

Copyright © 2000, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SPECIFICATION AND DESIGN

OF REACTIVE SYSTEMS

by

Bilung Lee

Memorandum No. UCB/ERL MOO/29

15 May 2000

SPECIFICATION AND DESIGN

OF REACTIVE SYSTEMS

by

Bilung Lee

Memorandum No. UCB/ERL MOO/29

15 May 2000

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of California, Berkeley

94720

Abstract

Specification and Design of Reactive Systems

by

Bilung Lee

Doctor of Philosophy in Engineering - Electrical Engineering
and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

Reactive systems maintain an ongoing interaction with theirenvironment, and respond

to inputs from the environment by possibly sending outputs to it. Most importantly, in

most reactive systems, the functionality performed in response to inputs is no longer lim

ited to data manipulation and numeric computation. Instead, a sizable portion of effort is

often required to focus on control logic that manages the sequencing of operating tasks

and the switching among various modes in consecutive interaction. For example, a digital

cellular phone may contain a signal processing part including speech compression and

decompression. In addition, it also needs to include a substantial amount of control logic

for call processing and multiple-access protocols.

Finite state machines (FSMs) have long been used to describe and analyze intricate

control logic. Due to their finite nature, FSMs yield better to analysis and synthesis than

alternative control models, such as sequential programs with if-then-else and switch-case

constructs. For example, with an FSM, a designer can enumerate the set of reachable

states to assure that a safety property is satisfied such that a particular set of dangerous

states will never be reached. However, in large systems, the control functionality can

become so complex that the flat, sequential FSM model becomes impractical because a

very large number of states andtransitions are required.

Hierarchical concurrent FSMs (HCFSMs) dramatically increase the usefulness of

FSMs by extending them with structuring and communicating mechanisms. Hierarchy

allows a state of an FSM to be refined into another FSM, i.e. a set of sub-states. Concur

rency allows multiple simultaneously active states, each refined as an FSM, to communi

cate through messaging ofsome sort. However, most models that support HCFSMs tightly

integrate one concurrency semantics with the FSM semantics. This prevents the designers

from choosing among various concurrency semantics the one that is best applicable to the

problem at hand. Moreover, like the basic FSM model, HCFSMs are good for describing

control logic, but notforintensive data computation. Hence, they are not enough by them

selves for the complete design of a system with both sophisticated control and intensive

computation.

In fact, we observe that the FSM and the concurrency semantics in HCFSMs can be

orthogonal properties. Moreover, the concurrent states of HCFSMs are actually the syn

tactic shorthand for interconnection of FSMs in a concurrency model. Therefore, in this

thesis, we advocate decoupling the concurrency semantics from the FSM semantics. After

equipping the basic FSM with hierarchy and heterogeneity, a hierarchical combinationof

FSMs with various concurrency models becomes feasible. We call this heterogeneous

combination *charts (pronounced "starcharts"). *charts do not define a single concurrency

semantics but rather show how FSMs interact with various concurrency models without

ambiguities. This enables selection of the most appropriate concurrency model for the

problem at hand. In particular, computation-oriented models, such as dataflow models, can

be included to complement the FSMs. Using *charts, systems can truly be built up from

modular components that are separately designed, and each subsystem can be designed

using the best suited model to it.

Professor Edward A. Lee, Chair Date

to myparents

111

Contents

Acknowledgements vi

1 Introduction 1

1.1 Reactive Systems 1
1.1.1 Concurrency 2
1.1.2 Control Logic 2

1.2 Finite State Machines 2

1.3 Hierarchical Concurrent Finite State Machines 3

1.4 Our Scheme: *charts 6

1.5 Related Work 9

1.5.1 Statecharts 9

1.5.2 Argos 10
1.5.3 Mini-Statecharts 11

1.5.4 SpecCharts 11
1.5.5 Specification and Description Language 12

1.6 Summary 12

2 Finite State Machines (FSMs) 14

2.1 The Basic FSM 14

2.2 Multiple Inputs and Multiple Outputs 16
2.3 The Pure FSM 17

2.4 The Valued FSM 19

2.5 Hierarchy 25
2.6 Heterogeneity 27
2.7 Hierarchical Entries and Exits 29

2.8 Shared Slaves 31

2.9 Local Events 32

2.10 Initial Transitions and Conditional Initial States 35

2.11 Instantaneous Transitions and States 37

2.12 Simulation Algorithm 38

3 Integration with Concurrency Models 40

3.1 Hierarchical Combination 40

3.2 Discrete Events 42

3.2.1 FSM inside DE 44

3.2.2 DE inside FSM 47

3.3 Synchronous/Reactive Models 50
3.3.1 FSM inside SR 53

3.3.2 SR inside FSM 57

3.4 Synchronous Dataflow 57
3.4.1 FSM inside SDF 60

3.4.2 SDF inside FSM 63

iv

3.5 Dynamic Dataflow 65
3.5.1 FSM inside DDF 65
3.5.2 DDF inside FSM 66

3.6 Communicating Sequential Processes 67
3.6.1 FSM inside CSP 70
3.6.2 CSP inside FSM 71

4 Applications 72

4.1 Embedded Systems 72
4.1.1 Example: Digital Watches 73

4.1.1.1 Problem Description 73
4.1.1.2 *charts Realization 75

4.1.2 Example: Railroad Controllers 80
4.1.2.1 Problem Description 80
4.1.2.2 *charts Realization 81

4.2 Image Processing 85
4.2.1 Example: Run-Length Coding 86

4.2.1.1 Problem Description 86
4.2.1.2 *charts Realization 86

4.3 Conununication Protocols 88
4.3.1 Example: Two-Phase Commit Protocol 90

4.3.1.1 Problem Description 90
4.3.1.2 *charts Realization 92

4.3.2 Example: Alternating Bit Protocol 96
4.3.2.1 Problem Description 96
4.3.2.2 *charts Realization 97

4.4 Linear Hybrid Systems 99
4.4.1 Example: Water-Level Monitors 100

4.4.1.1 Problem Description 100
4.4.1.2 *charts Realization 101

4.4.1.3 Simulation with Fixed Time Increments 103

4.4.1.4 Simulation with Varied Time Increments 104

4.5 Comparison 106
4.5.1 Problem Description 107
4.5.2 *charts Realization 108

4.5.3 Esterel Realization 108
4.5.4 VHDL and C Realizations 111

5 Conclusion 113

5.1 Openlssues 115
5.1.1 Software/Hardware Synthesis 115
5.1.2 Formal Semantics 116

Bibliography 117

Acknowledgements

I am greatly appreciative and thankful to my advisor. Professor Edward Lee, for his

continuous supportand guidance of this work. His experience and vision in both theoreti

cal and practical research has been a constant source of inspiration to me.

I would also like to thank Professor David Messerschmitt and Professor Ilan Adler for

serving on my dissertation committee. Their careful review and useful suggestions are

highly appreciated.

Many colleagues share with me not only their technical knowledge but also their per

sonal experience. Our stimulating discussions in the office and interesting talks at lunch

get-togethers enrich my life at Berkeley. I would like to gratefully acknowledge them,

including Wan-teh Chang, John Davis, Bart Kienhuis, Yuhong Xiong, lie Liu, and

Stephen Neuendorffer.

Finally, I want to express my deepest gratitude to my loving family, brothers Chang

and Ming, sister-in-law Mei-Rong, and most importantly, my parents. I am indebted to

them for all their support, encouragement, patience, and belief in me. This work is dedi

cated to them.

VI

1

Introduction

1.1 Reactive Systems

Complex systems can be generally categorized into three classes: transformational,

interactive, and reactive systems [46][16]. Transformational systems operate on inputs

available at the beginning and stop after delivering outputs at the end. Most traditional

computing programs fall into this category. In contrast, interactive and reactive systems

typically do not terminate (unless they fail). These systems maintain an ongoing series of

interactions with their environment. Interactive systems constantly operate on inputs when

the systems are ready, and deliver outputs when the systems are willing to. Examples of

interactive systems include operating systems and multimedia network applications. This

thesis is concerned with reactive systems, such as embedded systems, real-time systems,

and many software systems. Unlike interactive systems that interact at their own speed,

reactive systems follow a pace dictated by the environment. The environment determines

when the systems must react and provides inputs. The systems respond to the inputs by

possibly sending outputs to the environment.

1.1.1 Concurrency

An essential feature of reactive systems is concurrency [67]. Most reactive systems

contain multiple simultaneous components and modules that interact with one another

through messaging of some sort. Concurrency greatly complicates the design of reactive

systems. Fortunately, many models that support concurrency have been proposed [29] and

can be utilized to facilitate the system design. Examples of concurrency models include

communicating sequential processes [48], dataflow [34], discrete events [7], Petri nets

[74], process networks [54], and thesynchronous/reactive model [10]. These models con

ceptually define the rules of interaction among concurrent components and modules of a

system. Therefore, the designers can validate the correctness of intended concurrent

behaviors for a system specified and simulated with the concurrency models.

1.1.2 Control Logic

For most reactive systems, there is a clear distinction between control logic and data

computation [17]. In other words, the functionality performed in response to inputs is no

longer limited todata manipulation and numerical calculation. Instead, a sizable portion of

effort is often required to focus on control logic that manages the sequencing ofoperating

tasks and the switching among various modes in consecutive interaction. For instance, a

digital cellular phone may contain a signal processing part including speech compression

and decompression. In addition, it also needs to include a substantial amount of control

logic for call processing and multiple-access protocols.

1.2 Finite State Machines

Finite state machines (FSMs) have long been used to describe and analyze sequential

control logic. Visually, FSMsare represented in the formof nodesdenoting statesand arcs

denoting transitions. In figure 1.1(a), an FSM is used to specify the controller of an eleva

tor in a three-story building. Compared with the specification using plain English (see fig

ure 1.1(b)) and C code (see figure 1.1(c)), the FSM is more effective in conveying

information about the control behavior of the system. Furthermore, due to their finite

nature, FSMs yield better to analysis and synthesis than alternative control flow models,

such as flowcharts [32][81]. For example, with an FSM, a designer can enumerate the set

of reachable states to assure that a safety property is satisfied such that a particular set of

dangerous states will never be reached. However, in large systems, the control functional

ity can become so complex that the flat, sequential FSM model becomes impractical

because a very large number of states and transitions are required.

1.3 Hierarchical Concurrent Finite State Machines

Hierarchical concurrent FSMs (HCFSMs) dramatically increase the usefulness of

FSMs by extending them with structuring and communicating mechanisms. Hierarchy

allows a state of an FSM to be refined into another FSM, i.e. a set of sub-states. Concur

rency allows multiple active states, each refined as an FSM, to operate simultaneously and

to communicate with one another. Figure 1.2(a) illustrates a HCFSM that specifies a three-

bit counter with initialization and interruption mechanisms. In this figure, the Counting

state is decomposed into three concurrent states. A, B, and C, each of them further refined

into two states. Compared with the specification in a flat FSM model (see figure 1.2(b)),

the HCFSM model can reduce the complexity of state and transition spaces because of its

concurrency and hierarchy.

A popular and seminal representative of the HCFSM model was introduced as the

Statecharts formalism [43]. Since then, a number of variants have been explored [86],

including the Argos language [69]. The Statecharts formalism and most of its variants

req_1

rea3/u

req_2 req_3

(a) Finite state machine

If the elevator is on the floor 1 and the floor

requested is the floor 1, then the elevator
remains on the floor 1.

If the elevator is on the floor 1 and the floor

requested is the floor 2, then the elevator is
raised up 1 floor.
If the elevator is on the floor 1 and the floor

requested is the floor 3, then the elevator is
raised up 2 floors.

If the elevator is on the floor 2 and the floor
requested is the floor 1, then the elevator is
lowered down 1 floor.

If the elevator is on the floor 2 and the floor

requested is the floor 2, then the elevator
remains on the floor 2.

If the elevator is on the floor 2 and the floor

requested is the floor 3, then the elevator Is
raised up 1 floor.

If the elevator is on the floor 3 and the floor
requested is the floor 1, then the elevator is
lowered down 2 floors.

If the elevator is on the floor 3 and the floor

requested is the floor 2, then the elevator is
lowered down 1 floor.

If the elevator is on the floor 3 and the floor

requested is the floor 3, then the elevator
remains on the floor 3.

(b) Plain English

while (1) {
switch (cur) {

case 1:

if (req_1){
u_1=0; d_1=0; u_2=0; d_2=0; curst
}else if (req_2) {
u_1=1; d_1=0; u_2=0; d_2=0; cur=2
} else if (req_3) {
u_1=0: d_1=0: u_2=1; d_2=0; cur=3;

}
break;

case 2;

if (req_1){
u_1=0; d_1=1; u_2=0; d_2=0; cur=1;
}else if (req_2) {
u_1=0; d_1=0; u_2=0; d_2=0; cur=2;
} else if (req_3) {
u_1=1; d_1=0; u_2=0; d_2=0; cur=3;

}
break;

case 3:

if(req_1){
u_1=0; d_1=0; u_2"=0; d_2=1; cur=1
} else if (req=s2) {
u_1=0; d_1=1; u_2=0; d_2=0; cur=2
}else if (req~3) {
u_1=0; d_1=0; u_2=0; d_2=0; cur=3

}
break;

(c) C code

Figure 1.1 Specification of an elevator controller by three different approaches.

Counting

start

^ot Counting] AO BO CO

a/b b/c c/end

stop

(a) HCFSM specification

a A -^stop a A -^stop

a A^Stopr QO, BO, A1) (CO, B1, AO) (CO, B1, A1 L®

Not Counting) (CO, BO,AO C1,B0, AO

a A—is/op/and nJ \ y 3a —\Stop

a A -istop y a A-istop

(b) FSM specification

Figure 1.2 Specification of a three-bit counter with initialization and interruption
mechanisms by the HCFSM and the FSM models.

have concurrency semantics based on the synchronous/reactive model. Nevertheless,

many schemes have evolved to adopt concurrency models that are significantly different

from that of Statecharts. Examples include codesign finite state machines (CFSMs)

[28][6] with a discrete-event model, the process coordination calculus (PCC) [39][73]

with a dataflow model, the SpecCharts language [70][71] with a discrete-event model, and

thespecification anddescription language (SDL) [83][9] with a process network model.

In general, HCFSMs have two major weaknesses. First, the concurrency semantics

within theHCFSM model is tightly integrated with the FSM semantics. Asa consequence,

most formalisms that support HCFSMs only provide a build-in and fixed concurrency

semantics. However, while the von Neumann model has introduced a widely accepted

semantics for sequential behaviors, no universal model has yet emerged for concurrent

behaviors [59]. Thus, using those formalisms will prevent the designers from choosing

among various concurrency semantics the one that is best applicable to the problem at

hand.

Furthermore, similar to basic FSMs, HCFSMs are awkward for expressing data com

putation, even though they arewell-suited forcontrol logic. Forexample, a HCFSM in fig

ure 1.3(a) describes a simple six-bit counter. However, the same system behavior can be

more elegantly specifiedby a dataflow graph depicted in figure 1.3(b). Hence, the HCFSM

model is not enough by itself to effectively complete the design of a system with both

sophisticated control and intensive computation.

1.4 Our Scheme: ^charts

In fact, we observe that FSM, concurrency and hierarchy can be orthogonal semantic

properties in the HCFSM model. The FSM semantics specifies the sequential behavior of

a system in the form of states and transitions. The concurrency semantics specifies the

interaction between multiple simultaneous states, each refined as an FSM. The hierarchy

semantics specifies the interaction between a state and the refining FSM in that state.

Moreover, the concurrent states in a HCFSM (see figure 1.4(a)) are actually syntactic

shorthand for interconnection of FSMs communicating within a concurrency model (see

figure 1.4(b)). This means that the HCFSM model can be considered as the hierarchical

combination of the FSM and the concurrency models.

Therefore, we advocate decoupling the concurrency semantics from the FSM seman

tics. After equipping the basic FSM with hierarchy and heterogeneity, the hierarchical

combination of FSMs with various concurrency models becomes feasible. We call this

AO BO CO DO EO FO

a/b b/c c/d d/e e/f f/end

(a) HCFSM specification

Delay 4

end

(b) Dataflow specification

Figure 1.3 Specification of a sIx-bIt counter by the HCFSM and the dataflow models.

heterogeneous combination *charts^ (pronounced "starcharts"). In *charts, we do not

define a single concurrency semantics but rather show how FSMs interact with various

concurrency models without ambiguities. This enables selection of the most appropriate

concurrency model for the problem at hand. In particular, computation-oriented models.

a/w

AO BO CO

a/x b/y c/z

(a) Concurrent states in a HCFSM

80

a/w b/y

AO

a/x

CO

c/z

(b) Interconnection of FSMs In a concurrency model

Figure 1.4 The concurrent states In a HCFSM are actually syntactic shorthand
for Interconnection of FSMs In a concurrency model.

1. The asterisk is meant to suggesta wildcard, whichstands for an arbitrary numberof concurrency models
that can be integrated with the FSM model.

8

such as dataflow models, can be included to complement the FSMs. Using *charts, sys

tems can truly be built up from modular components that are separately designed, and

each subsystem can be designed using the best suited model to it.

1.5 Related Work

1.5.1 Statecharts

The Statecharts [43] formalism was developed mainly for specification of control-

dominated reactive systems. In Statecharts, FSMs can be hierarchically and concurrently

combined through two major innovations. First, a state of an FSM can be decomposed into

a set of sequential substates, i.e. another FSM. For example, figure 1.5(a)depicts a state A

refined into three sequential substates B, C, and D. The state A is called an OR state, since

being in state A has the interpretation of being in one of its substates B, C, or D. Second, a

state of an FSM can be decomposed into a set of concurrent substates, each of them fur

ther refined as an FSM. For example, in figure 1.5(b), a state A is refined into two concur

rent substates B and C, each of them further refined into two substates. The state A is

BO CO ci

(a) OR state (b) AND state

Figure 1.5 Examples of an OR state and an AND state in Statecharts.

called an AND state, since being in stateA is interpreted as being in bothof its immediate

substates B and C simultaneously.

The Statecharts formalism hasbecome very successful due to itscompact and intuitive

representation of FSMs. However, in Statecharts, there exist problems for some syntactic

constructs, such as the inter-level transitions that are considered by many as violating

modularity in hierarchical design. In addition, there are questions left open about some

semantics, such as the behavior of parallel transitions in cyclic dependency. Hence, those

issues conceming syntax and semantics give rise to the proliferation of at least twenty-one

variants of Statecharts [86].

1.5.2 Argos

The Argos language [69][68] is perhaps the best known one among those Statecharts

variants that attempt to solve the syntactic andsemantic problems. It basically follows the

approaches pioneered by Statecharts to graphically represent HCFSMs. Nonetheless,

Argos improves the syntax and semantics of Statecharts in several ways. In Argos, to

allow the modular design of complex systems, transitions between states are confined

within the same level of hierarchy. Moreover, the Statecharts formalism loosely defines

that concurrent states communicate through broadcasting mechanism, where a transition

can emit an event that is immediately broadcast to the entire system. The Argos language

further appliesfixed point semantics formally to concurrency, and thus resolves the causal

ity problems resulting from cyclic dependency among concurrent states. In addition, local

events can be used in Argos to reduce the scope of broadcast to a specific subsystem

instead of the whole system.

10

1.5.3 Mini-Statecharts

Another interesting Statecharts variant is the Mini-Statecharts formalism [76][77].

Using the approach adopted by Argos, Mini-Statecharts removes some syntactic con

structs, such as inter-level transitions, from Statecharts in order to enable system design in

a fully modular way. However, unlike Argos, in which communication among concurrent

states is always interpreted with fixed point semantics, Mini-Statecharts supports three

types of feedback operators, each of them providing a different communication mecha

nism. Under an instantaneous feedback, an event emitted by a transition is broadcast at the

same time instant as the event that causes the transition, and the execution of parallel tran

sitions involves finding a fixed point for all events at the given instant of time. A micro-

step feedback also allows an emitted event to be broadcast instantaneously, but the execu

tion of parallel transitions follows a natural causal order. Finally, an emitted event using a

delayed feedback will be broadcast at the next time instant instead of the same time

instant.

1.5.4 SpecCharts

The SpecCharts language [70][71] is based on the program-state machine model

[36][84], where imperative program constructs are allowed to reside in the leaf states of

HCFSMs. The HCFSM description supported by SpecCharts has a concurrency semantics

that is fundamentally different from that common in the Statecharts family. The SpecCha

rts language is created as an extension of VHDL [5], and thus exhibits the same concur

rency semantics as that of VHDL, which is essentially a discrete-event model. Another

feature in SpecCharts is that two types of transition arcs are differentiated for exiting from

hierarchical states. A transition-on-completion arc will be taken only when the subsystem

of the source state has completed its specified behaviors. A transition-immediately arc will

11

be taken immediately regardless ofwhether the specified behaviors in the subsystem ofthe

source state have been finished or not.

