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Abstract

Formal Methods for Embedded System Design

by

Harry Chia Chang Hsieh

Doctor ofPhilosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Alberto L Sangiovanni-Vincentelli, Chair

The goal of this dissertation is to investigate how formal methods can be applied to the

domain of embedded system design. The emphasis is on the specification, representation,
validation, anddesign exploration ofsuch systems from a high level perspective. We start by
reviewing the framework upon which the theories and experiments are based, and through
which our formal methods are linked to synthesis and simulation. We also review in detail

the formal model of computation used to represent embedded system specification and

implementation: Network of Codesign Finite State Machines.

We formulate a formal verification methodology to verify general properties of

CFSM networks and demonstrate that this methodology is efficient in dealing with the
problem of complexity and effective in finding bugs. However, manual intervention is re

quired. Manual intervention comes in the form of abstraction selection and separation of

timing and functionality through constraints on the architectural mapping. We conjec

ture that for specific properties, efficient algorithms exist for completely automatic formal

validation of systems.

The analysis of the application of formal verificationtechniques to CFSM networks

led us to choosing a property that is basic, but embodies the principle of separation of

timing and functionality: synchronous equivalence of two different implementations. This

property is analogous to functional equivalence for sequential circuits. One powerful result

of this equivalence criterion is the identification of a set of delay-insensitive scheduling

policies. Once a delay-insensitive scheduling policy is chosen, any variation in delay does

not affect the functional behavior. For eflficient equivalence checking of implementations



using different delay-insensitive scheduling policies, we propose structural algorithms based

on worst-case analysis of the communication among components. The events communicated

between components are abstraw:ted into a signature that is maximaJ in the sense that it

represents all possible communication patterns of that system. By comparing the signatures

of different delay-insensitive scheduling policies for a given system, we were able to determine

equivalence conservatively.

Lastly, we relate communication analysis to exhaustive simulation through a series

of refinement and pruning operations on the communication signatures. An algorithm can

choose to work at any abstraction level trading off computational efficiency with the possi

bility of inconclusive result due to false negatives. We provide primitives to move between

different abstraction levels that exist between communication analysis and exhaustive sim

ulation. We demonstrate with real-life examples that synchronous equivalence opens design

exploration avenues uncharted before.

Professor Alberto L Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Emergence of Embedded Systems

Embedded systems are loosely defined as any system that utilizes electronics but is

not perceived or used as a general pinrpose computer. Traditionzdly, one or more electronic

circuits or microprocessors are literally embedded in the system either tsdcing up roles that

use to be performed by mechanical devices or providing functionality that is not otherwise

possible. As prices of microelectronics and microprocessors continue to fall, it becomes

increasingly attractive for systems to tcike on this electronic aspect smd enjoy the advantage

of higher performance, lower cost, additional features, flexibility to design changes, and

faster time to market. Today, the low cost and high performance afforded by electronics

spurs the creation of many products and systems that could not even be dreamed of just

a few years ago. Some examples of embedded systems are automotive control systems,

manufacturing systems, network switches, climate control systems, home appliances such

as microwave ovens or refrigerators, cellular phones. Personal Digital Assistants, pagers,

pacemakers, weapons, and toys.

This added electronic dimension allows the performance and cost of an embedded

system to track the unbelievable improvement in the performance and cost of digital elec

tronics. Traditional cellular phone transmission based on einalog technology cannot compete

in performance (cleirity) with the cellular phone transmission based on digital technology

and digitaJ electronics. First generation microwave ovens often containedonly a start/stop

button and a timer. A consmner grade microwave oven today easily handles different set

tings for different food items, special functionssuch as reheating, defrosting, and browning.
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and even contains sensors to sense the temperature of the food item for optimal result.
Adding this electronic dimension to existing products also offers tremendous opportunities
for improving the design. Electronic injection control in an automobile is an example where
the added electronic dimension provides higher performance and lower cost. The produc
tion oftraditional injectors needs to adhere to very stringent specifications to achieve high
fuel efficiency and low emission. However, when powerful electronics are used to perform
adaptive engine control, algorithms can be devised to control fuel injection taken into con
sideration also the condition ofthe injector. Acheaper manufacturing process can thenbe
used to produce the injector and, at the same time, meet and exceed the requirements for
fuel efficiency £ind exhaust emission.

The improvement in performance and cost can often be attributed to the use of

electronic components that can be easily programmed or configured to perform various
functions. All electronic components become more performing and cheaper as integrated
circuit technology advances. Programmable and configurable components such as proces
sors and gate arrays enjoy another dimension of economy of scale that is not available for

components with very limited programmability. Since programmable andconfigurable com
ponents areable to perform a variety offunctions, they can be applied to an ever-increasing
variety of embedded applications. Successive generations of a product can also share the

same components, or at lecist the same family of components, running different software

or with a different configuration. As larger and larger portions of embedded functionality

are performed on programmable components, the major cost factor ofa design shifts from

material and hardware design to the design of software programs. An effective embedded

system design methodology must emphEusize the design of softweire.

Another salient characteristic of embedded systems is their unconventional user

and environment interfaces. Instead ofkeyboards and monitors, or even buttons and Light

Emitting Diodes, the natural interfaces for embedded systems are more akin to sensorsand

actuators. Consider an engine control application, where the inputs to the systemare shaft

position and air and gas intakes, and outputs are control pulses for valves. Accelerome-

ters are being inserted into pens today and embedded electronics are then used to gather

authentication signatures. An effective embedded system methodology must take into con

sideration the design of the interfaces, and be very careful in defining the boundary of the

electronic portion of the system.

The electronic aspect of embedded system can be implemented with many differ-
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ent computational resources, ranging from off the shelf Small Scale Integration (SSI) and

Medium Scale Integration (MSI) chips, to application specific devices like custom chips,

semi-custom gate arrays, and field programmable gate arrays, to processors like Digital

Signal Processors (DSPs), microprocessors, and microcontrollers. A possible hardware au:-

chitecture for an embedded system is illustrated in Figure 1.1. The fimctionality of the

system may be implemented on the microprocessor, the co-processor, and the DSP as

threads. It may also be implemented by controlling the custom hardware and microcon

troller peripherals via drivers. There may also be Intellectual Property (IP) blocks in the

system such as MPEG decoders and ethemet interfaces. Each processor heis its own pro

gram memory, data memory, and memory bus. The DSP additionally shzires some datapath

memory with the processors. Bridges to the custom hardware, peripherals, and IP help to

interface these drastically different computational resources. The designer of embedded

systems faces many significant challenges, including the obvious burden to possess exper

tise on software programming, hardware design, system design issues such as allocation of

the functions to resources and scheduling of tasks, and interface design between different

computational resources and to the rest of the system. Traditional simulation tools must

be combined to simulate a system consisting of heterogeneous elements. Synthesis tools

must synthesize interface and communication structures, and to some extent, software, if

a high-level description language is used. There also must be a method to perform design
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exploration, especially of the newly added dimension to the design freedom: a particular
piece of computation may now be performed on any number of computational resources,

with different performeince characteristics.

1.2 Design of Embedded Systems

Current embedded system design practice, as illustrated in Figure 1.2, is quite
informal and application specific. Designers often start with a requirement written in En

glish, use "intuition" to pick a particular interpretation of this requirement and break the

design into hierarchy so as to better manage the complexity of the design. Designers then

takeeach part of this hierarchy and write a so-called reference (orgolden) model in VHDL,

Verilog, C, or any other Izmguage that has an execution semantics. The golden model is

executed on a computer to investigate whether it satisfies a set of requirements, including



CHAPTER 1. INTRODUCTION 5

a match with the original informal specification. This is done on pents of the design and

the result is extrapolated to the whole through simple logic deduction. A (candidate)^ im

plementation is then generated through a combination of manual labor and tools that are

often poorly connected. Different pEuts of the design may be manually mapped to different

computational resources. Synthesis for different resomrces, as well as the interfaces between

resources, usually utilizes tools that are based on completely different models of compu

tation (e.g. finite state machines and data-fiow networks), hence are very difficult to be

connected in any way. The correctness and optimality of the (camdidate) implementations

are assessed with filtered simulation traces obtained from the reference model and from the

candidate implementations. Simulation tools for different resources are also often discon

nected amd have very different models of computation. This contorted and highly informal

design fiow is obviously very error-prone. It does point out many fundamental difficulties

in the design of embedded systems.

1.3 Requirements For An Effective Design Methodology

The design of embedded system is a highly complicated process. Due to this com

plexity in both size and charaw:teristics of the problem, a push-button solution is highly

imlikely for the near future. It is not reasonable to expect the embedded system designers

to write down all the necessary detail of an embedded system specification, and only that

necessary detail. It is also not reasonable to expect the tools to be able to optimize accord

ingly even if such a complex specification is written down. An effective methodology should

instead provide designers with a seamless interactive fiow from high level abstract specifi

cation all the way down to implementation. Central to this seamless flow is a formal model

that can be used to represent both the abstract specification and the final implementation.

A representation is abstract when it is devoid of details. A mathematical equation

is more abstract than a C program implementing the equation. The C program is more

abstract than the object code compiled from the C program. In each case, the more refined

representation contains more detail information them the more abstract representation. The

C program contains algorithmic detail, which is absent in the equation. The object code

contains memory requirements and delay characteristics, which are absent in the C program.

^An "implementation" generated through this process may only be considered a candidate because it
may not be correct. It is not generated through formal refinement. Some ad hoc manual procedures are
involved.
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This absence of information has several important uses. First, it is easier for the designer
to analyze a simple, abstract, representation. It is easier to read a C program to figure
out what it is computing than to look at a piece of object code. Secondly, it is easier,
computationally, for the tools to work on a more abstract representation. Reachability
analysis ofa set ofequation implementing a sequential system is much more easily done on
the equations (often interms ofFinite State Machines) than on theCprogram representing
the sequential computation. The third important use ofan abstract representation is that

one can prove properties for the abstract representation that will hold also for the refined

representation. Essentially, a refined representation is the abstract representation plussome

detail. Aproperty isproven for the abstract representation if it is proven regardless ofwhat

the resolution of that detail may be. It is therefore proven for every particular resolution,
including the chosen refined representation. Forexample, if a set of iterative equations does

not converge, then the C program should be non-terminating regardless of the algorithmic

detail, and the object code will be non-terminating regardless of the delay characteristic

and memory requirement.

Automatic tools are very important in supporting design decisions that may be

done interactively. In an effective methodology, automatic tools should be used to provide

the validation model for feedback to the interactive decision from the designer. Automatic

synthesis tools are alsoused when the specification is refined enough, so that more manual

intervention is not necessary. Only through formal specification, formal refinement, and

automatic synthesis can one guarantee the correctness of a design.

Theoretically, it may be desirable to have a single "best" formal language for em

bedded system specification. Practically, this is very hard to achieve. Different types of

function are often more efficiently and more naturally represented in different formal lan

guages. In addition, how a specification is written often £iffects the output of an automatic

synthesis tool. It is therefore more reasonable to havea set of formal languages for specifica

tion; all sharing a formal model which supports formal refinement. This will allow efficient

synthesis because the designer can still write specifications in such a way that the given

synthesis algorithm willproduce the best result. Formal analysis is still possible because of

the conunon formal semantics.

Design reuse, or Intellectual Property (IP) reuse, is another way to deal with the

issueof complexity. Having a hierarchical specification written in multiple formal languages

eases the process of IP integration. IP can be treated as just another hierarchy that has its
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own language and synthesis procedure 2tnd shares the same formal semantics. Character

ization of the IP for analysis may be difficult, depending on the type of analysis required

and the information available from the IP providers.

Another unique difficulty to the design of embedded system is in the choice of the

target architecture. While conventional digital design problems usually focus on systems

with a single, specific computational resource, embedded system design C£ui often be re

alized using a variety of computational resources. To complicate the matter further, the

"optimal" architecture for the application may consist of more than one type of compu

tational resources. In fact, to satisfy the requirement and achieve the optimal design, the

architecture needs to be designed, or "codesigned" alongside the algorithms. While it is

not possible for any embedded system design framework to accommodate all possible ar

chitectures, it is important to accommodate a reasonable subset and make this restriction

explicit so that the designer will not unknowingly over-constrain the design problem.

1.4 Proposed Design Approach

The overall design strategy that we envision is depicted in Figure 1.3. The design

flow consists of three levels, from the conception of the design to its implementation. A

single model of computation is used throughout, so the transition between diflferent stages

of the design is formal and precise.

At the functional level, behavior is described formally using a simple zmd concise
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mathematical model. The goal is to impose as little implementation detail as is possible.

A very large set of implementations may be the refinements of the specified behavior. In

order to weed out some of these refinements which may have undesirable characteristics, a

separate set of constraints may be needed to describe only those implementations that ex

hibit desirable characteristics, such as short timingdelay and low power consumption. The

relatively low complexity of the abstract behavior specification, however, makes it possible

to perform abstract anzilysis on the behavior at this earlystage ofdesign process. Designers

can perform property verification to see if the behavior exhibits certain critical properties

and if it does not, modify the behavior or constrain the refinement process. The character

istic of a target architecture can be described by a set of succinct p£irameters. One such set

may be described as a Motorola68hcll platformexecutingat 2MHz with an Introl compiler.

While the most detailed information should be gathered and indeed may be indispensable

for the final vafidation, abstract high level information, such as the "approximate" delay of

a basic block, can be very useful for high level analysis given a particular abstract model

of the behavior. Both the behavior and the architecture descriptions can be used for many

different designs and is consistent with the philosophy of IP reuse.

The first few stages of the refinement from behavior specification are usually done

manually and are collectively called the mapping level. The design space is simply too big

at this level for any meaningful automation. Any refinement decision will eliminate a large

set of implementations from consideration. It is more reasonable to allow the designers to

use their intuition for these decisions. The primsury functions of the tools will be to eissist

in making these decisions through analysis. Some examples of these mapping (also called

architectural mapping) decisions include mapping behavior onto computational resources

and choosing scheduling for shared resources. The types of interesting formal analysis at

this level may include property checking for an abstract specification, or equivalence check

ing between two different implementations or between an implementation and a reference

(golden) model.

After the architectural mapping stage, the synthesis tools have enough information

to optimize the design all the way down to implementation. This includes technology-

independent optimization, as well as actual instruction selection and register allocation

for components mapped to programmable resources, and logic synthesis for components

mapped to be implemented as circuits. To reduce the possibility of manual error, the

synthesis procedure from this level down should be as automated as possible. The results of
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synthesis are back annotated to the earlier part of the design process for possible iteration.

1.5 Motivation

We have developed a framework for the design of embedded system, POLIS, in

which a single formal model of computation is used throughout the design process. Steps

in the design process formally refine the abstract behavioral specification, sjrnthesize the

behavior down to implementation under some objectives or constraints, or transform the

behavior to verification and simulation-oriented models. Due to the existence of this formal

model, formal verification tools [BSVA'̂ 96, McM93] can be applied to verify properties at

different levels of abstraction. The current generation of automatic formal verification tools

suffers from the issue of complexity. Msiny large designs axe too complex for automatic

formal verification tools to analyze within reasonable time and memory resource. For the

domain of control dominated embedded applications, we want to establish a verification

methodology with systematic applications of abstractions and assumptions that will make

it possible to verify large systems. We deal with this issue in Chapter 4. Unfortunately, even

with the methodology in place, verification of arbitrary properties of arbitrary systems is

still very tedious and involves many manual abstraction operations. We establish efficient,

automatic, algorithms for formally analyzing specific, but important, properties of certain

cl£isses of embedded systems. The "property" that we choose in this work is the equivalence

between two implementations of the same high level specification.

Current methods for specifying embedded system application are extremely ad

hoc. The desired behavior is often loosely represented as some filtered simulation trace

with special annotations, implicit assumptions, and so-called intuition. Therefore, a fun

damental point of clarification to improve the design methodology is the form2J definition

of correctness. Because embedded system designs are inherently complex, the principle of

"separation of concerns" in specification eind verification is essential. Functional correctness

£ind timing should be verified independently.

We thus define synchronous equivalence, a "functional" equivalence among a set

of candidate implementations of embedded system specifications. An equivzilence relation

divides behaviors into equivalence classes. Equiveilence Einalysis can answer the question

whether two implementations are equivalent to each other or whether an implementation is

equivalent to the "golden" model representing the specification. This can be done precisely
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through state reachability analysis methods (e.g. model checking tools), or conservatively
(but more efficiently) through structural methods. We derive efficient structural algorithms
for synchronous equivalence analysis that can be used at the mapping level. These algo
rithms can beused to explore thedesign space efficiently. Since thealgorithms are conserva
tive, they could sometimes lead to design choices that are sub-optimal. Trade offs between

theefficiency ofthe algorithms and the quality ofthesolution will need to beexplored. We
deal with the definition and properties ofsynchronous equivalence in Chapter 5. Analysis

algorithms are presented in Chapters 6, 7, and 8, with different emphasis on the efficiency
or the quality of the solution.

Once a behavioral specification is architecturally mapped according to some crite

ria, automatic synthesis can bedone using any setofexisting tools. SIS [SSL+92] or Design
Compiler from Synopsis can be used for synthesis of components mapped to FPGAs. Es-

terel [BCG91] or Statechart [HLN"^90] cam be used for synthesis ofcomponents mapped to
microprocessors. The POLIS codesign framework, however, provides a complete synthesis

solution from behavioral specification all the way down to implementation with various

computational resources, all consistent with a formal model of computation.

1.6 Thesis Overview

In the next chapter we review the specification, mapping, simulation, amd syn

thesis aspects of the POLIS codesign framework [BCG'*'97]. These capabilities of POLIS

complement nicely the formal methods that we develop in the later chapters. In addition,

the formal model of computation used in POLIS, the network of Codesign Finite State Ma

chines (CFSMs), will also be the formal model used to demonstrate the properties of the

algorithms. CFSMs are discussed in detail in Chapter 3. After discussing the framework

within which our formal methods will fit and the formal model we will use, in Chapter 4

we present an abstraction/refinement methodology for the formal verification of embed

ded systems. Extensive abstraction is used to handle the complexity of the design, and

user-directed refinement is used as necessary to verify properties of the design. While our

formal verification methodology is effective in verifying properties of a design, it requires

extensive manual intervention. We develop automatic analysis algorithms for a specific,

and extremely important, analysis: synchronous equivalence between two implementations

of the same behavioral specification, or between an implementation and a reference model.
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We define synchronous equivalence and the synchronous assumption in Chapter 5. We dis

cuss the necessity of such an assumption and justify the resulting restriction on the design

space. We also discuss the consequences of the definition of equivalence relation and the

useful properties that come along with it. In Chapter 6, we present simple static algorithms

that can be used to prove synchronous equivalence with low computational complexity, of

ten with no more than simple checking of implementation attributes or simple traversal of

system graphs. Unfortunately, an analysis of this sort is plagued by false negatives (pairs of

implementations that are declared not equivalent while actually they). In Chapter 7, we pro

pose efficient einalysis algorithms for synchronous equivalence based on the observation that

if the "communication" among components is the same for two implementations, then they

must be synchronously equivalent. Commimication analysis removes many false negative

results firom static algorithms, at a cost of higher complexity of the analysis. This effec

tively introduces a partial order verification strategy for CFSMs. In Chapter 8 we make our

analysis method more precise by removing more and more of the false negative results. We

show that communication analysis can be transformed into exhaustive simulation through

the refining of "containers" and the pruning of unobservable events. We develop a whole

range of algorithms that can work at different points on the abstraction/refinement scale,

trading off the quality of solution with the complexity of the analysis. Finally, we conclude

with some summary remarks and future directions in Chapter 9.
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Chapter 2

The POLIS Codesign Framework

The POLIS codesign framework is a collection of related tools that help the de
signer to take behavioral specifications all the way down to actual implementations. The
target applications of POLIS arecontrol dominated embedded systems such as automotive
control systems and ATM switches. There is no fixed target architecture per se. Design
ers are free to utilize architectures consisting of any number of computational resources
connecting through simple interface generated automatically by POLIS. The designs in
POLIS are implemented as Globally Asynchronous Locally Synchronous (GALS) systems.
The designer breaks his design first into a set of hierarchical interacting networks. The
lowest (leaf) elements in the hierarchy are extended finite state machines called Codesign
Finite State Machines (CFSMs). These CFSMs also correspond to the smallest units that
can beassigned to computational resources. Fach CFSM is locally synchronous, while the
interaction between CFSMs is asynchronous.

It is designer's responsibility to decide which CFSM should be mapped to which
computational resource. If more than one CFSM is assigned to a computational resource,
scheduling policy has to be specified to coordinate their execution. The process of as
signing CFSM to resources and deciding scheduling policy for shared resources is called

Architectural Mapping. A CFSM network, as initially specified by thedesigner, isabstract.
Many possible behaviors, including different interleaving ofexecutions ofthe CFSMs, are
all consistent with the specification. An architecturally mapped CFSM network may have

deterministic behavior (hence it is simulatable) if low-level synthesis directives are set to

some deterministic (default) values. We believe that at this point in time, automation ofthe

architectural mapping selection process is very difficult, and in fact, probably not desirable.
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It is better to leave these aspects of design freedom to the designers' "intuition" and allow

the designer to choose his own architectural mapping. Oftentimes, designers will even write

their specification with a particular architectural mapping in mind. What POLIS provides

is, once a particular architectural mapping is chosen, a quick path to prototype and simu

lation so the designers can test out their architectural mapping to see whether it actually

matches the requirement. This is enabled by a procedure for system level co-simulation of

heterogeneous computational resources.

Once a CFSM network has been specified and an architectural mapping has been

chosen, POLIS can take over and automatically synthesize hardware, software, as well as

2my necessary interface. Components mapped to heurdware are synthesized as sequential

circuits that may be implemented on some semi-custom ASICs or FPGAs. Components

mapped to software are first translated into reduced Control Data Flow Graphs called Soft

ware graphs, or S-graphs. Technology independent optimization is performed on S-Graph.

Either object code or a subset-C code is generated. Subsequent technology dependent op

timization is carried out by commercial compilers to obtain the final assembly codes for

the processors. The event base interfaces between hardware and software computational

resources are inserted automatically. Scheduling code is also automatically synthesized to

realize the high level directives from the designer at the circhitectural mapping stage.

The imderlying mathematical model for POLIS is a network of Codesign Finite

State Machines (CFSMs). Any language with FSM semantics, such as Esterel [Ber96],

State Charts [DH89], or the synthesizable subset of Verilog [BY93] and VHDL [Eng94], can

be compiled into a locally synchronous CFSM. The global connectivity is specified either

graphically in Ptolemy [BHLM90], or textually in a generic netlist. Since the communication

between CFSMs is asynchronous with finite buffers, there is no guarantee of delivery of

information. To ensure lossless communication, handshaking can be specified into the design

itself. Alternatively and more efficiently, a scheduler can be used to prevent the loss of

critical information. In Chapter 3, we will treat the subject of CFSM in full detail. Before

that, we describe some relevant aspects of the POLIS codesign methodology.

2.1 The POLIS Codesign Methodology

One possible embedded system design flow is presented in Figure 2.1. The concep

tion of the design, in the form of existing Intellectual Properties (IPs) and ideeis, is written
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Figure 2.1: The Designer's Flow Chart.
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down as a set of processes, interconnection and other design information. POLIS translates

the processes into CFSMs, using the tmderlying FSM model of the specification languages.

Alongwith connectivity and other information, the design is written into Software-Hardware

Intermediate FormaT (SHIFT). After the designer selects an architectural mapping, POLIS

generates quick or accurate simulation models so the designer can verify, through simula

tion, whether the design at this stage satisfies the functional and performance requirements.

If it does not, the designer may want to "try out" another architectural mapping (and pos

siblydifferent low-level synthesis directives). Once the combination of CFSM network, the

architectural mapping, and the synthesis directives is deemed acceptable, the final imple

mentation is automatically synthesized into actual codes for the target processors and the

configuration files for gate arrays.

The complete POLIS codesign framework is represented in Figure 2.2 where ovals

correspond roughly to tools and rectangles correspond roughly to models or files. Before

we go through some important aspects of the framework, we present a very simple example

that will serve to illustrate concepts throughout the rest of this dissertation.

Suppose that we want to specify a simple safety function of an automobile: a seat
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Figure 2.2: The POLIS System.

belt alarm control system. A natural language specification written by a designer could

be: "Five seconds after the key is turn on, if the belt has not been fasten, an alarm will

beep for five seconds, or until the key is turn off." The specification can be represented by

two reactive components as shown in Figure 2.3, consisting of two CFSMs: A controller

and a timer. CFSMs representing the controller and the timer are shown in Figure 2.4

and Figure 2.5, respectively. Input and output for a state transition are separated by .

Conjunction is represented by disjunction by "+", and negation by "!".

2.1.1 High Level Language Translation

In POLIS, designers write their specification in a high level language. Any high

level language with precise semantics and underlying FSM model can be accommodated.
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Figure 2.3: Seat Belt Alarm Controller Example.
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Figure 2.4: Controller FSM in Seat Belt Example.
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Examples of the accepted languages include synthesizable subset of Verilog [BY93] or
VHDL [Eng94], StateChart [DH89] or £iny other graphical FSMformalism, or Synchronous

Languages such as Esterel [Ber96] and Lustre [HCRP91]. Another "netlisting" language is
needed to describe the interconnection between these locally synchronous components. It

can be in the form ofa simple text file or compiled from the graphically interface provided

by Ptolemy [BHLM90].

Theseat belt controller ceui be specified as an Esterel text file as follows (the tran

sitiontriggered by Reset did not appear in the graphical CFSM for the sake ofsimplicity):

module controller:

input Reset, Key_On, Key.Off, Belt.On, End_5, End_10;
output Alsunn(boolean), Start;
loop

do

emit AlarmCfalse);
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every Key_On do

do

emit Start;

await End_5;

emit Alarm(true);

await End_10;

watching [Key.Off or Belt_On];
emit AlsLTmCfalse) ;

end

watching Reset
end.

The first two linesdeclare the input/output of the locally synchronous component.

