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Abstract

Probabilistic Modeling for Fault Classification ofPlasma Equipment

by

Anna Maria Ison

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

Universityof California, Berkeley

Professor Costas J. Spanos, Chair

The continual push of performance limits for upcoming technology generations has

resulted in a flurry of activity to improve manufacturing practices in the semiconductor

industry. While the advent of highdensity, lowpressure plasma etchsystems has enabled

chip makers to meet current performance demands without sacrificing throughput, these

benefits are accompanied by increased complexity requiring good process characteriza

tion, monitoring and control.

A comprehensive model of the plasma etch equipment based on sensor data is con

structed, which identifies modes of behavior corresponding to normal operation and spe

cific failures. Plasmaetchingis viewedas a complex processexhibiting hybrid behavior-

that is, the process contains both continuous and discrete dynamics. The continuous

machine state, characterized by real-time tool signalsunder normal operatingconditions,

changes abruptly as a result ofmachine failures. However, the failures themselves are best

classified into discrete groups correspondingto a particular type of faulty behavior. Thus,

at a higher level, the state of the process can be described as nominal (i.e. no machine fail

ures), or faulty, where the faulty state is further subdivided into categories corresponding

to different causes or failure modes. At a lower level, the continuous dynamics evolve

depending on the discrete state of the process. The description of the process is further

complicated since, due to the nature ofsingle wafer processing, these continuousdynamics

are evolving over different time scales (a) on a second by second basis, within the process

ing time of a wafer (b) from wafer to wafer, and (c) from lot to lot.



Time-series and linear modeling techniques are used to characterize the continuous

behavior ofthe machine at three time-scales. The decomposition into different time-scales

also facilitates the development of a robust procedure for fault detection using statistical

process control techniques. To enhance the fault detection mechanism, models are devel

oped which capture long term trends in the signals, visible on a lot to lot basis, which are

mainly caused by changing machine dynamics due to machine aging. Methods for feature

selection, extraction and classification are investigated to determine the limitations of cur

rent sensor data, and whether such data can effectively be used to identify discrete failure

modes. Mixture models are built which provide likelihood estimates for assignment to a

fault category based on sensor variables. These are combined in a graphical model encod

ing the relationships among the variables of interest.
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1 Introduction

1.1. Motivation

The competition to acquire and retain the forefront position in the semiconductor

industry is driven by the dualgoals of advancing technology while simultaneously reduc

ing the cost per fimction. Achieving tighter specifications on smaller feature sizes would

not be possible without developments in process technology, inevitably resulting in more

complex processes and higher investment in fabrication tools. With such a heavy invest

ment at stake, there is clearlya need to improvecurrentmanufacturing practices - monitor

ing and controlofprocesses, data analysis, management and decisionmakingto optimize

overall equipment effectiveness.

1.1.1. Growth in the Semiconductor Industry

Over 75% of the world's semiconductor consumption is attributedto the production of

silicon complementary metal-oxide semiconductor (CMOS) integrated circuits [1]. The

wide gamut of electronicproductsthat has resulted is due to a largeextent to the staggering

but steady growth of an industry, reported at an annual rate of 15% for the past 35 years

[1]. Maintaining the historicproductivity growthof 25-30% reduction in cost per fimction

for IC technology characteristics despite escalating factory costs of 20% per year has

become a growing concern among both manufacturers and equipment suppliers. In addi

tion, new technical challenges posed by process complexity and the increasing number of

process steps required to meet more stringent performance specifications are threatening

the industry's ability to maintain the 25-30% manufacturing cost learning curve. Tradition

ally, the factors driving industry growth have included feature size, wafer diameter, yield,

and factory productivity. With fewer gains arising from reductions in feature size, and

larger wafer diameters, improvements in factory productivity, equipment and operations

1



are even more critical. Consequently, new emphasis has been placed on factory integration

to fiilly exploit equipment and operational productivity.

1.1.2. Investment in Fabrication Facilities

To stay on the desired cost/performance track, the packaged unit cost per function must

decrease 24% per year for microprocessors, and 29% per year for DRAMs [2]. Effectively,

this means that wafer cost/cm^ must be optimized with each generation. Factory capital

costs have a major effect on the cost/cm^, increasing atacompounded annual growth rate

(CAGR) of20%, which translates to capital cost/cm^ increases of15% per year [2]. Cou

pled with the rising cost of complex tools, growing process complexity, and wafer size

increases, tool capital costs are projected to reach 90% ofthe total factory investment. This

is no small amount considering that the cost ofnew semiconductor fabrication factories is

viewed to approach $3 billion by the year 2000, and $10 billion by the year 2005 .

1.1.3. Process Complexity

The demands posed by IC design requirements, increasing wafer size and value, and

processphysicshave lead to greater complexity; the number of process steps to complete

an IC is projected to more than double by the year 2012 [3]. Clearly, as the amount ofdata

collected from the process increases, the efficacyand abilityoffab engineersto make deci

sions and extract relevant information is a key aspect to managing this complexity. To

reach these goals, it is estimated that the productivity of computerized decision support

tools must improve over six-fold in the next 15 years.

1.1.4. Process Control to Increase Productivity

Analyses conducted by SEMATECHon the productivity for 250nm and 180nm feature

sizes and 200mm and 300mm wafer diameters reveals that reductions in feature size and

increases in wafer diameter will not be sufficient to maintain the desired rate of 25-30%

reduction in cost/function for ICtechnology characteristics [1]. Toimprove overall equip

ment effectiveness (OEE), advancements are needed in process and equipment control

techniques to detect and correct faults, reduce monitor wafer usage, and optimize tool

throughput.



1.2. Thesis Objective

The objective ofthis thesis istoaddress some ofthechallenges threatening theproduc

tivity growth rate of the industry by enhancing overall equipment effectiveness. This is

accomplished through the development of better monitoring, process characterization,

decision making and management of complexity for a bottleneck family of tools - plasma

etch equipment. To implement these goals, various models are employed to capture

machinebehaviorwhile statistical processcontroltechniques enableeffectivemonitoring

of the evolution of the system. Using probability and statistics as a foundation provides

tools for feature selection, extraction and classification of data to infer the process state.

Finally, a unifying framework is presented to manage the complex behavior ofthe process

for real-time and run to run fault tolerant supervisory control.

1.2.1. Monitoring and Process Characterization for Fault Detection

Due to the nature of single wafer processing, the machine dynamics are evolving over

three different time scales— (a) on a second by second basis, within the processing time of

a wafer, (b) from wafer to wafer, and (c) from lot to lot. In this work, long term trends over

several lots in marathon runs are investigated using appropriate modeling techniques and

data structures to deal with the vastly different time scales. Once normal operation has been

modeled and characterized, trends can be filtered out of the signals and statistical process

control (SPG) techniques can be applied to the resulting residuals to detect abnormal

behavior. The decomposition into different time scales also facilitates the development of

a robust procedure for fault detection using SPC.

1.2.2. Data Analysis and Decision Making

The detection of an out-of-control condition merely indicates the possible presence of

a fault. In order to confirm the hypothesis that a fault has occurred and to identify an assign

able cause, a methodology to classify faults into discrete categories is developed. Identifi

cation and classification of normal and faulty system states utilize data fi-om various

sources. The different data types correspond to simulating small internal fluctuations

around a nominal operating point through designed experiments (DOE's), and to actual

failure modes or faulty states, with data collected from machines diagnosed with real man-



ufacturing problemsduring qualificationruns. Fault classificationis comprised oftwo dis

tinct steps: (1) feature selection and extraction and (2) building a structure to integrate the

various datatypes andclassify them into useful categories. Thefinal diagnostic model pro

vides estimates of likelihoodthat the machine has made a transition to a faulty state. This

structure is meant to function as a decision support tool to enhance the engineer's ability

to make crucial decisions made possible through timely identificationofthe machine state.

1.2.3. A Comprehensive Model

To manage the complexity of the process, a comprehensive model is developed which

characterizes the machine state, taking into account the different time scales and failure

modes. This model combines and utilizes other models for both continuous and discrete

behavior. Time series and linear models are used to characterize the continuous behavior

of the machine. The faultdetection mechanism findsabnormalities in the continuous state,

and thus detects transitions from nominal to faulty states. This framework is compatible

with current real-time and run-to-run control schemes, allowing for the development of

fault tolerant supervisory control.

1.3. Thesis Organization

Background information and adescription oftheplasma process, theetch tool, and sig

nals used for process characterization and machine monitoring are presented inChapter 2.

Adescription oftheexperiments and sensor data follows inChapter 3. Chapter 4 discusses

modeling of long term trends and the development of robust fault detection, which

accounts for machine aging. Chapter 5 is devoted to a discussion ofmodeling techniques

and the construction ofa framework tointegrate these various methods for the purposes of

decision making. The next chapter presents the implementation and analysis results using

sensor data from plasma etch equipment. Finally, Chapter7 summarizes this work with a

discussion ofconclusions and future directions.



2 Etch Process and Equipment
Description

2.1. Introduction

To fully appreciate the value added by better monitoring and process characterization,

it is necessary here to develop some background regarding the process itself, as well as an

understanding ofthe tool that is a critical part of this manufacturing cycle.

2.2. Overview of the Plasma Etch Process

Much of the productivity gains realized in IC fabrication can be attributed to major

improvements and advances in equipment and process technologies in the etch sector. The

etching process is used in the patterning ofthin films to form significant features in chips.

These features include gates and interconnect lines, and contact holes, later filled with

metal to contact the source and drain, and to connect levels ofmetal to one another (vias).

With the industry moving toward greater circuit integration and multilevel metallization,

the successful formation ofthese features is even more critical, and balancing trade-offs in

etch goals poses a bigger challenge. To keep pace with industry trends, designers have

moved to tighter geometries, more film layers per circuit and vertical circuit structures.

This in turn has resulted in a multiplicative increase in the number of film layers and etch

steps per layer.

2.2.1. Goals of Dry Etching

Over the past decade, one of the most significant improvements in the etch sector has

been the development of a single-wafer, dry-etch process (parallel plate reactor) replacing

the wet-etch, batch processing techniques that had once dominated the industry. Through

application of a voltage across two parallel plates, and with the proper mixture of gases, a



plasmaof energetic electrons, photons, ionsandchemically reactive species can be gener

ated and used to etch materials. Typically, a successful etch is considered in terms of

achieving several parameters. These include high uniformity, selectivity, and etch rate,

while maintaining control of profile and CD, damage, sidewall passivation, residue and

particles [4]. Unfortunately, there is an inherent trade-off in that eachof these parameters

can often only be optimized at the expense ofat least one ofthe others.

High uniformity of the etch is desirable across the die and the wafer. This must be

accomplished in the presence of both densely packed and isolated features contained in

most die. Non-uniformity due to this condition is knownas microloading. Critical dimen

sionuniformity is crucial to maintain consistent performance in devices. Improvements in

process monitoring and control are necessary to achieve uniformity from wafer to wafer,

and from machine to machine.

Selectivity isdefined asthe ratio ofthe etch rate ofone material toanother, usually that

of the desired etchedmaterial to a masking layer, typically photoresist, or of some under

lyingmaterial. Selectivity to the maskinglayeris important becauseofits effecton CD and

profile control. Furthermore, smaller feature sizes require thinner photoresist to be ade

quately resolved, and consequently higher selectivity isnecessary for smaller geometries.

Selectivity is often worse in high aspect ratio features, where etching at the bottom of a

contactslowsor sometimes evenstops. Edges and flat areas may be givendifferent selec

tivity specifications since they etch at different rates.

Throughput ofthesystem, andhence productivity, isdetermined bytheetchrate. How

ever, although a high etch rate is desired, it may be accomplished at the expense of selec

tivity and damage control.

Profile and CD control refers to forming anisotropic profiles. Achieving close to verti

cal etched features (often at least 88-89 degree profiles for leading edge applications)

means thatthepacking density ona chipcanbemaximized, andthusprofile control is cru

cial to a successful etch [5].

Damage often occurs when there isnon-uniformity inthe plasma, inducing currents on

the wafer surface that can result in electrical damage. Ionbombardment can alsomechan-



ically damage a film's crystalline structure. Clearly, controlling this damage is important,

especially during gate stack formation.

Sidewall passivation occurs when carbon from photoresist combines with etching

gases or etch by-products to form a polymer that can coat the sidewalls and the bottoms of

features. Although this residue can be useful, and in fact, is sometimes even required in

order to etch anisotropic profiles, it needs to be removed after the etch. Failure to remove

residue canlead to contamination and problems during resist stripping steps. This polymer

film can also deposit on reactor walls, changing with pressure and time. The system may

require more frequent cleaning, and more importantly, the residue can have an effect on

plasma flux and hence,etch uniformity. Factorsmost affecting controlling residue include

temperature, bottom RF power, backside cooling and process pressure.

Finally, particle control is extremely important and technology dependent. For

instance, a requirement specifying fewer than 0.05 particles per square cm, with particle

size determined to be smaller than 0.35 \im is not unreasonable.

2.2.2. Components of Etch

Optimizing to achieve a balance of the various parameters of dry etching- uniformity,

selectivity, etch rate, profile and CD control, damage and residue control - involves an

understanding of two different mechanisms that occur in the etching process.

aspect ratio =
height: width reactive ions

-width

etch by-products

sidewall passivation

chemically
reactive

species

Figure 2-1. Etch mechanisms: chemical reaction and ion bombardment.



The first mechanism can be considered purely a chemical one in which a plasma gen

erates reactive ions that react with the wafer surface and form volatile by-products. A care

ful selection of the gases pumped into the plasma can bolster selectivity. However, in a

purely chemical etch, etching will occur equally in all directions, with no preferential

direction or bias. The result can lead to a highly isotropic etch. Thus, high selectivity is

achieved at the cost ofprofile control.

The other etching mechanism,commonlyknown as sputtering, is purely mechanical, a

resultof the bombardment ofionson the wafersurface. An electrical bias is usedto propel

the ions with a force strongenough to physically remove material. The main advantage of

this is a highly directional etch that can be used for anisotropic profiles. However, because

the mechanism is mechanical, it has poor selectivityfor one material over another, and thus

a different trade-off exists.

2.2.3. Challenges for Dry Etch

The real challenge lies in achieving all etch goals through a careful balance and control

of the two mechanisms comprising the etch process. Theseparameters are even more dif

ficult to achieve given thecurrent industry trends - smaller dimensions with higher aspect

ratios, increasing complexity in structures, multi-layer film stack etches, and new devices

requiring a wider variety in types of materials being etched. Ironically, it is because of

these veryissues thatallaspects of successful etching must be metandevensurpassed.

In response to these trends, a number of innovations have been made to enable such

goals to bemet. One major improvement has been thedevelopment ofhigh density plasma

sources, whichin turn has been drivenby the desire to etchat lowerpressures.

There are several key advantages to lowpressure systems, including much improved

control of critical dimension (CD), and minimized microloading effects (known to cause

unwanted etchvariations between areasof isolated versus densefeatures). Traditional etch

systems operating under higher pressures (typically ranging from 50 to 150 mT) result in

non-directional ionbombardment. Inthis pressure range, moving etchants inand by-prod

ucts out of openings less than a quarter nanometer becomes very difficult. With higher

aspect ratios, the problem is amplified, and etching tends to slow or in some cases stop at
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the bottom ofthe feature. The result is that the feature sidewalls bow outward. Incontrast,

low pressure systems enable a longer mean free path ofhighly directional ions, enabling

the etching ofdeep channels with submicron widths. Furthermore, scattering collisions are

reduced, resulting inbetter profile control. Thus, etching at lower pressures ismore aniso-

tropic, allowing fortheuseofcleaner chemistries which consequently reduces contamina

tion. Low pressure etch systems also result in plasma by-products thataremore volatile,

making their removal much easier.

Using traditional systems under lower pressures results in a drop in iondensity, which

lowers theetchrateandthroughput of the system. However, using a highdensity plasma,

high electron densities can be created at a lower bias, leading to decreased substrate

damage andoften yielding etchrates exceeding those of previous methods. Thehighden

sityplasma sources aremore efficient incoupling input power withtheplasma, generating

greater dissociation of chemical species. These sources allow manufacturers to reap the

benefits ofoperating at lower pressures without a loss in productivity.

Another challenge in the etch market arises from the many processes that involve dif

ferent chemistries, with hardware and software requirements being process specific. In

general, materialsto be etched in a silicon-based integrated circuit can be designated into

one of three categories- polysilicon, metals, or dielectrics. It is typical to use a chlorine-

based chemistry for etching polysilicon, silicides and metals, and a fluorine-based chem

istry to etch oxide and nitride. Polysilicon accounts for 25 percent ofthe market, aluminum

and aluminumalloys comprise31 percent,whilethe major share accountingfor 44 percent

is taken by oxide (dielectric) etching.

Substantial growth is projected in all three etch market areas. The global market is

expected to reach 5.3 billion U.S. dollars by the year 2000 (market figures and growth rates

based on Dataquest and VLSI Research Inc.) [2].



2.3. Plasma Etch Equipment

2.3.1. High Density Plasma Sources

A variety of semiconductor fabrication processes utilize plasma generation. These

include etching, resist stripping, passivation and deposition. Plasma generation involves

inducing electron flow to ionize process gas molecules. Kinetic energy is transferred

through individual electron-gas molecule collisions. Typically, electrons are accelerated in

an electric field. In a conventional parallel plate plasma etcher, a semiconductor wafer is

placed on a lower electrode and a plasma is generated by applying radio frequency (RF)

energybetweenthe lowerand a parallel upperelectrode. However, one drawback to using

an electric field normal to the wafer is that the conversion ofkineticenergy to ions is inef

ficient, especially at low frequencies and pressures under 100 mT. Most of the electron

energy is lost through electron collisions with chamber walls, or with the wafer itself,

which is not only wasteful, but can also cause wafer heating.

Variousmethods havebeendeveloped to makeenergy conversion for generating plas

mas in semiconductor applications more efficient. One method involves microwave reso

nance chambers thatuseultrahighfi-equencies to shorten the electron oscillation path, thus

makingelectronenergymore likelyto be transferred to processgas molecules instead ofa

chamber wall or a wafer. Electroncyclotron resonance (ECR) and helicon resonance uti

lize a controlled magnetic field external to the chamber to induce a circular electron flow

within theprocess gas. Although both methods areefficient interms of energy conversion,

both also suffer the disadvantage of producing a highly non-uniform plasma. This diffi

culty canbe overcome byflowing theplasma some distance before exposure to the wafer.

However, although the additional flow path can make the plasma more uniform, it also

results in some ion recombination which reduces the effectiveness of the plasma. Further

more, these methodshave a limitedpressureoperatingrange. Microwaveresonance cham

bers operate between 1-760 Torr, while ECR chambers have a 0.0001 to 0.1 Torr range.

Additional disadvantages include the increased cost and design complexity incurred bythe

need for extra flow distance, and the problem ofcontrolling themagnetic field inECR sys

tems. There are other approaches to increase energy conversion efficiency - magnetically

-enhanced plasma systems and inductively-coupled electron acceleration are among these.
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Magnetically-enhanced plasma systems utilize thecombined forces ofa constant magnetic

fieldparallel to the wafersurface anda highfrequency electrical fieldperpendicular to the

wafer surface. Electrons flow in a cycloidal corkscrew path thus increasing the distance

travelledas compared with straightpath whichwouldbe due to electricfield alone. Again,

although ion generationis relativelyefficient,there are difficultiesposed by maintaininga

large uniform magnetic field, and the system is generally limited to an operation range of

0.01 to 0.1 Torr. Inductively-coupled plasma systems also cause electrons to flow an

extended path. Two techniques fall in this category, both use altemating current to trans

former couple energy to a gas. The first uses a ferrite magnetic core to enhance transformer

coupling between a primary winding and a secondary one which consists of a closed path

through the gas. This technique uses low frequencies - below 550 KHz. The second

employs a solenoid coil surrounding the gas to be ionized. This technique can either use

low frequencies, or frequencies in the range of 13.56 MHz. Unfortunately, neither tech

nique provides a uniform plasma adjacent and parallel to wafer surface. Gas ionization is

non-uniform, and exposure to the wafer occurs downstream.

Inductively coupled plasma (ICP) and transformer coupled plasma (TCP) source tech

nologies claim the ability to independently control plasma density and ion energy. To

accomplish this, the TCP technology allows separate control of plasma density generated

by the main source, while a radio frequency (RF) source below the wafer is used to control

the energy propelling the ions toward the wafer surface.

Various issues are addressed by the different source technologies, including plasma

uniformity, the width of the process window, and overall cost and complexity of the sys

tem. Regardless ofthe source technology, the main benefit remains - the ability to operate

under low pressures, while maintaining a plasma sufficiently dense to sustain the high etch

rates needed to boost productivity.

2.3.2. TCP Etchers

Although data analyzed in this work were obtained from various different sources and

different machines, a significant portion of the experimental work and data collection was

conducted on plasma etchers utilizing the transformer coupled plasma (TCP) technology.
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This section is intended to give a brief description of the equipment and its operation to

provide the reader with an understanding of the experiments that follow, as well as a feel

ing for what the sensor signals mean.

2.3.2.1. Equipment Description

Much of the data collected comes from Lam's TCPproduct line of high density, low

pressure etch systems. The machines arefully automated, single-wafer plasmaetching sys

tems using a transformer coupled plasma source. This technology iscapable ofgenerating

high flux uniform, planarplasmaovera broadpressure rangewith littleor no directed ion

energy. The systemincludes a reactionchamberbounded by a dielectric shieldor window

witha TCPcoilandanRPsource coupled to thecoil. Theetching process occurs as wafers

are exposed to the plasma generated in the reaction chamber under vacuum conditions. As

the etching begins, gases are mixed in an orbital gas panel and pumped into the chamber

through a ring ofgas outlets (gas ring) around a lower electrode. RF power isdelivered by

the TCP coil and tuned by the upper RF match assembly, ionizing the gases. Similarly, RF

power is delivered by the lower electrode and tuned by the lower RF match assembly. A

DC bias is induced onthewafer tocontrol the ion direction and energy.

The combination of chemical reactions and ion bombardment on the wafer surface

causes removal ofmaterial not protected by aphotoresistive mask. During this etching pro

cess, the plasma andRFelectrical field are completely contained in the reaction chamber.

Aturbo pump is used to remove waste material from the chamber and topump unreacted

gasesout of the chamber afterthe process is completed.

To provide a consistent etch environment, the reaction chamber is kept under vacuum

at all times (except during maintenance) between two load locks. The entrance and exit

loadlocks act as buffers between the cleanroom environment and the chamber, thus

enabling the chamber to remain atvacuum for better etch repeatability. Vacuum pressure

iscontrolled through achamber plenum connected to the back ofthe chamber. The backing

pump supplies vacuum to the turbo pump through a turbo isolation valve. Acontrol gate

valve controls vacuum supplied by the turbo pump tothe chamber plenum. There isalso a

bypass isolation valve which can be used to supply vacuum directly from the backing pump
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to the chamber; however this iskept closed during normal operation. First, the pressure is

brought downto 3 Torr through the coordinated actionof both isolation valves. Then the

control gate valve isopened tosupply vacuum from the turbo pump. Temperature isregu

lated with cartridge heaters in theupper chamber assembly.
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Figure 2-2. Components of a TCP plasma etcher and associatedsensor signals

The RF system is comprised of two RF match assemblies and two RF generators, for

the TCP coil and the lower electrode respectively. The RF generators are capable of sup

plying as much as 1250 watts at 13.56 MHz power.

The RF generators use an impedance matching circuit (RF match assembly) to maxi

mize power transfer and a tuning circuit to provide for resonance at the operating frequency

of 13.56 MHz.
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2.3.2.2. System Operation

The system controls the etch process through pre-programmed recipes determined by

user-defined, software controlled settings. Etching recipes are comprised of a series of

steps to determine gas flow rates, chamber pressure, RF power, gap spacing, chamber tem

perature and helium backside cooling pressure. The values can be programmed as a recipe

so that operators may select a desired recipe to start a specific etching process.

There are three basicprocess steps in an etchingrecipe. The first is a stability step used

to stabilize the environment- the chamber pressure, position of the gap, and process gas

flows must all be stable before the RF power is turned on. This step may also be utilized

between recipe steps, where process chemistries or pressure may be changing. Stabiliza

tion is followed by theetchstep,where chemical reactions and ionbombardment generated

by the plasmaand ignited by the powercausethe waferto be etched. An overetchstepmay

also be employed to continue etching after the endpoint. In this case, a stability step may

be inserted between the etchand overetch steps. Finally, the pumpand purgestep rids the

chamber ofgases and by-productsgeneratedduring the etch step.

The chemistry and dynamics of the etch step are determined by six inputparameters

specified bytheuser. These basic settings arelisted inTable 2-1. Inaddition, users canpro

gram RF tuning parameters to determine how impedance match conditions (between the

chamber and the generator) will be met.

Parameter name Units Parameter controls...

Pressure mt (millitorr) chamber pressure

RF Top power W (watts) RF power to TCP coil

RF Bottom power W (watts) RF power to lower electrode

Gap cm (centimeters) gap spacing

Gas 1-8 ccm (cubic cm/min.) process gas #1-8 flow rate

He clamp t (torr) helium cooling pressure

Table 2-1. Recipe Parameters

Because the chemistry and dynamics of the etch step are determined by the various

equipment settings, the adjustment of these settings can be the key to achieving desired
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goals. In particular, the width ofthe process window determines how far one can push var
ious equipment settings- the source and bias power, pressure, flow rate, chemistry, ion

energy and density, wafer temperature- to meet desired process goals of high etch rate,

selectivity, anisotropy, minimizing residue and damage. Ofcourse, specific process goals

depend on the application - the material being etched, the material where the etch stops,

over-etch requirements, concerns about damage. Process optimization through changing

various equipment settings involves complex trade-offs. For instance, changing the pres

sure or power applied to the plasma canresult in plasma density changes. Application of

highpowerat lowpressure can provide higherion density and result in betterresiduecon

trol. In general, residue formation can be affected by varying pressure, gas flows, gas

ratios, power, temperature, overetch time and backside cooling. In contrast, higher pres

sure with low plasmadensity results in betteretch rate microloading control, higher resist

selectivity, and a higher etch rate.

2.3.2.3. Sensor Signals

Table 2-2 liststhe signals collected byvarious sensors located on the equipment.

The signals canbe divided into groups according to origin and fimction. Optical emis

sionsensors monitor plasma intensity and endpoint, chamber environment sensors report

pressure, gas flows, temperature and backside cooling, and RF sensors associated with the

TCP top match and bottom match assemblies provide information about the continually

changing state of the plasma and the machine's condition.

The chemicalspeciesreacting in the plasmaduringthe etchingprocessproduce optical

emissions that provide useful information. In particular, a typical endpoint detector moni

tors the intensity ofthe plasma at a specific wavelength in order to determine when the etch

has reached completion as indicated by a drop in the intensity profile. Because this inten

sity reading is sensitive to residue accumulating on the chamber window, this sensor signal

is particularly vulnerable to effects ofmachine aging and long term chamber conditioning.
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Origin/Function Sensor Description

Optical Emission Endpoint Plasma intensity at a particular wavelength

Chamber Environment Pressure Measured chamber pressure by a manometer

Power Applied RF power

Top TCP Match TCP Tune Tune capacitor position in upper match network

TCP Load Load capacitor position in upper match network

Impedance Impedance seen by the upper match network

Phase Phase error between current and voltage

Bottom RF Match RFTune Tune capacitor position in lower match network

RF Load Load capacitor position in lower match network

Impedance Impedance seen by the lower match network

Phase Phase error between current and voltage

Other Voltage Voltage on the RF coaxial cables connecting the
match modules to the generators

DC Bias Applied to lower electrode to direct ion energy

Table 2-2. Sensor signals collected for the Lam TCP 9600 plasma etcher

The chamber pressure is measured by a capacitance manometer. A valve controller

comparesthis measurement with the setpointvaluefor pressurespecifiedon the recipe and

adjusts the control gate valve opening to maintain chamber pressure at that setpoint. In

addition, process gasflows areindividually controlled and monitored. Furthermore, during

the process, helium is pumped through the lifter pin holes in the bottom electrode, to the

backside ofthe wafer in order to conduct heat from the wafer to the cooler electrode. The

wafer is secured to the bottom electrode by a clamp or by an electrostatic chuck. Helium

flow greater than a certain maximum threshold canindicate a broken or misplaced wafer.

During etching, as chemical compositions change and by-products are generated,

dynamic changes in the load impedance of the plasma result in reflected RF powerto the

generators. The top and bottom matchassemblies function to independently optimizethe

load as seen by their corresponding RF generator in order to ensure efficient transfer of

power to the plasma. As soon as the RF power is on, the match assemblies monitor the volt

ageandcurrent of theapplied RFpower. Astheplasma impedance changes during etching.
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the match assemblies adjust the phase and magnitude ofthe forward RF power to optimize

the load. For the RF generators, a 50 ohm load is ideal- this minimizes reflected power.
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afer port

Figure 2-3. Reaction chamber - Lam TCP 9600 etcher

Each match assembly is comprisedofa match module, a sense box and an autotune PC

board (PCS).

The upper match, or TCP coil match module, has two servo-driven vacuum-sealed

variable capacitors, a load capacitor and a tune capacitor, as well as load coil. These ele

ments form a variablecouplingtransformer- the loadcoil is clampedonce the power signal

coupling to the secondary sidehas beenadjusted. The loadcapacitor is used to transform

the real part of the reflected plasma load impedance to 50 ohms, while the tune capacitor

is used to cancel the reactive part. Positions of the variable capacitors are monitored and

controlled by the match assembly.
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Figure 2-4. Upper match network

Similarly, the lower match, or lower electrode match module, is comprised by a high-

current series-resonant circuit with a tuning vane and a load coil. Both are adjustable and

have position feedback potentiometers. These positions are also monitored and controlled

by the match assembly. In addition, there is a small DC bias PCB in the lower match, which

monitors DC bias.

capacitors

load coil

Figure 2-5. Lower RF match network

Each match module is connected to an RF sense box, which in turn is connected to the

respective RF generator. These sense boxes contain a capacitive voltage divider and toroi

dal current sensor to detect the voltage and current on the RF coaxial cables connecting the

modules to the generators. These signals are used by the match assemblies to autotune in
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order to make the load thedesired 50ohms. This minimizes reflected power to the gener

ators.

The DIP PCB (Drive-Impedance-Phase board) for each match module is used to con

trol the phase and impedance of RF power to minimize reflected power. This is accom

plished by adjustingthe positionsofthe variablecapacitorsin the matchnetworks.Circuits

in the PCBscan determine phaseandimpedance errorsfromthevoltageand currentsignals

sensed in the RF sense boxes. The PCBs' drive motors on both the upper and lower match

to adjust the tuning elements and correct these errors.

The user can program the RF tuning parameters and enter soft and hard tolerances to

control the range of conditions for matching. Six parameters control the RF match for the

TCP coil, namely, TCP RF mode, delay, tune saved, load saved, tune learn and load leam.

The system computer sends the values in the tune saved and load saved parameters (in the

recipe) to the autotune and DIP PCBs. These parameters represent the positions ofthe vari

able capacitors (tune and load) in the upper match assembly, and can be changed by the

operator. The default value is 16383, a setting which represents a value in the midpoint of

a range that spans from 0 to 32000 counts. This midpoint position is assumed to reduce

adjustments required once autotuning commences. The tune leam and load leam parame

ters store the final tuned positions of the upper match module variable capacitors at the

completion of the process. These values are often used in place of the default in order to

reduce adjustments for autotuning in the subsequent wafer. They also allow process engi

neers to determine the final tuning positions for an automatically tuned step. These six

parameters help to optimize RF match tuning. The user can switch to Manual mode, using

the pre-position settings determined by the tune saved and load saved parameters. Users

can also choose to delay the point ofauto-tuning in order to save unnecessary "hunting" at

the beginning of a step. The delay parameter allows time for the plasma to stabilize, pre

venting the RF system from attempting to tune to changing conditions in the reaction

chamber. Thus, it basically controls how long the system delays before giving control to

the auto-tune. During the delay, the RF match holds the positions specified in the tune

saved and load saved parameters. Since these capacitor positions are the starting point for
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the auto-tune step, tuning times may be optimized by pre-positioning the capacitors close

to the expected tuning position.

Plasma etching is a complex process involving many variables and changing parame

ters. Although there have been attempts to predict behavior through physical models, these

fall short of capturing or accounting for variability in the system. For this, there is some

added value in using an empirical approach, the application of statistical techniques and

tools to capture variability and relationships among available sensor signals. Furthermore,

with this approach one can construct a decision making tool that can be automated using

signals that are collected as part of normal monitoring. Credibility is enhanced by using

familiar signals that have physical meaning to the operators.

Throughout this study, one issue continually of concern is that of repeatability. This

issue arises in the reliable fingerprinting of a particular kind of machine problemor fault,

and is especially aggravated bynatural machine to machine variability. Extracting relevant

information can be problematic, giventhe nature of the data and variability encountered.

Although tackling thisproblem canbemade easier withlarger databases andthorough doc

umentation of machine events (including regular maintenance, adjustments, and failures),

theissue ofrepeatability overdifferent machines may never becompletely resolved. In this

case, some model "training" will be needed to capture the individual character of the tool.

The general issue ofmodeling long term tool behavior is discussed inthe fourth chap

ter. The next chapter isdevoted to describing the data and the experimental design.
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3 Data Description and Experimental
Design

3.1. Introduction

The investigation to characterize, monitor and diagnose states for plasma etch equip

ment revolves around different types of datasets; the choice of the kind of data to be used

is determined by the objective ofthe model. For instance, in order to capture normal oper

ation, and in particular, to model machine aging and long term drift, we use data collected

from marathon runs in a production environment over a time period extending over several

cleaning and preventative maintenance events. Because this data captures machine drift,

visible only over these extended periods of time, long term behavior can be observed, and

models for filtering variability at this time scale can be constructed and validated. The

resulting residuals are then analyzed using multivariate statistical process control tech

niques for fault detection on a lot-to-lot basis. Unfortunately, in this experiment, due to

insufficient documentation relating to the processed lots, information is not available to

assign causes to lots determined to be statistically out ofcontrol.

Finding assignable causes for detected faults requires datasets that are well-docu

mented. The objective of the investigation is two-fold: (1) to assess the utility of sensor

data in identifying and classifying machine problems reliably and (2) to extract the relevant

information from the data, so that prompt action may be taken. The system is trained to fmd

features which fingerprint the machine state, and to classify the data to a defined state. To

construct such a system, it is clear that the state of the machine during the data acquisition

process must be known, and hence the need for good documentation.
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We consider two types of failure data arising from different sources. Thefirst is caused

byequipment miscalibrations, which result insmall intemal fluctuations inthe plasma. We

simulate the occurrence of this type of problem through DOEs (experiments designed to

span the process input space) exploring a range of conditions around a nominal operating

point. Classification techniques are then applied to predict the various operating condi

tions. The second type of failure arises from actual machine problems. Here we employ

manufacturing data collected for machine qualification, where the faults, diagnosis, and

action taken are all documented. We have taken this problem one step further by designing

a failure modeexperiment, whichsimulates the problem by physically changing the tool's

condition to mimic a breakdown event.

3.2. Fault Detection and Classification (FDC)

The primary goal of fault detection is to identify when the process is no longer within

operational bounds, indicating that action must be taken to correct the problem. In order to

accomplish this goal, we need a model ofthe process that captures normal machine behav

ior under acceptable operating conditions. When measured values from sensor readings

deviate significantly from oxir model predictions, we signal the detection of a fault. The

identification of an anomaly is based on establishing control limits that act as bounds for

acceptable deviation due to natural variation in the process. Fault classification schemes

are then employed to identify the source ofdetected faults.

Our participation in the fault detection and classification (FDC) SEMATECH J-88-E

Program at Texas Instruments conducted from 1995 through 1996 allowed us access to a

source of veduabledata and information for model construction and analysis. The goal of

this project was to develop and evaluate techniques for FDC on a commercial semiconduc

tor manufacturing tool using non invasive sensors and commercially available software.

Automated data acquisition involving two RF sensors and machine state sensors embedded

in the tool was implemented for a Lam 9600 TCP plasma etcher. Although wafer state sen

sors provide the most direct and easiest access to useful information, they are often not

available on original equipment manufacturer (OEM) processing tools. Thus, this project

concentrated on machine and process state sensors, which, by their nature, are both non-
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intrusive and readily available. Due tothe large volume ofsensor data collected, one major

difficulty lay in obtaining useful information from redundant correlated measures. There

werealsopractical considerations regarding thechoice of sensors. Ingeneral, it is desirable

to stick to sensors that are low in cost, but highly reliable, especially for collecting data

over extended time periods.

A key requirement in the development of models for fault detection and classification

is that theybe robustovertime. Onegoalforthe project wasto account for the presence of

long term trends. Over longer periods of time, a significant amount of normal variation in

sensor readings can be expected, which is not related to either a process or a wafer state

fault. Not accoimting for this variation in the models can result in increased false alarms

and decreased sensitivity to the real faults we wish to detect.

To properly address this issue, we note that the machine behavior can be described as

evolving over different time scales, each with its own sources ofprocess variation:

(1) maintenance-cycle-to-maintenance cycle

The highest time scale (encompassing the longest periods of time) can be considered

as the change in machine behavior from one maintenance cycle to another. In particular,

any given processing tool is subject to periodic cleaning, maintenance and repair over the

course of its lifetime. The cycle time varies by tool, but is typically on the order of one to

two months between major maintenance "events". In the interim, thousands ofwafers may

be processed through a tool. The maintenance event performed at the end of a cycle

attempts to restore the machine to its original state. Practically speaking, this is rarely

achieved, and hence there is some discontinuity between cycles as well as process variation

from one maintenance cycle to another within a tool.

(2) within a maintenance cycle

We can consider the next time scale to be contained within one maintenance cycle.

Within this time frame, gradual accumulation of residue in the chamber and normal wear

and tear of machine parts characterized as consumable or replaceable constitute "machine

aging". This behavior is clearly observed as a continuous slow drift in the process variables
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as indicated by sensor measurements. However, it is important here to distinguish between

process degradation (as reflected in the process variables), and sensor degradation. That is,

there are natural limitations imposed by the use of sensors as imperfect measuring instru

ments ofprocess variables. One clear example ofthis is in the continuous decay ofthe end-

point signal observed over the course of a maintenance cycle. This turns out to be an

indication of window transmittance degradation due to residue buildup on the chamber

window. Thus, the actual state, in this case, the intensity of plasma, is more stable than

what is indicated by the sensor. It is the sensor measurement that is grossly affected by

machine aging. Accounting for this in our models allows us to make adjustments to the

fault detection mechanism so that it is robust over time.

(3) lot-to-lot

A typical lot consists oftwenty four wafers and consumes between one to two hours of

processing time. It is not uncommonto observe abrupt shifts from lot to lot. These shifts

can beattributed totwo sources. The first involves changes that happen in"upstream" pro

cesses resulting in different waferstates. In otherwords, the incoming material, the wafers

themselves, arenot identical from lot to lot. The second source is a change in thechamber

state - thiswould be ourprimary concern. Lot to lot variability is further complicated by

the fact that the data comes from a development lab where the devices are experimental

and thus different from each other. This results in a greater likelihood that the incoming

material will vary ascompared with atypical production environment, inwhich only a few

devices are processed in a highly repeatablefashion.

(4) within a lot

Within the course ofprocessing a batch oftwenty four wafers, there is typically mini

mal process variation. However, two phenomena arenoteworthy. Thefirst results from the

gradual warm up or degassing from chamber walls, known as the "first wafer effect". In

the case of the Lam 9600, this phenomenon appeared more as a first-eight-wafer effect,

where the first eight wafers displayed the behavior normally confined to the first wafer.

The second observation within a lot is the presence ofaslow drift due to trends in upstream
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conditions, resulting in a gradual change in the incoming materials (the wafers them

selves).

(5) wafer-to-wafer

From wafer to wafer, variation occurs on the order of minutes. This variation is minor

in general, withdiscontinuities thatcan be attributed to variations in the incoming materi

als. In this particular project, variation between odd and even wafers was observed. The

causeof thiswasdetermined to betheuseofanalternating trackduring anupstream lithog

raphy step. However, because DOE settings were changed from wafer to wafer, fault clas

sification is generally concentrated on this time scale, with "true" faults manifesting

themselves as deviations detected on a wafer-to-wafer basis.

(6) within the time scale ofone wafer being processed

This is considered the "real" time scale, where process variable trajectories are moni

tored at 1 second intervals for a total duration of between 10-100 seconds for one wafer.

Although it is importantto implementreal-time fault detectionwithin the time scaleofpro

cessing one wafer, the emphasis of the experiments is geared to the wafer-to-wafer detec

tion, with faults injected at this level.

(7) within a processing step

Because there are different materials comprising the stack, there are often different

"regions" in the etch step within the etching of a single wafer. These regions may or may

not correspond to distinct "steps" in a recipe, but often reflect the different components of

the thin film stack that is being etched.

(8) within a processing sub-step (region)

Sensor signals are typically unchanging within a region, but can have non linear fea

tures. Also, we have observed transient behavior during the plasma ignition step which can

indicate a problem with the match network. However, data taken at the 1 Hz sampling rate

is too slow for transient analysis.
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Constantly changing conditions on these various time scales further complicate any

automated procedure or method to analyze the data. Thus, it is crucial to distinguish

between true faults and significant variation in the process unrelated to any fault event.

3.2.1. Data from Marathon Runs

Modeling machine behavior over the long run necessitates sensor data acquisition, as

deterministically as possible, at regular intervals, over long periods oftime. Unfortunately,

the "routine" process generating the data for the J-88-E project was really anything but rou

tine, as compared with any production environment. With device and process development

as daily tasks in a development laboratory, the data naturally encompasses a large variety

ofwafers and devices processed through the chosen tool. Thus, "routine" was necessarily

conducted and defined on a variety ofdifferent structures and devices. In contrast, in a true

production environment, the tool would be more stable, focused on producing a limited set

ofdevices in a repeatable fashion.

A primary etch tool has a typical loading of five to ten lots per day. Furthermore, the

tool must be opened periodically for cleaning andmaintenance. In addition, imanticipated

problems require equipment hardware changes. The cleaning, maintenance and repair

events include the preventativemaintenance (PM),which involvesopeningthe etch cham

ber, performing cleaning and maintenance, and resetting the wafer count to zero. In con

trast, in the mini-clean (MC), the chamber is opened, some maintenance and cleaning are

conducted, but the wafer counter is not reset.

The goal of long term modeling is to make the fault detection mechanism robust to

systemchanges resulting fromregular periodic activities, allowing identification of devi

ations in normal process conditions resulting from altered setpoints or injected faults. The

data are collected from a Lam 9600 TCP plasma etcher running an aluminum stack etch

process. In the main chamber a TiN/Al - 0.5% Cu/TiN/oxide stack is etched with a BCI3/

CI2 process. From the process point of view, the key parameters are the line width of the

etched A1 line, (more specifically, the line width reduction compared to incoming resist

line width), uniformity across the wafer, and oxide loss. Table 3-1 shows the standard

recipe (Recipe44) used for this process.In particular,note that there is a series of six menu
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steps- the first two are used for gas flow and pressure stabilization, step 3is abriefplasma
ignition step, step 4 is the main etch ofA1 terminating atthe AI endpoint, and step 5isthe

over-etch for the underlying TiN and oxide layers. This isa single chemistry etch process,

that is, the chemistry is identical for the main etch and over-etch steps. Step 6 vents the

chamber. Figure 3-1 contains a typical process profile ofthe endpoint signal from the Lam-

Station data set. This clearly shows the stabilization step followed bythe three regions of

the etch: Al, TiN and oxide etch steps.

