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Abstract
Deep Sub-Micron Photolithography Control through In-Line Metrology
: by
Nickhil Harsh Jakatdar
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Costas J. Spanos, Chair

The exponential increase of integrated circuit density and semiconductor manufacturing
cost is well described by Moore’s Law. In order to provide affordable lithography at and
below 100nm, in-situ and in-line metrology is becoming increasingly critical for advanced
process control and rapid yield learning. The successful implementation of a real time or
run-to-run controller requires metrology for the intermediate and final quantities of interest

as well as robust process models.

In this thesis, a metrology framework is developed for each of the process steps by identi-
fying the observable that is related to the final quantity of interest, identifying the associ-
ated sensors and developing efficient algorithms to analyze the sensor data. This
framework is demonstrated for optical constant measurements of thin films before and after
the spin-coat and soft-bake steps, deprotection and associated thickness loss measurements
after the exposure and post-exposure bake steps, and the cross-section resist and polysilicon
profile measurements after the lithography and etch steps. Simple optical sensors, such as
spectroscopic reflectometry and spectroscopic ellipsometry, are used for the different
metrology steps in order to facilitate integrated metrology with the lithography process

equipment i.e. wafer track and stepper.

Modeling the chemistry and physics of the deep ultraviolet lithography is critical in the
deep sub-micron pattern transfer process for effective CD prediction. In this thesis, novel

process models are developed for each step of the lithography process to provide an effec-
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tive simulation environment. To make the simulation predictive, a hierarchical architecture
is developed that calibrates the simulator model coefficients based on experimental cross-

section profile data and a global optimization routine.

The process models together with the metrology scheme provide the building blocks of a
process controller. The process models developed in this thesis provide insight into the
observables available at every step of the lithography sequence and their correlation to the
final critical dimension. The metrology schemes indicate the sensors and algorithms
required to efficiently measure these observables. These building blocks are used to
develop a Kalman Filter based process controller that integrates or fuses information from
multiple sensors, such as the deprotection induced thickness loss system and the specular
spectroscopic scatterometry system. This scheme promises a better than 50% reduction in

the deep ultraviolet lithography process variability.

Professor C. J. Spanos

Committee Chairman
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Chapter 1

Chapter 1 Introduction

1.1. Motivation

The semiconductor industry is unique in having sustained such rapid technology
development over so long a period, growing at an annual rate of approximately 15% over
the past three and a half decades. It has been said that if other industries, such as the airline
industry, had progressed at the same rate over the last 30 years, it would have been possible
to fly from San Francisco to New York in less than a minute for less than a dollar. However,
it now appears that the industry is rapidly approaching a formidable “100 nm barrier”, con-
sisting of an unprecedented numbser of distinct technical challenges which threaten contin-
uation of its historical success formula. Two of the “Grand Challenges” identified in the
National Technology for Roadmap (1999 Edition) are affordable lithography at or below
100 nm and solutions for Metrology & Test [1].

Ever since the invention of the integrated circuit, patterning has been achieved by
lithographic techniques that use visible light. With the relentless decrease in feature size
required for the productivity increases necessary to follow Moore’s Law, lithography
sources have progressed to ever shorter wavelengths, leading to today’s exposure tools
based on deep ultraviolet light. However, this reduction in exposure wavelength has not
been pushed as aggressively as the reduction in the feature size, as plotted in Figure 1.1.
While innovative technological approaches have enabled the industry to manufacture sub-
wavelength feature sizes, it will get increasingly difficult as the ratio of the feature size to
exposure wavelength falls below 0.5. To make matters worse, industry analysts estimate
that a state-of-the-art fab for the 0.15 pm technology will cost more than $2.5 Billion and
will touch the $10 Billion mark for sub 0.10 um technology generation.
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Figure 1.1. The reduction in the lithography exposure wavelength and minimum feature
size over time.

To keep the industry on its historic 25-30% / year reduction in cost/function despite
the escalating factory costs (20% / year), greater synergy must be developed between the
areas of metrology, modeling and control. Sturtevant et.al. have demonstrated the efficacy
of such a synergy in the pattern transfer sequence, where they used a simple run-to-run con-
troller working in unison with simple process models, and a CD-SEM to reduce variability
by 54% [2]. The tighter lot critical dimension (CD) distribution allowed the target to shift
to shorter L¢ without a yield hit, allowing for a $2 Million increase in revenues per 1000
wafer starts, as shown in Figure 1.2. AMD and Honeywell used a similar framework to

demonstrate a 70% reduction in process scrap and rework in the lithography sequence [3].
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The key components to keeping on the manufacturing cost learning curve are

shown in Figure 1.3.

CONTROL
Run-to-Run Controller
A A A A A A ? A
MODELING | |
Thin film DITL Develop
Process Process Process
Models Models Models
% A A
METROLOGY
Thin-Film Thin-Film DITL SSS
Metrology Metrology Metrology Metrology
i , ,
PROCES - S o I
i =
. pin Coat Xposure
Thin ﬁ?m —*—b;: & | & Develop :
deposition | |_Soft Bake PEB |
e e e e e e e 4
Lithography Workcell

Figure 1.3. A Metrology,
Process.

13

Modeling and Control Framework for the DUV Lithography



Chapter |
1.1.1. Metrology

Metrology is essential to the development and improvement of new processes and
tools for future technology generations. Metrology can potentially reduce the cost of man-
ufacturing and time-to-market for new products through better characterization of process
tools and processes. As device dimensions shrink, the challenge for physical metrology will
be to keep pace with inline electrical testing that provides critical electrical performance
data. Manufacturing sub-100 nm devices will require the availability of robust in-situ
equipment, process, and wafer-state sensors in process tools. These sensors must have ade-
quate repeatability, reproducibility and calibration capability to provide the necessary real
time information for fault detection and process control. This would need the development
of increasingly faster data acquisition and computational algorithms for converting sensor
data into useful information. It is acknowledged that the implementation of in-situ metrol-
ogy will be driven by reducing pilot wafer use, while simultaneously increasing process

capability.

1.1.2. Modeling
- Modeling, according to the NTRS, is like a stool that requires three legs for a stable
result. The three legs are:

1. Models - a mental image of reality, formalized in a mathematical model.
2. Simulators - the computer codes that implement the models

3. Calibration and Validation - the comparison of simulated results to relevant experimental
data to determine numerical values for parameters, and to demonstrate “suitability for pur-

pose”.

In early stages of development, modeling and simulation technology is often used
to provide insight into technology directions and interactions between options. During later
stages, it is used for quantitative analyses like optimization, sensitivity analysis and process
diagnosis. Models ranging from easy-to-use to complex, from fast-executing to computa-
tionally intensive, and from high accuracy in a constrained process space to moderately pre-

dictive over wide ranges should be available to satisfy all uses. It is expected that optical

14
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lithography at 100 nm and below will require modeling approaches that integrate the anal-

ysis of the stepper/scanner optics with that of the resist materials. New phenomena, such as
polymer-surface interaction, chemical amplification and its effect on deprotection and dif-
fusion, and the interaction of local resolution enhancements with image non-idealities, will
become irﬁportant. Matching the simulation results to the real measurements becomes a
challenge, because of the non-linearity of the optimization problem and the presence of

multiple local minima.

1.1.3. Control

Process engineers have expended considerable effort in the design of “get-it-right-
the-first-time” processes. However, the aggressive CD control specifications projected for
future device generations are fast outpacing the inherent process or equipment variability.
Given the continually reducing process windows available with the sub-150 nm technology
node causing misprocessing to become prohibitively expensive, semiconductor manufac-
turing is slowly moving from fixed process recipe, open-loop control to closed-loop control
via sensor-driven model-based integrated manufacturing (SDMBIM) [1]. In-situ process
control is a critical solution for the future factory as conventional metrology becomes less
reliable, more expensive, and can only identify process excursions after significant yield
loss. Control algorithms are required that can efficiently fuse information from the multiple

metrology schemes available to reduce process variability.

1.2. Thesis Organization
This thesis presents a framework to integrate the aspects of metrology, modeling

and process control for the deep ultraviolet lithography (DUV) sequence.

This thesis begins with Chapter 2 providing a review of optimization, learning and
control algorithms. Simulated Annealing (SA) is the optimization algorithm discussed due
to its global optimization behavior. In this thesis, SA is applied to parameter extraction
required in resist modeling and lithography recipe generation. An introduction to Neural
Networks (NN) is presented as a candidate for a real time learning algorithm. The final sec-
tion presents an introduction to Kalman Filters (KF) as an algorithm suitable for run-to-run

control and for sensor fusion.
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Chapter 3 presents metrology for the thin film processes (deposition and spin-on/

soft-bake), for the exposure and post-exposure bake (PEB) processes, and for the develop
and etch processes. The metrology study consists of identifying the observables and their
correlation to the final quantity of interest, identifying the appropriate sensor that could be
potentially integrated in-line/in-situ, developing an algorithm that could be used for real-
time use, and finally presenting results from such an application. The algorithms presented
in this chapter include the NN-ASA algorithm for rapid thin film optical constant extrac-
tion, the modeling of deprotection induced thickness loss, and the algorithm to reconstruct

profiles using specular spectroscopic scatterometry.

Chapter 4 presents the static and dynamic models developed to explain the depro-
tection induced thickness loss mechanism. This includes the simulation framework used,
and experimental results validating the proposed mechanism. Results are presented for

commercially available chemically amplified resists from Shipley and Clariant.

Chapter 5 presents a framework for efficient lithography simulator calibration, thus
reducing reliance on experimentation. Experimental results for both unpatterned and pat-
terned characterization experiments are matched to the output of theoretical models pre-
sented earlier over a training set. This framework demonstrates excellent predictive
capabilities when used with a test set of experimental data, and has the potential to improve

yield ramp rates and reduce development costs when implemented commercially.

In chapter 6, the various sources of variability in the lithography sequence are enu-
merated followed by metrology schemes for each of the process steps. This is followed by
the run-to-run controller design that includes the experiments performed, the process and
drift models used and two different scenarios for the run-to-run control architecture. The
first scenario assumes a less aggressive metrology integration, relying on off-line CD
metrology, while the second scenario assumes a complete in-line sensor integration for

both intermediate as well as CD metrology.

Chapter 7 provides concluding remarks and future work in the area of metrology,

modeling and control of the lithography sequence.
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Chapter 2

Chapter 2 Modeling, Optimization
and Control Algorithms

2.1. Introduction

The implementation of in-line/in-situ sensors in a real time or run-to-run control
framework requires high-speed and accurate algorithms for model-building, optimization
and control. In this thesis, the optimization algorithms are used for high dimensionality
parameter extraction in non-linear functions, while the modeling algorithms are used to
speed up the parameter extraction process so as to make it practical for real-time applica-
tions. The control algorithms are used for sensor fusion in a run-to-run control environ-
ment. Specifically, this chapter covers Adaptive Simulated Annealing (ASA), Neural
Networks (NN) and Kalman Filters.

2.2. Optimization through Simulated Annealing

Simulated annealing (SA) [4] is a probabilistic optimization technique well suited
to multi-modal, discrete, non-linear and non-differentiable functions. SA’s main strength is
its statistical guarantee of global minimization, even in the presence of many local minima.
However, simulated annealing methods are notoriously slow. There are various approaches
to address the speed problem in SA such as by using different annealing algorithms, includ-
ing the cooling schedule and probability density function of the state space [4].

2.2.1. Introduction to Simulated Annealing
Pseudo-code for the SA algorithm is presented in Figure 4.1. The control parameter
T is decreased after a number of transitions, L ; » and can, therefore, be described by a

sequence of homogeneous Markov chains, each generated at a fixed value of 7.
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Procedure Homogeneous SA algorithm

Begin
Initialize (7, T I, Ln)
while n = 0
Repeat
Repeat
Generate state j a neighbor to i;
Calculate JOF = E; E
if Accept(OF, L ) = ' true then i=j
until L
1=n % I
Update L_;
Update Tn
until Stoppmg(ﬁltenon == true
End

Subroutine Accept(OE, T )
ifSE < 0 then return true
else
return true with probability h(SE)
endif

Figure 2.1. Pseudo-code for the Simulated Annealing Algorithm

There are five major components in SA implementation:

1) Temperature function 7" > Or cooling schedule. T n s the “temperature” parameter,
n is the number of times the temperature parameter has changed. The initial value of T 0

is generally relatively high, so that most changes are accepted and there is little chance of
the algorithm been trapped in local minimum. The cooling schedule is used to reduce the

temperature parameter through the process of optimization.

2) Repetition function L n- This is to decide how many changes are to be attempted at each
value of 7.

3) Probability density g(x)of state-space of Dm parameters.

18



Chapter 2
4) Probability #(8(E, T ,,)) for acceptance of new cost-function given the previous state.

5) Stopping criterion. This is to decide how to terminate the algorithm.

2.2.2. Adaptive Simulated Annealing

There are numerous algorithms that attempt to overcome the disadvantages of sim-
ulated annealing, viz. the inability to rapidly converge to the global minimum. One of the
most promising of these algorithms, for the constrained optimization problem, is the Adap-
tive Simulated Annealing (ASA) [5].

In ASA, there are two temperature notations, namely the parameter temperature T ;> sso-

ciated with the /th parameter and the cost temperature T cost

T ; controls the generation function of the ith parameter. The state of ith parameter
xtp jatannealingtime &+ 1 withtherange x'f 1€[4,B ;] iscalculated from

the previous state x ,’c by

xik+1 = xik+pi(Bi—Al.) 2.1)

where p’ € [—1, 1. The generation function is

D

1
= : : 22)
) = ]1 2(pl+ T)In(1 +1/T))

i=1

and pi is generated from value u’ drawn from the uniform distribution

ul e U0, 1] by

p' = sen(u - 0.5)T[(1+1/T)2%'=11_17 (2.3)

If xik+ 1 falls outside of the range [A4 P Bz'] , D' isre-generated until x! k+11s

in the correct range.

A cooling schedule for T ;s
1/D
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where T, o; 1s the initial temperature of the /th parameter, ki is the generation number for

the ith parameter, and ¢ ; is the cooling scaling factor for T i TO ;is usually set to 1.

A cooling schedule for T cost 1S given by
= _ 1/D
T cost(kcost) T 0, cost *XP ( ccostk cost ) (2.5)

where 7, 0, cost 1S the initial temperature of the acceptance function, kcost is the
number of acceptance, and ¢ cost 1S the cooling scaling factor for T cost - TO, cost

is usually set to the average initial value of some initial sample runs.

There are two important tuning parameters, “ Temperature Ratio Scale « s, and

“ Temperature Anneal Scale “ s q tocontrol ¢ .

log(s
¢c; = —(Iog(sr))exp(— Dma)) . (2.6)
Another tuning parameter “ Cost Parameter Scale Ratio “ s D isusedto link ¢ cost and
C;s
Coost — cisp . 2.7

Even through ¢ ; can be set according to the ith parameter, however, for simplicity, usually

it is set to be independent of i .

2.3. Learning through Articial Neural Networks

Artificial Neural Networks are widely used in functional approximation and pattern
classification applications due to their capability for modeling complex and highly non-
linear functions. There are many different kinds of ANNs. Rosenblatt’s Perceptron Model
[6], the Hopfield Network [6], Multi-Layer Perceptron [7], Radial Basis Function Network
[7], etc. are some examples. Neural Networks find extensive use in the industry in modeling
processes which are inherently complex and hence difficult to formulate. In general, phys-
ical systems are characterized with the help of mathematical models. Very accurate models
can be built when the physics underlying the system being modeled is known. In many
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cases however, the mechanism is either too complex for practical modeling, or unknown.

This calls for empirical modeling techniques to develop approximate mathematical models,
which are inferred from available data. ANNs have shown to provide efficient approximat-
ing functions for nonlinear models, even with large problem dimensionality, due to their

highly parallel structure and powerful representational capacity.

Among all the architectures available, the Multi-Layer Perceptron and the Radial
Basis Function Network (RBFN) exhibit the best performance in terms of convergence and
training time for our functional approximation applications. An introduction to both these

approaches is presented in the following sections.

2.3.1. Multi-Layer Perceptron
MLPs are a class of feedforward neural networks that typically consist of three
types of layers, namely, the input layer, the hidden layers, and the output layer. In this sense

they are a generalization of the single layer perceptrons [7].

Nodes in different layers are connected to each other via links characterized by
“weights”. The input to the ith node of the hth layer is the weighted sum of all the outputs
from the h-1th layer. The model of each neuron in the network is associated with a contin-
uously differentiable transfer function. The most commonly used form satisfying this con-
dition is the sigmoidal transfer function. This is mathematically described as follows: Let
Xpij be the input to the ith node of the hth layer from the jth node in the h-1 layer, and yj;

be the corresponding output. Then,

2.8)

where

Sh-1
Dy = Y wx, i +0,, fori=12,..Spandh=1,2,..L 2.9)
Jj=1
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The 6, term is the bias for the jth node and Sy, is the number of neurons in the hth layer. A

conventional MLP structure is shown in Figure 2.2
Hidden Layer —» h-1 h

Output
Vector

Figure 2.2. Architecture of a Multi Layer Perceptron

Typically, a neural network operates in two phases, namely training and testing. In
the training phase of the MLP, the desired outputs are clamped to the output nodes for the
corresponding inputs. The network ‘learns’ this input-output mapping by iteratively mini-
mizing an error function. In this case, the error function, E, is the sum of squares of the dif-

ference between the calculated (v;) and the desired output,

N
~ 2
E = Z (yj'-yj') (2.10)
i=1
where N is the number of output nodes.