All the input signals are control signals. They are called pure signal in Esterel. There are no

data portions associated with these signals. Output signal Alarmhas a control portion, and

a data portion that is associated with a Boolean value. The loop statement loops forever.
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This is necessary to make the locally synchronous component responsive to the inputs at
each clock . Program within Do ... watching Reset will be executed till termination

unless it is preempted by the occurrence ofReset. The every Key_On statement executes
itsbody every time Key_On occurs. The await End-5 statement stops theprogram and waits
for theoccurrence ofEnd.5 signal. It identifies a state ofthe system. In this case, state Off
corresponds to every Key_On (that implicitly awaits Key.On), state Wait corresponds to
await End_5, and state Alarm corresponds to await End_10. The Emit statement is used

to specify that an output is present in a given transition. It can also be used to write the

value associated with the signal. The Esterel file associated with the timer is as follows:

module timer:

constant Count_5:integer;
input Sec, Start;

output End_5, End_10;

every Start do

await Count_5 Sec;

emit End_5;

await Count_5 Sec;

emit End_10;

end.

The second line declares a symbolic constant whose actual value will be defined

elsewhere. The await Count_5 Sec statement coimts Count_5 transitions in which signal
Sec has an event.

A CFSM component is locally synchronous. This means that each component
takes in a set of inputs, performs a computation and emits outputs. Upon the completion
of the computation, it takes in another set of inputs. Since the communication among

CFSMs are asynchronous, other CFSM and the environment may send information to a

CFSM which may still be executing. This information will be kept in a one-place buffer.
It is through this buffer that CFSM network decouples the locally synchronous computa

tion from the globally asynchronous communication. It also facilitates using synchronous

language, with its synchronous hypothesis, at the local level. Thereare no blocking writes,

so the sending CFSM simply emits its outputs and continues execution. The buffer may

overfiow if the sending CFSM or the environment is too fast for the receiving CFSM.

Requiring blocking write for all commimication will make the implementation too costly.

To prevent loss of information, synchronization can always be written into the design (e.g.

hand-shaking), or set as a requirement on the implementation (e.g. scheduling policy).
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CFSM networks will be described in more detail in Chapter 3.

2.1.2 Architectural Mapping

Architectural Mapping, to be defined formally in Chapter 6, is the process of

selecting a particular target architecture, assigning CFSM components into computational

resources in the architecture, and selecting schedulers if there are shared resources in the

2urchitecture. This decision is based heavily on design experience and is very difficult to

automate. POLIS provides the designer an environment to quickly make any such decisions

through various design hints from system co-simulation, and to quickly evaluate the resulting

implementations.

The behavior of a specification is determinized in several stages. At the specifica

tion level, the CFSM network specifies the structure of the design (i.e. I/O connectivity of

the components) and the functions of the components (i.e. transition and output functions

of individual CFSMs). A CFSM network specification by itself is non-deterministic. More

than one behavior is possible and many implementations can be consistent with a CFSM

network specification. The designer implements the CFSM network by selecting the ar

chitectural mapping of the CFSM network. An architectural mapping makes the CFSM

network deterministic by additionally specifying:

• (Possible) Delays of component executions.

• Scheduling policy, i.e. the conditions for a component to be enabled for execution, as

well as the conditions for an enabled component to actually be executed.

Assigning CFSMs to particular computational resources limits the possible delays and

scheduling policies that a CFSM network may have. They can be completely determinized

when both the low-level synthesis directives (e.g. choice of compilers and compiler op

tions) and schedulers for shared resources are specified. Some typical real-time scheduler

for processors includes Cyclic Executive Serial (CES) scheduler, where tasks are executed

in a fixed cyclicorder that may contain repetitions, and Static Priority Serial (SPS) sched

uler [LL73, ABD'''95], where order of execution is beised on a priority in that the task to

execute is dyngimically chosen according to a statically determined priority order. Though

not often considered a scheduler for processors since it requires parallel resources, the Unit

Delay Parallel (UDP) scheduler executes all tasks in parallel with the same delay. Com-
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ponents mapped to hardware circuit resources such as gate arrays can be implemented as

having an UDP scheduler.

A CFSM network can be simulated only if it is deterministic (i.e. architecturally
mapped and synthesis directives set). We refer to a specification with an architectural

mapping and a set of synthesis directives as an implementation of that CFSM network

specification.

2.1.3 System Co-Simulation

Simulation of a system with heterogeneous computational resources is generally
performed with separate simulation models. This makes trade-off evaluation difficult be

cause the models must be re-compiled whenever a change in the mapping is made. System

co-simulation is a way to give designers early feedback on their mapping choices. Early

co-simulation of the entire system is possible in POLIS because of its simplifying delay
assumption, automatic software synthesis, and performance estimation based on character

ization ofpossible target architectures. This technique is, in practice, almost cycle-accurate,

and uses the same model for all types of components. Only the timing information needs

to be changed for 2uiy change in mapping.

In system co-simulation, synthesized C code is used to model all the components

of a system, regardless of their future implementation. It is synthesized from an initial

specification written in a formal language that can be mapped to different computational

resources. Different implementation choices are reflected in different simulated times re

quired to execute each task and in different execution constraints (e.g. mutual exclusion for

embedded software).

Each event occurring in the system is tagged with a time of occurrence. The time

of internalevents, emitted by CFSMs in response to externalor other intem2d events, is de

termined by using an estimate of the timing characteristics of the CFSM executions. This

estimate is obtained by using a timing estimator to analyze the CFSM for speed character

istics. The algorithm uses a formula, with parameters obtained from running benchmark

programs on the particular architecture, to compute the delay of each execution. If more

precise timing information is needed, an instruction set simulator can be used [LLSV99].

Figure 2.6 contains a fragment of the synthesized C file for co-simulation of the seat

belt controller. Figure 2.7 describes the complete code structure. One can see, for example.
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the check for the presence of the Reset signal, near the top, and the communication of the

Alarm signed near the bottom of Figure 2.6. Variable v_alarm carries the vadue of the Alarm

event, which is emitted by emit_e_alarm (emit alarm in Figure 2.7). The state encoding is

0 for the initial (transient) state, entered when the CFSM starts its operation, 1 for ALARM, 2

for OFF and 3 for WAIT. The DELAY macro accumulates the timing information for each basic

block. At simulation time, the executed code accumulates timing information for the chosen

processor. The auxiliary code that is loaded as part of the Ptolemy simulation environment

uses that timing information, together with the user-selected architectural mapping and

sjmthesis directives in order to assign an appropriate time stamp to every simulation event.

For hau-dwaxe CFSMs, the delay for every transition is just one time unit (clock cycle).

2.1.4 Synthesis

A CFSM sub-network chosen to be implemented as a sequential circuit is directly

mapped into an abstract hardwaure description format, BLIF [SSL'''92]. POLIS implements

each trauisition function as a combinational circuit, optimizes it using logic synthesis, amd

latches some circuit outputs to implement state variables. A CFSM sub-network chosen

to be implemented on a processor is mapped into a software structure that includes a pro

cedure for each CFSM, together with a simple Read-Time Operating System (RTOS). The

CFSMs are synthesized through a two step process: A technology independent phaise where

optimization is done on a restricted controldata flow graph called S-Graph [CGH''"99], and

a technology dependent phase where compiler are used to optimized for a particular proces

sor configuration aind instruction set. The RTOS is generated according to the au*chitectural

mapping chosen.

Interfaces between different computational resources axe automatically synthesized

within POLIS. These interfaces axe in the form of cooperatingcircuits and software proce

dures (I/O drivers) embedded in the synthesized implementation. Together they implement

the chosen architectural mapping as well as event communication and one-place buffer.
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/* defines event emission and detection macros */
#include "os.c"

extern unsigned_int8bit v_alarm;

void _t_z_belt_control_0(int proc, int inst)
<

static unsigned.int8bit v_state_tmp; /♦ buffer of v.state */

v.state.tmp = v.state; /♦ update the state variable buffer ♦/

startup(proc); /* update the input event buffers ♦/

DELAY(69);
LI: if (detect_e_reset_to_z_belt_control_0) { /* did reset occur ? */

DELAY(40); goto L4;
>

else {

DELAY(26); goto L2;
>

L3: switch (v_state_tmp) { /* brsuich based on current state */
case 1: DELAY(41); goto L6;
case 0: DELAY(63); goto L4;
case 3: DELAY(85); goto L14;
default: DELAY(107); goto L7;
}

LIO: DELAY(12); v.state = 2; goto LO; /* go to next state */
Lll: DELAY(10); v.alarm = 1; goto L12; /* alarm is true */
L12: DELAY(14); emit.e_alarm(); goto L13; /* emit event */

end:

always_cleanup(proc); /* clear input event buffers */
return; /* return to RTOS/simulator */

>

Figure 2.6: C Code Synthesized for the Seat Belt Alarm Controller.
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Figure 2.7: The Control and Data Flow Graph of the Seat Belt Controller.
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Chapter 3

Codesign Finite State Machines

This chapter describes in detail Codesign Finite State Machines (CFSMs), the
formal model used in POLIS for specification, simulation, analysis, synthesis, and opti
mization. It is also the model of computation that we used to demonstrate our formal

verification methodology and equivalence analysis algorithms.

In Section 3.1, we first provide background information on hierarchical process
network, finite state machines, and extended finite state machines. We present an intuitive
view ofthe operation ofthe CFSM and CFSM network inSection 3.2. Through such intu
itions, we justify some ofthe choices in designing the model ofcomputation. In Section 3.3
we present a rigorous formal semantics of CFSMs and CFSM networks in terms of finite

automata.

3.1 Background

A network of CFSMs can be seen as a hierarchical process network composed of

extended finite state machines.

3.1.1 Hierarchical Process Network

A hierarchical process network is a structural model that consists of a set of nodes

representing processes and/or sub-networks, and a set ofedges representing communication

links. Its semantics is determined by a node model and a communication model.

Eetch node of a network can be:
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/-HE-O

Figure 3.1: Hierarchical Process Network.

1. A process ("leaf" node), which reads data from incoming edges, computes a function

b£ised on those data and writes information along outgoing edges. This process may

be represented by a Finite State Machine, a Control/Data Flow Graph, or some code

in an imperative language (e.g. C, JAVA). In the case of network of CFSMs, the

process is represented by an extended finite state machine.

2. An instance of a network. The instantiation mechanism can be static if the total

number of nodes in a given hierairchy is fixed, or dynamic if it is variable. Dynamic

instantiation may increase the expressive power of the model, while static instan

tiation is only a convenient mechanism to reduce the size of the representation. An

appropriate mechanism to dynamically update the commtmication structure must also

be provided for dynamic instantiation. In the case of network of CFSMs, only static

instantiation is allowed.

The communication can be generically represented by a uni-directional queue

which sits at the input of the receiver^. Communication among processes involves writ

ing to and reading from queues. Sometimes just the act of reading or writing is used for

synchronization purposes, and the transmitted information is ignored. We can characterize

communication according to the following two aspects:

• size of the queue: fixed, bounded, or unboimded.

'In this discussion, wecan ignore the sizeof the data stored in each queue, and assumethem to be equal
for the sake of simplicity.
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• synchronized/unsynchronized read/write: a communication link has the synchronized
read characteristic if the number of read operations at any point in time must be
less than or equal to the number of write operations up to that point (i.e., each
datum is read at most once). A communication link has the synchronized write
characteristic ifthe number of write operations minus the number of read operations
is less than or equal to the queue size (i.e., no data is lost by an overflowing queue).
The synchronization characteristics are usually imposed by an OS, a scheduler, or a
controller that is part of the definition of the formalism itself.

Synchronized and unsynchronized writes are equivalent in the case of imbounded queues.
Ashared variable isanexample ofa commumcation method with unsynchronized

read, unsynchronized write, and queue of fixed size 1. Reactive systems where tokens are
consumed have synchronized read, but may or may not have synchronized write, depending
on whether or not overwrite is allowed to happen. Some flavors of data-flow graphs have
synchronized read, unsynchronized write over imboimded queues as a specification model
([Kah74, Den75]). Execution of a data-flow network in an embedded system generally as
sumes (tightly) bounded resources. A central problem for the implementation of a given
data-flow network is the definition of aschedule (order of execution for its actors) that guar
antees bounded queue size ([BHLM9.0, Buc93]). In the case ofa CFSM, the communication

method chosen is synchronized read, unsynchronized write over the queue offixed size 1.

3.1.2 Finite State Machines

Finite State Machine (FSM) isa popular model for embedded system specification,
due to the wealth ofanalysis and synthesis techniques that are available. In their most basic

form they are suited mostly for simple protocols, and need an extension (described below)
with integer variables and operations to eflSciently represent real-life designs.

Definition 3.1 (Finite State Alachine) A Finite State Machine (FSM^ is a quintuple
.F=(/,0,X,R,F);

• I is a finite set of input symbols.

• O is a finite set of output symbols.

• X is a finite set of states.
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• R C X is the set of initial states.

• FQIxXxXxO is the transition relation.

J- is completely specified if for all i G /, a; G X there exists at least one x' &X,

o GO such that (z, x, x', o) GF, i.e. if the FSM has at least one choice of next state/output

for each input/present state combination.

T is deterministic if i2 is a singleton and F is a function F : {I x X) {X xO),

i.e., if the FSM has at most one choice of next state/output for each input/present state

combination.

In general, a FSM that is implemented is forcibly deterministic and completely

specified. An implementation usually has predictable behavior and has some (possibly

empty) output.

3.1.3 Extended Finite State Machines

The Extended Finite State Machine (EFSM), or Finite State Machine with Data

path (FSMD) [GR94] model is similar to the FSM model, but the transition relation may

also depend on a set of internal variables. For notational convenience, the transition relation

of an EFSM is usually described using relational, arithmetic, and Boolean operators. If the

ranges of these variables are boimded, the set of possible states of the EFSM is still finite

and its power is still within regular languages. If the ranges of these variables are unbounded

integer or real, then the descriptive power is equivalent to that of Turing machines [HU79]

and the state space is no longer finite. The EFSM model is traditionally used in hardwzure

design, via the so-called "synthesizable subsets" of HDLs such as VHDL [Eng94] or Ver-

ilog [BY93]. The communication between EFSMs is usually through handshaking, which is

synchronized read, synchronized write on a queue of fixed size 0.

EFSMs suflfer from the so-called state explosion problem, because their composi

tion is described synchronously (queue size 0). This impfies instantaneous communication,

which is difficult to implement efficiently in a distributed environment. For example, if

one EFSM is implemented in hardware and the other in software, the EFSM composition

mechanism requires that every treuisition be taken simultaneously by both. This is clearly

inefficient, because hardware is now required to run at the same speed as the software.

Moreover, EFSM composition is
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• either non-responsive, iftheEFSMs sure Moore machines, inwhich outputs are delayed
by one cycle with respect to inputs. Moore EFSMs are more difficult touse than Mealy
machines for reactive design.

• orpossibly non-causal, iftheEFSMs areMealy machines, inwhich outputs can appear
in the same cycle as the inputs that caused them. This means, intuitively, that

combinational feedback loops can happen when composing Mealy EFSMs, and hence

the correctness ofthe composition must bechecked ona case-by-case basis. Checking
this correctness is a central problem also for compilation of synchronous languages,
whose semantics is defined by composition ofMealy EFSMs ([BCG91, SBT96]).

Network of CFSMs utilize EFSM only at the leaf node, and do not necessarily
implement synchronous commimication like EFSM networks generally do.

3.2 CFSMs: Semantics

Implementations of the same piece of computation on different computational re

sources should result in the same "functional" behavior, though they may be drastically

different in execution £ind commimication time, as well as other non-functional character

istics such as power and cost. We extend the FSM model to include a communication

mechanism that captures the essence of the timing behaviors of different implementation

styles. This communication mechanism is based on asynchrony. The CFSM network model

consists of extended FSMs that communicate among themselves asynchronously, which al

lows the expression of the essential notion that communication and computation take time.

A systemis described as a network of CFSMs. Each CFSM is an extendedFSM,

where the extensions add support for data handling and asynchronous communication. In

particular, a CFSM network has

a finite state machine part that contains a set of inputs, outputs, and states, a tran

sition relation, and an output relation.

a data computationpart in the form of references in the transition relation to datapath

computation.

a locally synchronous behavior, each CFSM executes a transition by producing a

single output reaction based on a single, snapshot input assignment in zero time.
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Once a reaction starts, it must continue to the end before the next reaction to some

other input assignment can start. This is synchronous from its ovm perspective.

• a globally asynchronous behavior, each CFSM reads inputs, executes a transition, and

produces outputs in an unbounded but finite amount of time as seen by the rest of

the system. This is asynchronous communication from the system perspective.

This semantics, along with a scheduling mechanism to coordinate the CFSMs, provides a

GALS communication model: Globally (at the system level) Asynchronous and Locally (at

the CFSM level) Synchronous.

A CFSM network is a hierarchical process network with static instantiation. A

process in a CFSM network (i.e. a single CFSM) is a flavor of reactive Finite State Ma

chine extended with data path computation. There is a large body of knowledge about

FSM models both in hardware and in software design. Having an FSM-based model gives

easy access to existing synthesis and validation algorithms. In addition, the POLIS design

methodology targets control-dominated applications, which are well suited for specification

with FSMs. The CFSM network communication is characterized by synchronized read (for

control signals), imsynchronized write over a queue of fixed size 1. Synchronized read is

essential in implementing the "reactiveness" of the processes. In reactive systems, processes

only execute when there is something on their input ports. Unsynchronized write is neces-

SEury with a bounded queue so that the sender can continue execution without waiting for

the receiver. This leads to a more efficient implementation than the full handshake required

by a synchronized write over a boimded queue. If communication over some specific link

cannot be lost due to overwriting, this synchronized write requirement can still be specified

either as a requirement on the scheduler, or by explicitly modeling a longer queue or a

handshake as part of the design.

3.2.1 Signals

CFSMs communicate through signals. A signal is an associated pair: an event

that is Boolean, and data from an integer subrange. A signal is communicated between two

CFSMs via a connection that has an associated 1-place input buffer. The buffer contains

one memory element for the event (event bufier) and one for the data (data buffer). A

sender CFSM always writes the data first and then emits its event. This order ensures that

the data is ready when the event is communicated.
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CFSMs initiate communication through events. The input events of a CFSM
determine when it may react. That is, the model forbids a CFSM to react unlpss it has

at least one input event present (except for the initial reaction) Without this restriction,
a global clock would be required to execute the CFSMs at regular intervals, and this
clock would in fact be a triggering input for all CFSMs. This would imply a more costly
implementation.

3.2.2 Process Behavior

The functional behavior ofa CFSM at each execution is determined by the spec
ified transition relation (TR). This relation isa set of tuples: {FCI x X x X x O). (refer
to Section 3.1.2). Each tuple of the TR represents a specified transition of the machine,
and the set of tuples is the specified behavior of the machine.

At each execution, a CFSM

1. Reads an input assignment and consume the inputs (setting input event buffers to 0)

2. Looks for a transition such that the read inputs I and the present state of the CFSM

matches the transition relation.

3. If Transition is foimd, it is executed by

(a) making the state transition to next state.

(b) writing the new output values and events.

4. If Transition is not found, the CFSM returns control to its scheduler.

Each state variable may have a designated set of initial values that are specified

with the transition relation. A set of initial values, one for each state variable, is a initial

state. The initial transition(s) is a special transition(s) where the present state part is equal

to the reset state. Moreover, this transition is allowed to not have any input events present

in the input assignment.

3.2.3 Network Behavior

A net is a set of connections on the same output signal, i.e., it is associated with

a single sender and at least one receiver. There is an input buffer for each receiver on a
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net, hence the commimication mecheinism is multi-cast: a sender conununicates a signal

to several receivers with a single emission, and each receiver hcus a private copy of the

communicated signal. Each CFSM can thus independently detect/consume emd reetd its

inputs.

A network is a set of CFSMs and nets. The behavior of the network depends on

both the individual behavior, and that of the global system. In the specification model,

the system is composed of CFSMs and a scheduling mechanism coordinating them. The

scheduling mechanism at the specification level is non-deterministic smd allows all possible

interleaving. The only restriction imposed is the locally synchronous behavior, i.e. once

an execution of a CFSM begins, it must execute to completion before the next execution

of the same CFSM can start. The scheduling mechanism in the specification model may

tadce several forms in the implementation: a simple RTOS scheduler for software on a single

processor and concurrent execution for hardware, or a set of RTOSs on a heterogeneous

multi-processor for software and a set of scheduling FSMs for hardware.

Each CFSM execution can be associated with a single transition pointy U. tj+i

denotes the next transition point of the same CFSM. The model dictates that it is at

this point that the CFSM begins reacting: reading inputs, computing, changing state, and

writing outputs. Since the reaction time is unbounded, one cannot say exactly at which

time a particular input (event or data) is read, at which time that input had previously

been written, or at which time a particulm output is written. There are, however, some

restrictions. For each execution, each input signal is read at most once, each input event is

cleared at every execution, and there is a partial order on the reading smdwriting of signals.

Since the data value of a signal (with an event and data part) only has meaning when that

signal is present, the model dictates that the event is read before the data. Similarly for

the outputs, the data is written before the event, so that it is valid at the time the event is

cast. This mezms that for transition point tj,

• an input may be read at any time between ti and ti+i (but not later, because that

would correspond to trsmsition point t,+i),

• the event that is read may have occurred at any time between ti-i zmd ti+i,

• the data that is read may have been written at any time between to and tj+i, and

• the outputs are written at some time between ti cmd tj+i.



CHAPTER 3. CODESIGN FINITE STATE MACHINES 32

After reading an input, itsvalue may bechanged by thesender before ti+i, butthe receiver
reacts to the captured input and the new value is not read until the next reaction.

3.3 Mathematical Model

In this section we give a formal definition of CFSMs and their semantics in terms

of finite automata. Finite automata have precise mathematical semantics and are therefore

amendable to formal analysis of many kinds including formal verification.

3.3.1 Preliminaries

3.3.1.1 Finite Automata

Finite automata [HU79] are structures used to define a (possibly infinite) set of

sequences over some alphabet E. Formally, an automaton is a triplet (5, /, T) where S is

some finite set of states, 7 C 5 is the set of initial states, and T C 5 x S x 5 is the transition

relation.

An infinite sequence so,5i,... of states, where s,- G S, is said to be a run of a

sequence ai,a2,... of elements of S, if sq is an initial state, and for all i > 1 the triplet

(5i_i,c7-t,Si) is in the transition relation. The language of an automaton is the set of all

sequences of elementsof S that have a run. Both the sequence md the set may be infinite.

Automata are very powerful tools to describe infinite set of infinite sequences with concise

descriptions.

A composition of two automata {Si, Ii,Ti) and (52, h, T2) overthe samealphabet

E is the automaton:

(5i X52, h XI2, {{{si,S2),<r,{qi,q2)) \{si,(7,qi) G7i A (52,0",92) G12}) .

where si,qi GSi, and 52,92 G 52. The language of the composition of two automata is the

intersection of their languages.

With no loss of rigor, we can assume that the alphabet E is the set of assignments

to alphabet variables, which can take on some values. This allows a clearer connection with

Finite State Machines. Automata can be represented graphically as a state transition graph

(STG), or in a textual format. The two representations (textual and STG) are equivzilent,

but STGs are more convenient for controller-like automata, and textual representations may

be more compact for data-path-like automata.
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x=0; y=0; x=l;

Figure 3.2: The STG of an Automaton.

For STG, the nodes correspond to states of the automaton, and initial states are

marked by arrows. The edges are labeled with predicates over alphabet variables, such that

a satisfies a predicate p on the edge s q i( and only if (s,p(<T),g) is in the trzmsition

relation.

Consider, for example the STG in Figure 3.2, and assume that the alphabet vari

ables X and y are both binary valued. Note that if a predicate does not appear on the edge,

it is always satisfied.

One can esisily check that that the sequence:

X 0 0 1 1 1 1 ...

y 0 0 1 0 1 0 ...

is in the language of the automaton represented in Figure 3.2, because it has a nm 0 0 0 1

111....

A sequence that does not have a run would be

X 0 0

y 0 1

The state sequence corresponds to this input sequence begins with state 0 (initial state),

transitions to state 0 on a;,y = 0,0, £ind then is blocked. In state 0 with input x, y = 0,1

there is no specified transition. Hence, the input sequence does not have a run.

Alternatively, we can use a textual form to represent a transition relation. We

view states £is possible assignments to present state and to next state variables. We assign

an arbitrary name to a present state variable, and to every present state variable s we

associate a next state variable NEXT_s.

For example, using the binary present state variable s, we may specify the transi

tion relation of the automaton in Figure 3.2 as follows:
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if s=0 then

if x=0 A y=0 then

NEXT^=0;

elseif X = 1 then

NEXT^=1;

else

norun]

elseif s=l then

if x=l then

NEXTjs=1;

else

norun;

One can easily see the correspondence with the figure. To be complete, one would need to
add initialization to the start of the description, and the whole thing need to be enclosed
in a loop statement to realize the infinite behavior. Lastly, constructs to load next state

values to present state variables need to be added.

The same description can be written more compactly by reordering:

if x=l then

NEXT_s=l;

else

if s=0 then

norun-,

if y=0 then

norun;

NEXTjs=0;

endif

3.3.1.2 Signals

Let X denote some non-empty and finite set of signals (with an implied attached

event), and let the function R be such that it assigns to every signzil x ^ X a finite and
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non-empty interval of integers. We say that R{x) is the range of a;, amd it represents the

set of values that x can have.

We define signals, associate to each a set of (data) values, and define event assign

ment and value assignment functions to represent the (event, data) pairs for the signals at

a particular time. Any partial function f : X {0,1} is called an event assignment. Any

partial function / zissigning integers to signals, such that f{x) £ R{x) for all x for which

/ is defined, is called a value assignment. If / is some event or value assignment function,

then we use T>{f) to denote the subset of X for which / is defined.

