvers, for example, a sparse structure may be reused

many times with di�erent numeric values. The run-time overhead was already analyzed in

the previous section, and we analyze the pre-computation overhead in this section.

There is more than one source of pre-computation overhead seen when applying

register blocking. The �rst of these is the price of determining the block size by using a

performance model. As noted earlier, the cost of doing an exact �ll overhead computation

was very expensive, so we developed the heuristic based on sampling a subset of the rows

and columns in a single pass. The second source of overhead is the time used to reorga-

nize the matrix in the blocked format. Both of these overheads are paid only once, while

34

computations like matrix-vector multiplication may be performed many times on the same

sparse matrix structure.

Figure 3.17 shows the amount of these two pre-computation overheads, both in

absolute time and in the ratio of time spent in overhead to time saved by the optimization.

If the block size selection and reorganization are being done at runtime, the �gure in the

right shows the number of sparse matrix-vector multiplications that must be done before

the optimization pays o�. While these numbers are typically as high as several hundreds,

the optimizations are still likely to be useful in practice, since computations such as iterative

solvers repeat the matrix vector multiplication on the same matrix structure many times.

If the user is willing to change the matrix representation throughout the application, which

is likely if the sparse matrix library is properly encapsulated, the cost of reorganization can

be avoided. In addition, there are many application domains in which the block size could

be determined for an entire class of applications. For example, dense k � k sub-blocks will

appear in Finite Element problems with k degrees of freedom. Although di�erent �nite

element problems may produce di�erent sparse matrix structures, the block size chosen for

one is likely to work well for others with similar structures (e.g., from the same problem do-

main) and the same number of degrees of freedom. The sparse BLAS interface standardized

by the BLAS Technical Forum accommodates such need to specify the known property of

the matrix by a user, and suggests that a user is allowed to provide hints about the matrix

when the matrix is constructed.

3.5 Summary

In this chapter, we have studied register blocking optimization. We have learned

that �nding a right block size with low �ll overhead and good performance for the target

machine is important for register blocking, and the decision is dependent on the nonzero

structure of the sparse matrix and the machine architecture. Realizing that, we have de-

veloped a model to determine the block size for a given matrix and a given machine.

As seen from the performance results on a set of test matrices, the matrices with

dense blocks (in the top of the list in �gure 2.5) have great speedup from register blocking.

As a result of this study, we suggest the following future work. First, currently

we use the same multiplication code across machines, with the understanding that a small

change in source code can make signi�cant di�erences on various machines and compilers.

35

PHiPAC (Portable High Performance ANSI C) [8] and ATLAS (Automatically Tuned Linear

Algebra Software) [70] generate di�erent versions of code for dense matrix multiplications

and choose the correct version of code for a target machine by compiling the code and

measuring the actual performance with search scripts. Similarly, the code generator used

in this study may be expanded to generate variants of sparse matrix-vector multiplication

code and use a di�erent code for a given target machine to obtain better performance by

using search method.

Second, in the analysis of overhead, we note that the run-time overhead of register

blocking results from zero �lls. In order to decrease the �ll overhead, it is possible to mix

variable block sizes in one matrix. This incurs a tag for each block to identify block size,

and a branch statement for each block to execute the right routine. By storing blocks of the

same size together, this overhead can be avoided, but it may reduce the chance of exploiting

spatial locality because consecutive elements in the matrix can be stored in separate places

if they are in di�erent-sized block. Toledo [68] uses this scheme to store 1x2 and 2x2 blocks

together. We have not considered this hybrid method because the number of allowable

block sizes is large for our case. However, in a situation where the block size is limited to

small range, this variant scheme would be worth trying.

36

Chapter 4

Cache Blocking Optimization

In this chapter we describe optimization techniques for improving cache utilization.

The cost of accessing main memory on modern microprocessors is in the tens to hundreds

of cycles, so minimizing cache misses can be critical to high performance. As with register

blocking, the basic idea is to reorganize the matrix data structure and associated compu-

tation to improve the reuse of data in the source vector, without destroying the locality

in the destination vector. Unlike register blocking, the set of values in the cache is not

under complete control of the software; hardware controls the selection of data values in

each level of cache according to its policies on replacement, associativity, and write strategy

[34]. More importantly, the caches can hold thousands of values, while registers only hold

tens of values, so it is not practical to �ll in a rectangular block of a sparse matrix so that

the corresponding source and destination vector values �ll the cache. Instead, we rearrange

the computation so that a block of values in the matrix are accessed near each other in

time, but retain the sparse structure of the matrix, and avoid adding any additional zero

elements.

We consider two approaches to a cache blocking algorithm, one that reorganizes the

data structure prior to computation, and another that keeps the data structure unmodi�ed

but reorganizes the computation to work on logical blocks of the matrix. The approaches are

described and compared in section 4.1. Section 4.2 presents the performance results of cache

blocking on the set of matrices from chapter 2 as well as a large set of randomly generated

matrices. Cache blocking is most e�ective on matrices that are very large and have a

random structure; a speci�c example of such a matrix comes from a data mining algorithm

used for document searching on the web, so the more detailed performance studies, such

37

R

Ccache

cache

Figure 4.1: Cache-blocks in a sparse matrix: The gray areas are sparse matrix blocks
that contain nonzero elements in the rcache � ccache rectangle. The white areas contain no
nonzero elements, and are not stored.

as the comparison between blocking methods, focus on that matrix. Section 4.3 evaluates

the overhead of performing cache blocking. Roughly speaking, the matrices that bene�t

most from register blocking are the opposite of those that bene�t from cache blocking, but

in section 4.4 we look at the performance results of combining the two optimizations. We

summarize the cache blocking results in section 4.5.

4.1 Description of Cache Blocking

The idea of cache blocking optimization is to keep ccache elements of the source

vector x in the cache along with rcache elements of the destination vector y while an rcache�

ccache block of matrix A is multiplied by this portion of the vector x. The entries of A need

not be saved in the cache, but since this decision is under hardware control, interference

between elements of the matrix and the two vectors can be a problem.

To simplify the code generation problem and to limit the range of experiments, we

start with the assumption that cache blocks within a single matrix should have a �xed size.

In other words, rcache and ccache are �xed for a particular matrix and machine. This means

that logical block size is �xed, although the amount of data and computation may not be

uniform across the blocks, since the number of nonzeros in each block may vary. Figure 4.1

shows a matrix with �xed size cache blocks. Note that the blocks need not begin at the

same o�sets in each row, unlike those in the implementation of register blocking.

Unlike register blocking, creating dense rcache � ccache blocks by �lling in zeros

is impractical, since it would incur excessive storage and computation overhead. Instead,

we consider two strategies for cache level blocking. The �rst optimization, described in

38

section 4.1.1, involves a preprocessing step to reorganize the matrix so that each block is

stored contiguously in main memory. This is referred to as static cache blocking, because

the location of the cache blocks are determined prior to the execution of the matrix vector

multiplication. The second optimization, described in section 4.1.2, does not involve any

data structure reorganization, but changes the order of computation by retaining a set of

pointers into each row of the current logical block. This will be referred to as dynamic

cache blocking, because the blocks are determined only as the matrix vector multiplication

proceeds. Dynamic cache blocking avoids any preprocessing overhead, but as will be seen,

it incurs more runtime overhead than static cache blocking.

4.1.1 Static Cache Blocking

In static cache blocking, the sparse matrix is reorganized by changing the order of

the column index array and nonzero elements of the sparse matrix, and augmenting another

array of indices which points to the beginning of each block. Before reorganization, nonzero

elements of each row are stored sequentially in memory. When the matrix is reorganized

for cache blocking, the rows of the matrix are broken into groups of rcache rows. Within

each group of rows, starting from the column with the nonzero element whose column index

is the smallest, any nonzeros that appear in ccache columns are grouped in one rectangular

area, which is stored similarly to the compressed sparse row (CSR) format.

The data structures used in a cache-blocked matrix are shown in �gure 4.2. The

top level array is called row start and it points to the beginning of each row of blocks. In

the �gure, there are two rows of blocks, so the row start matrix has three entries, the last

pointing past the end of the block ptr array. The block ptr array points to the beginning

of each row within a block, and the col idx and value arrays store the column indices and

values of each nonzero element. The main di�erence between this and the CSR format is

the extra level of indirection for the blocks.

The code in �gure 4.3 multiplies a cache blocked sparse matrix times a dense vector

x. In the code, b i is an index into row start array and b j is an index into block ptr array.

The variable end r is used for the last group of rows when the rcache does not divide the

number of rows in the matrix. The index b j increases by end r because each sparse block

has that many block ptr elements for each row within the block. The nonzero elements are

being accessed in the order in which they are stored in memory, which is important for

39

AA
AAA00

AAAA
A

AAAA
A00

AAAA
AAAA

0 0
0 0 0
0

0
0

0 0
0

0
0 0 0

0
0

0

0 0
0
0
0

0

0

0
0

0 0
00

0 0
0 0

0

A

0603

14 17

21

0

22 25 26

30 34

42 43 46 47

A51 54

61 62 65 67

72 73 74 75

00

A A A A A A A00

0

value

col_idx

03 21 22 30

00 3 1 2 6

06

4

14

=
block_ptr

row_start

0 52 2 4 6 11 19 24... ...

8 16

Figure 4.2: Storage format of a cache-blocked sparse matrix: In cache blocking, each
block is stored in sparse format, similarly to CSR, using data structures block ptr, col idx
and value. This example matrix has 4, 4 � 4 blocks. The row start array points to the
beginning of each row of blocks, while the block ptr array keeps pointers to the beginnings
of individual rows inside those blocks.

preserving spatial locality in the matrix. Referring back to �gure 4.1, this means that while

processing one gray block, the portions of the x and y vectors that correspond to that block

are accessed repeatedly. The sub-arrays of x and y will sit in the cache during processing,

as long as they both �t and there is no interference between the two sub-arrays and the

matrix entries.

By examining the code, one can see some additional overhead relative to the

simpler CSR routine, although the inner loops are roughly the same. We will examine the

performance more carefully in section 4.1.3, but even without that quantitative analysis, it

is likely that the major disadvantage of static cache blocking is the preprocessing overhead,

since reorganization of the matrix is involved.

4.1.2 Dynamic Cache Blocking

In dynamic cache blocking optimization, we change the multiplication code in such

a way that the multiplications are performed in the same order as in static cache blocking,

but the data structure is unchanged. This has the locality advantages of static cache

blocking with respect to the source and destination vectors, but avoids the preprocessing

overhead.

The data structures used for dynamic cache blocking are illustrated in �gure 4.4.

While multiplying a particular block, a set of pointers into each row of the block is main-

tained. Unfortunately, this adds considerable complexity to the inner loop and does not

access matrix elements sequentially, since each block is not stored contiguously. As we

40

void block_smvp_sparse (int r, int m,

int *row_start, int *block_ptr,

double *value, int *col_idx,

double *src, double *dest)

{

int i, j;

int b_i, b_j, b_m;

int end_r;

b_m = (m+r-1)/r;

for (b_i=0; b_i<b_m; b_i++){

end_r = (b_i+1 < b_m) ? r : m - b_i*r ;

for (b_j=row_start[b_i]; b_j<row_start[b_i+1]; b_j+=end_r){

for (i=0; i<end_r; i++){

double t=0;

for (j=block_ptr[b_j+i]; j<block_ptr[b_j+i+1]; j++)

t += value[j] * src[col_idx[j]];

dest[b_i*r+i] += t;

}

}

}

}

Figure 4.3: Code for multiplying a cache-blocked sparse matrix: In the code, b i is
used as an index into the row start array, b j is an index into the block ptr array, and j is
an index into the value and col idx arrays.

41

R cache

In memory

Figure 4.4: Memory accesses in dynamic cache blocking: The pointers into the rows
in one cache block keep track of the cache block boundaries. Rows in the same cache block
are not contiguous in memory.

will see in the next section, this implementation does not speed up very much because the

run-time overhead of managing pointers negates the e�ect of cache blocking.

4.1.3 Performance Comparison of Static and Dynamic Blocking

We now compare the performance of static and dynamic cache blocking, focusing

on a matrix used in web search engines with algorithms such as Latent Semantic Indexing

(LSI). The matrix is indexed by a set of keywords and a set of documents, with the number

of documents being much larger than the set of keywords. The full matrix, obtained from

the Inktomi company, is 100K � 2:6M with 380M nonzero elements. These experiments

use the �rst 10K � 256K block. We refer to this matrix as \the LSI matrix," although

other algorithms are often used for this type of processing and the use of matrix-vector

multiplication in the inner loop is very common. For example, Dhillon and Modha [21]

use the same type of processing to cluster documents in large text data. We have chosen

to concentrate on the LSI matrix in this evaluation, because cache blocking proves to be

particularly e�ective, so the comparison is more dramatic. We have looked at the relative

value of static versus dynamic blocking on other matrices, and the result is the same.

Section 4.2 will do a more thorough comparison of cache blocking on other matrices.

42

10
3

10
4

10
5

0

2

4

6

8

10

12

14

16

18

20
Performance of Static Cache blocking

number of columns in cache block

M
flo

ps
/s

ec
.

base perf.

128x

256x

512x

1024x

2048x

4096x

8192x

16384x

10
3

10
4

10
5

0

2

4

6

8

10

12

14

16

18

20
Performance of Dynamic Cache blocking

number of columns in cache block

M
flo

ps
/s

ec
.

base perf.

128x

256x

512x

1024x

2048x

4096x

8192x

16384x

Figure 4.5: Performance of static and dynamic cache-blocking on the LSI matrix:

This is measured on 167MHz Ultra SPARC I. Each line is for di�erent number of rows in a
cache block, rcache and the horizontal axis is the number of columns in a cache block, ccache.
The horizontal axis is a log scale.

The graphs in �gure 4.5 show the performance of matrix-vector multiplication for

static (left) cache blocking and dynamic (right) cache blocking, varying the size of cache

blocks. The horizontal line at 5.8 Mops shows the base performance of the multiplication

without any cache blocking. The static cache blocking signi�cantly improves the perfor-

mance of the LSI matrix as shown in �gure 4.5. The best performance is 18.0 Mops, which

is obtained for 16K � 16K cache blocks. The unblocked performance is only 5.8 Mops,

so the speedup is roughly 3.1. As shown in the �gure, the dynamic cache blocking was

proven not to be as bene�cial as static cache blocking. Because most applications perform

several matrix vector multiplications with the same matrix structure, this indicates that it

is probably worth paying the preprocessing cost of static blocking. We also note in �gure

4.5 that cache blocking for small block sizes degrades the performance, because even in

the static case there are runtime costs associated with cache blocking, and the bene�ts of

improved locality are too small to outweigh these costs.

We now study the cache behavior of both implementations to see how cache block-

ing actually changes the behavior of the cache. Figures 4.6 and 4.7 show cache behavior

during multiplication, and help explain the reason that static cache blocking is so much

more e�ective than dynamic cache blocking. The �gures at the left show the L2 cache hit

ratios and the �gures at the right show the total number of L2 cache accesses. They are

43

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1
Cache hit ratio in static cache−blocked mutiplication

number of columns in cache block

C
ac

he
 h

it
ra

tio

128x

256x

512x

1024x

2048x

4096x

8192x

16384x

10
3

10
4

10
5

0

1

2

3

4

5

6

7
x 10

7 Number of cache accesses in static cache−blocked mutiplication

number of columns in cache block

nu
m

be
r

of
 c

ac
he

 a
cc

es
se

s

128x

256x

512x

1024x

2048x

4096x

8192x

16384x

Figure 4.6: Cache behavior of static cache-blocking on the LSI matrix: The left
�gure shows the L2 cache hit ratio and the right �gure shows the total number of cache
accesses.

measured using an event counter in an UltraSPARC I. A lower number of L2 cache accesses

means that more memory accesses were resolved in the L1 cache (L1 cache hit). In static

cache blocking, while the cache hit ratio is decreasing as the cache block size gets larger,

the total number of cache references rapidly decreases. The peak performance in �gure 4.5

(left) occurs when the number of L2 cache accesses is low, but before the cache hit ratio

drops dramatically, as it does on the right end of �gure 4.6 (left). The cache hit ratio is

low in dynamic cache blocking because the elements in a block in �gure 4.4 are not stored

in contiguous locations and the number of extra pointers to be managed increases as the

number of rows in the cache block increases. The total number of L2 cache references is

larger (almost double) than that of static cache blocking, for the same reason.

This examination of cache misses con�rms that static cache blocking is more ef-

fective than dynamic blocking, backing up the timing results of the previous section. In

particular, it shows that the performance di�ers due to variations in the data cache be-

havior, rather than being an artifact of our particular implementation of the two blocking

strategies, or unrelated compiler or architecture e�ects.

