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Abstract

Qualitative Analysis, Model Checking, and Controller Synthesis of Hybrid Systems

by

Mireille Esther Broucke

Doctor of Philosophy in Engineering:

Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Alberto Luigi Sangiovanni-Vincentelli, Chair

This thesis addresses problems of qualitative analysis, model checking, and controller syn

thesis of hybrid systems. The contributions are the following. We derive conditions for

completeness of the space of non-Zeno hybrid trajectories accepted by a hybrid automaton.

We derive conditions for continuous selections of hybrid trajectories, which had been elu

sive due to the inherent discontinuities permitted by hybrid systems. These results provide

tools for qualitative analysis and are obtained in the general setting of hybrid systems with

differential inclusions. Next, we present a new method of obtaining bisimulations for hy

brid systems which is inspired by a geometric interpretation of the bisimulation for timed

automata. This provides a much needed breakthrough for applying model checking to hy

brid automata with non-trivial dynamics. We demonstrate the method through examples

drawn from coordinated autonomous agent applications and from widely used models such

as linear systems. Next, we turn to problems of controller synthesis. We present a theory

of optimal controller synthesis for continuous time and hybrid systems using bisimulation.

The resulting formulation leads to a dynamic programming problem on a finite graph. We

obtsdn 2tn single-pass algorithmic solution to this problem. Finally, we consider strategies

for model checking when we do not have the benefit of bisimulation, as in hybrid systems

with differential inclusions. We present a new intuitive proof of decidability of reachability



for rectangular automata.

Professor Alberto Luigi Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

The guts of any fiction is an anguished question.
- Wallace Stegner.

This thesis is concerned with a class of models called hybrid systems which evolved out of a

synergy between control theory and verification in computer science. The model has been

a topic of research for at least ten years though it is fair to say that our understanding of

it is in a nascent state.

At Berkeleyhybrid systems came to the forefront of systems research by way of applications.

The term "hybrid dynamical system" probably first appeared in [45] and was used to model

the regulation and coordination layer of a hierarchical architecture for automated highways

[98]. Following that examplea hierarchical architecture for air trafficmanagement employed

hybrid automata in an analogous way [95]. In the embedded systems domain, embedded

controllers are modeled as hybrid automata [85].

On a separate front, hybrid systems appeared in the form of switched systems, a model

fueled by numerous applications in mechanical and electrical engineering systems where

switching phenomena are inherent or where only switching control strategies can do the

job. Some of this research is reported in [70].

Elsewhere hybrid systems arose as an extension of timed automata in verification. Computer

scientists realized the need to characterize real time processes using dense time, and this

foray into the realm of the infinite lead to a watershed of models: timed, multirate, and

rectangular automata, integration graphs, linear hybrid automata, and hybrid automata

[4, 79, 56, 2, 64]. A key requirement is that these models admit a form of algorithmic (and

non-approximative) analysis, and this was achieved for all of them, with the exception of



hybrid automata.

The state of affairs at the beginning of this research was that large-scale, widely relevant,

and highly visible applications of hybrid systems were already in place. What the model

would do or what is involved in designing systems based on such a model was only vaguely

appreciated. That appreciation leaned heavily on hybrid automata with naive dynamics

such as timed and rectangular automata, or on older methods in control theory such as

stability and controller design for linear systems. This state of affairs, though perfectly

understandable, was hardly satisfactory. It has been impossible to bring new techniques to

applications without a dedicated theoretical study of the model, and relying on old ways to

solve new problems has masked the power and expressiveness we gained from the model.

We felt it necessary to put aside the applications for a time and study what is the object

before us. We will agree that the applications are of uncontestable relevance. The decision

to study hybrid systems from a theoretical viewpoint is motivated not only by applications,

but also by intrinsic factors about the model.

1.1 Paradigm Shifts

We were motivated by an appraisal of the paradigm shifts that hybrid systems represent.

Here are those paradigm shifts:

1. A shift away from models that live only in one domain such as discrete event, contin

uous, stochastic, continuum, finite state, etc. to heterogeneous models [58].

2. A shift away from a centralized control scheme to autonomous and decentralized op

eration. (There has already been a trend to study decentralized problems in system

theory, but that trend moved toward aggregate stochastic models for large-scale sys

tems).

3. A shift away from either the purely deterministic or purely stochastic to models with

non-determinism. This requires a new mindset not of what will happen or of what

happens on average but of what can happen, the latter being a more realistic view for

autonomous and embedded systems.

4. A shift away from purely continuous control design to designs that specifically rely



on switching to achieve performance requirements or which give up on smoothness,

differentiabihty, orcontinuity to model discrete phenomena. Discrete-event dynamical
systems reflect this shift.

5. Ashift away from defining thestate ofa system asa point in thestate space to a state
being a region or equivalence class of the state space. Indeed individual trajectories
or points can overwhelm us with information when all we really need to know is in

general what is the "state" ofthe system. Thishaslead to thestudyofsystems which
are abstractions of other systems. These abstractions are usually quotient systems
with some desirable property such as finiteness. Formerly there were attempts to
form abstractions using aggregations of state values or using reduction techniques
which ignore part of the state space. The new approach to abstraction is contributed

by verification in computer science.

6. A shift away from analysis ofsteady-state phenomena to analysis ofreactive, concur

rent, and transient phenomena.

These paradigm shifts may seem unastounding ^ but they strain existing methods enough
that we are forced to break with tradition and start afresh. Our mental pictures are new

ones, albeit influenced by what we know, and the outcome is not certain.

Given these paradigm shifts, we ask, why do they lead to a model which is at once timely,
meaningful, and having the potential to make an impact? We provide a series ofarguments

about why this model is the correct one to study now.

First, we argue there is historical precedent for the study of systems which exhibit discon

tinuous behavior, namely, approaches such as sliding mode or variable structure control

[97], impulse control [15], and more recently switched systems [70] and control based on
nonsmooth analysis [34]. What has been lacking in these models is a way to systematically

characterize the logic part of the switching behavior. This limitation kept each of these

models from becoming a mainstream engineering tool either because the model needed to

be tailored to each application or it was interpreted as a purely mathematical entity. The

historical efforts to characterize discontinuity in system theoretic models suggests that a

more encompassing framework is needed. The trick £ill along has been to generalize the

^It can be argued that postmodernism is an example ofan unastounding paradigm shift.



framework enough without introducing so much generality than analysis is no longer possi

ble. The hybrid automaton framework seems, so far, to achieve a good balance.

The second argument concerns the fact that important theoretical results have shown that

discontinuous phenomena are unavoidable in control theory. First, the Bang Bang theorem

for time optimal control and the Pontryagin maximum principle show that piecewise con

stant controls can be a sufficiently rich class to achieve control objectives. Many results

in geometric control theory [55] illuminate the importance of piecewise constant controls.

Finally, there is Brockett's famous result that controllability does not imply the existence

of a stabilizing continuous control law [21].

A third argument that these parstdigm shifts are the right ones is from a view of theoretical

development as an end in itself. In this view we see modern control theory progressing

from linear systems analysis using Kalman's state space approach, optimal control and

dynamic programming, local nonlinear control based on Frobenius theorem and the Lie

algebra of vector fields, and discrete event dynamical systems. What would be the obvious

next steps for the theory? There are four choices: (1) globalize the nonlinear theory, (2)

integrate optimal control with the nonlinear theory in a coherent framework, (3) integrate

the discrete-event viewwith the continuous-time view, and (4) inventsomethingcompletely

different. Barring the appearance of new methods like learning algorithms which seem to

go in the direction of (4), it turns out that using the hybrid automaton model we have the

potential to achieve the first three of these ends. We can think about the globalization of

nonlinear control in terms of coordinate charts on a manifold. A flow is defined on each

coordinate neighborhood, and we view the hybrid automaton as providing the rules for

gluing the neighborhoods together. As for the second choice, we seek a way to encode the

(inherentlydiscontinuous) optimal control as a switchingstrategy between locations of the

automaton. We will get some flavor of this idea later in the thesis.

A fourth argument is from the humanistic viewpoint. It cannot be overlooked (though it

usually is in scientific circles) that the pursuit of knowledge is an activity not parametrized

only by objectivity. The pursuit of knowledge is an activity which keeps men and women

mentally occupied, and the qualitative types of knowledge we pursue has everything to do

with who we are. Within each strand of inquiry there are different types of voices. A rich

inquiry is one that benefits from a multitude of types who are in constant tension with each

other. Control theory has, in my view, been starved of different visions, and this has kept it



from being appreciated in a wider sphere. The phenomenon that is occurring before us isa
very human one in which a new voice isbeing injected into system theory. That voice brings
its particular, preexisting sensitivities: to syntax, to logic, to language expressiveness, to

non-determinism and chance, and to event-driven, discrete phenomena.

A fifthargument that these paradigm shifts are the right ones is that the newmodel enables

us to pose and hopefully solve problems that we have been unable to pose before. This

argument on behsilf of hybrid automata may be the most compelling yet. The situation can

be likened to the story of Bertrand Russell, who upon exclaiming to Lady Ottoline "I love

you", realized that indeed he loved her. What we understand in the world are those things

for which we have a means of expression.

One might saythat it is more important to develop tools to solve existing problems. This is

valid. There are manycontrol problems which are solved in ad hoc ways because the theory

cannot address them. Hybrid systems may help to alleviate this gap between theory and

practice. But more interesting are new methods that allow the possibility to dream up new

problems. They are, like an enzyme, essential enablers of lively scientific growth. Thus,

as we go into the study of hybrid automata we must constantly be on the lookout for new

problems that can be posed with the model. For instance, drawing from the connection

between logic and automata, we cannow state specifications ofa system in termsoftemporal

logic thus inheriting a rich semantics for transient phenomena. Some results of this flavor

have filtered into the literature, especially in robotics [9].

Finally, we must say a word about applications; nsunely a list of applications where the

hybrid systems model is helpful, if not essential.

• Coordinated autonomous agents These are problems where dynamicagents such

as robots, underwater vehicles, automobiles, aircraft, satellites, and other unmanned

vehicles operate autonomously but collude to achievea high levelgo2il. Seefor insteuice

[57] and [91]. Formerly there was no controltheoretic way to discuss liveness, fairness,

or no deadlock inspite of the fact that these are exactly the sort of specifications one

wants to consider in a coordinated autonomous agent problem.

• Switched systems We have alreawiy mentioned that switched systems surise naturally

in mechanical systems, such as engine control, and in electrical systems, such as

switching power converters.



• Nonlinear control systems As already mentioned the objective here is to global

ize nonlinear controllers. See [68]. The swinging up of a pendulum is one example

[7]. Another example is nonholonomic control systems which cannot be stabilized by

continuous controllers [18].

• Embedded systems In these systems there need not be inherent discontinuities but

the environment in which the controller operates has mixed continuous and discrete

components and the controller is a discrete supervisor implemented in software. The

environment imposes events to which the controller must react in real time.

1.2 Overview of the thesis

In Chapter 2 we introduce the hybrid automaton model and several variants of it including

timed and rectangular automata. We turn to the study of hybrid trajectories for which few

results exist. We present three results. First we propose a metric for hybrid trajectories

given by the Skorohod metric for stochastic processes. Using this metric we define several

candidate metrics and pseudo-metrics for the space of trajectories accepted by a hybrid

automaton. Then we give a result for completeness of the metric space of hybrid trajectories.

This result in essence gives conditions when the limit of a Cauchy sequence of trajectories is

both (1) non-Zeno, and (2) accepted by the automaton. This tool can be useful in further

analysis of hybrid trajectories. Finally, we give conditions for the existence of continuous

selections of trajectories of hybrid automata defined with Lipschitz inclusions. This result

relies on the theory of Lipschitz inclusions zmd the Skorohod metric.

Chapter 3 is concerned with the problem of model checking for hybrid automata. Model

checking, roughly speaking, involves automatically checking that a model satisfies a spec

ification. It differs from simulation in that all initial conditions must be checked, and it

differs from verification in that algorithmic analysis methods are sought that are usually

automata-theoretic. A typical problem posed in model checking is the safety problem: Given

hybrid automaton A determine if an unsafe set of states P can be reached from an initial

set of states Q. The approach to model checking developed in Chapter 3 is to construct a

finite bisimulation, which is an equivalence relation on the hybrid state space. If this equiv

alence relation has a finite number of cosets, then the quotient system is a finite automaton,

and in this manner, problems about hybrid automata are reduced to problems about finite



automata. Our method is basedon a geometric interpretation of the bisimulation for timed

automata which allows us to extend the class of hybrid automata with finite bisimulations

to ones with interesting dynamics. In the process we obtain an analytical representation
ofthe bisimulation which then forms the symbolic execution theory for the hybrid automa
ton. In Chapter 4 we give examples drawn from coordinated autonomous agents, embedded
systems, and hybrid systems with integrable Hamiltonian dynamics and linear dynamics.

In Chapter 5 we turn to problems of synthesis. We consider the synthesis of optimal
controls for continuous feedback systems by recasting the problem to a hybrid optimal
control problem, which is to synthesize optimal enabling conditions for switching between
locations inwhich the control is constant. An algorithmic solution is obtained by translating
the hybrid automaton toa finite automaton using a bisimulation and formulating a dynamic
programming problem with extra conditions to ensure non-Zenoness of trajectories. We
show that the discrete value function converges to the viscosity solution of the Hamilton-

Jacobi-Bellmanequation as a discretization parameter tends to zero. Then weshowthat an

efficient single-pass algorithmic solution of the dynamic programming problem is obtained
by a non-deterministic version ofthe Dijkstra algorithm. Finally we give examples of the
method.

In Chapter 6 we demonstrate the importeince ofstrategies without bisimulation using the
example of rectangular automata, which do not have a finite bisimulation; nevertheless, the

reachability problem is decidable. We give a new proof of decidability based on a direct

analysis of the steps involved in symbolic model checking.

In Chapter 7 we say our final words.



Chapter 2

Hybrid Model and Trajectories
who pays any attention
to the syntax of things
will never wholly kiss you;

- ee cummings

2.1 Introduction

We begin with the syntax and semantics of hybrid automata and several variants which will

appear in the thesis. We then turn to hybrid systems with Lipschitz differential inclusions

and investigate the existence of continuous selections of trajectories with respect to the

initial conditions. In order to study continuity in a setting where trajectories can change

discontinuously due to resets of the hybrid system, we introduce the Skorohod metric as a

suitable metric for hybrid trajectories. We define a metric on the set of trajectories accepted

by the hybrid automaton and present conditions when this metric space is complete. Finally,

the existence of continuous selections with respect to this metric is proved imder relatively

mild assumptions.

2.1.1 Motivation

Little work has appeared in the literature on hybrid systems studying their qualitative be

havior. Partly this is a difficult task for hybrid systems permit a wide array of behaviors,

each of which can be the subject of a deep investigation. We introduce some necessary

analytical tools and take a fundamental step by demonstrating the existence of continuous

selections of trajectories of hybrid automata with Lipschitz differential inclusions with re-



spect to initial conditions. Once such basic properties ofhybrid trajectories are derived we

hope to establish new connections between observation equivalences of hybrid automata,
including those that are bisimulations, and qualitative features oftrajectories starting from
equivalent points. This research agenda was begun in [22].

Anearly paper byWitsenhausen [102] considers a model for switching between vector fields.

The model eliminates non-determinacy by assuming that transitions are taken at the first

time theenabling condition isreached, enabling conditions arenon-overlapping (also a non-
Zeno condition), and the reset map is the identity. The present work is a generalization

as we permit non-determinacy in several features of our model: (1) the dynamics follow a

differential inclusion, (2) multiple enabling conditions (thus, multiple edges) can be reached

from a state, (3) a transition can be taken at any time while an enabling condition is en

abled, or not at all, and (4) the reset map is non-deterministic. A paper by Tavernini [94]
considers a hybrid system with differential equations in each location. The paper obtains

a result on continuity with respect to initial conditions based on a transverscdity condition

at the boundary of the enabling conditions. Our result on continuity with respect to initial

conditions generalizes this work as we allow non-determinacy and consider differential inclu

sions. We require a result by Cellina and Ornelas [30] on continuous selections of Lipschitz

inclusions and a more general transversality condition suitable for inclusions. Finally, the

paper by Gupta et. al. [47] introduces a metric for finite trajectories of timed automata.

2.1.2 Notation

x' refers to the updated value ofa variable x after a transition is taken. I(-) is the indicator
function. We denote by |'| the Euclidean norm and by d{x^B) the distance from a point

a: to a set B defined by d{x^B) = infygB|a; —y\. jB(x,r) denotes the open ball centered

at X of radius r. cZ(A) denotes the closure of set A. The Hausdorff distance between

two compact sets dn is d//(A,B) = max{sup3,g^d(a:,B),supyg5d(t/, A)}. For an interval

I = [to>ti]j let C{I) and Cac{I) denote the spaces of continuous and absolutely continuous

functions f : I -> R**, endowed with the sup norm ||/||oo and the norm \\f\\ac = |/(io)| +

/ |/(s)|ds, respectively. We denote by C^{I) the Lebesgue integrable functions on I. x is
J B

the characteristic function of the set E.

All manifolds, vector fields, curves and maps are of class C°°. Manifolds are assumed to

be connected, paracompact, and Hausdorff. C°®(M), A'(M), and denote the sets of
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smooth real-valued fimctions, smooth vector fields, and A:-forms defined on a manifold M.

Finally, denotes the space of differential inclusions on R" and P(/,]R.") the space of

all functions /:/—)• R" that are left continuous, limf|a/(f) = /(a), and have limits from

the right.

2.2 Hybrid Automata

A hybrid system is a dynamical system consisting of one or more components called hybrid

automata. A hybrid automaton is a tuple

if = (L,M,E,jE7,A',G,il)

with the following elements:

State space L is a finite set of automaton locations and M is a compact n-dimensional

manifold with or without boundary consisting of |I/| connected components. Corre

sponding to each I £ L is the component Mi of M.

Events E is a finite set of observations or control events. When we interpret the automaton

as an open-loop system, the control events are partitioned into uncontrolled events E„,

which are supplied by the environment and controlled events Sc, which are supplied

by a controller. When we interpret the automaton as an uncontrolled system the

events record observations which need not be unique to each edge.

Edges E is a set of edges or control switches, e = is a directed edge between a

source location I and a target location Vwith observation a € S. If /f is an open-loop

system then we partition E in the set of controlled edges Ec and the set of uncontrolled

edges Ew

Vector field X G X(M) is a smooth tangent vector field on M. The vector field restricted

to component Mi is denoted A'.

Enabling conditions G : E -¥ {pe}e€E is a function assigning to each edge an enabling

(or guard) condition g Q Mi. We use the notation G{e) = g^.

Reset conditions R : E {re}e6£; is a function assigning to each edge e = (/,a, V) € E

a reset condition, r^: Mi2^'', where we use the notation i2(e) = rg.
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2.2.1 Semsintics

The state of the hybrid automaton is a pair (/,x) el x Mi. E{1) denotes the set of events

possible B.t I e L and E{1) denotes the set of edges possible at I e L. TVajectories of H

evolve in steps oftwo types. Acr-step is a binary relation A C (Lx M) x (Lx M) emd we
write {l,x) ^ (V,x') ilf (1) e= (l,u',V) e E, (2) x € ge, and (3) x' € re(x). Define <f>{{x) to
be the trajectory in location /, starting from x and evolving for time t. A t-step is a binary

relation A C(L x M) x (L x M), and we write {l,x) -U {V,x') iff (1) I= l\ and (2) for
t > 0, a;' = where ^t{x) = X\<f>t{x,a),(7).

A trajectory or orbit tt of iif is a finite or infinite sequence tt : go 9i g2 • where

qieLxM and Tj GEUlR''". A trajectory is accepted by H ifeach step qi A gi+i is a t-step

or o"-step oi H. A run of H is the projection to the discrete part of a trajectory accepted

by H; namely, a finite or infinite sequence /q, /i, t2> ••• of admissible locations. A Jfe-step run

is a rtm of length k.

We want to exclude pathological trajectories of , such as those that exhibit finite escape

time for the continuous state, or admit an infinite number of (7-steps in a bounded time

interval (i.e., lack of a non-Zeno condition). Therefore, we define the trajectory language 11

as the set of trajectories accepted by H whose continuous trajectory belongs to 7>{R+^W)

and has a finite number of c-steps in any bounded interval of time.

Assumption 2.2.1. For each e, e' in E, g^ is a closed set, r^ has closed values and

d(re(ge),ge') >0. (2.2.1)

Assumption 2.2.1 combinedwith the vector field being Lipschitzcontinuousensures that any

trajectory of II, whose continuous trajectory belongs to X>(IR+,]R"), satisfies the non-Zeno

condition and has no finite escape time.

Remark 2.2.1.

1. An alternative concept of non-Zenoness is uniform non-Zenoness. H is uniformly

non-Zeno if for any trajectory tt € 11, tt has at most control switches in any

unit time interval. Notice that Assumption 2.2.1 is stronger: on a compact domain,

the Lipschitz vector field is uniformly bounded, and there is a minimum distance

^^(^e(pe)>Pe') appearing in Assumption 2.2.1, so we can find a duration A > 0 such
that between any two <7-steps at least A units of time elapse.
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Figure 2.1: Double scroll hybrid automaton.

2. In the sequel we frequently view the trajectory as progressing in steps, where a step

refers to a t-step followed by a cr-step. Associated with the A:th step of a trajectory

is the data 7° = [0, or for A: > 1, the time interval of the step,
_ ^k+\ _ i-k^ j^g duration, and = (Z*^,x^(t)), the state, where is fixed over

Thus, the step can be represented as

, (2.2.2)

where denotes the value of the continuous state before the reset.

2.2.2 Example

Consider the hybrid automata of Figure 2.1. The invariants for locations h^hyh are x >

l,|x| < l,x < —1, respectively. The dynamics in each location are either affine linear

or linear. It has been shown that this hybrid automaton has a homoclinic orbit and by

Shilnikov's theorem the system has a Smale horseshoe implying the existence of a chaotic

attractor [31].

2.2.3 Special classes of hybrid automata

We will encoimter several special classes of hybrid automata.

Among the simplest is timed automata [4], a subclass in which the continuous dynamics

define the clockflow^ Xj = 1. The distinguished sets: enabling, reset, invariant, initial, and

final conditions, are built up from finite conjunctions and disjunctions of the formulas x%c

where % G{<, <, =, >, >} and c G Z.

Rectangular automata are a natural extension of timed automata [79]. They have the same

syntax for their distinguished sets but allow more expressiveness in the dynamics. The
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dynamics of the ith clock component is given by the rectangular inclusion Xi £ [ai,6i],
where ai,bi £ M, which effectively models uncertainty or drift in the clocks. Rectangular
automata have also been used to over-approximate vector fields [53].

Deterministic hybrid automata are hybrid automata which disallow non-determinism and

have no external control events. The new restrictions are: (1) for each / 6 L, Hg^> = 0,
for all e ^ e £ (2) edges are taken at the first time they are enabled (hence interiors
of enabling conditions can be ignored), (3) the reset maps are single-valued (including the
empty set), and (4) there are no external events determining which edges are taken. This
allows the model to operate or be viewed as completely autonomous.

These restrictions allow us to give the following more elegant definition. A deterministic

hybrid automaton is a triple

H = {M,X,r)

where M and X are asabove and r isa map from theboundary ofM to thespace ofsubsets
of M. The (finite) components of M correspond to the locations of the automaton, r can

be used to determine the edges of the automaton. There is an edge from I to Vif there
exists X£ Ml such that r{x) £ Mi'. The enabling condition of an edge consists of those

X£ Ml such that r{x) £ Mv, and the reset condition is the restriction ofr to the enabling
condition.

Remark 2.2.2.

1. In the case of deterministic hybrid automata we can define trajectories that extend

in forward and backward time. Afull trajectory or full orbit ofa deterministic hybrid

automaton if is a bi-infinite sequence of a- and t-steps accepted by H.

2. Suppose we are given a diffeomorphism / : iV -> iV, where N is a, compact, connected

manifold. We candefine a deterministic hybrid automaton which isa Smale suspension

of / [89]. Let I be the unit interval and define M = N x I. The Smale suspension

of / is the translation vector field X given by where y is the coordinate of I. At

2 = (a:, 1), r(2) = (/(x),0), while r evaluates to the empty set for y < 1. This yields

a hybrid automaton with a single location whose dynamics are given by X and with

and an edge from the location to itself with the enabling condition M x {!}. Thus,

deterministic hybrid automata are generalizations of Smale suspensions.
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In the next section we will encoiinter hybrid automata whose continuous dynamics sure de

fined by Lipschitz differential inclusions evolving on M = L x K". Nsunely the X component

of the hybrid automaton defined above is replaced by:

Differential Inclusion X € is a differential inclusion. X restricted to I xW is

denoted F/.