Parameter Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Pressure (mT) 90 10 10 10 10 90

TCP (W) 0 0 1 350 350 0

RF(W) 0 0 100 132 132 0

BCI3 (seem) 0 75 75 75 75 0

C12 (seem) 0 75 75 75 75 0

He Clamp (T) 0 9 9 9 9 0

Time (seconds) 15 30 3 Endpt 50 15

Table 3-1. Recipe for standard Al-stack etch in the Lam 9600
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Figure 3-1. Endpoint trace of standard Al-stack etch process
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The data from "routinely" processed wafers on a Lam 9600 etcher in a development

lab were collected from a variety ofdevices. Thus, although the composition ofthe etched

layer is similar, the nature and thickness of films can vary from lot to lot. Two routine pro

cesses (here used Recipes 44 and 45), differed only in the pressure setting, with the stan

dard, Recipe 44, set at 10 mT, and the alternate. Recipe 45, set at 20 mT. Lots were run

intermittently around the clock, with machine state signals available for analysis, but no

wafer state data. During the period of monitoring this tool, between 1995 and 1996, 187

lots ofdata were collected, encompassing 8 maintenance cycles in total.

3.2.2. Designed Experiments

The long term characterization ofthe process enables fault detection that is robust over

time. However, once an anomaly in processing conditions has been detected, the goal

becomes that of identifying the cause of the problem. Onesource for training a system to

detect such anomalies is obtained using injected faults in processing conditions, accom

plished by changing the target machine settings. These faults are simulated using a DOE,

or design of experiments, varying the settings overthe operating domain of theprocess.

The DOEs conducted in thisproject are a five-level central composite design, blocked

with resolution 2(5-1) + star points generated for five input variables, (TCP power, RF

power, pressure, total gas flow and gas ratio - C12/BC13). Appendix B contains the details

of the DOE design. Operating ranges were chosen with the help ofprocessing engineers,

with pressure ranging from 7to20mT toinclude the two routine processes (Recipes Aand

B).

In the first set of DOEs, experiment 30, the biggestproblemresulted from the comer-

points for cross-validation experiments, where pump and flow constraints prevented using

low flow with high pressure, and high flow with low pressure conditions. These runs

resulted in the process halting at ten seconds into the main etch due to pressure errors.

However, the process could generally be restarted and continued after the error occurrence.
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3.3. Manufacturing Fault Data

Obtaining actual production data with properly identified machine faults and diag

nosed causes is extremely difficult. The laboratory oftencollects sensordata during pro

cessing; however, tracking of repair and maintenance is scantandunreliable. To partially

circumvent thisproblem, we turned to an equipment supplier. Lam Research provided us

with manufacturingdata from TCP etchers obtainedduring qualificationruns. These runs

are conducted to ensure proper machine operation before shipment to the customer, and

thus, all machine faults and actions taken as a result are recorded.

Table 3-2 summarizes the machine failures logged in during the qualification runs. The

table listscausesofmachine failures, as diagnosed by processengineers, observable symp

toms ofeach type offailure, and action taken to deal with each problem. These data com

prise an evidence library, depicted in Figure 3-2, where we have categorized and divided

the data according to the corresponding type of machine failure.

Cause Symptom Result

Gas line bracket grounding High/low clamp flow

DC bias, RF load signals

Replaced outer screws on
main chamber

Water on wafers TCP tune signal Adjust dry time

Frequency shift module
(FSM)

Phase shift, bottom (RF)
line impedance

?

? Line impedance, clamp
flow

Replaced DIP, TCP match,
orifice for He

Gas 0-ring ? Low etch rate

? RF load and RF tune signals Put on lower match cover

Manometer Chamber pressure Readjusted

Table 3-2. Machine failures - causes, symptoms and results

Note that there are missing entries in Table 3-2. This is fairly typical in manufacturing

and production, where the cause ofa problem is unknown or never diagnosed, there £ire no

observable symptoms in terms ofmonitored signals, or no action is taken. Incomplete data

sets and poor records complicate the task of building a diagnostic system. Fortunately, in

this set ofdata, we find that most of the problems fall into three basic categories - the base-
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line, which represents normal operation and is used as a reference point, problems related

to gas line grounding issues, and problems resulting from the match networks, both top

(TCP) and bottom (RF) match modules.

Cause of Failure

RF Match

TCP Match

Gas line

grounding

Effect

Plasma State

Evidence Library

Clamp
Flow / Pressure

Impedance

Reflected
Power

Tune / Load

Figure 3-2. Identification of Failure Modes from Qualification Data

A further complication arises due to the different machine types. Unlike the experi

ments conducted in the J-88-E project, this qualificationdataset is collected from different

tools, which differ inboth hardware and software aspects. Thus, variability occurs notonly

as a result of normal machine-to-machine differences, butalso as a result of the change in

hardware and software implemented for the machines. For our evidence library, we iden

tified four different types of machines. Hardware differences resulted from the use of a

clamp versus the electrostatic chuck to hold the wafer in place. Software differences

affected values of sensor signals, such that some sensors could not be compared across

machines utilizing different software.

3.4, High Speed Data

The objective in collecting this dataset is to identify cues relating to predictions of RF

match problems, and conditions where the plasma will not ignite. To find such cues, we

observe sensor responses to high and low preset values for the positions of the load and



tune capacitors intheRF match network, and simulate afailure mode where thecapacitors

fail to respond to command signals.

Upon examining manufacturing data from qualification and marathon runs, we have

observed the presence of transient behavior in RF signals triggered by the onsetof plasma

ignition. Because the impedance of the plasma changes after ignition, the parameters of

both RF match networkscan also undergodrasticchangeswhileattemptingto adjust to the

changing impedance. The nature of this transient is directly affected by the ability of the

match networks to tune, and how they are reacting to each other, which in tum is a reflec

tion of the state of the system. Specifically, Figures 3-3 and 3-4 contain plots of the load

and tuning positions respectively, for an RF match network over a sixteen wafer run. Note

how the transient behavior is visibly different for the baseline machine compared to a

machine which was experiencing problems with its RF match network (this would be con

sidered a failure mode). Thus, this observed transient, although it occurs during a transi

tional phase with a duration ofless than a couple ofseconds, contains important diagnostic

information. However, with signals being collected at a frequency of about IHz, current

data acquisition rates are insufficient in capturing this transient behavior.
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Figure 3-3. Transient behavior of bottom (RF) load position for a sixteen wafer run
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Figure 3-4. Transient behaviorof bottom (RF) tune position for a sixteen wafer run

To furtherinvestigate this behavior and itspotential useas a feature to characterizecer

tainfailure modes, weoutfitted theLam TCP 9400 plasma etcher in the Berkeley Micro-

fabrication Laboratory, with instrumentation capable of collecting sensor signals at

sampling rates thataremuch higher than the typical SECSII data acquisition rate. These

high resolution signals are collected under various conditions of the tool, in particular, to

simulate common failure modes that have been observed infield trials. Such an experiment

enables us to explore the effect of varying RF network match parameters on the transient

behavior. Once an accurate fingerprinting ofthe machineand its conditionhas been estab

lished, the performance ofvarious modeling and diagnostic schemes can becompared.

3.4.1. Focusing on the Match Network Problems

A significantnumberofmanufacturing problemsoccur due to failure in the match net

work. The purpose of this network is to match the impedance in the chamber suchthat the
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reflected power back to thegenerator is minimized. The match network accomplishes this

task by changing the positions of load and tune capacitors in response to the changing

impedance of the chamber. The initial positions of the load and tune capacitors are deter

mined by the conditions of the previous run. In other words, for a given wafer, after the

plasma ignites,the networkparameters (in this case, the load and tune capacitorpositions)

settle to a stablevalue to matchthe impedance, and conditions are met for the etchingpro

cess to begin. These positions (where the network achieved a "matching" condition) are

used as target values for the initial positions to process the next wafer.

Difficulties arise when the impedance of the chamber (after plasma ignition) changes

between runs. This change can be caused by a variety of problems including machine

aging, attributed to material deposited on the chamber, gas leaks, or differences on the

wafer itself. If something does change the chamber impedance, the target values for the

capacitor positions, which achieved a matching condition in the previous run will not be

optimal for the current run, and we expect the values to change and settle in a new position

to match the new chamber impedance.

Another problem associated with the match network involves the actual capacitors

themselves. Capacitors may "bind", which means that although the computer may be

instructing the capacitors to move, they are unable to change position. Thus, the situation

may be that one capacitor is moving to adjust, while the other is stationary, and a matching

condition may or may not be achievable depending on the circumstances.

Our experiment attempts to address these issues associated with problematic behavior

in the matching network. First, because the adjustments to achieve a matching condition

often take place in less than a few seconds, sensor data relating to RF network match

parameters as well as other real-time sensor signals must be collected at an increased sam

pling rate of 100 Hz. Secondly, by varying the preset values for the positions of the tune

and load parameters ofthe top match network, we simulate the condition of a "mismatch"

to the chamber impedance. This also enables examination of the transient behavior of sev

eral signals in response to the adjustments being made by the match network. Finally, the
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tune and load capacitors are disabled, one at a time, by loosening the connection to the driv

ing motor.

Index Fault Category Tune Position (counts) Load Position (counts)

1 baseline target (+/- 1000) target (+/- 1000)

2 HH extreme 32000 32000

3 LL extreme 0 0

4 HL extreme 32000 0

5 LH extreme 0 32000

6 HH midrange +3000 +3000

7 LL midrange -3000 -3000

8 HL midrange +3000 -3000

9 LH midrange -3000 +3000

Table 3-3. Categories defined by preset values for tune and load capacitor positions in
match network

Table 3-3 shows the different fault groupings corresponding to preset (initial position)

values for the tune and load capacitors. By convention, the capacitor positions are defined

over a range of 0-32000 counts. The target value is based ontheposition fora match con

dition established inthe previous run. Baseline (default value for position) isconsidered to

bewithin 1000 counts of the target. We consider both high and low values referenced to

the targetvalue, for both tune andload. Extreme values are defined at the extremes of the

ranges with high set to32000 counts, and low set to0counts. Mid range values are defined

at3000 counts above target for the "high," and 3000 counts below target for the "low."

The actual capacitor positions for the first five categories in Table 3-3 are shown in

Figure 3.5, where the presets are chosen atthe extreme values ofthe range, and the arrows

indicate the target value. These are plotted for the adjustment period (approximately six
seconds), during which the positions are adjusting until they settle at amatching condition.

34



Positions

Baseline

HH extreme

LL extreme

HL extreme

LH extreme

Tune Capacitor

V-

-h
10 15

Load Capacitor

0 10
H
15

Time (seconds)

Figure 3-5. Capacitor positions for preset extreme values; arrows indicate target values

Figure 3.6 shows the impedance signal corresponding to the categories defined by the

presets for tune and load capacitors. (Preset values for tune/load are superimposed on the

same plot). Note that the preset conditions define our fault categories.

TCP ImpedanceCategories

Baseline

HH extreme

LL extreme

HL extreme

LH extreme

Tune/Load Positions

0 5 10 15
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Figure 3-6. Impedance signal corresponding to categories defined by tune/load presets
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The impedance signal is an example of transient behavior that appears to have some

structure or pattern. Based on this structure, sensor signals can be grouped or classified,

and we can draw a conclusion as to whether the preset values are low or high for the current

chamber condition. This information is indicative of a change in the chamber impedance

and can be used to predict whether a matching condition can be achieved. Finally, this pro

vides some base behavior to compare the effect of capacitor binding, where only one

capacitor is adjusting and the other is immobile.

3.5. Summary

In this chapter, we described the various types and sources of sensor data, as well as

the experiments designed and conducted to produce them. Because our objectives are dis

tinct in each case, with the focus ofour study ranging from monitoring and fault detection,

to fault diagnosis of diverse conditions, this naturally gives rise to differences in the data.

It will soon be apparent that this also necessitates the employment of several modeling

techniques, depending on the data, and that the development of a cohesive framework to

merge disparate results together is a key contribution of this work. The next chapter

addresses the issue of modeling, while the following chapter deals with the framework

structure.
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4 Modeling and Characterization of
Long Term Behavior

4.1. Introduction

Real-time tool signals from etch equipment have been proven useful in modeling the

plasma etch process and in providing a means of machine monitoring. In this chapter, the

multivariate statistical control system, applied in the past to localized time scales (model

ing the signal on a real-time, second by second basis, and wafer-to-wafer basis) is extended

to deal with long term variability on a lot-to-lot basis. Long term trends in optical emission

data collected from a plasma etch tool are characterized through data transformations and

linear modeling techniques. By filtering the known effects ofmachine aging, these models

facilitate the integration of optical emission data with other sensor signals, resulting in a

fault detection system which is robust over time.

4.2. Background and Previous Work

Traditional statistical process control (SPC) techniques assume that the imderlying pro

cess is stationary, i.e. that the mean and variance do not vary with time, and that the obser

vations are identically, independently, and normally distributed (IIND) [10]. Assuming

that these trends are present in data representing normal operating behavior, application of

these techniques directly to machine data that contain trends results in increased false

alarm and missed alarm rates. To avoid these increased false and missed alarm rates, past

work used time-series modeling techniques to filter out the time dependent trends; tradi

tional and multivariate statistical process control (SPC) methods were then applied to the

resulting residuals to monitor the machine behavior. This system, known as real-time sta

tistical process control (RTSPC), was shown in [11] to be effective in monitoring real-time
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and wafer-to-wafer data. This investigation is motivated by the need to extend RTSPC to

include long term variability on a lot-to-lot basis.

4.2.1. Statistical Process Control for Monitoring Data

In any production process there is inherent natural variability. This variation is consid

ered common across all processes, and is attributed to noise in the system due to small,

unavoidable causes, which are always affecting the process. A process is referred to as

being in statistical control if its operation is affected only by such random, chance causes.

Other sources of variability which plague processing include improperly adjusted

machines, operator error, and defective raw materials. Disturbances to the processcaused

by these sources are usually large compared to background noise, and are often not ran

domly distributed. A process exhibiting a fluctuation caused by a non-random, well-

defined event is considered to be out of control. In this case, the event is referred to as an

assignable cause which shifts the process to an out of control state. A major objective of

statistical process control is to detect shifts in the process state, and to find assignable

causes so that corrective action may be taken.

Systems designed for SPC are used to monitor a process over time, ensuring that it

remains statistically in control. In some sense, SPC techniques complement automatic

feedback control methodology. The latter is also applied to reduce variability in the pro

cess, but uses a different mechanism to accomplish this goal. Feedback control seeks to

compensate for the predictable component ofa disturbance in crucial variables byadjust

ing other variables, effectively transferring the variability from important variables to less

critical parameters. In contrast, SPC monitoring is applied on top of the process and its

automatic control system todetect behavior which directly reflects the occurrence ofa spe

cial event. In this case, the goal is to diagnose causes and eliminate them rather than to

compensate for them. In this manner, long term improvements to the process can be

achieved via changes in the systemand operating procedures.

Many systems designed for SPC are based on asmall number ofvariables usually asso

ciated with measurements on the fmal product. Acontrol chart isanon-line graphical tech

niquecommonly usedto trackproduct quality variables, which are thenexamined one at a
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time. For instance, the univariate Shewhart chart can be defined for monitoring variables

by using a center line reflecting the average level for the parameter, and upper and lower

control limits based on the natural variability in the process. However, as processes

become morecomplex, the common manufacturing practice is to collectnot only product

data, but also processdata, which often includemeasurements ofmanyprocess variables.

One major challenge is to extract relevant information from the growing mass of data to

enable immediate action, preventing actual yield loss. Extracting information from large

databasescan be interpreted in different ways, (1) it can refer to the filtering or selection

of the signals which give the most information, (2) it can refer to the combining of many

signals to infer a conclusion, (3) it can refer to data compression, representing a large

number ofparameterswith a smaller set, which capturesmost of the important features of

the data.

4.2.2. Advantages of Multivariate Techniques

Multivariatestatisticalmethodsprovide a powerful toolbox for extracting information

from large databases in all three respects described above, leading to improved analysis,

monitoring and diagnostic capabilities. In addition, there are other advantages to using

multivariate techniques over univariate analyses. First, because the process variables

reflect the state of the process, correlations exist among the different parameters. Exami

nation of these variables one at a time treats them as if they are independent. For instance,

a system built to detect and diagnose faults based purely on univariate models can only

account for the magnitude of deviation in each variable, and is likely to produce false

alarms or even miss true out-of-control situations. In contrast, multivariate techniques can

extract information on magnitude of deviation and on directionality, accounting for how

the variables behave relative to one another. This means that the multivariate test can be

more powerful, where we define power as the probability of rejecting the null hypothesis

when it is false (generation of a true alarm).

Figure 4-1 is a pictorial representation for the case oftwo variables showing the accep

tance regions for the multivariate and univariate tests. Note that the acceptance region for

the multivariate test is defined by an ellipse, with each point on the curve statistically equi-
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distant from ^o» demonstrating that distance is defined also in terms of direction, normal

ized by the covariance. The orientation and shape of the ellipse is determined by the

correlation structure between the two variables. The two shaded regions demonstrate the

benefits of multivariate testing which take this structure into account. These are cases

where small effects in each variable fail to be significant if examined one at a time; how

ever, when combined, the joint effect is significant. The lightly shaded region A shows the

contribution to inflation of the false alarm error by the univariate test; the dark region B

shows the contribution to greater power for multivariate testing.

Variable 2

Region A

Region B

Variable 1

Figure 4-1. Comparison of univariate and multivariate testingacceptance regions
Region A: Accept multivariate test, rejectunivariate, when nullhypothesis is true. Region
B: Rejectmultivariate, accept univariate, whennull hypothesis is false.

Because thequality of a product, or in the case ofmanufacturing, the stateof a process,

is defined not by each variable independently,but by the simultaneous values of all mea

sured parameters, and because many of these parameters are often correlated, it makes

sense to usemultivariate techniques. Todescribe themultivariate testing usedin this appli

cation, we first review the univariate case, then explain the extension to the multivariate

process.



4.2.3. Hypothesis Testing for the Univariate Case

The ideaof monitoring variables for thepurpose of tracking the behavior of a system

isformalized statistically byconstructing a hypothesis test. Theassumption is thata sample

ofn observations, yy, ••• yn> istaken from a population distributed asN(p,a^), where p

isthe mean and the variance. The mean, p, isestimated by the sample average, y; cj^ is

estimated by the sample variance, s^.

n

1
(4-1)

/ = 1

n

To test the hypothesis that the mean, p, is equal to a given value, po, Hq:\x = Pq vs.

//j :p Po , the t-test uses the following test statistic:

' =̂ (4-3)
This statistic is distributed as t^.j if the null hypothesis is true. We reject the null

hypothesis if r> /2 „_i, where /2, „_i isa critical value from the t-table. The expres

sion in Equation 4-3 is known as the characteristic form of the t-statistic, representing a

sample standardized distance between y and Pq.

4.2.4. Extensions to the Multivariate Case

For the case where p variables are measured for each sample, the assumption is that we

have n samples. We now have two indices, i andy, corresponding to the sample and the

variable index respectively. Hence, we might have nsamples,yy^y,y2,y> ••• yn,j ^

tivariate population Np(p,S) such that eachy^y containsp measurements onthe zth obser

vation. The p X 1 mean vector, p, is estimated by the sample average vector, y; 2 is

estimated by the sample covariance matrix, S. Thisp\p matrix contains the sample vari-
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ances on the diagonal, and the sample covariances for all possible pairs ofp variables on

the off-diagonal.

S =

Jjl ^12 ...

S21 S22 ... S2p

fpl ^p2 ••• ^ppj

^ — k = I

n-l

X (yki-yi)(ykj-yj)
. 2 ^ A=j
» ~

(4-t)

(4-5)

(4-6)

To test the hypothesis that the mean vector, p, is equal to a given value, po»

Hq:\x = Po ^ 1^0 »extension oftheunivariate t-test isobtained byrewriting

the univariate t as:

,2 (y-pio) 2,-1,-
' =n 2— = «0-Ho)(^) 0-Ho) (4-7)

By replacing y - Po and byy - po and S, the following test statistic is obtained:

^ '(y-Po) (4-8)

The distribution of was first described by Hotelling (1931), and is indexed by the

number of variables p and the degrees of freedom n-l. Extensions of the univariate

Shewhart control charts to multivariate control are based on Hotelling's statistic. As

« -> 00, the approaches the % distribution.

The density of isskewed; the lower limit is zero and there isno upper limit. An upper

control limit for can be found using the conversionof the statistic to an F statistic:
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»(" -P) 7^ , = P

To find the upper control limit, one would use the upper 100a% critical point ofthe F-

distribution with p and n-p degrees of freedom.

4.2.5. Time Series Modeling

Regardless of whether the testing is univariate or multivariate, to apply SPC tech

niques, the hypothesis is based on an lESTD assumption.However, due to the nature ofpro

cessing, sensor signals follow various time trends. When the value of a data point in a

sequence is dependenton the value or valuesofdata precedingit, the trend can be captured

by a time series model. The most general form ofthis model is described by an autoregres-

sive integrated moving average model, or ARIMA (p,d,q) model, where p is the auto-

regressive order, d is the integration order, and q is the moving average order:

w
I

k = \ k = 0

P Q

= (4-11)

The difference operators in Equation 4-11 are applied on the original data series, x^.

The two examples showthe first and seconddifferenceoperators,respectively. The differ

enced data is represented by in Equation 4-10, where (|)^ are the autoregressive param

eters, 0^ are the moving average parameters, and is the prediction error, assumed to be

IIND.

Modeling the signals as a time series accomplishes two things: (1) characterization of

the process, with a means ofpredicting future values or behavior and (2) filtering out sys

tematic trends so that what remains is due to random noise. SPC techniques can be applied

to the resulting residuals once the time dependent pattem has been filtered by the models.
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4.2.6. Real-Time Statistical Process Control (RTSPC)

A key step to successful monitoring for fault detection is to effectively characterize the

process for prediction purposes and so that patterns due to normal operation can be filtered

out. Figure 4-2 displays a flowchart of the steps taken to process the sensor data for use in

real time statistical process control.

Multiple Raw

Sensor Data

Multivariate Testing

Time Series

Modeling

Calculate

Hotelling T^

SPC

T^ Chart

Residuals

Univariate Testing

Figure 4-2. Flowchart for sensordata for monitoring and fault detection using SPC

ARIMA models to filter trends from the various sensor signals are built using sensor

data obtained during normal operating behavior of the machine (baseline data). If the

models are formulated appropriately, the resulting residuals resemble IIND random vari

ables. These residuals canbe monitored separately with univariate testing using Shewhart

control charts. However, because the signals are measurements of the same physical pro

cess, there are cross-correlationsamong the different signal residuals. To account for these

cross-correlations, the Hotelling T^ statistic is used to combine the individual IIND resid

uals into a single statistical score. These scores are plotted on a T^ chart; values exceeding

the upper control limit generate alarms whichsignal the detection of a fault.



Note that this flowchart describes the construction ofmodels used as a point of refer

ence for comparison with incoming data sets from which we wish to draw conclusions. In

other words, we must initialize the fault detection system using a set ofbaseline data meant

to represent normal operating process behavior. Once the models are built and the SPC

limits established from the baseline, we are in a position to monitor incoming production

data, using the baseline models as a standard for comparison.

4.2.7. Evolution of Different Time Scales - Data Decomposition

Due to the nature ofprocessing, the evolution ofthe system as described by the profile

of the sensor signals over time can be viewed at different time scales. Because the signals

are typically collected using a sample rate of 1-2 Hz, we monitor the data in "real time".

However, ifwe are interested in drifts in the process, or abrupt shifting behavior caused by

a specific event, these types ofchanges are more evident in large time scales, such as from

wafer to wafer, or from lot to lot. By decomposing the data, we are able to monitor and

detect faults in the process at different time scales. This is described below.

The machine data is comprised ofa sequence oflots, each containing a series ofwafers,

with samples taken at 1 Hz for each wafer. Thus, we can decompose the signal by looking

at the sequence of average signal values of each lot, and the sequence of average signal

values ofeach wafer over time (adjusting for the lot effect by subtracting the average value

for the lot containing the wafer). Similarly, the real-time signal is adjusted by subtracting

the appropriate wafer and lot averages. In this way, the total signal is the sum of the lot

average, wafer average, and real time signals.

The decomposition, shown pictorially in Figure 4-3, allows us to track and analyze

each signal separately. This is important because different events affect the signals at dif

ferent time scales. A fast equipment fluctuation due to changing chamber dynamics is vis

ible in real-time, but may not affect the average value over the wafer, and certainly will not

be detected in the average lot value. A machine drift or abrupt shift due to a problem insti

gated by an anomaly on a wafer, or by a problem in the conditions during one wafer run,

is likely to be exhibited in the wafer average signal, but not necessarily in the real-time or

lot average signals. Finally, long term drifts due to machine aging, or shifts in the machine
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state due to chamber cleaning or preventative maintenance are visible in the lot average

signals, while the real-time and wafer average levels show no significant change.

Lot Averages

Original Signal

Wafer Averages

n
Real Time

Figure 4-3. Data decomposition for an optical emission endpoint signal
Originalsignalplotsdata overone maintenance cycle.Thebeginningof a cycle is marked
by a preventative maintenance event.The dataare the sumof lot averages, waferaverages
(shown here over one lot), and real time signals (shown here for three wafers).

4.3. Modeling Machine Aging

As wafers are processed, the state of the machine changes over time. This behavior is

oftenreferred to as machine aging; the drift in the machine state is associated directly with

the accumulation of residue on the chamber walls and window.
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4.3.1. Optical Emission Data

Recent efforts have focused on using optical emission data as a valuable source of

information about the plasma state. However, measurements ofthis type exhibit atypical
trends due tothe confounding effect ofwindow clouding and machine aging. This behavior

is cyclical inthe sense that the machine state can be"reset" by preventative maintenance

(PM) events. This cycle of long term trends, when not properly taken into account, can

result in an increased false alarm rate during fault detection. Models are developed, which

characterize the behavior of optical emission signals over long periods of time. These

models enable integration of these signals with other sensor data, so thatreal-time statisti

cal process control techniques can be applied to perform fault detection. By specifically

accounting for long term trends, these models partially decouple the machine state from

the state of the plasma; such decoupling reduces the false alarm rate due to preventative

maintenance events, thus resulting in a fault detection mechanism which is robust over

time. A further advantage of this decoupling is that knowledge of the machine state in

terms ofaging can be combined with other information sources to provide prediction of

equipmentproblems, and for scheduling preventative maintenance events. Machine state

information combined with a more accurate knowledge ofthe true plasma state, after the

effects ofmachine aging ontheoptical emission data have been removed, canalso bebetter

used to predict wafer output characteristics.

4.3.2. Long Term Trends

Examination and analysis of optical emission data over long periods of time shows a

different type of trend than that typically handled by time series models. As depicted in

Figure 4-3, the endpoint signal (a measure ofthe intensity ofthe plasma for a particular

wavelength) exhibits anexponential decay. Figure 4-4 plots the average value of the end-

point taken over each lot with respect to the wafer count. Because the wafer countwafer

count is reset tozero after a preventative maintenance (PM) event, the plot shows the end-

point signal evolving over the course ofamaintenance cycle, where the chamber isinitially

clean but becomes progressively dirtier as more wafers are processed. The trend isclearly

visible, and is repeatable asdemonstrated by the five different maintenance cycles which
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are overlaid in this plot. The data shown in Figure 4-4 span a total period ofeight months,

duringwhichthere werefive PM events corresponding to chamber and windowcleans.

IT)

O
O
If)

0 1000 2000

Wafer Count (RF Time)

Figure 4-4. Lot averages ofendpoint for five preventative maintenance (PM) cycles

4.3.3. The Effect of Window Clouding

Time series models are known to capture the dependencies among a sequence of data

points, with the assumption that these readings are taken at regularly spaced intervals.

However, because the processing of lots is rarely scheduled at such regular intervals, these

models are inappropriate for dealing with optical emission data at long time scales. The

problem is further complicated by the apparent exponential decay in the measured values.

The exponential decay visible in the lot average value of the endpoint signal suggests

the use of the log transform as a method of linearizing the data. This is further supported

by knowledge of the plasma etch process and its effects on the reading ofoptical emission

data. Specifically, the chamberwindowbecomes cloudedas a resultof progressive depos-
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iting of material on the window surface as the wafers are being etched. This clouding in

turn affects the sensor reading of the plasma intensity.

Mathematically, the plasma intensity measurement may be modeled by the following

equation:

/(z) = (4-12)

where the intensity, I, decreases exponentially with the thickness (z) ofthe deposited mate

rial. The exponential decay constant (a) is related to the absorptionproperties ofthe mate

rial. Assuming that the accumulation of deposited material varies as a linear function of

time,

z = Zj + Zj • RFtime (4-13)

the expression for measured intensity as a function of RF time becomes:

rx«1-, . N r -ct^2 • RFtime , ^I{RFtime) = I^e e (4-14)

Taking the logarithm ofequation 4-12 results in a linear expression relating the log of

the intensity to RF time.

4.4. Filtering Long Term Trends for Enhanced Monitoring Capability

To extend the monitoring system and fault detection capability (RTSPC) to accommo

date lot-to-lot trends, the optical emission data are first filtered through a log transforma

tion, and then modeled using linear regression techniques, followed by time-series

modeling to remove the remaining time-dependent behavior.

4.4.1. Linearization of Optical Emission Data

The linear regression model uses wafer count as an input parameter in order to accoimt

for the effect of RF time. Figure 4-5 depicts the transformed data from Figure 4-4 for the

five maintenance cycles. As expected, the transformation has linearized the data. After the

linear trend is filtered out, the resulting linear regression model residuals are filtered using

time-series models in order to remove the remaining time dependencies.
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Figure 4-5. Lot averages oftransformed endpoint for five preventative maintenance (PM)
cycles

Note that a linear model had to be fitted to specifically account for wafer count or RF

time. Had we not used this as a fitting parameter, the profile would have been skewed. This

is because ofthe nature ofthe process, and the data available for analysis. Although wafers

are processed at fairly regular intervals, and samples in real time are collected at a specific

frequency, the processing of lots follows a much more sporadic schedule. It is not unusual

to encounter long periods between datasets corresponding to successive lots. Thus, when

tracking the long term behavior of the process, time-series models cannot be applied

directly, as the assumption of regular sampling does not hold in this case.

Figure 4-6 summarizes the filtering process for the optical emission signals. We

includeplots of the residuals aftereach step,withhistograms corresponding to their distri

bution. Note the spread ofthe residuals after being filtered by the linear model, versus the

distribution after both linear and time series filtering. The residuals are cleaner and more

tightly centered aroimd zero, demonstrating theadditional benefit of time series modeling.
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Figure 4-6. Filtering process for optical emission signals (OES)

4.4.2. Improved Fault Detection

The double chart for one maintenance cycle is shown in Figure 4-7. This plot was

generated using only a time series model constructed from the original lot averages of the

endpoint signal as a filter. The einalysis used baseline data, and yet the model produced

false alarms (dark bars) at the beginning of the cycle. Examination of individual signal

residuals shows that the problem is indeed caused by the failure of the time-series model

to accurately represent the apparent exponential decay in the endpoint signal.
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Figure 4-7. Baseline double chart using original data

Figure 4-8 depicts a similar double chart after the log transformation, followed by

linear regression and time-series filtering asdescribed above. The plot shows that the false

alarms dueto the decay have been eliminated, andthus, the models have effectively cap

tured the long term trend.
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Figure 4-8. Baseline double chart using transformed data
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Figure 4-9.Production double chart using transformed data

4.4.3. Fault Detection Case Study

As a test bed for the improved RTSPC, we are using data taken over a period of seven

weeks during which there were two window cleans. The data include two different recipes,

comprising 40 lots total, with 19 wafers per lot, where pressure is the altered variable in

the recipe. The events affecting the normal evolution ofthe system are DOEs and resetting

ofthethrottle valve. These two events are very different innature. We expect the DOEs to

be fairly easily detected as an abrupt shift since the inputs to the machine are being varied

drastically from wafer to wafer over a wide range of operating conditions. In contrast,

resetting the throttle valve is a physical change to the machine, and thus is altering the

machine'sstate. Thiscould beexhibited as a subtle change, which may affectsome sensor

signals more thanothers. In addition, this change may be more pronounced in one recipe

than another, since the process state is dependent on the input settings to the machine.

In the datasetcollected corresponding to thefirst recipe, themodels constructed to rep

resent the baseline condition include lots processed after the throttle valve had been reset.

In this case, the T^ chart did not produce alarms for these lots. After the baseline model had

been established, production data (comprised of baseline data, plus lots processed as



DOEs) are analyzed following the flowchart outlined in Figure 4.2. The resulting double

scores correspondingto wafer and lot level time scales for the baseline and production

cases are plotted in Figures 4-10 and 4-11.

a (/)

4 5 6

^ Lot Count
window clean

^ 8 5

throttle valve reset

Figure 4-10. Baseline double chart using recipe 1data ^

Arrows indicate window clean and throttle valve reset.

DOES

6 8 10 ^12
Lot Count A

^ DOE
window clean throttle valve reset

Figure 4-11. Production double chart using recipe 1 data

Arrows indicate injected faults, which inthis case, are lots corresponding to DOEs.

' In this case, the lot to lot control limits appear to be inflated.
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For this recipe, alarms are clearly generated for the DOE lots; the violations of the

upper limit are present in both wafer level and lot level time scales, suggesting that the

injected changes are drastic enough to affect the average value over both the individual

wafers and the entire lot. However, as mentioned above, theresetting of the throttle valve

did not signal a fault in this dataset. Close examination ofthe individual residuals for some

ofthesensor signals reveals that the only significant change in the lots processed after the

throttle valve position change appears tobeinthe chamber pressure. The other sensor sig

nals seem unaffected by this particular event. Figures 4-12 and 4-13 plotthe production

data for the chamber pressure andRF Tunesignals respectively.

UCL

LCL

UCL

LCL

DOES

window clean

Lot Count
^12

^ DOE
throttle valve reset

Figure 4-12. Univariate analysis for chamber pressure signal for recipe 1data ^
Original signal (top); Wafer-to-wafer level residuals after time-series filtering (middle);
Lot-to-lot level residuals after time-series filtering(bottom).Upper and lower control lim
its (UCL and LCL) are shown for the residual plots.

^Again, the lot to lot control limits appear tobe inflated in this case.

55



p*n..

UCL

LCL

UCL

LCL

f 4 f 6 8
^ Lot CountDOES ^

window clean

10 ^12
^ DOE

throttle valve reset

Figure 4-13. Univariate analysis for RF tune position signal for recipe 1 data

Original signal (top) is measured in thousands of counts; Wafer-to-wafer level residuals
after time-series filtering (middle); Lot-to-lot level residuals after time-series filtering
(bottom). Upper and lower control limits (UCL and LCL) are shown for the residual plots.

Analysis of the data taken from the second recipe produced different results. First, no

DOE data are available for analysis using this recipe as a baseline. Secondly, models con

structed to represent the baseline condition do not include lots processed after the throttle

valve change. In fact, the inclusion of these lots generates alarms on the charts. Thus,

the baseline data exclude these lots; instead they are added to the production data set. The

events affecting the data collected imder this recipe are resetting of the throttle valve, and

a large change in RF power afterprocessing of the first two lots. Thedouble T^ charts for

baseline and production data are displayed in Figures 4-14 and 4-15 respectively.
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Arrow indicates window clean.
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Figure 4-15. Production double chart using recipe 2 data

Arrows indicate faults, which in this case, are change in RF power, and throttle valve
reset.

Examination of the individual sensor signals and residuals adds further insight for

assigning cause to the alarms generatedby the lots with high scores in Figure 4-15. Fig

ures 4-16 to 4-18 plot some ofthe sensor signals and corresponding wafer and lot level time

scale residuals.
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Figure 4-16. Univariate analysis for RF power signal for recipe 2 data
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Original signal (top); Wafer-to-wafer level residuals after time-series filtering (middle);
Lot-to-lot level residuals after time-series filtering (bottom). Upper and lower control lim
its (UCL and LCL) are shown for the residual plots.

Looking at the first two lots of the production sequence in Figure 4-16, it is clear that

the large shift in the power influences many ofthe other RF signals, which are adjusting to

the change in load caused by the power shift. This power change explains the alarms in

these lots, but does not account for the alarms in the three lots following the first two.

Examination of the individual sensor signals and residuals is helpful in this case. Note

that the RF coil signal in Figure 4-17 exhibits a clear drift in behavior following the abrupt

shift after the first two lots. The corresponding residuals show that this drift is captured in

the lot average residual, but does not affect the wafer average residual profile. This is a

clear example ofmachine drift that is visible more clearly in one time scale than another.
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Figure 4-17. Univariate analysis for RF coil position signal for recipe 2 data

Original signal (top) is measured in thousands of coimts; Wafer-to-wafer level residuals
after time-series filtering (middle); Lot-to-lot level residuals after time-series filtering
(bottom). Upper and lower control limits (UCL and LCL) are shown for the residual plots.

Finally, for the lots processed after the throttle valve reset, it appears that again the only

sensor signal showing significant change is the pressure, shown in Figure 4-18, and this

appears at the lot average level with no significant affect at the wafer to wafer time scale.

Although in both cases the endpoint signal did not appear to be a significant indicator

of a failure event, the models and filtering procedure developed in this chapter allow this

signal to be incorporated with the other signals in the double chart. Without this devel

opment, as shown in Figure 4-7, it is likely that there would have been false alarms in the

portions of the baseline data immediately following chamber or window cleans, or preven-

tative maintenance events.
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Figure 4-18. Univariate analysis for chamber pressure signal for recipe 2 data

Original signal (top); Wafer-to-wafer level residuals after time-series filtering (middle);
Lot-to-lot level residuals after time-series filtering (bottom). Upper and lower control lim
its (UCL and LCL) are shown for the residual plots.

4.5. Summary

The models developed to account for long term trends are consistent with physical

equations describing the window attenuation effect on the measured data. Furthermore, the

results are repeatable over several preventative maintenance (PM) cycles, with little vari

ation ofthe linear regression model from one cycle to the next. This suggests that a simple

linear adaptive model may be used to effectively predict the behavior of a cycle, even after

a change ofthe machine state as drastic as that produced by a PM event. This development

enhances the current tool by enabling the optical emission signals to be combined with the

other sensor data, and makes monitoringrobust over time. A further advantage is that new

models would not have to be reconstructed each time the chamber or window is cleaned.
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Figure 4-19. Flowchart for improved fault detection and analysis for three time scales

Our improved fault detection mechanism incorporates long term trends and allows

analysis to be conducted at different timescales, resulting in a morepowerful investigative

toolforproviding better insight forfaultdetection anddiagnosis. Aflowchart summarizing

the procedure is shown in Figure 4-19.
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5 Methods for Classification and

Decision Making

5.1. Introduction

In the previous chapter we developed improvements to a system for fault detection

based on monitoring real time tool signals for plasmaetch equipment. In particular, it is

clear that long term trends canbe explained bymachine aging andhence, through appro

priate filtering, we are able to account for this drift. With the fault detection mechanism

finely tuned and capable of integrating informationat various time scales, the next task is

to diagnose the problems causing the faults detected by the system. This task is compli

cated byvariability, specifically, inthetype ofdata, and itssource. The different datatypes

lendthemselves to different modeling techniques, and, byexploiting varying levels of res

olution and detail, features maybe extracted for fault classification. Thischapter reviews

various methods and approaches for handling uncertainty, focusing on probabilistic

models that accommodate the intermingling of techniques to extract information critical

for decision making. In particular, we discuss the theoretical basis for construction of a

decision support tool to enhance the engineer's ability to make crucial decisions based on

timely identification of the machine state.

5.2. Data mining and sensor fusion

Theprocess ofextracting knowledge fi-om datais often referred to as datamining. Rule

bases, decisiontrees, and neural networksare amongthe representations used for data min

ing, employing techniques such as density estimation, clustering, regression and classifi

cation [13].

The general problem of classification of data into categorical groups in order to draw

someconclusion or inference has beenconsidered by researchers spanning manydifferent
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fields and applications. The term ''expert system'' has been used to describe a structure that

combines various types of information for such a purpose. This process has also been

referred to as information or datafusion, and inparticular, fordata from multiple sensors,

as sensorfusion.

One key goal in sensor fusion is to reduce uncertainty. A distinctioncan be made here

between uncertainty andimprecision [14]. Sensor uncertainty depends onwhat is observed

rather than the sensor itself. Thus, missing features, an inability of the sensor to measure

all relevant attributes, or ambiguous observations canall contribute to uncertainty. In the

ory, the advantage of multiple sensors is that the observations of each one may be com

bined intoan improved estimate ofthestate compared to onederived from a single sensor.

Our goal istobuild a diagnostic system for machine fault classification combining evi

dence from multiple sensors. One challenge in multisensor systems is in evaluating how

sensors shouldbe implemented, and the role eachplays in data management and decision

making. Each sensor becomes a potential contributor to a composite decision process.

Although thebenefits ofsensor fusion have motivated much research in thearea, a general

purposemethodfor fusion across levels has yet to emerge [15]. The lack of consensus for

a single approach canbeexplained bythevarious difficulties associated withmultiple sen

sors. For instance, the sensors' outputs may have little in common, offer different resolu

tions of data, or have minimal or no relation to each other. The problem is further

compounded by issues of sensor and measurement noise.

5.3. Methodologies for handling uncertainty

The approaches for handling uncertainty typically fall underone of the following the

ories: (1)probability theory, which includes Bayesian theory, (2)Dempster-Shafer theory,

also known as evidence theory, and (3)fuzzy set theory.

Given the wide range of fields and applications for classification and sensor fusion, it

is not surprising that differentmethodologies for representing and dealingwithuncertainty

issues have been developed as a result. We require a framework for combining evidence,

whether from differentsensors or from other sources, such as humanexperts, and for gen-
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erating diagnoses from the extracted information. The approaches for evidential reasoning

and decision making are typically considered to fall into one of three general theories.

5.3.1. Probability Theory

Probability theory, being the oldest and most established of the three, is often the

benchmark to which other methods are compared [16]. More recently, developments in

graphical modeling approaches based on probability theory have proven highly successful

in the area ofdiagnosis and classification [17], [18], [19], [20]. Probability-based eviden

tial reasoning systems assign probability values to events. Bayesian statistics refer to a set

of techniques for inference that combine measured or observed data with subjective

beliefs, using Bayes' theorem. With certainty in a feature represented as a probability func

tion, faults can be linked to observations or evidence, and then Bayes' rule may be applied

in order to calculate the likelihood of a particular fault. Examples of using a Bayesian

approach can be found in [21], [22], [23]. In addition, a well formalized procedure exists

for implementation of a diagnostic system based on Bayesian theory [24], [25]. One draw

back, however, is that it requires the values of a large number of conditional probabilities.

