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Abstract

The last decade has seen the integration of audio, video, and
3D graphics into traditional workloads as well as the emer-
gence of new workloads dominated by the processing of data
representing such information. Initially, these emerging work-
loads were supported by dedicated, application specific inte-
grated circuits and digital signal processors. In order to avoid
the added cost and complexity of these dedicated hardware
solutions, microprocessor vendors have extended their archi-
tectures with instructions targeting multimedia applications.
Despite general agreement on the direction of evolving work-
loads, there is little agreement on the nature of the architec-
tural changes that should be made to support them. The focus
of this work is to survey existing multimedia instruction sets
and examine how their functionality maps to a set of com-
putationally important kernels extracted from the previously
developed Berkeley multimedia workload.

1 Introduction

The data paths of general purpose microprocessors are 32 or
64-bits wide, while multimedia applications operate on data
that is typically 8 (video, imaging) or 16 (audio) bits wide.
This mismatch means that only a fraction of the data path
and functional units are actually utilized. Multimedia exten-
sions recognize that by partitioning functional units (for ex-
ample by simply blocking carry bits, in the case of an adder),
processing resources can be utilized more efficiently. Parti-
tioned arithmetic, subword parallelism, and single instruction
multiple data (SIMD) processing are all used as synonyms
for this method of performing parallel operations on lower-
precision data packed into word-oriented datapaths (although
the term "SIMD" has other meanings as well).

The remainder of this paper is organized as follows: Section
2 gives a brief background on the historical and architectural
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motivations behind each vendor’s multimedia instruction set,
while Section 3 compares the instruction set design in detail
(first comparing integer, then floating point and finally data
type independent functionality). Section 4 surveys the avail-
able methods for programming with multimedia instruction
sets. Our analysis is summarized in Section 5.

2 Background

All major microprocessor vendors have defined multimedia
instruction set extensions for their architectures (Table 1).
There are large differences in the degree and type of support
which the various multimedia extensions offer. In this section
we present an overview of the available multimedia instruc-
tion sets in the order of their introduction, as well as pro-
viding background on design goals and considerations where
possible. The date of initial product release is noted in paren-
theses by the heading for each extension, with an asterisk (*)
denoting extensions which have not yet been implemented in
released hardware.

2.1 Hewlett Packard MAX-1 (1994)

Hewlett Packard’s MAX-1 for speeding partitioned integer op-
erations was the first multimedia extension. It allowed for
the implementation of a totally software MPEG-1 (352x240
or SIF resolution) decoder on the low end HP712 workstation
(PA-7100LC CPU running at 80MHz). Originally, a scalar
high level language implementation of MPEG decoding took
2 seconds (0.5 frames per second) on a 50 MHz HP720 work-
station for video only (no audio). The algorithms and software
were then optimized (without any multimedia instructions),
realizing 4-5 fps. At that time, multimedia enhancements to
the forth coming PA-7100LC processor were considered. Since
it was already deep in the implementation phase, a require-
ment was that any chip enhancements that were added should
not adversely impact its design schedule, complexity, cycle
time or chip area [Lee95b]. Rather than add special purpose
MPEG circuitry to the processor, the same design principles
were used as when selecting instructions for the original PA-
RISC architecture. This involved finding the most frequent



Vendor Extension Base ISA | Announced | Product | Instructions Register File
HP MAX-1 PA-RISC unknown 1994 [Lee97b]| 9 Integer (31x64b)
Sun VIS SPARC v9 unknown 1995 [Kohn95] 121 FP (32x64b)
HP MAX-2 PA-RISC w/MAX-1 1995 [HP95] 1995 [Lee97b]| 8 Integer (32x64b)

MIPS MIPS-V MIPS-1V 1996 [SGI96] - 29 FP (32x64b)
MIPS MDMX MIPS-V 1996 [SGI96] - 74 FP (32x64b), Acc. (1x192b)
Intel MMX x86 1996 [Intel96] 1997 [Intel97] 57 FP (8x64b)
DEC MVI Alpha 1996 [Bann96] 1997 [Carl97] 13 Integer (31x64b)
Cyrix Extended MMX x86 w/MMX unknown 1997 [Cyrix] 12 FP (8x64b)
AMD 3DNow! x86 w/MMX 1997 [AMD97] | 1998 [AMDWP] 21 FP (8x64b)
Intel SSE x86 w/MMX 1998 [Veit98] 1999 [Intel99] 70 8x128b

Motorola AltiVec PowerPC 1998 [Phil98] 1999 [Mot099] 162 32x128b

MIPS MIPS-3D MIPS64 1999 [Thek99] - 23 FP (32x64b)
AMD Enhanced 3DNow! | x86 w/MMX, 3DNow! | 1999 [AMD99] 1999 [AMD99] 24 FP (8x64b)
Intel SSE2 x86 w/MMX, SSE 2000[Intel00a] - 144* 8x128b

Table 1: Microprocessor Multimedia Extensions - the register file used by multimedia instructions may be shared with
existing integer (Integer) or floating point (FP) registers, or be separate, with a geometry of N registers each with a width
of W bits (NzWb). *Note that 68 of the 144 SSE2 instructions are 128-bit wide versions of 64-bit wide MMX/SSE integer

instructions.

operations, breaking them down into simple primitives, and
accelerating their execution [Lee95]. The changes that were
implemented allowed for the decoding of MPEG audio and
SIF video simultaneously at up to 30 fps.

2.2  Sun VIS (1995)

Sun’s partitioned integer Visual Instruction Set (VIS) was
first implemented in hardware on the UltraSPARC 1 pro-
cessor, with all successive processors (UltraSPARC II, Ultra-
SPARC IIi, UltraSPARC III) also supporting the instructions
included in this extension. The primary motivation behind
the creation of the VIS extension was to create a standard
platform for multimedia applications such as 3D visualiza-
tion and MPEG-1/MPEG-2 coding on future SPARC sys-
tems. Prior to the VIS extension, multimedia applications re-
quired specialized graphics hardware. By implementing VIS
on the processor overall system cost is lowered and valuable
expansion slots are freed. Unlike a cost conscious multimedia
processor or ASIC, VIS is able to take advantage of agres-
sive upgrades in frequency due to cutting edge technology
and process improvements in the processor. VIS instructions
were defined by examining a variety of graphics and multi-
media algorithms. Any potential instruction had to execute
in a single cycle or be easily pipelined, be applicable to sev-
eral algorithms and not affect the cycle time of the processor
[Trem96].

2.3 Hewlett Packard MAX-2 (1995)

Hewlett Packard further enhanced its PA-RISC processor
multimedia capabilities with PA-RISC 2.0 (of which the par-
titioned integer MAX-2 extension is a subset), first imple-
mented in the PA-8000 processor. In MAX-2 two approaches

were used for multiplication depending on the media stream
being processed. For audio and 3D graphics transformations,
the full power and versatility of the floating point multiply-
accumulate functional units are proffered. In lower preci-
sion applications that are typified by multiplications by con-
stants, multiplications are accomplished through a series of
compound packed shift and add instructions [Lee97b].

An integer multiplier takes three to four times the area of
an integer adder, three times the latency and produces a re-
sult that is longer than each operand [Lee97c|. Using the
floating-point FMAC (multiply-accumulate) units saved con-
siderable die area. This was determined to outweigh the rela-
tively minor disadvantage of using the same general-purpose
integer registers normally used for addresses and loop counter
variables for packed data. Architectures which utilize a sep-
arate register file or reuse floating point registers for SIMD
operations are able to maintain a greater number of pointers
and scalar integer variables in the integer register file without
spilling to memory. In addition, pipeline complexity was re-
duced by not having a true integer multiply since it is a multi-
cycle operation, while all other existing integer instructions
are single cycle [Lee96b]. For applications such as MPEG
decoding, video can be processed in the integer registers by
MAX-2 instructions while audio is manipulated in parallel in
floating point.

2.4 MIPS MDMX (1996*)

MIPS’ MDMX is a partitioned integer instruction set which
shares 32 64-bit registers with the floating point register file,
but has an architecture centered around a special purpose
192-bit accumulator register. Many of MDMX’s arithmetic
operations can either explicitly specify a destination register
or implicitly accumulate into the accumulator. The parti-



tioning of the accumulator is determined by the format of the
elements being accumulated and is set according to the par-
ticular instruction executed. When accumulating packed un-
signed bytes, the accumulator is partitioned into eight 24-bit
unsigned slices. Packed 16-bit operations cause the accumu-
lator to be split into four 48-bit sections. This way multiple
accumulations can occur without overflow, although the bur-
den of remembering the current accumulator format is left to
the programmer [MIPS97]. MIPS Technologies Inc. no longer
manufactures its own processor designs. Instead, it licenses its
intellectual property (core designs) to other companies inter-
ested in manufacturing MIPS designs for their own products.
No processor designs implementing MDMX have yet been an-
nounced.

2.5 MIPS MIPS-V/MIPS-64 (1996%)

The MIPS64 instruction set (previously known as MIPS-V)
is a superset of all previous MIPS instruction sets (MIPS-I
through MIPS-1V), adding a paired single precision floating
point data type. Target applications include 3D geometry
processing for VRML and other OpenGL applications. MIPS-
V will be implemented for the first time on the upcoming
MIPS64 20K (code-named “Ruby”) processor design, repre-
senting 6-8% of the total floating point die area [Thek99).
Both NEC and Toshiba are expected to manufacture the
MIPS64 20K processor, which also has low power consump-
tion as a design goal (estimated to be 900 mW at 300 MHz),
beginning in late 2000. [Edwa00].

2.6 Intel MMX (1997)

Intel’s MMX partitioned integer multimedia extension was
first implemented in the P55 Pentium processor (AMD li-
censed MMX from Intel for their K6 processor around the
same time). The design of MMX had as its first priority to
substantially improve the performance of multimedia, com-
munications and emerging Internet applications. The appli-
cations studied included MPEG-1 and MPEG-2 video, music
synthesis, speech compression, speech recognition, image pro-
cessing, 3D graphics in games, video conferencing, modems
and audio. These were collected from a variety of sources and
analyzed with profiling tools to determine the characteristics
of their critical code sequences. An important design crite-
rion was that processors implementing MMX be able to run
existing operating systems without modification. This meant
that no new architectural state could be introduced (no new
registers or exceptions). MMX technology was mapped onto
the existing floating point architecture and registers [Mitt97].
Sharing the x87 floating point register space meant that both
multimedia and floating point instructions could not be used
concurrently. In addition, in order to return the x87 FP stack
to a sane state after MMX operations, an EMMS (empty multi-
media state) instruction must be used. The EMMS instruction
had very high latency in early implementations, but current
processors have improved upon this significantly.

2.7 DEC MVI (1997)

The DEC Alpha 21164PC processor was the first DEC pro-
cessor to incorporate the partitioned integer Motion Video
Instructions (MVI) multimedia extension. (Note that DEC
is now a part of Compaq corporation; we use the now obso-
lete name "DEC" for historical consistency.) All DEC Alpha
processors released after the 21164PC (21264/21264A/21364)
include the MVT instructions as well. The target applica-
tions during design were H.261 and H.263 teleconferencing at
30 fps, as well as DVD video playback at 30 fps with stereo
audio [Carl97]. The goal of Alpha MVI was to enable soft-
ware video encoders that would produce quality comparable
to hardware encoders. DEC architects did not choose to im-
plement a broader repertoire of multimedia instructions be-
cause they reasoned that available memory bandwidth limita-
tions minimize the overall benefit of multimedia instructions.
They point out that extensions such as MMX essentially try
to fix some of the x86 legacy architecture deficiencies which
are not present on Alpha, such as a severly limited number of
registers and poor floating point organization [Rubi96].

2.8 Cyrix Extended MMX (1997)

Like AMD, Cyrix also licensed MMX from Intel for use in
Cyrix’s 6x86MX and later processors. They also extended
MMX with a set of instructions which attempt to help allevi-
ate the register pressure issues caused by the x86 destructive
operand format (one operand register must also act as the
destination register). This is accomplished by introducing the
concept of implied registers. For a given first source register,
an implied destination register is defined, effectively creating
a three operand format. Besides augmenting basic MMX reg-
ister utilization, packed average, sum of absolute differences,
conditional moves and a 16-bit rounded multiplication oper-
ation were also added [Cyrix].

2.9 AMD 3DNow! (1998)

For the K6-2 processor, AMD took an independent role by
defining its own 3DNow! extension, which utilizes the same
registers and basic instruction formats as MMX, but adds a
partitioned floating point data type. This allows for two par-
allel single precision floating point operations to be computed
in parallel. During their initial analysis of floating point multi-
media codes, the architects of 3DNow! found two compelling
possibilities in the design space. The first, being a floating
point extension to MMX, was the path actually taken. The
other was a full set of independent instructions as in Mo-
torola’s AltiVec (e.g. a large number of wide registers, four
operand instruction format). They found that anything in be-
tween these two solutions would require significantly greater
hardware area or complexity without a corresponding perfor-
mance benefit [Ober99].



2.10 Intel SSE (1999)

Intel’s follow up to MMX, the Internet Streaming SIMD Ex-
tension (SSE), is primarily a partitioned floating point exten-
sion which addresses 3D geometry calculations, software ren-
dering, video encoding/decoding, and speech recognition. It
also incorporates feedback on MMX from software vendors in
the form of new packed integer instructions. Unlike MMX, the
floating point side of SSE does add new architectural state to
the Intel architecture. This reduced implementation complex-
ity and eased programming model issues, as well as allowing
for SSE and MMX or x87 (normal floating point capabilities)
to be used concurrently. The operating system support issue
was avoided by having operating system vendors update their
software well in advance of the release of SSE.

The Pentium III processor is the first from Intel to offer
an implementation of SSE. Implementing a data path greater
than 128-bits was not viewed as a reasonable option when bal-
ancing cost against potential benefits when first implement-
ing the extensions during the design of the Pentium III chip.
Pentium II floating point busses and registers were already 80-
bits wide due to the way x87 floating point is implemented.
128-bits was seen as a marginal increase, where as 256-bits,
for example, would have a much larger impact. A 256-bit
wide implementation would require doubling the width of ex-
isting floating point execution units as well as proportional
increase in memory bandwidth in order to feed them. Fi-
nally, since the primary focus of the SSE extension was 3D
geometry processing, greater than four wide single precision
operations were felt to offer diminishing returns as most 3D
geometry operations work with 4x4 matrices. In addition,
geometry primitives such as the triangular strips that sophis-
ticated 3D objects are composed of tend to be fairly short in
current applications (on the order of 20 vertices per strip),
limiting the potential benefit of longer vectors.

A 64-bit wide packed floating point implementation was
also considered (as in AMD’s competing and earlier to mar-
ket 3DNow!). The AMD approach was not used because the
x86 architecture has 3-bit register specifiers (i.e. a max-
imum of eight registers), thus implementing eight 128-bit
wide registers (8 x 128 bits = 1024 bits) effectively doubles
the register space in comparison to a 64-bit wide register file
(8 x 64bits = 512bits). Despite the 128-bit wide register
file width defined by the SSE instruction set architecture, the
Pentium-IIT SSE execution units are actually 64-bits (two sin-
gle precision floating point elements) wide in hardware. The
instruction decoder translates 4-wide (128-bit) SSE instruc-
tions into pairs of 2-wide (64-bit) internal micro-ops. Imple-
menting the 128-bit SSE instruction set on a 64-bit datapath
in this way limited the necessary changes to the instruction
decoder, and allowed for the utilization of existing and new
execution units [Thak99].

2.11 Motorola AltiVec (1999)

Motorola’s AltiVec is an integral part of the Motorola 7400
(G4) processor, which extended the PowerPC architecture
through the addition of a 128-bit wide vector (both parti-

tioned integer and floating point) execution unit. Unlike many
other extensions, which have supported media processing by
leveraging existing functionality from the integer or floating
point data paths, AltiVec devotes a significant portion of the
chip area to the new features and emphasizes the growing
role of multimedia [Gwen98a]. AltiVec is a 128-bit wide ex-
tension with its own dedicated register file and four pipelined
execution sub-units. The target applications for AltiVec in-
cluded IP telephony gateways, multi-channel modems, speech
processing systems, echo cancelers, image and video process-
ing systems, scientific array processing systems, as well as
network infrastructure such as Internet routers and virtual
private network servers. In addition to accelerating next-
generation applications, AltiVec can also accelerate many
time-consuming traditional computing and embedded pro-
cessing operations such as memory copies, string compares
and page clears. Compared to other vendors, Motorola has
targeted a much more general set of applications than just
multimedia [Full98].

2.12 MIPS MIPS-3D (1999%)

MIPS-3D consists of application specific extensions (ASEs)
which are intended to be separate, optional add-ons to the
base MIPS-V instruction set [MIPS99]. MIPS-3D consists of
partitioned floating point instructions targeting 3D geometry
processing, and is planned for inclusion on the MIPS64 20K
processor. It accounts for 3% of the floating point die area;
the floating point silicon represents less than 15% of the total
processor die area.

2.13 AMD Enhanced 3DNow! (1999)

AMD introduced Enhanced 3DNow! which extended 3DNow!
and MMX, in their Athlon (previously known as the K7) pro-
cessor by adding partitioned floating point and integer op-
erations to make 3DNow! functionally equivalent to Intel’s
SSE extension. The added integer instructions are opcode
equivalent to those included in Intel’s SSE.

2.14 Intel SSE2 (2000%)

Intel’s SSE2 extension is included in the Pentium IV micro-
processor. It extends the existing set of partitioned integer
MMX operations to 128-bits wide with the addition of 68
new instructions which utilize the same set of eight 128-bit
wide registers (XMMO-XMM7) introduced with the original SSE
extension. A packed double precision data type is also added,
targeted at applications other than multimedia such as sci-
entific and engineering workloads, as well as advanced 3D
geometry used in raytracing [Intel00a], [Intel0Ob]. No new
architectural state is added with Intel’s SSE2.

3 Comparison

In this section we review the functional architecture of each
instruction set by describing the principles of operation of



each. In discussing the functionality present in multimedia
instruction sets, we will draw on the computational kernels
extracted from the Berkeley Multimedia workload in order to
demonstrate how well (or how poorly) a given functionality
maps to a real multimedia workload based on our study of it
in [Sling00d]. The Berkeley multimedia workload consists of a
wide range of open source audio, speech, imaging, document,
video and 3D graphics applications along with representative
and realistic data sets. [Sling00a] discusses the design and
characterization of this workload in detail.

3.1 Integer

All of the multimedia extensions support integer operations,
although the types and widths of available operations varies
greatly. In our discussion, N-bit unsigned integer values are
denotedU (a.b), where a indicates the number of significant
bits to the left of the binary point, and b the number of bits to
the right. Signed two’s complement format is denoted S(a.b),
where a = N — b — 1 and b is the number bits to the right
of the binary point. A full discussion of this notation can be
found in Appendix B.

