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Abstract

Probabilistic Modeling for Fault Classification of Plasma Equipment
by
Anna Maria Ison
Doctof of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Costas J. Spanos, Chair

The continual push of performance limits for upcoming technology generations has
resulted in a flurry of activity to improve manufacturing practices in the semiconductor
industry. While the advent of high density, low pressure plasma etch systems has enabled
chip makers to meet current performance demands without sacrificing throughput, these
benefits are accompanied by increased complexity requiring good process characteriza-

tion, monitoring and control.

A comprehensive model of the plasma etch equipment based on sensor data is con-
structed, which identifies modes of behavior corresponding to normal operation and spe-
cific failures. Plasma etching is viewed as a complex process exhibiting hybrid behavior -
that is, the process contains both continuous and discrete dynamics. The continuous
machine state, characterized by real-time tool signals under normal operating conditions,
changes abruptly as a result of machine failures. However, the failures themselves are best
classified into discrete groups corresponding to a particular type of faulty behavior. Thus,
at a higher level, the state of the process can be described as nominal (i.e. no machine fail-
ures), or faulty, where the faulty state is further subdivided into categories corresponding
to different causes or failure modes. At a lower level, the continuous dynamics evolve
depending on the discrete state of the process. The description of the process is further
complicated since, due to the nature of single wafer processing, these continuous dynamics
are evolving over different time scales (a) on a second by second basis, within the process-

ing time of a wafer (b) from wafer to wafer, and (c) from lot to lot.



Time-series and linear modeling techniques are used to characterize the continuous
behavior of the machine at three time-scales. The decomposition into different time-scales
also facilitates the development of a robust procedure for fault detection using statistical
process control techniques. To enhance the fault detection mechanism, models are devel-
oped which capture long term trends in the signals, visible on a lot to lot basis, which are
mainly caused by changing machine dynamics due to machine aging. Methods for feature
selection, extraction and classification are investigated to determine the limitations of cur-
rent sensor data, and whether such data can effectively be used to identify discrete failure
modes. Mixture models are built which provide likelihood estimates for assignment to a
fault category based on sensor variables. These are combined in a graphical model encod-

ing the relationships among the variables of interest.
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1 Introduction

1.1. Motivation

The competition to acquire and retain the forefront position in the semiconductor
industry is driven by the dual goals of advancing technology while simultaneously reduc-
ing the cost per function. Achieving tighter specifications on smaller feature sizes would
not be possible without developments in process technology, inevitably resulting in more
complex processes and higher investment in fabrication tools. With such a heavy invest-
ment at stake, there is clearly a need to improve current manufacturing practices - monitor-
ing and control of processes, data analysis, management and decision making to optimize

overall equipment effectiveness.

1.1.1. Growth in the Semiconductor Industry

Over 75% of the world’s semiconductor consumption is attributed to the production of
silicon complementary metal-oxide semiconductor (CMOS) integrated circuits [1]. The
wide gamut of electronic products that has resulted is due to a large extent to the staggering
but steady growth of an industry, reported at an annual rate of 15% for the past 35 years
[1]. Maintaining the historic productivity growth of 25-30% reduction in cost per function
for IC technology characteristics despite escalating factory costs of 20% per year has
become a growing concern among both manufacturers and equipment suppliers. In addi-
tion, new technical challenges posed by process complexity and the increasing number of
process steps required to meet more stringent performance specifications are threatening
the industry’s ability to maintain the 25-30% manufacturing cost learning curve. Tradition-
ally, the factors driving industry growth have included feature size, wafer diameter, yield,
and factory productivity. With fewer gains arising from reductions in feature size, and

larger wafer diameters, improvements in factory productivity, equipment and operations
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are even more critical. Consequently, new emphasis has been placed on factory integration

to fully exploit equipment and operational productivity.

1.1.2. Investment in Fabrication Facilities
To stay on the desired cost/performance track, the packaged unit cost per function must
decrease 24% per year for microprocessors, and 29% per year for DRAMs [2]. Effectively,

this means that wafer cost/cm? must be optimized with each generation. Factory capital
costs have a major effect on the cost/cm?, increasing at a compounded annual growth rate

(CAGR) of 20%, which translates to capital cost/cm? increases of 15% per year [2]. Cou-
pled with the rising cost of complex tools, growing process complexity, and wafer size
increases, tool capital costs are projected to reach 90% of the total factory investment. This
is no small amount considering that the cost of new semiconductor fabrication factories is

viewed to approach $3 billion by the year 2000, and $10 billion by the year 2005 .

1.1.3. Process Complexity

The demands posed by IC design requirements, increasing wafer size and value, and
process physics have lead to greater complexity; the number of process steps to complete
an IC is projected to more than double by the year 2012 [3]. Clearly, as the amount of data
collected from the process increases, the efficacy and ability of fab engineers to make deci-
sions and extract relevant information is a key aspect to managing this complexity. To
reach these goals, it is estimated that the productivity of computerized decision support

tools must improve over six-fold in the next 15 years.

1.1.4. Process Control to Increase Productivity

Analyses conducted by SEMATECH on the productivity for 250nm and 180nm feature
sizes and 200mm and 300mm wafer diameters reveals that reductions in feature size and
increases in wafer diameter will not be sufficient to maintain the desired rate of 25-30%
reduction in cost/function for IC technology characteristics [1]. To improve overall equip-
ment effectiveness (OEE), advancements are needed in process and equipment control
techniques to detect and correct faults, reduce monitor wafer usage, and optimize tool
throughput.



1.2, Thesis Objective

The objective of this thesis is to address some of the challenges threatening the produc-
tivity growth rate of the industry by enhancing overall equipment effectiveness. This is
accomplished through the development of better monitoring, process characterization,
decision making and management of complexity for a bottleneck family of tools - plasma
etch equipment. To implement these goals, various models are employed to capture
machine behavior while statistical process control techniques enable effective monitoring
of the evolution of the system. Using probability and statistics as a foundation provides
tools for feature selection, extraction and classification of data to infer the process state.
Finally, a unifying framework is presented to manage the complex behavior of the process

for real-time and run to run fault tolerant supervisory control.

1.2.1. Monitoring and Process Characterization for Fault Detection

Due to the nature of single wafer processing, the machine dynamics are evolving over
three different time scales-- (a) on a second by second basis, within the processing time of
a wafer, (b) from wafer to wafer, and (c) from lot to lot. In this work, long term trends over
several lots in marathon runs are investigated using appropriate modeling techniques and
data structures to deal with the vastly different time scales. Once normal operation has been
modeled and characterized, trends can be filtered out of the signals and statistical process
control (SPC) techniques can be applied to the resulting residuals to detect abnormal
behavior. The decomposition into different time scales also facilitates the development of

a robust procedure for fault detection using SPC.

1.2.2. Data Analysis and Decision Making

The detection of an out-of-control condition merely indicates the possible presence of
a fault. In order to confirm the hypothesis that a fault has occurred and to identify an assign-
able cause, a methodology to classify faults into discrete categories is developed. Identifi-
cation and classification of normal and faulty system states utilize data from various
sources. The different data types correspond to simulating small internal fluctuations
around a nominal operating point through designed experiments (DOE’s), and to actual

failure modes or faulty states, with data collected from machines diagnosed with real man-



ufacturing problems during qualification runs. Fault classification is comprised of two dis-
tinct steps: (1) feature selection and extraction and (2) building a structure to integrate the
various data types and classify them into useful categories. The final diagnostic model pro-
vides estimates of likelihood that the machine has made a transition to a faulty state. This
structure is meant to function as a decision support tool to enhance the engineer’s ability

to make crucial decisions made possible through timely identification of the machine state.

1.2.3. A Comprehensive Model
To manage the complexity of the process, a comprehensive model is developed which
characterizes the machine state, taking into account the different time scales and failure
modes. This model combines and utilizes other models for both continuous and discrete
" behavior. Time series and linear models are used to characterize the continuous behavior
of the machine. The fault detection mechanism finds abnormalities in the continuous state,
and thus detects transitions from nominal to faulty states. This framework is compatible
with current real-time and run-to-run control schemes, allowing for the development of

fault tolerant supervisory control.

1.3. Thesis Organization

Background information and a description of the plasma process, the etch tool, and sig-
nals used for process characterization and machine monitoring are presented in Chapter 2.
A description of the experiments and sensor data follows in Chapter 3. Chapter 4 discusses
modeling of long term trends and the development of robust fault detection, which
accounts for machine aging. Chapter 5 is devoted to a discussion of modeling techniques
and the construction of a framework to integrate these various methods for the purposes of
decision making. The next chapter presents the implementation and analysis results using
sensor data from plasma etch equipment. Finally, Chapter 7 summarizes this work with a

discussion of conclusions and future directions.



Etch Process and Equipment
Description

2.1. Introduction
To fully appreciate the value added by better monitoring and process characterization,
it is necessary here to develop some background regarding the process itself, as well as an

understanding of the tool that is a critical part of this manufacturing cycle.

2.2. Overview of the Plasma Etch Process

Much of the productivity gains realized in IC fabrication can be attributed to major
improvements and advances in equipment and process technologies in the etch sector. The
etching process is used in the patterning of thin films to form significant features in chips.
These features include gates and interconnect lines, and contact holes, later filled with
metal to contact the source and drain, and to connect levels of metal to one another (vias).
With the industry moving toward greater circuit integration and multilevel metallization,
the successful formation of these features is even more critical, and balancing trade-offs in
etch goals poses a bigger challenge. To keep pace with industry trends, designers have
moved to tighter geometries, more film layers per circuit and vertical circuit structures.
This in turn has resulted in a multiplicative increase in the number of film layers and etch

steps per layer.

2.2.1. Goals of Dry Etching

Over the past decade, one of the most significant improvements in the etch sector has
been the development of a single-wafer, dry-etch process (parallel plate reactor) replacing
the wet-etch, batch processing techniques that had once dominated the industry. Through

application of a voltage across two parallel plates, and with the proper mixture of gases, a



plasma of energetic electrons, photons, ions and chemically reactive species can be gener-
ated and used to etch materials. Typically, a successful etch is considered in terms of
achieving several parameters. These include high uniformity, selectivity, and etch rate,
while maintaining control of profile and CD, damage, sidewall passivation, residue and
particles [4]. Unfortunately, there is an inherent trade-off in that each of these parameters

can often only be optimized at the expense of at least one of the others.

High uniformity of the etch is desirable across the die and the wafer. This must be
accomplished in the presence of both densely packed and isolated features contained in
most die. Non-uniformity due to this condition is known as microloading. Critical dimen-
sion uniformity is crucial to maintain consistent performance in devices. Improvements in
process monitoring and control are necessary to achieve uniformity from wafer to wafer,

and from machine to machine.

Selectivity is defined as the ratio of the etch rate of one material to another, usually that
of the desired etched material to a masking layer, typically photoresist, or of some under-
lying material. Selectivity to the masking layer is important because of its effect on CD and
profile control. Furthermore, smaller feature sizes require thinner photoresist to be ade-
quately resolved, and consequently higher selectivity is necessary for smaller geometries.
Selectivity is often worse in high aspect ratio features, where etching at the bottom of a
contact slows or sometimes even stops. Edges and flat areas may be given different selec-

tivity specifications since they etch at different rates.

Throughput of the system, and hence productivity, is determined by the etch rate. How-
ever, although a high etch rate is desired, it may be accomplished at the expense of selec-

tivity and damage control.

Profile and CD control refers to forming anisotropic profiles. Achieving close to verti-
cal etched features (often at least 88-89 degree profiles for leading edge applications)
means that the packing density on a chip can be maximized, and thus profile control is cru-

cial to a successful etch [5].

Damage often occurs when there is non-uniformity in the plasma, inducing currents on

the wafer surface that can result in electrical damage. Ion bombardment can also mechan-



ically damage a film’s crystalline structure. Clearly, controlling this damage is important,

especially during gate stack formation.

Sidewall passivation occurs when carbon from photoresist combines with etching
gases or etch by-products to form a polymer that can coat the sidewalls and the bottoms of
features. Although this residue can be useful, and in fact, is sometimes even required in
order to etch anisotropic profiles, it needs to be removed after the etch. Failure to remove
residue can lead to contamination and problems during resist stripping steps. This polymer
film can also deposit on reactor walls, changing with pressure and time. The system may
~require more frequent cleaning, and more importantly, the residue can have an effect on
plasma flux and hence, etch uniformity. Factors most affecting controlling residue include

temperature, bottom RF power, backside cooling and process pressure.

Finally, particle control is extremely important and technology dependent. For

instance, a requirement specifying fewer than 0.05 particles per square cm, with particle

size determined to be smaller than 0.35 pum is not unreasonable.

2.2.2. Components of Etch
Optimizing to achieve a balance of the various parameters of dry etching - uniformity,
selectivity, etch rate, profile and CD control, damage and residue control - involves an

understanding of two different mechanisms that occur in the etching process.

etch by-products
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Figure 2-1. Etch mechanisms: chemical reaction and ion bombardment.



The first mechanism can be considered purely a chemical one in which a plasma gen-
erates reactive ions that react with the wafer surface and form volatile by-products. A care-
ful selection of the gases pumped into the plasma can bolster selectivity. However, in a
purely chemical etch, etching will occur equally in all directions, with no preferential
direction or bias. The result can lead to a highly isotropic etch. Thus, high selectivity is

achieved at the cost of profile control.

The other etching mechanism, commonly known as sputtering, is purely mechanical, a
result of the bombardment of ions on the wafer surface. An electrical bias is used to propel
the ions with a force strong enough to physically remove material. The main advantage of
this is a highly directional etch that can be used for anisotropic profiles. However, because
the mechanism is mechanical, it has poor selectivity for one material over another, and thus

a different trade-off exists.

2.2.3. Challenges for Dry Etch
The real challenge lies in achieving all etch goals through a careful balance and control
of the two mechanisms comprising the etch process. These parameters are even more dif-
ficult to achieve given the current industry trends - smaller dimensions with higher aspect
_ratios, increasing complexity in structures, multi-layer film stack etches, and new devices
requiring a wider variety in types of materials being etched. Ironically, it is because of

these very issues that all aspects of successful etching must be met and even surpassed.

In response to these trends, a number of innovations have been made to enable such
goals to be met. One major improvement has been the development of high density plasma

sources, which in turn has been driven by the desire to etch at lower pressures.

There are several key advantages to low pressure systems, including much improved
control of critical dimension (CD), and minimized microloading effects (known to cause
unwanted etch variations between areas of isolated versus dense features). Traditional etch
systems operating under higher pressures (typically ranging from 50 to 150 mT) result in
non-directional ion bombardment. In this pressure range, moving etchants in and by-prod-
ucts out of openings less than a quarter nanometer becomes very difficult. With higher

aspect ratios, the problem is amplified, and etching tends to-slow or in some cases stop at
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the bottom of the feature. The result is that the feature sidewalls bow outward. In contrast,
low pressure systems enable a longer mean free path of highly directional ions, enabling
the etching of deep channels with submicron widths. Furthermore, scattering collisions are
reduced, resulting in better profile control. Thus, etching at lower pressures is more aniso-
tropic, allowing for the use of cleaner chemistries which consequently reduces contamina-
tion. Low pressure etch systems also result in plasma by-products that are more volatile,

making their removal much easier.

Using traditional systems under lower pressures results in a drop in ion density, which
lowers the etch rate and throughput of the system. However, using a high density plasma,
high electron densities can be created at a lower bias, leading to decreased substrate
damage and often yielding etch rates exceeding those of previous methods. The high den-
sity plasma sources are more efficient in coupling input power with the plasma, generating
greater dissociation of chemical species. These sources allow manufacturers to reap the

benefits of operating at lower pressures without a loss in productivity.

Another challenge in the etch market arises from the many processes that involve dif-
ferent chemistries, with hardware and software requirements being process specific. In
general, materials to be etched in a silicon-based integrated circuit can be designated into
one of three categories- polysilicon, metals, or dielectrics. It is typical to use a chlorine-
based chemistry for etching polysilicon, silicides and metals, and a fluorine-based chem-
istry to etch oxide and nitride. Polysilicon accounts for 25 percent of the market, aluminum
and aluminum alloys comprise 31 percent, while the major share accounting for 44 percent

is taken by oxide (dielectric) etching.

Substantial growth is projected in all three etch market areas. The global market is
expected to reach 5.3 billion U.S. dollars by the year 2000 (market figures and growth rates
based on Dataquest and VLSI Research Inc.) [2].



2.3. Plasma Etch Equipment

2.3.1. High Density Plasma Sources

A variety of semiconductor fabrication processes utilize plasma generation. These
include etching, resist stripping, passivation and deposition. Plasma generation involves
inducing electron flow to ionize process gas molecules. Kinetic energy is transferred
through individual electron-gas molecule collisions. Typically, electrons are accelerated in
an electric field. In a conventional parallel plate plasma etcher, a semiconductor wafer is
placed on a lower electrode and a plasma is generated by applying radio frequency (RF)
energy between the lower and a parallel upper electrode. However, one drawback to using
an electric field normal to the wafer is that the conversion of kinetic energy to ions is inef-
ficient, especially at low frequencies and pressures under 100 mT. Most of the electron
energy is lost through electron collisions with chamber walls, or with the wafer itself,

which is not only wasteful, but can also cause wafer heating.

Various methods have been developed to make energy conversion for generating plas-
mas in semiconductor applications more efficient. One method involves microwave reso-
nance chambers that use ultra high frequencies to shorten the electron oscillation path, thus
making electron energy more likely to be transferred to process gas molecules instead of a
chamber wall or a wafer. Electron cyclotron resonance (ECR) and helicon resonance uti-
lize a controlled magnetic field external to the chamber to induce a circular electron flow
within the process gas. Although both methods are efficient in terms of energy conversion,
both also suffer the disadvantage of producing a highly non-uniform plasma. This diffi-
culty can be overcome by flowing the plasma some distance before exposure to the wafer.
However, although the additional flow path can make the plasma more uniform, it also
results in some ion recombination which reduces the effectiveness of the plasma. Further-
more, these methods have a limited pressure operating range. Microwave resonance cham-
bers operate between 1-760 Torr, while ECR chambers have a 0.0001 to 0.1 Torr range.
Additional disadvantages include the increased cost and design complexity incurred by the
need for extra flow distance, and the problem of controlling the magnetic field in ECR sys-
tems. There are other approaches to increase energy conversion efficiency - magnetically

-enhanced plasma systems and inductively-coupled electron acceleration are among these.
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Magnetically-enhanced plasma systems utilize the combined forces of a constant magnetic
field parallel to the wafer surface and a high frequency electrical field perpendicular to the
wafer surface. Electrons flow in a cycloidal corkscrew path thus increasing the distance
travelled as compared with straight path which would be due to electric field alone. Again,
although ion generation is relatively efficient, there are difficulties posed by maintaining a
large uniform magnetic field, and the system is generally limited to an operation range of
0.01 to 0.1 Torr. Inductively-coupled plasma systems also cause electrons to flow an
extended path. Two techniques fall in this category, both use alternating current to trans-
former couple energy to a gas. The first uses a ferrite magnetic core to enhance transformer
coupling between a primary winding and a secondary one which consists of a closed path
through the gas. This technique uses low frequencies - below 550 KHz. The second
employs a solenoid coil surrounding the gas to be ionized. This technique can either use
low frequencies, or frequencies in the range of 13.56 MHz. Unfortunately, neither tech-
nique provides a uniform plasma adjacent and parallel to wafer surface. Gas ionization is

non-uniform, and exposure to the wafer occurs downstream.

Inductively coupled plasma (ICP) and transformer coupled plasma (TCP) source tech-
nologies claim the ability to independently control plasma density and ion energy. To
accomplish this, the TCP technology allows separate control of plasma density generated
by the main source, while a radio frequency (RF) source below the wafer is used to control

the energy propelling the ions toward the wafer surface.

Various issues are addressed by the different source technologies, including plasma
uniformity, the width of the process window, and overall cost and complexity of the sys-
tem. Regardless of the source technology, the main benefit remains - the ability to operate
under low pressures, while maintaining a plasma sufficiently dense to sustain the high etch

rates needed to boost productivity.

2.3.2. TCP Etchers
Although data analyzed in this work were obtained from various different sources and
different machines, a significant portion of the experimental work and data collection was

conducted on plasma etchers utilizing the transformer coupled plasma (TCP) technology.
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This section is intended to give a brief description of the equipment and its operation to
provide the reader with an understanding of the experiments that follow, as well as a feel-

ing for what the sensor signals mean.

2.3.2.1. Equipment Description

Much of the data collected comes from Lam’s TCP product line of high density, low
pressure etch systems. The machines are fully automated, single-wafer plasma etching sys-
tems using a transformer coupled plasma source. This technology is capable of generating
high flux uniform, planar plasma over a broad pressure range with little or no directed ion
energy. The system includes a reaction chamber bounded by a dielectric shield or window
with a TCP coil and an RF source coupled to the coil. The etching process occurs as wafers
are exposed to the plasma generated in the reaction chamber under vacuum conditions. As
the etching begins, gases are mixed in an orbital gas panel and pumped into the chamber
through a ring of gas outlets (gas ring) around a lower electrode. RF power is delivered by
the TCP coil and tuned by the upper RF match assembly, ionizing the gases. Similarly, RF
power is delivered by the lower electrode and tuned by the lower RF match assembly. A

DC bias is induced on the wafer to control the ion direction and energy.

The combination of chemical reactions and ion bombardment on the wafer surface
causes removal of material not protected by a photoresistive mask. During this etching pro-
cess, the plasma and RF electrical field are completely contained in the reaction chamber.
A turbo pump is used to remove waste material from the chamber and to pump unreacted

gases out of the chamber after the process is completed.

To provide a consistent etch environment, the reaction chamber is kept under vacuum
at all times (except during maintenance) between two load locks. The entrance and exit
loadlocks act as buffers between the cleanroom environment and the chamber, thus
enabling the chamber to remain at vacuum for better etch repeatability. Vacuum pressure
is controlled through a chamber plenum connected to the back of the chamber. The backing
pump supplies vacuum to the turbo pump through a turbo isolation valve. A control gate
valve controls vacuum supplied by the turbo pump to the chamber plenum. There is also a

bypass isolation valve which can be used to supply vacuum directly from the backing pump
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to the chamber; however this is kept closed during normal operation. First, the pressure is
brought down to 3 Torr through the coordinated action of both isolation valves. Then the
control gate valve is opened to supply vacuum from the turbo pump. Temperature is regu-

lated with cartridge heaters in the upper chamber assembly.

RF RF Sense Upper RF Sensor Signals
Generator PCB Match Elements \ Tune Capacitor Position
Load Capacitor Position
Autotune .
PCB TCF coil / Endpoint
/ Impedance
“ Phase
System Process Voltage
Computer Chamber Measured Power
[~~~ Measured Pressure
- DC bias
DIP
PCB
Tune Capacitor Position
: Load Capacitor Position
RF RF Sense Lower RF / P
Generator PCB Match Elements

Figure 2-2. Components of a TCP plasma etcher and associated sensor signals

The RF system is comprised of two RF match assemblies and two RF generators, for
the TCP coil and the lower electrode respectively. The RF generators are capable of sup-

plying as much as 1250 watts at 13.56 MHz power.

The RF generators use an impedance matching circuit (RF match assembly) to maxi-
mize power transfer and a tuning circuit to provide for resonance at the operating frequency
of 13.56 MHz.
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2.3.2.2. System Operation

The system controls the etch process through pre-programmed recipes determined by
user-defined, software controlled settings. Etching recipes are comprised of a series of
steps to determine gas flow rates, chamber pressure, RF power, gap spacing, chamber tem-
perature and helium backside cooling pressure. The values can be programmed as a recipe

so that operators may select a desired recipe to start a specific etching process.

There are three basic process steps in an etching recipe. The first is a stability step used
to stabilize the environment- the chamber pressure, position of the gap, and process gas
flows must all be stable before the RF power is turned on. This step may also be utilized
between recipe steps, where process chemistries or pressure may be changing. Stabiliza-
tion is followed by the etch step, where chemical reactions and ion bombardment generated
by the plasma and ignited by the power cause the wafer to be etched. An overetch step may
also be employed to continue etching after the endpoint. In this case, a stability step may
be inserted between the etch and overetch steps. Finally, the pump and purge step rids the

chamber of gases and by-products generated during the etch step.

The chemistry and dynamics of the etch step are determined by six input parameters
specified by the user. These basic settings are listed in Table 2-1. In addition, users can pro-
gram RF tuning parameters to determine how impedance match conditions (between the

chamber and the generator) will be met.

Parameter name Units Parameter controls...
Pressure mt (millitorr) chamber pressure
RF Top power W (watts) RF power to TCP coil
RF Bottom power W (watts) RF power to lower electrode
Gap cm (centimeters) gap spacing
Gas 1-8 ccm (cubic cm/min.) process gas #1-8 flow rate
He clamp t (torr) helium cooling pressure

Table 2-1. Recipe Parameters

Because the chemistry and dynamics of the etch step are determined by the various

equipment settings, the adjustment of these settings can be the key to achieving desired
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goals. In particular, the width of the process window determines how far one can push var-
ious equipment settings- the source and bias power, pressure, flow rate, chemistry, ion
energy and density, wafer temperature- to meet desired process goals of high etch rate,
selectivity, anisotropy, minimizing residue and damage. Of course, specific process goals
depend on the application - the material being etched, the material where the etch stops,
over-etch requirements, concerns about damage. Process optimization through changing
various equipment settings involves complex trade-offs. For instance, changing the pres-
sure or power applied to the plasma can result in plasma density changes. Application of
high power at low pressure can provide higher ion density and result in better residue con-
trol. In general, residue formation can be affected by varying pressure, gas flows, gas
ratios, power, temperature, overetch tﬁne and backside cooling. In contrast, higher pres-
sure with low plasma density results in better etch rate microloading control, higher resist

selectivity, and a higher etch rate.

2.3.2.3. Sensor Signals

Table 2-2 lists the signals collected by various sensors located on the equipment.

The signals can be divided into groups according to origin and function. Optical emis-
sion sensors monitor plasma intensity and endpoint, chamber environment sensors report
pressure, gas flows, temperature and backside cooling, and RF sensors associated with the
TCP top match and bottom match assemblies provide information about the continually

changing state of the plasma and the machine’s condition.

The chemical species reacting in the plasma during the etching process produce optical
emissions that provide useful information. In particular, a typical endpoint detector moni-
tors the intensity of the plasma at a specific wavelength in order to determine when the etch
has reached completion as indicated by a drop in the intensity profile. Because this inten-
sity reading is sensitive to residue accumulating on the chamber window, this sensor signal

is particularly vulnerable to effects of machine aging and long term chamber conditioning.
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Origin/Function Sensor Description
Optical Emission Endpoint Plasma intensity at a particular wavelength

Chamber Environment| Pressure Measured chamber pressure by a manometer

Power Applied RF power

Top TCP Match TCP Tune | Tune capacitor position in upper match network

TCP Load |Load capacitor position in upper match network

Impedance | Impedance seen by the upper match network

Phase Phase error between current and voltage

Bottom RF Match RF Tune | Tune capacitor position in lower match network

RF Load |Load capacitor position in lower match network

Impedance | Impedance seen by the lower match network

Phase Phase error between current and voltage

Other Voltage | Voltage on the RF coaxial cables connecting the
match modules to the generators

DCBias | Applied to lower electrode to direct ion energy

Table 2-2. Sensor signals collected for the Lam TCP 9600 plasma etcher

The chamber pressure is measured by a capacitance manometer. A valve controller
compares this measurement with the setpoint value for pressure specified on the recipe and
adjusts the control gate valve opening to maintain chamber pressure at that setpoint. In
addition, process gas flows are individually controlled and monitored. Furthermore, during
the process, helium is pumped through the lifter pin holes in the bottom electrode, to the
backside of the wafer in order to conduct heat from the wafer to the cooler electrode. The
wafer is secured to the bottom electrode by a clamp or by an electrostatic chuck. Helium

flow greater than a certain maximum threshold can indicate a broken or misplaced wafer.

During etching, as chemical compositions change and by-products are generated,
dynamic changes in the load impedance of the plasma result in reflected RF power to the
generators. The top and bottom match assemblies function to independently optimize the
load as seen by their corresponding RF generator in order to ensure efficient transfer of
power to the plasma. As soon as the RF power is on, the match assemblies monitor the volt-

age and current of the applied RF power. As the plasma impedance changes during etching,
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the match assemblies adjust the phase and magnitude of the forward RF power to optimize

the load. For the RF generators, a 50 ohm load is ideal- this minimizes reflected power.
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Figure 2-3. Reaction chamber - Lam TCP 9600 etcher

Each match assembly is comprised of a match module, a sense box and an autotune PC
board (PCB).

The upper match, or TCP coil match module, has two servo-driven vacuum-sealed
variable capacitors, a load capacitor and a tune capacitor, as well as load coil. These ele-
ments form a variable coupling transformer - the load coil is clamped once the power signal
coupling to the secondary side has been adjusted. The load capacitor is used to transform
the real part of the reflected plasma load impedance to 50 ohms, while the tune capacitor
is used to cancel the reactive part. Positions of the variable capacitors are monitored and

controlled by the match assembly.



capacitors

Figure 2-4. Upper match network

Similarly, the lower match, or lower electrode match module, is comprised by a high-
current series-resonant circuit with a tuning vane and a load coil. Both are adjustable and
have position feedback potentiometers. These positions are also monitored and controlled
by the match assembly. In addition, there is a small DC bias PCB in the lower match, which

monitors DC bias.

load coil

Figure 2-5. Lower RF match network

Each match module is connected to an RF sense box, which in turn is connected to the
respective RF generator. These sense boxes contain a capacitive voltage divider and toroi-
dal current sensor to detect the voltage and current on the RF coaxial cables connecting the

modules to the generators. These signals are used by the match assemblies to autotune in
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order to make the load the desired 50 ohms. This minimizes reflected power to the gener-

ators.

The DIP PCB (Drive-Impedance-Phase board) for each match module is used to con-
trol the phase and impedance of RF power to minimize reflected power. This is accom-
plished by adjusting the positions of the variable capacitors in the match networks. Circuits
in the PCBs can determine phase and impedance errors from the voltage and current signals
sensed in the RF sense boxes. The PCBs’ drive motors on both the upper and lower match

to adjust the tuning elements and correct these errors.

The user can program the RF tuning parameters and enter soft and hard tolerances to
control the range of conditions for matéhing. Six parameters control the RF match for the
TCP coil, namely, TCP RF mode, delay, tune saved, load saved, tune learn and load learn.
The system computer sends the values in the tune saved and load saved parameters (in the
recipe) to the autotune and DIP PCBs. These parameters represent the positions of the vari-
able capacitors (tune and load) in the upper match assembly, and can be changed by the
operator. The default value is 16383, a setting which represents a value in the midpoint of
a range that spans from 0 to 32000 counts. This midpoint position isb' assumed to reduce
adjustments required once autotuning commences. The tune learn and load learn parame-
ters store the final tuned positions of the upper match module variable capacitors at the
completion of the process. These values are often used in place of the default in order to
reduce adjustments for autotuning in the subsequent wafer. They also allow process engi-
neers to determine the final tuning positions for an automatically tuned step. These six
parameters help to optimize RF match tuning. The user can switch to Manual mode, using
the pre-position settings determined by the tune saved and load saved parameters. Users
can also choose to delay the point of auto-tuning in order to save unnecessary “hunting” at
the beginning of a step. The delay parameter allows time for the plasma to stabilize, pre-
venting the RF system from attempting to tune to changing conditions in the reaction
chamber. Thus, it basically controls how long the system delays before giving control to
the auto-tune. During the delay, the RF match holds the positions specified in the tune

saved and load saved parameters. Since these capacitor positions are the starting point for
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the auto-tune step, tuning times may be optimized by pre-positioning the capacitors close
to the expected tuning position.

Plasma etching is a complex process involving many variables and changing parame-
ters. Although there have been attempts to predict behavior through physical models, these
fall short of capturing or accounting for variability in the system. For this, there is some
added value in using an empirical approach, the application of statistical techniques and
tools to capture variability and relationships among available sensor signals. Furthermore,
with this approach one can construct a decision making tool that can be automated using
signals that are collected as part of normal monitoring. Credibility is enhanced by using

familiar signals that have physical meaning to the operators.

Throughout this study, one issue continually of concern is that of repeatability. This
issue arises in the reliable fingerprinting of a particular kind of machine problem or fault,
and is especially aggravated by natural machine to machine variability. Extracting relevant
information can be problematic, given the nature of the data and variability encountered.
Although tackling this problem can be made easier with larger databases and thorough doc-
umentation of machine events (including regular maintenance, adjustments, and failures),
the issue of repeatability over different machines may never be completely resolved. In this

case, some model “training” will be needed to capture the individual character of the tool.

The general issue of modeling long term tool behavior is discussed in the fourth chap-

ter. The next chapter is devoted to describing the data and the experimental design.
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Data Description and Experimental
Design

3.1. Introduction

The investigation to characterize, monitor and diagnose states for plasma etch equip-
ment revolves around different types of datasets; the choice of the kind of data to be used
is determined by the objective of the model. For instance, in order to capture normal oper-
ation, and in particular, to model machine aging and long term drift, we use data collected
from marathon runs in a production environment over a time period extending over several
cleaning and preventative maintenance events. Because this data captures machine drift,
visib'le only over these extended periods of time, long term behavior can be observed, and
models for filtering variability at this time scale can be constructed and validated. The
resulting residuals are then analyzed using multivariate statistical process control tech-
niques for fault detection on a lot-to-lot basis. Unfortunately, in this experiment, due to
insufficient documentation relating to the processed lots, information is not available to

assign causes to lots determined to be statistically out of control.

Finding assignable causes for detected faults requires datasets that are well-docu-
mented. The objective of the investigation is two-fold: (1) to assess the utility of sensor
data in identifying and classifying machine problems reliably and (2) to extract the relevant
information from the data, so that prompt action may be taken. The system is trained to find
features which fingerprint the machine state, and to classify the data to a defined state. To
construct such a system, it is clear that the state of the machine during the data acquisition

process must be known, and hence the need for good documentation.
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We consider two types of failure data arising from different sources. The first is caused
by equipment miscalibrations, which result in small internal fluctuations in the plasma. We
simulate the occurrence of this type of problem through DOEs (experiments designed to
span the process input space) exploring a range of conditions around a nominal operating
point. Classification techniques are then applied to predict the various operating condi-
tions. The second type of failure arises from actual machine problems. Here we employ
manufacturing data collected for machine qualification, where the faults, diagnosis, and
action taken are all documented. We have taken this problem one step further by designing
a failure mode experiment, which simulates the problem by physically changing the tool’s

condition to mimic a breakdown event.

3.2. Fault Detection and Classification (FDC)

The primary goal of fault detection is to identify when the process is no longer within
operational bounds, indicating that action must be taken to correct the problem. In order to
accomplish this goal, we need a model of the process that captures normal machine behav-
ior under acceptable operating conditions. When measured values from sensor readings
deviate significantly from our model predictions, we signal the detection of a fault. The
identification of an anomaly is based on establishing control limits that act as bounds for
acceptable deviation due to natural variation in the process. Fault classification schemes

are then employed to identify the source of detected faults.

Our participation in the fault detection and classification (FDC) SEMATECH J-88-E
Program at Texas Instruments conducted from 1995 through 1996 allowed us access to a
source of valuable data and information for model construction and analysis. The goal of
this project was to develop and evaluate techniques for FDC on a commercial semiconduc-
tor manufacturing tool using non invasive sensors and commercially available software.
Automated data acquisition involving two RF sensors and machine state sensors embedded
in the tool was implemented for a Lam 9600 TCP plasma etcher. Although wafer state sen-
sors provide the most direct and easiest access to useful information, they are often not
available on original equipment manufacturer (OEM) processing tools. Thus, this project

concentrated on machine and process state sensors, which, by their nature, are both non-

22



intrusive and readily available. Due to the large volume of sensor data collected, one major
difficulty lay in obtaining useful information from redundant correlated measures. There
were also practical considerations regarding the choice of sensors. In general, it is desirable
to stick to sensors that are low in cost, but highly reliable, especially for collecting data

over extended time periods.

A key requirement in the development of models for fault detection and classification
is that they be robust over time. One goal for the project was to account for the presence of
long term trends. Over longer periods of time, a significant amount of normal variation in
sensor readings can be expected, which is not related to either a process or a wafer state
fault. Not accounting for this variation in the models can result in increased false alarms

and decreased sensitivity to the real faults we wish to detect.

To properly address this issue, we note that the machine behavior can be described as

evolving over different time scales, each with its own sources of process variation:
(1) maintenance-cycle-to-maintenance cycle

The highest time scale (encompassing the longest periods of time) can be considered
as the change in machine behavior from one maintenance cycle to another. In particular,
any given processing tool is subject to periodic cleaning, maintenance and repair over the
course of its lifetime. The cycle time varies by tool, but is typically on the order of one to
two months between major maintenance “events”. In the interim, thousands of wafers may
be processed through a tool. The maintenance event performed at the end of a cycle
attempts to restore the machine to its original state. Practically speaking, this is rarely
achieved, and hence there is some discontinuity between cycles as well as process variation

from one maintenance cycle to another within a tool.
(2) within a maintenance cycle

We can consider the next time scale to be contained within one maintenance cycle.
Within this time frame, gradual accumulation of residue in the chamber and normal wear
and tear of machine parts characterized as consumable or replaceable constitute “machine

aging”. This behavior is clearly observed as a continuous slow drift in the process variables
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as indicated by sensor measurements. However, it is important here to distinguish between
process degradation (as reflected in the process variables), and sensor degradation. That is,
there are natural limitations imposed by the use of sensors as imperfect measuring instru-
ments of process variables. One clear example of this is in the continuous decay of the end-
point signal observed over the course of a maintenance cycle. This turns out to be an
Indication of window transmittance degradation due to residue buildup on the chamber
window. Thus, the actual state, in this case, the intensity of plasma, is more stable than
what is indicated by the sensor. It is the sensor measurement that is grossly affected by
machine aging. Accounting for this in our models allows us to make adjustments to the

fault detection mechanism so that it is robust over time.
(3) lot-to-lot

A typical lot consists of twenty four wafers and consumes between one to two hours of
processing time. It is not uncommon to observe abrupt shifts from lot to lot. These shifts
can be attributed to two sources. The first involves changes that happen in “upstream” pro-
cesses resulting in different wafer states. In other words, the incoming material, the wafers
themselves, are not identical from lot to lot. The second source is a change in the chamber
state - this would be our primary concern. Lot to lot variability is further complicated by
the fact that the data comes from a development lab where the devices are experimental
and thus different from each other. This results in a greater likelihood that the incoming
material will vary as compared with a typical production environment, in which only a few

devices are processed in a highly repeatable fashion.
(4) within a lot

Within the course of processing a batch of twenty four wafers, there is typically mini-
mal process variation. However, two phenomena are noteworthy. The first results from the
gradual warm up or degassing from chamber walls, known as the “first wafer effect”. In
the case of the Lam 9600, this phenomenon appeared more as a first-eight-wafer effect,
where the first eight wafers displayed the behavior normally confined to the first wafer.

The second observation within a lot is the presence of a slow drift due to trends in upstream
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conditions, resulting in a gradual change in the incoming materials (the wafers them-

selves).
(5) wafer-to-wafer

From wafer to wafer, variation occurs on the order of minutes. This variation is minor
in general, with discontinuities that can be attributed to variations in the incoming materi-
als. In this particular project, variation between odd and even wafers was obsérved. The
cause of this was determined to be the use of an alternating track during an upstream lithog-
raphy step. However, because DOE settings were changed from wafer to wafer, fault clas-
sification is generally concentrated on this time scale, with “true” faults manifesting

themselves as deviations detected on a wafer-to-wafer basis.
(6) within the time scale of one wafer being processed

This is considered the “real” time scale, where process variable trajectories are moni-
tored at 1 second intervals for a total duration of between 10-100 seconds for one wafer.
Although it is important to implement real-time fault detection within the time scale of pro-
cessing one wafer, the emphasis of the experiments is geared to the wafer-to-wafer detec-

tion, with faults injected at this level.
(7) within a processing step

Because there are different materials comprising the stack, there are often different
“regions” in the etch step within the etching of a single wafer. These regions may or may
not correspond to distinct “steps” in a recipe, but often reflect the different components of

the thin film stack that is being etched.
(8) within a processing sub-step (region)

Sensor signals are typically unchanging within a region, but can have non linear fea-
tures. Also, we have observed transient behavior during the plasma ignition step which can
indicate a problem with the match network. However, data taken at the 1 Hz sampling rate

is too slow for transient analysis.
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Constantly changing conditions on these various time scales further complicate any
automated procedure or method to analyze the data. Thus, it is crucial to distinguish

between true faults and significant variation in the process unrelated to any fault event.

3.2.1. Data from Marathon Runs

Modeling machine behavior over the long run necessitates sensor data acquisition, as
deterministically as possible, at regular intervals, over long periods of time. Unfortunately,
the “routine” process generating the data for the J-88-E project was really anything but rou-
tine, as compared with any production environment. With device and process development
as daily tasks in a development laboratory, the data naturally encompasses a large variety
of wafers and devices processed through the chosen tool. Thus, “routine” was necessarily
conducted and defined on a variety of different structures and devices. In contrast, in a true
production environment, the tool would be more stable, focused on producing a limited set

of devices in a repeatable fashion.

A primary etch tool has a typical loading of five to ten lots per day. Furthermore, the
tool must be opened periodically for cleaning and maintenance. In addition, unanticipated
problems require equipment hardware changes. The cleaning, maintenance and repair
events include the preventative maintenance (PM), which involves opening the etch cham-
ber, performing cleaning and maintenance, and resetting the wafer count to zero. In con-
trast, in the mini-clean (MC), the chamber is opened, some maintenance and cleaning are

conducted, but the wafer counter is not reset.

The goal of long term modeling is to make the fault detection mechanism robust to
system changes resulting from regular periodic activities, allowing identification of devi-
ations in normal process conditions resulting from altered setpoints or injected faults. The
data are collected from a Lam 9600 TCP plasma etcher running an aluminum stack etch
process. In the main chamber a TiN/Al - 0.5% Cu/TiN/oxide stack is etched with a BCl,/
Cl, process. From the process point of view, the key parameters are the line width of the
etched Al line, (more specifically, the line width reduction compared to incoming resist
line width), uniformity across the wafer, and oxide loss. Table 3-1 shows the standard

recipe (Recipe 44) used for this process. In particular, note that there is a series of six menu
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steps- the first two are used for gas flow and pressure stabilization, step 3 is a brief plasma
ignition step, step 4 is the main etch of Al terminating at the Al endpoint, and step 5 is the
over-etch for the underlying TiN and oxide layers. This is a single chemistry etch process,
that is, the chemistry is identical for the main etch and over-etch steps. Step 6 vents the
chamber. Figure 3-1 contains a typical process profile of the endpoint signal from the Lam-
Station data set. This clearly shows the stabilization step followed by the three regions of
the etch: Al, TiN and oxide etch steps.

Parameter Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
Pressure (mT) 90 10 10 10 10 90
TCP (W) 0 1 350 350 0
RF (W) 0 100 132 132 0
BCl; (sccm) 0 75 75 75 75 0
CI2 (sccm) 0 75 75 75 75 0
He Clamp (T) 0 9 9 9 9 0
Time (seconds) 15 30 3 Endpt 50 15

Table 3-1. Recipe for standard Al-stack etch in the Lam 9600
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Figure 3-1. Endpoint trace of standard Al-stack etch process
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The data from “routinely” processed wafers on a Lam 9600 etcher in a development
lab were collected from a variety of devices. Thus, although the composition of the etched
layer is similar, the nature and thickness of films can vary from lot to lot. Two routine pro-
cesses (here used Recipes 44 and 45), differed only in the pressure setting, with the stan-
dard, Recipe 44, set at 10 mT, and the alternate, Recipe 45, set at 20 mT. Lots were run
intermittently around the clock, with machine state signals available for analysis, but no
wafer state data. During the period of monitoring this tool, between 1995 and 1996, 187

lots of data were collected, encompassing 8 maintenance cycles in total.

