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Abstract. We consider the synthesis of optimal controls for continuous
feedback systems by recasting the problem to a hybrid optimal control
problem, which is to synthesize optimal enabling conditions for switch
ing between locations in which the control is constant. An algorithmic
solution IS obtained by translating the hybrid automaton to a finite au
tomaton using a bisimulation and formulating a dynamic programming
problem with extra conditions to ensure non-Zenoness of trajectories. We
show that the discrete value function converges to the viscosity solution
of the Hamilton-Jacobi-BeUman equation as a discretization parameter
tends to zero.

1 Introduction

The goal of this paper is the development of acomputationally appealing tech-
ique for synthesizing optimal controls for continuous feedback systems x =

j u substantially the complexity of the problem. This goal is^eved by virtue ofreciting the problem to ahybrid optimal control problem.
« •. .problem is obtained by approximating the control set UCHV" bv a
of llVf defining vector fields for the locations of the hybrid system
(ivV. M that IS, the control is constant in each location. The
loroHo js. then, to synthesize an optimal switching rule betweenlocation, or equii^ent y, optimal euabUng conditions, such that a target set
co^dMooTn'̂ ! /i' '= niinimized, for each initialcondition in a specified set J? c IR .

Casting the problem into the domain of hybrid control is not appealing per
oroW f -^eonthmic approaches for solving the controUer synthesis
or.l ffi f" specific classes of hybrid systems have appeared (17,28] but no gen-
hvbriH '̂"f ® " y®' available. Hence, to be able to solve the (nonlinear)ybrid optimal control problem, we must exploit some additional property. We
have afeasible and quite appeaUng approach if we can translate the pr^lem
beh^iOT""TWrf P""®"' which abstracts completely the continuous
definld o 1,possible if we can construct a finite bisimulationd^ed on the hybrid state set. The bisimuUtion can be constructed using the

y approaA reported in [4J, based on the foUowing key assumption; n-1local (on O) first integrals can be expressed analytically for each vector field



f{x,(T), <T e E. Thisassumption is imposed in the transient phase ofa feedback
system's response, when the vector field isnon-vanishing and local first integrals
always exist, though analytical expressions for them may not be readily com
putable. The assumption breaks down at equilibria, thus restricting the region
Q where the method can apply.

If the assumption is met, then we can transform the hybrid system to a
quotient system associated with the bisimulation. If the bisimulation is finite,
the quotient systemis a finite automaton. The control problem posed on the fi
nite automaton is to synthesize a discrete supervisor, providing a switching rule
between automaton locations, that minimizes a discrete cost function approxi
mating the original cost function, for each initial discrete state. We provide a
dynamic progranuning solution to this problem, with extra constraints to ensure
non-Zenoness of the closed-loop trajectories. By imposing non-Zeno conditions
on the synthesis we obtain piecewise constant controls with a finite number of
discontinuities in bounded time.

The discrete value function depends on the discretizations of U and of Q
using the bisimulation. We quantify these discretizations by parameters 5 and
Jq, respectively. The main theoretical contribution is to show that as ^ 0,
the discrete value function converges to the unique viscosity solution of the
Hamilton-Jacobi-Bellman (HJB) Equation.

There is a similarity between oiu: approach to optimal control and regular
synthesis, introduced in [2], in the sense that both restrict the class of controls
to a set that has some desired property and both use a finite partition to define
switching behavior. For linear systems, the results on regular synthesis are cen
tered on the Bang-Bang principle [19], stating that a sufficient class of optimal
controls is piecewise constsmt. If 17 is a convex polyhedron, then the number of
discontinuities of the control is bounded. There is no hope that general Bang-
Bang results are avmlable due to the following example.

Example 1 (Fuller's problem [11])- Consider the optimal control problem

ii = X2 (1)
X2 = U (2)

with (u| < 1 and the cost function J{x,ix) = a:i(s)ds. If y GIR^ is any
point except the origin, then there exists a unique optimal control driving y to
the origin, and it is bang-bang with infinite number of switchings. In fact Kupka
has shown in [14] that this phenomenon is generic at sufficiently highdimensions.

Inspite of Fuller's example, in many applications the optimal control is a piece-
wise continuous function, and therefore methods of regular synthesis of such
controls are worth investigating.

Our paper focuses on piecewiseconstant controls and provides a constructive
approach to obtain a cell decomposition by using a finite bisimulation, which
further allows us to formulate the sjmthesis problem on its quotient system - a
finite automaton.



The idea of using a time abstract model formed by partitioning the contin
uous state space has been pursued in a number of papers recently. Lemmon,
Antsciklis, Stiver and coworkers [25], [15] use a psirtition of the state space to
convert a hybrid model to a discrete event system (DES). This enables them
to apply controller synthesis for DES's to synthesize a supervisor. While our
approach is related to this methodology, it diflFers in that we have expUcit con
ditions for obtaining the partition. In [21] hybrid systems consisting of a lineeir
time-invariant system and a discrete controller that has access to a quantized
version of the linear system's output is considered. The quantization results in
a rectangular partition of the state space. This approach suffers from spurious
solutions that must be trimmed from the automaton behavior.

Hybrid optimal control problems have been studied in papers by Witsen-
hausen [27] and Branicky, Borkar, Mitter [3]. These studies concentrate on prob
lems of well-posedness, necessary conditions, and existence of optimsd solutions
but do not provide algorithmic solutions.

The paper is organized as follows. In section 2 we state the optimal control
problem, while in section 3 the associated hybrid optimal control problem is
given. In Section 4 we review how the bisimulation is constructed. Section 5
formulates the proposed solutionusing bisimulation and dynamic programming.
In section 6 we prove the main theoreticeJ result. In section 7 we study the
implementation ofsm algorithmic solutionof the dynamic progreimming problem
including a formal justification of the algorithm's optimality. In section 9 we
study several examples of the proposed method. Section 10 summarizes our
findings and indicates future directions of research.

2 Optimal control problem

Notation. 1(*) is the indicator function. c/(i4) denotes the closure of set A.
II • II denotes the Euclidean norm. Let and A^(IR") denote the sets of
continuously difierentiable reed-valued functions and smooth vector fields on IR",
respectively. fj) denotes the trajectory ofx = f{x,fi) starting from xq and
using control

Let C/ be a compact subset of IR'", i? an open, bounded, connected subset
of IR", and ^2f a compact subset of ^2. Define Um to be the set of measurable
functions mapping [0, T] to U. We define the minimum hitting time T : JR** x
Um IR"*" by

r(xn):=/°°. if €12/} =' * lmin{t I <j>t{x^y) e otherwise. (3)

A control y, € Um specified on [0,r] is admissible for x € f? if <}>t{x,ii) e Q for
all f € [0,T]. The set of admissible controls for x is denoted U^. Let

72^ := { X€ IR" I 3/Lt e T{x,y) < oo }.



We consider the following optimal control problem. Given y € f?,

rT(y,ii)

minimize / L{x{t),ti{t))dt +h{x{T{y,ti))) (4)
Jo

subject to x = /(x, ^l), a.e. t G[0, T{y, /i)] (5)
x(0) = y (6)

among all admissible controls fi e Uy. J : IR"* x ^ IR is the cost-to-go
function, h : IR" IR is the terminal coat, and L : IR" x IR"* IR is the
instantaneous cost At T{y,fi) the terminal cost h(x(T(y,/x))) is incurred and
the dynamics are stopped. The control objective is to reach from y € f?with
minimum cost.

Assumption 2.1.

(1) / : IR"xlR"* -)• IR" satisfies ||/(a:',«')—/(x,u)|| < I'/fHx'—x||+||u'—u||]
for some Lf > 0. Let Mf be the upper bound of ||/(x,u)|| on f? x Cf.

(2) L:IR"xIR'" -> IR satisfies |L(x',u')-L(x,u)| < jL£,[||a;'-x||+||u'-u||]
and 1 < |L(x,n)| < Ml, x G J?, u 6 Cf, for some > 0.