3.1.1 Saturation and Overflow

Traditional integer operations deal with overflow in a modulo
fashion as exceeding the maximum or minimum representable
range leads to a result in which only the lower N-bits of the
intermediate result are retained and placed in an N-bit wide
result register. This behavior is undesirable in many mul-
timedia applications, where a better approach is to saturate
positive overflow to the largest representable value or negative
overflow to the largest negative value. This is because we are
operating on media (often visual) data types, so we would like
to be able to add two values and have the result not be obvi-
ously erroneous to our senses; for audio, for example, clipping
is clearly preferably to wrap-around. The difference between
the two types of overflow can be seen in the example of adding
images with modulo and saturating addition shown in Figure
1, demonstrating the much more aesthetically palatable result
achieved with saturating arithmetic.

modulo addition

saturating addition

Figure 1: Modulo and Saturating Operations - mod-
ulo arithmetic “wraps around” to the next representable value
when overflow occurs, while saturating arithmetic clamps the
output value to the highest or lowest representable value for
positive and negative overflow respectively.

A second reason for employing saturating arithmetic is to
have a mechanism to efficiently deal with multiple possible
overflow situations in packed values. The main obstacle to
exploiting data parallelism is data dependent instruction flow.
There are five possible methods for dealing with overflow
[Lee95]:

1. ignore it (modulo or wrap-around arithmetic)
trap
set a shared overflow flag

set an individual overflow flag for each element

AT R

clip the result to the desired range (saturation or clamp-
ing arithmetic)

If the overflow in each packed value had to be handled sepa-
rately, the performance gain of parallel arithmetic would be
negated [Lee97b]. This is especially true for the shared flag
and trap solutions since the operation would have to be re-
peated and tested serially to determine which element over-
flowed. The only added cost of saturation is that unlike the
modulo addition of 2’s complement numbers, saturation re-
quires separate operations for signed and unsigned values.

A good example of where saturating arithmetic is useful is
in the add_block () kernel taken from MPEG video decoding.
Adding two blocks is an integral part of the block reconstruc-
tion step of motion compensation (Algorithm 1).

Algorithm 1 Add_Block()Inner Loop - short *bp and
unsigned char *rfp are pointers to the two 8x8 input ar-
rays

for (i=0; i<8; i++) {

for (j=0; j<8; j++) {
*rfp = Clip[*bpt++ + *rfpl; rfp++;

}
rfp+= iincr;

}

As can be seen, the high level language version of the code
uses a lookup table to clamp the result of the addition. A
SIMD version of the code with saturating addition does not
require this additional overhead. An added advantage is that
in the case of a 64-bit SIMD implementation, eight values
can be loaded simultaneously and operated on simultaneously,
further reducing memory overhead.

3.1.2 Addition and Subtraction

Table 2 lists the data types supported for addition and sub-
traction operations on the architectures we have examined.
Motorola’s AltiVec includes a saturating 32-bit operation, but
it is not clear how necessary this is, since the dynamic range
of 32-bit numbers is great enough to avoid overflow for the
8-bit and 16-bit data types used in multimedia. Motorola’s
AltiVec also has a flag which is set whenever saturation has
occurred. This can be useful in code which utilizes block float-
ing point so that the appropriate scaling can be done when
needed. (Block floating point is a scaling technique in which
a single exponent is used for all the integer data in a block of



AMD Cyrix | DEC | HP Intel | mirps | Motorola | sun |
Modulo Add/Sub 8,16,32 8,16,32 - 16 8,16,32,64 8,16 8,16,32 16,32
Saturating Add/Sub | U8,U16,58,516 | US,U16,58,516 - U16,516 | US,U16,98,816 | S16 | US,U16,U32,98,816,832 | -
Average U8,U16 U8 - S16 U8, U16 - U8,U16,U32,58,516,532 -
Min/Max U8, S16 S16 U8,516 - U8,S16 U8,816 | U8,U16,U32,58,516,532 -

Table 2: Basic SIMD Integer Arithmetic Operations - Un indicates n-bit unsigned integer packed elements, Sn
symbolizes n-bit signed integer packed elements, while values without a prefix, n, indicate operations which work for either
signed or unsigned values. Average operations arithmetically average the corresponding elements in two partitioned input
registers, while min/max output the minimum or maximum values of the corresponding elements in two partitioned input

registers, repectively.

data. It has the advantage of being less expensive in terms
of hardware than floating point, as well as faster, but is only
appropriate where data values are clustered together.) None
of the other architectures implement this feature. It is odd
that Sun’s VIS, which is likely the most imaging focused of
all of the extensions does not have saturating operations, ex-
cept during packing; this operation will be discussed later.
Saturating arithmetic is of lesser importance with the MIPS
extensions due to the 192-bit wide accumulator used for stor-
ing the result of integer operations.

Only DEC’s MVI extension does not include any parti-
tioned addition or subtraction operations, instead requiring
either that intermediate calculations be done in wide enough
precision to guarantee that overflow will not occur, or that
max/min operations be used to clamp values appropriately
to simulate saturation. An example of synthesizing a par-
titioned saturating unsigned add with this instruction set is
shown in Algorithm 2. A 1’s complement operation (eqv in-
struction) is used because the 1’s complement of a number is
the largest number that can be added to the original number
without causing positive overflow to occur. By using the min
instruction to get the smaller of either the second operand or
1’s complement of the first addition operand it is possible to
produce a clamped result.

Algorithm 2 MVI Synthesized Saturating Unsigned

Add

eqv r6, zero, tO 53 1°s complement of r6

minuw4 r5, t0, rb ;3 get the smaller values

addq r5, r6, vO ;; add r6 to r5 and place in vO

3.1.3 Sum of Absolute Differences

One of the few operations that DEC did include in its MVI
extension is an instruction to calculate the sum of absolute
differences between unsigned packed bytes. Intel’s MMX, al-
though a much richer set of instructions, did not include this
operation (it was included in the AMD, Cyrix and Intel ex-
tensions to MMX which came later). Sun’s VIS also includes
a sum of absolute differences instruction. DEC architects
found that this operation provides the most computational
benefit of all multimedia extension operations [Rubi96]. We
found this to be true as well, since a SAD operation works
with 8x parallelism on a 64-bit architecture, and replaces a
significant amount of scalar code (Algorithm 3). Most ker-

nels are not able to perform computations with an 8-bit wide
data type. It was found that on the Alpha architecture with-
out multimedia extensions, motion estimation (dominated by
computing sums of absolute differences) consumes 70% of the
time spent encoding MPEG video. This code is found in the
block_match()kernel, and is centered around the loop listed
in Algorithm 3 from MPEG-2 video encoding.

Algorithm 3 Block_Match() Kernel Inner Loop - short
*blk1l and short *blk2 are pointers to the 16x16 macro
block arrays to be compared

for (row_index=0; row_index<height;

row_index++) {

if ((v = blk1[0] - b1lk2[0])<0) v = -v; sum+= v;
if ((v = blki1[1] - b1lk2[1])<0) v = -v; sum+= v;
if ((v = blki1[2] - blk2[2])<0) v = -v; sum+= v;
if ((v = blk1[3] - blk2[3]1)<0) v = -v; sumt= v;
if ((v = blk1[4] - b1lk2[4]1)<0) v = -v; sumt= v;
if ((v = blki1[5] - blk2[5])<0) v = -v; sum+= v;
if ((v = blki1[6] - blk2[6])<0) v = -v; sum+= v;
if ((v = blki1[7] - blk2[7]1)<0) v = -v; sum+= v;
if ((v = blk1[8] - blk2[8]1)<0) v = -v; sumt= v;
if ((v = blk1[9] - b1lk2[9]1)<0) v = -v; sumt= v;
if ((v = blk1[10] - blk2[10])<0) v = -v; sum+= v;
if ((v = blk1[11] - blk2[11])<0) v = -v; sum+= v;
if ((v = blk1[12] - b1lk2[12])<0) v = -v; sumt= v;
if ((v = blk1[13] - blk2[13])<0) v = -v; sumt= v;
if ((v = blk1[14] - blk2[14])<0) v = -v; sumt= v;
if ((v = blk1[15] - blk2[15])<0) v = -v; sum+= v;
if (sum >= distlim) break;

blkl+= row_offset; blk2+= row_offset;

On 64-bit wide data paths, the central portion of this code
can be replaced by two sum of absolute difference (SAD) in-
structions operating on packed bytes. Although this code is
the primary computational aspect of this kernel, MPEG-2 en-
coding offers three other varieties of block matching involving
half-pixel interpolation. Interpolation is done by averaging a
set of pixel values with pixels offset by one horizontally, ver-
tically or both. The original MPEG-2 code first performs the
interpolation, and then computes the sum of absolute differ-
ences on the result. An instruction set such as MVI has no
way to perform packed averaging, but it can trade some preci-
sion for speed. A similar interpolation operation can be done
more efficiently (but not identically) on SIMD architectures
with a SAD instruction by averaging the result of several SAD
operations.

3.1.4 Multiplication

SIMD or partitioned multiplication, involves the multipli-
cation of corresponding packed elements. Partitioned mul-



AMD | Cyrix | DEC | HP | Intel | MIPS | Motorola Sun
Truncating Multiply S16,U16 S16 - - S16,U16 - S16 S16, S32
Rounded Truncating Multiply S16 S16 - - - - S16 -
Full Multiply S16 S16 . . S16,U32 | US8,S16 | US, U16, S8,516 .
Shift Right Logical 16,32,64 | 16,32,64 . 16 | 16, 32, 64 8,16 8,16,32 .
Shift Right Arithmetic 16,32 16,32 - 16 16, 32 16 8,16,32 -
Shift Left 16,32,64 | 16,32,64 . 16 | 16, 32, 64 8,16 8,16,32 .

Table 3: Supported SIMD Multiplication and Shift Data Types - the prefix ’S’ indicates a signed operation, 'U’ an
unsigned operation, and no prefix indicates the same operation works for both signed and unsigned values

tiplication instructions demonstrate the greatest differences
among the arithmetic operations available in the multime-
dia extensions. Compared to implementing packed addition
or subtraction, multiplication is significantly more costly in
terms of die area (3-4 times that of an integer adder) and
latency (3 times that of an integer adder). Semantically, mul-
tiplication is difficult to deal with on SIMD architectures be-
cause the result of a multiply is longer than either operand
[Lee97c]. Latency is of primary concern for those architec-
tures implementing multimedia extensions on the integer data
path. DEC’s MVI and Hewlett Packard’s MAX-1 and MAX-2
are the only extensions in this category, and it is unsurprising
that neither have implemented partitioned multiplication.

The length of the result of a multiplication operation is
greater than the length of its operands. On a SIMD archi-
tecture, a register typically contains the greatest number of
packed values that will fit for a given precision. Because of
this it necessary to deal with this expansion property of multi-
plication in some way that maps well to a SIMD architecture.
The instruction sets we have examined (Table 3) deal with
this in several ways:

1. reduction
even/odd

2.
3. truncation

4. higher precision result register

3.1.4.1 Reduction Reduction sums result vector sub-
elements to produce fewer result values, and is useful because
it is essentially a multiply-add; the core operation in digital
signal processing. All that is needed is to ensure efficient pro-
cessing is that the operands are arranged correctly to make the
accumulation work. On Intel’s MMX the pmaddwd instruction
performs the operation depicted in Figure 2.

3.1.4.2 Even/Odd AltiVec takes a different approach to
dealing with the multiplication result width problem. It sup-
ports selectively multiplying either the even or odd elements
of the source registers such that the full width results fit in
the destination register. This does put a small extra burden
on the programmer to take the unconventional result order-
ing into account (only even or odd elements in a given result
register). On AltiVec, this is easily undone with a mix or data
shuffle operation as soon as both even and odd results have
been computed.

63 4847 3231 1615 0]
5 -2 70 0
X X X X

63 4847 3231 1615 0
35 -52 -5 10

+ +
63 * 3231 * 0
279 -350

Figure 2: Partitioned Multiplication with Reduction

3.1.4.3 Truncation Truncation predefines a set number
of result bits to be thrown away. This primarily has applica-
tion when multiplying n-bit fixed point values with fractional
components which together take up a total of n-bits of pre-
cision. Pre-scaling of one or both of the operands may be
needed to meet this criteria. For example, if we want to mul-
tiply each element of a vector of S(15.0) fixed-point (integer)
values by the coefficient V2 = 1.414, we can use an instruc-
tion such as MMX’s pmulhw. Recall that our notation S(a.b)
refers to a signed 2’s complement integer requiring a + b+ 1
bits of precision. In our example, we will use a S(3.12) rep-
resentation for the coefficient:

5793

\/52 212

We will assume that the vector of 16-bit integers we wish
to multiply by v/2 = 1.414 by is:

63 4847 3231 1615 [0]

-8

190 235

The pmulhw instruction truncates the result between the
15th and 16th bit positions of the internal 32-bit result, dis-
carding the lower 16-bits. For this reason, we need to pad the
operands with four extra bits so that the sum of the fractional
bits in both multiplicands will equal 16 bits (thus the result
will be scaled correctly and minimal precision will be lost).
The S(3.12) fixed point coefficient 5793 would exceed the 16-
bit signed range of —2'% ...+ 2'% — 1 if it was pre-shifted left
by four bits, so instead the second multiplicand must be pre-
shifted by left four bits. This can be accomplished through
MMX’s psllw instruction:



63 4847

3040

3231 1615 0

-128

3760 64

After shifting, the operation with pmulhw would be:

63 4847 231 1615 0
3040 3760 64 -128
X X X X
63 4847 231 1615 0
5793 5793 5793 5793
63 _ 4847 _ 231 _ 1615 _ )
268 332 5 -11

where the real numerical result when multiplying by the
approximation 5793/2'2would be:

63 4847

268. 718

3231

332. 362

1615 [0]

-11. 314

5. 657

and the actual arithmetic result of multiplying by /2 car-
ried out to infinite precision would be:

63 4847

268. 701

3231

332. 340

1615 [0]

-11. 314

5. 657

Note that there was some initial loss of precision in quantiz-
ing v/2 = 1.4142135 since 5793/2'2 = 1.4143066. The other
source of lost precision is due to the fact that the pmulhw in-
struction truncates the result rather than rounding it. In or-
der to reduce this second type of precision loss, many architec-
tures include 16-bit truncating multiplications that internally
round the intermediate 32-bit result before the truncation to
16-bits takes place.

3.1.4.4 Higher Precision Result Register MIPS’
MDMX extension avoids the multiplication result width prob-
lem by including a 192-bit accumulator register to act as the
destination register for many operations including multiplica-
tion. This way there is the extra space required for the result
to be stored in full precision. In addition, full precision re-
sults can be accumulated, and the total rounded only once at
the end of the loop. While this may seem an elegant solu-
tion in principle, it ignores the architectural side of actually
making such a design fast. The accumulator is a shared re-
source, and as such has a tendency to limit instruction level
parallelism. We found that the existence of only a single accu-
mulator was a severe handicap to avoiding data dependencies.
On a non-accumulator but otherwise superscalar architecture
it is usually possible to perform some other useful, non data
dependent operation in parallel so that the processing can
proceed at the greatest degree of instruction level parallelism
possible. On MDMX all computations which need to use the
accumulator must proceed serially.

In the MPEG decode pyrogen_add_block()kernel func-
tion listed as Algorithm 4, the bottleneck is quite evi-
dent. There is no data dependency which would prevent us

from starting to process four new elements every cycle in a
pipelined implementation. Unfortunately, there is a resource
conflict. Packing and clamping operations in MDMX are per-
formed from the accumulator with the rx.fmt instruction.).

Algorithm 4 MDMX add_block()

loop:
1dcl £3, (al) # £3: |rOlrllr2|r3|r4|r5|r6lx7|
ldci 1, (a0) # f1: | bpO | bpl | bp2 | bp3 |
ldc1 £2, 8(a0) # £2: | bp4 | bp5 | bp6 | bp7 |
# unpack rfp data 8 -> 16
shfl.upuh f4, 3 # f4: | rd4 | r5 | 6 | x7
shfl.upul £3, £3 #f3: | r0 | rl | r2] r3
# bp + rfp [0..3]
addl.qh f1, £3 # acc: bp + rfp [0..3]
# clamp to 8-bit unsigned
rzu.ob f1, fO # £f1: | Olr0l Olr1ll Olr2| O|r3l
# bp + rfp [4..7]
addl.qh f£2, f4 # acc: bp + rfp [4..7]
# clamp to 8-bit unsigned
rzu.ob  f2, f0 # £2: | Olr4| Olr5] Olr6| Olx7I

# pack output

shfl.pacl f1, f1, £2 # f1: |[rOlrl|r2lr3|r4lr5(r6lr7|
sdcl (al), f1 # store new rfp [0..7] values
add al, al, a2 # rfp += iincr

addi a0, a0, 16 # bp += 8 (pointer to INT16)
addi al, al, 8 # rfp += 8 (pointer to UINT8)
subi a3, a3, 1 # decrement loop counter

bgtz a3, loop

In this example, it is possible to circumvent the accumula-
tor problem by synthesizing the clamping operation with the
min.fmt and max.fmt register-only instructions, thus avoid-
ing the accumulator bottleneck. This work around costs two
extra instructions and two extra registers to hold the maxi-
mum and minimum values we wish to clamp to. (See Algo-
rithm 5). Placing exclusive functionality in the accumulator
creates unnecessary bottlenecks and thereby inhibits instruc-
tion level parallelism. In general, any architectural feature
which is not separately and independently available wherever
it might be needed has the potential to be a bottleneck.

Algorithm 5 MDMX Alternative add_block()

1dcl £10, max_val # f3: | O | O | O | O |
1ldcl f11, min_val # f1: [255]1255]1255]255]
1dcl £2, 8(a0) # £2: | bp4 | bp5 | bp6 | bp7
# bp + rfp [0..3]
add.qh  f1, f1, £3 # f1: bp + rfp [0..3]
# bp + rfp [4..7]
add.qgh  f2, f2, f4 # £2: bp + rfp [4..7]
# clamp to 8-bit unsigned
max.gh f1, f1, f10
max.qgh f2, f2, f10
min.qgh f1, f1, f11
min.qgh f2, f2, fi1

# pack output

shfl.pacl f1, f1, f2 # f1: |[rOlrl|r2|r3|r4|r5(r6lx7|

3.1.4.5 Multiplication Primitives A potential prob-
lem with the VIS architecture is that it does not actually
include full 16-bit multiply instructions. Instead it includes
primitives, the results of which must be combined (see Algo-
rithms 6 and 7).

Algorithm 6 Sun VIS 16-bit x 16-bit —»16-bit Multiply

fmul8sux16  %f0, %f2, %f4
fmul8ulx16  %f0, %f2, %f6
fpadd16 %£4, %6, %8




Algorithm 7 Sun VIS 16-bit x 16-bit —32-bit Multiply

fmuld8sux16 %f0, %f2, %f4
fmuld8ulx16 %f0, %f2, %f6
fpadd32 %f4, %f6, %f8

The disadvantage of dividing an operation into several in-
structions is that it increases register pressure, decreases in-
struction decoding bandwidth and creates additional data de-
pendencies. Sun’s VIS was the only multimedia instruction
set with multiplication operations that do not directly support
16-bit operands. The reason for dividing up 16-bit multipli-
cation in this way was to decrease die area. Not providing a
full 16x16 multiplier subunit cut the size of the arrays in half
[Trem96b].

3.1.5 Shifts

It is a widely known optimization shortcut in binary arith-
metic that a multiplication by an integer number IV, which is
a power of two, can be accomplished by a left shift of the other
operand by loga N bits. Division by the same class of integers
can be performed in the same way, except that a right shift is
used. This substitution is often a performance gain because a
shift operation typically has a much lower latency than multi-
plication. Shifts are also needed for proper data alignment at
the bit level of granularity, as opposed to the byte or higher
level granularity most communication operations work with.
The shift operations available on each platform are compared
in Table 3.