MLPs have been successfully applied to solve complex problems, by adapting to
them in a supervised manner using the popular back-propagation algorithm. Since this
algorithm is based on the error correction rule, it can also be considered as a generalization
of the Least Means Square (LMS) [8] algorithm. The back-propagation performs a stochas-
tic gradient descent in the weight space. Basically, the error back-propagation process con-
sists of two passes through the different layers of the network. In the forward pass, an input
vector is applied to the input layer and its effect is propagated forward to the output layer

to provide the response of the network to the input stimulus. The wei ghts of the connections
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in the network remain fixed. In the backward pass, error is propagated backwards from the

output layer, and the weights are adjusted using an error correction rule so as to make the

actual response move closer to the desired response.

2.3.2. Radial Basis Function Network (RBFN)

Unlike Multi-Layer Perceptrons (MLPs), RBFNs use a distance metric in the input
space to determine the hidden layer activations (Figure 2.3). As a result, the contours of
constant activation of the hidden layer are hyperspheres instead of the hyperplanes used in
MLPs. The contours are finite in length and form closed regions of significant activation,
as opposed to MLPs where the contours are infinite in length and form semi-infinite regions

of significant activation.

Unweighted

Output

Input
Vector

Vector

1) The first layer is simply a fanout of the inputs to the hidden layer and are not weighted

connections.

2) The hidden layer consists of H radial units plus one bias node with a constant activation

of one. The transfer function of the hidden node is computed using a basis function ¢,

a, = ¢(_”x"’2‘h”j 2.11)

Op

where ay, is the output of the unit h in the hidden layer for a given input x.
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Each RBF node is characterized by two internal parameters, namely x;, and o},;: x;,

is the position of the basis center in the N-dimensional feature space, and oy, is a distance
scaling parameter, which is the width in the input space over which the unit will have a sig-
nificant influence. The connections in the second layer of the RBFN represent weights of

the linear combination.

The output layer has nodes which are linear summation units. The value of the ith output

node y; is given by

el xhll
Z wya, = Z w0 (2.12)

S h
where w;;, are the interconnection weights from the hidden nodes to the ith output node. The
(H+1)th node is the bias node with ag+) =1.

2.3.3. Training the RBFN

There are several variations in the techniques for training the RBFN. The most com-
monly used technique is based on the algorithm suggested by Moody and Darken [9]. This
method trains the RBFN in three sequential stages:

1) The first stage consists of determining the number of unit centers H and position of the
unit centers xy, by the k-means clustering algorithm, an unsupervised technique that places

unit centers centrally among clusters of training points.

2) Next the unit widths are determined using a nearest neighbor heuristic that ensures the
smoothness and continuity of the fitted function. The width of any hidden unit is taken as
the RMS (root mean square) distance to the P nearest unit centers, where P is a design

parameter.

3) Finally, the weights of the second layer of connections are determined by linear regres-
sion, the objective function to be minimized being the sum of the squared error as given in
Equation [2.10].

The optimality of an RBFN for a particular application is largely dependent on the

number of nodes in the hidden layer. By using an excess number of nodes, we may overfit
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the function being approximated by a higher order function. In this case, the training points

may give acceptable error, but the test points would give unsatisfactory results. Similarly,

taking too few hidden nodes would result in a sub-optimal model.

The conventional k-Means algorithm is largely dependent on the number of clus-
ters, k being the choice of the initial cluster centers and the order in which the data is pre-
sented. Linearly separable data are reasonably clustered by the k-means algorithm
depending on the spatial properties of the training data. In training RBFNs, adaptive forms

of the k- Means algorithms have been used to obtain optimum results.

In this algorithm, the number of clusters is automatically adjusted on the basis of
spatial distribution of the samples. The k-Means algorithm is first applied by arbitrarily

selecting the cluster centers, ny. The minimum intercluster distance (d) is then calculated.

d= min {dist(xi—xj)} fori,j=1,2,..,nq (2.13)
1<i,j<ng i#j

where X’s are the n, cluster centers and dist is the Euclidean distance given by

dist(%,8) = J(a,-b) + (ay-bp)’+... +(a,—b ) (2.14)

in an m-dimensional space.

The diameter (D)) of the kth cluster is defined as the maximum distance between
two samples in cluster k. The largest diameter (R) is computed next. If x’s are the points in

the cluster k, the intracluster distance Dy is given by

Dy = max {dist(x,, x;)} fori,j=1,2,..,n (2.15)
i#j
where Ny, is the number of points in cluster k and,

R = max D) (2.16)
1<k<n,

When d > aR, (where o is an empirically preset threshold value) it means that the

scatter plot of the points belonging to the largest cluster exceeds the threshold value that
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has been preset as a fraction of the largest diameter R. This intracluster distance can be

reduced by increasing the number of clusters, n,. Therefore, if 4> o.R, the number of cluster
centers is incremented. Otherwise, it is decremented. The iterative k-Means algorithm is
used to obtain the new cluster centers. The algorithm converges when the number of clus-

ters do not change.

2.4. Control Utilizing Kalman Filter

A Kalman Filter is an extension of Linear Least Squares estimation applied to sto-
chastic processes. Kalman Filter development is done from a state space description of the
desired and measured signals. Also, Kalman Filter does not assume stationarity of the
desired signal, thus making it an ideal tool to handle practical process control problems. A

thorough treatment of Kalman Filters can be found in [10].

The Kalman Filtering problem begins with the following signal model

Xee1 = Fe+ Gty (2.17)

Ze = H*%+ 3 (2.18)

We assume 1)11(, W k are both zero mean, independent of each other, and have cova-
riances E[Vy¥,"] = RiS[k-1], E[# ] = Q8[k-1]. The initial state % ¢ is random with
mean X, covariance Py, and is independent of ¥ o W «- Let 2} denote the set of observations

{20,215---» 2}, and define the estimator error covariance matrix as

Zie ik = ELGr+ 1= %0 1 G0) i 1 s G)*] (2.19)
where ¢+ 1k = X, (2) is our estimate of ¥ ;| based on the data 2. The problem is to
find the function x, . 1 +(24) that minimizes Zi+1jk- It is shown in [10] that the Kalman
Filter, which is an affine function of Z, achieves an estimator error covariance, Zy.
which is less than or equal to the estimator error covariance of any other affine estimator.

The Kalman Filter is defined by the recursion relations:

-1
Ky = FuZyu HHP 5 H+ Ry 221)
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The estimation error covariance used in (2.21) to compute the Kalman gain, Ky, is

given by a discrete time Riccati equation:

.
ek = FelZie-1 = S H(H* Zy_ (H+ Ry H* 2y, 1F* + G0, @322)

where 20|_| = Po

When ¥, W x and X ¢ are Gaussian, much more can be said about the Kalman Filter.
X2 k) is actually the conditional mean E[% k+112x 1, and Zy+1|k is the conditional cova-
riance E[(¥ k+1';k+l)(’)‘ k+,-§k+l)*|% kJ- Thus the Kalman Filter equations become a mecha-
nism for updating the entire conditional probability density of i‘k [10]. To extend the use
of the Kalman Filter to integrate measurements from multiple sensors at different measure-
ment frequencies, the measurement update step is repeated as many times in a time step as

the number of sensors collecting data in that time step.

Often the signal model that best represents our desired signal is time invariant, and
for computational reasons we would like to estimate the signal with a time invariant filter.
Although the Kalman Filter is in general a time varying filter, there are conditions under
which it asymptotically becomes time invariant, and is truly time invariant with a proper

choice of Pg. Our signal model is now:

J.'Ekq.] = Fik'i* Gﬁ'/k (2.23)

3 = H*%+ (2.24)
Again, we assume ‘)’k’ W k are both zero mean, independent of each other, and have
covariances E[$} ¥*] = Ry S[k-1], E[wiowy*] = Q. S[k-1].

$ = FIS-SHH*SH+ R) ' H*S]F* + GOG* (2.25)

As a result, the Kalman gain approaches a limiting value of

R = FSH[H*SH+R]" (2.26)
It should also be clear that if Py is selected to be I, the Kalman Filter will be truly

time invariant, not just asymptotically time invariant.
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Chapter 3 In-line/In-situ Metrology
for the Pattern Transfer Process

3.1. Introduction

The DUV lithography process provides the process engineer with numerous oppor-
tunities to monitor the process and wafer state as shown in chapter 1. In-situ sensors with
real time capability of analyzing data and using this information for closed loop control, are
good candidates for a supervisory control scheme. Developing metrology for a process,
however, requires knowledge of what to monitor in the process sequence, when to monitor
it and how to monitor it. A system that answers all of the above questions adequately would

constitute a practical metrology system.

The first step in designing a metrology system for a specific process is to decide on
what quantity one is interested in monitoring. In the DUV lithography sequence, the final
quantity of interest is the CD, which does not begin to form until the PEB step at the earli-
est. Hence, it becomes important to identify practical observables, available early in the
process, that are strongly related to the final CD. This provides an opportunity to control

the final quantity in a feed-forward sense.

Having identified the quantities that one would like to monitor, the second step is
to evaluate existing sensors, and if appropriate, design new sensors that can measure these
quantities. The most widely used off-line metrology tools are broadband reflectometers and
ellipsometers for the measurement of the optical constants and thickness of uniform (unpat-
terned) thin films. An in-situ implementation of the broadband reflectometer has been suc-
cessfully demonstrated in the past [1 1]. Thus, the third step in designing a metrology

system for a specific process, is to identify a technique which is highly sensitive to the
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observable that needs to be measured. Examples include using reflectometry for thin film

measurements, fourier transform infrared techniques (FTIR) for chemical analyses, etc.

The fourth and final step is to identify algorithms that allow rapid analysis of the
sensor data that is related to the quantity being measured. Algorithms are required to extract
relevant information from the data. To realize immediate control, algorithms are needed
that can extract this information efficiently and feed this to other process modules for either

feedback or feedforward control.

In the subsequent sections, we will describe metrology systems designed for the dif-

ferent process steps.

3.2. Thin Film Metrology

3.2.1. Optical Constants

Optical properties of any material can be described by the complex index of refrac-
tion, # = n—jk , where n is the refractive index and & is the extinction coefficient. Both
n and k depend on the wavelength of light, A, or, more fundamentally, to the photon
energy, E = (hc)/ L. For the purpose of lithography control, the n(1) and k(L) atwave-
lengths in the 200-600 nm range should be determined. The reason optical constants are
important is because they play a key role in defining the energy coupling during exposure.
Therefore, a change in the optical constants affects the reflectivity of the thin film and
hence the effective exposure energy absorbed by the resist film. This in turn affects the CD.
The reason for broadband determination is to reduce the effect of sensor noise at certain

wavelengths.

The Forouhi-Bloomer (F-B) equations are commonly used dispersion formulations
derived from the Kramers Kronig relationship, with some simplifying assumptions that are

suitable for most semiconductor materials [12]. The F-B equations are given by:

A(E - E)2 i By,E+Cy,;
k(E n(E) = n(w) + —_— ., (3.1
(£) = Z BE+C (£) () iglEz—BiE'*'Ci G-1)

where E ¢ Tepresents the optical energy band-gap [12]. A characteristic of the F-B formu-
lation is its relative simplicity. The number of terms required to approximate the dispersion

29



Chapter 3
behavior for different films varies according to the composition of the film. Most films

require between 8-12 terms to be accurately represented from the deep ultraviolet to the
near infrared wavelength range. This means that optimization must take place over a large

set of parameters.

3.2.2. Broadband Reflectometry

Because of its inherent simplicity, normal incidence reflectometry is often inte-
grated into the real-time process control paradigm for several reasons: good spatial resolu-
tion, high throughput, accuracy and ease of automation [13]. In most semiconductor thin-
film reflectometry, the spectral reflectance of a sample is measured through the use of rel-
ative reflectance methods. In these methods, the comparison of the reflectance from the test
sample with that of a standard sample (usually a bare wafer) is measured and analyzed. The
theoretical reflectance can be calculated from the optical properties and thickness of each
film. Measured and theoretical curves can be matched by fitting for the film thickness and

optical properties. The problem is formulated as
miin {3 (RO) = R(n, by Ay D)W ))2) (3.2)

where w; is the optimization weight and the reflectance R is a function of optical prop-
erties and thicknesses of all the thin-films in the stack. Different settings of w;, yield dif-
ferent optimization speeds, sometimes even different results. Figure 5.1 shows the block

diagram of the various modules required to tackle this problem. Two techniques that can
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be employed for optimization, that is the Adaptive Simulated Annealing (ASA) combined

with the Neural Network (NN) modeling have been described in Chapter 2. .

dispersion

measured TR A relation
-\,—-'\A\! ] ] *

v
- n(A)
theoretical - cost optimizer
A ,n { k(L)
<A ’ ”1 \ simulate
ARITEE Thick
F LV

Figure 3.1. The objective is to match the simulated and measured broadband spectra by
tuning the parameters of the dispersion relationship using the optimizer.

Due to the high dimensionality of the F-B dispersion relation (16 parameters) and
the expensive cost function, the ASA technique takes an average of 10 minutes of SUN-
SPARC 20 CPU time per run. If this is done off-line, it does not pose any problems. To
increase the probability that the global minima is reached, the ASA could be run on the
same wafer signal multiple times using different starting points. However, each computa-
tion, on an average, requires 10 minutes of CPU time, which would be considered imprac-
tical for any real time application. Further work has been done in reducing the metrology
parameter space using a Bayesian screening technique [14]. This resulted in reducing the

metrology parameter space to 4 parameters per film, and the CPU time to 1 minute on a
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SUN SPARC 20 for a single film stack. A typical fit obtained with the ASA is shown in

Figure [5.2].

g
=

&
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wavelength in (nm)

Reflectance (relative to bare Si)

Figure 3.2. Results of the ASA Optimization Algorithm. Figure shows the simulated
versus the experimental reflectance spectra (relative to bare Silicon).

The drawback of this technique lies in its computational requirements. Since our
goal is to develop an algorithm that could be used in real time applications, we need to
reduce the computation time down to a few seconds. This motivated the NN-ASA algo-

rithm, described in the following section.

3.2.3. Neural Network - Adaptive Simulated Annealing (NN-ASA)
The NN-ASA algorithm combines the high speed optimization prowess of Neural
Networks in a localized space with the global optimization abilities of Adaptive Simulated

Annealing to provide a high speed, global optimization algorithm.

The NN-ASA algorithm is best explained through a case study. One lot of twenty
4” wafers were deposited with polysilicon with a thickness of 400 nm. Phophorus doping
was used, and the LPCVD deposition time was two hours at 650 degrees Celcius. Due to
the gas depletion effects intrinsic in conventional LPCVD tubes, there must be a tempera-

ture gradient along the length of the tube to compensate for the reduced reactive gas con-
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centration. A difficulty with this process is that Poly-Si properties depend very strongly on

deposition temperature, and will thus vary with wafer position along the tube [15]. The
wafers were then measured off-line for reflectance using a commercial SC Technology
broadband reflectometer. The data acquisition was done from 350 nm to 800 nm. There was
one off-line measurement made per wafer, yielding a total of 20 measurements. These mea-
surements were made on the center of the wafer using a footprint 1 mm in diameter for a

duration of 3 seconds.

This algorithm was designed to enhance the ASA optimization routine so as to be
suitable for real time applications. A block diagram for this algorithm is shown in

Figure 3.3. The basic blocks of this setup are:

1) Parameter Extraction using ASA

2) Monte Carlo Simulation using the F-B formulation and Maxwell’s equations
3) Spectral Feature Selection

4) Neural Network Training and Validation

Monte Carlo Spectral
Simulation using Feature —-—v
the extracted Selection
parameters A Normalize
Y
features
Database
inputg to
Parameter } the NN
extraction Outputs of the NN Train NN |«
using a using RBF |
global Neural
. . Network
optimizer )
Tuning
(ASA) Error i
and F'B. Validation
formulation
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Figure 3.3. Block Diagram of the NN-ASA Algorithm
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3.2.3.1. Parameter Extraction using ASA

The objective of this step was to extract the correct thickness values along with the
corresponding optical constants. Due to the dependence of the optical constants of the film
on the deposition conditions, it is incorrect to assume a fixed value for the optical constants
and solve only for the film thickness. This necessitates the simultaneous extraction of both
the optical constants and the thickness. Due to the high dimensionality and presence of

local minima in the optimization problem, ASA was used as the optimization engine.