44

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1
Cache hit ratio in dynamic cache−blocked mutiplication

number of columns in cache block

C
ac

he
 h

it
ra

tio

128x

256x

512x

1024x

2048x

4096x

8192x

16384x

10
3

10
4

10
5

0

1

2

3

4

5

6

7
x 10

7 Number of cache accesses in dynamic cache−blocked mutiplication

number of columns in cache block

nu
m

be
r

of
 c

ac
he

 a
cc

es
se

s

128x

256x

512x

1024x

2048x

4096x

8192x

16384x

Figure 4.7: Cache behavior of dynamic cache-blocking on the LSI matrix: The
left �gure shows the L2 cache hit ratio and the right �gure shows the total number of cache
accesses.

4.2 Performance of Cache Blocking

This section provides a more thorough analysis of the bene�ts of cache blocking,

using the idea of static cache blocking. It presents data on the e�ectiveness of cache blocking

on all the matrices in our set, then looks at performance on some randomly generated

matrices to help explain the highly variable speedups observed on that set.

4.2.1 Performance on Matrix Benchmark Suite

The results of applying the static cache blocking optimization to a set of the

matrices from chapter 2 are shown in �gures 4.8 and 4.9 for the UltraSPARC I and MIPS

R10000, respectively. The left graph in each �gure shows the Mop rate of both optimized

and unoptimized code, and the right side shows the calculated speedups.

The cache block size varies from 64�64 to 64K�64K, including rectangular sizes,

and the highest performance was taken for the speedup in the increment of powers of two.

Tables 4.10 and 4.11 summarize the block sizes with the highest performance. In general,

speedup is better on a MIPS than on an UltraSPARC. There are two reasons for this. First,

the performance gap between cache and memory accesses is larger on MIPS R10000. (The

L1 and L2 cache miss penalties are 26 and 589 nanoseconds on a MIPS R10000 and 36 and

268 nanoseconds on an UltraSPARC, according to benchmarks.) Second, the MIPS R10000

45

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60
Performance of Cache blocked multiplication on an UltraSPARC

matrices

M
F

LO
P

S

Base performance
Cache blocked performance

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4
Speedup of cache blocked multiplication on an UltraSPARC

matrices
S

pe
ed

up

Figure 4.8: Performance of cache blocked multiplication on an Ultra SPARC I.

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60
Performance of Cache blocked multiplication on a MIPS R10000

matrices

M
F

LO
P

S

Base performance
Cache blocked performance

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4
Speedup of cache blocked multiplication on a MIPS R10000

matrices

S
pe

ed
up

Figure 4.9: Performance of cache blocked multiplication on a MIPS R10000.

46

system used had caches four times larger than those of the UltraSPARC. And it is also

observed that the performance of the LSI matrix is noticeably good on an UltraSPARC,

where its speedup reaches 3.1. This is caused by particularly slow base performance (5.8

Mops) of the LSI matrix. The reason behind this is not clearly understood, but it seems

to be due to the particular size of the matrix and the way it interferes in the cache.

4.2.2 Performance on Random Matrices

As stated earlier, cache blocking is extremely bene�cial to the LSI matrix, while

it does not improve the performance of other matrices in the test matrix set. In order to

explain why cache blocking is particularly e�ective on the LSI matrix, we measured the

performance of cache blocking on synthetically generated random matrices.

The nonzero pattern of the LSI matrix is unusual compared to most scienti�c

applications, in that it has little discernible structure. Combined with the fact that the

size of the matrix is very large, the performance of multiplication on LSI matrix before

optimization is very low (5.8 Mops) relative to the other matrices (10{25 Mops). So,

cache blocking seems to be e�ective on large matrices with evenly distributed nonzeros,

without spots where nonzero elements are clustered, or with only a few such spots.

As further evidence of this previous conjecture, we have generated large synthetic

sparse matrices whose nonzero elements were randomly distributed, and measured their

performance on these random matrices, varying the density of the nonzero elements. The

results are shown in �gure 4.12, with the x-axis varying the density of nonzero elements be-

tween 0.02% and 0.26%. The size of the randommatrix was 64K�64K, and the performance

was measured for di�erent cache block sizes. The performance of LSI multiplication for the

same cache block sizes are shown in the same �gure as separate points above x = 0:15%,

the density of the LSI matrix. The performance characteristics of the LSI matrix are visibly

similar to those of a random matrix.

4.2.3 Measurement of Randomness of a Sparse Matrix

A performance study using a set of test matrices found that a sparse matrix tends

to bene�t more when the nonzero structure of the matrix is random. So, it is useful to

develop a measurement of how randomly the nonzero elements are spread in the sparse

matrix.

47

Matrix Matrix Size NZ Block Size Mops Speedup

1 45 1000x1000 1000000 512x512 26.10 1.16
2 40 21200x21200 1488768 8192x8192 23.54 1.10
3 38 16146x16146 1015156 65536x65536 23.93 1.07
4 4 30237x30237 1450163 256x256 23.02 0.99
5 37 62424x62424 1717792 65536x65536 19.94 0.98
6 6 13965x13965 968583 1024x1024 23.80 1.04
7 7 24696x24696 1751178 1024x1024 23.82 1.12
8 16 54870x54870 2677324 128x128 23.09 1.09
9 1 45330x45330 3213618 128x128 23.42 1.15
10 8 52329x52329 2698463 256x256 23.17 1.13
11 39 23560x23560 484256 512x512 20.42 1.04
12 43 19779x19779 1328611 512x512 23.56 1.13
13 41 16614x16614 1096948 128x128 23.61 1.04
14 25 4134x4134 94408 16384x16384 21.79 1.17
15 44 41092x41092 1683902 4096x4096 21.26 1.09
16 26 2529x2529 90158 4096x4096 23.56 1.12
17 19 22560x22560 1014951 256x256 23.86 1.03
18 23 17758x17758 126150 2048x2048 13.62 1.02
19 24 4929x4929 33185 2048x2048 18.67 1.07
20 11 10672x10672 232633 8192x8192 21.10 1.13
21 36 7320x7320 324784 256x256 23.56 1.04
22 2 13935x13935 63679 65536x65536 12.85 0.94
23 3 13436x13436 94926 4096x4096 15.16 0.99
24 5 9540x9540 207308 16384x16384 20.43 1.08
25 9 74752x74752 596992 256x256 12.85 0.96
26 17 36057x36057 227628 32768x32768 12.70 0.97
27 18 36519x36519 326107 65536x65536 16.00 1.10
28 20 12328x12328 342828 32768x32768 20.02 1.10
29 21 26068x26068 177196 1024x1024 12.25 1.09
30 28 3937x3937 25407 16384x16384 21.98 1.12
31 29 3937x3937 25407 16384x16384 23.14 1.14
32 30 3312x3312 20793 8192x8192 27.25 1.02
33 32 5005x5005 20033 32768x32768 15.58 0.91
34 33 2205x2205 14133 1024x1024 18.51 0.92
35 34 3564x3564 22316 8192x8192 19.21 1.11
36 35 76480x76480 329762 16384x16384 11.17 1.02
37 42 26064x26064 177168 128x128 12.17 1.08
38 27 765x765 24382 16384x16384 52.75 1.05
39 31 991x991 6027 16384x16384 21.33 0.97
40 10 31802x31802 2164210 512x512 22.01 1.20
41 12 9648x77137 260785 4096x4096 16.41 1.15
42 13 8926x73948 246614 128x128 15.75 1.01
43 14 3000x13525 50284 32768x32768 22.44 0.96
44 15 15240x72600 304800 512x512 12.53 1.03
45 22 10000x255943 3712489 16384x16384 18.03 3.10
46 46 64000x64000 6144000 16384x16384 16.85 1.51

Figure 4.10: Summary of cache blocking optimization on an UltraSPARC I

48

Matrix Matrix Size NZ Block Size Mops Speedup

1 45 1000x1000 1000000 8192x8192 12.43 1.21
2 40 21200x21200 1488768 512x512 11.94 1.19
3 38 16146x16146 1015156 2048x2048 11.89 1.22
4 4 30237x30237 1450163 32768x32768 11.61 1.21
5 37 62424x62424 1717792 8192x8192 11.23 1.21
6 6 13965x13965 968583 2048x2048 12.08 1.25
7 7 24696x24696 1751178 128x128 12.09 1.21
8 16 54870x54870 2677324 65536x65536 11.76 1.22
9 1 45330x45330 3213618 128x128 11.97 1.19
10 8 52329x52329 2698463 256x256 11.69 1.17
11 39 23560x23560 484256 256x256 11.25 1.19
12 43 19779x19779 1328611 1024x1024 12.10 1.20
13 41 16614x16614 1096948 4096x4096 11.92 1.24
14 25 4134x4134 94408 1024x1024 13.48 1.21
15 44 41092x41092 1683902 512x512 11.07 1.15
16 26 2529x2529 90158 4096x4096 13.88 1.20
17 19 22560x22560 1014951 512x512 11.73 1.21
18 23 17758x17758 126150 8192x8192 10.48 1.13
19 24 4929x4929 33185 32768x32768 11.29 1.14
20 11 10672x10672 232633 32768x32768 11.54 1.16
21 36 7320x7320 324784 128x128 11.84 1.20
22 2 13935x13935 63679 2048x2048 9.98 1.13
23 3 13436x13436 94926 65536x65536 11.19 1.24
24 5 9540x9540 207308 65536x65536 11.91 1.23
25 9 74752x74752 596992 256x256 9.40 1.13
26 17 36057x36057 227628 65536x65536 9.23 1.10
27 18 36519x36519 326107 256x256 9.78 1.10
28 20 12328x12328 342828 256x256 11.10 1.20
29 21 26068x26068 177196 256x256 9.98 1.14
30 28 3937x3937 25407 1024x1024 11.34 1.16
31 29 3937x3937 25407 512x512 11.18 1.15
32 30 3312x3312 20793 32768x32768 11.53 1.16
33 32 5005x5005 20033 1024x1024 10.10 1.17
34 33 2205x2205 14133 512x512 11.20 1.14
35 34 3564x3564 22316 4096x4096 11.23 1.15
36 35 76480x76480 329762 16384x16384 8.15 1.14
37 42 26064x26064 177168 512x512 9.89 1.13
38 27 765x765 24382 16384x16384 13.99 1.20
39 31 991x991 6027 8192x8192 11.20 1.15
40 10 31802x31802 2164210 512x512 11.31 1.20
41 12 9648x77137 260785 2048x2048 10.42 1.11
42 13 8926x73948 246614 256x256 10.72 1.16
43 14 3000x13525 50284 65536x65536 13.05 1.18
44 15 15240x72600 304800 2048x2048 10.26 1.15
45 22 10000x255943 3712489 65536x65536 9.81 1.46
46 46 64000x64000 6144000 32768x32768 9.81 1.15

Figure 4.11: Summary of cache blocking optimization on a MIPS R10000

49

0.02 0.06 0.1 0.15 0.2 0.26
0

2

4

6

8

10

12

14

16

18

20
Performance of Static Cache blocking on Random Matrices

Density of Random Matrices

M
flo

ps

128x128 block
256x256 block
512x512 block
1024x1024 block
2048x2048 block
4096x4096 block
8192x8192 block
16384x16384 block
32768x32768 block
65536x65536 block

Figure 4.12: Performance of cache-blocked multiplication on random matrices:

It is measured for 64K � 64K random matrices with varying densities 0.02{0.26% on an
UltraSPARC I. Each line represents di�erent cache block sizes, and the separate points at
0.15% show the performance of the LSI matrix, measured in Mops.

50

We used a bisection of the matrix to measure this property in our experiment. The

ratio of the number of edge-cuts to the number of edges is used as a quanti�ed measurement

of this property. If the ratio is large, the matrix is considered to be randomly distributed.

But there is a limitation to using a bisection of a matrix: a matrix is interpreted as an undi-

rected graph when it is square and symmetric. Since we include rectangular, non-symmetric

matrices in our experiment, we used a hyper-graph representation of the matrix to perform

bisection of the matrix, due to its ability to represent a rectangular or non-symmetric matrix.

In the hyper-graph representation of a matrix, each row (column) becomes one hyper-edge,

and one hyper-edge connects multiple nodes which are nonzero columns (rows) in the row

(column). We used the hMETIS hyper-graph partitioner package [40], developed at the

University of Minnesota, to bisect a hyper-graph. This package implements a multilevel

algorithm [33] for graph partitioning.

In �gure 4.13 we show the measurement of the ratio for a subset of test matrices.

The matrices are matrices 11, 15, 4, 6, 7, 10, 8, 14, 5, 29, 44, 45 and 46 in �gure 2.5.

The �rst ten matrices are also used in section 3.2.2 to validate the performance model for

register blocking. Matrix 44 is a linear programming matrix, matrix 45 is the LSI matrix,

and matrix 46 is a random matrix. We can verify that the random matrix has the highest

value, which is close to 1, and the LSI matrix also has a high value, but not as high as that

of the random matrix. Other matrices have very low values.

4.3 Overhead of Cache Blocking

The overhead of reorganizing the LSI matrix for static cache blocking is shown

in �gure 4.14. For comparison, the time spent for non-optimized multiplication and for

cache-blocked multiplication are shown as well. For the optimal size of a cache block (16K

� 16K), the ratio of reorganization time to cache blocking bene�t of cache blocking (the

di�erence between non-optimized computation time and cache blocked computation time)

is 1.25. Multiplication is expected to be repeated many times in this application, so this

one-time overhead is easily amortized.

51

1
2

3
4

5
6

7
8

9
10

11
12

13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1
R

andom
ness of M

atrices

m
atrices

number of edgecuts / number of edgesF
igu

re
4.13:

R
a
n
d
o
m
n
e
ss

m
e
a
su
re

o
n
te
st

m
a
tric

e
s

7
8

9
10

11
12

13
14

15
16

17
0

0.5 1

1.5 2

2.5 3

3.5 4

log
2 (num

ber of colum
ns in cache block)

seconds

S
tatic cache blocking overhead (num

ber of row
s in cache block=

16384)

16.5
9.1

5.2
tim

e for basic com
putation

tim
e for static cache blocked com

p.
tim

e for reorganizing the m
atrix

7
8

9
10

11
12

13
14

0

0.5 1

1.5 2

2.5 3

3.5 4
S

tatic cache blocking overhead (num
ber of colum

ns in cache block=
16384)

log
2 (num

ber of row
s in cache block)

seconds

tim
e for basic com

putation
tim

e for static cache blocked com
p.

tim
e for reorganizing the m

atrix

F
igu

re
4.14:

O
v
e
rh
e
a
d
o
f
re
o
rg
a
n
iz
in
g
th
e
m
a
trix

fo
r
sta

tic
c
a
ch
e
-b
lo
ck
in
g
o
n
th
e

L
S
I
m
a
trix

.
T
h
e
left

�
gu
re

sh
ow

s
th
e
overh

ead
vary

in
g
th
e
len

gth
of
cach

e
b
lo
ck

colu
m
n
s

from
128

to
126K

.
T
h
e
righ

t
�
gu
re

sh
ow

s
th
e
overh

ead
vary

in
g
th
e
len

gth
of

cach
e
b
lo
ck

row
s
from

128
to

16K
.
T
h
e
th
ree

b
ars

rep
resen

t
tim

e
sp
en
t
for

n
on
-op

tim
ized

com
p
u
tation

(w
h
ite

b
ar),

tim
e
sp
en
t
for

static
cach

e-b
lo
cked

com
p
u
tation

(gray
b
ar),

an
d
overh

ead
of

reorgan
izin

g
th
e
sp
arse

m
atrix

(b
lack

b
ar),

resp
ectively.

T
h
e
th
ree

b
lack

b
ars

on
th
e
left

ex
ceed

4
secon

d
s,
an
d
th
e
valu

es
are

w
ritten

at
th
e
top

.

52

4.4 Combining Cache Blocking with Register Blocking

After this study of register blocking and cache blocking optimization, we naturally

would like to assess the e�ectiveness of combining cache blocking and register blocking. We

implemented a combination of register and cache blocking and applied it to the set of test

matrices. The result is presented in �gures 4.15 and 4.16. These �gures show the speedup

of combined optimization, with comparison to the speedups of register blocking and cache

blocking alone on an UltraSPARC and a MIPS R10000.