(3) h : IR" —¥ IR satisfies |h(x') —/i(x)| < Lh)\x' —x|| for some Lh > 0, and
h{x) > 0 for allXGQ. Let Mh be the upper boimd of |h(x)| on Q.

Remark 2.1. These assumptions ensure existence of solutions and continuity of
the value function, defined below. Weaker assumptions are possible but since our
goal is to introduce a method rather than obtain the mostgeneral settingfor it,
we 2tre satisfied with these. See [1] for other possibilities.

The value function or optimal cost-to-go function V : IR" -)• IR is given by

V{y) = inf J(y,/i)

for y G^2\^2f, and by V(y) = h{y) for y Gf?/. A control /x is called e-optimal
for Xif J{x,fi) < V'(x) -f e.

It is well-known [10] that V satisfies the Hamilton-Jacohi-Bellman (HJB)
equation

" ")} =0 (7)
at each point of "R. at which it is diflferentiable. The HJB equation is an infinites
imal version of the equivalent Dynamic Programming Principle (DPP) which
says that

^(x) =inf^ew.|/o L(<^a(x,iu),/i(s))ds +V(<^t(x, ai))|, xGf? \12/
V{x) = h{x) XG12/.

The subject of assiduous effort has been that the HJB equation may not have a
solution. This gap in the theory was closedby the inception of the concept of

viscosity solution [16,6], which can be shown to provide the unique solution of



(7) without any differentiability assumption. Inparticular, a bounded uniformly
continuous function V is called a viscosity solution of HJB provided, for each
V* GC^(IR"), the following hold:

(i) if V—̂ attains a local maximum at xq € IR", then

~ |̂ (a^o)/(®o,w)} <0,
(ii) if y —̂ attsuns a local minimum at xi € IR", then

Assumption 2.2. For every e > 0 and x Q TZ, there exists > 0 smd
an admissible piecewise constant e-optimal control having at most
discontinuities and such that <f>t{xyfi) is treinsverse to diUf.

The transversahty assumption implies that the viscosity solution is contin
uous at the boundary of the tsirget set, a result needed in proving uniform
continuity of V over a finite horizon. The assumption can be replaced by a
small-time controllability condition. For a treatment of small time controllabil
ity and compatibility ofthe terminal cost with respect to continuity ofthe value
function, see [1]. The finite switching assumption holds under mild assumptions
such as Lipschitz continuity of the vector field and cost functions, and is beised
on approximating measmrable functions by piecewise constant functions.

3 Hybrid system

The approach we propose for solving thecontinuous optimal control problem first
requires a mapping to a hybrid system amd, second, employs a bisimulation of
the hybrid system toformulate adynamic programming problem on the quotient
system. In this section we define the hybrid optimal control problem. First, we
discretize U by defining a finite set Us C U which has a mesh size

5 := sup min llu —<t||.
u€l/<T€i:4" "

We define the hybrid automaton H := {U x mr,Ss,D,Eh,G,R) with the
followingcomponents:

State set i7 x IR" consists of the finite set U= UsU {o-/} of control locations
and n continuous variables x G IR". <r/ is a terminal location when the
continuous dynamics are stopped (in the same sense that the dynamics are
"stopped" in the continuous optimal control problem).

Events Us is a finite set of control event labels.
Vector fields D : E A'(1R'') is a function assigning an autonomous vector

field to each location. We use the notation D{<t) = f^.



Control switches C 17 x T is a set of control switches, e = (a, a') is a
directed edge between a source location a and a target location a'. IfEh{<T)
denotes the set of edges that can be enabled at a e E, then Eh{cr) :=

\ a' e E\a} foT a e Es and Eh{crf) = 0. Thus, from a source
location not equal to <7/, there is an edge to every other location (but not
itself), while location <r/ has no outgoing edges.

Enabling conditions G : Eh {pc}e€£?fc is a function assigning to each edge
an enabling (or guard) condition g C IR". We use the notation G{e) = g^.

Reset conditions R Eh {''e}e€Ei, is a function assigning to each edge a
reset condition, re : IR"* -> 2°^", where we use the notation R{e) - r^.

3.1 Semantics

A state is a pair (<t, x), a € 27 and x € IR**. In location a GEg the continuous
stateevolves according to thevector field /(x, a). In location a/, thevector field
isX= f{x,fif) where fif is the (notnecessarily constant) control ofthe terminal
location. Trajectories of H evolve in steps of two types. A a-step is a binsuy
relation 4c {E x ]R") x (27 x IR"), and we write (a,x) 4 (a',x') iflF (1) e=
(o-, a') e Eft, (2) XG and (3) x' = rg{x). We assume the transition {(7,x) ^
{a', x') is taken at the first time in location a when the control event label is a'
and XG for e= (<r, a').At-step is a binary relation -4c (27 xIR") x(27 XIR"),
and we write ((t,x) 4 {a\x') iff (1) a = a', and (2) for t > 0, x' = <^t(x,(7),
where <^t(x) = /(0t(x, <t),<t). A hybrid control is a finite or infinite sequence of
labels a; = wia;2 •••jwith w,- G27 UIR"^. uji GIR"'" istheduration ofthe t-step at
step i. The set of hybrid controls is denoted S. A hybrid trajectory tt over uj e S
is a finite or infinite sequence tt : (cro,xo) 4 (ai,xi) ^ (0-2,X2) ^ ... where
((7f,Xi) G27 XIR". Trajectory tt is accepted by H iff Vi, (o-i,x,) '"4* (<ri+i,Xf+i)
iseithera t-stepor c-stepofH. Lettt be the trajectory (notnecessarily accepted
by H) startingat (a,x) G27 x anddefined over a; GE. We sayu is admissible
for (a,x) on interval [0,T] if (1) tt remains in 27 x I? for t G [0,T], and (2)
corresponding to w is a piecewise constant control Pw(t) (with a finite number
of discontinuities in finite time). Let Sr^^x) be the set of admissible controls for
(<7,x).

Example 2. Consider a time optimal control problem for

Xi = X2

X2 = u.

Weselect Q = (—1,1) x (—1,1) and ^2f = Ec(0), the closed epsilon ball centered
at 0. The cost-to-go fimction is J{x^p) = dt and U = {u : |u| < 1}. We
select 27^ = {~lj l}i so that <5=1. The hybrid systemis show in Figure 1. The
state set is {cr_i = —l,<7i = IjO"/} x IR". Pe_i and Pd are unknown and must
be synthesized, while g^^ = pea = f?/.



Fig. 1. Hybrid automaton for time optimal control of a double integrator system

3.2 Hybrid optimal synthesis

We want to synthesize enabling conditions so that for each y ElZ, the cost-to-
go from y well-approximates the viscosity solution at y of HJB. This requires
posing a hybrid optimal synthesis problem. Wedefinea hybrid cost-to-go function
Jh • y- IR." X 5 -> ]R as follows. For w G

Jh((<7,x),w) =

The hybrid value junction Vjj : E y. IR** —)• IR is

Vh((<^,x))= ^mf Jh{{<t,x),u)).

Hybrid optimal synthesis problem:
Given H and 0 < synthesize Qe, e E Eh, subject to:

1. ge = fif ife = {er,(Tf), a E Es.
2. For each e E Eh, ge Q f?.
3. Foralluj ES and {(t,x) E ExH such that Vff((a,x)) < oo, 7r(o.^x) ^ accepted

byH if uj is admissible and -optimalfor (<7, x).
4' For all (j ES and{a,x) E E x Q, '̂ (a,x) ^ ^ot accepted by H if either u is

not admissible for (c, x), ut is not -optimal for (<t, x), or V/f((<7,x)) = oo.

Remark 3.1. Condition 1 says that the enabling condition for edges going to the
final location is Qf. Condition 2 corresponds to trajectories remaining in 17.
Conditions 3 and 4 say the hybrid automaton "does the right thing".

4 Construction of bisimulation

We propose to solve the hybrid optimal control problem using the bisimulation
of H. In this section we define bisimulation and the quotient system that is
obtained from it.