3.2.2. Designed Experiments

The long term characterization of the process enables fault detection that is robust over
time. However, once an anomaly in processing conditions has been detected, the goal
becomes that of identifying the cause of the problem. One source for training a system to
detect such anomalies is obtained using injected faults in processing conditions, accom-
plished by changing the target machine settings. These faults are simulated using a DOE,

or design of experiments, varying the settings over the operating domain of the process.

The DOEs conducted in this project are a five-level central composite design, blocked
with resolution 2(5-1) + star points generated for five input variables, (TCP power, RF
power, pressure, total gas flow and gas ratio - C12/BCI3). Appendix B contains the details
of the DOE design. Operating ranges were chosen with the help of processing engineers,
with pressure ranging from 7 to 20 mT to include the two routine processes (Recipes A and
B).

In the first set of DOEs, experiment 30, the biggest problem resulted from the corner-
points for cross-validation experiments, where pump and flow constraints prevented using
low flow with high pressure, and high flow with low pressure conditions. These runs
resulted in the process halting at ten seconds into the main etch due to pressure errors.

However, the process could generally be restarted and continued after the error occurrence.

28



3.3. Manufacturing Fault Data

Obtaining actual production data with properly identified machine faults and diag-
nosed causes is extremely difficult. The laboratory often collects sensor data during pro-
cessing; however, tracking of repair and maintenance is scant and unreliable. To partially
circumvent this problem, we turned to an equipment supplier. Lam Research provided us
with manufacturing data from TCP etchers obtained during qualification runs. These runs
are conducted to ensure proper machine operation before shipment to the customer, and

thus, all machine faults and actions taken as a result are recorded.

Table 3-2 summarizes the machine failures logged in during the qualification runs. The
table lists causes of machine failures, as diagnosed by process engineers, observable symp-
toms of each type of failure, and action taken to deal with each problem. These data com-
prise an evidence library, depicted in Figure 3-2, where we have categorized and divided

the data according to the corresponding type of machine failure.

Cause Symptom Result
Gas line bracket grounding High/low clamp flow Replaced outer screws on
DC bias, RF load signals main chamber
Water on wafers TCP tune signal Adjust dry time
Frequency shift module Phase shift, bottom (RF) ?
(FSM) line impedance
? Line impedance, clamp Replaced DIP, TCP match,
flow orifice for He
Gas O-ring ? Low etch rate
? RF load and RF tune signals| Put on lower match cover
Manometer Chamber pressure Readjusted

Table 3-2. Machine failures - causes, symptoms and results

Note that there are missing entries in Table 3-2. This is fairly typical in manufacturing
and production, where the cause of a problem is unknown or never diagnosed, there are no
observable symptoms in terms of monitored signals, or no action is taken. Incomplete data
sets and poor records complicate the task of building a diagnostic system. Fortunately, in

this set of data, we find that most of the problems fall into three basic categories - the base-
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line, which represents normal operation and is used as a reference point, problems related
to gas line grounding issues, and problems resulting from the match networks, both top

(TCP) and bottom (RF) match modules.

Cause of Failure Effect Evidence Library
Clamp
Flow / Pressure
RF Match *
Impedance
TCP Match +
. Reflected
Gas line Power
grounding ‘
Tune / Load

Figure 3-2. Identification of Failure Modes from Qualification Data

A further complication arises due to the different machine types. Unlike the experi-
ments conducted in the J-88-E project, this qualification dataset is collected from different
tools, which differ in both hardware and software aspects. Thus, variability occurs not only
as a result of normal machine-to-machine differences, but also as a result of the change in
hardware and software implemented for the machines. For our evidence library, we iden-
tified four different types of machines. Hardware differences resulted from the use of a
clamp versus the electrostatic chuck to hold the wafer in place. Software differences
affected values of sensor signals, such that some sensors could not be compared across

machines utilizing different software.

3.4. High Speed Data

The objective in collecting this dataset is to identify cues relating to predictions of RF
match problems, and conditions where the plasma will not ignite. To find such cues, we

observe sensor responses to high and low preset values for the positions of the load and
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tune capacitors in the RF match network, and simulate a failure mode where the capacitors

fail to respond to command signals.

Upon examining manufacturing data from qualification and marathon runs, we have
observed the presence of transient behavior in RF signals triggered by the onset of plasma
ignition. Because the impedance of the plasma changes after ignition, the parameters of
both RF match networks can also undergo drastic changes while attempting to adjust to the
changing impedance. The nature of this transient is directly affected by the ability of the
match networks to tune, and how they are reacting to each other, which in turn is a reflec-
tion of the state of the system. Specifically, Figures 3-3 and 3-4 contain plots of the load
and tuning positions respectively, for an RF match network over a sixteen wafer run. Note
how the transient behavior is visibly different for the baseline machine compared to a
machine which was experiencing problems with its RF match network (this would be con-
sidered a failure mode). Thus, this observed transient, although it occurs during a transi-
tional phase with a duration of less than a couple of seconds, contains important diagnostic
information. However, with signals being collected at a frequency of about 1Hz, current

data acquisition rates are insufficient in capturing this transient behavior.
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Figure 3-3. Transient behavior of bottom (RF) load position for a sixteen wafer run
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Figure 3-4. Transient behavior of bottom (RF) tune position for a sixteen wafer run

To further investigate this behavior and its potential use as a feature to characterize cer-
tain failure modes, we outfitted the Lam TCP 9400 plasma etcher in the Berkeley Micro-
fabrication Laboratory, with instrumentation capable of collecting sensor signals at
sampling rates that are much higher than the typical SECSII data acquisition rate. These
high resolution signals are collected under various conditions of the tool, in particular, to
simulate common failure modes that have been observed in field trials. Such an experiment
enables us to explore the effect of varying RF network match parameters on the transient
behavior. Once an accurate fingerprinting of the machine and its condition has been estab-

lished, the performance of various modeling and diagnostic schemes can be compared.

3.4.1. Focusing on the Match Network Problems
A significant number of manufacturing problems occur due to failure in the match net-

work. The purpose of this network is to match the impedance in the chamber such that the
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reflected power back to the generator is minimized. The match network accomplishes this
task by changing the positions of load and tune capacitors in response to the changing
impedance of the chamber. The initial positions of the load and tune capacitors are deter-
mined by the conditions of the previous run. In other words, for a given wafer, after the
plasma ignites, the network parameters (in this case, the load and tune capacitor positions)
settle to a stable value to match the impedance, and conditions are met for the etching pro-
cess to begin. These positions (where the network achieved a “matching” condition) are

used as target values for the initial positions to process the next wafer.

Difficulties arise when the impedance of the chamber (after plasma ignition) changes
between runs. This change can be caused by a variety of problems including machine
aging, attributed to material deposited on the chamber, gas leaks, or differences on the
wafer itself. If something does change the chamber impedance, the target values for the
capacitor positions, which achieved a matching condition in the previous run will not be
optimal for the current run, and we expect the values to change and settle in a new position

to match the new chamber impedance.

Another problem associated with the match network involves the actual capacitors
themselves. Capacitors may “bind”, which means that although the computer may be
instructing the cap.acitors to move, they are unable to change position. Thus, the situation
may be that one capacitor is moving to adjust, while the other is stationary, and a matching

condition may or may not be achievable depending on the circumstances.

Our experiment attempts to address these issues associated with problematic behavior
in the matching network. First, because the adjustments to achieve a matching condition
often take place in less than a few seconds, sensor data relating to RF network match
parameters as well as other real-time sensor signals must be collected at an increased sam-
pling rate of 100 Hz. Secondly, by varying the preset values for the positions of the tune
and load parameters of the top match network, we simulate the condition of a “mismatch”
to the chamber impedance. This also enables examination of the transient behavior of sev-

eral signals in response to the adjustments being made by the match network. Finally, the
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tune and load capacitors are disabled, one at a time, by loosening the connection to the driv-

ing motor.
Index Fault Category Tune Position (counts) | Load Position (counts)

1 baseline target (+/- 1000) target (+/- 1000)
2 HH extreme 32000 32000

3 LL extreme 0 0

4 HL extreme 32000 0

5 LH extreme 0 32000

6 HH midrange +3000 +3000

7 LL midrange -3000 -3000

8 HL midrange +3000 -3000

9 LH midrange -3000 +3000

Table 3-3. Categories defined by preset values for tune and load capacitor positions in
match network

Table 3-3 shows the different fault groupings corresponding to preset (initial position)
values for the tune and load capacitors. By convention, the capacitor positions are defined
over a range of 0-32000 counts. The target value is based on the position for a match con-
dition established in the previous run. Baseline (default value for position) is considered to
be within 1000 counts of the target. We consider both high and low values referenced to
the target value, for both tune and load. Extreme values are defined at the extremes of the
ranges with high set to 32000 counts, and low set to 0 counts. Mid range values are defined

at 3000 counts above target for the “high,” and 3000 counts below target for the “low.”

The actual capacitor positions for the first five categories in Table 3-3 are shown in
Figure 3.5, where the presets are chosen at the extreme values of the range, and the arrows
indicate the target value. These are plotted for the adjustment period (approximately six

seconds), during which the positions are adjusting until they settle at a matching condition.
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Figure 3-5. Capacitor positions for preset extreme values; arrows indicate target values

Figure 3.6 shows the impedance signal corresponding to the categories defined by the
presets for tune and load capacitors. (Preset values for tune/load are superimposed on the

same plot). Note that the preset conditions define our fault categories.

Categories ‘ Tune/Load Positions TCP Impedance
. { I GORTS

Baseline

HH extreme > e _‘j‘kﬁ

LL extreme / /\\;: ——:)L\ / u,—
HL extreme /\/“E ———«—J U&

LH extreme 5 -

0 5 10 15 0 5 10 15
Time (seconds)

Figure 3-6. Impedance signal corresponding to categories defined by tune/load presets
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The impedance signal is an example of transient behavior that appears to have some
structure or pattern. Based on this structure, sensor signals can be grouped or classified,
and we can draw a conclusion as to whether the preset values are low or high for the current
chamber condition. This information is indicative of a change in the chamber impedance
and can be used to predict whether a matching condition can be achieved. Finally, this pro-
vides some base behavior to compare the effect of capacitor binding, where only one

capacitor is adjusting and the other is immobile.

3.5. Summary

In this chapter, we described the various types and sources of sensor data, as well as
the experiments designed and conducted to produce them. Because our objectives are dis-
tinct in each case, with the focus of our study ranging from monitoring and fault detection,
to fault diagnosis of diverse conditions, this naturally gives rise to differences in the data.
It will soon be apparent that this also necessitates the employment of several modeling
techniques, depending on the data, and that the development of a cohesive framework to
merge disparate results together is a key contribution of this work. The next chapter
addresses the issue of modeling, while the following chapter deals with the framework

structure.
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Modeling and Characterization of
Long Term Behavior

4.1. Introduction

Real-time tool signals from etch equipment have been proven useful in modeling the
plasma etch process and in providing a means of machine monitoring. In this chapter, the
multivariate statistical control system, applied in the past to localized time scales (model-
ing the signal on a real-time, second by second basis, and wafer-to-wafer basis) is extended
to deal with long term variability on a lot-to-lot basis. Long term trends in optical emission
data collected from a plasma etch tool are characterized through data transformations and
linear modeling techniques. By filtering the known effects of machine aging, these models
facilitate the integration of optical emission data with other sensor signals, resulting in a

fault detection system which is robust over time.

4.2. Background and Previous Work

Traditional statistical process control (SPC) techniques assume that the underlying pro-
cess is stationary, i.e. that the mean and variance do not vary with time, and that the obser-
vations are identically, independently, and normally distributed (IIND) [10]. Assuming
that these trends are present in data representing normal operating behavior, application of
these techniques directly to machine data that contain trends results in increased false
alarm and missed alarm rates. To avoid these increased false and missed alarm rates, past
work used time-series modeling techniques to filter out the time dependent trends; tradi-
tional and multivariate statistical process control (SPC) methods were then applied to the
resulting residuals to monitor the machine behavior. This system, known as real-time sta-

tistical process control (RTSPC), was shown in [11] to be effective in monitoring real-time
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and wafer-to-wafer data. This investigation is motivated by the need to extend RTSPC to

include long term variability on a lot-to-lot basis.

4.2.1. Statistical Process Control for Monitoring Data

In any production process there is inherent natural variability. This variation is consid-
ered common across all processes, and is attributed to noise in the system due to small,
unavoidable causes, which are always affecting the process. A process is referred to as
being in statistical control if its operation is affected only by such random, chance causes.
Other sources of variability which plague processing include improperly adjusted
machines, operator error, and defective raw materials. Disturbances to the process caused
by these sources are usually large compared to background noise, and are often not ran-
domly distributed. A process exhibiting a fluctuation caused by a non-random, well-
defined event is considered to be out of control. In this case, the event is referred to as an
assignable cause which shifts the process to an out of control state. A major objective of
statistical process control is to detect shifts in the process state, and to find assignable

causes so that corrective action may be taken.

Systems designed for SPC are used to monitor a process over time, ensuring that it
remains statistically in control. In some sense, SPC techniques complement automatic
feedback control methodology. The latter is also applied to reduce variability in the pro-
cess, but uses a different mechanism to accomplish this goal. Feedback control seeks to
compensate for the predictable component of a disturbance in crucial variables by adjust-
ing other variables, effectively transferring the variability from important variables to less
critical parameters. In contrast, SPC monitoring is applied on top of the process and its
automatic control system to detect behavior which directly reflects the occurrence of a spe-
cial event. In this case, the goal is to diagnose causes and eliminate them rather than to
compensate for them. In this manner, long term improvements to the process can be

achieved via changes in the system and operating procedures.

Many systems designed for SPC are based on a small number of variables usually asso-
ciated with measurements on the final product. A control chart is an on-line graphical tech-

nique commonly used to track product quality variables, which are then examined one at a
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time. For instance, the univariate Shewhart chart can be defined for monitoring 'variables
by using a center line reflecting the average level for the parameter, and upper and lower
control limits based on the natural variability in the process. However, as processes
become more complex, the common manufacturing practice is to collect not only product
data, but also process data, which often include measurements of many process variables.
One major challenge is to extract relevant information from the growing mass of data to
enable immediate action, preventing actual yield loss. Extracting information from large
databases can be interpreted in different ways, (1) it can refer to the filtering or selection
of the signals which give the most information, (2) it can refer to the combining of many
signals to infer a conclusion, (3) it can refer to data compression, representing a large
number of parameters with a smaller set, which captures most of the important features of
the data.

4.2.2. Advantages of Multivariate Techniques

Multivariate statistical methods provide a powerful toolbox for extracting information
from large databases in all three respects described above, leading to improved analysis,
monitoring and diagnostic capabilities. In addition, there are other advantages to using
multivariate techniques over univariate analyses. First, because the process variables
reflect the state of the process, correlations exist among the different parameters. Exami-
nation of these variables one at a time treats them as if they are independent. For instance,
a system built to detect and diagnose faults based purely on univariate models can only
account for the magnitude of deviation in each variable, and is likely to produce false
alarms or even miss true out-of-control situations. In contrast, multivariate techniques can
extract information on magnitude of deviation and on directionality, accounting for how
the variables behave relative to one another. This means that the multivariate test can be
more powerful, where we define power as the probability of rejecting the null hypothesis

when it is false (generation of a true alarm).

Figure 4-1 is a pictorial representation for the case of two variables showing the accep-
tance regions for the multivariate and univariate tests. Note that the acceptance region for

the multivariate test is defined by an ellipse, with each point on the curve statistically equi-
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distant from p, demonstrating that distance is defined also in terms of direction, normal-

ized by the covariance. The orientation and shape of the ellipse is determined by the
correlation structure between the two variables. The two shaded regions demonstrate the
benefits of multivariate testing which take this structure into account. These are cases
where small effects in each variable fail to be significant if examined one at a time; how-
ever, when combined, the joint effect is significant. The lightly shaded region A shows the
contribution to inflation of the false alarm error by the univariate test; the dark region B

shows the contribution to greater power for multivariate testing.

A
Variable 2

Region A

>
Variable 1

Figure 4-1. Comparison of univariate and multivariate testing acceptance regions

Region A: Accept multivariate test, reject univariate, when null hypothesis is true. Region
B: Reject multivariate, accept univariate, when null hypothesis is false.

Because the quality of a product, or in the case of manufacturing, the state of a process,
is defined not by each variable independently, but by the simultaneous values of all mea-
sured parameters, and because many of these parameters are often correlated, it makes
sense to use multivariate techniques. To describe the multivariate testing used in this appli-
cation, we first review the univariate case, then explain the extension to the multivariate

process.
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4.2.3. Hypothesis Testing for the Univariate Case
The idea of monitoring variables for the purpose of tracking the behavior of a system

is formalized statistically by constructing a hypothesis test. The assumption is that a sample

of n observations, y;, y,, ... ¥, is taken from a population distributed as N(u,62), where p

is the mean and o2 the variance. The mean, 1, is estimated by the sample average, y; o2 is

estimated by the sample variance, s,
n
- 1 .
y=:3 @1
i=1
n
-2
>0, -9
2 p— l= _
s o 4-2)

To test the hypothesis that the mean, p, is equal to a given value, pg, Hy:p = p, vs.
H,:p#u, , the t-test uses the following test statistic:
_ J-’ )

s/(Jn)
This statistic is distributed as t,_; if the null hypothesis is true. We reject the null

@4-3)

hypothesisift>¢,,, ,_,,where t,,, ,_; isacritical value from the t-table. The expres-

sion in Equation 4-3 is known as the characteristic form of the t-statistic, representing a

sample standardized distance between y and p.

4.2.4. Extensions to the Multivariate Case

For the case where p variables are measured for each sample, the assumption is that we
have n samples. We now have two indices, i and j, corresponding to the sample and the
variable index respectively. Hence, we might have n samples, y; ;, 2, j»+ Yn, jfrom amul-
tivariate population Np(,Z) such that each y; j contains p measurements on the ith obser-
vation. The p x I mean vector, p, is estimated by the sample average vector, ;; 2 is

estimated by the sample covariance matrix, S. This p x p matrix contains the sample vari-
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ances on the diagonal, and the sample covariances for all possible pairs of p variables on
the off-diagonal.

sll s12 see s‘

_Spl sz SPPJ

n

-2
Z 0=y
2 2 k=
S =85 = ]n—l 4-5)
n
Z (J’ki—}-’i)(ykj _.i’j)
2 —3
s = k=1 — (4-6)

To test the hypothesis that the mean vector, p, is equal to a given value, pq,
Hy:p = pg vs. Hy:p# pg , the extension of the univariate t-test is obtained by rewriting
the univariate ¢ as:

G- o) 1
2 —Ho - 2,-1 -
r=n—s—=n@-pp(s) (-ny) @7

S

By replacing y - pgand s by ; - poand S, the following test statistic is obtained:

7 = G-1) S G- po) (48)

The distribution of 72 was first described by Hotelling (1931), and is indexed by the

number of variables p and the degrees of freedom » - 1. Extensions of the univariate

Shewhart control charts to multivariate control are based on Hotelling’s 77 statistic. As

n—> o, the T2 approaches the 22 distribution.

The density of 72 is skewed; the lower limit is zero and there is no upper limit. An upper

control limit for 72 can be found using the conversion of the 7 statistic to an F statistic:
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n(n-p)
p(n+1)(n- l)sz’

To find the upper control limit, one would use the upper 1000.% critical point of the F-

n-1=F

pn=p (4'9)

distribution with p and » - p degrees of freedom.

4.2.5. Time Series Modeling

Regardless of whether the testing is univariate or multivariate, to apply SPC tech-
niques, the hypothesis is based on an IIND assumption. However, due to the nature of pro-
cessing, sensor signals follow various time trends. When the value of a data point in a
sequence is dependent on the value or values of data preceding it, the trend can be captured
by a time series model. The most general form of this model is described by an autoregres-
sive integrated moving average model, or ARIMA (p,d,q) model, where p is the auto-

regressive order, d is the integration order, and q is the moving average order:

p q
2
Wt - Z ¢kwt—k— Z ekat—k s a,"‘N(0,0’ ), 90 = -] (4_10)
d ¢l 2 1 1
w,=Vx, Vxz=x-x_,Vx=Vx-Vx_] (4-11)

The difference operators in Equation 4-11 are applied on the original data series, X,
The two examples show the first and second difference operators, respectively. The differ-

enced data is represented by w p in Equation 4-10, where ¢ i are the autoregressive param-
eters, 0 i are the moving average parameters, and a p is the prediction error, assumed to be

IIND.

Modeling the signals as a time series accomplishes two things: (1) characterization of
the process, with a means of predicting future values or behavior and (2) filtering out sys-
tematic trends so that what remains is due to random noise. SPC techniques can be applied

to the resulting residuals once the time dependent pattern has been filtered by the models.
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4.2.6. Real-Time Statistical Process Control (RTSPC)

A key step to successful monitoring for fault detection is to effectively characterize the
process for prediction purposes and so that patterns due to normal operation can be filtered
out. Figure 4-2 displays a flowchart of the steps taken to process the sensor data for use in

real time statistical process control.

Multiple Raw
Sensor Data

Multivarite Testing

Time Series Univariate Testing
Modeling

Residuals - — —_—-

A 4
Calculate

Hotelling T2

l < ))) Multivariate Testing
SPC Alarms m m
T? Chart e

Figure 4-2. Flowchart for sensor data for monitoring and fault detection using SPC

ARIMA models to filter trends from the various sensor signals are built using sensor
data obtained during normal operating behavior of the machine (baseline data). If the
models are formulated appropriately, the resulting residuals resemble IIND random vari-
ables. These residuals can be monitored separately with univariate testing using Shewhart
control charts. However, because the signals are measurements of the same physical pro-

cess, there are cross-correlations among the different signal residuals. To account for these
cross-correlations, the Hotelling T? statistic is used to combine the individual IIND resid-

uals into a single statistical score. These scores are plotted on a T2 chart: values exceeding

the upper control limit generate alarms which signal the detection of a fault.
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Note that this flowchart describes the construction of models used as a point of refer-
ence for comparison with incoming data sets from which we wish to draw conclusions. In
other words, we must initialize the fault detection system using a set of baseline data meant
to represent normal operating process behavior. Once the models are built and the SPC
limits established from the baseline, we are in a position to monitor incoming production

data, using the baseline models as a standard for comparison.

4.2.7. Evolution of Different Time Scales - Data Decomposition

Due to the nature of processing, the evolution of the system as described by the profile
of the sensor signals over time can be viewed at different time scales. Because the signals
are typically collected using a sample rate of 1-2 Hz, we monitor the data in “real time”.
However, if we are interested in drifts in the process, or abrupt shifting behavior caused by
a specific event, these types of changes are more evident in large time scales, such as from
wafer to wafer, or from lot to lot. By decomposing the data, we are able to monitor énd

detect faults in the process at different time scales. This is described below.

The machine data is comprised of a sequence of lots, each containing a series of wafers,
with samples taken at 1 Hz for each wafer. Thus, we can decompose the signal by looking
at the sequence of average signal values of each lot, and the sequence of average signal
values of each wafer over time (adjusting for the lot effect by subtracting the average value
for the lot containing the wafer). Similarly, the real-time signal is adjusted by subtracting
the appropriate wafer and lot averages. In this way, the total signal is the sum of the lot

average, wafer average, and real time signals.

The decomposition, shown pictorially in Figure 4-3, allows us to track and analyze
each signal separately. This is important because different events affect the signals at dif-
ferent time scales. A fast equipment fluctuation due to changing chamber dynamics is vis-
ible in real-time, but may not affect the average value over the wafer, and certainly will not
be detected in the average lot value. A machine drift or abrupt shift due to a problem insti-
gated by an anomaly on a wafer, or by a problem in the conditions during one wafer run,
is likely to be exhibited in the wafer average signal, but not necessarily in the real-time or

lot average signals. Finally, long term drifts due to machine aging, or shifts in the machine
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state due to chamber cleaning or preventative maintenance are visible in the lot average

signals, while the real-time and wafer average levels show no significant change.

Lot Averages
Original Signal +
—_— Wafer Averages
Real Time

Figure 4-3. Data decomposition for an optical emission endpoint signal

Original signal plots data over one maintenance cycle. The beginning of a cycle is marked
by a preventative maintenance event. The data are the sum of lot averages, wafer averages
(shown here over one lot), and real time signals (shown here for three wafers).

4.3. Modeling Machine Aging

As wafers are processed, the state of the machine changes over time. This behavior is
often referred to as machine aging; the drift in the machine state is associated directly with

the accumulation of residue on the chamber walls and window.
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4.3.1. Optical Emission Data

Recent efforts have focused on using optical emission data as a valuable source of
information about the plasma state. However, measurements of this type exhibit atypical
trends due to the confounding effect of window clouding and machine aging. This behavior
is cyclical in the sense that the machine state can be “reset” by preventative maintenance
(PM) events. This cycle of long term trends, when not properly taken into account, can
result in an increased false alarm rate during fault detection. Models are developed, which
characterize the behavior of optical emission signals over long periods of time. These
models enable integration of these signals with other sensor data, so that real-time statisti-
cal process control techniques can be applied to perform fault detection. By specifically
accounting for long term trends, these models partially decouple the machine state from
the state of the plasma; such decoupling reduces the false alarm rate due to preventative
maintenance events, thus resulting in a fault detection mechanism which is robust over
time. A further advantage of this decoupling is that knowledge of the machine state in
terms of aging can be combined with other information sources to provide prediction of
equipment problems, and for scheduling preventative maintenance events. Machine state
information combined with a more accurate knowledge of the true plasma state, after the
effects of machine aging on the optical emission data have been removed, can also be better

used to predict wafer output characteristics.

4.3.2. Long Term Trends

Examination and analysis of optical emission data over long periods of time shows a
different type of trend than that typically handled by time series models. As depicted in
Figure 4-3, the endpoint signal (a measure of the intensity of the plasma for a particular
wavelength) exhibits an exponential decay. Figure 4-4 plots the average value of the end-
point taken over each lot with respect to the wafer count. Because the wafer countwafer
count is reset to zero after a preventative maintenance (PM) event, the plot shows the end-
point signal evolving over the course of a maintenance cycle, where the chamber is initially
clean but becomes progressively dirtier as more wafers are processed. The trend is clearly

visible, and is repeatable as demonstrated by the five different maintenance cycles which
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are overlaid in this plot. The data shown in Figure 4-4 span a total period of eight months,

during which there were five PM events corresponding to chamber and window cleans.

[—d
S
S |
=
o
S
&
B =
‘@
£
3
=
S
S |
S
wn
- -
0 1000 2000
Wafer Count (RF Time)

Figure 4-4. Lot averages of endpoint for five preventative maintenance (PM) cycles

4.3.3. The Effect of Window Clouding

Time series models are known to capture the dependencies among a sequence of data
points, with the assumption that these readings are taken at regularly spaced intervals.
However, because the processing of lots is rarely scheduled at such regular intervals, these
models are inappropriate for dealing with optical emission data at long time scales. The

problem is further complicated by the apparent exponential decay in the measured values.

The exponential decay visible in the lot average value of the endpoint signal suggests
the use of the log transform as a method of linearizing the data. This is further supported
by knowledge of the plasma etch process and its effects on the reading of optical emission

data. Specifically, the chamber window becomes clouded as a result of progressive depos-
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iting of material on the window surface as the wafers are being etched. This clouding in
turn affects the sensor reading of the plasma intensity.

Mathematically, the plasma intensity measurement may be modeled by the following

equation:

I(2) = Ije™ 4-12)
where the intensity, I, decreases exponentially with the thickness (z) of the deposited mate-
rial. The exponential decay constant (o) is related to the absorption properties of the mate-
rial. Assuming that the accumulation of deposited material varies as a linear function of

time,

z = z;+z,9 RFtime 4-13)

the expression for measured intensity as a function of RF time becomes:

I ( R Ftime) - Ioe—(xz,e—(xz2 ® RFtime (4-14)
Taking the logarithm of equation 4-12 results in a linear expression relating the log of

the intensity to RF time.

4.4. Filtering Long Term Trends for Enhanced Monitoring Capability
To extend the monitoring system and fault detection capability (RTSPC) to accommo-

date lot-to-lot trends, the optical emission data are first filtered through a log transforma-

tion, and then modeled using linear regression techniques, followed by time-series

modeling to remove the remaining time-dependent behavior.

4.4.1. Linearization of Optical Emission Data

The linear regression model uses wafer count as an input parameter in order to account
for the effect of RF time. Figure 4-5 depicts the transformed data from Figure 4-4 for the
five maintenance cycles. As expected, the transformation has linearized the data. After the
linear trend is filtered out, the resulting linear regression model residuals are filtered using

time-series models in order to remove the remaining time dependencies.
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Figure 4-5. Lot averages of transformed endpoint for five preventative maintenance (PM)
cycles .

Note that a linear model had to be fitted to specifically account for wafer count of RF
time. Had we not used this as a fitting parameter, the profile would have been skewed. This
is because of the nature of the process, and the data available for analysis. Although wafers
are processed at fairly regular intervals, and samples in real time are collected at a specific
frequency, the processing of lots follows a much more sporadic schedule. It is not unusual
to encounter long periods between datasets corresponding to successive lots. Thus, when
tracking the long term behavior of the process, time-series models cannot be applied

directly, as the assumption of regular sampling does not hold in this case.

Figure 4-6 summarizes the filtering process for the optical emission signals. We
include plots of the residuals after each step, with histograms corresponding to their distri-
bution. Note the spread of the residuals after being filtered by the linear model, versus the
distribution after both linear and time series filtering. The residuals are cleaner and more

tightly centered around zero, demonstrating the additional benefit of time series modeling.
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Figure 4-6. Filtering process for optical emission signals (OES)

4.4.2. Improved Fault Detection

The double T2 chart for one maintenance cycle is shown in Figure 4-7. This plot was

generated using only a time series model constructed from the original lot averages of the

endpoint signal as a filter. The analysis used baseline data, and yet the model produced

false alarms (dark bars) at the beginning of the cycle. Examination of individual signal

residuals shows that the problem is indeed caused by the failure of the time-series model

to accurately represent the apparent exponential decay in the endpoint signal.
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Figure 4-7. Baseline double T2 chart using original data

Figure 4-8 depicts a similar double T2 chart after the log transformation, followed by
linear regression and time-series filtering as described above. The plot shows that the false

alarms due to the decay have been eliminated, and thus, the models have effectively cap-

tured the long term trend.
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Figure 4-8. Baseline double T? chart using transformed data
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Figure 4-9 is a plot of the T? chart of production data with known injected faults. The

figure demonstrates that the known faults were detected on a lot-to-lot basis.
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Figure 4-9. Production double T? chart using transformed data

4.4.3. Fault Detection Case Study

As a test bed for the improved RTSPC, we are using data taken over a period of seven
weeks during which there were two window cleans. The data include two different recipes,
comprising 40 lots total, with 19 wafers per lot, where pressure is the altered variable in
the recipe. The events affecting the normal evolution of the system are DOEs and resetting
of the throttle valve. These two events are very different in nature. We expect the DOEs to
be fairly easily detected as an abrupt shift since the inputs to the machine are being varied
drastically from wafer to wafer over a wide range of operating conditions. In contrast,
resetting the throttle valve is a physical change to the machine, and thus is altering the
machine’s state. This could be exhibited as a subtle change, which may affect some sensor
signals more than others. In addition, this change may be more pronounced in one recipe

than another, since the process state is dependent on the input settings to the machine.

In the data set collected corresponding to the first recipe, the models constructed to rep-

resent the baseline condition include lots processed after the throttle valve had been reset.

In this case, the T chart did not produce alarms for these lots. After the baseline model had

been established, production data (comprised of baseline data, plus lots processed as
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DOE:s) are analyzed following the flowchart outlined in Figure 4.2. The resulting double

T2 scores corresponding to wafer and lot level time scales for the baseline and production

cases are plotted in Figures 4-10 and 4-11.
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Figure 4-10. Baseline double T? chart using recipe 1 data !

Arrows indicate window clean and throttle valve reset.
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Figure 4-11. Production double T? chart using recipe 1 data

Arrows indicate injected faults, which in this case, are lots corresponding to DOEs.

! In this case, the lot to lot control limits appear to be inflated.
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For this recipe, alarms are clearly generated for the DOE lots; the violations of the T2
upper limit are present in both wafer level and lot level time scales, suggesting that the
injected changes are drastic enough to affect the average value over both the individual
wafers and the entire lot. However, as mentioned above, the resetting of the throttle valve
did not signal a fault in this dataset. Close examination of the individual residuals for some
of the sensor signals reveals that the only significant change in the lots processed after the
throttle valve position change appears to be in the chamber pressure. The other sensor sig-

.nals seem unaffected by this particular event. Figures 4-12 and 4-13 plot the production
data for the chamber pressure and RF Tune signals respectively.
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Figure 4-12. Univariate analysis for chamber pressure signal for recipe 1 data 2

Original signal (top); Wafer-to-wafer level residuals after time-series filtering (middle);
Lot-to-lot level residuals after time-series filtering (bottom). Upper and lower control lim-
its (UCL and LCL) are shown for the residual plots.

2 Again, the lot to lot control limits appear to be inflated in this case.
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Figure 4-13. Univariate analysis for RF tune position signal for recipe 1 data

Original signal (top) is measured in thousands of counts; Wafer-to-wafer level residuals
after time-series filtering (middle); Lot-to-lot level residuals after time-series filtering
(bottom). Upper and lower control limits (UCL and LCL) are shown for the residual plots.

Analysis of the data taken from the second recipe produced different results. First, no
DOE data are available for analysis using this recipe as a baseline. Secondly, models con-

structed to represent the baseline condition do not include lots processed after the throttle

valve change. In fact, the inclusion of these lots generates alarms on the T2 charts. Thus,
the baseline data exclude these lots; instead they are added to the production data set. The

events affecting the data collected under this recipe are resetting of the throttle valve, and

a large change in RF power after processing of the first two lots. The double T2 charts for

baseline and production data are displayed in Figures 4-14 and 4-15 respectively.
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Figure 4-14. Baseline double T2 chart using recipe 2 data

Arrow indicates window clean.
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Figure 4-15. Production double T chart using recipe 2 data

Arrows indicate faults, which in this case, are change in RF power, and throttle valve
reset.
Examination of the individual sensor signals and residuals adds further insight for

assigning cause to the alarms generated by the lots with high T2 scores in Figure 4-15. Fig-
ures 4-16 to 4-18 plot some of the sensor signals and corresponding wafer and lot level time

scale residuals.
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Figure 4-16. Univariate analysis for RF power signal for recipe 2 data

Original signal (top); Wafer-to-wafer level residuals after time-series filtering (middle);
Lot-to-lot level residuals after time-series filtering (bottom). Upper and lower control lim-
its (UCL and LCL) are shown for the residual plots.

Looking at the first two lots of the production sequence in Figure 4-16, it is clear that

the large shift in the power influences many of the other RF signals, which are adjusting to

the change in load caused by the power shift. This power change explains the alarms in

these lots, but does not account for the alarms in the three lots following the first two.

Examination of the individual sensor signals and residuals is helpful in this case. Note

that the RF coil signal in Figure 4-17 exhibits a clear drift in behavior following the abrupt
shift after the first two lots. The corresponding residuals show that this drift is captured in

the lot average residual, but does not affect the wafer average residual profile. This is a

clear example of machine drift that is visible more clearly in one time scale than another.
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Figure 4-17. Univariate analysis for RF coil position signal for recipe 2 data

Original signal (top) is measured in thousands of counts; Wafer-to-wafer level residuals
after time-series filtering (middle); Lot-to-lot level residuals after time-series filtering
(bottom). Upper and lower control limits (UCL and LCL) are shown for the residual plots.

Finally, for the lots processed after the throttle valve reset, it appears that again the only
sensor signal showing significant change is the pressure, shown in Figure 4-18, and this

appears at the lot average level with no significant affect at the wafer to wafer time scale.

Although in both cases the endpoint signal did not appear to be a significant indicator

of a failure event, the models and filtering procedure developed in this chapter allow this

signal to be incorporated with the other signals in the double T? chart. Without this devel-
opment, as shown in Figure 4-7, it is likely that there would have been false alarms in the
portions of the baseline data immediately following chamber or window cleans, or preven-

tative maintenance events.
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Figure 4-18. Univariate analysis for chamber pressure signal for recipe 2 data

Original signal (top); Wafer-to-wafer level residuals after time-series filtering (middle);
Lot-to-lot level residuals after time-series filtering (bottom). Upper and lower control lim-
its (UCL and LCL) are shown for the residual plots.

4.5. Summary

The models developed to account for long term trends are consistent with physical
equations describing the window attenuation effect on the measured data. Furthermore, the
results are repeatable over several preventative maintenance (PM) cycles, with little vari-
ation of the linear regression model from one cycle to the next. This suggests that a simple
linear adaptive model may be used to effectively predict the behavior of a cycle, even after
a change of the machine state as drastic as that produced by a PM event. This development
enhances the current tool by enabling the optical emission signals to be combined with the
other sensor data, and makes monitoring robust over time. A further advantage is that new

models would not have to be reconstructed each time the chamber or window is cleaned.
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Figure 4-19. Flowchart for improved fault detection and analysis for three time scales

Our improved fault detection mechanism incorporates long term trends and allows

analysis to be conducted at different time scales, resulting in a more powerful investigative

tool for providing better insight for fault detection and diagnoéis. A flowchart summarizing

the procedure is shown in Figure 4-19.
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Methods for Classification and
Decision Making

5.1. Introduction

In the previous chapter we developed improvements to a system for fault detection
based on monitoring real time tool signals for plasma etch equipment. In particular, it is
clear that long term trends can be explained by machine aging and hence, through appro-
priate filtering, we are able to account for this drift. With the fault detection mechanism
finely tuned and capable of integrating information at various time scales, the next task is
to diagnose the problems causing the faults detected by the system. This task is compli-
cated by variability, specifically, in the type of data, and its source. The different data types
lend themselves to different modeling techniques, and, by exploiting varying levels of res-
olution and detail, features may be extracted for fault classification. This chapter reviews
various methods and approaches for handling uncertainty, focusing on probabilistic
models that accommodate the intermingling of techniques to extract information critical
for decision making. In particular, we discuss the theoretical basis for construction of a
decision support tool to enhance the engineer’s ability to make crucial decisions based on

timely identification of the machine state.

5.2. Data mining and sensor fusion

The process of extracting knowledge from data is often referred to as data mining. Rule
bases, decision trees, and neural networks are among the representations used for data min-
ing, employing techniques such as density estimation, clustering, regression and classifi-
cation [13].

The general problem of classification of data into categorical groups in order to draw

some conclusion or inference has been considered by researchers spanning many different
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fields and applications. The term “expert system” has been used to describe a structure that
combines various types of information for such a purpose. This process has also been
referred to as information or data fusion, and in particular, for data from multiple sensors,

as sensor fusion.

One key goal in sensor fusion is to reduce uncertainty. A distinction can be made here
between uncertainty and imprecision [14]. Sensor uncertainty depends on what is observed
rather than the sensor itself. Thus, missing features, an inability of the sensor to measure
all relevant attributes, or ambiguous observations can all contribute to uncertainty. In the-
ory, the advantage of multiple sensors is that the observations of each one may be com-

bined into an improved estimate of the state compared to one derived from a single sensor.

Our goal is to build a diagnostic system for machine fault classification combining evi-
dence from multiple sensors. One challenge in multisensor systems is in evaluating how
sensors should be implemented, and the role each plays in data management and decision
making. Each sensor becomes a potential contributor to a composite decision process.
Although the benefits of sensor fusion have motivated much research in the area, a general
purpose method for fusion across levels has yet to emerge [15]. The lack of consensus for
a single approach can be explained by the various difficulties associated with multiple sen-
sors. For instance, the sensors’ outputs may have little in common, offer different resolu-
tions of data, or have minimal or no relation to each other. The problem is further

compounded by issues of sensor and measurement noise.

5.3. Methodologies for handling uncertainty

The approaches for handling uncertainty typically fall under one of the following the-
ories: (1) probability theory, which includes Bayesian theory, (2) Dempster-Shafer theory,
also known as evidence theory, and (3) fuzzy set theory.

Given the wide range of fields and applications for classification and sensor fusion, it
is not surprising that different methodologies for representing and dealing with uncertainty
issues have been developed as a result. We require a framework for combining evidence,

whether from different sensors or from other sources, such as human experts, and for gen-
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erating diagnoses from the extracted information. The approaches for evidential reasoning

and decision making are typically considered to fall into one of three general theories.

5.3.1. Probability Theory

Probability theory, being the oldest and most established of the three, is often the
benchmark to which other methods are compared [16]. More recently, developments in
graphical modeling approaches based on probability theory have proven highly successful
in the area of diagnosis and classification [17], [18], [19], [20]. Probability-based eviden-
tial reasoning systems assign probability values to events. Bayesian statistics refer to a set
of techniques for inference that combine measured or observed data with subjective
beliefs, using Bayes’ theorem. With certainty in a feature represented as a probability func-
tion, faults can be linked to observations or evidence, and then Bayes’ rule may be applied
in order to calculate the likelihood of a particular fault. Examples of using a Bayesian
approach can be found in [21], [22], [23]. In addition, a well formalized procedure exists
for implementation of a diagnostic system based on Bayesian theory [24], [25]. One draw-
back, however, is that it requires the values of a large number of conditional probabilities.
Proponents of other methods have also criticized this approach for its lack of an explicit
representation of ignorance. There are a fe.w instances applying non-Bayesian techniques
specifically for sensor fusion, using point probabilities with alternate application-depen-
dent decision rules [26], [27], [28].

As an example of how this approach might be implemented, let us look at a plasma etch
application. Figure 5-1 is a depiction of the plasma etch process that includes input settings

and some relevant sensor measurements.

Input Settings Plasma Etcher Sensor Measurements
P ;
Tressure Bidpein
P pOWEL Impedance

RF bottom power .
P RF tune position

i
Gas ratio DC bias

Total gas flow

Figure 5-1. The plasma etch process
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Suppose we vary the input settings of the plasma etcher, while collecting sensor sig-
nals. If we are concerned with identifying shifts in the inputs meant to simulate the occur-
rence of a fault, we would want to infer this from our observations of monitored sensor
signals measured during wafer processing. To define this problem, we need to specify a

Jault space comprised of the different hypotheses, and an evidence space of observations.

Fault label Fault hypothesis Evidence label Observation
F, wrong pressure E, endpoint signal
F, wrong top power E, impedance signal
F3 wrong RF bottom power E;3 RF load position
| wrong gas ratio E4 DC bias signal
Fs wrong total gas flow
¢ no fault

Table 5-1. Fault and evidence spaces for the plasma etch process

The Bayesian approach employs Bayes’ rule to calculate the posterior probability of a

fault given the evidence.

P(E/F) - P(F) . _ N
P(EJ) s 1 {1,2,...,5},_] {1,2,...,4} (5.1)

P(F,/E) =

Here the term P(E ;7 F;) is the conditional probability of the evidence given the fault,
also known as the class conditional or posterior probability, P(F,) is the prior probability
of the fault, and P(E /;) is a normalization term, which can be expressed in terms of priors

and posteriors by the following equation:

5
P(E) = Z P(E;/F})- P(F) (52)
i=1
Table 5-2 lists values of the different posterior probabilities for this example using the

endpoint signal, £, as evidence.