3.3.1.3 Transitions

A transition is a 5-tuple {p,v, s,o, q), where p is an event assignment, v and a zire

value assignments called input value assignment and output value assignment, respectively,

and states s and q are the present state and next state, respectively. If either p or v are

defined for some signal x £ X,'we say that x is an input signal of the trsmsition {p,v, s, o, q).

If o is defined for x, we say that x is an output signal of (p, u, s, o, q). If p(x) = 1 for at least

one X £ X, we say that p is an input stimulus. If p is not an input stimulus, we say that

the transition is spontaneous.

Intuitively, p checks for presence (if p{x) = 1) or absence (if p{x) = 0) of certain

signal events in the captured input assignment, and v checks signal values. If both of these

are satisfied and a CFSM is in state s, then it can move to state q and emit signals in X)(o)

with values specified by o. Note that there is no separate output event assignment. It is

implicit that a signal is emitted if o is defined for it.

3.3.1.4 CFSM

Formally, a CFSM is specified as a FSM(see Section 3.1.2) with quintuple (/, O,

X, R, F). We require that the present state of every spontaneous transition in F be an

initial state, and that it has no incoming transitions. This implies that no reachable state

in the machine has a spontaneous outgoing transition. Recall that CFSMs react to events,

and hence are not allowed to execute spontaneously after initialization. The semantics of

such spontaneity are undefined and hence disallowed.

We say that a signal a; e X is 2m input (output) of a CFSM {I, O, X, R, F) if and

only if it is an input (output) of at least one transition in F.
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3.3.2 Semantics of CFSM

We define the behavior ofa single CFSM in terms of the language ofthe associ
ated automaton. The behavior ofa CFSM network is defined by the composition of the
associated automaton. The structure of the automaton and its constituent components
associated with a CFSM is shown in Figure 3.3. Here, x and z are inputs, and y and w
outputs.

The alphabet variables of the automaton associated with a single CFSM are:

• for every input x: Boolean variables *x, read_x, read_*x, and *x_read, and R{x)-
vgdued variables x and x_read,

• for every output y: Boolean variables *y, *y_sent and send_y, and a R{y)-va\ued
variable y,

• a Boolean variable t.

In addition, each component has some internal variables.

The associated automaton of a single CFSM is a composition of the following
components:

• an input buffer automaton IBx for every input a;,

• an output buffer automaton OBy for every output y,

• a main automaton M.

Partitioning and modularizing the mathematical definition in this fashion enhance the ease

of understanding for this very complex model. The complexity of the model is a direct

reflection of the complexity of embedded systems. Modularizing in this fashion also make

for more efficient implicit representation [TSL''"90]. Ordering BDD for a set of FSMs with

regular structures is eeisier than a single, large FSM.

Roughly speaking, input buffer automata read signal events (e.g. ♦x) and data

(e.g. x), while output buffer automata non-deterministically (but still following certain

rules) emit the output signals. At the transition point of the CFSM (marked by t=l),
the main automaton ensures that the signals emitted by the output buffer automata are

consistent (with respect to the transition relation) with the signals observed by the input

buffer automata. This allows the implementation full freedom to choose when to read and
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read-z i i U read_*x
send _y

control control
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read_z
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control control

OB,

Figure 3.3: The Automaton Model of a CFSM.

emit signals between two transition points. A flexibility that can translate to efiiciency at

the implementation level.

In order to ensure that every non-deterministic emission is verified by the main

automaton, we restrict the language only to those sequences in which every emission (i.e.

*x=l for some signal x) is followed eventually by a transition point (i.e. t=l). Such a

restriction is easily accomplished with fairness constraints [Tho90]). The behavior of a

CFSM is the projection of the language of the associated automaton onto all the input and

output signal variables x and »x. All the other variables are there just to help define the

semantics, and need not appear in any implementation.
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3.3.2.1 Input buffer automata

An input buffer automaton IBx is the composition of a data part and a control

part. Based on the read_x and read_*x commands from the control part, the data part
reads the event gind data of signal x, and stores them for the main automaton.

The control part is illustrated in Figure 3.4. It ensures that both the event and

the value of the input will be read exactly once when t is set to 1. It also ensures that the

event is read before the value. There are no restrictions on the timing of these operations,

only that they respond to the input t.

The data part has threestate variables. Two ofthem, *x_read and *x_unread, are

Boolean, whilexjread is i2(a:)-valued. A valueof 1 for ♦x_unread means that an event came

in, but the read signal read_*x from the control part has not come in (i.e., x has appeared

but has not been read). Avalue of1 for*x_read means that both gin event came in, and the

read signal came in; at this point the event can be communicated to the main automaton.

Similarly, the x_read variable commimicates the value to the main automaton. Note that

*x-read and x_read are state variables for the data part of the input buffer automaton and

also alphabet variables, since they must be communicated to the main automaton.

The initial value of ♦xjread and *x_unread must be 0, while X-read can initially

teike any value from the range of x. The transition relation of the data part is given by:

if read_*x=l then

if *x_imread=l V *x=l then

NEXT_*x_read=l;

else

NEXT_*x-read=0;

endif

NEXT_*x_imread=0;

else

NEXT_*x_read=*xjread;

if *x=l then

NEXT_*x_unread=1;

else

NEXT_*x_unread=*x_unread;

endif
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t=0;

read_#x=0;
read_x=l;

lread_»x=0; I V lread_»x=l;
\read-x=0; J \read_x=l;

t=0;

read_*x=0;
read_x=0;

read_*x=l;

read-x=:l;

t=0;

read_#x=l;
read_x=0;

t=0;
read_*x=0;
read_x=0;

Figure 3.4: The Control Part of Input Buffer Automaton /Ba

endif

i f read_x=l then

NEXT_x_read=x;

else

NEXT_x_read=x_read;

endif

39

Intuitively, the input event is latched in *x_unread. When read_»x=l, the current

or latched value of the signal event is transferred to *x_read, and *x_unread is flushed (and

ready to latch the next incoming value). Similarly, when read_x=l, the current value of

signal data is transferred to x_read.
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/t=l;
V I send-x=l:

\«x_sent=l;

t=0;

send_x-0:
*x=0;
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Figure 3.5: The Control Part of Output Buffer Automaton OBx.

3.3.2.2 Output buffer automata

The datapartofthe output buffer automaton OBx has a single i2(a;)-valued state
variable x.sent, the initial state of which is arbitrary. The transition relation of the data

part is given by;

x=NEXT_x_sent;

if send_x=0 then

NEXT_x_sent=x_sent;

endif

Intuitively, when send_x=l, x takes an arbitrary value (determined by the main automaton

to correctly implement the transition relation), which is then kept in x^ent until the next

send_x=l.
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The STG of the control part is shown in Figure 3.5. Between any two transition

points it either generates both send_x=l and *x=l, or neither. It will never generate *x=l

before send_x=l. If it generates *x=l, at the same time it also generates *x_sent=l, and

keeps generating it until the next transition point. The main automaton will use the ♦x_sent

signal effectively to set the output value.

3.3.2.3 Main automaton

The states and initial states of the main automaton M are the same as those of

the CFSM {IjO,X,R,F). In the STG of M the edge s q is labeled with (t=l)AP if

s ^ Qj and ((t=l)AP) V(t=0) if s = g, where P is the following predicate:

P = 1 A =P(^)
(p,v,s,o,q)eF \x€V{p)

A x_read = v{x)
z6X)(v)

A ^ (♦x.sent = 1) A(x = o(a;))
ieT)(o)

A ^ ♦x_sent = 0
x^'D{o)

Intuitively, when t=0 the state cannot change, and when t=l, no transition is enabled unless

P is one, and that is true only if signals emitted at the outputs and the signals observed at

the inputs are consistent with at least one transition in F.

3.3.2.4 Networks of CFSMs

A network of CFSMs is defined by simple composition of the automata represent

ing individual CFSM. The transition variable t for each CFSM is completely free and all

possible interleaving and concurrent executions of the CFSMs are represented and consis

tent with the CFSM network specification. An implementation is the refinement of the

behavior of the transition variables according to architectural mapping and the synthesis

directives for the implementation. For example, a Unit Delay Parallel (UDP) scheduling

policy on some FPGA dictates that the transition variables t for all CFSMs be 1 at the

same time, and the intervals between the adjacent occurrences are exactly equal to the
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clock period. Static Priority Serial (SPS) scheduling policy on some processor has in
dividual t to be mutually exclusive. The ordering of executions is set according to some
statically determined priority. The timing between the transitions is dependent upon the
delays of the executions, which interms depend on the architectural mapping and synthesis
directives.
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Formal Verification of CFSM

Specifications
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Design verification of embedded systems is traditionally performed by prototyping

and simulation. Prototyping is clearly expensive in terms of turn-around time, and, in

addition, cannot be performed until most of the detailed design is completed. Simulation

is valuable, but for complex systems, only relatively few input patterns can be tried, thus

reducing the power of simulation in exposing errors in design.

Formal verification is a set of techniques that facilitate proving mathematically

that some formally specified properties are true for a design. These techniques are obviously

very powerful, as they do not rely on the completeness of a set of simulation vectors.

However, the computational complexity is very high. We believe that formal verification

can be a useful tool for early error detection, especially for system design. At the early

stage of the design process, a design is usually specified at the behavioral level. Fewer

implementation details are present in the specification, so the overall complexity of analysis

through formal verification is usually lower at this stage.

Formal verification requires a formal model of the behavior of a system, as well

as of the properties we wish to verify. Figure 4.1 provides a general paradigm for formal

verification. A system description, preferably a behavioral specification that is devoid of

all unnecessary implementation details, is entered into the verification tool, along with a

set of properties. If the verification tool determines that the system description satisfies

those properties, we can then go to the synthesis stage. The synthesis stage may provide
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Figure 4.1: A Generic Formal Verification Paradigm.

some implementation detail, which may be necessary to verify some other properties that

the designer has in mind. If the verification tool determines that the system description

does not satisfy those properties, it will produce an error trace. This trace is a sequence of

inputs and state transitions of the system, starting from an initial state. The designer can
use the error trace to discover the source ofthe error and modify the design accordingly.

In this chapter, we show how an automata-theoretic approach to formal verifica

tion can be applied to CFSMs. In the automata theoretic approach [Kur94], systems are

modeled by automaton and the language of the automaton (i.e., the set of sequences of
inputs and outputs observable at the ports of the system) is taken to be the behavior of

the system. The task of formal verification is to show that all these sequences are "ac

ceptable". In one possible approach to formal verification [Kur94], acceptable sequences
are specified as a language of another automaton, so the verification problem reduces to

checking language containment between two automata. Another approach, called model

checking ( [BCL+94]), is based on labeling states ofthe system automaton with properties
(described in some form of temporal logic) that they satisfy.

Themain advantages ofthe automata-theoretic approach (including both language

containment and model checking) are that it can be completely automated, and that it

allows conservative abstractions to reduce the complexity of the computation. Let A be

some automaton. If A is modified (say to A') in a mannerthat can onlyadd new sequences,

but never eliminate a sequence from the language, then A' is a conservative abstraction of

A in the sense that A satisfies all the safety properties that A' does (i.e., the language of

A is contained in the language of A'̂ therefore, all the languages that contain the language
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of A' also contain the language of A). Conservative abstraction for "liveness" property is

more complex and will not be considered in this dissertation.

Practically, abstraction is applied to variables in the following two ways:

1. Free a variable completely. For the property that we are analyzing, it may not matter

at all what the value of some variables may be. Hence, we can safely remove all the

registers that are used to store these variables and all the components that are used

to compute them.

2. "Reduce" the range of the variable. For the property that we are analyzing, it may

only matter whether a variable is larger, equal to, or less than a constant, say 25. We

can then replace its range from 2^® (if the underlying integer representation has 16

bits), to 3 values: < 25, = 25, and > 25. If we have 5 such variables (or 5 copies

of such a variable), we can reduce the state space contribution due to these variables

from over 10^® to less than 1000.

Often, even relatively simple systems are too complex to be handled by any formal

verification tool existing today. It is not unusual for a designer to specify a design that has

a tremendous number of states. For example, a single hardware circuit with 500 latches has

more that 10^®® states, and a single programwith 1032-bit integer variables has more than

10®® states. Even the best existing formal verification tools can routinely verify systems

with no morethan 10®® states (even though some largersystems can be verified if they have

a special structure). Thus, some abstraction must always be applied to enable verification.

Figuring out automatically what abstractions should be applied for a given prop

erty is computationally just as hard as verifying the property without those abstractions.

Hence, abstractions must be chosen by the user, but they can then be propagated automat

ically. In addition, if an abstraction chosen from the two classes outlined above happens to

be "incorrect", so that it affects the outcome of the verification, then it must be conser

vative. This means that it can only turn a positive result into a negative result (a "false

negative"), and never turn a negative result into a positive one (a "false positive"). If the

result of verification is that the property does not hold for the abstracted system, the user

can analyze the source of the error through an error trace supplied by the verification tool

to see whether it is due to abstraction or a true error in the design.

Neither CFSMs nor automata deal with quantitative timing issues. In fact,

CFSMs are defined with the assumption that a reaction to an event can take an un-
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bounded amount of time. This assiunption provides an implementation-unbiased steirting
point for a verification-driven design methodology. The first step in that methodology is
to try to verify the system with unbounded delays of the CFSMs. If the verification fails

(as it most often will), the error trace is analyzed in order to suggest timing constraints
necessary tosatisfy the property. Then, the verification is attempted under the assiunption
that timing constraints are met. If successful, the used assumptions axe recorded as con
straints to be met by the implementation. Inthis way, a verification tool is used as design
aid to refine the specification of the system. An example of this type of assumption is one
that can be placed on the correct scheduling. If the designer discovers through the error
trace analysis that overflow on a certain input buffer leads to an error condition, then an
assumption on the correct scheduling (i.e., that a specific input buffer never overflows) is
placed on that input signal, and verification continues. If these constraints are consistent

and implementable, downstream synthesis algorithms can then take this assumption into
consideration and implement it correctly.

4.1 Verification Methodology

To be able to apply the automata-theoretic verification approach to CFSMs, we
follow the procedure in Section 3.3 to generate for a given CFSM a set of automata that

together represents the behavior. Practically, the implementation of this procedure is a
translator from SHIFT to a format understood by verification tools. The verification tools

we currently interface to are VIS [BSVA+96) and HSIS [SAB+93]. They both read in a

description of the system and the property written in a format called BLIF-MV, build the
internal representation in terms ofBinary Decision Diagrams [BRB90], and then verify the
system.

Verification ofthe FSMs translated from CFSMs uses the following five steps:

1. Verify general properties or error conditions.

Verifying "normal" operation is equivalent to a restatement of the system function

ality. Hence, it is generally much easier to verify general properties, like "absence of

deadlock","mutual exclusion", or checks for the system response to particular condi

tions (often error conditions).

2. Decomposition.
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Verify simple properties. Together with "back of the envelope" logic implication, the

designer cam prove complex properties. Alternatively, theorem proving ([0IIR"^96,

GM92]) could be used to systematize this decomposition while automata-theoretic

techniques are used to prove the sub-properties.

3. Localization.

Verify local properties. Breaik down the property into smaller bits pertaining to only

one or a few modules. Together with "back of the envelope" logic implication, the

designer cam prove the complete desired property.

4. Abstraction.

Abstraction is the process of eliminating specific details that are not relevant to the

property at hand. CFSM is a modular representation in which control and data

computations are modeled separately. This makes abstraction eaisier to perform. To

guarantee that abstraw:tion is conservative, we limit our abstraction operations to

either freeing the entire variable, or breaking up the range into equivalent regions. For

each v£iriable, the designer can determine the distinguishing values for the property

at hand. For example, given a v£u:iable as output of a coimter. The property may

only care if the counter reached the counted value, say 25. Then the output of the

counter has only two distinguishing values: < 25 and > 25. In this case, we have two

equivalent regions.

5. Assumptions on timing (scheduler).

For some designs, it may be necessary to assume that CFSM scheduling is "correct",

meaning that some CFSM input events are never lost, in order for some specific

property to hold. This assume-guarantee paradigm is a system level extension to the

one in [GL94], treating scheduler also as a component. There are two consequences

of this assumption:

• Separation of timing and functionality.

Timed verification is generally so complex that it cannot be applied to most

realistic design. However, we can argue about the correctness of a particular

form of timed property (overflow of input huffier) by using only untimed verifica

tion tools. The complementary process, of verifying timing by using functional

assumptions, is still a topic of active research [Bal99].
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• Verification-directed architectural mapping.

Most verification tools provide an error trace for a failed verification run. The

designer can analyze this error trace. If theerror is due to a buflfer overfiow, and
if an assumption on the correct timing can eliminate this error, a downstream
design constraint is placed on thatvariable and that CFSM. This particular type
ofconstraint may besatisfied by thescheduling policy, orby assigning the CFSM
to a hardware implementation, or by introducing a more complex

mechanism at the specification level.

4.2 Verification Example: Seat Belt Alarm Controller

We first present a simple verification example, the seat belt alarm controller dis

cussed in Section 2.1. The timer is assumed to be part of the external environment. While

too small to demonstrate the power ofabstraction, or the need to make assumptions on
the scheduler, it is easily understood. We will present a real-life verification example in the
next section.

The question we would like to answer through formal verification is: "Can the

alarm sounds continuously?". It would be most annoying if some specification bug or
possible combination of design choices could yield a product that reacts to some input
sequence by leaving the alarm on forever. More formally, the property we want to verify is:

Pi: The alarm eventually goes off.

If the seat belt alarm controller ever turns the alarm on, then it must turn the alarm

off some time in the future.

This property is a general property of the seat belt alarm controller because it is a

general statement about the "goodness" of the system, not a detailed statement about one

particular execution of the system (as in simulation). It is also local to the seat belt alarm

controller, in that only moderate assumptions on the environment are needed in order to

prove it.

After translating the CFSM into a network of FSMs (or equivalent finite au
tomata) according to the procedure outlined in Section 3.3, we checked property PI by
writing it as a monitor which interacts with the network of FSMs. This monitor is shown

as an FSM in Figure 4.2. Themonitor stays in state "O.K." imtil it sees alarm_on, then it
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!AIann(l)/ Alann(l)/

O.K. Pending

Alann(O)/

Figure 4.2: FSM Monitor for Seat Belt Alarm Controller.

transitions to state "Pending". It stays in "Pending" till it sees alarm.off, then it transitions

back to state "O.K.". We want to see if it is possible that the monitor remains in state

"pending" forever. Verification will be accomplished by the used of fairness constraints.

Description of fairness constraints and the details of the operation of verification tools are

beyond the scope of this dissertation. Plesise see [BSVA''"96] or other verification docu

mentation. The notation "!" is used to denote the absence of the event. Note that unlike

CFSMs (which are a reactive model and respond only when there is at least one present

event), FSMs and automata may malce a transition even without any present event.

The initial run of the verification tool gives us an error trace. By looking at the

error trace, we realize that we must finrther limit the behavior of the environment, namely

the generation of Key.On, Key.Off, End_5, and End_10, which up to this point is considered

completely non-deterministic. It is fair to assume that the environment can only generate

Key.on, and Key_off alternatively. This is captured in FSM form in Figure 4.3. In state

0, the FSM can non-deterministically choose to stay in state 0 or go to state 1 and emit

Key.On. In state 1, the FSM can non-deterministically choose to stay in state 1 or go to

state 0 and emit Key.Off. By not specifying any precondition on a transition, we are saying

that it can trzmsition on anything at the next cycle.

Another reasonable assumption on the environment is the abstract behavior of the

timer, represented in Figure 4.4. The FSM waits for a Start signal, then it goes to state 1.

It could stay at state 1 non-deterministically, or it could go to state 2 and emit End_5 as

long as another Start is not detected. If it receives a Start at state 2, it is reset and returns

to state 1, otherwise, it can choose to stay at state 2, or emit End_10 and go back to state

0. This timer FSM is really an abstraction of what would be translated from the Esterel

description of the timer in Section 2.1, because it is simpler eind emits End_& and End.lO

in sequence after Start, but not necessarily after 5 and 10 seconds. A fairness constraint is
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/Key.On

/Key.Off

Figure 4.3: FSM Representation of the Behavior of the Key Signals.

!Start/

Start/

!Start/End 5

!Start/End 10

IStart/

Figure 4.4: FSM Representation of the Abstract Behavior of the Timer.
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put on this FSM such that it eventually goes back to state 0, i.e., it will not count forever.

(This is not part of the automata, but a characteristic given to it, and that it is assumed

to have in the implementation.)

With these specificationsof the environment, property PI still does not hold. One

can find the problem by looking at the error trace. The original CFSM in Figure 2.4 does

not specify what happens if End_5 and End.lO are both present in some CFSM execution.

In a particular implementation, the CFSM can be so slow that it does not react to its

input in 5 seconds. Hence, it can see both End_5 £ind End.lO at its input buffer at the same

time. The Esterel file in Section 2.1 actually gives End-5 a higher priority than End.lO.

This means that the alarm will stay on forever in this case. A similar problem can occur

alsowith Key.On and Key.Off, as well as with Key.On and Belt.On (albeit under different

conditions). A revised Esterel specification that passes property PI is:



CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 51

module controller:

input Reset, Key_on, Key_Off, Belt_On, End_5, End_10;
output Alarm(boolean), Start;
loop

do

emit AlarmCfailse);

loop
do

every Key_On do

emit Start;

do

await End_5;

emit Alarm(true);

await End.10;

emit Alarm(false);

watching End.lO;
emit Alarm(false);

end

watching [Key.Off or Belt.On];
emit Alarm(false);

end

watching Reset
end.

There are two major modifications from the previous version of the seat belt alarm con

troller. The first is in the do ... watching End-10. This is to make sure that if F.nri fi

and End_10 occur at the same time, Alarm(false) will still be emitted. The second

is in putting do ... watching [Key_Off or Belt_On] outside of every Key_On do ...

end instead of inside it. This is so that if Key_Off or Belt-On is read together with Key_On,

Alarm(false) will still be emitted to turn off the alarm.

4.3 Verification Example: Shock Absorber Controller

In this section we present the verification of a shock absorber controller. The

design comes from a realistic specification of a commercial product of a major Eiuropean

automotive subsystem supplier. The existing hand-designed board contains a single Mo

torola 68HC11E9 microcontroller in expzinded mode, with 32 Kbytes of external EPROM

and SKbytes of external RAM, plus on-chip RAM and EPROM. The design effort required

is approximately one engineer-year. The natural language specification is coded 2is 4507
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lines of Esterel statements divided into 29 modules.

The controller sets the shock absorber motors to a HARD, MEDIUM, or SOFT
level, according tovalues from a set of sensors: steering wheel, vertical acceleration, speed,
and battery voltage. Figure 4.5 shows thestructure ofthecomplete controller. The modules

LONG_SPEED, LONGJVCC, VERJVCC, STEER_ANG, and STEERJSPEED compute the
horizontal speed, horizontal acceleration, vertical acceleration, steering angle and steering
speed respectively, from the input sensors, and suggest the shock absorber level based on

the appropriate look-up table. The module BATJDIAG sends out signals if the battery
voltage is out ofthe given range. The module MOT_CTRL records current suggestions of
all the modules and sets the motors to the hardest of suggested values.

During normal operation, the output, MOT.CTRL, is continuously updated ac
cording to input sensors. At thesame time, input modules continuously check input sensors
for erroneous conditions, and send a signal ifsuch a condition isdetected. The specification
requires seven different conditions to be checked, and appropriate actions to be taken if

errors are detected.

PI: Speed parasitic(glitch): If the speed sensor indicates impossibly high speed on more
than three occasions, the shock absorbers are to be set to HARD until the RESET

event occurs.

P2: Open circuit: If there is an open circuit condition on the speed sensor, the shock

absorbers are to be set to HARD until RESET.

P3: Battery: If the battery voltage is out of range, the shock absorbers should be set to

HARD. If this condition persistsforsome time, then the setting shouldremain HARD

until the RESET event occurs.

P4: Speed sensor: If the horizontal speed appears to be zero, andshaking (vertical acceler

ation) is detected, then the shock absorbers are to be set to HARD until the RESET

event occurs.

P5: Steering speed: If the steering speed is too high, the shock absorbers should not be set

to SOFT for at least the following minute. If this condition occurs more than three

times, the shock absorbers are to be set to HARD until the RESET event occurs.

P6: Vertical acceleration: If the number of times the vertical acceleration sensor reports
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out-of-range data exceeds some given limit, then the shock absorbers are to be set to

HARD until RESET.

P7: Steering angle: There aretwo steering sensors. If there isnochange in thesensed values

for either of the sensor for 1 minute, the shock absorbers are to be set to MEDIUM.

If this condition persists for 4 minutes, the setting should be HARD. If it persists for

more than 12 minutes, then the setting should remain HARD until RESET, even if

some changes are later detected. Similarly, if there is no change in the sensed values

for one of the sensor for 2 minutes, the setting should be MEDIUM. After 8 minutes

without a change, the setting should be HARD. After 24 minutes, the setting should
remain HARD until RESET.

The system responds correctly to error conditions if and only if the above seven

properties hold. Here we present in detail verification only of the first one. Since all

the properties have a similar form, the other properties are verified in a similar fashion.

Verifying one property at a time enables us to abstract signals and modules not related to

the property at hand.

The intended behavior ofthe system relevant to the property Pi is as follows. The

error is first detected by the module called LONGJSPEEDJDIAG_PAR (see Figure 4.6). To
understand the behavior ofthat module more precisely, we first need to explain how speed
is calculated. The speed sensor generates a sequence of events (called SPEEDJSENS), the
frequency of which is proportional to the speed of the vehicle. Speed is calculated by
counting clock events (called CLOCK.500) between any two occurrences of SPEED-SENS

events. The count is stored in variable D.TIME. Even at the highest possible speed of
the vehicle, there can be no less than 6000 CLOCK_500 events between two SPEED.SENS

events. Thus, if D.TIME is less than 6000 when the new SPEED-SENS event occurs, that
must be a parasiticsignal (glitch). Upon detectionofa glitch, no immediate action is taken.