Let Arepresent an arbitrary time interval, corresponding to some t e IR"^. A
hisimulation of isanequivalence relation ~C {Es xIR") x {Es xIR") such that
for all states pi,p2 6 xlR", ifpi ~ p2 and a € i:iU{A}, then ifpi 4 pi, there
exists P2 such that P2 —> P2 and pi —p^. If ~ is finite, the quotient system is a
finite automaton. The finite automaton can be used to study properties of the
reach set of H. For an overview of results on bisimulations for hybrid systems,
see [13].

Since the dynamics are restricted to the set f?, the set of interesting equiva
lence classes of~, denoted Q, are those that intersect Es xd(/2). For each q^Q
we define a distinguished point (o*,^) Gq. We associate q with its distinguished
point by the notation q = |(<7,^)]. It is now possible to define the enabling emd
reset conditions of H in terms of Q. In particular, the enabling conditions of H
are synthesized as subsets of Q while the reset conditions are defined as follows.
For e = (a, a')

re(x) = { p I = [(a,0] A[(a',^] = [(< '̂,P)] }• (8)

Thatis, re(x) istheprojection toIR" ofthesetofequivalence classes |(a', p)] such
that the projection to IR** of [(a', p)] and |(o", x)] have nonempty intersection.
Thisdefinition in eflfect gives an over-approximation of the identitymapin terms
of the equivalence classes of ~ and will introduce non-determinacy in the finite
automaton. Notice also that (8) encodes information about the hisimulation in
II. This sequence of steps is not typical; it is chcuracteristic of our synthesis
procedure. We define a mesh size on Q by

SQ = m^ sup {||x-p||}.
(a,x),(<r,y)€9

Finally, for each q = [(''•» ^)] € Q we associate the duration Tg, the maximum
time to traverse q using constant control <t. That is,

Tg= sup { f I p = 0t(®,o-) }.
(«T,i),(<7,y)6g

4.1 Review of geometric construction

We briefly review a method for obtaining bisimulations [4] which relies on the
following (related) assumptions on the vector fields on cl(S7).

Assumption 4.1.

(1) n —1 first integrals can be defined analytically on 12 for each /(x,<t),
cr G Eg.

(2) Thereexistsm/ > 0 such that ||/(x,u)|| > m/ for all x Gd(f2), u e U.
A hisimulation of Eg x IR** is constructed using a set of simple, co-dimension

one tangentied foliationswith associatedsubmersions7f(a;) =pf,i = 1,... ,n-l
and a simple co-dimension one transversal foliation with submersion 7^ = Pn>
such that (pi,... ,p^) form aset ofEuclidean coordinates 7'' : [— 1, Ij" VC/?



for each a € Us- We discretize the foliations by selecting a finite set of leaves.
Fix k G and let Zi = ^. Define

Cfc = {0,±A±2A...,±l}. (9)

Each yf = c for c G Ck, i = 1,... ,n defines a hyperplane in IR" denoted
and a submanifold The collection of submanifolds for

<r G is

={ W^c|c€Cfc,iG{l,...,n} }. (10)

Q \ Wk is the union of disjoint open sets VJ^ = {Vf]. We define an
equivzdence relation on IR" as follows, a; x' iff
(1) X^ [—1,1]" iff x' ^ [—1,1]", and
(2) if X, x' G[—1,1]", then for eachi = 1,... , n, Xj G (c,c+2l) iffx' G(c,c+A),
and Xi = c iff xj = c, for all c G Ck-
We define the equivEdence relation ~ on x IR" as follows. {a,x) ~ ((t',x') iff
(1) a = a', and (2) 7''(x) 7*'(x').

Fig. 2. Partitions for states <j\ and a-\ of the hybrid automaton of Figure 1

Example 3. Continuing example 2, a first integreilfor vector field Xi = X2, X2 = 1
isx\ —5X2 = Ci, ci GIR. For x\ = X2, X2 = —1 a first integral is xi + ^x^ = C2,
C2 G IR. We select a transverse foliation for each vector field, given by X2 = C3.
A possible set of partitions for locations ai Eind (T-\ and J? = (—1,1) x (—1,1)
are shown in Figure 2. The equivalence classes of ~ are pairs consisting of a
control label in Es and the interiors of regions, open line segments and curves
forming the boundewies of two regions, and the points at the corners of regions,
r = 0 for the segments transverse to the flow and the corner points, t = Aiox
the interiors of regions and segments tangential to the flow, where A = .25 in
Figure 2.

5 Discrete problem

In this section we transform the hybrid optimal control problem to a dynamic
progrsimming problem on a non-deterministic finite automaton, for which an



algorithmic solution may be found. Consider the class of non-deterministic au
tomata with cost structure represented by the tuple

A = (Q,Us,E, obs, Qf, L, h).

Q is the state set, as above, and Es is the set of control labels as before, obs :
E Es is &map that assigns a control label to each edge and is given by
o6s(e) = where e = {q,g'), q= [(a,^] and q'= [(<7', '̂)]- Q/ is the target set
given by the over-approximation of f?/,

Qf = {q \ ^x e ^2f . (o-,x) eg}. (ii)

^ C Q XQ is the transition relation encoding t-steps and <7-steps of H. A
will be used to synthesize pg ofH, so, in the spiritof [22], E includes allpossible
edges between locations. The synthesis procedure on A will involve trimming
undesirable edges. Thus, (g,g') e E, where g = [(<r,^)] and g' = if
either (a) a = <t', thereexists x Gf? such that (<t, x) e g, and thereexists r > 0
such that Vt € [0,t], (ct, 0t(x,<r)) G g and {a,^r+€{x,a)) G g' for arbitrarily
small e > 0, or (b) a = tr', there exists x £ D such that (c,x) G g, and there
exists r > 0 such that V< G[0,r), (a,^t(x,CT)) Gg and ^ or (c)
<7 # (t' and there exists x £ Qsuch that (<7, x) Ggand (o*', x) Gq'. Cases (a) and
(b) say that from a point ing, g' is thefirst state (different from g) reached after
following the fiow of /(x, a) for some time. Case (c) says that an edge exists
between g and g' if their projections to IR" have non-empty intersection.

Let e = (g,g') with g = [(<7,0] and g' = [(a',^')]- L : E TR is the discrete
instantaneous cost given by

(.«

Thus, no cost is incurred for control switches, h : Q IRis the discrete terminal
cost given by

h{q) := /i(0.

The domain of h can be extended to with a slight abuse of notation, by

h(x) := h{q) (13)

where g = argmin,/{||x - ^'\\ | g' = [(ct',^')]}-

5.1 Semantics

A transition or step of A from g = [(^,01 € Q to g' = [(o*', '̂)] € Q with
observation a' £ Es is denoted q ^ q'. If a ^ a' the tratnsition is referred to as
a control switch, otherwise, it is referred to as a time step. If E{q) is the set of
edges that cam be enabled from q £Q, then for a £ Es,

Ea{q) = {e£ E{q) \ obs{e) = a).



If \Ef^{q)\ > 1, then we say that e 6 E(f{q) is unobservable in the sense that
when control event a is issued, it is unknown which edge among Eff{q) is tsiken.
If cr = cr', then = 1, by the uniqueness of solutions of ODE's and by the
definition of bisimulation.

A control policy c : Q —)• is a map assigning a control event to each
state; c(g) = <t is the control event issued when the state is at q. A trajectory
TT of A over c is a sequence tt = go -V ^ 92 ^ •••, € Q. A trajectory
is non-Zeno if between any two non-zero duration time steps there are a finite
number of control switches and zero duration time steps. Let ilc(g) be the set of
trajectories starting at q and applying control policy c, eind let Aciq) be the set
of trajectories starting at g, applying control policy c, and eventually reaching
Qf. If for every g € <5, tt e i7c(g) is non-Zeno then we say c is an admissible
control policy. The set of sdl admissible control policies for A is denoted C.

A control policy c is said to have a loop if A has a trajectory go gi

gm = € Q. A control policy has a Zeno loop if it has a loop
made up of control switches and/or zero duration time steps (i.e. Tg —0) only.

Lemma 1. A control policy c for non-deterministic automaton A is admissible
if and only if it has no Zeno loops.