Thus, for this example, substituting in Equation 5.2, we obtain
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Prior Value Conditional Probability or Posterior Value
PF)) 0.05 P(E/F)) 0.13
P(F,) 0.2 PE/FY) 0.76
P(Fy 0.01 P(E/Fy) 0.01
P(Fy 0.03 P(E/Fy) 0.03
P(F5) 0.06 P(E/Fy) 0.02
P(&) 0.65 P(E,’€) 0.05

Table 5-2. Prior and likelihood probabilities for fault categories and endpoint evidence

P(E;) = (0.05 - 0.13) + (0.2 - 0.76) + (0.01 - 0.01) + (0.03 - 0.03) (53)
+ (0.06 - 0.02) + (0.65 - 0.05)

which gives P(E;) = 0.1932. Consequently, the posterior probabilities of each fault given
the evidence observation of the endpoint signal are calculated using Equation 5.1, and the
results are summarized in Table 5-3. In this case, we would conclude that given the

observed endpoint signal evidence, the most likely fault cause is using the wrong top power

setting (F,).
Posterior Value
P(F/E) 0.0336
P(FyE)) 0.7867
P(FyE}) 0.0005
P(FJE) 0.0047
P(FJE) 0.0062
P(C/E)) 0.1682

Table 5-3. Posterior probabilities of fault hypotheses given endpoint evidence

5.3.2. Dempster-Shafer Theory
Another popular approach was first proposed as an alternative to Bayesian probability
by Shafer, and subsequently built upon by Dempster [29], [30]. The Dempster-Shafer (DS)

theory, also commonly referred to as evidence theory, defines a finite set of mutually exclu-

sive propositions on a domain called the frame of discernment (®). Evidence is repre-

66



sented as a Shafer belief function over <0.0, 1.0>. This interval is used for convenience,
giving the appearance of a probability. Belief functions interpret evidence of some obser-
vation, and serve as a model for transferring belief, but they cannot be interpreted as prob-

abilities of events [15].

One distinction in this theory lies in the concept of attaching portions of probabilistic
measure to higher levels of abstraction than the focal elements of the problem. These
abstractions are unions of the focal elements in ® . Thus, for » focal elements, the set of all
possible subsets of theta is the power set 2”. In DS theory, two measures of uncertainty are
computed for each element. Supportability (S) is defined as the degree of belief directly
supporting a specific element of the power set. In contrast, plausibility (P) is the degree of
belief not directly in contradiction of a specific element. With these definitions, it is possi-

ble to explicitly represent ignorance as the difference between plausibility and supportabil-

ity of an event.> Dempster’s rule of combination serves as the mechanism for combining

independent sources of information.

Returning to our example of a plasma etch diagnosis application, we can consider the

frame of discernment, ©, as the fault space. Note that with our fault set of 5 categories, we
now have 2° = 32 possible subsets in our fault space. We also assume that we have a mul-
tivalued mapping function, I, that maps the elements in the evidence space, E, to the fault

space, ®, and that elements may be mapped to an individual hypothesis, or any subset of
hypotheses. These evidence mappings can be specified by defining a basic probability
mass distribution or BPMD [31]. A set of basic probability masses (BPM) are used to dis-

tribute belief from an evidence element to a set of hypotheses in the fault space. Any unas-

signed belief will be assigned to the entire set, ©.

Using the BPMD, we can extract intervals, [S(X), P(X)], for an individual hypothesis.
The support and plausibility of a hypothesis X are specified by:

SX) = Y m (X)) (54)

3 In contrast, classic probability theory assigns wide confidence intervals to estimated probability values.
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PQY) = 1=y m(=X)) (55)
where X; c X, ® = XU —X and —X; ¢ —X. Thus, Equations 5.4 and 5.5 say that the total
support in X is given by the sum of supports assigned to X and all subsets of X.

For our example, let us take as evidence observations, the monitored sensor signals cor-
responding to the endpoint (E;) and the impedance (E,) of the plasma, and specify the
BPMD’s, m; and m,, as the masses derived from the multivalued mappings, I';: £, - ©

and I'y: E, - ©. Using Dempster’s rule of combination [30], we can calculate the com-

bined BPMD as follows:
Zml(Xi)mz(Yj)
m(Z) = % , X;nY, = (5.6)
k= Zm](X,.)mz(Y}), if X; N Y, = %] (5.7)

Equations 5.6 and 5.7 define the BPM of the intersection of X; and Y; as the product of
the BPM’s of X; and 13, with a normalization factor of (1-k) to account for the belief which

would have been assigned to the empty set.

Using the following evidence mappings for I';: E, > © and I',: £, > ©:

m,(F, FyU Fs, Fy, F,, 6, ©) = (0.05,0.8,0,0,0.1,0.05) (5.8)

my(Fy, F\UF;,F,UFs,C,0) = (025,04,0,0.15,0.2) (5.9)
we can calculate the combination of m; and m,. Table 5-4 lists the propositions (subsets of
the fault space) from m; along the first column, while those of m, are given along the top
row. Thus, the cells of the table show the intersection of the corresponding propositions
associated with m; and m,. Note that the intersection with the whole set, ®, simply returns

the original proposition. Assuming independent evidence sources, the values of the inter-
sections of the propositions are given by the product of the values of the propositions, and

these are summarized in Table 5-5.

Equation 5.6 gives us the following for the combination of m; and m,:
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m, \'m, F, F\UF, | F,UF, g ®
F, 7 F, 7] 7z F,
F, U Fy F, 7z F, @ F,UFs
Fy @ Fy Z) @ F,
F, 7 Z F, 7] F,
c Z Z Z c - 3
® F, F\UF, | F,UF, g ®

Table 5-4. Sets formed from the intersection of propositions associated with m; and m,

my \ g 025 0.4 0 0.15 02
0.05 0.0125 0.02 0 0.0075_ 0.01
0.8 02 032 0 0.12 0.16
0 0 0 0 0 0
0 0 0 0 0 0
0.1 0.025 0.04 0 0.015 0.02
0.05 0.0125 0.02 0 0.0075 0.01

Table 5-5. Corresponding belief mass values for the sets formed from the intersection
operation

m(F,, Fy, F3, F\U F3, Fy, F35, F4U F5, &, F, UFy)

= (0.0632, 0.4474, 0, 0.0421, 0, 0, 0, 0.0895, 0.3368) (5.10)
Using Equation 5.5, the corresponding probability intervals for each fault hypothesis are:

F,[0.0632, 0.1263], F,[0.4474, 0.8052], F4[0, 0.06311, F,[0,0.021], F;[0, 0.3578],

and £[0.0895, 0.1105]. Again, these results show that the most likely fault cause is due to

using the wrong top power setting, F>.

Bayesian theory and DS theory have both been used successfully in a number of sensor
fusion applications. Although the majority of these systems represent sensor evidence
probabilistically and use Bayes’ rule for inference [21], [22], [23], [24], [25], a significant
portion rely on the DS framework and consider sensor evidence in terms of belief [15],

[22], [32], [33], [34], [35], [36]. An application for monitoring, maintenance and diagnosis
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for a low pressure chemical vapor deposition (LPCVD) process using the DS approach can
be found in [31].

There is much in the literature discussing the advantages and drawbacks of each theory
[37], [38], [39], [40]. In particular, some researchers contend that evidence theory is either
more powerful or that it can address some problems that probability theory cannot. Others
view evidence theory as having limitations, claiming that Bayesian theory is a more effec-
tive and efficient method. A direct comparison can be found in [41], which applies Baye-
sian and evidential reasoning to the same target identification problem requiring multiple
levels of abstraction. The two reasoning methods are compared in terms of convergence
for a number of aircraft identification scenarios including missing reports and misassoci-
ated reports. These results show that probability theory can accommodate all issues dealing

with uncertainty and converge to a solution faster than evidence theory.

5.3.3. Fuzzy Set Theory

The third approach is motivated by the claim that probability and statistics do not ade-
quately deal with certain kinds of uncertainty. Fuzzy set theory (FST), first advocated in
1965 by L.A. Zadeh, has mainly been established in applications of control theory and arti-
ficial intelligence [42], but has more recently been applied as an alternative to traditional
statistical methods in areas such as statistical quality control, linear regression, forecasting
and reliability [43]. One claim is that this theory serves as a bridge of communication
between man and machine. For example, in applications involving diagnosis, inference,
systems and control, observations are often expressed in linguistic terms or human expert
opinions. These data suffer from uncertainty and ambiguity due to subjective judgment and
interpretation, as opposed to the measurement noise, imprecision, or natural process vari-
ation that contribute to randomness in the statistical sense. While statistical variation is
based on the distribution of data, in cases where the occurrence of an event is unclear, or
the total data has no meaning, there is no distribution. The observation that “the tomato is
red” or a statement that “the tomato is almost ripe™ are not readily handled by probability
theory. Thus, the most salient aspect of FST lies in its ability to represent the gradation of
boundaries of states, relationships, constraints and goals, where the range or interpretation

of the definition is vague.
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In the case of diagnosis and inference, through FST techniques, one would hope to
express human experience in a form easily evaluated by a machine, and moreover, to con-
vert the output of the machine into a form people can understand. Some systems are even
designed to imitate human judgment and understanding. However, because a model
derives its value from being a concise expression capturing the essence of a real problem,
the first issue to consider is what part of the system (if any) would be better represented by

FST, and what form this conversion will take.

A system model is composed of many types of variables, dependent and independent,
state, input, output and decision nodes, and must incorporate transitions, cause and effect.
The procedure for building a fuzzy model takes place in two stages: (1) definition of the
sets of variables and logical relationships and (2) conversion to fuzzy sets and fuzzy rela-
tionships. To construct a fuzzy set, one must first identify a membership function that
assigns a grade of membership between zero and one to each element in a set. Mathemat-
ically, the membership function is a mapping from the space of elements to the unit inter-
val, again, giving an appearance of a probability. Table 5-6 summarizes a few notations
used in defining fuzzy sets; a formal definition is as follows [44].

The function p : X — [0, 1] is given the label 4 and A is called a
fuzzy (sub)set of X. p is called the membership function of 4, and

defines the extent of membership of element x into 4. D(5.1)
xelX -~ X xeAd
/ \ o
/ A\ with a fuzzy
0< Hy (x)=<1 I T membership
\ /
N x* » r(x) - [0, 1]
N —_ 7

Figure 5-2. Fuzzy Subset 4
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Notation Meaning
X whole set
A subset of X
A fuzzy subset of X
é empty set
{0,1} the set of zero and one
[0,1] the real-number interval from zero to one
X4 the characteristic function of set A in X
L7 the membership function of set 4 in X
anb the min of @ and b ]
avb the max of a and b

Table 5-6. Notation for fuzzy sets [44]

Figure 5-2 depicts a fuzzy subset 4 [44]. The rectangle represents the whole set X, and
the dashed circle, the ambiguous boundary of the fuzzy subset 4. A member of the set is

the element x, whose membership function p gives the degree or extent to which x is a

member of 4.

It is important to note the difference between a fuzzy set and a standard set, also
referred to as a “crisp” set. Returning to the data from our plasma etch example, let us take

the fault hypothesis, F,, the label corresponding to using the wrong top power setting on

the etcher, to illustrate this difference. Our data for the top power setting consist of several
values. We need to specify which of these are “wrong” and which are correct. Moreover,
we wish to make a further distinction between a setting that is “too high” versus one that
is “too low”. In order to implement this quantitatively, we require a method of determining
appfopriate threshold values. In effect, we are specifying the boundaries between the cor-

rect setting, and values that are either too high or too low.

Nonfuzzy sets have been called crisp sets, due to their clearly defined boundaries.
Characteristic functions may also be used to define the membership of an element to a crisp

set. In particular, if C is a crisp subset of X, the characteristic function of C'is given by:
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1, xeC

Xc(x) = {0, feC (5.11)

This is equivalent to a membership function of C with a grade that is two-valued. In
other words, the element x either belongs to C with a grade of one, or it does not belong,

and its grade is zero.

If we think of the decision rendered by the characteristic function of a crisp set as
making a determination between black and white, then the membership functions for fuzzy
sets assign grades of membership by distinguishing among shades of grey. In other words,
membership functions are an extension of characteristic functions in that they allow for a
membership grade within the range [0,1], as opposed to {0,1} for crisp sets. One conse-
quence of this is that a given element of X may simultaneously hold non-zero grade values
of membership in multiple sets. That is, the boundaries between sets are vague or fuzzy.
Figures 5-3 and 5-4 illustrate the difference between crisp and fuzzy sets.

A ----
°
g |
E 250 ~ 325 325~375]  375~450
g “low” “medium?” “high”
°
8
[
S
0 || 1 1
250 300 350 400 450
Top power setting (W)

Figure 5-3. Characteristic functions of crisp sets “low”, “medium” and “high” top power
gu Y PP
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Figure 5-4. Membership functions of fuzzy sets “low”, “medium” and “high” top power

The basic operations conducted on crisp sets are used to give unions, intersections and
complements of sets. However, because fuzzy sets are defined by membership functions,
operations conducted on fuzzy sets must utilize membership functions. The following def-

initions are necessary for this purpose:

Union of fuzzy sets 4 and B:

Rao () = By(x) v pp(x) D (5.2)

Intersection of fuzzy sets 4 and B:

P/_t n{?(x) = P,_i(x) N Pg(x) ‘ D (53)
Complement of fuzzy set {1 :
py(x) = 1—u4(x) D (54)
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Figure 5-6. Complement of a fuzzy set
Figures 5-5 and 5-6 show graphs of these operations using fuzzy sets 4 and B, which

could for instance, correspond to “low top power” and “high top power” respectively, as

in our previous example.

In particular, we can see that these definitions are extensions of crisp sets. If we take
the characteristic functions of two crisp sets, C and D, we can define the union, intersection

and complement as follows:
Xcup(*) = Xc(x) v xp(*) D(55)

XcAp(X) = %c(x) A xp(x) D (5.6)
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Xp®) = 1=xc(x) D (5.7)

These are depicted in Figures 5-7 and 5-8.
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Figure 5-8. Complement of a crisp set

From the figures, it is clear that fuzzy complements do not necessarily share the char-

acteristics of crisp complements. One important difference is that fuzzy sets do not follow
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the excluded-middle law, nor do they follow the law of contradiction of crisp sets. More

specifically, we have that for a fuzzy set 4 :

AVA=X (5.12)

ANA=+D | (5.13)
Moreover, the fuzzy membership functions for the whole and empty sets for all values of

X are given by:

Hy(x) =1 . (514)

() = 0 (5.15)

In contrast, crisp sets result in the following laws, necessary for two-valued logic [44]:

CuC = X (excluded-middle law) , (5.16)

CnC = @ (law of contradiction) (5.17)

For finite sets, givenby X = {x,x,, ..., x,,} , membership functions can be expressed

in the following manner [44]:

n

4 = Z Ma(x)7x; = Py /X + WXy /%, + o+ py(x,) /X, (5.18)
i=1

Note that the elements of the set are written on the right side of the slash, and the corre-
sponding grades of membership on the left. This notation allows us to represent operations.
For instance, using a “+” to represent “or” results in an operation that assigns the maximum

grade when the elements are the same:

a’x;+b/x; = avb/x, (5.19)

Finally, we need a few more concepts to demonstrate how FST can be applied to a clas-
sification problem. In order to define fuzzy relations, fuzzy reasoning, and fuzzy logic, we
require some basic building blocks. A fuzzy proposition is an expression that makes a
statement. A typical example might be “xis A", where x is an element of the set, and Ais

a fuzzy predicate, or fuzzy variable. In the plasma etch example, x might be a sensor mea-
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surement such as the endpoint intensity, and A4 might represent the set “high”. The propo-
sition “x is A" would then be interpreted as the statement “the endpoint intensity is high”.
In addition, fuzzy propositions can make use of modifiers to change the predicate; this is
represented as “x is mA ”, where the modifier m can be, for example, “very” or “not”,
resulting in a modified statement, “the endpoint intensity is very high” or “the endpoint
intensity is not high”. Propositions can be combined to produce composite propositions

such as:
‘xisA”or“xisB’=“xis AU EZ”
‘xisA”and “xis B"="“xis AN B”
An implication is a combination formed using an “if” statement:
“ifxis Athenyis 8” =“(x,y) isA—> 8”
where A — & is the fuzzy subset X x ¥, with a membership function given by:

Fasg(xy) = (1-p(x)tpg())al (5.20)
There are various implication formulae used in fuzzy reasoning; the interested reader is

referred to [44] for a discussion of these formulae and their applications.

Returning to our plasma etch example, let us take an evidence observation, the moni-

tored sensor signal corresponding to the endpoint intensity (E;) of the plasma, and repre-
sent this using the fuzzy sets E;; for low and E ;4 for high endpoint intensity, respectively.

Moreover, let us take the fault hypothesis corresponding to using the wrong top power set-

ting (¥,) and model this using fuzzy sets. We can consider the membership functions in
Figure 5-4 as specifying the fuzzy sets corresponding to F,; = “low”, Fyp, = “medium”,
and Fpg = “high” top power. Figure 5-9 illustrates the membership functions for E;; and
E;y ,representing low and high endpoint intensities. Although in both cases we have spec-

ified distinct membership functions to distinguish between “low” and “high” for the end-

point and tdp power respectively, note that alternatively, we could have employed the
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complement operation. In other words, we would specify “low” and “not low” as opposed

to defining a separate membership function for “high”.

“low” “high”
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150 500 750
Endpoint Intensity

Figure 5-9. Membership functions of fuzzy sets “low” and “high” endpoint intensity
Using Equation 5.18, suppose our endpoint intensity values are given by the finite set
X = {319.0,173.4,197.5,408.7,373.4, 534.4, 648.9, 288.3,424.7,177.4} . The corre-

sponding membership functions for E;y and E;; are:

E,; =0373190+1/173.4+17/197.5+0.05/408.7+0.1/373.4+0/534.4 (5.21)
+0/648.9 +0.85/288.3 +0.01 7427.4 + 0.98 7177.4

E;y = 0.157319.0+0/173.4+07/197.5+0.87408.7+ 0.4/373.4+1/534.4 (5.22)
+1/648.9+0.1/288.3 +0.85/4274+0/177.4

The finite set of top power settings associated with the measurements of the endpoint
intensity above are Y = {350, 250, 275, 450, 350, 450, 450, 307.3, 350, 250} , which

gives the following membership functions for top power:

Fy; = 027350+ 17250+ 0.98 7275 + 07450 + 0.2/350 + 0 /450 (5.23)
+07450+0.97307.3 +0.2/350 + 1 /250
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Fyy = 17350+07250+ 07275+ 07450+ 17350 + 07450 (5.24)
+07/450 +0.187307.3 +1/350 + 0/250

Fop =027350+0/250+0/275+17450+0.27350 + 17450 (5.25)
+17/450 +0.017307.3 + 0.2 7350 + 07250

Furthermore, suppose we have the following rules, based on experience:

“If the measured endpoint intensity is low, then the top power setting is low,”
“CoP)isE; > Fy”

“If the measured endpoint intensity is high, then the top power setting is high,”
“Cop)is g Fop”

Using Equation 5.20, we can calculate the membership functions for E;; — F,; and

for |z — F,p. Butnow suppose we want to find the membership function for the medium

values of endpoint intensity, corresponding to medium values (correct settings) of top

power. We can use the operation for taking the intersection of “low” and “high” endpoint

intensities, p EynE,X) = H Eu(x) Alg, (X)), resulting in the following rule:
“If the endpoint intensity is low and high (medium), then the top power setting is medium,”
“CNISE;NE y—>F,,~

In other words, by taking the intersection of the sets “low” and “high”, we are obtaining
the higher values in the low set, and the lower values in the high set. Thus, these correspond
to the medium values for endpoint intensity. Table 5-7 lists the measurement data and cor-
responding membership functions for the endpoint intensity and top power setting respec-
tively, while Table 5-8 summarizes the results of calculations involving membership
functions discussed in this example. Note that the diagnosis results represented by the

membership function for the implication rules are all correct with the exception of the ninth
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sample, given by “(X, y) is |5 —> F,p”. The rule “if the measured endpoint intensity is
high, then the top power setting is high,” fails in this case with a datapoint of (x, y) =
(427.4, 350), which is clearly an exception to the rule. Of course, this is a simplified exam-
ple used for demonstration purposes. A full classification system would employ several

rule sets based on various sensor signal evidence in order to diagnose the fault hypothesis.

Index | Endpoint | p Eu(x) 7] Em(x) Top Power| pn Fy HF,, HE,,
1 319.0 0.3 0.15 350 0.2 1 0.2
2 173.4 1 0 250 1 0
3 197.5 1 0 275 0.98 0
4 408.7 0.05 0.8 450 0 0
5 3734 0.1 .04 350 0.2 1 0.2
6 5344 0 1 450 0 1
7 648.9 0 1 450 0 1
8 288.3 0.85 0.1 307.3 0.9 0.18 0.01
9 427.4 0.01 0.85 350 0.2 1 0.2
10 177.4 0.98 0 250 1 0 0

Table 5-7. Data and membership functions for endpoint (X) and top power (Y) '

Index BE, > F, KE > F,y pE,LnE,H(x) pEILnEIH_)FHJ(_x)_
1 0.9 1 0.15 1
2 1 1 0 1
3 0.98 1 0 1
4 0.95 1 0.05 0.95
5 1 0.8 0.1 1
6 1 1 1
7 1 1 1
8 1 0.91 0.1 1
9 1 0.35 0.01 1
10 1 1 0 !

Table 5-8. Membership function results implementing implication rules for diagnosis
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Given our discussion, one might reasonably conclude that the value added by the FST
framework depends on the application and modeling goals. Specifically, in cases where the
data is qualitative, subjective, or relies on a linguistic description subject to a range of inter-
pretation, FST provides a structure to capture ambiguity and allow for manipulation in a
form that can processed by a machine. However, if the data can be represented and inter-
preted probabilistically, based on statistical properties, the value of what is gained by
employing the FST approach itself becomes ambiguous.

One final point to note is that memberships do not follow the laws of probability. In
fact, one of the biggest differences is the idea of a continuum of membership - that an ele-
ment can simultaneously hold nonzero degrees of membership in sets considered mutually
exclusive. Thus, while FST violates the law of the excluded middle, some claim that this
enables toleration of vagueness in data, especially for categorical or qualitative data. How-
ever, critics argue that there is ambiguity in the interpretation and definition of fuzzy quan-
tifiers, and that fuzzy logic implementations are difficult to adapt to new sensing
configurations [15]. A comparison is made in [43] between fuzzy methods and simpler
alternatives based on traditional probability and statistical techniques. In this review, using
examples applied to control theory and statistical quality control, the authors find no
instances of FST being uniquely useful. In other words, no solutions using FST were found
that could not be achieved at least as effectively using probability and statistics. Still, there
are several examples and applications of possibilistic or fuzzy systems for sensor fusion
[22], [45], [46]. Of course, the debate continues, and interested readers are referred to [43]
for further discussion by proponents of both sides.

Considering that DS theory requires a fault space even larger than for Bayesian the-

ory,* and given the difficulties associated with adapting fuzzy logic implementations, the
framework we have chosen for this application has its basis in classic probability theory.

In particular, we use graphical modeling approaches to capture probabilistic relationships

4 Givenn mutually exclusive, collectively exhaustive groups in a Bayesian fault space, the equivalent
represgntation in the D-S framework (the frame of discernment, ©) would consist of 2n elements, which
is comprised of all possible subsets of ©.
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among variables. More importantly, this method can learn causal relationships, which are
especially crucial in diagnosis work, to enhance understanding of the problem and result
in better predictive capabilities. Finally, this approach facilitates the intermingling of dif-
ferent models, and when used in conjunction with statistical techniques, can encode depen-

dencies, forming a unified and intuitive framework for data fusion.

5.4. Graphical Modeling Approaches

Graphical models have been described as a “marriage between probability and graph
theory [47].” With the union exhibiting the virtues of each, the result is a powerful tool for
handling both uncertainty and complexity. This unified framework for representing prob-
abilities and independencies combines representation for uncertain problems with tech-
niques for performing inference. Because the approach is inherently modular, that is, a
complex system can be viewed as a collection of simpler parts, the model is ideally suited
for the design and analysis of machine learning algorithms. Probability theory acts as the
“glue” for holding the parts, providing consistency within the system, and an interface
between models and data. The framework is supplied by graph theory, enabling the visu-
alization of interacting sets of variables. The general graphical model formalism can take
various forms. Influence diagrams represent decision processes; Bayesian networks are
used for causal, probabilistic processes and expert systems, and data-flow diagrams for
deterministic computation. Other special cases include mixture models, linear regression
predictors, feed-forward networks, factor analysis, Kalman filters, hidden Markov models,
directed graphs representing a Markov chain, and undirected networks such as a Markov
field, used to capture correlation for images and hidden causes [48). These cases span over
many fields ranging from systems engineering and statistical mechanics, to information
theory, pattern recognition, utility theory and decision theory. Specific applications include
diagnosis, probabilistic expert systems, planning and control, dynamic systems and time-
series, general data analysis and statistics. Moreover, the graphical model framework facil-
itates the transfer of techniques over different fields by providing a way to view all cases

using the same underlying formalism.
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A probabilistic graphical model is a graph whose nodes represent variables, and arcs
represent dependencies between variables. Perhaps more important is the absence of arcs;
when two variables are not linked, then they can be assumed to be independent. The graph
is used to define a mathematical form for a joint probability distribution.

The decomposition of complex problems is based on the idea of independence.

X is independent of Y given Z if p[(X A Y)/Z] = p[X/Z]p[Y/Z]
whenever p(2) # 0 for all X,Y,Z. D (58)

The law of independence is a basic tool for structuring knowledge [16], [49]. A graph-
ical model can be equated with a set of probability distributions that satisfy its implied con-
straints. Furthermore, two graphical models are equivalent probability models if
corresponding sets of satisfying probability distributions are equivalent [50].

As mentioned above, for implementing diagnostic or probabilistic expert systems, two
cases are of particular interest - influence diagrams, and more specifically, Bayesian net-

works. These are described next.

5.4.1. Influence diagrams

5.4.1.1. Definition

An influence diagram graphically depicts a diagnostic problem by explicitly revealing
probabilistic dependence and the flow of information [51]. It enables the incorporation of
expert knowledge in a framework to formulate problems as perceived by decision makers.
It consists of a network with directed arcs and no cycles, where nodes are random variables
and decisions. Arcs into random variables indicate probabilistic dependence, while arcs
into decisions specify the information available at the time of the decision. The diagram is
compact and intuitive, not only capturing the relationship among the variables, but also
providing a complete probabilistic description of the problem. Bayes’ theorem forms the
backbone of the influence diagram inference procedure. The role of influence diagrams in
diagnostic expert systems is to capture relationships between parameters, and to represent

and exploit conditional independence where possible.
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Influence diagrams can be solved in numerous ways [52], [53], [54]. In particular, in

[54], Agogino compares the functional evaluation of Bayes’ theorem and the topological

transformation in an influence diagram. Figure 5-10 demonstrates a sensor-based inference

comprised of a failure node, F, an intermediate node, I, and a sensor node, S.

O—O—)

original model

®—®

absdrb Iinto S

®—®

arc reversal

(a)

P(S/F) = 3 P(S/DP(I/F)

Q

=Y P(SAD)/F
Q,

P(S) = Y P(S/F)P(F)
Qp

pers) = HSDPD)

(b)

Figure 5-10. (a) Topological transformation and (b) functional evaluation of sensor-based
inference with goal: P(F/S) [Agogino, 88]

The probability of a failure, given sensor readings, P(F/S), is evaluated from known values,
P(F), P(I/F), and P(S/I). Functional evaluations corresponding to two topological transfor-
mations, namely node removal and arc reversal, are shown in Figure 5-10 (b). Formal def-

initions are as follows:

Arc addition: Any number of arcs may be added to an influence
diagram provided no cycles are generated. D(5.9)
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Arc reversal: An arc between two state nodes may be reversed if there
isnootherarcgenerated from the originto the designatednode. D (5.10 )

Node removal: Any state node may be removed by absorption into the
preceding node, as long as the predecessor precedes only one node.
The preceding node inherits all the direct predecessors. D (5.11)

Figure 5-11 depicts a simplified influence diagram for our plasma etch example. The
diagram shows that application of power from the top match network influences the plasma
state, and that the monitored sensor readings are dependent on the plasma state. We also
infer from the diagram that the match network parameters, measured RF power and the DC
bias, influence each other, while the endpoint signal is conditionally independent of the

match parameters given the state of the plasma.

top power o
plasma o
/ \;DC bias @/ \@
endpoint
Sy
(b)

RF power
(a)

Figure 5-11. Influence diagram using (a) signal names and (b) using labels for failure,
intermediate and sensor nodes

Now suppose we are interested in calculating the probability of a wrong top power set-
ting given observations of the endpoint intensity, the measured RF power, and the DC bias.
Figure 5-12 shows the topological transformation and functional evaluation for a “wrong

top power” fault hypothesis.
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Figure 5-12. (a) Topological transformation and (b) functional evaluation for top power:
P(F/8,,8,,S3)
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The ability to model joint probability distributions using sparse graphs to reflect con-
ditional independence relationships is of key importance for decision theory applications.
In addition, multi-attribute utility functions can be decomposed by creating a node for each
term in the sum [48]. The parents would be all the attributes (random variables) on which
the term depends. Utility nodes would have action nodes as parents. The result is an influ-

ence diagram used to compute optimal actions to maximize expected utility.

5.4.1.2. Application examples
There are quite a few successful expert system applications based on influence dia-

grams. HEATXPRT [55], a data-driven on-line expert system for diagnosing heat rate deg-
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radation problems in fossil power plants, uses an influence diagram knowledge base to
represent and process uncertainty. In addition, an application to semiconductor manufac-
turing processes can be found in [19]. The p.rocess model combines qualitative knowledge
of human experts captured in influence diagrams, and neural networks for extracting quan-
titative knowledge relating process parameters. The result is an adaptive learning architec-
ture for process modeling and recipe synthesis for deposition rate, stress and film thickness

in low pressure chemical vapor deposition (LPCVD) of undoped polysilicon.
5.4.2. Bayesian networks

5.4.2.1. Definition
Bayesian networks, also known as belief networks, are influence diagrams without

decision nodes. To define a Bayesian network, a set of variables X = {X, .. ., X,} is spec-

ified along with a network structure S, encoding the conditional independence assertions
about the variables in X. A set of local probability distributions P is also associated with
each variable, and together the components specify the joint probability distribution for X.
This graphical model uses directed arcs exclusively; the term directed acyclic graph (DAG)
denotes a directed graph without directed cycles. Furthermore, the nodes in S have a one-
to-one correspondence with the variables X. Like influence diagrams, Bayesian networks
represent a conditional decomposition of the joint probability. We specify the conditioning
context as M, which can represent the expert’s prior knowledge, or choice of graphical
model. Each variable is conditioned on its parents, with parents(x) denoting the set of vari-

ables with directed arcs into x.

The general form of an equation for the joint probability distribution for X given S is:

p(X/M) = []pl(x/parents(x)), M] (5.26)

xeX
Bayesian networks offer several advantages. First, by encoding dependencies among

variables this method can handle updates given additional data. Bayesian networks enable
learning of causal relationships, leading to better understanding about the problem domain.

The approach facilitates the combination of knowledge and data, particularly causal prior
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knowledge and causal relationships with probabilities. Finally, the combination of Baye-
sian methods with Bayesian networks and other types of models offers an efficient and

principled approach for avoiding the overfitting of data.

5.4.2.2. Construction of a Bayesian network
The initial tasks in the process of building a Bayesian network are to:

(1) identify the goals of modeling (prediction, explanation, exploration)
(2) identify observations that may be relevant
(3) determine what subset is worthwhile to model

(4) organize observations into variables having mutually exclusive, collectively exhaustive

states

The difficulties associated with these tasks are not limited to Bayesian networks, but

are common to most approaches [56].

The next phase of Bayesian network construction involves building a directed acyclic
graph that encodes assertions of conditional independence for the problem [57]. The math-
ematical basis for this is the chain rule of probability:

n

p(x) = [P/ s -5 %i21)) (5.27)
i=1
Determining the structure of a Bayesian network often entails the use of human exper-

tise and prior knowledge. We specify that for every x;, there will be some subset
I, c {x,...,x;_;} , such that x; and {x,,...,x;_,}\II; are conditionally independent
given IT; [56]. Once the problem variables are ordered, we can determine the variable sets

that satisfy:

n

p() = J]pCx;/m) (5.28)

i=1
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One difficulty with this procedure is that if the variables are ordered poorly, the result-
ing structure will fail to encode important conditional independencies. In the worst case,
one would have to explore n! possible orderings. An approach to circumvent this undesir-
able scenario is to examine the causal relationships among variables which often corre-
spond to assertions of conditional independence. Thus, to construct a Bayesian network,
one can simply draw arcs from causal variables to their effects. In almost all cases, the
result is a structure that satisfies Equation 5.26. To a large extent, the success of Bayesian
networks in the implementation of expert systems is due to the learning of causal relation-

ships, also referred to as causal semantics.

The causal and probabilistic semantics in the model allow for the combination of prior
knowledge. However, methods for learning causal relationships are still new and contro-
-versial. The causal Markov condition defines the connection between causal and probabi-
listic dependence. In particular, a directed acyclic graph is a causal graph for variables if
the nodes are in a one-to-one correspondence and there is an arc from node X to Y if and
only if X is a direct cause of Y. The causal Markov condition says that if C is a causal graph
for X, then C is also a Bayesian-network structure for the joint physical probability distri-
bution of X. Several researchers have found this condition to hold in many applications
[56]. Thus, given the causal Markov condition, we can infer causal relationships from con-

ditional-independence and conditional-dependence relationships learned from data.

The final step in the construction process is to assess local probability distributions of
variables given their parents. In this case, specifying the parameters of the model for a
Bayesian network means finding the conditional probability distribution (CPD) at each
node. For discrete variables, these can be represented as a conditional probability table
(CPT) [48].

Although the construction steps above have been described in simple sequence, in
practice the steps are intermingled, and it often takes several iterations to formulate the

problem based on assumptions of conditional independence, cause and effect.
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5.4.2.3. The “Bayes Ball” algorithm

One way to aid in formulating the problem is to view conditional independence rela-
tionships encoded by a Bayesian network by the “Bayes Ball” algorithm [48). Using this
algorithm, each node is conditionally independent of its non-descendents, given its parents,
and in fact, having this quality is often implied in a Bayesian network. Figures 5-13 and 5-
14 illustrate this algorithm. The idea is that two nodes X and Y are conditionally indepen-
dent (d-separated), given the parents, if a ball is unable to go from X and Y, where the
allowable movements of the ball are depicted in the figures. In the first case (a), note that
the arrows are directed into the node; by convention, this is a /eaf node with two parents.
If the node is hidden (not observed and hence, unknown), as in Figure 5-13 (a), its parents
are marginally independent, and the ball cannot pass through. However, if the node is
observed, the parents become dependent, and the ball passes through, as shown in Figure
5-14 (a). The second case (B) depicts a root node, with arrows directed outward. In this
case, if the node is hidden, the children of the node are dependent, linked by a common
hidden cause as in Figufe 5-13 (b), while if the node is observed, the children are condi-
tionally independent, and the ball cannot pass through as in Figure 5-14 (b). Finally, for the
last two cases (c) and (d), the node is an intermediate node, and nodes upstream or down-

stream are dependent if and only if the intermediate node is hidden.

4
o e o
| | | I |
e R
(b) (©) d

(@

Figure 5-13. Allowable movements of “Bayes’ Ball” for hidden nodes
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Figure 5-14. Allowable movements of “Bayes’ Ball” for observed nodes

The network determines a joint probability distribution and in principle, can be used to
calculate any probability of interest using the joint pdf (probability density function). In
reality, this is not practical, and encoded conditional independencies are used to simplify

the calculation and make it more efficient.

Probabilistic inference algorithms for Bayesian networks with discrete variables have
been developed by several researchers. One example reverses arcs in the network using an
algorithm that applies Bayes’ theorem, so that the result can be directly read from the graph
[58], [59], [60]. In contrast, another algorithm, described in [61], utilizes a message-pass-
ing scheme to update the probability distributions in the network after one or more vari-
ables have been observed. Other examples can be found in [62], [63], and [64], where the
algorithms involve a transformation of the network into a tree, with each node in the tree
representing a subset of the original variables in X. Mathematical properties of the tree are

then used to draw inference.

5.4.2.4. Bayesian networks for probabilistic inference

The most common task, probabilistic inference, uses Bayes’ rule to compute posterior
probabilities. For discrete nodes with conditional probability tables (CPTs), maximum
likelihood (ML) estimates can be calculated by simply counting the number of times an
event occurs in the training set [48]. A key advantage of Bayesian networks is the small
number of parameters, requiring fewer data points for their estimation. Choosing the form

of the conditional probability distribution (CPD) can be nontrivial. One approach is to use
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a mixture distribution; however, this introduces a hidden variable. Alternatively, a decision
tree can be used, or a table of parent values along with their associated non-zero probabil-

ities.

In order to ensure successful ongoing diagnosis, two cdmponents - mechanisms for
learning and updating probabilities - must be integrated into the network structure. This
means having the capability to refine the structure and local probability distributions given
additional data. The idea is to use data mining techniques to combine prior knowledge with
data and produce “improved” knowledge. The data are also used to update the probabilities
of a given network structure. '

One approach consists of updating the posterior distribution for a variable that repre-
sents the physical probability. Assuming the physical joint probability distribution is
encoded in a network structure, given a random sample, one can compute the posterior dis-
tribution. The local distribution function associated with a node is often a probabilistic
classification function. Consequently, a Bayesian network can be viewed as a collection of
probabilistic classification models, organized by conditional independence relationships.
Classification models that produce probabilistic outputs come in many forms including
linear regression, generalized linear regression, probabilistic neural networks, probabilistic
decision trees, kernel density estimation methods, and dictionary methods. In theory, any
of these can be used to capture probabilities in a Bayesian network, and in most cases,

Bayesian techniques can be used for learning as well.

Methods for training Bayesian networks from data are still evolving. Statistical meth-
ods for using data to improve models, methods for learning parameters and the structure of
the network [65], and techniques for learning with incomplete data [66] are all among the
active research areas. In terms of algorithm schemas for learning from data, much work has
been done using Monte-Carlo methods for approximation, in particular Gibbs sampling
and Gaussian approximations, as well as the expectation-maximization (EM) algorithm for

finding the maximum likelihood (ML) or maximum aposteriori (MAP) estimates.
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5.4.2.5. Application examples

Bayesian networks originally arose out of an attempt to add probabilities to expert sys-
tems, and this remains their most common use. Two better known examples include the
Windows 95 “troubleshooter” for diagnosing causes of printer failure, and QMR-DT [17],
a quick medical reference model, diagnosing diseases from findings, and utilizing what
arguably may be considered the largest Bayesian network ever constructed. Yet another

successful application is the Vista system [18] used at NASA.

5.5. Sampling theory versus the Bayesian approach |

We made a reference in the previous section to “Bayesian techniques”. What does this
mean exactly? It turns out that there are two camps within probability theory, each with its
own distinct approach to solving problems - one based on sampling theory, sometimes
referred to as the maximum likelihood approach, and the other, the Bayesian approach.
Although the two may sometimes yield the same prediction, particularly for a large number
of observations, their conceptual basis is fundamentally different. The sampling theory
approach attempts to estimate optimum values for the parameters of a density function by
maximizing a likelihood function derived from the training data. Thus, the parameter 0 is
considered fixed (although unknown), and we must consider all data sets D of a size » that
could be generated from the distribution given by 0. The maximum likelihood estimator

selects the value of theta that maximizes the probability P(D /6) . In contrast, the Bayesian

approach considers the data set D to be fixed, and we imagine possible values of 6 from
which the data could have been generated. Thus, the parameters are described by a proba-
bility distribution that is initially set to a prior, and then converted to a posterior through
Bayes’ theorem after observing the data. The final expression is given by an integral over

all possible values of 6, weighted by the posterior distributions.

There is also a difference in how one views the idea of probability. The frequentist view
(classical approach) defines probabilities in terms of fractions of a set of observations in
the limit where the number of observations tends to infinity. In contrast, the Bayesian
approach can use the term probability to express a subjective ‘degree of belief” in an out-

come. Cox [67] showed that a Bayesian formalism could be reached by imposing some
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simple natural consistency requirements. Specifically, using the value / to denote complete
certainty that an event occurs, and 0 for complete certainty that it does not occur, with
values in between as degrees of belief, it was found that these behave like conventional
probabilities. The mechanism for updating these probabilities with new data is provided by

Bayes’ theorem.

If sampling approaches are used for hypothesis testing, one main concern is the trade-
off between sample size and type / and type I/ errors [68]. Although Bayesian theorists do
not deal with type J and type I/ errors, they do need to assess prior probability distributions.
If the classical approach is used to make inferences based on a few samples, the results may
be subjective in the sense that a statistic may be significant at a five percent level, but not
at a one percent level. Hence, with no strong preference for a specific level, one may be
better off calculating the entire posterior with respect to the prior probability. While Baye-
sian advocates claim that the expectations taken in the classical approach do not make
sense, given that we see only a finite data set, the classical statisticians argue that accurate

priors, required by the Bayesian approach cannot be assessed in many situations.

It may be considered a blessing that a problem that proves difficult for one approach is
sometimes considerably simpler using the other viewpoint. In particular, in the case of
multivariate regression and Normal classification problems, with certain prior densities,
using the likelihood ratio to test coefficients for significance results in a complicated dis-
tribution. However, using the Bayesian approach on the same problem requires a simple
application of the Student t-distribution. Another example is the classification of a vector
to normal populations with unequal and unknown parameters. Using finite samples and the
classical approach leads to questionable results. In contrast, the Bayesian approach com-
putes the posterior odds using the data in a ratio of two Student t-densities [68]. Yet, in
other cases, such as principal components and canonical correlations, the Bayesian result

is complicated, while application of sampling theory is relatively simple.

The classical and Bayesian approaches have different definitions for a good estimator,
and so while both are self consistent, they do produce different estimates. In general,

regardless of the model and of which approach is more simple, if priors are accessible, the

96



Bayesian épproach provides a formalism for combining subjective judgement with
observed data. If priors are difficult to assess, the classical approach might offer an advan-

tage.

5.6. Model selection and model averaging

There are a number of issues that arise in any modeling problem. For instance, one
must consider how to search for good models and how to determine the “goodness” of a
model. This leads to the ideas of model selection and selective model averaging. In the
former approach, one would select a “good” model and use it as if it were the correct
model. In the latter approach, one would select a manageable number of good models and
assume that these models are exhaustive. As discussed previously, one can narrow the field
of models by considering causality and prior knowledge. In addition, model averaging
using Monte-Carlo methods has been shown to yield efficient predictions [56]. Model

averaging and model selection lead to models that tend to generalize well to new data.

A Bayesian classifier derives its name from the application of Bayes theorem to the
joint probability to get a conditional formula. There are three components of interest. The
prior probability is sometimes given by a subjective probability over the model parame-
ters. The sample likelihood, based on the model assumptions and a given set of parameters,
indicates how likely the data sample is. And the evidence for model M, forms the basis for

most Bayesian model selection.

A Bayes factor gives the comparative worth of two models [50]. This approach can be
extended to selecting a single decision tree, rule set or Bayesian network. The basic idea is
to compare posterior probabilities of each model given by P(M/sample). The computation
requires the prior probability and evidence for each model. In the case of Bayesian hypoth-
esis testing, a comparison would be drawn of the Bayes factor of the null hypothesis as
compared with the alternative. In model averaging, predictions of individual models are

averaged according to model posteriors.

Evidence and Bayes factors are fundamental to Bayesian methods. Often a complex

“non-parametric” model (a model with many varied parameters) is used rather than a
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simple model with a fixed number of parameters. Examples of these include decision trees,

neural networks and Bayesian networks.

In a typical non-parametric problem one might learn class probability trees from data,

and, form a representative set of several models averaged using the following identity:

(x/sample) = ZP(M,- /sample)P(x/sample, M) (5.29)
i
Model selection and selective model averaging will prove to be critical in improving

the performance of our implementation of a diagnostic system for plasma etch equipment.