However, the number of detected glitches is recorded (in variable MIN.TPAR-NUM), and
if that number is larger or equal to 3 during any period ofCLOCK_500, then an errorevent

(called ERR-PAR) is emitted.

The ERR-PAR event is received by a module called MOT-CTRL-DAMAGE. It

records error events from all the input modules (including SPEED-DIAG-PAR), and gen

erates the DAMAGE event with a value HARD, MEDIUM, or SOFT, as required by the

specification (see Figure 4.7). This error status is stored and can only be cleared upon
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Figure 4.6: The Longitudinal Speed Strategy.

RESET.

The DAMAGE event is received by a module called DRIVER. It also receives

another event called COMMANDJN (the suggested setting of motors computed from look

up tables used in normal operation), stores them both, and generates the COMMAND_OUT

event with the harder of two values.

The verification can be finrther simplified by decomposing a property into "local"

sub-properties that each module must satisfy. In particular, we prove property PI by

proving the following:

Pl.l: If the speed sensors indicate impossibly high speed at least three times and no

RESET events occur, then the ERR_PAR event will be generated.

PI.2: If the MOT_CTRL_DAMAGE module receives the ERR_PAR event, and no RESET

events occur, then a DAMAGE event with a value HARD will be generated, and no

DAMAGE event with some other value will be generated before the RESET event

occurs.

PI.3: If the DRIVER module receives the DAMAGE event with value HARD, then the

setting of the shock absorber will be HARD, and the setting will not change until

either a RESET event, or a DAMAGE event with a value other than HARD occurs.

Often, properties decompose natiu-ally into local sub-properties, and a simple check



CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 56

Figure 4.7: Motor Control.

is needed to verify that sub-properties indeed imply the desired property. Finding a good,

correct decomposition can be a hard task, and it cannot be completely and efficiently

automated. In non-trivial cases, oneneeds to use another formal technique (e.g., automated

theorem proving [ORR"^96, GM92]), to show that a setofsub-properties implies a property.

4.3.1 Verifying Property Pl.l.

The precise formulation of the error condition is as complex (and thus as error-

prone) as the description of the module. To avoid the problem of incorrect property speci

fication, we verify the following simple property instead:

Pl.l': If four SPEEDJSENS eventsoccur betweentwo CLOCK_500 events, then the ERRJPAR

event is generated.

This obviously covers only a small portion of the intended behavior, because any other

"impossiblyhigh speed" will not be captured by this property. However, it is often the case
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that such simple "sanity checks" reveal interesting bugs in the system.

The automaton obtained from the original CFSM specification by the procedure in

Section3.3 has 141latches. The formalverificationtool HSIS[SAB'̂ 93] and VIS [BSVA''"96]

both run out of the 480Mb of main memory before even constructing the internal represen

tation.

4.3.1.1 Verification with Abstracted Integers

The CFSM, on closer inspection, consists mainly of two 16-bit integers used as

counters, and two comparators comparing these integers to constants. However, for the

property we Eire interested in, only one value of D.TIME is distinguished: 0, indicating

that no CLOCK_500 events have occurred between two SPEEDJSENS events. We ceui thus

abstrau:t this counter to only two states: "0" and "> 0", and modify the comparator and

incrementor accordingly. If the input of the incrementor is 0, the output must be > 0, and

if the input is > 0 the output is chosen non-deterministically to be > 0 or 0 (due to possible

overfiow). Similarly, the comparator checking whether D.TIME is less than 6000 is modified

so that if its input is 0, the output is 1. If its input is > 0, then the output is either 0 or

1. In a similar way, we abstract MIN_TPAR_NUM to four distinguished values: 0, 1, 2,

and > 3. These abstractions introduce some new behaviors (e.g., when the actual value of

D-TIME is lEurger than 6000 but the comparator still outputs 1), but these additions do not

affect the outcome of verification. It is important to notice that these abstractions can be

done automatically, by syntactic modifications of the BLIF-MV description of the system,

so that the size of the description is gusirEuiteed not to increase. However, deciding which

abstractions are consistent with the property is eis hard as the original verification problem,

so user guidance is crucial in this step.

With these abstractions, building and verifying the model takes less than 10 sec

onds. Unfortunately, the property fails. The error trace indicates that the CFSM ceui react

too slowly, so SPEEDJSENS events ceui be over-written without being sensed by the CFSM

(e.g., if it is not assigned a high enough priority by the scheduler).

4.3.1.2 Verification Under Timing Assumptions

Indeed, the property ceui be satisfied only if some timing Eissumptions Eire made

about the CFSM. We will follow the usual methodology of sepEurating timing and functional
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properties as much as possible. More precisely, we will verify the conditional property: "if

the CFSM reacts to every SPEEDJSENS event, then the property holds". Such a property
is local, i.e., it depends only on the behavior of the CFSM. On the other hand, verifying
that indeed the CFSM reacts to every SPEEDJSENS event is a separate problem that need

to be addressed separately. We will just note that it is a hard problem, because it involves

the characteristics of the hardware, of all the other tasks in the system, as well as those of

the scheduling algorithm.

Fortunately, thereisa very simple way to restrict the behavior of the system to the

case where no input events are ever over-written. It suffices to remove from the transition

relation of the input buffers IBi all the elements that correspond to overwriting. Again,
this modification requires a simple syntactic change on the intermediate description, which
does not affect its size.

Theconditional property showed an error in the design. Under the original speci
fication, the property is not satisfied if the error condition occurs immediately after initial

ization. After correcting this error on the specification, the conditional property is verified
in less than 10 seconds of CPU time.

4.3.2 Verifying Property Pi.2

The automaton modeling MOT.CTRL_DAMAGE has 81 binary latches. The tool

HSIS [SAB+Oa] could not construct the internal representation of the module even after
several hours ofcomputation time. It is expected that even with the drastic improvements
in the implementation of the verification technology, the huge state space of the example

also prohibits direct use of VIS [BSVA+96] in verification.

4.3.2.1 Using Timing Assumptions and Freeing Variables

For the property at hand, the values of all the internal vsuriables, except the one

holding the value of ERR_PAR, are irrelevant. We can thus "free" them, i.e., allow them

in every execution step to take any value from their respective domains, and remove from

the model all computation of these variables. Again such an abstraction can be done

automaticcilly with a single pass through the intermediate description of the system, but

deciding which variables c£in be freed is generally a hard problem.

With this abstraction, the verification time is reduced to a few seconds. The
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property is verified under the assumption that the system cannot ignore an input event

forever. Note that this is a weaker assumption than the one requiring that every input

event be detected, because it still allows "over-writing" of input events. The verification of

the conditional property takes less than a minute of CPU time.

4.3.3 Verifying Property P1.3

The module DRIVER is simple enough that it can be verified without any abstrac

tions. During the verification, an error was foimd: the DAMAGE event was ignored if the

COMMANDJN event occurred simultaneously with it. After correcting the description of

the DRIVER modxile, the property was successfully verified.

4.4 Conclusions

We have shown how existing formal verification tools can be used to verify proi>-

erties of CFSMs. We draw two conclusions from this experience:

• Reactive systems of interest often have state spaces that are too leirge to handle

for existing formal verification tools, thus the use of abstraction is crucial. Typical

abstractions can often be performed automatically, by syntactic modification of the

intermediate representation of automata. However, choosing the abstraction that

is appropriate for the property to be verified can only be done by a designer with

knowledge of the intended behavior of the system.

• Even though CFSMs are bcused on the unbounded delay assumption, most of the

properties can be verified only if some timing constraints are imposed on the behavior

of CFSMs. The assumption of the CFSM reacting to every input events provides a

convenient way to separate timing and functional considerations. Verifying that this

assumption is satisfied depends mostly on timing characteristic of other CFSMs in

the system, as well as the environment and the scheduling algorithm. On the other

hand, checking that the property is satisfied under this assumption, typically depends

only on the functionality of the CFSM.

It is natural to ask, following the first conclusion, that for a specific property of

a specific type of systems, whether there could exist an abstraction that works for all the
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designs. The second conclusion leads us also to think that ifthe "separation of timing and
functionality" is an inherent characteristic of the specification method, then one can exploit
this characteristic to verify systems. For the rest of this dissertation, we concentrate on
a subclass of specification where timing and functionality is strictly separated. We also
restrict ourselves toa single property: the equivalence of two implementations. We develop
a set of formal algorithms that are automatic and efficient. They can be used to find
out whether two implementations are functionally equivalent to each other, or whether an
implementation is functionally equivalent to a reference (golden) model.
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Chapter 5

Synchronous Equivalence

Formal verification tools such as [McM93, BSVA'*"96] are very powerful in auto

matically proving that some arbitrary properties hold for an arbitrary design. Essentially,

they perform exhaustive simulation for all possible input traces or system design paretmeters

in an efficient manner. Unfortunately, for real-life embedded systems, the size of the design

and the complexity of the zmalysis algorithms themselves cause the computer to consume

too much time or memory. The verification is often unable to complete. To remedy this

complexity problem, extensive user intervention is required to abstract away unnecessary

details in the design representation. Figuring out the right abstraction for a given property

is as hard as the verification problem itself, though designers usually have ideas as to what

is the right abstraction for a given property. User intervention in the formal verification

methodology is imavoidable.

The abstracted representation is not an exact representation of the design to be

verified. In the context of formal verification as described in Chapter 4, it represents more

behaviors than the exact representation. The same input trace can produce more them one

output trace, due to the non-deterministic abstract representation. With these "added"

behaviors, the result from the formal verification of safety properties ^ can be:

• Positive.

Properties were satisfied.

• Inconclusive due to:

'These are properties of the type "something bad cannot happen". Within a real-time embedded con
text, liveness properties, such as "something good will eventually happen", automatically become safety
properties, i.e. avoiding "bad" timeouts.
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— True Negative.

Properties were not satisfied, but they would have failed also for the exact

representation.

— False Negative.

Properties were not satisfied, though they would not have failed for the exact

representation.

— Space Out or Time Out.

The computation requires more time or memory than what is practically avail
able.

It is impossible for the formal verification tools, by themselves, to distinguish be
tween the true negatives and the false negatives. Obviously, no conclusion can be drawn

when the computer spaces out or times out (and thus this is conservatively the same as aneg
ative result). By examining the error trace, designers usually have ideas as to whether the

inconclusive result isdue to a truenegative or a false negative. Byexamining intermediate
results from the verification tools, designers c£in also identify portions of the representa
tion that cause the computational problem. The representation can then be modified to

exclude the false negatives or to abstract and simplify some portions of the system. User
intervention, again, is unavoidable.

The fundamental difficulty in automatic verification of arbitrary properties of an

arbitrary design is in finding the right abstraction level so that the verification can neither

fail because ofthe false negatives norbecause ofthe computational problems. It isdesirable

to have a property to either pass, or fail due to true negatives. This is in general impossible
without user intervention. However, for a specific class of properties £ind a specific class
of designs, it may be possible to establishsimple formed algorithms at em abstraction level

that are computationally efficient, and give inconclusive result that are mostly due to true

negatives. By the choice of abstraction level, we hope to devise eflficient algorithms that

produce few inconclusive results that are due to false negatives or limited resources. The

term "conservativeness" is used to qualitatively describe the amount of inconclusive results

that are not due to true negatives. We want to come up with efficient algorithms that are

not too conservative.

The specific property that we chooseto investigate is one that determines whether

two implementations of the same CFSM specification are synchronously equivalent to each
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other. The class of designs for which we devised simple verification algorithms contains all

the designs that satisfy synchronous assumption. Equivalence analysis is indispensable for

verifying that some design optimizations did not alter the behavior or whether a physical

implementation is consistent with a simulation model. In the next section, we provide

further motivations for this choice of property and assumption, and in Section 5.2, we

formally define them. In Section 5.3, we present a methodology for design exploration

based on synchronous equivalence smd synchronous assumption. In Section 5.4, we pave

the way for establishing a set of analysis algorithms, trading-oflF computational efficiency

with conservativeness. These algorithms will be presented in Chapters 6, 7, and 8.

5.1 Motivation

As we argued in the first chapter, a fundamental clarification to improve the de

sign methodology is the formed definition of correctness. We advocate the principle of

"separation of concerns" in verification. Functional correctness and timing are verified

independently. This principle is the basis of the synchronous design methodology for se

quential circuits [Ung69], where latches decompose the circuit into combinational islands.

Signals are propagated from island to island when an enabling input (clock) is given to the

latches. Any design of the combinational islands ensuring that the combinational circuits

stabilize before the enabling signal arrives at the latches, C2tn be verified for equivalence

paying attention only to the Boolean functions computed by the circmts irrespective of the

propagation time. Timing can then be verified independently by performing a worst-Ccise

timing analysis and making sure that this boimd is within the clock cycle.

This powerful approach can be extended to higher levels of abstraction and to soft

ware design, zis demonstrated by synchronous languages [BCG91]. Synchronous languages

describe complex systems consisting of interconnected components each represented by a

Finite State Machine model. Both communication and execution take zero time to perform.

In practice, this means that the interaction with the environment heis to be "much slower"

than all the communication and execution time required for the reaction to the environment.

In addition, the zero communication and execution times of the components imply unique

execution order, if it exists, which depends entirely on the causal relationships among the

component executions and not on the actual delays of the executions. While they are very

powerful, synchronous languages support a model of computation that restricts the design
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space considerably because of the synchronous communication hypothesis.

We relax the "synchronous hypothesis" by adopting a more general model ofcom
putation (the one supported by Codesign Finite State Machines, as described in Chapter 3),
while retaining the fundamental idea ofseparation between timing and functionality. This
is analogous to relaxing the synchronous assumption to the fimdamental mode assiunption
when moving from synchronous to asynchronous circuits. We establish synchronous equiv
alence, a "functional" equivalence among a set of candidate implementations ofembedded

system specifications. Just as the sequential circuit design methodology abstracts away
different gate delays among different implementations and enables speed/area trade-offs
among functionally equivalent implementations, we abstract away the delays of embed
ded system computational resources. Synchronous equivalence lends itself nicely to simple
analysis procedures so that we can figure out quickly whether two implementations are syn
chronously equivalent. The synchronous equivalence relation divides the design space into
synchronous equivalence classes. Within an equivalence class, different implementations
represent different trade-offs among speed, power, reliability, expandability, and cost.

Equivalence analysis can be done precisely through exhaustive simulation and

reachable state analysis methods (e.g. formal verification tools [McM93, BSVA+96]), or
conservatively (but more efficiently) through methods that are abstract, static, and struc
tural. In Chapters 6 and 7, we derive efficient structural algorithms for synchronous equiv
alence analysis that can be used to explore the design space effectively. In Chapter 8, we
relate these structural algorithms to precise, exhaustive simulation.

5.2 The Synchronous Assumption and Synchronous Equiva

lence

A key assumption is made on the class of "acceptable" specifications in order to

make it easier to specify desirable behaviors and at the same time, meike efficient analysis

algorithms possible. We believe that this class includes many interesting examples, and

that other specifications may be re-specified to satisfy this assumption.

Many popular design methodologies separate time into intervals of interaction

with the environment and computation within the design. Software programs accept some

input to start the computations. Under most circumstances, they finish computations be-
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fore accepting new sets of input. Synchronous sequentieil circuits axe hatzard free auid race

free because interaction (propagation of state changes and signal changes) and computa

tion (calculation of state changes and signal changes) are strictly separated. More recently,

synchronous languages [BCG91] used the zero delay assumption, i.e. assumed that compu

tation is always faster than the environment chemges. It is therefore impossible for inter

action and computation to overlap. We can thus imagine to strictly separate computation

and interaction also for embedded system design based on CFSM. The advantage in ease

of specification and analysis outweighs some sub-optimality due to the restriction in design

style.

Definition 5.1 (Synchronous Assumption) The operation of the design is split into

two alternating non-overlapping phases. An interaction phase where the environment

interacts with the design and a computation phase where the components in the design

perform executions and communicate among themselves.

This notion of synchronicity is a system-level extension to the fundamental mode

operation of asynchronous circuits [Ung69]. During an interaction phase, the design "stemds

still" until the environment completes its receiving of outputs from and writing of inputs

to the design for use during the next computation phase. During a computation phase, the

design takes inputs that were generated by the environment, performs computations, and

generates outputs that will be read by the environment during the next interaction phase.

There are no interactions during a computation phase and no computations during an inter

action phase. The interaction phase followed by its associated computation phase is called

a "cycle". We will only consider specifications that satisfy this synchronous assumption.

The implementation process must guarantee to preserve it. This can be done by a sepeirate

worst case timing analysis in the flavor of [BSV97]. If the worst case timing delay is within

the constraints imposed by the environment, the implementation czm be said to conform to

the synchronous assumption.

Definition 5.2 (Synchronous Equivalence) Under the synchronous assumption, two

implementations are synchronously equivalent if and only if for all possible input traces

the outputs of the implementations are the same at the end of every cycle.

Note how internal events (among CFSMs) play absolutely no role in the definition

of synchronous equivalence. As we will see, they may or may not play a role in deciding it.
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As long as the results (outputs of the network of CFSMs) are the same at the end of the

cycle, the order ofexecutions of CFSMs or even the parallel/serial nature ofthe executions

does not matter. The former can lead to freedom in scheduler selections while the latter

can lead to freedom in assigning components to computational resources.

Our restricted CFSM model czin thus be defined as externally s)aichronous glob
ally asynchronous locally synchronous (ESGALS), as opposed to the original GALS CFSM

model. The concepts of synchronous assmnption and synchronous equivalence facilitate

specification. Designers can now think about the input/output reaction ofthe design to the

environment separately from the speed of the reaction. Synchronous assumption is not too

restrictive, especially for control-dominated applications. Designing with the synchronous

assumption is strongly analogous to designing synchronous circuits and fundamental mode

asynchronous circuits. In that domain, the ease ofvalidation and synthesis often outweighs
the increased freedom with respect to full asynchrony. The same can be extended to em

bedded system design, board-level or "system on a chip", where diflterent processors or

dedicated units can be considered as different computational resources. Much research in

embedded system design is also based on the synchronous assumption, as discussed below.

5.2.1 Related Work

Synchronous languages are a group of languages proposed for automaticsynthesis

of embedded softwsure [BCG91]. Synchronous languages have a unique notion of "syn

chronous scheduler", the scheduler that defines correct behavior. This scheduler is the

result of the assumption of synchronous communication among components of the design.

Our synchronous assumption, on the other hand, is related only to the "external" interac

tion of the design with the environment. Hence, there is an intrinsic non-determinism in

our specification that results in many possible "functional" behaviors that are consistent

with the structural specification.

Synchronous data-flow is a powerful formalism for data-dominated embedded sys

tems geared toward simulation and code synthesis for digital signal processors [LM87]. It

also exploits the synchronous assumption at the interface between the network and the envi

ronment, but "blocking read" is required of all components in the design to ensure that the

behavior is the same (in Kahn's sense [Kah74]) independent of allocation and scheduling.

Our work does not restrict the implementation choices to those utilizing a syn-
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Figure 5.1: A Synchronous Approach to Design Exploration.

chronous scheduler, nor does it require communications to have the "blocking read" prop

erty. Therefore, many different functional behaviors are possible depending on the choice of

implementation parameters. Different implementations are grouped into equivalence classes

according to synchronous equivalence. We use equivalence analysis to tell us whether any

two implementations are equivalent to each other. TVade-off analysis for different design

metrics can then be performed on the "functionally" equivalent implementations.

Javatime [VMS'*"98] is inspired similsurly by the fundamental mode operation of

asynchronous circuits and the concept of refinement. Their emphasis is on the specification

and simulation using the language Java. Our concentration, on the other hand, is on the

development of efficient formal algorithms for equivalence analysis.

5.3 Design Exploration Methodology

Figure 5.1 illustrates a possible design methodology using the synchronous as

sumption and synchronous equivalence. The designer specifies the fimctionalities of the

components and the structure of the design as a network of CFSMs. One or more be-
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haviors among those allowed by the non-determinism in the network are chosen as golden
model(s). They arerepresented byreference implementations that produce those functional

behaviors andonly those functional behaviors. The functional behaviors imder synchronous

assumption oftheseimplementations areconsidered "correct" anddifferent implementations

with the same functional behaviorare all functionallyequivalent. Non-functional character

istics such as delay, power, reliability, and cost canbe used to differentiate onefunctionally

correct implementation from another. Separate analysis,in the flavor of [BSV97], of timing,

power, or cost is performed to be make sure that constraints are satisfied and to decide

whether one implementation is superior to others given somedesign metrics. The best one

is then chosen to be synthesized.

5.4 Analyzing Synchronous Equivalence

Given anytwoembedded systemimplementations ofthe sameCFSM specification,

we want to determine whether or not they are synchronously equivalent. There are many

possible approaches. One could exhaustively simulate through all possible input traces.

Formal verification on exact representation can be a way to perform exhaustive simulation.

On the other side of the spectrum, one may be able to deduce synchronous equivalence by

statically analyzingthe characteristicsof the implementations. By static analysis, we mean

that only simple comparison on implementation parameters or simple search algorithms on

the system graph are allowed. In between these extremes are analyses where some abstract

simulations are performed. The analysis techniques span a continuum on computation time

and conservativeness of the analysis, as shown in Figure 5.2. Conservativeness is measured

by the number of false negative results produced by the analysis algorithm, given a set of

implementations of a CFSM specification.

Exhaustive analysis of any form produces no false negative results, but it often

has very long computation time. All other methods have the possibility of false negative

results given arbitrary designs. These methods, therefore, can only be used to prove that

two implementations axe synchronously equivalent. They cannot be used to prove that

two implementations are not synchronously equivalent. This is a direct consequence of

the "yes/inconclusive" nature of abstract analysis. On the other extreme from exhaustive

simulation, one could therefore reach a conclusion of "don't know" without performing any

analysis at all. In the design methodology proposed in the previous section, false negative
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results will show up as candidate implementations that are falsely declared to be functionally

incorrect. This may lead to sub-optimal final implementation. False positive results, on

the other hand, may produce incorrect implementations and hence must be avoided. Static

analysis methods can be very fast but generally produce many false negative results. In

Chapter 6, we present simple static zmalysis algorithms that give useful results for CFSM

network implementations, eis supported by examples. In Chapter 7 and Chapter 8, we

introduce Communication Analysis and Refined Communication Analysis that will produce

fewer false negative results at a cost of higher computation time.
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Chapter 6

Static Equivalence Analysis

In this chapterwe present several static algorithms forthe synchronous equivalence

analysis of CFSM networks. Only simple comparison on implementation parameters or

simple search on the system graph is needed for these algorithms. Consequently, they have

extremely low bounds on maximum computation time, at the cost that many inconclusive

results are possible due to the false negatives. We will show through examples that they
are still very useful for embedded system design based on CFSM networks.

In the next section, we show how equivalence can be established by just examin

ing implementation parameters such as scheduling policies. In Section 6.2, we show that

someproperties of the system graph can be used to guarantee synchronous equivalence. In

Section 6.3, some analysis result based on both implementation parameters and properties

of the system graph is presented. In Section 6.4 we show how some popular implementa

tions ofheterogeneous architectures are synchronously equivsdent to those based on a single

computational resource.

6.1 Scheduling Policy Analysis

Under synchronous assumption, synchronous equivalence will hold for some subsets

of implementations based solely on the scheduling policy, for any givenCFSM specification.

A sufficient condition for two implementations to be synchronously equivalent is that they

both are implemented on a single computational resource (processor or circuits) and have

the same scheduling policy. We need the following definitions to prove this property:

Definition 6.1 (Implementation) A CFSM implementation is a completely determin-
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istic behavior defined by:

• a network of CFSMs, as defined in Chapter 3,

• an architectural mapping, consists of

- a scheduling policy, to be defined later,

- possible ranges of execution delays for CFSM components,

• an optional synthesis directives, defining execution delays for CFSM components, if

it is not already deterministic.

Definition 6.2 (Global State Pattern) Given a CFSM implementation, the global state

pattern is the state of all main automata, all input buffer automata and all output buffer

automata of the CFSM network.

Definition 6.3 (Stabilization) An implementation is stable if and only if no change in

the global state pattern or output is possible without the application of a new primary input

pattern.

A system that satisfies the synchronous sissumption stabilizes at or before the end

of a cycle.

A single primary input pattern can stimulate the design and "generate" a sequence

of global state patterns until stabilization is reached. A sequence of primary input patterns

(i.e. a primary input trace) "generates" a sequence of sequences of global state patterns. A

primgury input trace also generates a sequence of sequences of scheduling points.

Definition 6.4 (Scheduling Point) A scheduling point is a point in time where some

CFSM component completes computation, or produces some output.

A scheduling point corresponds to the point in time when some "scheduling deci

sion" needs to be made. There are often many scheduling points within a single computation

phase.

Scheduling points are related to the behavior of the components of the design.

When the implementation is stabilized, the computation phase ends. The end of the com

putation phase corresponds to a scheduling point. The end of interaction phase is also
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considered a scheduling point because that is when the environment finishes interaction.

This concept is demonstrated in Figure 6.1 where scheduling points generated by a simple
three buflfer chain is shown. Time a is a scheduling point because the environment finishes

interaction. At scheduling point 6, component X finishes execution and component Ystarts
to execute because it is the only component with input zmd consequently the only compo
nent that can be scheduled. At time c, component Y finishes execution and component Z
starts, so it is another scheduling point. At scheduling point d, Z finishes execution and

the computation phzise ends because the design has stabilized.

Anetwork ofCFSMs, anarchitectural mapping, and synthesis directives together
correspond to an implementation that is fully deterministic. An input trace i = ...}
can be said to generate asequence ofsequences ofscheduling points {{a}, of,...}, {aj, a|,...},...}
for an implementation where {o}, oj,...} is due to ii and {aj, a^,...} is due toi2. Scheduling
points have the following important property:

Lemma 6.1 Given two implementations, A and B, of the same specification, and an ar
bitrary input trace i = {ii,i2,...}, i generates a sequence ofsequences ofscheduling points
{{a}, a?,...},{aj,a|,for implementation A, and ...}, •••}> •••} for im
plementation B. Let the global state pattern be ...}, {P2\-P2 >—}> •••} for imple-

72
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mentation A, and {{Qj, Q?,...}, {Q2> ^2> —}i•••} implementation B at the scheduling

points. A and B are synchronously equivalent, if —Q^, for all integer m,n.