The twenty wafers were analyzed for the optical constants and the thickness. This
algorithm was run three times per wafer to increase the chances of reaching the global min-
imum. The extraction procedure was automated and allowed to run overnight. We reached
the global mimimum in two or more cases for each wafer. This provided us with the range
of values over which the optical constants varied in the LPCVD process. This also provided
us with the range of values over which the parameters of the F-B equations varied. The
importance of this step is that it provides us with an idea of the natural variability of our
LPCVD chamber.

3.2.3.2. Monte Carlo Simulation using the F-B formulation and Reflectance
equations

We assumed that the typical variation in the parameters of the F-B equation were
worse than those extracted from the ASA algorithm. A +/- 1% perturbation around the
mean values was applied to all the statistically important parameters [14] of the F-B equa-
tion. We also used a +/- 50 nm perturbation to the mean thickness value whereas the vari-
ation in thickness, as extracted by ASA, was around +/- 30 nm. This was done to account

for the fact that this particular lot may have had lower variability than the average.

A uniform distribution was used to generate values for each of the 4 parameters of
the F-B equations as well as the thickness of the polysilicon (a native oxide of 25-45 Ang-
stroms was assumed for all the wafers). 1000 vectors containing 5 elements each were gen-
erated. We thus had a poly-silicon, native oxide and silicon stack, with variable optical
constants for the top-most layer. The next step was to, generate the simulated broadband

reflectance spectra using Maxwell’s equations.
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The optical properties of a layer of film are described by its characteristic matrix M.

Assuming a normal incident angle, the characteristic matrix is given by

cos(kgnl) —sin(kyil)
M= i-N (3.3)

%’ sin(kgil)  cos(kohl)

where 7 is the complex index of refraction, / is the film thickness, k, = 2%‘ . The char-

acteristic matrix of a stack of N films is then
Ny

M= n M; (3.4)
=1

Assume that the two end films are semi-infinite, in other words, the thickness values

of the air and silicon substrate are 00, the reflectivity of the entire stack is

_ (M + Mg, — (My + My )

R — =
(M) + Mypnn,, + (My + Myyn,)

(3.5)

air
where the subscripts of Mrefer to the row and column numbers respectively and 7 denotes
the complex index of refraction for the various layers. This step generates 1000 simulated

broadband reflectance spectra in 2 minutes on a SUN SPARC 20.

3.2.3.3. Spectral Feature Selection

This step decides the features that should serve as the input to the neural network.
This requires a physical understanding of the problem and is hence a very important step,
as it lends physical intuition to the otherwise empirical neural network approach. It means
looking at that part of the spectrum that carries maximum information about the optical
constants of the film. This region would differ from stack to stack. When we are interested
in measuring the optical constants of the polysilicon film in polysilicon-silicon stacks, we
use the longer wavelengths, where poly is not absorbing and hence the reflectance spectrum
contains the maximum information about the optical constants of the polysilicon. In the
case of photoresist as in photoresist-polysilicon-silicon stacks, we use the shorter wave-
lengths since poly is opaque to the UV, and the resultant reflectance depends only on the
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layers deposited on poly. This step was automated by placing the part of the spectrum that

needs to be used for each stack configuration in a database. We then reduce the dimension-
ality of the input features further by noting that the wavelengths at which the extrema occur,
and the reflectance at those wavelengths, are correlated to the thickness and refractive indi-
ces of the film [16]. Stokowski’s paper has shown that the film refractive index affects
reflectance values away from the reflectance maxima. The larger changes in reflectance
with refractive index occur at the minima. At a minimum, the reflectance value is related
to the refractive indices of a non-absorbing film ( 7 ), its substrate ( 7 3) and the ambient

medium ( 7 ;) by the equation

1+ JR; (3.6)

Although we do not use this form of the equation, it is interesting to note that the
broadband reflectance spectra can provide information on the refractive indices of the top

layer in the non absorbing portion of the spectra.

The output of the physical filter is a vector of the wavelengths at which the maxima
and minima occur, as well as the intensities at these extrema. It was observed that the neural
network training improved when the inputs were normalized. One possible explanation for
this is that we are using a k-means clustering algorithm with a single spread parameter in
the Radial Basis Function. If we were to use multiple spread parameters in our design, we
could avoid normalizing our inputs, but this would be at the cost of finding optimum values

for a larger set of NN design parameters.

3.2.3.4. Neural Network Training and Validation

A radial basis function neural network architecture was used due to its well proven
functional approximation capabilities [6]. The inputs to the network were the normalized
outputs of the physical filter, while the outputs during the training stage were the optical
constants used to generate the simulated reflectance spectra. The design parameter of the
network was the spread of the Gaussian functions. We used a network with a single spread,

S0 it was necessary to normalize the outputs of the physical filter.
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The 1000 data points were divided into two blocks. One block of 600 was used for

training, and the other block of 400 was used for testing. An automated routine was written
in Matlab to pick the value of the spread that minimized the error of the testing samples.

The values of the other design parameters were kept fixed at their optimum values.

3.2.4. Results of the NN-ASA Algorithm

The results of this optimization are shown in Figure 3.4. The figure shows the pre-
dicted values of thickness versus the simulated values, as well as the predicted values of the
real part of the refractive index versus the simulated values at 600 nm. We chose to use this
wavelength because most of the available data on polysilicon refractive indices in the liter-
ature is found at this wavelength. At A = 600 nm, the extinction coefficient k is zero, So it
was not predicted here. As can be seen from the figure, the prediction capabilities of the
neural network were excellent. However, the main goal of using the neural network based
optimization routine was to cut down on the computation time. This approach reduced the
computation time on a SUN-SPARC 20 down from 1 minute to less than 1 second. This
made it possible to use this algorithm for real time computation of the optical constants

from broadband reflectance spectra. The training and testing phase took close to 1 hour on
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a SUN-SPARC 20. However, it is important to note that the ASA extraction and the neural

network training and testing are both one-time tasks and can be done off-line.
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Figure 3.4. Performance of the NN-ASA algorithm for poly-Si on native oxide on Si
stack.

3.3. Exposure and PEB Metrology

3.3.1. Deprotection Induced Thickness Loss (DITL)

Chemically Amplified Resists (CARs) are composed of a polymer resin, which is
very soluble in an aqueous base developer due to the presence of hydroxyl groups. These
hydroxyl groups are “blocked” by reacting the hydroxyl group with some longer chain mol-
ecule, such as a t-BOC group, resulting in a very slowly dissolving polymer. In addition,

there are possibly some dyes and additives along with the casting solvent.
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The mechanism can be broken down into the initiation, the deprotection and the

quenching stages. In the initiation phase, the exposure energy causes the Photo-Acid Gen-
erator (PAG) to produce acid. In the deprotection phase, these H+ ions attack the side
chains (t-BOC) of the polymer and generate more H+ ions, thus making the resist even
more soluble. This takes place in the presence of heat. In the quenching stage, the H+ ions
are slowly quenched by anything more basic than the acid, such as the additives and the by-
products of the reaction. In short, the t-BOC blocked polymer undergoes acidolysis to gen-

erate the soluble hydroxyl group in the presence of acid and heat [17]. (Figure 3.5)

C=0+H" —» \C=O + H +

I
O OH _<
g

‘OH OH

Figure 3.5. Resist Mechanism during the Exposure and Post Exposure Bake Steps for a
commercial DUV photoresist.

The blocking group is such an effective inhibitor of dissolution, that nearly every
blocked site on the polymer must be deblocked in order to obtain significant dissolution.
Thus the photoresist is usually made more “sensitive” by only partially blocking the resin.
Typical photoresists block 10-30% of the hydroxyl groups, 20% being a common value
[18][17]. The cleaved t-BOC is volatile and evaporates, causing film shrinkage in the
exposed areas. The extent of this exposed photoresist thinning is dependent on the molec-

ular weight of the blocking groups.

There does not seem to be any universal definition for deprotection due to the dif-
ferent resist chemistries. However, in all its definitions, the term refers to the amount of de-

blocking of the resin. For the resist chemistry shown in figure 2.1, the deprotection reaction
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is quantitatively followed by monitoring the loss of the ester (C-O-C 1150 cm™') and the

gain of the hydroxyl (O-H 3100 - 3400 cm "!) vibrational bands [19][23][24]. The larger
the exposure energy, the greater the number of H+ jons generated. Similarly, increasing the
PEB temperature increases the amount of reaction between the H+ ions and the side chains,
and hence the deprotection. The deprotection D is measured by taking the ratio of the inte-
grated areas at a given exposure to the integrated area of the absorbance plot for no expo-

sure (R;) and subtracting from 1.

R,‘ = Adester (3.7)
AOester
Dester = I—Ri 3.8)

Theoretically, the CD is a stong function of the exposure and PEB process param-
eters. However, since the CD is formed only during the develop step, being able to predict
it through measurements of other observables that are also strong functions of the exposure
and PEB steps, would help in predicting the CD before it is even formed. A study was car-
ried out to identify an observable that demonstrated such a strong dependence on the expo-

sure and PEB process settings, while allowing a simple sensor setup for its measurement.

The process inputs for this experiment were the exposure dose and the PEB temper-
ature, while the response variables were the amount of deprotection and the exposed area
resist thickness loss. The exposure dose was varied from 1 mJ/cm? to 5 mJ/cm? in steps of
0.5 mJ/cm? on each wafer (nine blanket area exposures). The PEB temperature was varied
from 130 degrees Celsius to 150 degrees Celsius in 10 degrees Celsius steps, thus requiring
a total of 3 wafers.

3.3.2. Broadband Reflectometry for Thickness Loss
The same sensor as described in Section 3.2.2 can be used for this film thickness

application.

40



Chapter 3
3.3.3. Correlating Thickness Loss to Deprotection

Any FTIR experiment usually requires the use of highly reflective substrates to
increase the signal to noise ratio. This is usually done by coating the wafers with either Alu-
minum or Tungsten. Hence, the three wafers were first coated with tungsten. The wafers
were primed with HMDS on the FSI wafer track, after which UV35, a chemically amplified
photoresist was spun on and soft-baked using the standard process recipe. These wafers
were taken to a Tencor 1250 single angle broadband ellipsometer for pre-exposure thick-
ness measurements. The wafers were exposed using the ISI stepper (KrF excimer laser) at

248 nm with the pattern shown in Figure 3.6 and post exposure baked.

Figure 3.6. Layout of the blanket exposure areas on the wafer

The wafers were taken once again to the Tencor for post bake measurements of
thickness. This provided the thickness loss as a function of the different exposure doses and
PEB temperatures. Next, the wafers were taken to a FTIR tool where a Bio-Rad Spectrom-
eter was used to measure the IR absorption of the hydroxy (O-H; 3100 - 3400 cm™!) and
ester (C-O-C; 1150 cm™") vibrational bands. All the thickness loss and deprotection mea-
surements were made on the exposed areas (1 - 9) as well as on one unexposed area (10)
on the wafer. The wafers were fractured to facilitate measurement. Thirty two scans were
used with a resolution of 1 cm™!. The time required for a single measurement was about 1
minute. The integration of the spectra to yield the deprptection was done using a computer

macro.
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3.3.4. Results of DITL Metrology

The thickness loss measured in the unexposed areas of the wafers was assumed to

be due to solvent evaporation. This value was subtracted from all the thickness loss mea-

surements of the corresponding wafer. The aim was to correlate this resultant thickness loss

to the amount of deprotection. The deprotection was extracted using Eq. (3.7).

Linear Regression was used to build a model for the thickness loss in the exposed

areas as a function of the amount of deprotection. Figure 3.7 shows the fit.

Thickness Loss in Angstroms

300 -

200

0.2 0.4 0.6 0.8 1.0
Dester

Summary of Fit: Multiple R? = 0.9956

Average model prediction error = 16.52 on 24 degrees of freedom
F} 24=5460 ; model is highly significant

Figure 3.7. Thickness loss as a function of the deprotection measured by monitoring the
normalized ester absorbance.
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Model Value Std. Error t value Pr(>it)
Slope 375.04 5.08 73.89 0.0000

The final model for thickness loss as a function of deprotection is

Tloss = 375.04 x Dester _ (39)
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A similar study was done using the integrated hydroxy absorbance as a measure of

deprotection, correlated to the final thickness loss. Even though this signal was more noisy

due to the broad hydroxy absorbance bands, the model is significant. .

300 ;

200

Thickness Loss in Angstroms

100

Dhyd

Summary of Fit: Multiple R? = 0.9897
Average model prediction error = 25.33 on 24 degrees of freedom

F124=2310 ; model is highly significant

Figure 3.8. Thickness loss as a function of the deprotection measured by monitoring
the normalized hydroxy absorbance

Model Value Std. Error t value Pr(>|t))
Slope 360.22 7.49 48.07 0.0000

The final model for thickness loss as a function of deprotection is

Tioss = 360.22x D, (3.10)

Note the absence of the intercept term in the two models. This is because we have

subtracted the thickness loss in the unexposed regions, and have hence accounted for the
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solvent loss. The regression model showed no evidence of an intercept term (Pr > [t|=0.84).

Figure 3.9 shows the behavior of the normalized ester and hydroxy peaks processed at a

given temperature as a function of exposure dose.
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Figure 3.9. The normalized ester and hydroxy peaks as a function of exposure dose for
different PEB temperatures.
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3.4. Post-Develop and Post-Etch Profile Metrology

3.4.1. Patterned Profiles

With the progress of deep sub-micron technology, the accurate and efficient mea-
surement of parameters such as the line width, height/depth and side-wall profile are
becoming increasingly critical in developing and characterizing lithography and plasma
etch processes. Scanning electron microscopes (SEM) and atomic force microscopes
(AFM) can deliver direct images of small structures, but they are expensive, and can be
time-consuming or even destructive. Electrical measurements can provide information on
final effective CD linewidths, but they cannot be used in-situ, and cannot deliver reliable
profile information. Niu, et. al. have shown the use of specular spectroscopic scatterometry,
an optical metrology technique that uses a spectroscopic ellipsometer to extract patterned
profiles [22]. The advantage of using an optical technique is that it lends itself to inexpen-

sive, in-line measurement schemes.

3.4.2. Spectroscopic Ellipsometry

Spectroscopic Ellipsometry (SE) has become an essential metrology tool for the
semiconductor industry [23]. The basic principle of SE is based on the fact that linearly
polarized incident light has reflection coefficients that depend on the direction of polariza-
tion. The two polarization directions of interest are the p or TM (electric field parallel to the
plane of incidence) and the s or TE (electric field perpendicular to the plane of incidence).
Any linearly polarized light can be decomposed into the p and s components. These com-
ponent waves experience different amplitude attenuations and different absolute phase
shifts upon reflection; hence, the state of polarization is changed. Ellipsometry refers to the
measurement of the state of polarization before and after reflection for the purpose of study-
ing the properties of the reflecting boundary. The measurement is usually expressed as

p = tanPe/2 = @.11)

h\' zh\: 4

where ;p and 7 ¢ are the complex reflection coefficient for TM and TE waves.

Ellipsometry derives its sensitivity from the fact that the polarization-altering prop-
erties of the reflecting boundary are modified significantly even when ultra-thin films are
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present. Consequently, ellipsometry has become a major means of characterizing thin

films. The basics of ellipsometry is illustrated in Figure 3.10.
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Figure 3.10. Spectroscopic ellipsometry measurements.

Ellipsometry measures polarization-state-in vs. polarization-state-out. Although
visible light is commonly used, propagation of virtually any transverse wave can lead to an

ellipsometric measurement.

The advantage of ellipsometry over reflectometry is its accuracy. First, ellipsometry
measures the polarization state of light by looking at the ratio of values, rather than the
absolute intensity of the reflected light. This property is especially useful in the DUV wave-
length range, where very little light is typically available. Second, ellipsometry can gather
the phase information (A) in addition to reflectivity ratio () information. Phase informa-
tion provides more sensitivity to the thin-film variation. SE provides reading of A()) and
y(A), which are then used to accurately characterize thickness and refractive index of thin

films.

For lithography process control, semiconductor materials, anti-reflective coatings
and photoresists need to be characterized by spectroscopic ellipsometry. In the DUV range,
most of the above materials are absorbing. We now consider the case of an absorbing film
which has a complex index of refraction at a given wavelength. The real and imaginary
parts of the refractive index, and the thickness of the film cannot all be determined from a
single set of ellipsometer readings. Since a set of ellipsometer readings consists of only two
values, ¥ and A, it cannot determine all three quantities for the film. However, using a
dispersion relation to describe the behavior of the optical constants over a broadband

ensures that the refractive index does not vary randomly but follows a certain function.
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There are several options for dispersion relationships, such as the Cauchy for the visible

wavelength range, the F-B for the wavelength range from the deep ultraviolet to the near

infrared.