Proof. First we show that a non-deterministic automaton with non-Zeno tra
jectories has a control policy without Zeno loops. For suppose not. Then a tra
jectory starting on a state belonging to the loop can take infinitely many steps
around the loop before taking a non-zero duration time step. This trajectory is
not non-Zeno, a contradiction. Second, we show that a control policy without
Zeno loops implies non-Zeno trajectories. Suppose not. Consider a Zeno trajec
tory that takes an infinite number of control switchesand/or zero duration time
steps between two non-zero duration time steps. Because there aie a finite num
ber of states in Q, by the Axiomof Choice, one of the states must be repeated in
the sequence of states visited during the control switches and/or zero duration
time steps. This implies the existenceof a loop in the control policy. Either each
step of the loop is a control switch, implying a Zeno loop. Or the loop has one
or more zero duration time steps. But the bisimulation partition permits zero
duration time steps if r, = 0, which implies a Zeno loop.

Example 4- Consider the automaton in Figure 3. If we are at gi zind the control
a a a is issued, then three possible trajectories are gi —gs ^ g4 A g2, gi ^

<t' o"' <7 mi- /> • t
94 "^95 92> OT qi —> 93 94 ^ 9i- The first trajectory has a zero duration
time step. The control is inadmissible since the last trajectory has a Zeno loop.

5.2 Dyn£uiiic programming

In this section we formulate the dynamic programming problem on A. This
involves defining a cost-to-go function and a value function that minimizes it
over control policies suitable for non-deterministic automata.



Fig. 3. Fragment of automaton with a zero duration timestep.

Let TT = go 9i ... —Qn-i ^ Qn, where g, = [(cri,^i)J and tt takes the
sequence of edges 6162 ... e^. We define a discrete cost-to-go J : Q x C^ IRby

i(ey) +ft(«N,)} if n,(q) =n,(q)
00 otherwise

where JVjr = min{j > 0 | g^ GQ/}- We take themaximum over .^0(9) because of
the non-determinacy of.4: it isuncertain which among the (multiple) trajectories
allowed by c will be taken so we must assume the worst-case situation. The
discrete value function V : Q —> IR is

y(g) = imnJ(g,c)
c€C

for q € Q \ Qf and V{q) = h{q) for q GQf. We show in Proposition 1 that V
satisfies a DPP that takes into account the non-determinacy of A and ensures
that optimal control policies are admissible. This DPP describes the accumula
tion of cost over one step to be the worst case cost among edges that have the
same label. Let Aq be the set of control assignments c(g) G at g such that c
is admissible.

Proposition 1. V satisfies

V{q) = h{q), qeQf. (15)

Proof. Fix g G Q. By definition of J

J(g,c)= m^ , .{^6) +J(g',c)}. (16)

By definition of V

J{q,c)> max {L(e)-t-y(g')}.
e=(q,9')G^c(,)(g)



Since c{q) 6 Aq is airbitrary

^(g)> min{ , .{ '̂(e) +^(9')}}-
c(9)€-4, e=(9,g')GSc(,)(g)

To prove the reverse inequality suppose, by way of contradiction, there exists
a' G Ss such that

V{q) > {L{e) + V{q')} := L{e) + V{q). (17)
e=[q,q')eE„,(q)

Suppose the optimal admissible policy for q is c. Define c = c on Q \ {g} amd
c{q) = a'. Then J(g, c) = L{e) + F(g) < V{q). This gives rise to a contradiction
if we can show c is admissible. Suppose not. Then there exists a loop of control
switches and zero dmation time steps containing q and g, implying V{q) >V{q),
which contradicts hypothesis (17). •

Remark 5.1. The DPP for F is a prescription for synthesizing admissible control
policies, but we have not indicated how, in practice, this can be achieved. One
possibility is to introduce a fictitious switching cost in the formulation of V.
Capuzzo-Dolcetta and Evans [5] introduce a small switching cost which tends
to zero as ^ 0. Alternatively, admissible controls czm be obtained through a
device introduced in implementation. For example, a counter of the number of
switches could be used. We will propose 2ui algorithmic solution guarcinteed not
to generate Zeno loops in Section 7.

5.3 Synthesis of Qe

The synthesis of enabling conditions or controller synthesis is typically a post
processing step of a backward reachability analysis (see, for example, [28]). This
situation prevails here as well: equations (14)-(15) describe a backward analysis
to construct an optimal policy c € C. Once c is known the enabling conditions
of H are extracted as follows.

Consider each e = (o", o"') £ E of H with a ^ a'. There are two cases. If
<j' # then 5e = I ((T,x) Gg, g GQ A c(g) = cr'}. That is, if the control
policy designates switching from q e Q with label <t to g' G Q with label a',
then the corresponding enabling condition in H includes the projection to IR"
of g. The second case when a' = a/ is for edges going to the terminal location
ofH. Then ge = {x \ {a,x) Gg,g GQ/}.

6 Main Result

We will prove that V converges to V, the viscosity solution of the HJB equation,
as 5q,<5 0. The proof will be carried out in three steps. In the first step we
consider restricting the set of controls to piecewise constant functions, whose
constant intervals are a function of the state. In the second step we introduce



the discrete approximations ofLandh. In thelaststepwe introduce the discrete
states Q and consider the non-determinacyof A.

In the sequel we make use ofa filtration ofcontrol sets Ek = Ssk corre
sponding to a sequence —> 0 as fc oo, in such a manner that Sk C I^k+i •
Considering (10), we define a filtration of families of submanifolds such that
Wk C VVjt+i, for each a ^ Sk-
Step 1: piecewise constant controls.

In the first step we define a class ofpiecewise constant functions that depend
on the state and show thatthevalue function which minimizes the cost-to-go over
this class converges to the viscosity solution of HJB as (5jfc -> 0. The techniques
of this step are based on those in Bardi and Capuzzo-Dolcetta [1] and are related
to those in [5].

We consider the optimal control problem (4)-(6) when the set of admissible
controls is piecewise constant functions consisting offinite sequences ofcon
trol labels <T ^ Ek and each <j is applied for a time r{a,x). Let (<7,0;) € q for
qe Q and define r(<T, x) to be the minimum ofthe time it takes the trajectory
starting at x and using control a € Ek to reach (ta) or (tb) some x' such
that {(T,x') 0 g. Ifa trajectory is at Xi at the startofthe (i-h l)th step, then the
control ai+i is applied for time r^+i := r(<Ti+i,Xi) and 0:^+1 =

Let

nl := { XGIR" I3/i GIfl . r(x, m) < 00 }.

We define the cost-to-go function : f2 x IR as follows. For x G and
fjt = <71(72 r(x, < 00 then

H<l>3{xj-i,<7j),aj)ds -i- h{xN)

where N = min{j > 0 | x, G 5%}. = 00, otherwise. We define the
value function : IR" ^ ]R as follows. For x G \ %,

Vi{x)= m£^Jl{x,fj.) (18)

and for x Gf?/, Vi?(x) = h{x).

Proposition 2. satisfies, for all x GHk,

Proof. Fix XGTtk and fi = c7<7i(T2 ... G Using the semigroup property of
fiows and the definition of

Jo



where fi = cri(T2 • - • definition of

fT((r,x)l'T(<T,X)
/ L{(f>s{x,a),(T)ds + Vi{<f>r(^^^x){x,a)).

Jo

Hence,

rT{tr,x)f rT(tr,x) N

Vi{x)>mm\j^ L{<f>s{x,cr),a)ds +V^{<f>r(a,x){^,<T))y

To prove the reverse inequaUty fix <t 6 i7jfc, set 2 = ^r(«r,i)(a:,o-), and fix € > 0
and fiz E Ul such that

Vi{z)>4{z,n,)-c.