1.5.5 Specification and Description Language

The specification and description language (SDL) [83] was standardized by CCITT

(International Telegraph and Telephone Consultative Committee), and is mainly known

for its applications in protocol specification [9]. A system described in SDL consists of a

number of FSMs communicating in a process network. In contrast to other schemes that

support HCFSMs, SDL permits FSMs only in the leaf components of the hierarchy, and

thus has limited compositionality. Moreover, in anSDL specification, each FSM is treated

as a process attached with an infinite-size buffer, and the network ofconcurrent processes

communicate through those buffers with blocking read, non-blocking write mechanism.

1.6 Summary

Most modem reactive systems have both intricate control and sophisticated concur

rency requirements. Thus, combining FSMs with concurrency models is an attractive and

increasingly popular approach to design. Since the Statecharts formalism was introduced,

a number of variants have been explored. The Argos language, for example, combines

FSMs with a synchronous/reactive model. Many researchers have combined FSMs with

concurrent models that are significantly different from that of Statecharts. TheSpecCharts

language combines a discrete-event model with FSMs. The specification and description

language combines a process network model with FSMs. Codesign finite state machines

combine a discrete-event model with FSMs. The process coordination calculus combines

a dataflow model with FSMs. All of these examples, however, tightly intertwine the con

currency model with FSMs. In addition, most of them focus on specification of intricate

control logic and thus arenot good for specification of intensive datacomputation.

12

In this thesis, we advocate decoupling the concurrency model from the FSM model.

We describe a family of models, called *charts. Unlike other hierarchical concurrent FSM

models, *charts does not define a single concurrency model, but rather shows how to

embed FSMs within a variety of concurrency models. Thus, designers can choose the best

suited concurrency model for the problem at hand. Moreover, each model has its own

strengths and weakness, our *charts formalism allows the designers to mix and match var

ious models such that different models can complement one another. For example, if data

flow models are included, they can be used to specify computation-intensive parts of the

system and thus can complement the weakness of FSMs.

In the chapters that follow, we will present the details of our *charts formalism, which

hierarchically nests FSMs with various concurrency models. In chapter 2, we begin by

adapting a standard notation for FSMs, which is compact and efficient when considering

an FSM in isolation, to get a notation more suitable for studying compositions of FSMs. In

chapter 3, we consider combining FSMs with five popular concurrency models: discrete

events (DE), the synchronous/reactive model (SR), synchronous dataflow (SDF), dynamic

dataflow (DDF), and communicating sequential processes (CSP). In chapter 4, we demon

strate how to apply *charts in practical applications. Finally, in chapter 5, we summarize

the results and discuss open areas for future work.

13

2

Finite State Machines (FSMs)

2.1 The Basic FSM

An FSM is a five tuple [51]

(Q, Z, A, a, qo)

where

• j2 is a finite set of states.

• Z is an input alphabet, consisting of a set of input symbols.

• Ais an outputalphabet, consisting of a set of outputsymbols.

• a is a transition function, mapping Qxl.io Qx A.

• qo^ Q denotes the initial state.

In one reaction, the FSM maps a current stateas Q and an input symbol m€ Z to a next

state P 6 2 and an output symbol v e A, where a(a, u) = (P, v). Given an initial state and

a sequence of input symbols, a trace (a sequence of reactions) will produce a sequence of

states and a sequence of output symbols. All traces are potentially infinite.

A directed graph, called a state transition diagram, is popular for describing an FSM.

As shown in figure 2.1, each elliptic node represents a state and each arc represents a tran-

14

sition. Each transition is labeled by ''guard / action"y where guard e E and action € A.

The arc without a source state points to the initial state, i.e. state a. During one reaction of

the FSM, one transition is taken, chosen from the set of enabled transitions. An enabled

transition is an outgoing transition from the current state where the guard matches the cur

rent input symbol. The FSM goes to the destination state of the taken transition and pro

duces the output symbol indicated by the action of the taken transition.

We focus on deterministic and reactive FSMs. An FSM is deterministic if from any

state there exists at most one enabled transition for each input symbol. An FSM is reactive

if from any state there exists at least one enabled transition for each input symbol. To

ensure all our FSMs to be reactive but not to complicate the notation, every state is

assumed to have an implicit self transition (going back to the same state) for each input

symbol that is not a guard of an explicit outgoing transition. Each such self transition has

as its action some default output symbol, denoted by e, which has to be an element of A.

For example, figure 2.1 describes an FSM with 0 = {cx, P), E = {m, v), A = {e,x, y}, ^0

= a and g: QxZ—^ Qx A. Moreover, in addition to the two explicit transitions a(a, v) =

(p, y) and a(p, u) - (a, x), we also must have the implicit self transitions a(a, u) = (a, e)

and a(P, v) = (p, e). A possible trace of this FSM is shown in figure 2.2.

Figure 2.1 A basic FSM.

15

2.2 Multiple Inputs and Multiple Outputs

An FSM is embedded in an environment. The environment may be part of an overall

system under design, or may be out of the designer's control. In either case, the environ

ment provides a sequence of input symbols, and theFSM reacts by producing a sequence

of output symbols, meanwhile tracing a sequence of states. At each reaction, the FSM

responds to a single input symbol from the environment andproduces a single output sym

bol to the environment. However, the interaction of the FSM with the environment fre

quently needs to be modeled in more detail. It may not be convenient to consider the FSM

to have onlya single input and a single output, as shown in figure 2.3(a). Instead, multiple

inputs and multiple outputs may be a more natural model.

Current State a a P P ...

Input Symbol u V V U ...

Next State a P p a ...

Output Symbol £ y £ X ...

Figure 2.2 A possible trace for the basic FSM in figure 2.1

Environment

U€ £ l^€ A

t/i e 2.1 Vl € Ai
w

U, 6 ly

FSM
"y ®

w w

Vn€ Aw

(b)

Figure 2.3 interaction of the FSM with the environment: (a) single input
and single output, and (b) multiple inputs and multiple outputs.

16

To handle this, the input alphabet Z can be factored and expressed as a cartesian prod

uct Zj x Z2 x ... x Z^. Hence, at a reaction, the input to the FSM consists of M events,

where the /th event carries a symbol from the event alphabet Z,-. The output alphabet can

be similarly factored and expressedas A= Aj x A2 x ... x Ay^. Hence, at a reaction, the out

put from the FSM consists of N events. At each reaction, the FSM responds to a set of M

events from the environment, and produces a set of N events to the environment, as shown

in figure 2.3(b).

2.3 The Pure FSM

A common special case is thepure FSM, where both the input and the output alphabets

have size power of two (i.e. size(Z) = 2^ and size(A) = 2^), and the size ofeach event

alphabet is two (i.e. size(Z/) = 2 for 1< / <M, and size(Ay) = 2 for 1<j<N). This is inter

preted to mean that at a reaction, each event is either absent or present (hence, size(Z,) = 2

and size(Ay) = 2).

Instead of the input alphabet Z and the output alphabet A, a pure FSM is specified with

the input events I and the output events O, where each event is denoted by a name. Never

theless, the input and the output alphabets of the pure FSM can still be deduced from the

given input and output events, respectively. For example, consider a pure FSM with two

input events 7 = {u,v] and two output events O = {x,y). The event alphabet for u is

denoted by Z] = {u,u}, which means that {u is absent, u is present}, and the event alpha

bet for Vis denoted by Z2 = {v, v}. Thus, the input alphabet Z is equal to Z] x Z2, i.e.

17

{mv, mv, mv, mv}^ The output alphabet Acan be similarly deduced and is {3^, xy, xy},

where xy(i.e. absent forbothevents) is considered the default output symbol e.

In a pureFSM, the sizeof the inputalphabet grows exponentially with the number of

input events. Hence, for describing a pure FSM, it can easily require a very large number

of transitions if from every state an explicit outgoing transition is specified for every input

symbol. To alleviate this problem, the guard of a transition can be a subset of the input

alphabet instead of a single input symbol. This allows us to compactly represent as a sin

gle transition an ensemble of transitions that have the sameaction. Usually, a subset of the

input alphabet can be more briefly denoted by a boolean expression in the input events.

For example, for an input alphabet Z = {mv, mv, mv, mv}, the boolean expression im v v"

(not Mor v) represents the subset (mv, mv, mv}. Therefore, for the pure FSM, the guards

will be represented as boolean expressions in the input events. Figure 2.4illustrates a pure

FSM with states j2= (ot, p} and inputevents / = {m, v}. The guard"-.m v v" of the transi

tion from state a to state p is enabled by any input symbol in (mv, mv, mv}. The guard "m"

of the transition from state p to state P is enabled by any input symbol in (mv, mv }.

—-lUvv/x, y

t/A-iv/y ^ m m ^ u/x
-lU A V

Figure 2.4 A pure FSM.

1. The standard notation for an element of the cartesian product is a tuple, such as (a,b)E A x B where a e
A and ^ e B. Here we use a more compact notation to denote the element, i.e. ab instead of (a, b). This
notation is highly compact when we want to form a complex cartesian product in a later section.

18

The action of the transition in a pure FSM is also specified in a compact notation. It

only lists output events that are present at the reaction in which this transition is taken. All

other output events that are not explicitly emitted in the action are implied absent at the

reaction. Consider the example of figure 2.4 with output events O = {x,y). The action "x"

of the transition from state p to state p implies the output symbol xy. Thus, the output

eventx is present and the output eventy is absent when this transition is taken. If all output

events are implicitly absent for a transition, the action is omitted together with the slash

before it. For the example in figure 2.4, the label of the transition from state p to state a is

just the guard "-im a v" (not u and v), and when this transition is taken, both output events

Xand y are implicitly absent.

Figure 2.5 shows a possible trace for the pure FSM of figure 2.4. Note that in state p,

when both input events u and v are absent, an implicit self transition is taken and thus both

output events x and y are absent.

2.4 The Valued FSM

The valued FSM is an augmentation of the pure FSM with arithmetic handling. In a

valued FSM, the input and the output alphabets are again factored into event alphabets.

Current State a a P P P

u present absent present absent absent

V absent absent present absent present

Next State a P P P a

X absent present present absent absent

y present present absent absent absent

Figure 2.5 A possible trace for the pure FSM in figure 2.4.

19

Some event alphabets may have size two like inthe pure FSM. Most importantly, however,

each of the remaining event alphabets is further factored and expressed as a cartesian

product of two alphabets, a status alphabet and a value alphabet. The status alphabets of

these event alphabets all have size two. This is again interpreted tomean that at a reaction,

each of these events is either absent or present. The sizes of the value alphabets may be

different in different event alphabets, and they might even be infinite. Each element of the

value alphabet is interpreted to represent

• a value that theevent carries, when the event is present at a reaction,

• a default value, when the event is absent at the first reaction,

• or a value that is required to be the same as at the previous reaction, when the event is

absent at a reaction.

An event is called apure event if it corresponds to an event alphabet with size two. Other

wise, it is called a valued event if it corresponds to an event alphabet that is further fac

tored. Note that the pure FSM is simply a degenerate case of the valued FSM, consisting

of only pure events.

For example, consider a valued FSM with two input events / = {m, v}. Suppose that u

isa valued event with a value alphabet denoted by {(0), (1)) ^and visa pure event. Thus,

theevent alphabet for mis Z, = {m(0), m(1), m(0), m(1)}, which means that {u is absent but

with the previous value 0, u is absent but with the previous value 1, mis present with a

value 0, u is present with a value 1}, and the event alphabet for vissimply Z2 = {v, v}. As

a result, the input alphabet of the valued FSM is S = {m(0)v, m(0)v, m(1)v, m(1)v, m(0)v,

m(0)v, m(1)v, m(1)v}.

1. Theparentheses around each value serve a special purpose: They canclearly distinguish thestatusandthe
value foran event in theresulting input andoutput alphabets denoted inourcompact notation.

20

While the pure event carries only a status (either absent or present), the valued event

carries both a status and a value. This may cause ambiguity when the guard of a transition

is specified as a boolean expression that contains valued events, since it is unclear whether

the boolean expression operates on the statuses or the values of valued events. For exam

ple, if Zj = {m(0), m(1), m(0), m(1)}, Z2 = {v(0), v(l), v(0), v(l)} and Z = Zj x Z2» a guard

"-iM A v" may represent the subset {m(0)v(0), m(0)v(1), m(1)v(0), m(1)v(1)) based on the

statuses of the events or the subset {m(0)v(1), m(0)v(1), m(0)v(1), m(0)v(1)} based on the

values of the events. One solution is to introduce new operators that explicitly refer to the

status and the value of an event, respectively. In Esterel [18], for example, "presents"

refers to the status of the event m, and "?«" refers to the value.

However, we prefer another solution that does not introduce new operators to compli

cate the notation. Similar to Statemate [45], we further refine the guard of the transition

into two parts and denote the guard as ''trigger [conditionYy where trigger and condition

are the boolean expressions in the input events. To distinguish references to the status and

the value of an event, we define that an event is referred to by status if it appears in the

trigger of a guard or by value if it appears in the condition of a guard. Note that a pure

event must not appear in the condition of a guard since it does not carry a value. The sub

set of Z represented by the guard is defined as the intersection of the two subsets of Z rep

resented by the trigger and the condition. If a transition does not depend on the values of

the input events at all, the condition of the guard is omitted together with the brackets

around it. In this case, the subset of Z represented by the guard is simply the subset of Z

represented by the trigger. Similarly, the trigger of a guard can be omitted. However, we

consider omission of the trigger for a transition to serve a special purpose, which will be

described in section 2.11.

Consider a valued FSM depicted in figure 2.6, which has states Q= (a, P) and input

events I = {«, v}. Suppose that Z] = {w(0), m(1), m(0), m(1)} and Z2 = {v(0), v(l), v(0),

21

v(l)}. The trigger im a v*' ofthe guard for the transition from state p to state a represents

the subset {m(0)v(0), m(0)v(1), m(1)v(0), m(1)v(1)). The condition "m— 1a v != 1"^ (m

equal to 1 and v not equal to 1) of the same guard represents the subset {m(1)v(0),

m(1)v(0), m(1M0), w(1)v(0)}. Thus, the guard "-im a v [m = 1a v != 1]" isenabled bythe

input symbol in {m(1)v(0)}. The guard of the transition from state a to state a isjust the

trigger "m a -iv". Thus, this guard is enabled by any input symbol in {m(0)v(0), m(0)v(1),

m(1)v(0), m(1)v(1)}, which is thesubset of 2 represented by the trigger.

In a valuedFSM, in addition to listing the output events to be emitted, the action of the

transition is augmented with value assignment, which allows each emitted event to be

assigned a value. Note that a pure event must not be assigned a value since it does not

carry a value. In the valued FSM of figure 2.6, suppose that O= {x, y), Aj = {jc(0), 1(1),

jc(0), a:(1)}, and A2 = {y(0), y(l), y(0), y(l)}. The action "j:(1), y(0)" of the transition from

state Pto state p represents the output symbol Ar(l)y(0). Thus, the output events a: and y are

present with the values 1 and 0, respectively, when this transition is taken. The value

assigned to the emitted event of an action is not limited toa constant. It can beanexpres

sion in the input events that are referred tobyvalue. Thus, a number oftransitions may be

compactly represented by a single transition that has an action with expression assign-

i/v v[-iuv vj/x, y

x(u), y(uvv/) (fa P J)a[u!=0]/x(1).y(0)

ii/A v[u~ 1 A v\= 1]/y(1)

Figure 2.6 A valued FSM.

1. We adoptthe sameoperator precedence as in the C-h-programming language. Thus, the operator = and
!= have higher precedence than the operator a.

22

ment. Consider the example in figure 2.6. The action "x(m), y(u v v)" of the transition from

state a to state a may represent the output symbol x(0)y(0), x(0)y(l), or x(l)y(l) depend

ing on the current values of the input events u and v. If the valued event emitted in an

action is not assigned a value, it is considered to have a default value, chosen from the cor

responding value alphabet. In figure 2.6, the action "x, y" of the transition from state a to

state P represents the output symbol x(0)y(0), assuming that the default values for the out

put events x and y both are the value 0. Same as in the pure FSM, the output events that are

not explicitly emitted are implied absent. However, one subtlety is that the resulting output

symbol depends on the previous values of those absent events. For the example in figure

2.6, the action "y(l)" of the transition from state p to state a may represent the output

symbol jc(0)y(l) or x(l)y(l) depending on the previous value of output event x.

A possible trace for the valued FSM of figure 2.6 is shown in figure 2.7. Note that if an

input or output event is absent at a reaction, its value must be the same as at the previous

reaction, as required by the interpretation of the value alphabet.

Current State a p p a a ...

u (status) present present absent present absent ...

u (value) 0 1 1 0 0 ...

V(status) present absent present absent absent
...

V(value) 1 1 0 0 0

Next State P P a a p ...

X(status) present present absent present present ...

X (value) 0 1 1 0 0 ...

y (status) present present present present present

y (value) 0 0 1 0 0 ...

Figure 2.7 A possible trace for the valued FSM in figure 2.6

23

As mentioned earlier, the size of the value alphabet for a valued event can be infinite.

This is one key feature for the valued FSM tobemore expressive than the pure FSM. For

example, in a valued FSM, suppose that the value alphabet for an input event mis X (the

set of natural numbers). Thus, a transition with the guard "m [u != 0]" compactly repre

sents an infinite number of transitions that have the same action. Moreover, suppose that

an output event x also has K as its value alphabet. Thus, a transition with the action

compactly represents an infinite number of transitions that have the same guard. We can

not have the same expressiveness as shown in these two scenarios by justusing the pure

FSM.

However, one of our goals is to provide heterogeneity, which will be discussed in sec

tion 2.6. This allows the pure FSM tobeused without fundamental loss ofexpressiveness

if it is used in conjunction with a foreign model that supports arithmetic handling. For

example, instead of a guard "m [m !=0]" in a valued FSM, we could specify a guard

"m a w" in a pure FSM and externallycompute the function

fpresent; m!=0
w = <

[absent; otherwise

in the foreign model.

Nevertheless, the valued FSM does provide a more convenient syntax for arithmetic

operations directly within theFSM. Forexample, consider a valued FSM with input events

/ = {m, v} and output events O = {x, y}. Suppose that the value alphabet is K for every

inputandevery outputevents. Then, the arithmetic expression can be contained in thecon

dition of a guard, such as "(« + v) * m== 8". In addition, it can be included by the expres

sion assigned to the emitted eventin an action, such as + v), y{u * v)".

24

2.5 Hierarchy

FSMs, which are flat and sequential, have a major weakness: Most practical systems

have a very large number of transitions and states. To alleviate this problem, hierarchy

allows a state of the FSM to be refined into another FSM. For example, figure 2.8 shows a

hierarchical FSM in which state P is refined. With respect to the inner FSM called the

slave, the outer FSM is called the master. Moreover, if a state is refined, it is called a hier

archical state, such as state p; otherwise, the state is called an atomic state, such as state

a. The input events for the slave are a subset of the input events for the master. Similarly,

the output events from the slave are a subset of the output events from the master.

The hierarchy semantics define how the slave reacts relative to the reaction of its mas

ter. A reasonable semantics defines one reaction of the hierarchical FSM as follows: If the

current state is an atomic state, the hierarchical FSM behaves just like an FSM without

hierarchy. If the current state is a hierarchical state, first the corresponding slave reacts,

and then the master reacts. Thus, two transitions are taken, and their actions must be some

how merged into one.

—-.w vv [u != 0]

UA-iV/x(t/+ 1) ^ Master

-lUA V'

Slave

Figure 2.8 A hierarchical FSM.

25

Inthe case that the output event ispure, it is easy toavoid conflicting definitions ofthe

event between the actions of the slave and the master. We take an output event to be

present if the action of the master or any slave below it emits that event. Since an action

does not explicitly set an output event absent, no conflict is possible for the pure event in

this syntax.

Now weconsider that the output event is valued, anddistinguish three cases.

• When anoutput event is emitted by only one action ineither the master orany slave, it

is present with a value assigned by the action that emits it.

• When an output event is not emitted by any action, it is absent but with a value the

sameas the most recent value retained by the master. Evenif any slave has a different

previous value for the output event, this value should not be used since it must be older

than the one retained by the master (otherwise the master should have known and

retained it).

• When an output event is emitted by more than one action: If these actions emit the

event with the same value, the event is present with that value. However, conflicting

definitions of the output event occur if these actions emit the event with different val

ues. In Esterel [18], a function can be specified to combine the conflicting definitions.

Forexample, for two natural numbers, the values might be added. We prefer to con

sider this an errorsituation, because the values can be more conveniently and flexibly

combined externally in a foreign model that is bettersuited to numerical computation.

Thus, at a reaction, no morethan one transition shouldemit the same outputeventwith

different values.