2.3 Topologies for hybrid systems

We introduce suitable topologies for hybrid trajectories, using the Skorohod metric. The

Skorohod metric was originally used in the study of stochastic processes with right (or left)-

continuous sample paths, such as Poisson processes [17]. This metric is denoted by

and is defined as follows. Given two functions / G and g G dg{f,g)

is the infimum of e > 0 for which there exists a strictly increasing, continuous, surjective

function k: If Ig such that

(a) sxxpi^j^ |«(t) —t\<€ and

(b) supte/^ \f(t) - p(«:(0)l < e.

2.3.1 The pseudo-metric space (11, cf")

We define a topology on 11 via a family of pseudo-metrics that combine the Skorohod metric

on the continuous parts of a pair of trajectories with the distance between the corresponding

runs in the Cantor topology.

Let 7r,7r € n with tt = and x(t) = referring to the entire con

tinuous trajectory, where —> R". We adopt the analogous notation for ff.

Let x '̂̂ \x^"^\ Tn > ly denote the restriction of x,x on [0,t'"] and [0,?"], respectively. We
define the pseudo-metric cr"(-, *) by

m—1 -

cr(ir,i) = ^ # V)
k=0

For fixed m > 0, (11, denotes the pseudo-metric topology on the m-step trajectories of

n.
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2.3.2 The metric space (n,d°°)

We give two ways to obtain a metric topology on 11. First, let a A6 = min{a,6}, and
cT" = 1 A ff". Then we define the metric

Z—/ om

m=l

An alternative approach to define a metric topology is to utilize the Skorohod metric for

functions in (see [39]). This approach has the advantage that properties of
this metric are readily available, though its definition is more complicated. Let A be the

collection ofstrictly increasing, Lipschitz continuous functions k : R+ with «(0) = 0
and limf_>oo K,(t) = oo such that

«(s) —«(t)
7(/€) := sup

s>f>0

log
s — t

This function estimates how much «(t) increases relative to t. Notice that when 7(«) is
large, then the maximum or minimum rate ofchange ofk is diff"erent from one. Also, when

7(«) = 0, then K= t. For f,g € X>(]R+,K"), « GA and u € IK+ define

ds (/,9,«, u) :=sup min{1, \f{t Au)- g(K{t) Au) |}. (2.3.2)

The Skorohod metric df°(*, •) is defined by

dfU.g) = max{7(K),^ e""ds(/,5,«,u)du}j . (2.3.3)
Let TT, TT 6 n be as in Section 2.3.1. We define the hybrid metric by

d~(7r,7f) = df(x,x) +^ ^ Z'̂ ). (2.3.4)
jfe=o

It is well known ([39], Theorem 5.6, pg. 121) that (P(M+,R"),d~) is a complete metric
space. The main result of this section is that the metric space (11, d°°) is edso a complete

metricspace. In other words, ifwehavea Cauchy sequence ofnon-Zeno trajectoriesaccepted

by H, then the limit of the sequence is also accepted by H and is non-Zeno. The next

theorem gives conditions under which this is true.

Theorem 2.3.1. Suppose that H satisfies Assumption 2.2.1, that r^ has closed values and

is upper semicontinuous, for all e ^ E, and that at each location I, Fi has nonempty,

compact, convex values and is upper semicontinuous. Then the space (11, d°°) is a complete

metric space.

<oo. (2.3.1)
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Proof. Consider a Cauchy sequence ttj = iri (n,d°°), where Xj = {ic^(*)}^o
and Xj : —)• R" is a solution of the inclusion Xj G By (2.3.4), {xj} is
Cauchy in (7?(lR_|.,M"),df^) and thus converges to some x G P(]R_|.,M"). We must show
that X is the continuous part of a trajectory tt G 11 and d°°(7rj,7r) ^ 0, as y -4 oo. By

Proposition 5.2 in ([39], pg. 118), limy-^oo = 0 ifandonly ifthere exists {«j} C A
such that limj_>oo7(«j) = 0 and

lim sup |xj(t) —a:(/Cj(t))| = 0, for zdl T > 0. (2.3.5)
j->oo o<t<r

Note also that limy-^oo 7('^i) = 0 implies that

lim sup |«:,(t) —t| = 0, for all T > 0. (2.3.6)
j-^oo o<t<T

Since the inclusion Fi has compact values and is upper semicontinuous it follows that all

the solutions that lie in a bounded domain are equicontinuous, using Lemma A.3.2. Using

this fact along with (2.3.5)-(2.3.6) and (2.2.1) one can show that x{t) has at most a finite

number of discontinuities in each bounded time interval. Moreover, if are the

discontinuity points of x then -> t*' as j oo. Since {tTj} is Cauchy it follows from
the definition of that converges to a constant as j ^ oo for all k. Set =

Let x^ denote the restriction of x on The equicontinuity of Xj{t)
on bounded domains along with (2.3.5)-(2.3.6) implies that Xj(t) —> x^{t) uniformly on
compact subsets of as y -> oo. Hence, by Lemma A.3.1 x^ is a solution of the

inclusion x^ GFik{x^) on (t*',By left-continuity we have —>• x*'(t*^"'"^) which
implies, since g^k is closed, that x''{t '̂̂ ^) G g^k. The existence of right limits along with

equicontinuity yields x^(t^H-) x^(t*^-|-), and since the graph of r^k is closed, it follows
that x'̂ (t'=-f) Grefc(a;*'~^(f^)). Thus, Try converges to 7r := {^*',a;*=(-)}^o (n,d°°). •

2.4 Continuity w.r.t. initial conditions

Regularity, or equivalently, continuity with respect to initial conditions for hybrid systems

with Lipschitz differential inclusions is established under a transversality condition, stated

in Definition 2.4.1. Let tfq be a trajectory starting from po- We showthat if ttq satisfies the

transversality condition, and under mild assumptions on the automaton stated in Assump

tion 2.4.1, there exists a continuous selection of trajectories from (H,cT") on a neighborhood

ofpo.
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Consider the problem

a;(0) = ^, (2.4.1)

on a time interval [0,r], where ^ ranges over a compact Xq C M" with diameter D. In

addition, we assume the following.

Assumption 2.4.1. The set-valued map F satisfies:

(a) The values of F are closed, nonempty subsets of E".

(b) There exists K >0 such that dHiF{x),F{x')) < K\x - x'\^ for etll x^x' GM".

Under Assumption 2.4.1, an absolutely continuous solution to (2.4.1) exists for each ^ GAq

[41]. Let ^0 € Xq and a;(-) be a solution of (2.4.1) such that a;(0) = It is shown in [30]
that there exists a selection from the set of solutions of (2.4.1) which is continuous

in ^ G Xq and such that ^4(^0) = x{t). A condensed version of the result is provided

as background in the Appendix. The selection is found by constructing a sequence of

approximate trajectories, {2/t(^)}^o shown to form a Cauchy sequence in the
normed space Cac([0,r]). In particular, this sequence can be chosen to satisfy

r-

using Theorem A.4.3, part (i). Thus,

l|y«) - llac < D(e^^ + , (2.4.2)

where

y?(0=(+ f is(^o)ds (2.4.3)
Jo

is the initial guess of the approximate trajectories. Hence, we obtain the estimate

ll¥'(?) - vKo)!!.. < D{e'̂ '̂ + + l) < . (2.4.4)

Assumption 2.4.2. The automaton H satisfies the following;

(a) The inclusion x GFi{x) at each location I satisfies Assiunption 2.4.1.

(b) For each e £ E, is either a compact, n-dimensional smooth manifold with

boundary, or an embedded (n —l)-dimensional submanifold.

(c) Tg is a lower semicontinuous reset map from E" to the closed, convex subsets of
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"(^Sc) = V X {0}

Figure 2.2; Transversal trajectory of a hybrid system with differential inclusions

Remark 2.4.1. Assumption 2.4.2 (c) makes possible the use of Michael's Selection Theo

rem A.2.3.

The following definition is essential for our main result. See Figure 2.2.

Definition 2.4.1. Let e = {I, a, I') and x{t), t 6 [to)^i]j be a solution of a; G Fi{x) such

that x(ti) Gdgg. We say that a;(t) is transversal to Qe at a;(ti) if, for some e > 0,

(i) there exist a neighborhood V ofa;(ti), and local coordinates u— (ui,..., u„) centered

at a;(£i) mapping V onto V x (-€,e) C x R" such that u~^(V x {0}) C dge if

ge is an n-dimensional manifold or u~^{y x {0}) C ge if ge is an n —1-dimensional

submanifold. In addition, if ge is n-dimensional, then n„(j/) > 0,Vj/ G V Dint(pe)-

(ii) there exists an extension of a;(£) on the interval [to, £i + e] such that

x{t) •Vu„(x(£)) > 1, a.e. on {£ : a;(£) € F}.

We say that x{t) is strongly transversal to ge at x{ti) if, for some e > 0, condition (i) above

is satisfied and

(ii) for all extensions of a;(£) on the interval [£o,ii + e], x{t) satisfies

x(t) •Vun{x{t)) > 1, a.e. on {t : x{t) € F}.

We say that a trajectory tt = whose steps are denoted as in (2.2.2), is a

(strongly) transversal trajectory if for each k such that x^(t '̂̂ ^) Gdgek, x^(t) is (strongly)

transversal to g^k at i*^(£^+^).
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Figure 2.3: Continuous selections of transversal trajectories for Lipschitz inclusions

We make use of the following technical lemma. See Figure 2.3.

Lemma 2.4.1. Let x GFi{x) be a Lipschitz inclusion satisfying Assumption 2.4-1, and let

x{t),t € [tojti], &e a solution that is transversal to Qq, e = {1,(tJ') at x(ti). Then there

exist t" > ti, a neighborhood W of x{to), and a continuous selection ip :W

of solutions of (p £ Fi{(p) satisfying:

(a) (pt{x{to)) = a;(t).

(b) there exists G (to»^i) such that, with u denoting the coordinates in Definition 2.4-1,

(pt{^)' Vuni<pt{0) >^> a-e. on GW.

(c) there exists a continuous r : W \ti,t"], satisfying T{x(tQ)) = ti, such ¥'r(e)(0 ^

dge, G W.

Proof. By the transversality assumption there exists an open neighborhood V of a;(ti) and

coordinates u:V -^V x (-e,e) C x Msuch that x can be extended to [0,ti + e] and

x(t) •Vii„(x(t)) > 1, a.e. on {t : x{t) € V}. Since Vun is continuous, we can select an
open set V C V, containing x(ti), and such that

i;(£) •Vun(t;) > - , a.e. on {t : x{t) GV'}, Vu GV.

Select times t\ <ti< t" and > 0 such that a;(t) G V, Vt G and

Bix{t),5')cr, yt^[t[,t'{\.

(2.4.5)

(2.4.6)
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We use the construction in [30] also reviewed in Section A.4. Let {2//(0}^o
sequence of approximate solutions in Cac([tO)^i])> with ^ in some neighborhood of x(to),

converging to (pt(0 imiformly in Cac([tO)ii])- Choose D > 0 to satisfy
t

|V((?) - ®(«)l < < S', (2.4.7a)

•sup |Vtt„(t))| < i. (2.4.7b)
vev 4

Let ^0 := x{to)- We claim that, for all ^ GjB(^o> y)

MO ' ^MMO) > a.e. on (2.4,8)

Indeed, combining (2.4.5), (2.4.7b) and (A.4.6) of Corollary A.4.4 and using the fact that

!/?«?) = i(t)-

yi{i) •v«„(W(C)) > i(t) •v«„(3/?(€)) - |Vu„(sf(0)1 •1^(0 - J/?(«?)|

= a.e. on/j(0. V€eB(0,f),

thus establishing (2.4.8), by passing to the limit as j —> oo. Parts (a) and (b) of the Lemma

follow if we select W = jB(^o, y)-

Finally, by (2.4.8), for each^ GW, there exists a unique r(^) G (ti,ti) satisfying ^

dge^ or equivalently, Un{^T{^)(0) = 0. Toprove continuity ofr(-), we argue bycontradiction.

Suppose {^k} C W is a sequence converging to GW, as A: oo, but r(^jt) t(^*). Then

along some subsequence also denoted by {^fc}, T(^/fe) ^ t* for some t* ^ r(^*). It follows

that VT(a)&) '̂ r*(D. and hence, «in(¥'T(€fc)(^*:)) «n(v'T»(r))- But ttn(<^T(a)(^*:)) =
0 implying u„(v?r*(^*)) = 0 which contradicts the uniqueness of t(^*). This proves part

(c). •

Theorem 2.4.2. Suppose H satisfies Assumption 2.4-2 and let ttq be a transversal trajec

tory of H with initial state po = (/°,^^). For each m > 0, there exists a neighborhood

(Z°, C/) of Po, with U C IR" open, and ^(£,^), a selection of trajectories of H, such that

= ''•o(£) and ^ '̂ '(*>0 continuous in (n,(f").

Proof. Suppose that ttq has an m steprun l^,..., , each steprepresented by (2.2.2), and

visits the enabling conditions 5®,... with r°,..., denoting the corresponding
reset maps. Observe that in order for a selectionto be continuous in (11, tf"), its trajectories

must have identical rims /°,..., l"^~^.
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n 5*)

Figure 2.4: Theorem 2.4.2: Continuity with respect to initial conditions

First consider the reset of the fcth step. Since is locally selectionable, by Michael's

Selection Theorem A.2.3, there exists a continuous selection of r*, satisfying

(2.4.9a)

Therefore, given an open neighborhood of there exists an open subset

containing such that

(2.4.9b)

If then by Lemma 2.4.1, for each open set containing there

exists an open neighborhood W'' of x''(t^+), a time a continuous selection
. pp-fc Cac([0, —t*^]) of solutions of Tp^ = Fik{ip^), and a continuous map :

-> [0, such that

T*^(a:'=(t*=+)) =

t € (0,t*=+^ -t"], (2.4.10a)

(2.4.10b)

(2.4.10c)

On the other hand, if Gint(p''), then selecting an open neighborhood C of
2,fc(^fc+i), defining := by the results in [30], there is a continuous selection

ip^ defined on some open set Ba:*^(t*^+) such that (2.4.10) holds.

A finite iteration of the arguments in the last two paragraphs yields collections of open

sets {W^,..., and {F®,..., } along with continuous selections and
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continuous maps and as defined above, such that (2.4.9) and (2.4.10)

hold.

Define by 'ip^{w) := '0jfc(^)(^)- From the continuity of zu and
w T^(w), the absolute continuity oft and the triangle inequality

~ • (2-4.11)

we obtain that is continuous on W^. Let U = and define for ^ G17

/?^(^) = f*'"^o^*=-io...of°oi^°(^), A; = l,...,m; /3°(0 = ^ (2.4.12)
fc-i

= = (2.4.13)
^=0

*(«.«) ={(''.V'f_,»({)°/3*(0). ' •̂f'(f)}"ro'• (2-4-14)
It follows that t^{') and '$'(t, •), for fixed t, are continuous on U. To show continuity of
^(•, •) in (11, <f"), let € 17 and define

K(f) = (t- t«^(e)) + *''(.0' «e . (2.4.15)

It follows that |t —K(t)| 0, uniformly on [0,t"*(^)] and using a triangle inequality as

in (2.4.11) we can easily show the same holds for |^(t,^) - ^(/c(t), '̂)|- Therefore,

and the proof is complete. •

Remark 2.^.2. A direct consequence of Theorem 2.4.2 is that a continuous selection exists,

under the same assumptions, if ttq is a strongly transversal trajectory of H.



Chapter 3

Model Checking
One has only leamt to get the better of words
For the thing one no longer has to say, or the way in which
One is no longer disposed to say it.

- T.S. Eliot.
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3.1 Introduction

The goal of this chapter is to extend methods of obtsiining bisimulations to hybrid systems

with the application of model checking in mind. The approach is to generalize the work of

Alnr and Dillon timed automata [4] to hybrid systems with non-trivialcontinuousdynamics.

Weobtain results on bisimulations of hybrid automata by examiningthe geometric structure

of the bisimulation of timed automata. This gives a new method to construct bisimulations,

under a suitable compatibility condition and in the process we obtain new decidability

results for the examples of the following chapter: coordinated aircraft, coordinated robots,
T

engine control, and hybrid systems with linear dynamics.

3.1.1 Motivation

Verification was introduced for finite state programs to determine automatically if the states

of the program satisfy a specification. A safety requirement ensures that a system does not

exhibit some undesired behavior. The complement is a liveness requirement: that the

system exhibit some desired behavior. Pnueli proposed the use of temporal logic for the

specification of safety and liveness requirements [76]. The algorithmic verification of finite-

state systems was started in 1981 by Clarke and Emerson [32] and by Sifakis [81]. The
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procedure is to convert the finite state program to a finite graph M. Given a temporal

formula </>, the verification question is: do all sequences defined by paths through M satisfy

0? The problem is termed model checking because we want to know if M is a model of

<i>. Vardi and Wolper [100] showed that one can construct a Buchi automaton that accepts

sequences satisfied by formulas of PLTL (Propositional finear-time logic). If the program is

viewed as a finite state generator P and the specification ^ as a finite state acceptor, then

the model checking problem is reduced to the automata-theoretic question of whether the

language L(P) —L{<i>) is empty, where L{P) is the language generated by P and L(<f>) is the

language accepted by (f). For hybrid systems, model checking is performed by abstracting the

system to obtain a finite quotient system. Bisimulation is the main step in constructing the

quotient system. Intuitively, bisimulation is an equivalence relation on the hybrid state space

that yields a partition "consistent" with the behavior of the automaton. This consistency

enables one to make correct inferences about hybrid trajectories using only sequences of

equivalence clcisses.

The need for new results on bisimulation is evident in three areas. First, modeling checking

has been announced as a method that can supplant simulation in the design of concurrent

systems [33]. In order to make this claim realizablefor hybrid systems, model checking must

be able to handle non-trivial dynamics. At present, it is incapable of doing so. Our positive

results give encouragement to press ahead with a program of model checking for hybrid

systems. Second, although state space partitions have been an underlying assumption in

several separate research efforts such as [92] and [26], no method to obtain partitions was

given. We show that a comprehensive methodology may be within reach. Finally, model

checking and the related problem of controller synthesis are able to address problems that

control theory has been imable to address because of a lack of expressiveness of control

theoretic models. In particular, temporal logic enables a rich characterization of transient

behavior in time, when the system operates in a reactive mode with its environment, in

contrast with control theoretic specifications, such as stabifity and controllability, which

have mostly focused on input-output behavior. Temporal specifications also express com

munication and coordination requirements of multiple agents. (Temporal specifications can

encode requirements such as two agents cannot reach a deadlock in communications).

Inspite of this, fewresults on obtaining bisimulations or constructing partitions are available.

We summarize those works we are aware of. The approach of [60] requires an iterative
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scheme to compute the bisimulation and is built up from the theory ofominimal structures,

which are boolean algebras of subsets of M" with additional nice closure properties. An

example is semi-algebrciic sets. While this work is theoretically appealing, we feel there is a

simpler way to go about things, using easier concepts and more computationally attractive

methods. We obtain an analyticzil description of bisimulation that can be understood as a

gestalt, which has the intuitive appeal that it is an immediate extension of the approach for

timed automata. It relies on conceptsthat are accessible to computer scientists and familiar

in geometric control theory [55], namely local coordinate transformations. The analytical

description enables us to define the symbolic execution theory for the hybrid automaton.

The method of [53] uses an over-approximation of vector fields by differential inclusions.

At present obtaining the inclusions and the region over which it is valid is ad-hoc. We take

the contrasting view that the vector fields capture important information about the model,

which the designer has taken sometrouble to identify, but the enablingand reset conditions

are often design parameters that may be specified to the computational benefit of model

checking. (Enabling and reset conditions are a priori given in models with inherent hybrid

behavior, such as mechanics problem with contact).

3.2 Bisimulation

The concept of bisimulation was introduced by D. Park [74] in the context of concurrent

processes modeled by finite transition systems. Let Arepresent an arbitrary interval of time.

Given the hybridsystemH, a bisimulation of if is a binary relation ~ C (Lx M) x{Lx M)

satisfying the condition that for all states p^q &L x M, if p ~ g and <7 GE U{A}, then

(1) ifp A p', then there exists q' such that q^ q' and p' ~ g', and
(2) if g A g', then there exists p' such that p A p' and p' ~ g'.

There are a number of interpretations of bisimulation we which describe below. One should

reason with the one that feels the best ^.

Geometric The view explored in this thesis; we develop it in this chapter.

Topological Stemming from fundamental work by McKinsey and Tarski [93], bisimulation

was interpreted as a form of topological continuity by Jennifer Davoren [37].

^and is best suited to the problem at hand
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Figure 3.1: States p and q are not bisimilar.

Algebraic In an algebraic sense, bisimulation is a congruence:, that is, an equivalence

relation closed under concatenation, where by concatenation we mean successive a-

or t-steps of H.

Game-theoretic Bisimulation can be interpreted as a game between an automaton and

its environment. In this view, the protagonist and the environment start at two states

and take a- or t- steps, each time recording an observation. The environment uses

non-determinism advantageously to select a step the protagonist cannot match. If

the protagonist matches the observations of the environment, the states are bisimilar.

This view has special interest when non-determinism dominates the behavior of the

automaton, whereas in the deterministic case it seems rather obvious. ^ For instance,

borrowing an example from [5], the states p and q in Figure 3.1 with observations

labeled {a, 6,c} are not bisimilar.

Constructive A constructive view and also a definition is that bisimulation is the coarsest

stable refinement of an observation equivalence [69], One uses a Paige-Tarjan type

refinement algorithm [73] such that the fixed point of the algorithm gives the bisim

ulation partition. For instance, a refinement algorithm starting from the final set

^While non-determinism non-trivializes the concept ofbisimulation for finite automata, non-determinism
in the continuous dynamics of hybrid automata can ruin hopes of finding finite bisimulations, even in the
simplest cases like rectangular automata [50].
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C Lx M is:

Q:= {Q^,LxM-Qf}

while 3Z,Z' e Q and tGEuK"'" .0cZn Prer(Z') C Z

do

g := (Q - {Z})U{zn Prer{Z'), Z - Prer{Z')}

od

Pre is a predecessor operator defined in (3.4.4). This procedure terminates if ~ is

finite. See [48], [60].

Inductive An inductive view (again, this can be taken as the definition) is that bisimula-

tion is obtained inductively using an order of observation equivalences. Suppose we

have an observation equivalence, ~o, defined by: p 9 iff 0(p) = 0(g), where O is

an observation map from L x M to am observation set. We can define an equivalence

inductively. We say p g iff

(1) 0(p) = 0(g),

(2) if p ^ p', then 3 state g' such that q-^ q' and p' c:ik-\ q\

(3) if g g', then 3 statep' such that p—>p' and g' p'-

Bisimulation is the fixed point of this process.

Lemma 3.2.1. c::= HSiO —fc-

Let Q be the set of equivalence classes of A bisimulation is finite if it has a finite number

of equivalence classes. Using c:;, a quotient system can be constructed. If ~ is finite,

the quotient system is the finite automaton

/f~ = (g,EuA,£;~).

Q = L X M/~ are the cosets of q £ Q can be written as g = [(i,x)] for some I G

X G Ml such that (Z,x) G g. The transitions of defined by and denoted are as

follows. For g = [(i,a;)],g' = [(^',x')], g q' iffthere exists (Z,2/) € g and (/',2/') € q' such

that (/,2/) —> {I'iV') is either a t-step or a cr-step of H (for£-steps, g and q' are contiguous),

is referred to as an abstraction of H.
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Xi

Figure 3.2: Bisimulation for timed automata.

Remark 3.2.1.

1. The importance of is that it captures the salient features of the dynamics of H in

a time abstract model. The abstraction of time enables the reduction from an infinite

state space to a finite one. If the bisimulation is not finite the reduction can still be

done to an infinite automaton, and model checking algorithms can be applied, but

they may not terminate.

2. If initial conditions or final conditions are specified with /f, then these sets are

quotiented by ~ as well.

Example 3.2.1. It is illuminating to examine the bisimulation of timed automata with a

geometric lens.