3.1.5.1 Synthesizing Multiplication Although HP’s
multimedia instruction sets do not include partitioned mul-
tiplication, they do implement packed shift and add instruc-
tions, which can be used to synthesize multiplication by frac-
tions with or without small integer components. Because the
same shift amount is applied to each packed element, this
substitution is only viable on a SIMD architecture when mul-
tiplying all of the subwords by the same constant. Although
this criterion can often be met in multimedia applications, we
found that programming shift-add combinations in place of
multiplications made the job of assembly level programming
considerably less flexible, more time consuming and more er-
ror prone. More importantly, this approach constrains the
way in which data parallelism can be exploited.

3.1.5.2 Graphics Status Register Sun’s VIS architec-
ture does not include partitioned shift instructions, but does
include a graphics status register (GSR). This register has a
3-bit addr_offset field which is used implicitly for byte gran-
ularity alignment, as well as a 4-bit scale_factor field for
packing/truncation operations. Like other architectures, Sun
included partitioned 8-bit and 32-bit integers as supported
data types. What is unusual is that the 16-bit partitioned
data type assumes a fixed point number with some fractional
component (S(a.b) rather than S(a.0) as is more typical).
This has important ramifications for other 16-bit operators.
Pack operations work by first left shifting an element by the

number of bits specified in the scale_factor field of the GSR
and clipping at some implicit binary point. For the signed 16-
bit to unsigned 8-bit pack operation, the implicit binary point
is between bits 6 and 7 of each element, so if 16-bit S(15.0)
integers are the actual data type, it is necessary to place 0x7
in the scale_factor field of the GSR before executing the
fpack16 instruction.

As is often the case with shared, singular resources, the VIS
GSR turns out to be a serializing bottleneck. All of the data
scaling functionality and alignment functionality is pushed
through the GSR. Because VIS lacks partitioned shift oper-
ations, we found ourselves synthesizing such operations with
the packing and alignment operations where no other algo-
rithmic path was possible. We found that even with careful
planning of packing and alignment operations it was often
necessary to write to the GSR several times in each iteration
of the loops of our multimedia kernels. The serializing effect
of this singular resource prevented VIS operations from pro-
ceeding at the full possible degree of parallelism. To see this
in action, consider the initial step of the color space conver-
sion kernel which converts from band-interleaved to a more
SIMD-friendly band-separated pixel form in Algorithm 8.

Algorithm 8 Color Space Conversion Kernel Inner
Loop

rgb_to_yuv_loop:

! load band interleaved input data
alignaddr %i0, %g0, %10
1dd [%#10]1, %f2
ldd [410 + 8], %f4
faligndata %f2, %f4, %f2 !
1dd [#10 + 161, %f6
faligndata %f4, %£6, %f4 !
ldd [%10 + 241, %f8
faligndata %f6, %f8, %f6 ! %f6: |G5|B5IR6IG6IB6IR7IGT7IB7I
! convert from band interleaved to band separated format

! %f2: |ROIGOIBOIR1IG1IB1IR2/G2]

%£2: |ROIGOIBOIR11G1IB1IR2]G2I

%f4: |B2|R31G3|B3IR41G41B4|R5]

wr %g0, 0x3, Ugsr ! set alignment for <<24
faligndata %f2, %f4, %£f8 ! %f8: |R1|G1IB1|R2|G2|B2|R3|G3]
wr %g0, 0x6, %gsr ! set alignment for <<48
faligndata %f2, %f4, %f10 ! %f10: |R2I1G2|B2IR3|G3IB3|R41G4|
wr %g0, 0x1, %gsr ! set alignment for <<48
faligndata %f4, %f6, %f12 ! %f12: |R3|G3|B3|R4|G4IB4|R5IG5]
wr %g0, Ox4, Ygsr ! set alignment for <<32
faligndata %f4, %f6, %f14 ! %f14: |R41G4|B4IR5|G5IB5|R61G6]|
wr %g0, 0x7, %gsr ! set alignment for <<56
faligndata %f4, %f6, %f16 ! %f16: |R5IG5|B5IR6|G6IB6|R7IGT]
wr %g0, 0x2, Ygsr ! set alignment for <<16
faligndata %f6, %f6, %f18 ! %f18: |R6IG6|B6IR7|G7IB7|G5IB5]
wr %g0, 0x5, %gsr ! set alignment for <<40
faligndata %f6, %f6, %f20 ! %f20: |R7IG7|B7I1G5|B5|R6|G61B6|
fpmerge %£2, %£f10, %f22 ! %f£f22: |ROIR2|GO|G2|BO|B2|XX|XX]|
fpmerge %£8, %f12, %f24 ' %f24: |R1|R3|G1|G3|B1|B3|XX|XX]|
fpmerge %f14, %£18, %f26 ! %f26: |R4|R6|G4|G6|B4|B6|XX|XX]|
fpmerge %£16, %f20, %f28 ! %f28: |R5IR7|G5IG7|B5IB7|XXIXX]|
fpmerge %£22, %f24, %f2 ' %f2: |ROIR1|R2|R3|GO|G1]|G2]G3]
fpmerge %£23, %f25, %f4 ' %f4: |BO|B1|B2|B3|XX|XX|XX|XX|
fpmerge %£26, %£28, %f6 ! %f6: |R4|R6IR6|IR7IG4IG5IG6IGT]
fpmerge %£27, %f29, %f8 ' %f8: |B4|B5|B6|B7|XX|XX|XX|XX|

We will first explain what this kernel does and then come
back to our discussion of the problematic GSR. Pixel data
consists of one or more channels or bands, with each channel
representing some independent value associated with a given
pixel’s (z,y) position. A single channel, for example, rep-
resents grayscale. A three channel image is typically color,
while a more uncommon four channel image is also color but
with the extra channel encoding some extra parameter (e.g.
transparency). All of the imaging and video algorithms which



we looked at worked with three-band color image data, such
as shown in Figure 3.

Figure 3: Three Band Color Images

The band data may be interleaved (each pixel’s red, green,
and blue data are adjacent in memory) or separated (e.g. the
red data for adjacent pixels are adjacent in memory). In im-
age processing algorithms such as color space conversion we
operate on each channel in a different way, so band separated
format is the most convenient for SIMD processing. Unfor-
tunately, a lot of image data is stored in band-interleaved
format, so it is often necessary to convert between the two.
In the color conversion code fragment, each shift operation
requires a write to the GSR, with each following instruction
depending on the contents of the GSR to operate correctly.
This is unfortunate because explicit writes to the GSR stall
the processor (6 cycles in the case of UltraSPARC I) [Rice96].
If true shift operations (in this case, simply full register, 64-
bit shifts) had been included in VIS, a new shift could begin
each cycle, assuming a pipelined implementation.

3.1.6 Data Communication Operations

SIMD instructions perform the same operation on multiple
data elements. Because all of the data within a register
must be treated identically, instructions with the ability to
efficiently rearrange data bytes within and between registers
are crucial to efficiently utilizing a SIMD instruction set; we
hinted at this earlier when discussing reducing multiplication
operations. We refer to these types of instructions as data
communication operations. The solutions of the various ex-
isting multimedia instruction sets are presented in Table 4.
These operations are data type independent (they do not de-
pend on knowing how a field of bits is to be interpreted),
and so can be shared between partitioned integer and float-
ing point data types assuming the same registers are used for
both representations (for example, as in AMD’s 3DNow!).
Interleave type communication instructions (also referred
to as mizing, unpacking or merging) merge alternate data el-
ements from the upper or lower half of the elements in each
of two source registers. Align or rotate operations allow for
arbitrary byte-boundary data realignment of the data in two
source registers; essentially a shift operation that is done in
multiples of 8-bits at a time. Both interleave and align type
operations have hard coded data communication patterns. In-
sert and extract operations allow for a specific packed element
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to be extracted as a scalar or a scalar value to be inserted to
a specified location. The desired element location is typically
specified as an immediate value encoded in the instruction.

Shuffle (also called permute) data communication opera-
tions allow greater flexibility than those operations with fixed
communication patterns, but this added flexibility requires
that the communication pattern be specified either in a third
source register or as an immediate value in part of the in-
struction encoding. Instruction set architects have taken two
approaches: either a set of predefined communications pat-
terns can be provided, or full arbitrary mapping capabilities
can be implemented. MIPS’ MDMX uses a predefined set
of eight 8-bit wide shuffles, and eight 16-bit wide shuffles to
implement a partial shuffle operation (a canonical set of com-
munication patterns is not provided). Hewlett Packard’s mix
instruction is able to achieve full shuffles for the four 16-bit
elements packed within a 64-bit register because there are
4* = 256 possible ways to map the input values. This requires
[log2(256)] = 8 bits to encode, which fits within the allocated
immediate encoding bits of the HP PA-RISC architecture.

Encoding the desired full shuffle in an immediate field is
not always a possibility, especially on architectures with larger
register widths or those which shuffle at byte-level granularity.
For example, on Motorola’s 128-bit wide AltiVec extension,
the vperm instruction, which concatenates two vectors to use
as source elements, a full byte oriented shuffle would involve
more than 32'6 = 1.2089 x 102* mappings, requiring 80 bits
to encode as an immediate. Clearly, encoding the desired
communication pattern as an immediate is not a reasonable
approach. Instead, AltiVec offers a three operand format for
shuffling in which the first two specified vectors are concate-
nated, and the bytes of the resulting 256-bit double register
data has its bytes numbered as shown in Figure 4. Each
element in vC specifies the index of the element in the con-
catenation of vA and vB to place in the corresponding element
of vD.

vC
|1<2)7 [11]2 13[4 Ji5] 6 7] 8 1] AJLB[CJIT E |1|g|

VA vB
) 1 3 3 o 5 ) e e e e e e e e s B B S S D S S B B

01 2 3 456 7 8 9 ABCDE F 1011 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

vD
IXE)|Bl|A2|BB|A4|BS|A6|B7|A8|BQ|AA|BB|AqBD|AE|BlgI

Figure 4: AltiVec vperm vd,va,vb,vc Instruction - byte
elements are selected from the concatenation of registers va
and vb by the byte index specified in vc.

Although a full shuffle operation as is found in Motorola’s
AltiVec is extremely powerful, and is a superset of any other
data communication operation, it is costly in terms of regis-
ter space because every required data communication pattern
must be kept in a register. It also increases memory band-
width requirements to load the communication patterns from
memory to registers. In practice, we found that simpler in-
terleave and rotate operations could be used in place of full
shuffles in many, although not all cases. The sufficiency of
simpler data communication operations is also dependent on



| | AMD | Cyrix [DEC | HP | Intet | MIPS | Motorola | Sun |
Interleave/Merge 8,16,32 8,16,32 - - 8,16,32 32 8,16,32 8
Align/Rotate - - - - - 8 8 8
Shuffle/Permute 16(4%) - - 16(4%) | 16(4%), 32(4*) | 8(8), 16(8) 8(3219) -
Insert /Extract 16 - - - 16 - 8,16,32 -

Table 4: Data Communication Operations - Shuffle operations are specified as N(M), for N-bit wide data elements and

M possible patterns

the vector length employed. For example, 128-bit AltiVec vec-
tors contain eight elements, while a shorter extension such as
Intel’s 64-bit MMX contain only four of the same type of ele-
ment. This means that simple data rearrangement operations
(e.g. merge) cover a relatively larger fraction of all possible
mappings in the case of the shorter vector length.

Data rearrangement operations which communicate be-
tween two registers can provide useful single register func-
tionality when both source operands are set to be the same
register. In addition, the functionalities of interleave, shuffle
and align operations are certainly not exclusive. For example,
the interleave operation on MIPS’ MDMX is done through one
of the provided communication patterns of the shfl (partial
shuffle) instruction. Unpack or interleave operations can also
function as data width promotion for unsigned values if one
of the source operands is zero.

Algorithm 9 AltiVec Matrix Transpose - matrix ele-
ments are 16-bits wide

53 v8: 10_010_110_210_310_410_510_610_71

53 v9: 11_011_111_211_311_411_511_611_71

53 v10:  12_012_112_212_3]2_412_5|2_612_7|

55 vil:  [3_013_113_.213_.313_413_513_613_7I

53 vi2: |4_.014_114_214_314_414_514_614_71

53 vi3: |5_015_115_215_315_415_515_615_71

53 vid: 16_016_116_216_316_416_516_616_7I

55 vib:  |7_017_117_2|7_317_417_517_617_71

vmrghh v0, v8, vi2 ;5 vO: 10_014_010_114_110_214_210_314_3]
vmrglh vi, v8, vi2 ; vli: 10_414_4/10_514_510_614_610_714_71
vmrghh v2, v9, vi13 ; v2: [1_015_011_115_111_215_211_315_3]
vmrglh v3, v9, vi3 5 v3: |1_4|5_4|1_5|5_5|1_6|5_611_7|5_7|
vmrghh v4, v10, vi4 ; v4: [2_0(6_0/2_116_1]12_2|6_2/2_316_3|
vmrglh v5, v10, vi4 ; vb: [2_4|6_412_5/16_5|2_616_6/2_716_7|
vmrghh v6, vil, vis ; v6: [3_017_013_117_113_2|7_213_317_3]|
vmrglh v7, vil, vib ; v7: |3_4|7_413_517_513_6|7_613_717_7I
vmrghh v8, v0, v4 ; v8: 10.012_0/4_016_010_112_114_116_1]|
vmrglh v9, v0, v4 s v9: 10_212_214_216_2]10_312_314_316_3|
vmrghh v10, vi, v5 5 vi0: 10_412_414_416_410_512_514_516_51
vmrglh vil, vi, v5 ; vil: 10_612_614_616_610_712_714_716_71
vmrghh v12, v2, v6 5 vi2:  [1_013_015_017_011_1]3_1I5_1]7_1]|
vmrglh v13, v2, v6 s vi3: [1_213_2|5_217_211_313_315_3]7_3]
vmrghh vi4, v3, v7 5 vid: |1_413_415_417_411_513_515_117_51
vmrglh vib, v3, v7 5 vis: |1_613_615_617_611_713_7I5_717_71
vmrghh v0, v8, vi2 5 vO: 10_011_0]12_013_014_0|5_016_0|7_0|
vmrglh vl, v8, vi2 s vi: |O0_101_1]2_1(3_1]4_1|5_1|6_1|7_1]|
vmrghh v2, v9, v13 ; v2: 10.211_212_213_214_215_216_217_2]
vmrglh v3, v9, vi3 ; v3: 10.311_.312_313_314_315_316_317_3]
vmrghh v4, v10, vi4 ; v4: 10_4|1_412_413_414_415_416_417_4|
vmrglh v5, v10, vi4 ; vb6: |0_5|1_5/2_5(3_5|4_5|5_5|6_5(7_5]|
vmrghh v6, vi1l, vib ; v6: |0_6|1_6/2_6(3_6/4_6/5_6/6_6(7_6]|
vmrglh v7, vil, vib ; v7: |0_7[1_712_713_714_715_716_717_7|

To see the importance of data communication operations,
consider a two dimensional discrete cosine transform (DCT).
Such a transform is efficiently computed as 1D transforms
on each row followed by 1D transforms on each column. A
SIMD algorithmic approach requires that multiple data ele-
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ments from several algorithmic iterations be operated on in
parallel for the greatest efficiency. This is straight forward for
the 1D column DCT, since the corresponding elements of each
column are linearly adjacent in memory, thus several columns
can be operated on in parallel without rearranging the data as
read from memory. A 1D row DCT is more problematic since
the corresponding elements of adjacent rows are not adjacent
in memory. It is possible to transpose a matrix making cor-
responding "row" elements adjacent in memory, perform the
desired computation, and then transpose the matrix again (if
needed) to put the resulting data back in the correct configu-
ration. An example of a matrix transposition through SIMD
data communication instructions for Motorola’s AltiVec is
shown in Algorithm 9.

3.1.7 Width and Type Conversion

Data width promotion and demotion operations are critical
to making a multimedia instruction set applicable to as many
different applications as possible. Without a way to convert
data between the formats used for storing the data and for
operating on the data, SIMD computation cannot proceed
efficiently. Although many multimedia data types are small
integers (typically 8 or 16 bits), computations on these values
often require greater precision. Also, many of the architec-
tures offer operations on partitioned floating point in addition
to partitioned integers. Thus, data conversion is a common
operation. Supported width and type conversion operations
of the examined architectures are listed in Table 5.

Pack or width demotion operations convert a larger width
data type to a smaller width one either through truncation
or by first clamping the values in question to the range of
the smaller data type. Unpack or width promotion opera-
tions go the opposite direction, and so require no clamping,
although the type of sign extension (zero extend or sign ex-
tend) is important. Unsigned unpacking can often be accom-
plished by utilizing the functionality of interleave or shuffle
data communication operations. Saturating packs first clamp
the input value to the range of the output data type, while
truncating pack operations assume that the input values will
fit in the output data type’s representable range. Packing
with truncation can similarly be done through data commu-
nication operations. Few architectures support signed packing
and unpacking, although signed unpack can be accomplished
somewhat awkwardly through a signed multiplication by 1,
since the product will be twice as wide as the operands.

DEC MVT’s pack and unpack operations are limited to
truncation and zero extension, respectively, so signed values



AMD Cyrix DEC HP Intel MIPS Motorola Sun
Saturating FP32—S32 - - - FP32—S32 - FP—S32 -
FP Pack FP32—S16 FP—-U32
Truncating - - - - FP64—FP32 - - -
FP Pack FP64—S32
Saturating S32—S16 S32—-S16 - - S32—S16 - S32—-S16 S32—-U8
32-bit Pack S3—S16
Saturating S16—S8 S16—S8 - - S16—S8, - S16—S8 S16—U8
16-bit Pack S16—U8 S16—U8 S16—U8 S16—U8
Truncating 32—16%* 32—16%* 32—8 32—16%* 32—16%* 32—16 32—16 -
32-bit Pack 32—8%* 32—8* 32—8*
Truncating 16—8%* 16—8%* 16—8 - 16—8%* 16—8 16—8 -
16-bit Pack
FP Unpack FP32—-FP64
32-bit Unpack S32—FP32 - - - S32—FP32 - U32—FP32 -
S32—FP64 S32—FP32
16-bit Unpack | U16—U32* | U16—U32* - U16—U32* U16—U32* U16—U32 | U16—U32* | U16—U32
S16—FP32
8-bit Unpack U8—U16* U8—U16* U8s—~U16 - U8—U16* U8s—~U16 U8—U16* U8—U16*
Us—~U32 S8—S16

Table 5: Packed Data Type Conversion Operations - The prefix 'S’ indicates a signed operation, 'U’ an unsigned
operation, 'FP’ a floating point operation, and no prefix indicates that an operation works for both signed and unsigned
integer values. Saturating pack operations first clamp the input value to the range of the output data type, while truncating
pack operations assume that the input values will fit in the output data type’s representable range, and so simply truncate
the input bits to the correct width. (*) designates operations derived from data communication operations.

are not possible except when packing. HP’s MAX depends
entirely on its permute and mix instructions for width and
type conversion. On HP’s MAX-1/MAX-2 architecture, par-
titioned 8-bit operations were considered, but rejected due to
insufficient precision. What this overlooks is that fact that
even though many intermediate computations require greater
precision than 8-bits, many types of video and imaging data
are stored this way in existing multimedia file formats. Thus,
packing and unpacking to and from 8-bit precision is a very
common operation which is not supported in hardware, mak-
ing HP’s extensions inefficient at processing this type of data.
The conclusion to be drawn from this is that all data types
that occur in multimedia should be supported for packing
and unpacking even for those widths not directly supported
by arithmetic operations. It should always be possible to con-
vert to a width that is supported for computation.

