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Abstract. We consider the synthesis of optimal controls for continuous
feedback systems by recasting the problem to a hybrid optimal control
problem, which is to synthesize optimal enabling conditions for switch-
ing between locations in which the control is constant. An algorithmic
solution is obtained by translating the hybrid automaton to a finite au-
tomaton using a bisimulation and formulating a dynamic programming
problem with extra conditions to ensure non-Zenoness of trajectories. We
show that the discrete value function converges to the viscosity solution
of the Hamilton-Jacobi-Bellman equation as a discretization parameter
tends to zero.

1 Introduction

The goal of this paper is the development of a computationally appealing tech-
nique for synthesizing optimal controls for continuous feedback systems =
f(z,u), by reducing substantially the complexity of the problem. This goal is
achieved by virtue of recasting the problem to a hybrid optimal control problem.
The hybrid problem is obtained by approximating the control set I/ ¢ R™ by a
finite set £ Cc U and defining vector fields for the locations of the hybrid system
of the form f(z, o), o € X; that is, the control is constant in each location. The
hybrid control problem is, then, to synthesize an optimal switching rule between
locations, or equivalently, optimal enabling conditions, such that a target set
2y C 02 is reached while a hybrid cost function is minimized, for each initial
condition in a specified set 2 ¢ R". :

Casting the problem into the domain of hybrid control is not appealing per
se, on the contrary! Algorithmic approaches for solving the controller synthesis
problem for specific classes of hybrid systems have appeared (17, 28] but no gen-
eral, efficient algorithm is yet available. Hence, to be able to solve the (nonlinear)
hybrid optimal control problem, we must exploit some additional property. We
have a feasible and quite appealing approach if we can translate the problem
to an equivalent discrete problem, which abstracts completely the continuous
behavior. This translation is possible if we can construct a finite bisimulation
defined on the hybrid state set. The bisimulation can be constructed using the
geometric approach reported in [4], based on the following key assumption: n— 1
local (on 2) first integrals can be erpressed analytically for each vector field



f(z,0), 0 € Z. This assumption is imposed in the transient phase of a feedback
system’s response, when the vector field is non-vanishing and local first integrals
always exist, though analytical expressions for them may not be readily com-
putable. The assumption breaks down at equilibria, thus restricting the region
£2 where the method can apply.

If the assumption is met, then we can transform the hybrid system to a
quotient system associated with the bisimulation. If the bisimulation is finite,
the quotient system is a finite automaton. The control problem posed on the fi-
nite automaton is to synthesize a discrete supervisor, providing a switching rule
between automaton locations, that minimizes a discrete cost function approxi-
mating the original cost function, for each initial discrete state. We provide a
dynamic programming solution to this problem, with extra constraints to ensure
non-Zenoness of the closed-loop trajectories. By imposing non-Zeno conditions
on the synthesis we obtain piecewise constant controls with a finite number of
discontinuities in bounded time.

The discrete value function depends on the discretizations of U and of 2
using the bisimulation. We quantify these discretizations by parameters § and
dq, respectively. The main theoretical contribution is to show that as §, dqg — 0,
the discrete value function converges to the unique viscosity solution of the
Hamilton-Jacobi-Bellman (HJB) Equation.

There is a similarity between our approach to optimal control and regular
synthests, introduced in [2], in the sense that both restrict the class of controls
to a set that has some desired property and both use a finite partition to define
switching behavior. For linear systems, the results on regular synthesis are cen-
tered on the Bang-Bang principle [19], stating that a sufficient class of optimal
controls is piecewise constant. If U is a convex polyhedron, then the number of
discontinuities of the control is bounded. There is no hope that general Bang-
Bang results are available due to the following example.

Ezample 1 (Fuller’s problem [11]). Consider the optimal control problem

ii:l =2 (1)
1':2 =1u (2)

with |u| < 1 and the cost function J(z,u) = fOT(z’" ) z}(s)ds. If y € R? is any
point except the origin, then there exists a unique optimal control driving y to
the origin, and it is bang-bang with infinite number of switchings. In fact Kupka
has shown in [14] that this phenomenon is generic at sufficiently high dimensions.

Inspite of Fuller’s example, in many applications the optimal control is a piece-
wise continuous function, and therefore methods of regular synthesis of such
controls are worth investigating.

Our paper focuses on piecewise constant controls and provides a constructive
approach to obtain a cell decomposition by using a finite bisimulation, which
further allows us to formulate the synthesis problem on its quotient system - a
finite automaton.



The idea of using a time abstract model formed by partitioning the contin-
uous state space has been pursued in a number of papers recently. Lemmon,
Antsaklis, Stiver and coworkers [25], [15] use a partition of the state space to
convert a hybrid model to a discrete event system (DES). This enables them
to apply controller synthesis for DES’s to synthesize a supervisor. While our
approach is related to this methodology, it differs in that we have explicit con-
ditions for obtaining the partition. In [21] hybrid systems consisting of a linear
time-invariant system and a discrete controller that has access to a quantized
version of the linear system’s output is considered. The quantization results in
a rectangular partition of the state space. This approach suffers from spurious
solutions that must be trimmed from the automaton behavior.

Hybrid optimal control problems have been studied in papers by Witsen-
hausen [27] and Branicky, Borkar, Mitter [3]. These studies concentrate on prob-
lems of well-posedness, necessary conditions, and existence of optimal solutions
but do not provide algorithmic solutions.

The paper is organized as follows. In section 2 we state the optimal control
problem, while in section 3 the associated hybrid optimal control problem is
given. In Section 4 we review how the bisimulation is constructed. Section 5
formulates the proposed solution using bisimulation and dynamic programming.
In section 6 we prove the main theoretical result. In section 7 we study the
implementation of an algorithmic solution of the dynamic programming problem
including a formal justification of the algorithm’s optimality. In section 9 we
study several examples of the proposed method. Section 10 summarizes our
findings and indicates future directions of research.

2 Optimal control problem

Notation. 1(:) is the indicator function. cl(A) denotes the closure of set A.
[l - || denotes the Euclidean norm. Let C*(IR") and X(IR™) denote the sets of
continuously differentiable real-valued functions and smooth vector fields on IR™,
respectively. ¢;(2o, ) denotes the trajectory of # = f(z, u) starting from z, and
using control p(-).

Let U be a compact subset of IR™, £2 an open, bounded, connected subset
of R", and £2; a compact subset of £2. Define U,, to be the set of measurable
functions mapping [0,T] to U. We define the minimum hitting time T : IR™ x
Up - R* by

= [ if {t | gu(,m) € 2 } =0
Tl@ ) = {min{t | ¢:(z, 1) € 24} Otherwiste. ! (3)

A control u € Uy, specified on [0,T] is admissible for z € 2 if e(z, 1) € 2 for
all ¢t € [0, T). The set of admissible controls for z is denoted /. Let

R:={zeR"|3pecl;. T(z,p) <o }.



We consider the following optimal control problem. Given y € 12,

T(y,u4)
minimize  J(y,p) = / Lia(t), p(e)dt + h(=(T(v,1)))  (4)

subject to z = f(z,p), a.e. t€[0,T(y,p)) (5)
z(0) =1y (6)

among all admissible controls 4 € Uy. J : R™ X U, — IR is the cost-to-go
function, h : R® — IR is the terminal cost, and L : R® x R™ — IR is the
instantaneous cost. At T(y,p) the terminal cost h(z(T(y,u))) is incurred and
the dynamics are stopped. The control objective is to reach 2 ¢ from y € 2 with
inimum cost.

Assumption 2.1.

(1) f:R*xIR™ — IR" satisfies || f(z',u')— f(z, u)|| < Ly [||:c’—a:||+||u'—u||]
for some Ly > 0. Let My be the upper bound of ||f(z,)|| on £ x U.

(2) L:R"xIR™ — IR satisfies |L(z',v') - L(z, u)| < L [|lo’ — x| +]||«' —uf]]
and 1 < |L(z,u)| < ML,z € 2, u € U, for some L, My > 0.