For 2/ e M, let [yj be its integer part and (y) its fractional part. Let L be the set of locations,

a; € M" the clock variables, and rrii the largest integer the ith clock is compared to in an

enabling condition. We say {l,x) ~ (V,x') iff (1) I = I', (2) for all f = 1,... ,n, ajj > mi iff

x'- > mi, or [ajij = [ajJJ, (3) for every Xi, < rrii and Xj < mj, {xi) < {xj) iff {x'̂ ) < (Xj) and
{xi) = 0 iff (a:J) = 0.

Figme 3.2 shows the bisimulation for timed automata projected to the Xi —xj plane. We

observe the following features:

1. The bisimulation is definedon a compact regionof the state space where the interesting

dynamics occur. Outside this region, the dynamics are sufficiently benign that they

can be handled by one equivalence class.

2. The partition is described as a gestalt rather than as an iterative procedure that
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terminates at a fixed point.

3. The partition uses hypersurfaces that are either invariants or transversals of the flow

to build up equivalence classes.

4. The hypersurfaces are propitiously selected to be compatible with the syntax of the

enabling, reset, initial and final conditions. That is, the syntax of timed automata

does not imply a further refinement of the "proposed" partition.

5. The hypersurfaces are defined by analytical expressions. The atomic expressions pro

vide an alternative description of the bisimulation [33, p.280], and can be used to

define the symbolic execution theory [49].

3.2.1 Stable partitions eund compatibility

In this section we develop the construction of bisimulations for hybrid automata using our

geometric insights. First, we show how a concept of stable partitions with respect to a flow

combined with a natural compatibility condition on the enabling and reset (and initial and

final) conditions leads to a bisimulation. This step is rather straightforward. Assuming the

compatibility conditions are met, there is only constructing stable partitions.

For each Z€ L, let be an equivalence relation on {Z} x M/ and let be the partition on

{1} XMl defined by We say is a stable partition of the flow (jf or defines a stable
partition of the flow if (Z, x) (Z, x') implies that for all y GM/, t > 0, if y = «^5(x), then

there exists y' GMi and t' > 0 such that y' = ^[i{x') and (Z,t/) (Z,j/').

Let e = (Z,^, I') GE and V = {P^ | ZGL}, a set ofstable partitions defined byequivalence

relations Given at ZG L, we say is compatible with if (Z,x) G {Z} x

implies [(Z, a;)] G {Z} x g^. That is, the enabling condition is a union of cosets of Similarly

wesay Zs compatible with if (Z,x) G implies [(Z,a:)] GQ^. The analogous definition

applies to . For e = (Z,a,Z') we say that r^ is compatible with if {V,x') G{V} x re{x)

implies [(Z',a:')] G {Z'} x re{x), and [(Z,x)] = [(Z,®')] implies re{x) = re(x'). Finally, we

say H is compatible with {—^} if for each e € ge and rg are compatible with

respectively, and for each ZGL, HMs compatible with and and are compatible

with {^'}.
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Lemma 3.2.2. Given hybrid automaton H and{—^} defining a set ofstable partitions with

respect to theflows of H, suppose H is compatible with {—'}. Then ~C Q x Q defined by:

(l,x) ~ {l',x') iff (1) I = V, and (2) (Z,a;) {l',x'), is a bisimulation for H.

Proof. Let ~ be an equivalence relation satisfyingconditions (1) and (2) and suppose {I, x) ~

{l',x'). This implies 1= 1' and {l,x) {liX').

Suppose (Z, x) (Z, y) is a t-step of H. Because cJ defines a stable partition, there exists

y' £ Ml and t' > 0 such that y' = <l>[,{x') and (l,y) (Z,j/'). Hence (l,y) ~ (Z,2/').

Suppose (Z,x) A (Z,?/) is a cr-step of H. This implies a; G for e = (l^aj). Since is
compatible with x' G pe- Since rg is compatible with we can find y' G re(x') such

that [(Z,y)] = [(Z',y')], since reix) = re{x'). Hence (Z~ y) ~ {l,y'). •

Remark 3.2.2.

1. The definition of stable partition says two equivalent points can each take a time

step to the same equivalence class, not that they wiU. Thus, it applies to differential

inclusions as well as vector fields.

2. The compatibility condition on rg is a sufficient condition. A necess£u:y condition is

that for e = (Z,a,Z'), rg is compatible with if for (Z,x) G {1} x pg and [(Z,x)] =

[(Z,x')], if y G rg(x) then there exists y' Gre(x') such that [(Z',y)] = [(Z',y')]- This

weaker condition is closer to what we observe in examples, but from the point of

view of verification, it is no different than imposing the stronger condition that we

stated. For example, in timed automata it is the sufficient condition for compatibility

which holds when one of the clocks of the automaton is reset to an integer value while

the other clocks take the identity reset. It has the same effect, in symbolic model

checking, as resetting the other clocks non-deterministically to a range corresponding

to the equivalence class that lies in the image of the reset.

3. The compatibility definitions are the natural ones to ensure that bisimulation is pre

served over <7-steps. One could also take the view that the enabling and reset con

ditions are given in an arbitrary form. For safety controller synthesis starting from

bad states, to obtain the bisimulation one over-approximates the enabling and reset

conditions by compatible ones. For reachability analyses starting from good states,

one under-approximates. The approximative view is described in [23].
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3.2.2 Foliations and first integrals

We build stable partitions using foliations, flow boxes andfirst integrals. We assume knowl

edge of somedifferential geometry (see [101]).

Given an n-dimensional manifold M a smooth foliation of dimension p or codimension

g = n - p is a collection of disjoint connected subsets F = {5a} whose disjoint imion

forms a partition of M. The foliation satisfies the property that each point of M has a

neighborhood U and a system of coordinates y :U -^W xW such that for each 5q, the
(connected) components of (t/^ n 5q) are given by

2/p+i = ci

Vp+q ~

where c, € M. Each connected subset is called a leafof the foliation, and each leaf is a

submamfold of dimension p in M. See [61] for more background on foliations.

We want foliations whose leaves are regular submanifolds. The Pre-Image theorem [101,
p. 31] provides a way to construct regular submanifolds, and, in particular, the pre-image
of a submersion defines a foliation with regular leaves. A foliation globally defined by a
submersion is called simple.

Let X 6 X(M). We define two types ofsimple co-dimension one foliations with respect to
X^ called tangential and transversal foliations. For this we require a notion oftransversality
of foliations. Let TF be the field of tangent spaces to the leaves ofF. A map h : M N

is transverse to a foliation F of TV iffor every x e M, KT^M + T^^^^F = T,i(a;)TV, where
hif is the push-forward map of h. A submanifold W on TV/ is transverse to foliation F

of M if the inclusion map i : W -i- M \s transverse to F. A foliation F' is said to be

transverse to F if each leafof F' is transverse to F. A foliation does not in general admit

a transversal foliation, but for each x £ M there exists a neighborhood of x such that F

restricted to the neighborhood has a local transversal foliation. A tangential foliation F

of TV/ is a co-dimension one foliation that satisfies A'(x) € TxF^x € TV/; that is, A" is a

cross-section of TF. A transversal foliation F± of TV/ is a co-dimension one foliation that
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satisfies -X'(a;) ^ € M.

Let {Fj} be a collection of n —1 tangential foliations on 17 C M and one transversal

foliation := Fx on 17, which, additionally, satisfies a regularity condition: for each

X € M, TxFi + ••• + TxFji = R". For simple foliations the following lemma provides an

algebraic test for regularity.

Lemma 3.2.3. Let M be an n-dimensional manifold and define hi : M M^i =

a collection of submersions on M, If dhi are linearly independent on U C M, then the

foliations defined by h~^{M) are independent on U.

Proof. It suffices to consider two leaves Si = h^^{ci) and S2 = hj^(c2) and Si DS2 ^ 0-
Suppose X ^ Si n S2 and Si and S2 are not transversal at x. Note that {dhi) : TxSi —>

T/j(x)M satisfies (dhi)x = 0,Vx G Si. Similarly, (d/i2)x = 0,Vx G S2. Define {dh)x =

[{dhi)x {dh2)x\^- Since -Si and S2 aretangential at x, thereexits vector vsatisfying v GTxSi
and VGTxS2' Therefore v G kernel(d/i)x, implying dimension of kernel(ti/i)a; is n —1. But

by assumption, rank (dh)x is 2, which provides the contradiction. •

We will not use all of the leaves of a foliation, but a finite subset of them. We discretize

a foliation as follows. Let /i : M R be the submersion of a simple co-dimension one

foliation F. Given an interval [a, 6], a gridsize A= ^ > 0 with /c GZ"*" , define the finite
collection of points Ck = {a,a -h A,... ,6}. Then, h~^(Ck) is the discretization of F on

h-^([a,6]).

A bisimulation can be constructed using foliations by elaborating the following steps:

1. Find (n —1) simple co-dimension one tangential foliations onU C M, for each I G

L.

2. Construct either a local or global (on U) transversal foliation for each XK

3. Check the regularity condition on U.

4. Discretize the foliations using a gridsize A.

To obtain tangential foliations we use local first integrals. A first integral of x = X(x) is a

function ^ : M —> R satisfying = 0, where is the Lie derivative of 'I' along X.
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Theorem 3.2.4 (Flow Box). Let X he a vector field on M with X(x) 7^ 0. Then there

exist coordinates y defined on a neighborhood V of x such that

Y ^ T/A = —— on V.
oyn

Here is our main result on stable partitions.

Theorem 3.2.5. Given X £ X{M), compact U C M, and coordinates y, if{y,U) is a flow

box for X, there exists a stable partition with respect to X on U.

Proof. By the Flow Box theorem, there exists a diffeomorphism h : 17 -> V C R", where

V = [—1,1]", such that x = X(x) expressed in 2/ = h{x) coordinates is

yi=0,y2 = 0,...y„ = l. (3.2.1)

There exist n - 1 independent functions 2/1 = ci,... ,2/„-i = Cn-i that are first integrals

of (3.2.1), and they define (n —1) independent submanifolds, passing through each y =

(ci,... ,Cn-i,2/n)- A submanifold transverssd to the flow of (3.2.1) is given by 2/n = Cn-

Fix A; GZ"*" and let A = ^. Define

Ck = {0,±A, ±2A,... ,±1}. (3.2.2)

Each 2/i = c for c € Ck, i = 1,... ,n defines a hyperplane in R" denoted and a

submanifold The collection of submanifolds is denoted

Wfc = { W'i.c I cGCfc,f €{1,... ,n} }. (3.2.3)

U\ Wfc is the union of disjoint open sets Vfc = {Vj}.

We define an equivalence relation on R" as follows, x x' iff

{\) X iff x' ^ V, and

(2) if X, x' £ V, then for each i = 1,... ,n, € (c,c + A) iffx' G (c, c + A), and Xj = c iff

xj. = c, for all c GCk.

We define the equivalence relation ~ on {Z} x M by x ~ x' iff h{x) h{x'). ~ is clearly a

stable partition with respect to A' because the invariant submanifolds enclose trajectories

starting at equivalent points so that they can only visit the same next equivalence class. •

Remark 3.2.3.
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Figure 3.3: Partition for 2:;. The leaves of the tangential foliations form boundaries that are
invariants of the flow.

1. One can show that the closure of an equivalence class of ^ is a union of equivalence

classes of This implies that the interior of an equivalence class is either the empty

set or the class itself. The picture of ~ is something like Figure 3.3. The equivalence

classes are the open line segments, points, interiors of cells, etc.

2. Suppose a stable partition has been constructed for a smooth vector fieldX on M using

the steps outlined above. Let Y on iV be a smooth vector field topologicaily conjugate

to X; that is, there exists a homeomorphism h taking orbits of X through x G M to

orbits of y through h{x) G N and preserving the sense of the orbit. Then h can be used

to construct a stable partition with respect to Y. First, if 5 is a first integral of X then

goh~^ isa first integral ofT since Lyigoh'^) = d{goh~^){h*X) = dg-X = Lxg. In
this manner, tangential and transversal foliations are mapped through h to tangential

and transversal foliations of y, respectively. If the foliations of X are independent

so are the foliations of Y. Also, since h maps fixed points of X to fixed points of

y, a stable partition defined onU C M for X non-vanishing on U is well-defined for

h(U) C N and Y is non-vanishing on h{U).



35

3.3 Exterior differential systems

A natural setting for finding first integrals is provided by exterior differential systems [88,
24]. Let f2(M) = with the wedge product A be the exterior algebra on M.
d : Qh(M) is the exterior derivative. Recall that uj Gn^(M) is exact ifthere
exists an Q G such that u) = doc. A set of independent one-forms w^,...

generates a Pfaffian system P = {a;\... ,a;"} = {E/ibW*'|/fc G C~(M)}. The Pfaffian
system satisfies the Frohenius condition if dw^ is a linear combination of ... ,a;".

Theorem 3.3.1 (Frobenius). Let P = {o;^,... ,cj"} be a Pfaffian system with one-forms

satisfying the Frobenius condition /or 2= 1,... ,n. Then there exist coordinates hi,... , h„

such that P = {dhi,... ,d/in}-

In this case the Pfaffiein system is said to be completely integrable and the hi are the first

integrals of P. Thus, the Frobenius theorem provides em alternative and equivalent route

to existence of local first integrals as the Flow Box theorem. We have found it useful in

applications to work with systems in Pfaffian form. Also, it is easy to state results about

parallel composition of hybrid automata in terms of the vector fields in Pfafiian form. We

give such a result next, but we remark that this is a first step: interesting extensions are

possible using the theory of exterior differential systems.

3.3.1 Parallel composition

Parallel composition is an important operation on hybrid automata as we are typically

interested in checking properties of automata that operate concurrently, where each au

tomaton models a concurrent process, reactive system, or autonomous agent. Bisimulation

for hybrid systems is, in general, not closed under parallel composition of automata. We

give a sufficient condition on the Pfaffian form of the continuous dynamics of each control

locationso that if twohybridautomata havea finite bisimulation, then so does their parallel

composition.

Suppose we have hybrid automata Hi = (Li x MuT,i,,EuXi,Gi,Ri) , i = 1,2. We label

the components of the continuous variables of ifi, xi,... ,x„, and of i?2, ;c„+i,... , Xn+m-

The parallel composition of Hi and H2 is

HixH2 = (Li XL2XM1X M2,Ei
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X : Li X L2 A!{Ml x M2) assigns vector field [X^ X '̂Y to location (/,/')• ^ =

{(hih)iCri (^1)^2)) € ^ If one of the following is true:

1. cr GSi \S2 and ei = (Zi,<T,/i) GLi.

Then Qe —pei x M2 and re(x^,a:^) = [rei(a:^) where GMi and GM2.

2. o" G S2 \ Si and 62 = (/2> o", ^ •f'2"

Then ge = Mi x and re(x^,x^) = [x^ ''e2(2;^)]^-

3. (T GSi n S2, ei = (Zi,<7, ij) GLi and 62 = (^2>o", Z^) € Z/2.

Then = 5ei x g^^ and re{x^,x^) = [rgjx^)

Theorem 3.3.2 (Parallel Composition). Given Hi andH2, suppose bisimulations exist

using the stable partitions method on Ui C Mi and U2 Q M2. If for each pair (hjj) €

Li X L2, there exists a one-form of the Pfaffian system at U

h(dxi,... , dx„) —dt = 0,

and a one-form of the Pfaffian system at Ij

h (dXn-|-l). •• jdXfi+m) dt = 0,

such that the one-form

h{dxij... }dXfi) h (dXn^-i, ••. , dXn^m) —docijf

is exact, and aij is independent of the first integrals of X^^ on Ui and X^i on U2, then,

assuming the appropriate compatibility conditions are satisfied, a bisimulation of Hi x H2

can be constructed.

Proof. Since the bisimulations of Hi and H2 have been constructed with the stable partitions

method, we have n —1 first integrals for each X^^, Zj GLi and m —1 first integrals for each

X^j, Ij GL2, giving n + m —2 first integrals for the vector field X = [X^* X^j]^. To
construct a stable partition on /7i x 172 we require n + m —1 independent first integrals and

the missing one is supplied by aij. To see that Lxctij = 0, observe that

dxi
~ ~ h{dxi,... , dxjx) = h (dxn+i, ••• jdxTi+ni)

where Xi is the ith component of X and i G 1,... , n + m. •
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3.4 Implementation

In thissection we discuss the implementation ofourmethod. There are two steps: (1) auto

matic generation ofstable partitions, (2) constructionof The essence of the first step is

to automatically generate local first integrals. We rely on the Prelle-Singer procedure [78],

which has been implemented in computer algebra packages [66]. Building the automaton

involves labelingequivalence classes of the stable partitions, checking compatibilitycon

ditions, and defining transitions. Both in this approach and the approximative approach of

[23], determining the edges of corresponding to cr-steps ofH canbe stated as a problem

of existential quantifier elimination. This problem is beyond the scope of this thesis but will

the addressed in our future work. (We have not even touched the computationed geometry

view, in which the bisimulation partition is a cell decomposition.)

3.4.1 Automatic generation of first integrals

Prelle and Singer [78] showed that ifa differential equation has an elementary first integral
(using elementary functions sin, cos, exp, log, arctan, etc.) they must be ofa special form.
This lead to a semi-decision procedure for finding first integrals. Its extension to vector

fields with transcendental terms was described in [66]. We outline the procedure for nth

order differential equations following [67].

Consider the differential equation x = f(x), x € E" and define the differential operator

^ = 127=1 The Prelle-Singer procedure involves the following steps.

(1) Set N = 1.

(2) Find all monic, irreducible polynomials gi with degrees < N such that Qi divides Dgi.

(3) Let Dgi = pj/ij. Decide ifthere are constants not all zero such that Y2S=i = 0-
If such m exist, then ^is a first integral. If nosuchni exist then go to the next

step.

(4) Increase N by 1.

The procedure is a semi-decision procedure because an effective bound on N is unknown.

Step (2) is the most involved and is discussed in [66].
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3.4.2 Symbolic model checking

The size of the automaton is exponential in the number of parallel components (au

tomata) of the hybrid system and the dimension of the continuous state space. Therefore,

rather than enumerating all the states of the symbolicapproach explores only the parts

of the state space that are relevant and it does so using a symbolic representation of the

state space. This approach has reported remarkable results for hardware verification [25].

Symbolic model checking involves computing a fixed point of a functional on the state space.

Questions about whether a system satisfies a specification (expressed in a temporal logic

formula) can be reduced to a reachability analysis on the hybrid state space. The symbolic

reachability analysis is performed by iterating on a Pre or Post operator, which operate on

sets of formulas that represent regions of the hybrid state space; hence the term "symbolic".

We define some notation following [Ij. A subset of M is cedled a region. A subset of

Q = X Ml is called a zone. Each zone Z can be uniquely decomposed into a

collection ^ where each is a region. We say Z C Q is a simple zone if

Z = {1} X{/, where Z7 is a region. We define the set of all zones to be Z.

Let Z € Z be a simple zone, cr € E, t € , and Z' C S. We define the post operators

Post{Z,(T) = {q € Q \ Bq' e Z . q' q] (3.4.1)

Post(Z, t) = {qeQ\Bq' e Z, 3t£R+ .q' A g} (3.4.2)

Post{Z,Z') = IJ Post{Z,<T). (3.4.3)

We define the pre operators,

Pre(Z,a) = {q£ Q \ 3q' e Z . qq'} (3.4.4)

Pre(Z, t) = {g G0 I3?' e Z, at 6 IR+ . g4 g'} (3.4.5)

Pre(Z,'S/) = (J Pre(Z,a). (3.4.6)
(t6E'

Let 5 be a set of formulas in the variables q £ Lx M. (Z) denotes a (non-unique) set of

formulas that define Z. Following [48], H is effective if there is a class of formulas S which

permits the symbolic analysis of H] namely

1. The emptiness problem for each predicate of S is decidable.

2. <S is closed under boolean operations and Pre and Post operations.
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3. The initial and final regions satisfy (Q®), {Q^) GS.

Let {^^1,... , be the euclidean coordinates for location I € L. Define S to be the class
of formulas

{0 X ($i(x) %a)

with %= {<,<,=,>, >}, / € i, i = 1,... ,n, and all finite conjunctions and disjunctions
of these expressions.

Theorem 3.4.1. H with S is effective.

Proof. We observe that: (1) Q®, can be represented as predicates of5 by the compati
bility assumption, (2) (Pre(Z,t)>, (Pre(Z,tr)>, {Post{Z,a)), {Post{Z,t)) € S for (Z) G5,
by the compatibility of ge and re and the stable partitions construction, (3) the empti
ness problem for S is decidable. Indeed, consider a predicate defining a closed subset of

M: 3x.(ci ^ < di) A•••A(cn < < dn). This predicate is equivalent to the

quantifier free expression (ci < di) A•••A(c„ < d,i). •
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Chapter 4

A Menagerie of Examples
I shall take the liberty to defy that convention
and to tell you that the lunch on this occasion began with soles.
After that came the partridges, but if this suggests
a couple of bald, brown birds on a plate you are mistaken.

- Virginia Woolf.

In this chapter wepresent several applications. These applications fall in the category of ver

ification of dynamic agents. "Dynamic agents" is a broad term encompassing autonomous

systems that possess non-trivial dynamics and act or react to an environment that may

include other dynamic agents. The very vagueness of this definition suits our purposes,

for we do not yet know precisely what sort of dynamic agents will be the best candidates

for model checking. Indeed, there is a gap between the idea of model checking of hybrid

systems and applications where verification is proven to be effective, which will have to be

closed in near term research.

Model checking of dynamic agents can be positioned in a hierarchy of models to which

verification methods are being applied, going from the easiest to the most difficult. This

hierarchy contains the following models:

1. Finite automata. Verification methods involve brute-force graph reachability anal

yses.

2. Timed automata. Finite number of modes, disturbances are discrete events, controls

are discrete events. The dynamic agent either has trivial dynamics, or if it has non-

trivial dynamics such as an aircraft or train, then it is restricted to follow a fixed

track with a constant speed. Only temporal relationships axe verified. An example is
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a water level or temperature controller.

3. Rectangular automata. Finite number of modes, disturbances are discrete events,

controls are discrete events. The dynamic agent either has trivial dynamics, or if it

has non-trivial dynamics, then it isrestricted to follow a fixed track with a speed lying

within a constant range. Only temporal relationships are verified.

4. Hybrid automata. Finite number of modes, disturbances are discrete events, con

trols are discrete events. The dynamic agent can following the dynamics ofeach mode,

not fixed to a track. Coordinated aircraft and robots are a good example.

5. Hybrid automata + continuous disturbances The same model as hybrid au

tomata but we also permit continuous disturbances in each discrete mode. An ex

ample is an inverted pendulum controlled by a switching controller and subject to a

wind disturbance.

6. Continous open-loop model -f- discrete disturbance Infinite number of modes

(corresponding to an infinite number of feedback control laws). An example is an
open-loop system subject to a component failure. The verification problem is to

determine a feedback control such that control objectives are met in the face of a

failure.

7. Hybrid automaton H- continuous open-loop models -f continuous distur

bance The dynamic agent has a finite number ofdiscrete modes and open-loop con

tinuous dynamics (the velocity is often the input). Examples are a dog-fight between

fighter aircraft and two cars trying to merge into the same lane. These problems have

been solved using game theory [80, 63] and when the solution using the maximum

principle yields a switching strategy, it can be encoded by a hybrid automaton.

8. Hybrid automaton -f- continuous open-loop models -H continuous and dis

crete disturbances These are the most difficult models to verify. They include all

the previous phenomena. Examples are the model considered in [16] and the power-

train control models studied in [10] and its references.

In this chapter we concentrate on model checking problems for the fourth level ofdifficulty:

hybrid automata. Thus, we do not permit continuous disturbances or continuous open-

loop dynamics. We show how to obtain the bisimulation for timed automata and linear
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systems in Brunovsky normal form and Jordan form. We look at problems of coordinated

autonomous agents, which make a compelling case for the need for a paradigm shift in

control design and verification. Someexamples are cooperating automated vehicles, aircraft,

underwater vehicles, and mobile robots. We show how bisimulations can be constructed for

coordinated aircraft and coordinated mobile robots. An important area where bisimulation

can have an impact is in embedded systems design. We consider an automotive engine

model which has served as a fertile testbed for developmentof new algorithmic approaches to

design of embedded systems [11, 13]. Finally, we consider hybrid automata with integrable

Hamiltonian dynamics.

4.1 Timed automata

A timed automaton has dynamics in Pfaffian form given by

dx\ —dt = 0

dxn —dt = 0.