3.2 Floating Point

Within the Berkeley Multimedia workload, 3D graphics,
MPEG audio coding and speech recognition applications all
contain floating point intensive kernels. Most traditional
scalar floating point architectures support single precision (32-
bit) and double precision (64-bit) data types. Single precision
is generally sufficient for all but numerical scientific applica-
tions requiring great precision. Intel’s SSE2 is thus far the
only extension to offer packed double precision floating point
operations, and is targeted at applications beyond the do-
main of multimedia. A SIMD approach to floating point is
useful, although it does not offer as much potential speedup
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as integer SIMD.

Cyrix, DEC, Hewlett Packard and Sun currently do not of-
fer packed floating point capabilities. Basic arithmetic func-
tionality (add, subtract, multiply) is included by in all archi-
tectures supporting packed floating point extensions (AMD’s
3DNow, Intel’s SSE, and Motorola’s AltiVec). These opera-
tions are generally useful on both audio and 3D applications.
We found multiply-accumulate operations to be useful when
implementing the fast Fourier transform, which is found in the
LAME MPEG-1 layer IIT audio encoding and Rasta speech
recognition applications. It was also useful in the synthesis
filter bank kernel from the mpgl123 MPEG-1 layer III audio
decoding application.

3.2.1 Square Root / Reciprocal Approximation

Beside basic arithmetic functionality, all of the floating point
extensions include some form of reciprocal approximation and
square-root approximation. These operations are targeted at
the 3D geometry pipeline. A kernel derived from the Mesa
source code (Mesa is an open source implementation of SGI's
OpenGL API) is listed in Algorithm 10. Both the square
root and reciprocal function can be seen to be central to this
kernel.

Function approximation instructions are typically imple-
mented as hardware lookup tables, returning k-bits of pre-
cision. In Intel’s SSE, for example, approximate reciprocal
(rcp) and reciprocal square root (rsqrt) return 12-bits of
mantissa. Full IEEE compliant operations return 24-bits of
mantissa. Intel’s SSE supplies the full precision but slower



Algorithm 10 Transform and Normalize Kernel Code
Fragment

for (i=0;i<n;i++) {
FLOAT64 tx, ty, tz;

{
FLOAT32 ux = ul[i][0], uy = ul[il[1], uz = u[i][2];
tx = ux * mO + uy * ml + uz * m2;
ty = ux * m4 + uy * mb + uz * m6;
tz = ux * m8 + uy * m9 + uz * miQ;
}
{

FLOAT64 len, scale;
len = sqrt( tx*tx + ty*ty + tz*tz );

scale = (len>1E-30) ? (1.0 / len): 1.0;
v[i][0] = tx * scale;
v[il[1] = ty * scale;
v[i][2] = tz * scale;

divide (div) and square root (sqrt) instructions, as well as
full double precision (but no fast double precision approxi-
mations) in SSE2. None of the other architectures include
full precision instructions, as the Newton-Raphson method
can usually be employed where greater precision than the ap-
proximated value is required. One iteration of the Newton-
Raphson method on a 12-bit precise approximation returns
a 22-bit precise result [Thak99]. Motorola’s AltiVec also re-
turns 12-bits of precision for both the reciprocal and recip-
rocal square root approximation instructions. AltiVec also
includes approximate logs and exps instructions, which find
application in the lighting stage of a 3D rendering pipeline.

AMD’s 3Dnow! and MIPS’ MIPS-3D extensions include
instructions to automatically utilize the Newton-Raphson
method to make initial approximations more precise. Intel’s
SSE architecture includes no such instructions nor does Mo-
torola’s AltiVec, but both point the programmer to using
the Newton-Raphson method for greater precision. AMD’s
3DNow! returns 14-bits of precision for the reciprocal ap-
proximation (pfrcp) instruction and 15-bits for the recipro-
cal square root approximation (pfrsqrt) instruction. The
Newton-Raphson iteration instructions of 3Dnow! return full
(24-bit) precision, so full precision versions of these operations
are unnecessary. It should be noted that the AMD reciprocal
and square root estimation instructions are actually scalar op-
erations - only the lower element of a packed single precision
register is used, with the scalar result being placed in both the
top and bottom packed elements of the destination register.
Intel’s SSE, on the other hand, is a true vector operation, as it
operates on each of the four specified packed single precision
elements, computing four results in parallel.

3.2.2 Exceptions

Exception handling has the same problem dealing with packed
values as overflow and other instruction stream dependen-
cies on data within SIMD architectures. Checking result flags
or generating an exception from a packed operation requires
considerable time to determine which packed element caused
the problem. For this reason, AMD’s 3DNow! instructions
take the view that packed instructions should never raise ex-
ceptions. In multimedia applications there is little desire for
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hardware status and exceptions at the expense of lower real
time performance. Like saturating integer arithmetic, AMD’s
implementation of 3DNow! generates properly signed maxi-
mum representable numbers in the case of numeric overflow,
and flushes results to zero in underflow situations [Ober99].

Motorola’s AltiVec does not report IEEE floating point ex-
ceptions, although of course the regular scalar floating point
instructions are IEEE compliant and report all appropriate
exceptions. In most cases where an exception might be raised
it is possible to fill in a value which will give reasonable re-
sults in most applications. This is similar to saturating in-
teger arithmetic where maximum or minimum result values
are substituted rather than checking for and reporting posi-
tive or negative overflow. This speeds execution because no
error condition checking need be done. In the case of AltiVec,
default values for all floating point exceptions are as specified
by the Java Language Specification.

Intel’s SSE and SSE2 include a control/status register
(MXCSR) to mask or unmask packed floating point numeri-
cal exceptions, set rounding modes and check status flags (if
any numerical exceptions have occurred). By default, all nu-
merical exceptions are masked. The status flags are "sticky",
and can only be cleared by writing zeros to their locations in
the MXCSR. The numerical exceptions include the pre-compute
exceptions Invalid Operation, Divide by Zero and Denormal
Operation, as well as post-compute exceptions Numeric Qver-
flow, Numeric Underflow, and Inexact Result.

When an exception occurs in an SSE instruction the actual
element that caused the exception is not reported and neither
of the 64-bit micro-ops retires (writes a result to the destina-
tion register) in a 128-bit instruction. MIPS-V takes a similar
approach in dealing with exceptions which occur during the
processing of its paired floating point format. Exception flags
from both packed elements are combined together and the
hardware makes no effort to determine which element caused
the exception.

3.2.3 Rounding

Intel’s SSE and SSE2 offer two modes of rounding: IEEE com-
pliant and another, faster, flush to zero (FTZ) mode. Flush
to zero (FTZ) clamps to a minimum representable result in
the event of underflow (a number too small to be represented
in single precision floating point). Most real time 3D applica-
tions use the FTZ rounding mode since they are not particu-
larly sensitive to a slight loss in precision [Thak99]. 3DNow!
supports only truncated rounding (round to zero). Fully com-
pliant IEEE floating point supports four rounding modes.

Motorola’s AltiVec offers two modes for floating point. An
IEEE compliant mode and a potentially faster non-IEEE com-
pliant mode. All AltiVec floating point arithmetic instruc-
tions use the IEEE default rounding mode of round to nearest.
The IEEE directed rounding modes are not provided. Instruc-
tions for explicitly rounding towards minus infinity, nearest
integer, positive infinity or zero are included for converting
from floating point to integer formats.



3.2.4 Scalar Operations

Intel was the only vendor to explicitly add scalar floating point
operations along with their packed floating point extension,
duplicating the existing x87 floating point capabilities. This
was done in order to aid clean up at the end of a strip mined
loops without reverting to the cumbersome stack-based x87
floating point available on the Pentium III. In addition, results
generated via x87 floating point operations can potentially
differ from SSE floating point results because x87 FP compu-
tations are carried out in 80-bit precision, while SSE utilizes
32-bit operations or 64-bits in the case of SSE2. Masked (se-
lective) operations allowing for any element of an SSE floating
point register to be disabled or enabled during computation
were also considered, but rejected for design complexity and
lack of compelling applications [Thak99]. The AMD Athlon
processor also of course supports x87 floating point, but does
not implement a separate set of 32-bit scalar floating point
instructions. None of the other vendors found it necessary to
add scalar floating point operations, as their existing float-
ing point designs do not suffer from the aforementioned x87
deficiencies.

3.3 Polymorphic Operations

Polymorphic operations are those for which the same instruc-
tion can be used independently of the partition width (bit-
wise operations). Table 6 briefly summarizes these types of
operations present on the architectures we have examined.

DEC’s MVI and Hewlett Packard’s MAX-1 and MAX-2
include no additional logical or other bit-wise operations be-
cause they are implemented on the integer data paths of their
respective architectures. The integer data paths already offer
considerable bit-wise and logical functionality so additional
instructions are unnecessary. MIPS-V (as well as MIPS-I
through MIPS-IV) does not include logical or other bit-wise
operations on the floating point data path. Only MDMX de-
fines these operations on the MIPS floating point data path.

ANDN and ORN refer to bitwise AND and OR operations
respectively in which the complement of one of the source
registers is used as one of the operands. The combination
of AND and ANDN operations is useful for working with bit
masks since we often want to use the bit mask to select some
data elements from one register with AND and then select el-
ements with the reverse bit mask from another register using
ANDN. Both results can then be merged with an OR or ad-
dition operation. The operation of zeroing a register is easily
synthesized through an exclusive or operation between source
operands taken from the same register.

3.4 Comparisons and Control Flow

Operating on multiple data elements in parallel can be prob-
lematic if a computation should only be performed if an
operand value passes some conditional check. Most inter-
esting computational loops exhibit some sort of control flow
variation. Conventional single condition code flags are mean-
ingless for the results of packed operations, and control flow

through software (e.g. check each operation separately) de-
feats the attempted extraction of data parallelism [Luml97].
Traditional SIMD architectures with multiple parallel pro-
cessors performing the same operation on separate data el-
ements simply disable the necessary processing elements for
portions of computation. Contemporary SIMD within a reg-
ister architectures do not support disabling arbitrary fields.
Hardware designers have so far taken two approaches to this
problem: bit vector flags and bit masks. An overview of the
types of partitioned comparison and control flow operations
supported by each architecture is given in Table 7.

3.4.1 Element Masks

An element mask is a vector in which each packed element
contains either all 1’s or all 0’s. Compare operations re-
sult in an element mask corresponding to the length of the
packed operands. For example, the result of a comparison
between packed 16-bit values using the Intel MMX pcmpeqw
instruction results in a 64-bit wide element mask contain-
ing four 16-bit sub-elements, each consisting either of all 1’s
(OxFFFF) where the comparison condition is true or all 0’s
(0x0000) when it is false. These masks are then used in con-
junction with logical operations such as AND, ANDN and
OR to achieve the desired conditional assignment. Element
masks are by far the most popular means of packed compar-
isons because they allow for computation to continue without
any disruption of actual control flow - the instruction stream
is not data dependent, only the result.

3.4.2 Bit Vectors and Partial Stores

Another approach to control flow is the generation of bit vec-
tors, in which a single bit represents the result of a comparison
for each element. Bit vectors are typically used in conjunction
with partial store operations to generate the desired result in
memory. An inverted version of the bit vector is then used
to partially store the remaining (non-computed) elements if
necessary; the uncomputed version may already exist in mem-
ory. Depending on timing, successive stores to portions of a
word may be combined in a store buffer and therefore may
not generate separate bus transactions [Rice96].

MIPS’ MDMX implements eight comparison bits (only four
bits are used when comparing 16-bit values) for comparing
unsigned bytes much like traditional integer or floating point
comparison flags. MMX supports both element masks and
bit-vectors with partial stores. This is done through instruc-
tions that convert a mask to a bit vector and copy the result
to an integer register. Sun’s VIS takes a similar approach, but
writes a bit vector (each bit indicates the true/false result of
the comparison between the corresponding elements in two
partitioned source registers) resulting from packed compar-
isons to an integer register. This bit-vector is subsequently
used for partial store instructions to indicate which packed
elements should be stored to a given memory address. Sun’s
VIS depends entirely on bit masks with partial stores for com-
parisons. The disadvantage of only having partial store opera-
tions to utilize the results of comparisons is that extra memory

14



AMD Cyrix DEC HP Intel MIPS Motorola Sun
Operation | AND,ANDN, | AND,ANDN, - - AND,ANDN, | AND,NOR, | AND,ANDN,NOR, | NOT,OR,NOR,ORN,XNOR
OR,XOR OR,XOR OR,XOR OR,XOR OR,XOR AND,ANDN,NAND,XOR

Table 6: Polymorphic (Bitwise) Operations - AND = A- B, NAND = A. B, ANDN = 4. B, OR = A+ B, NOR =

A+B,0RN=A+B,XOR=A®B,XNOR = A6 B

AMD Cyrix DEC HP Intel MIPS Motorola Sun
= = 8,16,32,FP32 8,16,32 - - 8,16,32,FP32,FP64 8,16,FP32 8,16,32,FP32 16,32
! = - - - - FP32,FP64 - - 16,32
> S8,516,532,FP32 | 58,516,532 - - S8,516,532,FP32,FP64 FP32 U8,U16,U32,58,516,532,FP32 | S16,532
> FP32 - - - FP32,FP64 - FP32 -
< - - - - FP32,FP64 U8,516,FP32 - -
< - - - - FP32,FP64 U8,516 - 516,532
< > - - - - - FP32 FP32 -
? - - - - FP32,FP64 FP32 - -
17 - - - - FP32,FP64 - - -

Table 7: Packed Data Control Flow - integer comparison operations are either sign independent or denoted as signed (S),
or unsigned (U), with the width of the packed data type in bits indicated. Floating point (FP) comparisons are also listed
for both single (FP32) and double (FP64) precision. The “?” comparison checks if operands are ordered (?) or unorderd (1?7)

- this is further explained in the Appendix.

traffic is generated, especially in cases where the comparison
result must be reloaded for further computation.

Although not all types of comparison tests are supported
by every architecture, it is usually possible to synthesize any
required type of comparison operation from another by re-
versing the operands:

A<B=—B>A (1)
A<B=—B>A

Because of this property, only one set of comparison oper-
ations ({>, >,=} or {<, <, =}) are needed to provide full
functionality. Depending on how comparison operations are
encoded this may or may not conserve instruction encoding
space. For example, the MIPS architecture allows arbitrary
combinations of any of the available tests and their inverses
because each available test {<,>, =, 7} is encoded as a single
immediate bit within a comparison instruction.

Motorola’s AltiVec and MIPS’ MIPS-3D both include a
specialized comparison instruction for dealing with bound-
ary testing as utilized in the clip test kernel from Mesa’s 3D
rendering pipeline (Algorithm 11). The MIPS-3D comparison
tests two clip values in parallel to see if any clipping is needed,
utilizing a specialized branch instruction to act as a fast out if
no clipping is necessary. This works by noticing the following
equivalency:

(z>-w, z<w) =lz|<w
(y>-w, y<w) =y <w
(z>—w, z<w) =|z|<w

A compare absolute value instruction (CABS.cc) is part of
the MIPS-3D instruction set, and can compares the absolute
values of two packed registers. So, two CABS comparisons
must be issued to cover a triplet of x, y, and z values. Com-
paring absolute values has the advantage of setting only three
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condition code bits (as opposed to six). This allows for a spe-
cialized branch instruction like bclany4f (branch if any one
of four consecutive comparison code bits are false) to branch
and begin computing the clipping of the next vertex if no clip-
ping occurred for the current vertex. Motorola’s AltiVec also
introduces a specialized comparison for clip checking called a
bounds comparison (vempbfpx) which is similar to the MIPS-
3D method, except that a two-bit vector is generated for each
element. Because the AltiVec extension is 128-bits wide, all
three comparisons (z, y and z compared to w) can be done
with a single instruction.

Algorithm 11 Project

Fragment

for (i=0;i<n;i++) {
FLOAT32 ex = vEye[i][0], ey
FLOAT32 ez = vEye[i][2], ew
volatile FLOAT32 cx =
volatile FLOAT32 cy
volatile FLOAT32 cz
volatile FLOAT32 cw
UINT8 mask = O;
vClip[i1[0] = cx;
vClip[il[1] = cy;
vClip[il[2] cz;
vClip[i][3] cw;
if (cx > cw) mask |= CLIP_RIGHT_BIT;
else if (cx < -cw) mask |= CLIP_LEFT_BIT;
if (cy > cw) mask |= CLIP_TOP_BIT;
else if (cy < -cw) mask |= CLIP_BOTTOM_BIT;
if (cz > cw) mask |= CLIP_FAR_BIT;
else if (cz < -cw) mask |= CLIP_NEAR_BIT;
if (mask) {

clipMask[il |= mask;
tmpOrMask |= mask;

and Clip Test Kernel C Code

= vEye[i]l[1];
= vEye[i][3];
mO0 * ex + m8 * ez ;
mb * ey + m9 * ez ;
ml0 * ez + mld * ew;
-ez ;

}

tmpAndMask &= mask;
}
*orMask = tmpOrMask;
*andMask = tmpAndMask;




3.5 Memory
3.5.1 Load/Store Operations

In many multimedia algorithms, there are several levels at
which data parallelism can potentially be exploited. For ex-
ample, within the DCT for MPEG decoding, we can operate
at any level from elements within a block to macroblocks to
pictures. The only problem is that on SIMD architectures,
load and store operations work only with adjacent elements in
memory. Parallel computers have in the past offered architec-
tural features such as strided loads and stores. AltiVec comes
closest to this by implementing strided prefetching, which we
will discuss shortly. Even so, there is considerable overhead
involved when using data communication (rearrangement) op-
erations to assemble otherwise non-adjacent data elements to-
gether.

The AMD, Cyrix and Intel architectures are unlike the
others in our study in that they are CISC, and therefore al-
low complex addressing modes such as having one instruction
operand in memory. When programming for these architec-
tures, it is rare to use an explicit load or store instruction, as
this would reduce instruction decoding bandwidth (requiring
at least one additional instruction) and increase register pres-
sure because of the need to explicitly retain an operand in
a register before computation (only eight registers are avail-
able) [AMDOpt]. Explicit load and store instructions can be
useful when scheduling memory operations far ahead of com-
putation in order to hide memory latency (in the absence of
prefetch instructions) for these architectures.

3.5.1.1 Alignment An aligned memory access is one that
accesses a 2V byte size data element at an address in which
the lower IV bits are all zeroes. Alignment is generally impor-
tant on all architectures for performance reasons, as unaligned
accesses typically suffer a significant performance penalty
or cause a run time exception, depending on the behavior
specified by the architecture. Intel’s MMX does not allow
the programmer to specify alignment; instead the hardware
deals with alignment issues transparently such that access to
unaligned addresses simply have a higher latency than for
aligned addresses. During the design of SSE, Intel found
that software vendors preferred being alerted to misalign-
ment of load/store data via an explicit fault. For this rea-
son, all computation instructions in SSE that use a memory
operand must access data that is 16-byte (128-bit) aligned.
Unaligned load/store instructions are also provided for cases
where alignment cannot be guaranteed [Thak99]. Such a situ-
ation occurs when in the motion compensation step of MPEG
video coding, unaligned memory access is needed depending
on the motion vector [Kuro98|, as the addresses of the ref-
erence macroblock can be random depending on the type of
motion search being performed.