Proponents of other methods have also criticized this approach for its lack of an explicit

representation of ignorance. There are a few instances applying non-Bayesian techniques

specifically for sensor fusion, using point probabilities with altemate application-depen

dent decision rules [26], [27], [28].

As an example ofhow this approach might be implemented, let us look at a plasma etch

application. Figure 5-1 is a depiction of the plasma etch process that includes input settings

and some relevant sensor measurements.

Input Settings

Pressure

Top power

RF bottom power

Gas ratio

Total gas flow

Plasma Etcher Sensor Measurements

Bndpoint

Impedance

RF tune position

DC bias

Figure 5-1. The plasma etch process



Suppose we vary the input settings of the plasma etcher, while collecting sensor sig

nals. If weareconcerned withidentifying shifts in the inputs meant to simulate the occur

rence of a fault, we would want to infer this from our observations of monitored sensor

signals measured during wafer processing. To define this problem, we need to specify a

fault space comprised of the different hypotheses, and anevidence space of observations.

Fault label Fault hypothesis

Fi wrong pressure

Fz wrong top power

Fs wrong RF bottom power

F4 wrong gas ratio

F5 wrong total gas flow

no fault

Evidence label Observation

E, endpoint signal

E2 impedance signal

E3 RF load position

E4 DC bias signal

Table 5-1. Fault and evidence spaces for the plasma etch process

The Bayesian approach employs Bayes' rule tocalculate theposteriorprobability ofa

fault given the evidence.

P{E/F;) •P(F,)PiF/Ej)= ' p-' -'j ={1.2,...,5}J ={1,2, ...,4} (5.1)

Here the term P{Ej isthe conditionalprobability ofthe evidence given the fault,

also known as the class conditional orposterior probability, P{F^) isthe prior probability

ofthe fault, and P{Ej) isa normalization term, which can be expressed in terms ofpriors

and posteriors by the following equation:

P{Ep = y^p{e/f;)-p{f;) (5.2)
/= 1

Table 5-2 lists values of thedifferent posterior probabilities forthisexample using the

endpoint signal, .Ey, as evidence.

Thus, for this example, substituting in Equation 5.2, we obtain
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Prior Value Conditional Probability or Posterior Value

P(F,) 0.05 P(Ej/Fj) 0.13

P(F2) 0.2 P(Ej/F2) 0.76

P(F3) 0.01 P(Ej/Fs) 0.01

P(F4) 0.03 P(Ej/F4) 0.03

P(Fs) 0.06 P(Ej/Fs) 0.02

P(.0 0.65 PiF, /Q 0.05

Table 5-2. Prior and likelihood probabilities for fault categories and endpoint evidence

P(Ej) = (0.05 •0.13) + (0.2 . 0.76) + (0.01 •0.01) + (0.03 • 0.03) ( 5.3 )

+ (0.06 . 0.02) + (0.65 • 0.05)

which gives P(Ej) = 0.1932. Consequently, the posterior probabilities of each fault given

the evidence observation of the endpoint signal are calculated using Equation 5.1, and the

results are summarized in Table 5-3. In this case, we would conclude that given the

observed endpoint signal evidence, the most likely fault cause is using the wrong top power

setting (F2).

Posterior Value

P(Fj/Ej) 0.0336

P(F2/Ej) 0JS67

P(Fs/Ej) 0.0005

P(F/Ej) 0.0047

P(Fs/Ei) 0.0062

P(^'E,) 0.1682

Table 5-3. Posterior probabilities of fault hypotheses given endpoint evidence

5.3.2. Dempster-Shafer Theory

Another popular approach was first proposed as an alternative to Bayesian probability

by Shafer, and subsequently built upon by Dempster [29], [30]. The Dempster-Shafer (DS)

theory, also commonly referred to as evidence theory^defines a finite set ofmutually exclu

sive propositions on a domain called the frame ofdiscernment (©). Evidence is repre-
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sented as a Shafer belieffunction over <0.0, 1.0>. This interval is used for convenience,

giving the appearance ofa probability. Belief functions interpret evidence of some obser

vation, and serve as a model for transferring belief, but theycannot be interpreted as prob

abilities ofevents [15].

One distinction in this theory lies in the concept of attaching portions of probabilistic

measure to higher levels of abstraction than the focal elements of the problem. These

abstractions are unions ofthe focal elements in ©. Thus, for n focal elements, the set ofall

possible subsets of theta is thepower set2^, InDStheory, twomeasures of uncertainty are

computed for each element. Supportability (S) is defined as the degree of belief directly

supporting a specificelementof the power set. In con\xd&i, plausibility (P) is the degree of

beliefnot directly in contradiction of a specific element. Withthesedefinitions, it is possi

bleto explicitly represent ignorance as the difference between plausibility andsupportabil

ity ofan event.^ Dempster's rule ofcombination serves as the mechanism for combining
independent sources of information.

Returning to our example of a plasma etch diagnosis application, we can consider the

frame of discernment, ©, as thefault space. Note thatwith ourfault setof 5 categories, we

now have 2^ =32 possible subsets inour fault space. We also assume that we have a mul

tivalued mappingfunction, T, that maps the elements in the evidencespace, E, to the fault

space, ©, and that elementsmay be mapped to an individual hypothesis, or any subset of

hypotheses. These evidence mappings can be specified by defining a basicprobability

mass distributionor BPMD [31].A set of basic probabilitymasses (BPM) are used to dis

tribute belief from an evidence elementto a setofhypotheses in the fault space. Any unas-

signed belief will be assigned to the entire set, ©.

Using the BPMD, we can extract intervals, [S(X), P(Xf\, for an individual hypothesis.

The support and plausibility of a hypothesis X are specified by:

^In contrast, classic probability theory zissigns wide confidence intervals to estimated probability values.
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P(X) = (5.5)

where = Xkj -X and -X^ c -X. Thus,Equations 5.4and 5.5saythat the total

support in X is given by the sum ofsupports assigned to X and all subsets ofX.

For our example, let us take as evidence observations, the monitored sensor signals cor

responding to the endpoint {Ej) and the impedance {E^ of the plasma, and specify the

BPMD's, mj and as the massesderivedfromthe multivalued mappings, Fj: ^ ©

and T2. E2'->® ' Using Dempster's ruleof combination [30], we can calculate the com

bined BPMD as follows:

Ym,{X;)m2{Y)
m{Z) = ^ ;F,n Yj =Z (5.6)

k = j(X,.)/W2(1S)' ifr^Yj = 0 ( 5.7)

Equations 5.6 and 5.7 define the BPM ofthe intersection of^- and Yj as the product of

the BPM's ofXi and Yp with anormalization factor of(1-A:) to account for the beliefwhich

would have been assigned to the empty set.

Using the following evidence mappings for Fj: j&j -> © and F2: ^2 ® •

7w,(Fi, F2 u F5, F3, F4, ©) = (0.05,0.8,0,0,0.1,0.05) ( 5.8)

W2(F2, F, u F3, F4 u F5, ©) = (0.25,0.4,0,0.15, 0.2) (5.9)

we can calculate the combination ofW;and /w^. Table 5-4 lists the propositions (subsets of

the fault space) from mj along the first column, while those of are given along the top

row. Thus, the cells of the table show the intersection of the corresponding propositions

associated with ntj and m^. Note that the intersection with the whole set, ©, simply returns

the origind proposition. Assuming independent evidence sources, the values of the inter

sections of the propositions are given by the product of the values of the propositions, and

these are summarized in Table 5-5.

Equation 5.6 gives us the following for the combination of wi; and 1712'.

68



mj \m2 Fi Fi«jF3 F4UF5 ©

Fx 0 Fx 0 0 Fx

Fi'-'F} F2 0 0 Fi'^F^

F3 0 0 0 F^

F4 0 0 F4 0 F4
0 0 0 ^ • C

© Fi FjuFa F4UF5 ©

Table 5-4. Sets formed from theintersection of propositions associated with nij and

mj \m2 0.25 0.4 0 0.15 0.2

0.05 0.0125 0.02 0 0.0075 0.01

0.8 0.2 0.32 0 0.12 0.16

0 0 0 0 0 0

0 0 0 0 0 0

0.1 0.025 0.04 0 0.015 0.02

0.05 0.0125 0.02 0 0.0075 0.01

Table 5-5. Corresponding beliefmass values for the sets formed from the intersection
operation

w(F,, ^2, F3, Fj u F3, F4,F5, F4vj F5, Fj u F5)

= (0.0632,0.4474,0, 0.0421,0, 0,0,0.0895,0.3368) (5.10 )

Using Equation 5.5, the corresponding probability intervals for each fault hypothesis are:

F,[0.0632,0.1263], F2[0.4474,0.8052], F3[0,0.0631], F4[0,0.021], F5[0,0.3578],

and ^[0.0895,0.1105 ]. Again, these results show that the most likely fault cause is due to

using the wrong top power setting, F2.

Bayesian theory and DS theory have both been used successfully in a number ofsensor

fusion applications. Although the majority of these systems represent sensor evidence

probabilistically and use Hayes' rule for inference [21], [22], [23], [24], [25], a significant

portion rely on the DS framework and consider sensor evidence in terms of belief [15],

[22], [32], [33], [34], [35], [36]. An application for monitoring, maintenance and diagnosis
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fora lowpressure chemical vapor deposition (LPCVD) process using theDSapproach can

be found in [31].

There is much inthe literature discussing theadvantages anddrawbacks ofeachtheory

[37], [38], [39], [40]. In particular, someresearchers contendthat evidencetheory is either

morepowerful or that it can address someproblems that probability theorycannot. Others

view evidence theoryas havinglimitations, claiming that Bayesian theoryis a more effec

tive and efficient method. A directcomparison can be found in [41], whichapplies Baye

sian and evidential reasoning to the sametarget identification problem requiring multiple

levels of abstraction. The two reasoning methods are compared in terms of convergence

for a number of aircraft identification scenarios including missing reports and misassoci-

atedreports. These results showthatprobability theory canaccommodate all issues dealing

with uncertainty and converge to a solutionfaster than evidencetheory.

5.3.3. Fuzzy Set Theory

The third approach is motivated by the claim that probability and statistics do not ade

quately deal with certain kinds of uncertainty. Fuzzy set theory (FST), first advocated in

1965by L.A. Zadeh,has mainly been establishedin applicationsofcontrol theory and arti

ficial intelligence [42], but has more recently been applied as an alternative to traditional

statisticalmethods in areas such as statisticalqualitycontrol, linear regression, forecasting

and reliability [43]. One claim is that this theory serves as a bridge of communication

between man and machine. For example, in applications involving diagnosis, inference,

systems and control,observations are often expressed in linguistic terms or human expert

opinions. Thesedatasufferfromuncertainty andambiguity dueto subjective judgmentand

interpretation, as opposed to the measurement noise, imprecision, or natural process vari

ation that contribute to randomness in the statistical sense. While statistical variation is

based on the distributionof data, in cases where the occurrenceof an event is imclear, or

the total data has no meaning, there is no distribution. The observation that "the tomato is

red" or a statement that "the tomato is almost ripe" are not readily handled by probability

theory. Thus, the most salient aspect of FSTlies in its ability to represent the gradation of

boundaries of states, relationships, constraints and goals, where therange or interpretation

ofthe definition is vague.
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In the case of diagnosis and inference, through FST techniques, one would hope to

express human experience in a form easily evaluatedby a machine,and moreover, to con

vert the output of the machine into a form people can understand. Some systems are even

designed to imitate human judgment and imderstanding. However, because a model

derives its value from being a concise expression capturing the essence of a real problem,

the first issue to consider is what part ofthe system (ifany) would be better represented by

FST, and what form this conversion will take.

A system model is composed ofmany types of variables, dependent and independent,

state, input, output and decision nodes, and must incorporate transitions, cause and effect.

The procedure for building a fuzzy model takes place in two stages: (1) definition of the

sets ofvariables and logical relationships and (2) conversion to fuzzy sets and fuzzy rela

tionships. To construct a fuzzy set, one must first identify a membership function that

assigns a grade ofmembership between zero and one to each element in a set. Mathemat

ically, the membership function is a mapping from the space ofelements to the unit inter

val, again, giving an appearance of a probability. Table 5-6 summarizes a few notations

used in defining fuzzy sets; a formal definition is as follows [44].

The function p : [0,1 ] is given the label A and A is called a

fuzzy (sub)set ofX. p is called the membership function of A, and

defines the extent of membership of element x into A, D (5.1)

X e X

0 ^ H^(*) ^ 1

X

//̂
1

\

\

1 \

\ /
\ X* /

Vs

Figure 5-2. Fuzzy Subset A
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Notation Meaning

X whole set

A subset ofX

A fiizzy subset ofX

0 empty set

{0,1} the set of zero and one

[0,1] the real-number interval from zero to one

Xa the characteristic function of set A in X

the membership function of set .<4 in X

a Ab the min of a and b

av b the max ofa and b

Table 5-6. Notation for fuzzy sets [44]

Figure 5-2depictsa fiizzy subsetA [44].Therectangle represents the wholeSQtX, and

the dashed circle, the ambiguous boundary of the fuzzy subset A. A member of the set is

the element x, whose membership function p gives the degree or extent to which j: is a

member of A.

It is important to note the difference between a fuzzy set and a standard set, also

referredto as a "crisp" set. Returning to the datafrom our plasmaetch example, let us take

the fault hypothesis, the label corresponding to usingthe wrong top power settingon

the etcher, to illustrate this difference. Our data for the top power setting consist of several

values. We need to specify which of these are "wrong" and which are correct. Moreover,

we wish to make a further distinction between a setting that is "too high" versus one that

is "too low". In order to implementthis quantitatively, we require a methodofdetermining

appropriate threshold values. In effect,we are specifying the boundaries between the cor

rect setting, and values that are either too high or too low.

Nonfuzzy sets have been called crisp sets, due to their clearly defined boimdaries.

Characteristic functions may also be used to define the membership ofan element to a crisp

set. In particular, if C is a crisp subset ofAT, the characteristic function of C is given by:
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XcW = ;;
X € C

X € C
(5.11)

This is equivalent to a membership function of C with a grade that is two-valued. In

other words, the element x either belongs to C with a grade of one, or it does not belong,

and its grade is zero.

If we think of the decision rendered by the characteristic function of a crisp set as

making a determination between black and white, then the membership functions for fuzzy

sets assign grades ofmembership by distinguishing among shades ofgrey. In other words,

membership functions are an extension of characteristic functions in that they allow for a

membership grade within the range [0,1], as opposed to {0,1} for crisp sets. One conse

quence ofthis is that a given element ofAT may simultaneously hold non-zero grade values

of membership in multiple sets. That is, the boundaries between sets are vague or fuzzy.

Figures 5-3 and 5-4 illustrate the difference between crisp and fuzzy sets.
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Figure 5-3. Characteristic functions ofcrisp sets "low", "medium" and "high" top power
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The basic operations conducted on crisp sets are used to give unions, intersections and

complements of sets. However, because fuzzy sets are defined by membership functions,

operations conducted on fuzzy sets must utilize membership functions. The following def

initions are necessary for this purpose:

Union of fuzzy sets A and B:

D ( 5.2)

Intersection of fuzzy sets A and B

D(5J)

Complement of fuzzy set A

D(5.4)
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Figures 5-5and5-6show graphs of these operations using fuzzy sets^ and5, which

could for instance, correspond to "low top power" and "high top power" respectively, as

in our previous example.

In particular, we can see that these definitions are extensions of crisp sets. If we take

the characteristic functions oftwocrispsets, CandD, we can definethe union,intersection

and complement as follows:

XcudM = 5CcMvXd(^) D ( 5.5 )

XcnvM = XcWaXdW D ( 5.6 )
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X^x) = 1-XcW

These are depicted in Figures 5-7 and 5-8.
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From the figures, it is clear that fiizzy complements do not necessarily share the char

acteristics ofcrisp complements. One important difference is that fuzzy sets do not follow
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the excluded-middle law, nor do they follow the law of contradiction of crisp sets. More

specifically, we have that for a fuzzy set A:

AuA^X (5.12)

AnA^0 (5.13)

Moreover, the fuzzy membership functions for the whole and empty sets for all values of

Xare given by:

= 1 . (5.14)

M^) = 0 (5.15)

In contrast, crisp sets result in the following laws,necessary for two-valued logic [44]:

CuC = X (excluded-middlelaw) (5.16)

C n C = 0 (law of contradiction) ( 5.17 )

For finite sets, givenby ^ = {xj, ^2,..., }, membership functions can be expressed

in the following manner [44]:

n

1= 1

Note that the elements of the set are written on the right side of the slash, and the corre

spondinggradesof membership on the left.Thisnotation allowsus to representoperations.

For instance,usinga to represent"or" results in an operationthat assigns the maximum

grade when the elements are the same:

a/jC|+ 6/a:| = a (5.19)

Finally, we need a few more concepts to demonstratehow FST can be applied to a clas

sification problem. In order to define fuzzy relations, fuzzy reasoning, and fuzzy logic, we

require some basic building blocks. A fuzzy proposition is an expression that makes a

statement. A typical example might be "jc is A ", where jc is an element ofthe set, and A is

a fuzzy predicate, or fuzzy variable. In the plasma etch example, x might be a sensor mea-
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surement such astheendpoint intensity, and Amight represent the set"high". The propo

sition "a: is A" would then beinterpreted asthe statement "the endpoint intensity ishigh".

In addition, fuzzy propositions canmake use of modifiers to change the predicate; this is

represented as "jc is mA ", where the modifier m can be, for example, "very" or "not",

resulting in a modified statement, "the endpoint intensity is very high" or "the endpoint

intensity is not high". Propositions can be combined to produce composite propositions

such as:

"jc is A " or "jc is = "jc is Akj

"jcis A " and "jcis = "jcis >1 n ^ "

An implication is a combination formed using an "if statement:

"ifJC is theny is = "(jc,y)is A->

where ^4 —> ^ is the fuzzy subset Xx Y , with a membership function given by:

= (1 - ^ 1 (5.20)

There are various implication formulae used in fuzzy reasoning; the interested reader is

referred to [44] for a discussion of these formulae and their applications.

Returning to our plasma etch example, let us take an evidence observation, the moni

tored sensor signal corresponding to the endpoint intensity (Ej) of the plasma, and repre

sent this using the fuzzy setsEji for low and Ej^for high endpoint intensity, respectively.

Moreover, let us take the fault hypothesis corresponding to using the wrong top power set

ting (F2) and model this using fuzzy sets. We can consider the membership functions in

Figure 5-4 as specifying the fuzzy sets corresponding to F2L = "low", "medium",

and ^2H- "high" top power. Figure 5-9 illustrates the membership functions for Eji and

Fih , representing low and high endpoint intensities. Although in both cases we have spec

ified distinct membership functions to distinguish between "low" and "high" for the end-

point and top power respectively, note that alternatively, we could have employed the
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complementoperation.In other words,we would specify"low" and "not low" as opposed

to defining a separate membership function for "high".
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Figure 5-9. Membership functions of fuzzy sets "low" and "high" endpoint intensity

Using Equation 5.18, suppose our endpoint intensityvalues are given by the finite set

X = {319.0,173.4,197.5,408.7,373.4, 534.4,648.9,288.3,424.7,177.4} . The corre

sponding membershipfunctions for Ejff and Eji are:

= O.3/319.O+I/I73.4+I/I97.5 + O.O5/4O8.7 + O.I/373.4 + O/534.4 (5.21)

+0 /648.9 + 0.85 /288.3 + 0.01 /427.4 + 0.98/177.4

= 0.15/319.0 + 0/173.4 + 0/197.5 + 0.8/408.7 + 0.4/373,4+1/534.4 (5.22)

+1 /648.9 + 0.1 /288.3 + 0.85 /427.4 + 0/177.4

The finite set of top power settings associated with the measurements of the endpoint

intensity above are 7 = {350,250,275,450,350,450,450,307.3,350,250}, which

gives the following membership functions for top power:

F21 = 0.2 /35O + 1/250 + 0.98 /275 + 0 /450 + 0.2 /350 + 0 /450

+0 /45O + 0.9 /307.3 + 0.2 /350 + 1 /250
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F^m = 1/350 + 0 /250 + 0 /275 + 0 /450 + 1 /350 + 0 /450 (5.24 )

+0 /450 + 0.18/307.3 + 1 /350 + 0 /250

^IH = 0.2 /350 + 0 /250 + 0 /275 + 1/450 + 0.2 /350 + 1/450 ( 5.25)

+1 /450 + 0.01 /307.3 + 0.2 /350 + 0 /250

Furthermore, suppose we have the following rules, based on experience:

"Ifthe measured endpoint intensity is low, then the top power setting is low,"

"Ifthe measured endpoint intensity is high, then the top power setting is high,"

"(jc,y)is

Using Equation 5.20, we can calculate the membership functions for F21 and

for 1// -> F2H' Butnowsuppose wewantto findthe membership function for the medium

values of endpoint intensity, corresponding to medium values (correct settings) of top

power. We can use the operation for taking the intersectionof"low" and "high" endpoint

intensities, £,„(*) = A , resulting in the following rule:

"Ifthe endpoint intensityis low and high (medium), then the top power setting is medium,"

"(x, y) is n

In other words, by taking the intersection of the sets "low" and "high", we are obtaining

the highervaluesin the lowset, andthe lowervaluesin the highset.Thus,thesecorrespond

to the medium values for endpoint intensity. Table 5-7 lists the measurement data and cor

responding membership functions for the endpoint intensity and top power setting.respec-

tively, while Table 5-8 summarizes the results of calculations involving membership

functions discussed in this example. Note that the diagnosis results represented by the

membership function forthe implication rulesareallcorrectwiththeexception of the ninth
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sample, given by"(x, y) is F2f/\ The rule "if the measured endpoint intensity is

high, then the top power setting is high," fails in this case with a datapoint of (x, y) =

(427.4,350), which is clearly anexception to therule. Ofcourse, thisis a simplified exam

ple used for demonstration purposes. A full classification system would employ several

rule setsbased onvarious sensor signal evidence in order to diagnose thefault hypothesis.

Index Endpoint Top Power ^F,„
1 319.0 0.3 0.15 350 0.2 1 0.2

2 173.4 1 0 250 1 0 0

3 197.5 1 0 275 0.98 0 0

4 408.7 0.05 0.8 450 0 0 1

5 373.4 0.1 0.4 350 0.2 1 0.2

6 534.4 0 1 450 0 0 1

7 648.9 0 1 450 0 0 1

8 288.3 0.85 0.1 307.3 0.9 0.18 0.01

9 427.4 0.01 0.85 350 0.2 1 0.2

10 177.4 0.98 0 250 1 0 0

Table 5-7. Data and membership functions for endpoint (X) and top power (Y)

Index

1 0.9 1 0.15 1

2 1 1 0 1

3 0.98 1 0 1

4 0.95 1 0.05 0.95

5 1 0.8 0.1 1

6 1 1 0 1

7 1 1 0 1

8 1 0.91 0.1 1

9 1 0.35 0.01 1

10 1 1 0 1

Table 5-8. Membership function results implementing implication rules for diagnosis
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Given our discussion, one might reasonably conclude that the value added by the FST

framework depends on the application and modeling goals. Specifically, in cases where the

data is qualitative, subjective, or relies on a linguistic description subject to a range ofinter

pretation, FST provides a structure to capture ambiguity and allow for manipulation in a

form that can processed by a machine. However, if the data can be represented and inter

preted probabilistically, based on statistical properties, the value of what is gained by

employing the FST approach itself becomes ambiguous.

One final point to note is that memberships do not follow the laws of probability. In

fact, one ofthe biggest differences is the idea of a continuum ofmembership - that an ele

ment can simultaneously hold nonzero degrees ofmembership in sets considered mutually

exclusive. Thus, while FST violates the law of the excluded middle, some claim that this

enables toleration ofvagueness in data, especially for categorical or qualitative data. How

ever, critics argue that there is ambiguity in the interpretation and definition offuzzy quan

tifiers, and that fuzzy logic implementations are difficult to adapt to new sensing

configurations [15]. A comparison is made in [43] between fuzzy methods and simpler

alternatives based on traditional probability and statistical techniques. In this review, using

examples applied to control theory and statistical quality control, the authors find no

instances ofFST being uniquely useful. In other words, no solutions using FST were found

that could not be achieved at least as effectively using probability and statistics. Still, there

are several examples and applications of possibilistic or fuzzy systems for sensor fusion

[22], [45], [46]. Ofcourse, the debate continues, and interested readers are referred to [43]

for further discussion by proponents ofboth sides.

Considering that DS theory requires a fault space even larger than for Bayesian the

ory,"^ and given the difficulties associated with adapting fuzzy logic implementations, the

framework we have chosen for this application has its basis in classic probability theory.

In particular, we use graphical modeling approaches to capture probabilistic relationships

^Given nmutually exclusive, collectively exhaustive groups in aBayesian fault space, the equivalent
representation in the D-S framework (the frame of discernment, 0) would consist of2n elements, which
is comprised ofall possible subsets of 0.
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among variables. More importantly, this method canlearn causal relationships, which are

especially crucial in diagnosis work, to enhance understanding of the problem and result

in betterpredictive capabilities. Finally, this approach facilitates the intermingling of dif

ferent models, andwhen usedinconjunction withstatistical techniques, canencode depen

dencies, forming a unified and intuitive framework for data fusion.

5.4. Graphical Modeling Approaches

Graphical models have been described as a "marriage between probability and graph

theory [47]."Withthe unionexhibiting the virtues of each, the result is a powerful tool for

handling bothimcertainty and complexity. Thisunified framework for representing prob

abilities and independencies combines representation for uncertain problems with tech

niques for performing inference. Because the approach is inherently modular, that is, a

complex system can be viewed as a collection of simpler parts, the model is ideallysuited

for the design and analysis of machine learning algorithms. Probability theoryacts as the

"glue" for holding the parts, providing consistency within the system, and an interface

between models and data. The framework is supplied by graph theory, enabling the visu

alization of interacting sets of variables. The general graphical model formalism can take

various forms. Influence diagrams represent decision processes; Bayesian networks are

used for causal, probabilistic processes and expert systems, and data-flow diagrams for

deterministic computation. Other special cases include mixture models, linear regression

predictors, feed-forward networks, factoranalysis, Kalman filters, hiddenMarkov models,

directed graphs representing a Markov chain, and undirected networks such as a Markov

field, used to capture correlation for images andhidden causes [48]. These cases span over

many fields ranging from systems engineering and statistical mechanics, to information

theory, patternrecognition, utilitytheory anddecision theory. Specific applications include

diagnosis, probabilistic expert systems, planningand control, dynamic systemsand time-

series, general data analysis and statistics. Moreover, the graphical model framework facil

itates the transfer of techniques over different fields by providing a way to view all cases

using the same underlying formalism.
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A probabilistic graphical model is a graph whose nodes represent variables, and arcs

represent dependencies between variables. Perhaps more important is the absence ofarcs;

when two variables are not linked, then they can be assumed to be independent. The graph

is usedto define a mathematical form fora jointprobability distribution.

The decomposition ofcomplex problems isbased onthe idea of independence.

Xis independent of YgivenZifp{iX a Y) /Z] = p[X^Z]p[Y^Z]
wheneverp(Z) ^ 0 for allX,Y^, D ( 5.8)

Thelawof independence is a basic tool forstructuring knowledge [16], [49]. A graph

icalmodel canbe equated witha setofprobability distributions thatsatisfy its implied con

straints. Furthermore, two graphical models are equivalent probability models if

correspondingsets of satisfyingprobabilitydistributions are equivalent [50].

As mentioned above, for implementingdiagnosticor probabilisticexpert systems, two

cases are ofparticular interest - influence diagrams, and more specifically, Bayesian net

works. These are described next.

5.4.1. Influence diagrams

5.4.1.1. Definition

An influence diagram graphically depicts a diagnostic problem by explicitly revealing

probabilistic dependence and the flow of information [51]. It enables the incorporation of

expert knowledge in a framework to formulate problems as perceived by decision makers.

It consists ofa network with directed arcs and no cycles, where nodes are random variables

and decisions. Arcs into random variables indicate probabilistic dependence, while arcs

into decisions specify the information available at the time ofthe decision. The diagram is

compact and intuitive, not only capturing the relationship among the variables, but also

providing a complete probabilistic description of the problem. Bayes' theorem forms the

backbone of the influence diagram inference procedure. The role of influence diagrams in

diagnostic expert systems is to capture relationships betweenparameters,and to represent

and exploit conditional independence where possible.
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Influence diagrams can be solved in numerous ways [52], [53], [54]. In particular, in

[54], Agogino compares the functional evaluation of Bayes' theorem and the topological

transformation in an influence diagram. Figure 5-10 demonstrates a sensor-based inference

comprised ofa failure node, F, an intermediate node, I, and a sensor node, S.

0—(D—Ki)
original model

i
©—®
absorb I into S

1
0—®

arc reversal

(a)

P{S/F) = yP(S/l)P{I/F)
dj

=yP(SAl)/F
n,

P(S) = yPiS/p^P^F)
Cir-

PCF^S) = nS^F)P(F)^ ' P(S)

(b)

Figure 5-10. (a) Topological transformation and (b) functional evaluationofsensor-based
inferencewith goal: P(F/S) [Agogino, 88]

Theprobability ofa failure, given sensor readings, P(F/S), isevaluated from known values,
P(F), P(I/F), andP(S/I). Functional evaluations corresponding to two topological transfor
mations, namely node removal and arcreversal, areshown inFigure 5-10 (b). Formal def
initions are as follows:

Arc addition: Any number of arcs may be added to an influence
diagram provided no cycles are generated. D ( 5.9 )
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Arc reversal: An arc between two state nodes may be reversed if there
isnootherarc generatedfromtheorigintothedesignatednode. D ( 5.10)

Node removal: Any state node may be removed by absorption into the
preceding node, as long as the predecessor precedes only one node.
The preceding node inherits all the direct predecessors. D ( 5.11)

Figure 5-11 depicts a simplified influence diagram for our plasma etch example. The

diagram shows thatapplication ofpower fi-om thetopmatch network influences theplasma

state, and that the monitored sensor readingsare dependent on the plasma state. We also

infer from the diagram that the match network parameters,measured RF power and the DC

bias, influence each other, while the endpoint signal is conditionally independent of the

match parameters given the state of the plasma.

top power

plasma

(a)

DC bias

endpoint Ij ^ (S
RF power

(b)

Figure 5-11. Influence diagram using (a) signal names and (b) using labels for failure,
intermediate and sensor nodes

Now suppose we are interested in calculating the probability ofa wrong top power set

ting given observations ofthe endpoint intensity, the measured RF power, and the DC bias.

Figure 5-12 shows the topological transformation and functional evaluation for a "wrong

top power" fault hypothesis.
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§3
original model

S3

absorb I into S

absorb I into S-

Queiy: P[F/(S, a Sj a S )]

P(S, /F) = /I)P(I/F)

n,

P(Sj^F) = Y^P{S^/r)P{I/F)
Q/

/•(Sj/F) = Y^P{S^/I)P{I/F)
jk2r

absorb I into S2

Figure 5-12. (a)Topological transformation and(b)functional evaluation fortop power;
P(F/S„S2,S3)
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reverse arc from Sj to F

reverse arc from Si to F

reverse arc from S3 to F

PiS^) = ^P(52/F)P(F)
F

PiF'S^) =
P{S^/F)P{F)

P{Si)

P{S^ /Sj) = Y,P{S^ /F)PiF/S^)
F

PlP/iS^AS^)] =
^(5, /F)P{F/S2)

?(V^)

/•[Sj /(52 A5,)] = ^P(S3 /F)P[F/{S:^ A5,)]
F

P{S./F)P[F/(S.,aS,)]
/>[F/(5,a52a53)] =

The ability to model joint probability distributions using sparse graphs to reflect con

ditional independence relationships is of key importance for decision theory applications.

In addition, multi-attribute utility functions can be decomposed by creating a node for each

term in the sum [48]. The parents would be all the attributes (random variables) on which

the term depends. Utility nodes would have action nodes as parents. The result is an influ

ence diagram used to compute optimal actions to maximize expected utility.

5.4.1.2. Application examples

There are quite a few successful expert system applications based on influence dia

grams. HEATXPRT [55], a data-driven on-line expert system for diagnosing heat rate deg-
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radation problems in fossil power plants, uses an influence diagram knowledge base to

represent and process uncertainty. In addition, an application to semiconductor manufac

turing processes can be found in [19]. The processmodel combinesqualitativeknowledge

of humanexperts captured in influence diagrams, andneural networks for extracting quan

titativeknowledge relating process parameters. Theresultis an adaptive learning architec

ture for processmodelingand recipe synthesisfor depositionrate, stress and film thickness

in low pressure chemical vapordeposition (LPCVD) of undoped polysilicon.

5.4.2. Bayesian networks

5.4.2.1. Definition

Bayesian networks, also known as belief networks, are influence diagrams without

decision nodes. To define a Bayesian network, a setofvariables X= {Xj,..., is spec

ified along with a network structure S, encoding the conditional independence assertions

about the variables in X. A set of local probability distributions P is also associated with

each variable, and together the components specify the joint probability distribution forX

This graphical model uses directed arcs exclusively; the term directed acyclic graph (DAG)

denotes a directed graph without directed cycles. Furthermore, the nodes in S havea one-

to-one correspondence with the variables X. Like influence diagrams, Bayesian networks

represent aconditional decomposition ofthe joint probability. We specify the conditioning

context as M, which can represent the expert's prior knowledge, or choice of graphical

model. Each variable isconditioned on its parents, withparents(x) denoting the set ofvari

ables with directed arcs into jc.

The general form ofan equation for the joint probability distribution for Xgiven S is:

p{X/M) = ]^p[(x//?are«r5(x)),A/] (5.26)
X eX

Bayesian networks offer several advantages. First, by encoding dependencies among

variables this method can handle updates given additional data. Bayesian networks enable

learning ofcausal relationships, leading tobetter understanding about the problem domain.

The approach facilitates the combination ofknowledge and data, particularly causal prior
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knowledge and causal relationships with probabilities. Finally, the combination of Baye-

sian methods with Bayesian networks and other types of models offers an efficient and

principledapproachfor avoidingthe overfitting ofdata.

5.4.2.2. Construction of a Bayesian network

The initial tasks in the process of building a Bayesian network are to:

(1) identifythe goals of modeling(prediction, explanation, exploration)

(2) identify observations that may be relevant

(3) determine what subset is worthwhile to model

(4) organize observations into variables having mutually exclusive, collectively exhaustive

states

The difficulties associated with these tasks are not limited to Bayesian networks, but

are common to most approaches [56].

The next phase of Bayesian network construction involves building a directed acyclic

graph that encodes assertions ofconditional independence for the problem [57]. The math

ematical basis for this is the chain rule ofprobability:

n

p(.x) = (5.27)

1 = 1

Determining the structure ofa Bayesian network often entails the use ofhuman exper

tise and prior knowledge. We specify that for every x/, there will be some subset

n,. c {X j,..., _ I} , such that JC/ and {xx,_ j}\n, are conditionally independent

given n, [56]. Oncethe problem variables areordered, we can determine the variable sets

that satisfy:

n

P(x) = (5.28)

1= 1
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One difficulty with this procedure is that ifthe variables are ordered poorly, the result

ing structure will fail to encode important conditional independencies. In the worst case,

one would have to explore n! possible orderings. An approach to circumvent this undesir

able scenario is to examine the causal relationships among variables which often corre

spond to assertions of conditional independence. Thus, to construct a Bayesian network,

one can simply draw arcs from causal variables to their effects. In almost all cases, the

result is a structure that satisfiesEquation 5.26. To a large extent, the success of Bayesian

networks in the implementation ofexpert systems is due to the learning ofcausal relation

ships, also referred to as causal semantics.

The causaland probabilistic semantics in the model allowfor the combination of prior

knowledge. However, methods for learning causal relationships are still new and contro

versial. The causal Markov condition defines the connection between causal and probabi

listic dependence. In particular, a directed acyclic graph is a causalgraph for variables if

the nodes are in a one-to-one correspondence and there is an arc from node to 7 if and

only ifZis a direct cause of Y. The causal Markov condition says thatif Cisa causal graph

for then Cis also a Bayesian-network structure for the jointphysical probability distri

bution of X. Several researchers have found this condition to hold in many applications

[56]. Thus, given the causal Markov condition, we can infer causal relationships from con

ditional-independence and conditional-dependence relationships learned from data.

The final step in the construction process is to assess local probability distributions of

variables given their parents. In this case, specifying the parameters of the model for a

Bayesian network means finding the conditional probability distribution (CPD) at each

node. For discrete variables, these can be represented as a conditional probability table

(CPT) [48].

Although the construction steps above have been described in simple sequence, in

practice the steps are intermingled, and it often takes several iterations to formulate the

problem based on assumptionsof conditional independence, cause and effect.
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5.4.2.3. The '*BayesBall" algorithm

Onewayto aid in formulating the problem is to viewconditional independence rela

tionships encoded bya Bayesian network bythe "Bayes Ball" algorithm [48]. Using this

algorithm, each node isconditionally independent ofitsnon-descendents, given itsparents,

and in fact, having this quality is oftenimplied in a Bayesian network. Figures5-13and 5-

14illustrate this algorithm. The ideais that two nodes X and Yareconditionally indepen

dent (d-separated), given the parents, if a ball is unable to go from X and T, where the

allowable movements of the ball are depicted in the figures. In the first case (a), note that

the arrows are directed into the node; by convention, this is a leafnode with two parents.

If the node is hidden (not observed and hence, unknown), as in Figure 5-13 (a), its parents

are marginally independent, and the ball cannot pass through. However, if the node is

observed, the parents become dependent, and the ball passes through, as shown in Figure

5-14 (a). The second case (b) depicts a root node, with arrows directed outward. In this

case, if the node is hidden, the children of the node are dependent, linked by a common

hidden cause as in Figure 5-13 (b), while if the node is observed, the children are condi

tionally independent,and the ball cannotpass through as in Figure 5-14 (b). Finally, for the

last two cases (c) and (d), the node is an intermediate node, and nodes upstream or down

stream are dependent ifand only if the intermediate node is hidden.

t

(a) (b) (c) (d)

Figure 5-13. Allowable movements of"Bayes' Ball" for hidden nodes

92



i
't f f

(a) (b) (c) (d)

Figure 5-14. Allowable movements of "Bayes' Ball" for observed nodes

The network determinesa joint probabilitydistributionand in principle, can be used to

calculate any probability of interest using the joint pdf (probability density function). In

reality, this is not practical, andencoded conditional independencies are used to simplify

the calculation and make it more efficient.

Probabilistic inference algorithms for Bayesian networks with discrete variables have

been developed byseveral researchers. One example reverses arcs inthenetwork using an

algorithm that applies Bayes' theorem, so that the result can bedirectly read from the graph

[58], [59], [60]. Incontrast, another algorithm, described in [61], utilizes a message-pass

ing scheme to update the probability distributions in the network after one or more vari

ables have been observed. Other examples can be foxmd in [62], [63], and [64], where the

algorithms involve a transformation of the network into a tree, with each node in the tree

representing a subset ofthe original variables inX Mathematical properties ofthetree are

then used to draw inference.

5.4.2.4. Bayesian networks for probabilistic inference

The most common task, probabilistic inference, uses Bayes' rule to compute posterior

probabilities. For discrete nodes with conditional probability tables (CPTs), maximum

likelihood (ML) estimates can be calculated by simply counting the number of times an

event occurs in the training set [48]. A key advantage of Bayesiannetworks is the small

number of parameters, requiring fewer data points fortheir estimation. Choosing theform

oftheconditional probability distribution (CPD) canbenontrivial. One approach is to use
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amixture distribution; however, this introduces ahidden variable. Alternatively, adecision

tree can be used, ora table ofparent values along with their associated non-zero probabil

ities.

In order to ensure successful ongoing diagnosis, two components - mechanisms for

learning and updating probabilities - must be integrated into the network structure. This

means having the capability torefine the structure and local probability distributions given

additional data. The idea istouse data mining techniques tocombine prior knowledge with

data and produce "improved" knowledge. The data are also used toupdate theprobabilities

ofa given network structure.

One approach consists of updating the posterior distribution for a variable that repre

sents the physical probability. Assuming the physical joint probability distribution is

encoded in a network structure, givena random sample, onecancompute the posteriordis

tribution. The local distribution fimction associated with a node is often a probabilistic

classification fimction. Consequently, a Bayesian network can be viewed as a collection of

probabilistic classificationmodels, organized by conditional independence relationships.

Classification models that produce probabilistic outputs come in many forms including

linear regression, generalized linear regression, probabilistic neural networks, probabilistic

decision trees, kernel density estimation methods, and dictionary methods. In theory, any

of these can be used to capture probabilities in a Bayesian network, and in most cases,

Bayesian techniques can be used for learning as well.

Methods for training Bayesian networks from data are still evolving. Statistical meth

ods for using data to improve models, methods for learning parameters and the structure of

the network [65], and techniques for learning with incomplete data [66] are all among the

active research areas. In terms ofalgorithm schemas for learning from data, much work has

been done using Monte-Carlo methods for approximation, in particular Gibbs sampling

and Gaussian approximations, as well as the expectation-maximization (EM) algorithm for

finding the maximum likelihood (ML) or m^imum aposteriori (MAP) estimates.
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5.4.2.5. Application examples

Bayesian networks originally arose out ofan attempt to add probabilities to expert sys

tems, and this remains their most common use. Two better known examples include the

Windows 95 '*troubleshooter" for diagnosingcauses ofprinter failure, and QMR-DT [17],

a quick medical reference model, diagnosing diseases from findings, and utilizing what

arguably may be considered the largest Bayesian network ever constructed. Yet another

successful application is the Vista system [18] used at NASA.

5.5. Sampling theory versus the Bayesian approach

We madea reference in the previous section to "Bayesian techniques". Whatdoes this

meanexactly? It turnsout that thereare two camps within probability theory,eachwith its

own distinct approach to solving problems - one based on sampling theory, sometimes

referred to as the maximum likelihood approach, and the other, the Bayesian approach.

Although the two may sometimes yield the same prediction, particularly for a large number

of observations, their conceptual basis is fundamentally different. The sampling theory

approach attempts toestimate optimum values for the parameters ofa density fimction by

maximizing a likelihood function derived from the training data. Thus, the parameter 0 is

considered fixed (although unknown), and we must consider all data sets D ofa size n that

could be generated from the distribution givenby 0. The maximum likelihood estimator

selects the value oftheta that maximizes the probability P{D /0). In contrast, the Bayesian

approach considers the data setD to befixed, and we imagine possible values of 0 from

which the data could have been generated. Thus, the parameters are described by aproba
bility distribution that is initially set to a prior, and then converted to a posterior through

Bayes' theorem after observing the data. The final expression isgiven by anintegral over

all possible values of 0, weightedby the posteriordistributions.

There isalso adifference inhow one views the idea ofprobability. The frequentist view

(classical approach) defines probabilities in terms of fractions of a set of observations in

the limit where the number of observations tends to infinity. In contrast, the Bayesian

approach canuse the term probability to express a subjective 'degree of belief in an out

come. Cox [67] showed that a Bayesian formalism could be reached by imposing some
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simple natural consistency requirements. Specifically, using the value 1to denote complete

certainty that an event occurs, and 0 for complete certainty that it does not occur, with

values in between as degrees of belief, it was found that these behave like conventional

probabilities. The mechanism for updating these probabilities with new data isprovided by

Bayes' theorem.