Variable Angle Spectroscopic Ellipsometry (VASE) tools have been developed for
the purpose [24][25]. The data analysis techniques depend on the used dispersion relation
formulation. The method which commercial tools employ usually consists of two steps.
First, the film thickness and the real part of the index # in the transparent regioﬁ (k=0,
usually in the red or near infrared range) are extracted by a local optimization algorithm.
Then, the film thickness is used for both 72 and k extraction at shorter wavelengths, where
the film is absorbing. The advantage of this approach is that it achieves unique solutions.
In each step, there are two unknowns and two measured parameters. The disadvantage is
the inherent lack of accuracy. Because the determination of the wavelength range where

k = 0 is quite arbitrary, small errors of the film thickness extracted in the transparent
region can be propagated and magnified in the shorter wavelength region. In this thesis, we
address this problem by using dispersion models derived from Kramers-Kronig relation

and a global optimization technique.

The novel idea introduced in this work is the use of SE equipment for specular spec-
troscopic scatterometry (SSS). SSS measures the Oth order diffraction responses of a grat-
ing at multiple wavelengths. Given the Oth order diffraction responses, one can then attempt
to reconstruct the grating profile. Conventional spectroscopic ellipsometry equipment can
be directly used in this type of metrology. In other words, we do not need special equipment
for specular spectroscopic scatterometry, as the cost of hardware is shifted to software.
Compared to single-wavelength, variable-angle scatterometry, specular spectroscopic scat-
terometry has the advantage of the additional information contained in the spectral compo-

nent.

A spectroscopic ellipsometer is used in this work for 1D gratings. With this config-
uration, the ratio of the Oth order complex transverse electric (TE) and transverse magnetic
(TM) reflectivity p = ;p, 0/ ;s, 0= tanWeld s measured, where ;p, 0 is the
Oth order TM reflectance coefficient and s o Iis the Oth order TE reflectance coeffi-

cient. Using a spectroscopic ellipsometer has two advantages. First, the measurement of the
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ratio of TE and TM provides more sensitivity than just using the measurement of TE or

TM. Second, we can make direct use of a commercial ellipsometer, hence avoiding the

additional hardware expense.

3.4.3. A Library-Based Methodology for CD Profile Extraction

The extraction of a CD profile can be viewed as an optimization problem. The
objective is to find a profile whose simulated diffraction responses match the measured
responses. Optimization techniques, such as simulated annealing and gradient based opti-
mization techniques, can be applied. However, it is not feasible to exhaustively search for
the optimum match when analyzing complicated profiles. A practical way is to generate the
simulation responses before the measurement [26]. A library-based methodology for CD

profile extraction has been used in this work.
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Figure 3.11. A library based methodology for CD profile extraction.

Figure 3.11. describes the extraction flow, including the following 3 steps:

[1.] Mask information, technology characteristics, thin-film information (optical properties
n, k and thickness values), are used to obtain a collection of profiles. The profile informa-
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tion includes the information of the grating layer and of all the underneath layers. The pro-

files can be obtained by a tuned TCAD simulator, or by a random profile generator. The set
of pre-simulated profiles should be sufficient and efficient. Sufficient means that there
should be enough profiles in the library for most possible process results, while efficient

means that there should not be too many unnecessary profiles in the library.

[2.] The profiles are used as inputs to a diffraction grating simulator, such as gtk, to generate
the simulated diffraction responses. Usually the diffraction efficiencies, tan ¥ and cos A

are simulated over a wide range of wavelengths.

[3.] Specular spectroscopic scatterometry diffraction responses are measured and com-
pared with the library. If the library is sufficient, there will be one or more profiles whose

simulated responses will match those of the measured sample.

The key of the success for this library-based extraction methodology is the suffi-
ciency of the library, combined with efficient simulation and search methods. The unique-
ness of solution is an issue in this approach. In other words, it is possible that different
profiles may lead to similar diffraction responses. There are several theoretical studies on
this issue [27][28]. This problem has been addressed experimentally in [26][49]. Due tb the
larger number of degrees of freedom available in this approach (considering both phase and

magnitude), we have not encountered non-uniqueness issues so far.

To extract the CD profile from a measurement, the measured tan ¥ and cos A are
compared with each simulated tan'¥ and cos A in the library. If there is a “good” match
between the measured and simulated signals, the corresponding CD profile is considered
as the extracted profile. Mathematically, the matching is done by minimizing the cost func-

tion

min{z ((log(tan‘{!measured, k) - log(tanqltheoretical, K)) 2wtan'{’, 21312
A

2
(cos Ameasured, A~ oS Atheoretical, ?») Weosa, k)}

while searching the library. In our approach we set w an'¥, A = WeosA A = 1 :
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3.4.4. Results of Specular Spectroscopic Scatterometry

The experimental verification of specular spectroscopic scatterometry consists of
two parts: the verification of the forward diffraction grating simulation from given CD pro-
files, and the verification of the inverse CD profile extraction from the scatterometry mea-
surement. In this section, we will focus on the experimental work done in the inverse

problem for three different case studies.

3.4.4.1. Photoresist on ARC on Silicon

A focus-exposure matrix experiment was done using UV-5, a commercial chemi-
cally amplified photoresist on a bottom anti-reflection coating (ARC) on Silicon stack. As
shown in Figure 3.12, we have § focus settings and 7 dose settings. The dose settings are
coded as -3,-2,-1,0, 1, 2, and 3, indicating the values from 11.5 mJ/cm?2 to 14.5 mJ/cm?2
in steps of 0.5 mJ/cm2. The focus settings are coded as -2, -1, 0, 1, and 2, indicating the
values from -0.2 pm to 0.2 um in steps of 0.1 pm. In total we have 31 settings on each
wafer. The mask has 0.28 pm/0.28 um line/space gratings. After exposure and PEB, UV5
was developed to form 200 um-by-200 pm grating regions. A KLA-Tencor Prometrix®
UV-1280SE was used to measure the ratio of Oth order TE and TM fields. The incident
angle is 70.5 degrees. The light beam was focused on a 30 pm-by-70 pm region.

The library-based CD profile extraction methodology described in Section 3.4.3 is
implemented. A profile library is randomly generated from a set of profile primitives [26].
About 180,000 profiles are generated, and the corresponding diffraction responses are sim-
ulated by gtk. Because of the computational cost, each grating profile is simulated every
10nm from 240nm to 780nm. The number of retained orders for TE and TM are 31 and 41,
respectively. Using grk, the simulation for one profile, which includes both TE and TM on
53 wavelengths, takes approximately 2 minutes on a Sun UltraSparc I 167MHz worksta-

tion.
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Figure 3.12. (a) grating structures; (b) Focus-exposure matrix experiment setup for
experimental verification.
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Figure 3.13 shows the comparison between the extracted profiles and AFM mea-

surements across the entire focus-exposure matrix. The AFM measurements agree very

closely with the extracted profiles.
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Figure 3.13. Comparison between the extracted grating profiles and the CD-AFM profile
across the focus-exposure matrix. The four AFM profiles with (dose, focus) level of (2,-2),
(3,-1), (-1,2) and (2,2) have not been measured. '

3.4.4.2. Metal Stack

A focus-exposure matrix experiment was done on a stack involving TiN/AVTiN/Ti/
TEOS/Silicon with UV$, a commercially available DUV resist on an anti-reflective coat-
ing. As shown in Figure 3.12, we have 5 focus settings and 7 dose settings. The dose set-
tings are coded as -3, -2, -1, 0, 1, 2, and 3, indicating the values from 11.5 mJ/cm2 to 14.5
mJ/cm?2 in steps of 0.5 mJ/cm2. The focus settings are coded as -2, -1,0, 1, and 2, indicating
the values from -0.2 pum to 0.2 pm in steps of 0.1 um. In total we have 31 settings on each
wafer. The mask has 0.22 um/0.44 pm line/space gratings. A KLA-Tencor Prometrix®
UV-1280SE was used to measure the ratio of Oth order TE and TM fields. The incident
angle is 70.5 degrees. The light beam was focused on a 30pm-by-70um region.
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Figure 3.14. (a) Grating structures; (b) Focus-exposure matrix experiment setup.

The library-based CD profile extraction methodology described in Section 3.4.3 is
implemented. A profile library is randomly generated from a set of profile primitives [26].
About 200,000 profiles are generated, and the corresponding diffraction responses are sim-
ulated by grk. Because of the computational cost, each grating profile is simulated every
10nm from 240nm to 780nm. The number of retained orders for TE and TM are 31 and 41,
respectively. Using grk, the simulation for one profile, which includes both TE and TM on
53 wavelengths, takes approximately 2 minutes on a Sun UltraSparc I 167MHz worksta-

tion.

54



Chapter 3
Figure 3.15 shows the comparison of “top” CD measurement from CD-SEM and

specular spectroscopic scatterometry across the focus-exposure matrix. The correlation
coefficient is 0.9225. On the average, the CD-SEM “top” CD measurement is about 12.1nm

larger than the “top” CD value extracted from specular spectroscopic scatterometry.
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Figure 3.15. Comparison of top CD between specular spectroscopic scatterometry and a
top-down CD-SEM.

While there were no cross-section SEM measurements made on this particular
wafer, there were cross-section SEM measurements made on an identical “sister” wafer
which yielded results within 7 nm (1-c) of the SSS predicted results but more than 15 nm
(1-6) of the CD-SEM results. This provides considerable confidence in the accuracy of the
SSS approach.
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Chapter 4 Lithography Modeling

4.1. Introduction

As we enter the DUV lithography generation, the developmental phase of the pho-
tolithography process is becoming crucial due to the high costs associated with equipment
and materials, and the continually reducing time-to-market. Improvements in the modeling
of chemically amplified resists are necessary to extract the maximum possible information
from the minimum amount of experimentation. This includes modeling of both the thin

film as well as the pattern transfer sequence.

The extraction of optical constants of thin films from in-situ broadband reflectom-
etry and ellipsometry signals is an application that requires algorithms that are both accu-
rate and fast. An algorithm to solve the problem of extracting the optical constants from
broadband reflectometry / ellipsometry signals is necessitated for the real time computa-

tions of complex functions.

All high activation, chemically amplified resist systems (CARS) exhibit a signifi-
cant volume shrinkage during the post-exposure bake (PEB) step (typically 4% to 15% in
current resist systems) [1]. Current models for PEB and development do not take into con-
sideration this shrinkage for calculating line-widths. At present, workers at AMD [2] are
developing a new methodology for characterizing PEB. Adding shrinkage characterization
to the understanding of bake and development will significantly improve our understanding
of lithography resist processing. This volume shrinkage manifests itself in the form of
thickness loss, and it has been shown that this shrinkage is directly proportional to the

deprotection of the resist in flood exposed films [3].
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This work aims at describing the kinetics of the post-exposure bake process by

tracking the volume shrinkage observed in high activation energy resists. We begin with a
brief introduction ta the physical mechanism underlying the volume shrinkage followed by
the proposed mechanism for both the static as well as the dynamic models. An optimization
framework is then presented, and it is used to extract the parameters of the models. Finally,

results of modeling two different resists are discussed.

4.2. The Forouhi-Bloomer (F-B) Dispersion Relation

Optical properties of any material can be described by the complex index of refrac-
tion, N = n—jk, where n is the refractive index and & is the extinction coefficient. Both
n and k depend on the wavelength of light, A, as well as the photon energy, E, according
to £ = (hc)/A. For the purpose of lithography control, the n(A) and k(L) at wave-
lengths in the range of the exposure wavelengths should be determined. The reason that the
optical constants are important is because they are strongly correlated to the processing
conditions and the reason for determination over a broadband is to reduce the effect of
sensor noise at certain wavelengths. The Forouhi-Bloomer (F-B) equations are derived
from the Kramers Kronig relationship with some simplifying assumptions that are suitable

for most semiconductor materials [11]. The F-B equations are given by:

A(E-E) ¢ ByE+Cy,

FRric n(E) = n(oo)+iZ

k(E >

(4.1)
where Eg represents the optical energy band-gap [11]. A characteristic of the F-B equa-
tions is its relative simplicity. The number of terms required to approximate the dispersion
relations for different films varies according to the composition of the film. Most films
require between 2-4 terms to be represented with the required amount of accuracy. This

means that optimization must take place over a large set of parameters.

4.3. Experimental Setup
A lot of twenty four inch wafers were deposited with polysilicon with a thickness
of 400 nm. Phophorus doping was used and the time of deposition in the LPCVD chamber

was two hours at 650 degrees Celcius. Due to the gas depletion effects intrinsic in conven-
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tional LPCVD chambers, the temperature needs to be increased along the length of the tube

to compensate for the reduced deposition rate. A difficulty with this process is that Poly-Si
properties depend very strongly on deposition temperature, and will thus vary with wafer
position along the tube [12]. The wafers were then measured off-line for reflectance using
a commercial SC Technology broadband reflectometer. The data acquisition was done
from 350 nm to 800 nm. There was one measurement made per wafer yielding a total of 20
measurements. These measurements were made on the center of the wafer using a footprint

1 mm in diameter for a duration of 3 seconds. These measurements were made offline.

4.4. Optimization using the ASA algorithm

Since there exist local minima in the solution of Eq. (4.1) for a multiple-layer thin-
film system, traditional optimization algorithms are not appropriate here. The major advan-
tage of simulated annealing over other methods, as mentioned in the earlier chapter, is its
ability to avoid becoming trapped at local minima. The algorithm employs a random
search, which not only accepts changes that decrease the objective function, but also some

changes that increase it, at least temporarily.

We used the ASA technique to extract the optical constants and the thickness from
the reflectance spectra for all the 20 wafers. Due to the high dimensionality of the problem
(16 parameters) and the expensive cost function, this technique took an average of 10 min-
utes of SUN-SPARC 20 CPU time per run. Since this was done off-line, it did not pose any
problems. To increase the probability that the global minima was reached, the ASA was run
on the same wafer signal three times using different starting points. The convergence prob-
ability of ASA algorithms from past experience was around 0.9. Using a binomial distribu-
tion, we estimated the probability of reaching the global minimum two or more times to be
0.97. However, each computation, on an average, required 10 minutes of CPU time which
would be considered impractical for any real time application. Further work was done in

reducing the metrology parameter space using a Bayesian screening technique [13]. This
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resulted in reducing the metrology parameter space to 4 parameters and the CPU time to 1

minute. The fit obtained with the ASA is shown in Fig 4.1

(—]

Relative Reflectance N

350 800
wavelength in (nm)

Figure 4.1. Results of the ASA Optimization Algorithm. Figure shows the simulated
versus the experimental reflectance spectra

The drawback of this technique lay in its speed. Since our goal was to develop an
algorithm that could be used in real time applications, we needed to reduce the computation
time down to a few seconds. This motivated the NN-ASA algorithm, described in the fol-

lowing sections.

4.5. The Neural Network Enhanced ASA Optimization Algorithm

This algorithm was designed to enhance the ASA optimization routine so as to be
suitable for real time applications. A block diagram for this algorithm is shown in Figure
5.3. The basic blocks of this setup are

1) Parameter Extraction using ASA
2) Monte Carlo Simulation using the F-B formulation and Maxwell’s equations

3) Spectral Feature Selection
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4) Neural Network Training and Validation

Spectral
Monte Carlo —»| Feature
Simulation | Selection Y
] Normalize
Database features
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Parameter RBF the NN
extraction O/Ps of the NN » Neural 4——,'
uslmbg ia Network Neural
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(ASA) Error A 2
Validation

Figure 4.2. Block Diagram of the NN-ASA Algorithm

4.5.1. Parameter Extraction using ASA

This step is the ASA optimization technique described in the earlier chapter. The
twenty wafers were analyzed for the optical constants and the thickness. This process was
run three times per wafer to increase the chances of reaching the global minimum. The
extraction procedure was automated and allowed to run overnight. We reached the global
mimimum in two or more cases all the times, as was predicted in chapter 3 using the bino-
mial distribution. This provided us with the range of values over which the optical constants
varied in the LPCVD chamber. This also provided us with the range of values over which
the parameters of the F-B equations varied. The importance of this step is that it provides
us with an idea of the natural variability of our LPCVD chamber.

4.5.2. Monte Carlo Simulation using F-B formulation and Maxwell’s equations

We assumed that the typical variation in the parameters of the F-B equation were
worse than those extracted from the ASA algorithm. A +/- 1% perturbation around the
mean values, was applied to all the statistically important parameters [?13?] of the F-B

equation. We also used a +/- 50 nm perturbation to the mean thickness value whereas the
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typical variation in thickness was around +/- 30 nm. This was done to account for the fact

that this particular lot may have had lower variability than the average.

A uniform distribution was used to generate values for each of the 4 parameters of
the F-B equations as well as the thickness of the polysilicon (a native oxide of 25-45 Ang-
stroms was assumed for all the wafers). 1000 vectors containing 5 elements each were gen-
erated. We thus had a Poly-Silicon on native oxide on Silicon stack with variable optical
constants for the topmost layer. The next step was to generate the simulated broadband

reflectance spectra using Maxwell’s equations.