The AltiVec instruction set architecture does not provide
for alignment exceptions when loading and storing data.
Alignment is maintained by forcing the lower four bits of any
address to be zero. This is transparent to the programmer,
so the programmer is responsible for guaranteeing alignment

16

so that the correct data is loaded or stored. We agree with
the software vendors that Intel interviewed - it is better that
performance and correctness issues due to alignment be made
explicit. The loading of incorrect data due to a mistaken
assumption about alignment would be an extremely difficult
and possibly intermittent bug to track down.

3.5.1.2 Array Addressing Sun’s VIS includes two sets
of instructions for accelerating multimedia operations with
sophisticated memory addressing needs. The first, edge8,
edgel16, and edge32, produce bit vectors to be used in
conjunction with partial store instructions to deal with the
boundaries in 2D images. The second group of addressing in-
structions include array8, array16 and array32 which find
use in volumetric imaging (the process of displaying a two
dimensional slice of a three dimensional data). An array in-
struction converts (z,y, z) coordinates into a memory address.
The Berkeley multimedia workload does not include any vol-
umetric imaging applications, so it is unsurprising that these
instructions found no utility in our workload.

3.5.2 Prefetching

Prefetching is a hardware or software technique which tries
to predict data access needs in advance, so that a specific
piece of data is loaded into the cache from the main mem-
ory before it is actually needed by an application. Program-
mers and compilers have, and do, use dummy load instruc-
tions to achieve prefetching functionality, but at the expense
of possibly blocking other (necessary) loads as well as added
register pressure since any load must have a target register.
Also, load instructions can cause TLB misses and page faults,
which may not be acceptable. This form of prefetching is in-
ferior to true software prefetch instructions, which use special
purpose instructions to fetch data into the cache from main
memory without blocking true load/store instruction accesses.
They also do not waste registers on dummy targets, and do
not cause exceptions. Unlike hardware prefetching which is
performed automatically by the memory subsystem, software
prefetching has the overhead of additional instructions which
prefetch only when they are executed.

Memory access types can be divided into three classes: tem-
poral (data that will be used again soon), spatial (data from
adjacent locations will be used soon) and non-temporal (data
which are referenced once and not reused). Data that will only
be read once need not be copied into the L2 cache. Data that
will not be needed immediately, but should be loaded to re-
duce latency, can be loaded only into the L2 cache. Data that
will be referenced several times may need to be loaded into
both the L1 and L2 cache levels, depending on the interven-
ing data references. Indicating the expected type of temporal
and spatial locality to the hardware from software is known
as a cache hint. Cache hints are often implicit functions of
load and store instructions which indicate to the memory sub-
system the type of memory access. The memory system can
then determine at what cache level the data should be loaded,
at what initial MESI state to set a cache block, or if a data



element will not be reused, the data cache hierarchy can be
bypassed entirely.

On the UltraSPARC architecture, prefetch instructions
were introduced to the SPARC v9 instruction set architec-
ture before actually being implemented on a processor. The
Sun UltraSPARC 1 processor treats prefetch instructions as
nops. Because prefetch instructions do not update any ar-
chitectural state it is possible for an UltraSPARC processor
which does not support prefetching to correctly execute a pro-
gram containing prefetch instructions. Sun did this to keep
from stratifying the UltraSPARC architecture according to
which processor model code is targeted for. UltraSPARC II
does support prefetch operations, and allows for up to three
simultaneous outstanding cache miss requests and two cache
write back requests.

Hewlett Packard’s PA-RISC architecture supports prefetch-
ing for reading and writing. Prefetch instructions are encoded
as normal load and store operations with a target register r0
(always zero, discards writes). All load and store instruction
support a cache hint for spatial locality (no data reuse), so
this can be used in combination with prefetch.

DEC’s prefetch implementation is not part of their MVI
multimedia extension, but rather part of the Alpha architec-
ture in general. A prefetch instruction (fetch) gives a hint
to the hardware to prefetch a 512-byte aligned block of data.
Prefetching for writing is accomplished through the fetch_m
instruction. The Alpha architecture also provides a cache hint
instruction (wh64) to indicate that a 64-byte block of data will
not be read again but will be written to soon. This allows the
cache to allocate resources for the block of data without read-
ing it from memory (prevent write allocation).

Determining the ideal location for prefetch instructions in
a piece of code depends on many architectural parameters,
including the amount of memory to be prefetched, cache la-
tency, system memory latency, and intervening computation
time. If the time between when a prefetch is issued and the
time it is used is too short, the prefetch will not effectively hide
the latency of the fetch behind computation. If the prefetch
is too far ahead other data may dislodge it from the cache
hierarchy before it can be used, wasting the prefetch oper-
ation. Excessive prefetching squanders memory bandwidth
and instruction decoding throughput, and results in lowering
performance rather than improving it [Smit78], [Tse98].

Intel provides an equation for estimating prefetch distance
on the Pentium II processor, but cautions that the parameters
given are for "illustration only." [TAOpt] (It is not clear how
some of these parameters can be determined accurately by
the end programmer.) The prefetch scheduling distance, psd,
in loop iterations, is defined:

Nicokup + Nz fer - (NP?“ef + NSt)
CPI . Ninst

where, (Intel’s sample parameters are placed in parenthe-
ses):

(2)

psd =

Niookup number of clocks for memory latency (60)

Nafer number of clocks to transfer a cache line (25)
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Npreg number of cache lines to be prefetched

Ny number of cache lines to be stored

Ninst number of instructions in one loop iteration
CPI clock cycles per instruction (1.5)

In AMD’s 3DNow!, the prefetch for write instruction
(prefetchw) sets the cache line MESI state of the prefetched
data to modified. [AMDOpt] states that this can save an
additional 15-25 cycles for write only data in comparison to
the prefetch for read instruction (prefetch), which sets the
cache line MESI state to exclusive. [AMDOpt] also provides
an equation for estimating the appropriate prefetch distance:

psd = 20005/ pytes (3)

where,
DS
C

data stride bytes per loop iteration

number of cycles for one loop iteration to execute
entirely from the L1 cache

Of all the architectures examined, Motorola’s AltiVec pro-
vided the most innovative and most powerful prefetch mech-
anism. Rather than issuing an explicit prefetch instruction
for each desired data prefetch, a single data stream touch in-
struction (dst) is issued indicating the memory sequence or
pattern that is likely to be accessed soon before the access is
to take place. We will refer to this hybrid of hardware and
software prefetching as software directed prefetching to indi-
cate that a separate prefetch instruction need not be issued
for each data element. A data stream is defined by:

effective address address of the first unit in a sequence

unit size  number of quad words (128-bits) in each unit
count total number of units in a sequence
stride number of bytes between the effective address of

one unit in the sequence and the next

A dst instruction specifies the starting address, a block size
(1-32 vectors, where a vector is 128-bits long), a number
of blocks to prefetch (1-256 blocks) and a signed stride (-
32768...4-32768). A 2-bit tag indicates the stream ID, so up
to four concurrent data streams are possible, although the
available data bandwidth would likely be saturated trying to
prefetch four streams at once with current implementations.
Hardware optimizes the number of cache blocks to prefetch
so it is not necessary for the programmer to know the param-
eters of the cache system. A stream is fetched either until all
of the requested blocks have been brought into the cache or
another dst instruction is issued with the same tag ID.

A data stream touch instruction (dst) implies to the hard-
ware that the requested data will exhibit a high degree of
locality. Other flavors of dst indicate transient data (dstt)
or a read once situation, and touch for store (dstst), which
rather than placing a cache block in a state most efficient



for reading, sets it for writing. A fourth instruction allows for
transient stores (dststt). Because unnecessary prefetching is
wasteful of bandwidth, software can stop any tag ID’s associ-
ated prefetch operation with the data stream stop instruction
(dss) or all streams with dssall.

Unlike other variations of software prefetching, the stream
construct eliminates the instruction issue overhead as well
as the problem of determining the optimal prefetch distance.
And, unlike software prefetching, all of the required param-
eters are easily accessible to the programmer because they
are only those characteristics which describe the memory ac-
cess pattern (unlike parameters such as the memory system’s
latency or processor’s issue width or instruction latency).

Unfortunately, using AltiVec’s data stream mechanism is
not quite as clean as it initially might seem. Motorola suggests
"short frequent dst instructions” because a prefetch stream
is restarted automatically after an exception. Process task
switching can possibly cause a new process to prefetch ac-
cording to prefetch streams set up for the prior process, so
it is not advisable to issue a single dst instruction to com-
pletely cover a large data stream. There are a finite number
of streams (four in the case of the MPC7400 processor). It is
typically the responsibility of the operating system to man-
age access to limited or shared resources, but AltiVec does not
specify a mechanism for reading the state of an outstanding
prefetch operation, so it is not clear how this could be imple-
mented for data streams. In addition, if several multimedia
(or other) applications are using data streams concurrently
performance may be degraded because of their contention for
system resources.

4 Programming with SIMD

Simply including a multimedia extension on a general purpose
processor is not in itself a solution to handling multimedia
workloads. A powerful SIMD multimedia instruction set is
worthless without the means to utilize it.

4.1 Shared Libraries

One of the simplest ways to improve application performance
through SIMD instructions is to rewrite shared system li-
braries with them. Existing applications can immediately
take advantage of the new instructions without recompilation.
However, performance will not improve unless an application
already calls or is modified to call the appropriate system
functions. Even if the appropriate functions are used, data
must be formatted as specified by the API [Lee96]. Often
there is a mismatch between the functions available in a li-
brary and what the target application requires to be efficient.

4.2 Macros

Macros are high level language “wrappers” which program-
mers utilize in order to use multimedia instructions like func-
tion calls within their C or C++ code. The advantages to
this approach are that the compiler rather than the developer

performs machine specific optimizations such as instruction
scheduling and register allocation, and the added level of ab-
straction means that code can be transparently recompiled for
use on platforms without multimedia extensions by replacing
macros with their high level language equivalents.

[Chen96] found that programming C applications with mul-
timedia instruction macros was difficult, likening it to typical
DSP (assembly) coding. Additionally, [Allen99] found that
upon examining output of the SPARCompiler (v5.0), that
the instruction scheduling of expanded macro code is poor
and that macros can inhibit a compiler’s most aggressive op-
timizations.

4.3 Compilers

Ideally, high level language compilers would be able to system-
atically and automatically identify parallelizable sections of
code and generate the appropriate SIMD instructions. SIMD
optimizations would then not just be limited to multimedia
applications, but could be more generally applied to any ap-
plication exhibiting the appropriate type of data parallelism.
Currently, none of the multimedia instruction sets are sup-
ported by commercially available compilers in this way on any
of the platforms. The lack of languages which allow program-
mers to specify data types and overflow semantics at variable
declaration time has hindered the development of automated
compiler support for multimedia instruction sets [Cont97].

4.4 Assembly Language

The most effective method of programming with multimedia
extensions is through hand-coding by expert programmers,
just as in DSP approaches [Kuro98]. Although this method is
more tedious and error prone than the other methods that we
have looked at, it is available on every platform, and allows
for the greatest flexibility and precision when coding.

5 Summary

This work has surveyed the field of multimedia instruction
set extensions for general purpose processors. We will now
summarize the general conclusions we have drawn about mul-
timedia instruction set designs.

5.1 Singular Resources

Resources that are highly utilized should be duplicated in
order to allow for parallel instruction execution, otherwise
a bottleneck is created which prevents the extraction of in-
struction level parallelism. Although the approach taken with
MIPS MDMX and its single 192-bit accumulator register was
found to be flawed from this perspective, a multiple accumu-
lator architecture could possibly achieve the latent potential
of this idea. We also saw a similar serializing bottleneck in
the graphics status register (GSR) which is part of Sun’s VIS
extension. Sun’s inclusion of a GSR was not in itself neces-
sarily a mistake, but the lack of partitioned shift operations,
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which we have found to be quite important in multimedia al-
gorithms, forced us to use the GSR in a manner that it was
not really intended to be used. In general we found that ar-
chitectural features such as this or the accumulator in MIPS’
MDMX are poor from a design perspective because their sin-
gular nature tends to serialize instruction execution.

Poor design choices are compounded by the use of split in-
structions (for example, Sun’s multi-part partitioned integer
multiplication primitives). Dividing an operation into several
instructions (which are not otherwise useful in and of them-
selves) increases register pressure, decreases instruction de-
coding bandwidth and creates additional data dependencies.
Splitting SIMD instructions (which have been introduced for
their ability to extract data parallelism) can actually cripple
a superscalar processor’s ability to extract instruction level
parallelism. A multi-cycle operation can be a better solu-
tion than a multi-instruction operation because instruction
latencies can be transparently upgraded in future processors,
while poor instruction semantics can not be repaired without
adding new instructions.

5.2 Data Types

We have seen that the data types supported by each archi-
tecture vary, especially for very short (e.g. 8-bit signed) and
very long (e.g. 64-bit integer or floating point) operations.
We have found that arithmetic operations on signed eight-bit
data types are not used and should not be included in a mul-
timedia instruction set. Thirty-two bit wide data types are
almost exclusively used for accumulation - other operations
at this width (or wider 64-bit data types) are of lesser impor-
tance. Packed, signed 16-bit multiplication is very useful, and
is central to multimedia algorithms such as the discrete co-
sine transform. Full precision floating point and square root
operations are not useful for multimedia. Less precise ap-
proximations are often sufficient, with the option of utilizing
the Newton-Raphson method where more accuracy is desired
or required. These observations are based on our experience
programming with many different multimedia instruction sets
in order to measure their performance on the Berkeley multi-
media workload [Sling00d].

Data communication and data type conversion operations
do not perform directly useful computation, but they are nec-
essary to allow for SIMD computations to proceed efficiently.
In the case of data type conversion operations, this is be-
cause although some data types are not common to the ac-
tual arithmetic computation of multimedia algorithms, they
may be used for storage and compression. Thus, it is cru-
cial to include a wide set of type conversion instructions. We
found in many cases that the lack of the appropriate con-
version operation was the limiting factor in making a SIMD
implementation effective.

Along with new arithmetic functionality, many multimedia
instruction set extensions have also included cache hint and
prefetch instructions to exploit the largely predictable mem-
ory accesses found in many multimedia applications. The soft-
ware directed prefetching with hardware assistance as found
in Motorola’s AltiVec appears to be a much more compelling
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design than the software prefetching instructions found in the
other architectures, as there is much lower overhead involved;
fewer prefetch instructions need to be issued.

5.3 Error Handling

Traditional error handling for issues such as positive/negative
overflow, as well as many floating point exceptions must be
dealt with in new ways for SIMD multimedia extensions. This
is exemplified in the saturating arithmetic operations that
are central to many of the instruction sets. The soft bound-
aries on precision in most multimedia applications, mean that
many error conditions (e.g.overflow) and techniques (e.g. fully
IEEE compliant floating point rounding modes and excep-
tions) which slow down computation when dealt with in a
strict sense, can be instead corrected automatically in ways
that are adequate for the domain of multimedia process-
ing. However, the recent trend towards supporting work-
loads other than multimedia applications (e.g. Intel’s SSE2
[IntelO0b]) may limit the utility of these multimedia specific
techniques.
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1 Appendix

1.1 History of Multimedia Processing

1.1.1 Digital Signal Processors (DSPs)

First introduced in 1980, digital signal processors (DSPs) are
special purpose microprocessors that have architectures and
instruction sets specifically designed for real time signal pro-
cessing algorithms. A typical DSP has a Harvard memory
architecture, supports modulo addressing modes for speeding
algorithms like the Fast Fourier transform (FFT), and has
instructions such as a pipelined multiply-accumulate - an op-
eration which is at the heart of digital filters. DSPs have been
developed mainly for speech processing and communications
processing in modems, pagers and cellular phones [Kuro98].

1.1.2 Application Specific Integrated Circuits

(ASICs)

A function or application specific integrated circuit (ASIC) is
strictly tied to a single well defined algorithm. This is why
an ASIC is able to meet demanding processing requirements
at minimal cost. Typically, a multimedia algorithm is broken
down into subtasks until each subtask is of a complexity that
can be assigned to a hardware block. An example of such
a device would be an MPEG video decoder chip for set top
boxes. ASICs usually offer very little if any programmability,
but some ASICs embed a RISC processor for control and to
be able to have a small degree of flexibility [Pirs97].

1.1.3 Multimedia Co-Processors

Multimedia processors are built from the ground up to be
programmable devices, and therefore have an adaptability ad-
vantage over ASIC solutions. They can replace several ASICs,
in addition to being able to adapt to changing or emerg-
ing standards. Architecturally, multimedia processors are an
extension of DSPs, but utilize VLIW (very long instruction
word) techniques [Pirs97]. Like superscalar microprocessors,
VLIW processors attempt to exploit instruction parallelism
through multiple execution units (e.g. adders, multipliers).
However, unlike superscalar architectures which extract in-
struction level parallelism at run time with dedicated hard-
ware (e.g. reservation stations, reorder buffers) to resolve con-
flicts and pipeline hazards, VLIW architectures rely entirely
on the compiler to generate efficient, sane code at compile
time. This approach conserves die area and the hardware is
easier to implement than superscalar microprocessors which
are notoriously difficult to design and debug [Pirs97].

In VLIW multimedia processors, one instruction controls
several functional units, with special purpose functional
blocks used to achieve high multimedia performance at lower
clock frequencies. Like many DSPs, a high speed memory
interface to memory is used instead of the cache based hier-
archy found in microprocessors. Virtual memory support is
also typically foregone, enabling programmers to make hard
guarantees as to the latency and throughput of their code.
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An important drawback of the VLIW approach is that there
are many situations where the compiler cannot take advan-
tage of parallel functional units because of limited informa-
tion available at compile time [Hunt95]. VLIW coding also
has the discouraging side effect of low code density because
if the compiler can not supply a full quota of instructions for
execution in a given clock cycle, the remaining positions in
the word must be filled in with no-ops [Gepp98]. This means
that an excessive amount of memory is often needed to store
the code for a VLIW application.

Multimedia processors have been introduced as accelera-
tor boards for desktop personal computers, but are vanish-
ing from personal computers due to the increased multimedia
performance of microprocessors. The accelerator board ap-
proach inherently suffers from a cost disadvantage and tends
to be less compatible because many such competing boards
are typically available.

1.2 Numerical Methods

Before delving into the details of implementing multimedia
algorithms on processors with supporting instructions, it will
be useful to briefly review numerical representation on digital
computers. These concepts are easily overlooked or forgotten
when programming in a high level language like C or Java,
but are of central importance to a correct implementation in
assembly language.