(3) h:R" — IR satisfies |h(z’) — h(z)| < Lp|jz’ — z|| for some Ly, > 0, and
h(z) 2 0 for all z € 2. Let M}, be the upper bound of |k(z)| on £2.
Remark 2.1. These assumptions ensure existence of solutions and continuity of
the value function, defined below. Weaker assumptions are possible but since our
goal is to introduce a method rather than obtain the most general setting for it,

we are satisfied with these. See [1] for other possibilities.
The value function or optimal cost-to-go function V : IR® — IR is given by

V(y) nf J(y, 1)

for y € 2\ £24, and by V(y) = h(y) for y € 2. A control u is called e-optimal
for z if J(z,u) < V(z) +¢.

It is well-known [10] that V satisfies the Hamilton-Jacobi-Bellman (HJB)
equation

—31615{L(z, u) + %gf(:c, u)} =0 (7

at each point of R at which it is differentiable. The HJB equation is an infinites-
imal version of the equivalent Dynamic Programming Principle (DPP) which
says that

V(z) = infueu, { f L($s(x, 1), 1(s))ds + V(4y(z, n))}, z € 2\ 2
V(z) = h(z) z € §2.
The subject of assiduous effort has been that the HIB equation may not have a

C? solution. This gap in the theory was closed by the inception of the concept of
viscosity solution [16, 6], which can be shown to provide the unique solution of



(7) without any differentiability assumption. In particular, a bounded uniformly
continuous function V' is called a viscosity solution of HIB provided, for each
¥ € C'(IR™), the following hold:

(i) if V — ¢ attains a local maximum at zo € R™, then
. oy
- JGD‘S{L(xOsu) + %(zO)f(xOs u)} < 01
(i) if V — ¢ attains a local minimum at z; € R", then

—325{L(zl,u) + g—:(wl)f(:cl,u)} >0.

Assumption 2.2. For every ¢ > 0 and z € R, there exists N, > 0 and
an admissible piecewise constant e-optimal control p having at most N,
discontinuities and such that ¢,(z, 1) is transverse to 012;.

The transversality assumption implies that the viscosity solution is contin-
uous at the boundary of the target set, a result needed in proving uniform
continuity of V' over a finite horizon. The assumption can be replaced by a
small-time controllability condition. For a treatment of small time controllabil-
ity and compatibility of the terminal cost with respect to continuity of the value
function, see [1]. The finite switching assumption holds under mild assumptions
such as Lipschitz continuity of the vector field and cost functions, and is based
on approximating measurable functions by piecewise constant functions.

3 Hybrid system

The approach we propose for solving the continuous optimal control problem first
requires a mapping to a hybrid system and, second, employs a bisimulation of
the hybrid system to formulate a dynamic programming problem on the quotient
system. In this section we define the hybrid optimal control problem. First, we
discretize U by defining a finite set £5 C U which has a mesh size

¢ := sup min [|u — ol.
sup mia [[u—of

We define the hybrid automaton H := (Z x R", %5, D, Ep,, G, R) with the
following components:

State set 2 x IR™ consists of the finite set 5 = 35 U {o+} of control locations
and n continuous variables + € IR". oy is a terminal location when the
continuous dynamics are stopped (in the same sense that the dynamics are
“stopped” in the continuous optimal control problem).

Events X is a finite set of control event labels.

Vector fields D : ¥ — X(IR") is a function assigning an autonomous vector
field to each location. We use the notation D(o) = f,.



Control switches E;, C X x X is a set of control switches. ¢ = (0,0") is a
directed edge between a source location o and a target location o’. If E, (o)
denotes the set of edges that can be enabled at ¢ € X, then En(o) =
{(0,0') | o' € Z\ 0} for ¢ € Z5 and Ej(oy) = 0. Thus, from a source
location not equal to oy, there is an edge to every other location (but not
itself), while location o5 has no outgoing edges.

Enabling conditions G : E; — {ge}ceE, is a function assigning to each edge
an enabling (or guard) condition g C IR™. We use the notation G(e) = g,.

Reset conditions R : E;, — {re}eck, is a function assigning to each edge a
reset condition, 7, : R® — 2R" where we use the notation R(e) = 7.

3.1 Semantics

A state is a pair (0,z), 0 € £ and z € R™. In location ¢ € I; the continuous
state evolves according to the vector field f(z, ). In location o t, the vector field
is & = f(x,uy) where uy is the (not necessarily constant) control of the terminal
location. Trajectories of H evolve in steps of two types. A o-step is a binary
relation 3C (£ x R™) x (£ x IR"), and we write (0,2) % (o',2') iff (1) e =
(0,0') € Ey, (2) z € ge, and (3) 2’ = r¢(z). We assume the transition (o,2) S
(0',2') is taken at the first time in location & when the control event label is o’
and z € g, for e = (0,0"). A t-step is a binary relation —C (ZxR™)x(ZxIR"),
and we write (o, z) 5 (0',2') iff (1) 0 = o', and (2) for t > 0, 2’ = ¢y(, o),
where ¢:(z) = f(#:(z,0),0). A hybrid control is a finite or infinite sequence of
labels w = wyw, ..., with w; € ZUR™. w; € R is the duration of the t-step at
step 2. The set of hybrid controls is denoted S. A hybrid trajectory = over w € S
is a finite or infinite sequence = : (09, z0) 3 (0y,2;) 3 (02,22) =3 ... where
(0i,2;) € £ x R". Trajectory = is accepted by H iff Vi, (0i, ;) “3' (0541, Tig1)
is either a t-step or o-step of H. Let m be the trajectory (not necessarily accepted
by H) starting at (0,) € £ x £2 and defined over w € §. We say w is admissible
for (0,z) on interval [0,T] if (1) 7 remains in £ x £ for ¢ € [0,T), and (2)
corresponding to w is a piecewise constant control p,(t) (with a finite number
of discontinuities in finite time). Let S(, 5) be the set of admissible controls for
(o, ).

Ezample 2. Consider a time optimal control problem for

T =T

:z':2=u.

We select 2 = (—1,1) x (—1,1) and £2; = B,(0), the closed epsilon ball centered
at 0. The cost-to-go function is J(z, ) = foT(z‘") dtand U = {u : |u|<1}. We
select X5 = {—1,1}, so that § = 1. The hybrid system is show in Figure 1. The
state set is {o_; = —1,00 = 1,04} x R". g._, and g, are unknown and must

be synthesized, while g., = g., = 2.



Fig. 1. Hybrid automaton for time optimal control of a double integrator system

3.2 Hybrid optimal synthesis

We want to synthesize enabling conditions so that for each y € R, the cost-to-
go from y well-approximates the viscosity solution at y of HJB. This requires
posing a hybrid optimal synthesis problem. We define a hybrid cost-to-go function
Jg: ZxR" xS — R as follows. For w € S(o,z)»

Ju((o,2),w) = J(z, p).
The hybrid value function Vg : ¥ x IR® - R is

VH((av (L')) = wei;f,,) JH((aa z);“’)'

Hybrid optimal synthesis problem:
Given H and 0 < €! < €2, synthesize ge, e € E},, subject to:

1. ge = 0y if e = (0,0y), 0 € ;.

2. For each e € Ey, g. C 2.

3. For allw € § and (0,T) € £'x 2 such that Vi ((0,z)) < 00, M(g,z) is accepted
by H if w is admissible and ¢! -optimal for (o, z).

4. For allw € S and (0,z) € £ x 2, 7, 5) is not accepted by H if either w is
not admissible for (0,z), w is not €2-optimal for (0,z), or Vi ((0,z)) = .

Remark 3.1. Condition 1 says that the enabling condition for edges going to the
final location is £2;. Condition 2 corresponds to trajectories remaining in 2.
Conditions 3 and 4 say the hybrid automaton “does the right thing”.

4 Construction of bisimulation

We propose to solve the hybrid optimal control problem using the bisimulation
of H. In this section we define bisimulation and the quotient system that is
obtained from it.



Let A represent an arbitrary time interval. corresponding to some ¢t € R*. A
bisimulation of H is an equivalence relation ~C (I x IR"™) x (£5 xIR™) such that
for all states py, p> € Z5 xR™, if p; ~ p; and 0 € Z;U{\}, then if p; > p!, there
exists pj such that p, = ph and p) ~ p). If ~ is finite, the quotient system is a
finite automaton. The finite automaton can be used to study properties of the
reach set of H. For an overview of results on bisimulations for hybrid systems,
see [13].