Consider the example of figure 2.8 with input events / = {«, v} and outputevents O -

{x, y}. Suppose that the input event u and the output event x are the valuedevents with N

26

as their value alphabets, and the events v and y are the pure events. A possible trace for this

hierarchical FSM is shown in figure 2.9. In this example, the hierarchical FSM has only

two levels. However, the slave can actually be another hierarchical FSM, so the depth of

hierarchy is arbitrary. The semantics generalizes trivially.

At a fundamental level, hierarchy adds nothing to expressiveness. Neither does it

reduce the number of states. However, it can significantly reduce the number of transitions

and make the FSM more intuitive and easy to understand. The transition from state P to

state a in figure 2.8 is simply a compact notation for transitions from state y to state a and

state 6 to state a.

2.6 Heterogeneity

An FSM (even with hierarchy) is not by itself adequate for describing most complex

systems. For one thing, this model is extremely awkward for expressing intensive numeri

cal computations. Therefore, for practical application to complex systems, the FSM has to

be combined with other models, i.e. we have to add heterogeneity to the FSM.

Current State a a P.Y P. 5 P,Y

u (status) present absent present present absent

u (value) 2 2 4 6 6

V(status) absent absent absent present present

Next State a P.Y P,6 P,Y a

X(status) present absent present absent absent

X(value) 3 3 8 a 8

y (status) absent absent present present absent

Figure 2.9 A possible trace for the hierarchical FSM in figure 2.8

27

One convenient way to support heterogeneity is the black box approach. For a system

consisting of a set of interconnected modules, each module can be treated as a black box.

Some model is chosen to govern the interaction between boxes, but the contents of boxes

need not be governed by this same model. The only requirement is that the interfaces of

boxes must conform to a standard accepted by this model. Thus, a box may encapsulate a

subsystem specified by one model within a system specified by another. In other words,

heterogeneity allows different models to be systematically and modularly combined

together.

Ourhierarchical FSM is easily extended to support heterogeneity. Theslave of a hier

archical state need not be an FSM. The key principle is that the slave must have a well-

defined terminating computation that reacts to input events by possibly asserting output

events. Therefore, the slave could be, for example, a Turing machine (that halts), a C pro

cedure (that eventually returns), a dataflow graph (with a well-defined iteration), etc. It

could even be concurrent.

The hierarchy semantics is similarly defined as in section 2.5 with one subtle modifica

tion: If the current state is a hierarchical state, first the corresponding slave is invoked, and

then the master reacts. When the slave is invoked, it performs a determinate and finite

operation, called a step of the slave, which reacts to input events and may assert output

events. One step of a slave FSM is one reaction of the FSM.

In the reverse scenario, we need for an FSM to be able to describe a module inside

someother model. This can be doneas long as that model provides a way to determine the

input events and when a reaction should occurfor eachFSM. Forexample, in figure 2.10,

an outer model is schematically illustrated with rectangular boxes representing modules.

Two FSMs are embedded inside the modules. Most interestingly, they are concurrent

FSMs if the outer model has concurrent semantics.

28

2.7 Hierarchical Entries and Exits

When a slave of a hierarchical state is invoked for the first time, unambiguously it will

start from its initial conditions (e.g. the initial state for an FSM). When it is subsequently

invoked, we may wish to reinitialize it or allow it to continue from the last known condi

tions. Thus, as in Statecharts [43], we support a transition entering a hierarchical state to

be either initial entry or history entry. Initial entry starts the slave from the initial condi

tions like the first invocation. History entry permits the slave to resume computation from

the final conditions of the last invocation.

As shown in figure 2.11, we illustrate an initial entry by additionally drawing a small

circle with an I in it at the end of an arc. For example, the transition from state a to state P

is an initial entry. When this transition is taken in a reaction, the slave inside the next state

P will be invoked from its initial state y in the next reaction. The other transitions without

additional drawing at the end of arcs are considered the history entries. For example, the

transition from state a to state a is a history entry. When this transition is taken in a reac

tion, the slave inside the next state a will be invoked from its last state in the next reaction.

In figure 2.11, the slaves may actually be specified by other models as discussed in section

Figure 2.10 Two FSMs are embedded Inside the modules of another model.

29

2.6. Hence, each innermodel must alsoprovide a way to start from its initial conditions or

tocontinue from the last known conditions inresponse toaninitial entry ora history entry.

Under normal circumstances of a hierarchical FSM, if the current state is a hierarchical

state, the corresponding slave is invoked prior to taking the transition. However, we may

need to immediately interrupt before the slave is invoked in some situations. Thus, we

support a transition exiting from a hierarchical state to be either preemptive or non-pre

emptive [86]. If a preemptive transition is taken, the slave of the current state will not be

invoked. Otherwise, for a non-preemptive transition, the slave is invoked normally.

As shown in figure 2.11, we depict a preemptive transition by additionally drawing a

small circle at thebeginning of an arc. Forexample, thetransition from state Pto state a is

preemptive. This preemptive transition is taken when the hierarchical FSM is in state p

and substate 6 and the input events u and vare absent and present, respectively. Under this

circumstance, the output event y is absent (instead of present normally) since the slave

inside state p will not be invoked. The other transitions without additional drawing at the

beginning of arcs are considered non-preemptive, such as the transition from state a to

state p.

-lUv i/^[u!=0]

ua-,vIx(u+ 1)(
/T Ti\|

—tU A V

j u[u~4]/ x(w*2)

Figure 2.11 A hierarchical FSM with hierarchical entries and exits.

30

Consider the example of figure 2.11 with input events / = {m, v) and output events O =

{x,)?). Suppose that the input event u and the output event x are valued events with X as

their value alphabets, and the events v and y are pure events. A possible trace for this hier

archical FSM is shown in figure 2.12.

2.8 Shared Slaves

When supporting the hierarchy within an FSM, one direct approach is to simply have

an individual slave attached to each hierarchical state. In contrast, however, we first let a

collection of slaves be attached to the FSM and then associate each hierarchical state with

a slave in the collection. This approach naturally enables multiple states to share a same

slave.

One advantage of this sharing mechanism is to save redundant slaves. In the previous

example (see figure 2.11), two slaves are exactly the same (except for the names of states),

and either slave is reinitialized whenever the master switches to the corresponding state

from the other state. Hence, it is not necessary to have two separate slaves. In other words,

the two states of the master may share a same slave, as shown in figure 2.13. The traces of

Current State a, X a, X P.Y P,6 a, X

u (status) present absent present absent present

u (value) 2 2 4 6 8

V(status) absent absent absent present present

Next State a, X P.Y a,X P.Y

X(status) present absent present absent absent

X(value) 3 3 8 8 8

y (status) absent absent present absent present

Figure 2.12 A possible trace for the hierarchical FSM in figure 2.11.

31

this hierarchical FSM with ashared slave are exactly the same as those with two separate

slaves (with substitution ofXand t byyand 5, respectively, in the traces).

Another advantage is that the local conditions ofa shared slave (e.g. the current state

of an FSM) may be carried and accessed even across the reactions in which the master

switches among different states. One typical application is the hybrid system [1][2], which

can be considered a hierarchical FSM that has a shared slave as the dynamic laws of the

system. This application will be further demonstrated in section 4.4.

2.9 Local Events

Similar tothe Argos language [69], we allow the FSM tohave local events. Ingeneral,

the local events can be utilized in the following three scenarios.

• As local variables of the FSM: The local events can be used to retain information

across the reactions of the FSM. In this case, they serve the same purpose as the local

variables in an extended FSM [20][75][27]: They may reduce the number of visible

states in the FSM. For example, figure 2.14 shows an FSM that emits an output event x

-nU\/V[U != 0]

uA-iv/x(t;+ 1) ^
-lUA V

^ u[t/ == 4] / *2)

Figure 2.13 A hierarchical FSM with a shared slave.

32

whenever receiving an input event u eight times. At the upper right comer, a rectangu

lar box labeled with r declares a local event r, which is used to count the occurrence of

input event u. Without this local event, the FSM would have required a state for each

occurrence of input event u (up to the eighth time). Therefore, the local event r hides

an additional six states by its values.

As output events of the slave: The local events can be used to pass information from

the slave to the master FSM. For example, in figure 2.15, the master has a local event r,

which is also the output event of the slave..Suppose that the master is in state a and the

a//(1)

[r<7]/A(r+1)

u[r~7]/x

Figure 2.14 An FSM with a local event as a local variable.

CD

Figure 2.15 A local event of the master serves as an output event of the slave.

33

slave is in state y. When the input event u occurs, the slave takes the transition to state

5and emits the event r, which in turn let the master take the transition to state p. More

over, the mechanism shown infigure 2.15 can replace an outgoing inter-level transition

[86], which is considered by many a violation ofmodular design. In other words, the

two transitions from state ytostate Sand then state a tostate Phave the same effect as

a transition across hierarchy boundary from state y to state p with a label "m / x'\

As input events ofthe slave: The local events can be used to pass information from the

master FSM to the slave. As shown in figure 2.16, the event r is a local event of the

master and an input event ofthe slave. The master starts in state a, and when an input

event u occurs in a reaction, emits the event r and takes the transition to state p. This

causes the slave to take the transition to state 5 in the next reaction. Note that since

these two taken transitions must spread over two reactions of the hierarchical FSM, the

local event itself is not enough to replace the incoming inter-level transition [86]. This

problem will be resolved in section 2.10.

CD

Figure 2.16 A local event of the master serves as an input event of the slave.

34

2.10 Initial Transitions and Conditionai initial States

In OUT FSM, we extend an arc without a source state to be a fully functional transition

in the sense that it may have a guard and an action. This transition is called an initial tran

sition since it leads to the initial state. When an initial transition does not have a label, just

like all we have seen so far, it is considered without a guard and an action, and is defined

to be always enabled. One main purpose of the initial transition is to allow the FSM to per

form initialization, such as assigning initial values of local events, before the FSM starts

from its initial state either in the first reaction or due to initial entry. Consider figure 2.17

for example. The initial transition is labeled by "/ r(0)". This transition is always enabled

because it does not have a guard. Hence, before the FSM starts from the initial state a in

the first reaction, it takes the initial transition and thus assigns the local event r a value 0.

Furthermore, we generalize the notion of an initial state to be a set of possible initial

states. Each of these possible initial states is called a conditional initial state, and must be

pointed to by an initial transition. When an FSM begins in the first reaction or is entered

by an initial entry, one initial transition is taken, chosen from the set of enabled initial tran

sitions. Then, the FSM starts from the conditional initial state which the taken initial tran

sition points to. To maintain determinism and reactivity of the FSM, it is required that

there exists exactly one enabled initial transition. For example, in figure 2.18, an FSM

//('•+1)

cs tET)P))u[r<7]/^r+1)

u[r=7]/*, ^0)

Figure 2.17 An FSM with an initial transition to initialize a local event.

35

starts from either state a or state p depending on whether input event u is present or

absent.

As shown in figure 2.19, now we can replace the incoming inter-level transition by a

transition with initial entry entering a conditional initial state. The master starts in state a,

and when an input event u occurs in a reaction, emits the event r and takes the transition to

state p. In the next reaction, as a result, the slave takes the initial transition to conditional

initial state y andemits theoutput event ;c. Subsequently, theslave emits theoutput event y

and takes a regular transition from state y to state y.The first two transitions from state a to

u/x\
-lU

u

Figure 2.18 An FSM with conditional initial states.

ulr

a

->r

r

Figure 2.19 The incoming inter-level transition can be replaced by a transition
with initial entry entering a conditional initial state.

36

state p and then to state yhave the same effect as a transition across the hierarchy bound

ary from state a to state y with a label "m / since the initial transition does not prevent

the third transition from being taken in the second reaction.

2.11 Instantaneous Transitions and States

When the current state of an FSM is an atomic state and an explicit outgoing transition

of that state does not have a trigger in its guard, the FSM may enable this transition right

away without waiting for any input events to occur. Hence, in an atomic state, any explicit

outgoing transition that does not have a trigger in its guard is defined as an instantaneous

transition^ which may be taken right away even after other transitions have been taken in

the same reaction. For example, the FSM depicted in figure 2.20 starts in state a with local

event r initialized to a value 0. When the input event u occurs in a reaction, the FSM

increases the value of local event r by 1 and takes the transition to state p. At this moment,

since the instantaneous transition labeled by "[r < 8]" is enabled, the FSM takes the transi

tion to state a right away in the same reaction.

An instantaneous state is an atomic state in which all explicit outgoing transitions are

instantaneous transitions and are completely specified. The explicit outgoing transitions of

a state are said to be completely specified if the implicit self transition is always not

im\ u//(r+1)

a H-
[r<8]

[r=:=8]/x,r(0)

Figure 2.20 An FSM with instantaneous transitions and an instantaneous state.

37

enabled in that state for any given input events. Therefore, the instantaneous state will

never remain across reactions of the FSM. For example, the state p in figure 2.20 is an

instantaneous state.

2.12 Simulation Algorithm

To accommodate all the features discussed for the FSM, we come up with the follow

ing algorithm for simulating one reaction of the FSM:

1. Clear the statuses of all output events. I.e. let them all be absent.

2. If the FSMis not in the first reaction and is not entered by an initial entry, go to (7).

3. Clear the statuses of all local events.

4. Checkall initial transitions. If more than one is enabled, flag a non-deterministic error

and go to (21). If none is enabled, flag a non-reactive error and go to (21).

5. Emit the events in the action of the enabled initial transition.

6. Enter the conditional initial state which the enabledinitial transition points to. I.e. let it

become the current state for the following reaction.

7. If the current state is not a hierarchical state, go to (9).

8. For each input event of the slave, get the status and the value from the corresponding

input or local event of this FSM.

9. If the FSM is not in the first reaction and is not entered by an initial entry, clear the sta

tuses of all local events.

10. Check all preemptive transitions of the current state. If more than one is enabled, flag a

non-deterministic error and go to (21). If exactly one is enabled, go to (15).

11 .If the current state is not a hierarchical state, go to (14).

38

12. Perform one invocation of the slave. According to the entry type of the enabled transi

tion in previous reaction, the slave either starts from the initial conditions or resumes

from the final conditions of the last invocation.

13. For each emitted output event of the slave, update the status and the value to the corre

sponding output or local event of this FSM. If any of these events has been emitted

with a different value, flag an emission-conflicting error and go to (21).

14. Check all non-preemptive transitions of the current state. If more than one is enabled,

flag a non-deterministic error and go to (21). If none is enabled, let the implicit self

transition be enabled.

15. Emit the events in the action of the enabled transition. If any of these events has been

emitted with a different value, flag an emission-conflicting error and go to (21).

16. Enter the destination state of the enabled transition.

17. If the current state is a hierarchical state, go to (21).

18. Check all instantaneous transitions of the current state. If more than one is enabled,

flag a non-deterministic error and go to (21). If none is enabled, go to (21).

19. Emit the events in the action of the enabled instantaneous transition. If any of these

events has been emitted with a different value, flag an emission-conflicting error and

go to (21).

20. Enter the destination state of the enabled instantaneous transition. Go to (17).

21. One reaction is complete.

39

3

Integration with Concurrency Models

3.1 Hierarchical Combination

With support of hierarchy and heterogeneity, an FSM can be combined with almost

any concurrency model. Our goal is the hierarchical nesting of FSMs with concurrency

models, as shown in figure 3.1. We schematically illustrate the states of the FSM with

elliptic nodes and the modules of the concurrency model with rectangular blocks. The

depth and order of the nesting is arbitrary. We wish for an FSM to be able to describe a

Figure 3.1 Hierarchical nesting of FSMs with concurrency models.

40

module in a concurrency model and for a state to be able to be refined to a concurrent sub

system.

When two models are brought together to interact with each other in the hierarchical

combination, differences between them can lead to ambiguities. For example, how should

the FSM deal with the notion of time when it interacts with a timed model? The exact

semantics of this interaction must be defined in terms of the semantics of both models. In

general, as shown in figure 3.2 [26], the interaction with information flowing from model

X to model Y should be handled by one of the following conversions:

• The common semantic properties of both models are translated.

• The semantic properties in model X but not in model Y are ignored.

• The semantic properties in model Y but not in model X are created.

In this chapter, we explore the interaction of the FSM with various concurrency mod

els, namely discrete-event (DE), synchronous!reactive (SR), synchronous dataflow (SDF),

dynamic dataflow (DDF), and communicating sequential processes (CSP). Our objective

is to develop semantics that supports arbitrary combinations of these concurrency models

with FSMs.

Ignored

Translated

Created

Figure 3.2 Conversions of semantic properties from model X to model Y.

3.2 Discrete Events

Under the discrete-event (DE) [7][24][33] model, a system consists of a network of

blocks connected by directed arcs, as depicted in figure 3.3. Blocks communicate among

themselves and with the environment through events, which may or may not have values

associated with them. Each event originates either from an output of some block or from

the environment, and is destined either for an inputof someblockor for the environment.

This relationship of source and destination is indicated by the arc. The DE model has a

notion of global time that is known simultaneously throughout the system. An event

occursat a point in time. In a simulation of such a system, the global time is a value, usu

ally an integer or a real number. Each event needs to carry a time stamp that indicates the

time at which the event occurs. The time stamp of an event is typically generated by the

block that produces the event, and is determined by the time stamp of input events and the

latency of the block. The DE simulator needs a global event queue that sorts the events by

their time stamps, and chronologically processes each event by sending it to the appropri

ate input of a block, which reacts to the event (fires). In addition, it maintains the global

time as the current time of the system, which is constantly updated with the time stamp of

the event being processed. In figure 3.3, for example, reacting to an input event, block A

produces an eventwith a time stamp t at its upperoutput. This event is sorted in the event

Figure 3.3 A discrete-event (DE) system.

42

queue, and when its time stamp t becomes the smallest in the event queue, block C fires

with this event at its upper input.

However, simultaneous events (those with the same time stamp) can cause difficulties

in a DE system. In figure 3.3, reacting to an input event, block A may produce an event at

each of its two outputs with the same time stamp t. In this case, there exists an ambiguity

about whether block B or C should fire first at time t since there is more than one event in

the event queue with the same smallest time stamp. Suppose that B is a zero-delay block.

This means that if an output event of block B is produced in a firing, it is assigned the

same time stamp as the input event that invokes that firing. Suppose further that block B

always produces an output event in response to the input event. The two possible situa

tions are described as follows:

• If block C fires first, block B subsequently fires and produces an output event with the

time stamp t. This event causes block C to fire again. Hence, block C fires twice.

• If block B fires first, it produces an event with the time stamp t at its output. As a con

sequence, block C has an event at each of its two inputs with the same time stamp t.

Hence, block C may either fire once by observing both input events or fire twice by

observing one input event at a time.

Therefore, the resulting behavior of the system depends on how the simultaneous events

are handled by the DE simulator.

To eliminate the ambiguity, one solution provided by some DE simulators, such as in

VHDL [5], is a delta delay that represents an infinitesimal amount of delay. In the previ

ous example, if block B has a delta delay 6r, its output event will have a time stamp t+bt.

This output event will be ordered after the event with the time stamp t even though both

t+bt and t represent the same simulation time t. Thus, no matter which block fires first,

block C always fires twice in response to the input events with time stamps t and t+bt.

43

respectively. However, in this solution, there is no way to ensure that block B fires before

block C, in case we wish for block C to see both input events at once. This leads to

another solution adopted by the discrete-event domain in Ptolemy n [31], which utilizes

the topology of the system to determine the order of block firings when simultaneous

events occur. In the previous example, since block Bcould produce events with zero delay

affecting block C, block B always fires first when simultaneous events occur. Subse

quently, block C always fires once by observing the events at both inputs.

In addition to simultaneous events, there can be a problem with directed loops that

have zero delay. For example, figure 3.4 shows-a DE system with adirected loop. Suppose

that blocks Aand Bboth are zero-delay and each ofthem always produces an output event

reacting to the input event. When an event occurs at the upper input, block Astarts a pro

cess by which an event will circulate through the loop forever without advance of simula

tion time. According to [60], there is no way to avoid this so-called Zeno condition

without adding a finite amount ofdelay in the directed loop.

3.2.1 FSM inside DE

An FSM embedded inside a DEblock performs one reaction when the DEblock fires,

which occurs when there is an event present atone of its inputs. Presence or absence of an

Figure 3.4 A DEsystem with a directed loop.

44

event at an input of the DE block translates directly into the status of the corresponding

input event in the inner FSM. In addition, if the event is present, its value (if it exists) is

also passed from the DE to the FSM. If the event is absent in the DE, the FSM retains the

most recent value for the corresponding input event. On the other hand, the FSM embed

ded inside a DE block may emit output events in the reaction. These emitted output events

translate directly into events in the outer DE system. However, in DE, every event needs a

time stamp, something not provided by the FSM. We choose the semantics where the FSM

appears to the DE system as a zero-delay block. I.e. the event passed to the DE system in a

reaction of the FSM is assigned the same time stamp as the input event that invokes that

reaction. If we wish to model a time delay associated with a reaction, we may explicitly

connect the FSM block with a delay block to simulate the delay occurring inside the FSM

subsystem.