5.7. Methods for feature extraction

There are numerous difficulties associated with using raw, unprocessed data directly as
input to a classification system. Often, this is simply impractical given the vast amounts of
data that are collected for a given application. In addition, the important discriminating
information may not be apparent in the raw data, but rather in some summary statistic or
transformation of the data into a new representation. Pre-processing and feature extraction
refer to this type of action, where a large number of input variables is combined to make a
smaller number of variables. This can be accomplished through linear, non-linear, or
simple fixed transformations constructed by hand or derived from the initial measurements
by automated procedures. Dimensionality reduction can be achieved by discarding a subset
of the original inputs, through the use of prior knowledge, or by forming a linear combina-
tion of the input variables. Transforming the data into a new representation leads to better

class separation, and hence improved performance of the classification network.
The goals of feature extraction and selection can be summarized as follows:

(1) reconstruction of original patterns

(2) parsimonious characterization of patterns

(3) effective discrimination between classes

A further complication is known as the curse of dimensionality. If more parameters are

estimated, and more features extracted, more samples are needed to specify these values.
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The result is a drop in performance after a certain point. In several instances, reducing the
numbér of input variables can lead to improved performance for a given data set. If a fixed
quantity of data is better able to specify the mapping in the lower dimensional space, this
can compensate for the loss of information incurred by not using all possible inputs. This
trade-off is a consequence of the effects of dimensionality, coupled with a limited data set
size. To optimally select features after the extraction process requires some kind of feature
evaluation. The probability of misclassification can be used as a criterion to reduce the

number of features without reducing performance.

5.7.1. Covariance ana}ysis

In chapter 4, we extended hypothesis testing for means of populations to the multivari-
ate case by using Hotelling’s 7 statistic. The covariance matrix, as specified by Equations

4.4 10 4.6, allowed us to calculate the 77 statistic and to combine the individual IIND resid-
uals into a single statistical score. However, analysis and description of covariance struc-
tures are worth some attention in their own right. In particular, it would be useful to

determine whether a common covariance structure exists for observations taken
(1) within the same machine type, and the same fault group

(2) among different machine types, but within the same fault group

(3) among different fault groups, but within the same machine type

In some ways, the covariance structure can be considered a feature of the data, and will
give us information as to which variable combinations contribute most to distinguishing
between different machines and different fault groups. It is also crucial to know whether
we are dealing with identical covariance matrices in our sample groups, as this can deter-

mine which classification methods are most suitable.

5.7.1.1. Testing the equality of several covariance matrices

Suppose that we have k populations, and observations with p attributes. The null

hypothesis given by
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Hy:Z,=%,=..=2, (5.30)
of the equality of the covariance matrices of k p-dimensional multinormal populations, can

be tested using a modified generalized likelihood-ratio statistic.

We take the maximum likelihood estimators for the sample mean and covariance

matrix for the jth population as

ny
= _ 1 .
x(j) = " ;lx,-(I) (5.31)
I i o i o
S; = - 3 [x:0) - (D1 x,() ~*()] (532)

i=1
Thus, .S} is the unbiased estimator of / basedon v j degrees if freedom, where v ;= - 1
for the case of a random sample of 7; observation vectors from the jth population. When

the null hypothesis, Hj is true

K
1
S = — Zvjsj] (5.33)
) va[j=1

is the pooled estimate of the common covariance matrix. For equal sample sizes where

v; =vforall j=1,..k ,the pooled estimate S simplifies to

k
s=135 (5.34)
| <
Define
SV S, 2 s,
a2 Sl 15 Skl (535)
Zvjfz
N
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m is a modification of the likelihood ratio, and varies between 0 and 1, where the value 1
favors the hypothesis. The test statistic, sometimes referred to as the Box m statistic, is

given by

K
my, = —2lnm = ZvjlnlSI - Z vjlnl.S:,.| (5.36)
J j=1

Again, for equal sample sizes where v; = v forall j = 1,...,K , the test statistic sim-

plifies to

k B
My, = v[klnISI— 3 In |Sj|] S (537)

i=1
Box [69] has shown that using the scale factor

k
2
2p"+3p-1 1 1
——— (5.38)
6(p+1)(k-1) Z v,
=1 ? Zvj
J
the product m,,.c™’ approximates a chi-squared distribution with degrees of freedom

c_l =1-

(%(k— Dp(p+ 1)) when sample sizes are large. With equal sample sizes, if all V; =V

the scale factor becomes

Ao @3- 1)(k+1)
6(p+ 1)kv

(5.39)

For k and p less than four or five, and each v; around twenty or more, the chi-squared
approximation is reasonably good [74]. For larger k and p and small v; Box has proposed
an F-distribution approximation. Tables of the upper 0.05 critical values of m,, , have been
calculated by Korin [70] for the case of equal v ;5 these have been reproduced by Pearson

and Hartley [71]. Gupta and Tang [72] found the exact distribution of the likelihood-ratio
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test statistic and tabulated the scale factor for a chi-squared approximation to the distribu-

tion of my,g, for equal (and small) sample sizes.

5.7.2. Linguistic approaches

The methods used in this work all fall into the general category of decision-theoretic
multivariate statistical procedures. However, despite its firm established theoretical foun-
dation and countless successful applications, there has still been some criticism of this
approach. For instance, some view that the focus on statistical relationships among scalar
features has lead to neglecting other structural properties that characterize patterns. It has
also been argued that the data compression is sometimes too severe, and that results lead
solely to class designation rather than description, rendering the system unable to generate

patterns belonging to a class.

As an alternative to the decision-theoretic approach, researchers have considered a lin-
guistic or syntactic model. In this case, patterns are viewed as composed from a language
with construction rules specified by a formal grammar. This requires a primitive extractor
(as opposed to a feature extractor in the decision-theoretic approach) whose function is to
transform the data into a string of symbols or some general relational structure. A structural
pattern analyzer uses the formal grammar to parse the string of symbols, thereby construct-

ing a description of the pattern.

Figures 5-15 and 5-16 depict the two approaches in flowchart fashion. Examination of
these diagrams reveals some commonalities. For instance, the extraction of features in the
decision-theoretic framework is akin to the extraction of primitives in the syntactic
approach. Moreover, primitive extraction often involves statistical classification proce-
dures. In addition, classification of patterns into categories in the decision-theoretic
approach is similar to the association of patterns with generative grammars in the linguistic

case.
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classes
Figure 5-15. Decision-theoretic approach
(environment)
measurement primitive classification/
process extraction description
classes

Figure 5-16. Linguistic approach
Of course, there are aspects in which the two approaches differ. The decision-theoretic
method utilizes numerical measurements, has no need for explicit structural information
and is used primarily for classification. In contrast, in the linguistic approach, primitives

are subpatterns that are rich in structure, and the method is used for both classification and

description.

Formal linguistic models can use other generative mechanisms including differential
equations and finite state Markov chains. There are even stochastic-syntactic models that

specify a discrete probability distribution over the formal grammar. Specifically, for prob-
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lem involving r classes, there are » stochastic grammars, and each parse provides a struc-
ture along with a probability that the structure represents the input pattern. In this case, the

input associated with the grammar is the most probable parse.

For an application of classification of sensor signals from plasma etch equipment
which focuses on structural properties in profiles of the signals, the interested reader is
referred to [73].

5.7.3. Pattern matching

In an effort not to neglect structural properties apparent in the profile of certain signals
over time, we have attempted to extract features that capture these properties. The
approach taken is one of matching the identified pattern to a template. The pattern is cap-
tured in a window, much like one might identify a primitive in the syntactic approach. The
data points in the window are used to define a matched filter. By using this template against
new observations, we can pinpoint the appearance of a similar pattern in the new signal.
We obtain a metric for the goodness of fit of this matching procedure by using a normalized
convolution. Essentially, this means that we find the location where the template has the

greatest overlap with the profile of the observation.

Of course, there are flaws with this procedure, namely, that the result depends on the
template, which is extracted directly from data. With more data samples, this procedure can
be greatly improved by using a template that is generated from the data, but takes into
account the variability in the different samples. This would require a generating mecha-
nism that accommodates noise and natural variation. For this application, we have chosen
a much simplified version to demonstrate that the patterns exist and can be used for clas-

sification and diagnosis of certain problems.

5.8. Methods for Classification

Classification models categorize an object based on a profile of its characteristics. If

we specify a pxI vector of attributes z, where z is an observation from one of k mutually

exclusive populations, the problem is to formulate a procedure that discriminates among

the populations and makes a decision as to which population z belongs. We briefly
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describe three approaches for classification used for estimating CPD’s and CPT’s for the

variables examined in this study.

5.8.1. Tree-based models

Tree-based modeling is an exploratory technique which can be used to devise predic-
tion rules, to select variables for prediction, and to examine complek multivariate datasets.
The algorithm implementing the construction of tree-based models must determine vari-

ables on which to divide, and how to split the space into partitions. It does this by partition-

ing the space of the predictor variables x into homogeneous regions, attempting to make

the conditional distribution of the response } givenx, fG / J?) , independent of x . The algo-

rithm accomplishes this task by using a criterion minimizing a measure of deviance. The
predicted response can be viewed as a factor or as having a numeric value. In the former
case, the model constructed is a classification tree, while in the latter it is a regression tree.
There are several advantages to tree-based modeling over linear or additive models. In gen-
eral, the predictor variables can be a mixture of factors or numeric values. The method is
invariant to a “monotone re-expression” of the predictor variable. Missing values in the
dataset are handled easily, and the factor response is not constrained to have only two lev-

els. Interactions among predictor variables can also be handled by tree-based modeling.

Classification trees are based on the multinomial distribution. If we consider a set, for

example, y = [0, 1, O]T, to represent the response } belonging to the second of three

factor levels, then the probability corresponding to a response falling into each level would

be given by p = {P1, P2, P3} , with the constraint Zp,. =1,i=1,2,3.
The model consists of a stochastic component given by

.;i ~ M(ﬁ i ), i= 1,2,7..,n

and a structural component

B = T(%;)
The deviance is defined as minus twice the log likelihood
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D(Hsy)) = -2 Y yulog(py) (5.40)
k=1
Because the splits in a decision tree are based on maximizing the change in deviance, the

mechanism determining the partitions is equivalent to maximum likelihood estimation.

Tree models are evaluated by how well the partition corresponds to the true decision
rule. For classification trees, a count of the number of errors as a proportion of the training
set provides an estimate of the misclassification rate. Similarly, a probability distribution
over the classes is formed from the training set, and using a Bayes decision rule, the algo-
rithm chooses the class with the highest probability as the prediction. Thus, the tree serves

as a probability model by providing a probability distribution over each one of the classes.

5.8.2. Generalized linear models

Generalized linear models (GLM’s) extend linear models to allow for nonlinearity and
heterogeneous variances. In the case for diagnosis, the factor responses can be modeled as
binary response data (by grouping two factors together and attempting to distinguish them
from the third). This is the approach taken here.

Assuming that the response y is encoded as binary data, the presence or absence of a
condition, for example high pressure versus not high (medium or low) pressure, can be
treated as a “success” with a value “1”, or “failure” with a value “0”. This response data
has a mean , the probability of success, and a variance that depends on the mean. This

leads to defining a link function relating the mean to the linear predictors,

T>
gp) = B'x (5.41)
where the linear predictor is the logit link function

= B
n log(1 = (5.42)
or
n
po= ¢ (5.43)
1+e"



and p is guaranteed to lie within the range [0,1].

The selection of the logit link is based on the binomial distribution and its correspond-

ing log likelihood function.

Thus the logistic regression model is defined by the logit link and the binomial variance
function:

V(p) = p(1-p) (5.44)

5.8.3. Sampling Theory and Bayesian Classifiers
Tree-based models and generalized linear models do not make assumptions regarding
the distribution of the observations. In the case where we have populations that are nor-

mally distributed, there are other options for building classifiers. Specifically, suppose we
have a population m;=N6,Z),j = 1,..,K and (6;,%;) are unknown parameters. In
addition, we have independent p-variate observations {x1G), . « X037 = 1,..,K.If
the covariance matrices are equal; Z) = Z; = ... = I, itiseasy to find likelihood ratio

procedures. However, the distributions required to use these procedures are complicated,
and although other techniques from the sampling theory viewpoint are available, these are

also not simple to implement.

Fortunately, the Bayesian approach provides a viable alternative for this scenario. The
results can be applied with great ease and entail no complicated distribution theory. Taking
the definitions for the sample mean and covariance matrix for the jth population from
Equations 5-31 and 5-32, we have the following result [68].

Theorem 5-1:
Letz: px 1 be an observation from one of the populations m; = N(6,, 2)j=1..,k,

where the parameters (0 ), Z;) are unknown. If the prior distribution of the parameters is
diffuse [68], the predictive probability density for classifying z into 7; is given by the mul-

tivariate Student t-density,

107



kj

P(z/data,j) = .
& Wi vl = [P (549
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n; —1
J
where k; (a constant not depending upon z)is given by
n:
J
K = [ % ]”/2 F(E)pj 5.46
TRy — (5.46)

n A 172
r(Z35)icy- 1)

where p; is the prior probability of classifying z into m;=N©,%),j=1,....,k. The
proof of this theorem can be found in [68].

From Equations 5.45 and 5.46, it follows that the predictive odds ratio for classifying z

into 7; vis-a-vis m;, is the ratio of the corresponding multivariate Student t-densities

- N2

g (z-%())'S; (z— x(l))
N?

p(z/data,i) _ L j
pG/datay) Ui N ———n (5.47)
+ 7 - l(z—x(i))’S,- (z-x(i))

i

where L is a constant given by
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(5.48)

- / r
- Qs

e i [N (N + 1)]p/2

N+ 1)

N
\:3
'_J

fori,j =1,...,K.

There are two main advantages for taking the Bayesian approach. The sampling theory
approach requires large sample sizes and often, also equal covariance matrices. In this case,
Equation 5.45 is valid without these restrictions, and so the result is more generally appli-

cable.
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S.9. Summary

In this chapter, we review various methods and approaches for handling uncertainty,
contrasting the implementation differences using probability theory, a Dempster-Shafer
approach, and FST for classifying faulty behavior in plasma etch equipment. Each method
has its merits and drawbacks. In particular, the DS approach requires specification of a
large fault space that comprises not only individual fault hypotheses, but all possible sub-
sets of these. In contrast, fuzzy set theory is perhaps best used for handling ambiguity asso-
ciated with the interpretation of meaning in data, more commonly found in dealing with
linguistic variables. In our case, the sensor data collected from plasma etch equipment are
largely quantitative, and thus, readily lend themselves to probabilistic representation based

on statistical properties.

Our investigation also includes the examinatipn of various modeling techniques for
extracting information from data. In particular, these serve as the building blocks of our
diagnostic system, providing the mechanism for extraction of relevant probabilities
required by our framework. Specifically, we make use of tree-based and general linear
models to predict the likelihood of a fault hypothesis given the evidence embodied in the
monitored sensor signals. These predictions are combined using graph theory based on
exploiting the causal properties represented by a Bayesian network. In addition, this graph-
ical framework is flexible in that it can accommodate the results of other techniques for the
extraction of probabilities. Probabilistic procedures, such as covariance analysis, help to
identify what assumptions can reasonably be made, and consequently, point to what
method is most appropriate. For instance, the calculation of predictive ratios based on the
Student-t distribution used in Bayesian classifiers is not dependent on the assumption of
equality of covariance structures, and moreover, is much simpler to implement over the
sampling theory approach, which requires estimates of parameters for likelihood ratio pro-

cedures using complicated distributions.

In Summary, this chapter describes the parts of a diagnostic system for machine fault
classification, and the glue that holds these parts together. We show how this approach
facilitates the intermingling of different models, and when used in conjunction with statis-
tical techniques, how it can encode dependencies, forming a unified framework for data

109



fusion by combining evidence from multiple sensors. We delve into greater detail in the
following chapter, describing mechanisms for pre-processing and feature extraction, mod-

eling and prediction, and implementation issues for application to plasma etch equipment.
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6 Plasma Etch Fault Classification

6.1. Introduction

Applications of data mining to real problems exploit relationships among many vari-
ables. In the last chapter, we introduced the idea of using graphical models to encode the
joint probability distribution for a large set of variables. In particular, our framework for
classification is based on Bayesian networks, where we use various modeling techniques
to extract the probabilities necessary for inference. This chapter discusses the implementa-
tion and these techniques within a framework to integrate information from multiple sen-

sors in order to diagnose failure modes in a plasma etch equipment application.

6.2. Framework for Fault Classification
As stated in the last chapter, the initial tasks in the process of building a Bayesian net-

work are to:

(1) identify the goals of modeling (prediction, explanation, exploration)
(2) identify observations that may be relevant

(3) determine what subset is worthwhile to model

(4) organize observations into variables having mutually exclusive, collectively exhaustive

states

The goal of modeling in our case, as applied to plasma etch diagnosis, is to calculate
the likelihood of a fault hypothesis given monitored sensor data. Qur extensive study of the
time-series behavior of these signals provides some information as to what observations

may be relevant to achieve this goal. In this chapter, we expand on that initial examination
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by investigating features that might prove to be important for classification of other kinds
of faulty behavior. In order to do this, we rely on different types of data to identify these
other failure modes. Although our models for prediction and feature extraction differ

depending on the type of data, the basic classification framework based on Bayesian net-

works is the same in each case.

The fault classification problem for plasma etch equipment is complicated not only by
the different types of data (sensor data wh;'ch can be considered over various tithe scales),
but also by the different sources of data. In an ideal world we would have access to com-
plete information. That is, each identified problem category would come equipped with the
same sensor data, from only one type of machine, processing a single product, under con-
trolled and stable conditions. However manufacturing environments ensure that conditions
are not ideal, and hence we must use a collection of heterogeneous data, from different
machines, collected under varying circumstances. Accordingly, the tools we use are appro-
priate given the information available. Although we may employ different models depend-
ing on the data, the end result is the same. The model classifies sensor data into a discrete
category, assigning a cause or fault to the observation, and because this is accomplished

through a training set of data, there is an associated probability with each assignment.

A Bayesian network provides the framework for combining the predictions of these
models. Figure 6-1 depicts the basic network used for fault classification for each of the
different types of data. The idea is that, for a given case, we have access to a particular type
of data that is symptomatic of a specific set of fault conditions. In other words, a fault con-
dition causes a combination of different symptoms embodied by pieces of evidence. This
causal effect is represented in the figure by an arc from a fault node to a node representing
a combination of evidence. Perhaps even more noteworthy is the absence of arcs among
the pieces of evidence. So, while the probability of a combination of evidence, in this case

P(Cy, corresponds to the probability of matching observations to the combination of evi-

dence C;, all the individual pieces of evidence are assumed to be independent of each other.
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(Combination, CD

(=)

Figure 6-1. Bayesian network for classification

Hence, the probability of a combination, P(C)), is simply the product of the individual

probabilities, P(E,), of each piece of evidence:

n

P(Cy) = TP, (6.1)
r=1

Note that there are n pieces of evidence, such thatr = 1, ..., n, and each evidence variable,

E,, can take s = 1, ..., m values. Thus, the evidence space is divided into N mutually

exclusive and collectively exhaustive combinations where:

N
Y P(C)=1, N=nm 6.2)
j=1
In order to make this description concrete, we need to define some terms, and in par-
ticular, to explicitly delineate the parts that comprise the fault and evidence spaces for each
case under consideration. Recall that, in Chapter 3, we describe in some detail, the types
of failure data arising from different sources. These different data are what we are referring

to when we consider a particular case.
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6.2.1. Case 1: DOE data

For the first case, miscalibrations in the equipment are simulated through DOEs, cre-
ating a range of conditions around a nominal operating point. The resulting internal fluc-
tuations in the plasma are captured to some degree by the monitored sensor signals. Figure
5-1 depicts the problem, while Table 5-1 defines a fault and evidence spabe for a simplified
example. In Table 5-1, the fault hypotheses are listed as incorrect settings, for example,
“wrong top power”. In our implementation, we expand this set of hypotheses to distinguish
between incorrect settings that are too high, versus those that are too low. Thus, each fault
variable can take one of three values, namely “high”, “low” or “medium”, where the
medium value is assumed to be the correct setting range. Table 6-1 summarizes the fault
space for DOE data collected from a Lam TCP 9600 etcher in the J-88-E project described
in Chapter 3. Similarly, Table 6-2 contains the fault space for DOE data collected from a
parallel plate Lam Rainbow 4400 etcher.

Fault Variable (i) Fault Index (F;)
Pressure F,
Top Power F,
RF Power F3
Gas Ratio Fy
Total Gas Flow F;s

Table 6-1. Fault Space for DOE Data - Lam TCP 9600

Fault Variable (i) Fault Index (F;)
Pressure F,
RF Power F,
Gas Ratio F3
Total Gas Flow Fy
Gap Spacing Fs

Table 6-2. Fault Space for DOE Data - Lam Rainbow 4400
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Fault Variable (F,y) i | High(k=1) |Mecdium (c=2)| Low (k=3)
Pressure 1 Fi1 Fi2 Fi3
Top Power 2 Fp 1 Fr2 Fy3
RF Power 3 F3; F3, F33
Gas Ratio 4 F41 F42 Fy3
Total Gas Flow 5 Fs Fs» Fs3

Table 6-3. Fault indices, F; . for values (k) taken by each fault variable (i) for TCP 9600

In this case, we find that by using a subset of the monitored sensor signals, tree-based
modeling techniques can be combined with GLMs for prediction of failure modes corre-
sponding to changes in the operating conditions. The predictions of these models can be
viewed as pieces of evidence. Tables 6-4 and 6-5 list the evidence space for the two exper-
iments mentioned above. Because the pieces of evidence are the model’s predictions of

faults based on sensor signals, the evidence space mirrors the fault space.

Evidence Variable (r) Evidence Index (E,)
Model Prediction of Pressure E,
Model Prediction of Top Power E,
Model Prediction of RF Power E;
Model Prediction of Gas Ratio E4
Model Prediction of Total Gas Flow Es

Table 6-4. Evidence Space for DOE Data - Lam TCP 9600

Evidence Variable (r) Evidence Index (E,)
Model Prediction of Pressure E,
Model Prediction of RF Power E,
Model Prediction of Gas Ratio E;
Model Prediction of Total Gas Flow E4
Model Prediction of Gap Spacing Es

Table 6-5. Evidence Space for DOE Data - Lam Rainbow 4400
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Evidence Variable (r) High (s=1) | Medium (s=2) | Low (s=3)
Model Prediction of Pressure Ep Ei» Ei3
Model Prediction of Top Power Ey ) Ey, Ey3
Model Prediction of RF Power E;; E;, E;3
Model Prediction of Gas Ratio E4 E4) E43
Model Prediction of Total Gas Flow Es ) Es, Es3

Table 6-6. Evidence indices, E, ; , for values (s) taken by each evidence variable (r) for
TCP 9600

The tree-based models and GLM:s are constructed to provide predictions for each fault
hypothesis. Thus, each model directly estimates the probabilities of each value for every
fault variable. However, we can also obtain an estimate of these probabilities for a partic-
ular fault variable based on combinations of predictions for the remaining fault variables.
For instance, suppose we are interested in calculating the probabilities for values taken by

the fault variable F),. In addition to the direct prediction given by the models, based on
P(E, ;), we are also interested in the combination of the remaining evidence variables,

whose probability is given by:

n

P(C) = H P(E, ). r#x (6.3)
r=1 ' '
Hence, the probability of a particular combination of evidence is also based on the predic-

tions of the models.

The calculation of each fault probability is based on the relative frequency of the fault
given a combination of evidence, denoted by the conditional probability, P(F; /Cy). A typi-
cal Bayesian approach would utilize Bayes’ theorem to calculate this probability using the

prior probability of a fault, P(F;), and the conditional probability of a combination given a
fault, P(C/F).

P(C;/F)) x P(F))

FC) (6.4)

P(F,/C) =
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Alternatively, machine experts can be used to provide direct estimates of conditional

probabilities of faults. However, in our case, we derive the conditional probability, P(F/
Cj), from the data by counting the number of times a fault occurs with a given combination,

and dividing this by the total number of times the combination occurs. Thus, the relative

frequency of a fault for p observations is given by:

number of times F; ; and C; occur together _ 7, ¢,

L, /C)) = .
P(Fi CJ)p number of times Cj occurs nc, ©.5)
This conditional probability is easily updated given a new observation, p+1, by:
PF. 1Cy = Gt b diacnosedasic x and ke (6.6)
(Fyy f)P“_n_Cj-iT’ or F; , diagnosed as i = x an y X
P(F. ,/C) .\ = —FuG  herwise 6.7)
i, k j p+ 1 nqi + l’ .
Finally, the probability of a fault is calculated using the following equation:
N
P(F,) = 3 P(F, ,/C)x P(C)) @)

Jj=1"
where the conditional probabilities of faults are taken from the database, and the probabil-

ities of a combination are calculated using the predictions of the models based on observed

data and Equation 6.1.

The direct prediction of a fault probability, P(E, o), and the calculation based on the

combination of evidence using Equation 6.8, are combined using the model averaging
techniques described in the previous chapter. This process is done separately for each of
the tree-based and GLM predictors, and the results of these models are also averaged. The
calculation of the weights for model averaging is based on model performance. This is
determined using misclassification rates obtained from running validation sets comprised
of data not used during model construction. Figure 6-2 displays a flowchart outlining the

steps for classification of failure modes based on changing input conditions.
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Figure 6-2. Flowchart for calculation of fault probabilities based on DOE data
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6.2.2. Case 2: Manufacturing data for machine qualification

Our second case is built on manufacturing data collected for machine qualification,

where the faults, diagnosis, and action taken are all documented. These records capture

actual machine problems encountered by the manufacturer.

The evidence library, described in Chapter 3, contains qualification data that fall into
three basic categories: (1) the baseline, representing normal operating conditions, (2) prob-
lems connected with gas line grounding issues, and (3) problems related to the match net-

works. Moreover, four types of machines are identified, due to hardware and software.

differences, complicating the analysis of the signals.

The framework for classification of the qualification data into three categories can be
represented by a tree structure. This is depicted in Figure 6-3, where the splitting conditions

are defined by predictive odds ratios extracted from Bayesian classifiers. The labels for

these ratios are described in Table 6-7.

predictive odds ratio BM1 > 1
\ true false
<
BG1>1 MG2 > 1
| |
true false true false
BG2>1 gas line match gas line
|
true false
baseline gas line

Figure 6-3. Classification tree using predictive odds ratios as splitting conditions
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Testing for: Bottom (RF) Match Signals Top (TCP) Match Signals
baseline over match BM1* BM2
baseline over gas line BG1* BG2*
match over gasoline MGl | MG2*

Table 6-7. Labels for predictive odds ratios for top and bottom match networks
* ratios used in tree structure for classification

Assuming that our observations come from populations that are normally distributed,
in the case of unequal covariance matrices, we can calculate a predictive odds ratio for clas-
sifying an observation into one population over another. The details of this procedure will
be made clear in a following section, but for now, suffice it to say that these ratios provide
us with tests or measures for classifying an observation into one group as opposed to
another. In this case, we have three groups (baseline, gas line, match), and four observation
vectors, corresponding to the tune and load capacitor positions of the top and bottom match
networks, respectively. We consider the top and bottom signals separately, leading to six
predictive ratios. Thus, we can conduct pairwise comparisons to test (separately using the
top and bottom match network signals) whether an observation belongs to: (1) baseline or
gas line grounding (2) baseline or match network or (3) match network or gas line ground-
ing. Table 6-7 summarizes the signals or observations, and the predictive odds ratios cal-

culated to classify these observations into populations corresponding to fault categories.

6.2.3. Case 3: High speed data for RF match problems

The third and final case we consider involves isolating and recognizing features in the
transient behavior in RF signals triggered by the onset of plasma ignition. The objective in
this case is to identify cues relating to predictions of RF match problems, and conditions
where the plasma will not ignite. Because the impedance of the plasma changes after igni-
tion, the parameters of both RF match networks can also undergo drastic changes while
attempting to adjust to the changing impedance. We focus on the load and tune positions
as key variables to monitor, and note the change in the profile of the measured impedance.
We simulate the adjustment of the match networks responding to a changing chamber state -
by varying the preset values for the positions of the load and tune capacitors. |
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The features we identify are structural, in the sense that there appears to be a pattern in
the profile of the impedance signal over time, depending on the “fault” conditions deter-
mined by the preset values for the load and tune capacitors. Once these features are cap-
tured and linked to a fault condition, they can be considered as pieces of evidence whose
combination can lead to a specific diagnosis. Hence, for this analysis, we apply the frame-
work depicted in Figure 6-1, where a fault condition causes a combination of evidence, in
this case, comprised of the presence or absence of a given feature found in the profile of

the measured impedance.

- 6.3. Case 1: Models for Predicting Changing Input Conditions

Designed experiments are used to simulate conditions caused by miscalibrations in the
equipment. The classiﬁcation framework relies on models to extract the probability of a
fault cause given observed monitored sensor signals. Techniques to predict the various dif-
ferent operating conditions utilize data collected from two types of plasma etchers- a Lam
Rainbow 4400, and a Lam TCP 9600. Classification results are obtained using data from
the DOE:s to train and validate the system. In particular, we explore two different modeling
techniques: (1) a simple decision tree structure is used to distinguish between three factor
levels of each of the input settings and (2) generalized linear models are used to predict
binary responses. In the latter case, the binary response is defined by grouping the three

factor levels into two groups.

6.3.1. Monitored signals for the Lam Rainbow 4400

The monitored signals used are those suspected to be most sensitive to changes in the
chamber state of the etcher. These signals are known as real-time tool signals and are col-
lected while wafers are being processed at a rate of 1 Hz. The changes we wish to detect
and classify in this section correspond to specific shifts in the input settings of the machine.
The assumption is that abnormal machine behavior will manifest itself in a manner which
can be simulated by a change in the input settings. For the Lam Rainbow 4400 DOE data,
there are five input settings which are varied over three levels according to a central com-
posite design; this is summarized in Table 6-8. The design includes 36 runs with 9 center-

points and is meant to cover a range of different faulty operating conditions. The purpose
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of the models is to predict these factor response variables based on the signatures of real-
time tool data. The signatures are represented by the average value of each real-time signal
over the main-etch period for each of the 36 wafers. For model training and validation, the
data set is divided into two mutually exclusive sets by arbitrarily picking 12 runs out of the

36 to use as a validation set.

Response High Low Medium
Pressure (mT) 480 370 425
“RF Power (W) 315 235 275
Gas Ratio 0.48 0.42 0.45
Total Flow (sccm) 620 540 580
Gap Spacing (cm) 0.9 0.7 0.8

Table 6-8. Input settings for the Lam Rainbow 4400 plasma etcher

6.3.2. Monitored signals for the Lam TCP 9600

The designed experiment conducted on a TCP 9600 etcher during the J-88-E project is
comprised of 56 runs varying five input variables covering a range of different faulty oper-
ating conditions. Unlike the previous experiment, the values for the input settings did not
fall into three discrete groups, so we used a range, given by Table 6-9, around the center-
point to determine three levels corresponding to values of high, low, and medium. As
before, the signatures are represented by the average value of each real-time signal over the
main-etch period for each of the 56 wafers. As in the previous case, for model construction,
the 56 runs of the designed experiment are divided into two sets- a trailﬁng set of 36 runs

to build the models, and a validation set of 20 runs to test the performance of the models.

Response High Low Medium
Pressure (m1) 15-20 7-15 11-15
Top TCP Power (W) 375-450 250 -325 325-375
Bottom RF Power (W) 137 - 150 110 -125 125-137
Gas Ratio 1.06 - 1.15 0.85-0.94 0.94 - 1.06
Total Flow (sccm) 155-170 130 -145 145 - 155

Table 6-9. Input settings for Lam TCP 9600 plasma etcher (discretized to three levels)
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6.3.3. Signal selection

The probability of a high, low, or medium value for an input setting to a plasma etcher
is determined using real-time tool signals collected from the plasma chamber as predictors.
First, boxplots are used to view the distributions of the real-time tool signals as a function
of each input setting. This determines a preliminary set of predictor variables to be used for
modeling. Tables 6-10 and 6-11 summarize the real-time signals identified as potential pre-
dictors for the factor responses. These signals reflect changes in the machine state which

are in turn affected by changes in the input settings.
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Figure 6-4. Boxplots for the gas ratio input setting using six real-time tool signals*
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* These signals include a mass flow calibration (MFC3) measurement, DC bias, imped-
ance, RF load capacitor position, RF tune capacitor position, and endpoint measurements.

The boxplots in Figure 6-4 indicate that the distribution of values is such that one can
distinguish clearly between high and low levels of an input response. However, the
medium value range appears to overlap with the boundaries of the high and low levels,
which is not surprising. Also note that the high and low levels span a greater range of

values than the medium level.

Response Predictors
Pressure DCBias, Power, Phase, Impedance, RFLoad

RF Power DCBias, EndpointA, EndpointB

Gas Ratio RFTune, RFLoad, MFC3, Impedance, DCBias, EndpointC

Total Flow MFC3, MFC6, HeCFlow, Impedance,
Pressure

Gap Spacing RFTune, RFLoad, Phase, Impedance, Volt, DCBias, EndpointC,

Pressure

Table 6-10. Predictor variables for input setting responses - Lam Rainbow 4400

Response Predictors
Pressure EndpointA, EndpointB, RFLoad, RF Impedance, TCP Tune
Top TCP Power RF Impedance, DCBias, TCP Impedance, EnTbointA
Bottom RF Power TCP Tune, TCP Load, TCP Impedance, EndpointA
Gas Ratio DCBias, RF Phase, EndpointA
Total Flow Pressure, RF Impedance, TCP Tune, TCP Load, DCBias

Table 6-11. Predictor variables for input setting responses - Lam TCP 9600
The signal selection, model construction and validation are implemented using S-
PLUS software in an S-PLUS environment [77].

6.3.4. Tree-Based Model Construction and Validation
6.3.4.1. Tree Construction and Representation

Classification trees for each factor response (input setting) are constructed from the
training data using the preliminary set of predictors identified in Tables 6-10 and 6-11.
These trees are represented graphically in a block diagram form, as depicted in Figure 6-5,
with the root of the tree at the top and the leaves at the bottom. The split condition is used

to label each node, and the final selection value to label terminal nodes or leaves. These
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nodes have corresponding probability distributions which provide an estimate of the like-
lihood of each category. For instance, if the terminal node contains 10, 20, and 200 data
points in categories A, B and C respectively, the corresponding probabilities would be cal-
culated as P(A,B,C) = (10/230, 20/230, 200/230) = (0.045, 0.09, 0.865), so the model
would favor category C with a probability of 0.865. Figure 6-6 depicts a tree model con-

structed for the factor response RF power using the Endpoint sensor signal as a predictor.

distribution of
original data

split condition
“Predictor z < threshold i

| true false B

node - A BC A B C
Predictor x < threshold j Predictor y < threshold k
farminal true false true false
g;)de S /ﬁnal
4 selection
leaf C B A C value
misclassifications

A 8 € 4 B C A B C 4 B C

distribution of data subset that meets conditions of preceding nodes

Figure 6-5. Graphical representation of a tree-based model to choose among categories
AB,C.
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Figure 6-6. Tree model choosing among high, medium, and low RF power using
- Endpoint

6.3.4.2. Tree Simplification

In any methodology for data-based modeling, there is a chance that the model will be
built such that it fits the training data too well, degrading its value as a predictor for other
datasets. Pruning and shrinking are methods of simplifying trees; however, because the
trees developed in this study are all relatively simple and easy to analyze, the use of these
methods for simplification was not necessary. However, viewing these tree-based models
as decision trees, it is evident that simplification can be achieved by “snipping” unneces-
sary nodes. In other words, nodes that do not contribute to improving the final prediction
(i.e. decreasing the misclassification rate) can be removed from the tree, effectively merg-
ing these nodes to their respective “parent” nodes. By definition, because these nodes are

redundant or unnecessary, removing them does not increase the misclassification rate.
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However, removing them does create another advantage. Specifically, if the split at the
redundant node introduces a new predictor variable, snipping that node removes the effect
of that variable and thus reduces the predictor space to be partitioned. Figure 6-7 demon-
strates the process of node removal for a tree constructed to predict the total gas flow

response using the sensor signals MFC3 , HeCFlow (the flow of helium for backside cool-

ing), and MFC6.
original tree model

MCF3 <-18340

I
node
" removal
MFC3 <-18500 MFC6 < -29250
I | I
true false true false
HeCFlow < 6.97 med] fhigh high
I snipped tree model
true false

med low

MCF3 <-18340

MFC3 <-18500 high
I
true false
HeCFlow < 6.97 med
I
true false
med low

Figure 6-7. Node removal for a tree model used to predict the Total Gas Flow response
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6.3.4.3. Coding of Trees

Original construction of the tree-based models is done using S-PLUS software. As
described above, the models can be viewed graphically, but can also be represented as a
collection of rules. For the two classification trees depicted in Figures 6-6 and 6-7, the
equivalent rule-based models and corresponding probabilities for high, low and medium,

calculated from the training data set are given by:
(1) Rule-based model for classification of RF power response:

If Endpoint is less than 9391, RF power is high - P(H,L,M) = (1,0,0)
Else, if Endpoint is less than 8758, RF power is low - P(H,L,M) = (0,0.8,0.2)
Else RF power is medium - P(H,L,M) = (1,0,0).

(ii) Rule-based model for classification of Total Gas Flow response:

If Endpoint is less than 9391, then RF power is high - P(H,L,M) = (0.7,0,0.3)
Else, if Endpoint is less than 8758, then RF power is low - P(H,L,M) = (0 1,0)
Else RF power is medium - P(H,L,M) = (0,0,1).

Once the threshold values are determined, these rules are implemented in a matlab
environment, with a function to update the probabilities automatically given new observa-
tions. Appendices C and D contain the code for the tree-based models, while the results for
extracting probabilities of categories during classification of the validation data for the two
different etchers can be found in Appendices E1 and E2. These probability estimates are

the values used as evidence, E, ;, as described in section 6.2.

The tree-based models are constructed ﬁsing a subset of the original data, also known
as the training set. Once the parameters of the models have been determined, in this case
the choice of predictors and threshold values defining the split conditions, the performance
of the models is judged by how well they are able to classify new observations. These data
are referred to as the validation set, and we can quantify performance in terms of misclas-
sification rates derived from this data. Thus, for each model, we can keep a tally of how
many observations are correctly classified. This information is saved in our database and

serves two purposes: (1) by monitoring the performance of the models, we have a measure
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of how often the models require updating and (2) the performance serves as a measure of
goodness of the model, giving us information as to the likelihood of the model given the
data. Hence, we have a method of accounting for the case where machine behavior has
been altered so drastically that the models built from data in the past are no longer valid.
Furthermore, we have a measure of how good the current model is given the data, and can

use this measure to combine the current models with other classification results.

6.3.4.4. Summary of Tree-Based Models

Classification trees are instrumental in screening predictor variables, determining those
with the strongest discriminatory ability in terms of predicting response factors. This anal-
ysis provides a meaningful breakdown of a complex multivariate set in a form from which
conclusions may easily be drawn. In particular, tree-based models are shown to be effec-
tive in detecting changes in the input settings using only a small subset of the real-time tool
signals. In most cases, the trees are reduced to operate on a space defined by only two pre-
dictor variables, without an increase in the misclassification rate. In addition, tree-based
methods allow the combining of both numeric variables and factors, and can model factor
response variables with more than two levels. Finally, tree-based models can be used as a
tool for examining relationships among variables, providing valuable insight for decision

making.

6.3.5. Generalized Linear Models (GLMs) for Classification

Using the same data sets for the two different types of plasma etch equipment described
above, two sets of generalized linear models are built by encoding each factor response into
a binary response. The first set is based on the high level as a “success” encoded with value
“1”, while the medium and low levels are grouped together as a “failure” and encoded with
value “0”. The second set reverses the high and low roles, with low being a “success”

encoded with value “1”, and medium and high together encoded as “0”.

GLM models are constructed using the training data set to predict the probability of
success for each factor response. As in the building of classification trees, the linear pre-

dictors for the models are chosen using the same set of preliminary variables identified for
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each factor in Tables 6-10 and 6-11. For example, the form of the model fitted for predict-

ing the RF power response is represented symbolically as:

logit(n) = o + BTx 6.9)
where p is the probability of the RF power response taking the value “high” for the first set
of models. Recall from chapter 5 that the linear predictor is the logit link function

i = B
n log(l_ (6.10)
or
n
p=-= (6.11)
1+e"

The values of the model coefficients o and B can be found in Appendix F, along with the

linear prediction 7, and corresponding probability values, .

A measure of goodness for the models is calculated using the formula:

D (6.12)

T X; ~q
In other words, the difference between the null and residual deviance is tested on the Chi-
squared distributed with degree of freedom equal to the difference in the degrees (p-q) of
the null and residual deviance respectively. All of the models are found to be significant
according to this test. Model validation is conducted on the remaining set of runs not used

in building the models.

To combine the results of the GLM models with those of the tree-based models, we

need to convert these results into probabilities for the three levels of high, low and medium.
Using the predictions of the probabilities of “high”, denoted by p > determined by the first

set of GLMs, and the predictions of the probabilities of “low” from the second set, denoted

by u; , if the sum of the two, given by:

P(high)+ P(low) = p,+p, (6.13)
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is greater than one, then

. Ky
P(high) = 6.14
(high) T (6.14)
and
Ky
P(low) = 6.15
(low) = L 6-15)

Otherwise, we take P(high) = py and P(low) = p 1 - To determine the probability of

a medium value, we use:

P(med) = pyy = 1=y + py) (6.16)

The probability estimates given by p,1; and p,,, for each of the five input settings are

the values used as evidence, E, ;, as described in section 6.2. The values extracted from the

GLMs can be found in Appendix F.

6.3.6. Modeling Results and Combinations of Evidence
The modeling results for the decision tree and GLM approaches before model averag-

ing are summarized in Tables 6-12 and 6-13.

Setting Tree (train) Tree (validate) | GLM (train) | GLM (validate)
Pressure 18/6 % 7/5 24/0 8/4
RF Power 23/1 /1 14/10 715
Gas Ratio 18/6 7/5 16/8 7/5
Total Gas Flow 21/3 6/6 16/8 4/8
Gap Spacing 22/2 10/2 16/8 3/9

Table 6-12. Classification Results for Lam Rainbow 4400 (correct/ incorrect)* - Direct
Prediction of Models using Training Set of 24 runs, Validation Set of 12 runs
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Setting Tree (train) Tree (validate) | GLM (train) | GLM (validate)
Pressure 31/5* 14/6 36/0 16/4
Top TCP Power 33/3 13/7 36/0 17/3
Bottom RF Power 20/16 7/13 25/11 7/13
Gas Ratio 31/5 9/11 36/0 10/10
Total Gas Flow 26/10 9/11 24/12 5/15

Table 6-13. Classification Results for Lam TCP 9600 (correct/ incorrect)* - Direct
Prediction of Models using Training Set of 36 runs, Validation Set of 20 runs

The tables display the number of observations correctly classified in the two groups of
data collected from the Lam Rainbow 4400, and the Lam TCP 9600, corresponding to the

training and validation sets respectively for each model type.

Based on the predictions of the probability values, denoted by E, ;, provided by the

tree-based and GLM models, we can calculate the probability of a given combination using -

Equation 6.3. The conditional probability of a fault from the database is extracted using

Equation 6.5. Equation 6.8 is then used to calculate the probability of a fault from a com-

bination of evidence. This procedure is conducted separately for the tree-based modeling

results, and for the values taken from the GLMs, and the classification results are summa-
rized in Tables 6-14 and 6-15.

Setting Tree (train) Tree (validafe) GLM (train) | GLM (validate)
Pressure 18/6* 6/6 18/6 8/4
RF Power 16/8 8/4 1777 715
Gas Ratio 21/3 7/5 18/6 775
Total Gas Flow 19/5 9/3 1579 8/4
Gap Spacing 18/6 775 17717 8/4

Table 6-14. Classification Results for Lam Rainbow 4400 (correct/ incorrect)*- Based on
Evidence Combination using Training Set of 24 runs, Validation Set of 12 runs
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Setting Tree (train) Tree (validate) | GLM (train) | GLM (validate)
Pressure 24/12 8/12 25/11 7/13
Top TCP Power 28/8 9/11 25/11 12/8
Bottom RF Power 23/13 8/12 27/9 6/14
Gas Ratio 26/10 8/12 30/6 6/14
Total Gas Flow 22/14 11/9 24/12 9/11

Table 6-15. Classification Results for Lam TCP 9600 (correct/ incorrect)*- Based on
Evidence Combination using Training Set of 36 runs, Validation Set of 20 runs

Consequently, we end up with four different estimates for each fault group, namely,
two direct estimates, and two estimates using the combinations of evidence, from the tree-

based models and the GLMs respectively. This is depicted in the flowchart of Figure 6-2.