Since the dynamics are restricted to the set {2, the set of interesting equiva-
lence classes of ~~, denoted Q, are those that intersect T x cl(§2). For each q€Q
we define a distinguished point (0, £) € g. We associate g with its distinguished
point by the notation ¢ = [(0,£)]. It is now possible to define the enabling and
reset conditions of H in terms of Q. In particular, the enabling conditions of H
are synthesized as subsets of Q while the reset conditions are defined as follows.
For e = (o0,0)

re(z) = { y | K.[(0,2)] = [(0, )| A (", €)] = [(o", 3)] }. (8)

That is, re(z) is the projection to IR" of the set of equivalence classes [(¢”, )] such
that the projection to R" of [(¢’,y)] and [(o, )] have nonempty intersection.
This definition in effect gives an over-approximation of the identity map in terms
of the equivalence classes of ~ and will introduce non-determinacy in the finite
automaton. Notice also that (8) encodes information about the bisimulation in
H. This sequence of steps is not typical; it is characteristic of our synthesis
procedure. We define a mesh size on Q by

bg=max sup {|lz—-y|l}.
@ 9€Q (0,z),(0y)€Eq

Finally, for each ¢ = [(0,£)] € Q we associate the duration 7,, the maximum
time to traverse g using constant control o. That is,

Tq= sup {t|ly=dz,0)}.
(o,z),(0.y)Eq

4.1 Review of geometric construction

We briefly review a method for obtaining bisimulations [4] which relies on the
following (related) assumptions on the vector fields on cl(12).

Assumption 4.1.

(1) n — 1 first integrals can be defined analytically on £ for each f(z,0),
o€ L;.

(2) There exists ms > 0 such that ||f(x,u)|| > my for all z € cl(2), u € U.

A bisimulation of X5 X IR" is constructed using a set of simple, co-dimension

one tangential foliations with associated submersions 47 (z) = y¢,i=1,... ,n—1

and a simple co-dimension one transversal foliation with submersion v = y2,

such that (y{,... ,y7) form a set of Euclidean coordinates y° : [-1,1]* - V C 2




for each o0 € X5. We discretize the foliations by selecting a finite set of leaves.
Fix k € Z" and let A = . Define

Ci = {0,%4,%24,... ,+1}. (9)

Each y7 = c for ¢ € Ci, i = 1,... ,n defines a hyperplane in IR" denoted
WY, and a submanifold W7, = (y7)~1(W¢,). The collection of submanifolds for

ogEXsis
WE={W/ |ceCie{l,...,n}}. (10)

2\ WY is the union of 2***1) disjoint open sets Vf = {V}. We define an
equivalence relation ~¢ on IR" as follows. = ~¢ z' iff

(1) z ¢ [-1,1]" iff ' ¢ [-1,1]", and

(2)ifz,z’ € [-1,1]", then foreachi = 1,... ,n, z; € (c,c+ Q) if 2’ € (c,c+ A4),
and z; = c iff z} = , for all ¢ € C.

We define the equivalence relation >~ on 5 x R" as follows. (0,z) ~ (¢/,z') iff
(1) ¢ =¢’, and (2) v (z) ~* 77 (z').
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Fig. 2. Partitions for states o and o, of the hybrid automaton of Figure 1

Ezample 3. Continuing example 2, a first integral for vector field &; = 25, &5 = 1
is ) — 3z} = c1, ¢ € R. For &, = z3, &2 = —1 a first integral is z; + 123 =y,
c2 € R. We select a transverse foliation for each vector field, given by z2 = c3.
A possible set of partitions for locations ¢ and o_; and 2 = (-1,1) x (—1,1)
are shown in Figure 2. The equivalence classes of ~ are pairs consisting of a
control label in X5 and the interiors of regions, open line segments and curves
forming the boundaries of two regions, and the points at the corners of regions.
7 = 0 for the segments transverse to the flow and the corner points. 7 = A for
the interiors of regions and segments tangential to the flow, where A = .25 in
Figure 2.

5 Discrete problem

In this section we transform the hybrid optimal control problem to a dynamic
programming problem on a non-deterministic finite automaton, for which an



algorithmic solution may be found. Consider the class of non-deterministic au-
tomata with cost structure represented by the tuple

A= (Q,ZJ,E,OI)S,Q],L,;E)-

Q is the state set, as above, and T is the set of control labels as before. obs :
E — Xj is a map that assigns a control label to each edge and is given by
obs(e) = o', where e = (¢,¢'), ¢ = [(0,£)] and ¢’ = [(¢', €')). Qj is the target set
given by the over-approximation of £2y,

Qr={9€Q|3xe 2. (0,z)eq}. (11)

E C Q x Q is the transition relation encoding t-steps and o-steps of H. A
will be used to synthesize g, of H, so, in the spirit of [22], E includes all possible
edges between locations. The synthesis procedure on A will involve trimming
undesirable edges. Thus, (¢,¢') € E, where ¢ = [(¢,£)] and ¢’ = [(¢",¢")] if
either (a) o = o/, there exists x € £2 such that (o, z) € g, and there exists 7 > 0
such that V¢ € [0,7], (0,:(z,0)) € q and (0, $ric(z,0)) € ¢ for arbitrarily
small € > 0, or (b) 0 = ¢, there exists z € £2 such that (o,z) € g, and there
exists 7 > 0 such that V¢ € [0, 7), (0, ¢:(2,0)) € g and (0, ¢-(z,0)) € ¢/, or (c)
o # o’ and there exists z € £2 such that (,z) € g and (¢’, ) € ¢'. Cases (a) and
(b) say that from a point in g, ¢ is the first state (different from q) reached after
following the flow of f(z,0) for some time. Case (c) says that an edge exists
between ¢ and ¢’ if their projections to IR™ have non-empty intersection.

Let e = (¢,¢') with g = [(0,€)] and ¢' = [(¢",&)). L : E — R is the discrete
instantaneous cost given by

Lfe):= {qu(&a) :ﬁ i : o (12)

Thus, no cost is incurred for control switches. & : Q — IR is the discrete terminal
cost given by

h(g) = h(¢).
The domain of i can be extended to {2, with a slight abuse of notation, by
h(z) = h(q) (13)

where ¢ = arg ming {||z - &'|| | ¢’ = [(¢",£")]}-

5.1 Semantics

A transition or step of A from q = [(0,€)] € Q to ¢ = [(¢',¢')] € Q with

observation o’ € Zs is denoted ¢ 5 ¢'. If o # o’ the transition is referred to as
a control switch; otherwise, it is referred to as a time step. If E(q) is the set of
edges that can be enabled from ¢ € Q, then for o € 5,

E,(q) = {e € E(q) | obs(e) = o}.



If |E;(q)| > 1, then we say that e € E,(q) is unobservable in the sense that
when control event ¢ is issued, it is unknown which edge among E,(q) is taken.
If o = o', then |E,(g)| = 1, by the uniqueness of solutions of ODE’s and by the
definition of bisimulation.

A control policy ¢ : @ — X5 is a map assigning a control event to each
state; ¢(q) = o is the control event issued when the state is at g. A trajectory
mof Aover cisasequence n =g 3 q1 3 q2 3 ..., ¢ € Q. A trajectory
is non-Zeno if between any two non-zero duration time steps there are a finite
number of control switches and zero duration time steps. Let II.(q) be the set of
trajectories starting at ¢ and applying control policy c, and let II.(g) be the set
of trajectories starting at ¢, applying control policy ¢, and eventually reaching
Qjy. If for every ¢ € Q, @ € II.(g) is non-Zeno then we say c is an admissible
control policy. The set of all admissible control policies for A is denoted C.

A control policy c is said to have a loop if A has a trajectory g c(—qf) Q c_q;)

. c(qﬂf') dm = Qo, ¢ € Q. A control policy has a Zeno loop if it has a loop

made up of control switches and/or zero duration time steps (i.e. 7, = 0) only.

Lemma 1. A control policy ¢ for non-deterministic automaton A is admissible
if and only if it has no Zeno loops.