1.2.1 Integer Values

The meaning assigned to any of the 2V states of an N-bit bi-
nary word depends entirely on its interpretation. Common
binary representations include unsigned integers, unsigned
fixed-point rationals, signed two’s complement integers and
signed two’s complement fixed-point rationals. Rational num-
bers are those numbers expressible as a/b where a and b are
both members of the set of integers, Z. Like decimal (base 10)
representations of rational numbers, binary (base 2) represen-
tations assign a weighted power of the respective base to each
position of a number. Although we do not usually think of a
decimal number as having a limited number of positions, bi-
nary numbers on computers necessarily have a limited width.
Consider an unsigned 8-bit binary fixed point number format,
which we will designate U (6.2):

by b, by b, b, b, b, b.
[1]ofo]o]

1|o£1|o

As is conventional with decimal numbers, the above binary
number has been written with its most significant bits to the
left, and its least significant bits to right. The value of an
N-bit U(a.b) format fixed point number, z, is given by:

b N1

T = <%> Z 2"z,
n=0

The variable, a, is the number of significant bits to the left
of the binary point in an N-bit value, and b is the number of

2

(1)



bits to the right. Like decimal (base 10) arithmetic, binary
(base 2) arithmetic contains an implicit binary point indicat-
ing the boundary between positions representing powers of
the base greater than zero and those signifying powers of the
base less than zero. Unsigned integer (or "natural binary")
representations are a special case of U(a.b) format fixed point
numbers where b = 0. Each bit, by, has a weight of 2¥, so the
value of the above example binary number is 34.5 (in deci-
mal).

Two’s complement is a method for representing signed
numbers which simplifies the underlying hardware implemen-
tation on digital computers. The two’s complement of a bi-
nary number, z, is given by taking the one’s complement
(negating all of the bits) and adding one. We will denote
signed two’s complement format S(a.b), wherea = N —b—1
and b is the number bits to the right of the binary point. The
value of an N-bit S(a.b) format number, x, is given by:

N—-2

b
1 N-1 § :
xr = <§> [—2 TN_1+ 2”.’1?»,1

n=0

(2)

We will use the notation X (a.b) to note when a rule is
applicable to either U(a.b) or S(a.b) format numbers. Fixed
point arithmetic has the following fundamental rules [Yates]:

1. Unsigned Wordlength - the number of bits required to
represent U(a.b) is a + b

2. Signed Wordlength - the number of bits required to rep-
resent S(a.b)isa+b+1

3. Unsigned Range - the range of a U(a.b) fixed-point num-
beris 0 <z < 2% — 27t

4. Signed Range - the range of an S(a.b) fixed-point number
is 20 <z <20 97b

5. Addition Operands - the binary points of two numbers
must be aligned in order for addition or subtraction to
be performed. X(c.d) + X(e.f) is only valid if ¢ = e,
and d = f.

6. Addition Result - the sum of two N-bit binary numbers
requires N + 1 bits

7. Unsigned Multiplication - U(ay.b1) x U(az.b2) = U(ay +
ag.bl + bg)

8. Signed Multiplication - S(a;.b1) x S(az.b2) = S(a; +az2+
1.by + by)

9. Shifting- a shift can either be considered a scaling opera-
tion, moving an entire binary value along with its binary
point:

X(a.b)y>»n=X(a+nb—n)
X(ab) < n=X(a—n.b+n)
or a multiplication/division by a power of two:

X(a.b)>»n=X(a—n.b+n)
X(ab)<n=X(a+n,b—n)
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1.2.2 Floating Point

Floating point representations offer greater dynamic range in
the same number of bits as natural binary or fixed point rep-
resentations. This is accomplished by using a format similar
to scientific notation in decimal. Bits of precision are traded
to extended the range of representable values. The IEEE 754
floating point standard is used by almost all modern float-
ing point hardware (the notable exception being x86 based
machines which internally use an 80-bit format, but are able
to convert to and from standard IEEE 754 representations).
Two sets of formats are defined by the IEEE standard; the
first set consisting of the basic formats (32-bit single preci-
sion and 64-bit double precision), are defined in Figure 1.
IEEE 754 also defines an extended set of formats which as-
sume that a machine will devote an entire word (32 or 64 bits)
to the mantissa, and anther 10 or 14 bits to the exponent for
the extended single precision and double precision formats,
respectively.

The IEEE standard assigns the largest and smallest num-
bers supported by the standard to be +3.4 x 1038, and
4+1.2 x 10738 respectively for single precision, leaving some
bit patterns free for special values:

1. £0 - all of the mantissa bits and exponent bits being 0Os

2. oo - all of the mantissa bits Os and all of the exponent
bits 1s

3. NaN - not a number

4. group of small unnormalized numbers +1.2 x 1073® to
+1.4 x 101

Double precision IEEE floating point extends single precision
by adding extra bits to the exponent and mantissa, extending
the range to: +1.8 x 107398 to £2.2 x 107398,

1.2.3 Ordered and Unorderd

A comparison is said to be ordered if one can define the re-
lations < (less-than), > (greater-than), and = (equal-to) so
that they have the following properties.

Trichotomy For all z and y, exactly one of © < y, x > y, or
T =y, is true.

For all z and y, if x < y, then y > z, and if z = y,
then y = z.

Reflexive

Transitive. For all z, y, and z,if x < y and y < z then = < z.
Also,if z =y and y = z then z = z.

Relations in the IEEE-754 floating point standard need a way
to express comparisons with NaNs (for Not-a-Number). Since
NaNs have no value, the result of comparing them with nor-
mal numbers is unordered, which is symbolically specified as
“?”. That is, a NaN is not greater-than, nor less-than, nor
equal-to any number. So, the best one can say about any two
numbers in the IEEE-754 system is that either z < y, z > y,
z =y, or x!?7y (read as z is unordered with respect to y).
[Zuras]
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(b) Double Precision

Figure 1: IEEE 754 Floating Point Formats

1 8 23 1 11
(a) Single Precision
31 0
0x1020 Manti ssa_7
0x101C Manti ssa_6
0x1018 Manti ssa 5
0x1014 Manti ssa_4
0x1010 Manti ssa_3
0x100C Manti ssa_2
0x1008 Mantissa_ 1
0x1004 Manti ssa O
0x1000 Shared Exponent

Figure 2: Example Block Floating Point Memory Map

1.2.4 Block Floating Point

Block floating point is a scaling technique in which a sin-
gle exponent is used for all of the elements in a block of data.
This originated as a software technique (as did floating point),
but some digital signal processors (DSPs) support this mode
directly in hardware. It has the advantage of being less ex-
pensive in terms of hardware than floating point, as well as
being faster.

To visualize how this works, consider the memory map
shown in Figure 2, which diagrams how eight block floating
point numbers and their shared exponent might be laid out
in memory. Floating point numbers have a greater dynamic
range because the distance between numbers gets larger as
the magnitude of the numbers get larger. The disadvantage
of block floating point when compared to full IEEE 754 float-
ing point is that all numbers must share the greatest expo-
nent of all the actual values. The mantissas must be scaled
to match this shared exponent, but because there is a finite
number of bits in the mantissa, precision can be lost. Block
floating point only works well if a block of data can have a
wide possible range of values, but values are clustered for a
particular computation.

1.3 Programming Methods

In programming with the fixed and floating point formats
we have discussed, there are many heuristics for performing
operations quickly in assembly language. Additionally, if a
needed operation is required by an algorithm but unsupported
directly by the instruction set in question it is often possible to
synthesize the needed operation. The only costs are a possibly
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larger number of instructions and potentially greater register
pressure and execution dependencies. Here we present those
equivalencies which were of utility in our programming.

1.3.1 Synthesizing Width Promotion

Width promotion is the expansion of an n-bit value to some
larger width. For unsigned fixed point numbers in the U(a.b)
format discussed previously, this involves zero extension or
filling any additional bits with zeros. Zero extension is usu-
ally not specified as such in a multimedia architecture be-
cause it overlaps in functionality with data communication
instructions such as unpack or merge. These operations in-
terleave source elements from two registers. If a SIMD reg-
ister is merged (interleaved) with another register which has
been zeroed, the result will be a zero extended version of the
upper or lower elements of the first register, depending on if
a merge-hi (most significant half of the register) or merge-lo
(least significant half of the register) is used. Signed element
unpacking is not as simple, but is rarely supported directly
by hardware; only the MIPS’ MDMX and AltiVec instruction
sets include it. It can, however, be synthesized with multipli-
cation by 1’ since width of the result of multiplication is the
sum of the width of both its operands.

1.3.2 Synthesizing Max/Min

Signed minimum and maximum operations are often used
with a constant second operand to saturate results to arbi-
trary ranges. This operation can be simulated with packed
signed saturating addition. As was discussed earlier, the rep-
resentable range of an S(a.b) number is —2¢ < z < 2% — 275,
For example, assume we want to limit an S(a.b) result, X, to
—j..+ k. The maximum representable value is M = 22 — 27,

L Tpos = (20 — 20) — k
2. X +Tpos:>X
3. X —Tppy — X

These three steps limit X to +K. (A = represents satu-
rating overflow, where as a — symbolizes modulo overflow.)
Three more operations are required to limit X to the desired
floor value:

1 Toey = =294
2. X 4Ty = X
3. X =Ty — X



1.3.3 Synthesizing Multiply /Shift

Multiplication of fixed-point values by integer and fractional
constants can be simulated with a right/left shift and add
operation. This is in fact the only type of partitioned (and
integer) multiplication operation supported in hardware by
Hewlett-Packard’s PA-RISC architecture. Consider packed
16-bit values multiplied by the constant:

1 1 1 1
\/5—1.41421356:1+Z+§+3—2+m—1.4140625

With the MAX-2 instruction set, such a multiplication is
accomplished as listed in Algorithm 1.

Algorithm 1 Partitioned Multiplication by a Constant

with MAX-2

hshradd r10, 2, r10, r8 ;5 r8: x[0..3]1%(1+1/4)

hshradd r8, 3, r10, r8 ; r8: x[0..3]*%(1+1/8+1/32)

hshradd r10, 1, r8, r8 ; r8: x[0..3]*(1+1/2+1/8+1/32)
hshradd r8, 2, r10, r2 ; r2: x[0..3]%(1+1/4+1/8+1/32+1/128)

Likewise, shifts can be simulated with multiplication and
division. None of the multimedia extensions offer partitioned
integer divide instructions, so only left shifts can be simulated
in this way. It is also sometimes useful to keep in mind that a
multiplication by a power of 2 on a platform without left shift
operations can be decomposed into a series of additions. If the
desired power of two is small this can be a performance win
if other operations can be done at the same time to combat
the added data dependencies. We found this useful on Sun’s
VIS when bit-wise left shifts were needed.

1.3.4 Synthesizing Absolute Value

The absolute value of an S(a.b)integer, X, can be synthesized
as follows:

1. X — Xpos, 0= X — Xpey
2. maz(Xneg, Xpos) — Xpos

Floating point absolute value can be performed by AND’ing
a single precision value with Ox7FFFFFFF. This clears the sign
bit.

1.3.5 Synthesizing Floating Point Sign Negation

Floating point negation can be performed by XOR’ing a single
precision value with 0x80000000. This clears the sign bit if
it was set or sets it if it was cleared.

1.3.6 Newton-Raphson Method

The Newton-Raphson formula for finding the root of an equa-
tion is defined:

Tip1 = xi — f(xi)/f' (%) (3)
Utilizing the above method, it is possible to generate equa-
tions for increasing the precision of approximations to 1/a:

(4)

x1 =0 — (a- 2 — 20)
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as well as 1/sqrt(a):

T3 =20 —(0.5-a 25 —0.5-29) =05 -20-(3.0—a-z3) (5)

Both the reciprocal and reciprocal operations are common
in floating point 3D geometry routines. In the above equa-
tions, xo represents the first approximation, and x is the it-
eratively higher precision result. This method approximately
doubles the number of significant digits for each iteration if
the initial guess is close.[IAP803]

1.3.7 Synthesizing Square Root

Because many floating point instruction sets include approxi-
mations for ﬁ, it is helpful to recognize that if a true square-
root value is what is actually needed, the following equiva-
lency can be used:

1

a=a-— 6
Va 7 (6)

Although all of the SIMD floating point instruction sets
included reciprocal operations, they are typically approxima-
tions. The above prevents the loss of any precision, other than
any original loss due to approximating the square root.

1.4 Instruction Set Descriptions



AMD 3DNow! Functionality [ PI NSRW Rpo.15) - F1slla]
FEMVB clear floating point state mem — Fyq[ ]
PAVGUSB Fus/\Fus - Fus PMAXSW (Bh16,Fs16L Fsis
Fus/Amemyg » Fug (Fk16,memsy5L3 Fsi6
PF21 D C(Eds2) - Fsa PMAXUB (Fus, Fus 3 Fus
C{MBMepsy) - Fszp (Fus, memuys (3 Fus
PFACC C(Bepso)|| CiBeps2) - Fepsz PM NSW [(Fs16,Fs16[3 Fss
C{Bepy) || C{0hemepsp) - Fepao [Fs16,meMsi6[3 Fsi6
PFADD FrpsotFrpsz - Frpaz PM NUB [Fus, Fusl3 Fus
FrpaatMeMep3s — Frpay CFys, memyg[3 Fug
PFCVMPEQ M(Frps2==Feps2) - F32 PMOVVBKB Frirs-11— Ru
m(FFP32==memFP32) - F32 PMULHUW Um(FumeUle) - FU16
PFCVPGE M(Frp32>Frpaz) - Fa Use(FusXmMemyse) - Fuss
M(Fepaz>MeMepgy) - Fap PREFETCHNTA prefetch with minimal L1/L2 pollution
PFCMPGT M(Fepsoa>Frpsz) - Fa2 PREFETCHTO prefetch to all cache levels
M(Frpaz>MeMeps) - Fap PREFETCHT1 prefetch to all but L1 cache level
PFVAX (Ekps2,Feps2[3 Fepaz PFEFETCHT2 prefetch to all but L1 and L2 cache levels
(Ekps2MeMep3o [ Fepsp PSADBW C.(Bus [Fk) - Feuts
PFM N (Bkpaz,Frps2 [ Fres2 C{Bys (MM 5) - Fouss
(Ekps2,MeMep32 [ Frpso PSHUFW F16[imMeposis1. 2xi7] - Fag[i]
PFMUL Frp3aXFrpaz —» Fepaz memye[iMMgppsis1..251] -~ Fasli]
FrpaoXMeMep3, > Fepsp SFENCE force completion of weakly ordered stores
PFRCP =141/Feppz2 — Feppaz Source: AMD Extensions to the 3SDNow! and MMX Instruction Sets
=141/MeM-gp3z - Feppr Manual - 22466B/0 — August 1999
PFRCPI T1 =4 VFppz2 - Ferpaz
= 1/MeMerpgz > Ferpao
PFRCPI T2 =,4*LNFp3; — Feppz _ _
=04% Furpgp > Feppaa Cyrix Extended Functionality
22421/‘/mem-pp32 — Feppao MMX—
4% MeM.gp3z — Feppaa PADDI SW Fsi6+Fsi6 CFsls
PFRSQ T1 =y 1NVFuppgz — Feppaz Fsigtmems;s CdFgle
:xxlll\/mem-ppgz - Feppaa PAVEB Fus/\Fug — Fug
PFRSQRT =151NFuppsz — Ferpz Fus/Amemys - Fus
::15:|_/\/|’]']e|’]’],pp32 — Fegpan PDI STI B Fus [mémyg — 20Fyg
PFSUB Fepao—Fepsz  Frpa PMACHRI W Us( [{Bs16Xmemsss)) - Z0F ;s
F;pgz—memppgz - Fppgz PVAGW HHSHi'rlFSlGlB FSlG
PFSUBR Fepaz—Frpaz - Frpaz [Bsiel.memsie|C3 Fsis
Fep3o—MeMepsy — Frpsn PMULHRW UIG( [CESIGXFSHS)) - Fsi6
Pl 2FD Fs32 - Frpaz Uso([(Bsssxmemse))  Fors
Fs32 - MeMeps; PMULHRI W Use( [(Hs16%Fs16)) - OFs16
PMULHRW [Whe(Fs16%Fs16) — Fsie Use( [(Bs16XMemsi)) - 0F s
M@(Fsmxmemsm) - Fsi6 PWZB |f(0F8[|]::O), memg - Fg
PREFETCH prefetch into L1 PMWNZB if(0Fg[i]!=0), memg - Fq
PREFETCHW prefetch for write into L1 PWLZB if(OFss[i]<0), mems - Fg
Source: 3DNow! Technology Manual 21928E/0 — November 1998 PWGEZB if(0Fsg[i]>0), memg — Fg
PSUBSI W Fs16—Fs1s [dFsls
Fsie—memsis CaFls

AMD Extension to

3DNow! and MM X

Source: Application Note 108 — Cyrix Extended MMX Instruction Set

Functionality

‘ DEC MVI Functionality

PF2I W [(Edbs2) E)@—» Fsst MAXSBS [(Rsg,Rss[3 Rsg
C{MkMepsy) [Fs1d- Fsp MAXSW [(Rs16,Rs16[23 Rs16
PFNACC Ci(Beps2)|| C(Bepsz) — Fepaz MVAXUBS RusRus 3 Rug
C{Bep3o) || C{0hemepsp) — Fepao MAXUW [(Ru1s,Ruis 3 Russ
PFPNACC C(Bepso)|| C-(Brps2) - Fepsz M NSBS [BeRs D R
E':CHFF P32)|'|:|:m19mFP32) - Fepay M NSV Re16Re16 (3 Reto
PI2FW EEr:éf% ” ) F”; M NUBS [(Rus,Rus 3 Rus
PSWAPD (A=) Sm,:q e M NUW [Ruis,Ruis[3 Ruse
it F PERR C-(Bus [RUe) ~ R
Fp32 > Fepaa PKLB ORe-R
MASKMOVQ if(Fg+s)-13) Fs[i] - memgli] 2278
- PKV\B 0R:6 - Rs
MOVNTQ F - mem (no write allocate)
PAVGB Fue/\Fus > Fus UNPKBW Rus[3..0] » Russ
Fus/AMemus - Fus UNPKBL Rug[1..0] » Rus,
PAVGW Fo/\F F Source: James Hicks, Richard Weiss, “Motion Video Instructions”,
ue/\Fuie — Fuie
b 1999
Fuis/AMeMyz6 » Fuis February
PEXTRW Fle[immg] - R[15_ 0]
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FORGTE I
HADD Ri6+R16 > Rie M(Fss>memsgg) - Fg
HADD, ss Rsi6*Rsis [Rsid PCMPGTD M(Fs16>Fs16) — F1o
HADD, us Rus+Ruis [Rusb M(Fsis>MeMs;6) - F1e
HAVG Rs16/\Rs1s [Rsd PCVMPGTW m(Fs32>Fs32) - Fa2
HSUB Ris—Ris - Ris M(Fss2>MeMssp) - Fa
HSUB, ss Rs16~Rs16 [Rsid PMADDWD CBs16%Fsi6) - Fss2
HSUB, us Ruis—Ruis [Ruk C(Bs16XMemgye) - Fso
HSLADD (Rs16<<immy)+Rs16 [Rs:d PMULHW Us6(Fsi6%Fs16) - Fs6
HSHRADD (Rs16>>imm,)+Rs15 [Rsd Uss(Fsi6Xmemse) — Fsi6
Source: Ruby B. Lee, “Subword Parallelism with MAX-2", IEEE Micro, PMULLW L1s(Fs16%Fs16) - F1e
August 1996, pg. 51-59 L1s(Fsi6Xmems;e) - F1s