If sampling approaches are used for hypothesis testing,one main concern is the trade

off between sample sizeandtype/ andtype//errors [68]. Although Bayesian theorists do

not deal with type / and type //errors, they do need to assessprior probabilitydistributions.

If theclassical approach isusedto make inferences based ona fewsamples, theresults may

be subjective in the sense that a statistic may be significant at a five percent level, but not

at a one percent level. Hence, with no strong preference for a specific level, one may be

better offcalculating the entire posterior with respect to the prior probability. While Baye

sian advocates claim that the expectations taken in the classical approach do not make

sense, given that we see only a finite data set, the classical statisticians argue that accurate

priors, required by the Bayesian approach cannot be assessed in many situations.

It may be considered a blessing that a problem that proves difficult for one approach is

sometimes considerably simpler using the other viewpoint. In particular, in the case of

multivariate regression and Normal classification problems, with certain prior densities,

using the likelihood ratio to test coefficients for significance results in a complicated dis

tribution. However, using the Bayesian approach on the same problem requires a simple

application of the Student t-distribution. Another example is the classification of a vector

to normal populations with imequal and unknown parameters. Using finite samples and the

classical approach leads to questionable results. In contrast, the Bayesian approach com

putes the posterior odds using the data in a ratio of two Student t-densities [68]. Yet, in

other cases, such as principal components and canonical correlations, the Bayesian result

is complicated, while application of sampling theory is relatively simple.

The classical and Bayesian approaches have different definitions for a good estimator,

and so while both are self consistent, they do produce different estimates. In general,

regardless of the model and ofwhich approach is more simple, if priors are accessible, the
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Bayesian approach provides a formalism for combining subjective judgement with

observed data. If priors aredifficult to assess, the classical approach mightofferan advan

tage.

5.6. Model selection and model averaging

There are a number of issues that arise in any modeling problem. For instance, one

must consider how to search for good models and how to determine the "goodness" of a

model. This leads to the ideas of model selection and selective model averaging. In the

former approach, one would select a "good" model and use it as if it were the correct

model. In the latter approach, one would select a manageable number of good models and

assume that these models are exhaustive. As discussed previously, one can narrow the field

of models by considering causality and prior knowledge. In addition, model averaging

using Monte-Carlo methods has been shown to yield efficient predictions [56]. Model

averaging and model selection lead to models that tend to generalize well to new data.

A Bayesian classifier derives its name from the application of Bayes theorem to the

joint probability to get a conditional formula. There are three components of interest. The

prior probability is sometimes given by a subjective probability over the model parame

ters. Thesamplelikelihood, basedon the modelassumptions and a givenset of parameters,

indicates how likely the data sample is. And the evidencefor model M, forms the basis for

most Bayesian model selection.

A Bayesfactorgivesthe comparative worth of two models [50]. This approach can be

extended to selecting a single decision tree, rule set or Bayesian network. The basic idea is

to compare posterior probabilities of each model givenby P(M/sample). The computation

requiresthe prior probability and evidence foreachmodel. In the caseofBayesianhypoth

esis testing, a comparison would be drawn of the Bayes factor of the null hypothesis as

compared with the altemative. In model averaging, predictions of individual models are

averaged according to model posteriors.

Evidence and Bayes factors are fundamental to Bayesian methods. Often a complex

"non-parametric" model (a model with many varied parameters) is used rather than a
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simple model with afixed number ofparameters. Examples ofthese include decision trees,

neural networks and Bayesian networks.

In a typical non-parametric problem one might learn class probability trees from data,

and, form a representative set ofseveral models averaged using the following identity:

sample) = ^P{M/sample)P{x^sample, (5.29)
i

Model selection and selective model averaging will prove to be critical in improving

theperformance of our implementation ofa diagnostic system forplasma etchequipment.

5.7. Methods for feature extraction

There are numerousdifficultiesassociatedwith using raw, unprocesseddata directlyas

input to a classification system. Often, this is simply impractical given the vast amounts of

data that are collected for a given application. In addition, the important discriminating

information may not be apparent in the raw data, but rather in some summary statistic or

transformation ofthe data into a new representation. Pre-processing and feature extraction

refer to this type ofaction, where a large number of input variables is combined to make a

smaller munber of variables. This can be accomplished through linear, non-linear, or

simple fixed transformations constructed by hand or derived from the initial measurements

by automated procedures. Dimensionality reduction can be achieved by discarding a subset

ofthe original inputs, through the use ofprior knowledge, or by forming a linear combina

tion of the input variables. Transforming the data into a new representation leads to better

class separation, and hence improved performance of the classification network.

The goals of feature extraction and selection can be summarized as follows:

(1) reconstruction of original patterns

(2) parsimonious characterization ofpatterns

(3) effective discrimination between classes

A further complication is known as the curse ofdimensionality. If more parameters are

estimated, and more features extracted, more samples are needed to specify these values.
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The result is a drop in performance aftera certain point. In several instances, reducing the

numberofinputvariables can leadto improved performance for a givendata set. Ifa fixed

quantity of datais better ableto specify the mapping in the lower dimensional space, this

can compensate for the loss of information incurred by not using all possible inputs. This

trade-off is a consequence ofthe effects ofdimensionality, coupled with a limited data set

size. To optimally select features after the extractionprocess requires some kind offeature

evaluation. The probability of misclassification can be used as a criterion to reduce the

number of features without reducing performance.

5.7.1. Covariance analysis

In chapter 4, we extendedhypothesis testing for means ofpopulationsto the multivari-

ate case by using Hotelling's 7^ statistic. The covariance matrix, as specified by Equations

4.4to 4.6, allowed ustocalculate the 7^ statistic and to combine theindividual IIND resid

uals into a single statistical score. However, analysis and description of covariance struc

tures are worth some attention in their own right. In particular, it would be useful to

determine whether a common covariance structure exists for observations taken

(1) within the same machine type, and the samefault group

(2) among different machine types, but within the samefaultgroup

(3)among different fault groups, butwithin the same machine type

In someways, thecovariance structure canbe considered a feature of the data, and will

give us information as to which variable combinations contribute most to distinguishing

betweendifferent machines and different fault groups. It is also crucial to know whether

we are dealing with identical covariance matrices in our sample groups, as this can deter

mine which classification methods are most suitable.

5.7.1.1. Testing the equality of several covariance matrices

Suppose that we have k populations, and observations with p attributes. The null

hypothesis given by
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= 22 = ... = (5.30)

of the equality of the covariance matrices of ^p-dimensional multinormal populations, can

be tested using a modified generalized likelihood-ratio statistic.

We take the maximum likelihood estimators for the sample mean and covariance

matrix for the jth population as

*(/) =^XI (5.31)
^•=1

n

1

Z (5.32 >
^ 1=1

Thus, Sj isthe unbiased estimator of2y based on Vj degrees iffreedom, where Vj = -1

for the case ofa random sample ofnj observation vectors from theyth population. When

the null hypothesis, Hq is true

S =

r K \

' IV,
I Vj =1

is the pooled estimate of the common covariance matrix. For equal sample sizes where

Vy = Vforall j = , the pooled estimate 5 simplifies to

k

5=JESj (5.34)
y=i

Define

(5.35)

1^/2
1^^
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w is a modification of the likelihood ratio, and varies between 0 and 1, where the value 1

favors the hypothesis. The test statistic, sometimes referred to as the Box m statistic, is

given by

K

m.

J j=i

Again, for equal sample sizes where Vy = v for all y" = 1,..., AT , the test statistic sim

plifies to

A:ln|5|-^ ln|5y|
j = i y

Box [69] has shown that using the scale factor

= 1 2p +3p-l
6(p+l)(A:-l) E-——^ V- ^

Z'V JJ

(5.36)

(5.37)

(5.38)

the product approximates a chi-squared distribution with degrees of freedom

\)p(j) +1)^ when sample sizes are large. With equal sample sizes, if all Vy =v
the scale factor becomes

.-1 = . (2/7^ +3/?-1)(^+1)
6(p + l)A:v (5.39)

For A: and p less than four or five, and each Vy around twenty or more, the chi-squared

approximation is reasonably good [74]. For larger A: andp and small Vy Box has proposed

anF-distribution approximation. Tables ofthe upper 0.05 critical values of772,^^, have been

calculated by Korin [70] for the case ofequal Vy; these have been reproduced by Pearson

and Hartley [71]. Gupta and Tang [72] found the exact distribution of the likelihood-ratio
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test statistic and tabulated the scale factor for a chi-squared approximation to the distribu

tion of nifgjn for equal (and small) sample sizes.

5.7.2. Linguistic approaches

The methods used in this work all fall into the general category of decision-theoretic

multivariate statistical procedures. However, despite its firm established theoretical foun

dation and countless successful applications, there has still been some criticism of this

approach. For instance, some view that the focus on statistical relationships among scalar

features has lead to neglecting other structural properties that characterize patterns. It has

also been argued that the data compression is sometimes too severe, and that results lead

solely to class designation rather than description, rendering the system unable to generate

patterns belonging to a class.

As an alternative to the decision-theoretic approach, researchers have considered a lin

guistic or syntactic model. In this case, pattems are viewed as composed froma language

with constructionrules specifiedby a formal grammar. This requires a primitive extractor

(as opposed to a feature extractor in the decision-theoretic approach) whose function is to

transformthe data into a stringof symbolsor somegeneralrelationalstructure.A structural

pattern analyzer usestheformal grammar to parse thestring of symbols, thereby construct

ing a description of the pattern.

Figures 5-15 and5-16 depict the twoapproaches in flowchart fashion. Examination of

thesediagrams revealssome commonalities. For instance, the extraction of features in the

decision-theoretic fi-amework is akin to the extraction of primitives in the syntactic

approach. Moreover, primitive extraction often involves statistical classification proce

dures. In addition, classification of pattems into categories in the decision-theoretic

approach is similarto theassociation of pattems withgenerative grammars in the linguistic

case.
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Figure 5-16. Linguistic approach

Ofcourse, there are aspects in which the two approaches differ. The decision-theoretic

method utilizes numerical measurements, has no need for explicit structural information

and is used primarily for classification. In contrast, in the linguistic approach, primitives

are subpattems that are rich in structure, and the method is used for both classification and

description.

Formal linguistic models can use other generative mechanisms including differential

equations and finite state Markov chains. There are even stochastic-syntactic modelsthat

specify a discrete probability distribution over theformal grammar. Specifically, forprob-



lem involving h classes, there are n stochastic grammars, and each parse provides a struc

turealong witha probability thatthestructure represents the input pattern. In thiscase, the

inputassociated with the grammar is the mostprobable parse.

For an application of classification of sensor signals from plasma etch equipment

which focuses on structural properties in profiles of the signals, the interested reader is

referred to [73].

5.7.3. Pattern matching

In aneffortnot to neglect structural properties apparent in theprofile of certain signals

over time, we have attempted to extract features that capture these properties. The

approach taken is one ofmatching the identified pattem to a template. The pattern is cap

tured in a window, much like one might identify a primitive in the syntactic approach. The

data points in the window are used to define a matched filter. By using this template against

new observations, we can pinpoint the appearance of a similar pattem in the new signal.

We obtain a metric for the goodness offit ofthis matching procedure by using a normalized

convolution. Essentially, this means that we find the location where the template has the

greatest overlap with the profile ofthe observation.

Of course, there are flaws with this procedure, namely, that the result depends on the

template, which is extracted directly fi*om data. With more data samples, this procedure can

be greatly improved by using a template that is generated from the data, but takes into

account the variability in the different samples. This would require a generating mecha

nism that accommodates noise and natural variation. For this application, we have chosen

a much simplified version to demonstrate that the pattems exist and can be used for clas

sification and diagnosis ofcertain problems.

5.8. Methods for Classification

Classification models categorize an object based on a profile of its characteristics. If

we specify a pxl vector of attributes z, where z is an observation from one of k mutually

exclusive populations, the problem is to formulate a procedure that discriminates among

the populations and makes a decision as to which population z belongs. We briefly
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describe three approaches for classification used for estimating CPD's and CPT's for the

variables examined in this study.

5.8.1. Tree-based models

Tree-based modeling isan exploratory technique which can be used todevise predic

tion rules, toselect variables for prediction, and toexamine complex multivariate datasets.

The algorithm implementing the construction of tree-based models must determine vari

ables on which to divide, and how to split the space into partitions. Itdoes this by partition

ing the space ofthe predictor variables x into homogeneous regions, attempting to make

the conditional distribution ofthe response y given x,/(y /x), independent ofx. The algo

rithm accomplishes this task by using a criterion minimizing a measure of deviance. The

predicted response can beviewed as a factor or as having a numeric value. In the former

case, the model constructed isaclassification tree, while in the latter itisaregression tree.

There are several advantages to tree-based modeling over linear or additive models. In gen
eral, the predictor variables canbe a mixture of factors or numeric values. The method is

invariant to a "monotone re-expression" ofthe predictor variable. Missing values in the
dataset are handled easily, and the factor response is not constrained to have only two lev
els. Interactions among predictor variables can also be handled by tree-based modeling.

Classification trees are based on the multinomial distribution. Ifwe consider a set, for

example, y —[0,1,0] , to represent the response y belonging to the second of three

factor levels, then the probability corresponding to aresponse falling into each level would

begivenbyp = {/7j,P2»/'3}»with the constraint = 1,/ = 1,2,3.

The model consists ofa stochastic component given by

Ti~M(p5),i=l,2,..,,n

and a structural component

Thedeviance is defined as minus twice the loglikelihood

105



K

h) =-25]yik^°%(Pik) (5.40)
k= 1

Because the splits in a decision treeare based on maximizing the change in deviance, the

mechanism determining the partitions is equivalentto maximumlikelihoodestimation.

Tree models are evaluated by how well the partition corresponds to the true decision

rule. Forclassification trees, a count of thenumber of errors as a proportion of the training

set provides an estimate of the misclassification rate. Similarly,a probability distribution

over the classes is formed jfrom the training set, and using a Hayesdecision rule, the algo

rithm chooses the class with the highest probability as the prediction. Thus, the tree serves

as a probability model by providing a probability distribution over each one ofthe classes.

5.8.2. Generalized linear models

Generalized linear models (GLM's) extend linear models to allow for nonlinearity and

heterogeneous variances. In the case for diagnosis, the factor responses can be modeled as

binary response data (by grouping two factors together and attempting to distinguish them

from the third). This is the approach taken here.

Assuming that the response y is encoded as binary data, the presence or absence of a

condition, for example high pressure versus not high (medium or low) pressure, can be

treated as a "success" with a value "1", or "failure" with a value "0". This response data

has a mean p, the probability of success, and a variance that depends on the mean. This

leads to defining a link function relating the mean to the linear predictors,

g(^) = ( 5.41)

where the linear predictor is the logit link iiuction

(5.42 )

or

p =-^ (5.43)
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and [I is guaranteed to lie withinthe range [0,1].

The selection ofthe logit link is based on the binomial distribution and its correspond
ing log likelihood function.

Thus thelogistic regression model isdefmed bythe logit link and thebinomial variance

function:

= ^(1-n) (5.44)

5.8,3. Sampling Theoiy and Bayesian Classifiers

Tree-based models and generalized linear models do not make assumptions regarding
the distribution ofthe observations. In the case where we have populations that are nor
mally distributed, there are other options for building classifiers. Specifically, suppose we

have apopulation Uj =N(Qj, I,j)J = 1,..., is: and (0^, S,.) are unknown parameters. In

addition, we have independent p-variate observations {atiQ), ..A:njO)},y = 1,..., If
the covariance matrices are equal, Ej = E2 = ... = , itis easy to find likelihood ratio

procedures. However, the distributions required to use these procedures are complicated,
and although other techniques from the sampling theory viewpoint are available, these are
also not simpleto implement.

Fortunately, the Bayesian approach provides aviable altemative for this scenario. The
results can be applied with great ease and entail no complicated distribution theory. Taking
the defmitions for the sample mean and covariance matrix for the jth population from
Equations 5-31 and 5-32, we have the following result [68].

Theorem 5-1:

Let z: pX1be an observation from one ofthe populations Uj = Ey),y = 1,..., ,
where the parameters (0^., E^) are unknown. Ifthe prior distribution of the parameters is

diffuse [68], the predictive probability density for classifying zinto tZj is given by the mul-
tivariate Studentt-density,
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P(z/dataJ) =

i+-^(z-'x(j)ysj\z-i(j))
«/-i

where kj (aconstant not depending upon z) isgiven by

=r ^(2)^-/

ln/2 (5.45)

/2

(5.46)

where pj is the prior probability ofclassifying z into tZj =N{Qj, = 1,A:. The

proof of this theorem can be found in [68].

FromEquations 5.45 and 5.46, it follows that the predictive odds ratio for classifying z

into TCj. vis-a-vis %j, isthe ratio ofthe corresponding multivariate Student t-densities

p{z ^data, i) _ j
piz^dataj) y

1 +

where L^j is a constant given by

N:
,c-l

Nl-\ ^

N,
1+ -*(0)'S, \z-x{i))

hn-\

N/2

N/2

_ p,Y|(jv,-i)5,|y /2 rN,{Nj^ 1)1^/2
1)J

for/,; = 1,...,A:.

(5.47)

(5.48)

There are two main advantages for taking the Bayesian approach. The sampling theory

approach requires large sample sizes and often, also equal covariance matrices. In this case.

Equation 5.45 is valid without these restrictions, and so the result is more generally appli

cable.
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5.9. Summary

In this chapter, we review various methods and approaches for handling uncertainty,

contrasting the implementation differences using probability theory, a Dempster-Shafer

approach, and FST for classifying faulty behavior inplasma etch equipment. Each method

has its merits and drawbacks. In particular, the DS approach requires specification of a

large fault space that comprises not only individual fault hypotheses, but all possible sub

sets ofthese. In contrast, fuzzy set theory is perhaps best used for handling ambiguity asso
ciated with the interpretation ofmeaning in data, more commonly found in dealing with
linguistic variables. In our case, the sensor data collected from plasma etch equipment are
largely quantitative, and thus, readily lend themselves to probabilistic representation based
on statistical properties.

Our investigation also includes the examination ofvarious modeling techniques for
extracting information from data. In particular, these serve as the building blocks ofour
diagnostic system, providing the mechanism for extraction of relevant probabilities
required by our framework. Specifically, we make use oftree-based and general linear
models topredict the likelihood ofa fault hypothesis given the evidence embodied inthe

monitored sensor signals. These predictions are combined using graph theory based on
exploiting the causal properties represented by aBayesian network. In addition, this graph
ical framework is flexible in that it can accommodate the results ofother techniques for the
extraction of probabilities. Probabilistic procedures, such as covariance analysis, help to
identify what assumptions can reasonably be made, and consequently, point to what
method is most appropriate. For instance, the calculation ofpredictive ratios based on the

Student-t distribution used in Bayesian classifiers is not dependent on the assumption of
equality ofcovariance structures, and moreover, is much simpler to implement over the
sampling theory approach, which requires estimates ofparameters for likelihood ratio pro
cedures using complicated distributions.

Insummary, this chapter describes the parts ofa diagnostic system for machine fault

classification, and the glue that holds these parts together. We show how this approach
facilitates the intermingling ofdifferent models, and when used in conjunction with statis
tical techniques, how it can encode dependencies, forming a unified framework for data
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fusion by combining evidence from multiple sensors. We delve into greater detail in the

following chapter, describing mechanisms for pre-processing and feature extraction, mod

eling and prediction, and implementation issues for application toplasma etch equipment.
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6 Plasma Etch Fault Classification

6.1. Introduction

Applications of data mining to real problems exploit relationships among many vari

ables. In the lastchapter, we introduced the ideaof using graphical models to encode the

joint probability distribution for a large set of variables. In particular, our framework for

classification isbased on Bayesian networks, where we use various modeling techniques

toextract the probabilities necessary for inference. This chapter discusses the implementa

tion and these techniques within a framework to integrate information from multiple sen

sors inorder to diagnose failure modes ina plasma etch equipment application.

6.2. Framework for Fault Classification

As stated in the last chapter, the initial tasks in the process ofbuilding a Bayesian net

work are to:

(1) identify the goals ofmodeling (prediction, explanation, exploration)

(2) identify observationsthat may be relevant

(3) determine what subset is worthwhile to model

(4) organize observations into variables having mutually exclusive, collectively exhaustive

states

The goal ofmodeling in our case, as applied toplasma etch diagnosis, is to calculate

the likelihood ofafault hypothesis given monitored sensor data. Our extensive study ofthe

time-series behavior of these signals provides some information as to what observations

may berelevant to achieve this goal. In this chapter, weexpand onthatinitial examination
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by investigating features that might prove to be important for classification ofother kinds

offaulty behavior. In order to do this, we rely on different types ofdata to identify these
other failure modes. Although our models for prediction and feature extraction differ

depending on the type ofdata, the basic clsissification framework based on Bayesian net
works is the same in each case.

The fault classification problem for plasma etch equipment iscomplicated not only by
the different types ofdata (sensor data which can be considered over various time scales),

but also by the different sources of data. In an ideal world we would have access to com

plete information. That is, each identified problem category would come equipped with the

samesensordata, from onlyonetypeof machine, processing a single product, undercon

trolled and stable conditions. Howevermanufacturing environments ensure that conditions

are not ideal, and hence we must use a collection of heterogeneous data, from different

machines, collected under varying circumstances. Accordingly, thetools weuseareappro

priategiventhe information available. Although wemayemploy different modelsdepend

ing on the data, the end result is the same. The model classifies sensor data into a discrete

category, assigning a cause or fault to the observation, and because this is accomplished

through a training set ofdata, there is an associatedprobabilitywith each assignment.

A Bayesian network provides the framework for combining the predictions of these

models. Figure 6-1 depicts the basic network used for fault classification for each of the

different types ofdata. The idea is that, for a given case, we have access to a particular type

ofdata that is symptomatic ofa specific set offault conditions. In other words, a fault con

dition causes a combination of different symptoms embodied by pieces of evidence. This

causal effect is represented in the figure by an arc from a fault node to a node representing

a combination of evidence. Perhaps even more noteworthy is the absence of arcs among

the pieces ofevidence. So, while the probability ofa combination ofevidence, in this case

P(Cj), corresponds to the probability of matching observations to the combination of evi

dence Cj, allthe individual pieces ofevidence are assumed tobeindependent ofeach other.
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Combination, Cj

• •

Figure 6-1. Bayesian network for classification

Hence, the probability of a combination, P(CJ), is simply the product of the individual

probabilities, P(Ef.), ofeach piece ofevidence:

PiCj) = («•»)
r= 1

Notethatthere arenpieces ofevidence, suchthatr = 1,..., w, andeachevidence variable,

Ef., can take s = 1,..., /w values. Thus, the evidence space is divided into N mutually

exclusive and collectively exhaustive combinations where:

N

Z^(C,)= 1, iv =
j= 1

In order to make this description concrete, we need to define some terms, and in par

ticular, to explicitly delineate theparts thatcomprise thefault andevidence spaces foreach

caseunder consideration. Recall that, in Chapter 3, we describe in some detail, the types

offailure data arising from different sources. These different data are what we arereferring

to when we consider a particular case.
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6.2.1. Case 1: DOE data

For the first case, miscalibrations inthe equipment are simulated through DDEs, cre

ating a range of conditions around a nominal operating point The resulting internal fluc

tuations inthe plasma are captured tosome degree by the monitored sensor signals. Figure

5-1 depicts the problem, while Table 5-1 defines a fault and evidence space for a simplified

example. In Table 5-1, the fault hypotheses are listed as incorrect settings, for example,

"wrong toppower". Inourimplementation, weexpand this setofhypotheses todistinguish

between incorrect settings that are too high, versus those that are too low. Thus, each fault

variable can take one of three values, namely "high", "low" or "medium", where the

medium value is assumed to be the correct setting range. Table 6-1 summarizes the fault

space for DOE data collected from a Lam TCP 9600 etcher in the J-88-E project described

in Chapter 3. Similarly, Table 6-2 contains the fault space for DOE data collected from a

parallel plate Lam Rainbow 4400 etcher.

Fault Variable (i) Fault Index (Fj)

Pressure Fl

Top Power F2

RF Power F3

Gas Ratio F4

Total Gas Flow Fs

Table 6-1. Fault Space for DOE Data - Lam TCP 9600

Fault Variable (i) Fault Index (Fj)

Pressure Fl

RF Power F2

Gas Ratio F3
Total Gas Flow F4

Gap Spacing F5

Table 6-2. Fault Space for DOE Data - Lam Rainbow 4400
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Fault Variable (Fy) i High (k=l) Medium (k=2) Low (k=3)

Pressure 1 Fi.l Fi.2 Fi,3
Top Power 2 ^2,1 ^2,2 ^2,3
RF Power 3 ^3.1 ^3,2 ^3,3
Gas Ratio 4 F4,1 F4,2 F4.3

Total Gas Flow 5 F5,1 ^5,2 F5,3

Table 6-3. Fault indices, Fj k, for values (k) taken by each fault variable (i) for TCP 9600

Inthis case, we find that by using a subset ofthe monitored sensor signals, tree-based

modeling techniques can be combined \vith GLMs for prediction of failure modes corre

sponding to changes in the operating conditions. The predictions of these models can be

viewed as pieces ofevidence. Tables 6-4 and 6-5 list the evidence space for the two exper
iments mentioned above. Because the pieces ofevidence are the model's predictions of
faults based on sensor signals, the evidence space mirrors the fault space.

Evidence Variable (r) Evidence Index(E,.)
Model Prediction ofPressure El

Model Prediction ofTop Power E2

Model Prediction ofRF Power E3
Model Prediction of Gas Ratio E4

Model Prediction of Total Gas Flow E5

Table 6-4. Evidence Space for DOEData - Lam TCP 9600

EvidenceVariable (r) Evidence Index (E^)
Model Prediction ofPressure E]

Model Prediction ofRF Power E2
Model Prediction of Gas Ratio E3

Model Prediction of Total Gas Flow E4
Model Prediction of Gap Spacing E5

Table 6-5. Evidence Space for DOE Data - Lam Rainbow 4400
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Evidence Variable (r) High (s=l) Medium (s=2) Low (s=3)

Model Prediction ofPressure El.l El,2 El,3
Model Prediction of Top Power ^2,1 ^2,2 E2,3
Model Prediction ofRF Power E3,I ^3,2 E3,3
Model Prediction of Gas Ratio ^4,1 ^4,2 E4,3

Model Prediction ofTotal Gas Flow E5,1 ^5,2 E5,3

Table 6-6. Evidence indices, s, for values (s) taken by each evidence variable (r) for
TCP 9600

Thetree-based models andGLMs areconstructed to provide predictions foreachfault

hypothesis. Thus, each model directly estimates the probabilities of each value for every

fault variable. However, we can also obtain anestimate ofthese probabilities for a partic

ular faultvariable basedon combinations of predictions for the remaining faultvariables.

Forinstance, suppose weare interested in calculating theprobabilities forvalues taken by

the fault variable In addition to the direct prediction given by the models, based on

P(Ej^ g), we are also interested in the combination of the remaining evidence variables,

whose probability is given by:

n

P(Cj) = (6.3)
r= 1

Hence, the probability ofa particular combination ofevidence is also based on the predic

tions of the models.

The calculation ofeach fault probability is based on the relative frequency of the fault

given a combination ofevidence, denoted by the conditional probability, P(F/Cj). Atypi

cal Bayesian approach would utilize Bayes' theorem to calculate this probability using the

prior probability ofa fault, and the conditionalprobability of a combination given a

fault, P(C/Fi).

P(F/Cj) =
F(C/F.) XP(F.)

P(Cj)
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Alternatively, machine experts can be used to provide direct estimates of conditional

probabilities of faults. However, in our case, we derivethe conditional probability, P(F/

Cj), from the data by counting the number oftimes a fault occurs with agiven combination,

and dividing this by the total number of times the combination occurs. Thus, the relative

frequency ofa fault forp observations is given by:

number oftimes F, ^ and C, occur together r
P(F. fr/C) = '

P number of times C, occurs
J Cy

This conditional probability is easily updated givena new observation, p+7, by:

X: ^

(6.5)

P{F^ y^Cj) ^ J = —> for F^ ^diagnosed asi = x and k = y (6.6)

Finally, the probability of a fault is calculated using thefollowing equation:

N

= S P^PiyCj) XP{Cj) (6.8)
y = 1

where the conditional probabilities offaults are taken from the database, and the probabil

itiesof a combination arecalculated usingthepredictions of the models basedon observed

data and Equation 6.1.

The direct prediction ofa fault probability, P(ExJ, and the calculation based on the

combination of evidence using Equation 6.8, are combined using the model averaging

techniques described inthe previous chapter. This process is done separately for each of

the tree-based and GLM predictors, and the results ofthese models are also averaged. The

calculation of the weights for model averaging is based on model performance. This is

determined using misclassification rates obtained from running validation sets comprised

ofdata not used during model construction. Figure 6-2 displays a flowchart outlining the

steps for classification of failure modes based on changing input conditions.
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Figure 6-2. Flowchart for calculation of fault probabilities based on DOE data



6.2.2. Case 2: Manufacturing data for machine qualification

Our second case is built on manufacturing data collected for machine qualification,

where the faults, diagnosis, and action taken are all documented. These records capture

actual machine problems encountered by the manufacturer.

The evidence library, described in Chapter 3, contains qualification datathatfall into

three basic categories: (1) the baseline, representing normal operating conditions, (2) prob

lems connected with gas line grounding issues, and(3)problems related to thematch net

works. Moreover, four types of machines are identified, due to hardware and software

differences, complicating the analysis of the signals.

The framework for classification ofthe qualification data into three categories can be

represented by atree structure. This is depicted in Figure 6-3, where the splitting conditions

are defmed by predictive odds ratios extracted from Bayesian classifiers. The labels for

these ratios are described in Table 6-7.

observations

predictive odds ratio BM1>1

BG1>1 MG2> 1

false

BG2> 1 gas line match gas line

true false

baseline gas line

Figure 6-3. Classification tree using predictive odds ratios as splitting conditions
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Testing for: Bottom (RF) Match Signals Top (TCP) Match Signals

baseline over match BMl* BM2

baseline over gas line BGl* BG2*

match over gasoline MGl MG2*

Table 6-7. Labels forpredictive odds ratios for topandbottom match networks

* ratios used in tree structure for classification

Assuming that ourobservations come from populations that are normally distributed,

inthecaseofunequal covariance matrices, wecancalculate apredictive odds ratio forclas

sifying an observation into onepopulation over another. Thedetails of thisprocedure will

bemade clearin a following section, butfornow, suffice it to saythatthese ratios provide

us with tests or measures for classifying an observation into one group as opposed to

another. In this case, we have three groups(baseline, gas line,match),and four observation

vectors, corresponding to the tune and load capacitorpositionsofthe top and bottommatch

networks, respectively. We consider the top and bottom signals separately, leading to six

predictive ratios. Thus, we can conductpairwise comparisons to test (separatelyusing the

top and bottom match network signals) whether an observation belongs to: (1) baseline or

gas line grounding (2) baseline or match network or (3) match network or gas line ground

ing. Table 6-7 summarizes the signals or observations, and the predictive odds ratios cal

culated to classify these observations into populations corresponding to fault categories.

6.2.3. Case 3: High speed data for RF match problems

The third and final case we consider involves isolating and recognizing features in the

transient behavior in RF signals triggered by the onset ofplasma ignition. The objective in

this case is to identify cues relating to predictions of RF match problems, and conditions

where the plasma will not ignite. Because the impedance ofthe plasma changes after igni

tion, the parameters of both RF match networks can also imdergo drastic changes while

attempting to adjust to the changing impedance. We focus on the load and tune positions

as key variables to monitor, and note the change in the profile ofthe measured impedance.

We simulate the adjustment ofthe match networks responding to a changing chamber state

by varying the preset values for the positions of the load and tune capacitors.

120



The features we identify are structural, inthe sense that there appears tobea pattern in

the profile of the impedance signal over time, depending on the "fault" conditions deter

mined by the preset values for the load and tune capacitors. Once these features are cap

tured and linked to a fault condition, they can be considered as pieces of evidence whose

combination can lead toa specific diagnosis. Hence, for this analysis, we apply the frame

work depicted in Figme 6-1, where a fault condition causes a combination of evidence, in

this case, comprised ofthe presence orabsence ofa given feature foimd in the profile of

the measured impedance.

6.3. Case 1: Models for Predicting ChangingInput Conditions
Designed experiments are used tosimulate conditions caused by miscalibrations inthe

equipment. The classification fi-amework relies on models to extract the probability ofa
fault cause given observed monitored sensor signals. Techniques to predict the various dif

ferent operating conditions utilize data collected from two types ofplasma etchers- a Lam

Rainbow 4400, and a Lam TCP 9600. Classification results are obtained using data from
the DOEs to train and validate the system. In particular, we explore two different modeling
techniques: (1) a simple decision tree structure is used to distinguish between three factor

levels of each of the input settings and (2) generalized linear models are used to predict
binary responses. In the latter case, the binary response is defined by grouping the three
factor levelsinto two groups.

6.3.1. Monitored signals for the Lam Rainbow 4400

The monitored signals used are those suspected to be most sensitive to changes in the
chamber state ofthe etcher. These signals are known as real-time tool signals and are col
lected while wafers are being processed at a rate of1Hz. The changes we wish to detect
and classify in this section correspond to specific shifts in the input settings ofthe machine.
The assumption is that abnormal machine behavior will manifest itself ina manner which

can be simulated by achange in the input settings. For the Lam Rainbow 4400 DOE data,
there are five input settings which are varied over three levels according to acentral com
posite design; this is summarized in Table 6-8. The design includes 36runs with 9 center-

points and is meant to cover arange ofdifferent faulty operating conditions. The purpose
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ofthe models is to predict these factor response variables based on the signatures ofreal
time tool data. The signatures are represented by the average value ofeach real-time signal
over the main-etch period for each ofthe 36 wafers. For model training and validation, the

data set isdivided into two mutually exclusive sets by arbitrarily picking 12 runs out ofthe

36 to use as a validation set.

Response High Low Medium

Pressure (mT) 480 370 425

RF Power (W) 315 235 275

Gas Ratio 0.48 0.42 0.45

Total Flow (seem) 620 540 580

Gap Spacing (cm) 0.9 0.7 0.8

Table 6-8. Input settingsfor the Lam Rainbow 4400 plasma etcher

6.3.2. Monitored signals for the Lam TCP 9600

Thedesigned experiment conducted on a TCP 9600etcherduring the J-88-E projectis

comprised of 56 runsvarying five inputvariables covering a rangeof different faultyoper

ating conditions. Unlikethe previous experiment, the values for the input settings did not

fall into three discrete groups, so we used a range, given by Table 6-9, around the center-

point to determine three levels corresponding to values of high, low, and medium. As

before, the signatures are represented by the average value ofeach real-time signal over the

main-etch period for each ofthe 56 wafers. As in the previous case, for model construction,

the 56 runs of the designed experiment are divided into two sets- a training set of 36 runs

to build the models, and a validation set of20 runs to test the performance ofthe models.

Response High Low Medium

Pressure (mT) 15-20 7-15 11-15

Top TCP Power (W) 375-450 250 -325 325 - 375

Bottom RF Power (W) 137-150 110-125 125 -137

Gas Ratio 1.06-1.15 0.85 - 0.94 0.94-1.06

Total Flow (seem) 155-170 130-145 145-155

Table 6-9. Input settings for Lam TCP 9600 plasma etcher (discretizedto three levels)
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6.3.3. Signal selection

Theprobability of a high, low, or medium value for an inputsetting to a plasmaetcher

is determined using real-time toolsignals collected from theplasma chamber aspredictors.

First, boxplotsare used to view the distributions of the real-time tool signals as a function

of each inputsetting. Thisdetermines a preliminary set ofpredictorvariables to be used for

modeling. Tables 6-10 and 6-11 summarize the real-time signals identified aspotential pre

dictors for the factor responses. These signals reflect changes in the machine state which

are in turn affected by changes in the input settings.

Figure
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6-4. Boxplots for the gas ratio input setting using six real-time tool signals*



♦ These signals include amass flow calibration (MFC3) measurement, DC bias, imped
ance, RF load capacitor position, RF tune capacitor position, and endpoint measurements.

The boxplots inFigure 6-4 indicate that the distribution ofvalues is such that one can

distinguish clearly between high and low levels of an input response. However, the
medium value range appears to overlap with the boundaries ofthe high and low levels,
which is not suiprising. Also note that the high and low levels span a greater range of
values than the medium level.

Response Predictors

Pressure DCBias, Power, Phase, Impedance, RFLoad
RF Power DCBias,EndpointA, EndpointB
Gas Ratio RFTune, RFLoad, MFCS, Impedance, DCBias, EndpointC

Total Flow MFC3, MFC6, HeCFlow, Impedance,
Pressure

Gap Spacing RFTtme, RFLoad, Phase, Impedance, Volt, DCBias, EndpointC,
Pressure

Table 6-10. Predictorvariables for input settingresponses - Lam Rainbow4400

Response Predictors

Pressure EndpointA, EndpointB, RFLoad, RF Impedance, TCP Tune
Top TCP Power RF Impedance, DCBias, TCP Impedance, EndpointA

Bottom RF Power TCP Tune, TCP Load, TCP Impedance, EndpointA
Gas Ratio DCBias, RF Phase, EndpointA

Total Flow Pressure, RF Impedance, TCP Tune, TCP Load, DCBias

Table 6-11. Predictor variables for input setting responses - Lam TCP 9600

The signal selection, model construction and validation are implemented using S-

PLUS software in an S-PLUS environment [77].

6.3.4. Tree-Based Model Construction and Validation

6.3.4.1. Tree Construction and Representation

Classification trees for each factor response (input setting) are constructed from the

training data using the preliminary set of predictors identified in Tables 6-10 and 6-11.

These treesarerepresented graphically in a block diagram form, as depicted in Figure 6-5,

withthe root of the tree at the top andthe leaves at the bottom. The splitcondition is used

to label each node, and the final selection value to label terminal nodes or leaves. These
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nodes have corresponding probability distributions which provide anestimate of the like

lihood of each category. For instance, if the terminal node contains 10, 20, and 200 data

points incategories A, Band Crespectively, the corresponding probabilities would becal

culated as P(A,B,C) = (10/230, 20/230, 200/230) = (0.045, 0.09, 0.865), so the model

would favor category C with a probability of0.865. Figure 6-6 depicts a tree model con

structed for the factor response RF power using the Endpoint sensor signal as apredictor.

terminal
node ^

split condition

^redictor z < threshold i

ABC

ABC

distribution of

original data
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Predictor x < threshold j Predictor y < threshold k
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Figure 6-5. Graphical representation ofatree-based model to choose among categories
A,B,Ci
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Figure 6-6. Tree model choosing among high, medium, and low RF power using
Endpoint

6.3.4.2. Tree Simplification

In any methodology for data-based modeling, there is a chance that the model will be

built such that it fits the training data too well, degrading its value as a predictor for other

datasets. Pruning and shrinking are methods of simplifying trees; however, because the

trees developed in this study are all relatively simple and easy to analyze, the use ofthese

methods for simplification was not necessary. However, viewing these tree-based models

as decision trees, it is evident that simplification can be achieved by "snipping" unneces
sary nodes. In other words, nodes that do not contribute to improving the final prediction

(i.e. decreasing the misclassification rate) can be removed from the tree, effectively merg
ing these nodes to their respective "parent" nodes. Bydefinition, because these nodes are

redundant or unnecessary, removing them does not increase the misclassification rate.



However, removing them does create another advantage. Specifically, if the split at the
redundant node introduces anew predictor variable, snipping that node removes the effect

ofthat variable and thus reduces the predictor space to be partitioned. Figure 6-7 demon
strates the process ofnode removal for a tree constructed to predict the total gas flow
response using the sensor signals MFCS , HeCFlow (the flow ofhelium for backside cool

ing), and MFC6.

MCFS<-18S40

original tree model

node

removal

MFCS <-18500 MFC6 < -29250

true false true false

HeCFlow < 6.97 med high high

snipped tree model
falsetrue

lowmed

MCFS<-18S40

MFCS <-18500 high

true false

HeCFlow < 6.97 med

true false

med low

Figure 6-7. Node removal for a tree model used topredict the Total Gas Flow response
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6.3.4.3. Coding of Trees

Original construction of the tree-based models is done using S-PLUS software. As

described above, the models can be viewed graphically, but can also be represented as a

collection of rules. For the two classitication trees depicted in Figures 6-6 and 6-7, the

equivalent rule-based models and corresponding probabilities for high, low and medium,

calculated from the training data set are given by:

(i) Rule-based modelfor classificationofRFpower response:

IfEndpoint is less than 9391, RF poweris high - P(H,L,M) = (1,0,0)
Else, if Endpoint is lessthan8758, RFpower is low- P(H,L,M) = (0,0.8,0.2)

Else RF power is medium - P(H,L,M) = (1,0,0).

(ii)Rule-based modelfor classification of Total Gas Flowresponse:

If Endpoint is less than9391, thenRF power is high- P(H,L,M) = (0.7,0,0.3)
Else, if Endpoint is less than8758, then RF power is low- P(H,L,M) = (0,1,0)

Else RF power is medium - P(H,L,M) = (0,0,1).

Once the threshold values are determined, these rules are implemented in a matlab

environment, witha function to update the probabilities automatically givennewobserva

tions. AppendicesC and D containthe code for the tree-basedmodels,while the results for

extractingprobabilitiesofcategoriesduringclassification ofthe validationdata for the two

different etchers canbe found in Appendices El and E2. These probability estimates are

the values used as evidence, as described in section 6.2.

Thetree-based models are constructed using a subset of the original data, alsoknown

as the training set. Oncethe parameters of the models have been determined, in this case

the choice ofpredictors and threshold values defining the split conditions, the performance

of themodels isjudgedbyhowwell theyare able to classify newobservations. Thesedata

are referred to as the validation set, and we can quantify performance in terms of misclas-

sification rates derived from this data. Thus, for each model, we can keep a tally of how

many observations are correctly classified. This information is saved in our database and

serves two purposes: (1) by monitoring the performanceofthe models, we have a measure
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of howoften the models require updating and (2)theperformance serves as a measure of

goodness of the model, giving us information as to the likelihood ofthe model given the

data. Hence, we have a method of accounting for the case where machine behavior has

been altered so drastically that the models built from data in the past are no longer valid.

Furthermore, wehave a measure ofhow good thecurrent model is given thedata, and can

use this measure to combine the current models with other classification results.

6.3.4.4. Summary of Tree-Based Models

Classification trees are instrumental inscreening predictor variables, determining those

withthe strongest discriminatory ability in terms of predicting response factors. This anal

ysis provides a meaningfulbreakdownofa complexmultivariateset in a form from which

conclusions may easily be drawn. In particular, tree-based models are shown to be effec

tive in detectingchanges in the input settingsusingonly a small subsetofthe real-time tool

signals. Inmost cases, the trees are reduced tooperate ona space defined byonly two pre

dictor variables, without an increase in the misclassification rate. In addition, tree-based

methods allow the combining ofboth numeric variables and factors, and can model factor

response variables with more than two levels. Finally, tree-based models can be used as a

tool for examining relationships among variables, providing valuable insightfor decision

making.