Proof. First we show that a non-deterministic automaton with non-Zeno tra-
Jjectories has a control policy without Zeno loops. For suppose not. Then a tra-
Jectory starting on a state belonging to the loop can take infinitely many steps
around the loop before taking a non-zero duration time step. This trajectory is
not non-Zeno, a contradiction. Second, we show that a control policy without
Zeno loops implies non-Zeno trajectories. Suppose not. Consider a Zeno trajec-
tory that takes an infinite number of control switches and/or zero duration time
steps between two non-zero duration time steps. Because there are a finite num-
ber of states in Q, by the Axiom of Choice, one of the states must be repeated in
the sequence of states visited during the control switches and/or zero duration
time steps. This implies the existence of a loop in the control policy. Either each
step of the loop is a control switch, implying a Zeno loop. Or the loop has one
or more zero duration time steps. But the bisimulation partition permits zero
duration time steps if 7, = 0, which implies a Zeno loop.

Ezample 4. Consider the automaton in Figure 3. If we are at ! and the control

I

oo o is issued, then three possxble trajectories are q; —-) g3 -—) @S 92, q =

g4 —> as > g2, or @ —) g3 -) a1 > q1. The first trajectory has a zero duration
time step. The control is inadmissible since the last trajectory has a Zeno loop.

5.2 Dynamic programming

In this section we formulate the dynamic programming problem on A. This
involves defining a cost-to-go function and a value function that minimizes it
over control policies suitable for non-deterministic automata.



Fig. 3. Fragment of automaton with a zero duration time step.

Letm=go D gy —... > gn-1 =3 qn, where g = [(a,',ﬁ,-)J and 7 takes the
sequence of edges ejez ... en. We define a discrete cost-to-go J: Q x C — IR by

Ja o) = | moxrero{ iz Bles) + hlan,) } it 1.(q) = fi(g)
o0 otherwise

where Ny = min{j > 0| ¢; € Qy}. We take the maximum over /T.(q) because of
the non-determinacy of A: it is uncertain which among the (multiple) trajectories
allowed by c will be taken so we must assume the worst-case situation. The
discrete value function V: Q » R is

Vig) = min J (g,¢)

for g € @\ Qs and V(q) = fz(q) for ¢ € Q4. We show in Proposition 1 that V
satisfies a DPP that takes into account the non-determinacy of A and ensures
that optimal control policies are admissible. This DPP describes the accumula-
tion of cost over one step to be the worst case cost among edges that have the
same label. Let A, be the set of control assignments ¢(q) € L5 at g such that ¢
is admissible.

Proposition 1. V satisfies
V(g) = min max Le)+V(gY, qe 14
(@) c(g)eA, {e=(q,q')eEc(o)(q){ (€) (g )} } 9€Q\Qy (14)
V(a) = h(g), q€Qy. (15)
Proof. Fix q € Q. By definition of J

J(g,c) = max L(e) + J(¢',c)}. 16
@)= _ B {26 +I@,0) (16

By definition of V'

Jlg,¢) > max L(e) + V().
@92 mex  {0+7()



Since c(g) € A, is arbitrary

V > min L e + v ’ )
(Q) C(Q)éAq{c"(Q-q )EE:(‘,)(q){ ( ) (q )}}

To prove the reverse inequality suppose, by way of contradiction, there exists
o' € XI5 such that

V@)> _ max (L) +V()}:=L(e)+ V(). (17)

Suppose the optimal admissible policy for g is €. Define c = € on @ \ {q} and
¢(q) = o'. Then J(g,¢) = L(e) + V(g) < V(g). This gives rise to a contradiction
if we can show c is admissible. Suppose not. Then there exists a loop of control
switches and zero duration time steps containing g and g, implying V(g) > V'(gq),
which contradicts hypothesis (17). o

Remark 5.1. The DPP for V is a prescription for synthesizing admissible control
policies, but we have not indicated how, in practice, this can be achieved. One
possibility is to introduce a fictitious switching cost in the formulation of V.
Capuzzo-Dolcetta and Evans [5] introduce a small switching cost which tends
to zero as § — 0. Alternatively, admissible controls can be obtained through a
device introduced in implementation. For example, a counter of the number of
switches could be used. We will propose an algorithmic solution guaranteed not
to generate Zeno loops in Section 7.

5.3 Synthesis of g,

The synthesis of enabling conditions or controller synthesis is typically a post-
processing step of a backward reachability analysis (see, for example, [28]). This
situation prevails here as well: equations (14)-(15) describe a backward analysis
to construct an optimal policy ¢ € C. Once ¢ is known the enabling conditions
of H are extracted as follows.

Consider each e = (0,0') € E of H with ¢ # o'. There are two cases. If
o' # oy then g. = {x | (0,2) € ¢, € @ A c(q) = o'}. That is, if the control
policy designates switching from ¢ € Q with label o to ¢’ € Q with label o/,
then the corresponding enabling condition in H includes the projection to R™
of g. The second case when ¢’ = oy is for edges going to the terminal location
of H. Then g. = {z | (0,z) € 9,q € Q¢}.

6 Main Result

We will prove that V' converges to V, the viscosity solution of the HIB equation,
as 6g,0 — 0. The proof will be carried out in three steps. In the first step we
consider restricting the set of controls to piecewise constant functions, whose
constant intervals are a function of the state. In the second step we introduce



the discrete approximations of L and k. In the last step we introduce the discrete
states Q) and consider the non-determinacy of A.

In the sequel we make use of a filtration of control sets Xy = X5, corre-
sponding to a sequence §; — 0 as k — oo, in such a manner that 2k C Zrqa.
Considering (10), we define a filtration of families of submanifolds such that
WY C WE,,, for each o € Z.

Step 1: piecewise constant controls.

In the first step we define a class of piecewise constant functions that depend
on the state and show that the value function which minimizes the cost-to-go over
this class converges to the viscosity solution of HIB as 6; — 0. The techniques
of this step are based on those in Bardi and Capuzzo-Dolcetta [1] and are related
to those in [5].

We consider the optimal control problem (4)-(6) when the set of admissible
controls is U}, piecewise constant functions consisting of finite sequences of con-
trol labels o € X} and each o is applied for a time 7(o,z). Let (0,z) € q for
g € Q and define (g, z) to be the minimum of the time it takes the trajectory
starting at = and using control ¢ € T to reach (ta) 082, or (tb) some z’ such
that (0,2) € g. If a trajectory is at z; at the start of the (i+1)th step, then the
control o4 is applied for time 7;,; := 7(0it1,%;) and 241 = ¢, 1 (Ziyoig1).

Let

Ri:={z€R"|pell.T(x,p) <}

We define the cost-to-go function J} : 2 x U} — IR as follows. For z € {2 and
Kk =0102... €U}, if T(z,p) < oo then

. N 7(05,%j-1)
Haw =3 /0 L(¢s(2;-1,05), 0;)ds + h(zx)
Jj=1

where N = min{j > 0 | z; € 892s}. J}(z, 1) = oo, otherwise. We define the
value function Vi : R™ — IR as follows. For z € 2\ £2;,

V(o) = int, Jhau) (18)

and for z € £2¢, V}(z) = h(z).

Proposition 2. V}! satisfies, for all z € R,

T(o,x)
Vi(z) = :gﬁ{/o L(¢s(x,0),0)ds + Vi ($r(o,z) (=, a))}. (19)

Proof. Fix z € R} and g = 06103... € U}. Using the semigroup property of
flows and the definition of J}

7(o,x)
Jlt (:L‘, /‘l') = ‘/0. L(¢s($7 0), a)ds + ‘]Ii (¢'r(a,x) (.’L‘, U)aﬁ) (20)



where &I = 6103 ... € U}. By definition of V!

7(ox)
Jlt(x: u) 2 /(; L(¢s(z,0),0)ds + V;cl((ﬁ,.(,,z)(x, a)).

Hence,

7(o,z)
‘/}cl(x) 2 o“égi{L L(¢s(z’a)a U)ds + "’kl(qs'r(a,z)(zaa))}'

To prove the reverse inequality fix o € Ly, set z = @,(5)(z,0), and fix € > 0
and p; € U} such that

Vkl(z) 2 ‘]Ii(z’ﬂz) — €
Define the control

- g s ST( » )
As) = {u;(s —t)s> 'r(g,;).