POR FIF-F
Flmem - F
PSLLD Fso<<F.g4 - F32

Faz<<memm.gs - Faz
HSHR R5162immz - Rsis F32<<immg —F3
HSHR, u Ruie>>imm; - Ry PSLLQ Fu64<<F.gs — Fega
HSHL R15<<immz R Fega<<mem.gs — Fegs
M XH, L U(RIG) DI'ERIG) >R F-64<<immg - F'64
M XH, R L(Rys) [IIRy5) — R PSLLW Fie<<Fegs— Fis
M XW L U(R3p) [TWR3;) - R F16<<mem'64 —~Fis
M XW R L(Rgz) D]ngz) >R F16<<|mm8 - Fle
PERVH Rus[iMMspasien 2] - Ruefi] PSRAD Fsa2>>F 64 Fsor

Source: Ruby B. Lee, “Subword Parallelism with MAX-2", IEEE Micro,

August 1996, pg. 51-59

Intel MM X Functionality

Fs32>>mem.gs - Fs32
Fs3:>>immg - Fsg,

PSRAW Fs16>>F.64 - Fs16
Fsi6>>mem.g; - Fs16
Fs16>>immg - Fs16

PSRLD F32>>F.g4 - Fa;
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EMVS clear floating point state Fzo>>mem.gs - F3,
MOVD Fro.311- Rio.31) Fgo>>immg - F3,
F[o__31] - mem PSRLQ Fe64>>F64 — Fega
Rio.a1 - Fpo.311 F.gs>>mem.es - Fep4
mem - Fio.ay F.4>>immg - Fugs
MOVQ Fo.631 - Fpo.63] PSRLW F16>>F.g4 - Fag
Fo.s3 - mem Fig>>mem.gs — Fag
mem - Fo.63] Fie>>immg - Fyg
PACKSSDW FsalFsz2 [Esid PSUBB Fe—Fg— Fe
Fssolmemss, [Fsyd Fg—mems - Fg
PACKSSWB Fsis[Fsis [Essl PSUBD Fay—Fa2 - Fa
Fsiglmems;s [Fgel Fso—mems; - Fap
PACKUSVB Fsi6lFsis [Egel PSUBSB Fsg—Fsg [Fsel
Fsiglmems;s [Fgel Fsg—memss [Egel
PADDB Fe+Fs—Fg PSUBSW Fsi6=Fs16 [Fs:d
Fg+memsg - Fg Fsis—mems;s [Fsid
PADDD FaytFap > Fa PSUBUSB Fus—Fus [Eusl
Faotmems; - Fsp Fug—memys [Fyel
PADDSB Fsg+Fss [Fsgl PSUBUSW Fuis=Fuis [Fud
Fsgtmemsg [Fggl Fuis—memys CFuid
PADDSW Fsig+Fsi6 [Esid PSUBW Fi6—F15 - F16
Fsis+memsis [Fsid Fis—mem;e - Fi6
PADDUSB Fus+Fus [Fugl PUNPCKHBW U(Fs) [TWU{Fs) - F
Fugtmemyg [Fygl U(Fs) [TW{mems) - F
PADDUSW FuistFuis [Fuid PUNPCKHDQ U(F3,) (IW{Fs,) - F
Fuistmemys [FEgd U(F3;) [TW{mems,) - F
PADDW Fis*+Fi6 - Fus PUNPCKHWD U(F+6) [TW{F16) - F
Figtmemss - Fi U(Fye) LLUmem;o) — F
PAND F&F - F PUNPCKLBW L(Fg) [TIL{Fs) - F
F&mem- F L(Fs) [TIL{Imems) - F
PANDN ~(F)&F - F PUNPCKLDQ L(Fs2) [TI{F3,) - F
~(F)&mem - F L(Fsp) CML{mems,) - F
PCMPEQB m(Fs==Fs) - F PUNPCKLWD L(Fie) COL(F1) - F
m(Fs==memg) - F L(F:6) (T{mem;;) - F
PCMPEQD M(F16==F1) - Fs PXOR FLEJF
m(Fie==mem;s) - F1¢ F Cmam - F
PCMPEQW m(Fz;==F3,) - F3, Source: AMD-K6 MMX Enhanced Processor Multimedia Technology
m(F3,==mems,) - Fg Manual 1997 —20726C/0 — June 1997




Intel SSE Functionality || orPS VVoV
ADDPS Vipso+Veps2 » Vepaz Vimem - V
Vipso+MeMepss —» Vipao PAVGB Fus/\Fus - Fus
ADDSS Verpaz+Verpss - Vepps: Fus/Amemys — Fug
V.erp3o+MeMegp3o — Veppao PAVGW FuisAFus - Fuis
ANDNPS ~(V)&V -V Fuis/AMEMy16 - Fuss
~(V)&mem - V PEXTRW Fis[ls] - Rs.op
ANDPS V&V -V Pl NSRW Rio.151— Fie[ls]
V&mem-V mem - Fig[lg]
CVPPS M(Veps2{==, <, <, 12, 15, 1<, 1<, 23 Vep32) - V3 PMAXSW [Bri6,Fs16[3 Fs16
M(Veeso{==, <, <, 12, 1=, 1<, IS, 23 memepsy) - Vi, [Fk16,mems;6 [ Fsi6
CMPSS M(Verpz2{==, <, <, 12,15, 1<, 1<, 23 Vepsy) - Vg, PMAXUB [Fug, Fus[3 Fug
M(Veppao{==, <, <, 12, 1=, 1<, 1<, 23mem.rpgy) - Vez [Flyg, memys (3 Fug
COM SS bV(Vepps2{1?,>,<}V.pps2) - ZF, PF, CF flags, 0 - OF, PM NSW [Fs16,Fs163 Fs16
SF, AF flags [Fs16,mems 63 Foi6
bv(Veppso{!?,>,<}mem.gp3;) - ZF, PF, CF flags, PM NUB [Fus, Fus[3 Fus
0 OF, SF, AF flags [Fys, memys = Fug
CVTPI 2PS U64(VFP32)”FS32 - VFP32 PMOVNSKB F[(i*g).l] — R[i]
Usa(Vepsz)llmemss; — Ve PMUL HUW Uss(FuisXFuss) -~ Fus
CVTPS2PI Lea(Vrps2) - Fsa2 Usg(FuieXmemuyse) - Fuie
Lsa(Memepss) - Fsz PREFETCHNTA prefetch with minimal L1/L2 pollution
CVTSI 2SS Ugs(Vepa2)Ri32.01 = Viers2 PREFETCHTO prefetch to all cache levels
Ugs(Vepa)IMeMsz.0 — Veess PREFETCHT1 prefetch to all but L1 cache level
CVTSS28| Verpaz - R[azém PREFETCHT2 prefetch to all but L1 and L2 cache levels
MEeMegp32 —» R[32.0] ~F.
CVTTPS2PI Lea(Vrpa2) - Fsa2 POADBW %z EEm%r)nus) _L,J lé.um
Loa(MeMeps2) — Pz PSHUFW FaslimMegzsies 2] - Fio[i]
CVTTSS2S| Veepaz  Rpsz.g) mem[imMgpeias. 2] - Fisli]
Mem-gesz - Rpsz.0p RCPPS =121 Vrp32 - Vps2
DI VPS Vips2+Vepaz - Vipa2 =1,1/MeMep3z — Vipas
Vepaz MeMeps  Vepsz RCPSS =121V epp32 - Verpaz
DI VSS x-rpsﬁv-rpsz - V-F\P/az =1,1/MeM.p3r — Veppa:
~Fp32TMEM.rp32 — Verp3y =
FXRSTOR restore FP/MMX and SSE state RSQRTPS ;ﬁx\r;;ﬁi:sz\/jp\ipsz
FXSAVE save FP/MMX and SSE state RSQRTSS = 1NV epap > Verpzz
LDMXCSR load SSE control/status word =1, 1V MeMegpar - Verpz
MASKMOVQ if(Faivg)-11) Fa[i] - memg[i] SFENCE force completion of weakly ordered stores
MAXPS Mepsz, Vepaz [ Vepaz SHUFPS Vepaa[lapasiva 2sivat] | Veraa[lapsisr. 24l - V
Mepsp,MeMepsy (3 Vs, MeMepaa[lasins 2sisalll Veraa[lsprisr 2]l - V
MAXSS Meppaz,Verpa2[3 Veppaz SQRTPS VVep32 - Vepao
M. £p3z,MeM.rp3 [ Verpsr VMemepsz » Vipsz
M NPS Mep32,Vips2 3 Vepa2 SQRTSS VVeppar — Veppan
[Mrp3p,MeMep3a [ Vipso VMeM.gpaz — Verpaz
M NSS [M.rp32,Verpa2 [ Verpaz STMXCSR store SSE control/status word
[M-rpgz MeM-ep3o [ Verpz SUBPS Vepsa=Vepaz - Vreaz
MOVAPS V-V o . Vepsz—MeMep32 - Vepso
V - mem (exception if unaligned mem) SUBSS V.rp3z—Verpaz — Veppaz
mem - V (exception if unaligned mem) V.rpgz—MeM.pzp — Veppz
MOVHLPS Uss(V)lILea(V) - V UCOM SS bv(Verpso{!?,>,<}V.ppaz) - ZF, PF, CF flags, 0 OF,
MOVHPS Uga(V) - mem SF, AF flags
mem - Uss(V) bV(V.pao{12,>,<}Mem.gps,) — ZF, PF, CF flags,
MOVLHPS Les(V)Les(V) -V 0-» OF, SF, AF flags
MOVLPS Les(V) - mem UNPCKHPS U(Vaz) O0V3,) - V
mem - L54(V) U(V32) Dmmemgz) -V
MOVIVBKPS V3211~ Rii UNPCKLPS L(V3) (IV3,) - V
MOVNTPS V — mem (no write allocate) L(V32) (I{mems,) - V
MOVNTQ F - mem (no write allocate) XORPS VIVIV
MOVSS Vepp32 - Verpz2 Source: Intel Architecture Software Developer’s Manual, Volume 11
V.gp32 - Mem Instruction Set Reference, 1999
mem — Vegpsz
MOVUPS VoV
V- mem
mem -V
MULPS Vip32XVepaz - Vips2
VEp3yXMeMep3y — Vepa,
MULSS Verp32XVerpsz - Vepps:

Verpg2XMEM-p3z —» Verpsz
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Intel SSE2 Functionality

mem - V (exception if unaligned mem)

ADDPD Vepea+Vepes — Vipss MOVDQA VoV
VepsstMEMepss — Vipsa V - mem (exception if unaligned mem)
ADDSD V.epgatVerpgs — Verpss mem - V (exception if unaligned mem)
V.ppgatMEM.rpgs — Veppos MOVDQU VoV
ANDNPD ~“(V)&Y -V V. mem
~(V)&mem - vV MOVHPD Use(V) - mem
ANDPD ~(V)&V -V mem - Ugy(V)
~(V)&mem - V MOVLPD Lea(V) — mem
CFLUSH Flush and invalidate memory operand in all cache levels mem - Lg4(V)
CMPPD M(Vepea{==, <, <, 12, 1=, 1<, 1<, 2} Vepes) - Ves MOVIVBKPD Vi - Rip
M(Vepsa{==, <, <, 12, 1=, 1<, 1<, 2hmemepes) - Vea MOVNTDQ V _. mem (no write allocate)
CWPSD M(Verpsa==, <, <, 12,12, 1<, 1<, 2}Veppe) - Veoa MOVNTI R - mem (no write allocate)
M(Verpoe{ ==, <, <, 17, 12, 1<, 1<, 7}MeM.rpeg) ~ Vees MOVNTPD V- mem (no write allocate)
COM SD bV(Verpsa{!?,>,<}V.rpss) - ZF, PF, CF flags, 0 - OF, SF, MOVQRDQ Lea(F) — O Ve4
AF lags MOVSD Vst~ Versss
bv(V.epea{!?,>,<}mem.gpes) - ZF, PF, CF flags, 0 - OF, V.rpes — MEM
SF, AF flags MeM - Verpss
CVTDQ2PD Vs32 - Vepes NOVUPD VoV
MeMszz — Vepes V. mem
CVTDQ2PS Vs32 - Ve mem - V
MeMszz — Vepsz NOVDO2O LoaV) - F
cvTPDZDQ Verss  0f[Vasz MULPD VepeaXVepss — Vepsa
MeMepgs — 0||V532 VepeaXMeMepss — Vipes
CVTPD2PI Vepos - Fs32 MULSD V.rpeaXVerpos > Verpos
MeMepss — Fsao V.epeaXMeM. pss — Verpes
CVTPD2PS Vepss  0|[Vepsz ORPD VV-V
MeMepgs — O||VFP32 Vimem -V
CVTPI 2PD Fs32 — Vrpes PADDQ Ve4t+Ves - Ve_4 . _
MeMszs — Vipea PAUSE Delay execution of next instruction
CVTPS2DQ Vep32 — Vs PMULUDQ Vuz2XVuzz — Vues
MeMeps — Vigo Vuz2Xmemyszz - Vues
CVTPS2PD Loa(Vrpaz) » Vipsa FougzXFousz  Feuss
Lea(MeMepsz) - Vepsa F. ua2XMem. g F-ues i
CVTSD2SI V.rpes — R[gz_ 0] PSHUFD V32[|mm3[2*i+1--2*i]] - V32[|] ]
Mem. epss — Rpaz.0) mem32[|mms[z*i+1..z*i]] - Va[i] .
CVTSD2SS V.epoa - Verp2 PSHUFHW UGA(Vle)Dmr_ne[z*m..z*i]]|||-64(V16) - Usa(Vig)[i] .
MeM.gpgs — Vepps2 Usa(Memyo) [imMegz-ivy. 2] [Lsa(mems) ~ Uea(Vas)(i]
CVTSI 2SD Ue4(VFpe4)||R[32”0] Vo PSHUFLW L64(V16)[Imms[z*l‘fluz*l]] ||U64(V16) - L64(V16) ['] ]
Usa(Vepss) IMeM3;.o]  Verss Lea(Mem;o)[imMegzeivy. 2] [Usa(Memys) — Lea(Vas)(i]
CVTSS2SD V.rpso — Veppea PSLLDQ V<<8*imm - V
MeM.gpaz — Veppss PSRLDQ V>>8*immg - V
CVTTPD2DQ | Vepgs - 0[|Vszz PSUBQ Vei=Vsa - Ve
MeMepes - 0] Vs PUNPCKHQDQ | U(Va2) (V) -V
CVTTPD2PI Vepgs — Fsao U(ng) D[U(memgz) -V
MeMgpes — F532 PUNPCKan L(ng) DDL(ng) -V
CVTTPS2DQ | Vrrsz— Ve L(V32) (L1 (mems) — V
MeMep3z — Viz SHUFPD Vepsallggzeisa 2vis21]ll Vepoal lepzeisr.2¢iflll - V
CVTTSD2SI V.epes » Riza.01 MeMepsa[lap2si+s.2+is21]| Vepsal laprist.2xigll = V
Mem.pss — Rz2.0) SQRTPD VVepes - Vipes
DI VPD VepeatVepss — Vipes Vmemeped — Vepes
VrpgatMEMepss — Vipss SQRTSD VVerpsa = Verpss
DI VSD V.rpsatVerpss — Verpas Vmem.epes — V-rpss
V. £pea=MEM. £pes — Veppos SUBPD Vepea=Vrpes — Vs
LFENCE Serialize load operations Veps4—MeMepsa — Verss
MASKMOVDQU | if(Vaggy-17) Vs[i] — memg[i] SUBSD V-rpos=Verpos — Verpes
MAXPD V/epes, Vepsa T Vs V.ps4—MEM.Fpos — Verpes
OV/kpoa,MEMepsall> Vipes ucoM sb %YI;;?{!?P‘}V-FP&) - ZF, PF, CF flags, 0 - OF, SF,
W |l Y B )25, -
Serialize load and store operations :
M'\/FEIECD:E Vepoa, Versab Vipes - UNPCKHPD ngzg Sgg;ﬁz&;)\/ v
Vepsa,MeMepss - Vipss
M NSD V. kpoa, Verpoaldo Veppes UNPCKLPD tgx“g ggtg\é?r)ri)\/ v
V. epga,meM. epga 1o Vepps XORPD VI:I\G/AH v 64/ =
MOVAPD VoV
V _ mem (exception if unaligned mem) Source: 1A-32 Intel Architecture Software Developer’s Manual with Preliminary