There are n —1 independent tangential foliations defined by the submersions:

37^ ^2 — ^1

Xfi—\ Xji —

where Cj € K. Note that the leaves of each foliation have dimension n —1. A transversal

foliation is

Xfi — dji)

though the partition of [4] uses more transversal foliations because of the nature of the

enabling and reset conditions:

x\ — d\

~ dji.
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Each of the leaves of the transversal foliations are transverse to every integral curve. Since

the dynamics of each location is the same, the stable partition obtained from the foliations is

the same, so the enabling conditions and reset conditions are compatible between locations.

4.2 Mobile robots

Consider the coordination problem of two mobile robots A and B, operating in a closed

workspace of a factory. The robots are modeled using hybrid automata, with each control

location corresponding to an atomic maneuver, such as "move forward", or "change direc

tion" . Each location of the automaton has the kinematic model of the associated maneuver.

We assume in each automaton location, the control inputs are constant, but they are al

lowed to change instantaneously upon switching locations. The kinematic model for each

robot, converted to chained form [71] is the following:

xi — Ui

X2 = U2

Xz = X2Ui

3/4 — 3/3^1 •

There are three tangential foliations given by the equations

U2
X2 Xi = C2

Ui

Ui 2

X4 -t- - xl - —X2X3 = C4.
3 \U2j U2

and a transversal foliation given by:

Xi — C\.

To show these foliations define a bisimulation for each robot, we must check the regularity

condition:

Dh =

.az

0

0

0

1

_2£I
U2 X2

X3 -f_2ii
U2 («) Xr

0 0

0 0

1 0

-^X2 1U2 ^
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This matrix has full rank so long as ui ^ 0 and U2 7^ 0, Thus, the partition for each robot

is defined globally on .

When we take their parallel composition, .an extra tangential foliation is introduced:

UlB^lA - UlA^lB = Cab-

A calculation similar to the next example shows that a bisimulation for the parallel com

position exists.

4.3 Planar aircraft

Consider the coordination problem of two aircraft A and B fiying at a fixed altitude, which

was studied in the hybrid systems context in [95]. Each aircraft is modeled by a hybrid

system in which an automaton location corresponds to an atomic maneuver performed with

constant control inputs. The control inputs are changed instantaneously upon switching

control locations. The state g is an element of the special euclideangroup SE{2), and X is

an element of its algebra se(2). Assuming the aircraft does not exercise it's pitch control,

the kinematic dynamics of aircraft A are given by p = gX where

and

cos^ —sin<^ X

9 = sin^ coscj) y

0 0 1

0 -Ui U2

x = Ui 0 0

0 0 0

(f) is the yaw angle, and the inputs ui, U2 control the yaw and velocity, respectively. There

are two tangential foliations given by equations

uix —U2sin<^

uiy 4- U2 coscf)

and a transversal foliation given by

(t> = c^-

= C,
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u = 0 M=0

<t> = ir <l> = ir

U = Un u = 0

Figure 4.1: Hybrid model for a single four-stroke cylinder.

Letting the state variables and inputs of aircraft B be and U2b, analogous

expressions for the tangential and transversal foliations are obtained for aircraft B. An

additional tangential foliation is found for the parzdlel composition of the two systems given

by

UiB<l>A —UlA(l>B = Cab-

We check the regularity condition on the five tangential foliations and either of the two

transversal foliations. Namely,

Dh =

UlA 0 —U2A cos (I>a 0 0 0

0 UlA -U2A sm(f)A 0 0 0

0 0 UiB 0 0 -UiA

0 0 0 UiB 0 —U2B cos (j>B

0 0 0 0 UiB —U2bsin (t>B

0 0 0 0 0 1

This matrix has full rank so long as uia,uib 0, so the partition is defined globally on

R"* XH^. If, in addition, ^ is rational, a finite bisimulation on 1/ xT^, for compact C7 CR'*,
exists.

4.4 Powertrain model

Hybrid control of the powertrain of an automotive engine was studied in [12, 11]. The

model has inherent hybrid behavior because of the action of the four-stroke cylinders and
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is complicated by the feict that the input to the continuous dynamics is determined by

variables computed in an earlier mode. Following [12], each four-stroke cylinder can be

modeled as a hybrid automaton with locations { H, I, C, E } corresponding to the state of

the piston: exhaust (H), intake (I), compression (C), and expansion (E) (see Figure 4.1).

The continuous dynamics in each of these modes captures the relationship between axel

torsion angle, crankshaft angle and speed, wheel speed and the input torque. After a

coordinate transformation the powertrain model is:

Ai 0 0 0

0 A —u 0

0 a; A 0

10-10

where u is the torque and <f> is the crankshaft angle. The control objective is to minimize

the peak acceleration a where a = ca: for a constant c € (assuming u is constant).

The control inputs are the fuel injection and the spark advance which are computed in

the transitions from modes E to H and I to C, and which determine the torque applied in

mode E. As in [12], we will treat the problem of torque generation based on fuel injection

and spark advance as an off-line calculation. We compute the torque as a continuous input

directly, but include the correct delay in it's generation in the hybrid model. The torque

takes one of a finite number of constant values U = {ui = 0,... ,Um}- Figure 4.2 shows

the proposed approach for the case of two values of the control. The locations H, I, and

C are combined since u = 0 in these states. The control for location E is determined by

the continuous state in the transition from E to HIC, based on the enabling conditions </e-

The enabling conditions are selected such that the the peak acceleration is minimized. This

objective can either be encoded as a cost function, but inherits the difficulty of not being

differentiable, or it can be encoded in a myopic, greedy control strategy. We take the latter

approach. Let z = [0 x 0]^. At each point y = [x' x 0]^ we select the control to be

u{y) = argmax{ —{Ay hu)'̂ •z}.
ii€t/

That is, we pick the control u(y) such that the component of the vector field Ay -b hu(y)

in the direction of —x is maximized. The enabling conditions are defined by switching

boimdaries at which —{Ay-^hu\)^-z = —{Ay-\-hu2)^-z for any ui ^ U2 GU. The enabling

conditions can be synthesized using the bisimulation for linear systems found in the next

section.

X

X

X

X

<i>

+ bu
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(6 = Stt) -4 = 0)

((/»= Stt) ->(0=0)

Figure 4.2: Hybrid control for a single four-stroke cylinder.

4.5 Linesir systems

We present results for Brunovsky normal form and for Jordan form (though this is slightly
repetitive) to demonstrate a procedure for finding first integrals when an explicit solution
of the ODE is available.

Suppose we have the differential equation

X= /(x), x(0) = c G

and a solution x = 0(£, c). Then

(4.5.1)

F(f,x,c) = x-<^(t,c)

vanishes on solutions of (4.5.1). For values ofc where F isnon-singular we use the implicit
function theorem to obtain

ci = 9i{x,t)

Cn-l = 9n-l{Xyt)

i = 9n{x,c).
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pi,... ,5n-i are time-varying first integrals of (4.5.1). To obtain time-invariant first inte

grals we substitute t in F{t, x, c) to obtain F(x, c). Using F we seek functions ^t(-) : E" —IR

for 2 = 1,... ,n —1 such that Ft(x,c) = 0 = 'J't(x) —^t(c). are time-invariant first

integrals of (4.5.1).

4.5.1 Brunovsky normal form

Consider a hybrid automaton whose continuous dynamics are in Brunovsky normal form:

Xi = X2

Xjn—l —

Xjn — U

where u 6 M. The solution is Xi(t) = -f where c € E" is the initial

condition. We obtain a recursive expression for the first integrals:

.T, ^ ^ 4i .f.
3=1

We show these are first integrals by an inductive argument. First we verify that = Oj

where / is the Brunovsky normal form vector field. Suppose D^rn-3 */ = 0, for j =

1,... , A: —1. Then

D^m-k S Xm-k+l

k I

= a:m-fc+i — ~ ~ ^m-fc+i
1=1

= 0.

A transversal foliation is defined by

•— — Cm-

It is easy to check that ... , independent so long as u ^ 0, so the partition is

globally valid.
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4.5.2 Jordan form

For each IGL, the procedure is the following: (1) for each type of elementary Jordan block
derive expressions for the local first integrals, defining a set of tangential foliations, (2) for
each pair of elementary Jordan blocks derive an expression for the coupling first integral,
defining another tangential foliation, and finally, (3) derive anexpression for the submersion
corresponding to a foliation transverse to the linear flow.

We consider the lineaj: system

X = Ax (4.5.2)

where A GR" " is of the form A = diag{J^ " • and are elementary
Jordan blocks corresponding to the real (repeated) eigenvalues and complex (repeated)
eigenvalues of A, respectively. Following the proposed procedure, we first derive the local
first integrals for and

Real Eigenvalues

Consider the elementary Jordan block G given by

A 1

where A G M. The solution of a; = J^x with initial condition c G is

fm-l

xtx{t) = e

1 t
2!

1 t

(m—1)!

1 t

1

C.

(4.5.3)

(4.5.4)

We obtain m - 1 first integrals ... , as follows. From the solution of Xm we find

(4.5.5)^Xt _
Cm



The solution of Xm-\ combined with (4.5.5) gives

^1 _ Cffi—l
Cm

Substituting (4.5.6) in (4.5.5) we obtain the first integral

"^m-i := exp (-A^l^) = dm-i
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(4.5.6)

(4.5.7)

where dm-i € M. The remaining m —2 first integrals are foimd by substituting (4.5.5) and

(4.5.6) in the solutions for xi through Xm-2' Carrying out this operation recursively, we

obtain the first integrals

m—3

m—k '

^Tn-2 ^m-1 I
"»-2 — ^ 9^2 ~ ^-2

3 ^m—2^m—\ ^m—1

X, X: 3x
7̂71

= dm-3

Xr

k-2
^m-k ^ ®m-l_ ^ZZTLzlxiyr _

2^ iM ^ m-(fc-i)^' 7! oJj—1 ♦'

where dj GIR. We show these are first integrals by an inductive argument. First, D'^m-2 *

J^'x = 0. Suppose • J^x = 0 for j = 2,... ,k-l. Then

_ _fc-l k-2 1-1

D^m-k • fziLJ- ^rn-l ^^.=9
X fl- iM/..*:-! 1 M.J-1(A: - 1)!xt„ [j - l)!x^

Complex Eigenvalues

Consider the elementary Jordan block given by

D I2

' ' (4.5.11)
h

D

where

kl x^

a —h 1 0
=

II

b a 0 1

— dm—k

(4.5.8)

(4.5.9)

(4.5.10)
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Following [54], the solution ofx = J^x is found by converting to the complex domain. Let
_ 221 . .

2:M—>'C2,e*2 = —ij and consider i = Bz^ where

M 1

B = /jl = a-h ib. (4.5.12)

We identify C 2 with M"* by the correspondence

(zi,... ,2m) = (xi + 2X2,... ,Xm-l-\-iXm)'

The solution of i = Bz is

We obtain m - 1 first integrals ... , as follows. First, from the solutions of Xm-i

and Xm we derive the useful expressions:

Let

Evaluating X3+ gives

t =

=

e"' cos bt =

e"' sin 6t =

. V 1
4. r2 \ 2

^m-1 ^ \

4-1+ c
^Tn—\Xjfi—l "i" CjnXjn

1 +m—1 ' m

4-1 + ,2
"m

Xk+ =
Xm—kXm—\ +

4-1+®
V Xm—kXm ^m—fc+l^m—1Xk— 2 I 2

xt, ^m—1 ' m

Xm—Z^m—X ~t" Xfn—2Xm ^hn—ZCfn—l "I"

4-1 + ®

^m-l •= + (-^^3+) = dm-]

(4.5.13)

(4.5.14)

(4.5.15)

+.2 • (4-5.16)
^m-1 ~

Equipped with (4.5.13) - (4.5.16) we can find m - 1 first integrals. Considering the last two

equations of i = J'^x and using polar coordinates, we obtain a first integral

(4.5.17)
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wheredm-i GK. The remainingm - 2 first integrals are found by evaluatingXk^ and Xk-

for A: = 3,5,7,... ,m —1 and substituting (4.5.13) - (4.5.16) in the solutions for Xm to xi.

Considering the evaluation of we obtain the first integrals

^m-2 •= -^3- = dm-2

fc-3
2

1
^m—fc+1 — ^k— ^ ^ —^m—k+l

-^0J=1

Considering the evaluation of we first obtain the first integral

where p =

^m-3 ^m-2 y2 _ j
m-3 — ^2 _L „2 "^3+ ~ "m-3*

The remaining first integrals for fc = 5,7,... are

®S,_5 := :f5+-i^|+ =dm-5

fc-5
2

J=1

Coupling integrals

It remains to find the first integrals describing the coupling between elementary Jordan

blocks. We consider the pairs (J**, J*"), (J**, J*^), and (J^, J*^).

For the coupling between a and a block, it suffices to find a coupling first integral for

the system

X =

AGO

0 o —6

0 6a

X. (4.5.18)

Using polar coordinates X2 = rcos0, xz = rsin0, we have r = ar, from which it is seen

that

®i(^2 + ^i) 2 = d



53

where d gR. For the coupling between two blocks it suffices to find a first integral for

the system

X =

X =

Az = Ai

Aj 0

0 Az

which corresponds to the last row of each block. We obtain

Azxi —Aixz = d.

For the coupling between two blocks it suffices to consider the system

a\ —6i

6i a\

X

oz —6z

6z dz

Converting to polar coordinates, we have 0i = 6i and 0z = ^>2? so

6z tan~^(—) —6i tan~^(—) = d.
xs'

Transversal foliation

An expression for the submersion defining the transversal foliation is found by considering
a particular instance of the A matrix. Because of the diagonal structureof the Jordan form,

an initial candidate is ^,71 := Xm = dm, but better candidates are often available which are

independent of the first integrals over a larger domedn.

In two dimensions there is a canonical choice for the transversal foliation given by the first

integral of a complementary vector field. Suppose we have x = Ajx with Ai non-singular

and we want to find Az such that for all x, Aix and Azx are not colinear. That is, there

does not exist A€ Msuch that XAix = A2X. Equivalently, A~^Az has no real eigenvalues

(it always involves a rotation). We select

0 -1

0

(4.5.19)

X. (4.5.20)

A first integral of x = Azx defines of a transversal foliation of i; = Aix.

Finally, in practice it is often advantageous to introduce extra transversal foliations or

submemifolds (as in timed automata) in order to achieve compatibility conditions or to keep

the equivalence classes from being too large.
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4.5.3 Decidability of hybrid systems with linear dynamics

Let ^ be the set of submersions obtained in the steps above.

Theorem 4.5.1. Let H be a hybrid automaton with linear dynamics in Jordan form and

let be such that for each I £ L, ... , form a set of euclidean coordinates on Mi.

If H is compatible with the equivalence relations {~'} defined using then the reachability

problem for H is decidable.

4.6 Integrable Hamiltonian hybrid automata

We consider hybrid automata in which the continuous state space is a symplectic manifold

endowed with a nondegenerate skew symmetric bilinear form and denoted For

each X £ M, : TxM x TxM —)• R is closed. Since non-degenerate skew-synunetric

forms exist only on even dimensional spaces, M is even dimensional with dimension n. The

dynamics of location I are given in local coordinates i = 1,... , ^ by

q =

p =

&Hi

dp
dUi

dq

where K/ : M R is the Hamiltonian.

We require some definitions from [6]. Let y G TxM. Associated with 3/ is a one-form

= ij^(v^y) where v GTxM. This defines an isomorphism I : T*M —>• TxM between

the one-forms and vector fields on a symplectic manifold (M,a;^). Let gi,g2 : M -¥ M. he

two functions on M. The Poisson bracket of gi, p2 is {51,52} = 5 where [/d5i,/d52] = Ig

and [•, •] is the Lie bracket. Thus, the Poisson bracket is the dual of the Lie bracket on a

symplectic manifold. We say 51,52 : M R are in involution if their Poisson bracket is

equal to zero.

If there exist ^ independent first integrals ^1,... H which are in involution then

the Hamilton-Jacobi method provides a prescription for finding the remaining f —1 first

integrals ^s+i,... , ^n-i- The essence of the method, following the model of the Frobe-

nius theorem and Flow Box theorem, is to select ^1,... as the first J coordinates

and then construct the remaining independent coordinates. Thus, we define a coordinate
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transformation (q,p) -)> by a generating function S(q^p') satisfying

dS , dS

^ dqi' ^ dpf'
The generating function has the form

S=J P{q,p')dq
where P is the solution of

= pi

^f(9)P) = P"

Th closedness of the one-form P(q,p')dq is proved using the involutivity of the In the

new coordinates we have

with H'(q',p') =p'n or

dH't an',

p' = 0

q[ = 0

92-1 = 0

q's. — !•
2

Thus, we have achieved a simple translation flow, just as in the Flow Box theorem. The

new first integrals are for i = 1,... , ^ —1. A transversal foliation is defined by

— qs.-
2

Remark 4.6.1. Recall that a system x = f{x) is said to be completely integrable if there
exist (n - 1) independent first integrals. What we have seen up to now is that existence of

(n-1) independent first integrals for each vector field of automaton H and the compatibility
of H with the stable partitions together are a sufficient condition for H to admit a finite

bisimulation. The example of integrable Hamiltonian vector fields shows that existence of

(n-1) independent first integrals isnota necessary condition. Indeed complete integrability
is obtained even if there are fewer than (n —1) first integrals.
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Examples ofintegrable Hamiltonian hybrid automata abound and many ofthem are quite
interesting in engineering (and physics) applications. We consider a familiar example that
will motivate the next chapter.

4.6.1 Inverted Pendulum

Suppose we have a planar pendulum with mass m = 1 suspended from a link of length

^= 1- The objective is to swing the pendiilum up to a vertical position. Let 6 be the angle
the pendulum makes with the vertical such that 0 = 0 at the top. Suppose we attach a

string to the pendulmn so that a horizontal force denoted u can be applied to the mass.

Letting x\ —6 and X2 = the equations of motion are

Xi = X2

X2 = g sin xi —u cos xi.

Using feedback linearization we can find the stabilizing controller

^sinxi 4- aixi + 022:2
Uf =

cos X\

but this controller is valid only locally near the origin. To obtain a globally valid controller

we use a switching strategy as proposed in [7]. There are a number of ways to swing up

the pendulum depending on how many swings it takes before reaching the "capture zone"

oiuf. Ideally we want a synthesis procedure that automatically finds all possible switching

strategies. We using our bisimulation approach to do this. Suppose that we allow the

control to take three values u = {0,2^,3^}. The system has the first integral

1 2W2 = —X2 4- g cos xi-\-u sm x\.

A transversal foliation valid over the region [—7r,7r] x [—4,4] is

», = —51—' (®l±7r)2
The bisimulation partition is shown in Figure 4.3 for u = 0 and Figure 4.4 for u = 2g.

(We have added some additional transversal submanifolds so that the two dimensional

equivalence classes are roughly the same size).

The hybrid automaton would consist of four locations: three for the three values of u and

one for the controller Uf. The synthesis problem is to find the enabling conditions which
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Figure 4.3: Bisimulation partition for the pendulum with u = 0.

Figure 4.4: Bisimulation partition for the pendulum with u = 2g.
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swing the pendulum to the capture region of Uf. Finally, it is of interest to synthesize

controllers using the bisimulation approach which also satisfy some other criterion, such as

minimum effort or minimum time. This is the subject of the next chapter.



Chapter 5

Optimal Controller Synthesis
To make a prairie it takes a clover and one bee.
One clover and a bee, and revery.
The revery alone will do,
If bees are few.

- Emily Dickinson.
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5.1 Introduction

The goal of this chapter is to develop of a computationally appealing technique for synthe

sizing optimal controls for continuous feedback systems x = f(x,u) and hybrid systems,

which reduces substantially the complexity of the problem. The goal is achieved by recast

ing the problem to a hybrid optimal control problem. The hybrid problem is obtained by

approximating the control set 17 C M"" by a finite set E C C/ and defining vector fields for

the locationsof the hybridsystem of the form /(x, <7), a GE; that is, the control is constant

in each location. The hybrid control problem is, then, to synthesize an optimal switching

rule between locations, or equivalently, optimal enabling conditions, such that a target set

C Q is reached while a hybrid cost function is minimized, for each initial condition in a

specified set C M".

Casting the problem into the domain of hybrid control is not appealing per se, on the

contrary! Algorithmic approaches for solving the controller synthesis problem for specific

classes of hybrid systems have appeared [65, 103] but no general, efficient algorithm is yet

available. Hence, to be able to solve the (nonlinear) hybrid optimal control problem, we

exploit the bisimulation, if it exists, of the hybrid automaton, which translates the problem

to an equivalent discrete one.
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Using the quotient system obtained from the bisimulation, we synthesize a discrete su

pervisor, assigning a switching rule between locations of the automaton, that minimizes

a discrete cost function approximating the original cost function, for each initial discrete

state- We provide a dynamic programming solution to this problem, with extra constraints

to ensure non-Zenoness of the closed-loop trajectories. By imposing non-Zeno conditions on

the synthesis we obtain piecewise constant controls with a finite number of discontinuities

in bounded time.

The discrete value function depends on the discretizations of U and of using the bisim

ulation. We quantify these discretizations by parameters S and <5q, respectively. The main

theoretical contribution is to show that as (5, Jq 0, the discrete value function converges

to the imique viscosity solution of the Hamilton-Jacobi-Bellman (HJB) Equation.

5.1.1 Motivation

This approach to optimal control is a variant of regular synthesis, introduced in [19], in the

sense that both restrict the class of controls to a set that has some desired property and

both use a finite partition to define switching behavior. For linear systems, the results on

regular synthesis are centered on the Bang-Bang principle [77], stating that a suflficient class

of optimal controls is piecewise constant. If U is a convex polyhedron, then the number of

discontinuities of the control is bounded. There is no hope that general Bang-Bang results

are available due to the following example.

Example 5.1.1 (Fuller's problem [44]). Consider the optimal control problem

Xi = X2 (5.1.1)

±2 = u (5.1.2)

with |u| < 1 and the cost function J{x,^) = Xi{s)ds. If y € is any point except

the origin, then there exists a imique optimal control driving y to the origin, and it is

bang-bang with infinite number of switchings. In fact Kupka has shown in [59] that this

phenomenon is generic at sufficiently high dimensions.

Inspite of Fuller's example, in many (engineering) applications the optimal control is a

piecewise continuous function, and therefore methods of regular synthesis of such controls
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axe worth investigating. A good review of the results on regular S3nithesis can be found in

the summary article [86].

Our workfocuses on piecewise constant controls and providesa constructive approach to ob

tain a cell decomposition by using a finite bisimulation, which further allows us to formulate

the synthesis problem on its quotient system - a finite automaton.

The idea of using a time abstract model formed by partitioning the continuous state space

has been pursued in a number of papers recently. Stiver, Antsaklis, and Lemmon [92] use

a partition of the state space to convert a hybrid model to a discrete event system (DES).

This enablesthem to apply controllersynthesisfor DES's to synthesize a supervisor. While

our approach is related to this methodology, it differs in that we have explicit conditions

for obtaining the partition. In [82] hybrid systems consisting of a linear time-invariant

system and a discrete controller that has access to a quantized versionof the linear system's

output is considered. The quantization results in a rectangular pairtition of the state space.

This approach suffers from spurious solutions that must be trimmed from the automaton

behavior.

Hybrid optimal control problems have been studied in papers by Witsenhausen [102] and
Branicky, Borkar, Mitter [20]. These studies concentrate on problems of well-posedness,

necessary conditions, and existence of optimal solutions but do not provide algorithmic

solutions.

5.2 Optimal control problem

Let Cf bea compact subset ofM*", f2 an open, bounded, connected subset ofM", and Qf a
compact subset of Q. Define Um to be the set of meansurable functions mapping [0, T] to

U. We define the minimum hitting time T : E" x Km —> E+ by

T{x,fj) := -<
CO if {t Uf(x,Ai)GQ/} = 0

\ /min{t I (l>t{x,fjL) Gfi/} otherwise.

denotes the trajectory of x = f{x,fjL) starting from x and using control ^(•).

A control p£Um specified on [0,r] is admissible for a; € D if € D for all t £ [0,r].

The set of admissible controls for x is denoted W®. Let

7^ := { X€ E" I 3/i € Ux- T{x^ p) < oo }.
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We consider the following optimal control problem. Given y € n,

rT(y,ti)
minimize / L{x(t),y.(t))dt-^ h(x(T(y,^))) (5.2.2)

Jo
subject to X= f{x,fi), a.e. t G [0,T(2/,/x)] (5.2.3)

x(0) = y (5.2.4)

among all admissible controls ^ G Uy. J : M" x Um -> M is the cost-to-go function,

h : IR" —y M is the terminal cost, and L : R** x M*" —> R is the instantaneous cost. At

JJiyylj) the terminal cost h(x(T{y,fj.))) is incurred and the dynamics are stopped. The
control objective is to reach Qj from t/ G n with minimum cost.