Then
r(o,x)
R@shen= [ Lomo)ols+Iiem)
()
7(o,x)
< / L(¢s(z,0),0)ds + Vi (2) + .
0

Since ¢ € 2 and € > 0 are arbitrary

7(o,z)
Vi) < min { /0 L(¢s(x, o), 0)ds + Vkl(q&,(,_;,)(a:,a))}.
(W]

We would like to show that V}! is uniformly bounded and locally uniformly
continuous. Considering uniform continuity of V!, let C be as in (9) and 7J the
transversal foliation of & = f(x, ). For each o € L) we define the regions in R™

M :={ze(v) " c)|ceCi }
M ={ze ()" ((-1,¢)) | c€Ck }.

Remark 6.1.

(a) Let z € R} and p = 0107... € U}. Suppose that z;_; € M¢’ for some
¢ € Ci so that 7; = 0 and 0541 # 0. Let i = ...0j_10j41.... Then
J(z,p) = J(z, iz). Therefore, whenever we construct an e-optimal control
for z we may assume that if 7; = 0 then gj4; = 0;.



(b) If z,y € MZ_ for some ¢ € C and 7(0,z) and 7(0,y) are defined using
(tb) then |7'(0, :B) - T(a’ y)l — 0 and "¢1’(a,:c)(x,a) - ¢-r(tr,y)(ya 0‘)" — 0 as
lz —yll = 0in MZ_, since M? is a smooth submanifold. For the details, see
Theorem 6.1, p. 91-94, [10]. If instead 7(o,z) and 7(o,y) are defined using
(ta) and o is an e-optimal control for z, then by Assumption 2.2 the same
results hold.

(c) For each z € UxR} and € > 0 there exists m € Z* and p € U2, such that
p is an e-optimal control for z w.r.t. V! satisfying Assumptions 2.2. This
follows from Assumptions 2.2, Vi!(z) > V(z), and the fact that we can well-

approximate an e-optimal control for V' by a control in U}, for large enough
m.

Lemma 2. For each y € UxR} and € > 0, there ezists m, € Z*+ and e >0
such that

Vi (z) - Vi (9)] < 2¢

Jor all |z - y| < e and k > m,.

Proof. Fix y € UyR}. By Remark 6.1(c) there exists m; > 0 and x € U}, such
that p is an e-optimal control for y satisfying Assumptions 2.2. Let z € ’R,,lm.
Then Vi!(z) — VX (y) < Ji(z,uz) — JE (¥, ) + € for any p, € Uk, and k > my.
If we can show that for fixed y and p there exists p, € U}, such that

Ta (@ u2) — Jh(y,p) < e (21)

for all z € R}, sufficiently close to y, then Vi(z) — Vi!(y) < 2¢ for all k > m,.

Conversely, by Remark 6.1(c) there exists my > 0 and y, € U},, such that p,
is an e-optimal control for x satisfying Assumptions 2.2. Then Vi(y) - Vi (=z) <
Ji(y, 1) = JR(2, 1) + € for any p € U}, and k > m,. If we can show that for
fixed y there exists u € U}, such that :

Ja(y,p) — Ji(z,pz) < € (22)

for all z € R}, sufficiently close to y, then V}}(z) — V}(y) > —2e for all k > m,.
The result follows by letting m, = min{m,, m,}. Thus, we must show (21) and
(22).

Consider first (21). Let & = 7,2 ... € U} be an e-optimal control for y such
that yy € 052y and Remark 6.1(a) holds. By redefining indices, we can associate
with 7z the open-loop control i = (01,71)(02,72) ..., where 7; is the time o; is
applied. We claim there exists i* = (01, 7§)(02,7F) ... such that as z — y, (a)



T; = yj, (b) ¥ — 75, and (c) zy € 842;. Then we have
N 75
Ji(z,5%) — Ji (v, B) < Z/o |L(#s(2j-1,05), 05) — L(¢s(y;-1,05), 05)|ds
i=1

7 L{gu(wi-1,05),0,)ds| + h(yn) - h(zw)]

5]/

=175
N
< LiTi exp (LfTk) Y l1zj-1 = yj-all
=1
N
+My Y |7F — 75| + Lalen — ywl-
=1

By the claim the r.h.s. can be made less than ¢. Thus, we need only show there
exists i* = (01,77)(02,75)... which satisfies the claim and yu* € U} can be
reconstructed from it, based on the discrete states in Q visited by @,(z, i*).
We argue by induction. Suppose (a)-(c) hold at ; — 1. We show they hold at
Jj- By Remark 6.1(a) we need only consider the case when y;—; € M.’ and
y;j € M’ for some ¢ € Ck. For z;_; sufficiently close to y;—; -, € M_?. By
Remark 6.1(b) there exists 77 such that z; = ¢#z(xj-1,05) € MJ and 7§ — 7
and z; = y; as Tj-1 — y;j—1. The case y;_; € M_’ and y; € 892 follows in the
same way from Remark 6.1(a) and Assumption 2.2. Proving (22) follows along
the same lines as the proof for (21). O

To show boundedness of V!, let

T(z) := inf T(z,p).
(=) ,fé’u; (z, 1)

In light of Assumption 2.1(2), we have that for all z € R”, |V!(z)| < T(z) -
My, + M}, Consider the set

K, :={z e R} | T(z) < a}.

Then |V} (z)| < a- My + My, Vz € K,.

We have shown that on each K, C R", {V}!} forms a family of equibounded,
locally equicontinuous functions. It follows by Arzela-Ascoli Theorem that along
some subsequence k, V;! converges to a continuous function V.

Proposition 3. V, is the unique viscosity solution of HJB.

Proof. We show that V, solves HIB in the viscosity sense. Let ¢ € C!(IR") and
suppose Zg € {2 is a strict local maximum for V, — 1. There exists a closed ball
B centered at zo such that (V, —9)(zo) > (Vi —9)(z), for all z € B. Let zo5, be
a maximum point for V;! — 4 over B. Since V! — V, locally uniformly it follows
that s, — o as 0 — 0. Then, for any o € Zy, the point ¢,(zes,,0) is in B



(using boundedness of f), for sufficiently small §; and 0 < 7 < 7(zos,,0), since
T(Z0s,,0) = 0 as 6 — 0. Therefore,

Vi (z0s,) — ¥(zo0s,) > Vi (br (05, , 7)) — ¥(b+(T0s,, 7))

Considering Equation 19, we have
0= — min {v;:l(¢'r(x05k» o)) - Vlil(xOJk) + / L(¢s(206u 0‘), U)ds}
dezk 0

>~ min {¥(6(zose,0)) = $(oon) + [ Libu(aon0),0)is).

Since 1 € C!(IR™), we have by the Mean Value Theorem,

02 - g {320)- [ 10utzon o) o) + [ Liputans, 00,0048}

gEL)

where y = azos, + (1 — a)$r(Tos,,0) for some a € [0,1). Dividing by 7 > 0 on
each side and taking the limit as dy — 0, we have V! =+ V,, zo5, = zo, T = 0,
and ¥y — Zos,. By the Fundamental Theorem of Calculus, the continuity of f
and L, and the uniform continuity in u of the expression in brackets, we obtain

. [OY
02 - iof { P (an)- f(an, 1) + Lizo) .
This confirms part (i) of the viscosity solution definition. Part (ii) is proved in

an analogous manner. o

Step 2: approximate cost functions.

In this step we keep the semantics on piecewise constant controls of Step 1
but replace cost functions L and h by approximations L2 and i. We define an
approximate instantaneous cost L2 : 2 x I — IR given by

L*(z,0) := L(q) (23)

where (0,2) € . Forz € 2and pp = 0102 ... € U}, if T(z, 1) < oo, the cost-to-go
function JZ: 2 x U} - R is

N
Rz, p) = L¥(zj1,05) + h(zn)

i=1

where N = min{j > 0 | z; € 882}.
We define a value function V2 : R" — IR as follows. For z € 22\ £2f,

2(z) = inf J? 24
Vi) = jnf, JE(e.s) (29
and for z € 825, V(z) = h(z). For = € £2 such that V2(z) < oo, V? satisfies the
DPP
sz(x) = min {Lz(wa 0) + Vlc2(¢'r(c,x)(za 0))}
oEX)



The proof is along the same lines as that of Proposition 1.
The following facts are useful for the subsequent result.
Fact 1. Ifé < %, then for all g € Q,

Ok

—— (25)

Tq <

Proof. Let q € Q. Fix z € 2 and 0 € Z such that (0,z) € q and ||¢r, (z,0) —
z|| £ k. We have

b2 16r, =3l = | [ (6u(z.0),0)as]

(z,0),0) — f(z, a)]ds”
2 1|l f(z,0)|| — 7oL 5%

Therefore,
Tq < S
1/ (z, o)l = Lydic”
Using Assumption 4.1(2) the result follows. m}

Fact 2. Let z,2' € M{ for somec € C and o € Z'k such that ||z — 2'|| < &.
Let 7,7' be times such “that ¢-(x,0), ¢ (z',0) € M, 4. Then |r — 7'| < cy76;
for some ¢y > 0.