Proof: By definition, the implementation stabilizes at some scheduling point. Since P^ =

for all scheduling points, they must also be the same at all stabilizing points. In

addition, an output can only occur at a scheduling point. Since = Q^, output patterns

are the same at the stabilizing points also. Therefore, outputs are the same at the end of

the cycle (stabilization). Therefore, A smd B are synchronously equivalent to each other.

•

Definition 6.5 (Scheduling Policy) A scheduling policy for a CFSM network is com

posed of three functions; Enable, which defines the condition under which a CFSM should

be considered for execution. Select, which defines a subset of the enabled CFSMs to ac

tually be executed, and Execute, which defines the condition under which selected CFSMs

can start executions.

A component is usually considered enabled for execution if one or more of its inputs

have arrived. However, a scheduling policy may enable a component even when no input

events are present. In this case, the execution should consume no input, produce no output

and leave the component in the same state. This is known as empty execution. This feature,

and indeed the whole reason for splitting the Enable and Select, make it much easier

to define and cuialyze worst case communication scenarios. A worst case communication

signature can be related to real execution traces by padding execution treices with empty

executions. We will use this notion of worst case communication extensively in Chapter 7

and Chapter 8.

An enabled component can be always selected, or it can be selected according to

some list or priority condition. For a non-preemptive policy, selected component can only

execute when all previously executing components have completed their executions. Under

a preemptive policy, an executing component may be suspended to have a newly selected

component executing in its place.

Some of the more commonscheduling policies includeUnit Delay Parallel (UDP),

Static Priority Serial (SPS), and Cyclic Executive Serial (CES).

Definition 6.6 (Unit Delay Parallel) Unit delay parallel schedulingpolicyfor a CFSM

network is defined by:
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• all components are Selected,

• all selected component are Executed upon stabilization ofallprevious executions.

Definition 6.7 (Static Priority Serial) Static priority serial scheduling policyfora CESNl
network is defined by:

• A component is Enabled if one or more of its inputs have arrived,

• An enabled component is Selected by some statically determined priority order.

• The selected component is Executed upon stabilization of the previous execution.

Definition 6.8 (Cyclic Executive Serial) Cyclic executive serial scheduling policy fora
CFSM network is defined by:

• A component is Enabled if one or more of its inputs have arrived,

• An enabled component is Selected by some statically determined list.

• The selected component is Executed upon stabilization of theprevious execution.

UDP, SPS, and CES scheduling policies are delay insensitive.

Definition 6.9 (Delay Insensitive Scheduling Policy) Ascheduling policy for a given
CFSM network is delay insensitive if different delay assignments to the (CFSM^ com
ponent executions will result in implementations that are guaranteed to be synchronously

equivalent to each other.

For a CFSM network, the UDP scheduling policy essentially implements Moore

synchrony. It should not be surprising that all UDP implementations (i.e. implementations

with UDP scheduling policy, but possibly with different clock speeds) are synchronously

equivalent to each other.

Theorem 6.2 UDP implementations of the same CFSM specification are synchronously

equivalent.
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Proof: Given two such implementations A and B and an arbitrary input trace, Pq = Qq

because they are specified by the initial state, initial output and the environment. We can

now proceed by induction.

• Base Case Pq = Qq

• Induction Hypothesis Pq = Qq

• Prove:

P^ = UDP dictates that all components are executed in parallel with the same

delay. Outputs and next state of each component are computed at the next scheduling

point i + 1. Since the output and transition relations are identical for A and B,

Pf' = Q'o"

At stabilization point ji, Pj = Qj. At the next scheduling point, it must be that

Pj^i = Q^+i because they are the same pattern as at previous scheduling point plus primary
input, which has to be the same given the same environment.

Therefore, P^ = for any integer m and n. Due to Lemma 6.1, the theorem is

proven. •

The very popular SPS and CES scheduling polices are also delay insensitive.

Theorem 6.3 Single processor SPS implementations of the same CFSM specification and

priority order are synchronously equivalent.

Proof: Given two such implementations A and B and an arbitrary input trace, Pq = Qq

because they are specified by the initial state, initial output and the environment. We can

now proceed by induction.

• Base Case Pq —Q§

• Induction Hypothesis Pq = Qq

• Prove:

Because P^ = Qq, the SPS implementations with the given priority order make the

same scheduling decision and execute corresponding components. Output and next

state of that components are calculated for the next scheduling point i + 1. Since the

output and transition relations are identical for A and B,
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At each stabilization point j, Pj = Qj. At the next scheduling point, it must be

that Pj+i = Qj+i because they are the same pattern as at previous scheduling point plus
primary inputs, which have to be the same given the same environment.

Therefore, P^ = for any integerm and n. Due to Lemma 6.1, the theoremis

proven. ^

Theorem 6.4 Single processor CES implementations of the same CFSM specification and

list order are synchronously equivalent.

Proof: Given two such implementations A and B and an arbitrary input trace, P§ = Qg
because they are specified by the initial state, initial output and the environment. We can

now proceed by induction.

• Base Case Pq —Qg

• Induction Hypothesis P^ = Qq

• Prove: = Qj+i

P6 = Qh- the CES implementations withthe same listordermake the same scheduling
decision and execute corresponding components. Output and next state of those

components are calculated for the next scheduling point i + 1. Since the output and

transition relations are identical for A and B,

At stabilization point j, Pj = Qj. At the next scheduling point, it must be that

•Pj+i = Q^+i because they are the same pattern £is at previous scheduling point plus primary
inputs, which have to be the same given the same environment.

Therefore, P^ = Q^ for any integer m and n. Due to Lemma 6.1, the theorem is

proven. g

Theorem 6.3 and Theorem 6.4 can be easily extended to preemptive scheduling

becausefor SPS and CES, preemptionsalways occur at scheduling points. The environment

is not allowed to interact with the design during a computation phase and the only event

that can occur to "preempt" an execution must be produced by some component in the

design. Aspreviously mentioned, productionofan output eventcorresponds to a scheduling

point.

In essence, a scheduling policy is delay insensitive if the executionordering of the

components is not dependent on time. An example of scheduling policies that are not delay
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insensitive is the class that is referred to as "time-slicing". In "time-slicing", each enabled

component is allotted a certain amount of time and if the execution has not been completed

within the allotted time, the component will be preempted. For a CFSM network, changing

some execution delays of CFSM may result in different time-slicing implementations that

are not synchronously equivalent to each other. Multi-processor architectures for a CFSM

network are also generally not delay insensitive because the commimication between the

processors may depend on the speeds of the processors.

If a delay insensitive scheduling policy is chosen at the architectural mapping

stage, the previous theorems state that different implementations with that same delay

insensitive scheduling policies are synchronously equivalent to each other. Delay insensitive

scheduling policies provide the advantage that the designer is free to optimize individual

components and the resulting implementation is guaranteed to be synchronously equivalent

to the original one. A design with a delay insensitive scheduling policy is functionally robust

with respect to uncertainty in timing delays, such as those that may be caused by cache

misses. The designer can thus have a high confidence that the djmamically varying delay

can affect only the performance of a design, not the functionality of a design. Furthermore,

functional simulation of an implementation with a delay insensitive scheduling policy can

be done without costly and often inaccurate timing estimation. Delay insensitive scheduling

policies take full advantage of the sjmdironous assumption where function and timing au-e

strictly separated. This property of SPS and CES helps to explain why they are so populair

among embedded system designers.

6.1.1 Validating Experiment: Seat Belt Alarm Controller

Performing a scheduling policy anadysis is extremely straightforward. If two im

plementations have the same scheduling policy which is delay insensitive (e.g. UDP, SPS,

CES), then they awe synchronously equivalent. Otherwise, the analysis result is inconclusive.

This anadysis can be applied to any design based on CFSM networks. To show that this

result is not trivial, we use formal verification tools to perform exact equivalence auialysis

for a particular design: the seat belt alarm controller from Section 2.1. Implementations

with the following scheduling policies are considered:

• UDP

Fully synchronous hardware (unit delay parallel) implementations.
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• SPS-TC

Single processor implementations with static priority serial scheduling poUcy. Timer
is at higher priority than controller.

• SPS-CT

Single processor implementations with static priority serial scheduling policy. Con
troller is at higher priority than timer.

• CES-TC

Single processor implementations withRoimd Robin (single appearance cycUc execu

tive serial) scheduling policy. The list is timer, then controller.

• CES-CT

Single processor implementations withRound Robin scheduling. The list iscontroller,

then timer.

All execution policies are non-preemptive. All delays are set to non-zero, arbitrary, finite,
and non-deterministic. By comparing two "scheduling policies" with the formal verification

tools, we are essentially comparing all possible delay assignments of one scheduling policy
with all possible delay assignments of the other (maybe the same) scheduling policy. All

examples are written in BLIF-MV, and the formal verification tool, VIS [BSVA+gfi], is
used to test the synchronous equivalence of the implementations. The experiments zire

rim on a 625MHz Alpha processor with 2 gigabytes of memory. The results are shown

in Table 6.1.1. All the results are consistent with our prediction. Notice that although
the system is extremely simple, consisting of a 3-state CFSM and a 10-state CFSM, it

still takes 21 seconds in the worst case on a very powerful machine.^ For any realistic

design, the result is likely to be inconclusive due to extremely long computation times by

the formal verification tools. For this example, the formal verifications all finish within

reasonable time and memory requirement. Since the representation is exact, the results are

either yes or no (as oppose to yes/inconclusive for abstract analysis). The static scheduling

policy analysis is performed by a simple comparison of the scheduling policies and takes

essentially no time at all. It achieves the same result for comparingimplementations of the

same scheduling policy with different delay characteristics (UDP to UDP, SPS-TC to SPS-

TC, SPS-CT to SPS-CT, CES-TC to CES-TC, and CES-CT to CES-CT). These are the
^Communication buffers, that are non-deterministic, significantly increase the state space size even in

this case.
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Implementation 1 Implementation 2 Sjmchronous Equivalent? CPU time(seconds)
UDP UDP Yes 21.0

UDP SPS-TC No 12.1

UDP SPS-CT No 7.5

UDP CES-TC No 14.9

UDP CES-CT No 9.5

SPS-TC SPS-TC Yes 16.5

SPS-TC SPS-CT No 9.9

SPS-TC CES-TC Yes 19.2

SPS-TC CES-CT No 12.5

SPS-CT SPS-CT Yes 13.8

SPS-CT CES-TC No 11.8

SPS-CT CES-CT Yes 18.1

CES-TC CES-TC Yes 20.4

CES-TC CES-CT No 12.7

CES-CT CES-CT Yes 19.4

Table 6.1: Full Reachability Analysis of Seat Belt Example.

true positives. In the case of comparing SPS-TC with CES-TC, and SPS-CT with CES-CT,

the result of static analysis is inconclusive due to false negatives (i.e. exact analysis returns

positive). All other combinationsof comparison are inconclusive due to true negatives (i.e.

exact analysis returns negative). For this example, the implementation space is split into

3 different equivalence classes: 1) UDP, 2) SPS-TC, CES-TC, and 3) SPS-CT, CES-CT.

In the next chapter, we will introduce communication analysis, that requires a little more

computation time but is able to give us the equivalence between SPS-TC and CES-TC, and

between SPS-CT and CES-TC.

6.2 System Graph Analysis

Definition 6.10 (System Graph) In the system graph of a CFSM network, each CFSM

component is represented by a node and each signal from a sender CFSM to a receiver

CFSM is represented by a directed edge. All primary inputs are represented by a single

node with only outgoing edges and all primary outputs are represented by a single node with

only incoming edges.

The system graph for the seat belt example is shown in Figure 2.3. Note that a

system graph may be cyclic. In the figure, the single soinrce and sink are split into individual
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Pi's and FO's for the sake ofclarity. A given node in a graph may have many predecessors

and many successors.

Definition 6.11 (Predecessor) A node is the predecessor of another node if it is in its

transitive fan-in. The set of nodes that arepredecessors ofnode i is denoted by Pred(i).

In the seat belt example, Pred(controller) and Pred(timer) include all nodes ex

cept the node that represents primary outputs. A cycle in the system graph makes every

node in the cycle both a predecessor and a successor of every other node in the cycle. For

the example in Figure 6.1, Pred{X) includes only the primary input. PredfY) includes X

and the primary input. Pred{Z) includes A", Y, and the primary input.

Definition 6.12 (Successor) A node is the successor of another node if it is in its tran

sitive fan-out.

Definition 6.13 (Liveness) An implementation is live if and only if any event at the

input of components must eventually be consumed by an execution.

Most interesting implementations of interesting specifications are live. System

graphs have the following property:

Theorem 6.5 Live implementations of the same CFSM specification are synchronously

equivalent to each other if the system graph without the primary output node is a tree.

Proof: Sincethe system graph without the primeiry output node is a tree, each component

has onlyone input and hencecan executeat most oncefor any set ofprimary inputs. In fact,

it can only execute after its immediate predecessor has executed, regardless of the choice

of architectural mapping and synthesis directives. In addition, it must execute because the

implementation is live. •

The system graph of the seat belt example is not a tree, while the one for the

example in Figure 6.1 is. For the design in Figure 6.1, all live implementations satisfying

the synchronous assumption are synchronously equivalent to each other.

The reason why some graph may not be a tree is due to reconvergence. In a directed

tree, there is at most one way to traverse from one node to another. A reconvergence exists

if there is more than one way to traverse from node a to some node b. Node a will be

called a split-off point if it has more them one immediate successor and some node b can
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Figure 6,2: Converting into Tree of Nodes and Successor Free Subgraphs.

be reached through more than one successor of a. Our goEil is to replace the nodes and

edges starting from the split-off point by a single node representing a subgraph. Any non-

tree system graph can be transformed into a tree of nodes eind subgraphs. The following

algorithm performs one such transformation. There is no canonical transformation. This

transformation produces a graph where the nodes representing subgraphs are successor-free.

The starting point is a system graph minus the primary output node:

1. Perform Depth First Search (DFS) from the primary input node. Mark each node as

it is visited.

2. If a node previously visited is encountered again, there is a reconvergence. Perform a

Breadth First Search (BFS) on the reverse graph to find and mark the split-off point

of the reconvergence. Continue with the original DFS.

3. Split-off points represent the root of subgraphs. Discard split-off points that represent

subgraphs that are contained in another subgraph represented by another split-off

point. This Cein be done by a second pass of DFS.

An example of the transformation is shown in Figure 6.2. Transforming the system graph of

the seat belt example returns the original system graph as the only subgraph in the system.
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Thenext theorem canbe used to establish synchronous equivalence hierarchically.
It starts from a transformed system graph that is a tree of nodes and successor-free sub

graphs. By successor-free we mean that the nodes representing the subgraphs at the top
level do not have successors.

Theorem 6.6 Two live implementations are synchronously equivalent to each other if the

system graph without the primary output node can he transformed into a tree of nodes

and successor-free subgraphs such that each corresponding subgraph pair is synchronously

equivalent.

Proof: Since the transformed system graph is a tree, all nodes can be executed once and

all subgraphs can be "invoked" once. Hence, all corresponding subgraphs of the imple

mentations can be "invoked" once with the same input. Since corresponding subgraphs

are synchronously equivalent to each other, they will produce the same outputs and state

changes. Other components that are not part of the subgraphs are part of the tree. Ac

cording to Theorem 6.5, they must produce the same outputs and state changes as well.

Therefore, the two implementations are synchronously equivalent to each other. •

Theorem 6.6 suggests a hierarchical synchronous equivalence checking algorithm.

After splitting the system into a tree of nodes and subgraphs, other algorithms can be used

to check the synchronous equivalence of the corresponding subgraphs. Together they imply

the synchronous equivalence of the two implementations.

6.3 Mixed Analysis

Obviously, one can utilize both the system graph and the scheduling policies to

help in analyzing synchronous equivalence statically.

Theorem 6.7 A processor implementation with single appearance Cyclic Executive Schedul

ing (also known as Round Robin) is synchronously equivalent to Unit Delay Parallel imple

mentation if

• the system graph is acyclic, and

• if i £ Pred{j), then j is earlier in the list than i.
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Proof: Assume a synchronous hardware implementation A, and a single processor imple

mentation with round robin scheduling B of the same specification. Consider an arbitraury

input trace and its generated set of scheduling points a and 6, respectively, and set of global

state/signal pattern P gmd Q, respectively. At start up, Pq = Qq because they sure specified

by the initial state, initial output and the environment. Let Qq scheduling point

corresponding to a single "list" execution of the round robin list. Since all successors gire

executed before their predecessor, from Qq to Qq, the input to each executed component at

its execution time remains unchanged from startup. Since each component has the oppor

tunity to execute once with the signal pattern of Qq, the state and output pattern will be

the same as a single parallel execution, therefore Pq = Qq.

Simileirly, there exists a j corresponding to the second "list" execution of the round

robin list, and Pq = Qq. More formally by induction:

• Base Case

Pg = Q'o

• Induction Hypothesis

Pq = Qq where j corresponds to the end of the "list".

• Prove: = Qq, where k corresponds to end of the next "list" execution

Pq —Qo' A single execution of the "list" executes all successors before their prede

cessor. Not only does that execute each component once, but each component sees

Qq at the time of its execution, therefore the executions are not dependent, therefore

at the end of the list execution, Pq"^^ = Qg-

At the stabilization point I, Pi = Q/. At the next scheduling point, P^.i and

both have the pattern at the previous scheduling point plus the primary inputs, which have

to beidentical for bothimplementations also. Therefore P^_^ = Q^^i, and induction applies
again.

By induction, since all components execute exactly once for both implementations

and with the same input, the primary outputs also agree on this basis, therefore the two

implementations Eire synchronously equivalent. •

This theorem suggests a synthesis approach. Given a UDP implementation of an

acyclic specification, one can easily come up with an equivsilent CES implementation by

levelizing the components.
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Figure 6.3: Example of Co-Processor Architecture.

6.4 Analysis of Heterogeneous Architectures
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One of the salient characteristics of embedded systems is that they may be im

plemented on heterogeneous architectures. Different parts of the system may be better

suited for mapping to computational resources with very different performance and cost

factors. Here we consider two very common heterogeneous architectures, the co-processor

architecture and the synchronous parallel architecture, and show how they can be modeled

for efficient synchronous equivalence analysis.

An example of the co-processor architecture is shown in Figure6.3. The micropro

cessoracts as a master of the communication to and from the co-processors. Whenever there

is some computation to be done on the co-processors, the microprocessor emits the events

and associated data to the co-processors, and waitsfor the operationon the co-processors to

be completed. An acknowledge event is sent backto the master, before continuing with its

own operation. The operations of the master and the co-processors thus become serialized.

A co-processor architecture can be modeled as, and is indeed synchronously equivalent to,

a static priority serial scheduling policy on a single processor architecture with all the com

ponents mapped to the co-processors having higher priority than the ones that are mapped

to the master.

The synchronous parallel architecture is characterized by processors executing in

parallel, but communication is allowed only at a time when all the processing on each

processor has been completed. An example is shown in Figure 6.4. A synchronous parallel

architecture can be hierarchically modeled as having a unit delay parallel schedulingpolicy

on top of the original single processor scheduling policies for individual processors.
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Figure 6.4: Example of Synchronous Parallel Architecture.

6.5 Conclusions

85

The definition of synchronous equivalence and the application of synchronous as

sumption lead to very powerful static algorithms where equivalence is conservatively verified

by the characteristics of the scheduling policies or the structure of the system graph. How

ever, the result may be inconclusive due to false negatives.

Viewing static equivalence analysis from the standpoint of abstraction/refinement

provides useful insight. The analysis at this level is extremely abstract. Lots of information

about the system is abstracted away. Utilizing this information will inevitably add to

computational complexity of the analysis algorithms. One must refine and include more

information in the analysis in a judicious manner to make it worthwhile.

In the next chapter we introduce Communication Analysis. The starting point is

delay insensitive scheduling policies and the pieces of "information" added are those related

to the system graph and abstracted local functions of the components. Communication

analysis is no longer considered static because a single pass of execution on the abstract

model is used to capture information of the system graph and local functions (i.e. about

the communication between the components).
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Chapter 7

Communication Analysis

While two implementations with the same delay insensitive scheduling policy are

guaranteed to be synchronouslyequivalent to each other, two implementations with different

delay insensitive scheduling policies may still be synchronously equivalent to each other,

depending on the behavior of the design. In this chapter, we introduce commimication

analysis that can be used to conservatively check the equivalence between two different

delay insensitive scheduling policies.

There is a simple intuition for looking at the commimication between components.

Since the corresponding components in the two implementations are guaranteed to have

the same functionality, and the connectivity among the components is also guaranteed to

be the same, it should thus be possible to deduce the equivalence of two implementations

from the behavior of the communication. It should be possible to establish a communi

cation signature in the flavor of worst-case analysis in real-time scheduling [LL73]. If two

implementations have the same communication signature, they should be synchronously

equivalent to each other. By looking at only the worst-case communication characteristics

and not at the details, the analysis can be efficient, though at a cost of being conservative.

The communication signature is derived from the execution traces of an implementation.

7.1 Execution Trace

During a computation phase, there is no interaction between the design £ind its

environment. Within the design, however, components receive events, perform executions

in some order, and send out events that can trigger other executions. A given component
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can be executed many times during a computation phase.

Definition 7.1 (Local Execution Trace) Given a legal input trace (i.e. one that sat

isfies the synchronous assumption), the sequence of input event patterns consumed by a

component at each execution is called its local execution trace.

Definition 7.2 (Execution Trace) Given a legal input trace, the execution trace of

the implementation is the list of all local execution traces of all components.

An execution trace does not contain any timing information, except in the form

of ordering among the sequential atomic executions of the same component. The ordering

of the executions of different components is not part of the execution trace. This feature

allows widely different implementations to have the same execution traces.

Consider the example in Figure 7.1. For component B, if only mi or 22 is present at

the time of execution, oi will not be emitted, though the input will be consumed, according

to the semantics of the CFSM. Figure 7.2 shows how an execution trace can be obtained

through simulation. An SPS implementation with A<B, given primary input ii,i2 = 11 has

B executing first with input mi, 12 = 01, then A executing with input 1, then B executing

again with input 10.

The design in Figure 7.1 is memoryless, so every computation phase has the same

response to the same primary input pattern. We present all possible execution traces for

three different implementations of the design in Table 7.1. Three implementations are being

considered: a single processor SPS with component A at a lower priority tham component

B, a concurrent hardware UDP implementation where A and B execute in parallel with the

same delay, and a single processor SPS with A at a higher priority than B. 1/0 in the table

indicates the presence/absence of an event. Recall that the components are reactive, so a

non-empty execution will take place only when there is some event "1" at the input.

The execution trace from Figure 7.2 is recorded in the second column, third row

of Table 7.1. Time proceeds downward within a cell for the local execution trace of a

component, and there is no relationship between local execution traces of different com

ponents. For the case of Figure 7.2, there is no ordering information implied between the

local execution trace of A: 1, and the local execution trace of B: 01,10. There is, however,

an implication that 01 occurs before 10. Information for eill the other cells in the table Eire

obtained in a similar fashion eis in Figure 7.2.
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ml

B: if (ml) and (12) then emit(ol)

Figure 7.1; Example for Execution Trace.
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Figure 7.2: An Execution Trace of the Example of Figure 7.1.

An execution trace of the seat belt alarm controller example for a static priority

serial scheduling policy with the controller at higher priority than the timer is shown in

Figure 7.3. Consider the first cycle. The priority ordering allows the controller to execute

first, and produce internal event Start to be received and consumed by the timer.

Execution traces have the following important property:

Lemma 7.1 For every legal input trace (i.e. the synchronous assumption is valid), if the

execution tracesfrom two implementations are identical, then the two implementations are

synchronously equivalent to each other.

Proof: Identical execution traces means that the ordered lists of input patterns are the

same for all components. Since the outputs of the components and changes in global

state patterns are the result of the executions of the components using the sequences of

input patterns, they have to be the same for both implementations also. Sinceoutput and
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A<B UDP A>B

iii2 A(ii) B(mi,i2) A(ii) B(mi,i2) A(ii) B(mi,i2)

11 1 01

10

1 01

10

1 11

10 1 10 1 10 1 11

01 01 01 11

Table 7.1: Execution Traces.
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End_5

Sec

cycle

Figure 7.3: An Execution Trace of Seat Belt Example.
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global state patterns are the same for all possible primary input traces, they have to be

the same at all stabilization points. Since all local execution traces (i.e. input traces) are

identical, outputs must be identical at all scheduling points (including stabilizing points).

Two implementations are therefore synchronously equivalent to each other. •

This lemma suggests a straightforward algorithm for checking synchronous equiva

lence: simulate all possible input traces auid compare the resulting execution traces. Accord

ingly, implementations A<B and UDP for design in Figure 7.1 are synchronously equivalent

to each other. Exhaustive simulation is clearly not practical for all but the most trivial de

signs. Hence, we introduce communication analysis. It is based, on the intuition that since

two implementations of the same specification have identical component functionalities and
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connectivity, the only thing that requires analysis is the communication characteristics. To

this end, we look for a "signature" that summarizes the communication.

7.2 Abstracting Communication

We want to abstract, or summarize, communication between the components for
a particular implementation. To find a signature that is "worst-case", we use the concept of
non-decreasing functions defined ina container space that is an abstraction ofthe space of
event presence/absence. To find a signature that is correct, though conservative, we utilize
the concept of container space cover for a event space function. The word "container" is

chosen to denote an entity that is necessary, but not sufficient, to contain an actual event.

The rationale for this choice will become obvious shortly.

7.2.1 Containers

Intuitively, a container is an entity that may or may not contain an "event". The
presenceof a container impliesthe possibility ofan event. The absence of a container means

that definitely there is not an event. We define a container set and an event set.

Definition 7.3 (Container Set) A container set, C, is a set with two symbols: 0 and
X. I.e. C= {0,x}.