Assumption 2.1.

(1) / : R" XR"" R" satisfies \\f{x',u')-f{x,u)\\ < L/[||x' -x|| + ||u'-u||] for some
Lf > 0. Let Mf be the upper bound of ||/(x,u)|| on Q. x U.

(2) L : R" XR"^ R satisfies \L{x',u') - L{x,u)\ < Liflk' - a;|| + ||u' - u||] and
1 < |L(x,u)| < Ml, X £ u e U, for some Ll,Ml > 0.

(3) /i: R" R satisfies \h{x') —h(x)\ < Lh\\x' —x|| for some Lh > 0, and h{x) > 0 for

all XGf2. Let Mh be the upper bound of |/i(x)| on fi.

Remark 2.1. These assumptions ensure existence of solutions and continuity of the value

function, defined below. Weaker assumptions are possible but sinceour goal is to introduce

a method rather than obtain the most general setting for it, we are satisfied with these. See

[14] for other possibilities.

The valuefunction or optimal cost-to-go function V : R" —> R is given by

V(y) = inf J{y,fj.)

for y G 12 \ 12/, and by V{y) = h{y) for y £ Qf. A control fi is called e-optimal for x if

J{x,fi) < V(x) + e.

It is well-known [43] that V satisfies the Hamilton-Jacohi-Bellman (HJB) equation

+ = 0 (5-2-5)

at each point of R, at which it is difierentiable. The HJB equation is an infinitesimal version
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ofthe equivalent Dynamic Programming Principle (DPP) which says that

V{.x) = L{<i>s(x,p),p(s))ds + xGD\n/

v(x) = h(x) xenj.

Thesubjectofassiduous effort has been that the HJB equation may not have a solution.

This gap in the theory was closed by the inception ofthe concept of viscosity solution [62, 35],
which can be shown to provide the unique solution of (5.2.5) without any differentiability
assumption. In particular, a boimded uniformly continuous function V is called a viscosity

solution of HJB provided, for each if) 6 C^(IR,"), the following hold:

(i) if y —̂ attains a local maximum at xq € M", then

< 0,

(ii) if y —-0 attains a local minimum at x\ € M", then

dip

Assumption 2.2. For every e > 0 and x £11, there exists > 0 and an admissible

piecewise constant e-optimal control p having at most discontinuities and such that

<pt{x,fjL) is transverse to dQf.

The transversality assumption implies that the viscosity solution is continuous at the bound-

axy of the target set, a result needed in provinguniformcontinuityof V overa finitehorizon.

The assumption can be replaced by a small-time controllability condition. For a treatment

of small time controllability and compatibility of the terminal cost with respect to con

tinuity of the value function, see [14]. The finite switching 2issumption holds under mild

assumptions such as Lipschitz continuity of the vector field and cost functions, and is based

on approximating measurable functions by piecewise constant functions.

5.3 Hybrid Automaton

The approach we propose for solving the continuous optimal control problem first requires a

mapping to a hybrid automaton and, second, employs a bisimulation to formulate a dynamic

programming problem on the quotient system. In this section we define the hybrid optimal
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control problem. First, we discretize U by defining a finite set Sj C C/ which has a mesh

size

<5 := sup min ||u —cr||.
ae'Ss

We define the hybrid automaton i? := (S x M", Ej, Z>, Eh, G, R). The elements are defined

as in Section 2.2 with a few differences that we point out here:

State set E x M" consists of the finite set E = E^ U{try} of control locations and n

continuous variables a; G R". c/ is a terminal location when the continuous dynamics

axe stopped (in the same sense that the dynamics axe "stopped" in the continuous

optimal control problem). Notice that the locations of the automaton axenamed using

control event labels.

Events E^ is a finite set of control event labels.

Control switches Eh C E x E is a set of control switches, e = (cr, a') is a directed edge

between a source location cr and a target location a'. If Eh{cr) denotes the set of edges

that can be enabled at <7 € E, then Eh(o-) := {{(r,cr') | a' G E \ a} for cr G E^ and

^hi^f) = 0- Thus, from a source location not equal to cry, there is an edge to every
other location (but not itself), while location cry has no outgoing edges.

5.3.1 Semantics

The semantics axe the same as in Section 2.2, but we require a few additional definitions. A

hybrid controlis a finite or infinite sequence of labels cj = ujiuj2 ..., with a;, G E UR"'". uji G

R"*" is the duration ofthet-step at step i. Theset ofhybrid controls isdenoted S. A hybrid
trajectory tt over w G5 is a finite or infinite sequence tt : (cro,xo) ^ (o"i,xi) ^ (0*2,2:2) ^

... where (cri,Xi) GE x R". Trajectory tt is accepted by H iff Vz, {ai,Xi) (cri+i,a;f+i)
is either a t-step or cr-step of H. Let tt be the trajectory (not necessarily accepted by H)

starting at (cr, a;) GE x and defined over a; G «S. We say w is admissible for (cr, x) on
interval [0,r] if (1) tt remains in E x for t G [0,r], and (2) corresponding to ct; is a

piecewise constant control Puit) (with a finite number ofdiscontinuities in finite time). Let

be the set of admissible controls for (cr, x).
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Figure 5.1: Hybrid automaton for time optimal control of a double integrator system

Example 5.3.1. Consider a time optimal control problem for

Xi = X2

X2 — u.

We select fi = (—l,l)x(—1,1) and = Hc(0), the closed epsilon ball centered at 0. The

cost-to-go function is dt and U = {u : |u| < 1}. We select Ej = {-1,1},

so that 5=1. The hybrid system is show in Figure 5.1. The state set is {(t_i = —l,£ri =

1,CT/} XR". 5e_i and pei are unknown and must be synthesized, while §^2 =963=^/-

5.3.2 Hybrid optimal synthesis

We want to synthesize enabling conditions so that for each y G IZ, the cost-to-go from y

well-approximates the viscosity solution at y of HJB. This requires posing a hybrid optimal

synthesis problem. We define a hybrid cost-to-go function J//:SxE"x5—>IRas follows.

For Lij G

The hybrid value function Vh : E x M" ^ R is

VH{{cr,x))= inf J/f((a,a;),a;).

Hybrid optimal synthesis problem:

Given H and 0 < synthesize Qe, e € Eh, subject to:

1. ge = ^f ife= (cr,(r/), cr € E^.
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2. For each e G Eh, Qe ^ fi.

3. For allu) E S and (cr,x) GS x 17 such that V^((cr,x)) < oo, T^((r,x) ^ accepted by H if

u is admissible and -optimal for {a,x).

4- For all u £ S and (a,x) G S x 17, 'J^(a,x) accepted by H if either lj is not

admissible for (cr^x), u is not -optimal for (a,x), or Vh{{(t,x)) = oo.

Remark 3.1. Condition 1 says that the enabling condition for edges going to the final

location is 17/. Condition 2 corresponds to trajectories remaining in 17. Conditions 3 and 4

say the hybrid automaton "does the right thing".

5.4 Quotienting by the bisimulation

We propose to solve the hybrid optimal control problem using the bisimulation of H. In

this section we define some parameters of this process, assuming that the bisimulation ~ is

available using the method of Chapter 3.

First, since the dynamics are restricted to the set 17, the set of interesting equivalence

classes of ci, denoted Q, are those that intersect x c/(f2). For each g G Q we define a

distinguished point (cr,^) G q. We associate q with its distinguished point by the notation

Q—[(^>0]* is now possible to define the enabling and reset conditions of H in terms of
Q. In particular, the enabling conditions of H axe synthesized as subsets of Q while the

reset conditions are defined as follows. For e = (<t, g')

re{x) = { 2/ I 3C.[(cr,x)] = [(o,^)] A[((t',01 = [(< '̂>2/)l }• (5.4.1)

That is, re(x) is the projection to M" of the set of equivalence classes [(o"',2/)] such that

the projection to M" of [(o"',j/)] and [(cr,x)] have nonempty intersection. This definition in

effect gives an over-approximation of the identity map in terms of the equivalence classes

of ~ emd will introduce non-determinacy in the finite automaton. Notice also that (5.4.1)

encodes information about the bisimulation in H. This sequence of steps is not typical; it

is characteristic of our synthesis procedure. We define a mesh size on Q by

SQ = m^ sup {|k-2/||}.
(a,z),(a,y)eg
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Figure 5.2: Partitions for states cri and <j_i of the hybrid automaton of Figure 5.1

Finally, for each q = [(<7,0] ^ Q we associate theduration r,, themaximum time to traverse
q using constant control cr. That is,

rq= sup { t I 2/ = </»t(x,£r) }.
(<r,x),(<r,y)eg

Example 5.4.1. Continuing example 5.3.1, a first integral for vector field xi = X2, 2:2 = 1

is xi —̂X2 = ci, ci GM. For xi = X2, X2 = —1 a. first integral is xi + ^X2 = 02, C2 € K.
We select a transverse foliation for each vector field, given by 2:2 = 03. A possible set of

partitions for locations <7i and (7_i and = (—1,1) x (—1,1) are shown in Figure 5.2.

The equivalence classes of ~ are pairs consisting of a control label in Es and the interiors

of regions, open line segments and curves forming the boundaries of two regions, and the

points at the corners of regions, r = 0 for the segments transverse to the flow and the

corner points, r = A for the interiors of regions and segments tangential to the flow, where

A = .25 in Figure 5.2.

5.5 Discrete problem

In this sectionwe transformthe hybridoptimal control problem to a dynamic programming

problem on a non-deterministic finite automaton, for which an eilgorithmic solution may be

found. Consider the class of non-deterministic automata with cost structure represented by

the tuple

A = (Q, Eg,E, obs, Qf,Ly h).
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Q is the state set, as above, and is the set of control labels as before, obs : jB —>• E^ is a

map that assigns a control label to each edge and is given by obs(e) = cr', where e = (q,g^),

q = [(o-,^)] and q' = [(c',^')]. Qf is the target set given by the over-approximation of fi/,

Qf = {q £ Q \ 3x € Qf . (a,x) e q }. (5.5.1)

E C Q X Q is the transition relation encoding t-steps and a-steps of H. A will be used to

synthesize of if, so, in the spirit of [83], E includes all possible edges between locations.

The synthesis procedure on A will involve trimming undesirable edges. Thus, (g,q') € E,

where q,<^ £ Q, q = q' — [(< '̂> '̂)] either (a) a = <r', there exists x £ Q

such that ((7,x) £ q, and there exists r > 0 such that Vt £ [0,r], (cr, 0t(x,(7)) £ q and

{(Tj(f>r+e{x^o')) £ q' for arbitrarily small e > 0, or (b) cr = cr', there exists x £ Cl such that

(cr,x) £ q, and there exists r > 0 such that Vt £ [0, r), (cr, <j>t(x, cr)) € q and (cr, 0t(®> <^)) € q'j

or (c) a ^ a' and there exists x G such that (cr,x) £ q and (cr',x) £ q'. Cases (a) and (b)

say that from a point in g, g' is the first state (different from g) reached after following the

flow of /(x,(r) for some time. Case (c) says that an edge exists between g and g' if their

projections to M" have non-empty intersection.

Let e = (g,g') with g = [(cr,^)] and g' = [(cr',^')]. L : E is the discrete instantaneous

cost given by

^ f TqL(^j cr) if (7 = cr'
L(e) ;= { « ' (5.5.2)

This definition reflects that no cost is incurred for control switches, h : Q —> R is the

discrete terminal cost given by

h{q) := h{^).

The domain of h can be extended to fl, with a slight abuse of notation, by

h{x) := h(q) (5.5.3)

where g = argming/{||x - ^'|| | g' = [(cr',^')]}.

5.5.1 Semantics

A transition or step of A from g = [(cr, ^)] G Q to g' = [(cr', ^')] G Q with observation cr' G E^
<r'is denoted g —> g'. If cr ^ cr' the transition is referred to as a control switch] otherwise, it is
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referred to as a time step. IfE(q) is the set of edges that can be enabled from g€ Q, then
for a €

= {e GE(q) \ ohs(e) = tr}.

If l-^<T(g)| > 1) then we say that e GEa{q) is unohservable in the sense that when control
event a is issued, it isunknown which edge among Ea(q) is taken. Ifcr = a', then \Ea{q)\ =
1, by the uniqueness of solutions of ODE's and by the definition of bisimulation.

A control policy c : Q -)• is a map assigning a control event to each state; c(g) = cr is
the control event issued when the state is at q. A trajectory tt of A over c is a sequence

^ = go 91 92 ^ , gi GQ. A trajectory is non-Zeno if between any two non-zero
duration time steps there are a finite number of control switches and zero duration time

steps. Let nc(g) be the set of trajectories starting at g and applying control policy c, and
let Ilc(g) be the set of trajectories starting at g, applying control policy c, and eventually
reaching Qj. If for every q E ^ HcCg) is non-Zeno then we say c is an admissible

control policy. The set of all admissible control policies for A is denoted C.

A control policy c is said to have a loop if A has a trajectory go q\ =

90} Qi ^ Q- A control policy has a Zeno loop if it has a loop made up of control switches
and/or zero duration timesteps (i.e. r, = 0) only.

Lemma 5.5.1. A control policy c for non-deterministic automaton A is admissible if and

only if it has no Zeno loops.

Proof. First we show that a non-deterministic automaton with non-Zeno trajectories has

a control policy without Zeno loops. For suppose not. Then a trajectory starting on a

state belonging to the loop can take infinitely many steps around the loop before taking a

non-zero duration time step. This trajectory is not non-Zeno, a contradiction. Second, we

show that a control policy without Zeno loops implies non-Zeno trajectories. Suppose not.

Consider a Zeno trajectory that takes an infinite number of control switches and/or zero

duration time steps between two non-zero duration time steps. Because there are a finite

number of states in Q, by the Axiom of Choice, one of the states must be repeated in the

sequence of states visited during the control switches and/or zero duration time steps. This

implies the existence of a loop in the control policy. By the construction of the bisimulation

pEirtition a trajectory spends zero time in a state g iff = 0. This implies a Zeno loop, a

contradiction. •
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Figure 5.3: Fragment of automaton with a zero duration time step.

Example 5.5.1. Consider the automaton in Figure 5.3. If we axe at qi and the control

a'a'c is issued, then three possible trajectories are gi 93 94 A g2> 9i 94 95 92»
a' a' a

or 9i -> 93 -> 94 —)• 9i. The first trajectory has a zero duration time step. The control is

inadmissible since the last trajectory has a Zeno loop.

5.5.2 Dynamic programming

In this section we formulate the dynamic programming problem on A. This involves defining

a cost-to-go function and a value function that minimizes it over control policies suitable

for non-deterministic automata.

Let t: = qq ^ qi 9JV-i ^ 9iV) where qi = [(o-ij^j)] and tt takes the sequence of
edges 6162... epj. We define a discrete cost-to-go J : Q x C —> E by

J(9,c)
+ if 0^(9) = flcW

otherwise00

where = niin{ '̂ > 0 | gj G Qf}- We take the maximmn over 60(9) because of the

non-determinacy of A: it is uncertain which among the (multiple) trajectories allowed by

c will be taken so we must assume the worst-case situation. The discrete value function

V '. Q —¥ E is

V(q) = min J{q,c)

for q GQ\Qf and V(q) = h{q) for q GQf. We show in Proposition 5.5.2 that V satisfies

a DPP that takes into account the non-determinacy of A and ensures that optimal control

policies are admissible. This DPP describes the accumulation of cost over one step to be
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the worst case cost among edges that have the same label. Let Ag be the set of control
assignments c{q) 6 at g such that c is admissible.

Proposition 5.5.2. V satisfies

V{q) = h{q), q€Qf. (5.5.5)

Proof. Fix q £ Q. By definition of J

By definition of V

j(q,c)= ^ {L(e) +S(q\c)}. (5.5.6)
e=(g,g')e£c(,)(g) '

j(q,c)> max {i,(e) + ^(9')}.
e=(9,9')€Sc(,)(g)

Since c{q) G.4g is arbitrary

y(g) > min { max {-^(e) + t^(gO}}•
c(g)6-4/e=(g,9')G£?c(,)(9) ^

To prove the reverse inequality suppose, by way ofcontradiction, there exists g' GSj such

that

V{q) > mM {L(e) + V(g')} := L{e) + V(q). (5.5.7)
e=ig.g (g;

Suppose the optimal admissible policy for q is c. Define c = c on Q \ {g} and c{q) = a'.
Then J{q,c) = L(e) + t^(g) < Viq)- This gives rise to a contradiction if we can show c is

admissible. Suppose not. Then there exists a loop of control switches and zero duration

timestepscontaining q and q, implying V(q) >V(q), which contradicts hypothesis (5.5.7).

• •

Remark 5.1. The DPP for F is a prescription for synthesizing admissible control policies,

but we have not indicated how, in practice, this can be achieved. One possibility is to

introduce a fictitious switching cost in the formulation of V. Capuzzo-Dolcetta and Evans

[27] introduce a small switching cost which tends to zero as (5 0. Alternatively, admissible

controls can be obtained through a device introduced in implementation. For example, a

counter of the number of switches could be used or we may select an algorithmic solution

which is guaranteed not to generate Zeno controls.
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5.5.3 Synthesis of enabling conditions

The synthesis of enabling conditions or controller synthesis is typically a post-processing

step of a backward reachability analysis (see, for example, [103]). This situation prevails

here as well: equations (5.5.4)-(5.5.5) describe a backward analysis to construct an optimal

policy c € C. Once c is known the enabling conditions of H are extracted as follows.

Consider each e = {cTyCr') ^ E of H with a ^ a'. There are two cases. If cr' 7^ <7/ then

pe = {ic I (<7,x) € g, <7 € Q A c{q) = a'}. That is, if the control policy designates switching
from q £ Q with label a to q' ^ Q with label cr\ then the corresponding enabling condition

in H includes the projection to of q. The second case when a' = aj is for edges going

to the terminal location ofH. Then ge = {x \ (<7,x) G GQ/}.

5.6 Main Result

We will prove that V converges to V, the viscosity solution of the HJB equation, as 5

0. The proof will be carried out in three steps. In the first step we consider restricting the

set of controls to piecewise constant functions, whose constant intervals are a function of

the state. In the second step we introduce the discrete approximations of L and h. In the

last step we introduce the discrete states Q and consider the non-determinaw:y of A.

In the sequel wemake use of a filtration of control sets Sfc = corresponding to a sequence

Sk 0 as k 00, in such a manner that C ^k+i- Considering (3.2.3), we define a

filtration of families of submanifolds such that WJ C for each a GEfc.

Step 1: piecewise constant controls.

In the first step we define a class of piecewise constant functions that depend on the state

and show that the value function which minimizes the cost-to-go over this class converges

to the viscosity solution of HJB as >0. The techniques of this step are based on those

in Baxdi and Capuzzo-Dolcetta [14] and are related to those in [27].

We consider the optimal control problem (5.2.2)-(5.2.4) when the set of admissible controls

is piecewise constant functions consisting of finite sequences of control labels a G Sfc

and each cr is applied for a time T(a,x). Let (tr, x) Gq for some q € Q and define t(£7, x) to

be the minimum of the time it takes the trajectory starting at x and using control <7 G

to reach (ta) and (tb) some x' such that (c7,x') ^ q. If a trajectory is at x,- at the
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start of the {i + l)th step, then the control o-j+i is applied for time r.+i := T((Ti+i,Xi) and
^i+l — (^i>

Let

Tei := { x € K" I3/x € Ul . Tix.fx) < oo }.

We define the cost-to-go function Jl : -^Rbs follows. For a; € and fi = (Ticr2. •. e
< oo then

N^ fr{cr3,xj-i)
—̂ H4>3{Xj-i,(Tj),aj)ds + h(xN)

j=i •'o

where N = niin{j ^ 0 | Xj GdClj}. J^{x,fi,) = oo, otherwise. We define the value function

: R" —> R as follows. For x € f2 \

V^(x)= \nl Jl^(x,ij,) (5.6.1)

and for x Gfi/, V^(x) = h(x).

Proposition 5.6.1. satisfies, for all x GTij.,

V)?(x)=mm|̂ 'i('̂ »(i,<T),a)d4i +VfcH'̂ r(„,x)(s><^))|- (5.6.2)
Proof. Fix XGP.], and = £r<7iO'2... € Using thesemigroup property offlows Euid the
definition of

rr{a,x)

Jkix,li)= + (5.6.3)
J 0

where /I = <7icr2 ... G By definition of

Hence,

V* (®) > L(^«(x,cr),ff)ds +Vt'(0^,^.^)(x,<T))|.
To prove the reverse inequality fix cr GEjfe, set 2= (f>T{a,x){^j<^)y and fix e > 0 and fig G
such that



Define the control

1 cr s <r(cr,x)
fjL{s) = <

I tJLz{s —t) s>r(o-,x).

Then

-T(a,x)

V)t(x) < = / L(<;65(x,o-),tT)d5 +
Jo

rr{(T,x)

< / L(<^a(x,o-),£r)ds 4-14^(2) + e.
Jo

Since <7 6 S/j and e > 0 are arbitrary

•T(<r,x)Vfc W<mm|̂ L(03(x,(7),f7)d5 +\4^((^T(a,x)(iC,O-))|.

74

•

We would like to show that Vf^ is uniformly bounded and locally imiformly continuous.

Considering uniform continuity of let Ck be as in (3.2.2) and 7^ the transversal foliation

of X= /(x,<j). For each tr 6 Sjt we define the regions in M"

:= { X€ (7j)-'(c) I c e Ct }

:= {x€(7jrH(-l.c)) IceCt}.

Remark 6.1.

(a) Let X€ and fj. = aia2 ••• Suppose that Xj-i GMc' for some c 6 Cjt so that

Tj = 0 and <7j+i 7^ aj. Let fi = . ..aj-iCj+i Then J(x,/x) = J(x,/i). Therefore,

whenever we construct an e-optimal control for x we may assume that if rj = 0 then

O'j+l — (Tj.

(b) If X, y € M^_ for some c £ Ck and r(cr, x) and r(cr, y) are defined using (tb) then

\t((t,x) - r(a,y)| -> 0 and ||0r(a,x)(a^>«^) - <^T(a,y)(y.o-)ll -> 0 as ||x - y|| 0 in
since is a smooth submanifold. For the details, see Theorem 6.1, p. 91-94, [43].

If instead T(a, x) and r(<T, y) are defined using (ta) and o is an e-optimal control for

X, then by Assumption 2.2 the same results hold.
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(c) For each x G and e > 0 there exists m G Z+ and n e such that n is
an €-optimal control for x w.r.t. satisfying Assumptions 2.2. This follows from

Assumptions 2.2, V^{x) > V'(x), and the fact that we can well-approximate an e-
optimaJ control for V by a control in for large enough m.

Lemma 5.6.2. For each y GUfc7^j[ and e > 0, there exists me G and 77c > 0 such that

\Vit(x)-Vi(y)\<2e

for all |x —2/1 < T/e and k > m^.

Proof. Fix y G By Remark 6.1(c) there exists mi > 0 and y. G such that /z is zm

e-optimal control for y satisfying Assumptions 2.2. Let x G Then V^{x) —V^(y) <

—Jkiy^ /^) + €for any /x® G and k> mi. If we can show that for fixed y and
/i there exists /Xx G such that

Jk Px) - Jk{y, m) < e (5.6.4)

for all XG sufficiently close to y, then yj3(x) —V^{y) < 2e for all fc > mi.

Conversely, by Remark 6.1(c) there exists m2 > 0and /x^ GUl^^ such that /x® isane-optimal
control for x satisfying Assumptions 2.2. Then (2/) - ^ A«) - •^fc(a^./^x) + €for

any /x G and k>m2. If we can show that for fixed y there exists /x G such that

*^kiy^i^) *^ib(®jMx) ^ (5.6.5)

for all XGTlln2 sufficiently close to 2/, then - ^k(y) ^ ~2e for all fc > m2. The result
follows by letting m^ = min{mi,m2}. Thus, we must show (5.6.4) and (5.6.5).