Willamette Architecture Information Vol. 2: Instruction Set Reference, 2000
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SL B P T
ADD. CH Fsi6+Fsis [Fs:d WACH. (H F- Asd2]
ADD. OB Fust+Fus [Fusl WACH. OB F- Asl2]
ADDA. H Fsi6+Fsis— ZAus WACL. (H F- Aaif0], F Agg[1]
ADDA. OB FustFus - ZAuze WACL. OB F- Asf0], F- Asd1]
ADDL. q—| F516+F518 i AS48 XOR. Q‘| F515 EEQG - F31@
ADDL. OB FustFus — ZAu2s XOR. OB Fus [Egd - Fus
ALNI . QH (Fe[IFs)[immg+7..immg] - F Source: MIPS Digital Media Extension Rev 1.0,
ALNI . OB (FelIFg)[imms+7..immy] — F MIPS Extension for Digital Mediawith 3D, March 12, 1997
ALNV. QH (FelFe)[Ri2.0+7.-Ri2.q] = F
ALNv. OB (FelFe)[Rr2.0+7-.Rpz.q] = F
AND. CH F&F_F
AND. OB .F&Fa.F _ i i MIPS MIPS-3D
C cona. G| (<<= Fadl]) COTI=L 4 COITED
C.cond. OB if(Fusi]{ <,<,==} Fugli]), CCi]=1, else CC[i]=0 ADDR Ci{Bepsn) | Ce{Bers2) - Fepae
MAX. QH (Bsi6,Fs16[3 Fsi6 MULR C(Bepso) | G(Bers2) - Fepae
MAX. OB [(Bys,Fus[3 Fus RECI P1* =141 Fepsp - Fepze
M N QH Bee,Fs16L2 Fsio RECI P2* =2 VFerar - Frra
M N. OB (Bus,Fus[2 Fus RSQRT1* =151V Fepaz - Fepa
MSGN. QH Fsi6 [Fsds - Fsis RSQRT2* =L Fepay - Fepay
MUL. QH Fsi6XFsi6 CEsid CVT. PS. PW Fss2 - Fepa2
MUL. OB Fus*Fus CEusl CVT. PW PS Frpa2 - Fsa2
MLA. CH FaeXFs15 - ZAsig CABS bv(Ferall{0,2.<,>}} Feraal) = CGiioy)
MJLA. OB FugXFus— ZAu2a BCLANY2E branch if (cG==0[cG.1==0)
MULL. (H FaieXFsis~ Asts BCLANY2T branch if (cc==1fcc.:==1)
MULL. GB FusXFus — Auze BCLANY4F branch if (cc==0jcci1==0/cG..>==0[cC..5==0)
MLS. CH FsieXFste ~ ZAsis BCLANY4T branch if (cG==1]cc.:==1]cG-==1]cG.5==1)
MULS. OB FugXFus — *Auz Source: Radhika Thekkath, Mike Uhler, Chandlee Harrell, Ying-wai Ho,
MULSL. QH —(Fsi6%Fs16) - Asis “An Architecture Extension for Efficient Geometery Processing,”
MULSL. OB —(FusXFus) - Auaa Proceedings of Hot Chips 11, August 15-17, 1999, pg. 263-274
NOR. OH AP F “MIPS:3D ASE Product Brief”, MIPS _
NOR. OB I(FF) - F *RECIPL/2 and RSQRT 1/2 precisions are estimates based on other
R O FF-F archnecture;s and the claim of full precision (24 mantissa bits) after the
second step in each case
OR. OB FF-F
PI CKF. CH if(*cfi]) Faeli] - Fueli], lse Fueli] - Fgli]
Pl CKF. OB if(1cdi]) Fali] — Falil, 6192 Fe[i] — Fo[i]
PI CKT. CH if(ccli]) Fusli]  Fuoli], 619 Fugli] — Fugli]
ProkT C5 | i) Pl -l dso ] -l
RZS. H [(AL>>Fsi6) [Fsid ABS. PS [Fepsal > Feps2
RZU. (H [(As>>Fg6) [Fsid ADD. PS Frpao+Frpso - Feps
RzZU. OB [(Alg>>Fys) [Fyel ALNV. PS (FslFs)[Ro.2--Rio.2t 7] - F
RNAS. QH [(As1g>>Fsis) [Fsid C.cond. PS if(Fepalil{{0,2,<,>=} } Fepaali]) — cofi]
RNAU. CH [(Ase>>Fsi6) [Fsd CVT.PS. S Forpaa||F-rpaz - Feps2
RNAU. OB [{Aus>>Fys) [Fuel CVT. S. PL L (Feps2) - Feppaz
RNES. QH [(Asie>>Fsic) [Fsid CVT. S. PU U(Fepaz)  Feppan
RNEU. QH [(Asis>>Fsi6) [Fsd LUXC1 load doubleword indexed unaligned
RNEU. OB [(Aus>>Fys) [Fysl MADD. PS (FepaeXFrpaz)+Feps2 - Frea
RACL. CH Au[0] -~ F MOV. PS FF
RACM QH A1) - F MOVF. PS if(!cG) Fepao[ O] - Fepap, if(!CCis1) Frpso[1] - Fepsz
RACH. QH Asd2] - F MOVT. PS if(cC) Fepaa[ O] - Fepaa, if(0Gi+1) Fepsa[1] — Fepa
RACL. OB As0] - F MBUB. PS (Frps2XFrpas)—Frraz - Frrs
RACM OB As1] - F MUL. PS (Frps2XFepa2) - Frraz
RACH. OB Aed2] - F NEG. PS —Fepaa - Fepaz
SHFL. func. QH f (Fi6,F16) - Fi6 NMADD. PS —((Feps2XFepsz) +Frpaz) - Freaz
SHFL. f unc. OB f (Fs,Fg) - Fg NVBUB. PS —((FepaoXFepsz)—Frps2) - Frpa2
SLL. H Fs16<<Fsi6 - Fsi6 PLL. PS L(Fa)llL (Fs2) » Fs2
SLL. OB Fus<<Fus - Fus PLU. PS L(Fs2lU(Fs2) - Fso
SRA. (H Fs16>>Fs16 - Fsis PUL. PS U(Fs)|IL (Fs2) - Fs2
SRL.(H Fs16>>Fsi6 - Fsio PUU. PS U(Fs2llV(Fs2) - a2
SRL. OB Fus>>Fus - Fug SUB. PS Frpaa—Frps2 - Frra
SUB. (H Fsis~Fsi6 [Fsid SUXC1 store doubleword indexed unaligned
SUB. OB Fus—Fus [Eugl Source: MIPSV Ingruction Set Rev 1.0,
SUBA. CH Fes—Fes — 2Asis MIPS Extension for Digital Mediawith 3D, March 12, 1997
SUBA. OB Fus—Fus — ZAuaa
SUBL. QH Fio—Fsio - Asig
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VCVPGTUH. M(Vu16>Vure) — Vo, St CRE bits
DSS data stream stop VCMPGTUW M(Vuyz2>Vuszz) - Va2
DSSALL data stream stop all VCMPGTUW m(Vyz>Vus,) - Vi, Set CR6 bits
DST data stream touch VCTSXS VepgX(1<<imms) [V}
DSTT data stream touch transient VCTUXS VipgoX(1<<imms) [Vyd
DSTST data stream touch for store VEXPTEFP =1,6XP2(Veps2) » Veps2
DSTSTT data stream touch for store transient VLOGEFP =1100,(VEps2) —» Vers2
LVEBX memsg - Vg[addrs o], addr =R+ R VMADDFP (Veps2XVeps2)+Veps » Vips2
LVEHX memys - Vig[addrs o], addr =R+ R VMAXFP Meps2,Vers2 (3 Versz
LVEWK mems; - Vap[addry, o], addr =R+ R VMAXSB Mg,Vgl3 Vs
LVSL f(RtR) -V VMAXSH Ms16,Vsi6 2 Vs
LVSR f(R+R) -V VMAXSW Ms2,Vs2[3 Vs
LVX memypg - V (forces alignment) VIVAXUB Mys,Vus[D Vg
LVXL memy s - V (forces alignment), transient VIVAXUH Mu16,Vu1s[2 Vuie
MFVSCR move from vector status/control register VVAXUW Muys2,Vus2[3 Vusz
MIVSCR move to vector satus/control register VVHADDSHS Use(Vs16XVe16)+Vsis [Veib
STVEBX Vgladdrs o] - memg, addr =R+ R VVHRADDSHS Use( [V s16XVs1g)) +Vaie [Veil
STVEHX Vig[addr, o] — memye, addr =R+ R VM NFP Mep32,Vers2 (3 Vepsz
STVEWK V3,[addry o] - mems,, addr =R +R VM NSB Ms,Vss[d Vs
STVX V - mem;,g (forced alignment) VM NSH Ms16,Vs16L2 V16
STVXL V — memyyg (forced alignment), transient VM NSW Ms32,Vsp2[F Vzo
VADDCUW C(Vsp+Vsp) - Vi VM NUB Mus,Vus[3 Vs
VADDFP Vepso+Veps2 - Ve VM NUH Mys6,Vuis[3 Vuis
VADDSBS VgtVg [Vl VM NUW Muys2,Vuz[3 Vus
VADDSHS VaistVsis VM_ADDUHM L1s(Vs16%Vsi6)*Vsis — Vi
VADDSW\5 VotV [Vg) VVRGHB U(Ve) (TW{V) - V
VADDUBM VygtVus— Vus VMRGHH U(Vi6) OV 36) - V
VADDUBS VuygtVys [Vyd VVRGHW U(V3) V) - V
VADDUHM VustVuis - Vue VMRGLB L(Ve) [TIIIVe) - V
VADDUHS VuietVuis [Vuk VMRGLH L(V1) (TIV 1) - V
VADDUVWM VuzztVuzz - Vua VVRGLW L(Vs) OIIV3) - V
VADDUWS VuzrtVus [Vyd VIVSUMVBM ClMysXVe)+Vsz - Ve
VAND V&V -V VVSUVSHM LM s16%Vs16) V2 > Vo
VANDC IV&V -V VMBUVBHS LV s16XVsi6) Vs [V}
VAVGSB Vs/\Vg - Vg VIVBUMUBM CMysXVue)+Vuzs2 - Vus,
VAVGSH Va6/\Vsi6 - Vsis VNSUMUHM CMu16XVuie)+Vus2 - Vus
VAVGSW VsAVss2 = Vs VMBUMUHS CMy16XVuie)+Vuz Vb
VAVGUB Vus\Vus— Vug VMULESB E(Vs)XE(Vs) - Vi
VAVGUH VuisAVuis - Vs VMULESH E(Va16)XE(Vsie) » Vs
VAVGUW Vus2AVuzz - Vuz VMULEUB E(Vus)XE(Vus) - Vuis
VCFSX V 53>>IMMs - Vipso VMULEUH E(Vu16)XE(Vu1e) - Vuz
VCFUX Vigz>>imms - Ve VMULOSB O(Ves)xO(Vss) - Vi
VCMPBFP bv(Verar<>Verss) - Vo VMULCSH O(Vs16)XO(Vst6) » Vs
VCMVPBFP. OV(Vepsr<>Vepaz) — Vo, Set CR6 bits VMULOUB O(Vug)*O(Vus) » Vuis
VCVPEQFP M(Vep32==Vepzy) - V3o VMULOUH O(Vu16)*O(Vu1e) - Vuz
VCVPEQFP. M(Vrp32==Vrpa2) - V3, St CR hits VNVSUBFP ~((Vep2XVepaz)—Vepaz) - Veraz
VCMPEQUB m(Vys==Vuys) - Vs VNOR (VM) -V
VCMPEQUB. mM(Vyg==Vys) - Vs, Set CR6 hits VOR VN -V
VCMPEQUH M(Vuis==Vuie) - Vie VPERM (VelVe)[Vus] - Vil
VCMPEQUH. mM(Vuis==Vuie) - V1, &t CR6 bits VPKPX (VIV) - Viixe
VCMPEQUW M(Vy3==Vuszz) - Va2 VPKSHSS (VsislVsie) [Vl
VOMPEQUW M(Vuz==Vuss) - Vap, St CR6 bits VPKSHUS (VsielVsi6) [Vl
VCMPGEFP M(Veps2>Veps2) » Va2 VPKSWES (VspolVsz2) CV b
VCMPGEFP. M(Vepzo>Vepsz) — Vo, et CR6 hits VPKSWIS (VssalV s2) DNk
VCMPGTFP M(Veps2>Veps) - Var VPKUHUM (VuielVuie) - Vs
VCMPGTFP. M(Vepa2>Veps2) - Vo, St CR6 bits VPKUHUS (Vus|Vuie) [Vgd
VCVPGTSB m(Vs>Vss) - Vs VPKUWUM (VuzzlVus2) = Vuis
VCMPGTSB. M(Vss>Vss) - Vs, S8t CRG bits VPKUWUIS (VuzlVuz) Tk
VCMPGTSH M(Vsi6>Vsie) - Vis VREFP =190V epg2 - Vepsr
VCMPGT SH. M(Vs16>Vsie) - Vie, Set CR6 bits VRFI M [Veps2) » Vs
VCMPGTSW M(Vs3>Vs) » Vs VRFI N [(Wepsp) - Veps2
VCMPGTSW M(Vs2>Vs30) - Vap, Set CR6 hits VRFI P [Veps2) » Veps2
VCVPGTUB m(Vys>Vus) - Vs VRFI Z [V}p32) - Vs
VCMPGTUB. m(Vys>Vys) - Vs, Set CR6 bits VRLB Vel Vg
VCMPGTUH m(Vu16>Vuie) - Vie VRLH Vil Vig
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VRLW V3, Vay FMUL8X16AU (QL(Fus)*Fs16[11))17.23— Fs16
VRSQRTEFP =191V Vepgo » Ve FMUL8X16AL (L (Fus)XFs16[01))17.23) - Fs1s
VSEL (Vi==1)?ViVio Vi FMUL8SUX16 (QUs(F16)XFsi6)(7.23 — Fs16
VSL V<<Vjp -V FMULBULX16 (~32(Lg(F16)%Fs16))p31.161 — Fs16
VSLB Vg<<Vpp.o1— Vs FMULD8SUX16 (E(Ug(L(F16))*Fs16)p7.23) > Fs1s
VSLDO (VgVg)[imm,+15..imm,] - V FMULDBULX16 (~32(Le(L(F16))%Fsi6)) - Fsis
VSLH V16<<V[0. 3 VlG AL|I GNADDR (R+R) [53__3]H000 - R, (R+R)[z__o] — GSR_AL'GN
VSLO V<<V, 35000 = V ALI GNADDRL (R+R) 53.31000 - R, =(R+R)2.01 » GSR_ALIGN
VSLW Vi16<<V[p.41 - Vie FALI GNDATA (FelFe) B*GSR_ALIGN - F
VSPLTB Vg[immys] - Vgli] FZERO 0-Fes.0
VSPLTH Vlﬁ[immu5] ~>V16[i] FZERCS 0- Faio
VSPLTI SB immsg - ng[l] FONE 1- F63,‘0
VSPLTI SH immsm — Vsm[i] FONES 1-Fs0
VSPLTI SW iMMsg; - Vsaoli] FSRCL F-F
VSPLTW V32[immu5] — ng[l] FSRC1S Fa1.0 - Fa1.0
VSR V>>V[0_‘2] -V FSRC2 F-F
VSRAB Vss>>Vo.21 - Vg FSRC2S Fa1.0 - Fa1.0
VSRAH Vs16>>V(o.3) - Vsi6 FNOT1 'F-F
VSRAW V3322V[g__4] — V532 F’\DT].S !F31. 0~ F31..0
VSRB Vg>>Vg.21 - Vs FNOT2 'F-F
VSRH V16>>Vo.21 - Vie FNOT2S Fs1.0- Faro
VSRO Vg>>V(s 31000 Vs FOR FF-F
VSRW V32>>Vo.41 - Va2 FORS (FIF)s1.0 = Fa1.0
VSUBCUW 1C(Vuz2—Vus2) - Va2 FNOR (FIF)-F
VSUBFP Vep3s=Veps2  Vipas FNORS '(FIF)a1.0— Fa1.0
VSUBSBS Vss—Vss Vsg FAND F&F -F
VSUBSHS Vs16—Vs16U Vsis FANDS (F&F)s1.0- Fa1.0
VSUBSWS Vsz2~Vsz2l Visz FNAND \(F&F) - F
VSUBUBM Vus—Vus - Vus FNANDS 1(F&F)s1.0— Far.o
VSUBUBS Vus—VusD Vus FXOR FOF-F
VSUBUHM VUlG_Vulﬁ — VUlG FXCRS (FDF)M._O — F31..O
VSUBUHS Vuis—Vus Vuse FXNOR \(FOF) - F
VSUBUWM Vus=Vuzz - Vus FXNORS {(FOF)a1.0— Fai0
VSUBUWS Vuzz=Vuz2d Vs FORNOT1 'FF-F
VSUNBV\S D+(V532)+V-532|:| ngz FCR’\DT].S (I F|F)31..0 nd F31 .0
VSUM2 SWB 0+(Vss2)+E(Vss2) 0 E(Vsz0) FORNQOT2 (FIF) ~F
VSU'\MSBS D+(ng)+V532|:| V332 FCR’\DTZS (F|I F)31..0 nd F31 .0
VSUMASHS 0+(Vs16)+ Vs Vs, FANDNOT 1 ('F&F)-F
VUPKHPX U(Vpixel) = Va2 FANDNOT1S ('F&F)31.0- Fa1.0
VUPKHSB U(Vsg) - Vsis FANDNOT2 (F&IF) - F
VUPKHSH U(Vs16) - Vs FANDNOT2S (F&!F)31.0- Fa1.0
VUPKLPX L (Viixet) — Va2 FCMPGT 16 bv(Fsi6>Fsi6) ~ Rps.0p
VUPKLSB L(Vsg) - Vsis FCMPGT32 bv(Fs32>Fss2) - Rw.gp
VUPKLSH L(Vsi6) — Vsie FCMPLEL6 bv(Fs16<Fsi6) - Rpa.op
VXOR vov-V FCMPLE32 bv(Fss2<Fs32) - R0}
Source: “ AltiVec Technology Programming Environments Manual,” Rev. FCMPNEL6 bv(F6!=F1) - Rps.qp
0.1,11/1998 FCMPNE32 bv(Fs!=Fs2) - Rpp.gp
e CMPEQL6 bv(F16==Fi6) - Riz.0)
: -
S tatus register (GSR) FCMPEQB2 bV(Fsz==Feo) ~ R[l' 2
- - - EDGES m(R,R) - R partial store mask for Fg
WRASR write graphics status register (GSR) EDGESL m(R,R) - R partial store mask for F (little endian)
FPADD16 FagtFio— Fae EDCE16 m(R,R) - R partial store mask for Fs
FPADD16S L(Fas*Fas) ~ Fis EDGE16L m(R,R) - R partial store mask for Fi (little endian)
FPADD32 FaptFap— Py EDGE32 m(R,R) - R partial store mask for F3,
FPADDB2S L(FsztFsz) - Foo EDGE32L m(R,R) - R partial store mask for F, (little endian)
FPSUB16 Fi6=F15 - F16 PDI ST 0+(FusOFus) - 2R
FPSUB16S L(Fis~F16) - 1o ARRAYS convert 8-hit 3D address to blocked byte address
FPSUB32 FsFsy - Fap ARRAY16 convert 16-bit 3D address to blocked byte address
FPSUB32S L(Fsz~Fsz) - oo ARRAY32 convert 32-bit 3D address to blocked byte address
FPACK16 (F16<<GSR_SCALE)15:6sr_scaie.7 Fus STDA partial store
FPACK32 (F32<<GSR_SCALE)(31:05r scaLe.22)] (Fus<<8) scalar store (8/16 hit) for big/little endian
FPACKFI X (F32<<GSR_SCALE)[s1:65r scate.1510 Fsie 64-byte block store for big/little endian
FEXPAND Fuis - Fusz LDDA scalar load (8/16 bit) for big/little endian
FPMERGE Fg[IFs - Fg 64-byte block load for big/little endian
FMUL8X16 (L (Fus)%Fs1s))p7.23) — Fsis atomic quad load
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Register Types
[Register Type] [DataType]

R integer register

F floating point register
Y vector register

A accumul ator register

CG; condition code register bit i
mem  memory

imm,  k-bit immediate value

0 implicit register

U unsigned integer

S signed integer

FP floating point

pixel  32-bit pixel format (AltiVec)
k partition sizein bits

. scalar value (assume vector)

Data Communication
%] bits x through y
immediate value
- modulo result
[ 1 saturated result
[ for each byte
I concatenate
[T interleave
(1K rotate k bytes |eft
Ik
1

rotate k bytesright
exchange elements
fO partial permute function

Control Flow

[I1T1 magnitude

== equal

bv bit vector

m mask

{} et of allowed comparisons

{{}} arbitrary combinations of comparisons
< less than

> greater than

? ordered

<> bounds

< lessthan or equal

> greater than or equal
0 vector of zeros

br branch

Width/Type Conversion
I concatenate

O round up (to +)

[ round to nearest (even)

[ round to nearest (away from zero)
O round down (to —)
—1
L
u

round to zero (truncate)
low half of bytes
upper half of bytes

Arithmetic
+ add
- subtract
X multiply
1  multiply by sign
v square root
+ division
/ reciprocal

K approximate to k-hits
= first iter. Newton-Raphson

=0 second iter. Newton-Raphson

log, base-2 logarithm
exp,  2raised tothe power
> positive accumulate

x negative accumul ate
11 maximum

11 minimum

L1 additivereduction

[ subtractive reduction
L1 multiplicative reduction
11 absolutevalue

! negate

>> right arithmetic shift
>> right logical shift

left (logical) shift

or

and

exclusive or

not

zerofill

onefill

lower k bits

upper k hits

round to nearest integer
carry out

even values

odd values

average

sum of abs differences
assignment/modul o result
saturated result

rotate k bits right

rotate k bits left

sign extend to k bits

x—lggul D>OmODxC;£dEC>'—DQo—Q
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