Proof. We have

/ "2 42 (da(z,0)))ds = / "2 et s

Let f = f(¢s(z,0),0), f' = f(¢s(z’,0),0), dy = dv; (¢s(x,0)) and dy' =
dv3(¢s(z',0)). Then rearranging terms

/of(f' -dvy')ds — /o"(f dv)ds = /:(f' - dv')ds.

Let L, be the Lipschitz constant of f - dy (using the fact that 4 is smooth).
Then

-
/ f-dy < Lyt|lz - 2| < Ly76;.

Since g defines a transversal foliation to vector field f(-,a), f-dy > 0. Let
¢ = minyg(r ) {f' - dvy'} > 0. Letting ¢, = &% we obtain the result. o

Proposition 4. Let kg € Z* be arbztrary, T € ’R,k ,and p € L{l be an ¢-
optimal control for z. Then |Ji(z, ) — JE(z,p)| = 0 as k — oo.



Proof. We have

N o rrloszima)
| @, 1) - FR(,m)] < lz[ / L($s(wj-1,5),05)ds]| + h(an)

=1

N
- Z[”'«u-: L(§-1,05)] - h(zn)

j=1

where (z;-1,0;) € gj—1 and gj—1 = [(§j-1,0;)]. There exists £y such that
h(zn) = h(§n) and ||zy — En|| < dk. Also, using the Mean Value Theorem,
there exists ¢ with = ¢z(x;_1,0;) and ||Z — £_|| < & such that

N
IJI:(:L‘,#) - J:f(l', l-‘)l < ZIT(O',‘,.’L‘_,‘-])L(:E,UJ') - Tq,'-xL(gj—la c'j)l + Ih(xN) - il(zN)I
j=1
N N
<D TaseaLebi+ Y lrg,, — 7(05,35-1)|L(E, 0) + Lndi.
j=1 j=1

Using Fact 1 the first term on the r.h.s. decreases linearly as §;. Call the second
term on the r.h.s. “B”. Splitting B into sums over control switches and time
steps, we have

N N
B <ML g, — 7(05,25-1)|1(0j = 0j_1) + My, Y reos — (05, 2i-1)]1(05 # 04-1)
Jj=2 j=1

N N
SMLY cimrme, Sk + ML 7o, 1(0; # 0j_1)

=2 =1

for some c;_; € IR. In the second line we used Fact 2 and the fact that Tgjr 2
7(0j,%j-1). Using Fact 1 the first term on the r.h.s. decreases linearly as &y.
The second term on the r.h.s. goes to zero since x has a fixed number of control
switches for all k > k. a

Step 3: discrete states and non-determinacy.
We define

Vi(z) = min{ Va(9) | (,2) € ¢ }.

Also let Ry = {z€ | Vk(m) < oo} and R = U Rs.
Remark 6.2.

(a) By Remark 6.1(c) and V}!(x) < V(z), for each z € UyR} and € > 0 there
exists m, € Z* and p € L{,‘n( such that gz is an e-optimal control for = w.r.t.
V2 satisfying Assumptions 2.2.

(b) RcC UxR}, but the converse is not true, in general.



(c) If u is an e-optimal control for z w.r.t. V2, then we can assume ¢;(z, 1) does
not self-intersect, for if it did we can find ji, also e-optimal, which eliminates
loops in ¢;(z, i).

(d) |l —yll = 0 as k — oo for all y € re(z) and all edges e of Hy, the hybrid
automaton defined using X} and Cj given in (9).

Proposition 5. For all z € R, |Vi(x) — Vi(z)| = 0 as k — oo.

Proof. Fix ¢ > 0 and z € R. By Remark 6.2(a) there exists m, > 0 and an
e-optimal control pu € Ul for z w.r.t. V2 Denote i = ((01,71),-..,(oNn,TN)),
where 7; is the time o; is applied. If ¢ is a polwy derived using é; and Cy, for
k > m,, then 0 < Vi(q) — VE(z) < Ji(g,c) = J3(=, ) + €, where ¢ = [(0,7)].
If we can show there exists k > m, such that for k > %, there exists a policy ¢
such that Ji(g, %) —J 2(z, 1) < € then the result follows.

We can find k > m, such that, by Remark 6.2(d) and the transversality of
¢t(z, 1) with the submanifolds where it switches controls and with £2, there
exists & € Uy, k > k, such that each trajectory ¢¢(z, it) of Hy switches controls
on the same (transversal) submanifolds as ¢(z, 1) and reaches §2;. Let ¥ be this
set of trajectories of Hy starting at z. Let Wi(¢) = Z;Y_q L¥(zj-1,04) + h(zn)
where & = ((01,71,... , (0N, TN)), z; = ¢7,(zj-1,0;), and z; € re(:cj‘), where
e = (0,0;41) is an edge of Hy.

We observe that for ¢,¢' € ¥, i € UL, k > &, |Wi(¢) — Wi(¢')] = 0 as
k — oo, using Lipschitz continuity of L and h, Remark 6.2(d), and the fact
that i is fixed for k > k. Notice that ¢(z, ) € W, k > k. We can define the
control policy T such that automaton A accepts the time abstract trajectory
starting at g corresponding to each trajectory of ¥; and with all other control
assignments of T as time steps. € is admissible because otherwise some ¢' € ¥,
would have a Zeno loop. Since ¢’ approaches ¢,(z, 1) as k = oo, this would imply
#¢(z, p) has a loop, contradicting Remark 6.2(c). Now we observe that J(g,8) =
ma?em Wi(8) := Wi($). Thus, Ji(g,8) - JE(z, 1) < IWi(6)—Wi(d(z, )| = 0
as k — oo.

Combining Propositions 3, 4, and 5, we have

Theorem 1. For all z € R, Vi(z) = V(z) as k — oo.

7 Implementation

So far we have developed a discrete method for solving an optimal control prob-
lem based on hybrid systems and bisimulation. We showed that the solution of
the discrete problem converges to the solution of the continuous problem as a
discretization parameter 4 tends to zero. Now we focus on the pragmatic question
of how the discretized problem can be efficiently solved.



7.1 Motivation

Following the introduction of the concept of viscosity solution [16, 6], Capuzzo-
Dolcetta [5] introduced a method for obtaining approximations of viscosity solu-
tions based on time discretization of the Hamilton-Jacobi-Bellman (HJB) equa-
tion. The approximations of the value function correspond to a discrete time
optimal control problem, for which an optimal control can be synthesized which
is piecewise constant. Finite difference approximations were also introduced in
[7) and [24]. In general, the time discretized approximation of the HIB equation
is solved by finite element methods. Gonzales and Rofman [12] introduced a dis-
crete approximation by triangulating the domain of the finite horizon problem
they considered, while the admissible control set is approximated by a finite set.
Gonzales and Rofman’s approach is adapted in several papers, including [9].

Our work was inspired by the ideas of [26] which uses the special struc-
ture of an optimal control problem to obtain a single-pass algorithm to solve
the discrete problem, thus bypassing the expensive iterations of a finite element
method. The key property to find a single pass algorithm is to obtain a partition
of the domain so that the cost-to-go function from any equivalence class of the
partition is determined from knowledge of the cost-to-go function from those
equivalence classes with strictly smaller cost-to-go functions. In our approach,
we start with a triangulation of the domain provided by a bisimulation partition.
The combination of the structure of the bisimulation partition and the require-
ment of non-Zeno trajectories enables us reproduce the key property of [26], so
that we obtain a Dijkstra-like algorithmic solution. Our approach has the same
complexity as that reported in [26] of O(N log N) if suitable data structures are
used, where IV is the number of locations of the finite automaton.

