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Abstract

In this note we present the circuit model of a single-electron tunneling junction
(SETJ) that is driven by asinusoidal voltage source and biased by a DC voltage source.
The model of an isolated SETJ is a first-order non-autonomous impulsive differential
equation. The tunneling effect of SETJ can be perfectly modeled by the impulsive
effect ofthe junction voltage that is the state variable ofour circuit model. We present
ID and 2D SETJ cellular nonlinear network (CNN) arrays to perform Boolean logic
operations and ceUular operations that can be easily generalized for universal computa
tions. We study the basins of attractions of two periodic solutions, called the two phase
states ofthe SETJ, under isolating and coupling conditions. Based on our results, we
present a scheme for implementing basic Boolean logic gates based on a ID SETJ CNN
structure, and for implementing image computation via a 2D SETJ CNN structure. For
convenience of mathematical analysis, we also present the dimensionless form of our

circuit models. Some examples are presented to demonstrate the image computation
capability of SETJ CNN. In particular, we use a simple 2D SETJ CNN structure to
perform both edge and corner detections. Some cellular automata (CA)-like behaviors
of our 2D SETJ CNN are also presented.

1 Basic structure and circuit model of isolated SETJ

The main goal of this note is to use a single-electron tunneling junction (SETJ) array to
implement cellular operations via the cellular neural network (CNN) paradigm [1, 3, 2]. The
block diagram of an isolated SETJ is shown in Fig.l. The small box denotes a SETJ with



junction capacitor C. The voltage across this SETJ is denoted by VC' Observe that this
SETJ is driven by a sinusoidal voltage source

Up(<) = Vp sm(u;pt)

and biased by a DC voltage source Vb in series with a resistor R.

+

R

0

Figure 1: Circuit block diagram of an isolated single-electron tunneling junction.

1.1 Circuit model and its dimensionless form

The dynamics of an isolated SETJ is given by the following non-autonomous impulsive
differential equation:

= -^(vb - vc(t) - Vp cos{upt)), if vc(t) <Vt,
at HO

Auc(0 —21^, if vc(t) > Vt,

vc(0) < Vt-

where vc{t) is the junction voltage and

Vt = —^ 2C

(1)



is the tunneling voltage and eis the electron charge. By simple algebra we can normalize (1)
into the following dimensionless form:

^ —7 —6coss ,̂ if <̂TT,
AO = —27r, if 0 > IT,

0{O) < TT. (2)

where ,, ^ „

s-cjt 7 = —^.

Observe that system (2) is only superficially different from the following representation given
in Ref. [4]:

^ =(a +bcoss —S{6))g (3)
as

where the piecewise linear function S{0) is defined by

3(6) = --2n, (2n -1)t<0< (2n + l)7r (4)
TT

where nis an integer. Observe also that in model (2), we do not consider the cases when there
are more than one electron in the SETJ because we assume that initially the SETJ contains
one or less electron. Without loss of generality this assumption will simplify expressions.

1.2 Simulation results of an isolated SETJ cell

To demonstrate that a SETJ cell has two phase states and that our SETJ model m the
form of a non-autonomous impulsive differential equation is equivalent to that presented in
[4], we numerically solve our SETJ model in Eq. (2) with parameters a = 1.77, b—2.0,
and 7 = 1/3. The simulation results with two different initial conditions 0(0) = —0.2 and
0(0) = 1.8 are shown in Fig. 2as solid and dashed curves, respectively. From which we can
see that an isolated SETJ can have two stable periodic solutions. Comparing this simulation
result with that presented in Fig. 3 of Ref. [4], we can see that they are identical. This
verifies that our impulsive differential model is equivalent to that presented in [4]. In Fig. 2,
the sudden jumps in the solid and dashed curves occur when electrons tunnel through the
SETJ.