Model averaging allows us to combine the four estimates extracted from the different
models. Here we take Equation 5-29 to calculate the probability of a specific fault (given
the data), denoted by F, .y

(and the data), P(F, ,/data, M), and the prior probability of the model (given the data),
P(M/data).

from the conditional probability of the fault given the model

P(F,,,/data) = ¥ P(M,/data)P(F, ,/data, M,) (6.17)
i

The conditional probabilities of the faults given the models (and the data), P(F, /data,
M,), are the estimates taken from the four models described above. Hence, we have that

g = {1,...,4}. The probability or likelihood of a model given the sample, P(M/data), is
based on the performance of the models. Specifically, the results of Tables 6-12 - 6-15

summarizing the number of “hits”, or correct classifications, are used to calculate the

weights for the models. Thus, the prior probability of a model, M;, is given by:
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hits ),
> hits),
q

Tables 6-16 and 6-17 summarize the results of model averaging for (1) combining the

P(M,/data) = (6.18)

direct estimates with those using combinations of evidence for each model, and (2) com-

bining the tree-based and GLM results to form one final estimate.

Tree'! | Tree*! | GLM*2 | LM | Tree | Tree's

Setting (train) | (validate) [ (train) | (validate) ((t}rgll:xd) (VS!'&IZIt e)
Pressure 23/1* 9/3 24/0 10/2 24/0 11/1
RF Power 24/0 12/0 17/7 8/4 24/0 12/0
Gas Ratio 24/0 10/2 18/6 9/3 24/0 12/0

Total Gas Flow 24/0 10/2 1777 6/6 24/0 11/1
Gap Spacing 24/0 11/1 18/6 8/4 24/0 12/0

Table 6-16. Classification Results for Lam Rainbow 4400 (correct/ incorrect)* - (1) Tree
Combination, (2) GLM Combination and (3) Tree/GLM Combination

Tree*! | Tree”! | GLM™ | gum*2 | Tree™ | Tree™

Setting (train) | (validate) | (train) | (validate) (?r';:;") (vﬁlﬁl‘eﬁe)
Pressure 35/1 | 17/3 | 36/0 | 16/4 | 36/0 | 19/1

Top TCP Power 35/1 17/3 36/0 19/1 36/0 19/1
Bottom RF Power | 25/11 11/9 32/4 10/10 32/4 14/6

Gas Ratio 31/5 10/10 36/0 10/10 36/0 11/9
Total Gas Flow 30/6 16/4 31/5 10/10 3571 17/3

Table 6-17. Classification Results for Lam TCP 9600 (correct / incorrect)* - (1) Tree
Combination, (2) GLM Combination and (3) Tree/GLM Combination

The final results display almost perfect classification for all fault groups in the Lam
4400 data, comprised of 24 training samples, and 12 validation runs. Moreover, excellent
results were obtained for predictions of Pressure, Top Power and Total Gas Flow for both

training sets (36 runs total), and validation sets (20 runs total) for the Lam 9600 data. For
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the other two fault groups, Bottom Power and Gas Ratio, the models did well on the Lam
9600 training data, but not as well on the validation sets.

6.3.7. Application Exa.mple

As an example, let us take a wafer from the validation set collected from the Lam TCP
9600. This is “Wafer 30” out of a total of 56 runs. First, the sensor signals collected from
Wafer 30 are used by the tree-based models and GLMs to calculate a direct estimate of
each input response, and a corresponding probability. These are summarized in Table 6-18
under the headings “Tree Direct” and “GLM Direct” respectively. Next, we extract a fault
probability estimate based on the combination of evidence for each model. These proba-
bilities are listed under “Tree Combo” and “GLM Combo”, corresponding to the tree-
based model and GLM results. Model weights, shown in Table 6-19, are calculated using
Equation 6-18, and the two estimates for each model type are combined through model
averaging. Note that the weights are calculated separately for each input response. Thus,
to combine the models for the “Pressure” input response for the tree-based modeling

results, we use Equation 6.17:
P(F, ,/data) = " P(M,/data)P(F, ,/data, M)
i

P(pressure/data) = P(Tdirect/data) - P(pressure/Tdirect)

+ P(Tcombo/data) - P(pressure/Tcombo) (6.19)

This leads to a combined model estimate for the “Pressure” input response of:

high 0 0.2331 0.1234
P|T2| jow|/data| = 0.4706 - |0.0556| + 0.5294 - |0.2322| = 0.1491
med 0.9444 0.5347 0.7275

Repeating this procedure for each input response leads to the results in Table 6-18, under
the headings “T2” and “G2”, for the combined tree-based models and GLMs respectively.
Finally, to combine the tree-based modeling results with those from the GLMs, we use
Equation 6.17 again to obtain :
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high 0.1234 0.1756 0.1480

P| pressure| oy | /data) = 0.5294 - [0.1491| + 0.4706 - |0.4553| = 0.2932

med 0.7275 0.3691 0.5588
Input Fault | Tree | Tree | GLM | GLM | Tree | GLM | Final

Response | Label | Direct | Combo | Direct | Combo| T2 G2

High Pressure| F, 0 0.2331 0.3732 | 0.1234 | 0.1756 | 0.1480
Low Pressure | F;, |0.0556 | 0.2322 | 0.4919 | 0.4140 | 0.1491 | 0.4553 | 0.2932
‘Med Pressure | F;3; | 0.9444 | 0.5347 | 0.5081 | 0.2128 | 0.7275 | 0.3691 | 0.5588
High TCP Fa1 0 0.1578 | 1.0000 | 0.2430 | 0.0888 | 0.5992 | 0.3440
Low TCP Fy, |1.0000 | 0.1605 0.2430 | 0.5278 | 0.1286 | 0.3282
Med TCP Fp3 0 0.6817 | 0.0000 | 0.5140 | 0.3835 | 0.2722 | 0.3278
High RF F3; 0 0.2115 | 0.3720 | 0.3495 | 0.1190 | 0.3600 | 0.2324
Low RF F3, |0.0909 | 0.2730 | 0.3295 | 0.3495 | 0.1933 | 0.3402 | 0.2624
Med RF F33 |0.9091 | 0.5155 | 0.2984 | 0.3009 | 0.6877 | 0.2998 | 0.5051
High Ratio F41 |0.2308 | 0.4432 0.2908 | 0.3307 | 0.1454 | 0.2381
Low Ratio F42 |0.1538 ] 0.2181 0.3233 | 0.1841 | 0.1616 | 0.1729
Med Ratio F43 |0.6154 | 0.3387 | 1.0000 | 0.3859 | 0.4852 | 0.6930 | 0.5891
High Flow Fs; (0.1250 | 0.1869 | 0.6287 | 0.3403 | 0.1621 | 0.4845 | 0.3233
Low Flow Fs5- | 0.5000 | 0.1002 | 0.1096 | 0.3403 | 0.2601 | 0.2250 | 0.2425
Med Flow Fs3 10.3750 | 0.7129 | 0.2617 | 0.3194 | 0.5777 | 0.2905 | 0.4341

Table 6-18. Fault probabilities for different modeling techniques - Wafer 30

Input Response Tdir Tcom Gdir | Gcom T2 G2
Pressure 0.4706 | 0.5294 | 0.5294 | 0.4706 | 0.5294 | 0.4706
TCP 0.4375 | 0.5625 | 0.4706 | 0.5294 | 0.5000 | 0.5000
RF 0.4375 | 0.5625 | 0.4667 | 0.5333 | 0.5294 | 0.4706
Gas Ratio 0.5294 | 0.4706 | 0.5000 | 0.5000 | 0.5000 | 0.5000
Total 0.4000 | 0.6000 | 0.5000 | 0.5000 | 0.5000 | 0.5000

Table 6-19. Model weights for different modeling techniques - Wafer 30
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For this example, Wafer 30 happened to be a baseline wafer, which means that it was
processed under “normal” conditions corresponding to “medium” levels for each input
response. The final diagnosis predicts all responses correctly, with the exception of the
TCP (Top) Power, which was diagnosed with probabilities distributed almost evenly

among the three levels.

6.4. Case 2: Analysis of Manufacturing Data for Machine Qualification

6.4.1. Covariance Analysis ‘

In Chapter 5, we discuss the importance of finding features in data, and in particular,
identifying those which contribute most to distinguishing between different machines and
different fault groups. This aspect is crucial in the analysis of the machine qualification
data, as variability in the data sets arises not only due to different fault causes, but also

because of machine differences.

The examination of the covariance structure within the data serves many purposes.
First, if a common covariance structure is found to exist, in particular, for observations
taken:

(1) within the salhe machine type, and the same fault group
(2) among different machine types, but within the same fault group
(3) among different fault groups, but within the same machine type

then we can treat the covariance matrix as a feature that provides pertinent information to
distinguish between groups. Even in the case where we do not find any commonalities, the
analysis is still of great value in delineating what assumptions we can reasonably make
about the distribution of the data. This in turn will influence which classification method

we choose to apply.
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6.4.1.1. Testing the equality of several covariance matrices

In Chapter 5, we describe the procedure for testing the equality of several covariance
matrices. We apply this procedure to the machine qualification data, assuming k popula-
tions, and observations with p attributes. The null hypothesis, given by Equation 5.30:

Hy:Z,=3,=..=3,

of the equality of the covariance matrices of k p-dimensional multinormal populations can
be tested against the alternative of general positive definite matrices using a modified gen-
eralized likelihood-ratio statistic.

The qualification data can be divided into twelve sets, corresponding to different
machines. The baseline data, labelled “b1” to “b3”, are from three machines of type 1; data
diagnosed as a “gas line grounding problem” are collected from machine types 1 and 3;
data diagnosed as a “match network problem” are collected from machine types 1, 2, and
4. As shown in Table 6-20, common hardware (labeled as A and B, respectively) is shared
by machine types (1,2) and (3,4), while machine types (1,3) and (2,4) use similar software
(labeled as C and D, respectively).

Type Shared Baseline Gas Line Grounding | Match Network
Hardware | Software | bl [ b2 [ b3 | gl [g2 | g3 | g4 | g5 |m]l |m2|m3|m4
1 A C XIX|IX|XIX|X X
2 A D X|X
3 B C X|X
4 B D X

Table 6-20. Qualification data by fault group and machine type (hardware/software
differences)

The first case we examine is to test data taken within the same machine type, and the
same fault group. Specifically, we take four wafers from each machine (corresponding to
a single type and fault group), using a sample set of twenty data points per wafer. Thus, we
can consider each wafer to form a population, where the number of populations is k = 4,

and using Equations 5.31 and 5.32, we can calculate maximum likelihood estimates for the
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sample mean, x(j), and covariance, Sj, for sample sizes of twenty. Because we are using
equal sample sizes (vj=v=20) forall j=1,...,k , we can apply Equation 5.34 to

calculate the pooled estimate of the common covariance matrix, S. Hence, we have all the

variables necessary to calculate the Box m statistic, m,,g,, using Equation 5.37:

k
Mies = V| kIn|S|-3" In|S|
j=1

where v = 20,k = 4 ,and SJ and S are calculated as described above.

Table 6-21 summarizes the Box m test statistics computed for four types of machines
(with hardware and software differences), and three fault groups. The machines are listed
by fault group and type along the first two columns. The total number of variables used is
denoted by “p”, with the specific sensor variables (as listed in the heading) marked with an

- “X”. The final four columns summarize the results for the Box m test.

The “Box m test” column contains the information necessary to determine if there is

enough evidence to reject the null hypothesis, Hj, of equal covariance structures among the

populations. In particular, we list the number of variables used in the computation under

the heading “p”, and the calculated Box m test statistic using Equation 5.37 under “m,,,”.

As mentioned in Chapter 5, in the case of equal sample sizes, tables of the critical values

for my,g,, have already been tabulated, particularly for small £ (number of populations) and

p (number of variables). We list these critical values under the heading “crir”. Note that

this value changes depending on p, that is, depending on the number of variables used in
the calculations. If m,,, > crit, we reject the null hypothesis and conclude that the popu-
lations being tested do not share a common covariance structure. The conclusions are sum-
marized under the final column which specifies if m,,, is greater (yes = “Y”) than the

critical value and we reject the null hypothesis, or whether it falls under the critical value
(no =“N").
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Machine | Bottom (RF) Match | Top (TCP) Match | Clamp Box m test
Fault | Type|pw|1d | tn |ph|im |pw|Ild |tn {ph|im|pr| fl | p | my, | crit | >
bl 1 X|X|X X XX 6 |74.67(70.17| *
X1X|X X 4 1254814847 | N
b2 1 XXX XX 5533|7017 N
X|X[X 3 128.07(31.13| N
b3 1 XX 2 1196.5(17.77| Y
gl | 1 X X[x[x 4 [4521(4847|N
X XX X|4|4594)|4847| N
g2 1 XX X X|[X|51(5870(70.17| N
XIX|X|X X[{X|6|54.05{70.17| N
g | 1 X[x X|x[x[x]6[5447[7017|N
XX X X|X|[X|6]60.14{70.17| N
X X[X[X]|[X ' 515271(70.17| N
XIX|X|X 5160.81{70.17| N
gt | 3 X| [X[X X[X|5[66.16]70.17| N
XX X X|X|5]60.56]70.17| N
XX X XX X|616784]|70.17| N
g5 3 XXX X X|5|37.66(4847| N
X XIXIX|X X 16577214847 Y
ml 2 XIX[X[X 4 145.07 |[4847 | N
m2 2 X|IXIXIX 4 145.07 {4847 | N
m3 1 XIXIX[X 4 1163.0(4847|Y
m4 4 XX 2 155111777 ¥

Table 6-21. Box m Test results: Four machine types and three fault groups

The sensor variables are grouped according to origin and function. Reading from left to right, the
labels for the top and bottom match networks correspond to the power, load, tune, phase and imped-
ance. The variables listed under the heading “Clamp” refer to the clamp pressure and clamp flow,
respectively. '

Table 6-21 demonstrates some common covariance structure (or at least, no evidence
to reject the hypothesis of a common covariance) within the same machine type and fault

group, especially using the bottom (RF) match network variables. Note also that the high-
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est critical value from the tables is for p = 5, and consequently, we use this value with Myog

calculations involving six variables as well, although the actual critical value for p=6

would presumably be a higher one.

The second case we consider is to test data taken among different machine types
(labeled as I-4, with differences in hardware and software), but within the same fault
group. In this case, we take two wafers from each machine and use either groups of two,
three or four machines from the same fault group. Thus, as in the previous case, we can
consider each wafer to form a population, where the number of populations is & = 4 (two
machines contributing two wafers each), £ = 6 (three machines contributing two wafers
each), or k = 8 (four machines contributing two wafers each). As before, we use equal

sample sizes of twenty points per wafer, and calculate maximum likelihood estimates for

the sample mean, x(j), covariance, Sj, and pooled estimate of the common covariance

matrix, S, using Equations 5.31, 5.32, and 5.34 respectively. Applying Equation 5.37 to
compute the Box m test statistics yields the results summarized in Table 6-22.

Machines Bottom (RF) Match | Top |Clamp Box m test
(TCP)

Fault group | Types jpw|I1d | tn [ph|im |pw|ph| fl p |k |mypy | crit | >
g3 gd ,3 [ X | X[X|X|X 5|4 6485|7017 | N
X|X X| X [4]|4][3592]|4847| N
g2g3gd [1,1,3 X | X X| X [4]6/[5464|7425|N
glgd3gd [1,1,3 X X 26 [21.88]26.16| N
g3gdgs [1,3,31X (X X\ X 4661.20|17425(N
X1X|X 3161425814696 N
glg2g3gd|1,1,13 X X 2 [ 8 [3411]34.14| N

Table 6-22. Box m Test results: Across two machine types, within the same fault group
(gas line grounding problems)

We include only successful trials in this case, where m,,_, < crit, and we can conclude

test
that there is no evidence to reject the null hypothesis. Also, because the sensor signals

“TCP tune,” “TCP load,” and “TCP impedance” of the top match network, as well as the
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“clamp pressure” are not used in any of the successful trials, we have eliminated them from

the table. Moreover, note that the values of the critical values for m,,,, depend on both )4

and k. We also performed trials using wafers from different types of machines in the other
two fault groups corresponding to the baseline and match network problems respectively.
However, in both cases, the trials were unsuccessful, and we found no evidence to support

the hypothesis of equal covariance structures in these groups.

Finally, we consider the third case of testing wafers taken from different fault groups,
but within the same machine type. Not surprisingly, we found no successful trials, and no
evidence to support the hypothesis of equal covariance structures in these groups. How-
ever, we did conduct a few successful trials using different machines of the same type,
within the same fault group. The results here are distinct from case 1, in that the wafers are
taken from separate machines. In case 1, the wafers were taken from the same machine for

testing. Table 6-23 summarizes the results for the trials conducted on different machines

of the same type and fault group.
Machines Bottom (RF) Match Top (TCP) Box m test

Fault |Types|pw|1d |t |ph[im|ld |t [ph|im| p | k | my, | crit | >
blb2 | 1,1 XX 2(41(8397|17.77| Y
X|X 24 (7584|17.77| Y
glg2 | 1,1 XX X|X|[4]4/[2860]|4847|N
glg2g3(1,1,1 XX X 3|6 {36.04[46.96| N
gdgs | 3,3 X |X[|X|X|X 514 (57.79(70.17| N
X|X|X X 44147684847 N
mlm2 | 2,2 X X 2 (4935 ]17.77| N
X X 24 (2415117.77| Y

Table 6-23. Box m Test results: Within two machine types, within the same fault group
(gas line grounding problems)

6.4.1.2. Summary of Covariance Analysis
In this section, we test the hypothesis of equal covariance structures for data taken from
(1) within the same machine type, and the same fault group, (2) among different machine

types, but within the same fault group, and (3) among different fault groups, but within the
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same machine type. In the first and second cases, we found that in some trials, for certain
sensor variables, no evidence to reject the null hypothesis of equal covariance matrices.
However, although we might conclude that wafers taken from the same machine might
share a common covariance structure in some cases for a limited set of variables, we find

this much less plausible once we take wafers from different machines, even if they are still

diagnosed in the same fault group. Consequently. the covariance matrix cannot be used
reliably as a feature to distinguish between fault groups. Moreover, we cannot assume a

common covariance structure to exist in any of the three cases we examined.

6.4.2. Building Bayesian Classifiers

Building on the results of our covariance analysis, let z: p x 1 denote an observation

from one of the fault populations ;= N(Gj, Z;),j = 1,...,k, where the parameters

(9j, Ej) are unknown, and we do not assume equal covariance matrices. The observation

vector, z, is actually bomprised of wafer average values of the variables, based on 20 points
taken within the main etch step. In this case, our variables are the tune and load capacitor
positions (p=2). We consider these separately for the top (TCP) and bottom (RF) match, so
that we are working in two 2-dimensional spaces. The values of the variables appear small
because we subtract the sample average (listed in Table 6-24) from each signal. Load and

tune capacitor positions are typically represented on a scale of 0-32000 points.

Fault Group: Baseline Gas Line Match
Variable
RF Load 10533 10099 10056
RF Tune 8363 8667 8589
TCP Load 18962 18987 18093
TCP Tune 24864 23485 23342

Table 6-24. Original sample averages used to de-mean qualification data

6.4.2.1. Generating Gaussian fault populations using Maximum Likelihood
Because we have three categories corresponding to the baseline, gas line, and match
problems, this defines three fault populations (k=3). We form a training data set for the

Bayesian classifiers by applying Equations 5.31 and 5.32 to calculate maximum likelihood
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estimates, (MLE’s) for the sample mean and covariance matrix, (6 ), Z;), for the jth popu-

lation based on the demeaned qualification data.

Using a C-program to generate two-dimensional gaussian data, and the MLEs for each
fault category, we form data sets, x(j): 50 x 2, for each of the three fault groups. These data
sets comprise the fault populations used in the Bayesian classifiers. Figures 6-8 and 6-9
show the distribution of these populations for the two cases corresponding to the top and
bottom match networks respectively. Note that, for each fault group, even in cases where
the population means are similar, the variances are noticeably different. This is also appar-

ent in Table 6-25, which lists the MLE values used to generate the training data sets.
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Figure 6-8. Bottom RF Match network “load” versus “tune” capacitor position residuals:
distribution of fault populations
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Match Fault Group: Baseline Gas Line Match
Location Variable *1, ) (¥, S,) (%3, S3)
Bottom Match | RF Load | (0.1984, 0.0105) | (0.8749, 0.5031) | (0.4017, 0.0313)
RF Tune | (0.0472, 0.0009) | (0.3725, 0.1289) | (0.4457, 0.0242)
Top Match | TCP Load | (1.3609, 0.2383) | (1.045, 0.3591) | (1.0068, 0.2887)
TCP Tune | (0.3767, 0.0681) | (1.1356, 0.1286) | (1.1306, 0.5655)

Table 6-25. MLE’s of demeaned sample data, (x(j), S;) , used to generate training data
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Figure 6-9. Top TCP Match network “load” versus “tune” capacitor position residuals:
distribution of fault populations
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6.4.2.2. Calculating Predictive Odds Ratios

Denoting the fault populations corresponding to baseline, gas line and match problems
as m;, ®, and =5, respectively, we now have all we need to calculate the predictive odds
ratio for classifying z into m; over n;. Using Equation 5.47, we can make pairwise com-

parisons between fault groups by taking the ratio of the corresponding multivariate Student
t-densities for the fault populations.
For instance, if we want to calculate the predictive odds ratio of classifying z into =,

over 7, , that is, to find the odds that z was taken from a baseline machine versus one with

a gas line problem, we use:

- N2 L N2
1 +N2 l(z—xz) Sy (z2—x7)

p(z/data,j=1) _ L 2~ J _

p(z/data,j =2) L= N, R L BG2 (6.20)
1+N2 1(z—xl)'s1 (z—x)
L 1"'

where L, is a constant given by Equation 5.48. For equal prior probabilities, p; = p,, and
equal sample sizes, N; = N,, Equation 5.48 simplifies to:

_ (ISh'7
Ly, = (m) (621)

Note that the label “BG2” is used for the predictive odds ratio for baseline over gas line,
using the top match signals, TCP tune and TCP load. These labels are listed in Table 6-7.

6.4.2.3. Validation data by Machine Type
As mentioned previously, the predictive odds ratios are based on calculations using

generated data to represent the fault populations, = ;. However, the observation vectors, z,

are taken from actual machines experiencing these problems. Thus, our validation set con-

sists of qualification data summarized in Table 6-20.

\
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6.4.2.4. Calculating Probabilities for Fault Classification

Using the predictive odds ratios calculated as described above, we compute probabili-

ties with respect to fault groups for 228 observations (nineteen wafers processed on each

of the twelve machines). The predictive odds ratio, in the form r/1 is easily converted to

a probability by normalizing:
rr1= 1/ 1 (6.22)
r+l r+1 )

Hence, if BG2 = r, in our example above, the odds of favoring the baseline over gas line

arer : 1. If we want to represent this as a probability, then P(z = baseline) is L , while

r+1
the P(z = gas line) is —— .
r+1
BM]1 test
P(baseline/BM1) . P(match/BM1)
BG1 test MG?2 test

P(baseline/BG1) |P(gas line/BG1) P(match/MG2)| P(gas line/MG2)
| | | |

BG2 test gas line (N3) match (N4) ] | gas line (N5)

P(baseline/BG2) P(gas line/BG2)
| |
baseline (N1) gas line (N2)

Figure 6-10. Classification tree replacing predictive odds ratios with probabilities

Returning to the tree structure of Figure 6-3, we can replace the predictive odds ratio

tests with probabilities for classifying an observation into one group over another. The
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probability that z belongs to a particular node is given by the product of the probabilities at
the splits along the path to the node. We depict this in Figure 6-10.

Table 6-26 summarizes the calculations for the probability of the terminal nodes, rep-

resenting fault diagnoses.
Diagnosis | Node Probability
baseline | N1 P(baseline/BG2) * P(baseline/BG1) * P(baseline/BM1)
gas line | N2 P(gas line/BG2) * P(baseline/BG1) * P(baseline/BM1)
gasline | N3 P(gas line/BG1) * P(baseline/BM1)
match N4 P(match/MG2) * P(match/BM1)
gasline | NS P(gas line/MG2) * P(match/BM1)

Table 6-26. Probability calculations for terminal nodes in the classification tree of Figure
6-10

6.4.2.5. Results of Bayesian Classifiers

A total of 228 observations, comprised of 57 baseline (from three machines, bi1-b3), 95
gas line (from five machines, gZ-g5) and 76 match problems (from four machines, rI-r4)
are diagnosed using the Bayesian classifiers. After calculating the six predictive odds ratios
listed in Table 6-7, the probabilities of the terminal nodes representing fault diagnoses are

calculated according to the formulas in Table 6-26. Table 6-27 summarizes the classifica-

tion results.

Fault Baseline Gas Line Grounding Match Network
Diagnosis INode 51 T 52 [ 53 | g1 | 22 | &3 | 22 | &5 |ml | m2 | m3 | mé
baseline | N1 | 19 [ 19 | 19 19*

gasline | N2

gasline | N3 18 19119 1*
match N4 19* 19 (19 ] 19| 18
gasline | N5 1 0

Table 6-27. Classification results by machine (total of 19 wafers for each case)

*indicates number of misclassified wafers
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Note that the shaded regions in Table 6-27 represent areas of correct classification. Our
results show that all observations are correctly classified, with the exception of all wafers
processed on machines g2 and g3, and one wafer from machine m4. All wafers from 82 are
classified as “match problems”, and from g3 as “baseline. Thus, although these two
machines were diagnosed with gas line grounding problems, the behavior exhibited in
these signals more closely resembles that of machines having match problems and normal

behavior, respectively.

Diagnosed baseline gas line gas line match gas line
from fault: | label N2 N3 N4 N5
Baseline | bl | 0.7299 0.0376 0.1902 0.0409 0.0013
Machine  1=5"10.7970 0.0433 0.0984 0.0411 0.0202
b3 | 0.4383 0.1527 0.1890 0.0868 0.1332
gl | 0.0468 0.0169 0.5531 0.2148 0.1683
GasLine [7g5°102701 | 0.0814 | 02485 | 03934 | 0.0065
G;f:‘t;l‘:ﬁg g3 | 05721 0.0502 03175 0.0576 0.0025
g4 | 0.0256 0.0245 0.5438 0.0997 0.3064
g5 | 0.1559 0.1899 0.3202 0.1132 0.2208
ml | 0.0761 0.0144 0.2365 0.4858 0.1873
Match  I'm> [ 0.0218 0.0026 0.0942 0.6502 0.2312
I;fm:gf m3 | 00197 | 0.0008 | 0.335 | 08069 | 00391
mé | 02752 0.0834 0.2752 0.3317 0.0345

Table 6-28. Average fault node probabilities (over nineteen wafers for each machine)

In general, machine to machine variability will be greater than wafer to wafer variabil-
ity, where the wafers are processed by the same machine. We see this effect above, noting
that the results are somewhat binary in nature, that is, either all wafers from a machine are
correctly diagnosed, or all of them are misclassified. It is not surprising then, that the prob-
abilities calculated for observations also tend to cluster around certain values depending on
machine. Thus, we sﬁmmarize the caléulations of probabilities for each node in Table 6-

28, which averages the probabilities of nineteen wafer observations for each machine. The
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final diagnosis is taken as the category with the highest probability (bold border entries in
Table 6-28).

6.4.2.6. Application Example

As an example, let us take “Wafer 19” processed by machine g/, diagnosed as a “gas
line grounding” problem by qualification engineers. Using Equations 5.47 and 6.21, along
with our training data sets for each fault population, we calculate the six predictive odds

ratios and corresponding probabilities. These are summarized in Table 6-29.

Label BG1 BM1 MGl BG2 BM2 MG2

Test base/gas | base/match | match/gas | base/gas | base/match | match/gas
ratio=r| 0.1162 0.8218 0.1414 0.1770 4.1338 0.0428
prob=p] 0.1041 0.4511 0.1239 0.1504 0.8052 0.0411

1-p 0.8959 0.5489 0.8761 0.8496 0.1948 0.9589

Table 6-29. Predictive odds ratios and corresponding probabilities - Wafer 19

The probabilities, denoted by “p”, represent the probability of the first variable, while “1-

p” is the probability of the second variable in the ratio. Thus, for the test “BG1”, the pre-
dictive odds ratio is 0.1162, the probability of the first variable is P(z = baseline) =

r

0.1162

r+1  01162+1

P(z=gas line) = 1 —p = 0.8959.

= (.1041, and consequently the probability of the second variable is

Node

Diagnosis Probability

baseline | NI P(base/BG2) * P(base/BG1) * P(base/BM1) =
0.1504*0.1041*0.4511 = 0.0071

gas line | N2 P(gas/BG2) * P(base/BG1) * P(base/BM1) =
0.8496*0.1041*0.4511 = 0.0399

gasline | N3 P(gas/BG1) * P(base/BM1) = 0.8959%0.4511 = 0.4041

match N4 P(match/MG2) * P(match/BM1) = 0.0411*0.5489 = 0.0226

gasline | N5 P(gas/MG2) * P(match/BM1) = 0.9589*0.5489 = 0.5263

Table 6-30. Probability calculations for terminal nodes in classification tree - Wafer 19
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Finally, we calculate the final probabilities for each terminal fault node as in Table 6-
26. These results are listed in Table 6-30 for “Wafer 19” processed by machine g/. Hence,
the final probabilities for each node are:

P(N1,N2,N3,N4,N5) = [0.0071,0.0399,0.4041,0.0226,0.5263 ]

and we classify the observation as being in N5, diagnosed as a “gas line grounding” prob-
lem, with a probability of 0.5263.

6.5. Case 3: Analysis of High Speed Data

The performance of a diagnostic system based on sensor data depends to a large extent
on the selection and extraction of features that reliably fingerprint a failure mode. Previous
work has focused on using statistics taken from the stable portion of a plasma etch, includ-
ing using average values, sample variances, and time series prediction to characterize the
signal behavior. However, it has become increasingly clear that in order to identify the sig-
nature of a machine fault, attention must be focused on more subtle characteristics of the
signal, not necessarily captured by taking average values over stable portions of the etch.
For the analysis of the transient behavior of the high speed sensor data, it is necessary to

extract features from the signals that will then form the basis for classification.

Figure 6-11 displays the impedance signal resulting from the nine fault conditions
listed in Table 3-3. Note that the impedance signals for the first five fault categories are
shown in Figure 3-6, along with the corresponding tune/load positions. However, for com-

pleteness, we include these signals here as well.

Looking at the signals in Figure 6-11, we observe the presence of patterns in the profile of
the impedance signal over time, depending on the “fault” conditions determined by the
preset values for the load and tune capacitors. Hence, the features we identify are struc-
tural, and if we can capture and link these to a fault condition, they can be considered as
pieces of evidence whose combination can lead to a specific diagnosis. More importantly,
we intend to use these preset conditions as a training source, a “baseline” for comparison

against real machine failures involving the binding of the tune and load capacitors.
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Fault Categories

TCP Impedance

1. Baseline

3. LL extreme

2. HH extreme 5 / \)Ly\

4. HL extreme

5. LH extreme

6. HH midrange

7. LL midrange )‘ s

8. HL midrange

9. LH midrange M

5 10
Time (seconds)

15

Figure 6-11. Impedance signal’ corresponding to fault categories in Table 3-3

5 Signals are plotted on identical scales.
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6.5.1. Pattern Templates for Matched Filters

The decision-theoretic approach relies on numerical features and statistical classifica-
tion techniques such as clustering. The success of statistical classification techniques is
highly dependent on the feature set extracted from the data. Because the transient behavior
displays a pattern, it is necessary to have a method of identifying the pattern, and having
some quantitative measure of how well it matches a i'epresentative “template”. One
approach is to use each example where the pattern occurs as a “template” or model, and to

see how closely other samples match the given template.

First, the template is determined from the data by using a windowing function to isolate
the pattern as shown in Figure 6-12. This particular pattern appears to be present in three
distinct impedance signals corresponding to fault conditions 2 through 4, as listed in Table
3-3, and pictured in Figure 6-11. The pattern in the window is “flipped” in time, as in
Figure 6-13, and this is used as a template, acting as a matched filter for all of the other data
sets. By taking the convolution of this template with the signal, the result is a measure of
goodness of fit (using appropriate normalization factors). In this way, we can quantify how
well the pattern in a signal matches a given template, and where it is located with respect
to some reference point. We take the reference point to be the onset of RF power in the
bottom match, and the quantity measuring goodness of fit to be the maximum value of the

convolution (normalized).

Template Impedance Signals for fault conditions 2,3,4

Figure 6-12. Windowing function for a pattern
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Matched Filter | Impedance Signal

VAR ==y

™ convolution ?

location of max value

max value = (.98

Figure 6-13. Forming a template for the matched filter

Figure 6-14 demonstrates how we measure the position or location of the pattern with
respect to the onset of the bottom RF power. We emphasize that the positions of the tune
and load cépacitors that we are altering belong to the top (TCP) match network, and that
the bottom RF power turns on after a fixed delay of 1.5 seconds following the top (TCP)
power. We also establish the convention that the position takes a positive (+) value if the
location of the pattern occurs before the onset of bottom RF power, and a negative (-) value
if it occurs afterwards. Hence, the zero value for position corresponds to the moment when

the bottom RF power is turned on.

Preliminary examination of the distribution of the features - the maximum normalized
convolution and position of the pattern (shown in Figures 6-15 and 6-16 for the first five
fault categories using the pattern in Figure 6-12), shows that the combination of both
enables us to adequately distinguish one fault category from another. In other words, even
if one pattern is found to be present in several cases, as in the example depicted by Figure
6-12, the position of the pattern varies by fault group, and hence, this becomes a crucial
identifying feature. Thus, while the convolution values suggest a profile match for condi-
tions 2, 3, and 4, we can still distinguish amongst categories by looking at the position of
the pattern. Finally, note that in Figure 6-16, the position is measured according to the con-

vention described by Figure 6-14, where 100 units is the equivalent of one second.
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Impedance signals for fault conditions 2, 3, 4

@ Position Axis @
- T . o

0

0
Bottom RF Power

Figure 6-14. Location of pattern defined with respect to onset of (bottom match) power

As stated previously, the test pattern in the example of Figure 6-12 is found to be
present in fault categories 2, 3, and 4. However, Figures 6-15 and 6-16 show that the con-
volution for categories 1 and 5, where the test pattern is absent, results in a fairly large num-
ber. This is because there will always be some overlap when testing a pattern against an
observation. Consequently, a close profile match must be determined via a strict standard.
In other words, we will consider the patfem to match the observation only for relatively
high values of the convolution. The details of how we will implement this will be clearer

as we develop a procedure for diagnosis.
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Figure 6-15. Distribution of numerical features by fault type - Normalized Convolution
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Figure 6-16. Distribution of numerical features by fault type - Pattern Location

From the impedance signals depicted in Figure 6-11, we extract nine distinct test pat-

terns. The profiles of these patterns are shown in Figure 6-17.
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Figure 6-17. Test patterns/features extracted from the TCP Impedance signal
6 Signals are plotted on identical scales.
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6.5.2. Probability Assessments for Determining Goodness of Fit

Using the matching filter approach described in the previous section, we test these pat-
terns against our database of signals corresponding to the nine fault categories listed in
Table 3-3. Consequently, we obtain values for the maximum normalized convolution and
position of the patterns, and compute averages over fault categories for each test pattern as
we did in the example described by Figures 6-15 and 6-16. The distribution of values
obtained for the features (convolution and position) over different fault groups forms the
basis of a training set. In addition, we create rules to convert these values into some mea-
sure of likelihood of how well the observation matches the profile shape and position. This
procedure employs the Bayesian approach to assess the probability of an event based on a
degree of belief. The process of measuring a degree of belief, for instance, using a proba-
bility wheel [57], is referred to as a probability assessment. In this case, the assessment is
based on actual measurements; however, the conversion (mapping) of these measurements

to probability values relies on human judgment, based on expérience.

Table 6-31 summarizes the conversion rules used to map the values of the features

(convolution and position) into probabilities of goodness of fit.

Convolution Position of Pattern
Measured Value Range Probability Measured Value Range Probability
greater than 0.98 1 average position o, 1
0.9 to 0.98 0.8 average position -_I-Zcp 0.8
0.7t0 0.9 - 0.6 average position +3 o, 0.6
less than 0.7 0 else 0

Table 6-31. Conversion mapping for assessing probabilities of goodness of fit from
measured values

The value of the maximum normalized convolution gives a measure of how well the
observation fits the test pattern. Specifically, we wish to infer the presence or absence of
the test pattern in the observation. As shown in Table 6-31, we determine that a value for
the maximum normalized convolution that is greater than 0.98 is equivalent to a perfect fit
(probability = 1), while any value less than 0.7 is considered not a fit (probability = 0). A
“good” fit is assigned a probability assessment of 0.8, while a “fair” fit takes a probability
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value of 0.6. Note that, because there will always be some amount of overlap for any test
pattern against an observation signal, in general, the convolution values will be high. Thus,
using the normalized convolution directly as a probability of goodness of fit will result in
artificially elevated values. Consequently, the probability assessments must be skewed

accordingly.

Similarly, we desire a measure of how well the test pattern identified in a given obser-
vation matches the position of the pattern as determined by our training data. In this case,
we use the average values calculated for the positions of the patterns in each fault group.
We say that if the pattém in the observation is found to lie within one standard deviation
of this average, it is a perfect fit (probability = 1), while if it falls outside three standard
deviations, there is no fit (probability = 0). A “good” fit encompasses the range of two stan-

dard deviations around the average; a “fair” fit lies within three standard deviations.

Once we have ascertained the threshold values for the measurements that determine
how well the test pattern fits an observation (in terms of its shape and location), we use the
mapping defined in Table 6.31 to transform the values for features computed from our
training set database. Using the calculated probabilities for the training data, listed in
Appendix G, we have information to determine the presence or absence of a given feature,
as well as its location relative to a reference point. Moreover, we consider evidence of
matching a pattern’s shape (via convolution) and matching the pattern’s position as inde-
pendent pieces. Thus, to find the probability of matching both the shape and position of a
pattern to a given observation, we take the product of the two individual probabilities.
Figure 6-18 represents the analysis in the form of a flowchart. In addition, Table 6-32 sum-
marizes the classification results for the training data in Appendix G, and shows the fea-
tures found to be linked to each fault category. Note that three different patterns are found
in the fault condition, “LL extreme®, and that two patterns are detected in “HL extreme*.
Because the presence or absence of each feature is treated as an independent piece of evi-
dence, the probability of the combination (indicating the presence of more than one fea-
ture) is given simply by the product of the individual probabilities of each feature. The next
step is to determine whether this procedure can be useful in identifying real machine prob-

lems caused by the binding of the tune and load capacitors in the top match network.
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Evidence Fault
Library Database

Pattern Matched
Extraction - Filter

Convolution Position Measurements
(features)
Mapping
Function
P(shape) P(position) Probabilities
(goodness of fit)

P(match) Diagnosis
(likelihood of a pattern match)

Figure 6-18. Flowchart outlining steps toward final diagnosis

Table 6-32 includes two columns for pattern 3, and three for pattern 4, corresponding
to the fact that the same pattern is found in several different positions depending on the
fault category. Moreover, the table lists the average probability of matching each pattern
for the nine fault groups. In addition, we also include the percent of observations from each

fault category successfully linked to a pattern (where the probability of a match is greater
than 0.5) in Appendix G.
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Fault Category Test Patterns
# | Description 1 | 231(32|41|42(|43| 5| 6| 7| 8] 9
1 baseline 42 21 .64 32
2 | HH extreme 48 8
3 | LL extreme 1] .8 9 | .24 .54
4 | HL extreme .87 .62 | .74 54 .36 | 48
5 | LH extreme 1
6 | HH midrange 6 481 1 |.36].21
7 | LL midrange 53 1 | .24 37
8 | HL midrange | .42 93 1
9 | LH midrange 47 1 {.36 74

Table 6-32. Average probability of linking a pattern to a fault category

6.5.3. Diagnosing Faulty Capacitors in the Match Network

To test the utility of our diagnostic system trained using data taken from preset condi-
tions, we physically disable the tune and load capacitors one at a time, and measure the
resulting TCP impedance signals. By loosening the connection between the capacitors and
their driving motors, we immobilize them, simulating a “binding” condition that com-
monly occurs in production when the capacitors require replacement. Figure 6-19 displays
the impedance profiles produced by a baseline condition, a disabled tune capacitor, and a

disabled load capacitor, respectively.

Using the patterns extracted from our training data (stored in the evidence library), and
the mapping defined by Table 6-31, we test the failure data (stored in the fault base) for the
known patterns, according to the procedure described by Figure 6-18. The results of this
analysis are tabulated in Appendix G.

Table 5 in Appendix G shows that we are able to classify our baseline examples by test-
ing for pattern 7, and that we find that this pattern matches the four baseline observations
with probabilities {0.64, 0.59, 0.64, 0.8}, respectively. Moreover, pattern 8 matches three
out of four baseline examples, with probabilities of {0.36, 0.36, 0, 0.6}.
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Fault Categories TCP Impedance

1. Baseline ‘Wv\

2. Bad Tune —’1

3.Bad Load %
—

Time (seconds)

Pattern 3-2 proves useful in identifying the signals resulting from a bad load capacitor,
yielding probabilities of fit {0.48, 0.8, 0.8} for the three bad load examples; althoﬁgh in
this case, one of the baseline observations also fits this pattern with a probability of 0.64.
Finally, the bad tune signals are linked to pattern 5, with probabilities of fit {0.6, 0.6, 0.6}

for the three observations taken with an immobile tune capacitor.

Thus, by using the preset conditions to simulate faults, we are able to set up a diagnostic
procedure that proves useful in identifying real machine failures whcré the tune and load
capacitors are unable to adjust to changing plasma conditions. This is accomplished by
identifying, capturing and matching patterns in the profile of the transient behavior in the
TCP impedance signals. In particular, the results of pattern matching show that a faulty
load capacitor exhibits behavior similar to “HL extreme”, or in other words, to a condition
where the tune capacitor is high while the load is low. In contrast, a faulty tune capacitor
is found to behave like the condition “HH extreme”, where both tune and load capacitors
are too high. These inferences are made due to the patterns that these different fault condi-

tions are found to have in common.
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6.6. Summary

In this chapter, we implement various modeling techniques and approaches in order to
successfully classify failure data arising from different sources. Moreover, we introduce a
framework that allows us to integrate the models by assuming that a fault condition causes
a combination of different symptoms embodied by pieces of evidence. We consider three
cases: (1) miscalibrations in the equipment simulated through DOEs, (2) machine qualifi-
cation data, and (3) high speed data capturing transient behavior.

In the first case, the fault hypotheses are defined as incorrect input settings, and we find
that by using a subset of the monitored sensor signals, tree-based modeling techniques can
be combined with GLMs for prediction of failure modes corresponding to the changes in
operating conditions. Although the models directly estimate the probabilities of each value
for every fault variable, we can also obtain an estimate of these probabilities for a particular
fault variable based on combinations of predictions for the remaining fault variables. OQur
final diagnosis of fault conditions is a result of model averaging over the different tech-
niques, tree-based and GLMs, as well as over the direct predictions and those resulting
from combinations of the remaining fault variables. Our system achieves a high success

rate of fault classification for DOEs conducted on two different types of plasma etchers.