We observe that the combined optimization generally fails to improve the perfor-

mance of a single optimization. Although the reason is unclear, we make following con-

jectures. While register blocking achieves speedup by reducing the number of load/store

operations, cache blocking improves performance by reducing the cost of those memory op-

erations. Rather than the bene�t from those optimizations coming from separate sources,

these optimizations obtain performance bene�ts from the same source. When they are

combined, the e�ect of one optimization is absorbed by the other, and fails to improve

the performance. So, the combination of the register blocking and cache blocking is not

recommended.

4.5 Summary

We have introduced a notion of cache blocking for sparse matrix-vector multipli-

cation. We aimed to improve cache performance by organizing the vector products in a way

that the elements of vector x can be kept in the cache and reused for the vector products

of the next row before they are removed from the cache.

We considered two di�erent implementations of cache blocking, static and dynamic.

In static cache blocking the matrix is preprocessed to reorganize itself in units of cache

blocks, and in dynamic cache blocking, this was done during multiplication. From the

experiments, static cache blocking was seen to be much better because there was no overhead

due to managing extra pointers during execution.

In the experiments performed with our full suite of matrices provided for this study,

cache blocking exhibited a dramatic performance improvement on a particular matrix used

in a data mining application, in which nonzero structures are random. Therefore we devised

a metric to determine how randomly the nonzero elements were distributed in the sparse

53

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4
Speedup of register + cache opt. on an UltraSPARC

matrices

S
pe

ed
up

Register blocking only
Cache blocking only
Register+Cache blocking

Figure 4.15: Speedup of register and cache blocked multiplication on an Ultra-

SPARC I

54

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4
Speedup of register + cache opt. on a MIPS R10000

matrices

S
pe

ed
up

Register blocking only
Cache blocking only
Register+Cache blocking

Figure 4.16: Speedup of register and cache blocked multiplication on a MIPS

R10000

55

matrix, using the bisection of the matrix.

We also combined register blocking and cache blocking optimizations in such a way

that a sparse matrix is blocked for registers and the reorganized matrix is again blocked for

cache. The performance result ware disappointing since the combination did not improve

the best performance of either optimization.

56

Chapter 5

Multiplication by Multiple Vectors

In this chapter we consider a generalization of matrix-vector multiplication in

which the sparse matrix is multiplied by a set of vectors. This operation, while less common

than the single vector case, is important in several applications. In particular, it occurs

in practice when there are multiple right-hand sides in an iterative solver, or in blocked

eigenvalue algorithms, such as block Lanczos [29, 30, 31, 49, 3] or block Arnoldi [64, 63, 46, 3].

Another application is image segmentation in videos, where a set of vectors is used as the

starting guess for a subsequent frame in the video [66].

Multiplying a sparse matrix by a set of vectors has much more potential for memory

hierarchy optimizations than the matrix-vector case. Matrix-vector multiplication accesses

each matrix element only once, whereas a matrix times a set of k vectors will access each

matrix element k times. While there is much more potential for high performance with

multiple vectors, the advantage will not be exhibited in straightforward implementations

without memory hierarchy optimizations. We therefore extend the optimization techniques

for register and cache blocking to handle multiple vectors. In particular, we use the same

register and cache blocked matrix formats, but change the code to access elements of the

vectors, allowing matrix elements to be reused.

In sections 5.1 and 5.2 we describe the algorithms for register and cache optimiza-

tions with multiple vectors. In section 5.3 we examine processes which can automatically

determine whether to block and what block sizes should be used. These techniques are

largely the same as those used for the single vector case, although the actual decisions for a

particular matrix and machine may be di�erent. In addition, as discussed in section 2.1.3,

there is a tradeo� between the speed of each multiplication and the convergence rate of

57

algorithms that use multiple vectors. As the number of vectors increases, the speed (Mop

rate) of each iteration in the algorithm increases. Each individual vector multiplication

is faster, but the number of iterations to convergence (measured by the number of indi-

vidual vectors multiplied) may increase. With this tradeo� in mind, we present extensive

performance data in section 5.4.

5.1 Register Blocking with Multiple Vectors

The use of multiple vectors essentially turns the problem into matrix-matrix mul-

tiplication. The performance numbers from optimized matrix algorithms shown in chapter

3 (�gure 3.8) indicate as much as an order of magnitude di�erence between matrix-matrix

and matrix-vector performance for dense matrices. As we have seen, the sparse case typi-

cally does not exhibit the same absolute performance as the dense one; however, the same

principle of increasing the number of arithmetic operations per matrix entry can improve

performance.

When multiplying a sparse matrix times a set of vectors, the code for multiplica-

tion by a single vector can be repeatedly used, but the extra locality advantages are not

likely to be exhibited under such conditions. Figure 5.1 illustrates the sequence of steps for

the algorithm, showing that two uses of the same matrix element are nz steps apart. Mul-

tiplication can be optimized for the memory hierarchy by moving those operations together

in time, as shown in �gure 5.2.

Our code generator produces code speci�cally for register-blocked multiplication

for a �xed set of vectors. The number of vectors is �xed and all of the loops across the

vectors are fully unrolled. For example, rather than producing the 2 � 2 register-blocked

multiplication code in �gure 5.3 it generates the code in �gure 5.4 for multiplying a 2x2

register-blocked matrix times 2 vectors. This code produces the access order shown in �gure

5.2. Because the loop is unrolled for the number of vectors, the code generator produces

di�erent versions depending on the number of vectors. The strategy of fully unrolling this

loop is used because the code generator is creating the inner kernels of a large computation;

if the number of vectors is very large, the loop over the vectors would be strip-mined, with

the resulting inner loop becoming one of these unrolled loops.

58

A

yy

y y

A x x

xx 00 01

10 111110

0100 00

10 11

01A

A= .

(1) y = A x + A x

(2) y = A x + A x
00 00 00 01 10

10 10 11 1000

01 00 01 01 11

11 10 01 11 11

...
(nz+1) y = A x + A x

(nz+2) y = A x + A x

Figure 5.1: Sequence of steps in single vector code: In the example, a 4 � 4 sparse
matrix with nz nonzero elements is being multiplied by 2 vectors. The matrix and code are
register-blocked using 2� 2 blocks.

A

yy

y y

A x x

xx 00 01

10 111110

0100 00

10 11

01A

A= .

(1) y = A x + A x

(2) y = A x + A x
00 00 00 01 10

10 10 11 1000

(3) y = A x + A x
01 0100 01

(4) y = A x + A x
11 10 01 11 11

11

Figure 5.2: Sequence of multiple vector code: This example is the same as that in
�gure 5.1, except that the code has been reorganized to use each element twice (once per
vector) before moving to the next element.

59

void bsmvm_2x2 (int m,

int *row_start, int *col_idx, double *value,

double *src, double *dest)

{

int i, j;

for (i=0; i<m; i++,dest+=2)

{

register double d0, d1;

d0 = dest[0];

d1 = dest[1];

for (j=row_start[i]; j<row_start[i+1]; j++,col_idx++,value+=4)

{

d0 += value[0] * src[*col_idx+0];

d0 += value[1] * src[*col_idx+1];

d1 += value[2] * src[*col_idx+0];

d1 += value[3] * src[*col_idx+1];

}

dest[0] = d0;

dest[1] = d1;

}

}

Figure 5.3: Code for multiplying a register-blocked matrix times a single vector:

The variables row start, col idx, and value arrays represent the data structure for a register
blocked sparse matrix with m block rows, while src and dest are the multiplier and result
vectors, respectively.

60

void bsmvm_m_2x2_2_once (int m, int *row_start, int *col_idx, double *value,

int src_len, double *src, int dest_len, double *dest)

{

double *src_p, *dest_p;

int j, row;

for (row=0; row<m ; row++, row_start++)

{

register double t0_0, t0_1;

register double t1_0, t1_1;

t0_0 = 0;

t0_1 = 0;

t1_0 = 0;

t1_1 = 0;

for (j=*row_start; j<*(row_start+1); j++, col_idx++, value+=4)

{

src_p = src + (*col_idx);

t0_0 += src_p[0] * value[0];

t0_0 += src_p[1] * value[1];

t1_0 += src_p[0] * value[2];

t1_0 += src_p[1] * value[3];

src_p += src_len;

t0_1 += src_p[0] * value[0];

t0_1 += src_p[1] * value[1];

t1_1 += src_p[0] * value[2];

t1_1 += src_p[1] * value[3];

}

dest_p = dest + 2*row;

dest_p[0] += t0_0;

dest_p[1] += t1_0;

dest_p += dest_len;

dest_p[0] += t0_1;

dest_p[1] += t1_1;

}

}

Figure 5.4: Code for multiplying a register-blocked matrix times 2 vectors: The
variables row start, col idx, and value arrays represent the data structure for a register-
blocked sparse matrix with m block rows, while src and dest represent the source and
destination vector sets, respectively. The src len and dest len parameters indicate the
lengths of the src and dest vectors. (The src and dest matrices are stored column-wise,
which matches the order in which they are built in most applications.)

61

5.2 Cache Blocking with Multiple Vectors

Cache blocking with multiple vectors can improve the multiplication performance

if it is coded so that a cache-sized block of the matrix is multiplied by multiple vectors before

the calculation goes on to the next block. As in register blocking, the matrix elements are

reused for each vector, but in this case reuse happens at the level of a cache block rather

than at the register level. The code for cache blocking with multiple vectors is similar to

that of the single vector case, except there is an inner loop that runs over the set of vectors

for each matrix element.

The choice of block size for cache blocking may be di�erent for single vectors than

for multiple ones. In particular, block size with multiple vectors may have to be smaller

than block size with single vectors to allow suÆcient room in the cache to hold the relevant

elements of each vector.

5.3 Choosing the Right Number of Vectors

The question of how many vectors to use when multiplying by a set of vectors is

partly dependent on the application and partly on the performance of the multiplication

operation. For example, there may be a �xed limit to the number of right-hand sides in a

system of equations to be solved. In blocked algorithms, there may be a trade-o� between

the speed of the multiplications and the rate of convergence { using a large number of vectors

increases the Mop rate, but the algorithm converges more slowly. In other algorithms, there

may be large number of vectors available, and the only question is one of performance: How

does one group the vectors into smaller sets to maximize overall performance?

In an automatic optimization framework, the user will need some control over the

number of vectors. When numerical convergence or other higher level algorithmic issues are

concerned, it may be better to show users the performance for various numbers of vectors

and let them decide how to optimize overall performance. If there are a large number of

vectors available, and the only concern is performance, then the system may search over

di�erent numbers of vectors, given a representative matrix and machine, to �nd the optimal

number of vectors. Although increasing the number of vectors increases the reuse of matrix

elements, it also increases register pressure in the register-blocked case, so the performance

does not always increase.

62

If there are a large number of vectors available at the application level, and the

only concern is performance, the optimization space is still quite complex because there

are several parameters to consider: the number of rows and columns in register blocks, the

number of rows and columns in cache blocks, and the number of vectors. And as with

previous optimizations, the machine characteristics and sparsity structures of the matrix

may signi�cantly a�ect the optimal settings of these parameters. Given the large number

of dimensions in this space, we will take various cuts in which some of the parameters are

�xed and others vary.

In this section, we look at the interaction between the register-blocking factors

and the number of vectors. This interaction is particularly important because the register-

blocked code for multiple vectors unrolls both the register block and multiple vector loops.

How e�ectively the registers are reused in this inner loop is very dependent on the compiler.

We will simplify the discussion by looking at two extremes in the space of matrix structures:

a dense 1K � 1K matrix in sparse format, and sparse 10K � 10K randomly generated

matrices with 200K (:2%) of the entries being nonzero. In both cases, the matrices are

blocked for registers, which in the random cases means that the 200K nonzero entries will

be clustered di�erently, depending on the block size.

Figures 5.5, 5.6, and 5.7 show the e�ect of changing the block size and the num-

ber of vectors on an UltraSPARC I, MIPS R1000, and Alpha 21164, respectively. Each

�gure shows the performance of register-blocked code optimized for multiple vectors. The

left-hand side shows a matrix with random structure, although each randomly generated

\element" is a dense block of the size shown in the legend, since the matrix is register-

blocked. The right-hand side shows a dense matrix in sparse format, also blocked according

to the block size shown in the legend. The x-axis shows the number of vectors and the

y-axis gives the Mop rate. We have collected this data for all block sizes from 1� 1 up to

10�10 on each machine, but present only the data for square block sizes, which is suÆcient

to illustrate our basic points.

For a dense matrix on an UltraSPARC I, shown on the right-hand side of �gure

5.5, performance varies wildly, depending on both the block dimensions and the number of

vectors. In general, it appears that smaller blocks with a larger number of vectors performs

best. This is borne out by a search over all combinations of blocks sizes and number vectors

in the range. The optimal point for the dense matrix is a block size of 1�7 with 11 vectors,

and a peak rate of 167 Mops. The unblocked code (shown as 1� 1) does surprisingly well

63

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200
Multi−vector Reg. Blocking for random matrices on an UltraSPARC

number of vectors

M
F

LO
P

S

1x1
2x2
3x3
4x4
5x5
6x6
7x7
8x8
9x9
10x10

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200
Multi−vector Reg. Blocking for dense matrices on an UltraSPARC

number of vectors

M
F

LO
P

S

1x1
2x2
3x3
4x4
5x5
6x6
7x7
8x8
9x9
10x10

Figure 5.5: Register-blocked, multiple vector performance on an UltraSPARC I,

varying the number of vectors: The graph on the left uses a random 10K�10K matrix
with 200K nonzeros, and the graph on the right uses a 1K � 1K dense matrix in sparse
format. Each line indicates a di�erent register blocking. The x-axis shows the number of
vectors and the y-axis shows the performance in Mops.

on the dense matrix, as long as the number of vectors is large (12 is the peak with a rate of

143 Mops). Although the performance is not as high as 287 Mops of vendor-optimized

BLAS dense matrix-matrix multiplication (DGEMM) for the same matrix on the 200 MHz

UltraSPARC I in �gure 3.8 from a LAPACK user's guide [2], it is much higher than that of

vendor-optimized BLAS dense matrix-vector multiplication (57 Mops). The performance

was comparable to that of vendor-optimized BLAS DGEMM considering that it was not

blocked for cache.

The performance of a randomly generated sparse matrix, shown in the left-hand

side of �gure 5.5, is much lower than the performance of dense case, as expected. The un-

blocked (1� 1) line performs worst of all. More surprising is the clear drop in performance

after a peak of approximately 4 or 5 vectors when the block size was small. These obser-

vations hold even considering the larger space of non-square block sizes. The performance

drop is probably due to the increased size of the inner loop, since a small number of vectors

and a small block size will result in a smaller inner loop that is easier for the compiler

to analyze and optimize. For larger block sizes, the compiler e�ects do not vary as much

with the vector size, because the loop is already large, and the increasing bene�ts from the

number of vectors (which peak later and are much more gradual) are probably due to the

64

2 4 6 8 10 12 14
0

50

100

150

200

250

300

350
Multi−vector Reg. Blocking for random matrices on a MIPS R10000

number of vectors

M
F

LO
P

S

1x1
2x2
3x3
4x4
5x5
6x6
7x7
8x8
9x9
10x10

2 4 6 8 10 12 14
0

50

100

150

200

250

300

350
Multi−vector Reg. Blocking for dense matrices on a MIPS R10000

number of vectors

M
F

LO
P

S

1x1
2x2
3x3
4x4
5x5
6x6
7x7
8x8
9x9
10x10

Figure 5.6: Register-blocked, multiple vector performance on a MIPS R10000,

varying the number of vectors: The graph on the left uses a random 10K�10K matrix
with 200K nonzeros, and the graph on the right uses a 1K � 1K dense matrix in sparse
format. Each line indicates a di�erent register blocking. The x-axis shows the number of
vectors and the y-axis shows the performance in Mops.

improved reuse of matrix values.

In general, the UltraSPARC numbers indicate that use of multiple vectors signif-

icantly improves the performance of matrices on two extremes of regularity and density.

Register blocking in combination with multiple vectors is also a good idea, although multi-

ple vectors without blocking produces most of the performance gain (143 rather than 167

Mops) for the dense matrix. For real sparse matrices, we will also take into the �ll over-

head for register blocking, which is not seen here { the random matrix was generated to

have the desired block size, so there is no �ll for blocking.

The graphs for a MIPS R1000K, shown in �gure 5.5, show somewhat di�erent

factors for that machine. First, as is consistent with our data in other chapters, the MIPS

performance is relatively smooth, which makes it a somewhat easier target for optimization.