Let the pump source signal be a reference signal. The moments of tunneling effects are
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Figure 2: Simulation results of the two phase states generated by an isolated SETJ cell with
two different initial conditions.

located approximately at two different phases; namely, at 7r/2 +2n7r and 37r/2 +2n7r, where
n is an integer. However, the exact locations of the tunneling effects will not be exactly at
these two phases. As long as the differences between these two phase states are larger than
the fluctuation of each phase state, we can still distinguish these two phase states. We will
use these two phase states to represent two Boolean logic states.

2 Basic structure and circuit model of two coupled

SETJs

Let us consider two SETJs coupled through a capacitor Ci„ in series with a resistor as
shown in Fig. 3. The dynamics of this circuit model is given by the following non-autonomous

D. + in -

'C2

Figure 3: Circuit block diagram of two coupled SETJs.



impulsive differential equations:

^ . iivc^aXVr,
^ ^ -vc.(t) - cosM + -""f^ . ifvXtXVr,

Auci(t) = -2Vr, if vci(0 > Vt,

Auc2(<) = -2Vt, if vc2(t) > Vt,

vci(O) < Vt, Vc2(0) < Vy. (^)

where
_

^~~C'' C '

The dimensionless form is given by

f T (A: +1)^1 O2 ^— = 7(^«i-6cos. +
d02 ( , (A: + 1)^2 , ^ ^

% = ^(5, _02 - 0i„),
as keir

AOi = -27r, if 01 > TT,

A02 = —277, if 02 > TT,

0l(O) < TT, ^2(0) < TT. (6)

where
Ufcl ^ 27rCuci ^b2 /I 2^0VC2 ^ _ 2'KCvi

«i = vr, = = W e

2.1 Simulation results of two coupled SETJs

The simulation results of the two coupled SETJs are shown in Fig. 4. In this simulation,
the parameters are chosen as cti = 02 = 2, 6= 2, 7 = 1/3, e= 0.5, and h—0.1. The initial
conditions are chosen as 0i(O) = 0.2, ^2(0) = 0.0, and 6lin(0) = 0.0. The waveform of ^i(f),
02{t)i and 0in{t) are shown in solid, dashed and dash-dotted curves, respectively. Comparing
the result shown in Fig.9 in Ref. [4] with that shown in Fig. 4(a), we can see that the
final results of these two simulations are the same even though the transient processes at the
beginning are different because different 0,„(O)s were used. Figure 4(b) shows the distribution



of the two phase states in SETJs 1 and 2 after the transient process dies out. Observe that
the two phase states are not exactly at 7r/2 and 37r/2. However, the performance ofthis two
coupled SETJs are still robust enough to distinguish these two phase states.

To show that the parameter Vb can eeisily change the behavior of the coupled SETJs, we
change Gj to 1 and keep all other parameters unchanged. The simulation results are shown
in Fig. 4(c) and (d). Observe that in this case, both SETJs can stay at two different phase
states. And the locations of each phase state had spread into a small region instead of a
single point. Since Fig. 4(b) and (d) are in fact the Pointcare maps of the two coupled SETJ
model, when the locations of phase states are spread out, it means that the trajectories may
belong to a multi-periodic or even chaotic attractor. However, the histogram shows that
even in this case, the two phase states can be easily distinguished. This provides us with a
method of controlling the behaviors of SETJs by using different biases. Of course, another
parameter, Vp, can also be used as the second controlling parameter.

6 6
nonnalized lim* («{i)

1.4 1.6

SETJ rucnber

14 " 1 1.2 1.4 1.6 l.B 2
SETJ number

0,5 1
phua oi «ai»

phase ol sisie {-n)

Figure 4: Simulation results ot two coupled SETJs. (a) The phase states of two SETJs are
stable when 01 = 02 = 2. (b) The histogram of the two phase states corresponding to (a), (c)
The phase states of the two SETJs are no longer stable when we change Oi to 1while other
conditions are kept unchanged, (d) The histogram of the two phase states corresponding to
(c).