Consider an example shown in figure 3.5, where two FSMs are embedded within a DE

system. The name (m, v, w, etc.) on the arc of the DE system denotes the name for the near

est input or output of a block, which in turn denotes the name for the input or output event

of the FSM inside that block. Suppose that an event for input u with a time stamp t is the

Figure 3.5 Two FSMs are embedded within a DE system.

45

next tobeprocessed in the event queue, and both FSMs are instate a. The DE system exe

cutes as follows:

• Fire A: Since there exists an event for input m, FSM A takes the transition from state a

to state p, and emits the output event x. In DE, this event will have the time stamp t.

Therefore, it will be the next to be processed in the event queue, and will be sent to

input w of block B.

• Fire B: Since there exists an event for input w,FSM B takes the transition back to state

a, and emits the output event y. In DE, the event at output y will have the time stamp t.

Due to event-driven semantics of the DE model, a block does not fire if there are no

events at its inputs. This leads to some subtleties with the guards of the FSM. Forexample,

in figure 3.6, suppose that the FSM is in state a. The guard "-im" on the outgoing transi

tion to state p indicates that input event u must be absent for this transition to be taken.

Implicitly, however, input event v must be present at the same time, otherwise the FSM

will not even react since there is no event to invoke the block firing. Hence, it would be

Figure 3.6 The guard of the upper transition is incomplete
due to event-driven semantics of the DE model.

46

clearer to give the guard as "-im a v". If the guard were given as "-ima -iv" instead, the

transition would never be taken.

Since we treat FSMs as zero-delay blocks in a DE system, a directed loop connecting

only FSM blocks always has zero delay. As mentioned earlier, a directed loop with zero

delay can cause a problem in a DE system. Figure 3.7 shows such a directed loop. React

ing to an event at input m, FSM A emits the event x. This event causes FSM B to emit the

event y, which will let FSM A emit the event x again. Therefore, FSMs A and B keep

reacting and emitting the events without advancing time in the DE system.

3.2.2 DE inside FSM

When a DE model refines a state of an FSM, one step of the slave DE subsystem is the

simulation of that subsystem until there is no event in the event queue with the same time

stamp as the input events. In particular, if previous FSM describes a block of another DE

model, the input events passed to invoke the inner DE subsystem by the FSM will have the

time stamp that is the current time of the outer DE system. Therefore, the inner DE sub

system will never execute ahead of the outer DE system. In other words, the notion of cur

rent time keeps consistent throughout all DE models in the hierarchy.

uv V/X

Figure 3.7 A directed loop that has zero delay can cause a problem in a DE system.

47

Consider an example shown in figure 3.8. Suppose that the FSM is in state a and the

DE subsystem has anempty event queue. One possible reaction of the FSM isdescribed as

follows: Ifan input event u occurs with a time stamp /, it is passed to the DE subsystem

and is processed in the event queue. Reacting to the event at input m, block Aproduces an

event with the time stamp t at its output x. Since this event still has the same time stamp as

the input event m, it is processed in the event queue. Subsequently, block B fires with the

event at its input v and produces an event with a time stamp r+1 at its output y. At this

moment, since there is no more event with the time stamp t in the event queue, one step of

the slave DE subsystem iscomplete. Then, the master FSM reacts to the input event u by

taking the implicit self transition back to state a.

However, yhmre events (those with time stamps greater than current time) in a slave

DE subsystem can cause difficulties. Consider the example offigure 3.8. In the previous

mentioned reaction, the event with the time stamp /+1 at output y is a fumre event and is

left in the event queue ofthe DE subsystem. Subsequently, if another input event uoccurs

with a time stamp r+2 for the FSM, it is passed to the DE subsystem. At this moment, the

FSM
y y

(2) - CE
u

Figure 3.8 A DE subsystem refines a state of an FSM.

48

event with the time stamp r+1 left in the DE subsystem becomes expired in the sense that

its time stamp is smaller than the time stamp of current input event.

To avoid the expired events, the slave DE subsystem should request of its master FSM

that it needs to be fired again at the time marked by the time stamp of every future event.

This request should in tum be propagated by the FSM up in the hierarchy. In the previous

example, the FSM needs to have an additional reaction at time r+1 of its environment as

requested by the DE subsystem. Thus, the event with the time stamp /+1 can be properly

processed in the DE subsystem, and is passed to the FSM as a local event y. As a conse

quence, the FSM takes the transition from state a to state p.

This request mechanism is not enough by itself because it cannot prevent expired

events that arise from state changes of the master FSM. Following the previous example,

suppose that a future event with a time stamp r+2 is left in the DE subsystem before the

FSM takes the transition from state a to state p. Even though the FSM reacts at time t+2 of

its environment as requested by the DE subsystem, the event with the time stamp r+2

remains in the DE subsystem, which is not invoked due to the state change of the FSM.

Suppose further that the FSM retums to state a after a period of time. Subsequently, if an

input event u occurs with a time stamp r+5, the event with the time stamp r+2 left in the

DE subsystem becomes an expired event now.

For those expired events resulting from state changes of the master FSM, one solution

is to simply purge them before the slave DE subsystem continues execution. However, this

does not really preserve the history of the DE subsystem after its suspension because the

expired events are ignored. The solution we prefer is to update the time stamps of the

expired events with the time stamp of current input events in the DE subsystem. Hence, in

the previous example, the event with the time stamp r+2 is updated with the time stamp

/+5, and then the DE subsystemcan continue execution without a problem.

49

3.3 Synchronous/Reactive Models

Asystem in the synchronous/reactive (SR) [10][42] model consists ofcommunicating,

blocks, asillustrated infigure 3.9. Execution ofthe system occurs ata sequence ofdiscrete

instants, called ticks (as in ticks ofa clock). Each tick is initiated by the environment, and

nothing happens between ticks. Ineach tick, each block instantly computes a function that

determines its outputs by observing its inputs, and each ofthe inputs and the outputs either

is absent (has noevent) or is present (has exactly one event) possibly with a value. Blocks

communicate through unbuffered unidirectional arcs. Communication among blocks is

instantaneous since anoutput determined by a block in a tick is observed byother blocks

at their inputs in that same tick.

Directed loops in the SR systems intrinsically have zero delay because computation

within blocks and communication among blocks are instantaneous. As a result, two prob

lems mayarise if thereexistdirected loops in an SR system.

• Contradiction: Consider the example in figure 3.9. Suppose that blocks A and B com

pute the following functions, respectively.

output ofA- j upper input is present and lower input is absent,
[absent; otherwise.

Instantaneous
computation

s

Instantaneous
communication

Figure 3.9 A synchronous/reactive (SR) system.

50

_ fpresent; inputis present,
output ofB = r ^

[absent; otherwise.

When the upper input of block A is present in a tick of the system, its output is present

if its lower input is assumed absent. However, this causes the output of block B to be

present, which contradicts the assumption that the lower input of block A is absent.

Even if the lower input of block A is assumed present, the output of block B will still

contradict the assumption. Hence, under this circumstance, the system appears to lack

a behavior.

• Ambiguity: In figure 3.9, suppose that blocks A and B compute the following func

tions, respectively.

fpresent; both inputs are present,
output ofA ^ ^

[absent; otherwise.

fpresent; input is present,
outputofB = ^*^ ' F i'

[absent; otherwise.

When the upper input of block A is present in a tick of the system, its output is present

if its lower input is assumed present. This causes the output of block B to be present,

which agrees with the assumption. However, even if the lower input of block A is

assumed absent, the output of block B will still agree with the assumption. Hence,

under this circumstance, the system exhibits multiple behaviors.

In the SR model, these directed loops that appear to have no or multiple behaviors are

often called causality loops.

To allow directed loops and maintain determinism (i.e. exactly one behavior given the

same inputs) for the systems, two constraints are imposed in the SR model. First, for each

input or output of each block, its alphabet is augmented with a special symbol X, inter-

51

preted to mean "unknown", and a partial order isdefined on the augmented alphabet. For

example, suppose that the augmented alphabet is {±, e, vj, V2}, which means {unknown,

absent, present with value Vj, present with value V2}. As shown in figure 3.10(a), a "flat"

partial order is defined on the augmented alphabet. In this partial order, ± is always the

bottom element, which is below ("weaker than", usually denoted as c) everything else in

the alphabet. The partial order is easily generalized onmultiple augmented alphabets. For

example, the partial order in figure 3.10(b) is defined on two of the augmented alphabets.

Secondly, all functions computed by the blocks are required to bemonotonic. A function/

is monotonic if

(xi,x2,...) E (yi,y2' •..)impliesthat/:xi,x2,...) .••)

where c is interpreted with respect to the partial order. With these two constraints, any SR

system (a network of monotonic functions) has a least fixed point, where "least" is with

respect to the partial order, according to the Knaster-Tarski fixed point theorem [30]. This

least fixed point is taken to be the behavior of such an SRsystem.

Finding the least fixed point is straightforward, in principle, in an SR system. Starting

with all inputs andoutputs as unknown (±), the blocks simply take turns to compute their

(e,e) (e,Vi) (e,V2) (v'i.elfvi.ViXvi.Vglfvg.ElCug.ViXva.Vg)

£ ^2 (Vi,±) (V2,±) (±,E) (±.Vi) (±,V2)

-L (±.i.)

(a) On an augmented alphabet (b) On two augmented alphabets

Figure 3.10 Partial orders defined in the SR model.

52

functions in a given order repeatedly until all inputs and outputs converge to a fixed point.

Even though choosing a good order for the blocks can greatly impact performance [35],

the resulting fixed point is always the same.

In SR systems, the functions computed by the blocks are allowed to change between

ticks, as long as they are monotonic in every tick. Thus, in a tick of the SR system, the

behavior of a block is divided into two phases, which we call produce and transition. In

the produce phase, the current function of the block is evaluated to determine its outputs

given the information about its inputs. In the transition phase, the function may be

changed in preparation for the next tick. Moreover, execution of the SR system also has

two phases. In the produce phase, each block can be invoked in its produce phase more

than once such that more outputs can be determined if newer information about inputs is

observed from outputs of other blocks. In the transition phase, each block is invoked in its

transition phase only once after the fixed point is found.

Most familiar functions are strict^ meaning that all inputs must be known before any

outputs can be determined. Strict functions are always monotonic. In the SR systems, a

directed loop of blocks with strict functions always has the least fixed point with all

unknown (±), which means that the directed loop is a causality loop. Nevertheless, it is not

uncommon to have functions where the outputs can be determined even if some of the

inputs are not known. The use of non-strict functions allows directed loops with less trivial

least fixed point in the SR systems.

3.3.1 FSM inside SR

When embedding an FSM as an SR block, we need to distinguish two phases in the

reaction of the FSM corresponding to the two phases of the SR block. Let us first focus on

the FSM without states being refined. It is simple if all inputs to the SR block are known in

a tick. In the produce phase, the FSM reacts to input events (translateddirectly from inputs

53

of the block) by possibly emitting output events (translated directly to outputs of the

block). In the transition phase, the FSM takes the enabled transition to change state. For

example, as depicted in figure 3.11, two FSMs are embedded within an SR system. In a

tickof the SR system, suppose that both inputs u and v are present and both FSMs are in

state a. The SR system executes as follows in an order with block A before block B.

• Produce phaseof A: Since input u is present, FSM A emits an output event x. In SR,

this makes output x known to be present.

• Producephase of B: Since input w is present observedfrom outputx, FSM B emits an

output event y. Then, in SR, output y is determined to be present.

• Transition phase of A: FSM A takes the transition from state a to state p.

• Transition phase of B: FSM B takes the transition back to state a.

Frequently, the inputs to the FSM as an SR block are not completelyknown. As in the

previous example, if we choose an order with block B before block A, the input w will be

unknown for the first produce phase of block B. Thus, we need to define how the FSM

behaves when there exist unknown inputs. One direct approach is to treat the FSM as a

Figure 3.11 Two FSMs are embedded within an SR system.

54

strict function. If any inputs are unknown, the FSM simply has all outputs as unknown in

the produce phase, or stays at current state in the transition phase. However, this approach

has an undesirable and unnecessary side effect: A directed loop connecting only FSMs is

always considered as a causality loop since the FSMs are treated as strict functions.

The approach we prefer is to enable the FSM inside an SR block to be evaluated as a

non-strict function if possible. Consider an example illustrated in figure 3.12, where two

FSMs are embedded within an SR system and are enclosed in a directed loop. When the

FSM in block A is in state a, the function mapping from inputs u and v to output x is

/^(M, v) = (m a v) V(—iM Av) = M.

This simplified function is not strict since it does not depend on input v. Therefore, if the

FSM is in state a and input u is observed to be present or absent, we can determine

whether output x will be present or absent without observing input v. The above analysis

can be automated to get a simplified function for each output at each state of an FSM using

standard techniques from digital logic design. For example, binary decision diagrams

(BDDs) [21] can be used for analyzing the pure FSM, and multi-valued decision diagrams

FSM
-tUAViX

"s.

ua v/x^
K y

u

Figure 3.12 Two FSMs are embedded within an SR system
and are enclosed in a directed loop.

55

(MDDs) [55] can be used for the valued FSM. These simplified functions will indicate for

each state what inputs need tobeknown to determine an output.

With the simplified functions, the two phasesof reaction for the FSM are modified as

follows. In the produce phase, the FSM examines whether the simplified function for any

output canbeevaluated byobserving whether enough inputs are known. If yes, the simpli

fied function is evaluated and the output is determined. If not, the output remains

unknown. In the transition phase, the FSM takes the transition enabled by current inputs,

but ignores the action of that transition. Consider the example of figure 3.12. Suppose that

input u is present and both FSMs are in state a. The SR systemexecutes as follows in an

order with block B before block A.

• Produce phase of B: Since input w is unknown, the simplified function (w)= w can

not be evaluated, and thus output y is unknown.

• Produce phase of A: Although inputv is unknown observed from output y,FSMA can

still determine output x to be present from the simplified function (m, v) = msince

input u is present.

• Produce phase of B: Since input w is present observed from output x, FSM B can

determine output y to be present fromthe simplified function /«(w) = w.

• Transition phaseof A: Underthe situation thatboth inputs u and v are present, FSMA

takes the transition from state a to state p.

• Transition phase of B: Under the situation that input w is present, FSM B takes the

transition back to state a.

Now consider that embedded within an SR system is a hierarchical FSM. Since a slave

subsystem of the master FSM may or may not support two phases of execution, we distin

guish two cases for the hierarchical FSM. If the slave subsystem of the current state sup-

56

ports two phases of execution, the produce phase of the hierarchical FSM should consist

of the produce phase of the slave subsystemfollowed by the producephase of the master

FSM. Similarly, the transition phase of the hierarchical FSM shouldconsist of the transi

tion phase of the slave subsystem followed by the transition phase of the master FSM. If

the slave subsystem of the current state does not support two phases of execution, then we

have to be more cautious. The function computed by the slave subsystem must be mono-

tonic in every tick of the outer SR system. To ensure this, one approach is to consider the

slave subsystem as a strict function. Therefore, in the produce phase of the hierarchical

FSM, one step of the slave subsystem will not be invoked until all of its inputs are known.

3.3.2 SR inside FSM

Embedding an SR model inside a state of the FSM is straightforward. When a state of

the FSM is refined into an SR subsystem, the semantics of SR are simply exported to the

outer model in which the FSM is embedded. If the outer system of the FSM supports two

phases of execution, the produce and the transition phases of the SR subsystem will be

invoked respectively corresponding to those of the outer system. If the outer system of the

FSM does not support two phases of execution, then one step of the SR subsystem is taken

to be one tick, which consists of the produce and the transition phases of the SR sub

system.

3.4 Synchronous Dataflow

As depicted in figure 3.13, a system specified in synchronous dataflow (SDF) [62][63]

consists of a set of blocks communicating through directed arcs. A block represents a

computational function that maps input data into output data. The data are divided into

tokens, which are treated as indivisible units. An arc represents a sequence of tokens con

ceptually carried by a unidirectional first-in-first-out (FIFO) queue. A. firing of a block is

57

an indivisible computation that consumes a fixed number of tokens from each input arc

and produces a fixed number of tokens on each output arc. The number of tokens con

sumed orproduced on each input oroutput arc can be viewed as part ofthe type signature

of theblock (along withthedatatype of the tokens, of course). These numbers can beused

tounambiguously define an iteration, orminimal set offirings that retum the FIFO queues

to their original sizes. This is done bywriting for each arc a balance equation

Pin = cfj

where the arc here is assumed to go from block i to block j, and on this arc, block i pro

duces Pi tokens and blockyconsumes cj tokens. The variables ri and ry are unknowns that

represent thenumbers of firings of blocks i and j, respectively. The balance equation tells

us that within one iteration the total number oftokens produced bythe source block equals

the total number of tokens consumed by the destination block.

Suppose that there areM arcs and blocks in an SDFgraph. There will beM balance

equations in N unknowns. It can be shown [62] that either there exists a unique smallest

positive solution for the unknowns, called the minimal solution, or the only solution is all

zeros. If the minimal solution exists, an iteration of the SDFgraph is defined to consist of

exactly r,- firings for each block i. For the example of figure 3.13, we have the minimal

Number of
tokens consumed

Computational
function

Sequence
of tokens

Number of
tokens produced

Figure 3.13 A synchronous dataflow (SDF) system.

58

solution where = 1, rg = 2, and rc = 1, and thus the number of firings for each block is

determined accordingly. If the solution is all zeros, the SDF graph is said to be inconsis

tent, and it will require unbounded sizes of FIFO queues. This SDF graph is considered

invalid. In figure 3.14, for example, each firing of blocks A and B produces one token on

the arc from B to C, and two tokens on the arc from A to C. However, each firing of block

C only consumes one token from each arc. Hence, repeated firings will cause tokens to

accumulate on the arc from A to C. By finding whether the minimal solution exists, it is

decidable whether a given SDF graph can be executed in bounded memory.

Once the number of block firings in an iteration is found for an SDF graph, the firing

schedule can be determined by simulating the execution of the SDF graph. This is done by

selecting any block that has enough tokens on its input arcs, simulating its firing effect on

the sizes of FIFO queues, and continuing until either all blocks have been selected as

many times as they should fire or no more block has enough input tokens. If each block is

selected as many times as it should fire, the sequential list of block selections forms one

possible firing schedule. Otherwise, the SDF graph is said to be deadlocked since all

blocks will halt firings and wait for tokens on some input arcs before an iteration is com

pleted. This SDF graph is also considered invalid. Figure 3.15 illustrates such an SDF

graph. Blocks A and B are both waiting for one token from each other before they can fire.

Figure 3.14 An inconsistent SDF graph.

59

The simplest SDF graphs are homogeneous, where every block consumes orproduces

exactly one token on each input oroutput arc. For such graphs, an iteration always consists

ofexactly one firing ofeach block. The schedule of the firings must obey the data prece

dences (a token mustbe in an FIFO queue before it can be consumed). Therefore, to avoid

deadlock, all directed loops in a homogeneous SDF must have at least one initial token

(often called a delay) on at least one arc in the loop. Forexample, the homogeneous SDF

graph in figure 3.15 deadlocks. The deadlock can be avoided by adding an initial token on

either arc, allowing one of the blocks to fire first. Arbitrary SDF may require more than

one token on some arcs. Nevertheless, it is decidable whether a given set of initial tokens

is sufficient to prevent deadlock.

3.4.1 FSM inside SDF

When an FSM describes a block of an SDF graph, we relate one firing of the SDF

block to one reaction of the embedded FSM. Moreover, the FSM must externally obey

SDF semantics. Hence, the FSM performs one reaction in one firing of the SDF block,

which must consume and produce a fixed number of tokens at every input and output. A

subtlety for SDF is that absence of a token is not a well-defined, testable condition. Thus,

the absence of an event in FSM must appear explicitly as a token in SDF. A possible

approach is described as follows. For a pure event, its presence and absence is encoded

Figure 3.15 A deadlocked SDF graph.

60

using a boolean-valued token. A false-valued token means the event is absent and a true-

valued token means it is present. For a valuedevent, both its status and value are encoded

using a valued token. One rarely-used value (such as "infinity") of the token is reserved to

mean the event is absent, and each of other values simply means the event is present with

that value.

As shown in figure 3.16, two FSMs are embedded within an SDF system. Since this

SDF graph is homogeneous, one iteration consists of a single firing of each block. Sup

pose that in some iteration the input tokens have values indicating that input event u is

present and input event v is absent, and both FSMs are in state a. The SDF system exe

cutes as follows.

• Fire A: Since input event u is present, FSM A takes the transition from state a to state

p, and emits the output event x. In SDF, presence of the event is encoded as a token at

output X.