6.3.5. Generalized Linear Models (GLMs) for Classification

Usingthesamedatasetsforthetwodifferent typesofplasmaetchequipment described

above, twosetsof generalized linear models arebuiltbyencoding eachfactor response into

a binary response. The first set is based on the high level as a "success" encoded with value

"1", while the medium and low levels are grouped together as a "failure" and encoded with

value "0". The second set reverses the high and low roles, with low being a "success"

encoded with value "1", and medium and high together encoded as "0".

GLM models are constructed using the training data set to predict the probability of

success for each factor response. As in the building of classificationtrees, the linear pre

dictors for the models are chosen using the same set ofpreliminary variables identified for
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each factor inTables 6-10 and 6-11. For example, the form ofthe model fitted for predict

ing the RF powerresponse is represented symbolically as:

logit(p) =a + p'̂ 'x (6.9)
where p isthe probability ofthe RF power response taking the value "high" for thefirst set

of models. Recall from chapter 5 thatthe linear predictor is the logit linkfunction

(6.10)

or

11 = :— (6.11)
I + e

The values ofthe model coefficients a and p can befound inAppendix F,along with the

linear prediction r), andcorresponding probability values, p.

A measure of goodness for the models is calculated using the formula:

In other words, the difference between the null and residual deviance is tested on the Chi-

squared distributed with degree offreedom equal tothe difference inthe degrees (p-q) of

the null and residual deviance respectively. All ofthe models are found to be significant

according to this test. Model validation isconducted onthe remaining setofruns notused

in building the models.

To combine the results of the GLM models with those of the tree-based models, we

need toconvert these results into probabilities for the three levels ofhigh, low and medium.

Using the predictions ofthe probabilities of"high", denoted by p^, determined by the first

setofGLMs, and thepredictions oftheprobabilities of"low" from thesecond set, denoted

by [ii, if the sum ofthe two, givenby:

Pihigh) +P{low) = P/^ + Pi (6.13)
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is greater than one, then

and

PQiigh) =

P{low) =
\^L

Otherwise, we take P{high) = |i^ and P{low) = . To determine the probability of

a medium value, we use:

P(med) = \iM= 1-(H//+ (6.16)

The probability estimates given by for each ofthe five input settings are

the values used as evidence, as described in section 6.2. The values extracted fi-om the

GLMs can be found in Appendix F.

(6.14)

(6.15)

6.3.6. Modeling Results and Combinations of Evidence

The modeling results for the decision tree and GLM approaches before model averag

ing are summarized in Tables 6-12 and 6-13.

Setting Tree (train) Tree (validate) GLM (train) GLM (validate)

Pressure 18/6* 7/5 24/0 8/4

RF Power 23/1 11/1 14/10 7/5

Gas Ratio 18/6 7/5 16/8 7/5

Total Gas Flow 21/3 6/6 16/8 4/8

Gap Spacing 22/2 10/2 16/8 3/9

Table 6-12. Classification Results forLam Rainbow 4400 (correct/ incorrect)* - Direct
Prediction ofModels using Training Set of24 runs. Validation Set of 12 runs
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Setting Tree (train) Tree (validate) GLM (train) GLM (validate)

Pressure 31/5* 14/6 36/0 16/4

Top TCP Power 33/3 13/7 36/0 17/3

Bottom RF Power 20/16 7/13 25/11 7/13

Gas Ratio 31/5 9/11 36/0 10/10

Total Gas Flow 26/10 9/11 24/12 5/15

Table 6-13. ClassificationResults for Lam TCP 9600 (correct/ incorrect)* - Direct
Prediction of Models using Training Set of36 runs. Validation Set of20 runs

The tables display thenumber of observations correctly classified in the two groups of

data collected from the LamRainbow 4400, andthe LamTCP9600, corresponding to the

trainingand validation sets respectively for each modeltype.

Based on the predictions of the probability values, denoted by j, provided by the

tree-based and GLM models, wecan calculate theprobability ofa given combination using

Equation 6.3. The conditional probability of a fault from the database is extracted using

Equation 6.5. Equation 6.8 is then used to calculatethe probabilityof a fault from a com

bination of evidence. This procedure is conducted separately for the tree-based modeling

results, and for the values taken from the GLMs, and the classification results are summa

rized in Tables 6-14 and 6-15.

Setting Tree (train) Tree (validate) GLM (train) GLM (validate)

Pressure 18/6* 6/6 18/6 8/4

RF Power 16/8 8/4 17/7 7/5

Gas Ratio 21/3 7/5 18/6 7/5

Total Gas Flow 19/5 9/3 15/9 8/4

Gap Spacing 18/6 7/5 17/7 8/4

Table 6-14. Classification Results forLam Rainbow 4400 (correct/ incorrect)*- Based on
Evidence Combination using Training Set of 24 runs. Validation Set of 12 runs
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Setting Tree (train) Tree (validate) GLM (train) GLM (validate)

Pressure 24/12 8/12 25/11 7/13

Top TCP Power 28/8 9/11 25/11 12/8

Bottom RF Power 23/13 8/12 27/9 6/14

Gas Ratio 26/10 8/12 30/6 6/14

Total Gas Flow 22/14 11/9 24/12 9/11

Table 6-15. Classification Results for Lam TCP 9600 (correct/ incorrect)*- Based on
Evidence Combination using Training Setof 36 runs, Validation Setof 20 runs

Consequently, we end up with four different estimates for each fault group, namely,

two direct estimates, and two estimates using the combinations ofevidence, fi-om thetree-

based models and the GLMs respectively. This is depicted in the flowchart ofFigure 6-2.

Model averagingallows us to combine the four estimates extracted fi-om the different

models. Here we take Equation 5-29 to calculate the probability ofa specific fault (given

the data), denoted by from the conditional probability of the fault given the model

(and the data), P(F^ydata, M^), and the prior probability of the model (given the data),

P(M^data).

PiF^ydata) = ^P{Mq/datd)P{F^y/data,M^) (6.17)

The conditional probabilities of the faults given the models (and the data), P(F^y/data,
Mg), are the estimates taken from the four models described above. Hence, we have that

q = {1,...,4}. The probability or likelihood ofamodel given the sample, P(M^data), is

based on the performance of the models. Specifically, the results of Tables 6-12-6-15

summarizing the number of "hits", or correct classifications, are used to calculate the

weights for the models. Thus, the prior probability of a model, Mj, is given by:
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P{My/data) =
hitsM,

Y^hits
(6.18)

Tables6-16and 6-17summarize the results of model averaging for (1) combining the

direct estimates with those using combinations of evidence for each model, and (2) com

bining the tree-based and GLM results to form one final estimate.

Setting Tree

(train)
Tree

(validate)
GLM *2
(train)

GLM *2
(validate)

Tree
GLM
(train)

Tree*3
GLM

(validate)

Pressure 23/1* 9/3 24/0 10/2 24/0 11/1

RF Power 24/0 12/0 17/7 8/4 24/0 12/0

Gas Ratio 24/0 10/2 18/6 9/3 24/0 12/0

Total Gas Flow 24/0 10/2 17/7 6/6 24/0 11/1

Gap Spacing 24/0 11/1 18/6 8/4 24/0 12/0

Table 6-16.Classification Results for LamRainbow 4400 (correct/ incorrect)* - (1) Tree
Combination, (2) GLM Combinationand (3) Tree/GLM Combination

Setting Tree
(train)

Tree
(validate)

GLM *2
(train)

GLM *2
(validate)

Tree
GLM

(train)

Tree*3
GLM

(validate)

Pressure 35/1 17/3 36/0 16/4 36/0 19/1

Top TCP Power 35/1 17/3 36/0 19/1 36/0 19/1

Bottom RF Power 25/11 11/9 32/4 10/10 32/4 14/6

Gas Ratio 31/5 10/10 36/0 10/10 36/0 11/9

Total Gas Flow 30/6 16/4 31/5 10/10 35/1 17/3

Table 6-17. Classification Results for Lam TCP 9600 (correct / incorrect)* - (1) Tree
Combination, (2) GLM Combinationand (3) Tree/GLM Combination

The final results display almost perfect classification for all fault groups in the Lam

4400data, comprised of 24 training samples, and 12validation runs. Moreover, excellent

results were obtained for predictions of Pressure, Top Powerand Total Gas Flow for both

trainingsets (36 runs total), and validation sets (20 runs total) for the Lam 9600data. For
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the other two faultgroups, Bottom Powerand GasRatio, the models did wellon the Lam

9600 training data, but not as well on the validation sets.

6.3.7. Application Example

As an example, let us take a wafer from the validation set collected from the Lam TCP

9600. This is "Wafer 30" outof a total of 56runs. First, thesensor signals collected from

Wafer 30 are used by the tree-based models and GLMs to calculate a direct estimate of

eachinputresponse, anda corresponding probability. These are summarized in Table6-18

under theheadings "Tree Direct" and "GLM Direct" respectively. Next, weextract a fault

probability estimate based on the combination of evidence for each model. These proba

bilities are listed under "Tree Combo" and "GLM Combo", corresponding to the tree-

based model and GLM results. Model weights, shown inTable 6-19, are calculated using

Equation 6-18, and the two estimates for each model type are combined through model

averaging. Note that the weights are calculated separately for each input response. Thus,

to combine the models for the "Pressure" input response for the tree-based modeling

results, we use Equation 6.17:

P{F^/datd) = '̂ P{M^/data)P{F^ydata,M^)
i

Pipressure^data) = P{Tdirect/data) •P{pressure ^Tdirect)

+ P{Tcombo^datd) ' P{pressure^Tcombd) (6.19)

This leadsto a combined model estimate for the "Pressure" inputresponse of:

f
high

\

0 0.2331 0.1234

T2 low ^data = 0.4706 • 0.0556 + 0.5294 • 0.2322
=

0.1491

V med _0.9444_ p.5347_ _0.7275_

Repeating this procedure for each input response leads to the results in Table 6-18, under

the headings "T2" and "G2", for the combinedtree-basedmodels and GLMs respectively.

Finally, to combine the tree-based modeling results with those from the GLMs, we use

Equation 6.17 again to obtain :
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high
\

0.1234 0.1756 0.1480
pressure low ^data = 0.5294 • 0.1491 + 0.4706. 0.4553

=

0.2932

V rned_ _0.7275_ 0.3691 0.5588

Input
Response

Fault

Label

Tree

Direct

Tree

Combo

GLM

Direct

GLM

Combo

Tree

T2

GLM

G2

Final

High Pressure F.,! 0 0.2331 0 0.3732 0.1234 0.1756 0.1480

Low Pressure Fi,2 0.0556 0.2322 0.4919 0.4140 0.1491 0.4553 0.2932

Med Pressure Fi,3 0.9444 0.5347 0.5081 0.2128 0.7275 0.3691 0.5588

High TCP F2,1 0 0.1578 1.0000 0.2430 0.0888 0.5992 0.3440

Low TCP ^2,2 1.0000 0.1605 0 0.2430 0.5278 0.1286 0.3282

Med TCP ^2,3 0 0.6817 0.0000 0.5140 0.3835 0.2722 0.3278

HighRF F3,1 0 0.2115 0.3720 0.3495 0.1190 0.3600 0.2324

LowRF ^3,2 0.0909 0.2730 0.3295 0.3495 0.1933 0.3402 0.2624

MedRF ^3,3 0.9091 0.5155 0.2984 0.3009 0.6877 0.2998 0.5051

High Ratio F4.I 0.2308 0.4432 0 0.2908 0.3307 0.1454 0.2381

Low Ratio ^4,2 0.1538 0.2181 0 0.3233 0.1841 0.1616 0.1729

Med Ratio F4.3 0.6154 0.3387 1.0000 0.3859 0.4852 0.6930 0.5891

High Flow ^5,1 0.1250 0.1869 0.6287 0.3403 0.1621 0.4845 0.3233

Low Flow F5,2 0.5000 0.1002 0.1096 0.3403 0.2601 0.2250 0.2425

Med Flow F5,3 0.3750 0.7129 0.2617 0.3194 0.5777 0.2905 0.4341

Table 6-18. Fault probabilities for different modeling techniques - Wafer 30

Input Response Tdir Tcom Gdir Gcom T2 G2

Pressure 0.4706 0.5294 0.5294 0.4706 0.5294 0.4706

TCP 0.4375 0.5625 0.4706 0.5294 0.5000 0.5000

RF 0.4375 0.5625 0.4667 0.5333 0.5294 0.4706

Gas Ratio 0.5294 0.4706 0.5000 0.5000 0.5000 0.5000

Total 0.4000 0.6000 0.5000 0.5000 0.5000 0.5000

Table 6-19. Model weights for different modeling techniques - Wafer 30

136



Forthisexample, Wafer 30happened to bea baseline wafer, which means that it was

processed under "normal" conditions corresponding to "medium" levels for each input
response. The final diagnosis predicts all responses correctly, with the exception of the

TCP (Top) Power, which was diagnosed with probabilities distributed almost evenly
among the three levels.

6.4. Case 2: Analysis of ManufacturingData for Machine Qualification

6.4.1. Covariance Analysis

In Chapter 5, we discuss the importance offinding features indata, and in particular,

identifying those which contribute most to distinguishing between different machines and

different fault groups. This aspect is crucial in the analysis of the machine qualification

data, as variability in the data sets arises not only due to different fault causes, but also

because of machine differences.

The examination of the covariance structure within the data serves many purposes.

First, if a common covariance structure is found to exist, in particular, for observations

taken:

(1)within the same machine type, andthe same fault group

(2)among different machine types, butwithin the same fault group

(3) among different fault groups, butwithin the same machine type

then wecantreat thecovariance matrix as a feature thatprovides pertinent information to

distinguish between groups. Even inthecase where wedonotfind any commonalities, the

analysis is still of great value in delineating what assumptions we can reasonably make

about the distribution of the data. This in turn will influence which classification method

we choose to apply.
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6.4.1.1. Testing the equality of several covariance matrices

In Chapter 5, we describe the procedure for testing the equality of several covariance

matrices. We apply this procedure to the machine qualification data, assuming k popula

tions, andobservations withp attributes. The null hypothesis, given byEquation 5.30:

i/n'0-^1 ~ ^2 ~ ••• ~

ofthe equality ofthe covariance matrices ofkp-dimensional multinormal populations can

betested against the alternative ofgeneral positive definite matrices using a modified gen

eralized likelihood-ratio statistic.

The qualification data can be divided into twelve sets, corresponding to different

machines. The baseline data, labelled "bl" to"b3", are fi*om three machines oftype 1;data

diagnosed as a "gas line grounding problem" are collected firom machine types 1 and 3;

data diagnosed as a "match network problem" are collected from machine types 1,2, and

4. As shown in Table 6-20, common hardware (labeled as A andB, respectively) is shared

bymachine types (1,2) and (3,4), while machine types (1,3) and(2,4) usesimilar software

(labeled as C and D, respectively).

= E,

Type Shared Baseline Gas Line Grounding Match Network

Hardware Software bl b2 b3 gl g2 g3 g4 g5 ml m2 m3 m4

1 A C X X X X X X X

2 A D X X

3 B C X X

4 B D X

Table 6-20. Qualification databy fault group andmachine type(hardware/software
differences)

The first case we examine is to test data taken within the same machine type, and the

same fault group. Specifically, we take four wafers from each machine (corresponding to

a single type and fault group), using a sample setoftwenty data points perwafer. Thus, we

canconsider each wafer to form a population, where the number of populations is A: = 4,

and using Equations 5.31 and 5.32, we can calculate maximum likelihood estimates for the
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sample mean, x(j), and covariance, Sj, for sample sizes oftwenty. Because we are using

equal sample sizes (v^. = v = 20) for all j = , we can apply Equation 5.34 to

calculate thepooled estimate ofthe common covariance matrix, S.Hence, wehave allthe

variables necessary to calculate the Box mstatistic, using Equation 5.37:

^test = V

k

Hn|5l-^ ln|5^.|
y = 1 ^

where v = 20, A: = 4 , and Sj and Sare calculated as described above.

Table 6-21 summarizes the Box mtest statistics computed for four types of machines

(with hardware andsoftware differences), andthree fault groups. The machines are listed

by fault group and type along the first two columns. The total number ofvariables used is

denoted by"p",withthespecific sensor variables (aslisted intheheading) marked withan

"X". The final four columns summarize the results for the Box m test.

The ''Box m test" column contains the information necessary to determine if there is

enough evidence toreject thenull hypothesis, Hq, ofequal covariance structures among the

populations. In particular, we list the number of variables used in the computation under

the heading "p", and the calculated Box mtest statistic using Equation 5.37under

As mentioned in Chapter 5, in the case of equal sample sizes, tables of the critical values

for mtgst, have already beentabulated, particularly for small k (number of populations) and

p (number of variables). We list these critical values under the heading "crif. Note that

this value changes depending on p, that is, depending on the number of variables used in

thecalculations. If > crit, wereject thenull hypothesis andconclude thatthe popu

lations being tested do not share a common covariance structure. The conclusions are sum

marized under the final column which specifies if is greater (yes = "Y") than the

critical value and we reject the null hypothesis, or whether it falls under the critical value

(no = "N").
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Machine Bottom (RF) Match Top (TCP) Match Clamp Box m test

Fault Type pw Id tn ph im pw Id tn ph im pr fl P ^test* crit >

bl 1 X X X X X X 6 74.67 70.17 *

X X X X 4 25.48 48.47 N

b2 1 X X X X X 5 53.3 70.17 N

X X X 3 28.07 31.13 N

b3 1 X X 2 196.5 17.77 Y

gl 1 X X X X 4 45.21 48.47 N

X X X X 4 45.94 48.47 N

g2 1 X X X X X 5 58.70 70.17 N

g3 1

X X X X X X 6 54.05 70.17 N

X X X X X X 6 54.47 70.17 N

X X X X X X 6 60.14 70.17 N

g4 3

X X X X X 5 52.71 70.17 N

X X X X X 5 60.81 70.17 N

X X X X X 5 66.16 70.17 N

X X X X X 5 60.56 70.17 N

X X X X X X 6 67.84 70.17 N

g5 3 X X X X X 5 37.66 48.47 N

X X X X X X 6 57.72 48.47 Y

ml 2 X X X X 4 45.07 48.47 N

ni2 2 X X X X 4 45.07 48.47 N

m3 1 X X X X 4 163.0 48.47 Y

m4 4 X X 2 155.1 17.77 Y

Table 6-21. Box mTest results: Four machine tj^es and three fault groups

The sensor variables are grouped according toorigin and function. Reading from left toright, the
labels for the top and bottom match networks correspond tothe power, load, tune, phase and imped
ance. The variables listed under the heading "Clamp" refer tothe clamp pressure and clamp flow,
respectively.

Table 6-21 demonstrates some common covariance structure (orat least, no evidence

to reject the hypothesis ofa common covariance) within the same machine type and fault

group, especially using the bottom (RF) match network variables. Note also that the high-
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est critical value from the tables is for;? =5, and consequently, we use this value with rrifg^f

calculations involving six variables as well, although the actual critical value for /? = 6

would presumably be a higher one.

The second case we consider is to test data taken among different machine types

(labeled as 1-4, with differences in hardware and software), but within the same fault

group. In this case, we take two wafers from each machine and use either groups of two,

three or four machines from the same fault group. Thus, as in the previous case, we can

consider each wafer to form a population, where the number ofpopulations is it= 4 (two

machines contributing two wafers each), ^ = 6 (three machines contributing two wafers

each), or ^ = 8 (four machines contributing two wafers each). As before, we use equal

sample sizes of twenty points per wafer, and calculate maximum likelihood estimates for

the sample mean, x{j), covariance, Sp and pooled estimate of the common covariance

matrix, iS, using Equations 5.31, 5.32, and 5.34 respectively. Applying Equation 5.37 to

compute the Box m test statistics yields the results summarized in Table 6-22.

Machines Bottom (RF) Match Top
(TCP)

Clamp Box m test

Fault group Types pw Id tn ph im pw ph fl P k crit >

g3g4 1,3 X X X X X 5 4 64.85 70.17 N

X X X X 4 4 35.92 48.47 N

g2 g3 g4 1,1,3 X X X X 4 6 54.64 74.25 N

gl g3 g4 1,1,3 X X 2 6 21.88 26.16 N

g3 g4 g5 1,3,3 X X X X 4 6 61.20 74.25 N

X X X 3 6 42.58 46.96 N

gl g2 g3 g4 1,1,1,3 X X 2 8 34.11 34.14 N

Table 6-22.Box m Test results: Across two machine types, withinthe same fault group
(gas line grounding problems)

We include only successful trials in this case, where < crit, and we can conclude

that there is no evidence to reject the null hypothesis. Also, because the sensor signals

"TCP tune," "TCP load," and "TCP impedance" of the top match network, as well as the
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"clamppressure" arenotusedin anyof the successful trials,we haveeliminated themfrom

the table. Moreover, note that the values ofthe critical values for depend on both p

and k. Wealso performed trials using wafers from different types ofmachines in theother

two fault groups corresponding to the baseline and match network problems respectively.

However, in both cases, the trials were unsuccessful, and we found no evidence to support

thehypothesis of equal covariance structures in these groups.

Finally, we consider the third case oftesting wafers taken from different fault groups,
but within the same machine type. Not surprisingly, we found no successful trials, and no

evidence to support the hypothesis ofequal covariance structures in these groups. How

ever, we did conduct a few successful trials using different machines of the same type,

within thesame fault group. The results here are distinct from case 1,in thatthewafers are

takenfrom separate machines. In case 1,the wafers weretakenfrom the samemachine for

testing. Table 6-23 summarizes the results for the trials conducted on different machines

ofthe same type and fault group.

Machines Bottom (RF) Match Top (TCP) Box m test

Fault Types pw Id tn ph im Id tn ph im P k ^test^ crit >

bl b2 1,1 X X 2 4 83.97 17.77 Y

X X 2 4 75.84 17.77 Y

gl g2 1,1 X X X X 4 4 28.60 48.47 N

gl g2 g3 1,1,1 X X X 3 6 36.04 46.96 N

g4g5 3,3 X X X X X 5 4 57.79 70.17 N

X X X X 4 4 47.68 48.47 N

ml m2 2,2 X X 2 4 9.35 17.77 N

X X 2 4 24.15 17.77 Y

Table 6-23. Box mTest results: Within two machine types, within the same fault group
(gas line groimding problems)

6.4.1.2. Summary of Covariance Analysis

In this section, wetestthehypothesis of equal covariance structures fordatatakenfrom

(1) within the same machine type, and the same fault group, (2) among different machine

types, but within the same fault group, and (3) among different fault groups, but within the
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same machine type. In the first and second cases, we found that in some trials, for certain
sensor variables, no evidence to reject the null hypothesis ofequal covariance matrices.

However, although we might conclude that wafers taken from the same machine might
share a common covariance structure in some cases for a limited set ofvariables, we find
this much less plausible once we take wafers from different machines, even ifthey are still
diagnosed in the same fault group. Consequentlv. the covariance matrix cannot be used

reliablv as a feature to distinguish between fault groups Moreover, we cannot assume a

common covariance structureto exist in any ofthe three cases we examined.

6.4.2. Building Bayesian Classifiers

Building on the results of our covariance analysis, letz; p x 1 denote an observation

from one of the fault populations %j = S^.),y = 1,..., A:, where the parameters

(0y» are unknown, and we do not assume equal covariance matrices. The observation

vector, z, is actually comprised ofwafer average values ofthe variables, based on 20 points
taken within the main etch step. In this case, our variables are the tune and load capacitor

positions (p=2). We consider these separately for the top (TCP) and bottom (RF) match, so

that we are working in two 2-dimensional spaces. The values ofthe variables appear small
because we subtract the sample average (listed in Table 6-24) from each signal. Load and

tune capacitor positions are typically represented on a scale of0-32000 points.

Fault Group:
Variable

Baseline Gas Line Match

RF Load 10533 10099 10056

RF Tune 8363 8667 8589

TCP Load 18962 18987 18093

TCP Tune 24864 23485 23342

Table 6-24.Original sample averages usedto de-mean qualification data

6.4.2.1. Generating Gaussian fault populationsusing MaximumLikelihood

Because we have three categories corresponding to the baseline, gas line, andmatch

problems, this defines three fault populations (k=3). We form a training data set for the

Bayesian classifiers by applying Equations 5.31 and 5.32 to calculate maximum likelihood
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estimates, (MLE's) for the sample mean and covariance matrix, (0^, 2y), for the jthpopu

lation based on the demeaned qualification data.

Using a C-programto generate two-dimensionalgaussian data, and the MLEs for each

faultcategory, weform datasets,x(j): 50x 2, foreachof the threefaultgroups. These data

sets comprise the fault populations used in the Bayesian classifiers. Figures 6-8 and 6-9

show the distribution of these populations for the two cases corresponding to the top and

bottom match networksrespectively. Note that, for each fault group, even in cases where

thepopulation means aresimilar, thevariances arenoticeably different. Thisisalso appar

ent in Table 6-25, whichlists the MLE values usedto generate the training data sets.
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Match

Location

Fault (jroup: Baseline Gas Line Match

Variable (xuS,) (^2, iS'2)

Bottom Match RF Load (0.1984,0.0105) (0.8749, 0.5031) (0.4017,0.0313)

RFTune (0.0472,0.0009) (0.3725, 0.1289) (0.4457, 0.0242)

Top Match TCP Load (1.3609, 0.2383) (1.045, 0.3591) (1.0068, 0.2887)

TCP Tune (0.3767,0.0681) (1.1356, 0.1286) (1.1306,0.5655)

Table 6-25. MLE's ofdemeaned sample data, (jc(/), Sj) , used to generate training data
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6.4.2.2. Calculating Predictive Odds Ratios

Denoting the fault populations correspondingto baseline, gas line and match problems

as 7Cj, 712 ^3' respectively, we now have all we need to calculate the predictive odds

ratio for classifying z into tt,. over 7t^. Using Equation 5.47, we can make pairwise com

parisons between fault groups by taking the ratio ofthe correspondingmultivariate Student

t-densities for the fault populations.

For instance, if we want to calculate the predictive odds ratio of classifying z into ttj

over 712' ^ taken from a baseline machine versus one with

a gas line problem, we use:

p(z/dataj= 1) ^
p{z^data,j = 2)

^2 - -1 - •1 + -z {z-X2yS2 {Z-X2)

N. - _i . •1+-^(Z-Xiy5',\z-Xi)
. A^^-1

V,/2

N^n
= BG2 (6.20)

where 1,72 is a constant given byEquation 5.48. Forequal prior probabilities,/?! =P2, and

equal sample sizes, A^i = N2,Equation 5.48 simplifies to:

=©'.|S,

Note that the label "BG2" is used for the predictive odds ratio for baseline over gas line,

using the top match signals, TCP tune and TCP load. These labels are listed in Table 6-7.

6.4.2.3. Validation data by Machine Type

As mentioned previously, the predictive odds ratios are based on calculations using

generated data to represent the fault populations, Uj. However, the observation vectors, z,

are taken from actual machines experiencing these problems. Thus, our validation set con

sists of qualification data summarized in Table 6-20.
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6.4.2.4. Calculating Probabilities for Fault Classification

Using the predictive odds ratios calculated as described above, we compute probabili
ties with respect to fault groups for 228 observations (nineteen wafers processed on each

ofthe twelve machines). The predictive odds ratio, inthe form r /1 iseasily converted to

a probability by normalizing:

r/1 = '• /. 1

Hence, if BG2 = r, inour example above, the odds offavoring the baseline over gas line

are r : 1. If we want to represent this as a probability, then P(z = baseline) is —^, while
r + 1

the P(z = gas line) is .
r + 1

^observations^

BMl test

P(baseline/BM1) P(match/BM1)

BGl test MG2 test

P(baseline/BG1) P(gas line/BGl) P(match/MG2) P(gas line/MG2)

BG2 test gas line (N3) match (N4) gas line (N5)

P(baseline/BG2)

I—

baseline (Nl)

P(gas line/BG2)

gas line (N2)

Figure 6-10. Classification tree replacing predictive odds ratios with probabilities

Returning to the tree structure of Figure 6-3, we can replace the predictive odds ratio

tests with probabilities for classifying an observation into one group over another. The
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probability that z belongs toa particular node isgiven bytheproduct oftheprobabilities at

the splits along thepathto thenode. Wedepict this in Figure 6-10.

Table 6-26 summarizes the calculations for the probability of the terminal nodes, rep

resenting fault diagnoses.

Diagnosis Node Probability

baseline N1 P(baseline/BG2) * P(baseline/BG1) * P(baseline/BM1)

gas line N2 P(gas line/BG2) * P(baseline/BG1) * P(baseline/BM1)

gas line N3 P(gas line/BGl) * P(baseline/BM1)

match N4 P(match/MG2)* P(match/BM1)

gas line N5 P(gas line/MG2) * P(match/BM1)

Table 6-26. Probability calculations for terminal nodes inthe classification tree ofFigure
6-10

6.4.2.5. Results of Bayesian Classifiers

Atotal of228observations, comprised of57 baseline (fi-om three machines, bl-b3\ 95

gas line (fi*om five machines, gl-gS) and 76 match problems (from four machines, rl-r4)

arediagnosed using theBayesian classifiers. After calculating thesixpredictive odds ratios

listed inTable 6-7, the probabilities ofthe terminal nodes representing fault diagnoses are

calculated according to the formulas in Table 6-26. Table 6-27 summarizes the classifica

tion results.

Fault

Diagnosis Node

Baseline Gas Line Grounding Match Network

bl b2 b3 gl g2 g3 g4 g5 ml m2 m3 m4

baseline N1 19 19 19 19*

gas line N2

gas line N3 18 19 19 1*

match N4 19* 19 19 19 18

gas line N5 1 0

Table 6-27. Classification results by machine (total of 19 wafers for each case)
"•indicates number ofmisciassified wafers
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Note thattheshaded regions inTable 6-27 represent areas ofcorrect classification. Our

results show that all observations are correctly classified, with the exception ofall wafers

processed on machines g2 andg3, and one wafer from machine m4. All wafers fi-om g2 are
classified as "match problems", and fi-om g3 as "baseline. Thus, although these two
machines were diagnosed with gas line grounding problems, the behavior exhibited in

these signals more closely resembles that ofmachines having match problems and normal

behavior, respectively.

Diagnosed
fiom fault: label

baseline gas line gas line match gas line

N1 N2 N3 N4 N5

Baseline

Machine

bl 0.7299 0.0376 0.1902 0.0409 0.0013

b2 0.7970 0.0433 0.0984 0.0411 0.0202

b3 0.4383 0.1527 0.1890 0.0868 0.1332

Gas Line

Grounding
Problem

gl 0.0468 0.0169 0.5531 0.2148 0.1683

g2 0.2701 0.0814 0.2485 0.3934 0.0065

g3 0.5721 0.0502 0.3175 0.0576 0.0025

g4 0.0256 0.0245 0.5438 0.0997 0.3064

g5 0.1559 0.1899 0.3202 0.1132 0.2208

Match

Network

Problem

ml 0.0761 0.0144 0.2365 0.4858 0.1873

m2 0.0218 0.0026 0.0942 0.6502 0.2312

m3 0.0197 0.0008 0.1335 0.8069 0.0391

m4 0.2752 0.0834 0.2752 0.3317 0.0345

Table6-28. Average fault node probabilities (over nineteen wafers for each machine)

In general, machine to machine variability willbe greaterthanwaferto wafervariabil

ity, where the wafers are processed by the same machine. We see this effect above, noting

that the results are somewhatbinary in nature, that is, either all wafers fi-om a machine are

correctly diagnosed, orall ofthem are misclassified. It isnot surprising then, that the prob

abilities calculated forobservations also tend tocluster around certain values depending on

machine. Thus, we summarize the calculations of probabilities for each node in Table 6-

28, which averages the probabilities ofnineteen wafer observations for each machine. The
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finaldiagnosis is taken as the category withthe highestprobability (boldborderentries in

Table 6-28).

6.4.2.6. Application Example

As an example, let us take"Wafer 19"processed by machine gl, diagnosed as a "gas

line groimding" problem byqualification engineers. Using Equations 5.47 and6.21, along

with our training data sets for eachfault population, we calculate the six predictive odds

ratios and corresponding probabilities. These are summarized in Table 6-29.

Label BGl BMl MGl BG2 BM2 MG2

Test base/gas base/match match/gas base/gas base/match match/gas

ratio = r 0.1162 0.8218 0.1414 0.1770 4.1338 0.0428

prob = p 0.1041 0.4511 0.1239 0.1504 0.8052 0.0411

1-p 0.8959 0.5489 0.8761 0.8496 0.1948 0.9589

Table 6-29. Predictive odds ratios and correspondingprobabilities - Wafer 19

The probabilities, denotedby "p", represent the probability of the first variable,while "1-

p" is the probability of the second variable in the ratio. Thus, for thetest "BGl", the pre

dictive odds ratio is 0.1162, the probability of the first variable is P(z = baseline) =

rTT ^01162^+ 1 01041, and consequently the probability ofthe second variable is
P(z = gas line) = 1 -/? = 0.8959.

Diagnosis Node Probability

baseline N1 P(base/BG2) * P(base/BG1) * P(base/BM1) =
0.1504*0.1041*0.4511 =0.0071

gas line N2 P(gas/BG2) * P(base/BG1) * P(base/BM1) =
0.8496*0.1041*0.4511 =0.0399

gas line N3 P(gas/BG1) * P(base/BM1) = 0.8959*0.4511 = 0.4041

match N4 P(match/MG2) * P(match/BM1) = 0.0411*0.5489 = 0.0226

gas line N5 P(gas/MG2) * P(match/BM1) = 0.9589*0.5489 = 0.5263

Table 6-30. Probability calculations for terminal nodes in classification tree - Wafer 19
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Finally, we calculate the final probabilities for each terminal fault node as in Table 6-

26. These results are listed in Table 6-30 for "Wafer 19" processed by machine gl. Hence,
the final probabilities for each node are:

P(W1,A^2,A^3,A^4,A^5) = [0.0071,0.0399,0.4041,0.0226,0.5263]

and we classify the observation as being in N5, diagnosed as a"gas line grounding" prob
lem, with a probability of0.5263.

6.5. Case 3: Analysis ofHigh Speed Data

The performance ofadiagnostic system based on sensor data depends to a large extent

ontheselection and extraction of features thatreliably fingerprint a failure mode. Previous

work has focused onusing statistics taken from the stable portion ofaplasma etch, includ

ing using average values, sample variances, and time series prediction to characterize the

signal behavior. However, ithas become increasingly clear that inorder to identify the sig

nature of a machine fault, attention must be focused on more subtle characteristics of the

signal, notnecessarily captured by taking average values over stable portions of the etch.

For the analysis of the transient behavior ofthe high speed sensor data, it is necessary to

extract features from the signals that will then form the basis for classification.

Figure 6-11 displays the impedance signal resulting from the nine fault conditions

listed in Table 3-3. Note that the impedance signals for the first five fault categories are

shown inFigure 3-6, along with the corresponding tune/load positions. However, forcom

pleteness, we include these signals here as well.

Looking atthe signals inFigure 6-11, we observe the presence ofpatterns inthe profile of

the impedance signal over time, depending on the "fault" conditions determined by the

preset values for the load and tune capacitors. Hence, the features we identify are struc

tural, and if we can capture and link these to a fault condition, they can be considered as

pieces of evidence whose combination can lead to a specific diagnosis. More importantly,

we intend to use these preset conditions as a training source, a "baseline" for comparison

against real machine failures involving the binding of the tune and load capacitors.
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Fault Categories

1. Baseline

2. HH extreme

3. LL extreme

4. HL extreme

5. LH extreme

6. HH midrange

7. LL midrange

8. HL midrange

9. LH midrange

TCP Impedance

J\j^

1

V -

: :

0 5 10

Time (seconds)
Figure 6-11. Impedance signal^ corresponding to fault categories in Table 3-3

Signals are plotted on identical scales.
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6.5.1. Pattern Templates for Matched Filters

The decision-theoretic approach relies on numerical features andstatistical classifica

tion techniques such as clustering. The success ofstatistical classification techniques is
highlydependent on the feature setextracted fi-om the data. Because the transient behavior

displays apattern, it is necessary to have a method ofidentifying the pattern, and having
some quantitative measure of how well it matches a representative "template". One

approach is touse each example where thepattern occurs asa "template" ormodel, andto

seehowclosely othersamples match the given template.

First, thetemplate isdetermined fi-om the data byusing a windowing function to isolate

the pattern as shown in Figure 6-12. This particular pattern appears to bepresent in three

distinct impedance signals corresponding to fault conditions 2 through 4,as listed inTable

3-3, and pictured in Figure 6-11. The pattem in the window is "flipped" in time, as in

Figure6-13,andthis is usedas a template, acting as a matched filterfor all of the otherdata

sets.By taking the convolution of this template with the signal, the result is a measure of

goodness offit(using appropriate normalization factors). Inthis way, wecanquantify how

well the pattem in a signal matches a given template, and where it is located with respect

to some reference point. We take the reference point to be the onset of RF power in the

bottom match, and the quantity measuring goodnessoffit to be the maximumvalue ofthe

convolution (normalized).

Template Impedance Signals for fault conditions 2,3,4

Figure 6-12. Windowing function for a pattem
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Matched Filter

*
convolution

Impedance Signal

location ofmax value

max value = 0.98

Figure 6-13. Forminga template for the matched filter

Figure 6-14 demonstrates how we measure the position or location ofthe pattern with
respect to the onset ofthe bottom RF power. We emphasize that the positions ofthe tune

and load capacitors that we are altering belong to the top (TCP) match network, and that

the bottom RF power tums on after a fixed delay of1.5 seconds following the top (TCP)
power. We also establish the convention that the position takes a positive (+) value if the

location ofthe pattern occurs before the onset ofbottom RF power, and anegative (-) value
ifitoccurs afterwards. Hence, the zero value for position corresponds to the moment when

the bottom RF power is turned on.

Preliminary examination of thedistribution of thefeatures - themaximum normalized

convolution and position of the pattern (shown in Figures 6-15 and 6-16 for the fust five

fault categories using the pattern in Figure 6-12), shows that the combination of both

enables us to adequately distinguish one fault category from another. In other words, even
ifone pattern is found to be present in several cases, as in the example depicted by Figure
6-12, theposition of the pattem varies by fault group, and hence, this becomes a crucial

identifying feature. Thus, while the convolution values suggest a profile match for condi
tions 2, 3, and 4, we can still distinguish amongst categories by looking at the position of
the pattem. Finally, note that in Figure 6-16, the position is measured according to the con
vention described by Figure 6-14, where 100 units isthe equivalent ofone second.
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Impedance signals for fault conditions 2, 3, 4

© Position Axis

UwMiiwweNW

Bottom RF Power

Figure 6-14.Location of pattemdefined withrespectto onsetof (bottom match) power

As stated previously, the test pattem in the example of Figure 6-12 is found to be

present in fault categories 2, 3, and 4. However, Figures 6-15 and 6-16 show that the con

volutionfor categories 1and5,where thetestpattemis absent, results in a fairly largenum

ber. This is because there will always be some overlap when testing a pattem against an

observation. Consequently, a close profile match must be determined via a strict standard.

In other words, we will consider the pattem to match the observation only for relatively

high values of the convolution. The details of how we will implement this will be clearer

as we develop a procedure for diagnosis.
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Figure 6-16. Distribution of numerical features by fault type - Pattern Location

From the impedance signals depicted inFigure 6-11, we extract nine distinct test pat

terns. The profiles of these patterns are shown in Figure 6-17.
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Figure 6-17. Test patterns/features extracted from the TCP Impedance signal
6 o:Signals are plotted on identical scales.
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6.5.2. Probability Assessments for Determining Goodness ofFit

Using thematching filter approach described in theprevious section, wetestthese pat

terns against our database of signals corresponding to the nine fault categories listed in

Table 3-3. Consequently, we obtain values for the maximum normalized convolution and

position of thepatterns, and compute averages overfault categories foreachtestpattern as

we did in the example described by Figures 6-15 and 6-16. The distribution of values

obtained for the features (convolution and position) overdifferent fault groups forms the

basis of a training set. In addition, we create rules to convert these values into some mea

sureof likelihood of howwell theobservation matches theprofile shape andposition. This

procedureemploysthe Bayesianapproach to assessthe probability of an event based on a

degree of belief. The process of measuring a degree of belief, for instance, using a proba

bility wheel [57], is referred to as a probabilityassessment. In this case, the assessment is

basedon actual measurements; however, theconversion (mapping) of thesemeasurements

to probability valuesrelieson human judgment, basedon experience.

Table 6-31 summarizes the conversion rules used to map the values of the features

(convolutionand position) into probabilities of goodnessof fit.

Convolution Position ofPattern

Measured Value Range Probability Measured Value Range Probability

greater than 0.98 1 average position ±(j^ 1

0.9 to 0.98 0.8 average position ±2ct^ 0.8

0.7 to 0.9 0.6 average position ±3a^ 0.6

less than 0.7 0 else 0

Table 6-31. Conversion mapping for assessing probabilities of goodness of fit from
measured values

The value of the maximum normalized convolution gives a measure of how well the

observation fits the testpattern. Specifically, we wish to infer thepresence or absence of

the test pattern in the observation. As shown in Table 6-31, we determine that a value for

the maximum normalized convolution that isgreater than 0.98 isequivalent toa perfect fit

(probability = 1), while any value less than 0.7 isconsidered not a fit (probability = 0). A

"good" fit isassigned aprobability assessment of0.8, while a "fair" fit takes a probability
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value of0.6. Note that, because there will always be some amount ofoverlap for any test

pattern against anobservation signal, ingeneral, the convolution values will be high. Thus,

using the normalized convolution directly as a probability of goodness of fit will result in

artificially elevated values. Consequently, the probability assessments must be skewed

accordingly.

Similarly, we desire a measure ofhow well the test pattern identified ina given obser

vation matches theposition of the pattern asdetermined byourtraining data. In thiscase,

we use the average values calculated for the positions of the patterns in each fault group.

We say that if the pattern in the observation is found to lie within one standard deviation

of this average, it is a perfect fit (probability = 1), while if it falls outside three standard

deviations, there isnofit(probability =0). A"good" fitencompasses therange oftwo stan

dard deviations around the average; a "fair" fit lies within three standard deviations.

Once we have ascertained the threshold values for the measurements that determine

how well the test pattern fits anobservation (interms ofitsshape and location), we use the

mapping defined in Table 6.31 to transform the values for features computed from our

training set database. Using the calculated probabilities for the training data, listed in

Appendix G,wehave information to determine thepresence or absence of a given feature,

as well as its location relative to a reference point. Moreover, we consider evidence of

matching a pattern's shape (viaconvolution) and matching the pattern'sposition as inde

pendent pieces. Thus, to find theprobability of matching both the shape andposition of a

pattern to a given observation, we take the product of the two individual probabilities.