Use of multiple vectors is clearly advantageous, and the best performance is obtained when

their use is combined with register blocking. The dense matrix performance increases almost

monotonically with the number of vectors, although it appears to be reaching an asymptote

under 200 Mops. As on the UltraSPARC, the dense matrix performs best with relatively

small blocks and a large number of vectors: 2� 2 with 12 vectors is the best case for square

blocks, with a Mop rate of 221. In considering non-square block sizes as well, the peak

65

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350
Multi−vector Reg. Blocking for random matrices on an Alpha 21164

number of vectors

M
F

LO
P

S

1x1
2x2
3x3
4x4
5x5
6x6
7x7
8x8
9x9
10x10

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350
Multi−vector Reg. Blocking for dense matrices on an Alpha 21164

number of vectors

M
F

LO
P

S

1x1
2x2
3x3
4x4
5x5
6x6
7x7
8x8
9x9
10x10

Figure 5.7: Register-blocked, multiple vector performance on an Alpha 21164,

varying the number of vectors: The graph on the left uses a random 10K�10K matrix
with 200K nonzeros, and the graph on the right uses a 1K � 1K dense matrix in sparse
format. Each line indicates a di�erent register block size. The x-axis shows the number of
vectors and the y-axis shows the performance in Mops.

performance for the dense matrix is 235 Mops, obtained with a block size of 2 � 6 and

14 vectors. Although this is a di�erent block size than was optimal for the UltraSPARC,

there are qualitative similarities: both machines use short, fat blocks with a large number of

vectors to reach their peak. (For comparison, according to a LAPACK user's guide (�gure

3.8), the performance of vendor-optimized BLAS dense matrix-matrix multiplication for

the same matrix on 300 MHz MIPS R12000 is 555 Mops, and that of dense matrix-vector

multiplication is 210 Mops.)

For the random sparse matrices on the MIPS R10000 there is a peak with a small

number of vectors and declining performance afterwards, which is even more evident than

that on the UltraSPARC. For the R10000, the maximum is at only 2 vectors for larger

block sizes, which obtain the best overall performance. It is possible that the increase in

inner loop size and complexity causes performance to degrade after the initial bene�t from

multiple vectors. Why this e�ect is so much stronger on the random matrix than on the

dense one is not entirely clear without more detailed hardware or simulation data from the

memory system and compiler. However, the negative impacts of the large loops may be

mitigated in the dense matrix because of the overall regularity of memory access.

The performance on the Alpha 21164 is shown in �gure 5.7, and, as in the previous

66

chapters, its performance is more sensitive to the optimization parameters than that of the

other machines. This is probably due to the extra level of caching, the small size of the

L1 cache, and some possible virtual memory (e.g., TLB) interaction. For the dense matrix,

relatively small block sizes perform well, e.g., 2 � 2, 3 � 3, and even the unblocked 1 � 1.

In considering non-square block sizes, the overall peak performance was 405 Mops, using

a block size of 2 � 1 and 8 vectors. (The performance of vendor-optimized BLAS for the

same matrix on the same processor, reported in a LAPACK user's guide (�gure 3.8), is

584 Mops for dense matrix-matrix multiplication and 36 Mops for dense matrix-vector

multiplication.) For the random sparse matrix, unblocked performance was uniformly bad,

although the gap between unblocked and the blocked performance is smaller than that on

the other machines. Unlike on the other machines, multiple vectors do not always pay o�,

as we can see that several of the lines start with a negative slope. However, the e�ect of a

peak at some relatively small number of vectors, in this case four, is also evident for some

of the block sizes, including the best one, which is 4� 4.

To summarize the results from this section, we note that multiple vectors typically

pay o� for matrices on both ends of the regularity and density spectrum. For most block

sizes and most machines, even changing from one vector to two is a signi�cant improvement.

However, with respect to choosing optimization parameters, the dense and random matrices

behave very di�erently. In the next section, we will look at heuristics that use information

from one of these synthetic data sets to choose the block size for real matrices. There is

also quite a bit of variability across machines in terms of how the parameters should be set.

There are two characteristics that appear common across the machines. First, the sparse

matrix tends to have a peak with some relatively small number of vectors (2-5), and after

that performance declines. Second, the optimal point for the dense matrix is approximately

10 vectors and has a relatively small block size compared to the 8 � 8 that is best for the

single vector code on this matrix.

5.4 Performance Evaluation of Multiple Vectors

In this section we look at the performance bene�ts of optimizing the code for

multiple vectors, �rst for the register-blocked and then for cache-blocked case. Because the

data in chapter 4 shows little evidence that there is any advantage to combining the two

kinds of blocking, we do not consider the combination here.

67

0 10 20 30 40
0

20

40

60

80

100

120

140

160

Speedup of register blocked code for 9 vectors on an UltraSPARC

matrices

M
F

LO
P

S

Unoptimized performance
Register blocked performance

0 10 20 30 40
0

1

2

3

4

5

6

Speedup of register blocked code: k=9 on an UltraSPARC

matrices

S
pe

ed
up

Figure 5.8: Performance of register-blocked, multiple vector code on an Ultra-

SPARC I: The left-hand plot shows the performance in Mops of the unoptimized code
and the multiple vector version using 9 vectors. The right-hand plot shows the speedup of
multiple vectors relative to unoptimized code.

5.4.1 Register Blocking on a Fixed Number of Vectors

We have generated register blocked codes as shown in �gure 5.4 for varying num-

bers of vectors using a modi�ed code generator, and used those codes for the multiplication

of various register-blocked matrices on the UltraSPARC I, MIPS R10000, and Alpha 21164.

As shown in the previous section, there is a tight interaction between the parameters for

register blocking with multiple vectors, so the question is, how should an automatic opti-

mization system set them. We will start by assuming that the choice of register block size,

which is largely dependent on the �ll overhead of each possible blocking, should be the same

for both multiple and single vectors. All data in this section will use the register-blocking

factors that were chosen by our model in chapter 3.

This leaves only the question of how many vectors to use. In practice, this number

is often �xed by the higher level application, so from an optimization standpoint, the ques-

tion is how to subdivide the vectors into smaller groups if there are a very large number. We

will start with a �xed number of vectors (9) on all three machines and for all matrices, and

show their performance relative to the performance of single vector multiplication. Then

we will consider using information from the synthetic matrices to choose the number of

vectors.

68

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100
Speedup of register blocked code for 9 vectors on a MIPS

matrices

M
F

LO
P

S

Unoptimized performance
Register blocked performance

0 10 20 30 40
0

1

2

3

4

5

6

Speedup of register blocked code: k=9 on a MIPS

matrices

S
pe

ed
up

Figure 5.9: Performance of register-blocked, multiple vector code on a MIPS

R10000: The left-hand plot shows the performance in Mops of the unoptimized code
and the multiple vector version using 9 vectors. The right-hand plot shows the speedup of
multiple vectors relative to unoptimized code.

0 10 20 30 40
0

50

100

150

200

250
Speedup of register blocked code for 9 vectors on an Alpha

matrices

M
F

LO
P

S

Unoptimized performance
Register blocked performance

0 10 20 30 40
0

1

2

3

4

5

6

Speedup of register blocked code: k=9 on an Alpha

matrices

S
pe

ed
up

Figure 5.10: Performance of register-blocked, multiple vector code on an Alpha
21164: The left-hand plot shows the performance in Mops of the unoptimized code and
the multiple vector version using 9 vectors. The right-hand plot shows the speedup of
multiple vectors relative to unoptimized code.

69

Figures 5.8, 5.9 and 5.10 show the performance and speedup of multiple vectors

compared to unoptimized code. We can draw several conclusions from these graphs. First,

with 9 vectors, the optimization for multiple vectors typically has a tremendous payo�. On

the MIPS R10K, the matrices that bene�t most are the lower-numbered ones, which have

more regularity and are therefore chosen to have larger register block sizes. On the Ultra-

SPARC, the middle group of matrices sees the highest bene�t; these are mostly matrices

from scienti�c simulation problems with some regular patterns, but without the dense sub-

blocks that appear naturally in the lower-numbered matrices. The Alpha 21164 continues

to be the most challenging machine, both in absolute performance and in speedup from this

optimization. On that machine there are several matrices that are degraded by the use of

multiple vectors. Given the erratic nature of the detailed performance plots on synthetic

matrices, it is possible that good performance is possible with the right number of vectors

and the right block size, but our heuristics used in this experiment did not contribute to

selection of the right parameters. For the other machines, we are also probably not seeing

the best performance possible for multiple vectors, but even the �xed number of vectors

and the use of single-vector register block sizes result in very good performance.

5.4.2 Register Blocking Using a Predicted Number of Vectors

The results of section 5.3 were used to develop a strategy for automatic selection

of the number of vectors. We continue to use the register block size from the single vector

performance model, and for each block size, choose the number of vectors that performed

best on one of the synthetic matrices when using the same block size and machine. We

consider both the dense and sparse matrix results possible predictors of the number of

vectors.

In the tables that follow, there are two possibilities for k, the number of vectors.

kd is the number that performed best for the dense matrix and kr is the number that

performed best for the random sparse matrix. To determine which matrix is a better

predictor for the number of vectors, we plot the two Mop rates for the kd and kr. Figures

5.11, 5.12 and 5.13 show these results for each of the three machines. For most of the

matrices, the performance of multiplication to kd vectors are better than the performance

of multiplication to kr vectors. From those �gures, it can be seen that kd is a better choice

than kr for selecting the number of vectors. Although the strategy of using the dense matrix

70

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300
Performance for Kr & Kd vectors on an UltraSPARC

matrices

M
F

LO
P

S
Performance of multiplication to Kr vectors
Performance of multiplication to Kd vectors

Figure 5.11: Comparing the dense (kd) and random sparse (kr) matrices to choose

the number of vectors on an UltraSPARC 1: The left bar represents the performance
when it is multiplied to the peak value for a dense matrix (kd) and the right bar represents
the performance when it is multiplied to the peak value for a random matrix (kr).

to predict the right number of vectors is good for most matrices in the benchmark suite,

it is not good for all of them. For a few matrices, the random matrix was a much better

predictor.

5.4.3 Cache Blocking Using a Fixed Number of Vectors

In this section we report on the performance of using multiple vectors in conjunc-

tion with cache blocking. As described earlier, the coupling between the number of vectors

and the cache size is not as signi�cant as in the register blocking case, because the code is

not unrolled, and we are not looking at a restricted resource such as the number of registers.

Still we will see that the use of multiple vectors does interact with the choice of cache block

size.

71

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300
Performance for Kr & Kd vectors on a MIPS R10000

matrices

M
F

LO
P

S

Performance of multiplication to Kr vectors
Performance of multiplication to Kd vectors

Figure 5.12: Comparing the dense (kd) and random sparse (kr) matrices to choose

the number of vectors on a MIPS R10000: The left bar represents the performance
when it is multiplied to the peak value for a dense matrix (kd) and the right bar represents
the performance when it is multiplied to the peak value for a random matrix (kr).

72

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300
Performance for Kr & Kd vectors on an Alpha 21164

matrices

M
F

LO
P

S

Performance of multiplication to Kr vectors
Performance of multiplication to Kd vectors

Figure 5.13: Comparing the dense (kd) and random sparse (kr) matrices to choose

the number of vectors on an Alpha 21164: The left bar represents the performance
when it is multiplied to the peak value for a dense matrix (kd) and the right bar represents
the performance when it is multiplied to the peak value for a random matrix (kr).

73

We use the opposite strategy for exploring this large optimization space by �rst

�xing the number of vectors and then computing a good cache block size. As described

above, we expect the number of vectors may be determined at the application level, but here

we present data for the case where there are 9 vectors. The cache block size is determined

by searching over powers of 2 from 64 � 64 up to to 64K � 64K, including rectangular

sizes. We run each of these operations on the matrix and choose the best cache block size.

We could use these search strategy because performance is relatively insensitive to small

changes in the cache block size.

The optimization was applied only on the UltraSPARC I and MIPS R10000, be-

cause of memory limits which were also mentioned in chapter 4. Figures 5.14 and 5.15

show the comparison between unoptimized performance and speedup after cache blocking

for multiplication with multiple vectors on Ultra SPARC I and MIPS R10000, respectively.

Tables 5.16 and 5.17 show the exact performance numbers and the block sizes that yielded

the highest performances.

We make the following observations from the performance results. First, we can

see the block sizes that yield the highest performance are much smaller in the multiple-

vector case than in the single-vector case in tables 4.10 and 4.11. This is because the

matrix elements are being reused in the multi-vector cases, and should therefore be kept in

the cache for better performance. In the single vector case, only the source vector needs to

be kept in the cache since the matrix values are only used once. In other words, the nonzero

elements of every rcache� ccache block and rcache elements of the source vector should �t in

the cache in the multiple vector case, while only rcache elements of the source vector need

stay in the cache in the single vector case.

Second, for many matrices, the speedup is close to 200% on an UltraSPARC I,

and 140% on a MIPS R10000. For many of these matrices, register blocking with multiple

vectors will still be a better option, but for matrices such as LSI (number 45), whose

speedup is 300%, cache blocking with multiple vectors is still a better choice, although this

is not a further improvement over cache blocking with a single vector. Most block sizes are

chosen to be 64 � 64 on the UltraSPARC, while several larger block sizes are used on the

MIPS R10000. This is because the cache on the MIPS R10000 is four times larger than the

cache on the UltraSPARC I. While the clock rate of an UltraSPARC and a MIPS R10000

are comparable (167 MHz for the UltraSPARC and 200 MHz for the MIPS R10000), the

absolute performance of the UltraSPARC is better than that of the MIPS R10000, because

74

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60
Performance of cache blocked − mutiple vector multiplication

matrices

M
F

LO
P

S

Base performance
Performance of blocked code

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3
Speedup of cache blocked − multiple vector multiplication

matrices

S
pe

ed
up

Figure 5.14: Performance of cache-blocked, multiple-vector multiplication on an
Ultra SPARC I: The left-hand plot shows the absolute performance of the unoptimized
and cache-blocked multiple vector code, and the right-hand plot shows the corresponding
speedup.

the memory access time is longer on the MIPS R10000 (650 nanoseconds for the MIPS

R10000 and 347 nanoseconds for the UltraSPARC).

5.5 Evaluation of Two Multiple-Vector Applications

Many of the benchmarks used in our suite are from other publicly available bench-

mark suites or other places in which the application context is not entirely known. It is

therefore diÆcult to say which of these applications would bene�t from multiple vector

optimization. We have therefore collected two additional matrices that originate from ap-

plications that use multiple vectors. One is a matrix from global modeling in earth science,

whose dimensions are 846968 � 96300 with 28M nonzeros. The other is a matrix used for

text retrieval applications and its dimensions are 13297 � 5298 with 805K nonzeros. Typi-

cally, the �rst application uses 2 { 5 vectors and the second application uses 2 { 500 vectors

in each multiplication step. So, for the second application, it was necessary to break the

vectors into smaller groups.

We apply the multiple vector optimization to both of these matrices. The per-

formance on an UltraSPARC I, MIPS R10000, and Alpha 21164 for a varying number of

vectors are shown in �gures 5.18, 5.19, and 5.20. Although the code used is register-blocked,

75

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60
Performance of cache blocked − mutiple vector multiplication

matrices

M
F

LO
P

S

Base performance
Performance of blocked code

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3
Speedup of cache blocked − multiple vector multiplication

matrices

S
pe

ed
up

Figure 5.15: Performance of cache-blocked, multiple-vector multiplication on a
MIPS R10000: The left-hand plot shows the absolute performance of the unoptimized
and cache-blocked multiple vector code, and the right-hand plot shows the corresponding
speedup.

with the multiple vector loop unrolled, the block size is set to 1�1, because the �ll overhead

is too large for any other block size.

For the earth science matrix, which would typically have 2-5 vectors available, the

performance peaked at three vectors on the UltraSPARC and at four vectors on the MIPS

and Alpha. For this matrix, the best strategy from an automatic optimization standpoint

is to tell the users the peak for the machine of interest, so they can use the appropriate

number of vectors, if possible. Note that the performance for all numbers between 2 and 5

are quite good, so any of the vectors in the typical range would derive signi�cant bene�ts

from multiple vector optimization. However, the numbers predicted by the two synthetic

matrices as the appropriate number of vectors do not work well. The random sparse matrix

predicts that for a 1�1 blocked matrix, the best performance is obtained using 5 vectors on

the UltraSPARC, 13 on the MIPS, and 1 on the Alpha. None of these are very good choices.

The dense matrix would have predicted 12 (UltraSPARC), 15 (MIPS) and 6 (Alpha), which

are all too high from a performance standpoint and outside the range available in this

application. These circumstances emphasize the need for some application programmer

control over the number of vectors.