Define the control

li{s) =I
Then

i>T{a,x)

£7 S<r(<T, x)
fj-z{s —t)s> r(£T,x).

rT(<T,X)

(a^) < Jjb (x, TT) = / ^(<^S (a:, <7), £7)d5 + Jfc (z, )
Jo

tT{<T,x)

< I L{<f>a{x,<T),a)ds + V^{z) + €.
Jo

Since a £ Ek and 6 > 0 are arbitrary

i'T(<r,x)V*?(x) <mm i'(03(a:,<7),£7)ds+ l^fci(,^^(^,^)(x,(7))|.
•

We would like to show that is uniformly bounded and locally imiformly
continuous. Considering uniform continuity of let Ck be as in (9) and 7^ the
transversal foliation ofx = /(x, a). For each a E Ek we define the regions in IR"

Mr:={xE(7^r^(c)|cEC,}
m:_ := { i e (7S)-'((-i.c)) I Ce Ct}.

Remark 6.1.

(a) Let XE TZ\ and ^ = cri£72... E WjJ. Suppose that Xj_i E Mc' for some
c E Cfc so that Tj —0 and <7^+1 aj. Let p, = ... £7j_i<7j+i Then
J{x^li) = J(x,/i). Therefore, whenever we construct an c-optimal control
for Xwe may assume that if Tj = 0 then £7j+i = Oj.



(b) If x,2/ € M^_ for some c € Ck and t{ct^x) and t(<t, y) are defined using
(tb) then |r(a,ar) - r(a,y)| ^ 0 and - <f>r{<,,y){y.(T)\\ -> 0 as
11® - y|| 0 in since isa smooth submanifold. For the details, see
Theorem 6.1, p. 91-94, [10]. If instead r(o', x) and r(cr, y) are defined using
(ta) and a is an e-optimal control for x, then by Assumption 2.2 the same
results hold.

(c) For each x € UfcTiJ and c > 0 there exists m € and such that
/X is an e-optimal control for x w.r.t. satisfying Assumptions 2.2. This
follows firom Assumptions 2.2, V^{x) > V(x), and the fact that we can well-
approximate an c-optimal control for V bya control in for large enough
m.

Lemma 2. For each y 6 € > 0, there exists e 2Z'̂ and rj^ > 0
such that

\Viix)-V^\y)\<2€

for all |x —y| < r}t and k >

Proof. Fix y e By Remark 6.1(c) there exists mi > 0 and fi e such
that fi is an c-optimal control for y satisfying Assumptions 2.2. Let x e'R} .
Then V^ix) - V^iy) < Ji(x,/x^) - Ji(y,/x) + efor any e and k>m\.
Ifwe can show that for fixed y and /x there exists fix € 2/^1 such that

Jfc(y,/x) <c (21)

for all X6 sufliciently close to y, then ^^^(x) - V^iy) < 2c for all A: > mi.
Conversely, byRemark 6.1(c) thereexists m2 > 0 andfix ^ such that fix

is cm c-optimal control for x satisfying Assumptions 2.2. Then V^{y) —V^{x) <
'̂ kiViP) ~ •^fc(®>/^x) + € for any fi € ti}n2 ^ ^ "^2- If we can show that for
fixed y there exists fi 6 such that

Jk(y.P) - -^k t^x)<e (22)

for all X€ suflSciently close to y, then Vy|?(x) - V)J(y) > -2c for all fc > m2.
The result follows by letting m^ = niin{mi,m2}. Thus, we must show (21) and
(22).

Consider first (21). Let fi = W1W2... G be an c-optimal control for y such
that yjv E dQf and Remark 6.1(a) holds. By redefining indices, we can associate
with 71 the open-loop control /x = (CTi,ri)(or2,f2).,., where is the time ai is
applied. We claim there exists /x® = (<Ti,rf)(o-2,f|)... such that as x -4 y, (a)



Xj —> yj, (b) fj -> fj-, and (c) x/v G Then we have

N .rj

)~ ♦^fc(y»A^) ^ ^ ] I ~^{4'a{yj—ii^j)iO'j)\ds
j=i

+ «Tj),(Tj)ds| + |/i(yAA) - h(xAr)|
j=l

N

< LlTk exp (L/Tk) ^ ||xj_i - yj_i||
i=i

iv

+Ml |f/ - fj-l H- Lh\xi^ - vnI
j=i

By the claim the r.h.s. can be made less than e. Thus, we need only show there
exists /i® = )(o'2i'?f) ••• which satisfies the claim and (i' € can be
reconstructed from it, based on the discrete states in Q visited by 4>t{x,fji^).
We sague by induction. Suppose (a)-(c) hold at j —1. We show they hold at
j. By Remark 6,l(a) we need only consider the case when y^-i G M^L and
yj GMp for some c GCk- For Xj_i sufficiently close to yj-\ Xj_i GM^L- By
Remark 6.1(b) there exists f® such that Xj — G and f® -¥ fj
and Xj —)• yj as Xj-i —> y^-i. The caseyj-i G and yj G^^2f follows in the
same way from Remairk 6.1(a) and Assumption 2.2. Proving (22) follows along
the same fines as the proof for (21). •

To show boundedness of , let

r(x) := inf T(x,u).

In fight of Assumption 2.1(2), we have that for all x G IR", |Vfc (a:)| < T(x) •
Ml + Mh. Consider the set

Ka '= {x G I T(x) < a}.

Then |V;i(x)| < a •Ml + Mh,\fx e K^.
Wehaveshown that on each Ka C ]R", {V^?} forms a family ofequibounded,

locally equicontinuous functions. It follows by Arzela-Ascoli Theorem that along
some subsequence A:„ converges to a continuous function K-

Proposition 3. V, is the unique viscosity solution of HJB.

Proof. Weshow that K solves HJB in the viscosity sense. Let if) GC^(IR") and
suppose xo G 12 is a strict local maximum for V^ —ijj. There exists a closed bzJl
B centered at xo such that {V^-iI)){xq) > (K -^)(x), forall x GB. Let xo^fc be
a maximum point for - if; over B. Since K locally uniformlyit follows
that xoifc Xo £is Jjfc -4^ 0. Then, for any a e Sk, the point <f>T{xoSk,(^) is in B



(using boundedness of/), for sufficiently small Sk and 0 < t < T(xo5fc,<r), since
"rixos^^o) —y 0 as Sk 0. Therefore,

(aJojjfe) - ^{xosk) > Vk{<f>T{xoSk,(r)) - ^{<l)T{xoSk,(^))-

Considering Equation 19, we have

0=~ »0")) - y?{^06k) +J L{<(>s{xoSk, o-), (7)ds}
> — min

trQSk
{HM^oSk.<^)) - V'(®05j +̂ L(«^,(xo5fc,cr),a)ds}.

Since if; € C^(IR"), we have by the Mean Value Theorem,

0 > — min
aerfc r fi<l>s{xo5k^<r),(r)ds +j L{<f)a{xoSkiCr),(7)ds^

where y = axoSk + (1 —oc)<f>T{xoSk, <t) for some a G[0,1]. Dividing by r > 0 on
each side and taking the limit as ^ 0, we have -f V,, xoSk -> xq, r -> 0,
and y -> xoSk • By the Fundamental Theorem of Calculus, the continuity of /
and L, and the uniform continuity in u of the expression in brackets, we obtain

0>~ •f{xo,u) +L{xo,u)y
This confirms part (i) of the viscosity solution definition. Paurt (ii) is proved in
£in analogous manner. •

Step 2: approximate cost functions.
In this step we keep the semantics on piecewise constant controls of Step 1

but replace cost functions L and h by approximations and h. We define an
approximate instantaneous cost : /? x i7fc -> IR given by

L^(x,a):=L{q) (23)

where (a, rr) Gq.Forx Gf?and fx = <Ti<r2 ... G ifT(x, fx) < oo, the cost-to-go
function : f? x -> IR is

N

(^»~ ^ (®j—ijh(xiv)
j=i

where N —min{j > 0 | Xj G9f2/}.
We define a value function : IR" —> IR as follows. For x Gf? \ f?/,

Vfc2(x)= inf J|(x,/i) (24)
/iew»

andfor x Gi?/, V^{x) = h(x). For x Gf? such that V^{x) < oo, satisfies the
DPP

V^{x) = min {I'^ix.a) + V^{4>r(a,x){^,<r))}.



The proof is along the saune lines as that of Proposition 1.
The following facts are useful for the subsequent result.