Figure6-18represents the analysis in the formof a flowchart. In addition. Table6-32 sum

marizes the classification results for the training data in Appendix G, and shows the fea

tures foundto be linked to eachfaultcategory. Note that threedifferent patterns are found

in the fault condition, "LL extreme", and that two pattems are detected in "HL extreme".

Because the presenceor absenceof each feature is treatedas an independent piece ofevi

dence, the probability of the combination (indicating the presence of more than one fea

ture) is given simply by the product ofthe individual probabilities ofeach feature. The next

step is to determine whether this procedure canbe useful in identifying realmachine prob

lems caused by the binding of the tune and load capacitors in the top match network.
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Figure 6-18. Flowchart outlining steps toward final diagnosis

Table 6-32 includes two columns for pattem 3, and three for pattem 4, corresponding

to the fact that the same pattem is found in several different positions depending on the

fault category. Moreover, the table lists the average probability of matching each pattem

fortheninefault groups. Inaddition, wealso include thepercent of observations from each

fault category successfully linked to a pattem (where the probability ofa match isgreater

than 0.5) in Appendix G.
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Fault Category Test Patterns

# Description 1 2 3-1 3-2 4-1 4-2 4-3 5 6 7 8 9

1 baseline .42 .21 .64 .32

2 HH extreme .48 .8

3 LL extreme 1 .8 .9 .24 .54

4 HL extreme .87 .62 .74 .54 .36 .48

5 LH extreme 1

6 HHmidrange .6 .48 1 .36 .21

7 LL midrange .53 1 .24 .37

8 HL midrange .42 .93 1

9 LH midrange .47 1 .36 .74

Table 6-32. Average probability of linking a pattern toa fault category

6.5.3. Diagnosing Faulty Capacitors in the Match Network

To test the utility ofourdiagnostic system trained using data taken from preset condi

tions, we physically disable the tune and load capacitors one at a time, and measure the

resulting TCP impedance signals. By loosening the connection between the capacitors and

their driving motors, we immobilize them, simulating a "binding" condition that com

monly occurs inproduction when the capacitors require replacement. Figure 6-19 displays

the impedance profiles produced by a baseline condition, a disabled tune capacitor, and a

disabled load capacitor, respectively.

Using the patterns extracted from our training data (stored inthe evidence library), and

the mapping defined by Table 6-31, we test the failure data (stored inthe fault base) for the

known patterns, according to the procedure described by Figure 6-18. The results of this

analysis are tabulated in Appendix G.

Table 5 inAppendix Gshows that weareable toclassify ourbaseline examples bytest

ing for pattern 7, and that we find that this pattern matches the four baseline observations

withprobabilities {0.64, 0.59, 0.64, 0.8}, respectively. Moreover, pattern 8 matches three

outof four baseline examples, with probabilities of (0.36, 0.36, 0, 0.6}.
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Pattern3-2provesuseful in identifying the signals resulting from a bad loadcapacitor,

yielding probabilities of fit {0.48, 0.8, 0.8} for the three bad loadexamples, although in

this case, oneof the baseline observations also fits this pattern witha probability of 0.64.

Finally, the badtunesignals are linked to pattem 5, withprobabilities of fit (0.6, 0.6,0.6}

for the three observations takenwith an immobile tune capacitor.

Thus, byusing thepreset conditions tosimulate faults, weareable to setupa diagnostic

procedure that proves useful in identifying real machine failures where the tune and load

capacitors are unable to adjust to changing plasma conditions. This is accomplished by

identifying, capturing and matching pattems in the profile of the transient behaviorin the

TCP impedance signals. In particular, the results of pattem matching show that a faulty

load capacitorexhibitsbehaviorsimilarto "HL extreme", or in otherwords, to a condition

where the tune capacitor is high while the load is low. In contrast, a faulty tune capacitor

is found to behave like the condition "HH extreme", where both tune and load capacitors

are too high. These inferencesare made due to the pattems that these different fault condi

tions are found to have in common.
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6.6. Summary

Inthis chapter, we implement various modeling techniques and approaches inorder to

successfully classify failure data arising from different sources. Moreover, we introduce a

framework that allows usto integrate themodels byassuming that a fault condition causes

a combination of different symptoms embodied by pieces of evidence. Weconsider three

cases: (1) miscalibrations inthe equipment simulated through DOEs, (2) machine qualifi

cation data, and (3) high speed data capturing transientbehavior.

Inthe first case, the fault hypotheses are defined asincorrect input settings, and we fmd

that by using asubset ofthe monitored sensor signals, tree-based modeling techniques can

be combined with GLMs for prediction of failure modes corresponding to the changes in

operating conditions. Although themodels directly estimate theprobabilities ofeachvalue

for every fault variable, we can also obtain an estimate ofthese probabilities for aparticular

fault variable based oncombinations of predictions for the remaining fault variables. Our

final diagnosis of fault conditions is a result of model averaging over the different tech

niques, tree-based and GLMs, as well as over the direct predictions and those resulting

from combinations of the remaining fault variables. Our system achieves a high success

rate of fault classification for DOEs conducted ontwo different types of plasma etchers.

Inthe second case, three fault categories are identified inthe qualification data: (1) the

baseline, representing normal operating conditions, (2) problems connected with gas line

grounding issues, and (3) problems related tothe match networks. Moreover, four types of

machines are identified, due tohardware and software differences, complicating the anal

ysisof the signals. Wefirsttestthe hypothesis of equalcovariance structures for datataken

from (1) within the same machine type, and the same fault group, (2) among different

machine types, butwithin the same fault group, and (3) among different fault groups, but

withinthe samemachine type. Although in fewcases wefind noevidence to rejectthe null

hypothesis ofequal covariance matrices, wealso fmd high machine to machine variability

and hence, cannot assume a common covariance structure to exist in any of the three cases

weexamined. Thisanalysis, which leadsto theassumption ofunequal covariance matrices,

alsoguides ustowards using a Bayesian approach, rather thansampling theory to solvethis

problem. Specifically, we find that predictive odds ratios extracted from Bayesian classi-
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fiers can be used as splitting conditions in a tree-like classification structure. We conduct

pairwise comparisons to test one fault condition over another, and are able tosuccessfiilly

classify all observations with the exception of two cases from machines with gas line

grounding problems.

Finally, theobjective in the third case is to identify cues relating to predictions of RF

match problems, and conditions where the plasma will not ignite. We payparticular atten

tion to the load and tune positions as key variables to monitor, and note thechange in the

profile ofthe measured impedance. Bydesigning anexperiment that varies the preset tune

and load positions, we identify, capture, and test for structural patterns occurring in the

resulting transient behavior in theimpedance signal. We find that, notonly are we able to

link these patterns tothepreset conditions, butwecan also find them present inreal failures

where we have immobilized the tune and load capacitors to simulate a binding condition.

Hence, thisprocedure provides a method ofdiagnosing theproblem ofa faulty tune or load

capacitorthat may require immediate attention or replacement.
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7 Conclusions and Future Work

7.1. Thesis Summary

Theutility of monitoring andprocess control in semiconductor manufacturing willbe

fully realized only if, upon the detection of a fault, relevant inferences can be drawn as to

the current state of the machine. Such a system promises to be invaluable to the operator,

especially as a trouble-shooting tool to find problems early, thus preventing thepropaga

tion offaultsand furtherdamageto the machine. The problemcan then be resolvedbefore

it ever affects the final product.

This thesis presentedthe development of a decision support tool to enhance a human

operator's ability to effectivelymonitor and diagnose problematicbehavior in the course

ofoperating a critical semiconductormanufacturingprocess.

First, we extended the scope andpower of fault detection and monitoring procedures

for the plasma etch process through the study andanalysis of models to account for long

term trends. Specifically, trends that are only visible over several lots in marathon runs

werecharacterized through datatransformations and linearmodeling techniques. By filter

ing the known effects of machine aging, these models facilitate the integration of optical

emission data with other sensor signals, resulting in a fault detectionsystem that is robust

over time. Moreover, the long term modelsare consistent with physical equationsdescrib

ing the window clouding effect on the measured data. Repeatability of these results over

several preventative maintenance (PM) cycles suggested that a simple linear adaptive

model may be used to effectivelypredictthe behaviorof a cycle, even after a change ofthe

machine state as drastic as that produced by a PM event. Hence, the construction of new

models would not be required every time the chamber or window is cleaned.
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We confronted the nexttask of faultdiagnosis by utilizing a toolbox of different mod

eling techniques andmethods of dealing with uncertainty to exploit the characteristics of

the different datasets. Our classification framework was based on the assumption that a

fault will cause a combination of evidence represented by featuresextractedfromthe data.

In particular, we focused on three types of dataacquired from various sources, where our

objectives are distinctly different in each case.

In thefirst case, ourmodels were built using data from designed experiments meant to

simulate a change in operating conditions. Using model averaging techniques, we com

binedthe predictions yielded by tree-based models and GLMs. In addition, we also incor

porated direct estimates of the probabilities of each value for every fault variable, with

estimates based on combinations ofpredictions for the remaining fault variables. This pro

cedure greatly enhanced the performance of our diagnostic system over the use of any

stand-alone model. In particular, we successfiilly classified changing input conditions

using validation sets collected from two types of plasma etch equipment.

In contrast, our objective in the second casewas to classify observations into one of

three states found to exist in machine qualification data: (1) the baseline, representing

normal operating conditions, (2) problems connected with gas line grounding issues, and

(3) problemsrelated to the matchnetworks. Wefound that, because the data were collected

from four different machine types, it was unclear what we couldassume in termsofchar

acterizing the signals across machines and fault groups. An analysis of covariance sug

gested the use ofaBayesian approach, as opposed to sampling theory under the assumption

of unequal covariance matrices for different fault populations. Predictive odds ratios,

extracted from Bayesian classifiers, proved tobe powerful discriminators inpairwise com

parisons to test for one fault condition over another. The use ofthese ratios as splitting con
ditions in a tree-like classification structure rendered a successful diagnosis of all

observations in the fault base, with the exception oftwo cases from machines with gas line
grounding problems.

Identification and isolation ofcues relating to predictions ofRF match problems, and

conditions where the plasma will not ignite was the focus ofthe third case, using data col-
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lected at anincreased sample rate resulting ina higher signal resolution. In particular, we

observed thechange inthe profile ofthe measured impedance inresponse tochanging load

andtune capacitor positions. Structural patterns in theprofile of the transient were identi

fied, captured, and tested against observations collected while varying preset load and tune

positions. In our analysis, we linked these pattems to the preset conditions by devising a

method to quantify how well the pattem matched a given observation signal. In addition,

we useda mapping function to assigna probability of matching a feature in an observation.

This provided a testbed for classifying real machine problems resulting from tune andload

capacitors that are "bound" and unable to adjust to the changing impedance. Hence, our

system is capable ofsuccessfully diagnosing the problem ofa faulty tune or load capacitor,

possibly requiring immediate attention or replacement.

7.2. Future Directions

The focusofthis workhas beento use sensorsignalsas a sourceofinformation to infer

the machine state. One possible extension would be to predict how these changes are

reflected in the final wafer product. Parameters of interest that are used to measure the

wafer state include etchrate, uniformity andselectivity. Here again, themain difficulty lies

in obtaining access to complete datasets, including well documented examples of specific

machine problems detected and diagnosed from sensorsignals, alongwith the final wafer

measurements (assuming a production environment).

Ourstudy utilizes a decision-theoretic approach in anempirical analysis of sensor sig

nals based on assumptions of their time-dependent behavior and statistical distribution. A

disadvantage of this approach is thatwe work solely with classification models, grouping

observations intocategories based ontheirrespective traits. A more powerful model would

be a generative one,whichis abletoproduce theoutput weexpectundercertainconditions.

For instance, in our analysis of the profile of the transient in the impedance signal, we

attemptto findpattemsandmatchthemto ourobservations. Basedon experience (leamed

from our training dataset) we are ableto characterize the behavior of a faulty tune or load

capacitor. However, it would be more useful if, rather than simply identifying and match

ing pattems, we could actually generate them. The syntacticapproach offers an attractive
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alternative in this case, providing both data classification and generation. Results using this

approach for characterizing and classifying sensor signals from plasma etch equipment can

be found in [73].

Along the same lines, focusing on the generative aspect of modeling, another future

area to consider is to examine the signals in the frequency domain. Specifically, because

the electrical and mechanical machine parts generate periodic signals at different frequen

cies, the chamber can be viewed as a filter, and one can monitor the harmonics generated

at the output to infer the chamber state.

7.3. Concluding Remarks

We have presented a unified framework for data fusion that combines evidence from

multiple sensors for the purpose ofdiagnosing machine faults, that often arise from diverse

operating conditions. While the advent ofmultiple sensors has widened the scope ofmon

itoring, it has simultaneously brought new areas ofcomplexity to the manufacturing envi

ronment. It is reasonable to expect that advances in technology will only further accelerate

this trend in the future. Hence, the development of paradigms to effectively manage this

complexity in the form of comprehensive models becomes especially critical.

Current computerized decision support tools available to engineers operating highly

complex interrelated systems are not keeping pace with factory complexity, often resulting

in data overload. Much research remains to be done to develop useful metrics for tracking

complexity, for tracking the yield rate, and for converting data into knowledge. The result

should be easily interpreted, and facilitate quick response and immediate action. Every

contribution to improve in situ process control, the integration of off-line metrology with

insitu data, and management of complexity through extraction and diagnosis of data from

cluster tools, is a step towards better nm to run control and real time closed-loop control.

It is hoped that through effective diagnosis of the machine state, we are one step closer to

implementing fault-tolerant supervisory control, and in reducing the cost of ownership of

state of the art, semiconductor manufacturing equipment.
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Appendix A

List of Symbols

the prediction error

g(p) the logit link function for GLMs

m modification of the likelihood ratio

nifggf the Box m statistic

mi in Dempster-Shafer theory, the basic probability mass distribution (BPMD)

derived from the multivalued mapping, Fj: £, -> ©

n number ofobservations (samples)

p number of variables

s^ sample variance - estimate of

t test statistic for the imivariate t-test

the differenced data

the original data series

y observation

175



y sample average - estimate of p

z the thickness of the deposited material

a A 6 the min ofa and b

a V 6 the max ofa and b

A subset ofX

A fuzzy subset ofX

ARIMA (p,d,q) autoregressive integrated moving average model, where p is the

auto-regressiveorder, d is the integrationorder, and q is the moving average order.

Cj thecombination ofevidence

the deviance

D.. the null deviance
^^0

Ej evidence label

fault label

Hq null hypothesis

H] alternative hypothesis

I intensity of the plasma

Lij a constant used in the calculation of the predictive odds ratio

Mq a model indexed byq

the multivariate normal distribution

176



P plausibility - the degree ofbeliefnotdirectly incontradiction ofa specific element

P(Cj} the probability ofmatching observations to the combination ofevidence Cj

P(Cj/Fi) the conditional probability ofa combination given a fault

P(Ef) probability of a particular piece ofevidence

P{Ej^F^) the class conditional probability ofthe evidence given the fault

P(F,) the prior probability

P(F/Cj) the relative frequency ofthe fault given a combination ofevidence

P(Fi^Ej) the posterior probability

S supportability - the degree of beliefdirectly supporting a specific element

Sj the unbiased estimator of Zy

Hotelling's statistic - mutltivariate t-test

X the whole set

a theexponential decay constant - related to the absorption properties ofthematerial

T) the linearpredictor for GLMs usingthe logit linkfunction

0 the true parameters specifying thedistribution ofa population

0^ the moving average parameters

p the population mean

Po a given value for p

the membership function of set ^ inX
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\Xfj GLM probability estimate of "high"

[i-i GLM probability estimate of"low"

GLM probability estimate of"medium"

V sample size

Vj degrees offreedom

TZj distribution ofa populationj, usually given by

the population variance

<|)^ the autoregressive parameters

r in Dempster-Shafer theory, a multivalued mapping function that maps the ele
ments in the evidence space to the fault space

^ no fault

© the frame ofdiscernment - fault space in Dempster-Shafer theory

I covariance matrix

the characteristic function of set A in X

2 ^ the Chi-squared distribution with degree offreedom ip-q)

2" the power set - given nelements, the set ofall possible sets

{0,1}the set ofzero and one

[0,l]the real-number interval from zero to one

0 the empty set
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Appendix B

J-88-E Project - Designed Experiments for Lam TCP 9600

Experiment 30

N Trial PR Top RFbot BCI3 CI2 Ratio Flow Purpose Lot

1 1 13.5 350.0 130.0 75.0 75.0 1.00 150.0 DOE Blockl A

2 1 13.5 350.0 130.0 75.0 75.0 1.00 150.0 DOE Blockl A

3 48 20.0 450.0 150.0 79.1 90.9 1.15 170.0 CV C

4 18 16.3 307.3 138.5 76.8 81.7 1.06 158.5 DOE Blockl A

5 64 9.0 425.0 125.0 71.1 63.9 0.90 135.0 Verification B

6 10 10.7 307.3 138,5 68.5 72.9 1.06 141.5 DOE Blockl A

7 37 7.0 450.0 150.0 60.5 69.5 1.15 130.0 CV C

8 8 16.3 307.3 121.5 68.5 72.9 1.06 141.5 DOE Blockl A

9 62 18.0 275.0 142.0 79.5 75.5 0.95 155.0 Verification B

10 7 10.7 392.7 138.5 73.1 68.4 0.94 141.5 DOE Blockl A

11 45 7.0 450.0 150.0 91.9 78.1 0.85 170.0 CV C

12 6 16.3 307.3 138.5 73.1 68.4 0.94 141.5 DOE Blockl A

13 17 16.3 392.7 121.5 76.8 81.7 1.06 158.5 DOE Blockl A

14 40 20.0 450.0 150.0 70.3 59.7 0.85 130.0 CV C

15 1 13.5 350.0 130.0 75.0 75.0 1.00 150.0 DOE Blockl A

16 53 9.0 275.0 142.0 64.3 70.7 1.10 135.0 Verification A

17 15 16.3 392.7 138.5 81.9 76.6 0.94 158.5 DOE Blockl A

Table 7-1.
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N Trial PR Top RFbot BCI3 CI2 Ratio Flow Purpose Lot

18 13 10.7 392.7 121.5 81.9 76.6 0.94 158.5 DOE Blockl A

19 34 10.0 450.0 110.0 79.1 90.9 1.15 170.0 CV C

20 14 10.7 307.3 138.5 81.9 76.6 0.94 158.5 DOE Blockl A

21 63 12.0 425.0 137.0 76.3 68.7 0.90 145.0 Verification B

22 9 10.7 392.7 121.5 68.5 72.9 1.06 141.5 DOE Blockl A

23 43 18.0 450.0 110.0 60.5 69.5 1.15 130.0 CV C

24 19 10.7 392.7 138.5 76.8 81.7 1.06 158.5 DOE Blockl A

25 4 10.7 307.3 121.5 73.1 68.4 0.94 141.5 DOE Blockl A

26 47 7.0 450.0 110.0 70.3 59.7 0.85 130.0 CV C

27 11 16.3 392.7 138.5 68.5 72.9 1.06 141.5 DOE Blockl A

28 12 16.3 307.3 121.5 81.9 76.6 0.94 158.5 DOE Blockl A

29 35 20.0 450.0 110.0 91.9 78.1 0.85 170.0 CV C

30 1 13.5 350.0 130.0 75.0 75.0 1.00 150.0 DOE Blockl A

31 16 10.7 307.3 121.5 76.8 81.7 1.06 158.5 DOE Blockl A

32 61 15.0 375.0 125.0 86.8 78.2 0.90 165.0 Verification B

33 5 16.3 392.7 121.5 73.1 68.4 0.94 141.5 DOE Blockl A

34 11 16.3 392.7 138.5 68.5 72.9 1.06 141.5 DOE Blockl A

BREAK: SWITCH LOTS

35 1 12.0 350.0 132.0 75.0 75.0 1.00 150.0 DOE Blockl B

36 52 13.5 350.0 130.0 75.0 75.0 1.00 150.0 CV C

37 54 15.0 375.0 132.0 80.5 84.5 1.05 165.0 Verification A

38 24 13.5 450.0 130.0 75.0 75.0 1.00 150.0 DOE BIock2 B

39 49 17.0 350.0 130.0 70.3 59.7 0.85 130.0 CV C

40 50 13.5 350.0 110.0 85.0 85.0 1.00 170.0 CV C

41 29 13.5 350.0 130.0 65.0 65.0 1.00 130.0 DOE Block2 B

42 55 15.0 275.0 132.0 78.6 86.4 1.10 165.0 Verification A

43 56 18.0 425.0 125.0 70.7 74.3 1.05 145.0 Verification B

44 28 13.5 350.0 130.0 69.8 80.2 1.15 150.0 DOE Block2 B

45 31 8.0 350.0 130.0 75.0 75.0 1.00 150.0 DOE Block2 B

46 36 10.0 250.0 150.0 79.1 90.9 1.15 170.0 CV C

Table 7-2.
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N Trial PR Top RFbot BCI3 CI2 Ratio Flow Purpose Lot

47 33 16.0 250.0 150.0 60.5 69.5 1.15 130.0 CV C

48 30 13.5 350.0 130.0 85.0 85.0 1.00 170.0 DOE Block2 B

49 1 13.5 350.0 130.0 75.0 75.0 1.00 150.0 DOE Blockl B

50 57 12.0 375.0 137.0 70.7 74.3 1.05 145.0 Verification B

51 58 12.0 325.0 132.0 73.8 81.2 1.10 155.0 Verification B

52 23 13.5 250.0 130.0 75.0 75.0 1.00 150.0 DOE Block2 B

53 26 13.5 350.0 150.0 75.0 75.0 1.00 150.0 DOEBlock2 B

54 39 20.0 250.0 150.0 91.9 78.1 0.85 170.0 CV C

55 42 7.0 250.0 150.0 70.3 59.7 0.85 130.0 CV C

56 27 13.5 350.0 125.0 81.1 68.9 0.85 150.0 DOE Block2 B

57 32 18.0 350.0 130.0 75.0 75.0 1.00 150.0 DOE Block2 B

58 51 13.5 250.0 .130.0 69.8 80.2 1.15 150.0 CV C

59 44 20.0 250.0 110.0 79.1 90.9 1.15 170.0 CV C

60 25 13.5 350.0 110.0 75.0 75.0 1.00 150.0 DOEBlock2 B

61 59 15.0 325.0 142.0 69.2 65.8 0.95 135.0 Verification B

62 31 8.0 350.0 130.0 75.0 75.0 1.00 150.0 DOE Block2 B

63 38 7.0 250.0 110.0 60.5 69.5 1.15 130.0 CV C

64 41 15.0 250.0 110.0 70.3 59.7 0.85 130.0 CV C

65 1 13.5 350.0 130.0 75.0 75.0 1.00 150.0 DOE Blockl B

66 46 10.0 250.0 110.0 91.9 78.1 0.85 170.0 CV C

67 60 9.0 325.0 137.0 79.5 75.5 0.95 155.0 Verification B

68 43 15.0 450.0 110.0 60.5 69.5 1.15 130.0 CV C

69 43 13.0 450.0 110.0 60.5 69.5 1.15 130.0 CV C

70 45 10.0 450.0 150.0 91.9 78.1 0.85 170.0 CV C

Table 7-3.

Wafers= 1484

"TIGHT flow constraints

(not enough flow at higher PR OR too much at lower PR, for the CV comer points)
RF ON = 5660 min

"Had to change some ofthe DOE points, on the fly, to accomodate PR/flow constraints

"First half run 3/5/96, second on 3/6/96 - 2 dummies before DOB
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Appendix C

S-PLUS Output for Tree-Based Models

Lam Rainbow 4400 DOE Data

## Prediction for Pressure:

Classification tree:

tree(formula = Pressure - Impedance + MeasPower + Phase + RFCoil + MFC6 +

DCBias, data = lamstat.train)

Variables actually used in tree construction:

[1] "RFCoil" "Impedance"

Number of terminal nodes: 5

Residual mean deviance: 1.095 = 21.89 / 20

Misclassification error rate: 0.1667 = 4/24

summary(press.train.tree)

1) root 24 23.5700 medium (0.25000 0.25000 0.5000)

2) RFCoil<5799.94 22 20.7500 medium (0.29030 0.12900 0.5806)
4) RFCoil<5541.59 4 6.1210 high ( 0.50000 0.37500 0.1250 ) *
5) RFCoil>5541.59 18 16.0000medium ( 0.217400.04348 0.7391 )
10)Impedance<17014 16 12.8300 medium (0.05882 0.05882 0.8824)

20) Impedance<l6530.5 8 8.4810medium ( 0.20000 0.20000 0.6000 ) *
21) Impedance>16530.5 8 0.0000 medium ( 0.00000 0.00000 1.0000) *

11) Impedance>17014 2 0.8109 high ( 0.666700.00000 0.3333 ) *
3) RFCoil>5799.94 2 0.0000 low ( 0.00000 1.000000.0000 ) *

## Prediction for RFpower:

Classification tree:

tree(formula = RFpower ~ Volt+ DCBias + EndpointA + EndpointB, data=
lamstat.train)

Variables actually used in tree construction:
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[1] "EndpointA"

Number ofterminal nodes: 3

Residual mean deviance: 0.2383 = 5.004 / 21

Misclassification error rate: 0.04167 =1/24

summary(rfpow.train.tree)
1)root24 49.150 medium (0.375 0.1667 0.4583 )
2)EndpointA<9390.72 15 17.400 medium (0.000 0.2667 0.7333 )
4) EndpointA<8758.09 5 5.004 low (0.000 0.8000 0.2000) *
5)EndpointA>8758.09 10 0.000 medium ( 0.000 0.0000 1.0000 ) *

3)EndpointA>9390.72 9 0.000 high ( 1.000 0.0000 0.0000 ) *

## Prediction for Ratio:

Classification tree:

tree(formula =Ratio ~Impedance +RFCoil +MFC3 +DCBias +RFTune +EndpointC,
data = lamstat.train)

Variables actually used in tree construction:

[1] "RFTune" "RFCoil"

Number of terminal nodes: 3

Residual mean deviance: 1.305 = 27.41 / 21

Misclassification error rate: 0.25 = 6/24

summary(ratio.train.tree)
1)root24 49.15 medium (0.3750 0.1667 0.4583 )
2)RFTune<l 1797.7 9 12.31 high (0.7778 0.1111 0.1111 ) *
3)RFTune>l 1797.7 15 25.83 medium (0.1333 0.2000 0.6667)
6)RFCoil<5655.53 8 0.00 medium (0.0000 0.0000 1.0000 ) *
7) RFCoil>5655.53 7 15.11 low (0.28570.4286 0.2857) *

## Prediction for Total:

Classification tree:

tree(formula =Total - HeCFlow +MeasPressure +Impedance +MFC6 +MFC3 +Phase,
data = lamstat.train)

Variables actually used in tree construction:

[1] "MFC3" "MeasPressure"

Number of terminal nodes: 4

Residual mean deviance: 0.5867 = 11.73 / 20

Misclassification error rate: 0.125 = 3 / 24

summary(total.train.tree)

1) root 24 51.050 medium ( 0.2917 0.25 0.4583 )
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2) MFC3<-18497.9 6 0.000 low ( 0.0000 1.00 0.0000 ) *

3) MFC3>-18497.9 18 24.060 medium (0.3889 0.00 0.6111 )

6) MFC3<-18337.6 8 0.000 medium (0.0000 0.00 1.0000) *

7) MFC3>-18337.6 10 12.220 high (0.7000 0.00 0.3000 )

14) MeasPressure<436.625 5 6.730 high (0.6000 0.00 0.4000) *

15) MeasPressure>436.625 5 5.004 high (0.8000 0.00 0.2000) *

Classification tree:

snip.tree(tree = total.train.tree, nodes = 7)

Variables actually used in tree construction:

[1] "MFC3"

Number of terminal nodes: 3

Residual mean deviance: 0.5818 = 12.22 / 21

Misclassification error rate: 0.125 = 3 / 24

summary(total.snip.tree)

1) root 24 51.05 medium ( 0.2917 0.25 0.4583 )

2) MFC3<-18497.9 6 0.00 low (0.0000 1.00 0.0000) *

3) MFC3>-18497.9 18 24.06 medium (0.3889 0.00 0.6111 )

6) MFC3<-18337.6 8 0.00 medium (0.0000 0.00 1.0000) *

7) MFC3>-18337.6 10 12.22 high ( 0.7000 0.00 0.3000) *

## Prediction for Gap:

Classification tree:

tree(formula = Gap ~ MeasPressure + Volt + DCBias + Impedance+ Phase + RFCoil +
RFTune + EndpointC, data = lamstat.train)

Variables actually used in tree construction:

[1] "EndpointC" "MeasPressure"

Number of terminal nodes: 4

Residual mean deviance: 0.5373 = 10.75 / 20

Misclassification error rate: 0.08333 = 2/24

summary(gap.train.tree)

1) root 24 51.050 medium (0.29170 0.25000 0.4583 )
2) EndpointC<32275.1 19 31.890 medium ( 0.36840 0.05263 0.5789 )
4) EndpointC<29231.1 7 5.742high ( 0.85710 0.14290 0.0000) *
5) EndpointC>29231.1 12 6.884 medium ( 0.08333 0.00000 0.9167 )
10)MeasPressure<435.812 5 5.004 medium ( 0.20000 0.00000 0.8000) *
11)MeasPressure>435.812 7 0.000 medium ( 0.00000 0.00000 1.0000 ) *

3) EndpointC>32275.1 5 0.000 low( 0.00000 1.00000 0.0000 ) *
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Classification tree:

snip.tree(tree = gap.train.tree, nodes = 5)

Variables actually used in tree construction:

[1] "EndpointC"

Number ofterminal nodes: 3

Residual mean deviance: 0.6012 = 12.63 / 21

Misclassification error rate: 0.08333 = 2/24

summary(gap.snip.tree)

1) root 24 51.050 medium (0.29170 0.25000 0.4583 )

2) EndpointC<32275.1 19 31.890medium (0.36840 0.05263 0.5789)
4) EndpointC<29231.1 7 5.742 high (0.85710 0.14290 0.0000 ) *

5) Endpoint029231.1 12 6.884 medium (0.08333 0.00000 0.9167) *

3) Endpoint032275.1 5 0.000 low ( 0.00000 1.00000 0.0000 ) *

Lam TCP 9600 DOE Data

## Prediction for Pressure:

Classification tree:

tree(formula= Pressure ~ endA + endB + rfcoil + X564tcptun+ rfimp, data
avg.30.train)

Variables actually used in tree construction:

[1] "rfcoil" "X564tcptun"

Number of terminal nodes: 5

Residual mean deviance: 0.5878 = 18.22 / 31

Misclassification error rate: 0.1389 = 5/36

summary(press.train.ftree)

> > > > node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 36 76.080 medium (0.2500 0.2778 0.4722)

2) rfcoil<8892.08 5 0.000 low (0.0000 1.0000 0.0000) *
3) rfcoil>8892.08 31 60.930 medium ( 0.2903 0.1613 0.5484 )

6) X564tcptun<19504.6 18 19.070 medium ( 0.2222 0.0000 0.7778 )
12) X564tcptun<19145.3 6 7.638 high (0.6667 0.0000 0.3333 ) *

13) X564tcptun>19145.3 12 0.000 medium ( 0.0000 0.0000 1.0000 ) *

7) X564tcptun>19504.6 13 27.910 high (0.3846 0.3846 0.2308 )

14) rfcoil<9360.76 5 0.000 low (0.0000 1.0000 0.0000) *

15) rfcoil>9360.76 8 10.590 high ( 0.6250 0.0000 0.3750) *
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## Prediction for Top RF Power:

Classification tree:

tree(formula = Top.Power ~ rfpowl + rfimp + rfmatchdc + endA + tcpimp, data =

avg.SO.train)

Variables actually used in tree construction:

[1] "endA" "rfinatchdc" "rfpowl"

Number of terminal nodes: 4

Residual mean deviance: 0.4065 = 13.01/32

Misclassification error rate: 0.08333 = 3/36

summary(Top.train.ftree)

> > > > node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 36 76.810 medium ( 0.2222 0.3611 0.4167)

2) endA<332.281 16 15.440 low (0.0000 0.8125 0.1875 )

4) rfinatchdc<986.887 5 6.730 medium (0.0000 0.4000 0.6000) *

5) rfinatchdc>986.887 11 0.000 low ( 0.0000 1.0000 0.0000) *

3) endA>332.281 20 26.920 medium (0.4000 0.0000 0.6000 )

6) r§)owl<24.5282 9 6.279 high (0.8889 0.0000 0.1111 ) *

7) rfpowl>24.5282 11 0.000 medium ( 0.0000 0.0000 1.0000 ) *

## Prediction for Bottom RF Power:

Classification tree:

tree(formula = RFBot.Power ~ X564tcptim + tcpimp + endA+ X578tcploadcap, data
= avg.30.train)

Variables actually used in tree construction:

[1] "X564tcptun" "endA" "X578tcploadcap"

Number of terminal nodes: 5

Residual mean deviance: 1.634 = 50.64 / 31

Misclassification error rate: 0.3611 = 13 / 36

summary(RFBot.train.ftree)

> > > > node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 36 76.99 medium ( 0.3056 0.2500 0.4444 )

2) X564tcptun<l9504.6 23 43.15 medium (0.2174 0.1739 0.6087 )
4) endA<369.805 8 0.00 medium (0.0000 0.0000 1.0000) *
5) endA>369.805 15 32.56 medium (0.3333 0.2667 0.4000)
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10) X578tcploadcap<28037.1 6 10.41 medium ( 0.1667 0.1667 0.6667 ) *

11) X578tcploadcap>28037.1 9 19.10high ( 0.4444 0.3333 0.2222 ) *

3) X564tcptun>19504.6 13 26.32 high (0.4615 0.3846 0.1538 )
6) endA<212.416 5 10.55 low (0.2000 0.4000 0.4000) *

7) endA>212.416 8 10.59 high ( 0.6250 0.3750 0.0000) *

M Prediction for Gas Ratio:

Classification tree:

tree(formula= Gas.Ratio~ rfmatchdc+ rfphase + endA, data = avg.30.train)
Number of terminal nodes: 4

Residual mean deviance: 0.6604 = 21.13/32

Misclassification error rate: 0.1389 = 5 / 36

summary(ratio.train.ftree)

>>>>>> node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 36 48.72 medium (0.13890 0.08333 0.7778)

2) endA<212.416 5 6.73 high (0.60000 0.40000 0.0000) *

3) endA>212.416 31 23.53 medium (0.06452 0.03226 0.9032)

6) r§)hase<-377.023 18 0.00 medium (0.00000 0.00000 1.0000) *

7) rfphase>-377.023 13 17.86 medium (0.15380 0.07692 0.7692)
14) rfinatchdc<986.869 5 0.00 medium (0.00000 0.00000 1.0000) *

15) rfinatchdc>986.869 8 14.40 medium (0.25000 0.12500 0.6250) *

## Prediction for Total Gas Flow:

Classitication tree:

tree(formula = TotalGasFlow ~ ChamPress + rfimp + rfinatchdc + X564tcptun +

X578tcploadcap, data = avg.30.train)

Variables actually used in tree construction:

[1] "rfimp" "ChamPress" "X578tcploadcap" "rfmatchdc"

Number of terminal nodes: 7

Residual mean deviance: 1.317 = 38.2 / 29

Misclassification error rate: 0.25 = 9/36

summ£iry(total.train.fitree)

> > > > node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 36 75.640 medium (0.3889 0.1944 0.4167 )

2) rfimp<16339 10 6.502 medium ( 0.1000 0.0000 0.9000 )

4) ChamPress<1335.93 5 0.000 medium ( 0.0000 0.0000 1.0000 ) *
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5)ChainPress>1335.93 5 5.004 medium (0.2000 0.0000 0.8000 ) *
3)rfimp>16339 26 53.990 high (0.5000 0.2692 0.2308 )
6) X578tcploadcap<28020.6 16 35.030 low ( 0.3125 0.3750 0.3125 )
12) rfimp<16452.4 6 7.638 low ( 0.0000 0.6667 0.3333 ) *
13) rfimp>16452.4 10 20.590 high ( 0.5000 0.2000 0.3000 )
26) rfinatchdc<986.893 5 5.004 high ( 0.8000 0.0000 0.2000 ) *
27) rfinatchdo986.893 5 10.550 low (0.2000 0.4000 0.4000) *

7) X578tcploadcap>28020.6 10 12.780 high (0.8000 0.1000 0.1000)
14) ChamPress<l543.76 5 5.004 high ( 0.8000 0.0000 0.2000) *
15) ChamPress>1543.76 5 5.004 high ( 0.8000 0.2000 0.0000 ) *
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Appendix D

Matlab Code for Tree-Based Models

I. Lam Rainbow 4400 DOE Data:

pressuretree.m

%% classification tree for pressure using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation

%% supply wafer average data in data, index selects wafers

%% rows in data are observations

%% save updated probabilities as observations

%% return probability of high,low,medium diagnosis for observation

function [probs,newpmat] = pressuretree(data,index,diagbase)

%% will return probabilities- initialize:

probs = [];

P = [];

%% specify initial probabilities based on training the tree models;

input =1; % code for pressure, indexes diagS (with wafer tag)

init_l = [0.5 0.375 0.125];

init_2 = [0.2174 0.04348 0.7391];

init 3 = [0 1 0];
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%% initial probabilities

newpl = init_l;

newp2 = init_2;

newpS = init_3;

newpmat = [newpl newp2 newp3];

%% number of training samples

newnl = 10;

newn2 =7;

newn3 = 7;

thres_l = 5541.59;

thres_2 = 5799.94;

rfcoil = 6;

for i = [index]

for j = [1:size(diagbase/1)] % number of rows (observations^

if diagbase(j,1) == i

if data(j,rfcoil) < thres_l

p = newpl;

[newpl,newnl] = update(p,newnl,j,diagbase,input);

elseif data(j,rfcoil) < thres_2

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagbase,input);

else

p = newp3;

[newp3,newn3] = update(p,newn3,j,diagbase,input);

end

end

end

newpmat = [newpmat; newpl newp2 newp3];

probs = [probs; p];

end

powertree.m

%% classification tree for rfbottom power using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m
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function [probs,newpmat] = powertree(data,index,diagbase)

%% will return probabilities- initialize:

probs = [];

P = [];

%% specify initial probabilities based on training the tree models

input =4; % code for power, indexes diagS (with wafer tag)

init_l = [0 0.8 0.2];

init_2 = [0 0 1];

init_3 = [1 0 0];

%% initial probabilities

newpl = init_l,

newp2 = init_2

newp3 = init_3

newpmat = [newpl newp2 newp3];

%% number of training samples

newnl = 5;

newn2 = 10;

newn3 = 9;

thres_l = 8758.09;

thres_2 = 9390.72;

endA = 1;

for i = [index]

for j = [1:size(diagbase,1)] % number of rows (observations)

if diagbase(j,1) == i

if data(j,endA) < thres_l

p = newpl;

[newpl,newnl] = update(p,newnl,j,diagbase,input);

elseif data(j,endA) < thres_2

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagbase,input);
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else

p = newp3;

[newp3/newn3] = update(p,newn3,j,diagbase,input);

end

end

end

newpmat = [newpraat; newpl newp2 newp3];

probs = [probs; p];

end

ratiotree.m

%% classification tree for gas ratio using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation {validation data)

%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = ratiotree(data,index,diagbase)

%% will return probabilities- initialize:

probs = [];

P = [];

%% specify initial probabilities based on training the tree models:

input =7; % code for ratio, indexes diagS (with wafer tag)

init_l = [7/9 1/9 1/9];

init_2 = [0 0 1];

init_3 = [0.2857 0.4286 0.2857];

%% initial probabilities

newpl = init_l,

newp2 = init_2

newp3 = init_3,

newpmat = [newpl newp2 newp3];

%% number of training samples
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newnl = 9;

newn2 =8;

newnS = 7;

thres_l = 11797.7;

thres_2 = 5655.53;

rftune =7;

rfcoil = 6;

for i = [index]

for j = [1:size(diagbase,1)] % number of rows (observations)

if diagbase(j,1) == i

if data(j,rftune) < thres_l

p = newpl;

[newpl,newnl] = update(p,newnl,j,diagbase,input);

elseif data(j,rfcoil) < thres_2

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagbase,input);

else

p = newpB;

[newpS,newnS] = update(p,newnS,j,diagbase,input);

end

end

end

newpmat = [newpmat; newpl newp2 newpS];

probs = [probs; p];

end

totaltree.m

%% classification tree for total gas flow using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation

%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = totaltree(data,index,diagbase)
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%% will return probabilities- initialize:

probs = [];

P = [ 1 ;

%% specify initial probabilities based on training the tree models

input = 10; % code for total, indexes diagS (with wafer tag)

init_l =[01 0];

init_2 = [0 0 1];

init_3 = [0.7 0 0.3] ;

%% initial probabilities

newpl = init_l,

newp2 = init_2

newp3 = init_3,

newpmat = [newpl newp2 newp3];

%% number of training samples

newnl = 6;

newn2 =8;

newn3 = 10;

thres_l = -18497.9;

thres_2 = -18337.6;

MFC3 = 13;

for i = [index]

for j = [1:size(diagbase,1)] % number of rows (observations

if diagbase(j,1) == i

if data(j,MFC3) < thres_l

p = newpl;

[newpl,newnl] = update(p,newnl,j,diagbase,input);

elseif data(j,MFC3) < thres_2

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagbase,input);

else

p = newp3;

[newp3,newn3] = update(p,newn3,j,diagbase,input);

end
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end

end

newpmat = [newpmat; newpl newp2 newp3];

probs = [probs; p];

end

gaptree.m

%% classification tree for gap spacing using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation

%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = gaptree(data,index,diagbase)

%% will return probabilities- initialize:

probs = [];

P = [];

%% specify initial probabilities based on training the tree models

input = 13; % code for total, indexes diagS (with wafer tag)

init_l = [0.8571 0.1429 0];

init_2 = [0.08333 0 0.9167];

init_3 = [0 1 0];

%% initial probabilities

newpl = init_l;

newp2 = init_2;

newp3 = init_3;

newpmat = [newpl newp2 newp3];

%% number of training samples

newnl = 7;

newn2 = 12;
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newn3 = 5;

thres_l = 29231.1;

thres_2 = 32275.1;

endC = 15;

for i = [index]

for j = [1:size(diagbase,1)] % number of rows (observations)

if diagbase(j,1) == i

if data(j,endC) < thres_l

p = newpl;

[newpl,newnl] = update(p,newnl,j,diagbase,input);

elseif data(j,endC) < thres_2

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagbase,input);

else

p = newp3;

[newp3,newn3] = update(p,newn3,j,diagbase,input);

end

end

end

newpmat = [newpmat; newpl newp2 newp3];

probs = [probs; p];

end

II. Lam TCP 9600 DOE Data:

pressuretree.m

%% classification tree for pressure using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation

%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = pressuretree(data,index,diagbase)

%% will return probabilities- initialize:
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probs = [];

P = [ ] ;

%% specify initial probabilities based on training the tree models

input =1; % code for pressure, indexes diagS (with wafer tag)

init_l =[010];

init_2 = [2/3 0 1/3];

init_3 = [0 0 1];

init_4 = [0 1 0];

init_5 = [0.625 0 0.375];