2.2 Equalizing and NOTing logic operations

We will now present examples to show that by choosing different values for Vd, the two
coupled SETJs can perform different Boolean logic operations regardless of initial conditions.
In the following simulations the fixed parameters are given by 6= 2, 7 = 1/3, e= 0.5, and
k = 0.1. To show that our results are independent of initial conditions, we randomly choose

(0) € (-7r,7r), 02(0) G(-7r,?r), and 0in(O) G(-27r,27r) in our simulations.

2.2.1 Case 1: ci = 02 = 1

The simulation results are shown in Fig. 5. Observe that in this case, the output of both
SETJs are equal regardless of initial conditions.

#ro <p.

(a)

*

(b)

Figure 5: The stable phase states of two coupled SETJs under different initial conditions.
The symbols and "o" denote logic TRUTH and logic FALSE, respectively, (a) SETJ 1.
(b) SETJ 2.



2.2.2 Case 2: ai = 02 = 2

The simulation results are shown in Fig. 6. Observe that in this case, the output of both
SETJs are inverseof each other regardless of initial conditions.

0,(0) (xji)

0 0.
0 o 9 00

03(0) (xil)

(a)

0,(0) (xjr)

o ; i
•fc* o f

.if

**•* \ %

Figure 6: The stable phase states of two coupled SETJs under different initial conditions.
The symbols and "o" denote logic TRUTH and logic FALSE, respectively, (a) SETJ 1.
(b) SETJ 2.

The phenomena shown in the Figs. 5and 6can have many applications. For example, a
robust and reliable memory unit can be built ifwe use the equal state and NOTing state to
denote two logic values. The initial condition insensitivity can be used to build very reliable
memory units that can store digital bits regardless of its original states. This is a much
better choice than using a single SETJ as a basic memory unit whose memorized state is
sensitive to initial conditions. That the initial states of SETJs are most likely inaccessible
make the initial-state independent scheme the best way to design memory units.



2.2.3 Case 3: ci = 1 and 02 = 2

The simulation results are shown in Fig. 7. Observe that in this case, the outputs of both
SETJs can visit two phase states regardless of initial conditions. ^

—* -* "

e,(0) (xk)

e,(0) (xn)
-1 -1

(b)

e,(0) (KR)

•Vx* X
* X * x

M'

0,(0) (xn)

Figure 7: The stable phase states of two coupled SETJs under different initial conditions.
The symbols and "o" denote logic TRUTH and logic FALSE, respectively. The symbol
"x" denotes that a SETJ can show both logic TRUTH and logic FALSE in its evolution,
(a) SETJ 1. (b) SETJ 2.

3 Basic structure and circuit model of three coupled

SETJs

Hn fact, in 1000 sets of initial conditions, only one set violates this conclusion.
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Figure 8: Block diagram of three coupled SETJs.

Let us consider next three SETJs coupled through capacitors C,n in series with resistors Rin

as shown in Fig. 8. Let us assume that Cini = Cin2 — The dynamics of the circuit
model is given by the following non-autonomous impulsive differential equations:

dvcijt) _
dt

dvc2{t) _
dt

dvczjt)
dt

dVini (t)
dt

dVin2(j'̂
dt

\ ( t \ TT / i\ ^Cl(0 ^072(0 '̂ tnl(^)\ -r /jN ^ T/^ fV61 - vci(i) - Vp cosicjpt) J , if vci(t) <Vr,
RC

1 T. / - VC2{t) - Vinl{t)- vc2(t) - V;, cos(a;p<) + ^

VC2{i) ~ nC3(0 ~ ^m2(0
k

RC

-^^(vci(0 - 1^C2(0 - 'ytnlCO)^
. (nC2(f) —nC3(0 —'̂ in2(t))->

RCek

Avci{t) = -2Vt, if vci(t) > Vt,

Auc2(f) = -2Vt, if vc2{t) > Vt,

Avc3(t) = -2Vt, if vcsit) > Vt,

nci(O) < Vt, vc2{0) < Vrt ^^3(0) < Vt-

Vb2

if Vc2(t) < Vt,

^ (vb3 -VC3{t) - Vp COsiiUpt) + j^ •£ ^

(7)