Figure 3.16 Two FSMs are embedded within a homogeneous SDF system.

61

• Fire B: Since input event wis present indicated by the token passed from output x,

FSM Btakes the transition back to state a, and emits the output event y. In SDF, pres

ence of the event is encoded as a token at output y.

In fact, the SDF block in which an FSM is embedded can be non-homogeneous. I.e.

the block can consume and produce multiple tokens atsome inputs and outputs. Under this

circumstance, each token at a given input or output of the SDF block needs to be distin

guished as an input or output event of the FSM. This allows the FSM to refer to those

events in the guards and the actions. Therefore, we syntactically differentiate each token at

an inputor output as an event by concatenating its occurrence to its name. Borrowed from

the notation used in the Signal language [11], "m" denotes an event corresponding to the

last (newest) token consumed or produced at input or output m, "mST' denotes an event

corresponding to the second last token, "m$2" denotes an event corresponding to the third

last token, etc. Consider an example shown in figure 3.17. In the SDF, the number follow

ing a dot after an input oroutput name indicates the number of tokens consumed orpro

duced by the corresponding block. The guard of the transition from state a to state p in

L/A U$1 / X

Figure 3.17 Two FSMs are embedded withina non-homogeneous SDFsystem.

62

FSM A is "m a m$1". Thus, for this transition to be enabled, both tokens consumed from

input u must have the value representing a present event. The action of the transition from

state a to state a in FSM B is "y$l". Thus, when this transition is taken, the first (older)

token on output y has a value representing a present event (because y$l is mentioned), and

the second (newer) token has a value representing an absent event (because y is not men

tioned).

3.4.2 SDF inside FSM

When an SDF graph refines a state of an FSM, one step of the slave SDF graph is

taken to be one iteration. Thus, when the refined state is the current state, the hierarchical

FSM reacts with an iteration of the slave SDF graph followed by a reaction of the master

FSM. If the SDF graph is homogeneous, at each iteration each input of the SDF subsystem

will have an explicit token translated from the corresponding input event of the FSM even

if the event is absent.

If the SDF graph is not homogeneous, the semantics becomes more subtle because the

SDF subsystem may not have enough input tokens to complete one iteration in a reaction

of the FSM. One possible approach is that when input tokens are not sufficient to cycle

through one iteration, the SDF subsystem will simply return and produce no output

tokens. Only when enough input tokens have accumulated will one iteration of the SDF

subsystem be executed and output tokens be produced. However, this is not always the

most efficient approach, especially when the FSM is within another SDF system.

In figure 3.18, an SDF subsystem is embedded in an FSM that is within another SDF

system. Solving the single balance equation^ for the inner SDF subsystem indicates that

one iteration will consist of two firings of block C and one firing of block D. Therefore,

1. Thereis onlyonearc entirely inside theSDFsubsystem. Hence, thereis onlyonebalance equation, which
is rQ= 2rD.

63

the type signature for this subsystem indicates that four tokens will be consumed from

input u and two from input v, and two tokens will be produced to output y. An alternative

approach we choose is that the type signature of the inner SDF subsystem becomes the

type signature of the FSM itself. In other words, the outer SDF system must treat the FSM

as an SDF block with the given type signauire. As a result, the FSM will not react until

there are sufficient input tokens for the inner SDF subsystem to cycle through one itera

tion.

Since there may be more than one state of the FSM refined into an SDF graph, the type

signatures may not be the same in different states. In this case, the FSM cannot be treated

as an SDF actor because the number of tokens consumed or produced is dependent on the

1/V u$1 V u$2 V w$3 / X

l^A v$1

Figure 3.18 The type signature of the inner SDF subsystem becomes the type
signature of the FSM itself. Thus, the outer SDF system treats the
FSM as a non-homogeneous block with the given type signature.

64

state of the FSM. Therefore, if the outer system of the FSM is again an SDF graph, all

slave SDF graphs in the FSM are required to consume or produce the same number of

tokens at each input or output.

3.5 Dynamic Dataflow

Dynamic dataflow (DDF) [61][58][41] is a superset of SDF. In an SDF graph, each

block is required to consume and produce a fixed number of tokens at all its firings. In a

DDF graph, however, each block is permitted to consume and produce a varying number

of tokens at distinct firings. This enhancement by itself is sufficient to let the DDF model

have expressive power equivalent to a universal Turing machine [22]. The trade-off is that

bounded memory and deadlock properties become undecidable for a given DDF graph.

Furthermore, since the number of tokens consumed and produced by a block can vary

from one firing to another, compile-time scheduling as in SDF is no longer possible.

Instead, a run-time scheduler dynamically detects a block to fire according to its firing

rules, each of them specifying how many tokens are required on each input prior to a firing

of the block. Hence, the basic operation for the DDF scheduler is to repeatedly scan the

list of blocks in a given DDF graph, and to execute the block if it has sufficient input

tokens to fire according to its current firing rule.

3.5.1 FSM Inside DDF

When an FSM is embedded inside a DDF block, the key is to determine how many

tokens need to be consumed and produced at each input and each output of the block for a

firing. For each state of the FSM, we find the number of tokens to be consumed at each

input of the block by looking at the guards of all outgoing transitions. At least one token is

consumed at an input if the corresponding input event is mentioned in any of the guards.

In addition, if any input events refer to multiple tokens on the input using the notation

65

"M$r', we find the largest integer i mentioned in the guards, and this integer i plus one is

taken to be the number of tokens to be consumed. Figure 3.19 shows an FSM embedded

within a DDF system. In state a, two tokens are required from input u (because m$1 is

mentioned) and no token from input v (because no vis mentioned). In state p, only one

token is required from each of the inputs u and v. These numbers specify the number of

tokens that mustbe present on the inputs for the DDFblockto fire when the FSM is in the

given state.

Similarly, for each state of the FSM, we find the number of tokens to be produced at

each output of theblock by looking at theactions of alloutgoing transitions. Consider the

example of figure 3.19 again. In state a, output x will produce two tokens (because x$l is

mentioned). In state p, output x will produce no token (because nox is mentioned).

3.5.2 DDF inside FSM

When a DDF graph refines a state of an FSM, the firing rules of the DDF graph are

exported to the environment of the FSM. Hence, if the refined state is the current state,

onlywhenthe firing rules of the DDFsubsystem are metwill the FSMreact. Moreover, in

FSM

t/$1 /x$1

UAV

Figure 3.19 An FSM are embedded within a DDFsystem.

66

SDF, one iteration is determined by solving the balance equations. However, in DDF, the

balance equations do not apply in the same way. Therefore, one iteration of the DDF graph

inside an FSM must be clearly defined in order to be one step of the slave subsystem. In

Ptolemy [23], for example, one iteration in the DDF domain consists of one firing of each

source block (one without inputs) followed by the firings of non-source blocks as many

times as possible. In case those non-source blocks have tokens but do not have enough yet

at some inputs, source blocks may be invoked more than once to provide the required

tokens in one iteration. This ensures that the relative number of firings for each source

block is the same in DDF as it would be in SDF.

3.6 Communicating Sequentiai Processes

Under communicating sequential processes (CSP) [48][49] paradigm, a system is

modeled as a network of concurrently operating sequential processes (blocks), such as in

figure 3.20. The processes communicate with each other through unidirectional channels

(directed arcs). Each channel provides a direct communication between two processes via

rendezvous (or synchronous message passing [4]). This means that both sending and

Concurrent Sequential
among processes within processes

Communication
via rendezvous

between processes

^" Communication
via rendezvous

Figure 3.20 A communicating sequential processes (CSP) system.

67

receiving ofamessage on the channel must synchronize at every communication point. If

one process is first ready tosend amessage on a channel, it stalls until the other process is

also ready to receive the message on that channel. Similarly, ifone process isfirst ready to

receive a message on a channel, it stalls until the other process is also ready to send the

message on thatchannel. When both processes are ready, the message transfer is initiated

and completed as an indivisible action.

Figure 3.21 illustrates an example of rendezvous communication among those three

processes of figure 3.20, where A and B are connected by a channel x, and B and C are

Process A Process B Process C

Process A
sends message

on channel x

Process B
receives message

on channel x

Process B stalls

Processes A and B
simultaneously involve
in transfer of message

on channel x

Process B
receives message

on channel y

Process C
sends message

on channel y

Process C stalls

^
Processes B and C

simultaneously involve
in transfer of message

on channel y

Figure 3.21 An example of rendezvous communication among three processes.

68

connected by a channel y. When process B wishes to communicate with process A by

receiving a message through the channel jc, it stalls since process A does not want to send

the message yet. Subsequently, when process C tries to send a message on the channel y, it

stalls too and waits to rendezvous with process B. Later when process A decides to send

the message on channel x, processes A and B simultaneously involve in transfer of the

message on channel x, and then both processes proceed as normal. When process B pro

ceeds to receive the message on the channel y, rendezvous between processes B and C

occurs on channel y.

The basic rendezvous mechanism only allows a process to wait on one channel at a

time. If a process wishes to communicate with other processes through multiple channels,

the order in which those channels will rendezvous has to be known and fixed. In the exam

ple of figure 3.21, process B wishes to receive the message on channel x before channel y.

Hence, even though process C sends a message before process A does, process B waits to

rendezvous with process A first.

Often, a process wishes to wait on any one of multiple channels. This can be achieved

by nondeterministic rendezvous, which is an extension of the basic rendezvous. Nondeter-

ministic rendezvous allows a process to conditionally receive or send messages and thus to

monitor on multiple channels until one of the monitored channels completes a rendezvous.

Consider the example of figure 3.20. Suppose that process B conditionally receives a mes

sage on channel x ory. As shown in figure 3.22, when process C first sends the message on

channel y, process B will rendezvous with process C. Later when process A sends a mes

sage on channel x, it stalls until process B wishes to conditionally receive the message

again.

69

3.6.1 FSM inside CSP

When an FSM is embedded as a CSP process, an input event of the FSM is present

only when thecorresponding input of theCSP process completes a rendezvous. Thus, the

trigger of theguard in each transition of the FSM specifies a setof inputs that have to ren

dezvous for the transition to beenabled. For each state of the FSM, we geta list of inputs

including those mentioned by the triggers of the guards in any outgoing transitions. We

call these inputs the guarded inputs, which need to rendezvous when the FSM is in the

given state. In a reaction, the FSM keeps conditionally receiving the message from each

Process A Process B Process C

Process A
sends message^

on channel x

Process A stalls

Process B
conditionally

receives message
on channel x
or channel y

Process B stalls

Processes A and B
simultaneously involve
in transfer of message

on channel x

Processes B and C
simultaneously involve
in transfer of message

on channel y

Process B
conditionally

receives message
on channel x
or channel y

Process C
sends message

on channel y

Figure 3.22 An example of nondeterministic rendezvous among three processes.

70

guarded input until one transition is enabled or every guarded input completes a rendez

vous at least once. To maintain fairness among guarded inputs, we restrict each guarded

input to rendezvous at most once in a reaction. Similarly, when an enabled transition is

found in a reaction, the FSM keeps conditionally sending the message on each output

listed in the action of the enabled transition until each of those outputs completes a rendez

vous once.

3.6.2 CSP inside FSM

When a CSP model refines a state of an FSM, one step of the slave subsystem needs to

be defined. A possible approach is to let the deadlock of the CSP model mark the end of a

step for the subsystem [80]. Hence, one step of a slave CSP subsystem is the execution of

that subsystem until no processes can make progress (i.e. all processes stall).

Furthermore, the CSP semantics needs to be exported to the environment of the FSM.

In particular, if the outer model of the FSM is another CSP system, the outer CSP system

must treat the FSM as a CSP process, which will rendezvousfirst on the inputs required by

the inner CSP subsystem and then on the guarded inputs of the FSM. One subtlety is that

the CSP model by itself is not compositional [80]. Hence, the processes embedded within

the inner CSP subsystem may not have the same behavior as the processes embedded

directly within the outer CSP system.

71

4

Applications

4.1 Embedded Systems

An embedded system [56] is acomplex device with at least ageneral-purpose or appli

cation-specific microprocessor built into the device. Unlike adesktop or laptop computer

that also utilizes amicroprocessor, the functionality ofan embedded system is solely ded

icated toa specialized purpose, which typically involves the interaction with the real world

(such as human users, motor vehicles, and the physical environment) through sensing and

actuating interfaces. Therefore, a sizable portion ofthe specification requirements [37] for

designing the embedded system tends to focus on the control logic that govems the inter

action of the system with the real world.

Applications ofembedded systems are abundant and quite diverse. Examples of the

applications include consumer electronics (digital watches, digital cameras, compact disk

players, etc.), household appliances (microwave ovens, washing machines, etc.), real-time

controllers (railroad controllers, anti-lock braking systems, automotive engine controllers,

etc.), and telecommunication systems (modems, cellular phones, answering machines,

etc.).

72

In the following sections, we will demonstrate how to apply *charts to embedded sys

tems in two examples: the digital watch (interacting with the human user) ^d the railroad

controller (interacting with trains).

4.1.1 Example: Digital Watches

4.1.1.1 Problem Description

The digital watch is a commonly used example for specification of control functional

ity by various specialized languages, such as Statecharts [43], Argos [53], and Esterel

[15]. Our version of the digital watch (see figure 4.1) contains a display area, a two-tone

beeper, a light, and four control buttons as the user interface. This watch can display the

time in either am/pm or 24-hour format. The beeper can be enabled to alarm on a preset

time daily, to chime on the hour, or both. The light is included for illumination and has an

automatic shut-off feature. The four buttons are marked as mode, update, select, and

adjust, respectively, for distinction.

The human user interacts with the digital watch through certain sequential combina

tions of button pressing, which are summarized as follows.

update

Alarm On
Chime On

PM

mode

c
J

select

SUN

JU-ir
L U jb

adjust

Figure 4.1 Our version of the digital watch.

73

Time mode setting:

1. Press mode to switch to time display if the watch is not in time display.

2. Press adjust to switch between am/pm and 24-hour formats.

Alarm mode setting:

1. Pressmode to switch to alarmdisplay if the watch is not in alarmdisplay.

2. Press adjust to enable the daily alarm, the hourly chime, or both.

Time and day updating:

1. Press mode to switch to time display if the watch is not in time display.

2. Pressupdate to switch to time update in which second digits will flash.

3. Press select to switch the flashing to second digits, minute digits, hour digits, or

day of week letters.

4. Press adjust to reset the second as zero or to advance the minute, the hour, or the

day of week, when the digits or lettersare flashing.

Alarm updating:

1. Press mode toswitch to alarm display if the watch is not inalarm display.

2. Press update to switch to alarm update in which minute digits will flash.

3. Press selectto switch the flashing to minute or hour digits.

4. Press adjust to advance the minute or the hour, when the digits are flashing.

Light illumination:

1. Press mode twice to turn on thelight. The light is automatically shutoffafter a cer

tain period of illumination.

74

4.1.1.2 ^charts Realization

To simulate the real-time behavior of the digital watch, we use DE as the topmost level

(see figure 4.2) of our *charts realization to model the environment of the watch (includ

ing the human user). This DE model consists of a display, a beeper, a light, a clock to

DE

clock

user

time

adjust

select

update

mode

mode
control

mode light
control

resetSec

incrMin

inciHr

incrDay

IncrAlarmMin

IncrAlarmHr

toggleTimeMd

toggleAlarmMd

toggleOisp

toggleOispUpd

toggleTimeUpd

toggleAlarmUpd

toggleLight

absent
event

coder

time

resetSec

inciMin

incrhir

incrDay

IncrAlarmMin

IncrAlarmHr

toggleTimeMd

toggleAlarmMd

status
keeper

alarm beeper

chime

second

minute

hour

day

alarmMin

alarmHr

dispFormat
display

isAlarmOn

isChimeOn

light

Figure 4.2 The topmost level of the *charts realization for our digital watch.

75

generate time ticks, a user that asserts the button pressing events, a status keeper to main

tain current time and alarm settings, an absent event coder to performencodingof absent

events to zero-valued tokens (for the SDF model within the status keeper, which will be

detailed later), and two control units: light control and mode control.

The computation part of the watch mainly resides in the status keeper, which is mod

eledby an SDFgraph illustrated in figure 4.3(a). This SDFgraph contains a time keeper

and an alarm keeper to keep track of current time andalarm settings, respectively. It also

includes the comparison and logicblocks for detecting the time to soundthe alarmand the

chime, respectively. Moreover, as shown in figure 4.3(b) and (c), these two SDF graphs

further refine the time keeper and the alarm keeper, respectively, which are basically

composed of counters with various maximum counts.

Inside the lightcontrol unit of the watch, we have a hierarchical FSM depicted inFig

ure 4.4 to control the illumination of the light. In figure 4.4(a), this top-level FSM has

three states: lightoff,wait mode, and light on. It starts in the lightoff state. When a mode

event arrives, the FSM takes the transition to the wait mode state and waits for another

mode event to arrive. If the mode event arrives in time, the FSM emits a toggleLight event

to turn on the light and takes the transition to the light on state. Otherwise, if the mode

event does not arrive before a local timeout event occurs, the FSM gives up waiting and

takes the transition to the light off state. This timeout event is asserted by a slave SDF

graph (see figure 4.4(b)) shared by the waitmode and the light on states. In the light on

state, the FSM waits until the timeout event occurs. Then, the FSM emits the toggleLight

event to turn off the light and takes the transition to the light off state. Even though the

wait mode and the light on states share the same slave SDF graph, the counting for time

outs in the SDF graph is reset every time when either state is entered with the initial entry.

Inside the mode controlunit of the watch, we have another hierarchical FSM (see fig

ure 4.5) to govern mode switching of the watch in response to the button pressing events

76

(a)

(b)

(C)

SDF

time.

resetSecl
incrMin:

incriirl
incrPay'

togglaTimeMdl

incrAlarmMin,

incrAlarmHr,
toggleAlamMdl

time

time
keeper

alarm
keeper

resetSec

reset

resettable
counter

(60)

incrMin

incrHr

incrOay

toggteTimeMd

SDF

incrAlarmMin

incrAlarmHr

toggleAlarmMd

SDF

second

minute

hour T—r
day 1 i 1
dIspFbrmat I I

logic

NVn^squa
Jo

aiarmMIn

alarmHr

isAlarmOn

isChimeOn

value

carry

ru
¥

->3qua
to

logic
or

counter
(60)

value

carry

ry
logic • 1
not

counter

(2)

counter

(60)

counter
(24)

counter

(2)

vatue

carry

carry

vatue

carry

value

carry

logic
and

counter

(2)

value

carry

logic
and

logic
nor

logic
and

logic
or

counter
(24)

value

carry

logic r
not

aiarmMin

alarmHr
H

isAlarmOn

isChimeOn

logic
and

logic
or

aiarm^

chlme^

second^

minute^,
/jOUfT

dIspFormat.

alarmMin^

alarmHr^

isAlarmOn^
isChimeOn^

second
W

minute
H

hour

—H

counter

(7)

day

dispFormat

Figure 4.3 The status keeper of figure 4.2 is modeled by this hierarchical SDF graph.

77

and to generate the corresponding control events. The top-level FSM in figure 4.5(a) has

fourstates: time display, alarm display, time update, andalarm update. It startsin time

display. The mode event switches the watch between time display and alarm display. In

addition, if in time display or alarm display, the watch is switched by an update eventto

time update or alarm update accordingly, and vice versa. Moreover, the four states of

this FSM are all further refined. The FSM shown in figure 4.5(b) refines the time display

state and manages the display format (eitheram/pmor 24-hour). The alarm display state

is refined by the FSMin figure 4.5(c), which takes careof enabling or disabling the daily

alarm or the hourly chime. Figure 4.5(d) and (e) shows the FSMs that refine the time

update and the alarm update states, respectively. These two FSMs are in charge of the

time and the alarm updating, respectively.

FSM timeout

mode mode / toggleLight

(a)
timeout (Migh^

I modeJ - V on }

timeout ! toggleLight

(b)

SDF

time

constant

add

delay

less
than

timeout

Figure 4.4 Inside the light control of figure 4.2, we have this hierarchical FSM.

78

FSM

time Y
displayy,

mode/ toggleDisp

alarm

update / toggleDispUpd

\ mode / toggleDisp '

update / toggleDispUpd /
^ /

^ update / toggleDispUpd
update TtoggleDispUpd

time alarm

FSM FSM

adjust/ toggleAlarmMd

adjust / toggleTimeMd off
alarm V ,

on)

am/pm 24-hour

adjust/ toggleTimeMd

FSM

adjust/ resetSec adjust/ IncrMIn

select/ toggleTlmeUpd

second minute

adjust/UoggleAlarmMd adjust / toggleAlarmMd

FSM

both
chime

on

adjust/ toggleAlarmMd

adjust/ IncrAlarmHr

select/ toggleAlarmUpd

select/ toggleTlmeUpd select/vloggleTimeUpd minute hour

select/ toggleAlarmUpd
day hour

adjust/ IncrAlarmMIn

select/ toggleTlmeUpd

adjust/ incrDay adjust/ IncrHr

(d) (e)

Figure 4.5 Inside the mode control of figure 4.2, we have this hierarchical FSM.