Fact 1. If6k < ^ f then for all q^ Q,

6kTq < V-T". (25)
mf-Lf6k

Proof. Let q £ Q. Fixx e Q and a e Uk such that (cr,x) Gq and ||<^T,(ic,o-) —
a:|| < 6k' We have

4> -a:|| =11^ f{<f>s{x,a),a)ds^
> /(x,a)ds|| - 11^ [f{<f>3{x,(r),a) - f{x,a)]di
>Tq\\f{x,(T)\\-TqLf6k.

Therefore,

Sk
^9 < \\f{x,(T)\\- Lf6k'

Using Assumption 4.1(2) the result follows. •

Fact 2. Let x,x' e Aff for some c e Ck anda £ Ek such that ||x - x'\\ < 6k.
Let r,r' he times such that (f>r{x,a),^r'{x',<T) e Then |r - t'\ < ayT6k
for some Cy > 0.

Proof. We have

Jq ^ •^{'y^{(f>s{x',a)))ds.
Let / = /(^«(aJ,o"),o"), /' = f{<f)a{x',a),a), dy = d'y^{<f>s{x,(T)) and dy' =

Then rearranging terms

[ {f''dy')ds- f {f'dy)ds= f {f •dy')ds.
w0 Jo Jx'

Let Li be the Lipschitz constant oi f •dy (using the fact that y^ is smooth).
Then

J f •dy' <Lit\\x - x'W <Lir6k.
Since y^ defines a transversal foliation to vector field f{-,<T), f •dy > 0. Let
c = minae[T^^/]{/' •^7'} > 0. Letting Cy = ^ we obtain the result. •

Proposition 4. Let ko G be arbitrary, x G and ^ GUl^ be an e-
optimal control for x. Then \Jl{x,fj.) - J^(x,/i)| -> 0 os fe 00. "



Proof. We have

I . rT{<Tj,Xj-i)\Jl{x,fi) - J^{x,n)\ < ^^s{xj-i,aj),aj)ds^ +h{xpf)
N

j=i I

where {xj^i,aj) £ Qj-i and gj-i = [(^j_i,crj)]. There exists such that
h{xN) = h(Jjv) and ||xa^ - ^jv|| < Sk. Also, using the Mean Value Theorem,
there exists t with x = <f>i{xj.i,aj) and ||x - < 5k such that

N

\Jk{x,fj,) —j|(x,/i)| < |̂r(aj,Xj_i)L(x,(7j) - +|/i(xa^) - h(xjv)|
j=i

N N

< X)'̂ <ij-i^LSk + - r(aj,Xj_i)]L(x, aj) + LhSk-
j=i j=i

Using Fact 1 the first term on the r.h.s. decreases linearly as 5k• Call the second
term on the r.h.s. "B". Splitting B into sums over control switches emd time
steps, we have

N N

B < Ml - r(<Tj,Xj_i))l(aj = <7j_i) + Ml - T{aj,Xj-i)]l{aj ^ aj-i)
3=2 j=i

N N

— + Ml ^ ^ ^j—l)
3=2 j=l

for some Cj-i GIR. In the second line we used Fact 2and the fact that Tg^_^ >
Using Fact 1 the first term on the r.h.s. decreases linearly as 5k.

The second term on the r.h.s. goes to zero sincefi has a fixed number of control
switches for all fc > fco. •

Step 3: discrete states and non-determinacy.
We define

Vfc(x) := min{ Vk{q) \ (ct,x) € g }.

Also let = {x € f? I Vfc(x) < oo} and "P =
Remark 6.2.

(a) By Remark 6.1(c) and V^{x) < (x), for each x e Ujfc7^J and e > 0 there
exists rric GZZ^ andn G such that fx is an c-optimal control for x w.r.t.
V"^ satisfying Assumptions 2.2.

(b) R C Ufc7^][, but the converse is not true, in general.



(c) If fjL is an e-optimal control for x w.r.t. then we can assume fi) does
not self-intersect, for if it did we can find /i, also e-optimal, which eliminates
loops in

(d) ||a; —y|| —^ 0 as fe ^ oo for all y G re{x) and all edges e of Hk, the hybrid
automaton defined using Sk and Ck given in (9).

Proposition 5. For all x e'R, \Vk{x) - V^{x)\ ^ 0 as A: oo.

Proof. Fix € > 0 and x € By Remark 6.2(a) there exists nie > 0 auad an
e-optimal control fj. G for x w.r.t. Denote fx = ((cri,Ti),... , {(TN^rN)),
where is the time Oi is applied. If c is a policy derived using Sk and Cjt, for
k > me, then 0 < Vk{<l) — < Jk{Q,c) - J^{x,fx)+ e, where q —[(cri,x)].
If we can show there exists k > mg such that for A: > fc, there exists a policy c
such that Jk{Q,c) —Jl{x,fx) < e then the result follows.

We can find k > rrie such that, by Remark 6.2(d) and the transversality of
<f>t{x,fx) with the submanifolds where it switches controls and with /?/, there
exists jx G Wjfc, k > k, such that each trajectory <i>t{x,fx) of Hk switches controls
on the same (transversal)submanifolds as ^(x, fx) and reaches 12/.Let ^k be this
set of trajectories ofHk starting at x. Let Wk{<f>) = + H^n)
where fx = ((<7i,fi,... , xJ = <l>fj{xj-i,aj), and Xj Grdxj), where
e = (cr/,cr/+i) is an edge of Hk-

We observe that ioi 4>^<i>' G !?fc, ^ G k > k, \Wk{^) - Wk{<l>')\ 0 as
A; 00, using Lipschitz continuity of L and h, Remark 6.2(d), and the fact
that fx is fixed for k > k. Notice that <f>{x,fx) S ^k^ k > k. We can define the
control policy c such that automaton A accepts the time abstract trajectory
starting at q corresponding to each trajectory of ^k and with all other control
assignments of c as time steps, c is admissible because otherwise some <!>' G ^k
would have a Zeno loop. Since (f' approaches 0t(x, fx) ask oo, this would imply
<f>t{x,fx) has a loop, contradictingRemark 6.2(c). Now we observe that J{q^c) =
raax^e^k '= Wk{(f)). Thus, Jk{q,c)-J^{x,fx) < \Wk{<l>)-Wk{4>{Xyfx))\ -> 0
as k oo. •

Combining Propositions 3, 4, and 5, we have

Theorem 1. For allx e'k, Vk{x) V(x) as k oo.

7 Implementation

So far we have developed a discrete method for solving zin optimal control prob
lem based on hybrid systems and bisimulation. We showed that the solution of
the discrete problem converges to the solution of the continuous problem as a
discretization parameter 5 tends to zero. Nowwe focus on the pragmatic question
of how the discretized problem can be efficiently solved.



7.1 Motivation

Following the introduction of the concept ofviscosity solution [16,6], Capuzzo-
Dolcetta [5] introduced a method for obtaining approximations ofviscosity solu
tions based on time discretization of the Hamilton-Jacobi-Bellman (HJB) equa
tion. The approximations of the value function correspond to a discrete time
optimal control problem, for which an optimal control can be synthesized which
is piecewise constant. Finite difference approximations were £ilso introduced in
[7] and [24]. In general, the time discretized approximation ofthe HJB equation
is solved by finite element methods. Gonzales and Rofman [12] introduced a dis
crete approximation by triangulating the domain of the finite horizon problem
they considered, while the admissible controlset is approximated by a finiteset.
Gonzales emd Rofinan's approeM:h is adapted in several papers, including [9].

Our work was inspired by the ideas of [26] which uses the special struc
ture of an optimal control problem to obtEiin a single-pass algorithm to solve
the discrete problem, thus bypassing the expensive iterations of a finite element
method.The keyproperty to find a single pass algorithm is to obtain a partition
of the domain so that the cost-to-go function from any equivalence class of the
partition is determined from knowledge of the cost-to-go function firom those
equivalence classes with strictly smaller cost-to-go functions. In our approach,
we start with a triangulation ofthe domain provided by a bisimulation partition.
The combination of the structure of the bisimulation partition and the require
ment of non-Zeno trajectories enables us reproduce the key property of[26], so
that we obtain a Dijkstra-like algorithmic solution. Our approach has the same
complexity as that reported in [26] of 0{N\ogN) if suitable data structures are
used, where N is the number of locations of the finite automaton.