The dimensionless form is given by the following non-autonomous impulsive differential equa
tions:

dOi ( , + 1)^1 , ^2 , ^inl
= 7 ai — ocoss : r r —

ds \ kTT kir k-K

10

if 0\ < TT,



where

8.62

ds

ds

d$ini

ds

dOin2

ds

UU2 / ,—— = 7 1 ~ 0 COS S — C' + ^ ^ ^ , if 02 <JT,
kir kir ^kir kiT ' kir ^

if 03 < TT,7^03 —bcos s—
1
be:

7

(/: +1)^3 ^ ^2 ^tn2
Aitt

(61 —62 —^tnl)j
keiT

/jTT klT

-—(^2 —^3 —^1712)5
keir

A6i = -27r, if ^1 > TT,

AO2 = -27r, if 02 >

A03 = -27r, if 03 > ^7

0l(O) < TT, 02(0) < TT, 03(0) < TT.

Vb3 /, 2TrCvc3
az = —7 t'S — ~ 7 *77711

Vt ^

27rCvt„i Q _ 27rCt;tn2
0i»l1 — 7 "t7l2

(8)

3.1 Simulation results

In this section, we show simulation results of three coupled SETJs. The fixed parameters are
given by: 6=2, 7=1/3, and k=0.1. We randomly choose 0i(O) €(-tt, tt), 02(0) €(-tt, tt),
^3(0) G(-7r,7r), 0,ni(O) G(-27r,27r) and 0i„2(O) G(-27r,27r) in our simulations.

3,1.1 ai = 02 = 03 = 2, e = 0.5

Under most initial conditions, the three coupled SETJs implement the following truth table,
where ^1, ^2? ^3 denote the truth value of the three SETJ cells, respectively. This
truth table can be verified by results shown in Fig. 9.

Table 1: Truth table for three coupled SETJs with ci = 02 = 03 = 2 and e= 0.5.

^2 ^3

FALSE TRUE FALSE

TRUE FALSE TRUE

3.1.2 ai = 02 = 03 = 2, e = 1

In this case, the three coupled SETJs implement the following truth table:

Table 2: Truth table for three coupled SETJs with oi = a2 = 0.3 = 2 and e = 1.

11
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Figure 9: The stable phase states of three coupled SETJs under different initial conditions.
The symbols "*" and "o" denote logic TRUTH and logic FALSE, respectively. The symbol
"x" denotes that the SETJ can show both logic TRUTH and logic FALSE in its revolution,
(a) SETJ 1. (b) SETJ 2. (c) SETJ 3.

^1 ^2

CO

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

Observe that this truth table excludes the possibility of (^i,^2,'J'3) = (0,0,0) and

(^1,^2,^3) = (1,1,1)- Since the parameter space and the behaviors of non-autonomous
impulsive differential equation can be very complex, there may be many different truth
tables that can be implemented by three coupled SETJs.

12



4 One-dimensional SETJ CNN

• • O-H1—CM h-OH h-OH h-O

ID coupled array

tunnel junctionunit

coupling capacitor • • •

\2 2 ? ?
JhI—^MMI—^
O S J O

2D coupled array

Figure 10: Coupling single-electron junctions into ID or 2D CNN arrays.

Unlike a standard CNN array, in a SETJ CNN, the boundary cells has to be clearly defined.
In this section, we set up the model of a ID SETJ CNN as shown in the upper part of
Fig. 10. Suppose that there are n cells in a ID SETJ CNN array. Then the first and the
nth cell are the left and the right boundary cells. For three coupled SETJs, the left and the
right SETJs can be viewed as the left and right boundary cells, respectively. Similarly, the
center cell in a three coupled SETJs represents an example of an inner cell in a ID SETJ
CNN. By slightly modifying the results in Sec. 3, we get the following dimensionless form of
a ID SETJ CNN with n > 3 cells;

ds

( (A:+ 1)01 02 ^\\ -ra ^= 7(^a:-6cos.-—^ +̂ + .f <̂ ,
dh ( , (kJr2)9i , «i , i?i ^<52^ -.(ft- = 7U-6COS. _ + _ + +