In the second case, three fault categories are identified in the qualification data: (1) the
baseline, representing normal operating conditions, (2) problems connected with gas line
grounding issues, and (3) problems related to the match networks. Moreover, four types of
machines are identified, due to hardware and software differences, complicating the anal-
ysis of the signals. We first test the hypothesis of equal covariance structures for data taken
from (1) within the same machine type, and the same fault group, (2) among different
machine types, but within the same fault group, and (3) among different fault groups, but
within the same machine type. Although in few cases we find no evidence to reject the null
hypothesis of equal covariance matrices, we also find high machine to machine variability
and hence, cannot assume a common covariance structure to exist in any of the three cases
we examined. This analysis, which leads to the assumption of unequal covariance matrices,
also guides us towards using a Bayesian approach, rather than sampling theory to solve this

problem. Specifically, we find that predictive odds ratios extracted from Bayesian classi-
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fiers can be used as splitting conditions in a tree-like classification structure. We conduct
pairwise comparisons to test one fault condition over another, and are able to successfully
classify all observations with the exception of two cases from machines with gas line

grounding problems.

Finally, the objective in the third case is to identify cues relating to predictions of RF
match problems, and conditions where the plasma will not ignite. We pay particular atten-
tion to the load and tune positions as key variables to monitor, and note the change in the
profile of the measured impedance. By designing an experiment that varies the preset tune
and load positions, we identify, capture, and test for structural patterns occurring in the
resulting transient behavior in the impedance signal. We find that, not only are we able to
link these patterns to the preset conditions, but we can also find them present in real failures
where we have immobilized the tune and load capacitors to simulate a binding condition.
Hence, this procedure provides a method of diagnosing the problem of a faulty tune or load

capacitor that may require immediate attention or replacement.
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7 Conclusions and Future Work

7.1. Thesis Summary

The utility of monitoring and process control in semiconductor manufacturing will be
fully realized only if, upon the detection of a fault, relevant inferences can be drawn as to
the current state of the machine. Such a system promises to be invaluable to the operator,
especially as a trouble-shooting tool to find problems early, thus preventing the propaga-
tion of faults and further damage to the machine. The problem can then be resolved before
it ever affects the final product.

This thesis presented the development of a decision support tool to enhance a human
operator’s ability to effectively monitor and diagnose problematic behavior in the course

of operating a critical semiconductor manufacturing process.

First, we extended the scope and power of fault detection and monitoring procedures
for the plasma etch process through the study and analysis of models to account for long
term trends. Specifically, trends that are only visible over several lots in marathon runs
were characterized through data transformations and linear modeling techniques. By filter-
ing the known effects of machine aging, these models facilitate the integration of optical
emission data with other sensor signals, resulting in a fault detection system that is robust
over time. Moreover, the long term models are consistent with physical equations describ-
ing the window clouding effect on the measured data. Repeatability of these results over
several preventative maintenance (PM) cycles suggested that a simple linear adaptive
model may be used to effectively predict the behavior of a cycle, even after a change of the
machine state as drastic as that produced by a PM event. Hence, the construction of new

models would not be required every time the chamber or window is cleaned.
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‘We confronted the next task of fault diagnosis by utilizing a toolbox of different mod-
eling techniques and methods of dealing with uncertainty to exploit the characteristics of
the different datasets. Our classification framework was based on the assumption that a
fault will cause a combination of evidence represented by features extracted from the data.
In particular, we focused on three types of data acquired from various sources, where our

objectives are distinctly different in each case.

In the first case, our models were built using data from designed experiments meant to
simulate a change in operating conditions. Using model averaging techniques, we com-
bined the predictions yielded by tree-based models and GLMs. In addition, we also incor-
porated direct estimates of the probabilities of each value for every fault variable, with
estimates based on combinations of predictions for the remaining fault variables. This pro-
cedure greatly enhanced the performance of our diagnostic system over the use of any
stand-alone model. In particular, we successfully classified changing input conditions

using validation sets collected from two types of plasma etch equipment.

In contrast, our objective in the second case was to classify observations into one of
three states found to exist in machine qualification data: (1) the baseline, representing
normal operating conditions, (2) problems connected with gas line grounding issues, and
(3) problems related to the match networks. We found that, because the data were collected
from four different machine types, it was unclear what we could assume in terms of char-
acterizing the signals across machines and fault groups. An analysis of covariance sug-
gested the use of a Bayesian approach, as opposed to sampling theory under the assumption
of unequal covariance matrices for different fault populations. Predictive odds ratios,
extracted from Bayesian classifiers, proved to be powerful discriminators in pairwise com-
parisons to test for one fault condition over another. The use of these ratios as splitting con-
ditions in a tree-like classification structure rendered a successful diagnosis of all
observations in the fault base, with the exception of two cases from machines with gas line

grounding problems.

Identification and isolation of cues relating to predictions of RF match problems, and

conditions where the plasma will not ignite was the focus of the third case, using data col-
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lected at an increased sample rate resulting in a higher signal resolution. In particular, we
observed the change in the profile of the measured impedance in response to changing load
and tune capacitor positions. Structural patterns in the profile of the transient were identi-
fied, captured, and tested against observations collected while varying preset load and tune
positions. In our analysis, we linked these patterns to the preset conditions by devising a
method to quantify how well the pattern matched a given observation signal. In addition,
we used a mapping function to assign a probability of matching a feature in an observation.
This provided a test bed for classifying real machine problems resulting from tune and load
. capacitors that are “bound” and unable to adjust to the changing impedance. Hence, our
system is capable of successfully diagnosing the problem of a faulty tune or load capacitor,

possibly requiring immediate attention or replacement.

7.2. Future Directions

The focus of this work has been to use sensor signals as a source of information to infer
the machine state. One possible extension would be to 'predict how these changes are
reflected m the final wafer product. Parameters of interest that are used to measure the
wafer state include etch rate, uniformity and selectivity. Here again, the main difficulty lies
in obtaining access to complete datasets, including well documented examples of specific
machine problems detected and diagnosed from sensor signals, along with the final wafer

measurements (assuming a production environment).

Our study utilizes a decision-theoretic approach in an empirical analysis of sensor sig-
nals based on assﬁmptions of their time-dependent behavior and statistical distribution. A
disadvantage of this approach is that we work solely with classification models, grouping
observations into categories based on their respective traits. A more powerful model would
be a generative one, which is able to produce the output we expect under certain conditions.
For instance, in our analysis of the profile of the transient in the impedance signal, we
attempt to find patterns and match them to our observations. Based on experience (learned
from our training dataset) we are able to characterize the behavior of a faulty tune or load
capacitor. However, it would be more useful if, rather than simply identifying and match-

ing patterns, we could actually generate them. The syntactic approach offers an attractive
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alternative in this case, providing both data classification and generation. Results using this
approach for characterizing and classifying sensor signals from plasma etch equipment can
be found in [73].

Along the same lines, focusing on the generative aspect of modeling, another future
area to consider is to examine the signals in the frequency domain. Specifically, because
the electrical and mechanical machine parts generate periodic signals at different frequen-
cies, the chamber can be viewed as a filter, and one can monitor the harmonics generated

at the output to infer the chamber state.

7.3. Concluding Remarks

We have presented a unified framework for data fusion that combines evidence from
multiple sensors for the purpose of diagnosing machine faults, that often arise from diverse
operating conditions. While the advent of multiple sensors has widened the scope of mon-
itoring, it has simultaneously brought new areas of complexity to the manufacturing envi-
ronment. It is reasonable to expect that advances in technology will only further accelerate
this trend in the future. Hence, the development of paradigms to effectively manage this

complexity in the form of comprehensive models becomes especially critical.

Current computerized decision support tools available to engineers operating highly
complex interrelated systems are not keeping pace with factory complexity, often resulting
in data overload. Much research remains to be done to develop useful metrics for tracking
complexity, for tracking the yield rate, and for converting data into knowledge. The result
should be easily interpreted, and facilitate quick response and immediate action. Every
contribution to improve in situ process control, the integration of off-line metrology with
insitu data, and management of complexity through extraction and diagnosis of data from
cluster tools, is a step towards better run to run control and real time closed-loop control.
It is hoped that through effective diagnosis of the machine state, we are one step closer to
implementing fault-tolerant supervisory control, and in reducing the cost of ownership of

state of the art, semiconductor manufacturing equipment.
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Appendix A

List of Symbols

a, the prediction error

g(p) the logit link function for GLMs
m modification of the likelihood ratio

m,s, the Box m statistic

m,; in Dempster-Shafer theory, the basic probability mass distribution (BPMD)
derived from the multivalued mapping, I';: £, - ©

n number of observations (samples)

p number of variables

s? sample variance - estimate of 62

t test statistic for the univariate t-test

w, the differenced data

X, the original data series

y observation
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y sample average - estimate of

z the thickness of the deposited material
anb theminofagand b

av b the max of a and b
A subsetof X

A fuzzy subset of X

ARIMA (p.dq)  autoregressive integrated moving average model, where p is the

auto-regressive order, d is the integration order, and q is the moving average order.

Cj the combination of evidence

D‘l the deviance

D_  the null deviance
Ko

Ej evidence label

F; fault label

Hy null hypothesis
H, alternative hypothesis

I intensity of the plasma

Ly aconstant used in the calculation of the predictive odds ratio
M, amodel indexed by g

Np(1,%)  the multivariate normal distribution
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P - plausibility - the degree of belief not directly in contradiction of a specific element

P(C)) the probability of matching observations to the combination of evidence G
P(C/F,-) the conditional probability of a combination given a fault

P(E,) probability of a particular piece of evidence

P(E;/F;) the class conditional probability of the evidence given the fault

P(F;) the prior probability

P(F/C) the relative frequency of the fault given a combination of evidence
P(F;/E;) the posterior probability

S supportability - the degree of belief directly supporting a specific element

S.

Y the unbiased estimator of Ej

T2 Hotelling’s T statistic - mutltivariate t-test

X the whole set

a the exponential decay constant - related to the absorption properties of the material
n the linear predictor for GLMs using the logit link function

© the true parameters specifying the distribution of a population

0 k the moving average parameters

p the population mean

Ko a given value for p

K4 the membership function of set 4 in X
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Ky GLM probability estimate of “high”
K GLM probability estimate of “low”
K, GLM probability estimate of “medium”

v sample size

v; degrees of freedom

7; distribution of a population j, usually given by N(0 )i, Z))

o? the population variance

¢, the autoregressive parameters

I' in Dempster-Shafer theory, a multivalued mapping function that maps the ele-

ments in the evidence space to the fault space
€ no fault
® the frame of discernment - fault space in Dempster-Shafer theory
L covariance matrix

X4 the characteristic function of set A in X

x; _q the Chi-squared distribution with degree of freedom r-9)

2" the power set - given n elements, the set of all possible sets
{0,1}the set of zero and one
[0,1]the real-number interval from zero to one

& the empty set
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Appendix B

J-88-E Project - Designed Experiments for Lam TCP 9600

Experiment 30
N |Trial{ PR | Top |[RFger | BCl3 | Cl, | Ratio | Flow Purpose Lot
1 1 [13.5] 350.0 | 130.0 [ 75.0 | 75.0 | 1.00 | 150.0 | DOE Blockl | A
2 1 |13.5| 350.0 [ 130.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOE Blockl | A
3 | 48 [20.0| 450.0 { 150.0 | 79.1 | 90.9 | 1.15 | 170.0 Cv C
4 | 18 (163 | 3073 | 1385 | 76.8 | 81.7 | 1.06 | 158.5 | DOE Blockl | A
5 | 64 | 90 | 4250 | 1250 | 71.1 | 639 0.90 | 135.0 | Verification | B
6 | 10 [10.7]307.3 [ 1385 | 685 | 729 | 1.06 | 141.5 | DOE Blockl | A
7 | 37 | 7.0 | 450.0 | 150.0 | 60.5 | 69.5 | 1.15 | 130.0 Ccv C
8 8 | 163 307.3 | 121.5 | 68.5 | 729 | 1.06 | 141.5 | DOE Blockl | A
9 ] 62 | 18.0] 275.0 | 142.0 | 79.5 | 75.5 | 0.95 | 155.0 | Verification | B
10| 7 [10.7] 392.7 | 1385 | 73.1 | 68.4 | 0.94 | 141.5 | DOEBlockl | A
11 } 45 | 7.0 | 450.0 | 150.0 | 91.9 | 78.1 | 0.85 | 170.0 Cv C
12 ] 6 |163| 3073 | 1385 | 73.1 | 684 | 094 | 141.5 [ DOE Blockl | A
13 | 17 | 163 | 392.7 | 1215 | 76.8 | 81.7 | 1.06 | 158.5 | DOE Blockl | A
14 | 40 | 20.0 | 450.0 | 150.0 | 70.3 | 59.7 | 0.85 | 130.0 Ccv C
15 1 13.5  350.0 | 130.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOE Blockl | A
16 | 53 | 9.0 | 275.0 | 142.0 | 64.3 | 70.7 | 1.10 | 135.0 | Verification | A
17 } 15 | 163 | 392.7 | 1385 | 819 | 76.6 | 0.94 | 158.5 | DOE Blockl | A
Table 7-1.
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BCl,

N |Trial| PR | Top | RFger Cl, | Ratio | Flow Purpose Lot
18 1 13 |10.7 | 392.7 | 121.5 | 81.9 | 76.6 | 0.94 | 158.5 | DOE Blockl | A
19 | 34 |10.0 450.0 | 110.0 | 79.1 | 90.9 | 1.15 | 170.0 Ccv C
20 | 14 (10.7| 307.3 | 1385 | 81.9 | 76.6 | 0.94 | 158.5 | DOE Blockl | A
21 ] 63 |12.0| 425.0 | 137.0 | 76.3 | 68.7 | 0.90 | 145.0 | Verification | B
221 9 |107] 3927 | 121.5 [ 68.5| 729 | 1.06 | 141.5 | DOEBIockl | A
23 | 43 [18.0| 450.0 | 110.0 | 60.5 | 69.5 | 1.15 | 130.0 Ccv C
24 1 19 |10.7 | 392.7 | 138.5 | 76.8 | 81.7 | 1.06 | 158.5 | DOEBlockl | A
251 4 |10.7] 3073 | 121.5 | 73.1 | 68.4 | 0.94 | 141.5 | DOEBlockl | A
26 | 47 | 7.0 | 450.0 | 110.0 | 70.3 | 59.7 | 0.85 | 130.0 Ccv C
27 | 11 | 163 | 392.7 | 1385 | 68.5| 72.9 | 1.06 | 141.5 | DOE Blockl | A
28 | 12 |16.3| 307.3 | 121.5 | 81.9 | 76.6 | 0.94 | 158.5 | DOE Blockl | A
29 | 35 [20.0( 450.0 | 110.0 | 91.9 | 78.1 | 0.85 | 170.0 cv C
30| 1 |13.5] 350.0 | 130.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOE Blockl { A
31 | 16 |10.7| 307.3 | 121.5 | 76.8 | 81.7 | 1.06 | 158.5 | DOE Blockl | A
32 | 61 | 150 375.0 | 125.0 | 86.8 | 78.2 | 0.90 | 165.0 | Verification | B
33| 5 |163] 3927 | 121.5 | 73.1 | 68.4 | 0.94 | 141.5 | DOEBlockl | A
34 | 11 | 163 | 392.7 | 1385 | 68.5| 72.9 | 1.06 | 141.5 | DOE Blockl | A
BREAK: SWITCH LOTS
351 1 |12.0] 350.0 | 132.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOE Blockl | B
36 | 52 |13.5] 350.0 | 130.0 | 75.0 | 75.0 | 1.00 | 150.0 Cv C
37 | 54 150 375.0 | 132.0 | 80.5 | 84.5 | 1.05 | 165.0 | Verification | A
38 | 24 |13.5] 450.0 | 130.0 | 75.0 | 75.0 | 1.00 { 150.0 | DOEBIock2 | B
39 1 49 |17.0| 350.0 | 130.0 | 70.3 | 59.7 | 0.85 | 130.0 Ccv C
40 | 50 [13.5| 350.0 | 110.0 | 85.0 | 85.0 | 1.00 | 170.0 Ccv C
41 | 29 [13.5] 350.0 | 130.0 [ 65.0 [ 65.0 | 1.00 | 130.0 | DOE Block2 | B
42 | 55 |15.0( 275.0 | 132.0 | 78.6 | 86.4 | 1.10 | 165.0 | Verification | A
43 | 56 |18.0| 425.0 | 125.0 | 70.7 | 74.3 | 1.05 { 145.0 | Verification | B
44 | 28 (13.5| 350.0 | 130.0 { 69.8 | 80.2 | 1.15 | 150.0 | DOE Block2 | B
45 | 31 | 8.0 | 350.0 | 130.0 { 75.0 | 75.0 | 1.00 | 150.0 | DOE Block2 | B
46 | 36 |10.0| 250.0 | 150.0 | 79.1 [ 90.9 | 1.15 | 170.0 Ccv C
Table 7-2.
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N |Trial| PR | Top | RFgor | BCl3| Cl, | Ratio | Flow | Purpose | Lot
47 | 33 | 16.0 | 250.0 | 150.0 | 60.5 | 69.5 | 1.15 | 130.0 Ccv C
48 | 30 | 13.5| 350.0 | 130.0 | 85.0 | 85.0 | 1.00 | 170.0 | DOE Block2 | B
49 1 1 |[13.5( 350.0 | 130.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOE Blockl | B
50 | 57 |12.0| 375.0 | 137.0 | 70.7 | 743 | 1.05 | 145.0 | Verification | B
51| 58 |12.0| 325.0 | 132.0 | 73.8 | 81.2 | 1.10 | 155.0 | Verification | B
52| 23 | 13.5] 250.0 | 130.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOEBlock2| B
53 | 26 | 13.5] 350.0 | 150.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOE Block2 | B

54 ] 39 |20.0| 250.0 | 150.0 | 91.9 | 78.1 | 0.85 | 170.0 Ccv C
55 ] 42 | 7.0 | 250.0 | 150.0 [ 70.3 | 59.7 | 0.85 | 130.0 Ccv C
56 | 27 | 13.5| 350.0 | 125.0 | 81.1 | 689 | 0.85 | 150.0 [ DOE Block2 | B
57 | 32 | 18.0 350.0 | 130.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOE Block2 | B
58 | 51 | 13.5] 250.0 | .130.0 | 69.8 | 80.2 | 1.15 | 150.0 Cv C
59 | 44 |20.0| 250.0 | 1100 | 79.1 | 909 | 1.15 | 170.0 Ccv C
60 | 25 | 13.5] 350.0 | 1100 | 75.0 | 75.0 | 1.00 | 150.0 | DOEBlock2 | B
61 | 59 | 15.0 | 325.0 | 142.0 | 69.2 | 65.8 | 0.95 | 135.0 | Verification | B
62 ] 31 | 80 | 350.0 | 130.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOE Block2.| B
63 | 38 | 7.0 | 250.0 | 110.0 [ 60.5 | 69.5 | 1.15 | 130.0 cv C
64 | 41 | 15.0 | 250.0 | 110.0 | 70.3 | 59.7 | 0.85 | 130.0 Cv C
65 ] 1 |13.5( 350.0 | 130.0 | 75.0 | 75.0 | 1.00 | 150.0 | DOE Blockl | B
66 | 46 | 10.0 [ 250.0 | 110.0 | 919 | 78.1 | 0.85 | 170.0 Ccv C
67 | 60 | 9.0 | 325.0 | 137.0 | 79.5 | 75.5 | 0.95 | 155.0 | Verification | B

68 | 43 | 15.0 | 450.0 | 110.0 | 60.5 | 69.5 | 1.15 | 130.0 Ccv C
69 | 43 | 13.0 | 450.0 | 110.0 | 60.5 | 69.5 | 1.15 | 130.0 Ccv C
70 | 45 | 10.0 | 450.0 | 150.0 [ 919 | 78.1 | 0.85 | 170.0 Ccv C

Table 7-3.
Wafers= 1484
"TIGHT flow constraints

(not enough flow at higher PR OR too much at lower PR, for the CV corner points)
RF ON = 5660 min

"Had to change some of the DOE points, on the fly, to accomodate PR/flow constraints
"First half run 3/5/96, second on 3/6/96 - 2 dummies before DOE
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Appendix C

S-PLUS Output for Tree-Based Models

Lam Rainbow 4400 DOE Data
## Prediction for Pressure:
Classification tree:
tree(formula = Pressure ~ Impedance + MeasPower + Phase + RFCoil + MFC6 +
DCBias, data = lamstat.train)
Variables actually used in tree construction:
[1] "RFCoil" "Impedance"
Number of terminal nodes: 5
Residual mean deviance: 1.095 =21.89/20
Misclassification error rate: 0.1667 =4 /24
summary(press.train.tree)
1) root 24 23.5700 medium ( 0.25000 0.25000 0.5000 )
2) RFCoil<5799.94 22 20.7500 medium ( 0.29030 0.12900 0.5806 )
4) RFCoil<5541.59 4 6.1210 high ( 0.50000 0.37500 0.1250 ) *
5) RFCoil>5541.59 18 16.0000 medium ( 0.21740 0.04348 0.7391)
10) Impedance<17014 16 12.8300 medium ( 0.05882 0.05882 0.8824 )
20) Impedance<16530.5 8 8.4810 medium ( 0.20000 0.20000 0.6000 ) *
21) Impedance>16530.5 8 0.0000 medium ( 0.00000 0.00000 1.0000 ) *
11) Impedance>17014 2 0.8109 high ( 0.66670 0.00000 0.3333 ) *
3) RFCoil>5799.94 2 0.0000 low ( 0.00000 1.00000 0.0000 ) *

## Prediction for RFpower:

Classification tree:

tree(formula = RFpower ~ Volt + DCBias + EndpointA + EndpointB, data =
lamstat.train)

Variables actually used in tree construction:
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[1] "EndpointA"
Number of terminal nodes: 3
Residual mean deviance: 0.2383 =5.004 / 21
Misclassification error rate: 0.04167 =1 /24
summary(rfpow.train.tree)
1) root 24 49.150 medium ( 0.375 0.1667 0.4583 )
2) EndpointA<9390.72 15 17.400 medium ( 0.000 0.2667 0.7333 )
4) EndpointA<8758.09 5 5.004 low ( 0.000 0.8000 0.2000 ) *
5) EndpointA>8758.09 10 0.000 medium ( 0.000 0.0000 1.0000 )*
3) EndpointA>9390.72 9 0.000 high ( 1.000 0.0000 0.0000 ) *

## Prediction for Ratio:
Classification tree:
tree(formula = Ratio ~ Impedance + RFCoil + MFC3 + DCBias + RFTune + EndpointC,
data = lamstat.train)
Variables actually used in tree construction:
[1] "RFTune" "RFCoil"
Number of terminal nodes: 3
Residual mean deviance: 1.305 =27.41/21
Misclassification error rate: 0.25 =6 /24
summary(ratio.train.tree)
1) root 24 49.15 medium ( 0.3750 0.1667 0.4583 )
2) RFTune<11797.7 9 12.31 high (0.7778 0.1111 0.1111 ) *
3) RFTune>11797.7 15 25.83 medium ( 0.1333 0.2000 0.6667 )
6) RFCoil<5655.53 8 0.00 medium ( 0.0000 0.0000 1.0000 ) *
7) RFCoil>5655.53 7 15.11 low ( 0.2857 0.4286 0.2857 ) *

## Prediction for Total:

Classification tree:

tree(formula = Total ~ HeCFlow + MeasPressure + Impedance + MFC6 + MFC3 + Phase,
data = lamstat.train)

Variables actually used in tree construction:

[1] "MFC3" "MeasPressure"

Number of terminal nodes: 4

Residual mean deviance: 0.5867 =11.73/20

Misclassification error rate: 0.125 =3 /24

summary(total.train.tree)

1) root 24 51.050 medium ( 0.2917 0.25 0.4583 )
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2) MFC3<-18497.9 6 0.000 low ( 0.0000 1.00 0.0000 ) *
3) MFC3>-18497.9 18 24.060 medium ( 0.3889 0.00 0.6111)
6) MFC3<-18337.6 8 0.000 medium ( 0.0000 0.00 1.0000 ) *
7) MFC3>-18337.6 10 12.220 high ( 0.7000 0.00 0.3000 )
14) MeasPressure<436.625 5 6.730 high ( 0.6000 0.00 0.4000 ) *
15) MeasPressure>436.625 5 5.004 high ( 0.8000 0.00 0.2000 ) *

Classification tree:
snip.tree(tree = total.train.tree, nodes = 7)
Variables actually used in tree construction:
[1] "MFC3"
Number of terminal nodes: 3
Residual mean deviance: 0.5818 = 12.22/21
Misclassification error rate: 0.125 =3 / 24
summary(total.snip.tree)
1) root 24 51.05 medium ( 0.2917 0.25 0.4583 )
2) MFC3<-18497.9 6 0.00 low ( 0.0000 1.00 0.0000 ) *
3) MFC3>-18497.9 18 24.06 medium ( 0.3889 0.00 0.6111)
6) MFC3<-18337.6 8 0.00 medium ( 0.0000 0.00 1.0000 ) *
7) MFC3>-18337.6 10 12.22 high (0.7000 0.00 0.3000 ) *

## Prediction for Gap:
Classification tree:
tree(formula = Gap ~ MeasPressure + Volt + DCBias + Impedance + Phase + RFCoil +
RFTune + EndpointC, data = lamstat.train)
Variables actually used in tree construction:
[1] "EndpointC" "MeasPressure”
Number of terminal nodes: 4
Residual mean deviance: 0.5373 =10.75/20
Misclassification error rate: 0.08333=2/24
summary(gap.train.tree)
1) root 24 51.050 medium ( 0.29170 0.25000 0.4583 )
2) EndpointC<32275.1 19 31.890 medium ( 0.36840 0.05263 0.5789 )
4) EndpointC<29231.1 7 5.742 high ( 0.85710 0.14290 0.0000 ) *
5) EndpointC>29231.1 12 6.884 medium ( 0.08333 0.00000 0.9167 )
10) MeasPressure<435.812 5 5.004 medium ( 0.20000 0.00000 0.8000 ) *
11) MeasPressure>435.812 7 0.000 medium ( 0.00000 0.00000 1.0000 ) *
3) EndpointC>32275.1 5 0.000 low ( 0.00000 1.00000 0.0000 ) *
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Classification tree:

snip.tree(tree = gap.train.tree, nodes = 5)

Variables actually used in tree construction:

[1] "EndpointC"

Number of terminal nodes: 3

Residual mean deviance: 0.6012=12.63/21
Misclassification error rate: 0.08333 =2 /24
summary(gap.snip.tree)

1) root 24 51.050 medium ( 0.29170 0.25000 0.4583 )

2) EndpointC<32275.1 19 31.890 medium ( 0.36840 0.05263 0.5789 )
4) EndpointC<29231.1 7 5.742 high ( 0.85710 0.14290 0.0000 ) *
5) EndpointC>29231.1 12 6.884 medium ( 0.08333 0.00000 0.9167 ) *

3) EndpointC>32275.1 5 0.000 low ( 0.00000 1.00000 0.0000 ) *

Lam TCP 9600 DOE Data

## Prediction for Pressure:
Classification tree:
tree(formula = Pressure ~ endA + endB + rfcoil + X564tcptun + rfimp, data =
avg.30.train)
Variables actually used in tree construction:
[1] "rfcoil”  "XS564tcptun”
Number of terminal nodes: 5
Residual mean deviance: 0.5878 = 18.22 /31
Misclassification error rate: 0.1389=15/36
summary(press.train.ftree)
> > > > node), split, n, deviance, yval, (yprob)
* denotes terminal node
1) root 36 76.080 medium ( 0.2500 0.2778 0.4722)
2) rfcoil<8892.08 5 0.000 low ( 0.0000 1.0000 0.0000 ) *
3) rfcoil>8892.08 31 60.930 medium ( 0.2903 0.1613 0.5484 )
6) X564tcptun<19504.6 18 19.070 medium ( 0.2222 0.0000 0.7778 )
12) X564tcptun<19145.3 6 7.638 high ( 0.6667 0.0000 0.3333 ) *
13) X564tcptun>19145.3 12 0.000 medium ( 0.0000 0.0000 1.0000 ) *
7) X564tcptun>19504.6 13 27.910 high ( 0.3846 0.3846 0.2308 )
14) rfcoil<9360.76 5 0.000 low ( 0.0000 1.0000 0.0000 ) *
15) rfcoil>9360.76 8 10.590 high ( 0.6250 0.0000 0.3750 ) *
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## Prediction for Top RF Power:

Classification tree:
tree(formula = Top.Power ~ rfpow] + rfimp + rfmatchdc + endA + tcpimp, data =
avg.30.train)
Variables actually used in tree construction:
[1] "endA"  "rfmatchdc" "rfpowl"
Number of terminal nodes: 4
Residual mean deviance: 0.4065=13.01/32
Misclassification error rate: 0.08333 =3 /36
summary(Top.train.ftree)
> > > > node), split, n, deviance, yval, (yprob)
* denotes terminal node
1) root 36 76.810 medium ( 0.2222 0.3611 0.4167 )
2) endA<332.281 16 15.440 low ( 0.0000 0.8125 0.1875)
4) rfmatchdc<986.887 5 6.730 medium ( 0.0000 0.4000 0.6000 ) *
5) rfmatchdc>986.887 11 0.000 low ( 0.0000 1.0000 0.0000 ) *
3) endA>332.281 20 26.920 medium ( 0.4000 0.0000 0.6000 )
6) rfpow1<24.5282 9 6.279 high ( 0.8889 0.0000 0.1111 ) *
7) rfpow1>24.5282 11 0.000 medium ( 0.0000 0.0000 1.0000 ) *

## Prediction for Bottom RF Power:
Classification tree:
tree(formula = RFBot.Power ~ X564tcptun + tcpimp + endA + X578tcploadcap, data
= avg.3(0.train)

Variables actually used in tree construction:
[1] "X564tcptun” “"endA" "X578tcploadcap"
Number of terminal nodes: 5
Residual mean deviance: 1.634 = 50.64 /31
Misclassification error rate: 0.3611=13/36
summary(RFBot.train.ftree)
>>>> node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 36 76.99 medium ( 0.3056 0.2500 0.4444 )
2) X564tcptun<19504.6 23 43.15 medium ( 0.2174 0.1739 0.6087 )
4) endA<369.805 8 0.00 medium ( 0.0000 0.0000 1.0000 ) *
5) endA>369.805 15 32.56 medium ( 0.3333 0.2667 0.4000 )
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10) X578tcploadcap<28037.1 6 10.41 medium ( 0.1667 0.1667 0.6667 ) *
11) X578tcploadcap>28037.1 9 19.10 high ( 0.4444 0.3333 0.2222 ) *
3) X564tcptun>19504.6 13 26.32 high ( 0.4615 0.3846 0.1538 )
6) endA<212.416 5 10.55 low ( 0.2000 0.4000 0.4000 ) *
7) endA>212.416 8 10.59 high ( 0.6250 0.3750 0.0000 ) *

## Prediction for Gas Ratio:
Classification tree: .
tree(formula = Gas.Ratio ~ rfmatchdc + rfphase + endA, data = avg.30.train)
Number of terminal nodes: 4
Residual mean deviance: 0.6604 =21.13/32
Misclassification error rate: 0.1389=15/36
summary(ratio.train.ftree)
>>>>>>node), split, n, deviance, yval, (yprob)
* denotes terminal node
1) root 36 48.72 medium ( 0.13890 0.08333 0.7778 )
2) endA<212.416 5 6.73 high ( 0.60000 0.40000 0.0000 ) *
3) endA>212.416 31 23.53 medium ( 0.06452 0.03226 0.9032 )
6) rfphase<-377.023 18 0.00 medium ( 0.00000 0.00000 1.0000 ) *
- 7) rfphase>-377.023 13 17.86 medium ( 0.15380 0.07692 0.7692 )
14) rfmatchdc<986.869 5 0.00 medium ( 0.00000 0.00000 1.0000 ) *
15) rfmatchdc>986.869 8 14.40 medium ( 0.25000 0.12500 0.6250 ) *

## Prediction for Total Gas Flow:
Classification tree:
tree(formula = TotalGasFlow ~ ChamPress + rfimp + rfmatchdc + X564tcptun +
X578tcploadcap, data = avg.30.train)

Variables actually used in tree construction:
[1] "rfimp" "ChamPress"  "X578tcploadcap” "rfmatchdc"
Number of terminal nodes: 7
Residual mean deviance: 1.317=38.2/29
Misclassification error rate: 0.25=9/36
summary(total.train.ftree)
> > > > node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 36 75.640 medium ( 0.3889 0.1944 0.4167 )
2) rfimp<16339 10 6.502 medium ( 0.1000 0.0000 0.9000 )
4) ChamPress<1335.93 5 0.000 medium ( 0.0000 0.0000 1.0000 ) *
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5) ChamPress>1335.93 5 5.004 medium ( 0.2000 0.0000 0.8000 ) *
3) rfimp>16339 26 53.990 high ( 0.5000 0.2692 0.2308 )
6) X578tcploadcap<28020.6 16 35.030 low ( 0.3125 0.3750 0.3125 )
12) rfimp<16452.4 6 7.638 low ( 0.0000 0.6667 0.3333 ) *
13) rfimp>16452.4 10 20.590 high ( 0.5000 0.2000 0.3000 )
26) rfimatchdc<986.893 5 5.004 high ( 0.8000 0.0000 0.2000 ) *
27) rfmatchdc>986.893 5 10.550 low ( 0.2000 0.4000 0.4000 ) *
7) X578tcploadeap>28020.6 10 12.780 high ( 0.8000 0.1000 0.1000)
14) ChamPress<1543.76 5 5.004 high ( 0.8000 0.0000 0.2000 ) *
15) ChamPress>1543.76 5 5.004 high ( 0.8000 0.2000 0.0000 ) *
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Appendix D

Matlab Code for Tree-Based Models
I. Lam Rainbow 4400 DOE Data:

pressuretree.m

$% classification tree for pressure using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation

%% supply wafer average data in data, index selects wafers

%% rows in data are observations

%% save updated probabilities as observations

%% return probability of high,low,medium diagnosis for observation

function [probs,newpmat] = pressuretree(data, index,diagbase)

%% will return probabilities- initialize:

probs = [];
p = [1:

%% specify initial probabilities based on training the tree models:

input = 1; % code for pressure, indexes diag5 (with wafer tag)
init_1 = [0.5 0.375 0.125);

[0.2174 0.04348 0.7391};

(01 0);

init_2

init_3
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$% initial probabilities

newpl = init_1;
newp2 = init_2;
newp3 = init_3;

newpmat = [newpl newp2 newp3];

%% number of training samples
newnl = 10;

newn2 = 7;

newn3 7;

5541.59;
5799.94;

thres_1
thres 2

rfcoil = 6;

for i = [index]
for j = [l:size(diagbase,1l)] % number of rows (observations)
if diagbase(j,1l) == i
if data(j,rfcoil) < thres_1
p = newpl;
[newpl, newnl] = update({p,newnl, j,diagbase,input);
elseif data(j,rfcoil) < thres_ 2

P = newp2;
(newp2,newn2] = update(p,newn2,j,diagbase, input);
else
p = newp3;
[newp3,newn3] = update(p,newn3, j,diagbase,input);
end
end
end

newpmat = [(newpmat; newpl newp2 newp3];
probs = [probs; p):;
end

powertree.m

%% classification tree for rfbottom power using lamstation signals
%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

$% then updates probabilities by calling update.m
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function [probs,newpmat] = powertree(data, index, diagbase)
%% will return probabilities- initialize:

probs = [];
p =[]

%% specify initial probabilities based on training the tree models:

input = 4; % code for power, indexes diag5 (with wafer tag)

init_1 = [0 0.8 0.2];
init_2 = [0 0 1];
init_3 = [1 0 0];

$% initial probabilities

newpl = init_1;

newp2 = init_2;

newp3 = init_3;

newpmat = [newpl newp2 newp3];

%% number of training samples
newnl = 5;
newn2 = 10;

newn3 = 9;

thres_1 = 8758.09;
thres_2 = 93%0.72;
endA = 1;

for i = [index]

for j = [l:size(diagbase,l)] % number of rows (observations)
if diagbase(j,1l) == 1i
if data(j,endA) < thres_1
p = newpl;
[newpl,newnl] = update(p,newnl,j,diagbase,input);
elseif data(j,endA) < thres_2
p = newp2;
[newp2, newn2] = update{p,newn2,j,diagbase,input);
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else
p = newp3;
[newp3,newn3) = update(p,newn3, j,diagbase, input);
end
end
end
newpmat = [newpmat; newpl newp2 newp3];
probs = [probs; p}:
end

ratiotree.m

%% classification tree for gas ratio using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation {validation data)
%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = ratiotree(data, index,diagbase)
$% will return probabilities- initialize:

probs = [];
p=1[1;

%% specify initial probabilities based on training the tree models:

input = 7; % code for ratio, indexes diag5 (with wafer tag)

init_1 = [7/9 1/9 1/9];
init_2 = [0 0 1];
init_3 = [0.2857 0.4286 0.2857];

%% initial probabilities

newpl = init_1;
newp2 = init_2;
newp3 = init_3;

newpmat = [newpl newp2 newp3];

%% number of training samples
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newnl = 9;
newn2 = 8;
newn3 = 7;
thres_1 = 11797.7;
thres_2 = 5655.53;
rftune = 7;
rfcoil = 6;

for i = [index]

for j = [l:size(diagbase,1l)] % number of rows (observations)
if diagbase(j,1) == i
if data(j,rftune) < thres_1l
p = newpl;
(newpl,newnl] = update(p,newnl, j,diagbase,input):;
elseif data(j,rfcoil)'< thres 2
P = newp2;
(newp2,newn2) = update(p,newn2,j,diagbase,input):;

else
p = newp3;
(newp3,newn3) = update(p,newn3,j,diagbase,input);
end
end

end
newpmat = [newpmat; newpl newp2 newp3];
probs = [probs; pl;

end

totaltree.m

%%
%%
%%
%%
%%
%%
3%

classification tree for total gas flow using lamstation signals
rules are from tree-based models built using S-plus

function returns probabilities of high, low and medium

then updates probabilities by calling update.m

requires a diagnosis database of actual fault classification
index needs to correspond to wafer observation

supply wafer average data in data, index selects wafers

function [probs,newpmat] = totaltree(data,index,diagbase)
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%% will return probabilities—~ initialize:

probs = [];
p =[]

$% specify initial probabilities based on training the tree models:

input = 10; % code for total, indexes diag5 (with wafer tag)
init_1 = [0 1 0];

[0 0 1];

[6.7 0 0.3];

init 2

init_3

$% initial probabilities
newpl = init_1;

I

newp2 init_2;
newp3 = init_3;

newpmat = [newpl newp2 newp3];

%% number of training samples

newnl = 6;
newn2 = 8;
newn3 = 10;
thres_1 = -18497.9;
thres_2 = -18337.6;
MFC3 = 13;
for i = [index]
for j = [l:size(diagbase,l)] % number of rows (observations)

if diagbase(j,1) == i
if data(j,MFC3) < thres_1
P = newpl;
[newpl,newnl) = update(p,newnl,j,diagbase,input);
elseif data(j,MFC3) < thres 2

P = newp2;

[newp2,newn2] = update(p,newn2,j,diagbase, input);
else

p = newp3;

I

[newp3, newn3] update (p, newn3, j,diagbase, input) ;

end
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end
end
newpmat = [newpmat; newpl newp2 newp3}:;
probs = [probs; pl:
end

gaptree.m

%% classification tree for gap spacing using lamstation signals
%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification
%% index needs to correspond to wafer observation

%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = gaptree(data, index,diagbase)

%% will return probabilities- initialize:

probs = [];
p = [):

%% specify initial probabilities based on training the tree models:

input = 13; % code for total, indexes diag5 (with wafer tag)

init_1 = [0.8571 0.1429 0];
init_2 = [0.08333 0 0.9167];
init 3 = [0 1 0];

$% initial probabilities
newpl = init_1;
newp2 = init_2;

newp3 init_3;

newpmat = [newpl newp2 newp3]:;
%% number of training samples

newnl = 7;
newn2 = 12;
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newn3 = 5;

thres_1
thres_2

29231.1;
32275.1;

endC = 15;

for i = [index]

for j = [l:size(diagbase,l)] % number of rows (observations)
if diagbase(j,1l) == i
if data(j,endC) < thres_1
P = newpl;
[newpl,newnl] = update(p,newnl,j,diagbase, input);
elseif data(j,endC) < thres 2
P = newp2;
[newp2, newn2]

0

update (p,newn2, j,diagbase, input) ;
else
p = newp3;
[newp3, newn3]

update (p,newn3, j,diagbase, input) ;
end
end
end
newpmat = [newpmat; newpl newp2 newp3];
probs = [probs; p];

end

II. Lam TCP 9600 DOE Data:

pressuretree.m

%%
3%
3%
3%
3%
3%
%%

classification tree for pressure using lamstation signals
rules are from tree-based models built using S-plus

function returns probabilities of high, low and medium

then updates probabilities by calling update.m

requires a diagnosis database of actual fault classification
index needs to correspond to wafer observation

supply wafer average data in data, index selects wafers

function [probs,newpmat] = pressuretree (data, index,diagbase)

%%

will return probabilities- initialize:
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probs = (];
p=11:

%% specify initial probabilities based on training the tree models:

input = 1; % code for pressure, indexes diag5 (with wafer tagq)

init 1 = [0 1 0];
init_2 = [2/3 0 1/3];
init_3 = [0 0 1);

init_4 = [0 1 0);

init_5 = [0.625 0 0.375];

%% initial probabilities
newpl = init_1;
newp2 = init_2;

newp3 = init_3;
newpd = init_4;
newp5 = init_5;

newpmat = [newpl newp2 newp3 newpd newp5];

%% number of training samples
newnl = 5;
newn2 = 6;
newn3 = 12;
newnd = 5;
newn5 = 8;

thres_1 = 8892.08;
thres 2 = 19504.6;
thres_3 = 19145.3;
thres_4 = 9360.76;

rfcoil = 6;

tcptune = 12;
for i = [index]
for j = [l:size(diagbase,1l)] % number of rows (observations)
if diagbase(j,1l) == i
if data(j,rfcoil) < thres_1
p = newpl;
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(newpl,newnl]) = update(p,newnl, j,diagbase,input);
elseif data(j,tcptune) < thres 2
if data(j,tcptune) < thres_3

P = newp2;

[newp2, newn2] = update(p,newn2,j,diagbase, input):;
else

P = newp3;

[newp3, newn3] = update(p,newn3, j,diagbase, input);
end

elseif data(j,rfcoil) < thres_4

P = newpi4;
[newp4,newnd4] = update(p,newnd, j,diagbase,input);
else
P = newp5;
[newp5,newn5] = update(p,newn5, j,diagbase, input):;
end
end
end

newpmat = [newpmat; newpl newp2 newp3 newp4 newp5];
probs = [probs; p]);
end

toptree.m

%% classification tree for top power using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation (validation data)
$% supply wafer average data in data, index selects wafers

function [probs,newpmat] = toptree(data, index,diagdata)

%% will return probabilities- initialize:

probs = [];
p = [1;

%% specify initial probabilities based on training the tree models:
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input = 4; % code for top, indexes diag5 (with wafer tag)

init_1 = [0 0.4 0.6];
init_2 = [0 1 0];
init_3 = [0.8889 0 0.1111];
init_4 = [0 0 1);

%% initial probabilities

I

newpl

newp2
newp3 = init_3;

init_1;

init_2;

newp4 init_4;

newpmat = [newpl newp2 newp3 newpd];

$% number of training samples

newnl = 5;

newn2 = 11;

newn3 = 9;

newnd4 = 11;

thres_1 = 332.281;

thres_2 = 986.887;

thres 3 = 24.5282;

endA = 1;

rfmatchdec = 5;

rfpow = 4;

for i = [index]
for j = [l:size(diagdata,l)] % number of rows (observations)

if diagdata(j,1l) == i
if data(j,endA) < thres_1
if data(j,rfmatchdc) < thres_2
P = newpl;
[newpl, newnl])

else

P = newp2;
[newp2, newn2]

end
elseif data(j,rfpow) < thres_3
p = newp3;
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{newp3,newn3) = update(p,newn3,j,diagdata,input);
else
p = newp4;
[newp4,newnd4] = update (p,newnd,j,diagdata, input)
end
end
end

newpmat = (newpmat; newpl newp2 newp3 newpd];
probs = [probs; p]:
end

rfbottree.m

%% classification tree for rfbottom power using lamstation signals
%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