7.2 Non-deterministic Dijkstra algorithm

The dynamic programming solution (14)-(15) can be viewed as a shortest path
problem on a non-deterministic graph subject to all optimal paths satisfying a
non-Zeno condition. We consider an example to motivate the difference between
the deterministic and non-deterministic cases.

Ezample 5. Consider the automaton of Figure 4. Suppose that obs(e) = o for
e= {61,62,65,67}1 obs(e) = o’ for e = {e3, €4, €, €5, €9, €19}, and obs(ey;) ="
Also, L(e1) = 1, L(eq) = 4, L(es) = 2, L(eg) = 1, and L(ey;) = 1, while L is
zero for the other edges. If the automaton were interpreted as deterministic, one
obtains

V(a1) = min{ L(e1) + h(ay), V(2), V(gs) }
V(g2) = min{ L(eq) + h(az), V(a1), V() }
V(gs) = min{ L(ex1) + h(ay), V(2), V(gs) }-

These equations resolve to V(gq;) = V(g2) = Vigs) =1+ h(gs), and the control
policy is ¢(q1) = ¢(¢2) = 0, and ¢(gs) = ¢”. If the automaton is non-deterministic,



Fig. 4. Nondeterministic automaton

then the control policy is deduced as follows. Using (14) we have

V(q1) = min{L(e1) + h(gs), max{V (g2), Vigs)}}
V(g2) = min{L(e4) + h(gs), max{V(ga), V(a)}}
V(gs) = min{L(e11) + h(gy), max{V(gs), V(g2)} }-

Substituting known quantities we find

V(q1) = min{1 + h(gs),1 + V(g2)}
V(g2) = min{4 + h(gs), 2 + V(a1)}
Vigs) = min{5 + ;z(q;), 1+ V(g)}.

When solved simultaneously, these equations yield V(g,) = 1 + iz(q;), Vig) =
3+ h(gr), V(gs) = 4+ h(gy), and c(q1) = ¢(g2) = o, and ¢(gs) = o'. Notice that
all trajectories are non-Zeno inspite of the fact that a trajectory starting from
gs may take two consecutive control switches.

7.3 Description of NDD

The algorithm is a modification of the Dijkstra algorithm for deterministic
graphs [8] and synthesizes an optimal, memoryless, admissible control policy
that takes the states of a non-deterministic graph to a target set. As in the
deterministic case, the algorithm is greedy: if a step can be taken into a set of
states whose controls have already been assigned and have a minimum cost, the
step is assigned.

First we define the notation. F;, is the set of states that have been assigned
a control and are deemed “finished” at iteration n, while U, are the unfinished
states. At each n, Q = U, UF,. Z,(q) C X5 is the set of control events at



iteration n that take state ¢ to finished states exclusively. U, is the set of states
for which there exists a control event that can take them to finished states
exclusively. V,(q) is a tentative cost-to-go value at iteration n. B, is the set of
“best” states among U,.

The non-deterministic Dijkstra (NDD) algorithm first determines U, by
checking if any g in U, can take a step to states belonging exclusively to F,.
For states belonging to Uy, an estimate of the value function V' following the
prescription of (14) is obtained: among the set of control events constituting a
step into states in Fy,, select the event with the lowest worst-case cost. Next, the
algorithm determines B,,, the states with the lowest V among U, and these are
added to Fynyy. The iteration counter is incremented until it reaches N = |Q|.
It is assumed in the following description that initially V(q) = oo and c(q) =
for all ¢ € Q.

Procedure NDD:

F1 = Qf; U1 = Q“"' Qf; R
for each q € Q¢, V(q) = h(q);

forn=1to N, do
for each q € U,,,

Zoa(@)={0' € Zs |1fq—>q then q’ € Fp};
On = {a € U, | Za(a) # 0);
for each q € U,,

Va(0) = mingre 5, (q) {maxe=(q,a) ek, ) {L(e) + V(a)} }:
Bn = argmin g {Va(a)};
for each q € B,

V(q) = Va(q); R R

c(q) = argmin,re 5, (q){MaXe=(q,q1)¢e, . (0 {L(€) + V(a)}};
endfor

Fnt+1 =FaUByp; Upyr = Q = Foga;
endfor

The algorithm is opportunistic in assigning control switches. At the first
iteration, say n, that a state can take a control switch to finished states, it
will be assigned the control switch by the algorithm. This is because control
switches have zero instantaneous cost, so the state will have a minimum V and
will be included in B,,. In fact, B, will include either states that can take control
switches and zero cost time steps to F,,, or states that can take a non-zero cost
time step to Fy,. The opportunistic assignment of control switches is intuitively
what we expect: waiting for a later iteration to assign them does not make sense
because states that finish later have a higher or equal cost-to-go.



7.4 Justification

In this section we show that the control policy synthesized by algorithm NDD
allows non-Zeno trajectories only and is optimal in the required worst-case sense.

Lemma 3. Algorithm NDD synthesizes a control policy with no Zeno loops.

Proof. We argue by induction. The claim is obviously true for F;. Suppose that
the states of F;, have been assigned controls forming no Zeno loops. Consider
Fy41. Each state of B,, takes either a time step or a control switch to F, so
there cannot be a Zeno loop in B,. The only possibility is for some ¢ € B, to
close a Zeno loop with states in F,, as shown in Figure 5. This implies there
exists a control assignment that allows an edge from F, to q to be taken; but
this is not allowed by NDD. Thus, F,,4; has no Zeno loops.

Fig. 5. A loop of control switches

Next we prove that the algorithm is optimal; that is, it synthesizes a control
policy so that each ¢ € Q reaches Q; with the best worst-case cost. We observe
a few properties of the algorithm. First, if all states of Q can reach Qs then
Q Qs = UpBy. Second, as in the deterministic case, the algorithm computes
V in order of level sets of V. In particular, V(B,) < V(Bp41). Finally, we need
the following property.

Lemma 4. For allq € Q and o' € 5,

V(g) < B ){L(e) +V(d)}-

Proof. Fix g € Q and o’ € Z. There are two cases.
Case 1.

Vig) < V()

e=(q.q )GE +(q)



In this case the result is obvious.
Case 2.

Vig) > max V(). 26
(9) e=(q.q')€E.,'(q){ (@} (26)

We observed above that g belongs to some B,,. Suppose w.lo.g. that ¢ € B;.
Together with (26) this implies ¢’ € Fj for all ¢’ such that ¢ LA ¢'. This, in turn,
means that ¢’ € Z;(g) and according to the algorithm

14 =I7n < L V(g
@=Val)) s _ max {L(e)+V(d}

which proves the result.
The main result of this section is the following.
Theorem 2. Algorithm NDD is optimal.

Proof. Let V(q) be the optimal (best worst-case) cost-to-go for ¢ € Q and Q=
{a€ Q| V(g) < V(g)}. Let I(m,) be the number of edges taken by the shortest
optimal (best worst-case) trajectory m, from g. Define § = arg min 5{l(mg)}.

Suppose that the best worst-case trajectory starting at g is TG=0=q—....
We showed in the previous lemma that

V(g < =@ 2% m{i(e) +V(¢)} < L(e) + V(@)

Since 7z is the best worst-case trajectory from g and by the optimality of V(gq)

=y — T ! - 7T =
V@=_ max (L) +V(d)} = L)+ V@),
Since mg is the shortest best worst-case trajectory, we know that 3¢ Q,so
V(7) = V(). This implies V'(3) < L(e) + V(g) = V(7), a contradiction.
Remarks:

1. It is intuitively reasonable that the algorithm cannot synthesize a controller
with Zeno loops. This worst-case behavior would show up in the value func-
tion, forcing it to be infinite for states that can reach the loop.

2. When we say that the algorithm is optimal, we mean the algorithm de-
termines the best worst-case cost to take each state to the target set. In
fact, (see remark below) the hybrid system or continuous system using the
synthesized controller may perform better than worst case.

3. The non-deterministic automaton predicts more trajectories than what ei-
ther the continuous system or the hybrid system can exhibit. Indeed, the
automaton may exhibit a trajectory that reaches the target set using only
control switches, and thus accruing zero cost. This is not of concern. Such
a trajectory is an artifact of the non-determinacy of the automaton, and is
not used in the determination of the value function, which accounts only for
worst-case behavior, nor is it exhibited in either the hybrid system or the
continuous system when the control policy synthesized by Algorithm NDD
is used.