For the text retrieval matrix, the peak performance was at 9 vectors on the Ultra-

SPARC, 15 vectors on the MIPS, and 3 on the Alpha. (We could not unroll the loop for

76

Matrix Matrix Size NZ Block Size Mops Speedup

1 1000x1000 1000000 1000x1000 29.30 1.00
2 21200x21200 1488768 64x64 53.70 1.94
3 16146x16146 1015156 64x64 52.86 1.98
4 30237x30237 1450163 64x64 51.11 1.88
5 62424x62424 1717792 64x64 41.50 1.73
6 13965x13965 968583 64x64 52.58 1.98
7 24696x24696 1751178 64x64 52.96 1.97
8 54870x54870 2677324 64x64 50.71 1.86
9 45330x45330 3213618 64x64 48.80 1.81
10 52329x52329 2698463 64x64 49.75 1.83
11 23560x23560 484256 64x64 42.11 1.76
12 19779x19779 1328611 64x64 53.36 1.91
13 16614x16614 1096948 64x64 51.31 1.92
14 4134x4134 94408 64x64 42.04 1.77
15 41092x41092 1683902 64x64 35.15 1.48
16 2529x2529 90158 64x64 40.89 1.60
17 22560x22560 1014951 64x64 50.40 1.86
18 17758x17758 126150 64x64 21.03 1.35
19 4929x4929 33185 64x64 19.85 1.07
20 10672x10672 232633 64x64 41.17 1.73
21 7320x7320 324784 64x64 50.67 1.87
22 13935x13935 63679 64x64 19.25 1.27
23 13436x13436 94926 64x64 25.56 1.46
24 9540x9540 207308 64x64 41.90 1.76
25 74752x74752 596992 64x64 21.32 1.38
26 36057x36057 227628 64x64 19.04 1.30
27 36519x36519 326107 64x64 29.97 1.58
28 12328x12328 342828 64x64 35.97 1.55
29 26068x26068 177196 64x64 18.17 1.33
30 3937x3937 25407 64x64 22.27 1.07
31 3937x3937 25407 64x64 22.32 1.09
32 3312x3312 20793 64x64 26.63 1.02
33 5005x5005 20033 64x64 15.94 1.04
34 2205x2205 14133 64x64 19.36 0.98
35 3564x3564 22316 64x64 18.31 1.05
36 76480x76480 329762 64x64 15.73 1.24
37 26064x26064 177168 64x64 18.03 1.32
38 765x765 24382 765x765 51.63 1.00
39 991x991 6027 991x991 20.90 1.00
40 31802x31802 2164210 128x128 39.18 1.55
41 9648x77137 260785 64x64 25.23 1.33
42 8926x73948 246614 64x64 25.69 1.38
43 3000x13525 50284 64x64 33.74 1.29
44 15240x72600 304800 256x256 17.80 1.18
45 10000x255943 3712489 2048x2048 21.09 2.99
46 10000x10000 150000 2048x2048 20.03 1.10

Figure 5.16: Summary of cache-blocked, multiple-vector optimization on an Ul-

traSPARC I

77

Matrix Matrix Size NZ Block Size Mops Speedup

1 1000x1000 1000000 8192x8192 12.43 1.21
2 21200x21200 1488768 128x128 14.07 1.41
3 16146x16146 1015156 64x64 14.03 1.39
4 30237x30237 1450163 64x64 14.05 1.41
5 62424x62424 1717792 64x64 13.54 1.46
6 13965x13965 968583 64x64 14.03 1.39
7 24696x24696 1751178 64x64 14.04 1.40
8 54870x54870 2677324 64x64 14.07 1.42
9 45330x45330 3213618 128x128 13.94 1.41
10 52329x52329 2698463 64x64 13.93 1.40
11 23560x23560 484256 64x64 13.46 1.46
12 19779x19779 1328611 64x64 13.97 1.39
13 16614x16614 1096948 64x64 14.04 1.41
14 4134x4134 94408 64x64 14.25 1.26
15 41092x41092 1683902 64x64 13.02 1.36
16 2529x2529 90158 64x64 13.99 1.21
17 22560x22560 1014951 64x64 14.05 1.45
18 17758x17758 126150 128x128 10.85 1.21
19 4929x4929 33185 64x64 11.71 1.18
20 10672x10672 232633 64x64 13.67 1.38
21 7320x7320 324784 64x64 13.97 1.46
22 13935x13935 63679 128x128 9.80 1.16
23 13436x13436 94926 64x64 11.15 1.18
24 9540x9540 207308 64x64 13.60 1.35
25 74752x74752 596992 64x64 11.29 1.35
26 36057x36057 227628 64x64 10.62 1.32
27 36519x36519 326107 64x64 11.71 1.37
28 12328x12328 342828 64x64 13.28 1.42
29 26068x26068 177196 64x64 10.98 1.25
30 3937x3937 25407 64x64 11.75 1.19
31 3937x3937 25407 64x64 11.62 1.19
32 3312x3312 20793 64x64 11.88 1.19
33 5005x5005 20033 128x128 10.37 1.16
34 2205x2205 14133 64x64 11.69 1.19
35 3564x3564 22316 64x64 11.53 1.18
36 76480x76480 329762 64x64 9.43 1.27
37 26064x26064 177168 64x64 10.97 1.26
38 765x765 24382 64x64 14.44 1.24
39 991x991 6027 128x128 11.65 1.19
40 31802x31802 2164210 64x64 13.17 1.36
41 9648x77137 260785 64x64 11.45 1.24
42 8926x73948 246614 64x64 11.05 1.29
43 3000x13525 50284 64x64 13.23 1.22
44 15240x72600 304800 256x256 10.76 1.23
45 10000x255943 3712489 4096x4096 10.71 1.59
46 10000x10000 150000 256x256 10.89 1.19

Figure 5.17: Summary of cache-blocked, multiple-vector optimization on a MIPS

R10000

78

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Register blocking on multiple vectors : Earth : Ultra

number of vectors

M
flo

ps

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Register blocking on multiple vectors : inder : Ultra

number of vectors
M

flo
ps

Figure 5.18: Performance of the multiple-vector optimization on an Earth Science

(left) and text retrieval (right) matrix on a UltraSPARC I.

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Register blocking on multiple vectors : Earth : MIPS

number of vectors

M
flo

ps

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Register blocking on multiple vectors : inder : MIPS

number of vectors

M
flo

ps

Figure 5.19: Performance of the multiple-vector optimization on an Earth Science

(left) and text retrieval (right) matrix on a MIPS R10000.

79

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Register blocking on multiple vectors : Earth : Alpha

number of vectors

M
flo

ps

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Register blocking on multiple vectors : inder : Alpha

number of vectors

M
flo

ps

Figure 5.20: Performance of the multiple-vector optimization on an Earth Science

(left) and text retrieval (right) matrix on an Alpha 21164.

more than 15 vectors on the MIPS, because the compiler failed to compile it.) Because the

number of vectors can be anywhere from 2 to 500 in this application, is may be necessary to

break the set of matrices into smaller groups of the size indicated from these experiments.

The predictions from both the random and dense matrices are therefore possible in this

application, although they are still far from optimal. Only the dense matrix prediction of

15 on the MIPS machine is a good one. The conclusion is that if the goals of the system

are to provide high performance on each particular matrix, rather than high performance

on a large fraction of those available, then the best strategy may be to try many di�erent

numbers of vectors, and either automatically choose the best one or provide the user with

the performance results.

5.6 Summary

In this chapter we described a generalization of the matrix-vector multiplication

problem in which a sparse matrix is multiplied by a set of vectors. We showed that this o�ers

enormous potential for optimizations, just as a matrix-matrix (BLAS-3) operation can run

at a signi�cantly higher rate than a matrix-vector (BLAS-2) operation for dense matrices.

The optimizations are quite e�ective when combined with either register or cache blocking.

The speedup of register blocking with multiple vectors over unoptimized multiplication was

80

as high as 4.5, and although the speedup of cache blocking with multiple vectors was not

as high as that of register blocking, it improved the cache blocking performance for most

of the matrices which did not show noticeable speedup with cache blocking with single

vector, especially on an UltraSPARC. With most of the matrices in our benchmark suite,

which bene�ted from register blocking but not cache blocking, we show that using multiple

vectors adds signi�cant performance to the already optimized code. In addition, cache

blocking becomes much more e�ective when combined with multiple vectors, although the

block sizes must be smaller. The reason for this is that with multiple vectors one would like

to store the entire block, not just the source vector, in the cache.

We proposed a kind of model to choose the number of vectors, based on the optimal

number of vectors for a dense matrix that uses the same blocking factor. Although quite

e�ective on most matrices in our benchmark suite, there are some matrices for which it does

not select a reasonable number of vectors. Because of the need for user input which results

from numerical concerns related to the algorithm used, we feel that some sort of search over

the number of vectors, when combined with input from the user, is the right strategy for

an optimization system, even though it would not be fully automatic.

In this chapter, we have chosen the register block size �rst, independently of the

number of vectors and then we have chosen the number of vectors to multiply. Alternatively,

we could have used a model in which the number of vectors is used as a parameter, to decide

the register block size for the given number of vectors based on the machine-speci�c pro�le

as shown in �gures 5.11, 5.12, and 5.13.

81

Chapter 6

The Sparsity System

As a result of our study on optimization techniques for sparse matrix-vector mul-

tiplication, we have learned that register blocking, cache blocking, and use of multiple

vectors can signi�cantly improve performance. We also learned that the right choice of

optimizations is crucial to performance improvement, because each optimization technique

is bene�cial only to a subset of our benchmark matrices and is sometimes detrimental

to others. This implies that analysis of the matrix structure and target machine should

precede selection of the optimization technique and its parameters. It is unreasonable to

expect that the scientists and engineers who are users of sparse matrix operations will also

become experts on the optimization techniques described in this thesis. We have therefore

built a system, Sparsity, that will choose the optimizations and parameters given little

or no input from the user, other than an example matrix and the number of vectors to be

multiplied.

Sparsity is an automatic optimization system, and it performs some of the same

tasks that an optimizing compiler performs. It does not need to perform the traditional

kinds of analyses, because it only compiles one program, sparse matrix-vector multiplication.

However, it still performs two other compilation tasks, optimization selection and code

generation. Sections 6.1 and 6.2 describe these two components of Sparsity, and section

6.3 provides an overview of the entire system. We then give an overview of the vast domain

of sparse matrix formats in section 6.4, which are important in understanding the challenges

of building any kind of standardized matrix library or optimization framework. In section

6.5 we describe some of the ways in which Sparsity could be extended in the future.

82

6.1 Optimization Decisions

In any optimization framework, whether it is a general purpose compiler or a

specialized system like Sparsity, there are various techniques that can be used to make

optimization decisions. These include search, general heuristics, and performance models.

In our case, the decisions involve choosing both the kinds of optimizations to apply and

parameters such as block size. Both the data structure and the code is involved in these

transformations.

6.1.1 Search

The simplest solution to selecting transformations on the code is to apply each

possible transformation for each possible parameter setting, run the code and measure its

performance, and use the minimum setting. In principle, the search may be exhaustive

or controlled by some kind of bounded search. For example, one could imagine searching

through register block sizes sequentially until the performance starts to decline, or searching

over the number of rows and columns using some kind of branch-and-bound technique.

Alternatively, one may use a more arbitrary restriction on the search space, such as looking

only at block sizes which are powers of two, as was done in cache blocking.

The e�ectiveness of these search strategies depends on the characteristics of the

optimization space. In cache blocking, performance is relatively insensitive to small changes

in the cache block size; restriction of the search space may miss the optimal block size,

but the resulting performance is probably not much di�erent than for the optimal size.

In contrast, the performance can vary wildly given a small change in the register block

size, as seen for machines like the Alpha 21164. We therefore believe that exhaustive

search over some range of register block size would be necessary under search-based register

blocking. Because the overhead of running an exhaustive search for every input matrix

is too expensive, in an e�ort to reduce this overhead, we chose to develop a performance

model to complete this phase of selection for the range of register block sizes. In the model,

we combine a priori knowledge about the machine and information about the matrix.

In Sparsity, we also use search to determine the optimal number of vectors when

the application has many vectors available. This is primarily useful for splitting a large set

of vectors (tens or hundreds) into smaller groups. For smaller numbers of vectors the user

needs to specify how many are available. Because register blocking with multiple vectors

83

involves two unrolled loops, one over the block and the other over the vectors, making either

loop too large can have a serious negative impact on performance.

Search has been e�ectively used in automatic optimization frameworks for dense

matrix kernels [8, 70]. The major disadvantage to search-based optimization is its high

cost. While algorithms like simulated annealing are often used for applications like circuit

layout, where users are willing to wait for hours or even days for a good solution, such

techniques are not employed in the context of general-purpose compilers. Not only is search

very expensive, but it requires that the input data be available, which is not the case in

static compilation systems.

6.1.2 Heuristics

As an alternative to search, decisions may be based on some kind of heuristic or

a performance model. These techniques can also be combined with search to limit the size

of the search space.

Heuristics may be based on some knowledge of the machine or algorithm, or on

experimental results that indicate it will select good solutions in the search space. For ex-

ample, we use a somewhat arbitrary cuto� for the maximum block size for register blocking,

based on both the observed dense matrix performance and our understanding of the num-

ber of registers available on a given machine. Since most of the machines have 32 visible

registers, a block size larger than 16 � 16 is clearly not useful, since we need at least r + c

registers to hold the source and destination vectors. We further limit this to 12�12 blocks,

because even for the dense matrix benchmark, performance is trailing o� at that point, and

we have seen no examples of sparse matrices with such large blocks already available. We

could probably have limited the space further, and on machines with very small register

sets this might be useful for improving the performance of Sparsity.

A second heuristic that we developed the identi�cation of matrices that bene�t

most from cache blocking. From looking at the nonzero structure in the matrices, we

developed a hypothesis that it was most e�ective on matrices with nearly random structure.

We therefore developed a measure of randomness by building a hyper-graph representation

of the sparse matrix, bisecting it using a graph partitioning algorithm, and measuring the

ratio of the number of edge-cuts to the number of edges. We then chose a threshold for this

ratio, which was chosen as 0.4 in our experiments. When combined with some minimum

84

size constraints, this heuristic was able to select those matrices that bene�ted from cache

blocking on the UltraSPARC I, over those that did not. Because most of the matrices

gained some smaller bene�t on the SGI machine, we did not include this heuristic in the

Sparsity system, but instead used the cache block size search described above.

6.1.3 Performance Modeling

A speci�c class of heuristics are based on performance models, which use some

abstraction of the machine performance to predict the performance of the transformed

code. There is diÆculty in devising a model that is accurate enough to be useful, yet simple

enough to evaluate quickly.

The primary example of a performance model within Sparsity is the model of

register-blocked performance based on an approximation of the �ll overhead, which measures

extraneous computation, and dense matrix performance, which is used to approximate the

raw performance of the blocked code. Since the estimation of �ll overheads for all possible

block sizes can be done at one sweep of the sparse matrix, and pro�ling of the performance

of the machine can be done only once for each machine and then reused, model prediction

is more eÆcient that searching for register block sizes by creating each blocked version and

measuring the performance of each.

6.2 Code Generation

The second major component of an automatic optimization system is the code

generation framework. Because Sparsity is generating code for only one routine, each

of the blocked versions could be created by hand, and indeed some of our routines were

produced this way. Hand-coding has typically been used for dense matrix kernels, although

increasing machine complexity means that an enormous human investment is required to

produce each hand-optimized routine. As a result, some vendors have stopped providing

routines for their machines, relying instead on their optimizing compilers.

Sparsity takes an intermediate approach to this problem by automating some of

the code generation and most of the optimization decisions, but using the special-purpose

nature of the system to avoid diÆcult program analysis problems which are unlikely to work

in a sparse matrix context. Speci�cally, Sparsity uses hand-written codes for some of the

drivers and conversion routines as well as the cache-blocked multiplication codes, which are

85

parameterized over the block size. The register blocked multiplication routines, with and

without multiple vectors, are generated by a code generation framework, because loops are

unrolled for the speci�c block and vector set size. If this code is parameterized, instead of

unrolling the loop, we have found that the performance of multiplication is much lower.

All of the code produced by Sparsity, either by hand or automatically, is C code.

(Sparsity itself is written in a combination of Java and C.) The multiplication routines

are shown in the previous chapters, in �gures 3.3, 5.4 and 4.3. Within the unrolled loops in

register blocking, some attempt is made to schedule memory operations by moving certain

statements in the code. This code scheduling is not speci�c to a particular machine or

C compiler, although one could imagine more specialized scheduling decisions that search

over multiple implementations of the kernels that make up multiplication of a single register

block.