7.2 Non-deterministic Dijkstra algorithm

The dynamic programming solution (14)-(15) can be viewed as a shortest path
problem on a non-deterministic graph subject to all optimal paths satisfying a
non-Zeno condition. We consider an example to motivate the difference between
the deterministic and non-deterministic cases.

Example 5. Consider the automaton of Figure 4. Suppose that obs{e) = u for
e = {61,62,65,67}, o6s(e) = tr' for 6= {63,64,66,68,69,610}, and obs{eii) = a".
Also, L{e\) —1, L(64) = 4, L{e^) = 2, L{e%) = 1, and L{e\\) = 1, while L is
zero for the other edges. If the automaton were interpreted as deterministic, one
obtains

F(gi) = min{ i(ei)-H %/),y(92), 1^(93) }
V{q2) = min{ £,(64) + %/), V(gi), {^(94) }
y(g5) =niin{ L{en)+ h{qf),V{q2),V{q3) }.

These equations resolve to t^(gi) = V{q2) = V{qz) = 1-1- h{qf), and the control
policyis c{qi) = 0(92) = o", and 0(95) = a'. If the automaton is non-deterministic.



Fig. 4. Nondeterministic automaton

then the control policy is deduced as follows. Using (14) we have

V{qi) = niin{L(ei) + h(g/),max{y(g2), ^(93)}}
V{q2) = rmn{L{e4) + h{qf),max.{V{q4),V{qi)}}
V{q^) = niin{L(eii) + %/),max{y(g3), 1^(92)}}.

Substituting known quantities we find

V{qi) = min{l + h{qf), 1+ V{q2)}

V{q2)=imn{4 + h{qf),2 + V{qi)}

V{q5) = min{5 + h{qf),1 + ^(92)}-

When solved simultaneously, these equations yield V{qi) = 1+ h(g/), V{q2) =
3+ h(g/), 1^(95) = 4+ h(g/), and c(gi) = 0(92) = cr, and 0(95) = a'. Notice that
all trajectories are non-Zeno inspite of the fact that a trajectory starting from
qs may take two consecutive control switches.

7.3 Description of NDD

The algorithm is a modification of the Dijkstra algorithm for deterministic
graphs [8] and synthesizes an optimal, memoryless, admissible control policy
that takes the states of a non-deterministic graph to a target set. As in the
deterministic case, the algorithm is greedy: if a step can be taken into a set of
states whose controls have already been assigned and havea minimum cost, the
step is Eissigned.

First we define the notation. is the set ofstates that have been assigned
a control and are deemed "finished" at iteration n, while Un are the unfinished
states. At each n, Q — Un U Fn. ^n{Q) Q Fs is the set of control events at



iteration n that take state q to finished states exclusively. Un is the set of states
for which there exists a control event that can take them to finished states
exclusively. Vn{q) is a tentative cost-to-go value at iteration n. B„ is the set of
"best" states among Un.

The non-deterministic Dijkstra (NDD) algorithm first determines Un by
checking if any q in Un can take a step to states belonging exclusively to
For states belonging to Un, an estimate of the value function V following the
prescription of (14) is obtained: among the set ofcontrol events constituting a
step into states in F„, select the event with the lowest worst-case cost. Next, the
sdgorithm determines 5„, the states with the lowest V among Un, and these are
added to The iteration counter is incremented until it reaches TNT = |Q|.
It is assumed in the following description that initially F(g) = oo and c{q) = 0
for 2ill 9 € Q.

Procedure NDD:

Fi = Qf! Ui = Q —Qfi
for each q € Qf, V(q) = h(q);

for n = 1 to N, do
for each q G Un,

'̂ n(q) = {a' G Iif q ^ q',then q' 6 Fn};
On = {q € UnJ i:n(q) 7^ 0}:
for each q GOn,

V„(q) = inin,.gr,(,){max^,,,,,,gE^,(,,{L(e) + V(q')}};
B„ = argmin,goJV„(q)};
for each q G Bn,

V(q) = V„(q):
c(q) = argmin,,gs.(,,{max,=,,,,,)gE„,(,){L(e) + '5'(q')}};

endfor

f'n+l Fn U BnJ Un+l = Q —Fn+ii
endfor

The algorithm is opportunistic in assigning control switches. At the first
iteration, say n, that a state can take a control switch to finished states, it
will be assigned the control switch by the algorithm. This is because control
switches have zero instantaneous cost, so the state will have a minimum V and
will be included in B„. In fact, will include either states that can take control
switches and zero cost time steps to F„, or states that can take a non-zero cost
time step to Fn. The opportunistic assignment of control switches is intuitively
what we expect: waiting for a later iteration to assign them does not make sense
becausestates that finish later have a higher or equal cost-to-go.



7.4 Justification

In this section we show that the control policy synthesized by algorithm NDD
allows non-Zeno trajectories only and is optimeilin the required worst-case sense.

Lemma 3. Algorithm NDD synthesizes a controlpolicy with no Zeno loops.

Proof. We argue by induction. The claim is obviously true for Fi. Suppose that
the states of have been assigned controls forming no Zeno loops. Consider

Each state of tsdces either a time step or a control switch to so
there cannot be a Zeno loop in B„. The only possibiUty is for some q G Bn to
close a Zeno loop with states in F„, 2is shown in Figmre 5. This implies there
exists a control assignment that allows an edge from Fn to q to be taken; but
this is not allowed by NDD. Thus, has no Zeno loops.

Fig. 5. A loop of control switches

Next we prove that the algorithm is optimal', that is, it S3aithesizes a control
policy so that each q ^ Q reaches Qj with the best worst-case cost. We observe
a few properties of the algorithm. First, if all states of Q can reach Qj then
Q —Qf = U„S„. Second, as in the deterministic case, the algorithmcomputes
V in orderof level sets of V. In particular, V(S„) < V(B„+i). Finally, we need
the following property.

Lemma 4. For all q e Q and a' € Ss,

V{q)< {L{e) + V{q')}.
e={a,Q')€E„,(q)

Proof. Fix q E Q and a' E E^. There are two cases.
Case 1.

V{q) < m^
e={q,q')€E^,{q)



In this case the result is obvious.
Case 2.

^(9) > , "I* , ,{ '̂(9')}- (26)e=(q,q')€E^,(q) ^ '

We observed above that q belongs to some Suppose w.l.o.g. that q e Bj.
Together with (26) this implies q' e Fj for all q' such that q^q'. This, in turn,
means that a' GSj{q) and according to the algorithm

v(«) = VM < + ni')}

which proves the result.

The meiin result of this section is the following.

Theorem 2. Algorithm NDD is optimal.

Proof. Let V(q) be the optimal (best worst-case) cost-to-go for 5 GQ and Q =
{9 GQ I V(g) < V{q)}. Let /(tt,) be the number ofedges taken by theshortest
optimal (best worst-case) trajectory tt, from q. Define q—argmin^g^{/(7rg)}.
Suppose that the best worst-case trajectory starting at gis = g^ f ->
We showed in the previous lemma that

e—Wi9

Since tt, is the best worst-case trajectory from gand by the optimality ofV(g)

e—(9>9 )€B„/(9)

Since is the shortest best worst-case trajectory, we know that ^ ^ Q, so
V(^ —V{q). This implies V{q) < L{e) + V'(g) = V(g), a contradiction.

Remarks:
1. It is intuitively reasonable that the algorithm cannot synthesize a controller

with Zeno loops. Thisworst-case behavior would show up in the value func
tion, forcing it to be infinite for states that cem reach the loop.

2. When we say that the algorithm is optimal, we mean the algorithm de
termines the best worst-case cost to take each state to the target set. In
fact, (see remark below) the hybrid system or continuous system using the
sjmthesized controller may perform better than worst case.