4. Related to the previous remark is that the non-deterministic automaton may
also predict worst-case behavior which is not exhibited by the continuous
system. It would appear that a discrepancy will develop between the cost-to-
go obtained by applying the synthesized controller to the continuous system
and the cost-to-go predicted by the nondeterministic automaton. This error
is incurred every time a control switch is taken and is effectively an error
in predicting the state and has an upper bound of § at each iteration. This
error was accounted for in our proof of convergence of the method, and the
convergence result essentially depends on the fact that only a finite number
of control switches occur.

Ezample 6. Consider the example of Figure 6. The states are labeled ¢; and the
number in the lower, left corner is the instantaneous cost of a time step. States
can take a time step to the state immediately to the right, and they can take
a control switch to states with a different o; value and overlapping vertically.
(Edges are not drawn to keep the figure readable.) For example, state g3 can
take a time step to g2 and a control switch to g2 or 13 using control o2, and to
q17 OT g0 using control 3. The algorithm generates the following data:

oy gs 9 |9 2

1 4 1120 6

[T [ a8 &

1 7 4 1 13
o3 |92 qua Qi3 Q2 'Ju

10, s s 1 D N -Qs
o3 Qs Q17 q16

10 3 1 4

923 422 fia1 920

2 |2 rs 1 5

Fig. 6. Example of algorithm NDD



n B, V(B,) control
1 {an} 1 o2

2| {gs,;} 1 o2

3 {qls} 2 O3

4| {q17,q19} 5 o3

5 {Q5} 5 g3

6| {97,920} 6 |c(g7) = 01, c(gz0) = 03
7| {g2,93,q12} | 6 o3
8| {g4,98} 10 oy

9 {Q5} 11 o0
10  {@s} 12 o2
11 {Qn} 12 g2
12 {n4} 13 o2
13| {qo, 22} 13 a2
14 {qu} 14 23]
15/{q24, 018,923} 14 o1

8 Implementation issues

We have implemented algorithm NDD and the transformation from the hybrid
automaton to a finite automata using our bisimulation method in a prototype

tool. The steps involved are:

1. Generate first integrals and a transversal foliation for each control value.
We rely on the Prelle-Singer procedure to automatically generate the first
integrals [20]. For all the examples we have worked with, however, we found
the first integrals manually. One can also construct the transversal foliation
and check the independence of the folations manually or using a symbolic
algebra package such as REDUCE.

2. Enumerate all equivalence classes for each partition.

3. Determine edges of the finite automaton. This is a problem of existential
quantifier elimination, as we need to determine which are the overlapping

equivalence classes between the partitions of two locations.
4. Apply algorithm NDD to the resulting finite automaton.

In the conclusion we make some remarks about future developments for this

tool.

9 Examples

9.1 Double integrator system

We apply our method to the time optimal control problem of a double integrator
system. Given the equations of motion

) =2z

:&2=u




and the set of admissible controls U = {u : |u| < 1}, we select 2 = (—1,1) x
(-1,1) and 25 = B,(0), the closed epsilon ball centered at 0. The cost-to-go
function is J(x, ) = (;r @#) 4t The bang-bang solution obtained using Pontrya-
gin’s maximum principle is well known to involve a single switching curve shown
in Figure 7. In region R;, the control u = 1 is applied. When the switching
curve is reached, the control is switched to © = —1. In region R_;, the control

= —1 is applied, and when the switching curve is reach, the control is switched
to u = 1. The continuous value function V' is shown in Figure 8.

T2

R,

EN)
N\ N

R

Fig. 7. The switching curve for the double integrator system.

Fig. 8. Value function for the continuous problem.



The results of algorithm NDD are shown in Figures 9, 10, and 11. Figure
9 shows V for A = 0.1. The enabling conditions ge_, and g, are shown in
Figures 10 and 11, respectively. The roughness in the boundaries of the enabling
conditions is caused both by the discretization of the state space and by the
non-determinism of the finite automaton.

Fig.9. V for A=0.1. g

9.2 Fuller’s problem

In this example we discuss how our method can be applied in the canonically
difficult situation of Fuller’s problem. Fuller’s problem is of interest because all
of its trajectories are Zeno. We propose an ad hoc method to avoid the Zeno
behavior.

Consider the optimal control problem (2) with |uz) < 1 and the cost function
J(z,pn) = foT(z’" ) z2(s)ds. Let £ = .4446, the unique positive root of z% + % -
75 = 0. It was shown in [11] that the optimal switching curves I'_ and I’} are
given by

Iy: z;=—€z2 2,>0
I_: z;=¢€z2 z,<0.

The situation is the same as in Figure 7. The upper vector field X_ uses u = —1
while the lower vector field X uses u = 1. The combined vector field is denoted
X.
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Fig. 11. Enabling condition g, .



Solutions of X_ are parabolic curves z; — 122 = ¢, ¢ € IR. The parabola

meets I’y at 1 = —£z3 = c+ 3z or

(Fr)

The parabola meets I when z; = £23 = c — %zg or

éc c
(%+£"V%+e)' (28)

Let the X trajectory cross It at p™ = (z7,2z3) and I'_ at " = (Z7,%3). (27)
and (28) given

i led

—§
3. 29

I =

Since the picture is symmetric with respect to z; and —z, and by (29)

1
Zntl = 5—53:;1
2 _;__'_g

Hence z7', 23 — 0 as n — oo. The time it takes the X trajectory to go from
p" to " to p"tl is

t" =23 +2[73| + 27
1+2\/§—§2
i+e

The total time elapsed for an X trajectory to reach the origin is

T= it”

n=1
_1+2,/%—£2 2 L_g\n
" e L)
1+2,/§—52
=——2€ T20.-

Thus, every trajectory takes an infinite number of switches in finite time. The
origin is called a Zeno point. It was shown in [23] that Zeno points are stationary
points of the hybrid system but not equilibrium points of either vector field X_
or X . The continuous value function is shown in Figure 12.

Because our method cannot be proved to converge to the continuous value
function in the presence of Zeno behavior, we propose the ad hoc fix of enlarging
the target set to be a closed ball around the origin. The results of algorithm
NDD are shown in Figure 13 for A = 0.1.
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Fig. 12. Value function for the continuous problem.
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Fig.13. V for A=0.1.



9.3 Nonlinear system

Consider the optimal control problem

i’l = U122
1'22 = U2 (30)

Fig. 14. Hybrid automaton for nonlinear example

The control u takes four values: (—1,-1), (—1,1), (1,-1), (1,1). The cost is
J = [dt. Also u; € [-1,1] and uz € [-1,1].

The first integrals for u = (-1,-1) and u = (1,1) are z; — 123 = ¢; and
T2 = ¢z, and for u = (-1,1) and u = (1,~1), z; + 3z} = ¢; and 22 = c,.

10 Conclusion

In this paper we have developed a methodology for the synthesis of optimal
controls based on hybrid systems and bisimulations. The idea is to translate
an optimal control problem to a switching problem on a hybrid system whose
locations describe the dynamics when the control is constant. When the vector
fields for each location of the hybrid automaton have local first integrals which
can be expressed analytically we are able to define a finite bisimulation using the
approach of [4]. From the finite bisimulation we obtain a (time abstract) finite
automaton upon which a dynamic programming problem can be formulated that
can be solved efficiently.

We developed an efficient single-pass algorithm to solve a dynamic program-
ming problem on a non-deterministic graph which arose in the solution of a



continuous optimal control problem using hybrid systems and bisimulation. The
efficacy of the method was demonstrated on two examples. In particular, the sec-
ond example showed that the canonically difficult situation of Fuller’s example
can be handled by our method.

The paper suggests some areas for future research. Foremost we formulated a
hybrid optimal control problem used as a conceptual step in the translation to the
dynamic programming problem. This problem is of interest in its own right, and
further work must be done to characterize its solution. On the implementation
side, we mentioned the need for efficient existential quantifier elimination to go
from hybrid automata to finite automata. Also, heuristics can be introduced
in our prototype tool to improve its performance. These heuristics can include
building the finite automaton on the fly based on a course reachability analysis
while algorithm NDD is executing.
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