If register blocking is selected, then Sparsity produces a hand-written conversion

routine and a multiplication routine that is automatically generated. If cache blocking

is selected, the code to block the matrix and the multiplication routine are both produced

from the hand-written versions. The code generator also produces driver routines, including

matrix I/O operations for various �le formats, and timing routines, so that users may do

their own benchmarking.

6.3 Overview of the Sparsity System

In order to encourage widespread use of our optimized kernels, Sparsity is de-

signed as a web service that provides optimized sparse code for a given matrix and machine.

The service aims to choose an appropriate optimization method and parameters and to pro-

vide corresponding sparse matrix-vector multiplication code. The general structure of the

system is illustrated in �gure 6.1. The user may also constrain the optimization system to

consider only register blocking, for example, if they believe that it would be much more

e�ective than cache blocking.

Within the Sparsity system, the matrix is tested for several criteria to determine

whether register blocking, cache blocking, or both should be applied. As described in

chapter 5, the decision to use multiple vectors requires user involvement, and is therefore

not fully automatic. If the user does request code for a large number of vectors, an additional

optimization step takes place after the other optimization decisions in which the number of

86

Machine
Sparsity

Profiler profile
performance

machine

Optimizer
Sparsity optimized code,

drivers

example
matrix

vectors
number of
maximum

Figure 6.1: Sparsity system.

Choose
cache block sizecache block size

Choose

Choose
register block size

blocking 1x1 (no blocking)

blocking no blocking

register blocking

blocking no blocking

cache blocking noneregister blocking
& cache blocking

Figure 6.2: Decision tree for choice of optimization in Sparsity system

87

vectors is selected.

For the single vector case, the decision tree in �gure 6.2 it used. First, the matrix

is tested for register blocking by estimating �ll overhead and predicting the blocked multi-

plication performance using dense performance. Part of the Sparsity framework includes

machine pro�ling that is done by running each register-blocking size under consideration

on a �xed dense matrix, which creates a kind of performance pro�le for the machine. As

discussed above, we limited the possible block sizes up to 12 � 12, which was more than

adequate for all of the machines we considered. After evaluating the performance model

for the matrix and the machine pro�le, the recommended block size was used on the actual

matrix and performance compared to the unblocked matrix. This last step is done to en-

sure that register blocking never degrades overall performance; it can be viewed as a very

limited search over two data points, one of which was chosen by our performance model.

There are three outputs that result from this test: 1) an answer to the question of whether

register blocking is useful; 2) if so, then the selected block size; 3) the code that performs

matrix-vector multiplication with the selected block size.

The second test is for cache blocking. As shown in chapter 4, this optimization is

unlikely to have a signi�cant payo� on any matrix that was amenable to register blocking.

However, we allow for this possibility by applying the cache blocking test to the result of

the register blocking test, in other words, either using the register blocked matrix and code

as input or, if register blocking did not prove e�ective, the original matrix and code. The

cache blocking test was performed by search over a �xed set of block sizes from 64 � 64

up to 64K � 64K, as well as the unblocked code. For each point in the search space,

the matrix is cache-blocked, code is run on the machine of interest, and performance is

measured. Although we developed some performance models to aid in decisions related to

cache blocking, searching over this limited set of sizes is both practical and more reliable.

As with register blocking, the output of this test includes the cache block size and the

corresponding code. Again, the output includes the block size and code.

The three possible outcomes of this process are that zero, one or two of the opti-

mizations may be applied. After that, the multiple vector test is performed if requested by

the user. Along with the optimized matrix-vector multiplication code, the code generator

produces a driver module, benchmarking functions, and matrix I/O routines for commonly

used sparse matrix �le formats.

Sparsity is similar to some dynamic or feedback-directed compilation systems

88

in that the code is speci�c to a particular input. However, the code will work correctly

on any matrix, as long as it has been converted to the appropriate block size. Indeed, we

expect that a common use of the system will be to produce an optimized matrix-vector

multiplication routine for one matrix, to be used for other matrices in the same application

domain. Users may choose to use the blocked representation throughout their applications

or to convert the matrix before and after iterative solves are performed.

6.4 Sparse Matrix Representations

In sparse matrix-vector multiplication, the nonzero structure of the sparse matrix

A directly determines the memory accesses of the source vector x and destination vector y.

Any nonzero in a column of A will result in at least one read to the corresponding element

of x and any nonzero in a row of A will result in at least one update (read and write) of

the corresponding element of y. Thus, multiple nonzeros in a column have the potential for

data reuse in the source vector, and multiple nonzeros in a row have the potential for reuse

in the destination vector.

There are hundreds of sparse matrix formats used in di�erent application domains,

sometimes because the representation is particularly suited to the matrix structures that

arise in that domain and sometimes due to arbitrary decisions made by a software designer.

There is an ongoing e�ort called the BLAS Technical Forum to standardize on a set of

matrix formats [11]. While the BLAS Technical Forum has been working on expanding the

BLAS standard, it considers issues such as the overall functionality, language interfaces,

sparse BLAS, extended and mixed precision BLAS, and extensions to the existing BLAS.

The forum also considered distributed memory and interval BLAS, but did not come to a

consensus for a standard.

In the BLAS Technical Forum standard, nine common sparse matrix formats are

supported. They are coordinate (COO), compressed sparse row (CSR), compressed sparse

column (CSC) and sparse diagonal (DIA) formats for point entry formats in which indi-

vidual entries are listed in the storage format. Block coordinate (BCO), block compressed

sparse row (BSR), block compressed sparse column (BSC), block sparse diagonal (BDI)

and variable block compressed sparse row (VBR) formats are block entry formats where

the sparsity structure is represented as a series of small dense blocks. Those storage formats

are described in the standard, but the internal representation is left to the implementers,

89

and the sparse matrices are referenced by a handle in the BLAS routines to provide a generic

interface. An important aspect of the interface design is that, in the matrix creation rou-

tine, the user may provide a hint about the approximate number of times matrix-vector

multiplication will be used; this hint may be used by the creation routine to choose a good

representation using the kind of analysis that Sparsity performs.

The coordinate representation stores each nonzero with row and column integer

indexes along with a oating point value. The compressed sparse row representation saves

some of the storage overhead by storing each row as pairs of column indices and matrix

values, so each row index is stored only once. The compressed sparse column representation

stores each column as pairs of row indices and matrix values. The sparse diagonal repre-

sentation stores the sparse matrix with a one-dimensional array of o�sets of diagonals and

a two-dimensional m�n array, where m is the number of diagonals and n is the number of

rows, for storing nonzero values. Those representations are illustrated in �gure 6.3. Block

entry formats are block entry versions of corresponding point entry formats where each

entry is a small dense block, instead of single value. Variable block compressed sparse row

format is a modi�ed version of BSR format that allows each block to be a di�erent size.

In the CSR representation, a matrix-vector multiplication is typically organized

around dot products of the matrix rows with the appropriate elements of the source vector.

A single value of the destination vector is read and saved in a register during the dot

product, and written back to memory once the dot product is complete. We note that a

vector-matrix operation for CSR format is organized instead around DAXPY operations (a

scalar times a vector plus a vector). A similar representation is seen in compressed sparse

column (CSC), which results in opposite design decisions in the two operations.

In Sparsity, there are two separate matrix formatting issues: the formats sup-

ported as input to the optimization system, and the formats that were considered for use

as the result of optimizations. We currently support the major point entry formats for our

inputs, COO, CSR, and CSC. The diagonal and blocked formats could easily be introduced

by adding matrix conversion routines to the system. Internally, Sparsity uses the com-

pressed sparse row (CSR), which is reasonably eÆcient across a range of matrices given that

Sparsity has no information about the matrix structure until after processing it.

The more interesting question is what formats are considered as the result of

optimization. Among the point entry formats, the coordinate (COO) format is mainly

suited for the convenience of generating a sparse matrix in undetermined order, but is not

90

A =

0
BBBBBBBBB@

a00 0 a02 a03 0

0 0 a12 a13 0

a20 a21 a22 a23 0

0 a31 0 a33 0

a40 a41 0 0 a44

1
CCCCCCCCCA

Coordinate (COO) representation :

value =
�
a00 a02 a03 a12 a13 a20 a21 a22 a23 a31 a33 a40 a41 a44

�

row index =
�
0 0 0 1 1 2 2 2 2 3 3 4 4 4

�

column index =
�
0 2 3 2 3 0 1 2 3 1 3 0 1 4

�

Compressed sparse row (CSR) representation :

value =
�
a00 a02 a03 a12 a13 a20 a21 a22 a23 a31 a33 a40 a41 a44

�

row start =
�
0 3 5 9 11 14

�

column index =
�
0 2 3 2 3 0 1 2 3 1 3 0 1 4

�

Compressed sparse column (CSC) representation :

value =
�
a00 a20 a40 a21 a31 a41 a02 a12 a22 a03 a13 a23 a33 a44

�

column start =
�
0 3 6 9 13 14

�

row index =
�
0 2 4 2 3 4 0 1 2 0 1 2 3 4

�

Sparse diagonal (DIA) representation :

value =

0
BBBBBBBBBBBBBBBBBBB@

X X X X a40

X X X 0 a41

X X a20 a31 0

X 0 a21 0 0

a00 0 a22 a33 a44

0 a12 a23 0 X

a02 a13 0 X X

a03 0 X X X

1
CCCCCCCCCCCCCCCCCCCA

diag o�set =
�
�4 �3 �2 �1 0 1 2 3

�

Figure 6.3: Example of point-entry sparse matrix representations. Sparse matrix
A is represented in COO, CSR, CSC and DIA formats.

91

eÆcient for calculation and is therefore not the result of our optimizations. Register blocking

produces BSR, and BSC could be used equally well, with perhaps slightly di�erent results.

From examination of the matrix structures in appendix A, few, if any, of the matrices

contain large vertical stripes of nonzeros, which would indicate a possible advantage to

BSC, since it would increase reuse in the source vector. In some preliminary experiments,

we experimented with a variable block compressed sparse row, which allows for variable

block sizes, but found the branch overhead and lack of complete loop unrolling to produce

worse performance than �xed size blocks, even if the �xed blocks were not an exact �t for

the matrix structure. A related idea would be to represent the matrix as the sum of a set

of sparser matrices, each with a �xed block size. This would essentially move the branches

out of the inner loops and allow for the same kinds of optimizations in our code, although

it also means that there would be multiple sweeps over the vectors, and so lower possible

reuse.

We did not consider the diagonal format for optimization targets of Sparsity.

These formats are suitable only for sparse matrices where the nonzero elements are dis-

tributed around the diagonal, although there are several matrices in our benchmark suite

and in general, that have these characteristics. While these formats might perform well

on vector supercomputers or other machines with high memory bandwidth, they would not

allow for any data reuse in the source or destination vectors. Since each row in the DIA ma-

trix represents a diagonal of the actual matrix, to perform a matrix-vector multiplication,

each row would be processed by performing element-wise multiplication with the source

vector and element-wise addition with the destination.

The output of our cache-blocked format is not one that has been described in the

matrix library literature, probably because it does not arise from any natural structure of

the matrix or application, but from a structure in the machine.

6.5 Summary and Further Improvements

Sparsity provides easy access to highly tuned sparse matrix-vector multiplication

routines. The system is accessible through a web interface, and we envision that further

improvements in that interface could make the system even more accessible for a larger

community of users.

First, a pro�ling module for measuring machine dependent parameters can be made

92

downloadable to users. The current implementation makes the user download all parts of

the program at once, and all the procedures are executed on the target machine, including

the code used to decide on the type of optimization and block sizes. The decision process

can be moved to a host machine that provides the web service. With this implementation,

we could use bisection criteria for cache blocking, since the partitioning package would not

have to be installed on the user's machine. Instead, the user would upload the matrix and

have the evaluation done on the host machines. This would be more expensive if the user

had many and/or large machines.

Secondly, a database of machine dependent parameters can be maintained so that

users would not have to run all of the experiments to determine these parameters. This

could be done, for example, on a machine in a central computer facility and automatically

updated as new machines become available. In this way, the second user of Sparsity at

some site would go through a simpler and faster optimization process than the �rst user.

Much of Sparsity is written in Java to simplify downloading and uploading of code and

results, and to make the process more transparent to users.

93

Chapter 7

Related Work

There are several di�erent areas of related work that we discuss in this chapter. We

start in section 7.1 with research in optimization of dense matrix libraries which has been

ongoing for many years. This includes the work that most closely matches the Sparsity

approach through the use of automatic optimization frameworks for libraries. We then

describe prior work on sparse matrix libraries and their optimization in section 7.2.

7.1 Optimization of Dense Matrix Operations

There has been a great deal of research in high performance dense matrix op-

erations. The three basic approaches can be categorized as: general-purpose optimizing

compilers, hand-optimized libraries, and automatic optimization frameworks. We include

some work on the FFT in this section, even though it is not, strictly-speaking, a dense ma-

trix operation, because it uses regular data structures and therefore has similar optimization

issues.

7.1.1 Compilers

The memory hierarchy optimization commonly used for dense matrix operations is

known as blocking or tiling, which can be done for registers or caches. The simplest version

of tiling involves reorganization of the computation to improve data locality, while more

sophisticated versions change the data representation as well. Tiling is often combined with

other loop transformations such as unrolling, loop interchange, and loop skew. These are

described in an advanced compiler text such as [51], although we refer to the reader to

94

several other papers on more details and recent work on tiling (and a closely related notion

called shackling) [18, 50, 16, 12, 44, 71, 41, 42].

This work on compiler-based memory hierarchy optimizations has produced tools

that are very sophisticated in performing analysis of the code to determine legal transforma-

tions, and apply certain optimizing transformations. Simple linear algebra operations, such

as dense matrix-matrix multiplication or matrix-vector multiplication, can easily be ana-

lyzed to show that the loops can be legally reordered, unrolled, and tiled while preserving

the semantics of the code.

There are some limitations to this pure compiler-based approach. The most impor-

tant limitation from our perspective is that the analysis techniques cannot handle sparse

matrix operations, because the source code contains indirection through an array, which

cannot be analyzed at compile time. (Some recent work on compiling sparse matrix code

that takes a di�erent approach, is described below.) Even for dense matrices, the approach

works only on low level kernels; algorithms such as LU factorization with pivoting or QR

decomposition [65, 9] are still open problems. The second problem is that, even for dense

matrices, the optimization space is large and complex, making it diÆcult to �nd the best

implementation. For example, given a set of loops that can be tiled, the problem of choos-

ing a tile size is still quite diÆcult; existing solutions do not allow for arbitrary numbers

of arrays or higher dimensional arrays and they often make unrealistic assumptions about

the architecture, such as having a single direct-mapped cache [44, 26, 19]. Our approaches

in Sparsity use experimental models rather than the analytical ones used in this related

work.

7.1.2 Hand-Optimized Libraries

A set of basic matrix-vector operations for dense and banded matrices has been

standardized in BLAS [45, 24, 23], and its reference implementation is available from Netlib

[52]. These basic routines are hand-coded by programmers that work for the machine

vendors, who are well-trained in both the details of the architecture and optimization

techniques used for high performance. The BLAS approach has successfully been used

to produce application-level libraries for dense linear algebra, such as LAPACK [1] (Linear

Algebra PACKage) and ScaLAPACK [10] (Scalable Linear Algebra PACKage), which use

these BLAS routines as building blocks.

95

There are two problems with trying this approach for sparse matrices. First,

even for the dense case the e�ort required to produce the optimized kernels has lead some

vendors to rely on their compilers to produced the optimized versions. The human e�ort

is increasing due to both the greater complexity of hardware and the demand for a richer

set of \primitive" routines. Second, as we has shown, some optimizations are speci�c to a

particular class of matrices, so the burden of writing the routines would likely fall to the

applications programmer, who has little understanding of the machine details.

7.1.3 Automatic Generation of Libraries

Due to the large amount of time and e�ort needed to develop fast numerical codes

for di�erent architectures, there have been some recent attempts to automate this process.

These approaches share some aspects of the compiler approach, because they often use

a code generation facility (although all generate C code rather than assembly language).

They avoid the analysis problems that exist in general-purpose compilers, because they are

only optimizing one routine or a set of closely related routines. The projects in this area

include PHiPAC (Portable High Performance ANSI C) [8] at UC Berkeley and ATLAS

(Automatically Tuned Linear Algebra Software) [70] at ORNL. Both of these generate

optimized BLAS 3 routines for a given dense matrix size and machine. FFTW (the Fastest

Fourier Transform in the West) [28, 27] from MIT generates optimized FFT routines.