3. The non-deterministic automaton predicts more trajectories than what ei
ther the continuous system or the hybrid system can exhibit. Indeed, the
automaton may exhibit a trajectory that reaches the target set using only
control switches, and thus accruing zero cost. This is not of concern. Such
a trajectory is an artifact of the non-determinacy of the automaton, and is
not used in the determination of the value function, which accounts only for
worst-case behavior, nor is it exhibited in either the hybrid system or the
continuous system when the control policy synthesized by Algorithm NDD
is used.



4. Related to the previous remark is that the non-deterministic automaton may
also predict worst-case behavior which is not exhibited by the continuous
system. It would appear that a discrepancy will develop between the cost-to-
go obtained by applying the synthesized controller to the continuous system
and the cost-to-go predicted by the nondeterministic automaton. This error
is incurred every time a control switch is taken and is effectively an error
in predicting the state and has an upper bound of S at each iteration. This
error was ziccounted for in om* proof of convergence of the method, and the
convergence result essentially depends on the fact that only a finite number
of control switches occur.

Example 6. Consider the example of Figure 6. The states are labeled Qi and the
number in the lower, left corner is the instantaneous cost of a time step. States
can take a time step to the state immediately to the right, and they can take
a control switch to states with a different ai value and overlapping vertically.
(Edges are not drawn to keep the figure readable.) For example, state qz can
take a time step to qz and a control switch to qiz or qiz using control <T2, and to
917 or g20 using control <73. The algorithm generates the following data:
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Fig. 6. Example of algorithm NDD
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n Bn V{Bn) control
1 {911} 1 <72

2 {915,91} 1 0"2

3 {915} 2 (^3
4 {917,919} 5 <^3
5 {95} 5 <73

6 {97,920} 6 c{q-r) = <7i, c(92o) = <73
7 {92,93,912} 6 <73

8 {94,93} 10

9 {95} 11 <7l

10 {913} 12 ^72

11 {921} 12 <72

12 {914} 13 <72

13 {99,922} 13 <72
14 {910} 14 <7l

15 {924,918,923} 14 <7l

8 Implementation issues

We have implemented algorithm NDD and the transformation from the hybrid
automaton to a finite automata using our bisimulation method in a prototype
tool. The steps involved are:

1. Generate first integrals and a transversal foliation for each control value.
We rely on the Prelle-Singer procedure to automatically generate the first
integrals [20]. For all the examples we have worked with, however, we found
the first integrals manually. One can alsoconstruct the transversal foliation
and check the independence of the folations manually or using a symbolic
algebra package such as REDUCE.

2. Enumerate all equivalence classes for each partition.
3. Determine edges of the finite automaton. This is a problem of existential

quantifier elinunation, as we need to determine which are the overlapping
equivalence classes between the partitions of two locations.

4. Apply algorithm NDD to the resulting finite automaton.

In the conclusion we make some remarks about future developments for this
tool.

9 Examples

9.1 Double integrator system

We apply our method to thetime optimal control problem ofa double integrator
system. Given the equations of motion

Xi = X2

X2—U



and the set of admissible controls U = {u : |w| < 1}, we select Q = (—1,1) x
(—1,1) and Qf = jBe(O), the closed epsilon ball centered at 0. The cost-to-go
function is J(x, fi) = dt. The bang-bang solution obtained usingPontrya-
gin's maximum principle is wellknown to involve a singleswitchingcurve shown
in Figure 7. In region ili, the control u = 1 is applied. When the switching
curve is reached, the control is switched to u = —1. In region R-i, the control
w = —1 is applied, emdwhen the switching curve is reach, the control is switched
to ti = 1. The continuous value function V is shown in Figure 8.

Fig. 7. The switching curve for the double integrator system.

Fig. 8. Value function for the continuous problem.



The results of algorithm NDD are shown in Figures 9, 10, and 11. Figure
9 shows V for ^ = 0.1. The enabling conditions 5e_i and pei are shown in
Figures 10 and 11, respectively. Theroughness in the boundaries ofthe enabling
conditions is caused both by the discretization of the state space and by the
non-determinism of the finite automaton.

Fig. 9. V ior A = 0.1.

9.2 Fuller's problem

In this example we discuss how our method can be applied in the canonically
difiicult situation of Fuller's problem. Fuller's problem is of interest because all
of its trajectories are Zeno. We propose an ad hoc method to avoid the Zeno
behavior.

Consider the optimal control problem (2) with |u| < 1 and the cost fimction
J(x,/i) = fg ^ Xi(s)ds. Let ^= .4446, the unique positive root of —
•^ = 0. It was shown in (11] that the optimal switching curves JL and /+ Eire
given by

r+ : Xi = —^X2 X2 > 0

r_ : Xi = ^X2 X2 < 0.

The situation is the same as in Figure 7. The upper vector field X- uses u = —I
while the lower vector field X+ uses u = l. The combined vector field is denoted
X.
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Solutions of X- are parabolic curves Xi - = c, c e R. The parabola
meets r+ at xi = —= c + 5X2 or

The parabola meets JL when xi = ^x^ = c —5X2 or

Let the X trajectory cross r+ at p" = (x^.x?) and r_ at ^ = (x?,x?). (27)
and (28) given

=1—ii?.
2

Hence x",xj —> 0 as n —> 00. The time it takes the X trajectory to go from
p" to to p"+^ is

t" = x^ + 2\x^\ +

1+2^17?
5+e '•

The total time elapsed for an X trajectory to restch the origin is
00

T=x:«"
n=l

§+€ +

- —2?—

Thus, every trajectory takes an infinite number of switches in finite time. The
origin iscalled a Zeno point It was shown in [23] that Zeno points are stationary
points of the hybrid system but not equilibrium points of either vector field X-
or X+. The continuous value function is shown in Figure 12.

Because our method cannot be proved to converge to the continuous value
function in thepresence ofZeno behavior, we propose thead hoc fix ofenlarging
the t£u:get set to be a closed ball around the origin. The results of algorithm
NDD are shown in Figure 13 for A = 0.1.

i+r^'

Since the picture is symmetric with respect to Xi and —xi and by (29)



Fig. 12. Value function for the continuous problem.

Fig. 13. V for Zi = 0.1.



9.3 Nonlinear system

Consider the optimal control problem

^2 = U2 (30)

Pig. 14. Hybrid automaton for nonlinear example

The control u takes fomr values: (-1, -1), (-1,1), (1, -1), (1, i). The cost is
J = j dt. Also U\ 6 [—1,1] and U2 6 [—1,1].

The first integrals for u = (-1,-1) and u = (1,1) are xi - \xl = ci and
X2 = C2, and for u - (-1,1) and w= (1, -1), xj + \xl - ci and X2 = C2.

10 Conclusion

In this paper we have developed a methodology for the synthesis of optimal
controls based on hybrid systems and bisimulations. The idea is to translate
an optimal control problem to a switching problem on a hybrid system whose
locations describe the dynamics when the control is constant. When the vector
fields for each location of the hybrid automaton have local first integrals which
canbe expressed analytically we areableto define a finite bisimulation using the
approach of [4]. From the finite bisimulation we obtain a (time abstract) finite
automaton upon which a dynamic programming problem can be formulated that
can be solved efficiently.

We developed an efficient single-pass algorithm to solve a dynamic program
ming problem on a non-deterministic graph which arose in the solution of a



continuous optimal control problem using hybrid systems and bisimulation. The
efficacy ofthe methodwas demonstrated on twoexamples. In particular, the sec
ond example showed that the canonicadly difficult situation of Fuller's example
can be handled by our method.

The paper suggests some areas for future research. Foremost we formulated a
hybrid optimal control problem used as a conceptual step in the translation to the
dynamic programming problem. This problem is of interest in its own right, and
further work must be done to characterize its solution. On the implementation
side, we mentioned the need for efficient existential quantifier elimination to go
firom hybrid automata to finite automata. Also, heuristics can be introduced
in our prototype tool to improve its performance. These heuristics can include
building the finite automaton on the fiy based on a course reachability analysis
while algorithm NDD is executing.
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