Consider first (5.6.4). Let /x = aia2-" € be an e-optimal control for y such that

2/Ar € dQf and Remark 6.1(a) holds. By redefining indices, we can associate with Jx the

open-loop control /x = ((Ti,fi)(o-2,fy)..., where Tj is the time ai is applied. We claim there

exists = (o-i,ff)(o-2,ff)... such that as x y, (a) Xj -> yj, (b) fj fy, and (c)



XN € dQ.f. Then we have

N

7=1 •'oj

AT

^1 / L̂(<^5(xj_i,<7j),(7j)ds| +|h(yA^) - /i(xiv)|
i=i
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N

< LlTk exp {LfTx) ^ ||xj-i - yj_i ||
j=i

N

+Ml ^ |f® - fj\ + L/i|x;v - 2/iv|.
J=1

By the claim the r.h.s. can be made less than e. Thus, we need only show there exists

... which satisfies the claim and yit® € can be reconstructed from

it, based on the discrete states in Q visited by <^i(a;,A®)- We axgue by induction. Suppose

(a)-(c) hold at j —1. Weshow they hold at j. By Remark 6.1(a) we need only consider the

case when i/j-i € M^i and yj € Mp for some c ^ Ck- For xj-i sufficiently close to yj-i
Xj-i GM^i. By Remark 6.1(b) there exists f® such that Xj = <f)f^{xj-i,crj) G and
tJ fj and xj yj as Xj-i —> yj-i. The case yj-i GM^i and yj Gd^f follows in the
same way from Remark 6.1(a) and Assumption 2.2. Proving (5.6.5) follows along the same

lines as the proof for (5.6.4). • •

To show boundedness of V}, let

T(x) := inf T(x,^).

In light of Assumption 2.1(2), we have that for all x G M", |yj?(a;)| < T(x) •Ml + Mh-

Consider the set

Ka '= {x G72,^ IT{x) < a}.

Then |\4i(x)| < a . Ml +114, Vx GK^.

We have shownthat on each Ka Q K", formsa familyof equibounded, locallyequicon-

tinuous functions. It follows by Arzela-Ascoli Theorem that along some subsequence fen,

converges to a continuous function

Proposition 5.6.3. K is the unique viscosity solution of HJB.
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Proof. We show tha,t solves HJB in the viscosity sense. Let xjj € and suppose
xo € is a strict local maximum for ~ ij). There exists a closed ball B centered at xq

such that (T4 —'0)(a;o) > {V* —i/^){x), for all x G Let be a maximum point for
- fp over B. Since -> K locally uniformly it follows that xq^^ -)• xq as 4 -> 0. Then,

for any <t G thepoint (prixoSf^^cr) is inB (using boundedness of/), for sufficiently small
4 and 0 < r < T(xQS^,a), since T(xoifc,o-) -> 0 as 4 -)• 0. Therefore,

- 1p(xQ5^) > Vi{(pr(xos^,<T)) - 1p(<Pr(X0Sk^(T)).