The optical properties of a layer of film are described by its characteristic matrix M.

Assuming a normal incident angle, the characteristic matrix is given by

cos (kgNI) —sin (k,N1)
M = i-N (4.2)
%’sin(koNl) cos (ko NI)

where N is the index of refraction, / is the film thickness, k, = ZTn The characteristic

matrix of a stack of N r films is then

N7
M= H MJ (4.3)
J=1
Assume that the two end films are semi-infinite, in other words, the thickness values
of the air and silicon substrate are co, the reflectivity of the entire stack is

p = M+ MpN Ny, — (My, + Mp,N,)
(M) + MpN )N, + (Myy + MyyN,)

(4.4)

where the subscripts of M refer to the row and column numbers respectively and N denotes
the complex index of refraction for the various layers. This step generates 1000 simulated

broadband reflectance spectra.
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4.5.3. Spectral Feature Selection

This step decides the features that should serve as the input to the neural network.
This requires a physical understanding of the problem and is hence a very important step
as it lends a physical intuition to the otherwise empirical neural network approach. It would
mean looking at that part of the spectrum that carries maximum information about the opti
cal constants of the film. This region would differ from stack to stack. When we are inter-
ested in measuring the optical constants of the polysilicon film in polysilicon-silicon stacks,
we use the higher wavelengths where poly is not absorbing and hence the reflectance spec-
trum contains the maximum information about the optical constants of the polysilicon. In
the case of photoresist as in photoresist-polysilicon-silicon stacks, we use the lower wave-
lengths since poly is opaque to the UV and the resultant reflectance depends only on the
layers deposited on poly. This step was automated by placing the part of the spectrum that
needs to be used for each stack configuration in a database. We then reduce the input fea-
tures further by noting that the wavelengths at which the extrema occur and the intensities
at those wavelengths are correlated to the thickness and refractive indices of the film
[714?]. Stokowski’s paper has shown that the film refractive index affects reflectance
values away from the reflectance maxima. The larger changes in reflectance with refractive
index occur at the minima. At a minimum, the reflectance value is related to the refractive
indices of a non-absorbing film (n), its substrate (n3) and the ambient medium (n,) by the

equation

n=

1+JR, 4.5)
1% JR

Although we do not use this form of the equation, it is interesting to note that the
broadband reflectance spectra can provide information on the refractive indices of the top

layer in the non absorbing portion of the spectra.

The output of the physical filter is a vector of the wavelengths at which the maxima
and minima occur as well as the intensities at these extrema. It was observed that the neural
network training improved when the inputs were normalized. One possible explanation for
this is that we are using a K-means clustering algorithm with a single spread parameter in
the Radial Basis Function. If we were to use multiple spread parameters in our design, we
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could avoid normalizing our inputs but this would be at the cost of finding optimum values

for a larger set of NN design parameters.

4.5.4. Neural Network Training and Validation

A radial basis function neural network architecture was used due to its well proven
functional approximation prowess [?5?]. The inputs to the network were the normalized
outputs of the physical filter while the outputs, during the training stage were the optical
constants used to generate the simulated reflectance spectra. The design parameter of the
network was the spread of the Gaussian functions. We used a network that used a single

spread and hence the need to normalize the outputs of the physical filter.

The 1000 inputs were divided into two blocks. One block of 600 was used for train-
ing and the other block of 400 was used for testing. An automated routine was written in
Matlab [Appendix A] to pick the value of the spread that minimized the error of the testing

samples. The values of the other design parameters were kept fixed at their optimum values.

4.6. Results

The results of this optimization are shown in Fig 4.3. The figure shows the predicted
values of thickness versus the simulated values as well as the predicted values of the real
part of the refractive index versus the simulated values at 600 nm. We chose to use this
wavelength because most of the available data on polysilicon refractive indices in the liter-
ature is found at this wavelength. At A = 600 nm, the extinction coefficient k is zero and
was hence not predicted here. As can be seen from the figure, the prediction capabilities of
the neural network were excellent. However, the main goal of using the neural network
based optimization routine was to cut down on the computation time. This approach
reduced the computation time on a SUN-SPARC 20 down from 1 minute to less than 1 sec-
ond. This now made it possible to use this algorithm for real time computation of the optical

constants from broadband reflectance spectra. The training and testing phase took close to
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1 hour on a SUN-SPARC 20. However, it is important to note that the ASA extraction and

the neural network training and testing are both one time tasks and can be done off-line.
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Figure 4.3. Performance of the NN-ASA algorithm for poly-Si on native oxide on Si
stack.

4.7. Volume Shrinkage in Chemically Amplified Resist Systems
Chemically Amplified Resists (CARs) are typically composed of a polymer resin
which is very soluble in an aqueous base developér, a protecting t-BOC group causing a
very slowly dissolving polymer, photo-acid generators and possibly some dyes and addi-
tives along with the casting solvent. The deprotection mechanism can be broken down into
the initiation, the deprotection and the quenching stages. In the initiation phase, the expo-
sure energy causes the Photo-Acid Generator (PAG) to produce acid. In the deprotection
phase, these H+ ions attack the side chains (t-BOC) of the polymer and generate more H+

ions, thus making the resist even more soluble (Fig 4.4). This takes place in the presence of
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heat. In the quenching stage, the H+ ions are slowly quenched by anything more basic than
the acid, such as the additives and the by-products of the reaction. The cleaved t-BOC is
volatile and evaporates, causing film shrinkage in the exposed areas. The extent of this

exposed photoresist thinning is dependent on the molecular weight of the blocking groups.

/Y\\/ ) ) . /Y\\/
=0 *H —*> C=0 + H' +
o OH <

OH OH

Figure 4.4. DUV Chemically Amplified Resist Mechanism during the Exposure and Post
Exposure Bake Steps.

An experiment was performed to correlate the deprotection of the resist as mea-
sured by a Fourier Transform Infrared Spectroscopy tool to the observed volume shrinkage
(Fig 4.5). The results showed that the intrinsic reaction mechanism occurring in the resist

during the bake could be observed through the volume shrinkage.
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Figure 4.5. Thickness loss as a function of the deprotection, measured by monitoring the
normalized ester absorbance.
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Next we study this shrinkage and attempt to understand the reaction mechanism

occurring in the resist. This leads to the static and dynamic models described in the subse-

quent sections.

4.8. Static Model for Thickness Loss

Static models are useful in cases when only a single macroscopic output is measur-
able practically, rather than detailed 1-, 2- or 3-dimensional measurements of a phenome-
non. In this example, deprotection is easily observed through thickness loss measurements,
whereas 1-d measurements of the deprotection through depth into the resist would be prac-
tically impossible. The deprotection induced thickness loss at different doses can be used
in conjunction with a static model of the PEB process to extract relevant simulation param-
eters such as the Dill’s C parameter, the relative quencher concentration [Q], the amplifi-

cation reaction rate (Eamps Aamp)» €te.

Currently there exists no model for the bake process that can account for the com-
monly observed initial delay in the increase of the deprotection vs. dose at different tem-

peratures. In this section, a novel model for the PEB process is derived.

The effective exposure dose is first calculated by accounting for the reflectivity at
the air-resist interface and this is converted into acid as in Eq. (4.6).

. —C x Dose
[Ac:d]dose = [PAG]O(I —e )

(4.6)
where Dose is the effective exposure dose, calculated by accounting for the reflectivity at
the air-resist interface, [PAG] is the initial concentration of the photoacid generator and C

is the rate of photoacid formation in cm%/mJ.

During the PEB process, the t-BOC blocked polymer undergoes acidolysis to gen-
erate the soluble hydroxyl group in the presence of acid and heat. The conventional mod-

eling of the PEB process [3] is given as

1 e_kloss
— [Acid]
K1oss dose
m=e 4.7
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where m is the normalized concentration of unreacted blocking sites, Kamp 1s the acid ampli-

fication rate in sec™! and Kyoss is the acid loss factor in sec™!. Both these factors are modeled

using a temperature-dependent Arrhenius relationship.

However, the combined exposure and PEB models Eq. (4.7) do not account for the
commonly observed initial delay in the increase of the deprotection vs. dose at different
temperatures. We think that this is due to the quencher designed into most chemically
amplified resists. Thus, we propose a corrected model for the PEB to account for the rela-
tive quencher concentration [Q]. In this model, we assume that during the PEB process,
acid is lost in neutralization reactions with bases that are either designed into th - :sist, or
exist as unreacted portions of the polymer. This indicates that the bases will . . corre-
spondingly reduce with time, and the difference between the acid and base concentrations
will remain constant throughout the PEB process. We model the above mechanism through
Eq. (4.8) and Eq. (4.9).

%[Acid] = —a[4cid][Q] (4.8)

[deid], - [Q], = [4cid]y-[Q], (4.9)

where a is the neutralization reaction coefficient modeled by an Arrhenius function of
temperature, [Q] is the relative quencher concentration (relative to [PAG]p) and [Acid] is
the acid concentration as defined in (2). The initial value for quencher [Q], is a parameter
that can be extracted from the fitting procedure described in the following section, while
the initial acid concentration [Acid] is obtained from Eq. (4.6). Solving the above equa-
tions yields the following analytical solution Eq. (4.10) for the acid concentration as a func-
tion of the PEB time, t.

([Acid]y - [Q]o)

exp(—a([4cid]y-[Q]p)0)

[4eid], =

[0, 10

t- [4cid],
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Meanwhile, the deprotection reaction is typically modeled by Eq. (4.11), where

Kamp is the reaction amplification rate in sec”!, modeled by an Arrhenius temperature rela-

tionship, and [M] is the concentration of protected sites remaining at time t.

%[M] = —ky,lAcid],[M] (4.11)

Substituting Eq. (4.10) in Eq. (4.11), and solving for the normalized m (normalized

concentration of unreacted blocking sites), we get

Kamp

% o [Acid]Oe(u([ACid]o‘[Q]o)’)_[Q]o o
[M], [Acid], - [Q]o :'

(4.12)

The model depicted in Eq. (4.12) differs from previous work in that it accounts for
the fact that the quenchers (both parasitic and designed) are consumed in the neutralization
reaction. This allows better modeling of the initial delay in deprotection increase with expo-
sure dose than existing models, and hence provides an estimate of the relative quencher

concentration [QO],.

4.9. Dynamic Model for Thickness Loss

4.9.1. Physical Models

One of the underlying assumptions in modeling the latent image through continuity
equations has been that the resist volume remains constant. Ignoring the volume shrinkage
obviously affects the accuracy of existing models. The goal of this work is to describe the
physical processes occurring in the resist during the PEB step for 1-dimensional (flood)
exposures, in the presence of the volume shrinkage. We begin with a description of the
physical mechanisms occurring in the process, and then provide mathematical equations to

represent these physical processes.

We propose the following mechanism: During the exposure step, the photo-acid
generators produce acid on reaction with photons. This is represented as a normalized acid
concentration (u), normalized to the initial photoacid generator concentration. The initial

1-d distribution of the acid within the resist depends on the optical constants of the resist
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and of the underlying film at the exposure wavelength. With sufficient energy (in the form

of temperature), the acid molecules begin to diffuse around (D,) and attack the polymer
side-chains at a certain rate (k,), which has an Arrhenius relationship to temperature, thus
causing deprotection (v). The acid diffusion is widely believed to be free-volume depen-
dent, and is modeled using an exponential (D,,a) [4]. The deprotected molecule (w) is vol-
atile and begins to diffuse (D,,) through the resist till it escapes the resist bulk from the top.
The amount of molecules that escape would depend on the partial pressure in the wafer
track. In the meanwhile, the escaped volatils - . -lecule leaves behind a vacancy or hole (h)
that begins to collapse at a rate specific tot. - rticular polymer (k3). This is the polymer
relaxation process that eventually causes the volume shrinkage in the resist (w@). Deprotec-
tion refers to a normalized quantity between 0 and 1, and hence scaling factors are needed
to convert the deprotection into corresponding volatile group concentrations (k;). Simi-
larly, a scaling factor is needed to convert the hole concentration into a corresponding
volume shrinkage factor (k,) to take into account the area of the flood-exposed site. In the
case of low activation energy resist systems, this mechanism begins during the exposure
step itself, while in the case of high activation energy systems, this process begins to occur
only during the PEB step.

The mechanism described above can be described with the following six equations:

a%(um) = Ve(D,Vu)w | 4.13)
D, = D yexp(ah) (4.14)

ov
Frin kyu(l —v) (4.15)
gt.(wm) = [D, V2w + kykyu(1 -v)]w (4.16)
%(hm) = [-D,, V2w — k;h]w (4.17)
g_f’ = —kksho (4.18)

69



Chapter 4
Eq. (4.13) suggests that the rate of change of acid at any point in the resist is gov-

erned by the non-linear acid diffusion within the resist caused by the acid gradient that
exists at that point. This gradient in turn exists due to changing exposure conditions in the
film caused by internal reflectance of light and absorbance of light by the resist film during
exposure. The acid diffusion is modeled by Eq. (4.14). Eq. (4.15) represents the rate of nor-
malized deprotection reaction and is proportional to the amount of acid and the amount of
unreacted sites. Eq. (4.16) indicates that the rate of change of volatile groups within an
infinitesimal volume element is proportional to the number of volatile groups diffusing
through the volume element and the generation rate is proportional to the normalized
deprotection rate. Eq. (4.17) represents the rate of change of holes (or free volume). The
generation rate of holes within any infinitesimal volume element depends on the number of
volatile groups diffusing out of that volume element while the destruction rate of holes
within that same volume element is dependent on the polymer relaxation rate constant. Eq.
(4.18) models the volume shrinkage within each volume element and is proportional to the
free volume relaxation rate. The @ term is included in all the equations that deal with con-

centrations, to account for the changing volume at each time instant.

4.9.2. Boundary Conditions

The equations defined above do not have a closed form analytical solution due to
the inter-dependencies of the various differential equations on one another. Hence they
must be solved numerically, subject to the boundary conditions for this problem. They

would be as fzol]ows:

A
d
oul _ (4.19)
4 z=d

ow =03 w__,=0 (4.20)

Oz -0 z
ul,_ o = up(2) (4.21)
uy(z) = 1 -exp(-CD(z)) (4.22)
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D(z) = Do[exp (~az) + Irlzexp(—oc(Zd— z)) —2|rlexp(~ad)cos (%(d— z))] (4.23)

where Dy is the applied dose in mJ/cm2, corrected by the reflectivity at the air-resist inter-
face, o is the linear absorbance of the resist film in um!, d is the film thickness in pm, n is
the real part of the refractive index, A is the exposure wavelength in pm, C is the acid pro-
duction rate in cm®mJ and r is the reflectivity coefficient of the resist/substrate interface.
This exposure process in chemically amplified resists has been modeled by Byers, et. al.

[3] using a simplified version of the full wave equation solution.

Eq. (4.19) indicates that there is no acid loss due to evaporation at the resist surface.
However, this condition can easily be modified to model T-topping or environmental con-
tamination. Eq. (4.20) indicates that the volatile group escapes from the resist only at the
resist-air interface, and this gradient is facilitated by maintaining the volatile group concen-
tration at the resist-air interface at zero. Eq. (4.21) states that the initial acid distribution
during the exposure is determined by the aerial image and the optical properties of the

resist.
= h, (4.24)

=w,_,=0 (4.25)

Eq. (4.24) refers to the presence of an initial free volume concentration in the resist
which is a function of the spin-on and soft bake process [5]. Eq. (4.25) states that the depro-
tection and volatile group concentrations at the beginning of the PEB process are zero (for

low activation energy resist systems, this would be a value greater than zero).

4.9.3. Computational Approach

A finite difference system was set up for the equations and boundary conditions
described above. A simple forward difference technique (explicit method) was used to
progress the equations in time with sufficient time and space steps to avoid numerical insta-
bility problems [6].
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We divide the one dimensional space domain (z direction, which is perpendicular

to the surface of the resist) and the time domain into many discrete steps, and use the fol-
lowing formulae to approximate the divergence in one dimensional case and the time deriv-

ative of a function numerically

(4.26)
Vu(z, f) = %u(z, £~ ﬁ[u(z +h,t) = u(z —h, £)]
2 (4.27)
V2u(z, 1) = izu(z, £~ lz[u(z +h 1) =2u(z, ) + u(z — h, )]
0z h
0 LUz t+d)—u(z, )
e, t+dt)» 4 (4.28)

After doing calculations for each time step, the size of each of the grids decreases
due to the volume shrinkage in each element. At the end of each time step, we adjust the
grid sizes to their original sizes h, and interpolate with the spline method [6] to get the func-
tion values at the new grid points. A indication variable is used to record the change of the
total thickness as simulation progresses, and adjust the total number of grids accordingly,

as shown in Fig 4.6

adjust grid
sizesto h

grid sizes
h shrink at
Zn— - the end of
X ‘ each step
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& Tordt t

Figure 4.6. Simulation Approach for the Moving Boundary Problem.
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We used 200 space steps (1 step = 3.25 nm) at the beginning of the simulation and

5000 time steps (1 step = 16 ms) in our computation, yielding 10 seconds for simulating
one thickness loss versus time set for one dose, on a 350 MHz Pentium-II processor. An
implicit method such as the Crank-Nicholson method Eq.(6) would have allowed for fewer
time and space steps but would require matrix computations to solve simultaneous equa-

tions.