13



dBi (. , (fc + 2)fli , , •9i\ ,,a
—— = 7(0,— 6COS S ; h —j h —j -j h ~j ) 5 II "i <
ds \ kir kir kw kir kw J

dOn ( , (A: + l)l9„ . 9n-i dn-i\ -.a

d̂s kCTT

^ = ^(0,. - - tf;),
ds kCTT

ds keir

=-27r, if ^,-> TT, 2 = 1,2, ...,n - l,n,

0,(0) <7r, 2= l,2,...,n-l,n. (9)

where 0,- denotes the state variables of the ith SETJ and t?,- denotes the state variables of
the coupling capacitor between the 2th and the (2 + l)th SETJs.

5 Two-dimensional SETJ CNN

In this section we consider a 2D SETJ CNN with a 4-connected (von Neumann) neighborhood

system, as shown in the lower part of Fig. 10. This class of CNN can be modeled by the
following non-autonomous impulsive differential equations. Let us suppose that the CNN
array consists oi M x N SETJ cells, then an inner cells C,j, 1 < 2< M, 1 < j < is given

by

dxij { J , (^ + 4)a;,j Xjj-i ^ij+i . . ^i+ij
—^ = 7 Uii —6 cos t : 1—j 1—-J 1—j i—J
dt \

Qij , Pij , Pi+hl\ J£ ^
1 j , . I 5 11 X,J ^ /I ,

kir kir kir ktt J

dpij 7
dt keir

(x,_ij Xij Ptjf)^

14



Axij = —27r, if Xij > TT,

Xij(O) < TT, 1< z< M, 1< j < iV, (10)

where is the statevariable oftheSETJ at location (2,i). Pij is the statevariable modeling
the capacitive coupling between cell Ci-ij and Cij. qij is the state variable modeling the
capacitive coupling between cell Cj-j-i and Cij. Since in a SETJ CNN array, boundary
conditions play very important roles in the dynamics of the entire array, we should define
the boundary condition explicitly. We define the boundary cells in the first and the last
columns as follows:

dxii ( , ^ d" j+i
-w =

KIT k'K KIT J

Axij = -27r, if Xij > TT,

Xtj(O) < TT, 1< z< M, i = 1. (11)

and

dxii ( j j (^ d" 3)^o , I ^t+iJ
-jf = 7^«.i-4cos< + + ki,

KIT KIT k'K J

Axij = -27r, if Xij > TT,

x,j(0) < TT, 1< z< M, j = N. (12)

We define the boundary cells in the first and the last rows as follows:

dxii ( , , {k Z)xij , ^tj+i , ^»+ij= ^\^u,-bcost--^^ +^ +^ +-^

kK kK kK J

^ - %).
dt ktK

15



and

Axij = —27r, if Xij > TT,

a:,j(0) < TT, 1< j < Nj i = 1. (13)

dxii f , , {k-\-S)xij , Xij-i Xij+i , Xi-ij
-W = -r ^ +1^+^ +1^

^ij I g».i+i ifa;- <7r
KTT kW KTT/

f - eCu-
Axij = -27r, if Xij > IT,

Xij{0) < TT, 1< ; < iV, i = M. (14)

We define 4 corner cells as follows:

Axij = -27r, if Xij > TT,

a:,j(0) < TT, i = 1, j = 1. (15)

dxii ( , , {k^2)xij , a:,j_i , a:,-+i,j— = 7^".i-6cosi ^ +_ +—

^ ° -'0- <s).
Axij = -27r, if x.j > TT,

X,j(0) < TT, 2= 1, j = N. (16)

<^^<1 _ ^L.. _icos< -- 7lUy ocost ^kir kit
dt

Qi,j+l _ ^ I < 71"^
kir kir.
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Axij = -27r, if Xij > IT,