Considering Equation 5.6.2, we have

^ - mm I(<pr(xo<jfc, cr)) - (xo^fc) + L(<ps{xqs^ ,a), cr)ds|

~~~ +y •C'Ws(a^o<Jfc,o'),o^)ds|.
Since ip GC^(R"), we have by the Mean Value Theorem,

~̂~ +̂ H(f>s{xoSk,(^),(^)ds^
where y = axos,^ + (1 —a)^r{x!oSki^) for some a G [0,1]. Dividing by r > 0 on each side

and taking the limit as 4 0) we have —> 14, xo^f, —> xo, r —> 0, and y —> xo^j^* By the
Fundamental Theorem of Calculus, the continuity of / and L, and the uniform continuity

in u of the expression in brackets, we obtain

Thisconfirms part (i) of the viscosity solution definition. Part (ii) is proved in an analogous

manner. • •

Step 2: approximate cost functions.

In this step we keep the semantics on piecewise constant controls of Step 1 but replace

cost functions L and h by approximations and h. We define the cost-to-go function :
ClxUl R as follows. First, we define an approximate instantaneous cost : f2 x E^ R

given by

L^{x,cr) :=L{q) (5.6.6)



where (cr, x) € q. For x G Q and fji = ctj<72 ... € if r(x, fi) < 00 then

J|(x,/z) = ^L^{Xj-i,(Tj) -^^xn)
i=i

where iV = min{j > 0 | Xj GdQ/}.

We define a value function as follows. For x G \ fi/,
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yfc2(a;)= inf j|(x,A/)
neul

(5.6.7)

and for x G V^{x) = /i(x). For x Gf2 such that V^{x) < 00, satisfies the DPP

V^{x) = min{L2(x,<7) + j
aEi-ik

The proof is along the same lines as that of Proposition 5.5.2.

The following facts are useful for the subsequent result.

Fact 1. IfSk < then for all q £ Q,

Sk
TTlf - LfSk

Proof. Let q GQ. FixxGD and cr GSfc such that {cr,x) Gq and ||(^r, —ic|| < We have

<5fc >||<^r, - a^ll = f f{<l>s(x,cr),(T)ds
Jo

/(x,(T)ds|[ - 1^ [/(<^s(a?, (t), cr) - /(x, a)]di

(5.6.8)

Therefore,

> Tg\\f(x,(7)\\-TqLf6k.

4
\\f(x,a)\\-Lf6k'

Using Assumption 4.1(2) the result follows. • •

Fact 2. Let x,x' G for some c GCk and <7 GSjt such that ||x —x'|| < Sk- Let T,r' be

times such that ^t(x,(7),0x/(x',(7) G Then |r —t'\ < c^r5k for some Oy > 0.

Proof. We have

Af f /*t' J

Jo •^('yMs{x\cT)))ds.
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Let / = /(^»(i,cr),<T), /' = /(^.(x',cr),<r), d7 = d7»(^^(x,a)) and do^ = d7j(^,(x',<T)).
Then rearranging terms

(f •d'r')ds - j (/ •d'y)ds =j (/' •d'y')ds.
Let Li be the Lipschitz constant of f -dj (using the fact that 7^ is smooth). Then

J^ f''d '̂ <Lit\\x - a;'|| <LirSk^
Since 7^ defines atransversal foliation to vector field /(•, a), f-d'y > 0. Let c= minsg[^.r']{/'-
dj'} > 0. Letting Cy = ^ we obtain the result. • •

Proposition 5.6.4. Let ko € Z**" be arbitrary, x € 7^]^^, and fi € be an e-optimal control
for X. Then \Jl(x,p) - Jl(x,n)\ -)• 0 as k —¥ 00.

Proof. We have

\dk(^^p) — ^ |S[y^ ^{<f>s{^j-i^orj)iO'j)ds^h{xjsf)
N I

i=i I

where {xj-i,crj) € qj-i and qj-i = [(^j-IjCTj)]. There exists such that h(x]^) = h(^N)
and ||xAr - ^jvll < Sk. Also, using the Mean Value Theorem, there exists i with x =

<l>l{xj-i,crj) and ||£ — < 5k such that

N

\dk{^^p) —dki^yl^)\ ^ i)L(x,(Tj) —rg._^L(^j-i,(jj)\ + |h(x;v) —h(arA^)|
i=i

N N

^ '̂̂ <ij-i^L5k + - T(aj,Xj.i)]L{x,aj) + LhSk-
j=i j=i

Using Fact 1 the first term on the r.h.s. decreases lineEirly as Sk- Call the second term on

the r.h.s. "B". Splitting B into sums over control switches and time steps, we have

N N

B < Ml - T{aj,Xj.i)]l{(7j = + Ml ¥=
J=2 j=l

N N

< ML^C3-iTg._,5k + MLY^Tg3_,l{<7j ^ aj-i)
3=2 3=1
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for some Cj_i GE. In the second line we used Fact 2 and the fact that rq._^ > r(c7j,a;j_i).

Using Fact 1 the first term on the r.h.s. decreases linearly as 5k- The second term on the

r.h.s. goes to zero since // has a fixed number of control switches for all k> ko. • •

Step 3: discrete states and non-determinacy.

We define

Vk{x) := mm{ Vk{q) \ {(t,x) £q}.
treSfc

Also let = {a; € I t4(a;) < co} and 'R. = UkRk-

Remark 6,2.

(a) By Remark 6.1(c) and < V^{x), for each x G and € > 0 there exists

me GZ""" and fi G such that jj, is an e-optimal control for x w.r.t. satisfying

Assumptions 2.2.

(b) R C UkR-ki converse is not true, in general.

(c) If is an e-optimal control for x w.r.t. then we can assume <i)t(x^y) does not

self-intersect, for if it did we can find /i, also e-optimal, which eliminates loops in

(d) ||x —j/ll —> 0 as fc —> oo for all y Gre(a;) and all edges e of Hk^ the hybrid automaton

defined using T,k and Ck given in (3.2.2).

Proposition 5.6.5. For all x eR, \Vk(x) - V^{x)\ 0 as k oo.

Proof. Fix e > 0 and x ^ R. By Remark 6.2(a) there exists > 0 and an e-optimal

control fj. G for x w.r.t. Denote y. = ((o-i,ti), ... , {ctn^tn))^ where Tj is the time

CTi is applied. Ifc isa policy derived using Sk and Ck, for k>m^, then 0 < Vk(q) —̂ k(^) ^

c) —./|(x, ^) -{- e, where q = [(cri, a;)]. If we can show there exists k >m^ such that for
k > k, there exists a policy c such that Jk{q,c) —J^{x,fj,) < e then the result follows.

We canfind k>me, such that, by Remark 6.2(d) and the transversality ofcf>t{x,fjt) with the

submanifolds where it switches controls and with fi/, there exists jl GUk, k >k, such that

each trajectory <l>t{x,p.) of Hk switches controls on the same (transversal) submanifolds

as <f){x,fj.) and reaches D/. Let be this set of trajectories of Hk starting at x. Let
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^k{<i>) = ITjsi +h{xN) where p, = ((cri,Ti,... ,{(Tn^tn)), xJ = (j>fj{xj-i,crj),
and Xj Gre{xj), where e = ((Tj^aj^i) is an edge ofHk-

We observe that for 4>,cl>' G A€ k>k, \Wk{<i>) - Wk{(i>')\ -> 0 as A: -)• oo, using
Lipschitz continuity of L and h, Remark 6.2(d), and the fact that jX is fixed for k >k.
Notice that 0(a;,/z) G k > k. We can define the control policy c such that automaton

A accepts the time abstract trajectory starting at q corresponding to each trajectory of
3Jid with all other control assignments of c as time steps, c is admissible because

otherwise some <f)' G would have a Zeno loop. Since <l>' approaches <i)t(x^iJL) as k oo,
this would imply (f>t{x,fi) has a loop, contradicting Remark 6.2(c). Now we observe that

J{q,c) = max^g^fc := W)b(^). Thus, Jfc(g,c) - J|(x,//) < \Wk($) - Wk(<i>(x,ti))\ 0
as A: -> oo. • •

Combining Propositions 5.6.3, 5.6.4, and 5.6.5, we have

Theorem 5.6.6. For all x gU, Vk{x) V(x) as Jb ->• oo.

5.7 Implementation

So far we have developed a discrete method for solving an optimal control problem based

on hybrid systems and bisimulation. We showed that the solution of the discrete problem

converges to the solution of the continuous problem as a discretization parameter S goes

to zero. Now we focus on the pragmatic question of how the discretized problem can be

efficiently solved.

5.7.1 Motivation

Following the introduction of the concept of viscosity solution [62, 35], Capuzzo-Dolcetta

[28] introduceda method for obtainingapproximations ofviscosity solutions basedon a time

discretization of the Hamilton-Jacobi-Bellman (HJB) equation. The approximations of the

value function correspond to a discrete time optimal control problem, for which an optimal

control can be synthesized which is piecewise constant. Finite difference approximations

were also introduced in [36] and [90]. In general, the time discretized approximation of the

HJB equation is solved by finite element methods. Gonzales and Rofman [46] introduced

a discrete approximation by triangulating the domain of the finite horizon problem they
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considered, while the admissible control set is approximated by a finite set. Gonzales and

Rofman's approach is adapted in several papers, including [40].

Our work was inspired by the ideas of [96] which uses the special structure of an optimal

control problem to obtain a single-pass algorithm to solve the discrete problem, thus by

passing the expensive iterations of a finite element method. The key property to find a

single pass algorithm is to obtain a partition of the domain so that the cost-to-go function

from any equivalence class of the partition is determined from knowledge of the cost-to-go

function from those equivalence classes with strictly smaller cost-to-go functions. In our

approach, we start with a triangulation of the domain provided by a bisimulation parti

tion. The combination of the structure of the bisimulation paHition and the requirement

of non-Zeno trajectories enables us reproduce the key property of [96], so that we obtain a

Dijkstra-like algorithmic solution. Our approach has the same complexity as that reported

in [96] of 0(iV log N) if suitable data structures are used, where N is the number of locations

of the finite automaton.

5.8 Non-deterministic Dijkstra algorithm

The dynamic programming solution (5.5.4)-(5.5.5) can be viewed as a shortest path problem

on a non-deterministic graph subject to all optimal paths satisfying a non-Zeno condition.

It is useful to consider an example to motivate the differences between the deterministic

and non-deterministic cases.

Example 5.8.1. Consider the automaton of Figure 5.4. Suppose that o6s(e) = a for

e = {61,62,65,67}, 065(6) = <t' for 6 = {63,64,66,68,69,610}, and obs{eii) = a". Also,

L(6i) = 1, L(64) = 4, ^(65) = 2, L(68) = 1, and L(eu) = 1, while L is zero for the other

edges. If the automaton were interpreted as deterministic, one obtains

K(9i) = mm{L(ei) + h{qf),V{q2),V(q3)}

V{q2) = mm{L(e4) + h{qf),V{qi),V{q4)}

V{q5) = min{ L{eu) + h{qf),V{q2),V(q3) }•

These equations resolve to V{q\) = V{q2) = V{q5) = 1 + h{qf), and the control policy is

c(9i) = c(q2) = cr, and 6(^5} = <j'. If the automaton is non-deterministic, then the control
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ei, a

eg, a

Figure 5.4: Nondeterministic automaton

policy is deduced as follows. Using (5.5.4) we have

V(qi) = min{L(ei) + h(g/),max{y(g2),U(g3)}}

V{q2) = min{L(e4) + /i(g/),max{U(g4),U(gi)}}

V(q^) = min{L(eii) + h(g/),max{V'(g3),U(92)}}.

Substituting known quantities we find

V(qi) = min{l + %/),l + F(g2)}

V{q2) = min{4 + %/),2 + F(gi)}

V{q^) = min{5 + %/),H-y(g2)}.

When solved simultaneously, these equations yield V{qi) = 1+ h(g/), ^(92) = 3+ h(9/),

^(95) = 4+ h(g/), and c(gi) = 0(92) = <7, and c{q^) = a'. Notice that all trajectories are
non-Zeno inspite of the fact that a trajectory starting from gs may take two consecutive

control switches.

5.8.1 Description

The algorithm is a modification of the Dijkstraalgorithm for deterministic graphs [38] and

synthesizes an optimsil, memoryless, admissible control policy that takes the states of a non-

deterministic graph to a target set. As in the deterministic case, the algorithm is greedy: if
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a step can be taken into a set of states whose controls have already been assigned and have

a minimum cost, the step is assigned.

First, we define the notation. F„ is the set of states that have been assigned a control

and are deemed "finished" at iteration n, while Un are the unfinished states. At each n,

Q = UnU Fn. E„(g) is the set of control events at iteration n that take state q to finished

states exclusively. Un is the set of states for which there exists a control event that can take

them to finished states exclusively. Vn{q) is a tentative cost-to-go value at iteration n.

is the set of "best" states among Un-

The non-deterministic Dijkstra (NDD) algorithm first determines Un by checking if any q

in Un can take a step to states belonging exclusively to F„. For states belonging to C/„, an

estimate of the value function V following the prescription of (5.5.4) is obtained: among the

set of control events constituting a step into states in Fn-, select the event with the lowest

worst-case cost. Next, the algorithm determines the states with the lowest V among

C/„, and these are added to Bn+i- The iteration counter is incremented until it reaches

N = |Q|. It is assumed in the following description that initially V{q) = oo and c(q) = 0

for all g G Q.



Procedure NDD:

Fi = Qf; Ui = Q —Qf;

for each q € Qf, V(q) = h(q);

for n = 1 to N, do

for each q € Un,

Sn(q) = {a' GErf I if q q',then q' G Fn};
On = {q € U„ ISn(q) ^ 0};
for each q G On,

V„(q) = min<,-g2:„(,){maXe=(<,,,,)6E^,(,){L(e) + V(q')}};
B„ = argmin^goJV„(q)};
for each q G Bn,

V(q) = \/„(q);

c(q) = argminygE„(,,{ma)q,=(,,,,)£E,,(q){L(e) + V(q')}};
endfor

Fn+l —FnU BnJ Un+1 = Q Fn+ll

endfor
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The algorithm is opportunistic in assigning control switches. At the first iteration, say n,

that a state can take a control switch to finished states, it will be assigned the control

switch by the algorithm. This is because control switches have zero instantaneous cost, so

the state will have a minimum V and will be included in jB„. In fact, can include either

states that can take control switches and zero cost time steps to F„, or states that can

take a non-zero cost time step to Fn. The opportunistic assignment of control switches is

intuitively what we expect: waiting for a later iteration to assign them does not make sense

because states that finish later have a higher or equal cost-to-go.

5.8.2 Justification

In this section we show that the control policy synthesized by algorithm NDD allows non-

Zeno trajectories only and is optimal in the required worst-case sense.

Lemma 5.8.1. Algorithm NDD synthesizes a control policy with no Zeno loops.
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Figure 5.5: A loop of control switches

Proof. We argue by induction. The claim is obviously true for Fi. Suppose that the states

of Fn have been assigned controls forming no Zeno loops. Consider Fn+i. Each state of Bn

takes either a time step or a control switch to so there cannot be a Zeno loop in Bn-

The only possibiUty is for some q € Bn to close a Zeno loop with states in Fn, as shown in

Figure 5.5. This implies there exists a control assignment that allows an edge from Fn to q

to be taken; but this is not allowed by NDD. Thus, F„+i has no Zeno loops. •

Next we prove that the algorithm is optimal in the sense that it synthesizes a control policy

such that each q € Q reaches Qf with the best worst-case cost. We observea few properties

of the algorithm. First, if all states of Q can reach Qj then Q —Qf = U„Bn. Second, as in

the deterministic case, the algorithm computes V in order of level sets of V. In particular,

^{Bn) < y{Bn+i)- Finsdly, we need the following property.

Lemma 5.8.2. For all q £ Q and a' € Ej,

V(9)< {i(e) + V'(g')}-
e=(g,g')e£«,/(g)

Proof. Fix q £ Q and o' £ Ej. There are two cases.

Case 1.

e=(g,(g)

In this case the result is obvious.
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Case 2.

We observed above that qbelongs to some jB„. Suppose w.l.o.g. that q€ Bj. Together with
(5.8.1) this implies q' GFj for all q' such that q^ q'. This, in turn, means that a' GSj(g)
and according to the algorithm

^(9) = K(9) < {L{e) + ^(9')}
e=[Q,g')^E^i{q)

which proves the result. •

The main result is the following.

Theorem 5.8.3. Algorithm NDD is optimal.

Proof. Let V(q) be the optimal (best worst-case) cost-to-go for g G Q and Q = {g e

Q I^(9) < ^(9)}- Let /(TTg) be the number of edges taken by the shortest optimal (best
worst-case) trajectory tt, from g. Define g = argminggg{/(7rg)}. Suppose that the best
worst-case trajectory starting at g is tt^ = g —> g —>^ — . We showed in the previous lemma

that

V(q)< max {i(e)+ ^(9')} < i(e) + V(f).
e=(g,g')€£;^»(g)

Since Wg is the best worst-case trajectory from g and by the optimality of V(g)

^(9)= + ^(9')} = i(e) +
e={q,q')eE^,{g)

Since is the shortest best worst-case trajectory, we know that f Q, so V(5) = V(^).
This implies y(g) < L(e) + V{^) = V(q), a contradiction. •

Remarks:

1. It is intuitively reasonable that the algorithm cannot synthesize a controller with Zeno

loops. This worst-case behavior would show up in the value function, forcing it to be

infinite for states that can reach the loop.



88

2. When we say that the algorithm is optimal, we mean the algorithm determines the

best worst-case cost to take each state to the target set. In fact, (see remark below)

the hybrid system or continuous system using the synthesized controller may perform

better than worst csuse.

3. The non-deterministic automaton predicts more trajectories than what either the

continuous system or the hybrid system can exhibit. Indeed, the automaton may

exhibit a trajectory that reaches the target set using only control switches, and thus

accruing zero cost. This is not of concern. Such a trajectory is an artifact of the

non-determinacy of the automaton, and is not used in the determination of the value

function, which accounts only for worst-case behavior, nor is it exhibited in either

the hybrid system or the continuous system when the control pohcy synthesized by

Algorithm NDD is used.

4. Related to the previous remark is that the non-deterministic automaton may also

predict worst-case behavior which is not exhibited by the continuous system. It would

appear that a discrepancy will develop between the cost-to-go obtained by applying

the synthesized controller to the continuous system and the cost-to-go predicted by

the nondeterministic automaton. This error is incurred every time a control switch

is taken and is eflFectively an error in predicting the state and has an upper bound of

S at each iteration. This error was accounted for in our proofof convergence of the

method, and the convergence result essentially depends on the fact that only a finite

number of control switches occur.

Example 5.8.2. Consider the example of Figure 5.6. The states are labeled qi and the

number in the lower, left corner is the instantaneous cost of a time step. States can take

a time step to the state immediately to the right, and they can take a control switch to

states with a different (t, value and overlapping vertically. (Edges are not drawn to keep the

figure readable.) For example, state qs can take a time step to q2 and a control switch to

qi2 and gi3 using control <72, and to qn and ^20 using control <73. The algorithm generates
the following data:



(Tl

(72

<73

95 94 93 92

4 1 20

9i

9io 99 98 97 96

7 4 1 13

10

923

914 9l3 912

15

918 9l7 916

3 1

922 ?21 920

2 8 1

9ii

915

919

I

Figure 5.6: Example of algorithm NDD

n Bn V(B„) control

1 {gn} 1 0'2

2 {gisjgi} 1 0-2

3 {916} 2 0-3

4 {917j 919} 5 0-3

5 {96} 5 0^3

6 {97,920} 6 c(97) = c(g2o) = crs
7 {92,93,912} 6 0-3

8 {94,93} 10 o-i

9 {95} 11 o-i

10 {913} 12 o"2

11 {921} 12 0^2

12 {914} 13 <72

13 {99,922} 13 (^2

14 {910} 14 cr\

15 {924,918,923} 14 0-1
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Figure 5.7: The switching curve for the double integrator system.

5.9 Examples

5.9.1 Double integrator system

We apply our method to the time optimal control problem of the rocket car. Given the

equations of motion

±1 = X2

X2 = u

and the set of admissible controls U = {u : |u| < 1}. We select Q = (—1,1) x (—1,1)

and Qf = Be(0), the closed epsilon ball centered at 0. The cost-to-go function is J(x,fj) =

Jo ' dt. The bang-bang solution obtained using Pontryagin's majdmum principle is well

known to involve a single switching curve shown in Figure 5.7. In region i?i, the control

u = 1 is applied. When the switching curve is reached, the control is switched to u = —1.

In region R-i, the control u = —1 is applied, and when the switching curve is reach, the

control is switched to u = 1. The continuous value function V is shown in Figure 5.8.

To construct the hybrid automaton H we select = {—1,1}, so that <5=1. if is show in

Figure 5.1. The state space is {<7_i = —l,cri = l,cr/} x M". ^e_i and gei axe unknown and

must be synthesized, while = ge^ = Qf.

A first integral for vector field xi = 2:2, ^2 = 1 is xi - -x^ = ci, ci G R. For xi = X2,

^2 = —1 a first integral is xi 4- 5X2 = C2, C2 € R. We select a transverse foliation for each

vector field, given by X2 = C3.

We define Q, Qj, E, L and h for automaton A derived from H in Figure 5.1. Q can be

visualized using Figure 5.3. The states q ^ Q sue of the form (a, [x]) with a G{o-_i,<ti}.
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Figure 5.8: Value function for the continuous problem.

For thecase a = ai with ci,C2 € R, [x] iseither anopen subset of bounded by theleaves
ci < xi —̂ X2 < ci A and C2 < 0:2 < C2 + A; or atn open interval in a horizontal leaf

- ^^2 =ci, C2 <0:2 <C2+A; or an open interval in avertical leaf ci <xi —̂x^ <ci+A,
X2 = C2; or apoint xi—^x^ = ci, X2 = C2- Analogous expressions can be written for <7 = o-_i.
In Figiure 5.3, A = 0.25, ci € [—1,1] and C2 € [—1,1]. If we identify equivalence classes
(<7, [a;]) by their Euclidean coordinates (ci,C2) directly, then Q/, shown in Figure 5.3 as the
regions inside the dotted lines, includes states (o, [x]), where [x] satisfies ci,C2 G(-A, A).

Let us consider theedges corresponding to control switches ofA. g= (ci, [x]) GQ has an
outgoing edge to q' = [y]) GQ if [x] n [y] ^ 0. For example, for q = (<ri, [x]) and
[x] satisfying ci G (—.25, —.5) and C2 = .25, there are three outgoing edges from q to
2= 1,... ,3, with [2/] satisfying 02 = .25 and ci G(-.5, -.25), ci = -.25, and a G(-.25,0),
respectively. Similarly, for q = (<7i, [x]) and [x] satisfying ci G(-.5, -.25) and C2 G(.75,1),
there are five outgoing edges from g to g,, i = 1,... ,3, with [y] satisfying C2 G (.75,1)
and ci G (—.25,0), ci = 0, ci G (0, .25), ci = .25 and ci G (.25, .5), respectively. Edges

corresponding to time steps of A can be determined from visual inspection of Figure 5.3.

For example, for q = (ai, [x]) with [x] satisfying ci G(-.25, -.5) and C2 = .25, there is an

outgoing edge from q to q'= (<7i, [y]) with [y] satisfying ci G(-.25, -.5) and C2 G(.25, .5).



Figure 5.9: ^ for A = 0.1.

Finally, we define L and h. Let e = (q^q') with q = (cr, [x]) and q' = {p\ [y]). Then

L(e) = <

A a = a' A [x] satisfies C2 6 (a, a + A), some a G

0 a = a' A [x] satisfies C2 = a, some a 6 M

0 c ^ c'
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In this example, h(q) = 0 for all g € Q.

The results of algorithm NDD are shown in Figures 5.9, 5.10, and 5.11. Figure 5.9 shows

y for A = 0.1. The enabling conditions Pe-i and g^i are shown in Figures 5.10 and 5.11,

respectively. The roughness in the boundaries of the enabling conditions is caused both by

the discretization of the state space and by the non-determinism of the finite automaton.

5.9.2 Fuller's problem

In this example we discuss how our method can be applied in the canonically difficult

situation of Fuller's problem. Fuller's problem is of interest because all of its trajectories

are Zeno. We propose an ad hoc method to avoid the Zeno behavior.

Consider the optimal control problem (5.1.2) with |u| < 1 and the cost function =
jT(x,m) ^^ (0,1) be aconstant. It was shown in [44] that the optimal switching



Figure 5.10: Enabling condition

r.'tutiwti

..\d^AlUwl"wv
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-8-1 0 1 j

Figure 5.11: Enabling condition Og,.



94

X.

Figure 5.12: Vector fields and switching curves for Fuller's example

curves F- and F^. are given by

F_i- . Xi — ^3^2 X2 ^ 0

F_ : Xi = ^xl X2 < 0.

The situation is depicted in Figure 5.12. The upper vector field X- uses u = —1 while the

lower vector field X+ uses u = 1. The combined vector field is denoted X.

Solutions of X- are parabolic curves xi —~X2 = c, c G R. The parabola meets F+ at
1.
2*

f —^c
(5.9.1)

Xi = —^X2 = c+ hx2 or

The parabola meets F_ when xi —̂ X2 = c —5X2 or

Let theX trajectory cross F+ at p" = (x^,x^) and F_ at p" = (^,^). (5.9.1) and (5.9.2)
given

5 + ^
X2

Since the picture is symmetric with respect to xi and -xi and by (5.9.3)

1
-n+l — 2 inX2 — j X2.

2 s

(5.9.3)
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Hence x", -> 0 as n -> cxd. The time it takes the X trajectory to go from p" to p" to
is

<" = xj + 2|^| + 4+1

=il!\5ZZ,n
The total time elapsed for an X trajectory to reach the origin is

T=x:f"
n=l

^iWEZffizir.

- 2$

Thus, every trajectory takes an infinite number of switches in finite time. The origin is
called a Zeno point. It was shown in [87] that Zeno points are stationary points but not

equilibrium points of either vector field X- or X+..

To avoid Zeno behavior inthisexample, we propose thead hoc fix ofenlarging thetarget set
to be a closed ball arotmd the origin. We canobtain a switching strategy and approximate

value function using the same methods as in the double integrator example.
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Chapter 6

Strategies without Bisimulation
For us there is only the trying. The rest is not our business.

- T.S. Eliot.

In Section 3.4.2 we introduced symbolic model checking. The question addressed in this

chapter is whether the symbolic reachability algorithm for rectangular automata terminates

in a finite number of iterations. We study this problem because it has the interesting feature

that no finite bisimulation for rectangular automata is available; nevertheless the reacha

bility problem for initialized rectangular automata terminates. It serves as an example

that bisimulation may be too strong a requirement on a hybrid system to perform symbolic

model checking.

The first result on decidability of rectangular automata was reported in [79] and it was

quickly followed by an alternative proof in [50]. The first proof approach involved mapping

the rectangular automaton to a discrete-time automaton while the second proof approach

used a mapping from a rectangular automaton with n variables to a timed automaton with

2n variables. This chapter provides a third proof approach, which is based on a direct

analysis of the symbolic model checking algorithm. This method has the benefit that it

can be extended to other decidability questions such as decidability of controller synthesis.

For example in controller synthesis an operator called unavoidable predecessor^ Pre^ is

needed. Proving decidability using Pre involves proving closure properties of a class of

formulas associated with the class of hybrid automata (in this case rectangular automata)

under Pre. The results in this chapter show how this is done for the operators required in

symbolic reachability analysis.

Notation, x' refers to the updated value of a variable x after a trcmsition is taken. -»iS is
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e = an
obs(e) = a
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Figure 6.1: Fragment of a rectangular automaton.

the complement ofset S. The notation x (= 7 means "xsatisfies formula 7". .F(R") is the
set of convex-valued maps on R".

6.1 Rectangular automata

A rectangular automaton H is 3, hybrid automaton as defined in Section 2.2 where eewdi

component Mi is a (compact) integer-bounded rectaingular subset of R", and X : L -¥

is a rectangular-valued differential inclusion on L x R". Let Q = U/gjr,{Z} x M/. The

inclusion restricted to I is X^ = that is, for each I ^ L, the d3mamics are given
by Xi € 9e C R" is a rectangular region of the form pe = For each

X€ Qe, re(x) is a rectangular region of the form (rc(x))i := [ri,Si], if the ith component is
reset, and (re(x))i := Xj, if not. We define a map obs : F? —> E which gives the control event

associated to each edge. We will assimie that

1. for 61,62 G E, if 61 ^ 62 and 065(61), 065(62) € Ec, then 065(61) ^ 065(62), 2md for

simplicity E„ = {cnu},

2. Ji is compact, that is, for each I € L, X^ defines a compact rectangle, and for each

e G E, Qe is compact, and for each x ^ g^, re(x) is compact.

3. H is initialized; that is, for every e = {I, a, I') £ E, if the ith component of the

reset map is identity, then the zth component of the inclusion does not change, or

(re(x))i = Xi implies Xj = Xf.

For the remainder of the chapter we consider only compact, initialized rectangular automata

(CIRA).
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U Post(Z, t)

S.

Post{Z,G) PoSt^(-Z,G)

Figure 6.2: Weak Post.

6.1.1 Post and Pre operators

Building on the definitions of Section 3.4.2, a region U C R" is a polyhedral region if it is a

polyhedron. A zone is called a polyhedral zone (respectively, rectangular,bounded,compact

zone) \i = Ufc^ik) where each U\^ C R" is a polyhedral (respectively, rectangular,
bounded, compact) region. Z is a simple polyhedral zone if Z = {i} x [/, where U is a

polyhedral region. We define the set of all polyhedral zones to be Z. For region U and

e e E, define -'eU = ge\U and = re{ge) \ U.

Let Z e Z he a simple polyhedral zone, € S, t € R"^, and E' C E.

We define two post operators called weak and strong post, which are required to distinguish

the following two situations: (1) there exists a trajectory originating from the initial zone

that reaches a target point, and (2) all trajectories that reach a target point originate in

the initial zone.

We define the weak post operator Post : Z x (2^ UR*^) —.2 to be

Post(Z,cr) = {q e Q I e Z . g'g}

Post{Z, t) = {geQ \ Bg' e Z, Bt € R"

Post(Z, E') = [J Post{Z^cr).

Post{Z,(7) is the zone of states reachable in one cr-step from Z. Post(Z,t) is the zone of

states that can be reached in a t-step, where t G R"^. Post(Z,E') is the zone of states

j t
9}

(6.1.1)

(6.1.2)

(6.1.3)
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Post^{Z,o) Posti-Z,o)

'L
Figure 6.3: Strong Post.

reachable in one tr-step for o* € S'. Figure 6.2 shows weak post in time, and weak post on

a a-step in which xi is reset, but Xj is not.

Strong post, Posta : 2 x 2^ -> .2 is defined to be

Posta{Z, g) = {g € Q IVg' . g' A g,q' 6 Z}

Posts(Z,E') = [J Posts(Z^a).
<76S'

(6.1.4)

(6.1.5)

Posta{Z,(j) is the zone ofstates reachable in one cr-step from Z only. PostaiZ^Y/) is the
zone ofstates reachable in one o-step for o € S', from Z only. Figure 6.3shows strong post

on a <7-step in which xi is reset, but Xj is not.

We define two predecessor operators csdled weak and strong pre, in orderto distinguish two

situations: (1) there exists a trajectory originating in a zone that reaches a target zone, or

(2) all trajectories originating in a zone reach a target zone.

We define weak pre. Pre : Z x (2^ U ) -4 Z to be

Pre(Z,(T) = {g€ Q I 3g' e Z . g A g'}

Pre(Z,t) = {qeQ\3q' eZ,3telSt .

Pre(Z,Y') = y Pre(Z,G).
a€E'

q'}

(6.1.6)

(6.1.7)

(6.1.8)

PTe{Z,G) is the zone of states that can reach Z in one cr-step. Pre(Z^t) is the zone of

states that can reach Z in a t-step, where t € M"*". Pre{Z^S') is the zone of states that can

reach Z in one <j-step for g € E'. Figure 6.4 shows weak pre in time, and weak pre on a

<T-step in which Xi is reset, but Xj is not.
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PreiZ, t)

8.

Pre{Z, a) Pre^C-iZ.a)

Figure 6.4: Weak Pre.

PreAZ, a)
Pre(-iZ, ct)

Figure 6.5: Strong Pre.
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Strong pre, Preg : Z x 2^ Z is defined to be

Pres(Z,a) = {gGQ | Vg' . g A g',g' € Z} (6.1.9)

Pres(Z,S') = (J Pres(Z,a). (6.1.10)

Pres(Zja) is the zone of states that must reach Z in one a-step. Figure 6.5 shows strong

pre on a cr-step in which Xi is reset, but Xj is not. PrCsiZ,!^') is the zone of states that

must reach Z in one a-step for c 6 S'.

Several usefulfacts about the dual nature of PrejPres and Post/Postg are summarized in

the following Lemma.

Lemma 6.1.1. Given a CIRA H with edge e £ E, obs{e) = a, and a simple polyhedral

zone Z, we have

Pre{Z, a) = -y^PrCg(iZ, cr),

Preg{Zy(7) = -•ePre(-iZ,<7),

Post(Z,a) = -^^Postg{-iZy(T)j

Postg{Z,a) = -Ire Post(-"Zjcr).

Proof, Let g = {l,x) € Pre(Z,cr). Necessarily a: G pe- Because q ^ q' where g' G Z,

g ^ Preg(->Z,<T). Hence g G -•ePrea(-«Z,<j). Letg = (Z,x) GPreg(Z,a). Necessarily x GPe-

Because q q' implies q' G Z, there does not exist q" G -»Z such that g A g". Hence

g Pre(-«Z,a), so g G-'ePre(-iZ,o"). Let g' = (l\x') GPost(Z,a'). Necessarily x' Gre(pe).

There exists g GZ such that q q'- Henceq' ^ Postg{-^Z,(7), so g' G-iTePosta(-yZ,a). Let

q' = {l\x') G Postg{Z,a). Necessarilyx' Gre(pe). Because q q' implies q € Z, there does

not exist q" G->Z such that q" A q'. Hence q' ^ Post{-iZ, (t), so q' G->rePost{-^Z, a). •

6.2 Symbolic reachability analysis

In this section we prove that reachability for CIRA is decidable. The idea is to syntactically

restrict the expressions used in the symbolic implementation of the iterative reachability

algorithm. If there are a finite number of expressions that can be generated, then the

iterations must terminate.
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The class of formulas that form a symbolic execution theory for rectangular automata axe

linear inequalities, denoted We define a linear formula to be the finite conjunction of

linear inequalities. A linear formula defines a polyhedron in R". The notation (U) refers

to a (non-unique) set of formulas that generate a region U, and if p is a formula, then [p]

is the set of states that satisfy the formula. If Z = {/} x U, a simple polyhedral zone, we

abuse notation and also refer to a set of formulas that generate Z by {Z). For a polyhedral

zone Z = X {Z) denotes a disjunction of linear formulas p^, such that each p^

generates the polyhedral region U^.

Example 6.2.1. We will define two classes of formulas whose selection is motivated by a

simple observation in IR^. We assume the inclusion satisfies ai^hi > 0,z = 1,2. Suppose an