4.10. Optimization Framework

The block diagram for the optimization process is shown in F ig 4.7. The optimiza-
tion was carried out for both the static as well as the dynamic models. The effective acid in
the resist is calculated using Eq. (4.23). This initial acid distribution is fed along with the
first set of resist parameters generated by the optimization engine, to the 1-d volume shrink-
age simulator. The output of the simulator is compared with the experimental data, the
resulting error is fed to SA and a new set of parameters is generated. This process continues
until the sum squared error between the model prediction and the experimental data reduces

below a pre-determined threshold value.

Figure 4.7. Block dia

experimental data.
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4.11. Results and Discussion

We begin with results of the static model fitting to the experimental data for UV-5,
AZ 2549. Fig 4.8 shows the results of fitting the static model to experimental data for UV-
5 while Fig 4.9 shows the results of fitting the static model to experimental data for AZ-

2549. The results for the static cases had an error less than 0.01 deprotection units, 1-c.

The results for the dynamic model are presented next. Fig 4.10 shows intermediate results
for the acid concentration, deprotection, volatile group concentration and free volume con-
centration as a function of depth at 5 different time steps. Fig 4.11 shows the results for UV-
5 while Fig 4.12 shows the results for AZ 2549. The results of fitting to the dynamic model
seem better for UV-5 than for AZ 2549. One possible reason is that in the case of UVv-5,
the measurements were made off-line, thus allowing for a more accurate measurement. In
the case of AZ 2549, the setup did not allow for very accurate placement of the reflectome-
ter spot size within the exposed areas. This caused measurements that were made on the
boundary of unexposed and exposed areas, thus providing inaccurate results for the thick-
ness loss. In some cases, it took between 4-5 seconds to correct this misalignment of the
spot, thus causing an offset between the measured and simulated results (as seen in
Fig 4.12).
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Figure 4.8. Static model fitting experimental data for UV-5. Circles denote simulated
results while stars denote experimental data.
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Figure 4.10. Intermediate results for acid concentration, deprotection, volatile group
concentration and free volume concentration as a function of depth at 5
different time steps
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Figure 4.12. Measurements of thickness loss versus time for AZ 2549.
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We tabulate the results for UV-5 and AZ-2549 below.

TABLE 1. Results of Parameter Extraction

Parameter Uv-5 AZ-2549
Kamp 0.3406 0.3673
Kq 1.16 2.06
C 059 0.0798
Q 177 0.367

4.12. Summary

In this paper we have proposed both dynamic and static physical models for volume
shrinkage in chemically amplified resists. The proposed dynamic model successfully pre-
dicts the volume shrinkage observed in resists and could be used to gain insight into the
resist mechanism. The static model successfully models the quenching action in the resist
across the complete exposure dose spectrum and in the process, extracts critical resist

parameters useful for "what-if" analysis in lithography simulation.
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Chapter 5 Lithography Simulation

3.1. Introduction

Traditionally, lithography process development has relied on short-loop and pilot-
lot experiments to understand the effects of particular process control factors. However,
high experimental costs and increasing complexity of lithographic patterns and processes
is such that one must resort to simulation. Technology Computer-Aided Design (TCAD),
focusing on predictive simulation, is becoming very important for lithography process
development and control. An efficient development process would reduce the number of
characterization experiments devoted to developing a new recipe, will reduce time-to-

market and will drastically cut development costs.

Technology Computer-Aided Design (TCAD) tools are playing an important role
in the design and manufacturing of ICs. As the cost of computation decreases and the cost
of experimentation and equipment increases, TCAD tools are becoming essential cost
effective alternatives. Sophisticated TCAD packages that simulate the entire lithography
process include SAMPLE [35], PROLITH!, SOLID-C?, etc.

Developing an effective TCAD simulation environment depends on accurate pro-
cess models, as well as on correct model parameters. Simulators contain a set of differential
equations that attempt to model real systems. These equations are physical or chemical in
nature, and are usually derived from first principles. While most of the DUV lithography

process steps are fairly accurately modeled, certain critical process steps, such as post-

1. FINLE Technologies, P.O. Box 162712, Austin, TX 78716
2. Sigma-C GmbH, 901 Campisi Way, #248, Campbell, CA 95008
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exposure bake (PEB), still suffer from modeling inadequacies. This problem has been

addressed in the earlier chapter.

All the models require the use of constants. These may be parameters that represent
either the chemical or physical constants of the phenomena involved. There are also con-
stants that are empirical in nature. While some parameters are well known, many of them
are not known accurately, so a lot of experimentation is devoted to extracting their values.
However, the large number of the unknown parameters, and the non-linear nature of the
models, renders traditional optimization techniques, such as steepest descent, useless for
parameter extraction. Manual optimization procedures, wherein the parameters of the
model are changed one at a time to fit experimental data, are erroneous, because they
neglect interaction effects between the different parameters. Thus, process simulation engi-
neers spend a very large amount of time to calibrate a model and after that, only use the

model to study general process trends due to the lack of confidence in its results.

In this chapter, an efficient methodology is proposed for extraction of information
from standard unpatterned and patterned resist characterization experiments, to be ulti-

mately used for the calibration of lithography simulation tools.

S.2. Simulator Calibration Framework

5.2.1. Process Models
Accurate process models for the lithography sequence have been developed in
chapter 4. Here, the updated models for the exposure, PEB and develop step are presented

together for completeness.

5.2.1.1. Thin Film Interference

Dose(z) = Dose(0) x (e—yz + Irlze—Y(Zd— 2)_ 27| e_ydcos(‘b&:——z))) (5.1

where the Dose(0) is the applied dose in mJ/cm?, corrected by the reflectivity at the air-
resist interface, z is the depth into the resist in pm, v is the attenuation within the resist film
in um™!, dis the film thickness in Hm, n is the real part of the refractive index, A is the expo-

sure wavelength in um, and r is the reflectivity coefficient of the resist/substrate interface.
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5.2.1.2. Exposure & PEB Process Model
. kamg
- (o([4eid)y - [Q]g)D) o (5.2)
[Acid]ye ~[0],

[dcid], - (0],

m=

where m is the normalized concentration of unreacted blocking sites, o is the neutraliza-
tion reaction coefficient modeled by an Arrhenius function of temperature, [Q],, is the rel-
ative quencher concentration (relative to [P4AG]y), kamp 1s the reaction amplification rate in
sec’!, modeled by an Arrhenius temperature relationship and [4cid], is the acid concentra-

tion calculated as:

[Acid), = (1 _eCxD 0“(2)) (5.3)
5.2.1.3. Develop Process Model
= A+ -m)"
R(m) ax - +R . 54)
A+(1-m)

%%'3( ~m)" (5.5)

where R,,,,, is the maximum development rate, R,,,;, is the minimum development rate, m,;,
is the value of m at the inflection point of the data, called the threshold PAC concentration,

and n is the dissolution selectivity parameter, which controls the contrast of the photoresist.

5.2.2. Estimating the values of the model parameters

Some of the coefficients in the process models represent either the chemical or
physical characteristics of the materials and equipment involved. Others are empirical in
nature. One needs accurate estimates of the values of these process and equipment param-
eters in order to do predictive simulation. In this study, we classify these parameters into

three categories, depending on the accuracy with which they are initially known.
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The first category (Category I) consists of parameters that are obtained through

direct, well recognized measurements, such as the numerical aperture and partial coherence
of a projection system or the refractive index and thickness of thin films. The second cate-
gory (Category II) consists of parameters whose values are extracted by running unpat-
terned wafer experiments, such as the DRM for development related parameters (maximum
and minimum development rate, resist contrast, etc.) and fourier transform infrared spec-
troscopy (FTIR) for PEB related parameters [36] (amplification rate coefficient, acid loss
rate, etc.). These parameters are extracted by fitting the physical models described in the
preceding section to the raw data. This approach provides parameter values that are subject
to both experimental error as well as model-bias errors, due to model inaccuracies. Hence,

the values of the parameters in this category are not as well known as those in the first cat-

egory.

Finally, the third category (Category III) consists of empirical parameters such as
the focus offset between the stepper focal plane and the simulator focal plane. In the same
category are physical parameters that are very difficult to obtain experimentally, such as
the diffusion coefficient and the amplification reaction order in chemically amplified resist

systems.

While the parameters in the first category are fixed at known values, those in the
second and third categories are obtained through optimization. The category II, or the
parameters subject to experimental and modeling errors, go through a two step optimization
process. In the first step, rough estimates of these parameters are obtained by fitting phys-
ical models to experimental data from unpatterned resist experiments. The second step is
to fine-tune these parameters by fitting to cross-sectional resist profiles available from pat-
terned resist experiments. This second step is also used to tune the category III parameters

that must be inferred indirectly.

The following are examples of important DUV lithography process and equipment

parameters that are listed by category, as defined above.
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Category I: Well Known Parameter Values.

Resist Refractive Index (Real part)

Resist Refractive Index (Imaginary part)
ARC Refractive Index (Real part)

ARC Refractive Index (Imaginary part)

Category II: Parameters subject to experimental and modeling errors

Amplification Rate (Pre-exponent)

Amplification Rate (Activation Energy)

Neutralization Rate (Pre-exponent)

Neutralization Rate (Activation Energy)

Dill’s A parameter

Dill’s B parameter

Dill’s C Parameter

Relative Quencher Concentration

Maximum Develop Rate

Minimum Develop Rate

Developer Selectivity
Developer threshold PAC

Category III: Parameters that must be inferred indirectly

PEB Diffusivity (Pre-exponent)
PEB Diffusivity (Activation Energy)

Focus offset between stepper and simulator

5.2.3. Experimental Methodology for Parameter Extraction through Profile
Matching

As mentioned earlier, there is a need to cut time to market and to reduce high devel-
opment costs. This calls for a more efficient development process that reduces the number
of unpatterned and patterned characterization experiments devoted to extracting process

parameters, so as to gain maximum possible information from minimum amount of exper-
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imentation. There have been numerous experimental procedures proposed in the literature

for this purpose, as shown in the previous section.

Values of thin film optical constants, such as refractive indices and thicknesses of
organic and inorganic materials, are obtained very accurately by using spectroscopic ellip-
sometry. This technique has the ability to provide the optical constants for each individual
film in a multi-layer stack. Measurement of resist parameters, such as the photospeed,
amplification rate, acid loss rate and normalized acid quencher concentration are typically
obtained through either FTIR or Deprotection Induced Thickness Loss (DITL) [36] studies.
In these techniques, wafers are subjected to multiple exposure and thermal doses, and the
deprotection or volume shrinkage is observed in flood-exposed areas. While an exposure
meander (a serpentine trail of incrementally increasing exposure doses) is done on every
wafer, the number of wafers required is the same as the number of PEB temperatures used.
Measurement of the develop rate parameters, such as the maximum and minimum develop
rates, developer selectivity and developer threshold, is achieved using either the standard
DRM or the Poor Man’s DRM [37]. In the former technique each wafer is exposed with a
different exposure dose, and the resist thickness is monitored in real time during the devel-
opment process. This data is then converted into develop rate vs. deprotection and is used
for extracting develop rate parameters, such as the minimum and maximum development
rate, developer selectivity and the deprotection threshold. In the latter technique, each
wafer is processed with an exposure meander and is developed at different development
times. The remaining resist thickness is measured at each exposure dose and development
time after the development process, and is converted into develop rate vs. deprotection and

used for extracting development parameters.

The standard patterned characterization experiment involves processing a focus-
exposure matrix (FEM) on each wafer. In this technique, wafers are exposed with a FEM
and the profile is then measured in each die with either a cross-section scanning electron
microscope (SEM) or an atomic force microscope (AFM). F igure 5.1 illustrates the exper-

imental flow described in this section.
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Ellipsometry

l Coarse Cétegory II
Values

Category I
FEM + AFM
R

Final Category II
Values Category III

Optimizer

!

Figure 5.1. Experimental flow for parameter extraction.

5.2.4. Formulating an optimization problem for estimating the unknown variables
Simulated Annealing was used as the optimization engine in this problem. For con-
tinuous variables, the continuity has to be taken into account by suitably selected discreti-
zation steps: very small steps result in an incomplete exploration of the variation domain
with small and frequent function improvements; very large steps may produce too many
unacceptable function variations. This particular problem optimized a continuous variable
space. Hence, we chose to use step sizes that were between 0.001% and 1% of the initial
parameter values, depending on how sensitive the simulation was to the particular param-

eters.
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Extensive work has been done in extending simulated annealing ideas from combi-

natorial problems to continuous functions [38], [39], etc. In this work, we use a commercial

package as the optimization kernel?.

5.2.5. Framework for Parameter Extraction through Profile Matching

In this section, a methodology is proposed that ties the process models, parameter
categories, experimental data and the optimization technique together to form an efficient
simulator calibration framework. The framework employs two steps. In the first step, the
unpatterned characterization experiments are carried out. The process engineer then uses
the optimization routine to tune the parameters in the unpatterned process models based on
the experimental results. This step yields the value of the parameters subject to

experimental and modeling errors (Figure 5.2).

Initial Category II
Values

Unpatterned Process
Models

Global Optimizer v
Iteration

Simulated Data Experimental Data

Coarse Category II Values

Figure 5.2. Finding initial estimates for category II parameters (parameters
subject to experimental and modeling €ITorS)

In the second step, the process engineer runs a FEM and measures the cross-sec-
tional profiles using either an AFM or a cross-section SEM. In the former case, the profile

is already in ascii format and can be compared directly to the simulator output, while in the

3. Timbre Technology, Inc., 2000 Walnut Ave., #H-103, Fremont, CA 94538.
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latter case the SEM profile is in JPEG format and thus needs to be converted to ascii format

before it can be compared to the simulator output.

Ax=5 nm
~—p

3

e

cost = )Z(ri—si)2

Figure 5.3. Computing the sum-squared error between simulated and digitized SEM
images

This conversion process is done using a standard graphics package, such as Adobe
Photoshop. The process engineer assigns ranges for the parameters subject to experimental
and modeling errors (category II) and the parameters that must be inferred indirectly
(category III), while fixing the values for the well known parameter values (category I). The
ranges for the parameters depend on the confidence the process engineer has in their accu-
racy; this would typically depend on the accuracy of the metrology associated with the
unpatterned experiments. The optimization routine is now run, varying the parameters

subject to experimental and modeling errors and the parameters that must be inferred
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indirectly, until the simulated profile sufficiently matches the experimental profile

(Figure 5.4).

- Updated Category II
Category I Values
»| Updated Category III
Values
Simulator Process
Models
CGlobal optimizeD y
Iteration .
Simulated Data Experimental
Data

| Final Category I, II and III Values

Figure 5.4. Flowchart of unpatterned characterization experiments (Update Category
IT and III).

The stopping criterion used is the R? value.

2
RZ 1- Z (ymeas, i —ylheoretical, i) (5,6)

= — 2
i (ymeas, i —ymeas)

where / is the number of steps the height of the resist profile is divided into, Ymeas, i
is the measured CD at height stepi, ¥,.0rerica 1 1s the simulated profile CD at the same

height stepiand j,,,. isthe average of the measured CDs over all height steps.

The parameter values obtained at the end of this phase are the final calibrated
parameter values for the simulator and given materials. The larger the range of settings cov-
ered by the experimental data, the more global and hence predictive the simulation calibra-
tion procedure is. Thus, we now have an efficient method for feeding back experimental

profile information to calibrate simulators.
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5.3. Experiments for Parameter Extraction through Profile Matching

The experiments utilized flood exposures as well as patterned wafers, done using a
FEM at standard resolution patterns. All the wafers were coated with Shipley’s UV-5 resist
at the standard processing conditions. An FTIR tool and a spectroscopic ellipsometer were
used for all the thin film measurements, while a cross-section SEM and an AFM were used

for all the profile measurements.

3.3.1. Unpatterned Experiments

We employed Ellipsometry and FTIR spectroscopy to extract the final values for
category I parameters and initial values for the category II parameters using the exposure
and PEB models shown in (5.2) and (5.4). This involved three wafers that were each flood-
exposed with twenty-five different exposure doses in a meander ranging from 0 to 7.6 mJ/
cm?. These wafers were then subjected to 3 different PEB temperatures from 120 to 135
degrees Celsius. Before the exposure step, the anti-reflective coating and the resist were
each measured for thickness and optical constants (real and imaginary part of the refractive
indices) using a spectroscopic ellipsometer, such as the KLA-Tencor 1250 SE. The thick-
nesses on all the 25 sites was measured again after the PEB step, thus yielding the DITL
[40]. These wafers were then measured with a QS-1200 FT-IR System from Bio-Rad. The
deprotection was measured by tracking the ester bond (1150 cm™! peak). This experiment
yielded deprotection vs. dose and temperature, as well as raw ellipsometry signals contain-

ing information on the thin film optical constants.