PHiPAC The PHiPAC project uses search over a set of possible optimizations to pro-

duce a matrix-matrix multiplication routine that is highly tuned to a particular machine.

Even excluding algorithmic variants of multiplication such as Strassen's method [4, 36, 67],

this routine has a large design space with many parameters such a tile sizes, loop nesting

permutations, loop unrolling depths, software pipelining strategies, register allocations, and

instruction schedules. Furthermore, these parameters have complicated interactions with

increasingly complicated microarchitectures of new microprocessors.

The PHiPAC approach is as follows. First, they developed a generic model of

current C compilers and microprocessors that provides guidelines for producing Portable

High-Performance ANSI C code (PHiPAC). Second, rather than hand-coding particular

routines, they write parameterized generators that produce code according to the guidelines.

Third, they write scripts that automatically tune code for a particular system by searching,

i.e. varying the generators' parameters, benchmarking the resulting routines, and picking

96

the fastest one. PHiPAC and the vendor BLAS are comparable, close to machine peak for

large matrices, and much faster than the naive code that has been fully optimized by the

compiler.

PHiPAC, like Sparsity, relies on the C compiler to do reasonable register al-

location, instruction selection, and instruction scheduling. However the group found that

compiler could not depend on pointer alias analysis, register and cache tiling, loop unrolling,

or software pipelining; even when implemented, they were not done e�ectively, because there

are so many ways to do them. PHiPAC's generated code (1) uses local variables, reordering

operations to explicitly remove false dependencies, enabling the compiler to interleave ex-

ecution and increase parallelism, (2) exploits multiple integer and oating point units, (3)

minimizes pointer updates by constant stride, (4) hides multiple instruction FPU latency

with independent operations, (5) balances the instruction mix to keep multiple functional

units busy, (6) increases locality via tiling to improve cache performance, (7) converts inte-

ger multiplications to additions in address calculations, (8) minimizes branches, and avoids

magnitude-compares to end loops, (9) explicitly unrolls loops.

The code is generated using these rules and the search scripts then searches over

a subset of the combinatorially large space of possible implementations. To limit search

time, machine parameters are used to limit tile size choices. Furthermore, they �rst search

for the best \core" register blocked code, then use that to search for the best L1 tiled code,

use that for the L2 search, and so on. Searches can take from hours to weeks, depending on

how thorough they are.

The PHiPAC problem domain is quite di�erent from Sparsity's, because the data

access patterns are independent of input for dense matrices. Although matrix size is not

known during optimization, PHiPAC can determine good implementations for various small

matrix sizes and then produce a more generic routine for any larger matrix. Thus, the entire

optimization problem can be done o�-line, with only access to the machine required. We

believe that Sparsity could bene�t somewhat from a PHiPAC style search over the code

used for small dense blocks, for example, which appear within the register-blocked sparse

code. In Sparsity we currently produce a single machine-independent implementation of

this kernel.

ATLAS ATLAS [69] stands for Automatic Tuning of Linear Algebra Software. ATLAS's

approach di�ers from PHiPAC as follows: all machine dependent code (and searching) is

97

done for square matrices assumed to reside in the L1 cache. All other matrices are reduced

to this case by copying all or part of the input matrices. This approach has two advantages:

(1) Search times are much reduced, from days or weeks down to 1-2 hours, because only one

limited kernel is machine dependently searched; and (2) Performance is more uniform than

that of PHiPAC result. This is because the copy optimization can make sure that all active

submatrices are stored in non-conicting cache locations. The disadvantages are that copy

optimization is ineÆcient on small matrices, and PHiPAC's more comprehensive search

might generate faster code in some cases, although ATLAS works quite well in practice.

Since its original release, ATLAS has been extended to support nearly all the

BLAS, not just matrix-multiplication. This is done for other Level 3 BLAS using GEMM-

based BLAS as described in [39]. In addition, some LAPACK routines (LU, Cholesky and

QR decomposition) are now directly supported by the search procedure. In other words,

the search procedure attempts to maximize not the speed of matrix-multiplication per se,

but rather the speed of the overall application.

FFTW FFTW [28, 27] automatically produces optimized FFTs. It deals with one-

dimensional and multi-dimensional FFTs, strided data, and real or complex input. It

also handles parallelism. Its FFTs are comparable with and frequently faster than vendor

optimized FFTs. While an FFT is not technically a dense matrix operation, the underlying

data structure is a standard array of some dimension, rather than the more complicated

sparse data structure that uses index indirection or pointers.

FFTW is structured as follows. As shown by Cooley and Tukey, if n = n1 �n2, then

the n-point FFT can be expressed in terms of n1 and n2 point FFTs. Therefore for each

factorization of n, there is an FFT algorithm. FFTW does an o�-line, machine-independent

generation of a number of FFT kernels for many small values of n. Then, at run-time,

when the actual n is known, a search is done over a large number of possible factorizations

of n, each of which corresponds to an implementation from the prebuilt kernels. Each

implementation is timed and the fastest one chosen.

The kernels are machine independent C code, but a number of optimizations are

done, based on similar assumptions about what C optimizers can and cannot do as used by

PHiPAC and ATLAS. Some optimizations are generic, like common subexpression elimina-

tion and constant folding, but some are quite speci�c to the FFT, such as optimizing both

the program DAG and its transposition. The kernel algorithms and the optimizations are

98

all expressed in a single language, a dialect of ML.

An interesting contrast between FFTW on the one hand and ATLAS/PHiPAC

on the other is their approach to tiling. For ATLAS and PHiPAC the choice of tile size

is perhaps the most important parameter to pick for performance, whereas in FFTW a

cache-oblivious algorithm is used, based on a recursive data structure that asymptotically

minimizes the number of cache misses, according to a theorem in [35].

The above projects all aimed to optimize the regular operations on arrays. Aside

from machine-speci�c parameters, the only problem-speci�c parameter is the size of the

matrix or vector. However, in optimizing a sparse matrix operation, the nonzero structure

of the sparse matrix has enormous e�ect on the cache performance. Due to the addition of

this parameter, the search space for optimal code is much larger for sparse matrices than

dense ones, and it is not feasible to perform the optimizations without seeing the actual

sparse structures.

7.2 Sparse Matrix Libraries and Optimizations

In this section, we summarize research e�orts on sparse matrices, including stan-

dardization e�orts, optimization studies, and development of sparse matrix packages.

Sparse BLAS: Sparse Matrix Routine Standardization

The BLAS Technical Forum is an e�ort aimed at expanding the BLAS in a num-

ber of ways to reect developments of modern software, languages, and hardware. This

includes a standardization e�ort to de�ne BLAS functionality on sparse matrices. The

draft document [11] de�nes the functionality and naming conventions of sparse BLAS level

2 (matrix-vector) and level 3 (matrix-matrix) routines. This document also summarizes the

diverse storage formats of sparse matrices, which were described in detail in section 6.4.

The NIST Sparse BLAS [59] project has publicly available C and FORTRAN

library routines that are sparse counterparts to the dense BLAS level 3 routines, including

the solution of triangular systems and matrix-matrix multiplication. They currently support

operations on coordinate, compressed sparse row, compressed sparse column, block sparse

row, block sparse column, block coordinate, and variable block row formats. Those routines

are automatically generated from templates, with some e�ort put into achieving reasonable

99

performance. However, there is no attempt to choose the formats for the user based on

either user's matrix or machine.

Generic Interfaces

A related line of work provides a generic numerical algorithm library, including

MV++ (C++ matrix/vector classes) [56], SparseLib++ (sparse matrix computation rou-

tines on these classes) [60], and IML++ (Iterative Method Library) [25]. The latest work,

TNT (Template Numerical Toolkit) [57], is a successor to all of the others and is still under

construction. TNT provides an integrated collection of generic matrix/vector classes based

on components of the latest ANSI C++ features along with the Standard Template Library

(STL). The algorithms are currently based on the SparseBLAS library for the basic sparse

matrix kernel operations, so machine-speci�c optimizations are not part of their agenda.

Hand Optimization of Matrix-Vector Multiplication

Toledo [68] studied a particular memory optimization of (symmetric) sparse matrix-

vector multiplication on uniprocessor. He used mixed 1� 2 and 2� 2 register blocking, and

showed bandwidth reduction by means of reordering rows of the matrix. He considered two

ordering strategies and found that both give better performance than a random ordering,

sometimes better or worse compared to the ordering given in the original matrix. He also

observed that nested-bisection ordering generates more blocks, while reverse Cuthill-McKee

[48] ordering decreases the number of blocks found. While Toledo's work is similar to our

work on register blocking, it is a much more narrow study of 13 matrices on one machine

(IBM RS/6000) and does not attempt to automate the optimization process. Oliker et. al.

[54] also performed research on the eÆciency of sparse matrix-vector multiplication using

various ordering/partitioning algorithms on parallel systems. They compared the following

three algorithms against the original natural ordering using a sparse matrix generated from

a mesh: Reverse Cuthill-McKee (RCM), self-avoiding walks (SAW), and graph partitioning

with the MeTiS package. They conclude that those ordering/partitioning schemes signif-

icantly improve the performance on distributed-memory and shared-memory systems. In

previous work, we also considered reordering for memory bandwidth reduction, and found

some bene�ts on symmetric multiprocessors [38], but very little e�ect on uniprocessors.

100

Sparse Matrix Packages for Multiprocessors

Yousef Saad built SPARSKIT [61] and, with Andrei Malevsky, PSPARSLIB [62].

SPARSKIT is a collection of FORTRAN subroutines for sparse matrix computations. It

includes format conversion routines among various sparse matrix formats, matrix-matrix

computation routines for the compressed row format, matrix-vector operations for sparse

matrices represented in various formats, and some preconditioners. PSPARSLIB [62] is

a sparse iterative solver for distributed memory multiprocessors written in FORTRAN. It

isolates communication functions so that it can be replaced with any high performance com-

munication method. While communication optimizations are a form of memory hierarchy

optimization for parallel machines, the issues are quite di�erent because the messages are

entirely under programmer control.

Aztec [37] is a parallel iterative library for solving linear systems, developed at

Sandia National Laboratory. This library allows a user to apply standard distributed mem-

ory techniques such as locally numbered submatrices and ghost variables, using the notion

of a global distributed matrix.

BlockSolve95 [55], developed at Argonne National Laboratory, is a scalable parallel

software library primarily intended for the solution of sparse linear systems that arise from

physical models, especially problems involving multiple degrees of freedom at each node.

BlockSolve95 tries to �nd a blocked structure by locating cliques and identical nodes and

by reordering the matrix columns and rows. By identifying large blocks, it is able to use a

higher level dense BLAS routine for better performance. PETSc [5], a toolkit for scienti�c

computations, uses this BlockSolve95 library.

Spark98 at CMU [53] provides various versions of sparse matrix-vector multipli-

cation code for shared memory and message passing systems, along with realistic example

matrices. Their code is limited to symmetric matrices.

Compiling Sparse Matrix Code

Two research groups have taken a novel approach to the compilation problem

for sparse matrix kernels, which take a dense matrix routine as input, rather than an

implementation designed for a sparse matrix format. The input acts as a speci�cation of

a particular matrix operation; for many common matrix kernels, this dense matrix code is

simple enough that modern compiler analyses can analyze the code quite e�ectively. The

101

\compiler" is a special-purpose compiler that produces code appropriate for a sparse matrix.

A. J. C. Bik's thesis [6, 7] describes a sparse compiler that takes a dense matrix

routine as input, along with a sparse matrix, and generates a sparse version of the code

along with an automatically selected sparse matrix data structure. Within the compiler,

the sparse matrix is analyzed to classify the input matrix, and then the dense matrix loop

is transformed using dependence analysis of data accesses. Bik's work is similar to ours in

that it analyzes the nonzero structure of a sparse matrix for the purpose of optimization.

However, its nonzero structure analyzer is quite di�erent in that it identi�es the distribution

of nonzeros locally, i.e., where they are clustered, while we analyze the global structure

based on the assumption that it is identical throughout the matrix. One can envision a

hybrid analyzer that combines both techniques such that after each cluster of nonzeros in

the matrix is identi�ed, each cluster is analyzed for blocks individually. Another di�erence

between the two approaches is that Sparsity uses machine information that can a�ect the

data storage selection while the sparse compiler does not.

Kotlyar et al. from Cornell, in a related e�ort, produced work on the Bernoulli

compiler [43]. Bernoulli also uses dense matrix format for the input code. It also takes some

identi�cation of the desired sparse matrix storage format as input, but not a particular

matrix. Bernoulli uses relational algebra to generate parallel sparse code from dense code

input. The goal of this project is to simplify programming of sparse matrix algorithms,

rather than optimizations that are speci�c to a particular matrix or machine.

On-demand Code Generation

Several of the projects described above provide a web service that generates some

sparse matrix routines. NIST SparseBLAS [58] and A. J. C. Bik's sparse compiler[13]

provide on-demand code generation service for BLAS level 2 and 3 routines. The NIST

SparseBLAS system only provides a reference implementation, not one that is tuned to any

particular matrix or machine. Sparse compiler's service is closest to ours, since it performs

matrix-speci�c optimization and matrix format selection. The output of the sparse compiler

is FORTRAN, whereas Sparsity produces C, and as described above, the analysis of the

matrices is quite di�erent.

102

Chapter 8

Conclusions

In this thesis, we have described new optimization techniques for sparse matrix-

vector multiplication and described an optimization framework, Sparsity, for automati-

cally selecting and applying these optimizations. The optimization framework uses limited

search over a set of possible optimized versions, along with performance models and other

heuristics to restrict the search space. We also presented a thorough study of memory hi-

erarchy optimizations, demonstrating that the choice of optimizations is highly dependent

on the nonzero structure of the matrix and the target machine. Our benchmark matrices

were taken from a wide range of applications, including uid dynamics, structural model-

ing, chemistry, economics, circuit simulation, device simulation, linear programming, and

document retrieval.

Our optimization techniques address the increasingly deep and complex layering

of memory systems in modern machines, which has come about due to the widening gap

between processor and DRAM memory performance. At the top of the memory hierarchy

is a �xed set of registers, which are normally under control of the compiler. To optimize for

registers, we demonstrated that an e�ective strategy is to identify �xed-size dense blocks

within a sparse matrix, �lling in zeros as necessary. We introduced a performance model to

help select the appropriate block size for a machine, using a kind of machine performance

pro�le combined with an analysis of the sparse matrix structure. Even on matrices where

the blocks were not evident at the application level, small blocks proved useful on some

machines.

The next two or three levels in most processor memory hierarchies are caches,

which di�er across machines in their size, speed, and replacement policies. To optimize

103

for cache reuse, we devised a kind of two-level sparse block structure for matrices, which

is particularly e�ective for very large matrices with a nearly random sparsity pattern. We

introduced heuristics to help identify this class of matrices, which work quite well in practice,

although we found that search over a relatively limited set of possible block sizes is also

practical and more reliable.

For a class of sparse matrix algorithms, the problem can be reduced to a matrix

times a set of vectors, rather than a single vector. No other known work on optimization

directly addresses this problem. We extended our optimization framework to take advantage

of multiple vectors, which can be used to increase the reuse of data within registers or caches.

We also extended our benchmark suite for this work, adding two matrices that are known

to come from applications that use multiple matrices. The bene�ts of multiple vectors turn

out to be very high, often a factor of two over the previously optimized code.

The bene�ts of our approach are summarized in the speedup graphs shown in

�gures 8.1 and 8.2. Figure 8.1 shows the UltraSPARC I results, and Figure 8.2 shows

the MIPS R10000 results. The plots show the speedup from code generated by Sparsity

using whichever optimizations it determines to be best. The left graph in each �gure shows

the single vector speedup and the right plot shows the multiple vector speedup using nine

vectors; both are relative to the unoptimized single vector performance. The matrices are

roughly categorized by the application domain from which they were derived. The �gures

show that our system is highly e�ective, with speedups as high as three-fold for single vector

multiplication and six-fold for multiple vector multiplication. The �nite element matrices

show the highest bene�t from our optimizations, typically due to register blocking; text

retrieval matrices bene�t from cache blocking, while linear programming matrices have

relatively small speedups. Multiple vectors roughly double the performance of the already

optimized single vector performance, and also work well on matrices that do not derive any

bene�t from register or cache blocking.