initial rectangular zone Z = {/} x £/ is defined by formulas Ci < xi < di where Ci,di ^ Z

and i = 1,2. Then the zone Pre(Z,t) is generated by formulas

El
02

El

where = %and the formulas Xi > Ci have been removed. The second equation defines
»

an upper envelope for the region and the third equation is a lower envelope. This idea

generalizes to higher dimensions and captures the essence of what is to follow.

Assumption 6.2.1. We will assume in what follows that ai,6i > 0 for i = 1,... ,n, in

order to simplify the exposition. The other cases can be dealt with analogously so we defer

the details.

6.2.1 Formulas on a Mesh

Werestrict consideration to linear inequalitiesdefined on a mesh of points lying in the union

of the rectangular regions iV/. First, define the mesh interval A by

i =LCM{a[,b'i I/€L,1 <i <n}.

The mesh of points N on the invariant regions is given by

AT = {x I Xj = miA,mi € Z.x € U/g£,M/}.

Xi < 4Ci
Xi d2 c\

El C2 dk

a[

1

1

a[
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The projection of N on the zth coordinate is

I X G N}.

Also let

I i = 1,-.. ,n, j = i + 1,... ,n}.

In what follows, we refer to a formula defining a region U as tight if the formula "touches"

the region. That is, a linear inequality satisfied by eill points of U is tight if a point of U

satisfies the formula obtained by converting the linear inequality to equality.

6.2.2 Formulas for Pre

We define a class of formulas Spre suitable for zones reached by Pre operations. A simple

polyhedral zone Z = {1} x U is generated by formulas given by

bkVk %l Xk %i a[rik (6.2.1)

|-S
where %i = {<, <} and %g = {>,>}. Equation (6.2.1) defines 2n tight rectangular con

straints, where A; = 1,,.. ,n, and 77^,77^, G Nk. Equations (6.2.2)-(6.2.3) define n{n - 1)

tight envelope constraints for Pre, where ^ A/i and ^ € Nj. Spre is the class
of formulas defined by taking the conjunction of the n(n -I-1) formulas (6.2.1)-(6.2.3). No

formulas can be excluded (even if they are redundant) and all formulas are tight.

We define Spre to be the class of formulas defined by taking finite disjunctions of formulas

in Spre- In this manner, non-simple polyhedral zones are generated by Spre- Note that

^pre CSpre'
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Figure 6.6: Formulas for Post.

6.2.3 Formulas for Post

We can define a class of expressions Spost suitable for zones reached by weak post operations.

A simple polyhedral zone Z = {1} x U is generated by the formulas

aim %l Xk %i birik
^ji ^ijXi Xi

m _ Zi ^ 221 _ iLZ.
hi ai hi ai.

Ei —Ei (V ^
aj. b\ a[ b[

J t 3 t

(6.2.4)

(6.2.5)

(6.2.6)

where %i = {<,<} and %g = {>,>}. Equation (6.2.4) for fc = 1,... ,n defines 2n tight

rectangular constraints, where rjkiVk ^ Equations (6.2.5)-(6.2.6) define n(n —1) tight

envelope constraints for the weak post operation for rectangular inclusions, where ^ €

^post is the class of formulas defined by taking the finite conjunction
3

of the n(n + 1) formulas (6.2.4)-(6.2.6). No formulas can be excluded (even if they are

redundant) and all formulas are tight.

We define Spost to be the class of formulas defined by taking all finite disjunctions of formulas

in Spost- In this manner, non-simple polyhedral zones are generated by Spost-

We will adopt the following notation. 7j(7j) G {Z) denote the upper (lower) rectangular

constrainton component Xj and 7ij(7tj) G{Z) denote the upper (lower) envelope constraint

involving components xj and x,-. See Figure 6.6.

Example 6.2.2. It is necessary to include all of the linear constraints in the appropriate
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forms. Suppose the inclusion dynamics in location I axe x e [2,2],y G[5,7],i € [1,1]. The
initial zone Z = {1} x U is generated by formulas 2 = 0 A a;>0 A x < 2 A 7x = 2y.

Then Post{Z, t) yields the formulas 7x < 2y 4z A 2y <7x A 2z < x A x < 2z+ 2. The

first formula in not in the class Spost' The problem arises because region U does not have

a valid lower constraint for the x, y pair: the formula 7x = 2y has the correct slope for an

upper constraint, but cannot be used as a lower constraint. The situation is remedied by

adding either a lower rectangular constraint or a lower envelope constraint.

Suppose we add a lower rectangular constraint so that U is generated by the formulas

2 = 0 A x>0 A x<2 A 2y <7x Ai/>0. Now Post{Z^ t) is generated by the formulas

x>0Ay>0A2>0Af-f<0Af-f>-5A2-f<0A2-f>-lA2-|<
0 A z —^ > —1. Because the inclusion for x and z have the same lower and upper limits,

some of these formulas are redundant. In general, however, they will be independent.

Alternately, suppose we add a lower envelope constraint so that U is generated by the

formulas 2 = 0Ax>0Ax<2A2y<7xA2y> 5x. In this case, Post(Zjt) is generated

by the formulas x>0Ay>0A2>0A f-f<OA f-|>0A2-|<0A2-|>

—1 A 2 —|<0 A 2 — —1.

Example 6.2.3. The requirement that the formulas are tight is essential. For example,

suppose we have the inclusion x\ = 1, X2 € [1,2]. Thus, A = ^. Suppose we have a region
Cf C generated by the formulas

V
I

0 X
i< 5

i<
2

~X
2< 1

X
2

2
X

i< 0

X
2-

X
i> 0
.

{U) 0 Spoat because the constraint xi > 0 is not tight. The tight lower constraint isxi > |
obtained from ^ —xi < 0 and X2 > 5.

6.3 Transformations on Formulas

In this section we define transformations on the formulas defining simple polyhedral zones

for Post operations. To minimize the notational overhead we use <,> rather than %u%g

in linear inequalities, but the proofs extend naturally when the latter syntax is substituted.
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6.3.1 Post(-,a) transformations

We give the transformation on Post formulas defining a simple polyhedral zone under the

Post(',(7) operator.

For e £ E, let /g be the set of indices of components that are reset by rg.

Lemma 6.3.1. Given a simple, polyhedral zone Z = {1} x U and a simple integer-valued

rectangular zone, K = {i} x R, if {Z) GSpoat, then (Z DV) € Spost-

Proof. Let 7t, 7j, 7tj, and 7^^- be the formulas that generate Z and Xi € [cijdi]} Ci,di G Z

be the formulas that generate Y. Z r\Y \s generated by the conjunction of these formulas.

Prom this conjunction we must construct the new tight formulas and show that they belong

to Spoat' First, weconstruct the tight rectangular constraints of the form Xj G where

ocj,^j GK. Once the a^'s and /3j's are known, the tight upper envelope constraint is found

by taking the tighter of 7^^- and

^ ^ ^ ft _ ^
if. a^. ~ if. a'

3 » 3

The tight lower envelope constraint is found by taking the tighter of7ij and

a}'- if- ~ a'- 6'

Claim: aj and j = 1,... , n are computed by

ocj = maxj Cj, m |̂̂ n{(A,Ci) |= 7^-}} | (6.3.1)
Pj = minj dj, h]ri^, ^n|max{(A,di) l=7tj}} (6.3.2)

The first formula is found be considering that aj is determined by (1) 7j, (2) Xj > Cj,

and (3) the intersection of jij and Xi > a for all i ^ j. The second formula is found by

considering that Pj is determined by (1) 7^-, (2) Xj < dj, and (3) the intersection of7^^- and
Xi < di for all i ^ j.

Assuming the claim is true, we see that pj takes the forms

'i= "JKft = < (6.3.3)
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while aj takes the forms

«j =< "if (6.3.4)

I "i[|-| +t]-
Now we observe that €Nj since cj €Z, rjj GNj by assumption, and %- ^ + ff GiVj-
since Cf GZ. The s£ime observations show that -J- e Nj. Making analogous observations
for /3j we obtain (Z n V) GSpost-

It remains only to prove the claim. Let W be the region generated by the transformed

formulas. Let (/,x) GW. A quickcheck confirms that x satisfies the conjimction of formulas

{Zr\Y). Conversely, let (l^x) €. ZnY. Suppose (Z, x) ^ W. One can enumerate the possible

conjunctions of formulas violated by x to arrive at the required contradiction. •

In light of Lemma 6.3.1, when taking Post{Z, a) on edge e = (Z, Z'), where Z = {l}xU and

Z/n^fg ^ 0) it suffices to consider Post{Z\a)^ where Z' = {Z} x Z7' and U' C g^.

Lemma 6.3.2. Given a CIRA H and a simple, polyhedral zone Z = {Z} x U with {Z) G

^postf suppose H has an edge e = {l,V),obs{e) = a such that U C g^. Then {Post{Z, a)) =
T{Z), where T : Spoat —)• Zs a transformation on formulas consisting of the following

steps:

1. for each i £ le, replace 7j, and ji by Xi G [n, Sj].

2. for each {i,j) € I, i,j E h, remove and '̂ ij and add the (tight) envelope constraints

(6.3.5)

(6.3.6)

5. for each {i,j) € I, i,j ^ /g retain the tight constraints and jij.

4. for each {i,j) GI such that j ^ /g andi G/g, remove'̂ ij and'yij, retain the constraints
7j, 7j, and add tight envelope constraints

b[n^ T.-
(6.3.7)

(6.3.8)

Xj
%la\

Ti

0)!
t

^ %
6f

Si

a)'.
3

a)'
3

Xj _ ft
a)-

t

%i
_ n

a{

Xj Xi 4''i Si

a'
3 ifi a)'-

3 6!
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Proof. We will show that q G Post{Z,o) implies q € [T(-^)], q € Posts(->Z,a) implies q G

->rg[T(Z)], and finally observe that Posts{-iZ,cr) C ~'rc[T(Z)] <=>> [T(Z)] C Post{Z,ar).

Observe that T(Z) consists of the formulas:

a. Xi G [ri,Si], i G le,

b' lij, lij, hj ^ le-

c. Tj, j 0 le

where we have not included the redundant envelope constraints. Then -«re [T{Z)] is gener

ated by the formulas

sa. X G re(pe),

sb. ^ le) V V V {-nijyi.j ^ h),

again omitting redimdant envelope constraints.

Let {l\y) GPost(Z,a), i.e. 3 x eU such that y Gre(x). We will show that (l\y) € \T{Z)].

Since y Gre(x) formulas a. are satisfied. Formulas 6. are satisfied because yi= Xi, yj = Xj

for i,j ^ le and (xj,Xj) |= Hjtlijt for x G17. Considering formulas c.^ x GU and yj = Xj,

so yj |=7j.77-

Next, let (/',2/) GPosts{->Z^a). CallY = ~'re[T(Z)]. Wewill show (Z',y) GF. Bydefinition

of Post3, for all X G pe such that y G re(x), x G -*U. Since y G re(x), formulas sa. are

satisfied. Since x G ->17 either

1. Xj = yj 1= -.7j or Xj = |= -.7^-, for j ^ h, implying y GF; or

2. (xi,xj) 1= -ijij or (xi,Xj) t= -.7ij, for but yj = Xj, y, = Xj implies y GF; or

3. (xijXj) 1= -'7ij(7tj) for i € le, j ^ h and no other formulas of U are violated by x

(for ifone is, to go its case). Then yj = Xj \= ~'7j(~'7j), implying y ^Y. For suppose
not. Then there exists x' with x'f^ = Xk, k^i and xJ G such that x' G U.

Then y Gre(x) = re(x'), contradicting y GPosts (-»Z, <7); or

4. (xt,Xj) 1= -»7ij, for ij G /e- Let xJ. = xjt for fc ^ z,j. Then for all xJ G [ci,di],

Xj- G [cjfdj] y G re(x') and since y G Posts cr), Qe C -tl7. This contradicts the
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assumption that U C g^. A similar contradiction is reached for ijelg- Thus,

these last two cases do not arise.

•

6.3.2 Post{'yt) transformations

We give the transformation on Post formulas defining a simple polyhedral zone under the

Post(-, t) operator. This requires some convexity properties ofthepost sets ofa rectangular
inclusion.

Let be a non-empty convex set in E". U recedes in direction y ^ 0, iS x + Xy € U, for
every X>0,xeU. The setofall such y's iscalled the recession cone ofC/, denoted 0+(17).

Theorem 6.3.3 (Rockafellar [84]). Let U be a non-empty convex set. The recession

cone 0^{U) is a convex cone containing the origin, and given by

0+{U) = {y I U-{-ycU}.

Lemma 6.3.4. Suppose a non-empty convex set U is the set of solutions to a system of
linear inequalities on R" ;

U = {x \ Ax > b}.

Then

0+(U) = {x\Ax> 0}.

Proof. Suppose y is such that U -{-y CU. Then for all x £U, Ax >h and A(x + y)>h.

In particular, there exists x such that Ax = 6, from which it follows Ay > 0. Conversely,

suppose y is such that Ay > 0. Then for all x £ U, A(x -\-y) = Ax Ay > b, implying

x-\-yGU,OTU-\-yCU. •

Lemma 6.3.5. Given a constant, convex inclusion x £ F, and a convex zone Z = {l}x U,

Post{Z,t) is convex.

Proof. Let x,y £ Post{Z,t). Then there exists xo,yo e U and si,ti € R"*" such that

x(s) = xo-\- x(T)dT x{si) = X,
Jo

y{t) = 2/0 + / if{r)dT x{ti) =y
Jo
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and s and t are related by s = jJ-t. Let z{u) be the convex combination ofa;(s) and y(t)

z{u) = (1 - 0)a:(s) + 6y{t)

where n is a time defined by

It = (1 —0)s + 6t

and = (1 — + 9ti. Thus,

Then

z(ui) = (1 - e)xo + 9yo+

r b~ •((i-eSi+ot.)+• ((i-g^+gtj]^"-
Since U is convex zq = (1 - 9)xo + 0yo € U. Let 7 = . Then

z{ui) =zo +j 1^(1-7)i(s(u))+ 7y(£(u))jciu.
By convexity of F, 2(1x1) GPost{Z,t). Therefore, Post(Z,t) is convex. •

Given a region 17, x € t/ is an extreme point of U if x is not an interior point of any line

segment in 17.

Lemma 6.3.6. Given a constant, convex inclusion x ^ F and a convex region Z = {1} x U,

the extreme points ofPost{Z, t) are reachedfrom extreme points ofU by extreme trajectories

only.

Proof. Let xq G U he a non-extreme point of U (if no such xq exists then we proceed to

examining extreme and non-extreme trajectories below). Suppose <l>t(xo) is a trajectory

of X G F starting from xq. We can write xq = where A, = 1, A, < 1 and

ixi,... ,Um axe extreme points of U. Define trajectories starting from ixj such that

^t{ui) = 0t(xo),Vt > 0. Then,

<i>t{xo) = X0+ / <j>s(xo)ds
Jo

- +y <^s(Wi)dsj
= Ai</>t(ixi).
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Therefore, «^t(a;o) cannot reach an extreme point of Post(Zyt).

Next, suppose that <^s(iCo) is non-extreme on an interval [0,t]. We can write
9

<^5(2^0) = Ai(s)/j
»=i

where /i,are extreme points of F and Ai(s) = 1, A, < 1 for all s G[0,t]. Let

- 1Ai = - / Ai(s)ds
t JQ

and observe that JZt Aj = 1. Then,

<l>t{xQ) = xo+ / ^s{xo)ds
Jo

- 5ZAi[xo+ [ fidsl.
i=i ^0 J

Thus, </>t(xo) is a non-extremepoint, and by the previousargmnent, cannot reach an extreme

point. Therefore, trajectories with non-extreme rates cannot reach extreme points. •

The following lemma relies on the fact that all formulas of (6.2.4)-(6.2.6) appear in (Z) for

a simple polyhedral zone Z. In particular, redundaint formulas (6.2.5)-(6.2.6) are included

in (Z) even if Z is rectangular.

Lemma 6.3.7. Given a simple, polyhedral zone Z = {l}xU with (Z) GSpost, (Post{Z,t)) =

F{Z), where F : Spoat —^Clisa transformation on formulas consisting of the step: remove

A: = 1,... ,n.

Proof Let Y = [T{Z)] and {¥) = T{Z). First we show that Post(Z,t) C {/} x Y. Let

(l,y) GPost(Z,t). First, observe that the lower rectangular constraints (6.2.4) are satisfied

by y, sincethe derivativeofeach component is positive (I,y) GPost(Z, t) impliesthere exists

XG C/ and a trajectory <^i(x) such that for some r > 0, y = and the components of y

satisfy

yj %i bjT -1- Xj

Vj + ajj

for j = 1,... ,n. Talking any (i, j) pair and combining these relations we find

yi _ yfof ^ ^
6'. a'-

3 » 3 t
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and similarly for the lower envelope constraint. Thus, formulas (6.2.5)-(6.2.6) are satisfied

by y,soye Y.

Next we must show {1} x F C Post{Z^t). Consider x G C/. Since x 6 F, for any v € 0"'"(F),

we have x + v G F. By Lemma 6.3.4 v satisfies

%, 0 (6.3.9)
3 i

%, 0. (6.3.10)

Let ex(0'^(F)) = {v g 0'̂ {Y) \ vi = {a[,b\,i = 1,2}}, the extreme rates of 0"*"(F).

Taking any w G ex(C/), and v G ex(0'^(F)), we have y = ly + Au G F, A G M"'". Prom

Lemma 6.3.6 we know that the extreme rays of the region defined by Post{Zjt) are reached

from extreme points of U using extreme rates. Thus, y is an extreme ray of (the region)

Post(Z^t), implying (/,y) G Post(Z,t). Since y is an arbitrary extreme ray of F and the

region defined by Post(Z,t), and F and Post{Z,t) are convex by Lemma 6.3.5, the result

follows. •

6.3.3 Spost closed under Post

The main result we will need to show that reachability is decidable is that Spost is closed

under Post.

Lemma 6.3.8. Given simple polyhedral zone Z, if (Z) GSpost, then {Post(Z,a)) GSpost-

Proof. Considering each of the steps in Lemma 6.3.2 we observe that Step 1 and Step 2

constraints belong to Spost because ri,Si G Z. Step 3 constraints belong to Spost automati

cally. Finally, Step 4constraints belong to Spost since = aj, bj = bj for j ^ /g. It follows
that {Post{Z,<T)) G Spost- •

Lemma 6.3.9. Given simple polyhedral zone Z, if (Z) GSpost} then {Post{Z,t)) GSpost-

Proof. From Lemma 6.3.7, Post{Z,t) can be computed by replacing the existing upper

rectangular constraints with those defining M/. We are finished, since the removal of rect

angular constraints and intersection with an integer-valued rectangular region was shown

in Lemma 6.3.1 not to affect membership in Spost- •
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Lemma 6.3.10. Given a non-simple polyhedral zone Z, if {Z) 6 Spoat, then (Post(Z,a)) €

Spost'

Proof. Every non-simple polyhedral zone Z can be written as Z = UfcZfc, where Zk is a

simple polyhedral zone. Then use Post{Z,a) = \J^ Post{Zk, o"), and Lemma 6.3.8. •

Lemma 6.3.11. Given a non-simple polyhedral zone Z, if (Z) GSpoat, then {Post(Z,t)) G

Spoat -

Theorem 6.3.12 (Reachability). Reachability is decidable for CIRA.

Proof. The initial (rectangular) region is generated by formulas of Spoat- Using Lem

mas 6.3.8-6.3.9, every step of the reachability analysis generates formulas in Spoat- Since

there are a finitenumberof formulas in Spoat, the reachability anatlysis terminates in a finite

number of iterations. •
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Chapter 7

Conclusion

And the end of all our exploring
Will he to arrive where we started

And know the place for the first time.
- T.S. Eliot.

In this chapter we say our final words. Mainly we try to convey our excitement about what

lies ahead for hybrid systems in the form of new frontiers where hybrid systems can msike a

difference and questions about hybrid systems that are imresolved. First, we must mention

two ominous threats.

Ominous threats

No work has appeared giving an indication of the performance we can expect from model

checking of hybrid systems. Will the performance be as explosive as in hardware verifi

cation? An analysis of the complexity of the algorithms combined with experiments with

real models needs to be done to ensure that exhaustive searches of hybrid state spaces are

practically feasible.

There has been theoretical work on hybrid systems and important application domains we

discussed in the introduction. There still is a gap between these two worlds, and this gap

needs to be filled in the near future. This can best be achieved by developing software tools.

Implementation smd Applications

We presented a new methodology for model checking of hybrid systems under natural com

patibility conditions of the enabling and reset conditions. We have entered a brave new

world for model checking, and it is imperative that we carry through to software implemen

tation and applications before we can claim that the paradigm-shifts that motivated the
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research were meaningful.

Because model checking based on bisimulation is not a numerical black-box approach, the

bestway to demonstrate it's potential impact is to select an application area that hasa pre

existing need for the hybrid systems framework. Coordinated autonomous agent problems

and embedded systems are the two strongest candidates. We desire a model checking tool

based on bisimulation that handles a suiteofreachability and controller synthesis problems

that are currently not solvable using simulation-based methods. At that point we could

certainly argue that the effort has been worthwhile. Fortunately, this goal has moved

beyond the state of wishful thinking.

Also because model checking as proposed hereis not a black-box approach, we are interested

in developing black box approaches that do not necessarily rely on bisimulation. Indeed,

the basic idea is to form a cover rather than a partition of the hybrid state space.

Theory

As well as attention to implementation and applications, we have seen over the course of

the thesis specific theoretical and practical questions that reach out to be solved. Let us

review those questions.

In Chapter 2 we presented a local geometric theory of bisimulation. Perhaps it could
be argued that this theory was not so local, and we showed examples where indeed the

bisimulation partition was global. But we are left with a need to know when is the pzu-tition
local in the assumed sense and when is it global, and how can the domain of a partition

be expanded, even by some inspired adhoccery, if need be. These questions lead to several

promising research avenues.

We plan to study global bisimulations arisingfrom systems with symmetries. We also know

that reductions of quotient systems are obtained from group symmetriesat the automaton

level [33, Ch. 14]. It is naturcd to try to see how these symmetries are related, whether
they can be understood within a unified mathematical framework, and what benefits do

we get from such a bird's eye view. A second approach to global bisimulation is to study

particular classes of vector fields such as Morse-Smale systems. An understandingof which

vector fields admit finite bisimulations will give new insight to both continuous and hybrid

dynamics, and we hope that this will lead to a cascade of small revelations.

In Chapter 5 we defined a hybrid optimal synthesis problem, but this problem was not
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directly solved. This problem needs to be readdressed in a separate investigate on hybrid

optimal synthesis problems. We examined Zeno behavior in Fuller's problem. The synthesis

of controls in the presence of Zeno phenomena requires further exploration which should be

tied into the older work on regular synthesis in optimal control.

In Chapter 6 we studied decidability of reachability for initialized rectangular automata.

The next question to be explored using the same proof method is decidability of safety

controller synthesis for rectangular automata.

Beneficiaries

So much effort in control theory has been placed on extracting precise models and developing

(sometimes computationally intractible) algorithms to modify a limited set of features of

those models. Control theory may work too hard at producing models which must then be

whittled down to some familiar form so that anything can be done. Witness the success

of fuzzy logic and one realizes that one can go very far with simpler models and a greater

emphasis on efficient algorithmic solutions.

Hybrid automata provide a framework in which more of the "burden of control" can be

placed at the logic level, for the performance of model checking is relatively unaffected by

the number of states of the automaton. We are lead to envision a new research direction

based on hybrid systems: logic synthesis for control.
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Appendix A

Differential Inclusions

In this chapter we review some necessary background on differential inclusions used in

Chapter 2. We follow closely [8] but also present some results from [41].

A.l Set-valued maps

Let X and Y be two Hausdorff topological spaces. A set valued map F from X to y is a

map that associates with any x GX a subset F{x) of Y. The domain of F is Dom{F) :=

{x GX I F{x) ^ 0}. The range of F is Range(F) := IJxex-^W* ^ set-valued map is
compact (bounded) if its range is comp£u:t (bounded). We say that a map F is locally

compact if for each point in Dom{F), there exists a neighborhood which is mapped into a

compact subset. The graphof F is Graph{F) := {(x, y) e X xY \ y € F(x)}. Wesay that

F is upper semicontinuous (u.s.c.) at x G X if for any open N such that F(x) C iV, there

exists a neighborhood of x, M such that F{M) C N.

Proposition A.1.1. The graph of an u.s.c. set-valued map with closed valuesfrom X to

Y is closed.

We say that F is lower semicontinuous (l.s.c.) at x G X if for any y G F(x) and any

neighborhood N{y) of y, there exists a neighborhood N{x) of x such that Vx G N(x)

F{x) n iV(y) ^ 0. A set valued map F from X to y is continuous at x G X if it is both

u.s.c. and l.s.c. at x.

Let B{S,r) := {x G X | d(x,S) < r} be the ball of radius r around the subset 5. We say
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the set valued map F : X {X,di) and (y,d2) are metric spaces, is locally Lipschitz if

for any xq € X, there exists a neighborhood N{xq) C X and a constant L > 0 such that

V € iV(xo), F(x) C B(F{x')^ Ld\{x^x')). F is Lipschitzii there exists L > 0 such that

V € X, F(a;) C B(F(x'), Ldi(x,x')).

A.2 The selection problem

Given a family of sets {Fq : a G ^4}, a selection is a map a fa in jPa- We are interested

in obtaining continuous selections of F, which need not always exist.

Example A.2.1. Consider the set valued map F : R —> R given by

{—1} X < 0

F{x) = ^ [- 1,1] a; =0
.{1} I>0

This map does not have a continuous selection.

Example A.2.2. Consider F : (—1,1) given by

1 {cos9,tsin9) and \ <9<j-^-2^ —\t\
1 (x, j/) and —l<x<l,y = 0 t = 0

For t ^ 0, F(t) is a subset of an ellipse in R^, whose small axis shrinks to zero as t —>• 0,

so that the ellipse collapses to a segment, F(0). The subset of the ellipse given by F(t) is

obtained by removing from it a section, from theangle j—|t| to theangle j. As t gets smaller,
the arclength of this hole decreases while the initialangle increases as j, i.e. it spins axound

the origin with increasing angular speed. The map is HausdorfF continuous at the origin

while any continuous selection f(t) defined on (—1,0) or (0,1), such as f(t) = (cos|,tsmj)
could not be continuously extended to (—1,1). The hole in the ellipse would force the

selection to rotate around the origin with an angle between j and j + 27r— |t|, so limt_i.o /(^)

cannot exist.

Minimum Selection. The minimum selection is given by m(x) = minF(x), for which

we have
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Theorem A.2.1. Let X be a metric space, Y a Hilbert space, and F, from X to the

closed, convex subsets ofY, is continuous. Then the mapping x m(F(x)) is a continuous

selection from F.

Barycentric Selection. Let X be a metricspace and F : X ^ 2^" be compact, convex-

valued, Lipschitz, and globally bounded, i.e. there exists M such that F(x) C MB, Vx GX.

Let A C M" be a compact, convex set and m the Lebesgue measure. The barycenter ofA is

One can show that h{A) 6 A. To ensure the set has posiitive measure we also consider

h{A + B) G A. The barycentric selection of F is

/(x) = 6(B(x)-hB).

Theorem A.2.2. / is Lipschitz continuous.

Michael's Selection.

Theorem A.2.3. Let X be a metric space, Y a Banach space. Let F from X into the

closed convex subsets of Y be lower semicontinuous. Then there exists f : X Y, a

continuous selection from F.

A.3 Solutions of differential inclusions

Denote by !;'(/, R") the space of functions / : [0,T] such that |/|p < oo.
consists ofthe Lebesgue integrable functions on [0, T]. L°°{I, R") is the space ofallbounded,

measurable functions on [0,T].

Consider the differential inclusion

xeF{t,x). (A.3.1)

The selection theorems of the previous section give means to obtain existence of solutions

of (A.3.1). If F is lower semicontinuous, withclosed, convex values, we can apply Michael's

Selection Theorem A.2.3 to obtain a continuous vector field which is a selection of F. For F

continuous with closed, convex values, the minimal selection gives a continuous vector field
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corresponding to "slow" solutions. For the case of upper semicontinuous maps with closed,

convex values, it is possible to prove an analog of Peano's theorem for ordinary differential

equations. Other existence results also exist. See [8, Ch 2].

The followingtwo results are useful when working with sequences of solutions of a differential

inclusion.

Lemma A.3.1. [41, p. 78] Suppose that in a domain D F is nonempty, compact, convex-

valued and upper-semicontinuous in t, x. Then the limit of a uniformly convergent sequence

of solutions of (A.3.1) is a solution of the inclusion.

Lemma A.3.2. [41, p. 77] Suppose F satisfies the assumptions of the previous lemma in

a compact domain D. Then all the solutions of (A.3.1) that lie in D are equicontinuous.

A.3.1 Filippov theorem

Filippov's theorem [42] is the analog for differential inclusions of the Gronwall lemma and is

used to construct continuous (w.r.t. the initial condition) selections of solutions of Lipschitz

inclusions.

Theorem A.3.3. Given the interval I, an absolutely continuous function y : / —> M", and

constant /? > 0, define Q = {(t,x) : t £ I, \x —y{t)\ < p}. For the differential inclusion

X G F(t,x), x(0) = xq, (A.3.2)

assume F : Q —¥ 2®^" is non-empty, closed-valued, and continuous with Lipschitz constant

K{t) GiC^(/). Assume also that

|2/(0) -xo\ = 5<P,

diifit), F{t, y{t))) < p{t), a.e.

with p ^ (I). Set

^(t) =SeSo + r e/.' .
Jo

Let J Q I, nonempty such that t ^ J implies ^{t) < /?. Then there exists a solution x on J

of (A.3.2) such that

- y{t)\ < C{t)
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and

- yWI < K{t)i(t) + p(t), a.e.

Remark A.3.1. If y(t) is a solution of (A.3.2), with y(0) = j/o and K{t) = K, a constant,
then there exists a solution x of (A,3.2) with a;(0) = xq and

kW - 2/WI < ko - yo\e^^. (A.3.3)

A.4 Continuous selections of Filippov solutions

In this section we give a condensed version of the results obtained in [30] providing con
tinuous selections of solutions of differential inclusions. The result refines the proof of the

Filippov theorem to obtain continuity in the initial condition.

Consider the problem

i€F(f,x), x{0) = ^, (A.4.1)

on a time interval / = [0,r], where ^ ranges over a compact Xq C with diameter D. In

addition, we assume the following.

Assumption A.4.1. The set-valued map F satisfies:

(a) The values of F are compact, nonempty subsets of R".

(b) there exists K eR such that d/f(F(a:),F(a;')) < K\x - x'l for all x,x' 6

(c) t F(t, x) is measurable.

Under Assumption 2.4.1, an absolutely continuous solution to (A.4.1) exists for each CGXq

[41].

Theorem A.4.1. Suppose F satisfies Assumption A.4.1. Let ^0 G Xq and x{t) be a so

lution of (A.4.1) such that x(0) = Then there exists a continuous tfj : Xq —> AC, a

selection of solutions of (A.4.1) such that = a;(t).

To prove the theorem we need the following proposition from [30].

Proposition A.4.2. Let VQ,...Vq be in C^, and let {/t(^)} be a partition ofI into a finite
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number of subintervals with endpoints depending continuously on Consider the map

i=0

Then there exists a € (/) such that for every e > 0 there exists S > 0 such that

rt 9

Y^Xii{oMvi{s)di
<10 ,-_n

1 '̂ - ^1 < implies \(pt{ '̂) - ^ oc(t)xE{t),

for some set E with measure (E) < e.

Theorem A.4.1 follows from the following result in [30]. We present the relevant parts of

the proof.

Theorem A.4.3. Suppose F satisfies Assumption A.4-1- Thenthereexists a sequence {y^}

of approximate solutions of (A.4.1) which satisfy, at the jth iteration

(i)

1^(0 - <D̂ +2-^-1 [2-2 +-£ j, (a.4.2)
(ii)

d\m),nt,yi~\o)] < kd2-'-^

(Hi)

t=0

(iv) there exists oP in £} such that for every e > 0, there exists 5 > 0 such that ^

implies

\M{a-yim<c^(t)xE(t)

for some E C I with measure{E) < e.

Proof. The proof is by induction on j.

We first show (i)-(iv) hold for j = 1. Define a cover B{^, ^^(0) of <^°(^?))}r=i
be a finite subcover where 5{^) < min{D2"^, - ^o|/2}. Define a partition of / = [0,T] by

{^?(0}?=i where

^^(4) =(r£v'?(C).r^V?(0] (A.4.3)
i=l i=l
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and {ipf} is a partition ofunity subordinate to

Now define the initial guesses

J/?(0 •= / i(s)ds (A.4.4)
rt

yliO ~i+ I]x/o({)(sK(??)<is (A.4.5)
•'0 1=1

where G F(t, is a measurable selection such that

|y?(f) - f?(«)| = rf(y?«). '̂(t.s*?K))] < if I? - &|.
Then we have

t

f \yliO-ysmds < f f]\v°{^f)-x{s)\dsJo Jo ^

rt n°

- / - ^olds
»=1

< DKt.

This proves (i). Fix t and let i be such that t € Then we have

< KD2-^.

This proves (ii). Also,

< + KDKt

< KD[Kt + 2-\\ + 2Kt\].

This proves (iii).

Next we assume (i)-(iv) hold for i - 1, and show they hold for j. Choose v{~^{0 €
F(t,yi~^{^)) such that

ic'(o - =4yi-\o,F{t,yi'\m
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By {iv) of the recursive hypothesis there exists 5^ > 0 such that implies

for some E C I such that a^~^{t)dt < KD2~^~^. Let ^•'(4) = min{5-^, |̂ —^o|/2}.

Define the subcover ))}?=! and the partition {//(0}?ii of I, as in (A.4.3). Set
the jth approximate solution to

2/t(0:=^+/
*'0 t=i

Note that y{{io) = x(t) since /^(^o) = Then we have

f\m)-yi-\o\ds
Jo

Jo . »

rE"'!.

(2Ksy
ds

+ ({))a^ (.s)xE{s)ds

<D
m' {2Kt)'

f- +2-'-^+2-'-'Y1—-
1=1

This proves (i). Now fix t and let i be such that t G//(O- Then,

< K - yi-\0)dt
Jo

-i-2< KD[2-^-^ + 2-^-3] = KD2-^



This proves (ii). Finally, we prove (iii).

<KD2-'-'' + K\yi-\i)-y}(^)\

J-
1=0
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•

Corollary A.4.4. Suppose F satisfies Assumption Then the approximate solutions

{yj} of Theorem A.4-3 satisfy

|!)( (0 - y?(4?) I<DF[e'̂ ' + <2DKe'̂ '<', (A.4.6)
a.e. on interval

Proof. Prom the proof of Theorem A.4.3 at every iteration j we select v{{^) GF(t,y{{^)),
a measurable selection such that

(Kty\y{(0 - vi{i)\ < +2-'-'e''<']

Given ^ and t, at every j we can find sin & such that t G and this means yJ"(C) =
Thus,

i-1

U - 1)!

From (A.4.7), using a triangle inequality, we obtain the result.

(A.4.7)
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