%% initial probabilities

newpl = init_l,

newp2 = init_2

newp3 = init_3

newp4 = init_4

newp5 = init_5

newpmat = [newpl newp2 newp3 newp4 newp5];

%% number of training samples

newnl = 5;

newn2 = 6;

newn3 = 12;

newn4 = 5;

newn5 = 8;

thres_l = 8892.08

thres_2 = 19504.6

thres_3 = 19145.3

thres_4 = 9360.76

rfcoil = 6;

tcptune = 12;

for i = [index]

for j = [1:size(diagbase,1)] % number of rows (observations)

if diagbase(j,1) == i

if data(j,rfcoil) < thres_l

p = newpl;
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[newpl,newnl] = update(p,newnl,j,diagbase,input);

elseif data(j,tcptune) < thres_2

if data(j,tcptune) < thres_3

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagbase,input);

else

p = newp3;

[newp3,newn3] = update(p,newn3,j,diagbase,input);

end

elseif data(j,rfcoil) < thres_4

p = newp4;

[newp4,newn4] = update(p,newn4,j,diagbase,input);

else

p = newpS;

[newpS,newnS] = update(p,newnS,j,diagbase,input);

end

end

end

newpmat = [newpmat; newpl newp2 newp3 newp4 newpS];

probs = [probs; p];

end

toptree.m

%% classification tree for top power using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation (validation data)

%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = toptree(data,index,diagdata)

%% will return probabilities- initialize:

probs = [];

P = [ ] ;

%% specify initial probabilities based on training the tree models:
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input =4; % code for top, indexes diagS (with wafer tag)
init_l = [0 0.4 0.6];

init_2 = [0 1 0];

init_3 = [0.8889 0 0.1111];

init_4 = [0 0 1];

%% initial probabilities

newpl = init_l,

newp2 = init_2

newp3 = init_3

newp4 = init_4

newpmat = [newpl newp2 newp3 newp4];

%% number of training samples

newnl = 5;

newn2 = 11;

newn3 = 9;

newn4 = 11;

thres_l = 332.281;

thres_2 = 986.887;

thres_3 = 24.5282;

endA = 1;

rfmatchdc = 5;

rfpow = 4;

for i = [index]

for j = [1:size(diagdata,1)] % number of rows (observations)

if diagdata(j,1) == i

if data(j,endA) < thres_l

if data(j,rfmatchdc) < thres_2

p = newpl;

[newpl,newnl] = update(p,newnl,j,diagdata,input);

else

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagdata,input);

end

elseif data(j,rfpow) < thres_3

p = newp3;
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[newp3,newn3] = update(p,newn3,j,diagdata,input);

else

p = newp4;

[newp4/newn4] = update(p,newn4,j^diagdata,input)

end

end

end

newpmat = [newpmat; newpl newp2 newp3 newp4];

probs = [probs; p];

end

rfbottree.in

%% classification tree for rfbottom power using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation

%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = rfbottree(data,index,diagdata)

%% will return probabilities- initialize:

probs = [];

P = [ ] ;

%% specify initial probabilities based on training the tree models:

input = 7; % code for rfbot, indexes diagS (with wafer tag)

init_l.= [0 0 1];

init_2 = [1/6 1/6 2/3];

init_3 = [0.4444 0.3333 0.2222];

init_4 = [0.2 0.4 0.4];

init_5 = [0.625 0.375 0];

%% initial probabilities

newpl = init_l,

newp2 = init_2

newp3 = init 3
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newp4 = init_4;

newp5 = init_5;

newpmat = [newpl newp2 newp3 newp4 newpS];

%% number of training samples

newnl = 8,

newn2 = 6

newn3 = 9

newn4 = 5

newnS = 8

thres_l = 19504.6

thres_2 = 369.805

thres_3 = 28037.1

thres 4 = 212.416

endA = 1;

tcpload = 11;

tcptune = 12;

for i = [index]

for j = [l:size(diagdata,1)] % number of rows (observations)

if diagdata(j,1) == i

if data(j,tcptune) < thres_l

if data(j,endA) < thres_2

p = newpl;

[newpl,newnl] = update(p,newnl,j,diagdata,input);

elseif data(j,tcpload) < thres_3

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagdata,input);

else

p = newp3;

[newp3,newn3] = update(p,newn3,j,diagdata,input);

end

elseif data(j,endA) •< thres_4

p = newp4;

[newp4,newn4] = update(p,newn4,j,diagdata,input);

else

p = newp5;

[newp5,newn5] = update(p,newnS,j,diagdata,input);
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end

end

end

newpmat = [newpmat; newpl newp2 newp3 newp4 newpS];

probs = [probs; p];

end

ratiotree.m

%% classification tree for gas ratio using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation (validation data)

%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = ratiotree(data,index,diagdata)

%% will return probabilities- initialize:

probs = [];

P = [];

%% specify initial probabilities based on training the tree models:

input =10; % code for ratio, indexes diagS (with wafer tag)

init_l = [0.6 0.4 0];

init_2 = [0 0 1];

init_3 = [0 0 1];

init_4 = [0.25 0.125 0.625];

%% initial probabilities

newpl = init_l,

newp2 = init_2

newp3 = init_3

newp4 = init_4

newpmat = [newpl newp2 newp3 newp4];

%% number of training samples

newnl = 5;
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newn2 = 18;

newn3 = 5;

newn4 = 8;

thres_l = 212.416;

thres_2 = -377.023;

thres_3 = 986.869;

endA = 1;

rfmatchdc = 5;

rfphase = 8;

for i = [index]

for j = [1:size(diagdata,1)] % number of rows (observations)

if diagdata(j,1) == i

if data(j,endA) < thres_l

p = newpl;

[newpl,newnl] = update(p,newnl,j,diagdata,input);

elseif data(j,rfphase) < thres_2

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagdata,input);

elseif data(j/rfmatchdc) < thres_3

p = newp3;

[newp3,newn3] = update(p,newn3,j,diagdata,input);

else

p = newp4;

[newp4,newn4) = update(p,newn4,j,diagdata,input)

end

end

end

newpmat = [newpmat; newpl newp2 newp3 newp4];

probs = [probs; p];

end

totaltree.m

%% classification tree for total gas flow using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation

203



%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = totaltree(data,index,diagdata)

%% will return probabilities- initialize:

probs = [ ];

P = [];

%% specify initial probabilities based on training the tree models

input =13; % code for total, indexes diagS (with wafer tag)
init_l = [0.1 0. 0.9]

init_2 = [0 2/3 1/3]

init_3 = [0.8 0 0.2]

init_4 = [0.2 0.4 0.4];

init_5 = [0.8 0.1 0.1];

%% initial probabilities

newpl = init_l;

newp2 = init_2;

newp3 = init_3;

newp4 = init_4;

newp5 = init_5;

newpmat = [newpl newp2 newp3 newp4 newp5];

%% number of training samples

newnl = 10;

newn2 = 6;

newn3 = 5

newn4 = 5

newnS = 10;

thres_l = 16339;

thres_2 = 28020.6

thres_3 = 16452.4

thres_4 = 986.893

press = 3;

rfmatchdc = 5;
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rfimp = 9;

tcpload = 11;

for i = [index]

for j = [1:sizeCdiagdata,1)] % number of rows (observations)

if diagdata(j,1) == i

if data(j,rfimp) < thres_l

p = newpl;

[newpl,newnl] = update(p,newnl,j,diagdata,input);

elseif data(j,tcpload) < thres_2

if data(j,rfimp) < thres_3

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagdata,input);

elseif data(j,rfmatchdc) < thres_4

p = newp3;

[newp3,newn3] = update(p,newn3,j,diagdata,input);

else

p = newp4;

[newp4,newn4] = update(p,newn4, j,diagdata,input);

end

else

p = newpS;

[newpS,newnS] = update(p,newnS,j,diagdata,input);

end

end

end

newpmat = [newpmat; newpl newp2 newp3 newp4 newpS];

probs = [probs; p];

end

update.m

%% updates probabilities of tree-based models

%% uses diagbase - a database of the actual fault

%% indices have to correspond to wafer observations in data

%% specify input in tree program - to pick the right columns

function [newp,newn] = update(p,n,index,diagdata,input)

for i = [1:length(p)]

if diagdata(index,input+i) == 0

newp(i) = n*p(i)/(n+1);

205



else

newp(i) = (n*p(i)+l)/(n+1);

end

newn = n+1;

end
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Appendix El

Lam Rainbow 4400 DOE Data Classification Results

- Extracted Probabilities for Evidence Variables

Evidence Variable (r) High(s=l) Medium

(s=2)
Low (s=3)

Tree Model Prediction ofPressure El.l ^1,2 El,3
Tree Model Prediction of RF Power E2,1 ^2,2 ^2,3
Tree Model Prediction of Gas Ratio E3,I ^3,2 ^3,3

Tree Model Prediction of Total Gas Flow ^4,1 ^4,2 ^4,3
Tree Model Prediction of Gap Spacing E5,1 ^5,2 ^5,3

Table 1. Evidence Labelsfor Tree ModelPrediction of Input Responses

Evidence Variable (r) High (s=l) Medium

(s=2)
Low (s=3)

Tree-Based Prediction ofPressure P(Fi,,/M2) P(Fi,2/M2) P(Fi,3/M2)
Tree-Based Prediction of RF Power P(F2.i/M2) P(F2,2/M2) P(F2,3/M2)
Tree-Based Prediction of Gas Ratio P(F3,i/M2) P(F3,2/M2) P(F3,3/M2)

Tree-Based Prediction ofTotal Gas Flow P(F4,i/M2) P(F4,2/M2) P(F4,3/M2)
Tree-Based Prediction of Gap Spacing P(F5,i/M2) P(F5,2/M2) P(F5,3/M2)

Table 2. Probabilities for Tree Model Prediction Based on Combinations of Evidence
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Evidence Variable (r) High(s=l) Medium

(s=2)
Low (s=3)

GLM Prediction ofPressure E6,1 E6,2 E6,3
GLM Prediction ofRF Power E?,! E7,2 E7,3
GLM Prediction of Gas Ratio Eg,! Eg,2 Eg,3

GLM Prediction ofTotal Gas Flow E9,1 E9,2 E9,3
GLM Prediction of Gap Spacing Eio,i Eio,2 El0,3

Table 3. Evidence Labels for GLM Prediction of Input Responses

Evidence Variable (r) High (s=l) Medium

(s=2)
Low (s=3)

GLM-Based Prediction ofPressure P(Fi,i/M4) P(Fi,2/M4) P(Fi,3/M4)
GLM-Based Prediction of RF Power P(F2,i/M4) P(F2,2/M4) P(F2,3/M4)

GLM-Based Prediction of Gas Ratio P(F3,i/M4) P(F3,2/M4) P(F3,3/M4)
GLM-Based Prediction ofTotal Gas Flow P(F4,i/M4) P(F4,2/M4) P(F4,3/M4)

GLM-Based Prediction of Gap Spacing P(F5,i/M4) P(F5,2/M4) P(F5,3/M4)

Table 4. Probabilities for GLM Prediction Based on Combinations ofEvidence

Model Averaged Result High (s=l) Medium

(s=2)
Low (s=3)

Tree/GLM Prediction ofPressure P(Fi,i) P(Fi,2) P(Fi,3)
Tree/GLM Prediction ofRF Power P(F2,i) P(F2,2) P(F2,3)
Tree/GLM Prediction of Gas Ratio P(F3,i) P(F3^) P(F3.3)

Tree/GLM Prediction of Total Gas Flow P(F4,i) P(F4,2) P(F4,3)
Tree/GLM Prediction of Gap Spacing P(F5,i) P(F5,2) P(F5,3)

Table 5. Final Fault Probabilities forCombined Model Prediction of Input Responses
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Wafer Ei.i El,2 El,3 E2,1 E2,2 E2,3
1 0 1.0000 0 0 0.8000 0.2000

2 0.2174 0.0435 0.7391 1.0000 0 0

3 0.1902 0.1630 0.6467 0 0.8333 0.1667

4 0.5000 0.3750 0.1250 0 0.8571 0.1429

5 0.4545 0.4318 0.1136 0 0 1.0000

6 0.1691 0.1449 0.6860 0 0 1.0000

7 0.1522 0.1304 0.7174 0 0.8750 0.1250

8 0.1383 0.1186 0.7431 0.9000 0 0.1000

9 0.2101 0.1087 0.6811 0 0 1.0000

10 0.1940 0.1003 0.7057 0 0 1.0000

11 0.1801 0.0932 0.7267 0 0 1.0000

12 0.1681 0.0870 0.7449 0.9091 0 0.0909

Table 6. Tree Model Prediction ofInput Responses Pressure and RF Power

Wafer E3.1 E3,2 E3,3 E4,1 E4,2 E4,3
1 0.2857 0.4286 0.2857 0.7000 0 0.3000

2 0 0 1.0000 0 1.0000 0

3 0.7778 0.1111 0.1111 0 0.8571 0.1429

4 0.7000 0.1000 0.2000 0.7273 0 0.2727

5 0.7273 0.0909 0.1818 0 0.7500 0.2500

6 0.2500 0.5000 0.2500 0 0.6667 0.3333

7 0.6667 0.0833 0.2500 0 0.6000 0.4000

8 0.2222 0.5556 0.2222 0 0.5455 0.4545

9 0.6154 0.0769 0.3077 0 0.5833 0.4167

10 0.5714 0.0714 0.3571 0 0 1.0000

11 0 0 1.0000 0 0.5385 0.4615

12 0.5333 0.0667 0.4000 0.7500 0 0.2500

Table 7. Tree Model Prediction of Input Responses Gas Ratio and Total Gas Flow
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Wafer E5.1 £5,2 ^5,3
1 0.8571 0.1429 0

2 0.0833 0 0.9167

3 0.8750 0.1250 0

4 0 1.0000 0

5 0 1.0000 0

6 0.0769 0 0.9231

7 0.7777 0.1111 0.1111

8 0.7000 0.1000 0.2000

9 0.0714 0 0.9286

10 0.0667 0 0.9334

11 0.0625 0 0.9375

12 0.7272 0.0909 0.1818

Table 8. TreeModel Prediction of InputResponse Gap Spacing

Wafer P(Fi,i/M2) P(Fi,2/M2) P(Fi,3/M2) P(F2,i/M2) P(F2,2/M2) P(F2,3/M2)
1 0.3657 0.3657 0.2686 0.3809 0.4524 0.1667

2 0.3333 0.3333 0.3333 0.1075 0.1075 0.7850

3 0.4135 0.4135 0.1731 0.3005 0.4477 0.2519

4 0.4035 0.4035 0.1931 0.2250 0.6068 0.1682

5 0.3182 0.3182 0.3636 0.6539 0.1705 0.1756

6 0.1843 0.1843 0.6313 0.2267 0.2271 0.5462

7 0.3693 0.3693 0.2613 0.2835 0.3485 0.3680

8 0.3527 0.3564 0.2909 0.3155 0.2809 0.4036

9 0.1566 0.1566 0.6869 0.1976 0.2115 0.5908

10 0.0446 0.0446 0.9108 0.0951 0.1147 0.7902

11 0.0506 0.0506 0.8989 0.0860 0.1122 0.8017

12 0.4113 0.3232 0.2655 0.3318 0.2761 0.3920

Table 9. Fault Probabilities for Pressure and RF Power extracted from Tree Model
Prediction Based on Combinations ofEvidence
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Wafer P(F3^i/M2) P(F3.3/M2) P(F4.i/M2) P(F4,2/M2) P(F4.3/M2)
1 0.2267 0.6266 0.1467 0.4857 0.3551 0.1592

2 0.3261 0.3478 0.3261 0.1075 0.1075 0.7850

3 0.4754 0.2546 0.2700 0.3007 0.4438 0.2554

4 0.6953 0.1499 0.1548 0.6821 0.1571 0.1607

5 0.3239 0.3239 0.3523 0.3264 0.3264 0.3471

6 0.1034 0.1034 0.7932 0.1081 0.1081 0.7838

7 0.3869 0.2715 0.3417 0.2976 0.3915 0.3109

8 0.2779 0.3536 0.3685 0.3148 0.3611 0.3241

9 0.0986 0.0986 0.8029 0.1048 0.1048 0.7903

10 0.0664 0.0664 0.8672 0.0969 0.0969 0.8063

11 0.0884 0.0884 0.8232 0.0676 0.0676 0.8648

12 0.3933 0.2827 0.3240 0.3587 0.2899 0.3514

Table 10. Fault Probabilities for Gas Ratio and Total Gas Flow extracted from Tree

Model Prediction Based on Combinations of Evidence

Wafer P(F5,i/M2) P(F5,2/M2) P(F5,3/M2)
1 0.4343 0.3543 0.2114

2 0.3333 0.3333 0.3333

3 0.4526 0.2563 0.2910

4 0.2358 0.5631 0.2011

5 0.3057 0.3057 0.3885

6 0.2155 0.2155 0.5690

7 0.3615 0.2626 0.3758

8 0.3337 0.2917 0.3745

9 0.1923 0.1923 0.6154

10 0.0860 0.0860 0.8280

11 0.0795 0.0795 0.8409

12 0.3562 0.2750 0.3688

Table 11. Fault Probabilities for Gap Spacing extracted from Tree Model Prediction
Based on Combinations ofEvidence
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Wafer ^6,2 ^6,3 E?,! ^7,2 ^7,3
1 0 1.0000 0.0000 1.0000 0 0.0000

2 0 1.0000 0.0000 0 1.0000 0.0000

3 0 0.4448 0.5552 0 0 1.0000

4 0 1.0000 0.0000 0 0 1.0000

5 0 1.0000 0.0000 0 0 1.0000

6 0 1.0000 0.0000 0 0 1.0000

7 0 0 1.0000 0 0 1.0000

8 0 0 1.0000 0.5000 0.5000 0

9 0 0.9947 0.0053 0 0 1.0000

10 0 0.3058 0.6942 0 0 1.0000

11 0 0 1.0000 0 0 1.0000

12 1.0000 0 0.0000 1.0000 0 0.0000

Table 12. GLM PredictionofInput ResponsesPressure and RF Power

Wafer ^8,1 ^8,2 ^8,3 ^9,1 ^9,2 ^9,3
1 0 1.0000 0.0000 0.4163 0 0.5837

2 0 0 1.0000 0.4823 0 0.5177

3 0 1.0000 0.0000 0.6846 0 0.3154

4 0 1.0000 0.0000 0.4867 0 0.5133

5 0 0 1.0000 0.6691 0 0.3309

6 0 0 1.0000 0.5102 0 0.4898

7 0 1.0000 0.0000 0.2290 0 0.7710

8 1.0000 0 0.0000 0.3572 0.1244 0.5183

9 0 0 1.0000 0.5230 0 0.4770

10 0 0 1.0000 0.4727 0 0.5273

11 0 0 1.0000 0.4471 0 0.5529

12 1.0000 0 0.0000 0.5850 0.0133 0.4016

Table 13. GLM Prediction of Input Responses Gas Ratio and Total Gas Flow
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Wafer El0,1 Eio,2 Eio,3
1 0 0 1.0000

2 0 1.0000 0.0000

3 0 1.0000 0.0000

4 0 0 1.0000

5 0 1.0000 0.0000

6 0 1.0000 0.0000

7 0 1.0000 0.0000

8 0 1.0000 0.0000

9 0 1.0000 0.0000

10 0 0 1.0000

11 0 1.0000 0.0000

12 1.0000 0 0.0000

Table 14. GLM Prediction of Input Response Gap Spacing

Wafer P(Fi^i/M4) P(Fi,2/M4) P(Fi,3/M4) P(F2,i/M4) P(F2,2/M4) P(F2,3/M4)

1 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334

2 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334

3 0.3333 0.3333 0.3334 0.5363 0.2318 0.2319

4 0.1622 0.1622 0.6755 0.3333 0.3333 0.3334

5 0.2230 0.2230 0.5540 0.3333 0.3333 0.3334

6 0.1701 0.1701 0.6599 0.3333 0.3333 0.3334

7 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334

8 0.3631 0.3838 0.2531 0.3333 0.3333 0.3334

9 0.1743 0.1743 0.6514 0.3325 0.3325 0.3350

10 0.0479 0.0479 0.9041 0.0787 0.1092 0.8121

11 0.1490 0.1490 0.7019 0.1490 0.1490 0.7019

12 0.5283 0.3333 0.1383 0.7189 0.1472 0.1339

Table 15. Fault Probabilities for Pressure and RF Power extracted from GLM Prediction

Based on Combinations ofEvidence
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Wafer P(F3^i/M4) P(F32/M4) P(F3^3/M4) P(F4j/M4) P(F4,2/M4) P(F43/M4)
1 0.3333 0.3333 0.3334 0.3333 0.3333 0.3333

2 0.6548 0.1726 0.1726 0.3333 0.3333 0.3333

3 0.2750 0.2750 0.4501 0.3333 0.3333 0.3334

4 0.1622 0.1622 0.6755 0.3333 0.3333 0.3334

5 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334

6 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334

7 0.0763 0.0763 0.8473 0.3333 0.3333 0.3334

8 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

9 0.3325 0.3325 0.3350 0.3315 0.3315 0.3369

10 0.0815 0.0815 0.8371 0.0631 0.0631 0.8738

11 0.1490 0.1490 0.7019 0.0000 0.0000 1.0000

12 0.7189 0.1472 0.1339 0.9999 0.0001 0.0001

Table 16. Fault Probabilities for Gas Ratio and Total Gas Flow extracted from GLM
Prediction Based on Combinations of Evidence

Wafer P(F5^i/M4) P(F5,2/M4) P(F53/M4)

1 0.1946 0.6108 0.1946

2 0.3333 0.3333 0.3334

3 0.2750 0.2750 0.4501

4 0.3333 0.3333 0.3334

5 0.2230 0.2230 0.5540

6 0.1701 0.1701 0.6599

7 0.0763 0.0763 0.8473

8 0.3333 0.3333 0.3333

9 0.1736 0.1736 0.6528

10 0.0815 0.0815 0.8371

11 0.0503 0.0503 0.8995

12 0.7189 0.1472 0.1339

Table 17. FaultProbabilities for Gap Spacing extracted from GLM Prediction Basedon
Combinations ofEvidence
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Wafer P(Fl,l) P(Fi,2) P(Fi,3) m,i) P(F2.2) P(F2.3)
1 0 1.0000 0.0000 0.1905 0.6262 0.1833

2 0 1.0000 0.0000 0.2204 0.2204 0.5592

3 0.1784 0.2760 0.5455 0.1002 0.7048 0.1951

4 0 1.0000 0.0000 0.1125 0.7320 0.1555

5 0.2706 0.2706 0.4588 0.0833 0.0833 0.8333

6 0.1734 0.1674 0.6592 0.1400 0.1401 0.7199

7 0.1594 0.1485 0.6920 0.0945 0.6995 0.2060

8 0.2135 0.2147 0.5718 0.7000 0.2500 0.0500

9 0.1405 0.3339 0.5256 0.1325 0.1360 0.7315

10 0.0751 0.1180 0.8069 0.0434 0.0560 0.9006

11 0.0949 0.0732 0.8319 0.0588 0.0653 0.8759

12 0.5877 0.2449 0.1674 0.8842 0.0368 0.0789

Table 18. Final Fault Probabilities for Combined Tree/GLM Prediction ofInput
Responses Pressure and RF Power

Wafer P(F3,i) P(F3.2) P(F3,3) P(F4,i) P(F4,2) P(F4,3)
1 0.1281 0.7638 0.1081 0.5929 0.1775 0.2296

2 0 0 1.0000 0.2577 0.1371 0.6053

3 0.2750 0.2750 0.4501 0.4504 0.2222 0.3274

4 0.6977 0.1249 0.1774 0.7047 0.0786 0.2167

5 0.2453 0.2453 0.5095 0.3299 0.3299 0.3403

6 0.2500 0.5000 0.2500 0.2207 0.2207 0.5586

7 0.0763 0.0763 0.8473 0.2985 0.2222 0.4793

8 0.2222 0.5556 0.2222 0.1574 0.4533 0.3893

9 0.2455 0.1277 0.6269 0.2296 0.2489 0.5214

10 0.1640 0.0547 0.7813 0.1492 0.0446 0.8062

11 0.0594 0.0594 0.8813 0 0.5385 0.4615

12 0.6614 0.1241 0.2145 0.6734 0.0758 0.2508

Table 19. Final Fault Probabilities for Combined Tree/GLM Prediction of Input
Responses Gas Ratio and Total Gas Flow
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Wafer P(F5,i) P(F5.2) P(F5.3)
1 0.6457 0.2486 0.1057

2 0.2083 0.1667 0.6250

3 0.3342 0.2687 0.3971

4 0.1179 0.7815 0.1006

5 0 1.0000 0.0000

6 0.1581 0.1389 0.7030

7 0.1714 0.1384 0.6901

8 0.7000 0.1000 0.2000

9 0.1131 0.3156 0.5713

10 0.0607 0.0431 0.8963

11 0.0606 0.0450 0.8944

12 0.7315 0.1130 0.1556

Table20. Final Fault Probabilities for Combined Tree/GLM Prediction of Input
Response Gap Spacing
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Appendix E2

Lam TCP 9600 DOE Data Classification Results

- Extracted Probabilities for Evidence Variables

Evidence Variable (r) High (s=l) Medium

(s=2)
Low (s=3)

Tree Model Prediction ofPressure El.l El,2 Ei.3
Tree Model Prediction ofTop Power ^2,1 ^2,2 ^2,3
Tree Model Prediction ofRF Power E3,1 ^3,2 ^3,3
Tree Model Prediction of Gas Ratio ^4,1 ^4,2 ^4,3

Tree Model Prediction of Total Gas Flow E5,1 ^5,2 ^5,3

Table 1. Evidence Labels for Tree Model Prediction of Input Responses

Evidence Variable (r) High(s=l) Medium

(s=2)
Low (s=3)

Tree-Based Prediction of Pressure P(F,,i/M2) P(Fi,2/M2) P(Fi,3/M2)

Tree-Based Prediction of Top Power P(F2,i/M2) P(F2,2/M2) P(F2,3/M2)

Tree-Based Prediction ofRF Power P(F3,i/M2) P(F32/M2) P(F3.3/M2)
Tree-Based Prediction of Gas Ratio P(F4.i/M2) P(F4.2/M2) P(F4,3/M2)

Tree-Based Prediction ofTotal Gas Flow P(F5,i/M2) P(F5 2/M2) P(F5,3/M2)

Table 2. Probabilities for Tree Model Prediction Based on Combinations of Evidence
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Evidence Variable (r) High(s=l) Medium

(s=2)
Low (s=3)

GLM Prediction ofPressure ^6,1 ^6,2 ^6,3
GLM Prediction ofTop Power ^7,1 ^7,2 ^7,3
GLM Prediction ofRF Power ^8,1 Eg,2 ^8,3
GLM Prediction of Gas Ratio ^9,1 ^9,2 ^9,3

GLM Prediction ofTotal Gas Flow Eio,i Eio,2 Eio,3

Table 3. Evidence Labels for GLM Prediction of Input Responses

Evidence Variable (r) High(s=l) Medium

(s=2)
Low (s=3)

GLM-Based Prediction ofPressure P(F,_,/M4) P(Fi_2/M4) P(Fi,3/M4)

GLM-Based Prediction ofTop Power P(F2,i/M4) P(F2,2^4) P(F23/M4)
GLM-Based Prediction ofRF Power P(F3_,/M4) P(F3,2/M4) P(F3_3/M4)

GLM-Based Prediction of Gas Ratio P(F4,i/M4) P(F4,2/M4) P(F4.3/M4)

GLM-Based Prediction ofTotal Gas Flow P(F5i/M4) P(F52/M4) P(F5,3/M4)

Table 4. Probabilities for GLM Prediction Based on Combinations ofEvidence

Model Averaged Result High (s=l) Medium

(s=2)
Low (s=3)

Tree/GLM Prediction of Pressure P(Fl.l) P(Fi,2) P(Fu)
Tree/GLM Prediction of Top Power P(F2,i) P(F2,2) P(F2,3)
Tree/GLM Prediction of RF Power P(F3.i) P(F3,2) P(F3,3)
Tree/GLM Prediction of Gas Ratio P(F4,i) P(P4,2) P(F4,3)

Tree/GLM Prediction ofTotal Gas Flow P(F5,i) P(F5,2) P(F5,3)

Table 5. Final Fault Probabilities for Combined Model Prediction of Input Responses
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Wafer El.l El,2 El,3 E2,1 E2,2 E2,3
5 0 1.0000 0 0.8889 0 0.1111

7 0 1.0000 0 0.9000 0 0.1000

10 0.6667 0 0.3333 0.9091 0 0.0909

14 0 1.0000 0 0 1.0000 0

17 0 1.0000 0 0.9167 0 0.0833

19 0.5714 0.1429 0.2857 0.9231 0 0.0769

20 0 1.0000 0 0.9286 0 0.0714

24 0.5000 0.1250 0.3750 0.9333 0 0.0667

25 0 0 1.0000 0 0 1.0000

26 0 0 1.0000 0 0 1.0000

27 0.5556 0.1111 0.3333 0 0.0769 0.9231

30 0 0.0714 0.9286 0 1.0000 0

33 0 0.0667 0.9333 0 0.4000 0.6000

36 0 0.0625 0.9375 0 0.0714 0.9286

43 0.6250 0 0.3750 0 0.9231 0.0769

45 0.5556 0 0.4444 0 0.9286 0.0714

46 0 1.0000 0 0 0.3333 0.6667

48 0.6000 0 0.4000 0 0.4286 0.5714

50 0 1.0000 0 0 0.5000 0.5000

51 0 1.0000 0 0.9375 0 0.0625

Table 6. TreeModel Prediction of Input Responses Pressure and TopPower
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Wafer E3.1 ^3,2 ^3,3 ^4,1 ^4,2 ^4,3
5 0.1667 0.1667 0.6667 0 0 1.0000

7 0.1429 0.1429 0.7143 0 0.1667 0.8333

10 0.2500 0.1250 0.6250 0 0 1.0000

14 0.6250 0.3750 0 0 0 1.0000

17 0.4444 0.3333 0.2222 0.1429 0.1429 0.7143

19 0.4000 0.4000 0.2000 0.0500 0 0.9500

20 0.3333 0.1111 0.5556 0.0476 0.0476 0.9048

24 0.3636 0.3636 0.2727 0.2500 0.1250 0.6250

25 0.3333 0.4166 0.2500 0.0455 0.0455 0.9091

26 0 0 1.0000 0.2500 0.1250 0.6250

27 0.3077 0.3846 0.3077 0.0435 0.0435 0.9130

30 0 0.1111 0.8889 0.2222 0.2222 0.5556

33 0 0.1000 0.9000 0.0417 0.0833 0.8750

36 0 0.1818 0.8182 0.2000 0.2000 0.6000

43 0.2000 0.4000 0.4000 0.6000 0.4000 0

45 0.1667 0.3333 0.5000 0.5000 0.3333 0.1667

46 0.2857 0.2857 0.4286 0.4286 0.4286 0.1429

48 0.3750 0.2500 0.3750 0.3750 0.5000 0.1250

50 0.6667 0.3333 0 0.0400 0.0800 0.8800

51 0.3000 0.2000 0.5000 0.0385 0.0769 0.8846

Table 7. Tree Model Prediction ofInput Responses RF Power and Gas Ratio
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Wafer E5,1 ^5,2 ^5,3
5 0.8000 0 0.2000

7 0.6667 0.1667 0.1667

10 0.5714 0.2857 0.1429

14 0.2000 0.4000 0.4000

17 0.8000 0.1000 0.1000

19 0.8182 0.0909 0.0909

20 0.1000 0 0.9000

24 0.7500 0.0833 0.1667

25 0.0909 0.0909 0.8182

26 0.5000 0.3750 0.1250

27 0.0833 0.0833 0.8333

30 0.1667 0.5000 0.3333

33 0.7692 0.0769 0.1538

36 0.1538 0.0769 0.7692

43 0.1429 0.4286 0.4286

45 0 0.6667 0.3333

46 0.5556 0.3333 0.1111

48 0.1429 0.5714 0.2857

50 0.7857 0.0714 0.1429

51 0.1429 0.0714 0.7857

Table 8. Tree Model Prediction of Input Response Total Gas Flow
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Wafer P(Fi,i/M2) P(Fi^2/M2) P(Fi,3/M2) P(F2,i/M2) P(P2,2/M2) P(F23/M2)

5 0.2952 0.2988 0.4059 0.3238 0.3238 0.3524

7 0.2872 0.3221 0.3908 0.3423 0.3274 0.3304

10 0.2954 0.3556 0.3490 0.2595 0.3275 0.4130

14 0.6264 0.3297 0.0440 0.4286 0.4286 0.1429

17 0.4148 0.4441 0.1410 0.4467 0.4485 0.1048

19 0.4201 0.4450 0.1348 0.3760 0.4145 0.2095

20 0.1688 0.1753 0.6559 0.1833 0.1833 0.6334

24 0.4190 0.4266 0.1543 0.3594 0.3974 0.2432

25 0.0436 0.0876 0.8687 0.0631 0.0608 0.8761

26 0.0667 0.0848 0.8485 0.0430 0.1490 0.8080

27 0.0673 0.0984 0.8343 0.2031 0.4150 0.3819

30 0.2331 0.2322 0.5347 0.1578 0.1605 0.6817

33 0.1556 0.1715 0.6728 0.0394 0.0527 0.9079

36 0.0658 0.1704 0.7638 0.1525 0.1401 0.7074

43 0.2430 0.3420 0.4150 0.3328 0.3545 0.3127

45 0.2440 0.3735 0.3825 0.3108 0.3432 0.3460

46 0.2755 0.3078 0.4168 0.4039 0.4106 0.1855

48 0.2576 0.3483 0.3941 0.3189 0.3491 0.3320

50 0.3603 0.3204 0.3193 0.4793 0.4765 0.0442

51 0.1682 0.1868 0.6450 0.1940 0.1932 0.6128

Table 9. Fault Probabilitiesfor Pressure and Top Power extracted from Tree Model
Prediction Based on Combinations of Evidence
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Wafer P(F3j/M2) P(F32/M2) P(F3,3/M2) P(F4,/M2) ^(^4,2^2) P(F43/M2)
5 0.4467 0.4467 0.1067 0.3114 0.3114 0.3771

7 0.4877 0.4012 0.1111 0.2759 0.3801 0.3441

10 0.3166 0.5048 0.1785 0.3118 0.3061 0.3821

14 0.4286 0.4286 0.1429 0.2912 0.2637 0.4451

17 0.4772 0.4698 0.0529 0.2437 0.3055 0.4507

19 0.4307 0.4575 0.1117 0.2901 0.2747 0.4352

20 0.3296 0.3296 0.3409 0.3196 0.3229 0.3575

24 0.4462 0.3998 0.1540 0.3015 0.2796 0.4188

25 0.1107 0.1211 0.7682 0.0604 0.0366 0.9030

26 0.1824 0.2187 0.5989 0.0182 0.2000 0.7818

27 0.2795 0.2501 0.4703 0.2597 0.2510 0.4892

30 0.2115 0.2730 0.5155 0.4432 0.2181 0.3387

33 0.1840 0.2766 0.5394 0.4179 0.1567 0.4254

36 0.1198 0.1379 0.7423 0.1442 0.0575 0.7983

43 0.2751 0.3564 0.3686 0.2611 0.2415 0.4974

45 0.3147 0.3405 0.3448 0.2324 0.2584 0.5092

46 0.4547 0.3179 0.2274 0.3083 0.2946 0.3972

48 0.3061 0.3329 0.3610 0.2386 0.2391 0.5223

50 0.3825 0.3888 0.2287 0.3244 0.2668 0.4088

51 0.3410 0.3370 0.3220 0.3058 0.3266 0.3675

Table 10. Fault Probabilities for Top
Prediction Based

Power and Gas Ratio extracted from Tree Model

on Combinations of Evidence

223



Wafer P(F5^i/M2) P(F52/M2) ^(^5,3^2)
5 • 0.3524 0.3524 0.2952

7 0.3247 0.4058 0.2695

10 0.3803 0.2348 0.3849

14 0.5000 0.5000 0

17 0.4524 0.4444 0.1031

19 0.5568 0.2749 0.1683

20 0.3914 0.4037 0.2049

24 0.5187 0.2620 0.2193

25 0.2258 0.2274 0.5468

26 0.2121 0.0606 0.7273

27 0.3028 0.3009 0.3962

30 0.1869 0.1002 0.7129

33 0.1457 0.0663 0.7880

36 0.2603 0.0686 0.6711

43 0.4691 0.2536 0.2772

45 0.4322 0.2612 0.3066

46 0.3449 0.3597 0.2955

48 0.3828 0.2746 0.3427

50 0.4124 0.4195 0.1681

51 0.3731 0.3906 0.2362

Table 11. Fault Probabilities for Total Gas Flow extracted from Tree Model Prediction

Based on Combinations ofEvidence
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Wafer E6.1 ^6,2 ^6,3 ^7,1 ^7,2 ^7,3
5 0.4929 0.5071 0 1.0000 0 0.0000

7 0.5000 0.5000 0 1.0000 0 0.0000

10 0 1.0000 0.0000 1.0000 0 0.0000

14 0 0.9962 0.0038 0 1.0000 0.0000

17 0.1147 0.8853 0 1.0000 0 0.0000

19 0 0.9999 0.0001 1.0000 0 0.0000

20 0 0 1.0000 1.0000 0 0.0000

24 1.0000 0 0.0000 1.0000 0 0.0000

25 0 0 1.0000 0 0 1.0000

26 0 1.0000 0.0000 0 1.0000 0.0000

27 1.0000 0 0.0000 0 0 1.0000

30 0 0.4919 0.5081 1.0000 0 0.0000

33 0 0 1.0000 0.5000 0.5000 0

36 0 0 1.0000 0 0 1.0000

43 0 0 1.0000 0 1.0000 0.0000

45 1.0000 0 0.0000 0 1.0000 0.0000

46 0 1.0000 0.0000 0 1.0000 0.0000

48 1.0000 0 0.0000 0 1.0000 0.0000

50 0 0 1.0000 0 1.0000 0.0000

51 0 1.0000 0.0000 0 0 1.0000

Table 12. GLM Prediction of InputResponses Pressure and Top Power
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Wafer Eg,! Eg,2 Eg,3 E9,1 E9,2 E9,3
5 0.3835 0.1323 0.4842 0 0 1.0000

7 0.0197 0.0445 0.9358 0 0 1.0000

10 0.3620 0.1099 0.5281 0 0 1.0000

14 0.0224 0.1184 0.8592 0 0 1.0000

17 0.6893 0.2408 0.0699 0 0.1106 0.8894

19 0.5287 0.2700 0.2013 0 0 1.0000

20 0.3791 0.3003 0.3206 0 0 1.0000

24 0.3805 0.0699 0.5496 1.0000 0 0.0000

25 0.1001 0.1709 0.7291 0 0 1.0000

26 0.0671 0.2106 0.7224 0 0 1.0000

27 0.1325 0.6137 0.2539 0 0 1.0000

30 0.3720 0.3295 0.2984 0 0 1.0000

33 0.0697 0.2175 0.7128 0 0 1.0000

36 0.0695 0.1461 0.7844 0 0 1.0000

43 0.2524 0.3570 0.3907 0.5000 0.5000 0

45 0.5960 0.4040 0 1.0000 0 0.0000

46 0.0045 0.1808 0.8148 0 1.0000 0.0000

48 0.4817 0.5183 0 0.8847 0.1153 0.0000

50 0.0576 0.2249 0.7176 0 0 1.0000

51 0.0598 0.1218 0.8184 0 0 1.0000

Table 13.GLM Prediction of Input Responses RF Power andGas Ratio
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Wafer ^10,1 ^10,2 Eio,3
5 0.3096 0 0.6904

7 0.3937 0 0.6063

10 0.8744 0 0.1256

14 0.5884 0.0032 0.4085

17 0.1865 0 0.8135

19 0.7168 0 0.2832

20 0.1370 0 0.8630

24 0.8311 0 0.1689

25 0.1554 0 0.8446

26 0.3980 0.6020 0

27 0.0336 0.9664 0

30 0.6287 0.1096 0.2617

33 0.7494 0.2506 0.0000

36 0.1988 0 0.8012

43 0.3077 0.6923 0

45 0.2126 0.7874 0

46 0.0906 0 0.9094

48 0.1208 0.8792 0

50 0.5627 0.2745 0.1628

51 0.0688 0 0.9312

Table 14. GLM Prediction of Input Response Total Gas Flow
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Wafer P(Fi^i/M4) P(Fi,2/M4) P(Fi,3/M4) P(F2,i/M4) P(F2,2/M4) P(F2,3/M4)

5 0.2485 0.2485 0.5030 0.2599 0.3905 0.3496

7 0.1484 0.1484 0.7032 0.2410 0.2469 0.5121

10 0.3800 0.3800 0.2400 0.3800 0.3800 0.2400

14 0.2363 0.2272 0.5365 0.2295 0.2295 0.5410

17 0.3387 0.3479 0.3134 0.3318 0.3819 0.2863

19 0.4097 0.4097 0.1805 0.4097 0.4097 0.1806

20 0.2566 0.2566 0.4868 0.0425 0.0425 0.9151

24 0.5248 0.2666 0.2086 0.5248 0.2667 0.2086

25 0.0052 0.1591 0.8357 0.0612 0.0612 0.8777

26 0.3796 0.3796 0.2408 0.3796 0.3796 0.2408

27 0.1992 0.1992 0.6017 0.3937 0.5217 0.0846

30 0.3732 0.4140 0.2128 0.2430 0.2430 0.5140

33 0.3768 0.3856 0.2376 0.0356 0.0356 0.9288

36 0.0046 0.1617 0.8337 0.0617 0.0617 0.8765

43 0.2451 0.4198 0.3351 0.2521 0.4357 0.3122

45 0.1919 0.7020 0.1060 0.3892 0.3484 0.2625

46 0.3281 0.3441 0.3278 0.3282 0.3441 0.3278

48 0.1965 0.6166 0.1869 0.3518 0.3552 0.2931

50 0.3400 0.3307 0.3293 0.0420 0.0420 0.9160

51 0.0014 0.1919 0.8067 0.0814 0.0814 0.8373

Table 15. Fault Probabilities for Pressure and Top Power extracted from GLM Prediction
Based on Combinations of Evidence
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Wafer P(F3^,/M4) P(F3.2/M4) P(F4^i/M4) P(F4,2/M4) P(F4.3/M4)
5 0.3849 0.3849 0.2301 0.3197 0.3203 0.3600