The only major drawback to automatic optimization of sparse matrix operations

is the relatively high overhead for analyzing and reorganizing the matrix. (The overhead of

single-vector multiplication for a subset of benchmark matrices on an UltraSPARC is sum-

marized in �gure 8.3.) In particular, register blocking analysis it quite expensive, because it

is searching over the matrix structure to look for not one or two possible block sizes, but a

large set of sizes. Search over block sizes, as is used by dense matrix optimizations systems

like PHiPAC and Atlas, are probably not practical for the same reasons. The reorganization

104

0 10 20 30 40 50 60
1

1.1
1.2

1.4

1.6

1.8

2

2.5

3

3.5

4

Mflop rate of straightforward code

S
pe

ed
up

 fr
om

 S
pa

rs
ity

Speedup for Sparse Matrix−vector−multiply with one vector

dense matrix
FEM matrices
LP matrices
LSI matrix
random matrix

0 10 20 30 40 50 60
1

1.1
1.2

1.4

1.6

1.8
2

2.5

3

3.5

4

4.5
5

Mflop rate of straightforward code
S

pe
ed

up
 fr

om
 S

pa
rs

ity

Speedup for Sparse Matrix−vector−multiply with multiple vectors

dense matrix
FEM matrices
LP matrices
LSI matrix
random matrix

Figure 8.1: Summary of optimized speedup on an UltraSPARC

0 5 10 15 20
1

1.1

1.2

1.4

1.6

1.8

2

2.5

3

Mflop rate of straightforward code

S
pe

ed
up

 fr
om

 S
pa

rs
ity

Speedup for Sparse Matrix−vector−multiply with one vector

dense matrix
FEM matrices
LP matrices
LSI matrix
random matrix

0 5 10 15 20
1

1.1
1.2

1.4

1.6
1.8

2

2.5

3

3.5

4

5

6

Mflop rate of straightforward code

S
pe

ed
up

 fr
om

 S
pa

rs
ity

Speedup for Sparse Matrix−vector−multiply with multiple vectors

dense matrix
FEM matrices
LP matrices
LSI matrix
random matrix

Figure 8.2: Summary of optimized speedup on a MIPS R10000

105

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

10
3

Overhead of optimization in Sparsity

N
um

be
r

of
 it

er
at

io
ns

Multiplication time in seconds

register blocking
cache blocking

Figure 8.3: Summary of overhead in Sparsity: The horizontal axis shows the un-
optimized multiplication time in log scale and the vertical axis shows the overhead time
divided by the di�erence between unoptimized multiplication time and optimized multipli-
cation time in log scale. The amount is equivalent to the number of iterations that the
optimization pays o�. A graph is shown for the subset of benchmark matrices.

of a matrix for a particular register block size is very expensive, since memory must be rear-

ranged at a precise level within the matrix. By comparison, cache-blocking reorganization

can be done more eÆciently using block copy operations, since relatively large portions of

the data structure are retained.

The overhead of analysis can be avoided at runtime if the appropriate data struc-

ture is used throughout the application run. The analysis and transformation cost can at

least be amortized over many matrix-vector multiplications if the matrix can be translated

before calling an iterative solver, for example. If multiple solves are being done, as might

happen in a time-stepped simulation, then one may pay the translation cost with each solve

but avoid the analysis by reusing the results of analysis from the �rst solve, assuming that

the matrix structure is similar enough across times steps that the same block sizes will be

appropriate. The BLAS Technical Forum has already identi�ed the need for runtime opti-

mization of sparse matrix routines, since they include a parameter in the matrix creation

routine to indicate how frequently matrix-vector multiplication will be performed. In some

cases, it would be bene�cial if the user could also indicate some other property of the ma-

trix, such as the size of dense blocks within the matrix, which could either come from the

106

application programmer's background knowledge of the problem or from previous feedback

from the optimization system.

The Sparsity system is set up as a web service to encourage users from science

and engineering disciplines outside of Computer Science. We believe that the Sparsity

framework is very general, and could easily admit additional optimizations, such as those

based on a diagonal representation or mixed block size format, or machine-speci�c instruc-

tion ordering for the dense matrix operations within the register-blocked code. Sparsity

should also prove useful to others doing research on sparse matrix optimization. The set

of matrices and machine benchmarks provided in this thesis will serve as a starting point

for a database of sparse matrix performance understanding, which may help machine archi-

tects, algorithm designers, library and compiler writers, and application scientists to better

understand the performance of sparse matrix applications.

107

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users'

Guide. SIAM, Feb. 1995.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users'

Guide (third edition). SIAM, Philadelphia, 1999.

[3] Z. Bai, T.-Z. Chen, D. Day, J. Dongarra, A. Edelman, T. Ericsson, R. Freund, M. Gu,

B. Kagstrom, A. Knyazev, T. Kowalski, R. Lehoucq, R.-C. Li, R. Lippert, K. Mascho�,

K. Meerbergen, R. Morgan, A. Ruhe, Y. Saad, G. Sleijpen, D. Sorensen, and H. Van der

Vorst. Templates for the solution of algebraic eigenvalue problems: A practical guide.

in preparation, 2000.

[4] D. H. Bailey, K. Lee, and H. D. Simon. Using Strassen's algorithm to accelerate the

solution of linear systems. J. Supercomputing, 4:97{371, 1991.

[5] S. Balay, W. Gropp, L. C. McInns, and B. Smith. PETSc 2.0 user's manual. Technical

Report ANL-95/11, Argonne National Laboratory, 1996.

[6] A. J. C. Bik. Compiler Support for Sparse Matrix Computations. PhD thesis, Leiden

University, 1996.

[7] A. J. C. Bik and H. A. G. Wjisho�. Automatic data structure selection and transforma-

tion for sparse matrix computations. IEEE Transactions on Parallel and Distributed

Systems, 7(2):109{126, 1996.

[8] J. A. Bilmes, K. Asanovic, J. Demmel, C. Chin, and D. Lam. Optimizing matrix

108

multiply using PHiPAC: a portable, high-performance, ANSI C coding methodology.

In International Conference on Supercomputing, July 1997.

[9] C. Bischof. Adaptive blocking in the QR factorization. J. Supercomputing, 3(3):193{

208, 1989.

[10] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Don-

garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

ScaLAPACK Users' Guide. SIAM, Philadelphia, 1997.

[11] BLAST Forum. Documentation for the Basic Linear Algebra Subprograms (BLAS),

Oct. 1999. http://www.netlib.org/blast/blast-forum.

[12] P. Boulet, J. Dongarra, Y. Robert, and F. A. A. Vivien. Static tiling for heterogeneous

computing platforms. Parallel Computing, 25(5):547{568, mai 1999.

[13] P. Brinkhaus, A. J. Bik, and H. A. Wijsho�. Subroutine on demand-service : Sparse

BLAS 2 & 3. http://hp137a.wi.leidenuniv.nl:8080/blas-service/blas.html.

[14] S. Carr. Memory-Hierarchy Management. PhD thesis, Rice University, July 1994.

[15] S. Carr. Combining optimization for cache and instruction-level parallelism. In Pro-

ceedings of the 1996 International Conference on Parallel Architectures and Compiler

Techniques (PACT 96), Oct. 1996.

[16] S. Carr and K. Kennedy. Improving the ratio of memory operations to oating-point

operations in loops. TOPLAS, 16(6):1768{1810, 1994.

[17] S. Carr and R. Lehoucq. Compiler blockability of dense matrix factorizations. ACM

Transactions on Mathematical Software, 23(3), Sept. 1997.

[18] S. Carr and R. B. Lehoucq. Compiler blockability of dense matrix factorizations.

TOMS, 23(3):336{361, 1997.

[19] S. Coleman and K. S. McKinley. Tile size selection using cache organization and data

layout. In Proceedings of the SIGPLAN '95 Conference on Programming Language

Design and Implementation, June 1995.

[20] T. Davis. University of Florida Sparse Matrix Collection, 1997.

http://www.cise.u.edu/ davis/sparse/.

109

[21] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data

using clustering. Technical Report RJ 10147, IBM, July 1999. to appear in Machine

Learning.

[22] J. Dongarra, J. D. Croz, S. Hammarling, and R. J. Hanson. An extended set of

FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 14:1{17,

Mar. 1988.

[23] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A set of Level 3 Basic Linear

Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1{17, March 1990.

[24] J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An Extended Set of

FORTRAN Basic Linear Algebra Subroutines. ACM Trans. Math. Soft., 14(1):1{17,

March 1988.

[25] J. Dongarra, A. Lumsdaine, R. Pozo, and K. Remington. A sparse matrix library in

C++ for high performance architectures. In Proceedings of the Second Object Oriented

Numerics Conference, pages 214{218, 1992.

[26] K. Essenghir. Improving data locality for caches. Master's thesis, Rice University,

Sept. 1993.

[27] M. Frigo. A fast fourier transform compiler. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, Atlanta, Georgia,

May 1999.

[28] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT.

In International Conference on Acoustics, Speech and Signal Processing, 1998.

[29] G. H. Golub and R. Underwood. The Block Lanczos Method for Computing Eigenval-

ues. In J. R. Rice, editor, Mathematical Sotware III, pages 361{377. Academic Press,

Inc., 1977.

[30] R. G. Grimes, J. G. Lewis, and H. D. Simon. A Shifted Block Lanczos Algorithm

for Solving Sparse Symmetric Eigenvalue Problems. SIAM J. Matrix Anal. Appl.,

15:228{272, 1994.

110

[31] K. K. Gupta and C. L. Lawson. Development of a Block Lanczos Algorithm for Free

Vibration Analysis of Spinning Structures. Int. J. for Numer. Meth. in Eng., 26:1029{

1037, 1988.

[32] M. T. Heath. Scienti�c Computing: An Introductory Survey. McGraw-Hill, 1997.

[33] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. Tech-

nical Report SAND93-1301, Sandia National Laboratories, 1993.

[34] J. L. Hennesy and D. A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufman, second edition, 1996.

[35] X. Hong and H. T. Kung. I/O complexity: the red blue pebble game. In Proceedings

of the 13th Symposium on the Theory of Computing, pages 326{334. ACM, 1981.

[36] S. Huss-Lederman, E. Jacobson, J. Johnson, A. Tsao, and T. Turnbull. Implementation

of Strassen's algorithm for matrix multiplication. In Supercomputing 96. IEEE, 1996.

[37] S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro. Aztec user's guide: Version 1.1.

Technical Report SAND95-1559, Sandia National Laboratories, 1995.

[38] E.-J. Im and K. Yelick. Optimizing sparse matrix vector multiplication on SMPs. In

Ninth SIAM Conference on Parallel Processing for Scienti�c Computing, San Antonio,

TX, Mar. 1999.

[39] B. K�agstr�om, P. Ling, and C. Van Loan. Portable High Performance GEMM-

based Level 3 BLAS. In R. F. S. et al., editor, Parallel Processing for Scien-

ti�c Computing, pages 339{346, Philadelphia, 1993. SIAM. software available at

www.netlib.org/blas/gemm_based.

[40] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. hMETIS A Hypergraph Parti-

tioning Package. University of Minnesota, Jan. 1998.

[41] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking. In ACM

SIGPLAN Conference on Programming Language Design and Implementation, 1997.

[42] I. Kodukula, K. Pingali, R. Cox, and D. Maydan. An experimental evaluation of

tiling and shackling for memory hierarchy management. In Interional Conference on

Supercomputing, 1999.

111

[43] V. Kotlyar, K. Pingali, and P. Stodghill. Compiling parallel code for sparse matrix

applications. In Supercomputing, 1997.

[44] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimiza-

tions of blocked algorithms. In Proceedings of the Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, Apr. 1991.

[45] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms

for Fortran usage. ACM Trans. Math. Soft., 5:308{323, 1979.

[46] R. Lehoucq and K. Maschho�. Implementation of an implicitly restarted block Arnoldi

method. Preprint MCS-P649-0297, Argonne National Lab, 1997.

[47] X. S. Li. Sparse Gaussian Elimination on High Performance Computers. PhD thesis,

University of California, Berkeley, 1996.

[48] W.-H. Liu and A. H. Sherman. Comparative analysis of the Cuthill-McKee and the

reverse Cuthill-McKee ordering algorithms for sparse matrices. In SIAM J. Numerical

Analysis, pages 198{213, 1976.

[49] O. A. Marques. BLZPACK: Decsription and User's guide. Technical Report

TR/PA/95/30, CERFACS, 1995.

[50] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop transfor-

mations. ACM Transactions on Programming Languages and Systems, 18(4):424{453,

July 1996.

[51] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,

1997.

[52] Netlib. Netlib repository at UTK and ORNL. http://www.netlib.org.

[53] D. R. O'Hallaron. Spark98: Sparse matrix kernels for shared memory and message pass-

ing systems. Technical Report CMU-CS-97-178, School of Computer Science, Carnegie

Mellon University, 1997.

[54] L. Oliker, X. Li, G. Heber, and R. Biswas. Ordering unstructured meshes for sparse

matrix computations on leading parallel systems. In J. R. et al., editor, Parallel and

112

Distributed Processing, 15 IPDPS 2000 Workshops, pages 497{503, Springer-Verlag,

Berlin, 2000. Lecture Notes in Computer Science 1800.

[55] P. Plassmann and M. T. Jones. BlockSolve95 users manual: Scalable library software

for the parallel solution of sparse linear systems. Technical Report ANL-95/48, Argonne

National Laboratory, 1995.

[56] R. Pozo. MV++, 1995. http://math.nist.gov/mv++.

[57] R. Pozo. Template numerical toolkit (TNT), 1997. http://math.nist.gov/tnt.

[58] R. Pozo and K. Remington. NIST Sparse BLAS sourceservice code request form.

http://math.nist.gov/spblas/sourceservice.html.

[59] R. Pozo and K. Remington. NIST Sparse BLAS, 1997. http://math.nist.gov/spblas.

[60] R. Pozo, K. Remington, and A. Lumsdaine. SparseLib++, 1996.

http://math.nist.gov/sparselib++.

[61] Y. Saad. SPARSKIT: A basic tool-kit for sparse matrix computations, June 1994.

[62] Y. Saad and A. V. Malevsky. P-SPARSLIB: A Portable Library of Distributed Memory

Sparse Iterative Solvers, 1995.

[63] M. Sadkane. Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue

problems. Numer. Math., 64:195{211, 1993.

[64] M. Sadkane. A block Arnoldi-Chebyshev method for computing the leading eigenpairs

of large sparse unsymmetric matrices. Numer. Math., 64:181{193, 1993.

[65] R. Schreiber and C. Van Loan. A storage eÆcient WY representation for products of

Householder transformations. SIAM J. Sci. Stat. Comput., 10:53{57, 1989.

[66] J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In

International Conference on Computer Vision, Jan. 1998.

[67] M. Throttethodl, S. Chatterjee, and A. R. Lebeck. Tuning Strassen's matrix multi-

plication for memory eÆciency. In Proceedings of Supercomputing '98, Orlando, FL,

November 1998.

113

[68] S. Toledo. Improving memory-system performance of sparse matrix-vector multiplica-

tion. In Proceedings of the 8th SIAM Conference on Parallel Processing for Scienti�c

Computing, Mar. 1997.

[69] R. Whaley and J. Dongarra. Automatically tuned linear algebra soft-

ware. Computer Science Department CS-97-366, University of Tennessee,

Knoxville, TN, December 1997. (LAPACK Working Note #131; see

http://www.netlib.org/utk/projects/atlas/index.html).

[70] R. C. Whaley and J. Dongarra. Automatically tuned linear algebra software (ATLAS).

http://www.netlib.org/atlas.

[71] M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Computer

Systems Laboratory, Stanford University, Aug. 1992.

114

Appendix A

Nonzero Structure of Test Matrices

Figures A.1 { A.12 illustrate the distribution of nonzero elements of each matrix.

The darker point means denser nonzeros elements.

Figure A.1: (1)dense1000 (2)raefsky3 (3)inaccura (4)bcsstk35

115

Figure A.2: (5)venkat01 (6)crystk02 (7)crystk03 (8)nasasrb

Figure A.3: (9)3dtube (10)ct20stif (11)bai (12)raefsky4

Figure A.4: (13)ex11 (14)rdist1 (15)vavasis3 (16)orani678

116

Figure A.5: (17)rim (18)memplus (19)gemat11 (20)lhr10

Figure A.6: (21)goodwin (22)bayer02 (23)bayer03 (24)coater2

Figure A.7: (25)�nan512 (26)onetone2 (27)pwt (28)vibrobox

117

Figure A.8: (29)wang4 (30)lnsp3937 (31)lns3937 (32)sherman5

Figure A.9: (33)sherman3 (34)orsreg1 (35)saylr4 (36)shyy161

Figure A.10: (37)wang3 (38)mcfe (39)jpwh991 (40)gupta1

118

Figure A.11: (41)lpcred (42)lp�t2p (43)lpnug20 (44)nasasrb

Figure A.12: (45)lsi (46)random