The Poor Man’s DRM [37] experiment was performed using ten wafers at different
exposure doses and development times. This yielded develop induced thickness loss versus
exposure doses, which was converted into develop rates versus concentration of unreacted
sites using the DITL model [37].

5.3.2. Patterned Experiments

An experiment was carried out on a wafer with different layout designs. There were
a total of 10 layouts, each exposed at 2 focus settings that were 0.3 pm apart. The layout
geometry is shown in Figure 5.5. There were 7 geometric parameters, dps +ers dg , defin-

ing each layout. The geometric parameters of the 10 layouts are shown in Table 5.1. The
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wafers were then cleaved and measured with a cross-section SEM. Figure 5.6 shows one of

the cross-section SEM images. The outer line profiles were digitized and compared to the

simulation output using Prolith v5.07

Profile of Interest

Figure 5.5. The mask layout design for the experiment.

dy 4 d 4 d, s d
layout 0 0.22 0.26 0.22 0.26 0.22 0.26 0.08
layout 1 0.24 0.24 0.24 0.24 0.23 0.26 0.08
layout 2 0.26 0.22 0.26 0.22 0.24 0.26 0.08
layout 3 0.20 0.28 0.20 0.28 0.21 0.26 0.08
layout 4 0.18 0.30 0.18 0.30 0.20 0.26 0.08
layout 5 0.22 0.28 0.22 0.28 0.22 0.28 0.08
layout 6 0.24 0.26 0.24 0.26 0.23 0.28 0.08
layout 7 0.26 0.24 0.26 0.24 0.24 0.28 0.08
layout 8 0.20 0.30 0.20 0.30 0.21 0.28 0.08
layout 9 0.18 0.32 0.18 0.32 0.22 0.28 0.08

Table 5.1. Geometric Definition of the Layout in the Experiment (in pm)
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profile of interest

Figure 5.6. An example of a cross-sectional SEM image.

5.4. Results of Parameter Extraction through Profile Matching

5.4.1. Category I parameters

Spectroscopic ellipsometry measurements made on photoresist on an anti-reflective
coating on silicon, provided values for the refractive index n, the extinction coefficient k
and the thickness for each of the films. These values were measured with very high confi-
dence (intervals <0.1%, as specified by the commercial metrology tool), and were hence

kept fixed for the rest of the study. Their values are shown in Table 5.2.

Parameter Value

Resist Refractive Index (Real part) 1.8038
Resist Refractive Index (Imaginary part) 0.01036
ARC Refractive Index (Real part) 1.4525
ARC Refractive Index (Imaginary part) 0.4028

Table 5.2. Category I: Well Known Parameter Values
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5.4.2. Category II parameters

The PEB model was used to extract the Dill’s C parameter, the relative quencher
concentration [Q], the pre-exponent for acid amplification Aamp, the exponent for acid
amplification Eamp, the pre-exponent for the neutralization reaction A, and the exponént
for the neutralization reaction E,. However, unlike existing models, this model explains the
data over the entire range of doses, and hence provides good estimates of all of the above
parameter values. Using (5.2), the SA optimization procedure provided the fit to the exper-
imental data obtained from the FTIR experiment, and the corresponding parameter values
are shown in Figure 5.7. The values of all the extracted parameters were very close to the
values obtained using alternate chemical tests, such as the colorimetric titration procedure
[41], and activation energy studies commonly performed to study chemical reactions. The
FTIR experimental data was optimized over 6 parameters and took less than one minute of

CPU time on a 450 MHz P-II processor to converge to the error limit specified (R? of 0.95).

y ) v T — T T In(Aamp )= 48.063 1/s
o9} /.-~/ -
/ v /"
osl S oswT " 1 Eamp =39.629 cal/mole
~ / “+
E oz} /‘ // > g ‘,‘j,ﬁ.‘ A
: o8l l//';/ - ’:‘,/" . In(Aa )= 49.809 /s
= / P !
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Figure 5.7. Experimental and Fitted Values for Deprotection vs Exposure Dose as a
function of 3 different PEB temperatures (120, 130, 135 degrees C)

The Mack develop model was used to extract the dissolution parameters. Figure 5.8
shows the fit to the experimental data, and the corresponding parameter values are shown
to the right of the figure. Once again, the optimized parameter values were compared to

those obtained from alternate tests, such as monitoring the dissolution rate in unexposed
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areas and high exposure areas in order to determine the minimum and maximum develop

rates, respectively. The values obtained were similar in all cases. The DRM experimental
data was optimized over 4 parameters and took less than one minute of CPU time on a 450

MHz P-II processor to converge to the error limit specified (R? of 0.95).

30007 Ry = 2636 Alsec
0110 1 R SOURUNS SOUUUOOS SUUTRUOR SOV SUNSRURS SURPNINS SURUOTOS AOUROTE SR i
’é‘ Rpin = 30.99 A/sec
2 2000 R RSGailts s S SRS i
5 ! ns =11.04
g 1500, : RIS Rt S - .........; ......... Pveeenen 4
: : : : i =0.188
_g_- 1000: SO S - e - Mth
[ H i H H
®
Q 500 t - ... ........................... .-
: : . |
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Normalized Concentration of unreacted sites (m)

Figure 5.8. Develop rate versus the normalized concentration of unreacted sites. Figure
shows the fitting of the Mack develop model to the data.
It should be noted that, while the initial values for the parameters in this category
were extracted using the framework shown in Figure 5.2, the final optimized parameter val-

ues, shown in Table 5.3, were extracted using the framework shown in Figure 5.4.

5.4.3. Category III parameters

The framework in Figure 5.4 was used to extract the parameters that must be
inferred indirectly (Category III), and to also refine estimates of the parameters (category
II). It was difficult to validate the estimates in this category with any alternate methods due

to the nature of the parameters. The final Category III parameter values are shown in
Table 5.4.

In this particular problem, since all the patterned experiments were done at a single
PEB temperature, we could not extract the pre-exponent and the activation energy simulta-
neously. Hence, we assumed the pre-exponents to be the values obtained from the unpat-

terned resist experiments that were done at multiple PEB temperatures, and we optimized
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Parameter Value
Amplification Rate (Pre-exponent) 47.65 1/s
Amplification Rate (Activation Energy) 39.623 Kcal/mole
Neutralization Rate (Pre-exponent) 49.809 1/s
Neutralization Rate (Activation Energy) 39.605 Kcal/mole
Dill’s A parameter 0.00 /um
Dill’s B parameter 0.4683 /um
Dill’s C Parameter 0.065 cm?/mJ
Relative Quencher Concentration 0.15065
Maximum Develop Rate 3664.5 A/sec
Minimum Develop Rate 6.06 A/sec
Developer Selectivity 9.8164
Developer threshold PAC 0.1433

Chapter 5

Table 5.3. Category II: Parameters subject to experimental and modeling errors

Parameter Value
PEB Diffusivity (Pre-exponent) 50.453 nm“/s
PEB Diffusivity (Activation Energy) 39.623 Kcal/mole
Relative Focus -0.55pm

Table 5.4. Category III: Parameters that must be inferred indirectly

only for the activation energies. If there were more than one temperature used in the pat-

terned experiments, one could have extracted both parameters simultaneously.

Overall, the patterned data optimization was done over 12 parameters, and the pack-
age used for the simulations was Prolith v5.07. The optimization procedure took approxi-
mately 20 hours of CPU time on a 400 MHz P-II processor to converge to the error limit
specified (R2 of 0.95). There were 4 different layouts at 2 different focus settings used as
training data for the simulator calibration procedure. Having calibrated the simulator, the
next step was to test its predictive capabilities. The cross-sectional profile information from

the other 6 layouts at 2 different focus settings were used as testing data. Figure 5.9 shows
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the fit between profiles measured by the cross-section SEM and those derived from simu-

lation for the training data while Figure 5.10 shows the same for the testing data..

Training

Maskl

Mask3

Focusl

Focus2

j( WMas

Focusl

I

!

P

)\

‘\

|

- o e e e

pvar—

;

ra

Focus2

e

T~

-
T,
Y
s

L

2

sMas [‘I\

*a
E

- e e e e o

PR A st rv iy o

".91;‘,;\1
sz

<

PEB Temperature = 130°C
PEB time = 90 secs
Exposure Dose = 13.5 mJ/cm?

Focusl = 0.0 um
Focus2 = 0.3 um
Resist Thickness = 655 nm

Develop Time = 60 secs

NA =0.57
c=0.5

Figure 5.9. Fitted versus simulated profiles across different focus-layout combinations for

training data.
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Figure 5.10. Fitted versus simulated profiles across different focus-layout combinations
for testing data.
5.5. Summary

The main goal of this work was to develop an efficient simulator calibration frame-

work that increases the confidence of the process engineer in the simulation tool, and sub-

sequently reduces reliance on experimentation. By transferring the burden of process

development from hardware (process equipment) into software (simulation), the process

engineer will benefit from both reduced development costs and faster time to yield.

We presented the experimental work done, both in unpatterned and patterned char-

acterization experiments, along with the mask layouts and dimensions used for a state-of-

the-art process. The results demonstrate excellent predictive capabilities. We believe that

this framework can potentially improve yield ramp rates and hence reduce development

costs.
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Chapter 6 Run-to-Run Control in the
DUY Lithography Sequence

6.1. Introduction

Feature dimensions in semiconductor manufacturing are continually decreasing,
while die and wafer sizes are increasing. As the critical feature size decreases below 0.25
um, Deep Ultraviolet (DUV) lithography remains the key technology driver in the semi-
conductor industry, accounting for approximately 35% of processed wafer cost. However,
submicron DUV photolithographic processes present significant manufacturing challenges
due to the relatively narrow process windows often associated with these technologies. The
sensitivity of the process to small upstream variations in incoming film reflectivity, photo-
resist coat and softbake steps as well as the bake plate temperature can result in the final
critical dimension (CD) going out of specifications. Further, CD problems are usually not
identified until the end of the lot. The high costs associated with the manufacture of Inte-
grated Circuits necessitates higher yields and throughput, requiring a reduction in process
variability. One approach to reducing process variability is to use a supervisory system that
controls the process on a real time or run-to-run basis [1]. Real time control involves the
collection of sensor signals during the processing of a wafer and adapting the process recipe
during the course of the wafer. Run-to-run control involves adapting the process recipe
between wafers. Real time control is more aggressive and more involved than run-to-run

control in general.

High end devices such as microprocessors require a considerable number of process
steps. Therefore, it is becoming increasingly important to have an accurate, quantitative
description of the submicron structure after each step. Currently the lithography process is

monitored before photoresist spin on (index, thickness and uniformity measurement of
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incoming stack) and after development (linewidth and profile measurement). Inspection at

the initial and final stages of the process, however, provides only a measurement of the
cumulative effects of all the upstream process steps. To isolate the effect of each process
step, monitoring at each step is necessary. This need for wafer process monitoring requires
in-line sensors and real time algorithms to facilitate real time analysis of sensor signals.
Algorithms and sensors for this purpose have been described in the preceding chapters. In-
line metrology is preferred to off-line metrology due to increased throughput and possibly

yield.

The need for in-situ and/or in-line process monitoring must however be balanced
with critical manufacturing issues such as possible adverse effects on throughput, cost,
sensor integration into an overall control strategy, possibly limited sensor reliability, etc.
Most commercial metrology equipment is either too slow or too complex to be imple-
mented in an in-line arrangement. The sensors and algorithms described in the preceding
chapters can satisfy the requirement of making measurements that are sufficiently accurate,

repeatable and rapid at a low cost.

Run-to-run control on a lot to lot time scale has already been successfully imple-
mented at Motorola, implementation and results of which are discussed in [24 from John)].
This study showed that a very simplistic control algorithm and CD-SEM measurements on
a lot-to-lot scale, reduced the pre-etch CD standard deviation from 9.4 nm to 6 nm and the
post-etch CD standard deviation from 11.1 nmto 7.1 nm. While this study reduced the vari-
ability occuring on a lot-to-lot time scale, we believe that the use of the more sophisticated
control algorithms working in unison with in-line/in-situ sensors will reduce this process
variability even further, by reducing both the wafer-to-wafer variability in addition to the
lot-to-lot variability. Musacchio [Thesis] showed that slightly more sophisticated algo-
rithms, such as the EWMA with robust drift cancellation, provided a further 40% reduction
in lot-to-lot CD variability.

6.2. Sources of Variability in the Lithography Sequence
As described in detail in chapter 1, the DUV lithography sequence consists of the

spin-coat and soft-bake steps followed by the exposure and post-exposure bake steps and
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finally the development step.There have been quite a few studies discussing the sources of

variability in the lithography sequence [Sturtevant][Crid]. These studies, along with discus-
sions with fab managers, provide us with the most likely sources of variation. The sources

of variation at each process step are given below:

6.2.1. Incoming Thin Film

Variations in the incoming thin film stack optical properties, such as the complex
index of refraction and thickness, change the reflectance as seen by the stepper/scanner.
This changes the effective exposure energy that gets coupled into the resist. The changes in
the optical properties of the underlying thin film could be due to a change in the deposition

conditions, such as temperature, gas flow, etc.

6.2.2. Spin Coat and Soft Bake

Typically, there is a 5-10% variation from batch-to-batch in chemically amplified
resist systems. This variation could occur in the viscosity or the quencher concentration. A
variation in the former leads to different resist thicknesses at the same spin speed, thus caus-
ing a change in the effective exposure energy coupled into the resist. A variation in the
latter acts to neutralize less or more of the generated acid, effectively changing the effective
exposure energy coupled into the resist. Variation in the soft bake time or temperature
affects the decomposition rate and the amount of solvent left in the resist, both of which
change the effective exposure dose and diffusivity of the acid during the post-exposure
bake step.

6.2.3. Exposure

The light source in a stepper/scanner is an excimer laser, which provides the
required exposure energy through a discrete number of laser pulses. Each laser pulse has
random variations in its energy and hence the final exposure energy is typically controlled
to within +/- 2%. This difference in the set vs. actual dose plays contributes significantly

due to the chemically amplified resist systems.

6.2.4. Post-Exposure Bake (PEB)
The PEB is probably the single biggest contributor to CD variability due to the

chemically amplified resists being very sensitive to the thermal dose. Variations in the bake
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plate temperature affect both the deprotection rate as well as the acid diffusion, causing

variation in the CDs.

6.2.5. Development
Variation in the develop step is found to be minimal if a correct recipe is used that

optimizes the combination between the spray step and the puddle step.

6.3. Metrology Schemes

Having outlined the possible sources of CD variation, the next step is to identify the
metrology schemes that could be used to measure the intermediate steps. The different
metrology systems for the incoming reflectance, deprotection induced thickness loss
(DITL) and the CD have been described in chapter 2. We will devote this section to deter-
mining possible in-line/in-situ configurations for the different metrology systems as well

as studying the measurement frequency that each system is capable of,

Wafer reflectance measurements, both before and after the spin-coat and soft-bake
step, can be made with an normal incidence reflectometer as described in chapter 2. There
are a number of commercial reflectometers, both single wavelength and spectroscopic,
such as the SC Technology and the Ocean Optics systems, that can be integrated on the chill
plates of some wafer track systems that have enough open space above the chill plate. In
wafer tracks that do not have the luxury of the open space above the chill plate, reflectom-
etry systems have been successfully installed on the robotic arm that moves the wafer
between the different modules. It is the simplicity and the low cost of the reflectometry
system that allows it to be relatively easily integrated in-line and this measurement could

therefore possibly be made on every wafer.

The DITL measurements, as described in chapter 2, can be made using a standard
spectroscopic reflectometer. In an in-line configuration, DITL measurements would be
made during the chill step (after the PEB step). Hence, the reflectometer could be mounted
in the same way as described in the preceding paragraph. In an in-situ configuration, for
end-pointing the bake step, a more compact version of the reflectometer would need to be
set up since the bake plates are usually very tightly sealed in order to maintain tight tem-
perature control. Commercial reflectometers that allow precise positioning and pattern rec-
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ognition are now being introduced into the market through companies like Nanometric, Inc.

and Nova. Once again, these measurements could possibly be made on every wafer due to

the above stated advantages of reflectometry.

The use of optical tools, such as spectroscopic ellipsometers, for in-line CD metrol-
ogy have been described earlier. The footprint required for ellipsometers is typically more
than that required for reflectometry, due to the larger number of optical elements required
to polarize the light. One concept for in-line CD metrology that is being investigated is a
metrology end-station. This could be placed between the lithography and the etch equip-
ment, thus allowing CD measurements to be made on every wafer both before and after

etch.