Definition 7.4 (Event Set) An event set, E, is a set with two symbols: 0 and 1. I.e.

^ = {0,1}.

Definition 7.5 (Container-Event Set) A container-event set, CE, is a set with four
symbols: 0, x, 0, and 1. I.e. CE = {0,x,0,1}.

Notice that the symbols in the container set and the event set are written with

different fonts. If the reader finds it hard to distinguish a 0 in the container set from a 0

in the event set, he can rest assure that the distinction is only necessary in the strictest

mathematical sensjs. Both of them mean that an event definitely has not occurred. We can

define n-dimensional space for each set as follows:
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Definition 7.6 (Container Space) A n-dimensional container space is defined as =

Definition 7.7 (Event Space) A n-dimensional event space is defined as = {0,1}".

Definition 7.8 (Container-Event Space) A n-dimensional container-event space is de

fined as CE" = {0, X, 0,1}".

A value of 0 for a variable or function in the container space denotes the absence

of a container, which corresponds to absence (0) of an event in the event space. A value

of X in the container space denotes the presence of the container, which may correspond to

either the presence (1) or the absence (0) of an event in the event space. Since the container

space defined here is only binary in nature, we could have easily defined all container space

variables and container space functions in the Boolean space. However, in Chapter 8, we

will extend the container set to be ternary. It is then easier to define a space that is distinct

from the Booleein space, once and for all. All the formalism developed in this chapter will

also be extended to the ternary container space.

We can define a binary relation, information ordering, between symbols in the

container set to be 0 ^ x. 0 has at least as much information as x (i.e. 0 is at least as

definite). Information ordering can also be defined in event set and in the container-event

set.

Definition 7.9 (Information Ordering) Information ordering (^) is defined as a bi

nary relation between two symbols in the event set, container set, and the container-event

set:

• Event set:

0^0; 1^1;

• Container set:

0 ^ 0;0 ^ x; X ^ x;

• Container-event set:

OhO;l^l;0^0;0^x;x^x;0^0;0^x;0^0;l^x.
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The information ordering can be extended to minterms in spaces.

Definition T.IO (hdinterm) A single element, m, of a given space S is called a minterm

of S, denoted by m €. S.

A minterm of n-dimensional container space, mGC", is automatically a minterm
of n-dimensional container-event space, m € CE" because container set is contained in the

container-event set. The same applies to a minterm in event space. A minterm in container-

event space, on the other hand, may not necessarily be a minterm in the container space or

the event space.

The definition of information ordering can be extended to event and container

spaceminterms by coordinate-wise extension. For example: 00 y 00, but 01 ^ 00; xO ^ xx,

but xO Y. Ox; 01 y Ox, but 11 ^ Ox.

Definition 7.11 (Non-Decreasing) Given two container space minterms mi and m2,

and a container space function f : {0,x}" {0,x}. f is Non-Decreasing if and only if

mi ^ m2 f(mi) y f(m2) (7.1)

For a non-decreasing container space function, changing any input fromx to 0 will

not change its value from 0 to x. This is sometime called the order-preserving mapping.

Similar to the notation for multi-valued logic synthesis [MBNSV93], fi^*^ is used
to denote that container space function fi has the value x. Variables are similarly denoted.

Thus a vgdue ofx for fimction Fi with input xO isdenoted as fi(xO)=x, or fi^*^(x0)=7h/e.

Container space function (meaning that fi is x iff a is x or b is

X, and 0 otherwise) is non-decreasing. f2^*^=a^*^*b^°^ is not non-decreasing in b, because
the valuation of f2 at a = x and b = x is computed by f2^*^(xx) = a^*J(x) *b^°^(x) =
True * False = False, and therefore f2(xx) = 0. Similsirly, we can compute f2^*^(x0) =
a^*^(x) *b^°^(0) = True * True = True, that is f2(x0) = x. Therefore, changing the input
from ab=xx to ab=xO will change output from 0 to x.

Definition 7.12 (Cover) A container space function f is a coverof the event space func

tion / : {0,1}" -> {0,1} if:

• there is a one to one correspondence between input variables, and
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• given any event space minterm m and any container space minterm m

m ^ m fi'm) h (7.2)

Intuitively, or emy input minterm m in the container space, we generate the cor

responding event space minterm m by:

• assigning 0 to a event space variable if its corresponding container space variable has

the value 0,

• assigning 0 or 1 to a event space variable if its corresponding container space variable

has the value x,

then f is a cover of f if for every m that / evaluates to 1, the corresponding m evaluates

f to X. Function is a non-decreasing cover of f—a*b*c. So are

amd is a non-decreasing function but is not a cover of

/, while is a cover of / but is not non-decreasing.

7.2.2 Well-Behaved Scheduling Policy

Worst case analysis for any general delay insensitive scheduling policy is difficult.

We concentrate on algorithms that can be applied to a "well-behaved" subset of delay

insensitive scheduling policies.

Definition 7.13 (Weil-Behaved Scheduling Policy) A scheduling policyis weW-hehaved

if:

1. it is delay insensitive,

2. Bnable is true at least for all CFSMs with some events on its inputs,

3. if Bnable is replaced with an alternative that enables a finite number of additional

CFSMs, then the execution trace remains the same, except possibly for the insertion

of some empty executions.

Whether or not a given scheduling policy is well-behaved needs to be established

separately through formal proofs manually, or with the help of formal verification tools.

The proofs will only need to be done once, since the property is not design dependent.

Many common scheduling policies are well-behaved. The next three theorems show that

UDP, SPS, and CES, are all examples of well-behaved scheduling policies.
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Theorem 7.2 The Unit Delay Parallel scheduling policy for a CFSM network is well-

behaved.

Proof: Prom Theorem 6.2, UDP is delay insensitive. CFSMs are reactive, so executing

components without input events produces empty executions. Since UDP executes all

components in parallel, execution of one component does not affect the delay of others.

Communication only occurs at the end of atomic execution. Since empty execution does

not produce any output, it will not commimicate anything to other components. Adding

more component to the Cnable function therefore does not change the execution except

for the addition of empty executions. UDP is therefore well-behaved. •

Theorem 7.3 The Static Priority Serial scheduling policy for a CFSM network is well-

behaved.

Proof: From Theorem 6.3, SPS is delay insensitive. CFSMs are reactive, so executing

components without input events produces empty executions. For SPS, the result of the

Select function depends on what is enabled, and on the priority list. By additionally

enabling components. Select can choose one of the additionally enabled component and

perform an empty execution. Since there is only a finite munber of additional enabled

components. Select must eventually select the originally selected component after a finite

number of empty executions. Therefore, the execution trace is the same modulo those

additionally enabled components (corresponding to empty executions). SPS is therefore

well-behaved. •

Theorem 7.4 The Cyclic Executive Serial scheduling policy for a CFSM network is well-

behaved.

Proof: From Theorem 6.4, CES is delay insensitive. CFSMs Eire reactive, so executing

components without input events produces empty executions. Since the Select function of

CES is not dependent on what is enabled, changing the Enable function does not change

the selection and execution except for adding some empty executions. CES is therefore

well-behaved. •

An example of a policy that is not well-behaved is the following (quite un-natural)

Select rule: "If CFSM C is enabled, the (dynamic) priority is C>B>A. Otherwise, the

priority is A>B." At some point in time when B and A are enabled, additionally enabling
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ml
A: if (il) then eniit(ml)

B; if (ml) and (i2) then emit(ol)

C: if (i3) then emit(o2)

Figure 7.4: Example for Well-Behaved Scheduling Policy.

WB WB mod NWB NWB mod

iii2i3 A B(ml,i2) C A B(ml,i2) C A B(ml,i2) C A B(ml,i2) C
110 1 01

10

1 01 0

10

1 11 1 01 0

10

100 1 10 1 10 1 11 1 10

010 01 01 11 01

111 1 01 1

10

1 01 1

10

1 01 1

10

1 01 1

10

101 1 10 1 1 10 1 1 10 1 1 10 1

Oil 01 1 01 1 01 1 01 1

001 1 1 1 1

Table 7.2: Execution Traces for Figure 7.4.

C (which will cause an empty execution on C) can actually change the execution traces of

B and A. Figure 7.4 and Table 7.2 illustrate that this schedulingpolicy is not well-behaved.

In the example, we additionally enable C whenever A and B are both enabled. Columns

titled "WB" and "WB mod" correspond to an SPS (A<B<C) scheduling policy (a well-

behaved scheduling policy). "NWB" and "NWB mod" correspond to the non well-behaved

scheduling policy described above. "WB mod" and "NWB mod" correspondto additionally

enabling C whenever A and B are both enabled. "WB mod" is identical to "WB" except

for the empty execution represented by 0 for the local execution trace of component C.

We can see that for the scheduling policy that is not well-behaved, even after taking into

accoimt the empty transitions, the execution traces for "NWB" and "NWB mod" are still

very different.
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7.2.3 Execution Covers

A good communication signatme must be easy to compute, so that it canbe used

in the inner loop of some automatic design exploration procedure. It must also have the

property that if two implementations have the same communication signature, they must
be synchronously equivalent to each other. For this purpose we introduce a set of execution

covers (ECs). An execution cover of a given CFSM network is a directed acyclic graph. EC
nodes can be thought ofas " containers" representing possible events, in the flavor ofevent

graphs representing partially order histories [NPW81, McM93], but using the additional
notion of possibility to further abstract it. Thus, a container can contain either a "0"

(event absence) or a "1" (event presence). Each node is labeled with the corresponding
signal. The EC construction procedure also labels each container with a level, but this
label is discarded after the construction is completed. Roughly speaking, edges in the EC
represent dependencies between input and output events, as well as the ordering among
events belonging to the same signal.

The EC for an implementation with a given scheduling policy can be obtained by
"simulating", "abstractly executing", or "unfolding" the system graph using the following
Execution Cover Generation Procedure:

1. Create a container (an x) for each primary input and label it with level 0. Set the

current level to 0.

2. Determine the set of active inputs for each (CFSM) node. A CFSM input is active

if there exists a corresponding container with a level that is larger than that used by

previous execution level of that CFSM (i.e. there exists a container that has not been

"consumed" by the previous execution).

3. Let all CFSMs with at least one active input be enabled. If no CFSM is enabled,

then STOR

4. Apply the Select function of the original scheduling policy to choose the CFSMs to

be "executed".

5. Abstractly execute the selected CFSMs by increasing the current level by 1, and

evaluate a non-decreasing cover of each CFSM output function with all active inputs

set to Xand other inputs set to 0. If the non-decrezising cover evaluates to x, then
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• create a new container and label it with the current level and the name of that

output,

• for every active input: create an edge from the most recent container correspond

ing to that input, to the newly created container,

• create an edge from the previous container labeled with the same name (if any

exists) to the new container.

6. "de-activate" the inputs of the executed CFSMs, Go to Step 2.

We can (conservatively) check two implementations for synchronous equivalence

by comparing their ECs, as stated by the following result. The theorem applies to any two

execution covers, no matter how each of them are generated according to Step 5 above. The

proof of this important theorem is postponed until Section 7.2.6.

Theorem 7.5 If two implementations of a given CFSM network with well-behaved schedul

ing policies have identical ECs, then they are synchronously equivalent.

The EC generation procedure may not terminate, even if the CFSM network sta

bilizes for every input pattern. This non-termination is due to looping through the same

patterns, and thus can be easily identified in the algorithm implementation. In this case,

the algorithm can be aborted and the communication analysis returns inconclusive result.

However, if the procedure terminates successfully, then identical ECs implies synchronous

equivalence. The abstract nature of EC gives it efficiency, but also makes it reach many in

conclusive results due to the false negatives or non-termination. We will show the usefulness

of EC on industrial designs.

The abstract execution in Step 5 is performed by evaluating a non-decreasing cover

of the CFSM output function. There are many non-decreasing covers of a fimction, so there

is a whole set of different ECs that can be used as communication signatures. We present

only the Greatest Execution Cover (GEC) and the Least Execution Cover (LEC). GEC is

very easy to understand and compute, and also shows that more than one cover is possible.

LEC is only slightly more complex and is more useful in practice. It is also least abstract,

in a sense that will be explained in Section 7.2.5.
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7.2.4 Greatest Execution Cover

The Greatest Execution Cover is computed by creating a new container in Step 5

whenever a CFSM is selected, regardless of what active inputs there may be. Due to the

reactive nature of the CFSM, the weakest criterion for a CFSM to be selected is that

some event be possibly present at some input. We first convert all signals consisting of an

event part and a value part into vectors of pure events. This is done through encoding,

usually in a one-hot fashion. An example of this conversion is shown in Section 7.2.4.3. For

large systems, this may be quite expensive. Some form of value abstraction similar to those

introduced in Chapter 4 may be necessary. The greatest cover function F in the container

space is a disjunction of all the input variables having the value x:

fW = (7.3)
i=l

F, the greatest non-decreasing cover of F, is non-decreasing because changing

some input from x to 0 cannot cause the function to change from 0 to x. The output is 0

only if all inputs are 0. The only way to change that output to an x is by changing some

input from 0 to x. We can show that F covers F as follows. There is only one minterm of

F that does not evaluate to an x; the one with inputs all at 0. A minterm in the container

space can correspond to many minterms in the event space in general. This minterm of F,

however, corresponds to only one minterm of F, namely, the one with inputs all at 0. Due

to the reactive nature of CFSM, all 0 at the inputs cannot produce a 1 at the output. F

therefore covers F. It is the greatest, in the sense that it contains all the minterms of all

the other covers of the reactive function F. The singleall 0 input is not necessary to cover

any reactive function.

To abstractly execute a CFSM and obtain the greatest execution cover, we eval

uate its greatest non-decreasing cover with all active inputs set to x and all others set to

0.

7.2.4.1 Simple Illustrating Example

The greatest non-decreasing cover for the output function of the CFSMs in the

example in Figure 7.1 is:

= ii^*^ (7.4)

= mi^*^-|-i2^*^
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Figure 7.5: Greatest Execution Cover for Example in Figure 7.1.

The Greatest Execution Covers for the example in Figure 7.1 are shown in Figure 7.5 for

the given three different execution policies, SPS A>B, UDP, and SPS A<B. The GECs

are identical for scheduling policies A<B and UDP, and the two scheduling policies indeed

do have identical execution traces as was shown in Table 7.1. According to Lemma 7.1,

they are synchronously equivalent to each other. If the GECs are different, as they are

between UDP and A>B, we czmnot conclude whether the scheduling policies are or axe not

synchronously equivalent, due to the fact that the analysis is abstract and the possibility

of a false negative result cannot be automatically excluded.

7.2.4.2 Shock Absorber Example

We applied the GEC analysis to a real-life industrial design: the shock absorber

controller from Chapter 4. The controller sets the shock absorbers' motors to appropriate

absorption levels according to inputs from a vertical acceleration (vibration) sensor and a

speed sensor. The system graph for this design is shown in Figure 7.6. It is a simplified

version of the one in Chapter 4 for the sake of simplicity in visual presentation. In this
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i2

i3

Figure 7.6: System Graph for Shock Absorber Controller.

simplified model, the system receives input ii, which represents the current shock absorber

position, 12, which represents the wheel motion (present once every wheel revolution), and
Z3, which indicates the vertical acceleration. Component A calculates the speed of the au

tomobile. B calculates theacceleration. C calculates a shock absorption strategy according
to the speed and acceleration. E calculates the recommended absorption level according
to the current position and the one calculated from speed and acceleration. D computes

the vertical acceleration and sends it to G. F determines whether or not there is an error

condition, from speed, acceleration, or vertical acceleration. H utilizes all the information

and computes the next absorption strategy.

We use communication analysis algorithm to decide sjnachronous equivzilence among
the following five scheduling policies:

1. Synchronous Hardweure (UDP).

2. Single processor with list scheduling (CES): A,B,C,D,E,F,G,H.

3. Single processor with list scheduling (CES): H,G,F,E,D,C,B,A.

4. Single processor with priority (SPS): A>B>C>D>E>F>G>H.

5. Single processor with priority (SPS): A<B<C<D<E<F<G<H.

We obtained the greatest execution covers for all five scheduling policies in Fig

ures 7.7, 7.8, 7.9, 7.10, and 7.11. Lower case "b" represents the output containers form

component "B" and "a-B" represents the output containers from component "A" to be

received by component "B". For ease of imderstanding, we also label the "time" axis with

both the "level" in the EC generation algorithm and the components executing at that
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Implementation 1:
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Figure 7.7: Greatest Execution Covers for Shock Absorber Scheduling Policy 1.

level. When checking two ECs for identity, it is not necessary to compare the levels. Only

the partial ordering as implied by the edges matters.

From the figures, we can conclude by checking labeled graph isomorphism that

scheduling policies 1 and 3 are synchronously equivalent to each other because their GECs

are identical. Combining this result with Theorems 6.2, 6.3, and 6.4, we csui conclude that

any synchronous hardware implementation and any single processor implementation (with

any delay characteristics) with the given CES ordering are synchronously equivsilent to each

other. If they both satisfy timing constraints, a software implementation may have a lower

cost and a circuit implementation may have better performance in terms of timing. We

czin also conclude similarly that scheduling policies 2 and 4 are synchronously equivalent to

each other. The conservative analysis was performed in a very short computing time and

with negligible memory occupation.

7.2.4.3 Seat Belt Alarm Controller Example

We next attempt to apply GEC communication analysis to the seat belt con

troller example. We first convert the valued event Alarm{Boolean) into two pure events:

Alarm.On and AlarmJDff. The greatest non-decreasing cover for the output function is:
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Implementation 2:

Cyclic Executive Serial Scheduling Policy

A.B.C,D,E,F,G,H
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Figure 7.8: Greatest Execution Covers for Shock Absorber Scheduling Policy 2.

Implementation 3;

Cyclic Executive Serial Scheduling Policy

H.G.F.E.D.C.B.A

° E ' C' a" h'g ' f' E«

Figure 7.9: Greatest Execution Covers for Shock Absorber Scheduling Policy 3.
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Implementation 4:

Static Priority Serial Scheduling Policy

A>B>C>D>E>F>G>H
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Figure 7.10: Greatest Execution Covers for Shock Absorber Scheduling Policy 4.

ImplctncniAiionS:

Static Priority Serial Scheduling Policy

A<B<C<D<E<F<G<H

" E ' O" f' h' c' F « h'e'Oh" h"e"h"b"c e"h" """

Figure 7.11: Greatest Execution Covers for Shock Absorber Scheduling Policy 5.
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Figure 7.12: Greatest Execution Cover for Seat Belt Controller.
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Alarm_On^*^ = Key_on^*^ + Key.Off^*^ + Belt_On^*^ + End_5^*^ + End_10^*^

Alarm_Off = Key_on^*^ + Key.Off + Belt_On^*^ + End_5^*^ + End_10^*^

Start = Key_on^*^ + Key.Off + Belt.On^*^ + End_5^*^ + End_10^*^

End_5W = Start<'> + Sect^>

End_10^*^ = Start + Sec^*^ (7.5)

The CECs for the seat-belt example are shown in Figure 7.12 for two different

scheduling policies. Unfortunately, the CEC is inj&nite for both cases. One abstract exe

cution is as follows: primeiry inputs first cause the controller to emit a container at Start,

which causes the timer to execute and emit End-5 and End_10, which in turn cause the

controller to execute and emit Start again. The CEC is infinite and the analysis result
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inconclusive. In the next section, we introduce the Least Execution Cover that abstracts

away less information, so that the controller does not emit Start when it receives only

End-5 and End_10 at its input. LEG will in fact generate finite ECs for some systems

with loops, while any system with loops will have infinite GECs.

7.2.5 Le£Lst Execution Covers

To obtain the Least Execution Cover, the abstract execution in Step 5 of the

EC generation algorithm is performed by evaluating the least non-decreasing cover of the

CFSM output function. To obtain this cover function, we similarly existentially quantify

state variables from the output function, to obtain event space function F that depends

only on input event space variables xi,... x„. We then manipulate, in the event space, the

function F to obtain an auxiliary function T also in the event space. F is then translated^

one to one, into the container space to obtain cover fimction F.

Definition 7.14 (Translation) A container space function F is a translation of a event

space function T if and only if, under a given one to one correspondence between input

variables, if we

• assign 0 to a container space variable if its corresponding event space variable has the

value 0,

• assign x to a container space variable if its corresponding event space variable has the

value 1,

then F evaluates to x if and only if the output of F is 1.

Ff*l=a^*^+b^*^ is the translation of the event space function F = a-{-b.

We want an auxiliary function that has the following property: every minterm in

the on-set of F must also be in the on-set of F. In addition, if a minterm with variable

Xi = 0 is in the on-set of F, then the same minterm, but with variable Xi = 1, must also be

in the on-set of F. This can be express by the following formulae, for functions with 1, 2,
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or 3 input variables:

= F + F^ (7.6)

F{xuX2) = F + F^ + Fw^-^F^

F{xuX2,X3) = F + F^ + F^ + F^ + F^ + F^ + F^-^F^^^

The computation ofT can be simplified drastically with the following recursive formulation

for a function with n input variables, thanks to the commutativity of cofactors:

^ F (7.7)

— F*~^ +F^^ for i = 1,.-. ,n
F = F^

For the case of F having three input variables, the recursive computation is carried out as

follows:

F = (7.8)

= F^ + Ti,

= F'+F^+{F'+Fh^)^
= F^ T~ + Fij + F~^

= F^+F^+{F^-\-F^)^-^{F^ + J^)^+{J^ +J=^)^

xi ' X2 ' " X1X2 ' " X3 ' X1X3 ' X2X3 ' X1X2X3

~ "I"-^^1X2 "^^1X2X3

= F + FxT + FxT+ Fx3 + -^xTxT + -^57X3 + Fx^ + FjXl I X2 ' •* X3 I •* X1X2 • X1X3 I •* X2X3 "T JTX1X2X3

The least non-decreasing cover F is obtained as the translation of F in the con

tainer space:

F = Translati(m{F) (7.9)

To see that F is non-decreasing (changing some input from x to 0 cannot cause the function

to change from 0 to x), we only have to see that changing some input from 1 to 0 cannot



CHAPTER 7. COMMUNICATION ANALYSIS 107

cause T to change from 0 to 1. By the definition of translation, F is non-decreasing. To

see that F covers F, we note that for each minterm in the on-set of F with variable ari=0,

the same minterm and with the one with x,=l will both be in the on-set of T. This mezms

that the corresponding minterm with Xi=x will evaluate F to x, a sufficient condition for

F to cover F. To see that it is the least such function, we note that taking away any set of

minterms of T which is also in F will make F not a cover, because it will make it such that

changing some input from 1 to 0 will cause T to change from 0 to 1. By the definition of

translation, this would make F decreasing.

To abstractly execute a CFSM, we evaluate its least non-decreasing cover with all

active inputs set to x and all others set to 0.

7.2.5.1 Simple Illustrating Example

The output function of the CFSMs in the example in Figure 7.1 is as follows:

mi — t'l (7.10)

oi = mi * 1*2

The least non-decreasing cover for this function is:

mi^*> = ii^^> (7.11)

The LECs for the example in Figure 7.1 are shown in Figure 7.13 for the given three

diff"erent scheduling policies, SPS A>B, UDP, and SPS A<B. The LECs are identical for

scheduling policies A<B and UDP, and the two scheduling policies indeed produce identical

execution traces as was shown in Table 7.1. According to Lemma 7.1, they are synchronously

equivalent to each other. If the LECs are different, as they zire between UDP and A>B,

we cannot conclude whether the implementations are or are not synchronously equivalent,

due to the possibility of inconclusive result being caused by false negatives because the

analysis is abstract. Notice the containers without outgoing edges in the figure. They are

the containers that participate in an execution but the execution did not produce an output

container. There are obviously fewer containers in LECs than GECs. The analysis is less

abstract at a cost of negligible increase in computation time.
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Figure 7.13: Least Execution Cover for Example in Figure 7.1.

7.2.5.2 Seat Belt Alarm Controller Example

We apply LEG analysis to the seat belt controller example. Recall that GEC

analysis produced inconclusive result because the execution cover is infinite, and static

scheduling policy analysis from Section 6.1 produced conservative result as compared to

exact emalysis. After converting the valued events to pure events through one-hot encoding

and existentially quantifying out state variables, the output function is:

AlarmJDn = Key.Off *BeltJOn*End(7.12)

AlarmJDff = KeyJDff -1- BeltJOn -f EndAO

Start = KeyjOn * Key-Off * Belt-On

End-5 = Start ♦ Sec

End-10 = Start * Sec

Now, the least non-decre£ising cover for this function is:
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Alarm_On '̂'> = (7.13)

Alarm.OffW = Key.OflF^^> + Belt.OnW + End_10<*>

Start^*^ = Key.on^*^

End.5<*> = Sect*>

End_10<*> = Sect*>

The LECs for the seat belt example are shown in Figure 7.14 for several dijfferent

scheduling policies. For the sake of readability, the LEG for SPS :T > C (Timer at higher

priority than controller) has been compressed so that there is an edge from all (5) inputs

to all (3) outputs.

The LECs for the seat belt example are finite, unlike its GECs. Prom the LECs,

we can conclude that implementations with SPS : C > T axe synchronously equivzilent

to implementations with CES : C^T. We could not make that conclusion from static

analysis alone. In fact, for the five sets of implementations considered in Section 6.1.1,

LEG analysis returns the same result as exhaustive simulation in the context of the design

exploration methodology described in Section 5.3. It does so with negligible time and

memory requirement.

7.2.5.3 ATM Switch Example

We applied LEG communication aneilysis to another real-life industrial design.

The algorithm block of a server that supports ATM-based Virtual Private Networks. The

complete server [GDV94, FLL"*"98] required a design effort of approximately 3 man-years.

The algorithm block was re-specified as 1200+ lines of Esterel code separated into 13 differ

ent GFSMs. If we were to represent evenjust the controlportion of the system (excluding

tables) as a Boolean network, it would have required more than 500 binary latches. With

out extensive manual abstraction, verifying this design is clearly beyond the capability of

existing formal verification tools [BSVA'̂ 96].