79

4.1.2 Example: Railroad Controllers

4.1.2.1 Problem Description

As shown in figure 4.6, there are two circular railroad tracks in the railroad control

problem [3]. Two trains (AandB) travel counterclockwise on the twotracks, which merge

on a bridge that can accommodate only one track. In addition, two signals (A and B) are

placed at both entrances of the bridge, respectively, for controlling the access to the

bridge. When train A arrives at theentrance of thebridge, if signal A is green, train A may

enter the bridge. Otherwise, if signal A is red, train A must wait until the signal turns

green, and then it may enter thebridge. Signal B operates in the same fashion as signal A

does. However, a head-on train crash may happen if the signals are both green when the

trains both arriveat the entrances of the bridge. Therefore, a railroad controller needs to be

carefully designed to coordinate the two signals.

signal
train

bridge

train
signal

Figure 4.6 The railroad control problem.

80

One simple and feasible railroad controller operates as follows, assuming that both

signals start as green and no train is on the bridge yet.

• Case I (Only one train arrives): Suppose that train A arrives at the entrance of the

bridge. The controller keeps signal A as green but changes signal B to red. Then, train

A may proceed onto the bridge. When train A leaves the bridge, the controller

switches signal B back to green.

• Case n (One train arrives before the other): Suppose that train A arrives at the entrance

of the bridge first. The controller keeps signal A as green but tums signal B into red.

This allows train A to access to the bridge. At this point, suppose that train B also

arrives, this train must stop and wait since signal B is red now. When train A exits from

the bridge, signals A and B are changed to red and green, respectively, by the control

ler. Then, train B may enter the bridge. When train B leaves the bridge, the controller

tums signal A back into green.

• Case III (Both trains arrive at the same time): When both trains arrive at the entrances

of the bridge at the same time, we choose to grant the bridge-accessing privilege to

train A. Therefore, the controller keeps signal A as green but switches signal B to red.

When train A leaves the bridge, the controller tums signal A and B into red and green,

respectively. Then, train B may proceed onto the bridge. When train B exits from the

bridge, signal A is changed back to green by the controller.

4.1.2.2 ^charts Realization

Our *charts realization for simulating the railroad control problem is shown in figure

4.7. To resolve the directed loops due to communication between the railroad controller

and the trains, we use the SR model as the topmost level (a). This SR system contains a

clock to generate ticks, the railroad controller, the two signals, and the two trains. In addi-

81

SR

speed
A

move

H

amve

train
A

leave

aniveA , r leaveA

signal

signal
A

(a)
clock

signalA

controller

(b)

(c)

speed
B

move

H

aniveB

amve

leaveB signalB
signal

B

leave ^rsignal ^ ^

train
B

FSM

^ greem
^ greeny

\

leaveA a -,arriveB
i signalA{0), signalB{0)^ ' ^yarriveA

^^1 signalA{0), ->arriveA a amVeS^^
signalBO) / signalA(^), signalB{0) ^

\

->arriveA a leaveB
Sv / signalA{0), signalB(0)

/A greerivF'
V Bred >L

arriveA a leaveBi signalA[Q), signalB{-\) A red A'
_J^B greeiy

' I ^ I
leaveA a arriveB/signalA{^), signalB(0)

-tIeaveA a arriveB
i signalA{0), signal^l) arriveA a -^leaveB :

/ signalA(^), signalB{0)

FSM

location(0)

move [location != 3]
/ /ocaf/o/7((/ocation+1)7o20)

Off

bridge

move [location == 9]
/ leave, /ocafro/7((/ocation+1)%20) move[location !=9]

/ loc^on({locatiom^^)%20)

move[location = 3 a signal == 0]
_ / arrive, location[{location+1)7o20)

move [location == 3 a signal != 0]
/ arrive

location

Figure 4.7 Our ^charts realization for simulating the railroad control problem.

82

tion, two blocks, speed A and speed B, are included to adjust the speeds of the two trains,

respectively. As shown in figure 4.6, each railroad track is divided into 20 segments. Every

segment is marked with a number (or two numbers for those shared by two tracks) in order

to indicate the location of the train on the track. The speed of a train is given by the num

ber of ticks for the train to move one segment. In other words, in every certain number of

ticks, each of speed A and speed B generates a move event to allow the corresponding

train to move one segment.

The controller is modeled by the three state FSM illustrated in figure 4.7(b). The

states are named by the statuses of the two signals: A green B green, A green B red, and

A red B green. The controller starts in the A green B green state. On the other hand,

each of the trains, train A and train B, is modeled by an FSM (see figure 4.7(c)) with two

states: off bridge and on bridge. Each train starts in its off bridge state with its location

initialized to segment 0. Before the location reaches segment 3 (i.e. the entrance of the

bridge), each train simply moves one segment whenever the corresponding move event is

present. Then, we distinguish the three cases as described in previous section.

• Case I (Only one train arrives): Suppose that the location of train A reaches the seg

ment 3. When a move event is present, even though train A cannot decide which tran

sition would be taken for now, the arrive event is known to be present since it actually

only depends on the move event. This helps the controller know that the arriveA event

is present and thus that the signalA and the signalB events are present with the values 0

(meaning green) and 1 (meaning red), respectively. Now, train A can decide which

transition is to be taken, and as a result it moves its location by one segment and pro

ceeds to the on bridge state. In the mean time, the controller takes the transition to the

A green B red state. In the on bridge state, whenever a move event is present, train A

simply moves its location by one segment until its location reaches segment 9 (i.e. the

83

train is leaving the bridge). Then, train A emits a leave event, moves its location by

one segment, and proceeds to the off bridge state. This causes the controller to emit

the signalA and the signalB events both with the value 0 and to take the transition to

the A green B green state.

Case II (One train arrives before the other): Suppose that the location of train A

reaches the segment 3 first. When a move event is present for train A, as discussed in

case I, train A and the controller proceed to the on bridge and the A green B red

states, respectively. At this point, suppose that the location of train B also reaches the

segment 3. Whenever a corresponding move event is present, similarly, the arrive

event of train B is known to be present since it actually only depends on the move

event, and thus the arriveB event is present in the controller. Now, the controller still

needs to know whether the leaveA event is present or not, i.e. whether the location of

train A reaches the segment 9 or not. If train A does not arrive at the segment 9 yet,

the controller remains emitting the signalA and the signalB events with the values 0

and 1, respectively, and thus train B remains in the off bridge state. Otherwise, if

train A arrives at the segment 9, the controller emits the signalA and the signalB

events with the values 1 and 0, respectively, and takes the transition to the A red B

green state. This allows train B to enter the on bridge state. In this state, whenever a

corresponding move event is present, the location of train B is increased by one seg

ment until it reaches the segment 9. Then, train B emits a leave event, moves its loca

tion by one segment, and proceeds to the off bridge state. This causes the controller

to emit the signalA and the signalB events both with the value 0 and to take the transi

tion to the A green B green state.

84

• Case in (Both trains arrive at the same time): By observing the two outgoing transi

tions of the A green B green state in the controller, we can see that train A is given

higher priority to access to the bridge. Therefore, even when both train A and train B

arrives at the segment 3 at the same time, the controller proceeds to the A green B red

state, and only train A can proceed to the on bridge state. The rest of the behavior is

basically the same as discussed in case U.

4.2 Image Processing

In addition to performing intensive numeric computation, image processing systems

frequently have sophisticated control functionality for sequencing computation tasks,

switching among operation modes, coordinating interaction, and managing configuration,

etc.

An interesting example is the MPEG [19] standard for compression and decompres

sion. In this standard, there are various situations that are more suitable to be realized by a

control-oriented model, such as the FSM, than by a computation-oriented model. Two of

those scenarios are described as follows.

• The MPEG bitstream is a serial stream of bits, and has a well-defined syntax. It con

sists of intermixed different layers, each of them with its own headers and data. To

construct or parse the MPEG bitstream involves a significant amount of decision mak

ing.

• The MPEG standard has three different frame formats: I, P, and B frames. Each of the

frame formats corresponds to a specific set of encoding and decoding schemes. The

MPEG encoder or decoder needs to switch among three different operation modes

depending on which one of the three frame formats is currently processed.

85

In the following section, we willshowhow to applyour *charts usingthe example of a

simple coding method: run-length coding.

4.2.1 Example: Run-Length Coding

4.2.1.1 Problem Description

Run-length coding [52] is oneof the simplest variable ratecoding methods [38]. This

coding can lead to significant data compression, especially when the source tends to con

tain long clusters of repeated symbols. The key idea is to code the source into a sequence

of symbols, each of them followed by the number of its repetitions, the run length. For

example, a binary source, such as the black and white pixels in digital facsimile, may con

tain longruns of zerosand, occasionally, ones, such as 000001100000000. As a result, its

run-length code is 051208.

4.2.1.2 ^charts Realization

Figure 4.8 shows our realization of run-length coding using *charts. Since the length

of the resulting code using this coding method is changeable, weneed to use DDF (instead

of SDF) as the topmost level depicted in figure 4.8(a). This DDF system models the envi

ronment for simulating the run-length coding. It includes a source, an encoder, a decoder,

and a display.

The encoder is modeled by an FSM, as shown in figure 4.8(b), with two states: start

and continue. It begins in the start state. When an input is read from the source, the

encoder saves the input as a local symbol, initializes a local count to 1 for storing the run

length of the symbol, and takes the transition to the continue state. In the continue state,

theencoder reads another inputfrom the source, anddistinguishes three cases.

86

(a)

(b)

(c)

DDF

source
input^

encoder
code code

decoder
output

display

FSM

input
/symboiilnpuf), count{^)

symbol, count

input [Input = symbol\
i count{count-¥A)

continue

input{input~-^
i code{symbol), codS$^{counf| [input != symbolic

/ code{symbofj, coc/e$1{cot/nO,
symbol{infDuf), count{1) \

FSM

code i symbol{code)
symbol, count

f wait ^
\symbolJ

^ wait ^
k run J

[count ~ 1] N.
/ output{symbol) \

code [code == 1]
/ output[symbofl /code [code > 1]

/ / output{symbd{^,
count{code-1)

more^f^
V run J

[count V—^
/ output{symbol), ()
count{count-1) y

Figure 4.8 Our realization of the run-length coding using ^charts.

87

• If the input is a mark for the end of source (assumed to be -1 here), the encoder writes

to the code with the symbol and its county respectively. Then, the encoder takes the

transition to the start state, and is ready to encode another source.

• If the input is not an end-of-source mark but is the same as the current symbol, the

encoder simply increases the count of the run length by 1.

• Otherwise, the encoder writes to the code with the symbol and its count, respectively,

updates thesymbol with the new input, and resets the countof the run length to 1.

Tomodel thedecoder, we have an FSM(seefigure 4.8(c)) withthree states: wait sym

bol, wait run, and more run. The decoder starts in the wait symbol state, and when a

code is read, saves the code as a local symbol and takes the transition to the wait run state.

Then, the decoder reads another code, which is the run length of the symbol. If the codeis

equal to 1, the decoderwrites to the outputwith the symbol onlyonceand takes the transi

tion to the wait symbol state.Otherwise, if the code is greaterthan 1, the decoder needsto

output the symbol more than once. The decoder achieves this by writing the symbol to the

output the first time, storing the remaining run length (i.e. the code decreased by 1) to a

local count, and taking the transition to an instantaneous state, the more run state. In the

more run state, the decoder keeps writing to the output with the symbol and decreasing

the countof the run length by 1 until the count is equal to 1.Then, the decoder writes the

symbol to the output the last time and takes the transition to the wait symbol state.

4.3 Communication Protocols

In communication networks [85], such as computer networks, communication

between two or more parties takes place frequently by the exchange of information in a

wide range of particular formats. Most of the time, this communication activity needs to

strictly follow some sort of order to ensure that the transferred information is complete

88

and correct. Therefore, a communication protocol [50][79], or a set of precisely-defined

rules, is required to regulate the exchangeof information. If the communicationprotocol is

not followed correctly, the communication activity will not be successful.

Conceptually, a communication protocol can be described as two or more distributed

components coordinated by a concurrency model [25]. These components elaborate the

logical control of the protocol and the corresponding guarded actions. Thus, they are best

characterized as a set of conditional sequences and input/output actions [9]. The concur

rency model govems the concurrency and synchrony among those distributed components

to accomplish the communication activity.

In terms of *charts, the FSM is the most appropriate model for specification of the pro

tocol components. As for the choice of the concurrency model, although there are various

potential candidates, two of them are particularly of interest. The first one is the DE

model. This model is known for its strength in modeling the communication infrastructure

of distributed systems. In particular, the components within a DE system evolve at the

time instants of consecutive events, and their reaction time can be assumed less than the

duration between events. This notion serves well to model the interaction of the protocol

components, which usually respond to occurring events with a negligible latency as com

pared to the duration between events [25].

In fact, we often do not care about the exact timing of the communication activity to

occur in the simulation of a protocol. What we need for the concurrency model is its abil

ity to maintain the communication activity among the protocol components and to detect

the interruption if it occurs. This leads to another concurrency model of interest: the CSP

model. The rendezvous mechanism of the CSP model provides sufficient communication

infrastructure for the protocol components without the hassle of knowing the exacting tim

ing. If any components try to exchange information with the others but fail to reach ren

dezvous, they will stall. Therefore, this allows us to detect the situation that the

89

communicationactivityfails to continue if all componentsstall, i.e. if the simulationof the

model is deadlocked.

In the following sections, we willapply*charts to twoexamples of the communication

protocols for demonstration. We will first use the DE model and then the CSP model as the

concurrency models in these two examples.

4.3.1 Example: Two-Phase Commit Protocol

4.3.1.1 Problem Description

The two-phase commit protocol [13] is a widely used protocol in distributed database

systems to maintain the data consistency among them. A coordinator manages a group of

participating databases, and can request allparticipants tocommit a particular transaction.

The goal of the two-phase commit protocol is to ensure the atomicity of the transaction

that accesses multiple participating databases. "Atomicity" means that either all partici

pants commit the transaction or none of them does.

This protocol contains two phases and innormal situations proceeds as follows.

• The voting phase:

1. The coordinator sends a message to all participants to request them to vote for yes

if they are ready tocommit a transaction orno if they are not.

2. The participant receives the vote request and responds by sending tothe coordina

tor a message containing that participant's vote: yes or no.

• The decision phase:

1. The coordinator collects the vote messages from all participants. If all of the votes

are yes, then the coordinator decides to commit and sends a message to inform all

participants. Otherwise, the coordinator decides to abort and sends a message to

inform all participants.

90

2. The participant waits for a message containing the coordinator's decision: to com

mit or to abort. After the message is received, the participant either commits or

aborts the transaction depending on the decision.

In the protocol, there are three places that the coordinator or the participant needs to

wait for a message before it proceeds.

• In the voting phase (2), a participant waits for a vote request from the coordinator.

• In the decision phase (1), the coordinator waits for a vote from a participant.

• In the decision phase (2), a participant waits for a decision from the coordinator.

However, the expected message may never arrive due to failures. This may cause the

protocol to stall indefinitely. To avoid this, a timeout mechanism can be used. When the

waiting is more than a certain amount of time, the coordinator or the participant is inter

rupted by a timeout, and then it takes some special action to allow the protocol to con

tinue. Following are possible timeout actions, one for each of the previous three scenarios.

• In the voting phase (2), since the waiting prevents the participant from voting, it even

tually prevents the coordinator from receiving that vote in the decision phase (1).

Therefore, we can defer the timeout handling until then to save the effort.

• In the decision phase (1), when the coordinator waits for a vote from a participant, it

has not reached any decision, and no participant can commit yet. Hence, if the timeout

occurs, the coordinator can simply decide to abort and send a message to inform all

participants to follow this decision.

• In the decision phase (2), when a participant times out waiting for the coordinator's

decision, if the participant voted no before, it can abort unilaterally since the coordina

tor's decision is presumably to abort. However, if the participant voted yes before, it

cannot unilaterally commit or abort and must find out the coordinator's decision before

91

it can proceed. One solution is that the participant replies with an additional message

to the coordinator after it receives the coordinator's decision. This defers the timeout

handling to the coordinator: If the coordinator times out for collecting the replies, it

retransmits the decision to the participants.

4.3.1.2 ^charts Realization

The topmost level of our *charts realization for the two-phase commit protocol is

shown in figure 4.9. This DEsystem contains a coordinator, two participants, a clientthat

instructs the coordinator tostart a transaction at a randomly chosen time, a clock togener-

DE

clock

client

time
H

start
H

votel

replyl

vote2

repfy2

coordinator

request

decision

forward

channels

backward

channels

J
request

decision

request

decision
H

partlclpanti

partlcipant2

Figure 4.9 The topmost level of our ^charts realization
for the two-phase commit protocol.

92

vote

reply

vote

reply

ate time ticks, and the forward channels and the backward channels to simulate the

lossy channels that randomly drop or delay the transferred messages.

Both of the participants, participant! and participant2, are modeled by the two state

FSM depicted in figure 4.10(a). The states are wait request and wait decision. Each par

ticipant starts in its wait request state. When a participant receives a request event, it

sends a vote event with the value of a local ready event and takes the transition to the wait

decision state. The ready event is generated by an SDF graph (see figure 4.10(b)) that

refines the wait request state, and its value is randomly either 1 or 0 to represent that the

participant is ready to commit or not, respectively. When in the wait decision state, if the

participant receives a decision event, it responds by sending a reply event and making tran

sition to the wait request state.

(a)

SDF

(b)

request

wait

request

random

constant

request! vote{reacM

decision i reply

wait

decision

greater
than

ready

Figure 4.10 The participanti and the participant2 in figure
4.9 are both modeled by this hierarchical FSM.

93

Figure 4.11(a) shows anFSM thatmodels thecoordinator in figure 4.9.This FSM has

three states: idle, wait votes, and wait replies. The coordinator begins in the idle state,

and when a start event is received, sends a request event and takes the transition to the

wait votes state. Then, the coordinator stays in the wait votes state until a local result

event occurs. This result event contains a value either 1or 0 representing that the result of

the votesis to eithercommit or abort, respectively. When the resulteventoccurs, the coor

dinator sends the value of result as a decision event and takes the transition to the wait

replies state. When in the wait replies state, thecoordinator stays until a local done event

occurs. The value of the done event iseither 1or0 meaning that the collection ofreplies is

complete or not, respectively. If the collection is not complete, the coordinator sends the

decision again. Otherwise, the coordinator takes the transition to the idle state.

Inside the wait votes state of figure 4.11(a), we have a three state FSM illustrated in

figure 4.11(b). The main functionality of this FSM is to find out the result of the votesand

then to inform its master FSM by a result event. In general, there are two situations in

which the FSM can send the result event. If the vote! and the vote2 events both have

arrived in time, the result of the votes is the logical "and" of these two votes. Otherwise, if

one or both of the votes do not arrive before a local timeout event occurs, the result is

assigned a value 0 that is considered as to abort. The timeout event is asserted by a slave

SDFgraph (see figure 4.11(d)) sharedby the three states of this FSM.

Similarly, inside the wait replies state of figure 4.11(a), we have another three state

FSM, as shown in figure 4.11(c), to find out whether the collection of the replies iscom

plete or not and then to inform its master FSM by a done event. All three states of this

FSM alsoshare the same slave SDF graph shown in figure 4.11(d).