Xij{0) < TT, z= M, j = 1. (If)

c?Xi,- / , ^ + 2)a;jj Xi-ij
-dT = ^ +^ +^

Jf < ^
— I , 11 J,tj '< " )

KTT fcTT/
/y

- (a;,'_ij Xij Pti)i
dt kcTT

^Xfj — 27rj if Xij ^ TT,

a:,j(0) < IT, i = M, j = N. (18)

Observe that the DO biases in the isolated SETJs are now replaced by the input image
array {uij}. Unlike standard CMOS CNN structures where the coupling weights are pro-
grammahle, in aSETJ CNN, coupling capacitors are physically fabricated and thus may be
very difficult to change. In this case, the cellular operations that defined by local rules have
to be implemented through adaptable items such as the DC bias of each SETJ cell and the
pump voltage source for the entire SETJ CNN array.

5.1 SETJ edge and corner detection

In the standard CNN, corner detection and edge detection can be implemented by two
fundamental CNNs[l]. In this section we show that the edge and corner detection can be
performed by a single SETJ CNN operation. The simulation results are shown in Fig. 11.
Figure 11(a) shows the binary input image {utj}, which functions as DC biases for the SETJ
CNN array. The DC biases in black and white regions are set as 1and 2, respectively. Figure
11(b) shows the phase states of cells in the array at t =23 time units. The black, gray and
white regions have phase states -1, 0, and 1, respectively. Here, 0and 1correspond to 7r/2
and 37r/2 phases, respectively. —1 corresponds to aSETJ cell that oscillates between phases
7r/2 and 37r/2.

Observe that the black regions show the inner and outer boundaries of the objects and
also mark the four corners by four black crosses. Figure 11(c) shows the phase states of
cells in the array at <= 100 time units. Observe that the typical characteristics of cellular

17



automata (CA) are displayed in this image. Figure 11(d) shows the phase states of cells in
the array at i = 200 time units. Observe that the characteristics of CA are also displayed in
this image.

10S030406060 708QW100 10®3040S0 60 70 80»'00

to?o»«5»«i:oeoeow io»m40 60 6o»

Figure 11; Simulation result of corner and edge detection performed by a SETJ CNN.
Parameters are given by: 6= 2, 7 = 1/3, e = 1, and A: = 0.1. The fixed simulation step is
0.1. The initial conditions are: 2:,j(0) = Uij, Pij(O) = ?ij(0) = 0. (a) The input image Uij.
(b) The phase state at i = 23 time units shows boundaries and corners, (c) The phase state
at t = 100 time units shows some characteristics of a 2D CA. (d) The phase state at i = 200
time units shows some characteristics of a 2D CA.

In the next simulation, only the color of the input image is changed while all other
conditions are kept unchanged. The simulation results are shown in Fig. 12. Figure 12(a)
shows the input image. Figure 12(b) shows the phase state at i = 30 time units. Observe
that the boundaries, corners and even the center of the white object are displayed. Figure
12(c) shows the phase state at t = 200 time units. Observe that the center of the white
object is shown.
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Figure 12: Simulation result of corner and edge detection performed by a SETJ CNN.
Parameters are given by: 6= 2, 7 = 1/3, e= 1, and A: = 0.1. The fixed simulation step is
0.1. The initial conditions are: a:ij(0) = Utj, Pij(^) = (^) input image Uij.
(b) The phase state at t =30 time units shows the boundaries, corners and center, (c) The
phase state aX t = 200 time units shows some characteristics of a 2D OA.

6 Concluding remarks

Although in this note we only present some simple examples of applications of ID and
2D SETJ CNNs to Boolean logic and cellular operations, the extremely complex behaviors
of each SETJ cell provide us with a wide range of fiexibility to design different cellular
operations. Two kinds of parameters can be used to change the dynamics of a SETJ CNN;
namely, the DC biases and the pump source. In this note, we only studied the cases when
the DC bias is used as an "input image". Many more cellular operations can be implemented
if we can also change the pump source.
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