In this chapter, we discuss an algorithm that allows information from one or more
of the in-line sensors to be integrated at different time scales. This is known as sensor fusion
and has been used in a plethora of fields [References). Sensor fusion allows better estima-

tion of the process noise and hence a better controller performance.

6.4. In-line RtR Controller Design

6.4.1. Experiments

The first step is to determine the relationships between the different critical process
parameters, such as the exposure energy, PEB time (interchangeable with the PEB temper-
ature), and the process observables, such as the DITL and the CD. This involved carrying
out a designed experiment and was performed at National Semiconductor Corporation’s

class 1 fab in Sunnyvale, CA.

The experiment was carried out as follows. Four bare silicon wafers were spun on
with 660A of an anti-reflective coating and then baked at the standard soft-bake conditions.
After chilling the wafers, they were spun on with Shipley UV5, a commercially available
chemically amplified resist, to a thickness of 6550A. After spin on, the wafers were soft-
baked at the standard conditions to remove solvent and chilled again. All the wafers were
then measured for thickness using a KLA-Tencor UV12508SE, a single angle spectroscopic

ellipsometer. The wafers were then sent to a DUV stepper, where two exposure passes
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were made. In the first pass, the standard product mask was used with exposure doses rang-

ing from 12.2 mJ/cm? to 13.8 mJ/cm? in steps of 0.2 mJ/cm? , centered around the nominal
exposure dose to size of 13 mJ/cm?. The focus was set to the best focus, obtained by run-
ning a send ahead test wafer. The goal of the first pass was to print CDs that could be mea-
sured with a CD-SEM. The second pass was used to print blanket exposures in order to
measure the DITL. This was done by exposing the wafers using doses ranging from 4.6 mJ/
cm? to 5.4 ml/em? in steps of 0.1 mJ/cm?. The nominal dose was centered around the dose
to clear, i.e. 5 mJ/cm?. The exposure doses for the blanket areas were chosen so as to main-
tain the ratio of dose to size to dose to clear for all the die. This accounted for their different
diffraction efficiencies thus ensuring that the blanket and adjacent patterned areas received

the same effective exposure dose. Figure shows the details of how each die was exposed.

6474849505.15253 5

12.8 13.0 13.213.4 13.6 13.8

D Blanket Exposure: 3 replicates

12.212.4 12.6
R | TR | T

CD Test Patterns: 4 replicates

6474849505.1525.3 5

Figure 6.1. Blanket and Patterned Exposure Pattern for the CD control model
experiment

The wafers were then post-exposure baked at 135 degrees Celsius at 75, 90, 90 and
105 seconds. After being cooled on the chill plate, the four wafers were measured on the
KLA-Tencor spectroscopic ellipsometer for remaining resist thickness in the flood exposed
areas, thus providing the DITL as a function of exposure dose and PEB time. The wafers
were then developed for 60 seconds and taken to KLA 8100 CD-SEM for CD measure-

ments in the patterned die. The details of the experiment are listed in Table 6-1.
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Process Recipe Value / Range of Values
Resist Thickness 6550 (Angstroms)
ARC Thickness 660 (Angstroms)

Exposure Dose (Blanket) | 4.6:0.1: 5.4 (mJ/cm?)
Exposure Dose (Patterned) { 12.2:0.2:13.8 (mJ/cmz)
PEB Time 75, 90, 90, 105 (seconds)
PEB Temperature 130 (degrees Celsius)
Develop Time 60 (seconds)

6.4.2. Process Models

Table 6-1. Experimental Conditions used in Process Model Building

Chapter 6

Regression models were built to model the DITL, the CDs and the process inputs.

Transformations were introduced in some of the terms in order to improve the fit of linear

models to the experimental data. The results are summarized in Table 6-2 [22 of John]. The

first and the second models relate DITL and CD (respectively) to the process inputs i.e.
bake time and exposure dose. The last model relates CD to DITL and the PEB time. The
rationale for having both DITL and PEB time in the model to predict CD is that while DITL
captures the deprotection behavior, it does not effectively capture the diffusion of acid

within the resist during the PEB. Studies have shown that the diffusion is a fairly linear
function of the PEB time [Neureuthers paper]. It should be pointed out that although the

CDs in this experiment were measured with a CD-SEM, they would ideally have been mea-

sured with the specular spectroscopic scatterometry technique since that would allow both
the observables (CD and DITL) to be measured in-line. .

# Model Adj. R* | Std. Error

JDITL = —23.4615 +2.5176 x Dose + 0.0334 x Time 0.9802 | 0.22A%°
II CD = -0.016 x Dose + 0.0906 x «/Time — 0.0052 x Time 0.9996 |3.837 nm
II| CD = -0.0029 x Time + 0.0508 x /Time — 0.000255 x DITL | 0.9995 | 4.216 nm

Table 6-2. Modeling Experiment Results
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6.4.3. Drift Model

Having found static models relating the inputs and outputs of the DUV lithography
process, it is now necessary to develop a model of how the process drifts. The issue

addressed in this section is where in our process model should we account for this variation.

In section 6.2 we surveyed the likely sources of variability in the DUV lithography
sequence. We attributed the CD variability to incoming wafer reflectivity variation, batch
to batch resist variation and exposure and thermal dose variation. These sources of variabil-
ity as well as others have been modeled to first order with additive noise on the process

inputs - exposure dose and PEB time [John thesis].

Dose,, = Dose,,,,,+ Noise,,, 6.1)
Timeeﬂ = Time,,,, ,+ Noiser,,. (6.2)

Here, we have introduced the terms Dose,g and Time,r to denote the sum of each
input setting and noise term. Our final models for DITL and CD will be those summarized

in Table 6-2, but with Dose,¢ and Time, substituted wherever Dose and Time appear.

JDITL = -23.4615+2.517 x Dose,;+0.0334 x Time, (6.3)
CD = -0.016 x Dose, -+ 0.0906 x /Timeeff— 0.0052 x Time, (6.4)

Finally, we assume that some measurement noise occurs in measuring both the
DITL as well as the CD.

DITL = DITL,  +noise (6.5)

meas true

CD = CD,,,, + noise (6.6)

meas true

6.4.4. RtR Control Architecture

6.4.4.1. Scenario I

In this scenario, the in-line reflectometer measures the resist thickness before and
after the exposure and PEB steps, in order to calculate the DITL. This DITL value is used
to estimate the post-develop CD which is then used in conjunction with a standard RtR con-

trol algorithm, to prescribe a recipe for the subsequent wafer. A schematic of the control
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architecture is shown in Figure 6.1, and a summary of the notation used in the controller

development is presented in Table 6-3 [Johns thesis]. .

Lithography Process
Doseegr
Noisedose—pe- ) CD = f(Doses, Timeegs) 0,
Timeggr
Noisetime h-@ P~ DITL = g(Dose.g Time,sy,
A DITL

Noise —>®

vy

CD Estimator
CD = h(DITL, Time)
CD Estimate |

Dose Time

RIR Controller

Proce@odel |

AN

CD Target A I

Figure 6.1. RtR Control Architecture for DUV Lithography in Scenario I

Definition Explanation
T=CD Target Desired CD
v, = CD, True CD of wafer k
Vi = Cbk CD estimate of wafer k
e, = Yp—Vi CD estimation error of wafer k

u, = Dose, Input vector for wafer k
Time,

Table 6-3. Control Architecture Notation

The CD estimation block of Figure 6.1 takes a presumably noisy DITL measure-
ment and the wafer’s PEB time and applies Model III of Table 6-2 to arrive at an estimate

for CD.
i = CDi = —0.0029 x Time, +0.0508 x ,[Time, —0.000255 x DITL,  (6.7)
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The target CD and CD estimate of the previous wafer are fed into the RtR Controller

block of Figure 6.1. Musacchio [thesis] has shown that the use of the additive noise terms
to the exposure dose and PEB time in the drift model makes the sensitivities to the process
inputs fixed to first order. He uses an EWMA technique to handle this offset drift problem.
Jakatdar, et.al. [src98report]

6.4.4.2. Simulation

White__y, LITHOGRAPHY PROCESS_ €0,
Noise CD={(Dose,g PEBtime,g)
White__g, | Thloss = g(Doseeff,PEBtz’me eﬁ‘)
Noise Thloss
N Noisepp;,s
5
2| X
S| o 1
EWMA CONTROL BLOCK oD ESTIMATOR
Offset = a(Offset, CD) = h(Thloss, Time)

Target = q(Dose, Time, Offset) |

Figure 6.1. Simulation Architecture
Figure 6.1 outlines the simulation architecture. The Simulator simulates three

blocks: the drifting lithography process, the CD estimator, and the EWMA controller. The
CD estimator and EWMA Control blocks are implemented with the equations given in
Section 5.4.4. Simulating the lithography process block also requires specifying a stochas-

tic drift model, which is the purpose of this section.

The lithography process block takes exposure dose and PEB time as inputs, and out-
puts CD and Thickness Loss. The model for the lithography process is that described by
Section 5.4.3. Thus, f{, ) and g( , ) of Figure 5.9 are the models for CD and thickness loss
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found from the modeling experiment, with the substitution of a Dose,gand PEBtime g for

Dose and PEBtime.

We must assume that Noise s, and Noisepgp has some autocorrelation structure
between runs. Because we do not know the exact autocorrelation structure we will encoun-
ter in the real lithography process, by default we assume the simplest model possible, a first

order AR. The modeling technique is that illustrated in Section 2.3.1**, We define

{Noisedose }k

{Noisepgp},

x=

(6.8)

Now suppose we expect the variance of Noisey,,, to be G dose and the variance of
Noiseprp to be o’pEs. Also suppose we expect the autocorrelation coefficient between
successive runs to be P, ; and P, , for Noise g, and Noisepgp respectively. With the fol-

lowing definitions:

2
K=|0Dose 0 | p f‘ 0],6 = JK—-FKF* (6.9)

0 0'2p53 0 f2

the stochastic process for x; is

Xpe1 = Fxp+Gw, (6.10)
Where wy is a 2 dimensional gaussian random vector with identity covariance. As indicated
by Figure 5.9, the random process generated by (6.10) can be generated by passing white

noise through two filters, each with a pole at f; and a zero at 0.

The thickness loss measurement error, Noise s, is assumed to be white and nor-

mally distributed with variance o Thloss .
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Thloss = g(Eff. Dose, Eff.Time) Measure -very
N Nth wafer
Thickness
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RtR Controller
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¥

f

CD Estimator by estimating

bake noise and dose noise

* CD Estimate

CD Target

Figure 1. RIR Control Architecture for the DUV Lithography Process

Figure 6.2. RtR Control Architecture for DUV Lithography in Scenario II
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Chapter 7 Conclusions

7.1. Thesis Summary

The history of the semiconductor industry has been characterized by Moore’s Law
that predicts the exponential scaling factor for integrated circuit density. To keep the indus-
try on its historic 25-30% / year reduction in cost/function despite the escalating factory
costs (20% / year), greater synergy must be developed between the areas of metrology,
modeling, simulation and control. This thesis has presented a framework that integrates the
metrology of wafer level observables with physical models for the same, in order to achieve
enhanced predictive simulation as well as to facilitate run-to-run control of the lithography

process.

Metrology was developed for the intermediate steps of the pattern transfer
sequence, from unpatterned thin films to the latent image in the photoresist during exposure
and PEB to the final patterned CD. The development of a metrology scheme for each step
was characterized by first identifying the observable at that step and its correlation to the
final CD, followed by identifying the appropriate sensor and then presenting an algorithm
that rapidly analyzes the sensor data. While some of the algorithms used in this thesis are
in their original incarnation, some others, such as the NN-ASA, have been modified to
overcome the drawbacks of the original algorithms. Finally, experimental results for each

metrology scheme were presented.

This thesis also introduced the concept of deprotection induced thickness loss or
DITL, as a means of providing information on the state of the resist through the measure-
ment of a simple observable. Both static and dynamic models were presented that help to

get a better estimate of important model coefficients, such as the diffusion coefficient and
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the acid quencher concentration. The computation of the DITL was a moving boundary

problem that needed to be solved.The experimental results show the validity and impor-

tance of using such a concept to extract the model coefficients.

A lithography simulation framework is presented that provides a hierarchical
method for determining the model coefficients of lithography simulation models. These
coefficients are determined using experimental data from both unpatterned and patterned
wafers, undergoing a coarse optimization loop followed by a finer optimization loop. The
results demonstrate that this technique could dramatically reduce the time to develop a pro-

cess through increased predictive simulation capabilities.

Finally, a run-to-run controller is presented that attempts to correct for process drift
at the different process steps in the lithography sequence. The controller uses a Kalman
Filter to provide estimates of the noise and uses process models based on a statistical design
of experiments technique. Two scenarios are considered, differing in the type of metrology
as well as the frequency of measurements available. The simulation results indicate the effi-

cacy of using such a scheme for a real-world lithogi'aphy sequence.

7.2. Future Work

While this thesis has focused on the building blocks for a completely automated
process development and manufacturing sequence, there has been more empbhasis placed
on the experimental verification of the metrology, modeling and simulation blocks with
only simulation results being presented for the control block. The experimental verification
of the run-to-run control scheme presented here could be an important area of future
research, with the emphasis being on the integration of sensors with the processing equip-
ment as well as studying the efficacy of the different control algorithms in actual drift con-

ditions.

Also, while the reduction of variability on a wafer-to-wafer and lot-to-lot time scale
has been the goal of this run-to-run controller, the spatial components of variability, viz.
die-to-die and within die components have not been addressed. The spatial component of
variability is becoming an increasingly bigger source of variability in the lithography pro-
cess. Dealing with this problem would require schemes for spatially resolved actuation,
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such as field-varying exposure doses and a spatially resolved bake plates [47]. This multi-

ple input, multiple output would be a complex control problem.

In the area of metrology, the specular spectroscopic scatterometry (SSS) technique
can be extended to other processing steps as well, such as multi-material gratings as in
Chemical Mechanical Polishing (CMP). The migration of SSS to CMP would require some
novel theoretical work since previous grating work has attacked the problem of single
material gratings with air. In addition to being used for multiple applications, not enough
is understood about the sensitivity of this technique to the different spectroscopic ellipsom-
etry configurations and incident angles. This could prove to be an important area of

research in the near future.

An interesting area of future research in simulation would be to identify the sensi-
tivity of the photoresist profile to the various lithography model coefficients. Determina-
tion of their sensitivities would provide a means of model coefficient reduction in the

optimization problem, thus significantly enhancing the speed of simulator calibration.
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Appendix A

Appendix A Symbols Used
Parameter Description Units
o Neutralization Reaction Coefficient -
D, Linear Combination of the inputs to the ith node in
the hth layer used in Logistic Sigmoid Functions -
A Wavelength of light nm
c Partial Coherence -
0, Bias term for the ith neuron in the hth layer -
© Volume Shrinkage Element pm3
ay Output of the hth layer for a given input x -
4; Fitting Parameter in the Forouhi-Bloomer Equation -
Ié,- Fitting Parameter in the Forouhi-Bloomer Equation -
Ceost Cooling Scaling Factor for T -
C Rate of Photoacid Formation cm?/m]J
C; Fitting Parameter in the Forouhi-Bloomer Equation -
d Minimum Inter-cluster Distance -
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DITL

Dm

gk)
h(3(E,T,))
k

k

kamp
Keost

kloss

Deprotection

Deprotection Induced Thickness Loss
Dimensionality of parameters
Diameter of the kth cluster

Acid Diffusivity

Volatile Molecule Diffusivity

Sum squared error

Optical Energy Band-Gap

Probability Density of state space of D parameters

Acceptance Probability of a new cost-function

Extinction Coefficient

Scaling Factor to convert deprotection into corresponding
volatile group concentration

Hole Collapse Rate

Scaling Factor to convert hole concentration into volume
shrinkage

Acid Amplification Rate

Number of acceptances

Acid Loss Factor

Thickness
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pm?/sec

pm?/sec

eV

sec'l

sec'1

sec”



hy

ns

Number of Transitions in SA

Repetition Function

normalized concentration of unreacted blocking sites
Value of m at the inflection point of the DRM curve

Characteristic Matrix for Reflectance Calculations

Refractive Index

Number of cluster centers

Developer Selectivity
Complex Index of Refraction

Number of points in cluster k

Initial Concentration of Photoacid Generator
Normalized Acid Quencher Concentration

Reflection Coefficient for TM wave

Reflection Coefficient for TE wave
Relative Reflectance

Maximum Deveop Rate

Minimum Develop Rate
Temperature Anneal Scale

Cost Parameter Scale Ratio

Number of neurons in the hth layer
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mol/cm?

A/sec

Alsec



H. W. Huang

ST

Temperature Ratio Scale

PEB time

Cost Temperature

Thickness Loss or Volume Shrinkage

Temperature Function or Cooling Schedule

Initial Temperature of the Acceptance Function
Normalized Acid Concentration

Deprotection

Normalized Deprotected Concentration

Optimization Weight

Optimization weight from the ith node to the jth node
State of the ith parameter at annealing time k

Depth into the resist
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