94

(a)

(b)

(c)

(d)

done [done ==^] v^replies

done [done ^ 0] / decisiontresultj

start/ request
result, done

result/ declslonlresuK)

FSM
V

\

timeout/ result(0) >
\ [

timeout

/ \

timeout / \
/ resi///(OK.r^ \

wait A
vote2y

/ wait ^

J 1

yVoi^A-iVote^

\rivote1 A vote2

vote2 / resuitivote 1

/ resultivotel

\

\

A^yote2) \

Avote2) !
^ I

\

votelAVOte2

,' / resuiti vote 1 a vote2)
\

\ /

p/

timeout/ resultiO) ^

^0^ \ '

wait ^'
votely, ,

\

\

FSM /

/

timeout/ done{0) \
f wait \

^—^^reply^

timeout

timeout \
/ done{0)^^ \ ^̂ '

I ;

wait
^7epi^A-,repl^^•r '̂'''̂ mply2/^ done(1)

\ •

both \^n^lylAreply2 ——«rep/yf / donei})

, reply1 A mpiy2
/done(1)

—lY wait A
~~~~— Vreplyl

' timeout / done{0) X., ^ \
-j

SDF

time

constant

X add

delay

less
than

timeout

Figure 4.11 This hierarchical FSM models the coordinator In figure 4.9.

95



4.3.2 Example: Alternating Bit Protocol

4.3.2.1 Problem Description

Because physical communication is often not completely reliable over the networks,

some of the messages transmitted between a sender anda receiver maynotactually arrive.

The alternating bit protocol [66] is a simple retransmission protocol, which is to ensure

that when a message is lost, it is retransmitted bythe sender, and when duplicate messages

aredelivered dueto retransmission, they are identified andignored by the receiver.

The alternating bit protocol works as follows.

• The sendersends a data packet that contains a protocol bit.

• When the receiver receives the data packet, it replies with an acknowledgement con

taining the same protocol bit as that of the received packet. In addition, the receiver

needs to identify whether this data packet is a new or a duplicate copy, and then to

decide whether to deliver the data for processing or not accordingly. If it is the first

time that adata packet is received, the receiver identifies this packet as a new copy and

delivers its data for processing. Afterwards, whenever a data packet is received, the

receiver compares the protocol bits of this newly received and the last received pack

ets. If the protocol bits are different, then this newly received packet isa new copy, and

its data are delivered for processing. Otherwise, the packet is a duplicate copy and is

ignored.

• The sender waits for the acknowledgement from the receiver. If the acknowledgement

does not reach the sender before time outs, or the acknowledgement received does not

have the same protocol bit as that of the data packet transmitted, the sender retransmit

the data packet (with the same protocol bit) repeatedly until a desired acknowledge-

96



ment is received. Then, the sender flips the protocol bit and is ready to transmit the

next data packet.

4.3.2.2 ^charts Realization

Our *charts realization of the alternating bit protocol is shown in figure 4.12. We use

CSP as the topmost level (a), modeling the environment for simulating the protocol. This

CSP system consists of a sender, a receiver, a client that requests the sender to transmit

its data, a processor that processes the data delivered from the receiver, a timer to watch

for time outs, and a forward channel and a backward channel to simulate the lossy

channels that randomly drop the transferred messages.

In figure 4.12(b), we have a two state FSM to model the sender. The states are ready

and wait ack. The sender starts in the ready state with a local protocol bit set to 0 initially.

When the data arrives, the sender sends a packet with the data left shifted^ one bit to

acconunodate the protocol bit, stores the data as a local dataBuffer event, and takes the

transition to the wait ack state. In this state, the sender waits until either an acknowledge

ment ack arrives or time outs. Whenever either an acknowledgement ack arrives with dif

ferent protocol bit or time outs, the sender retransmits a packet that contains the data

(retrieved from the dataBuffer) and the current protocol bit. Only when an acknowledge

ment ack arrives with the same protocol bit, does the sender change the protocol bit from 0

to 1 (or vice versa) and take the transition to the ready state.

The three state FSM in figure 4.12(c) is to model the receiver. The states are initial,

wait packet, and compare bits. The receiver starts in the initial state. When a packet

arrives the first time, the receiver replies with an acknowledgement ack that contains the

protocol bit restored from the packet, delivers the data restored from the packet for pro-

1. Without loss of generality, the value of the data is assumed to be a positive integer and have enough bits
to prevent overflow.

97



(a)

(b)

(c)

CSP

data packet

client

sender

timer
timeout

ack

forward
channel

backward
channel

packet

ack

data
receiver processor

FSM
data

/ packet{data *2 + bit),
dataBuffer[data)

I ^

bit, dataBuffer

timeout

/ packet{dataBuffer *2 + bit)-

( ready j f waitX^\

ack [ack = bif\ I J
/bitir^bif) ^^

/' ack [ack != bi^
/ packet{dataBuffer*2 + bit)

•

FSM

7^I initial r

packet
/ ack{packet %2),
datai{packet/2),

lastBit{packet %2)

packet
/ bit{packet %2),

dataBufferipacket12)

lastBIt, bit,
dataBuffer

ompar
packey lastBif) / acl^pi^ bits

[bit != lastBif)
/ ack(bi(),

data{dataBuffei),
lastBit{bi()

Figure4.12 Our^charts reaiizationof the alternating bit protocol: (a)
the topmost level, (b) the sender, and (c) the receiver.

98



cessing, remembers the protocol bit as a local lastBit event, and takes the transition to the

wait packet state. Afterwards, whenever a packet arrives, the receiver restores the proto

col bit and the data from thepacket to the local bit and dataBufferevents, respectively, and

then takes the transition to the compare bits state. At this point, the receiver compares the

current protocol bit with the last one stored in the lastBit event. If both of the protocol bits

are the same, the receiver simply replies with an acknowledgement ack containing the cur

rent protocol bit. Otherwise, in addition to replying with an acknowledgement, the

receiver delivers the data retrieved from the dataBuffer for processing, and updates the

lastBit event with the current bit. In both cases, the FSM takes the transition to the wait

packet state. Since both explicit outgoing transitions of the compare bits state do not

have triggers in the guards and are completely specified, this state serves as an instanta

neous state.

4.4 Linear Hybrid Systems

A hybrid system [1][2] consists of a discrete program interacting with an analog envi

ronment. It is generally modeled as a finite automaton equipped with dynamic variables

that evolve continuously with time according to dynamic laws (often given as differential

equations). In particular, when the given differential equations are restricted to first-order,

this categorizes a special class of hybrid systems: the linear hybrid system. For the linear

hybrid system, because the differential equations for the dynamic laws are all first-order,

the dynamic variables will follow piecewise-linear trajectories, and those points at the

first-order discontinuity in the trajectories correspond to the state changes of the finite

automaton.

As a matter of fact, since the trajectories of the dynamic variables are piecewise-linear

in the linear hybrid system, the differential equations for the dynamic laws can be substi-

99



tuted by the discretized equations (see figure 4.13) without changing the trajectories of the

dynamic variables. Therefore, a continuous-time (CT) [65] model is no longer necessary

to simulate the dynamic laws. Instead, a discrete-event (DE) model can be used and may

execute even more efficientlyin a discrete-time manner.Therefore, in terms of *charts, the

linear hybrid system can be simulated by the combinationof the FSM and the DE models.

4.4.1 Example: Water-Level Monitors

4.4.1.1 Problem Description

A commonly used example for the linear hybrid system is the "water-level monitor"

problem: The water level in a tank is controlled by a monitor that detects the water level

and signals a pump to switch on and off. When the pump is on, the water level rises by 1

unit per second; when the pump is off, the water level falls by 2 unit per second. Suppose

that initially the water level is 1unit and the pump ison. The goal isto keep the water level

between 1 and 12 units with the help of the monitor. One key point to complicate this

problem is that there is a delay of2 seconds between the time that the monitor signals the

pump to switch status and the time that the switch becomes effective. Thus, the monitor

has to signal the pumpto switchoffwhenthe waterlevel reaches 10units and to switchon

when the water level falls to 5 units.

dx^
x^{t + dt)-x^{t) = v^dt

dxf^ Xj^{t+ dt)-Xf^{t) = Vf^dt
'df

(a) Differential equations (b) Discretized equations

Figure 4.13 First-order differential equations and their
trajectory-equivalent discretized equations.

100



4.4.1.2 ^charts Realization

Our realization of the water-level monitor using *charts is depicted in figure 4.14. At

the bottommost level (c), the DE subsystem is to model the evolution of the dynamicvari

ables, i.e. the water level and the signal delay, according to the dynamic laws in terms of

discretized equations. It serves as a slave shared by the four states of the FSM at level (b).

There are two main functions performed in this DB subsystem. First, current water level

(denoted by y) and current signal delay (denoted by jc) are computed by adding their previ

ous values to the multiplication of their velocities (denoted by vy and vjc, respectively)

with current time increment (denoted by dt). The current time increment is actually gener

ated at previous step from the next time increment (denoted by nt). Moreover, if the reset

event for the water level or the signal delay (denoted by yset or xset, respectively) is

present, the corresponding reset block will reset the value of the water level or the signal

delay, respectively. Second, to prepare for the next step of execution, future events of the

next time increment, the water level, and the signal delay are generated by the correspond

ing var delay blocks, which produce future events with values from the var inputs and

with delays from the delay inputs.

At the next level (b) inside the monitor block of level (a) is described by an FSM that

has four states: in states onl and on2, the pump is on; in states offl and ofI2, the pump is

off. The initial transition to state onl set the initial conditions of the system: the velocity

of the water level to be 1 unit per second, the velocity of the signal delay to be 1 second

per second, and the water level to be 1 unit. For display purpose, at every transition except

for the initial transition, a level event is emitted with the current water level y. The monitor

starts in state onl. When the water level reaches 10 units, the monitor emits a xset event to

reset the signal delay to be 0 second and a switch event to signal the pump to switch off,

and then transitions to the on2 state. In on2 state, the monitor waits until the signal delay

reaches 2 seconds.Then, it changes the velocityof the water level to be -2 units per second

101



(a)

(b)

(c)

DE

monitor
switch

ieyel
^display

w<(U y 0^=10]
/ xset{0), switch, ievel(y}

y.

*, y, vx, vy
xsef, ysef

y[y!=10]/'~y
/ /eve/(y) onl D

x[xl=2]
/ /eve/(j^

x[*=2] '
/ vy(1), leveHy)

\ /

\ /

y

' x[xt=2J
/ yy{-2), /eve/(y)

x(x!=2] ^
/leveliy)\^

y—>.

off2
y[yi=5]

X^/leveiiyi

/

y[y==:5]
/ xsef(0), switch, leveKyj ^ \ •

multiply

multiply

> add

Figure 4.14 The ^charts reaiization of the water-level monitor.

102



and transitions to the offl state. The rest of the behavior at this level should now be evi

dent from the figure.

The DE system at the topmost level (a) is to model the environment of the water-level

monitor. It includes a monitor, and a display to show the statuses of the switch signal and

the water level from the monitor.

4.4.1.3 Simulation with Fixed Time increments

One subtlety for the *charts realization in figure 4.14 is that, at each step of execution,

the DE subsystem at level (c) needs to be fed with the next time increment (denoted by nt)

in order to prepare for the next step of execution. One simple approach is to let the next

time increment be a fixed number. For example, when the next time increment is fixed at

0.5 seconds, the simulation result of the *charts realization is shown in figure 4.15. As

expected, the water level is kept between 1 and 12 units, and the switch signal is emitted

whenever the water level is 10 and 5 units.

10.00

0.00 5.00 10.00 15.00 20.00

Water level

Switch agaei

Figure 4.15 Simulation of the water-level monitor with fixed time increments (0.5 seconds).

103



However, in this approach, the time increments between the consecutive steps ofsimu

lation are fixed. Thus, it is possible that the threshold values^ which are those used for

comparison in the guardsof the FSM,of the dynamic variables are not detectedin simula

tion even though the resulting trajectories actually pass through them. This may result in

incorrect state changes of the FSM and thus incorrect simulation result. For example,

when the next time increment is fixed at 0.4 seconds, the threshold value of the water level

at 10 units is notdetected for comparison in the guard of the FSM. Hence, the FSM stays

in the state onl forever, and the simulation result shown in figure 4.16 exhibits incorrect

behavior.

4.4.1.4 Simulation with Varied Time Increments

In fact, from figure 4.15 we can observe that the points of first-order discontinuity in

the trajectoriesoccur only when the dynamic variablesare at the threshold values.Further

more, wecanchoose only these points for simulation without affecting the correctness of

20.00 -
Water level

15.00 -

10.00 -

5.00 -

0.00 5.00 10.00 15.00 20.00

Figure 4.16 Simulationof the water-level monitor withfixed time increments (0.4seconds).

104



the result. However, if only selected points are included for simulation, the time incre

ments between the consecutive steps of simulation have to be varied. In other words, in

each step of simulation, we need to predict the next time increment based on the threshold

values. This approach with varied time increments is more efficient than that with fixed

time increments since fewer points are computed to build up the whole trajectories. More

over, this guarantees that the threshold values of the dynamic variables will always be

detected for comparison in the guards of the FSM since the next time increment is com

puted based on those values.

To support the simulation with varied time increments, we need to distinguish one step

of the simulation of the realization in figure 4.14 into following four phases:

1. The DE subsystem at level (c) computes the current values of the dynamic variables,

i.e. the water level and the signal delay.

2. The FSM at level (b) takes a transition, which depends on the current values of the

dynamic variables.

3. The FSM at level (b) predicts the next time increment (denoted by nt\ which depends

on the threshold values (denoted by '^nh 71 = 1, ... ,N,k- \, and the velocities

(denoted by v„, /i = 1, ..., AO of the dynamic variables (denoted by x„,n= I, ..., AO at

the next state.

nt = mm

fri,-X| ] ] \Tn\-'n 1 •\'̂ NK„-'N
max"I , 0 k max-l ,0 k ....max< ,0 k ...,maxs , 0

11 111 I J [ N

4. The DE subsystem at level (c) generates future events at the next time increment to

prepare for the next step.

105



The order of these four phases may not be changed because there exist dependencies

between them. In other words, the computation of the dynamic variables and the genera

tion of the future events in the DE subsystemhave to be performed in two differentphases.

Since one reaction of the FSM invokes the slave DE subsystem at most once, we leave

the second phase of the DE subsystem to be performed in the next consecutive reaction of

the FSM. I.e. the completion of one step of the simulation actually involves two reactions

of the FSM. Figure 4.17 shows the simulation result of the *charts realization using the

approach with varied time increments.

4.5 Comparison

In this section, we will demonstrate the effectiveness of the *charts approach with a

simple control-oriented example, the reflex game [12]. Realizations of this example will

be illustrated and compared, using our *charts and other languages, in particular, Esterel,

0.00 5.00 10.00 15.00 20.00 25.00

Water level

Switch sigcial

Figure 4.17 Simulation of the water-level monitor with varied time increments.

106



VHDL and C. The reflex game has a normal behavior and a reasonable set of exception

situations. It is simple enough to be sunmiarized on a page, but rich enough to encompass

the usage of multiple models.

4.5.1 Problem Description

Our version of the reflex game is a two-player game (to introduce more concurrency).

Each player has two buttons to press during the game: coin and go buttons for player 1;

ready and stop buttons for player 2.

Normal play proceeds as follows:

1. Player 1 presses coin to start the game. A status light tums blue.

2. When player 2 is ready, he presses ready, and the status light tums yellow.

3. When player 1 presses go, the status light tums green, and player 2 presses stop as fast

as he can.

4. The game ends, and the status light tums red.

The game measures the reflex time of player 2 by reporting the time between the go and

stop events.

There are some situations where the game ends abnormally and a "tilt" light flashes.

These are:

1. After coin is pressed, player 2 does not press ready within L time units.

2. Player 2 presses stop before or at the same instant that player 1 presses go.

3. After player 1 presses go, player 2 does not press stop within L time units.

One additional mle is that if player 1 does not press go within L time units after player

2 presses ready, then go is emitted by the system, and the game advances to wait for player

2 to press stop.

107



4.5.2 ^charts Realization

Our *chaits realizationof the reflexgame is shownin figure 4.18. To simulate the real

time behaviorof the game, a DE system is a good choice for the topmost level (a), model

ing the environmentof the game (including the players). This DE system contains a clock

to generate a sequence of time ticks, the two players (playerl and player2) that assert the

buttonpressing events, a display to create the lights and to report the reflex time of player

2, and a reflex block that models the behavior of the game.

At the next level of the hierarchy (b), inside the reflex block, we have a two state FSM.

The states are game off and game on. Inside the game on state, at level (c), we use an SR

model consisting of the rules for the two players. These are interconnected with a directed

loop, and thus form an instantaneousdialog between the two players.

At level (d), the two rules are refined into concurrent FSMs. The rule2 starts in the

wait ready state, and when a ready event is present, emits a start event and takes the tran

sition to the wait go state. This causes the nilel to emit a yellowLt event and to take the

transition from the idle state to the wait state. The rest of the behavior at this level should

now be evident from the figure.

In several states, we need to count time ticks from the clock to watch for time outs.

This counting is a simple arithmetic computation that can be performed using the SDF

graph shown at level (e). This graph simply counts time ticks, compares the countagainst

a constant, and emits a timeout event when the threshold is exceeded.

4.5.3 Esterel Realization

Esterel [18] is a programming language dedicated to describe control-oriented reactive

systems. Figure 4.19 shows an Esterel realization of the two-player reflex game. The

description in Esterel is concise, taking slightly less space than the one in figure4.18. This

application is a good match for the concurrent semantics of Esterel, which is synchronous/

108



(a)

(b)

(c)

(d)

(e)

DE timfi raHl t

clock
coin

reflex

blueit

display

playerl 90^ yellowLt "
ready^ greenLt "

player2 stop^ normalExit

flashTilt

... - -• *" _

FSM coin / blueU

game game

off J exit / normalExIt, redLt\ on

error/ flashTllt, redLt

yellowU yellowLt

errorerror

rue2
greenUgreenU

FSMFSM

^ start/ yellowLt

gov timeout/ end

ready/ start

stop / error

end/ greenit

SDF

time

timeout / error

constant

add

delay <

less
than

wait

timeout/ errOr

stop / exit

timeout

Figure 4.18 Our ^charts realization of the two-player reflex game.

109



module REFLEX:

% timeout limit declaration

constant L: integer;
% inputs and outputs
input TIME, COIN, GO, READY, STOP;
relation COIN # GO, READY # STOP;
output REDLT, BLUELT, YELLOWLT, GREENLT, NORMALEXIT, FLASHTILT;
% overall initialization

emit REDLT;

loop
% game ofTstate
await COIN;
emit BLUELT:
% game on state
signal START, END in

trap EXIT, ERROR in
[ % rule 1 begins

% idle state

await START;
emit YELLOWLT;
% wait state

await

case GO do emit END

case L TIME do emit END

end await

] % rule 1 ends
II

[ % rule 2 begins
% wait ready state
await

case READY do emit START

case L TIME do exit ERROR

end await;

% wait go state
await

case STOP do exit ERROR
case END do emit GREENLT

end await;
% wait stop state
await

case STOP do exit EXIT

case L TIME do exit ERROR

end await

] % rule 2 ends
handle EXIT do

emit NORMALEXIT;
emit REDLT

handle ERROR do
emit FLASHTILT;
emit REDLT

end trap
end signal

end loop

end module

Figure 4.19 Esterel realization of the two-piayer reflex game.

110



reactive. However, this Esterel module does not include a model of the environment.

Esterel programs generally specify modules that are intended to reside within some for

eign realization of the environment, such as a C program. Moreover, there is no support

for other concurrency modeling, such as discrete events, in Esterel.

The computational aspects of the reflex game, which involve only trivially simple

arithmetic, are also a good match for Esterel. For more sophisticated computations, such

as signal processing, it is common for Esterel programs to fall back on modules written in

C for their implementation. By contrast, in our *charts, a designer could use dataflow

models, which are higher level (more abstract) than C programs.

Which description, Esterel or *charts, is more readable or understandable will depend

heavily on the familiarity of the reader with the languages involved. We believe that the

version in figure 4.18 will be more easily understood.

4.5.4 VHDL and C Realizations

VHDL and C are two languages that are commonly used as synthesized codes for

hardware and software, respectively. The complete VHDL description is shown in figure