The algorithm block decides which input cells must be accepted or discarded to

avoid node congestion, and implements the shaping and bandwidth partition functions

among ATM VPGs. Figure 7.15 provides a functional description of the algorithm block.

Upon arrival of a new cell, it receives the Gell ID from the address-lookup module. If



CHAPTER?. COMMUNICATION ANALYSIS

Key_On
Key.Off
Belt_On
Alarm_Off
Alarm_On
Start
End_5
End_10
Sec

executing

Key_On
Key.Off
Belt_0n
AIann_Off
AIarm_On
Start
End_5
End.lO
Sec

executing

Key_On
Key_Off
Belt_On
AIami_Off
Alann_On
Start
End_5
End_10
Sec

executing

Key_On
Key.Off
Belt_On
Alarm_Off
Alarm_On
Start
End_5
End.10
Sec

executing

SPS C>T

® cntrl ^ timer ^ cntrl ^

SPST>C

®timer ^ cntrl ^ timer ^

CESCT

® cntrl ' timer ^ cntrl ^

® cntrl ^ cntrl ^
timer timer

UDP

3 time

Figure 7.14: Least Execution Cover for Seat Belt Example.
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Figure 7.15: Algorithm Block of a ATM Server.

the cell is accepted, the Message Selective Discarding Technique sends instructions to the

Logic Queue Manager about where (i.e. in which queue) to store the cell in the shared

buffer. Communication between the algorithm block and the LQM is handled by the LQM

interface, which performs the required protocol adaptations.

We used LEG communication analysis to decide synchronous equivalence among

many different implementations, including ones with UDP and various SPS and CES

scheduling policies. The LECs were generated using POLIS [BCG'̂ 97] on a network where

CFSMs were replaced with their least non-decreasing covers. In all cases, the generation

of the LEO took less than 1 second of CPU time. The LEG associated with the SPS policy

chosen by an expert designer consists of 314 containers. Even with such a complex LEG,

we have found a GES scheduling policy that is synchronously equivalent to the designer-

specified SPS, therefore resulting in an implementation with less scheduling overhead.

We have performed LEG commxmication analysis for several different SPS, GES,

and UDP scheduling policies. In each case, the LEG is finite even though there are many

loops in this heavily interacting design. The analysis was performed in a very short com

putation time and with negligible memory occupation.

7.2.6 Correctness Proof of Theorem 7.5

We were able to (conservatively) check two implementations for synchronous equiv

alence by comparing their EGs, as implied by Theorem 7.5, that we repeat here for read-
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ability.

Theorem 7.6 If two implementations of a given CFSM network with well-behaved schedul

ing policies have identical ECs, then they are synchronously equivalent.

We prove the theorem in several steps. Given two policies P cind Q, we first
construct auxiliary policies P^^ and . The policy P^^ {Q^^) has the same Select
function as P (Q), but uses a different Enable function, based on the EC ofP {Q respec
tively). Then, we prove that P and P^^ are synchronously equivalent (the same proof
applies to equivalence ofQ and Finally, we show that P^^ and areequivalent,
eind the desired result follows by transitivity.

Lemma 7.7 Consider two scheduling policies for an arbitrary CFSM network. If the two
policies are well-behaved and have the same Select function, then they are synchronously
equivalent.

Proof: By definition, the execution traces generated by the two policies will be the same,

except for empty executions. Therefore, the value ofthe last event emitted on some output
will be the same for both policies. a

Forsome well-behaved scheduling policy P we construct a policy by chang

ing the Enable function. The rules for P^^ follow the outline oftheEC-generating proce
dure, except that in Step 5, in addition to abstract execution, the actual selected CFSM

is executed with actual inputs. Note that P and P^^ are synchronously equivalent by

Lemma 7.7.

Lemma 7.8 The following holds:

• when a CFSM is executed in Step 5 of the EC algorithm, any input with value 1 is

also an active input (as determined in Step 2),

9 if a CFSM emits an output in Step 5, then a corresponding container is also created

by abstract execution.

Proof: By induction, using the fact that the non-decreasing cover evaluates to x (presence

of container) whenever the actual output function evaluates to 1. It will remain at x if some

of its inputs are changed from 0 to x. •
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In other words can be seen as determining the contents of the containers in

the EC, 1 if the event is present and 0 if it is absent. Lemma 7.8 ensures that for every

event that is actually generated, there exists a container to put it in.

Corollary 7.9 The content ofa containerdetermined by P^^ depends only on the contents

of its immediate predecessors in the EC, and the CFSM output function.

Proof: By definition, all active inputs are immediate predecessors, and by Lemma 7.8, all

other inputs are 0. •

The following result states that the EC contains sufficient information to decide

synchronous equivalence.

Lemma 7.10 If two scheduling policies P and Q have identical ECs and if P^^ and

assign to corresponding nodes the same contents for every primary input assignment, then

P and Q are synchronously equivalent.

Proof: We first show that and are synchronously equivalent. Indeed, by defini

tion of EC, all containers corresponding to some primary output form a chain, and the last

container in the chain h£is the highest level (which may be different for P^^ and Q^^). By

assumption, the contents of the last containers are the same for P^^ and implying

that P^^ and eire synchronously equivalent. It follows then by Lemma 7.7that P and

Q are also synchronously equivalent. •

Now we have all the pieces to prove the theorem.

Proof: [of Theorem 7.6] By Lemma 7.10 we only need to show that given two different

well-behaved policies P and Q, their modifications P^^ and assign the same values

to corresponding containers. This is shown by induction, using Corollary 7.9, and the fact

that the CFSM functions are the same in the two implementations. •

7.3 Conclusions

Communication analysis strives to answer the equivalence question by a single

pass abstract execution of the implementations. We have shown how it czin effectively

analyze synchronous equivalence between different implementations. We also presented a

detailed proof of the correctness of using execution covers as communication signatures

in analyzing synchronous equivalence. The efficiency of communication analysis comes at
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the cost of the conservativeness of the result, either in the form of simple false negatives
or infinite execution covers, even when the actual implementation does not have infinite

execution traces. By storing the presence/absence pattern of signals at each invocation
of Select function of the scheduhng policy, the execution cover generation procedure can
detect when the abstract execution of an implementation is caught in an infinite loop.
Practically, we generate execution covers for the two implementations in parallel. The
analysis returns an inconclusive result if the execution covers differ at any point, or if
either implementation is caught in an infinite loop. Otherwise, the two implementations
are synchronously equivalent.

We stillneed to answer the question as to what happens when the result is incon
clusive. We need a way to refine the analysis to mahe the execution cover finite, and to
determine whether the inconclusive result is due to a true negative or a false negative. In
the next chapter, we formally present a method to refine communication analysis. It
remove the false negatives and generate finite execution covers in more cases, at the cost of
longer computation times. At the limit of this refinement process, the analysis becomes no
longer abstract (i.e. it is an exact analysis).
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Chapter 8

Refining Communication Analysis

Communication analysis is efficient in deciding the equivalence between two differ

ent implementations of the same high level specification. When two implementations have

commimication signatures (i.e. execution covers) that are identical and finite, they are guar

anteed to be synchronously equivalent to each other. Unfortimately, when two execution

covers are different, or when one or both of the execution covers are infinite, the result of

the analysis is inconclusive. In the context of design exploration, the inconclusive result in

equivalence sinalysis means that an implementation must be declsured, possibly falsely, to be

functionally different from the reference. If that implementation has a better performance

characteristic than all the implementations that were declared to be functionally correct, it

will still not be selected. If the negatives do turn out to be false, the final implementation

is suboptimal.

In this chapter, we identify and remove, bit by bit, the sources of these false

negatives through the process of refinement and pruning. By successive applications of

refinement of containers and pruning of unobservable containers, we establish a smooth

path to exhaustive simulation, where the aneilysis result is absolutely precise and no false

negative is possible. When two implementations are actually S3aichronously equivalent to

eeich other, communication analysis, perhaps with some refinement and pruning, can prove

this positive result without going all the way down to exhaustive simulation. Figuring out

precisely how much refinement and pruning are needed, and on which containers, is as hard

as the verification problem itself. Heuristic algorithms can be developed, but that is left as

possible topic of future research.

We deal with the issue of refinement in Section 8.1 and 8.2. In Section 8.1, we
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discuss refinement onevent containers. Thecontainers in the previous chapter areall event
containers. Refining an event container is the same as setting it to event presence, or event

absence, and performing separate abstract simulations. It is not hard to see that if the

corresponding "pre-split" EC portions, the "presence" EC portions, and the "absence" EC

portions for the two implementations are all identical, they are synchronously equivalent to

each other. The complication comes in that the non-decreasing cover functions have to take

on an additional value, 1, which represents the event that is certainly present, as opposed

to "possible" presence denoted by x. We prove that the ternary execution covers are also

correct communication signatures.

The communication analysis of Chapter 7 abstracted away state information com

pletely. Conservatism stemmed from ignoring the CFSM state need to be removed for more

precise analysis. In Section 8.2, we represent state information as "state value" containers,

one for each state value. One-hot encoding of state values allows easy representation of

"sets of states". The various flavors of communication analysis of the previous chapter can

be seen as representing state abstractly as a set containing all states. Refining the "set of

all states" into subsets of states or individual states is similar to the container refinement.

A separate abstract simulation is performed for each different case. It is not hard to see

that if the corresponding "pre-split" portions and the separate refined portions of the two

implementations are all identical, the implementations are synchronously equivalent to each

other. Partitioning into subsets of states is similar in spirit to state space decomposition

techniques [CHM''"94], though with different goals. We want to partition the states to

quickly show either equivalence or a counterexample.

In Section 8.3, we show that the local nature of communication einalysis can be

dealt with by pruning away unobservable containers from the execution cover. A container

is imobservable if its content cannot affect, even treuisitively, the content of containers

associated with primary outputs. Only the "observable" portions of the execution covers

need to be compared for synchronous equivalence to hold.

With refinement and pruning, communication analysis can be made precise. We

place communication analysis in the context of abstraction and refinement, and provide

primitives, in the form of splitting and combining containers, to move around this abstrac

tion/refinement spectrum. Using these primitives to devise heuristics or domain specific

solutions is left as future work.



CHAPTERS. REFINING COMMUNICATION ANALYSIS

il ol

t A

i2 R
_o2

A: if ((il or o2) and not(i2)) then emit(ol)

B: if ((i2 or ol) and not(il)) then emit(o2)

117

Figure 8.1: A Simple Example for Container Refinement.

8.1 Container Refinement

In communication analysis, containers are used to represent the possibility of an

event. If there is no container at some input, it is interpreted as event absence. If there is

a container present at some input, the event may be actuatlly present, or it may not.

Consider the example in Figure 8.1. The output function is:

01 = il * 12 + 02 * i2

02 = 12 * il + Ol * il

The least non-decreasing cover for this function is:

oi^ =

OjW = i2'*' + Ol('>

(8.1)

(8.2)

The LECs for two different implementations are shown in Figure 8.2. In both

cases, the LEC are infinite and the communication ainalysis returns inconclusive result.

It can be established independently through exhaustive simulation not only that

these two implementations produce finite output traces for any finite input trace, but also

that they are actually synchronously equivalent to each other. The infinite LEC in Fig

ure 8.2 is due to the abstraction of event containers. To make the abstract simulation

finite, containers need to be "refined" to take on more precise information.

With the definition of container given in the previous chapter, there is no way to

represent the precise presence of event, as it is possible to represent the precise absence

of event by the absence of container at the input of a component. Execution covers in

the previous chapter are computed with two values for each input variable of a component

function: event absence, represented by 0, and event unknown, represented by x. For the

analysis to be more precise, and less conservative, we need to represent the case where the

event is definitely present.
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Figure 8.2: Least Execution Cover for Example of Figure 8.1.

Definition 8.1 (Ternary Container Set) A ternary container set, C, is a set with

three symbols: 0, 1, and x. I.e. C= {0, l,x}.

Definition 8.2 (Ternary Container-Event Set) Aternary container-event set, CE,

is a set with five symbols: 0, 1, x, 0, and 1. I.e. CE = {0,l,x,0,1}.

Notice that symbols in the container set and the event set are written with dif

ferent fonts. If the reader finds it hard to distinguish a 1 in the container set from a 1

in the event set, he can rest assure that the distinction is only necessary in the strictest

mathematical sense. Both of them mean that an event definitely has occurred. We can

define n-dimensional spaces as follows:

Definition 8.3 (Ternary Container Space) A n-dimensional ternary container space

is defined as C" = {0, l,x}".

Definition 8.4 (Ternary Container-Event Space) A n-dimensional ternary container-

event space is defined as CE" = {0, l,x, 0,1}".
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0 in the ternary container space denotes the absence of the container, which corre

sponds to the absence (0) of event in event space, 1, or 1-container, in the ternary container

space denotes the presence of event and the container, which corresponds to the presence

(1) of the event in event space, x, or x-container, in the ternary container sp£w:e denotes

the presence of the container only, which corresponds to both the presence (1) and absence

(0) of the event in the event space.

The information ordering in the temeiry container set is naturaJly defined to be 0

^ X, 1 ^ X. 0 and 1 both have at least as much information as x (i.e. 0 and 1 are at least

as definite). 0 and 1 are incomparable in terms of information ordering. More formally, we

extend the definition from the previous chapter.

Definition 8.5 ((Ternary) Information Ordering) Ternary information ordering (y)

is defined as a relation between two symbols in the event set, ternary container set, and the

ternary container-event set:

• Event set:

0 ^ 0;1 ^ 1;

• Ternary container set:

0 ^ 0; 1 ^ 1; 0 ^ x; 1 ^ x; X ^ x;

• Ternary container-event set:

0 ^ 0; 1 b 1; 0 b 0; 1 ^ 1; 0 ^ x; 1 ^ x; X ^ x; 0 ^ 0; 0 ^ x; 1 ^ 1; 1 ^ x; 0 h 0; 1 h 1.

The information ordering can be extended to minterms in spaces by coordinate-

wise extension. For example: 01 ^ 01, but 01 ^ 00; xl ^ xx, but xO ^ Ox; 01 ^ Ox, but

11 ^ 01.

The definition of non-decreasing functions and cover functions for the ternary

container space are identical to those for the binary container space. We restate them here

for convenience.

Definition 8.6 ((Ternaury) Non-Decreasing) Given two ternary container space minterms

mi and m2, a ternary container space function f is Non-Decreasing if and only if

mi X m2 f(nii) h f(ni2) (8.3)
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A ternary container space function is Non-Decreasing ifand only if changing
any input from x to 0 or 1 will not chsmge its value from 0 or 1 to x.

Definition 8.7 ((Ternary) Cover) A ternary container space function i is a ternary
cover of the event space function f if, under a given one to one correspondence between
input variables.

• given any event space minterm m and any ternary container space minterm m

m h m f{m) ^ f(ni) (8.4)

Intuitively, a ternary container space function f is a cover of the event space
function / if, for euiy input minterm m in the container space,

• assigning 0 to an event space variable if its corresponding ternary container space
variable has the value 0,

• assigning I to an event space variable if its corresponding ternary container space
variable has the value 1,

• assigning 0or 1to anevent space variable if itscorresponding ternary container space
variable has the value x,

all the resulting minterm m in the event space evaluate F to 1(0), F evaluates to 1(0) or
X for m; otherwise, F evaluates to x for m.

Ternary execution covers for an implementation with a given scheduling policy can
be obtained by "simulating", "abstractly executing" or "tmfolding" the system graph by
the following Ternary Execution Cover Generation Procedure:

1. Create containers for primary inputs and label them with level 0. Set the current

level to 0. The input container may be filled, left with content unknown, or not be

created at all, depending on what is known about the inputs. For example, ifan input

is known to be present for all cycles, then it can be set to be a 1-container.

2. Determine the set of active inputs for each (CFSM) node. A CFSM input is active

if there exists a corresponding container with a level that is larger than that used by
the previous execution level of that CFSM (i.e. there exists a container that has not

been "consumed" by the previous execution).
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3. Let all CFSMs with at least one active input be enabled. If no CFSM is enabled,

then STOP.

4. Apply the Select function of the original scheduling policy to choose the CFSMs to

be "executed".

5. Abstractly execute the selected CFSMs by increasing the current level by 1 and eval

uating a ternary non-decreasing cover of each CFSM output fimction, with all active

inputs with a 1-container set to 1, all active inputs with an x-container set to x, £ind

all other inputs set to 0. If the ternary non-decresising cover evaluates to 1 or x then:

• create a new 1-container or x-container, respectively, and label it with the current

level and the name of that output,

• for every active input: create an edge from the most recent container correspond

ing to that input, to the newly created container,

• create an edge from the previous container labeled with the same name (if any

exists) to the new container.

6. "de-activate" the inputs of the executed CFSMs. Go to Step 2.

The ternary non-decreasing covers in Step 5 are computed by converting the output

functions from event space to ternary container space. We present only the least ternary

non-decreasing cover. We perform the following operations to obtain the leeist ternary

cover function F. For every ternary minterm:

• The output of the ternary cover function is 1 if and only if, for all states, assigning

any combination of 0 and 1 to the input x's produces 1 in the event space.

• The output of the ternary cover function is 0 if and only if, for all states, assigning

any combination of 0 eind 1 to the input x's all produces 0 in the event space.

• otherwise, the ternary cover fimction evaluates to x.

The ternary non-decreasing cover can be computed implicitly, or conservatively.

Both topics are beyond the scope of this dissertation. The formulation of the ternary cover

is reminiscent of symbolic simulation in the circuit domain [SB94]. The major difference is

that symbolic simulation utilizes x to represent both 1 zmd 0 in a continuous waveform. An
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interval at value x in the waveform means that the value of the signal can be 0 or 1 at any

point of the interval. It says nothing about how many transitions (0 to 1 or 1 to 0) there
may be. Our ternary container space is defined for discrete event systems. An event is

defined as a 0 to 1 transitionon the "wire" carrying the signal. Our x is used to denote the

possibility ofa single 0 to 1 transition, x in thecontainer analysis represents the possibility
ofa single discrete event which, if it exists, can only be used (or consumed) once.

The ternary function calculated above is a cover of the corresponding event space
function. It can output 0 only when allcorresponding assignments in the event space never
produce an output in any state. It can output 1 only when all corresponding assignments
in the event space always produce an output for all states. The ternary cover function

calculated above is non-decreasing. If the output is already 0 or 1, "resolving" any input
that originally had the value x into 0 or 1 can only produce the same (0 or 1) output as
before.

The ternary cover for the example in Figure 8.1 is:

Ol(') = *12^°^ + 02^^^ * 12

oi«»

Ol('> = oiUl + OiW

= 12^^^ * * ii

O

0

*

O

+

1-1

II

02^*^ = 02^^^ + 02^°^

{0}

{0}

(8.5)

Computing the ternary execution cover with primary inputs set to x at Step 1
produces aninfinite execution cover exactly like that inFigure 8.2. This is expected because
we have not really done any refinement on the containers at all. We only changed the cover
functions so that they can handle the 1-containers. Abstract execution with ii refined at
the primary input produces the execution covers shown in Figure 8.3. We now have a
"split" execution cover. One, on the left side of the figure, with ii=l, denoted by a solid
box. The other, on the right side of the figure, with ii=0, denoted by no box at ii. If
the corresponding portions of the execution covers are identical, we can say that the two

implementations are synchronously equivalent to each other, since ii can only be 0 or 1 in
the original event space.

Unfortunately, the refined LEG is still infinite. Further refinement is needed. The
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Figure 8.3: Refined LEG for Example in Figure 8.1.
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new execution covers is shown in Figure 8.4. After both ii and 12 input containers are

refined, the corresponding LECs are indeed identical. The implementations are therefore

synchronously equivalent to each other. We do not have to consider the case where both ii

and 12 are refined to 0, since the system is reactive by definition. The absence of all inputs

cannot cause any reaction.

We are able to (conservatively) check two implementations for synchronous equiv

alence by comparing their ternary ECs, as stated by the following result.

Theorem 8.1 If two implementations of a given CFSM network with well-behaved schedul

ing policies have identical ternary ECs, then they are synchronously equivalent.

The theorem and its proof are ternary extensions of the ones in Section 7.2.6. We

prove the theorem in several steps. Given two policies P and Q, we first construct auxiliary

policies P^^ and The policy P^^ (Q^^) has the same Select function as P (Q), but

uses a different Enable function, based on the terneuy EC of P {Q respectively). Then, we

prove that P and P^^ are synchronously equivalent (the same proof applies to equivalence

of Q and Q^^). Finally, we show that P^^ and are equivalent, and the desired result

follows by transitivity.

For some well-behaved scheduling policy P we construct a policy by cheinging

the Enable function. The rules for P^^ follow the outline of the terneiry EC-generating



CHAPTERS. REFINING COMMUNICATION ANALYSIS

il-A

11-B

12-A

i2-B

01-B

01

02-A

02

il-A

11-B

12-A

i2-B

01-B

01

02-A

02

SPS A<B

» B 'a ^

CES A,B

0 1 2
A B

SPS A<B

CES A,B

0 1 2
A B time

il-A

11-B

12-A

i2-B

01-B

01

02-A

02

SPS A<B

time

CES A,B

» A 'a 2
time

124

Figure 8.4: Further Refined LEG for Examples in Figime 8.1.

procedure, except that in Step 5, in addition to abstract execution, the actual selected

CFSM is executed with actual inputs. Note that P and P^^ are synchronously equivalent
by Lemma 7.7.

Lemma 8.2 The following holds:

• when a CFSM is executed in Step 5 of the ternary ECalgorithm in this chapter, any
input with value 1 is also an active input (as determined in Step 2),

* if a CFSM emits an output in Step 5, then a corresponding container, 1 or x, is also

created by abstract execution.

Proof: By induction, using the fact that the non-decreasing ternary cover evaluates to x or

1 whenever the actual output function evaluates to a event space 1. If the non-decreasing
ternary cover evaluates to x, then it will remain x even if some inputs are chcinged from 0

or 1 to X. If the non-decreasing ternary cover evaluates to 1, then it may either remain 1

or become x when some input is changed from 0 or 1 to x. In either case, the container is

still present. .
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In other words can be seen as determining the contents of the x containers

in the ternary EC, 1 if the event is present smd 0 if it is absent. Lemma 8.2 ensures that

for every event that is actually generated, there exists a container to put it in.

Corollary 8.3 Thecontent ofa containerdetermined by P^^ depends only on the contents

of its immediate predecessors in the ternary EC, and on the CFSM output function.

Proof: By definition, all active inputs are immediate predecessors, 2uid by Lemma 8.2, all

other inputs axe 0. •

The following result states that the ternary EC contains sufficient information to

decide synchronous equivalence.

Lemma 8.4 If two scheduling policies P and Q have identical ternary ECs and if P^^ and

assign to corresponding nodes the same contents for every primary input assignment,

then P and Q are synchronously equivalent.

Proof: We first show that and are synchronously equivalent. Indeed, by defini

tion of ternary EC, all containers corresponding to some primary output form a chain, and

the Izist container in the chain hais the highest level (which may be different for P^^ and

Q^^). By assumption, the contentsof the last containers are the same for P^^ and ,

implying that P^^ and are synchronously equivalent. It follows then by Lemma 7.7

that P and Q are also synchronously equivalent, •

Now we have all the pieces to prove the theorem.

Proof: [of Theorem 8.1] By Lemma 8.4 we only need to show that given two different

well-behaved policies P and Q, their modifications P^^ and assign the same values

to corresponding containers. This is shown by induction, using Corollary 8.3, and the fact

that the CFSM functions are the same in the two implementations. •

The refinement does not have to be limited to the primary input containers (as is

the czise of Figure 8.4). At ziny point in the ternary execution cover generation procedure,

we can decide to refine any x-contaiiner and generate a "split" execution cover firom that

point. One side of the split corresponds to placing a 1-container at that point, the other side

of the split corresponds to placing a 0-container at that point, or no container at all. The

refined ternary execution cover is still a valid commimication signature, as demonstrated

by the following theorem:
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B: if (ml) or (11) then emit(ol)

Figure 8.5: A Simple Example for State Refinement.

Theorem 8.5 If two implementations of a given CFSM network with well-behaved schedul

ingpolicies have identical refined ternary ECs, then they are synchronously equivalent.

Proof: By Lemma 8.4 we only need to show that given two diflferent well-behaved policies P
and Q, their modifications P^^ and assign the same values to corresponding contain
ers. This is shown by induction, using Corollary 8.3, the fact that the container refinement

procedure assigns the same values to corresponding "split" portions ofthe execution cover,
and the fact that,the CFSM functions are the same in the two implementations. •

8.2 State Refinement

For some design, the false negatives from communication ansdysis cannot be re

moved without explicitly representing states. Consider the example in Figure 8.5. The
ternary least non-decreasing covers for the functions are:

= 0

mif") = ojC)

mi<'> = 01'"' +Oi'''

= +

Ol(»> — nil'"'* ii'"'

oi<'>

(8.6)

The ternary LECs for two selected scheduling policies are shown in Figure 8.6.
One cannot conclude whether or not the two implementations 2u:e synchronously equivalent
because the LECs are infinite. Even though the infinite LECs "look" similar, one cannot
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Figure 8.6: LEG for Example in Figure 8.5.

draw any conclusion about the finite execution traces from the infinite execution covers.

The infinite execution cover may "block" the zmalysis algorithm from analyzing the entire

execution trace. It can also be shown that no amount of event container refinement can

make the execution cover finite. The infinite execution cover is caused by the abstraction

of state values.

To represent state information, we encode state in one-hot fzishion much like we

did for the valued events. State values have the following property.

Lemma 8.6 A set of one-hot encoded state value signals for a CFSM has a 1-container if

and only if it is the only container present for that set of state values.

Proof: By definition, any CFSM must be in some state at any given time. Only one

contEuner present means that there is only one state that it can "possibly" be in. The

"event" is therefore definitely present. Conversely, if there is a 1-container at some state

value, then the CFSM can not possibly be in any other state, so other state values must

not have any container present. •

For the sake of brevity and clarity, we will convert state value signEils with a single

x-container immediately into a 1-container. Minor modifications need to be made for the

ternary execution cover generation procedure to handle state value containers differently.