$% index needs to correspond to wafer observation

%% supply wafer average data in data, index selects wafers

function [probs,newpmat) = rfbottree(data, index,diagdata)

%% will return probabilities- initialize:

probs = [];
p = [];

%% specify initial probabilities based on training the tree models:

input = 7; % code for rfbot, indexes diag5 (with wafer tag)
init_1.= [0 0 1);

init_2 = (1/6 1/6 2/3);

init_3 = [0.4444 0.3333 0.2222];

init_4 = [0.2 0.4 0.4];

[0.625 0.375 0};

it

init_5

%% initial probabilities
newpl = init_1;
newp2 = init_2;

newp3 = init_3;
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newp4
newp5

newpmat

init_4;
init_5;
= [newpl newp2 newp3 new§4 newp5];

%% number of training samples

newnl =

newn2
newn3
newnd

newn5 =

thres_

1

thres_2
thres_3 = 28037.1;
thres_4

8;
6;
9;
5;

-

’

= 19504.6;
= 369.805;

= 212.416;

endA = 1;
tcpload = 11;

tcptune

for i

for j

= 12;

[index]
= [1l:size(diagdata,l)] % number of rows (observations)

if diagdata(j,1l) == i

if data(j,tcptune) < thres_1
if data(j,endA) < thres_2
P = newpl;
[newpl,newnl] = update(p,newnl, j,diagdata,input);
elseif data(j,tcpload) < thres_3
P = newp2;
[newp2, newn2}

update(p, newn2, j,diagdata, input) ;

else
p = newp3;
[newp3,newn3] = update(p,newn3, j,diagdata,input);
end
elseif data(j,endA) < thres_4
p = newpd;
[newp4,newnd] = update(p,newnd, j,diagdata,input);
else
P = newp5;

[newp5, newn5] update (p,newn5, j,diagdata, input) ;
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end
end
end
newpmat = [newpmat; newpl newpZ newp3 newp4 newp5];
probs = [probs; pJl: |

end

ratiotree.m

%% classification tree for gas ratio using lamstation signals

%% rules are from tree-based models built using S-plus

%% function returns probabilities of high, low and medium

%% then updates probabilities by calling update.m

%% requires a diagnosis database of actual fault classification

%% index needs to correspond to wafer observation (validation data)
%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = ratiotree(data, index,diagdata)
‘%% will return probabilities- initialize:

probs = [];
p = {1

%% specify initial probabilities based on training the tree models:

input = 10; % code for ratio, indexes diag5 (with wafer tag)

init_1 = [0.6 0.4 0];
init_2 = [0 0 1];

init_3 = [0 0 1];

init_4 = [0.25 0.125 0.625];

%% initial probabilities
newpl = init_1;
newp2 = init_2;

[}

newp3 = init_3;

Il

newp4 init_4;

newpmat = [newpl newp2 newp3 newpd];

%% number of training samples
newnl = 5;
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newn2 = 18;

newn3 = 5;

newnd = 8;

thres_1 = 212.416;
thres_2 = -377.023;
thres_3 = 986.869;
endA = 1;

rfmatchdc = 5;
rfphase = 8;

for i = [index])

for j = [l:size(diagdata,l)] % number of rows (observations)
if diagdata(j,1l) == i

if data(j,endA) < thres_1

p = newpl;

[newpl,newnl] = update (p,newnl, j,diagdata,input);
elseif data(j,rfphase) < thres_2

p = newp2;

[newp2,newn2] = update(p,newn2,j,diagdata, input);
elseif data(j,rfmatchdc) < thres_3

p = newp3;
[newp3,newn3] = update(p,newn3,j,diagdata,input);
else
p = newp4;
[newp4,newn4) = update(p,newnd, j,diagdata, input)
end
end

end
newpmat = [newpmat; newpl newp2 newp3 newpd]:
probs = [probs; pl:

end

totaltree.m

%%
%%
%%
%%
%
3%

classification tree for total gas flow using lamstation signals
rules are from tree-based models built using S-plus

function returns probabilities of high, low and medium

then updates probabilities by calling update.m

requires a diagnosis database of actual fault classification

index needs to correspond to wafer observation
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%% supply wafer average data in data, index selects wafers

function [probs,newpmat] = totaltree(data, index,diagdata)

%% will return probabilities- initialize:

probs = [];
p = [1:

%% specify initial probabilities based on training the tree models:

input = 13; % code for total, indexes diag5 (with wafer tag)

init_1 = [0.1 0,0.9);
init_2 = (0 2/3 1/3);
init_3 = [0.8 0 0.2];
init_4 = (0.2 0.4 0.4];
init 5 = [0.8 0.1 0.1];

%% initial probabilities

newpl = init_1;
newp2 = init_2;
newp3 = init_3;
newpd = init_4;
newp5 = init_5;

newpmat = [newpl newp2 newp3 newpd newp5];

%% number of training samples
newnl = 10;
newnz = 6;
newn3 = 5;
newn4 = 5;

newnb5 = 10;

thres 1 = 16339;

thres_2 = 28020.6;
thres_3 = 16452.4;
thres 4 = 986.893;

press = 3;
rfmatchde = 5;
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rfimp = 9;
tcpload = 11;

for i = [index]
for j = [l:size(diagdata,1l)] % number of rows (observations)
if diagdata(j,l) == i
if data(j,rfimp) < thres_1
p = newpl;
[newpl, newnl]

update (p,newnl, j,diagdata, input) ;
elseif data(j,tcpload) < thres_2
if data(j,rfimp) < thres_3
P = newp2;
(newp2,newn2] = update(p,newn2, j,diagdata, input);
elseif data(j,rfmatchdc) < thres 4

P = newp3;
[newp3, newn3] = update(p,newn3,j,diagdata, input);
else
p = newp4;
[newpd,newnd) = update(p,newn4, j,diagdata, input);
end
else
P = newp5;
[newp5,newn5] = update (p,newn5,j,diagdata, input);
end
end

end
newpmat = [newpmat; newpl newp2 newp3 newp4 newp5];
probs = [probs; p];

end

update.m

%% updates probabilities of tree-based models

%% uses diagbase - a database of the actual fault

%% indices have to correspond to wafer observations in data
%% specify input in tree program - to pick the right columns

function [newp,newn] = update(p,n,index,diagdata, input)

for i = [l:length(p)]
if diagdata(index, input+i) == 0
newp(i) = n*p(i)/(n+l);
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. else »
newp (i) = (n*p(i)+1)/(n+1);
end
newn = n+l;
end '
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Appendix E1

Lam Rainbow 4400 DOE Data Classification Results

- Extracted Probabilities for Evidence Variables

Evidence Variable (r) High (s=1) | Medium | Low (s=3)
(s=2)

Tree Model Prediction of Pressure Ep Ei Ei3
Tree Model Prediction of RF Power E,) Ey» E,;3
Tree Model Prediction of Gas Ratio E; E;, E;3

Tree Model Prediction of Total Gas Flow E4 ) E42 E43
Tree Model Prediction of Gap Spacing Es ) Es» Es5

Table 1. Evidence Labels for Tree Model Prediction of Input Responses

Evidence Variable (r) High (s=1) | Medium | Low (s=3)
(s=2)

Tree-Based Prediction of Pressure P(F1,1/Mp) | P(F| 2/My) | P(F; 3/M,)
Tree-Based Prediction of RF Power P(F5,1/My) | P(F22/My) | P(F; 3/My)
Tree-Based Prediction of Gas Ratio P(F31/My) | P(F3 /M) | P(F; 3/M,)

Tree-Based Prediction of Total Gas Flow P(F4,1/Mp) | P(F42/My) | P(F43/Mj)
Tree-Based Prediction of Gap Spacing P(F51/M3) | P(F5 2/M3) | P(Fs5 3/M5)

Table 2. Probabilities for Tree Model Prediction Based on Combinations of Evidence
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Evidence Variable (r) High (s=1) | Medium | Low (s=3)
(s=2)

GLM Prediction of Pressure Es 1 Eg2 Eg 3
GLM Prediction of RF Power E7, E7, E73
GLM Prediction of Gas Ratio Eg Eg, Eg3

GLM Prediction of Total Gas Flow Eg Eg> Eg3
GLM Prediction of Gap Spacing Eo.1 Eo2 Ejo3

Table 3. Evidence Labels for GLM Prediction of Input Responses

Evidence Variable (r) High (s=1) | Medium | Low (s=3)
(s=2)

GLM-Based Prediction of Pressure P(F1,1/My) | P(F; 2/My) | P(F; 3/My)
GLM-Based Prediction of RF Power P(F,1/M4) | P(F22/My) | P(F53/My)
GLM-Based Prediction of Gas Ratio P(F3,1/My) | P(F3 2/My) | P(F3 3/My)

GLM-Based Prediction of Total Gas Flow P(F4,1/My) | P(F42/M4) | P(F43/My)
GLM-Based Prediction of Gap Spacing P(Fs5,1/My) | P(F52/My) | P(Fs 3/M,)

Table 4. Probabilities for GLM Prediction Based on Combinations of Evidence

Model Averaged Result High (s=1) | Medium | Low (s=3)
(s=2)

Tree/GLM Prediction of Pressure P(F ;) P(F,2) P(F,3)
Tree/GLM Prediction of RF Power P(Fy,) P(F,5) P(Fy3)
Tree/GLM Prediction of Gas Ratio P(F3 ) P(F32) P(F; 3)

Tree/GLM Prediction of Total Gas Flow P(Fy 1) P(F,,) P(F,3)
Tree/GLM Prediction of Gap Spacing P(Fs,)) P(Fs5) P(Fs 3)

Table S. Final Fault Probabilities for Combined Model Prediction of Input Responses
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Wafer Ep1 Eip Ei3 Exi Ey2 Eys

1 0 1.0000 0 0 0.8000 0.2000
2 0.2174 0.0435 0.7391 1.0000 0 0

3 0.1902 0.1630 0.6467 0 0.8333 0.1667
4 0.5000 0.3750 0.1250 0 0.8571 0.1429
5 0.4545 0.4318 0.1136 0 0 1.0000
6 0.1691 0.1449 0.6860 0 0 1.0000
7 0.1522 0.1304 0.7174 0 0.8750 0.1250
8 0.1383 0.1186 0.7431 0.9000 0 0.1000
9 0.2101 0.1087 0.6811 0 0 1.0000
10 0.1940 | 0.1003 0.7057 0 0 1.0000
11 0.1801 0.0932 0.7267 0 0 1.0000
12 0.1681 0.0870 0.7449 0.9091 0 0.0909

Table 6. Tree Model Prediction of Input Responses Pressure and RF Power

Wafer Es3, Es» E;; Eq) Ey» Ey3
1 0.2857 0.4286 0.2857 0.7000 0 0.3000
2 0 0 1.0000 0 1.06000 0
3 0.7778 0.1111 0.1111 0 0.8571 0.1429
4 0.7000 0.1000 0.2000 0.7273 0 0.2727
5 0.7273 0.0909 0.1818 0 0.7500 0.2500
6 0.2500 0.5000 0.2500 0 0.6667 0.3333
7 0.6667 0.0833 0.2500 0 0.6000 0.4000
8 0.2222 0.5556 0.2222 0 0.5455 0.4545
9 0.6154 0.0769 0.3077 0 0.5833 0.4167
10 0.5714 0.0714 0.3571 0 0 1.0000
11 0 0 1.0000 0 0.5385 0.4615
12 0.5333 0.0667 0.4000 0.7500 0 0.2500

Table 7. Tree Model Prediction of Input Responses Gas Ratio and Total Gas Flow
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Wafer Es; Es, Es3
1 0.8571 0.1429 0
2 0.0833 0 0.9167
3 0.8750 0.1250 0
4 0 1.0000 0
5 0 1.0000 0
6 0.0769 0 0.9231
7 0.7777 0.1111 0.1111
8 0.7000 0.1000 0.2000
9 0.0714 0 0.9286
10 0.0667 0 0.9334
11 0.0625 0 0.9375
12 0.7272 0.0909 0.1818

Table 8. Tree Model Prediction of Input Response Gap Spacing

Wafer | P(F, ,/My) | P(F ,/My) | P(Fy 3/Mp) | P(F3,/My) | P(F22/Mp) | P(F, 3/M)
1 0.3657 0.3657 0.2686 0.3809 0.4524 0.1667
2 0.3333 0.3333 0.3333 0.1075 0.1075 0.7850
3 0.4135 0.4135 0.1731 0.3005 0.4477 0.2519
4 0.4035 0.4035 0.1931 0.2250 0.6068 0.1682
5 0.3182 0.3182 0.3636 0.6539 0.1705 0.1756
6 0.1843 0.1843 0.6313 0.2267 0.2271 0.5462
7 0.3693 0.3693 0.2613 0.2835 0.3485 0.3680
8 0.3527 0.3564 0.2909 0.3155 0.2809 0.4036
9 0.1566 0.1566 0.6869 0.1976 0.2115 0.5908
10 0.0446 0.0446 0.9108 0.0951 0.1147 0..7902
11 0.0506 0.0506 0.8989 0.0860 0.1122 0.8017
12 0.4113 0.3232 0.2655 0.3318 0.2761 0.3920

Table 9. Fault Probabilities for Pressure and RF Power extracted from Tree Model
Prediction Based on Combinations of Evidence
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Wafer | P(F;,,/My) | P(F3 /M) | P(F3 3/My) | P(F4,1/My) | P(F42/My) | P(F4 3/My)
1 0.2267 0.6266 0.1467 0.4857 0.3551 0.1592
2 0.3261 0.3478 0.3261 0.1075 0.1075 0.7850
3 0.4754 0.2546 0.2700 0.3007 0.4438 0.2554
4 0.6953 0.1499 0.1548 0.6821 0.1571 0.1607
5 0.3239 0.3239 0.3523 0.3264 0.3264 0.3471
6 0.1034 0.1034 0.7932 0.1081 0.1081 0.7838
7 0.3869 0.2715 0.3417 0.2976 0.3915 0.3109
8 0.2779 0.3536 |- 0.3685 0.3148 0.3611 0.3241
9 0.0986 0.0986 0.8029 0.1048 0.1048 0.7903

10 0.0664 0.0664 0.8672 0.0969 0.0969 0.8063
11 0.0884 0.0884 0.8232 0.0676 0.0676 0.8648
12 0.3933 0.2827 0.3240 0.3587 0.2899 0.3514

Table 10. Fault Probabilities for Gas Ratio and Total Gas Flow exﬁ'acted from Tree
Model Prediction Based on Combinations of Evidence

Wafer | P(Fs /M) | P(Fs5 2/M,) | P(Fs 3/M5)
1 04343 | 03543 | 02114
2 03333 | 03333 | 03333
3 04526 | 02563 | 02910
4 02358 | 0.5631 | 02011
5 0.3057 | 03057 | 0.3885
6 02155 | 02155 | 0.5690
7 03615 | 02626 | 03758
8 03337 | 02917 | 03745
9 0.1923 | 0.1923 | 0.6154
10 0.0860 | 0.0860 | 0.8280
11 0.0795 | 0.0795 | 0.8409
12 03562 | 02750 | 0.3688

Table 11. Fault Probabilities for Gap Spacing extracted from Tree Model Prediction
Based on Combinations of Evidence

211




Wafer Es,1 Es2 Eg3 E74 E;2 E73

1 0 1.0000 0.0000 1.0000 0 0.0000
2 0 1.0000 0.0000 0 1.0000 0.0000
3 0 0.4448 0.5552 0 0 1.0000
4 0 1.0000 0.0000 0 0 1.0000
5 0 1.0000 0.0000 0 0 1.0000
6 0 1.0000 0.0000 0 0 1.0000
7 0 0 1.0000 0 0 1.0000
8 0 0 1.0000 0.5000 0.5000 0

9 0 0.9947 0.0053 0 0 1.0000
10 0 0.3058 0.6942 0 0 1.0000
11 0 0 1.0000 0 0 1.0000
12 1.0000 0 0.0000 1.0000 0 0.0000

Table 12. GLM Prediction of Input Responses Pressure and RF Power
Wafer Eg ) Es» Eg3 Eg ) Eg o Eg3

1 0 1.0000 0.0000 0.4163 0 0.5837
2 0 0 1.0000 0.4823 0 0.5177
3 0 1.0000 0.0000 0.6846 0 0.3154
4 0 1.0000 0.0000 0.4867 0 0.5133
5 0 0 1.0000 0.6691 0 0.3309
6 0 0 1.0000 0.5102 0 0.4898
7 0 1.0000 0.0000 0.2290 0 0.7710
8 1.0000 0 0.0000 0.3572 0.1244 0.5183
9 0 0 1.0000 0.5230 0 0.4770
10 0 0 1.0000 0.4727 0 0.5273
11 0 0 1.0000 0.4471 0 0.5529
12 1.0000 0 0.0000 0.5850 0.0133 0.4016

Table 13. GLM Prediction of Input Responses Gas Ratio and Total Gas Flow
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Wafer Eqo,1 Ejo2 E03
1 0 0 1.0000
2 0 1.0000 0.0000
3 0 1.0000 0.0000
4 0 0 1.0000
5 0 1.0000 0.0000
6 0 1.0000 0.0000
7 0 1.0000 0.0000
8 0 1.0000 0.0000
9 0 1.0000 0.0000
10 0 0 1.0000
11 0 1.0000 0.0000
12 1.0000 0 0.0000

Table 14. GLM Prediction of Input Response Gap Spacing

Wafer | P(Fy /M) | P(F) 2/My) [ P(F) 3/My) | P(Fy,1/My) | P(F2,2/My) | P(F2,3/My)
1 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334
2 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334
3 0.3333 0.3333 0.3334 0.5363 0.2318 0.2319
4 0.1622 0.1622 0.6755 0.3333 0.3333 0.3334
5 0.2230 0.2230 0.5540 0.3333 0.3333 0.3334
6 0.1701 0.1701 0.6599 0.3333 0.3333 0.3334
7 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334
8 0.3631 0.3838 0.2531 0.3333 0.3333 0.3334
9 0.1743 0.1743 0.6514 0.3325 0.3325 0.3350
10 0.0479 0.0479 0.9041 0.0787 0.1092 0.8121
11 0.1490 0.1490 0.7019 0.1490 0.1490 0.7019
12 0.5283 0.3333 0.1383 0.7189 0.1472 0.1339

Table 15. Fault Probabilities for Pressure and RF Power extracted from GLM Prediction
Based on Combinations of Evidence
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Wafer | P(F; 1/My) | P(F35/My) | P(F3 3/My) | P(F41/M,) | P(F42/My) | P(F4 3/M,)
1 0.3333 0.3333 0.3334 0.3333 0.3333 0.3333
2 0.6548 0.1726 0.1726 0.3333 0.3333 0.3333
3 0.2750 0.2750 0.4501 0.3333 0.3333 0.3334
4 0.1622 0.1622 0.6755 0.3333 0.3333 0.3334
5 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334
6 0.3333 0.3333 0.3334 0.3333 0.3333 0.3334
7 0.0763 0.0763 0.8473 0.3333 0.3333 0.3334
8 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333
9 0.3325 0.3325 0.3350 0.3315 0.3315 0.3369
10 0.0815 0.0815 0.8371 0.0631 0.0631 0.8738
11 0.1490 0.1490 0.7019 0.0000 0.0000 1.0000
12 0.7189 0.1472 0.1339 0.9999 0.0001 0.0001

Table 16. Fault Probabilities for Gas Ratio and Total Gas Flow extracted from GLM
Prediction Based on Combinations of Evidence

Wafer | P(F51/M,) | P(Fs2/M,) | P(F5 35/M,)
1 0.1946 0.6108 0.1946
2 0.3333 0.3333 0.3334
3 0.2750 0.2750 0.4501
4 0.3333 0.3333 0.3334
5 0.2230 0.2230 0.5540
6 0.1701 0.1701 0.6599
7 0.0763 0.0763 0.8473
8 0.3333 0.3333 0.3333
9 0.1736 0.1736 0.6528
10 0.0815 0.0815 0.8371
11 0.0503 0.0503 0.8995
12 0.7189 0.1472 0.1339

Table 17. Fault Probabilities for Gap Spacing extracted from GLM Prediction Based on

Combinations of Evidence
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Wafer

P(Fy,1) P(Fy2) P(F,3) P(F;) P(F;5) P(F33)

1 0 1.0000 0.0000 0.1905 0.6262 0.1833
2 0 1.0000 0.0000 0.2204 0.2204 0.5592
3 0.1784 0.2760 0.5455 0.1002 0.7048 0.1951
4 0 1.0000 0.0000 0.1125 0.7320 0.1555
5 0.2706 0.2706 0.4588 0.0833 0.0833 0.8333
6 0.1734 0.1674 0.6592 0.1400 0.1401 0.7199
7 0.1594 0.1485 0.6920 0.0945 0.6995 0.2060
8 0.2135 0.2147 0.5718 0.7000 0.2500 0.0500
9 0.1405 0.3339 0.5256 0.1325 0.1360 0.7315
10 0.0751 0.1180 0.8069 0.0434 0.0560 0.9006
11 0.0949 0.0732 0.8319 0.0588 0.0653 0.8759
12 0.5877 0.2449 0.1674 0.8842 0.0368 0.0789

Table 18. Final Fault Probabilities for Combined Tree/GLM Prediction of Input

Responses Pressure and RF Power

Wafer P(F;1) | P(F32) P(F33) | P(Fq1) | P(Fs2) P(F43)
1 0.1281 0.7638 0.1081 0.5929 0.1775 0.2296
2 0 0 1.0000 0.2577 0.1371 0.6053
3 0.2750 0.2750 0.4501 0.4504 0.2222 0.3274
4 0.6977 0.1249 0.1774 0.7047 0.0786 0.2167
5 0.2453 0.2453 0.5095 0.3299 0.3299 0.3403
6 0.2500 0.5000 0.2500 0.2207 0.2207 0.5586
7 0.0763 0.0763 0.8473 0.2985 0.2222 0.4793
8 0.2222 0.5556 0.2222 0.1574 0.4533 0.3893
9 0.2455 0.1277 0.6269 0.2296 0.2489 0.5214
10 0.1640 0.0547 0.7813 0.1492 0.0446 0.8062
11 0.0594 0.05%4 0.8813 0 0.5385 0.4615
12 0.6614 0.1241 0.2145 0.6734 0.0758 0.2508

Table 19. Final Fault Probabilities for Combined Tree/GLM Prediction of Input

Responses Gas Ratio and Total Gas Flow
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Wafer P(Fs)) | P(Fs2) | P(Fsj3)
1 0.6457 0.2486 0.1057
2 0.2083 0.1667 0.6250
3 0.3342 0.2687 0.3971
4 0.1179 0.7815 0.1006
5 0 1.0000 0.0000
6 0.1581 0.1389 0.7030
7 0.1714 0.1384 0.6901
8 0.7000 0.1000 0.2000
9 0.1131 0.3156 0.5713
10 0.0607 0.0431 0.8963
11 0.0606 0.0450 0.8944
12 0.7315 0.1130 0.1556

Table 20. Final Fault Probabilities for Combined Tree/GLM Prediction of Input
Response Gap Spacing
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Appendix E2

Lam TCP 9600 DOE Data Classification Results

- Extracted Probabilities for Evidence Variables

Evidence Variable (r) High (s=1) | Medium | Low (s=3)
(s=2)

Tree Model Prediction of Pressure E ) Eis
Tree Model Prediction of Top Power E; E, E>3
Tree Model Prediction of RF Power E3; E;, )
Tree Model Prediction of Gas Ratio E4 ) Esn E43

Tree Model Prediction of Total Gas Flow Es Es, Es3

Table 1. Evidence Labels for Tree Model Prediction of Input Responses

Evidence Variable (r) High (s=1) [ Medium | Low (s=3)
(s=2)

Tree-Based Prediction of Pressure P(F|,1/Mp) | P(F; /M) | P(F; 3/M,)
Tree-Based Prediction of Top Power P(F;,1/My) | P(F;2/M5) | P(F3 3/M3)
Tree-Based Prediction of RF Power P(F3,1/My) | P(F3 2/My) | P(F3 3/M5)
Tree-Based Prediction of Gas Ratio P(F41/My) | P(F42/My) | P(F43/M3)

Tree-Based Prediction of Total Gas Flow P(Fs,1/My) | P(F5 /M) | P(Fs 3/M5)

Table 2. Probabilities for Tree Model Prediction Based on Combinations of Evidence
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Evidence Variable (r) High (s=1) | Medium | Low (s=3)
(s=2)
GLM Prediction of Pressure Eg 1 Eg2 Eg3
GLM Prediction of Top Power E7; E;2 E73
GLM Prediction of RF Power Eg ) Eg Eg3
GLM Prediction of Gas Ratio Eg Eg, Eg3
GLM Prediction of Total Gas Flow Ejo,1 Ejo2 Ejo3
Table 3. Evidence Labels for GLM Prediction of Input Responses
Evidence Variable (r) High (s=1) | Medium | Low (s=3)
(s=2)
GLM-Based Prediction of Pressure P(F1,1/My) | P(F1 2/My) | P(Fy 3/My)
GLM-Based Prediction of Top Power P(F;,1/My) | P(F52/My) | P(F5 3/M,)
GLM-Based Prediction of RF Power P(F3,1/My) | P(F32/My) | P(F5 3/M,)
GLM-Based Prediction of Gas Ratio P(F4,1/My) | P(F42/My) | P(F43/My)
GLM-Based Prediction of Total Gas Flow P(F5,1/My) | P(F52/My) | P(Fs5 3/My)

Table 4. Probabilities for GLM Prediction Based on Combinations of Evidence

Model Averaged Result High (s=1)| Medium | Low (s=3)
(s=2)
Tree/GLM Prediction of Pressure P(F ;) P(F, ) P(F) 3)
Tree/GLM Prediction of Top Power P(Fy,) P(F, ) P(F; 3)
Tree/GLM Prediction of RF Power P(F3,1) P(F;5) P(F; 3)
Tree/GLM Prediction of Gas Ratio P(F4 1) P(F,5) P(F43)
Tree/GLM Prediction of Total Gas Flow P(Fs 1) P(Fs ) P(Fs 3)

Table 5. Final Fault Probabilities for Combined Model Prediction of Input Responses
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Wafer Ep Ei2 Ei3 Es1 By Ex3
5 0 1.0000 0 0.8889 0 0.1111
7 0 1.0000 0 0.9000 0 0.1000
10 0.6667 0 0.3333 0.9091 0 0.0909
14 0 1.0000 0 0 1.0000 0
17 0 1.0000 0 0.9167 0 0.0833
19 0.5714 0.1429 0.2857 0.9231 0 0.0769

20 0 1.0000 0 0.9286 0 0.0714
24 0.5000 0.1250 0.3750 0.9333 0 0.0667
25 0 0 1.0000 0 0 1.0000
26 0 0 1.0000 0 0 1.0000
27 0.5556 0.1111 0.3333 0 0.0769 0.9231
30 0 0.0714 0.9286 0 1.0000 0

33 0 0.0667 0.9333 0 0.4000 0.6000
36 0 0.0625 0.9375 0 0.0714 0.9286
43 0.6250 0 0.3750 0 0.9231 0.0769
45 0.5556 0 0.4444 0 0.9286 0.0714
46 0 1.0000 0 0 0.3333 0.6667
48 0.6000 0 0.4000 0 0.4286 0.5714
50 0 1.0000 0 0 0.5000 0.5000
51 0 1.0000 0 0.9375 0 0.0625

Table 6. Tree Model Prediction of Input Responses Pressure and Top Power
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Wafer E3, E3 E33 Eq Es2 Ey3
5 0.1667 0.1667 0.6667 0 0 1.0000
7 0.1429 0.1429 0.7143 0 0.1667 0.8333
10 0.2500 0.1250 0.6250 0 0 1.0000
14 0.6250 0.3750 0 0 0 1.0000
17 0.4444 0.3333 0.2222 0.1429 0.1429 0.7143
19 0.4000 0.4000 0.2000 0.0500 0 0.9500
20 0.3333 0.1111 0.5556 0.0476 0.0476 0.9048
24 0.3636 0.3636 0.2727 0.2500 0.1250 0.6250
25 0.3333 0.4166 0.2500 0.0455 0.0455 0.9091

26 0 0 1.0000 0.2500 0.1250 0.6250
27 0.3077 0.3846 0.3077 0.0435 0.0435 0.9130
30 0 0.1111 0.8889 0.2222 0.2222 0.5556
33 0 0.1000 0.95000 0.0417 0.0833 0.8750
36 0 0.1818 0.8182 0.2000 0.2000 0.6000
43 0.2000 0.4000 0.4000 0.6000 0.4000 0

45 0.1667 0.3333 0.5000 0.5000 0.3333 0.1667
46 0.2857 0.2857 0.4286 0.4286 0.4286 0.1429
48 0.3750 0.2500 0.3750 0.3750 0.5000 0.1250
50 0.6667 0.3333 0 0.0400 0.0800 0.8800
51 0.3000 0.2000 0.5000 0.0385 0.0769 0.8846

Table 7. Tree Model Prediction of Input Responses RF Power and Gas Ratio
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Wafer Es Es, Es3
5 0.8000 0 0.2000
7 0.6667 0.1667 0.1667
10 0.5714 0.2857 0.1429
14 0.2000 0.4000 0.4000
17 0.8000 0.1000 0.1000
19 0.8182 0.0909 0.0909
20 0.1000 0 0.9000
24 0.7500 0.0833 0.1667
25 0.0909 0.0909 0.8182
26 0.5000 0.3750 0.1250
27 0.0833 0.0833 0.8333
30 0.1667 0.5000 0.3333
33 0.7692 0.0769 0.1538
36 0.1538 0.0769 0.7692
43 0.1429 0.4286 0.4286
45 0 0.6667 0.3333
46 0.5556 0.3333 0.1111
48 0.1429 0.5714 0.2857
50 0.7857 0.0714 0.1429
51 0.1429 0.0714 0.7857

Table 8. Tree Model Prediction of Input Response Total Gas Flow
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Wafer | P(F; ;/Mp) | P(F o/My) | P(F) 3/My) | P(F, 1/My) | P(F5,2/Mp) | P(F5 3/My)
5 0.2952 0.2988 0.4059 0.3238 0.3238 0.3524
7 0.2872 0.3221 0.3908 0.3423 0.3274 0.3304
10 0.2954 0.3556 0.3490 0.2595 0.3275 0.4130
14 0.6264 0.3297 0.0440 0.4286 0.4286 0.1429
17 0.4148 0.4441 0.1410 0.4467 0.4485 0.1048
19 0.4201 0.4450 0.1348 0.3760 0.4145 0.2095

20 0.1688 0.1753 0.6559 0.1833 0.1833 0.6334
24 0.4190 0.4266 0.1543 0.3594 0.3974 0.2432
25 0.0436 0.0876 0.8687 0.0631 0.0608 0.8761
26 0.0667 0.0848 0.8485 0.0430 0.1490 0.8080
27 0.0673 0.0984 0.8343 0.2031 0.4150 0.3819
30 0.2331 0.2322 0.5347 0.1578 0.1605 0.6817
33 0.1556 0.1715 0.6728 0.0394 0.0527 0.9079
36 0.0658 0.1704 0.7638 0.1525 0.1401 0.7074
43 0.2430 0.3420 0.4150 0.3328 0.3545 0.3127
45 0.2440 0.3735 0.3825 0.3108 0.3432 0.3460
46 0.2755 0.3078 0.4168 0.4039 0.4106 0.1855
48 0.2576 0.3483 0.3941 0.3189 0.3491 0.3320
50 0.3603 0.3204 0.3193 0.4793 0.4765 0.0442
51 0.1682 0.1868 0.6450 0.1940 0.1932 0.6128

Table 9. Fault Probabilities for Pressure and Top Power extracted from Tree Model
Prediction Based on Combinations of Evidence
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Wafer | P(F3,//My) | P(F3 5/Mp) | P(F3 3/My) | P(F4 1/My) | P(F4 /M) | P(F4 3/My)
5 0.4467 0.4467 0.1067 03114 0.3114 0.3771
7 0.4877 0.4012 0.1111 0.2759 0.3801 0.3441
10 0.3166 0.5048 0.1785 03118 0.3061 0.3821
14 0.4286 0.4286 0.1429 0.2912 0.2637 0.4451
17 0.4772 0.4698 0.0529 0.2437 0.3055 0.4507

19 0.4307 0.4575 0.1117 0.2901 0.2747 0.4352
20 0.3296 0.3296 0.3409 0.3196 0.3229 0.3575
24 0.4462 0.3998 0.1540 0.3015 0.2796 0.4188
25 0.1107 0.1211 0.7682 0.0604 0.0366 0.9030
26 0.1824 0.2187 0.5989 0.0182 0.2000 0.7818
27 0.2795 0.2501 0.4703 0.2597 0.2510 | 0.4892
30 0.2115 0.2730 0.5155 0.4432 0.2181 0.3387
33 0.1840 0.2766 0.5394 04179 0.1567 0.4254
36 0.1198 0.1379 0.7423 0.1442 0.0575 0.7983
43 0.2751 0.3564 0.3686 0.2611 0.2415 0.4974
45 0.3147 0.3405 0.3448 0.2324 0.2584 0.5092
46 0.4547 0.3179 0.2274 0.3083 0.2946 0.3972
48 0.3061 0.3329 0.3610 0.2386 0.2391 0.5223
50 0.3825 0.3888 0.2287 0.3244 0.2668 0.4088
51 0.3410 0.3370 0.3220 0.3058 0.3266 0.3675

Table 10. Fault Probabilities for Top Power and Gas Ratio extracted from Tree Model
Prediction Based on Combinations of Evidence
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Wafer | P(Fs 1/My) [ P(Fs 2/M,) | P(F53/Mp)
5° 0.3524 0.3524 0.2952
7 0.3247 0.4058 0.2695
10 0.3803 0.2348 0.3849
14 0.5000 0.5000 0
17 0.4524 0.4444 0.1031
19 0.5568 0.2749 0.1683

20 0.3914 0.4037 0.2049
24 0.5187 0.2620 0.2193
25 0.2258 0.2274 0.5468
26 0.2121 0.0606 0.7273
27 0.3028 0.3009 0.3962
30 0.1869 0.1002 0.7129
33 0.1457 0.0663 0.7880
36 0.2603 0.0686 0.6711
43 0.4691 0.2536 0.2772
45 0.4322 0.2612 0.3066
46 0.3449 0.3597 0.2955
48 0.3828 0.2746 0.3427
50 0.4124 0.4195 0.1681
51 0.3731 0.3906 0.2362

Table 11. Fault Probabilities for Total Gas Flow extracted from Tree Model Prediction
Based on Combinations of Evidence
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Wafer Eq,1 E¢2 Eg3 E71 E72 E73
5 0.4929 0.5071 0 1.0000 0 0.0000
7 0.5000 0.5000 0 1.0000 0 0.0000
10 0 1.0000 0.0000 1.0000 0 0.0000
14 0 0.9962 0.0038 0 1.0000 0.0000
17 0.1147 0.8853 0 1.0000 0 0.0000
19 0 0.9999 0.0001 1.0000 0 0.0000
20 0 0 1.0000 1.0000 0 0.0000
24 1.0000 0 0.0000 1.0000 0 0.0000

25 0 0 1.0000 0 0 1.0000
26 0 1.0000 0.0000 0 1.0000 0.0000
27 1.0000 0 0.0000 0 0 1.0000
30 0 0.4919 0.5081 1.0000 0 0.0000
33 0 0 1.0000 0.5000 0.5000 0

36 0 0 1.0000 0 0 1.0000
43 0 0 1.0000 0 1.0000 0.0000
45 1.0000 0 0.0000 0 1.0000 0.0000
46 0 1.0000 0.0000 0 1.0000 0.0000
48 1.0000 0 0.0000 0 1.0000 0.0000
50 0 0 1.0000 0 1.0000 0.0000
51 0 1.0000 0.0000 0 0 1.0000

Table 12. GLM Prediction of Input Responses Pressure and Top Power
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Wafer Eg, Es2 Eg3 Eg 1 Egp Eg3
5 0.3835 0.1323 0.4842 0 0 1.0000
7 0.0197 0.0445 0.9358 0 0 1.0000
10 0.3620 0.1099 0.5281 0 0 1.0000
14 0.0224 0.1184 0.8592 0 0 1.0000
17 0.6893 0.2408 0.0699 0 0.1106 0.8894
19 0.5287 0.2700 0.2013 0 0 1.0000
20 0.3791 0.3003 0.3206 0 0 1.0000
24 0.3805 0.0699 0.5496 1.0000 0 0.0000
25 0.1001 0.1709 0.7291 0 0 1.0000
26 0.0671 0.2106 0.7224 0 0 1.0000
27 0.1325 0.6137 0.2539 0 0 1.0000
30 0.3720 0.3295 0.2984 0 0 1.0000
33 0.0697 0.2175 0.7128 0 0 1.0000
36 0.0695 0.1461 0.7844 0 0 1.0000

43 0.2524 0.3570 0.3907 0.5000 0.5000 0

45 0.5960 0.4040 0 1.0000 0 0.0000
46 0.0045 0.1808 0.8148 0 1.0000 0.0000
48 0.4817 0.5183 0 0.8847 0.1153 0.0000
50 0.0576 0.2249 0.7176 0 0 1.0000
51 0.0598 0.1218 0.8184 0 0 1.0000

Table 13. GLM Prediction of Input Responses RF Power and Gas Ratio
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Wafer Ejo,1 Ejo2 Ejo;3
5 0.3096 0 0.6904
7 0.3937 0 0.6063
10 0.8744 0 0.1256
14 0.5884 0.0032 0.4085
17 0.1865 0 0.8135
19 0.7168 0 0.2832
20 0.1370 0 0.8630

24 0.8311 0 0.1689
25 0.1554 0 0.8446
26 0.3980 0.6020 0
27 0.0336 0.9664 0
30 0.6287 0.1096 0.2617
33 0.7494 0.2506 0.0000
36 0.1988 0 0.8012
43 0.3077 0.6923 0
45 0.2126 0.7874 0
46 0.0906 0 0.9094
48 0.1208 0.8792 0
50 0.5627 0.2745 0.1628
51 0.0688 0 0.9312

Table 14. GLM Prediction of Input Response Total Gas Flow
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Wafer | P(F;1/My) | P(F12/M,) | P(F; 3/My) | P(F; 1/My) | P(F25/My) | P(F; 3/My)
5 0.2485 0.2485 0.5030 0.2599 0.3905 0.3496
7 0.1484 0.1484 0.7032 0.2410 0.2469 0.5121
10 0.3800 0.3800 0.2400 0.3800 0.3800 0.2400
14 0.2363 0.2272 0.5365 0.2295 0.2295 0.5410
17 0.3387 0.3479 0.3134 0.3318 0.3819 0.2863
19 0.4097 0.4097 0.1805 0.4097 0.4097 0.1806

20 0.2566 0.2566 0.4868 0.0425 0.0425 0.9151
24 0.5248 0.2666 0.2086 0.5248 0.2667 0.2086
25 0.0052 0.1591 0.8357 0.0612 0.0612 0.8777
26 0.3796 0.3796 0.2408 0.3796 0.3796 0.2408
27 0.1992 0.1992 0.6017 0.3937 0.5217 0.0846
30 0.3732 0.4140 0.2128 0.2430 0.2430 0.5140
33 0.3768 0.3856 0.2376 0.0356 0.0356 0.9288
36 0.0046 0.1617 0.8337 0.0617 0.0617 0.8765
43 0.2451 0.4198 0.3351 0.2521 0.4357 0.3122
45 0.1919 0.7020 0.1060 0.3892 0.3484 0.2625
46 0.3281 0.3441 0.3278 0.3282 0.3441 0.3278
48 0.1965 0.6166 0.1869 0.3518 0.3552 0.2931
50 0.3400 0.3307 0.3293 0.0420 0.0420 0.9160
51 0.0014 0.1919 0.8067 0.0814 0.0814 0.8373

Table 15. Fault Probabilities for Pressure and Top Power extracted from GLM Prediction
Based on Combinations of Evidence
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Wafer | P(F3,,/My) | P(F3,/My) | P(F3 3/My) | P(F4 1/My) | P(F42/My) | P(F43/My)
5 0.3849 0.3849 0.2301 0.3197 0.3203 0.3600
7 0.3989 0.3989 0.2021 0.3312 0.3312 0.3376
10 0.4791 0.4791 0.0419 0.2438 0.3541 0.4021
14 0.4310 0.4310 0.1379 0.3137 0.3393 0.3469
17 0.3724 0.3565 0.2712 0.3028 0.3350 0.3622
19 0.4528 0.4528 0.0945 0.2393 0.3320 0.4287

20 0.0457 0.0457 0.9086 0.2411 0.3794 0.3795
24 0.8874 0.0563 0.0563 0.3667 0.2376 0.3957
25 0.0768 0.1286 0.7946 0.1171 0.0429 0.8399
26 - 0.5000 0.5000 0.0000 0.2676 0.2962 0.4362
27 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333
30 0.3495 0.3495 0.3009 0.2908 0.3233 0.3859
33 0.3333 0.3333 0.3333 . 0.5023 0.2625 0.2352
36 0.0728 0.1391 0.7881 0.1189 0.0566 0.8246
43 0.1667 0.5128 0.3205 0.3311 0.4580 0.2109
45 0.2625 0.4750 0.2625 0.0430 0.0634 0.8937
46 0.3031 0.3937 0.3031 0.3279 0.3359 0.3362
48 0.3070 0.4000 0.2931 0.0313 0.0291 0.9395
50 0.2791 0.2791 0.4419 0.6014 0.2010 0.1977
51 0.0229 0.0229 0.9541 0.0793 0.0793 0.8414

Table 16. Fault Probabilities for RF Power and Gas Ratio extracted from GLM Prediction
Based on Combinations of Evidence
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Wafer | P(Fs1/My) | P(Fs52/My) | P(Fs53/M,)

5 0.5138 0.3248 0.1614
7 0.3489 0.3391 0.3120
10 0.4120 0.4120 0.1761
14 0.3556 0.3556 0.2888
17 0.5511 0.4171 0.0318
19 0.4664 0.4664 0.0672
20 0.2265 0.2265 0.5471
24 0.5870 0.2065 0.2065
25 0.2069 0.1108 0.6823
26 0.3796 0.3796 0.2408
27 0.3333 0.3333 0.3333
30 0.3403 0.3403 0.3194
33 0.0957 0.0957 0.8085
36 0.2038 0.1001 0.6961
43 0.3064 0.3872 0.3064
45 0.6026 0.1987 0.1987
46 0.4524 0.2761 0.2716
48 0.6760 0.1620 0.1620
50 0.0942 0.0941 0.8117
51 0.0605 0.0605 0.8789

Table 17. Fault Probabilities for Total Gas Flow extracted from GLM Prediction Based
on Combinations of Evidence
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Wafer PFL) | PF1p) | P(Fr3) | P(Fyp) | P(Fpp) | P(Fa3)
5 0.2464 0.7536 0 0.9500 0 0.0500
7 0 1.0000 0 0.8128 0.0818 0.1053
10 0.2427 0.5228 0.2345 0.8033 0.0950 0.1017
14 0 0.9981 0.0019 0 1.0000 0.0000
17 0.2170 0.6694 0.1136 0.9687 0 0.0313
19 0.3825 0.4887 0.1289 0.8230 0.1024 0.0746
20 0 1.0000 0 0.9722 0 0.0278
24 0.6994 0.1121 0.1885 0.8562 0.0667 0.0771