4.20 although not in a readable font. VHDL is a relatively verbose language, and this

description, which includes almost no comments, occupies more than five pages, and like

the Esterel program, does not model the environment. The C description is shorter, occu

pying less than four pages. In figure 4.20 at the right, we show the VHDL and C descrip

tions of the level (b) FSM from figure 4.18. This FSM is implemented very directly as

switch-case and if-then-else constructs in both cases. Our conclusion is that VHDL and C

should be back-end languages, synthesized from higher-level descriptions for the purpose

of interfacing to lower-level synthesis tools, and that *charts provides a reasonable higher-

level description.

Ill



procedure reflex_proc
(coin, go. ready, stop: in bit;
redLt_var, blueLt_var, yellowLt.var, greenLt_var: oi
normaIExit_var, flashTilt_var: out bit; /
reflex_state : in reflex_type; /
rulel_state: in rulel_type; /
rule2_state : in rule2_type; /
counter: in integer range 0 to 1(X); /
reflex_state_next: out reflex_type; /
rulel_state_next: out rulel_type; /
rule2_state_next: out rule2_type; /
counter_next: out integer range 0 to"100) is

variable exit_var, eiror.var: bit; /
begin —reflex_proc /

case reflex_state is /
when game_off => /

if(coin='r)then
blueLt_var:='F;
reflex_state_iiext:=game_on;

else /
reflex_state_next:=game_off;

end if; y '
when gamc_on =>

game:^Dn_proc (go, ready, stop.yellowLt_var.
SiwnLt_var, exit_var, enor.var, rulel_state,
iule2_state, counter, rulel_state_next,
rule2_state_next, counter_next);

,if(exit_var=' 1') then
normalExit_var:=' 1';

/ redLt_var:='r;
reflex_state_next:=ganie_off;

elsif (error_var=' 1') then
flashTilt_var.='l';
redLt_var:='l';
reflex_state_next:=game_off;

else
reflex_state_next:=game_on;

end if;
end case;

end reflex_proc;

relfex_proc (time,coin,go, ready,stop,
redLt, blueU, yellowLt, greenU, normalExit, flashTilt)

double time; int coin,go. ready,stop;
int ♦redLt, ♦blueLt, ♦yellowLt, ♦greenLt;

int ♦normalExit, ♦flashTilt;

int'«xii=0, error=0;

switch (reflex_state) {
case game_off:

if (coin) {
♦blueLt=l; reflex_state=game_on;

break;
case game_on:

game_on_proc(time. go, ready, stop,
yellowLt, greenLt, &exit, &eiTor);

if (exit) {
♦normalExit=l; ♦redLt=l; reflex_state=game_off;

I else if (error) {
♦flashTili=l; ♦redLt=l; reflex_state=game_off;

break;

Figure 4.20 VHDL description of the two-player reflex game, with the segment
corresponding to level (b) in figure 4.18 shown in a readable font at
the upper right. At the lower right is the C version.

112



5

Conclusion

The goals of this thesis is to have a system design scheme that is capable of describing

both control logic and computation tasks, specifyingcomposite behaviors for concurrency

and hierarchy, and enabling the selection of different concurrency semantics. To achieve

these goals, we present a heterogeneous HCFSM formalism, called *charts, which is

aimed at specification and simulation of reactive systems with control logic. Instead of

defining a grand-unified concurrency semantics in *charts, we explore the hierarchical

combination of FSMs with multiple concurrency models, particularly discrete events

(DE), synchronous/reactive (SR), synchronous dataflow (SDF), dynamic dataflow (DDF),

and communicating sequential processes (CSP).

As shown in figure 5.1, these models have different strengths and weaknesses. Hence,

they are applicable in different situations.The DE model is a natural way to model distrib

uted or parallel systems and their communication infrastructure. The SR model is well-

suited to concurrent behaviors of control-intensive systems. Dataflow models are ideal for

computation-intensive systems, such as signal processing systems. The CSP model is use

ful for resource management when modeling at the system level. Finally, the FSM model

complements those concurrency models such that sequential control behaviors are intu

itively described and easily analyzed.

113



Our *charts formalism can be utilized as a design framework, in which subsystems

with distinct functionalities are separately specified and designedby mixing and matching

the best suitablemodels. The simple and determinate mechanisms we provide are used to

combine the subsystems as a whole for validation using simulation. For example, the

design of a digital cellular phone often involves specifying distinct functionalities. It

includes intensive signal processing and sophisticated control logic in both the speech

coder and the radio modem. These would be appropriately constructed using the combina

tion of SDF with FSM. The communication protocols for call processing and multiple-

access schemescan be specifiedby mixing CSP and FSM. The integrationof SR and FSM

Model Strengths Weaknesses

Finite State

Machines

• Good for sequential control
• Can be made deterministic

• Maps well to hardware and software

• Computation-intensive systems are
hard to specify

Discrete Events • Good for digital hardware
• Global time

• Can be made deterministic

• Expensive to implement in software
• May over-specify systems

Synchronous/
Reactive Model

• Good for control-intensive systems
• Tightly synchronized
• Deterministic

• Maps well to hardware and software

• Computation-intensive system are
over-specified

Dataflow • Good for signal processing
• Loosely synchronized
• Deterministic

• Maps well to hardware and software

• Control-intensive systems are hard
to specify

Communicating
Sequential
Processes

• Models resource sharing well
• Partial-order synchronization
• Supports naturally nondeterministic

interactions

• Some systems are oversynchro-
nized

• Difficult to be made deterministic

Figure 5.1 Strengths and weaknesses of different models.

114



can be utilized to describe user interfaces with concurrent behaviors. The environment of

the digital cellular phone can be conveniently modeled under DE. Therefore, *charts pro

vides a good framework for coordinating among such efforts.

In conclusion, the major advantages of *charts are

• Heterogeneous: Diverse models can coexist and interact by hierarchical combination.

• Modular: Distinct portions of a system can be separately modeled, choosing the best

appropriate modeling technique.

• Extensible: Additional concurrency models can be included as long as we provide the

interaction between different models.

5.1 Open Issues

5.1.1 Software/Hardware Synthesis

Specification of a system focuses on description and interpretation of behaviors with

out the implementation details. Eventually, system behaviors need to be mapped and

implemented by software components (e.g. programmable devices), hardware components

(e.g. ASICs), or both. The bridge from specification to synthesis is the code generation

that translates system behaviors into formats mappable to software and hardware, such as

C code for software synthesis and VHDL code for hardware synthesis.

Synthesis from the FSM model has been a popular technique, demonstrated in [44] for

software and [72] for hardware. Moreover, dataflow models have been shown synthesiz-

able in software [8] and hardware [40]. Synthesis from the SR model has also been dem

onstrated for software [18] and hardware [14]. As for the DE and CSP models, they are

used more for modeling, and thus synthesis is not much of an issue.

115



Our *charts formalism allows the designers to use established synthesis techniques

within each model, and provides simple and determinate mechanisms to combine the

results. Nevertheless, approaches thatdo co-synthesis directly from the mixed models are

likely to show more value than approaches to synthesize separately from each model.

5.1.2 Formal Semantics

Formal approaches to define semantics have been evolving in two different ways:

operational and denotational. Operational semantics, which dates back to Turing

machines [82], describes how a system executes on an abstract machine. It focuses on

what the system does (the internal view of the system). Denotational semantics, pioneered

by Scott and Strachey [78], describes a system in terms of functions and relations in a

semantic domain, such as a complete partial order set. It focuses on what an outside

observer sees (the extemal view of the system).

Various formal semantics for the models we discuss have been given in the literature,

such as [47][68] for the FSM model, [60] for the DE model, [35] for the SR model, [57]

for the datafiow models, and [49] for the CSP model. Before the interaction among differ

ent models can be denoted in formal semantics, a mathematical framework, such as the

tagged signal model [64], is required such that common terms of all models are unified

and distinct properties of each model are identified. Then, we can leverage the existing

formal semantics of the FSM, DB, SR, dataflow, and CSP models within this framework

instead of defining new formal semantics.

116



Bibliography

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, R-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine, "The Algorithmic Analysis of Hybrid Sys

tems," Theoretical Computer Science^vol. 138, no. 1, p. 3-4, February 1995.

[2] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, "Hybrid Automata: An

Algorithmic Approach to the Specification and Verification of Hybrid Systems,"

Hybrid Systems^ October 1991.

[3] R. Alur and T. A. Henzinger, Computer-Aided Verification: An Introduction to

Model Building and Model Checkingfor Concurrent Systems, Draft, 1998.

[4] G. R. Andrews, Concurrent Programming: Principles and Practice, Benjamin/

Cummings Publishing Company, 1991.

[5] J. R. Armstrong and F. G. Gray, Structured Logic Design with VHDL, PTR Pren

tice Hall, 1993.

[6] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,

A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara, Hardware-

Software Co-Design of Embedded Systems: The Polis Approach, Kluwer Aca

demic Press, June 1997.

[7] J. Banks, J. S. Carson II, and B. L. Nelson, Discrete-Event System Simulation,

Prentice Hall, 1996.

[8] S. S. Battacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow

Graphs, Kluwer Academic Publishers, 1996.

[9] F. Belina, D. Hogrefe, and A. Sarma, SDL with Applicationsfrom Protocol Specifi

cation, Prentice Hall International, 1991.

117



[10] A. Benveniste and G. Berry, "The Synchronous Approach to Reactive and Real-

Time Systems," Proceedings of the IEEE, vol. 79, no. 9, p. 1270-1282, September

1991.

[11] A. Benveniste andR Le Guemic, "Hybrid Dynamical Systems Theory andtheSig

nal Language," IEEE Transactions on Automatic Control, vol. 35, no. 5, p. 535-

546, May 1990.

[12] R. Bemhard, G. Berry, F. Boussinot, G. Gonthier, A. Ressouche, J.-P. Rigault, and

J.-M. Tanzi, "Programming a Reflex Game in Esterel v3," May 1989.

[13] P. A.Bernstein, V, Hadzilacos, and N. Goodman, Concurrency Control and Recov

ery in Database Systems, Addison-Wesley Publishing Company, 1987.

[14] G. Berry, "A Hardware Implementation of Pure ESTEREL," Sadhana, vol. 17, no.

l,p. 95-130, March 1992.

[15] G. Berry, "Programming a Digital Wristwatch inEsterel v3.2," Rapport deRecher

che no. 8, Centre de MathematiquesAppliquees, Ecole des Mines de Paris, 1991.

[16] G. Berry, "Real Time Programming: Special Purpose or General Purpose Lan

guages,"Information Processing 89, September 1989.

[17] G. Berry, The Esterel v5 Language Primer, Version 5.21 Release 2.0, Centre de

Mathematiques Appliquees, Ecole desMines de Paris, April 1999.

[18] G. Berry and G. Gonthier, "The Esterel Synchronous Programming Language:

Design, Semantics, Implementation," Science of Computer Programming, vol. 19,

no. 2, p. 87-152, November 1992.

[19] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards:

Algorithms and Architectures, 2nd edition, Kluwer Academic Publishers, 1997.

118



[20] G. v. Bochmann and J. Gecsei, "A Unified Method for the Specification and Verifi

cation of Protocols" Proceedings oflFIP Congress 77, p. 229-234, August 1977.

[21] R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation,"

IEEE Transactions on ComputerSy vol. C-35, no. 8, p. 677-691, August 1986.

[22] J. T. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory Using

the Token Flow Models Memorandum UCB/ERL M93/69, Electronics Research

Laboratory, University of California, Berkeley, September 1993.

[23] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for

Simulating and Prototyping Heterogeneous Systems," International Journal of

Computer SimulatioUy special issue on "Simulation Software Development," vol.

4, p. 155-182, April 1994.

[24] C. G. Cassandras, Discrete Event Systems: Modeling and Performance Analysis^

Richard D. Irwin, Inc., and Aksen Associates, Inc., 1993.

[25] S.-P. Chang, System-LevelModeling and Evaluation ofNetwork Protocols, Memo

randum UCB/ERL M98/73, Electronics Research Laboratory, University of Cali

fornia, Berkeley, December 1998.

[26] W.-T. Chang, S. Ha, and E. A. Lee, "Heterogeneous Simulation - Mixing Discrete-

Event Models with Dataflow," Journal of VLSISignal Processing, vol. 15, no. 1-2,

p. 127-144, January 1997.

[27] K.-T. Cheng and A. S. Krishnakumar, "Automatic Functional Test Generation

Using the Extended Finite State Machine Model," 30th Design Automation Con

ference, June 1993.

[28] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vin-

centelli, "A Formal Specification Model for Hardware/Software Codesign," Inter

national Workshop on Hardware-Software Codesign, October 1993.

119



[29] R. Cleaveland, S. A. Smolka, R. Alur, J. Baeren, J. A. Bergstra, E. Best, R. de

Nicola, R. Gorrieri, M. G. Gouda, J. F.Groote, T.A. Henzinger, C. A. R. Hoare, D.

Luginbuhl, A. Meyer, D. Miller, J. Misra, F. Moller, U. Montanari, A. Pnueli, S.

Prasad, V. R. Pratt, J. Sifakis, B. Steffen, B. Thomsen, F. Vaandrager, M. Vardi,

and P. Wolper, "Strategic Directions in Concurrency Research," ACM Computing

SurveysJvol. 28, no. 4, p. 607-625, December 1996.

[30] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order^ Cambridge

University Press, 1990.

[31] J. Davis, R. Galicia, M. Goel, C. Hylands, E. A. Lee, J. Liu, X. Liu, L. Muliadi, S.

Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong, Ptolemy II: Heteroge

neous Concurrent Modeling and Design in Java, Memorandum UCB/ERL M99/

40, Electronics Research Laboratory, University of California, Berkeley, July

1999.

[32] W. S. Davis, Tools and Techniques for Structured Systems Analysis and Design,

Addison-Wesley Publishing Company, 1983.

[33] W. Delaney and E. Vaccari, DynamicModels and Discrete EventSimulation,Mar

cel Dekker, Inc., 1989.

[34] J. B. Dennis, "First Version of a Data Flow Procedure Language," Programming

Symposium, April 1974.

[35] S. A. Edwards, The Specification and Execution of Heterogeneous Synchronous

Reactive Systems, Memorandum UCB/ERL M97/31, Electronics Research Labo

ratory, University of California, Berkeley, May 1997.

[36] D. D. Gajski, F. Vahid, and S. Narayan, "A System-Design Methodology: Execut

able-Specification Refinement," European Design and Test Conference, March

1994.

120



[37] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of

Embedded Systems, PTR Prentice Hall, 1994.

[38] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer

Academic Publishers, 1992.

[39] T. Grotker, R. Schoenen, and H. Meyr, "PCC: A Modeling Technique for Mixed

Control/Data Flow Systems," European Design and Test Conference, March 1997.

[40] T. Grotker, P. Zepter, and H. Meyr, "ADEN: An Environment for Digital Receiver

ASIC Design," International Conference on Acoustics, Speech, and Signal Pro

cessing, May 1995.

[41] S. Ha, Compile-Ume Scheduling ofDataflow Program Graphs with Dynamic Con

structs, Memorandum UCB/ERL M92/43, Electronics Research Laboratory, Uni

versity of Califomia, Berkeley, April 1992.

[42] N. Halbwachs, Synchronous Programming ofReactive Systems, Kluwer Academic

Publishers, 1993.

[43] D. Harel, "Statecharts: A Visual Formalism for Complex Systems," Science of

Computer Programming, vol. 8, no. 3, p. 231-274, June 1987.

[44] D. Harel and E. Gery, "Executable Object Modeling with Statecharts," Computer,

vol. 30, no. 7, p. 31-42, July 1997.

[45] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-

Trauring, and M. Trakhtenbrot, "Statemate: A Working Environment for the

Development of Complex Reactive Systems," IEEE Transactions on Software

Engineering, vol. 16, no. 4, p. 403-414, April 1990.

[46] D. Harel and A. Pnueli, "On the Development of Reactive Systems," Logics and

Models of Concurrent Systems, NATO ASI series, vol. F13, pp. 477-498, 1985.

121



[47] D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman, "On the Formal Semantics of

Statecharts," Proceedings of the Symposium on Logicin Computer Science, p. 54-

64, June 1987.

[48] C. A. R. Hoare, "Communicating Sequential Processes," Communications of the

ACM, vol. 21, no. 8, p. 666-677, August 1978.

[49] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall International,

1985.

[50] G. J. Holzmann,Design and Validation ofComputerProtocols, Prentice-Hall Soft

ware Series, 1991.

[51] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley Publishing Company, 1979.

[52] N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applica

tions to Speech and Video, Prentice Hall, 1984.

[53] M. Jourdan and F. Maraninchi, "A Modular State/Transition Approach for Pro-

granumng Reactive Systems," ACM SIGPLAN Workshop on Language, Compiler

and ToolSupportfor Real-Time Systems, June 1994.

[54] G. Kahn, "The Semantics of a Simple Language for Parallel Programming," Pro

ceedings oflFIP Congress 74, August 1977.

[55] T. Y.-K. Kam, Multi-Valued Decision Diagrams, Memorandum UCB/ERL M90/

125,Electronics Research Laboratory, University of California, Berkeley, 1990.

[56] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich, "Models of Computa

tion for Embedded System Design," September 1998.

122



V

[57] E. A. Lee, A Denotational Semantics for Dataflow with Firing, Memorandum

UCB/ERL M97/3, Electronics Research Laboratory, University of California, Ber

keley, January 1997.

[58] E. A. Lee, "Consistency in Dataflow Graphs", Proceedings of the International

Conference on Application Specific Array Processors, p. 355-369, September

1991.

[59] E. A. Lee, "Embedded Software - An Agenda for Research," Memorandum UCB/

ERL M99/63, Electronics Research Laboratory, University of California, Berkeley,

December 1999.

[60] E. A. Lee, "Modeling Concurrent Real-Time Processes Using Discrete Events,"

Annals ofSoftware Engineering, vol. 7, p. 25-45,1999.

[61] E. A. Lee, "Recurrences, Iteration, and Conditionals in Statically Scheduled Block

Diagram Languages," VLSI Signal Processing III, p. 330-340, November 1988.

[62] E. A. Lee and D. G. Messerschmitt, "Static Scheduling of Synchronous Data Flow

Programs for Digital Signal Processing," IEEE Transactions on Computers, vol. C-

36, no. 1, p. 24-35, January 1987.

[63] E. A. Lee and D. G. Messerschmitt, "Synchronous Data Flow," Proceedings of the

IEEE, vol. 75, no. 9, p. 1235-1245, September 1987.

[64] E. A. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing Models

of Computation," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 17, no. 12, p. 1217-1229, December 1998.

[65] J. Liu, Continuous Timeand Mixed-Signal Simulation in Ptolemy II, Memorandum

UCB/ERL M98/74, Electronics Research Laboratory, University of California,

Berkeley, December 1998.

123



[66] W. C. Lynch, "Reliable Full-Duplex File Transmission over Half-Duplex Tele

phoneLines," Communication oftheACM, vol. 11, no. 6, p. 407-410, June 1968.

[67] Z. Mannaand A. Pnueli, The Temporal LogicofReactive and Concurrent Systems,

Springer-Verlag, 1992.

[68] F. Maraninchi, "Operational and Compositional Semantics of Synchronous

Automaton Compositions," Third International Conference on Concurrency The

ory, August 1992.

[69] F. Maraninchi, "The Argos Language: Graphical Representation of Automata and

Description of Reactive Systems," IEEE Workshop on Visual Languages, October

1991.

[70] S. Narayan, F. Vahid, and D. D. Gajski, "System Specification and Synthesis with

the SpecCharts Language," International Conference on Computer-Aided Design,

November 1991.

[71] S. Narayan, F. Vahid, and D. D.Gajski, "System Specification with the SpecCharts

language," IEEE Design & Test of Computers, vol. 9, no. 4, p. 6-13, December

1992.

[72] S. Narayan, F. Vahid, and D. D. Gajski, "Translating System Specifications to

VHDL," European Conference on Design Automation, February 1991.

[73] M. Pankert, O. Mauss, S. Ritz, and H. Meyr, "Dynamic Data-Flow and Control

Flow in High Level DSP Code Synthesis," IEEE International Conference on

Acoustics, Speech and Signal Processing, April 1994.

[74] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.

[75] B. Sarikaya, V. Koukoulidis, and G. V. Bochmann, "Method of Analysing

Extended Finite-State Machine Specifications," Computer Communications, vol.

13, no. 2, p. 83-92, March 1990.

124



[76] P. Scholz and D. Nazareth, "Communication Concepts for Statecharts: A Semantic

Foundation," International AMAST Workshop on Real-Time Systems and Concur

rent and Distributed Software^ May 1997.

[77] P. Scholz, D. Nazareth, and F. Regensburger, "Mini-Statecharts: A Compositional

Way to Model Parallel Systems," International Conference on Parallel and Dis

tributed Computing Systems, September 1996.

[78] D. S. Scott and C. Strachey, "Toward a Mathematical Semantics for Computer

Languages," Symposium on Computers and Automata, April 1971.

[79] R. Sharp, Principles ofProtocol Design, Prentice Hall Intemational, 1994.

[80] N. Smyth, Communicating Sequential Processes Domain in Ptolemy II, Memoran

dum UCB/ERL M98/70, Electronics Research Laboratory, University of Califor

nia, Berkeley, December 1998.

[81] J. Sodhi, Computer Systems Techniques: Development, Implementation, and Soft

ware Maintenance, TAB Professional and Reference Books, 1990.

[82] A. M. Turing, "On Computable Numbers, with an Application to the Entsc-

heidungsproblem," Proceedings of the London Mathematical Society, vol. 42, p.

230-265, December 1936.

[83] K. J. Tumer, Using Formal Description Techniques: An Introduction to Estelle,

LOTOS and SDL, John Wiley & Sons Ltd., 1993.

[84] F. Vahid, S. Narayan, and D. D. Gajski, "SpecCharts: A VHDL Front-End for

Embedded Systems," IEEE Transactions on Computer-Aided Design ofIntegrated

Circuits and Systems, vol. 14, no. 6, p. 694-706, June 1995.

[85] J. Walrand and P. Varaiya, High-Performance Communication Networks, Morgan

Kaufmann Publishers, 1996.

125



[86] M. von der Beeck, "A Comparison of Statecharts Variants," Formal Techniques in

Real-Time and Fault-Tolerant Systems, September 1994.

126


	Copyright notice 2000
	ERL-00-29