After converting both value event and state values into "events" with one-hot encoding, the

Modified Ternary Execution Cover Generation Procedure is:
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1. Create containers for primary inputs and state values of the CFSMs and label them

with level 0. Set the current level to 0. The input containers may be filled, left with

content unknown, or not be created at all, depending on what is known about the

inputs.

2. Determine the set of active inputs for each (CFSM) node. A CFSM input is active

if thereexists a corresponding container with a level that is larger than that used by

the previous execution level of that CFSM (i.e. there exists a container that has not

been "consumed" by the previous execution).

3. Let all CFSMs with at least one non-state active input be enabled. If no CFSM is

enabled, then STOP.

4. Apply the Select fimction of the original scheduling policy to choose the CFSMs to

be "executed".

5. Abstractly execute the selected CFSMs by increasing the current level by 1 and eval

uating a ternary non-decreasing cover of each CFSM output function, with all active

inputs with a 1-container set to 1, all active inputs with an x-container set to x, and

all other inputs set to 0. If the ternary non-decreasing cover evaluates to 1 or x then:

create a new 1-container or x-cont€iiner, respectively, and label it with the current

level and the name of that output,

for every active input: create an edge from the most recent container correspond

ing to that input, to the newly created container,

• create an edge from the previous container labeled with the same name (if any

exists) to the new container.

• for state value containers, additionally create an edge from all previous state

value containers to all new state value containers.

6. "de-activate" the inputs of the executed CFSMs. Go to Step 2.

The ternary non-decreasing cover in Step 5 is computed byconverting the output

function from eventspaceto the ternary containerspace, taking into consideration the state

values. There are many possible covers, but we onlypresent the modified least ternary non-

decreasing cover. We perform the following operations to obtain the modified least ternary

cover function F. For every ternary minterm:
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• The output of the ternary cover function is 1 if and only if all event space minterms

obtained by assigning any combination of 0 and 1 to the input x's produce that output

(1) in the event space. At any given time, one and only one state value container is

assigned 1 while other x-containers for that state are assigned 0.

• The output of the ternary function is 0 if suid only if all event space minterms obtained

by assigning any combination of 0 and 1 to the input x's produce no output (0) in the

event space. At any given time, one and only one state value container is assigned 1

while other x-containers for that state are assigned 0.

• otherwise, the ternary function evaluates to x.

The modify ternary non-decreasing cover for component A in the example in Fig

ure 8.5 becomes:

mi (') = Oi<')*(so<'>+Sif'») (8.7)

-H

-1-miW

Nextjso^^^ = *(so^°^+si^^^)+ si^°^)

Nextjsi^^^ = + si^°^) -b * (so^°^ +

Nextjso^®^ = Nextjsi^^^

Next^i^®^ = Nextjso^^^

Nextjso^*^ = Next^o^^^ + Nextjso^®^

Next_si^*^ = Nextjsi^^^-I-Next_si^°^

(8.8)

Prom the fact that there are only two state values, Lemma 8.6 explains why sq = 1 whenever

Si = 0, and why Sq = 0 whenever Si = 1. Component B has the same cover function as

before:

oi^^^ = mi<^>-1-ii^^^ (8.9)

oi^*^ = mi^*^ ♦ ii^°^ + mi^°^ *ii^*^ + mi^*^ *ii^*^

With the new ternary non-decreasing cover, which takes state values into consideration,

we are able to "refine" also the state value containers and "split" the execution cover.
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In Figure 8.7, the LECs on the left-hand side correspond to computation phases where

component A starts at state sq. The right-hand side corresponds to computation phases

where component A starts at state si. The state in which a component "starts" during a

computation phase does not have anything to do with the initial state of that component.

Potentially, a component can start a computation phase in any one of its reachable states.

It is not hard to see that, after splitting the execution covers according to the starting

states, if the corresponding execution covers are identical, then the two implementations

are synchronously equivalent to each other.

We do not have to refine state value containers into individual states all at once,

x-containers at multiple state value signals represents a subset of states. The procedure we

outlined can already take subsets of states into consideration. The state refinement also

does not have to be limited to the beginning of the generation procedure. At any point in

the modified ternary execution cover generationprocedure, wecan decide to refine any state

value containerand generatea "split" execution cover from that point. One sideof the split

corresponds to a particular subset of states, while the other side of the split corresponds

to the rest of the states. The refined ternary execution cover is still a valid communication

signatmre, as demonstrated by the following theorem:

Theorem 8.7 If two implementations of a given CFSM network with well-behaved schedul

ing policies have identical refined modified ternary ECs, then they are synchronously equiv

alent

Proof: By Lemma 8.4 we only need to show that given two different well-behaved poli

cies P and Q, their modifications and assign the same values to corresponding

containers. This is shown by induction, using Corollary 8.3, the fact that the refinement

procedure assigns the same values to corresponding "splits" of the execution cover, and the

feict that the CFSM functions are the same in the two implementations. In particular,

splitting the execution cover for state refinement assigns the same "subset of states" for

each corresponding portion of the execution cover. •

8.3 Pruning Execution Covers

Synchronous equivalence, as defined in Chapter 5, relates to the primary inputs

and outputs of a design. Communication analysis infers this global property from the
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Figure 8.7: Refined LEG for Example in Figure 8.5.

A: if (il) then emit(ml)
ml

ml
B: if (ml) and (i2) then emit(m2)

C: if (i3) then emit(ol)

Figure 8.8: An Example Demonstrates the Need for Pruning.
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communication between components, which is not a strictly global characteristic. Inferring

a global property from characteristics of local elements can be conservative. Consider the

example in Figure 8.8. LECs for three different scheduling policies are shown in Figure 8.9.

It can be established through exhaustive analysis, or simple observation, that the three

implementations are eictually synchronously equivalent to each other, though there are two

different sets of LECs. It is equally apparent that many containers in the LECs have nothing

to do with the primary output oi and are indeed unobservable from the primary outputs.

Definition 8.8 (Observable Container) A container c in an execution cover is observ

able if there is an assignment of ^.-containers, consistent with transition and output re

lations, such that assigning 0 or 1 to c produces different primary outputs for the actual

implementation. Otherwise, c is unobservable.

The next lemma clarifies the relationship between an implementation producing a

primary output, and the primary output containers in an execution cover.
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SPS A<B<C

time

UDP
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time

SPS A>B>C

1
C • B A

Figure 8.9: Least Execution Covers for Example in Figure 8.8.

Lemma 8.8 If there are one or more 1-containers at some primary output ofan execution
cover, the output is emitted by the corresponding implementation.

Proof: By the definition of synchronous equivalence (Definition 5.2), primary outputs
matter only at the end of a cycle. By the definition of CFSM, an emitted output cannot
be "cancelled". ^

A container that is not observable can be removed from the execution cover.

Theorem 8.9 Removing unobservable containers, along with all their edges, results in an

execution cover that remains a communication signature of the implementation.

Proof: Consider an implementation, A, its execution cover, C, and an execution cover,
QPruned^ where some unobservable containers have been removed. Let be an imple

mentation that will produce the execution cover C^runed jgy definition of unobservable

time

132
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containers and synchronous equivalence, is synchronously equivalent to A. By

transitivity of equivalence relations, any implementation that is synchronously equivalent

to is also synchronously equivalent to implementation A. u

Removing all the imobservable containers from an execution cover is analogous to

the classical observability problem in sequential circuits [Wan96]. Finding an exact solution

could require an exponential computation, though simple pnming can go a long way in

removing a large number of these imobservable containers.

Corollary 8.10 If there are one or more 1-containers at some primary output of an exe

cution cover, all hut one of the 1-containers of that primary output can be removed and the

execution cover remains a communication signature of the implementation.

Proof: By Lemma 8.8, the output will be emitted if one or more 1-containers exist at

some primary output of the execution cover. This will remain true if all but one of these 1

containers are removed. By Theorem 8.9, the pruned execution cover is a communication

signature of the implementation. •

Corollary 8.11 Any non-primary-output container that has no directed edge to an x-

container can be removed and the execution cover remains a communication signature of

the implementation.

Proof: Assigning 1 or 0 to a container with no directed edge to an x-container cleeirly cannot

affect the primary output, so the container is imobservable and can be removed. By The

orem 8.9, the pruned execution cover is a communication signature of the implementation.

•

A large number of unobservable containers can be removed by the following pro

cedure, and according to Corollary 8.10 and Corollary 8.11, the pruned execution cover is

a communication signature of the implementation.

1. For all primary outputs that have one or more 1-container, remove all containers of

that primary output except a single 1-container.

2. Remove all non-primary-output containers that do not have an edge to an x-container.

If no such container can be found, STOP.

3. Return to Step 2.



CHAPTER 8. REFINING COMMUNICATION ANALYSIS

11 •

12 •

13

ml

m2

ol

il •

i2 •

i2 •

B

ABC

SPS A<B<C

time

UDP

time

SPS A>B>C

time

134

Figure 8.10: Pruned Least Execution Covers for Example in Figure 8.8.

The pruned execution covers for the example in Figure 8.8 (derived by pruning the original

execution cover in Figure 8.9) are shown in Figure 8.10. The original primary input con

tainers are retained for clarity. The implementations are indeed synchronously equivalent

to each other.

8.4 Relationship with Exhaustive Simulation

With container refinement and pruning, execution covers cein be related to ex

haustive simulation. Exhaustive simulation requires a deterministic transition 8ind output

relation, as well as a deterministic input trace. A deterministic input trace for an actual

implementation corresponds to an "abstract" execution with em input trace consisting of

only 1-containers.
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Theorem 8.12 Given a deterministic transition relation and output relation, a well-behaved

scheduling policy, and deterministic input trace, the output trace from simulation is identical

to a trace of the pruned execution cover from the corresponding abstract simulation of the

cover functions.

Proof: The transition and output relations are deterministic, and the primary input of the

abstract simulation consists of only 1-containers. By Step 5 of the modified ternary EC

generation algorithm, only 1-containers will exist in the execution cover. By Corollary 8.10

and Corollary 8.11, only a single 1-container at each primary output will remain. The

trace of the execution cover is therefore the same as the output trace of the corresponding

simulation run. •

The theorem relates a simulation run of the implementation to an abstract execu

tion of its non-decreasing covers. Not all refined pruned execution covers have corresponding

simulation runs, since not all combinations of the states of the components £u-e reachable,

and the given pruning algorithm does not identify all unobservable containers. Both of

these problems can be solved with existing state re2w:hability techniques either exactly or

heuristically.
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Chapter 9

Conclusions and Future Directions

In this chapter we summ2irize our contributions and point out some directions

where further reseeurch work ceui proceed.

9.1 Conclusions

The goal ofthis dissertation was to investigate how formad methods can beapplied
to the domain ofembedded system design. The emphasis was on the specification, repre
sentation, validation, and design exploration ofsuch systems from a high level perspective.
We started by reviewing the framework and formal model upon which the theories and

experiments are based, and in which the formal methods that we developed are linked to

synthesis and simulation. We then took on the issues of formal verification and abstract

equivalence checking.

We formulated a formal verification methodology to verify general properties of
CFSM networks. We demonstrated that this methodology is efficient in deailing with the
problem of complexity and effective in finding bugs. However, manual intervention is re

quired, coming in the form ofassumption and abstraction selection. Assumptions are made
in the form of separate timing and functionality verifications through constraints on the

architectural mappings. The application of formal verification techniques to CFSM net

works led us to the following conclusion. For a formal abstract methodology to beeffective,
it must be applied to a specific property, not just any arbitrary property. The property
must also allow for the separation of concerns. In specific, it must allow for the separate

specifications and validations of timing and functionality.
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Therefore, we focused on the abstr2M:t analysis of the synchronous equivalence of

two implementations under the synchronous assumption. This property is analogous to

functional equivalence for sequential circuits and takes full advantage of the separation of

timing and functionality. One powerful result of this equivalence criterion is the identifi

cation of a set of delay insensitive scheduling policies- Once a delay insensitive scheduling

policy is chosen, any variation in delay does not affect the functional behavior. Static

analysis of this sort is very efficient and effective in proving equivalence, though it may at

times be conservative. To check for equivalence between implementations using different

delay insensitive scheduling policies, we proposed algorithms beised on worst-case analysis

of the communication among components. The events communicated between components

are abstracted into a signature that is maximal in the sense that it represents all possible

communication patterns of that implementation. By comparing the signatures of different

delay insensitive scheduling policies for a given system, we were able to determine equiva

lence conservatively. We demonstrated with real-life examples that synchronous equivalence

opens design exploration avenues uncharted before.

Lastly, we related communication analysis to exhaustive simulation through a

series of refinement and pruning operations on the communication signatures. An algorithm

can choose to work at any abstraction level trading off computational efficiency with the

possibility of inconclusive result due to false negatives. We provided primitives to move

amongst different abstraction levels that exist between abstract commimication analysis

and exhaustive simulation.

9.2 Future Directions

Much research work is still needed before the synchronous approach can be £is

popular in the embedded system domain as it is in the sequential circuit domain. There

are three different research directions that may prove to be crucial in this regard. They are

• Iterative refinement techniques.

• Repartitioning of the components.

• Multi-clock operation.
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9.2.1 Iterative Refinement Techniques

During communicationanalysis, if two communicationsignatures differ, or if either

of them is infinite, the result of the analysis is inconclusive. The "errortrace" ofthe analysis

is simply the difference in execution covers. Based on the error trace, contamers can be

refined to make the analysis more precise. This can be accomplished manually, with the

primitives suggested in Chapter 8. It could also be done through automatic techniques

similar to those proposed in [Bal94] for formal verification of timed systems.

The goal of the iterative refinement will be to reach a positive result as early as

possible, or to reach a single branch (split) of completely refined execution covers where for

some primary output, one implementation produces a 1 whilethe other produces a 0. These

two objectives are contradictory and user hintssuch as "probably equivalent" or "probably

not equivalent" can help in choosing the refinement that can morequickly lead to a solution.

9.2.2 Component Repartitioning

Aninteresting openquestion is what happens if we violate the assumption that the

component functionalities and the component connectivity £ire the same among all possible

implementations. General repartitioning can be thought of as a series of decompositions

and compositions of the CFSMs. It is not hard to compare two implementations where the

difference is only that one component is decomposed into two or two components are com

bined into one through synchronous decomposition and composition. If the "subnetwork"

represented by the two decomposed components, for the given implementation, satisfies the

synchronous assumption, then it is equivalent to the implementation with a single, syn

chronously composed component. How this check can be done efficiently and locally will

be crucial for an efficient general repsuiiitioning methodology.

9.2.3 Multi-Clock Synchronous Systems

It is straightforward to apply abstract communication analysis to acyclic systems

with two different hardware resources running at two different "clocks", since a complete

ordering of the component executions can be foimd which has a period equal to the least

common multiplier of the two periods. In fact, we can show that one can always construct

a single process CES implementation that is synchronously equivalent to the multi-clock

synchronous hardware implementation of the same acyclic specification. This principle can
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also be extended to synchronized processors running at different "macro clocks". However,

it is not clear that under what condition can this "synthesis" approach to design exploration

be extended to cyclic networks.



140

Bibliography

[ABD+95] Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell, and Andy J.
Wellings. Fixed priority pre-emptive scheduling: An historical perspective.

Real-Time Systems, 8(2-3):173-198, 1995.

[Bal94] Felice Balaxin. Iterative Methods for Formal Verification of Discrete Event

Systems. PhD thesis. University of California Berkeley, 1994.

[Bal99] F. Balarin. Worst-case analysis of discrete systems. In Proceedings of the

International Conference on Computer-Aided Design, November 1999.

[BCG91] G. Berry, P.Couronne, and G. Gonthier. Thesynchronous approach to reactive

and real-time systems. IEEE Proceedings, 79, September 1991.

[BCG"'"97] Felice Balarin, Massiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska,

Luciano Lavagno, Claudio Passerone, Alberto Sangovanni-Vincentelli, Ellen

Sentovich, Kei Suzuki, and Bassam Tabbara. Hardware-software co-design of

embedded systems: the Polis approach. Kluwer Academic Publishers, Boston;

Dordrecht, 1997.

[BCL"'"94] J. Burch, E. Clarke, D. Long, K. McMillan, et al. Symbolic model checking for

sequential circuit verification. IEEE Transactions on Computer-Aided Design,

13(4):401-424, April 1994.

[Ber96] Gerard Berry, 1996. See http://cma.cma.fr/Esterel.

[BHLM90] J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt. Ptolemy: a framework

for simulating and prototyping heterogen eous systems. Intemtional Journal

of Computer Simulation, special issue on Simulation Software Development,

January 1990.



BIBLIOGRAPHY 141

[BRB90] K. S. Brax:e, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a

BDD Package. In Proc. of 27^^ Design Automation Conference, pages 40-45,

June 1990.

[BSV97] F. Balarin and A. Sangiovanni-Vincentelli. Schedule validation for embedded

reactive real-time systems. In Proceedings of the Design Automation Confer

ence, June 1997.

[BSVA"^96] R. Brayton, A. Sangiovanni-Vincentelli, A. Aziz, S. Cheng, S. Edwards,

S. Khatri, Y. Kukimoto, S. Qadeer, R. Ranjan, T. Shiple, G. Swamy, T. Villa,

G. Hachtel, F. Somenzi, A. Pardo, and S. Sarwary. VIS: A System for Verifica

tion and Synthesis. In Proc. of the 8th International Conference on Computer

Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages

428-432. Springer-Verlag, 1996.

[Buc93] J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using

the Token Flow Model. PhD thesis, U.C. Berkeley, 1993. UCB/ERL Memo

M93/69.

[BY93] Felice Balarin and Gary York. Verilog HDL modeling styles for formal ver

ification. In Proceedings of the IFIP Conference on Hardware Description

Languages and their Applications, April 1993.

[CDV94] Coppo, M. D'Ambrosio, and V. Vercellone. The A-VPN server, a solution for

atm virtual private networks. Proceedings of ICCS, November 1994.

[CGH'''99] M. Chiodo, P. Guisto, H. Hsieh, A. Jurecska, L. Lavagno, A. Semgiovcinni-

Vincentelli, E. Sentovich, and K. Suzuki. Synthesis of software programs for

embedded control applications. IEEE Transactions on Computer-Aided De

sign, 18(6):834-849, June 1999.

[CHM''"94] H. Cho, G. Hachtel, E. Macii, M. Poncino, and F. Somenzi. A structural

approach to state space decomposition for approximate reachability analysis.

In Proc. of Int'l Conference on Computer Design, October 1994.

[Den75] J. B. Dennis. First version data flow procedure language. Technical Report

MAC TM61, Massachusetts Institute of Technology, May 1975.



BIBLIOGRAPHY 142

[DH89] D. Drusmski and D. Haur'el. Using statecharts for heirdware description and

synthesis. IEEE Transactions on Computer-Aided Design, 8(7), July 1989.

[Eng94] Institute of Electrical and Electronics Engineers. IEEE standard VHDL lan

guage reference manual IEEE, 1994.

[FLL+98] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro, M. Paolini, R. Passerone,
M. Sgroi, and A. Sgingiovanni-Vincentelli. Intellectual property re-use in em

bedded system co-design: an industrial case study. International Symposium

on System Synthesis, December 1998.

[GL94] O. Gnunberg and D. Long. Model checking and modular verification. IEEE

Transactions on Programming languages and Systems, 16(3), May 1994.

[GM92] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem

proving environment for higher order logic. Cambridge University Press, 1992.

[GR94] D. Gajski and L. Ramachandran. Introduction to high-level synthesis. IEEE
Design and Test of Computers, lI(4):44-54, 1994.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305-
1320, September 1991.

[HLN+90] D. Har'el, H. Lachover, A. Naamad, A. Pnueli, et al. STATEMATE: a working
environment for the development of complex reactive systems. IEEE Trans

actions on Software Engineering, 16(4), April 1990.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, languages
and Computation. Addison Wesley, 1979.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming. In
Proceedings of IFIP Congress, August 1974.

[Kur94] R. P. Kurshan. Automata-Theoretic Verification of Coordinating Processes.

Princeton University Press, 1994.



BIBLIOGRAPHY 143

[LL73] C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming

in a hard-real-time environment. Journal of the Association for Computing

Machinery^ 20(1):46 - 61, January 1973.

[LLSV99] M. Lajolo, M. Lzaarescu, and A. Sangiovanni-Vincentelli. A compilation-

beused software estimation scheme for hardware/software co-simulation. In

Proceedings of the International Workshop on Hardware-Software Codesign,

May 1999.

[LM87] E. A. Lee £ind D. G. Messerschmitt. S3mchronous data flow. IEEE Proceedings,

September 1987.

[MBNSV93] A. Malik, R. Brayton, A. Newton, and A. Sangiovanni-Vincentelli. Two-level

minimization of multivalued functions with large offisets. IEEE Transactions

on Computers, 42(11), November 1993.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and

domains, pzirt 1. Theoretical Computer Science, 13:85-108, 1981.

[ORR''"96] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining

Specification, Proof Checking, and Model Checking. In Proc. of the 8th Inter

national Conference on Computer Aided Verification, volume 1102 of Lecture

Notes in Computer Science, pages 411-414. Springer-Verlag, 1996.

[SAB'̂ 93] T. Shiple, A. Aziz, F. Balarin, S. Cheng, R. Hojati, T. Kam, S. Krishnan,

V. Singhal, H. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Formal

design verification of digital systems. In Proceedings of TECHCON, 1993.

[SB94] Carl Seger 2ind Janusz Brzozowski. Generalized ternary simulation of sequen

tial circuits. Informatique Theorique et Applications, 28(3-4):159-86, 1994.

[SBT96] T. Shiple, G. Berry, and H. Touati. Constructive analysis of cycliccircuits. In

Proceedings of European Design and Test Conference, March 1996.



BIBLIOGRAPHY
144

[SSL+92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P.R. Stephan, R.K. Bra3rton, and A. Szingiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Technical Report UCB/ERL M92/41,
U.C. Berkeley, May 1992.

[Tho90] W. Thomas. Automata on infinite objects. In J.van Leeuwen, editor. Handbook
of Theoretical Computer Science. Elsevier, 1990.

[TSL'*"90] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Implicit State Enumeration of Finite State Machines Using BDD's. In Proc.
of Int'l Conference on Computer-Aided Design, November 1990.

[Ung69] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley Interscience,
1969.

[Wan96] Huey-Yih Wang. Hierarchical Sequential Synthesis: Logic Synthesis of FSM
Networks. PhD thesis. University of California Berkeley, 1996.

[YMS"^98] J. Young, J. MacDonald, M. Shilman, A. Tabbara, P. Hilfinger, and A. New
ton. Design and Specification ofembedded Systems in Java Using Successive,

Formal Refinement. In Proc. of Design Automation Conference, pages
70-75, Jime 1998.



Index

CFSM, 32

semantics, 36

FSM, 26, 28

extended (EFSM), 27

POLIS, 13

abstraction

examples, 5

architectural mapping, 19, 71

causality, 28

communication

synchronized, 26

unsynchronized, 26

connection, 29

contzuner

observable, 131

state value, 127

container set, 90

container spzice

binary, 91

ternary, 118

container-event set, 90

container-event space, 91

ternary, 119

cover

binary, 93

least ternary non-decreasing, 121

145

cover function

ternary, 120

cyclic executive serial scheduling policy,

74

data, 29

delay insensitive scheduling policy, 74

embedded systems

architectiure, 2

current design practice, 4

examples, 1

proposed approach, 7

user interface, 2

event, 29

event set, 90

event space, 91

execution cover generation procedure, 96

execution covers, 96

execution trace, 87

false negative result, 62

finite state automata, 32

composition, 32

run, 32

Finite State Machine (FSM), 26

formal verification, 43

abstraction, 44, 47, 57



INDEX

conservative abstraction, 45

error trace, 44

false negative, 45

false positive, 45

paradigm, 43

state explosion, 27

GALS, 29

generation procedure

binary execution cover, 96

modified ternary execution cover, 127

ternary execution cover, 120

global state pattern, 71

greatest execution cover, 98

hierarchical process network, 24

high level language translation, 15

implementation, 71

inconclusive result, 61

information ordering

binary, 92

ternary, 119

initial

state, 30

initial transition, 30

input

stimulus, 35

iterative refinement, 138

language

automaton, 44

lezist execution cover, 105

least ternary non-decreasing cover, 121

liveness, 80

146

local execution trace, 87

minterm, 92

modified ternary execution cover genera

tion procedure, 127

multi-cast, 31

multiclock, 138

net, 30

network, 31

non-decreasing

binary, 92

non-decreasing function

ternary, 119

observable container, 131

positive result, 61

predecessor, 80

processes, 24

refinement, 115

repartitioning, 138

responsiveness, 28

scheduling point, 71

scheduling policy, 73

cyclic executive serial, 74

delay insensitive, 74

static priority serial, 74

unit delay parallel, 74

well-behaved, 93

scheduling policy analysis, 70

set

container, 90

container-event, 90



INDEX

event, 90

ternary container, 118

ternary container-event, 118

signal, 34

space

container, 91

container-event, 91

event, 91

stabilization, 71

state value container, 127

static priority serial scheduling policy, 74

sub-networks, 24

subnetwork

instantiation, 25

successor, 80

symbolic simulation, 121

sjmchronous assumption, 65

synchronous equivalence, 65

synthesis, 21

synthesis directives, 71

system co-simulation, 20

system graph, 79

ternary container set, 118

ternary container space, 118

ternary container-event set, 118

ternary container-event space, 119

ternary cover function, 120

ternary execution cover generation proce

dure, 120

ternary information ordering, 119

terneiry non-decreasing function, 119

timing

147

assumption, 46, 47, 57

transition, 30, 35

spontaneous, 35

tremsition relation, 30

translation, 105

true negative result, 62

unit delay parallel scheduling policy, 74

well-behaved scheduling policy, 93


	Copyright notice 2000
	ERL-00-37