7 0.3989 0.3989 0.2021 0.3312 0.3312 0.3376

10 0.4791 0.4791 0.0419 0.2438 0.3541 0.4021

14 0.4310 0.4310 0.1379 0.3137 0.3393 0.3469

17 0.3724 0.3565 0.2712 0.3028 0.3350 0.3622

19 0.4528 0.4528 0.0945 0.2393 0.3320 0.4287

20 0.0457 0.0457 0.9086 0.2411 0.3794 0.3795

24 0.8874 0.0563 0.0563 0.3667 0.2376 0.3957

25 0.0768 0.1286 0.7946 0.1171 0.0429 0.8399

26 0.5000 0.5000 0.0000 0.2676 0.2962 0.4362

27 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

30 0.3495 0.3495 0.3009 0.2908 0.3233 0.3859

33 0.3333 0.3333 .0.3333 0.5023 0.2625 0.2352

36 0.0728 0.1391 0.7881 0.1189 0.0566 0.8246

43 0.1667 0.5128 0.3205 0.3311 0.4580 0.2109

45 0.2625 0.4750 0.2625 0.0430 0.0634 0.8937

46 0.3031 0.3937 0.3031 0.3279 0.3359 0.3362

48 0.3070 0.4000 0.2931 0.0313 0.0291 0.9395

50 0.2791 0.2791 0.4419 0.6014 0.2010 0.1977

51 0.0229 0.0229 0.9541 0.0793 0.0793 0.8414

Table 16. Fault Probabilities for RF Power and Gas Ratio extracted from GLM Prediction

Based on Combinations of Evidence
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Wafer P(F5 1/M4) P(F52/M4) P(F5^3/M4)

5 0.5138 0.3248 0.1614

7 0.3489 0.3391 0.3120

10 0.4120 0.4120 0.1761

14 0.3556 0.3556 0.2888

17 0.5511 0.4171 0.0318

19 0.4664 0.4664 0.0672

20 0.2265 0.2265 0.5471

24 0.5870 0.2065 0.2065

25 0.2069 0.1108 0.6823

26 0.3796 0.3796 0.2408

27 0.3333 0.3333 0.3333

30 0.3403 0.3403 0.3194

33 0.0957 0.0957 0.8085

36 0.2038 0.1001 0.6961

43 0.3064 0.3872 0.3064

45 0.6026 0.1987 0.1987

46 0.4524 0.2761 0.2716

48 0.6760 0.1620 0.1620

50 0.0942 0.0941 0.8117

51 0.0605 0.0605 0.8789

Table 17. Fault Probabilities for Total Gas Flow extracted from GLM Prediction Based

on Combinations ofEvidence

230



Wafer P(Fi,l) P(Fi.2) P(Fi,3) P(F2,i) P(F2,2) P(F2.3)
5 0.2464 0.7536 0 0.9500 0 0.0500

7 0 1.0000 0 0.8128 0.0818 0.1053

10 0.2427 0.5228 0.2345 0.8033 0.0950 0.1017

14 0 0.9981 0.0019 0 1.0000 0.0000

17 0.2170 0.6694 0.1136 0.9687 0 0.0313

19 0.3825 0.4887 0.1289 0.8230 0.1024 0.0746

20 0 1.0000 0 0.9722 0 0.0278

24 0.6994 0.1121 0.1885 0.8562 0.0667 0.0771

25 0.0134 0.0598 0.9268 0.0339 0.0333 0.9328

26 0 1.0000 0.0000 0 1.0000 0.0000

27 0.1332 0.1488 0.7180 0 0.0313 0.9688

30 0.1480 0.2932 0.5588 0.3440 0.3282 0.3278

33 0.0389 0.0554 0.9057 0.0375 0.0442 0.9184

36 0.0176 0.0944 0.8880 0.0484 0.0585 0.8931

43 0.1215 0.1710 0.7075 0.1462 0.6857 0.1681

45 0.8333 0 0.1667 0 0.9773 0.0227

46 0.0820 0.8360 0.0820 0.2840 0.5413 0.1747

48 0.8235 0 0.1765 0.2474 0.5133 0.2393

50 0 0 1.0000 0.0420 0.0420 0.9160

51 0 1.0000 0.0000 0.1743 0.0824 0.7433

Table 18. FinalFaultProbabilities for Combined Tree/GLM Prediction of Input
Responses Pressure and Top Power
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Wafer P(F3,i) ma) ma) ma) ma) ma)
5 0.2632 0.1376 0.5992 0.1578 0.1579 0.6843

7 0.4433 0.4000 0.1566 0.1518 0.2135 0.6347

10 0.4205 0.2945 0.2850 0.1389 0.1650 0.6960

14 0.5604 0.3681 0.0714 0.1512 0.1508 0.6980

17 0.5001 0.3437 0.1562 0.1644 0.2156 0.6200

19 0.4602 0.3843 0.1554 0.1416 0.1517 0.7067

20 0.2568 0.2143 0.5289 0.1491 0.1845 0.6664

24 0.5379 0.2096 0.2525 0.4795 0.1501 0.3703

25 0.1696 0.1876 0.6428 0.0520 0.0279 0.9201

26 0.1874 0.2323 0.5803 0.1169 0.1468 0.7363

27 0.3064 0.2917 0.4018 0.1561 0.1539 0.6900

30 0.2324 0.2624 0.5051 0.2381 0.1729 0.5891

33 0.1468 0.2261 0.6271 0.1116 0.0535 0.8349

36 0.0655 0.1391 0.7954 0 0 1.0000

43 0.2664 0.3390 0.3946 0.2611 0.2415 0.4974

45 0.5960 0.4040 0 0.4751 0.1429 0.3820

46 0.4547 0.3179 0.2274 0 1.0000 0.0000

48 0.3944 0.4591 0.1465 0.7151 0.2395 0.0455

50 0.6471 0.3529 0 0.0872 0.0789 0.8339

51 0.1383 0.1533 0.7084 0.0881 0.0994 0.8124

Table 19. Final Fault Probabilities for Combined Tree/GLM Predictionof Input
Responses RF Power and Gas Ratio
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Wafer P(F5.i) P(F5,2) P(F5,3)
5 0.4940 0.1693 0.3368

7 0.3247 0.4058 0.2695

10 0.4120 0.4120 0.1761

14 0.1429 0.4286 0.4286

17 0.6029 0.3375 0.0595

19 0.6517 0.2020 0.1463

20 0.3914 0.4037 0.2049

24 0.6901 0.1318 0.1781

25 0.1850 0.1092 0.7058

26 0.4898 0.3398 0.1704

27 0.1987 0.4158 0.3855

30 0.3233 0.2425 0.4341

33 0.7556 0.1729 0.0714

36 0.2168 0.0577 0.7255

43 0.1818 0.3636 0.4545

45 0.5174 0.2299 0.2526

46 0.3449 0.3597 0.2955

48 0.5294 0.2183 0.2523

50 0.4124 0.4195 0.1681

51 0.1244 0.0860 0.7896

Table 20. Final Fault Probabilities for Combined Tree/GLM Prediction of Input
Response Total Gas Flow
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Appendix F

GLM Results - Coefficients, Linear Predictions, and Fitted Values

Lam Rainbow 4400 DOE Data

Sensor

Signal

Pressure

Model

Power

Model

Gas Ratio

Model

Total Gas

Flow Model

Gap Spacing
Model

Intercept 6033.465 1103.46 194.8378 15760.9 -3597.385

Endpoint A 0.1180625 0.05647331 5.57e-06 0.0 0.7582921

Endpoint B -0.0512072 -0.01877498 0.00064116 0.0 -0.8847277

Endpoint C 0.0 0.0 0.0 0.0 -0.117877

Measured

Pressure

0.0 0.0 0.0 -0.6512974 2.113492

Measured

Power

-3.662645 0.0 0.0 0.0 0.0

RFTune -1.363389 -0.2441685 -0.01007087 -1.095258 0.0

RF Load 1.036644 0.1320364 -0.0059625 0.6196095 0.0

Impedance 0.2277873 0.03630299 -0.0028008 0.1866142 0.2038256

Phase -0.02358554 0.0 0.002000781 0.0 0.0

Voltage 0.0 0.0 0.0 0.0 26.5984

DC Bias 2.417183 -0.2965973 0.02772226 0.0 4.747143

MFCS 0.0 0.0 0.0 0.09734656 0.0

MFC6 0.0 0.0 0.0 0.2525355 0.0

Table 1. Coefficients a (Intercept)and p (Sensor Signals) for GLM high/not high
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Sensor

Signal
Pressure

Model

Power

Model

Gas Ratio

Model

Total Gas

Flow Model

Gap Spacing
Model

Intercept -535.076 875.3149 1012.463 -830.7934 94717.59

Endpoint A 0.08441036 -0.07649621 0.01117361 0.0 3.643574

EndpointB -0.03095719 0.04533356 -0.01752973 0.0 6.628609

Endpoint C 0.0 0.0 0.0 0.0 0.541935

Measured

Pressure

0.0 0.0 0.0 -0.2577119 -29.71684

Measured

Power

-5.26588 0.0 0.0 0.0 0.0

RF Tune 0.5057438 0.05350584 -0.2942862 -0.5693966 0.0

RF Load -0.681124 -0.09976484 0.2807996 0.2882431 0.0

Impedance -0.1080034 -0.03289002 0.05214612 0.01801979 -8.63831

Phase 0.04779316 0.0 -0.03101532 0.0 0.0

Voltage 0.0 0.0 0.0 0.0 -602.0749

DC Bias -3.882982 -0.227088 -0.3693392 0.0 291.726

MFCS 0.0 0.0 0.0 -0.1455538 0.0

MFC6 0.0 0.0 0.0 -0.1029862 0.0

Table 2. Coefficients a (Intercept) and P (Sensor Signals) for GLM low/not low
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Wafer Index Pressure

Model

Power

Model

Gas Ratio

Model

Total Gas

Flow Model

Gap Spacing

Model

13 -31.07658 -328.24014 -21.34860 -0.04975429 -80.78645

14 69.11116 20.99552 23.44724 -0.09929155 163.19890

15 -88.99304 23.11608 55.05386 -4.73418358 -268.42191

16 -23.37999 -175.09496 22.14806 -1.31987168 -31.97798

17 -103.69070 26.53172 -69.35085 0.79702548 -152.60930

18 -21.95443 -138.34974 -24.26163 -1.31712144 -31.57047

19 -56.10889 -22.41984 22.88390 0.48083937 -110.49687

20 21.93407 -60.08844 -23.02642 -0.30928852 -24.55979

21 48.97817 219.96305 -61.98213 -0.84107893 -75.24095

22 -29.86198 -131.47422 -24.73730 -2.35891552 -24.98774

23 30.65133 -236.08670 26.43880 6.93334464 -21.74644

24 -44.92538 -336.25333 -25.02860 -2.35935046 -56.96295

25 22.16068 348.01912 -66.95689 -2.05706377 71.12561

26 -22.12044 -138.20404 28.94177 -0.56195441 -75.05824

27 -22.34751 -243.67748 -30.00589 -0.82402679 -22.81168

28 -58.15216 150.69097 -24.01055 -0.36317654 -106.54479

29 21.69884 -20.93446 24.33314 1.85150175 21.08834

30 61.98047 -850.77324 -51.49595 7.67720130 227.92449

31 -52.81324 -68.88791 -30.69198 -1.09760642 57.73761

32 -21.49399 -22.38293 -23.42370 -1.10424828 -20.84794

33 -23.65133 -22.07345 55.17651 -1.93657495 22.03989

34 -40.03901 -169.50612 -25.42994 -1.71814908 -63.65668

35 -24.07404 -45.19692 -23.12809 -2.01708995 -34.96037

36 -75.07544 21.80197 22.38799 -0.18950309 23.64132

Table 3.Linear prediction values r| for GLM high/not high (training data set)
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Wafer Index Pressure

Model

Power

Model

Gas Ratio

Model

Total Gas

Flow Model

Gap Spacing
Model

13 -23.19661 -21.95591 -27.13670 -17.7231395 -20.70016

14 -114.49963 -1539.05417 -57.36638 -0.6252895 -197.90720

15 131.09434 -24.21029 -120.80896 1.9309701 23.51952

16 -28.72042 -22.16124 -75.16143 -11.1588042 -77.67232

17 * 21.47838 -22.94332 22.06067 -28.2328600 21.88822

18 -43.23877 -4498.09476 -27.80798 -7.4121666 -59.27739

19 46.14436 21.66595 -65.11199 -17.1326511 23.50919

20 -72.75644 -8788.57304 -23.93627 -13.9856070 -36.76921

21 -105.26392 -11077.0561 25.13792 -2.8764302 21.99208

22 -42.25181 -6535.93198 -28.90650 -0.6780194 -81.17452

23 -23.48250 8588.72182 -24.69102 -10.5264270 98.53513

24 -22.02992 -2746.17455 -28.97507 -3.9321943 -61.44253

25 -96.83088 -13585.0389 21.44094 0.1068055 -105.29563

26 23.37219 1629.69226 -70.40249 -0.2489874 24.03229

27 -55.98897 -4920.35123 -21.85021 -16.9278863 -83.30660

28 -20.54845 -3347.58797 -21.09412 -17.5702044 -25.59050

29 -27.89210 22.59182 -50.86425 -1.8927016 -28.86773

30 -22.97592 21.96230 72.41534 -1.5119588 -50.40413

31 -24.10040 -9823.50739 -21.57770 -21.2442108 -152.87744

32 -32.40460 -8516.77679 -29.26409 -12.2632610 -52.48250

33 23.60827 22.84979 -24.32695 4.4984370 -23.39450

34 -26.49978 -6382.57298 -25.74306 -5.7309749 -45.19601

35 -34.31020 -10126.6211 -28.26885 -2.2017806 -57.15653

36 21.42460 -521.12242 -61.60648 -12.8495331 -162.49988

Table 4. Linear predictionvalues r| for GLM low/not low (training data set)
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Index Pressure

Model

Power

Model

Gas Ratio

Model

Total Gas

Flow Model

Gap Spacing
Model

13 3.188687e-14 5.350844e-10 0.487563992 2.220446e-16 2.220446e-16

14 l.OOOOOOe+00 l.OOOOOOe+00 0.475197485 l.OOOOOOe+00 l.OOOOOOe+00

15 2.220446e-16 l.OOOOOOe+00 0.008713038 2.220446e-16 l.OOOOOOe+00

16 7.017781e-ll l.OOOOOOe+00 0.210839644 1.294614e-14 2.220446e-16

17 2.220446e-16 2.220446e-16 0.689337843 2.220446e-16 l.OOOOOOe+00

18 2.919514e-10 2.906081e-ll 0.211297609 1.945902e-14 2.220446e-16

19 2.220446e-16 l.OOOOOOe+00 0.617946059 2.220446e-16 1.833095e-10

20 l.OOOOOOe+00 9.994354e-ll 0.423288412 2.156852e-ll 2.220446e-16

21 l.OOOOOOe+00 2.220446e-16 0.301307599 2.220446e-16 l.OOOOOOe+00

22 1.074254e-13 1.806034e-ll 0.086359723 1.405923e-ll 2.220446e-16

23 l.OOOOOOe+00 l.OOOOOOe+00 0.999026214 3.594504e-10 2.220446e-16

24 2.220446e-16 1.349633e-ll 0.086325412 2.220446e-16 2.220446e-16

25 l.OOOOOOe+00 2.220446e-16 0.113340570 l.OOOOOOe+00 l.OOOOOOe+00

26 2.472939e-10 l.OOOOOOe+00 0.363095368 2.220446e-16 2.220446e-16

27 1.970609e-10 9.302681e-14 0.304909553 1.238831e-10 2.220446e-16

28 2.220446e-16 3.735528e-ll 0.410190833 2.220446e-16 l.OOOOOOe+00

29 l.OOOOOOe+00 l.OOOOOOe+00 0.864303329 l.OOOOOOe+00 8.096171e-10

30 l.OOOOOOe+00 2.220446e-16 0.999536945 l.OOOOOOe+00 2.220446e-16

31 2.220446e-16 4.684295e-14 0.250188648 l.OOOOOOe+00 2.220446e-16
32 4.626762e-10 6.717656e-ll 0.248944741 8.827808e-10 1.902038e-10

33 5.350060e-ll l.OOOOOOe+00 0.126024616 l.OOOOOOe+00 2.591921e-10

34 2.220446e-16 9.034801e-12 0.152109727 2.220446e-16 2.220446e-16

35 3.505705e-ll 9.028168e-ll 0.117420232 6.559987e-16 2.220446e-16

36 2.220446e-16 l.OOOOOOe+00 0.452765499 l.OOOOOOe+00 l.OOOOOOe+00

Table 5. Fitted probability values, p, for GLM high/not high (training data set)
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Index Pressure Power Gas Ratio Total Gas Gap Spacing
Model Model Model Flow Model Model

13 8.430285e-ll 1.639389e-12 0.487563992 2.220446e-16 2.915213e-10

14 2.220446e-16 2.220446e-16 0.475197485 l.OOOOOOe+00 2.220446e-16

15 l.OOOOOOe+00 2.220446e-16 0.008713038 2.220446e-16 3.059171e-ll

16 3.364198e-13 2.220446e-16 0.210839644 1.294614e-14 2.374089e-10

17 l.OOOOOOe+00 l.OOOOOOe+00 0.689337843 2.220446e-16 1.086030e-10

18 2.220446e-16 8.378143e-13 0.211297609 1.945902e-14 2.220446e-16

19 l.OOOOOOe+00 2.220446e-16 0.617946059 2.220446e-16 l.OOOOOOe+00

20 2.220446e-16 4.023557e-ll 0.423288412 2.156852e-ll 2.220446e-16

21 2.220446e-16 l.OOOOOOe+00 0.301307599 2.220446e-16 2.220446e-16

22 2.220446e-16 2.792984e-13 0.086359723 1.405923e-ll 2.220446e-16

23 6.33401 Oe-11 1.891590e-ll 0.999026214 3.594504e-10 l.OOOOOOe+00

24 2.707254e-10 2.607868e-13 0.086325412 2.220446e-16 2.220446e-16

25 2.220446e-16 l.OOOOOOe+00 0.113340570 l.OOOOOOe+00 2.220446e-16

26 l.OOOOOOe+00 2.220446e-16 0.363095368 2.220446e-16 l.OOOOOOe+00

27 2.220446e-16 3.240207e-10 0.304909553 1.238831e-10 2.220446e-16

28 1.191031e-09 6.901445e-10 0.410190833 2.220446e-16 2.220446e-16

29 7.702221e-13 2.220446e-16 0.864303329 l.OOOOOOe+00 l.OOOOOOe+00

30 1.051200e-10 l.OOOOOOe+00 0.999536945 l.OOOOOOe+00 l.OOOOOOe+00

31 3.414510e-ll 4.255218e-10 0.250188648 l.OOOOOOe+00 2.220446e-16

32 8.450061e-15 1.953284e-13 0.248944741 8.827808e-10 2.220446e-16

33 l.OOOOOOe+00 2.722316e-ll 0.126024616 l.OOOOOOe+00 l.OOOOOOe+00

34 3.099494e-12 6.605861e-12 0.152109727 2.220446e-16 2.220446e-16

35 1.256813e-15 5.284365e-13 0.117420232 6.559987e-16 2.220446e-16

36 l.OOOOOOe+00 2.220446e-16 0.452765499 l.OOOOOOe+00 2.220446e-16

Table 6. Fitted probability values, p, for GLM low/not low (training data set)
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Lam TCP 9600 DOE Data

Sensor

Signal
Pressure

Model

TCP (Top)
Power

RF (Bottom)

Power

Gas Ratio

Model

Total Gas

Flow Model

Intercept 126808.3 571126.5 -2213.071 1028127 -8120.773

Endpoint A -0.1525693 0.4750922 -0.00043223 -3.783755 0.0

Endpoint B 0.01247271 0.004142023 0.002598772 -0.1269219 0.0

Measured

Pressure

0.0 0.0 0.0 0.0 -0.00082065

Measured

Power

-24.96604 -11.05698 0.0 0.0 0.0

TCP Tune -0.1995803 0.0 0.01170266 -1.012942 -3.2174e-06

TCP Load 0.0 0.0 0.004482656 0.0 0.001655944

TCP

Impedance

0.0 -0.6840775 -0.00460416 0.0 0.0

RF Tune 0.0 0.0 0.0 -0.3779512 0.0

RF Load 0.6559789 0.0 0.0 1.132243 0.0

RF

Impedance

-0.1540733 0.1709703 0.0 -0.3108275 0.00682788

RF Phase -0.0054989 0.0 0.0 0.1734938 -0.00073575

Voltage 0.0 0.0 0.0 0.0 0.0

DC Bias -127.5749 -570.082 1.936264 -1021.112 8.068185

Table 7.CoefFicients a (Intercept) and p (Sensor Signals) for GLM high/not high
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Sensor

Signal
Pressure

Model

TCP (Top)
Power

RF (Bottom)
Power

Gas Ratio

Model

Total Gas

Flow Model

Intercept 10215.83 1184932 13230.52 -145190.1 112480.7

Endpoint A -0.2632891 -2.167433 -0.00339255 -0.00675703 0.0

Endpoint B 0.06479333 -0.06077437 0.000564964 0.02157689 0.0

Measured

Pressure

0.0 0.0 0.0 0.0 -0.00805184

Measured

Power

-0.3290491 -46.04254 0.0 0.0 0.0

TCP Tune 0.1898102 0.0 0.002906738 0.2725461 0.02121397

TCP Load 0.0 0.0 0.001146442 0.0 0.01426199

TCP

Impedance

0.0 0.6234987 -0.00381780 0.0 0.0

RF Tune 0.0 0.0 0.0 0.1548167 0.0

RF Load -0.00231974 0.0 0.0 -0.4319301 0.0

RF

Impedance

0.07064434 0.3491924 0.0 0.03831186 0.01390422

RF Phase 0.02240194 0.0 0.0 0.02674001 0.003302609

Voltage 0.0 0.0 0.0 0.0 0.0

DC Bias -15.7884 -1214.476 -13.43734 143.3538 -115.0203

Table 8. Coefficients a (Intercept) and p (Sensor Signals) forGLM low/not low
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Wafer Index Pressure

Model

TCP (Top)
Power

RF (Bottom)
Power

Gas Ratio

Model

Total Gas

Flow Model

1 -23.12199 -64.24108 -0.30782572 -195.83192 -2.53208126

2 -26.86475 -164.78477 -0.31429055 -350.22813 -2.30366961

3 233.24269 50.82985 0.11461674 23.25948 1.34853588

4 23.15793 -116.07525 -0.64710135 -213.60133 -0.52626246

6 -131.82206 -135.04470 -1.00707346 -347.96685 0.49209909

8 22.77709 -43.54938 0.05196833 -73.34766 -1.33572139

9 159.04514 -111.41799 1.74942983 -22.87685 0.34649166

11 34.09225 -75.21046 0.25185028 -254.76242 -0.25204792

12 21.90498 21.39099 -1.42943914 -73.38416 0.77783488

13 -34.01366 -22.01135 -2.05392635 -218.20932 -2.07050027

15 25.36962 22.97087 0.72954494 -681.76665 1.81700839

16 -93.85693 24.76387 0.04511707 -1047.53296 0.11841855

18 -128.77479 -21.64451 0.33786948 -332.03534 0.54109000

21 -114.23792 40.31385 -0.01653602 -1138.48021 2.17170068

22 -98.53045 -67.75134 -0.94326606 -169.26171 -1.84147286

23 63.71161 -98.41308 -0.18106859 -96.47542 -0.98227855

Table9.Linear prediction values r| for GLM high/not high (training data set
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Wafer Index Pressure

« Model ,.

TCP (Top)
Power

RF (Bottom)
Power

Gas Ratio

Model

Total Gas

Flow Model

28 49.02813 182.91577 -1.40360596 -463.42972 -1.14575883

29 -112.44885 -154.22545 -1.40631081 -294.00885 -0.62105773

31 -21.69848 -46.07821 -2.37272770 -21.90305 0.13569527

32 -66.06819 67.59136 -1.78032759 -720.58940 1.00754544

34 -62.96012 -54.29230 -2.69808094 -135.36201 -1.47335644

35 -22.91028 -156.99596 -0.97009713 48.54970 -0.40849703

37 -22.59925 -22.07748 -2.04434899 -740.85889 0.40653179

38 -112.12183 -150.59695 -2.78148839 22.65956 -0.61737315

39 -45.23462 -51.07007 -2.23417296 -22.74371 -0.31100904

40 -37.02198 -116.82895 -3.14523983 -53.87784 -1.29200035

41 -107.21968 -48.19683 -1.84242826 -554.74381 -0.06039086

42 -103.13782 -57.86249 -2.15182427 21.60124 -1.45254824

44 -108.95108 -30.40193 -2.00216818 -21.93837 -2.85360672

47 -105.27672 -282.49376 -2.51331582 23.14843 -2.37380526

49 -97.77791 -149.95261 -3.47881605 -419.34878 -1.06211947

52 -88.69589 -152.72293 -0.02749357 -354.65243 0.61849757

53 -102.20915 -87.42280 -2.06650518 -207.95393 -2.08661887

54 -177.08711 -163.66335 -1.01478493 -21.96210 -0.99845952

55 -166.27119 -181.11006 -1.41116071 -561.91903 -1.06757284

56 -94.90394 23.55405 3.65134263 -1211.02363 -0.82892780

Table 9. Linear prediction values t] for GLM high/not high (training data set
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Wafer Index Pressure

Model

TCP (Top)
Power

RF (Bottom)
Power

Gas Ratio

Model

Total Gas

Flow Model

1 -22.49493 -179.48679 -0.4641348 -86.20728 -2.9607087

2 -55.69559 -475.25637 -2.4849975 -84.45179 -23.3567141

3 -47.40044 -176.00605 -1.4242214 -235.50700 -13.7569177

4 -88.52616 39.57912 -0.7828168 -114.47777 -1.4636564

6 37.41693 137.10859 -1.4409745 -22.68929 0.1026716

8 -39.96814 217.29334 -0.1098644 -41.44805 5.3718234

9 -26.11608 245.37777 -1.0446225 -74.45533 -4.6009229

11 -62.21728 22.13977 -0.7472296 -88.36537 -1.5463064

12 -24.43930 -43.02400 -1.1080556 -136.06231 -6.5017312

13 -69.70875 -345.50959 -1.1885036 -118.16375 -4.6821806

15 -40.77277 -353.02300 -1.7447896 -133.32530 -10.1973239

16 24.29124 -380.52487 -1.6425716 -44.88466 -12.5920431

18 51.25104 22.05788 -0.5960765 -35.82273 -1.0966399

21 23.25408 -302.25929 -1.8216777 -57.17682 -8.2047600

22 23.86183 21.02750 -0.6573965 -22.50254 0.3237691

23 -61.03758 117.02024 -1.0345026 -74.82388 -6.9701883
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Wafer Index Pressure

Model

TCP (Top)
Power

RP (Bottom)
Power

Gas Ratio

Model

Total Gas

Flow Model

28 -101.90259 -336.23003 0.3264096 -175.41340 7.2237131

29 -21.31181 -24.94111 -1.3158827 -76.30005 -8.7020739

31 -61.75863 -22.19272 -1.2014275 -130.16767 0.0308671

32 -23.27054 -485.97983 -2.3686081 -104.41596 -12.7361656

34 -67.21301 -77.86475 -0.8581280 -104.86872 -0.3490551

35 -45.40865 361.64055 -0.5672419 -55.57780 1.0032438

37 50.58500 -22.34782 -2.3767763 -22.97924 -21.9153101

38 22.43172 449.44605 -0.8808015 -22.96400 -2.9550986

39 -53.40477 -211.21427 -1.8249431 -128.99438 -13.9824443

40 -77.59026 -234.41778 -2.2972119 -121,65839 -13.0518982

41 -36.28335 -213.09400 -1.6004555 -81.59023 -7.4951353

42 -25.41597 -20.74548 -0.8895970 -63.76137 -1.1136333

44 -66.34598 -322.61038 -0.4614485 -93,07087 -1.7213092

47 -77.62354 239.56230 -1.4623047 -22.64447 -8.8414534

49 -114.07724 -268.92563 -2.9495072 -78.43454 -23.1217399

52 -22.73295 570.83240 -0.3018914 23.53215 1.2887924

53 -69.62763 -203.98377 -1.0461081 -73.50866 -6.8050103

54 40.86102 402.55365 -0.5182663 22.05232 -0.7210980

55 21.81938 -51.57152 -1.4224097 -23.25576 -13.9576160

56 125.58630 -703.09463 -1.5169249 23.31366 -23.5914287

Table10. Linear prediction values t] for GLM low/not low (training data set)

245



Wafer

Index

Pressure

Model

TCP (Top)
Power

RF (Bottom)
Power

Gas Ratio

Model

Total Gas

Flow Model

1 9.083388e-ll 2.220446e-16 0.42364554 2.220446e-16 0.07363954

2 2.151718e-12 2.220446e-16 0.42206781 2.220446e-16 0.09081950

3 l.OOOOOOe+00 l.OOOOOOe+00 0.52862286 l.OOOOOOe+00 0.79389016

4 l.OOOOOOe+OO 2.220446e-16 0.34364304 2.220446e-16 0.37138903

6 2.220446e-16 2.220446e-16 0.26755297 2.220446e-16 0.62060080

8 l.OOOOOOe+00 2.220446e-16 0.51298916 2.220446e-16 0.20821455

9 l.OOOOOOe+00 2.220446e-16 0.85188087 1.160677e-10 0.58576656

11 l.OOOOOOe+00 2.220446e-16 0.56263187 2.220446e-16 0.43731950

12 l.OOOOOOe+00 l.OOOOOOe+00 0.19318609 2.220446e-16 0.68521329

13 1.690663e-15 2.757978e-10 0.11365625 2.220446e-16 0.11199727

15 l.OOOOOOe+00 l.OOOOOOe+00 0.67470540 2.220446e-16 0.86020677

16 2.220446e-16 l.OOOOOOe+00 0.51127736 2.220446e-16 0.52957009

18 2.220446e-16 3.980241e-10 0.58367290 2.220446e-16 0.63206594

21 2.220446e-16 l.OOOOOOe+00 0.49586609 2.220446e-16 0.89767928

22 2.220446e-16 2.220446e-16 0.28024109 2.220446e-16 0.13687719

23 l.OOOOOOe+00 2.220446e-16 0.45485612 2.220446e-16 0.27243990

Table 11. Fitted probability values, p, for GLM high/not high (training data set
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Wafer

Index

Pressure

Model

TCP (Top)
Power

RF (Bottom)

Power

Gas Ratio

Model

Total Gas

Flow Model

28 l.OOOOOOe+00 l.OOOOOOe+00 0.19724452 2.220446e-16 0.24126460

29 2.220446e-16 2.220446e-16 0.19681659 2.220446e-16 0.34954093

31 3.771122e-10 2.220446e-16 0.08527613 3.073438e-10 0.53387186

32 2.220446e-16 l.OOOOOOe+00 0.14426269 2.220446e-16 0.73253951

34 2.220446e-16 2.220446e-16 0.06308669 2.220446e-16 0.18643299

35 1.122515e-10 2.220446e-16 0.27486114 l.OOOOOOe+00 0.39927256

37 1.532044e-10 2.581501e-10 0.11462463 2.220446e-16 0.60025598

38 2.220446e-16 2.220446e-16 0.05833274 l.OOOOOOe+00 0.35037912

39 2.220446e-16 2.220446e-16 0.09672344 1.325966e-10 0.42286846

40 2.220446e-16 2.220446e-16 0.04127925 2.220446e-16 0.21551442

41 2.220446e.l6 2.220446e-16 0.13676436 2.220446e-16 0.48490687

42 2.22b446e-16 2.220446e-16 0.10416087 l.OOOOOOe+00 0.18960970

44 2.220446e-16 6.260539e-14 0.11897547 2.966790e-10 0.05449518

47 2.220446e-16 2.220446e-16 0.07492995 l.OOOOOOe+00 0.08519211

49 2,220446e-16 2.220446e-16 0.02992103 2.220446e-16 0.25690463

52 2.220446e-16 2.220446e-16 0.49312704 2.220446e-16 0.64987677

53 2.220446e-16 2.220446e-16 0.11239522 2.220446e-16 0.11040422

54 2.220446e-16 2.220446e-16 0.26604448 2.897216e-10 0.26924441

55 2.220446e-16 2.220446e-16 0.19605105 2.220446e-16 0.25586494

56 2.220446e-16 l.OOOOOOe+00 0.97470043 2.220446e-16 0.30387183

Table 11. Fittedprobability values, \i, for GLMhigh/not high(training data set
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Wafer

Index

Pressure

Model

TCP (Top)
Power

RF (Bottom)
Power

Gas Ratio

Model

Total Gas

Flow Model

1 1.700491e-10 2.220446e-16 0.38600540 2.220446e-16 0.07363954

2 2.220446e-16 2.220446e-16 0.07691662 2.220446e-16 0.09081950

3 2.220446e-16 2.220446e-16 0.19400065 l.OOOOOOe+00 0.79389016

4 2.220446e-16 l.OOOOOOe+00 0.31371313 2.220446e-16 0.37138903

6 l.OOOOOOe+00 l.OOOOOOe+00 0.19139448 2.220446e-16 0.62060080

8 2.220446e.l6 l.OOOOOOe+00 0.47256151 2.220446e-16 0.20821455

9 4.549142e-12 l.OOOOOOe+00 0.26025906 1.160677e-10 0.58576656

11 2.220446e-16 l.OOOOOOe+00 0.32142527 2.220446e-16 0.43731950

12 2.433026e-ll 2.220446e-16 0.24823356 2.220446e-16 0.68521329

13 2.220446e-16 2.220446e-16 0.23352667 2.220446e-16 0.11199727

15 2.220446e-16 2.220446e-16 0.14870558 2.220446e-16 0.86020677

16 l.OOOOOOe+00 2.220446e-16 0.16211545 2.220446e-16 0.52957009

18 l.OOOOOOe+00 l.OOOOOOe+00 0.35524185 2.220446e-16 0.63206594

21 l.OOOOOOe+00 2.220446e-16 0.13923268 2.220446e-16 0.89767928

22 l.OOOOOOe+00 l.OOOOOOe+00 0.34132468 2.220446e-16 0.13687719

23 2.220446e-16 l.OOOOOOe+00 0.26221211 2.220446e-16 0.27243990

Table 12. Fitted probability values, p, for GLM low/not low (training data set)
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Wafer

Index

Pressure

Model

TCP (Top)
Power

RF (Bottom)

Power

Gas Ratio

Model

Total Gas

Flow Model

28 2.220446e-16 2.220446e-16 0.58088553 2.220446e-16 0.24126460

29 5.551367e.l0 1.473043e-ll 0.21150411 2.220446e-16 0.34954093

31 2.220446e-16 2.300509e-10 0.23122138 3.073438e-10 0.53387186

32 7.829510e-ll 2.220446e-16 0.08559802 2.220446e-16 0.73253951

34 2.220446e-16 2.220446e-16 0.29773062 2.220446e-16 0.18643299

35 2.220446e-16 l.OOOOOOe+00 0.36187350 l.OOOOOOe+00 0.39927256

37 l.OOOOOOe+00 1.970003e-10 0.08496085 2.220446e-16 0.60025598

38 l.OOOOOOe+00 l.OOOOOOe+00 0.29301171 l.OOOOOOe+00 0.35037912

39 2.220446e-16 2.220446e-16 0.13884180 1.325966e-10 0.42286846

40 2.220446e-16 2.220446e-16 0.09135413 2.220446e-16 0.21551442

41 2.220446e-16 2.220446e-16 0.16791797 2.220446e-16 0.48490687

42 9.161906e-12 9.780352e-10 0.29119300 l.OOOOOOe+00 0.18960970

44 2.220446e-16 2.220446e-16 0.38664225 2.966790e-10 0.05449518

47 2.220446e-16 l.OOOOOOe+00 0.18811507 l.OOOOOOe+00 0.08519211

49 2.220446e-16 2.220446e-16 0.04975981 2.220446e-16 0.25690463

52 1.340310e-10 l.OOOOOOe+00 0.42509517 2.220446e-16 0.64987677

53 2.220446e-16 2.220446e-16 0.25997316 2.220446e-16 0.11040422

54 l.OOOOOOe+00 l.OOOOOOe+00 0.37325773 2.897216e-10 0.26924441

55 l.OOOOOOe+00 2.220446e-16 0.19428409 2.220446e-16 0.25586494

56 l.OOOOOOe+00 2.220446e-16 0.17991478 2.220446e-16 0.30387183

Table 12. Fitted probability values, p, for GLM low/not low (training data set)
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Appendix G

Fault Category Pattern 1 Pattern 2 Pattern 3-1 Pattern 3-2

# Description % prob % prob % prob % prob

1 baseline 0.4444 0.4222 0 0 0 0 0 0

2 HH extreme 0 0 0 0.2800 0 0 0 0

3 LL extreme 0 0 1.0000 1.0000 0.8000 0.8000 0 0

4 HL extreme 0.2500 0.2000 0 0 0 0 0.8667 0.8667

5 LH extreme 0.1667 0.1167 0 0 0 0 0 0

6 HH midrange 0 0 1.0000 0.6000 0 0 0.0556 0.0333

7 LL midrange 0.1250 0.0750 0 0 0 0 0 0

8 HL midrange 0.5000 0.4167 0 0 0 0 0 0

9 LH midrange 0.2500 0.1750 0 0.2400 0 0 0 0.0600

Fault Category Pattern 4-1 Pattern 4-2 Pattern 4-3 Pattern 5

# Description % prob % prob % prob % prob

1 baseline 0.1481 0.0889 0 0.2133 0 0.0133 1.0000 0.6400

2 HH extreme 0.5000 0.4750 0 0 0 0 1.0000 0.8000

3 LL extreme 0 0 1.0000 0.9000 0 0.2400 0 0

4 HL extreme 0 0 0.5417 0.6167 0.8750 0.7383 0 0

5 LH extreme 0 0 0 0 0 0 1.0000 1.0000

6 HH midrange 0 0 0 0 0 0 0 0.4800

7 LL midrange 0.8889 0.5333 0 0 0 0 1.0000 1.0000

8 HL midrange 0 0.0667 0 0 0 0 0 0

9 LH midrange 0.3889 0.4733 0 0 0 0 1.0000 1.0000

Table 1. Percent ofobservations and average probability linking fault group to pattern
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Fault Category Pattern 6 Pattern 7 Pattern 8 Pattern 9

# Description % prob % prob % prob % prob

1 baseline 0 0 0 0 0 0 0 0.3200

2 HH extreme 0 0.1600 0 0 0 0 0 0

3 LL extreme 0.5000 0.5400 0 0 0 0 0 0

4 HL extreme 0.5556 0.5467 0.5556 0.3556 0 0.4800 0 0

5 LH extreme 0 0 0 0 0 0 0 0

6 HH midrange 1.0000 1.0000 0.1111 0.3600 0 0.2133 0 0

7 LL midrange 0 0.2400 0 0 0 0 0.2500 0.3700

8 HL midrange 0 0 1.0000 0.9333 1.0000 1.0000 0 0

9 LH midrange 0 0.3600 0 0 0 0 0.5000 0.7400

Table2. Percent ofobservations and average probability linking fault group to pattern
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Fault Category Pattern 1 Pattern 2

Description P(shape) P(pos) P(match) P(shape) P(pos) P(match)

0.8000 0 0 0.6000 0 0

1 baseline 0.8000 0 0 0.6000 0 0

0.8000 0.2500 0.2000 0 0.8000 0

tune 0.6000 1.0000 0.6000 0.6000 0 0

10 capacitor 0.4500 0 0 0 0 0
disabled

0.6000 1.0000 0.6000 0.6000 0 0

load 0.8000 0 0 0.6000 0 0

11 capacitor 0.8000 0.7500 0.6000 0.6000 0 0
disabled

0.8000 0 0 0.6000 0 0

1 baseline 0.8500 0.6000 0.5100 0.6000 0 0

Fault Category Pattern 3-1 Pattern 3-2

# Description P(shape) P(pos) P(match) P(shape) P(pos) P(match)

0.8000 0 0 0.8000 0 0

1 baseline 0.6000 0 0 0.6000 0 0

0.8000 0 0 0.8000 0 0

tune 0.6000 0 0 0.6000 0 0

10 capacitor 0.6000 0 0 0.6000 0 0
disabled

0.6000 0 0 0.6000 0 0

load 0.8000 0.1000 0.0800 0.8000 0.6000 0.4800

11 capacitor 0.8000 0 0 0.8000 1.0000 0.8000
disabled

0.8000 0 0 0.8000 1.0000 0.8000

1 baseline 0.8000 0 0 0.8000 0.8000 0.6400

Table 3. Probabilities ofmatching pattern shape, position, and overall fit - failure data
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Fault Category Pattern 4-1 Pattern 4-2

# Description P(shape) P(pos) P(match) P(shape) P(pos) P(match)

1 baseline

0.6000 0 0 0.6000 0 0

0.6000 0 0 0.6000 0 0

0.6000 0.8000 0.4800 0.6000 0 0

10

tune

capacitor

disabled

0.3333 0 0 0.3333 0 0

0.3333 0 0 0.3333 0 0

0.3333 0 0 0.3333 0 0

11

load

capacitor

disabled

0.6000 0 0 0.6000 0 0

0.6000 0 0 0.6000 0 0

0.6000 0 0 0.6000 0 0

1 baseline 0.6000 0 0 0.6000 0 0

Fault Category Pattern 4-3 Pattern 5

# Description P(shape) P(pos) P(match) P(shape) P(pos) P(match)

1 baseline

0.6000 0 0 0.8000 0 0

0.6000 0 0 0.8000 0 0

0.6000 0 0 0.8000 0 0

10

tune

capacitor

disabled

0.3333 0 0 0.6000 1.0000 0.6000

0.3333 0 0 0.6000 1.0000 0.6000

0.3333 0 0 0.6000 1.0000 0.6000

11

load

capacitor
disabled

0.6000 0 0 0.8000 0 0

0.6000 0 0 0.8000 0 0

0.6000 0 0 0.8000 0 0

1 baseline 0.6000 0 0 0.8000 0 0

Table 4. Probabilities of matching pattern shape, position, andoverall fit - failure data
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Fault Category Pattern 6 Pattern 7

# Description P(shape) P(pos) P(match) P(shape) P(pos) P(match)

1 baseline

0.6000 0.8667 0.5200 0.8000 0.8000 0.6400

0.6000 1.0000 0.6000 0.7333 0.8000 0.5867

0.6000 0.6000 0.3600 0.8000 0.8000 0.6400

10

tune

capacitor

disabled

0.6000 0.6667 0.4000 0 0.8000 0

0.6000 0 0 0 0 0

0.6000 0.8000 0.4800 0 0.8000 0

11

load

capacitor
disabled

0.6000 0.6667 0.4000 0.7333 0 0

0.6000 1.0000 0.6000 0.7333 0 0

0.6000 0.7333 0.4400 0.8667 0 0

1 baseline 0.6000 0.8667 0.5200 1.0000 0.8000 0.8000

Fault Category Pattern 8 Pattern 9

# Description P(shape) P(pos) P(match) P(shape) P(pos) P(match)

1 baseline

0.6000 0.6000 0.3600 0.3000 0 0

0.6000 0.6000 0.3600 0 0 0

0.6000 0 0 0.3000 1.0000 0.3000

10

tune

capacitor

disabled

0.6000 0 0 0 0 0

0.6000 0 0 0 0 0

0.6000 0 0 0 0 0

11

load

capacitor

disabled

0.2000 0.2000 0 0.3000 0.3000 0.1800

0 0 0 0 0 0

0.6000 0 0 0 0 0

1 baseline 0.6000 1.0000 0.6000 0 0 0

Table 5. Probabilities of matching pattern shape, position, and overall fit - failure data
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