25 0.0134 0.0598 0.9268 0.0339 0.0333 0.9328
26 0 1.0000 0.0000 0 1.0000 0.0000
27 0.1332 0.1488 0.7180 0 0.0313 0.9688
30 0.1480 0.2932 0.5588 0.3440 0.3282 0.3278
33 0.0389 0.0554 0.9057 0.0375 0.0442 0.9184
36 0.0176 0.0944 0.8880 0.0484 0.0585 0.8931
43 0.1215 0.1710 0.7075 0.1462 0.6857 0.1681
45 0.8333 0 0.1667 0 0.9773 0.0227
46 0.0820 0.8360 0.0820 0.2840 0.5413 0.1747
48 0.8235 0 0.1765 0.2474 0.5133 0.2393
50 0 0 1.0000 0.0420 0.0420 0.9160
51 0 1.0000 0.0000 0.1743 0.0824 0.7433

Table 18. Final Fault Probabilities for Combined Tree/GLM Prediction of Input
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Responses Pressure and Top Power




Wafer P(F3;) | P(F32) | P(F33) | P(Fsy) | P(Fap) | P(F43)
5 0.2632 0.1376 0.5992 0.1578 0.1579 0.6843
7 0.4433 0.4000 0.1566 . 0.1518 0.2135 0.6347
10 0.4205 0.2945 0.2850 0.1389 0.1650 0.6960
14 0.5604 0.3681 0.0714 0.1512 0.1508 0.6980
17 0.5001 0.3437 0.1562 0.1644 0.2156 0.6200
19 0.4602 0.3843 0.1554 0.1416 0.1517 0.7067
20 0.2568 0.2143 0.5289 0.1491 0.1845 0.6664
24 0.5379 0.2096 0.2525 0.4795 0.1501 0.3703
25 0.1696 0.1876 0.6428 0.0520 0.0279 0.9201
26 0.1874 0.2323 0.5803 0.1169 0.1468 0.7363
27 0.3064 0.2917 0.4018 0.1561 0.1539 0.6900
30 0.2324 0.2624 0.5051 0.2381 0.1729 0.5891
33 0.1468 0.2261 0.6271 0.1116 0.0535 0.8349
36 0.0655 0.1391 0.7954 0 0 1.0000
43 0.2664 0.3390 0.3946 0.2611 0.2415 0.4974
45 0.5960 0.4040 0 0.4751 0.1429 0.3820
46 0.4547 0.3179 0.2274 0 1.0000 0.0000
48 0.3944 0.4591 0.1465 0.7151 0.2395 0.0455
50 0.6471 0.3529 0 0.0872 0.0789 0.8339
51 0.1383 0.1533 0.7084 0.0881 0.0994 0.8124

Table 19. Final Fault Probabilities for Combined Tree/GLM Prediction of Input
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Responses RF Power and Gas Ratio




~Wafer | P(Fs;)) | P(Fsp) | P(Fs3)
5 0.4940 0.1693 0.3368
7 0.3247 0.4058 0.2695
10 0.4120 0.4120 0.1761
14 0.1429 0.4286 0.4286
17 0.6029 0.3375 0.0595
19 0.6517 0.2020 0.1463
20 0.3914 0.4037 0.2049
24 0.6901 0.1318 0.1781
25 0.1850 0.1092 0.7058
26 0.4898 0.3398 0.1704
27 0.1987 0.4158 0.3855
30 10.3233 0.2425 0.4341
33 0.7556 0.1729 0.0714
36 0.2168 0.0577 0.7255
43 0.1818 0.3636 0.4545
45 0.5174 0.2299 0.2526
46 0.3449 0.3597 0.2955
48 0.5294 0.2183 0.2523
50 04124 0.4195 0.1681
51 0.1244 0.0860 0.7896

Table 20. Final Fault Probabilities for Combined Tree/GLM Prediction of Input
Response Total Gas Flow
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Appendix F

GLM Results - Coefficients, Linear Predictions, and Fitted Values

Lam Rainbow 4400 DOE Data
Sensor Pressure Power Gas Ratio Total Gas | Gap Spacing
Signal Model Model Model Flow Model Model
Intercept 6033.465 1103.46 194.8378 15760.9 -3597.385
Endpoint A | 0.1180625 | 0.05647331 5.57e-06 0.0 0.7582921
Endpoint B | -0.0512072 | -0.01877498 | 0.00064116 0.0 -0.8847277
‘Endpoint C 0.0 0.0 0.0 0.0 -0.117877
Measured 0.0 0.0 0.0 -0.6512974 | 2.113492
Pressure
Measured -3.662645 0.0 0.0 0.0 0.0
Power
RF Tune -1.363389 | -0.2441685 | -0.01007087 | -1.095258 0.0
RF Load 1.036644 0.1320364 | -0.0059625 | 0.6196095 0.0
Impedance | 0.2277873 | 0.03630299 | -0.0028008 | 0.1866142 | 0.2038256
Phase -0.02358554 0.0 0.002000781 0.0 0.0
Voltage 0.0 0.0 0.0 0.0 26.5984
DC Bias 2417183 | -0.2965973 | 0.02772226 0.0 4.747143
MFC3 0.0 0.0 0.0 0.09734656 0.0
MFC6 0.0 0.0 0.0 0.2525355 0.0

Table 1. Coefficients o. (Intercept) and B (Sensor Signals) for GLM high/not high
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Sensor Pressure Power Gas Ratio Total Gas | Gap Spacing
Signal Model Model Model Flow Model Model
Intercept -535.076 875.3149 1012.463 -830.7934 94717.59
Endpoint A | 0.08441036 | -0.07649621 | 0.01117361 0.0 3.643574
Endpoint B | -0.03095719 | 0.04533356 | -0.01752973 0.0 6.628609
Endpoint C 0.0 0.0 0.0 0.0 0.541935
Measured 0.0 0.0 0.0 -0.2577119 | -29.71684
Pressure
Measured | -5.26588 0.0 0.0 0.0 0.0
Power
RF Tune 0.5057438 | 0.05350584 | -0.2942862 | -0.5693966 0.0
RF Load -0.681124 | -0.09976484 | 0.2807996 | 0.2882431 0.0
Impedance | -0.1080034 | -0.03289002 | 0.05214612 | 0.01801979 | -8.63831
Phase 0.04779316 0.0 -0.03101532 0.0 0.0
Voltage 0.0 0.0 0.0 0.0 -602.0749
DC Bias -3.882982 | -0.227088 | -0.3693392 0.0 291.726
MFC3 0.0 0.0 0.0 -0.1455538 0.0
MFC6 0.0 0.0 0.0 -0.1029862 0.0

Table 2. Coefficients o (Intercept) and B (Sensor Signals) for GLM low/not low
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Wafer Index | Pressure Power Gas Ratio Total Gas | Gap Spacing
Model Model Model Flow Model Model

13 -31.07658 | -328.24014 | -21.34860 | -0.04975429 | -80.78645
14 69.11116 20.99552 23.44724 | -0.09929155 | 163.19890
15 -88.99304 23.11608 55.05386 | -4.73418358 | -268.42191
16 -23.37999 | -175.09496 | 22.14806 |-1.31987168 | -31.97798
17 -103.69070 | 26.53172 -69.35085 | 0.79702548 | -152.60930
18 -21.95443 | -138.34974 | -24.26163 |-1.31712144 | -31.57047
19 -56.10889 | -22.41984 22.88390" | 0.48083937 | -110.49687
20 21.93407 -60.08844 | -23.02642 | -0.30928852 | -24.55979
21 48.97817 219.96305 | -61.98213 | -0.84107893 | -75.24095
22 -29.86198 | -131.47422 | -24.73730 |-2.35891552 | -24.98774
23 30.65133 | -236.08670 | 26.43880 | 6.93334464 | -21.74644
24 -44.92538 | -336.25333 | -25.02860 |-2.35935046 | -56.96295
25 22.16068 348.01912 | -66.95689 |-2.05706377 | 71.12561
26 -22.12044 | -138.20404 | 28.94177 |-0.56195441 | -75.05824
27 -22.34751 | -243.67748 | -30.00589 | -0.82402679 [ -22.81168
28 -58.15216 | 150.69097 | -24.01055 |-0.36317654 | -106.54479
29 21.69884 -20.93446 2433314 | 1.85150175 ' 21.08834
30 61.98047 | -850.77324 | -51.49595 | 7.67720130 | 227.92449
31 -52.81324 | -68.88791 -30.69198 | -1.09760642 | 57.73761
32 -21.49399 | -22.38293 -23.42370 | -1.10424828 | -20.84794
33 -23.65133 -22.07345 55.17651 | -1.93657495 | 22.03989
34 -40.03901 | -169.50612 | -25.42994 |-1.71814908 | -63.65668
35 -24.07404 | -45.19692 | -23.12809 |-2.01708995 | -34.96037
36 -75.07544 21.80197 22.38799 | -0.18950309 | 23.64132

Table 3. Linear prediction values  for GLM high/not high (training data set)

236




Total Gas

Wafer Index | Pressure Power Gas Ratio Gap Spacing
Model Model Model Flow Model Model
13 -23.19661 -21.95591 -27.13670 | -17.7231395 | -20.70016
14 -114.49963 | -1539.05417 | -57.36638 | -0.6252895 | -197.90720
15 131.09434 | -24.21029 | -120.80896 | 1.9309701 23.51952
16 -28.72042 | -22.16124 | -75.16143 |-11.1588042 | -77.67232
17 21.47838 -22.94332 22.06067 |-28.2328600 | 21.88822
18 -43.23877 | -4498.09476 | -27.80798 | -7.4121666 | -59.27739
19 46.14436 21.66595 -65.11199 | -17.1326511 | 23.50919
20 -72.75644 | -8788.57304 | -23.93627 | -13.9856070 | -36.76921
21 -105.26392 | -11077.0561 | 25.13792 | -2.8764302 | 21.99208
22 -42.25181 |[-6535.93198 | -28.90650 | -0.6780194 | -81.17452
23 -23.48250 | 8588.72182 | -24.69102 |-10.5264270 | 98.53513
24 -22.02992 | -2746.17455 | -28.97507 | -3.9321943 | -61.44253
25 -96.83088 | -13585.0389 | 21.44094 0.1068055 | -105.29563
26 23.37219 | 1629.69226 | -70.40249 | -0.2489874 | 24.03229
27 -55.98897 | -4920.35123 | -21.85021 |-16.9278863 | -83.30660
28 -20.54845 | -3347.58797 | -21.09412 |-17.5702044 | -25.59050
29 -27.89210 22.59182 -50.86425 | -1.8927016 | -28.86773
30 -22.97592 21.96230 72.41534 | -1.5119588 | -50.40413
31 -24.10040 | -9823.50739 | -21.57770 |-21.2442108 | -152.87744
32 -32.40460 | -8516.77679 | -29.26409 |-12.2632610 | -52.48250
33 23.60827 22.84979 -24.32695 | 4.4984370 | -23.39450
34 -26.49978 | -6382.57298 | -25.74306 | -5.7309749 | -45.19601
35 -34.31020 |-10126.6211 | -28.26885 | -2.2017806 | -57.15653
36 21.42460 | -521.12242 | -61.60648 |-12.8495331 | -162.49988

Table 4. Linear prediction values n for GLM low/not low (training data set)
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Index Pressure Power Gas Ratio Total Gas Gap Spacing
Model Model Model Flow Model Model
13 | 3.188687¢-14 | 5.350844¢-10 | 0.487563992 | 2.220446e-16 | 2.220446e-16
14 11.000000e+00 | 1.000000e+00 | 0.475197485 | 1.000000e+00 | 1.000000e-+00
15 |2.220446e-16 | 1.000000e+00 | 0.008713038 | 2.220446¢-16 | 1.000000e+00
16 | 7.017781e-11 | 1.000000e+00 | 0.210839644 | 1.294614e-14 | 2.220446¢-16
17 12.220446e-16 | 2.220446e-16 | 0.689337843 | 2.220446e-16 | 1.000000e+00
18  12.919514e-10 | 2.906081e-11 | 0.211297609 | 1.945902¢-14 | 2.220446¢-16
19 ]2.220446¢-16 | 1.000000e+00 | 0.617946059 | 2.220446¢-16 | 1.833095¢-10
20 | 1.000000e+00 | 9.994354e-11 | 0.423288412 | 2.156852¢-11 | 2.220446e-16
21 | 1.000000e+00 | 2.220446e-16 | 0.301307599 | 2.220446e-16 | 1.000000e+00
22 | 1.074254e-13 | 1.806034e-11 | 0.086359723 | 1.405923e-11 | 2.220446e-16
23 ]11.000000e+00 | 1.000000e+00 | 0.999026214 | 3.594504e-10 | 2.220446e-16
24 12.220446e-16 | 1.349633e-11 | 0.086325412 | 2.220446e-16 | 2.220446¢-16
25 ]1.000000e+00 | 2.220446e-16 | 0.113340570 | 1.000000e+00 | 1.000000e-+00
26 | 2.472939-10 | 1.000000e+00 | 0.363095368 | 2.220446e-16 | 2.220446¢-16
27 ]1.970609-10 | 9.302681e-14 | 0.304909553 | 1.238831e-10 | 2.220446¢-16
28 ]2.220446e-16 | 3.735528e-11 | 0.410190833 | 2.220446¢-16 | 1.000000e+00
29 ]11.000000e+00 | 1.000000e+00 | 0.864303329 | 1.000000e+00 | 8.096171e-10
30 | 1.000000e+00 | 2.220446e-16 | 0.999536945 | 1.000000e+00 | 2.220446¢-16
31 [2.220446e-16 | 4.684295¢-14 | 0.250188648 | 1.000000e+00 | 2.220446¢-16
32 1 4.626762e-10 | 6.717656e-11 | 0.248944741 | 8.827808e-10 | 1.902038¢-10
33 | 5.350060e-11 | 1.000000e+00 | 0.126024616 | 1.000000e+00 | 2.591921e-10
34 ]2.220446e-16 | 9.034801e-12 | 0.152109727 | 2.220446¢-16 | 2.220446e-16
35 ]3.505705e-11 | 9.028168e-11 | 0.117420232 | 6.559987¢-16 | 2.220446¢-16
36 | 2.220446e-16 | 1.000000e+00 | 0.452765499 | 1.000000e+00 | 1.000000e+00

Table 5. Fitted probability values, p, for GLM high/not high (training data set)
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Index Pressure Power Gas Ratio Total Gas Gap Spacing
Model Model Model Flow Model Model
13 | 8.430285e-11 | 1.63938%-12 | 0.487563992 | 2.220446e-16 | 2.915213e-10
14 12.220446e-16 | 2.220446¢-16 | 0.475197485 | 1.000000e+00 | 2.220446¢-16
15 ]1.000000e+00 | 2.220446e-16 | 0.008713038 | 2.220446¢-16 | 3.059171e-11
16 | 3.364198e-13 | 2.220446e-16 | 0.210839644 | 1.294614¢-14 | 2.374089¢-10
17 |1.000000e+00 | 1.000000e+00 | 0.689337843 | 2.220446e-16 | 1.086030e-10
18 | 2.220446e-16 | 8.378143e-13 | 0.211297609 | 1.945902¢-14 | 2.220446e-16
19 ] 1.000000e+00 | 2.220446e-16 | 0.617946059 | 2.220446e-16 | 1.000000e+00
20 | 2.220446¢-16 | 4.023557e-11 | 0.423288412 | 2.156852e-11 | 2.220446¢-16
21 | 2.220446¢-16 | 1.000000e+00 | 0.301307599 | 2.220446e-16 | 2.220446¢-16
22 | 2.220446e-16 | 2.792984e-13 | 0.086359723 | 1.405923e-11 | 2.220446¢-16
23  ]16.334010e-11 | 1.891590e-11 | 0.999026214 | 3.594504e-10 | 1.000000e+00
24 | 2.707254e-10 | 2.607868e-13 | 0.086325412 | 2.220446e-16 | 2.220446¢-16
25 | 2.220446e-16 | 1.000000e+00 | 0.113340570 | 1.000000e+00 | 2.220446e-16
26 | 1.000000e+00 | 2.220446e-16 | 0.363095368 | 2.220446e-16 | 1.000000e+00
27 | 2.220446e-16 | 3.240207e-10 | 0.304909553 | 1.238831e-10 | 2.220446¢-16
28 | 1.191031e-09 | 6.901445e-10 | 0.410190833 | 2.220446¢-16 | 2.220446¢e-16
29 ] 7.702221e-13 | 2.220446e-16 | 0.864303329 | 1.000000e+00 | 1.000000e+00
30 | 1.051200e-10 | 1.000000e+00 | 0.999536945 | 1.000000e+00 | 1.000000e+00
31 | 3.414510e-11 | 4.255218e-10 | 0.250188648 | 1.000000e+00 | 2.220446¢-16
32 | 8.450061e-15 | 1.953284e-13 | 0.248944741 | 8.827808e-10 | 2.220446¢-16
33 | 1.000000e+00 | 2.722316e-11 | 0.126024616 | 1.000000e+00 | 1.000000e+00
34 | 3.099494e-12 | 6.605861e-12 | 0.152109727 | 2.220446e-16 | 2.220446¢-16
35 | 1.256813e-15 | 5.284365e-13 | 0.117420232 | 6.559987¢e-16 | 2.220446e-16
36 |1.000000e+00 | 2.220446e-16 | 0.452765499 | 1.000000e+00 | 2.220446e-16

Table 6. Fitted probability values, p, for GLM low/not low (training data set)
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Lam TCP 9600 DOE Data

Sensor Pressure TCP (Top) | RF (Bottom) | Gas Ratio Total Gas
Signal Model Power Power Model | Flow Model
Intercept 126808.3 571126.5 -2213.071 1028127 -8120.773
Endpoint A | -0.1525693 | 0.4750922 | -0.00043223 | -3.783755 0.0
Endpoint B | 0.01247271 | 0.004142023 | 0.002598772 | -0.1269219 0.0
Measured 0.0 0.0 0.0 0.0 -0.00082065
Pressure , .
Measured | -24.96604 | -11.05698 0.0 0.0 0.0
Power
TCP Tune | -0.1995803 0.0 0.01170266 | -1.012942 | -3.2174e-06
TCP Load 0.0 0.0 0.004482656 0.0 0.001655944
TCP 0.0 -0.6840775 | -0.00460416 0.0 0.0
Impedance
RF Tune 0.0 0.0 0.0 -0.3779512 0.0
RF Load 0.6559789 0.0 0.0 1.132243 0.0
RF -0.1540733 | 0.1709703 0.0 -0.3108275 | 0.00682788
Impedance
RF Phase | -0.0054989 0.0 0.0 0.1734938 | -0.00073575
Voltage 0.0 0.0 0.0 0.0 0.0
DC Bias -127.5749 -570.082 1.936264 -1021.112 8.068185

Table 7. Coefficients o (Intercept) and B (Sensor Signals) for GLM high/not high
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Sensor Pressure TCP (Top) | RF (Bottom) | Gas Ratio Total Gas
Signal Model Power Power Model Flow Model
Intercept 10215.83 1184932 13230.52 -145190.1 112480.7
Endpoint A | -0.2632891 | -2.167433 |-0.00339255 | -0.00675703 0.0
Endpoint B | 0.06479333 | -0.06077437 | 0.000564964 | 0.02157689 0.0
Measured 0.0 0.0 0.0 0.0 -0.00805184
Pressure
Measured | -0.3290491 | -46.04254 0.0 0.0 0.0
Power
TCP Tune | 0.1898102 0.0 0.002906738 | 0.2725461 | 0.02121397
TCP Load 0.0 0.0 0.001146442 0.0 0.01426199
TCP 0.0 0.6234987 | -0.00381780 0.0 0.0
Impedance
RF Tune | 0.0 0.0 0.0 0.1548167 0.0
RF Load | -0.00231974 0.0 0.0 -0.4319301 0.0
RF 0.07064434 | 0.3491924 0.0 0.03831186 | 0.01390422
Impedance
RF Phase | 0.02240194 0.0 0.0 0.02674001 | 0.003302609
Voltage 0.0 0.0 0.0 0.0 0.0
DC Bias -15.7884 -1214.476 | -13.43734 143.3538 -115.0203

Table 8. Coefficients o (Intercept) and B (Sensor Signals) for GLM low/not low
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Wafer Index | Pressure TCP (Top) | RF (Bottom) | Gas Ratio Total Gas

Model Power Power Model Flow Model

1 -23.12199 | -64.24108 |-0.30782572 | -195.83192 [ -2.53208126
2 -26.86475 | -164.78477 | -0.31429055 | -350.22813 | -2.30366961
3 233.24269 50.82985 | 0.11461674 | 23.25948 | 1.34853588
4 23.15793 | -116.07525 |-0.64710135 [ -213.60133 | -0.52626246
6 -131.82206 | -135.04470 | -1.00707346 | -347.96685 | 0.49209909
8 22.77709 -43.54938 | 0.05196833 | -73.34766 |-1.33572139
9 159.04514 | -111.41799 | 1.74942983 | -22.87685 | 0.34649166
11 34.09225 -75.21046 | 0.25185028 | -254.76242 | -0.25204792
12 21.90498 21.39099 |-1.42943914 | -73.38416 | 0.77783488
13 -34.01366 | -22.01135 |-2.05392635 | -218.20932 [ -2.07050027
15 25.36962 22.97087 | 0.72954494 | -681.76665 | 1.81700839
16 -93.85693 24.76387 | 0.04511707 | -1047.53296 | 0.11841855
18 -128.77479 | -21.64451 | 0.33786948 | -332.03534 | 0.54109000
21 -114.23792 | 40.31385 |-0.01653602 | -1138.48021 | 2.17170068
22 -98.53045 -67.75134 | -0.94326606 | -169.26171 | -1.84147286
23 63.71161 -98.41308 | -0.18106859 | -96.47542 | -0.98227855

Table 9. Linear prediction values  for GLM high/not high (training data set
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Wafer Index | Pressure TCP (Top) | RF (Bottom) | Gas Ratio Total Gas

« Model ..[ Power Power Model Flow Model
28 49.02813 182.91577 | -1.40360596 | -463.42972 | -1.14575883
29 -112.44885 | -154.22545 | -1.40631081 | -294.00885 | -0.62105773
31 -21.69848 | -46.07821 |-2.37272770 | -21.90305 | 0.13569527
32 -66.06819 67.59136 | -1.78032759 | -720.58940 | 1.00754544
34 -62.96012 | -54.29230 |-2.69808094 | -135.36201 | -1.47335644
35 -22.91028 | -156.99596 |-0.97009713 | 48.54970 | -0.40849703
37 -22.59925 | -22.07748 | -2.04434899 | -740.85889 | 0.40653179
38 -112.12183 | -150.59695 |-2.78148839 | 22.65956 |-0.61737315
39 -45.23462 | -51.07007 |-2.23417296 | -22.74371 | -0.31100904
40 -37.02198 | -116.82895 | -3.14523983 | -53.87784 | -1.29200035
41 -107.21968 | -48.19683 | -1.84242826 | -554.74381 [ -0.06039086
42 -103.13782 | -57.86249 |-2.15182427 | 21.60124 | -1.45254824
44 -108.95108 | -30.40193 |-2.00216818 | -21.93837 | -2.85360672
47 -105.27672 | -282.49376 |-2.51331582 | 23.14843 | -2.37380526
49 -97.77791 | -149.95261 | -3.47881605 | -419.34878 | -1.06211947
52 -88.69589 | -152.72293 | -0.02749357 | -354.65243 | 0.61849757
53 -102.20915 | -87.42280 | -2.06650518 | -207.95393 | -2.08661887
54 -177.08711 | -163.66335 |-1.01478493 | -21.96210 | -0.99845952
55 -166.27119 | -181.11006 |-1.41116071 | -561.91903 | -1.06757284
56 -94.90394 23.55405 | 3.65134263 | -1211.02363

-0.82892780

Table 9. Linear prediction values n for GLM high/not high (training data set
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TCP (Top)

Wafer Index | Pressure RF (Bottom) | Gas Ratio Total Gas
. Model Power Power Model Flow Model
1 -22.49493 | -179.48679 | -0.4641348 | -86.20728 | -2.9607087
2 -55.69559 | -475.25637 | -2.4849975 | -84.45179 | -23.3567141
3 -47.40044 | -176.00605 | -1.4242214 | -235.50700 | -13.7569177
4 -88.52616 39.57912 | -0.7828168 | -114.47777 | -1.4636564
6 37.41693 137.10859 | -1.4409745 | -22.68929 | 0.1026716
8 -39.96814 | 217.29334 | -0.1098644 | -41.44805 | 5.3718234
9 -26.11608 | 245.37777 | -1.0446225 | -74.45533 | -4.6009229
11 -62.21728 22.13977 | -0.7472296 | -88.36537 | -1.5463064
12 -24.43930 | -43.02400 | -1.1080556 | -136.06231 | -6.5017312
13 -69.70875 | -345.50959 | -1.1885036 | -118.16375 | -4.6821806
15 -40.77277 | -353.02300 | -1.7447896 | -133.32530 | -10.1973239
16 2429124 | -380.52487 | -1.6425716 | -44.88466 |-12.5920431
18 51.25104 22.05788 | -0.5960765 | -35.82273 | -1.0966399
21 23.25408 | -302.25929 | -1.8216777 | -57.17682 | -8.2047600
22 23.86183 21.02750 | -0.6573965 | -22.50254 | 0.3237691
23 -61.03758 | 117.02024 | -1.0345026 | -74.82388 | -6.9701883
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Wafer Index | Pressure TCP (Top) | RF (Bottom) | Gas Ratio Total Gas

: Model Power Power Model | Flow Model
28 -101.90259 | -336.23003 | 0.3264096 | -175.41340 | 7.2237131
29 -21.31181 -24.94111 | -1.3158827 | -76.30005 | -8.7020739
31 -61.75863 | -22.19272 | -1.2014275 | -130.16767 | 0.0308671
32 -23.27054 | -485.97983 | -2.3686081 | -104.41596 | -12.7361656
34 -67.21301 -77.86475 | -0.8581280 | -104.86872 | -0.3490551
35 -45.40865 | 361.64055 | -0.5672419 | -55.57780 | 1.0032438
37 50.58500 -22.34782 | -2.3767763 | -22.97924 |-21.9153101
38 2243172 449.44605 | -0.8808015 | -22.96400 | -2.9550986
39 -53.40477 | -211.21427 | -1.8249431 | -128.99438 | -13.9824443
40 -77.59026 | -234.41778 | -2.2972119 | -121.65839 | -13.0518982
41 -36.28335 | -213.09400 | -1.6004555 | -81.59023 | -7.4951353
42 -25.41597 | -20.74548 | -0.8895970 | -63.76137 | -1.1136333
44 -66.34598 | -322.61038 | -0.4614485 | -93.07087 | -1.7213092
47 -77.62354 | 239.56230 | -1.4623047 | -22.64447 | -8.8414534
49 -114.07724 | -268.92563 | -2.9495072 | -78.43454 | -23.1217399
52 -22.73295 | 570.83240 | -0.3018914 | 23.53215 1.2887924
53 -69.62763 | -203.98377 | -1.0461081 | -73.50866 | -6.8050103
54 40.86102 402.55365 | -0.5182663 | 22.05232 | -0.7210980
55 21.81938 -51.57152 | -1.4224097 | -23.25576 |-13.9576160
56 125.58630 | -703.09463 | -1.5169249 | 23.31366 |-23.5914287

Table 10. Linear prediction values 1 for GLM low/not low (training data set)
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Wafer Pressure TCP (Top) | RF (Bottom) Gas Ratio Total Gas
Index Model Power Power Model Flow Model
1 9.083388e-11 | 2.220446e-16 | 0.42364554 | 2.220446e-16 | 0.07363954
2 2.151718e-12 | 2.220446¢-16 | 0.42206781 | 2.220446e-16 | 0.09081950
3 1.000000e+00 | 1.000000e+00 | 0.52862286 | 1.000000e+00| 0.79389016
4 1.000000e+00 | 2.220446e-16 | 0.34364304 | 2.220446e-16 | 0.37138903
6 2.220446e-16 | 2.220446e-16 | 0.26755297 | 2.220446e-16 | 0.62060080
8 1.000000e+00 | 2.220446e-16 | 0.51298916 | 2.220446e-16 | 0.20821455
9 1.000000e+00 | 2.220446e-16 | 0.85188087 | 1.160677e-10 | 0.58576656
11 |1.000000e+00 | 2.220446e-16 | 0.56263187 | 2.220446e-16 | 0.43731950
12 11.000000e+00 | 1.000000e+00 | 0.19318609 | 2.220446e-16 | 0.68521329
13 ] 1.690663¢-15 | 2.757978e-10 | 0.11365625 | 2.220446e-16 | 0.11199727
15 |1.000000e+00 | 1.000000e+00 | 0.67470540 | 2.220446e-16 | 0.86020677
16 | 2.220446¢-16 | 1.000000e+00 | 0.51127736 | 2.220446e-16 | 0.52957009
18 ] 2.220446e-16 | 3.980241e-10 | 0.58367290 | 2.220446e-16 | 0.63206594
21 | 2.220446¢-16 | 1.000000e+00 | 0.49586609 | 2.220446e-16 | 0.89767928
22 | 2.220446¢-16 | 2.220446e-16 | 0.28024109 | 2.220446e-16 | 0.13687719
23 |1.000000e+00 | 2.220446e-16 | 0.45485612 | 2.220446e-16 | 0.27243990

Table 11. Fitted probability values, p , for GLM high/not high (training data set
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Wafer Pressure TCP (Top) | RF (Bottom) Gas Ratio Total Gas
Index Model Power Power Model Flow Model
28 | 1.000000e+00 | 1.000000e+00 | 0.19724452 | 2.220446¢-16 | 0.24126460
29 ]| 2.220446e-16 | 2.220446e-16 | 0.19681659 | 2.220446e-16 | 0.34954093
31 | 3.771122¢-10 | 2.220446e-16 | 0.08527613 | 3.073438¢-10 | 0.53387186
32 | 2.220446€-16 | 1.000000e+00 | 0.14426269 | 2.220446e-16 | 0.73253951
34 | 2.220446e-16 | 2.220446e-16 | 0.06308669 | 2.220446e-16 | 0.18643299
35 ] 1.122515e-10 | 2.220446e-16 | 0.27486114 |1.000000e+00| 0.39927256
37 | 1.532044e-10 | 2.581501e-10 | 0.11462463 | 2.220446e-16 | 0.60025598
38 | 2.220446¢-16 | 2.220446e-16 | 0.05833274 | 1.000000e+00| 0.35037912
39 |2.220446e-16 | 2.220446e-16 | 0.09672344 | 1.325966e-10 | 0.42286846
40 | 2.220446e-16 | 2.220446e-16 | 0.04127925 | 2.220446e-16 | 0.21551442
41 | 2.220446¢-16 | 2.220446e-16 | 0.13676436 | 2.220446¢e-16 | 0.48490687
42 | 2.220446e-16 | 2.220446e-16 | 0.10416087 | 1.000000e+00 [ 0.18960970
44 | 2.220446¢e-16 | 6.26053%e-14 | 0.11897547 | 2.966790e-10 | 0.05449518
47 | 2.220446e-16 | 2.220446e-16 | 0.07492995 | 1.000000e+00| 0.08519211
49 | 2.220446¢-16 | 2.220446e-16 | 0.02992103 | 2.220446e-16 | 0.25690463
52 | 2.220446e-16 | 2.220446e-16 | 0.49312704 | 2.220446e-16 | 0.64987677
53 | 2.220446e-16 | 2.220446e-16 | 0.11239522 | 2.220446e-16 | 0.11040422
54 | 2.220446e-16 | 2.220446e-16 | 0.26604448 | 2.897216e-10 | 0.26924441
55 | 2.220446e-16 | 2.220446e-16 | 0.19605105 | 2.220446e-16 | 0.25586494
56 ]2.220446¢-16 | 1.000000e+00 | 0.97470043 | 2.220446e-16 | 0.30387183

Table 11. Fitted probability values, p, for GLM high/not high (training data set
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Wafer Pressure TCP (Top) | RF (Bottom) Gas Ratio Total Gas
Index Model Power Power Model Flow Model
1 1.700491e-10 | 2.220446e-16 | 0.38600540 | 2.220446¢-16 | 0.07363954
2 2.220446e-16 | 2.220446e-16 | 0.07691662 | 2.220446e-16 | 0.09081950
3 2.220446e-16 | 2.220446e-16 | 0.19400065 |1.000000e+00]| 0.79389016
4 2.220446¢-16 | 1.000000e+00 | 0.31371313 | 2.220446e-16 | 0.37138903
6 1.000000e+00 | 1.000000e+00 [ 0.19139448 | 2.220446e-16 | 0.62060080
8 2.220446e-16 | 1.000000e+00 | 0.47256151 | 2.220446e-16 | 0.20821455
9 4.549142¢-12 [ 1.000000e+00 [ 0.26025906 | 1.160677e-10 | 0.58576656
11 | 2.220446¢-16 | 1.000000e+00 | 0.32142527 | 2.220446e-16 | 0.43731950
12 ] 2.433026¢-11 | 2.220446e-16 | 0.24823356 | 2.220446e-16 | 0.68521329
13 ] 2.220446e-16 | 2.220446e-16 | 0.23352667 | 2.220446e-16 | 0.11199727
15 ] 2.220446¢-16 | 2.220446e-16 | 0.14870558 | 2.220446e-16 | 0.86020677
16 11.000000e+00 | 2.220446e-16 | 0.16211545 | 2.220446e-16 | 0.52957009
18 ] 1.000000e+00 | 1.000000e+00 | 0.35524185 | 2.220446e-16 | 0.63206594
21 ]1.000000e+00 | 2.220446e-16 | 0.13923268 | 2.220446e-16 | 0.89767928
22 11.000000e+00 [ 1.000000e+00 | 0.34132468 | 2.220446e-16 | 0.13687719
23 ]2.220446e-16 | 1.000000e+00 | 0.26221211 | 2.220446e-16 | 0.27243990

Table 12. Fitted probability values, pt, for GLM low/not low (training data set)
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Wafer Pressure - TCP (Top) | RF (Bottom) Gas Ratio Total Gas
Index Model Power Power Model Flow Model
28 | 2.220446¢-16 | 2.220446e-16 | 0.58088553 | 2.220446e-16 | 0.24126460
29 ]5.551367e-10 | 1.473043e-11 | 0.21150411 | 2.220446e-16 | 0.34954093
31 ] 2.220446e-16 | 2.300509e-10 | 0.23122138 | 3.073438e-10 | 0.53387186
32 ]7.829510e-11 | 2.220446e-16 | 0.08559802 | 2.220446e-16 | 0.73253951
34 ]2.220446¢-16 | 2.220446e-16 | 0.29773062 | 2.220446e-16 | 0.18643299
35 ]2.220446¢-16 | 1.000000e+00 | 0.36187350 |1.000000e+00| 0.39927256
37 11.000000e+00 [ 1.970003e-10 | 0.08496085 | 2.220446e-16 | 0.60025598
38 ]1.000000e+00 | 1.000000e+00 | 0.29301171 |1.000000e+00| 0.35037912
39 ]2.220446e-16 | 2.220446e-16 | 0.13884180 | 1.325966e-10 | 0.42286846
40 2.220446e-16 | 2.220446e-16 | 0.09135413 | 2.220446e-16 | 0.21551442
41 | 2.220446¢-16 | 2.220446e-16 | 0.16791797 | 2.220446e-16 | 0.48490687
42 | 9.161906¢-12 | 9.780352e-10 | 0.29119300 | 1.000000e+00| 0.18960970
44 | 2.220446e-16 | 2.220446e-16 | 0.38664225 | 2.966790e-10 | 0.05449518
47 ]2.220446¢-16 | 1.000000e+00 | 0.18811507 |1.000000e+00| 0.08519211
49 ]2.220446e-16 | 2.220446e-16 | 0.04975981 | 2.220446e-16 | 0.25690463
52 ] 1.340310e-10 | 1.000000e+00 | 0.42509517 | 2.220446e-16 | 0.64987677
53 | 2.220446e-16 | 2.220446e-16 | 0.25997316 | 2.220446e-16 | 0.11040422
54 ]11.000000e+00 ( 1.000000e+00 | 0.37325773 | 2.897216e-10 | 0.26924441
55 }1.000000e+00 [ 2.220446e-16 | 0.19428409 | 2.220446e-16 | 0.25586494
56 ]1.000000e+00 | 2.220446e-16 | 0.17991478 | 2.220446e-16 | 0.30387183

Table 12. Fitted probability values, p, for GLM low/not low (training data set)
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Appendix G

Fault Category Pattern 1 Pattern 2 Pattern 3-1 Pattern 3-2
# | Description % prob % prob % prob % prob
1 baseline [0.4444]0.4222| 0 0 0 0 0 0
2 | HH extreme 0 0 0 (02800 O 0 0 0
3| LL extreme 0 0 |1.0000 (1.0000 | 0.8000|0.8000| © 0
4 ] HL extreme |0.2500(0.2000] 0 0 0 0 [0.8667|0.8667
5| LHextreme |0.1667]0.1167] 0 | 0 | 0 0 | o0 0
6 | HH midrange 0 0 |1.00000.6000( 0 0 [0.0556{0.0333
7 | LL midrange | 0.1250[0.0750| 0 0 0 0 0 0
8 | HL midrange | 0.5000|0.4167| 0 0 0 0 0 0
9 | LH midrange | 0.2500(0.1750] 0 ]0.2400| 0 0 0 [0.0600
Fault Category Pattern 4-1 Pattern 4-2 Pattern 4-3 Pattern 5
# ] Description % prob % prob % prob % prob
1 baseline 0.1481(0.0889f 0 |0.2133| 0 |0.01331.0000]0.6400
2 | HH extreme |0.5000(0.4750| 0 0 0 0 |1.0000 |0.8000
3 | LL extreme 0 0 |[1.0000({0.9000] O |[0.2400| 0 0
4 | HL extreme 0 0 ]0.5417)0.6167(0.8750(0.7383| 0O 0
5 | LH extreme 0 0 0 0 0 0 |1.0000|1.0000
6 | HH midrange 0 0 0 0 0 0 0 [0.4800
7 | LL midrange | 0.88890.5333| 0 0 0 0 |1.0000(1.0000
8 | HL midrange 0 00667 O 0 0 0 0 0
9 | LH midrange | 0.3889|0.4733| 0 0 0 0 |1.0000 | 1.0000

Table 1. Percent of observations and average probability linking fault group to pattern
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Fault Category Pattern 6 Pattern 7 Pattern 8 Pattern 9

# | Description % prob % prob % prob % prob
1 baseline 0 0 0 0 0 0 0 ]0.3200
2 | HH extreme 0 (01600 O 0 0 0 0 0

3| LL extreme |0.5000(0.5400( O 0 0 0 0 0
4 | HL extreme |0.5556 0.5467 [ 0.55560.3556| 0 [0.4800| O© 0
5] LH extreme 0 0 0 0 0 0 0 0
6 | HH midrange | 1.0000 | 1.0000 [ 0.1111(0.3600| 0 02133} 0 0

7 | LL midrange 0 [02400| O 0 0 0 [0.25000.3700
8 | HL midrange 0 0 |1.0000|0.9333|1.0000(1.0000| 0 0

9 ] LH midrange 0 (03600 O 0 0 0 10.5000 | 0.7400

Table 2. Percent of observations and average probability linking fault group to pattern
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Fault Category Pattern 1 Pattern 2
# | Description | P(shape) | P(pos) | P(match) | P(shape) | P(pos) | P(match)
0.8000 0 0 0.6000 0 0
1 ‘baseline  gogo 0 0 0.6000 0 0
0.8000 02500  0.2000 0 0.8000 0
tune 0.6000  1.0000  0.6000  0.6000 0 0
10 capacitor 4509 0 0 0 0 0
disabled ;6000 1.0000 06000  0.6000 0 0
load 0.8000 0 0 0.6000 0 0
11 capacitor 08000  0.7500  0.6000  0.6000 0 0
disabled 4 ¢000 0 0 0.6000 0 0
1 baseline 08500 0.6000 0.5100 0.6000 0 0
Fault Category Pattern 3-1 Pattern 3-2
#  Description P(shape) P(pos) P(match) P(shape) P(pos) P(match)
0.8000 0 0 0.8000 0 0
1 baseline ¢ gogo 0 0 0.6000 0 0
0.8000 0 0 0.8000 0 0
tune 0.6000 0 0 0.6000 0 0
10 capacitor ¢ 6000 0 0 0.6000 0 0
disabled  ¢000 0 0 0.6000 0 0
load 0.8000  0.1000  0.0800  0.8000  0.6000  0.4800
11 capacitor (8000 0 0 0.8000  1.0000  0.8000
disabled ) ¢000 0 0 0.8000  1.0000  0.8000
1 baseline  0.8000 0 0 0.8000  0.8000  0.6400

Table 3. Probabilities of matching pattern shape, position, and overall fit - failure data
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Fault Category Pattern 4-1 Pattern 4-2
# | Description | P(shape) | P(pos) | P(match) | P(shape) P(pos) | P(match)
0.6000 0 0 0.6000 0 0
1| ‘baseline [ ¢n00 0 0 0.6000 0 0
0.6000 | 0.8000 | 0.4800 | 0.6000 0 0
tune 0.3333 0 0 0.3333 0 0
10| capacitor (3333 0 0 0.3333 0 0
disabled 1 —57333 0 0 0.3333 0 0
load 0.6000 0 0 0.6000 0 0
IL] capacitor 796000 | 0 0 0.6000 0 0
disabled  1—5-000 0 0 0.6000 0 0
1| baseline | 0.6000 0 0 0.6000 0 0
Fault Category Pattern 4-3 Pattern 5
# | Description | P(shape) | P(pos) | P(match) | P(shape) P(pos) | P(match)
0.6000 0 0 0.8000 0 0
1| baseline ["ggo00 0 0 0.8000 0 0
0.6000 0 0 0.8000 0 0
tune 0.3333 0 0 0.6000 | 1.0000 | 0.6000
10| capacitor [ 3333 0 0 0.6000 | 1.0000 | 0.6000
disabled - —0=333 0 0 0.6000 | 1.0000 | 0.6000
load 0.6000 0 0 0.8000 0 0
111 capacitor [ 6000 0 0 0.8000 0 0
disabled 5500 0 0 0.8000 0 0
1 baseline 0.6000 0 0 0.8000 0 0

Table 4. Probabilities of matching pattern shape, position, and overall fit - failure data
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Fault Category Pattern 6 Pattern 7
# | Description | P(shape) | P(pos) | P(match) | P(shape) | P(pos) | P(match)
0.6000 | 0.8667 | 0.5200 | 0.8000 | 0.8000 | 0.6400-
1| ‘baseline 06000 | 1.0000 | 0.6000 | 0.7333 | 0.8000 | 0.5867
0.6000 | 0.6000 | 0.3600 | 0.8000 | 0.8000 | 0.6400
tune 0.6000 | 0.6667 | 0.4000 0 0.8000 0
10| capacitor [ 96000 0 0 0 0 0
disabled 150600 | 0.8000 | 0.4800 0 0.8000 0
load 0.6000 | 0.6667 | 0.4000 | 0.7333 0 0
111 capacitor ["06000 | 1.0000 | 0.6000 | 0.7333 0 0
disabled =500 | 0.7333 | 04400 | 0.8667 0 0
1 | baseline | 0.6000 | 0.8667 | 0.5200 | 1.0000 | 0.8000 | 0.8000
Fault Category Pattern 8 Pattern 9
# | Description | P(shape) | P(pos) | P(match) | P(shape) | P(pos) | P(match)
0.6000 | 0.6000 | 0.3600 | 0.3000 0 0
1 | baseline ["06000 | 0.6000 | 0.3600 0 0 0
0.6000 0 0 0.3000 | 1.0000 | 0.3000
tune 0.6000 0 0 0 0 0
10| capacitor  [0,6000 0 0 0 0 0
disabled =5 500 0 0 0 0 0
load 0.2000 | 0.2000 0 0.3000 | 0.3000 | 0.1800
11 capacitor
disabled 0 0 0 0
0.6000 0 0 0
1 | baseline | 0.6000 | 1.0000 | 0.6000 0

Table 5. Probabilities of matching pattern shape, position, and overall fit - failure data
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