Copyright © 2000, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FORMAL METHODS FOR
EMBEDDED SYSTEM DESIGN

by
Harry Chia Chang Hsieh

Memorandum No. UCB/ERL M00/37

20 May 2000

FORMAL METHODS FOR
EMBEDDED SYSTEM DESIGN

by

Harry Chia Chang Hsieh

Memorandum No. UCB/ERL MO00/37

20 May 2000

ELECTRONICS RESEARCH LABORATORY |

College of Engineering
University of California, Berkeley
94720

Formal Methods for Embedded System Design
by

Harry Chia Chang Hsieh

B. S. (University of Wisconsin at Madison) 1988
M. S. (Stanford University) 1991

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Alberto L Sangiovanni-Vincentelli, Chair
Professor Jan M. Rabaey

Professor Ilan Adler

Doctor Felice Balarin

Spring 2000

The dissertation of Harry Chia Chang Hsieh is approved:

Chair

Date

Date

Date

University of California at Berkeley

Spring 2000

Date

Formal Methods for Embedded System Design

Copyright Spring 2000
by
Harry Chia Chang Hsieh

Abstract

Formal Methods for Embedded System Design
by

Harry Chia Chang Hsieh

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Alberto L Sangiovanni-Vincentelli, Chair

The goal of this dissertation is to investigate how formal methods can be applied to the
domain of embedded system design. The emphasis is on the specification, representation,
validation, and design exploration of such systems from a high level perspective. We start by
reviewing the framework upon which the theories and experiments are based, and through
which our formal methods are linked to synthesis and simulation. We also review in detail
the formal model of computation used to represent embedded system specification and
implementation: Network of Codesign Finite State Machines.

We formulate a formal verification methodology to verify general properties of
CFSM networks and demonstrate that this methodology is efficient in dealing with the
problem of complexity and effective in finding bugs. However, manual intervention is re-
quired. Manual intervention comes in the form of abstraction selection and separation of
timing and functionality through constraints on the architectural mapping. We conjec-
ture that for specific properties, efficient algorithms exist for completely automatic formal
validation of systems.

The analysis of the application of formal verification techniques to CFSM networks
led us to choosing a property that is basic, but embodies the principle of separation of
timing and functionality: synchronous equivalence of two different implementations. This
property is analogous to functional equivalence for sequential circuits. One powerful result
of this equivalence criterion is the identification of a set of delay-insensitive scheduling
policies. Once a delay-insensitive scheduling policy is chosen, any variation in delay does

not affect the functional behavior. For efficient equivalence checking of implementations

using different delay-insensitive scheduling policies, we propose structural algorithms based
on worst-case analysis of the communication among components. The events communicated
between components are abstracted into a signature that is maximal in the sense that it
represents all possible communication patterns of that system. By comparing the signatures
of different delay-insensitive scheduling policies for a given system, we were able to determine
equivalence conservatively.

Lastly, we relate communication analysis to exhaustive simulation through a series
of refinement and pruning operations on the communication signatures. An algorithm can
choose to work at any abstraction level trading off computational efficiency with the possi-
bility of inconclusive result due to false negatives. We provide primitives to move between
different abstraction levels that exist between communication analysis and exhaustive sim-
ulation. We demonstrate with real-life examples that synchronous equivalence opens design

exploration avenues uncharted before.

Professor Alberto L Sangiovanni-Vincentelli
Dissertation Committee Chair

 Tomy parents...

i

Contents

List of Figures

List of Tables

1

Introduction

1.1 Emergence of Embedded Systems
1.2 Design of Embedded Systems
1.3 Requirements For An Effective Design Methodology
1.4 Proposed Design Approach
1.5 Motivation e e e e e e
1.6 Thesis Overview i i i i i it it e e s e et
The POLIS Codesign Framework

2.1 The POLIS Codesign Methodology
2.1.1 High Level Language Translation
2.1.2 Architectural Mapping e
2.1.3 System Co-Simulation
2114 Synthesis e e e

Codesign Finite State Machines

31 Background e
3.1.1 Hierarchical Process Network
3.1.2 Finite State Machines
3.1.3 Extended Finite State Machines

32 CFSMs: Semantics. it
321 Signals. e
3.22 ProcessBehavior
3.23 Network Behavior

3.3 Mathematical Model
3.3.1 Preliminaries

3.3.1.1 Finite Automata
33.1.2 Signals,
3.3.1.3 Tramsitions e
33.1.4 CFSM it e e e

iv

CONTENTS v

3.3.2 Semanticsof CFSM 36

3.3.2.1 Input buffer automata 38

3.3.2.2 Output buffer automata 40

3.3.23 Mainautomaton 41

3.3.24 Networksof CFSMs. 41

4 Formal Verification of CFSM Specifications 43
4.1 Verification Methodology 46
4.2 Verification Example: Seat Belt Alarm Controller 48
4.3 Verification Example: Shock Absorber Controller 51
4.3.1 Verifying Property P1.1. 56

4.3.1.1 Verification with Abstracted Integers 57

4.3.1.2 Verification Under Timing Assumptions 57

4.3.2 \Verifying Property P1.2 58

4.3.2.1 Using Timing Assumptions and Freeing Variables 58

4.3.3 Verifying Property P1.3 59

44 Conclusions 59

5 Synchronous Equivalence 61
5.1 Motivation 63
5.2 The Synchronous Assumption and Synchronous Equivalence 64
521 RelatedWork, 66

5.3 Design Exploration Methodology 67
5.4 Analyzing Synchronous Equivalence 68

6 Static Equivalence Analysis 70
6.1 Scheduling Policy Analysis. 70
6.1.1 Validating Experiment: Seat Belt Alarm Controller. 77

6.2 System Graph Analysis 79
6.3 Mixed Analysis 82
6.4 Analysis of Heterogeneous Architectures 84
65 Conclusions “... 8

7 Communication Analysis 86
71 ExecutionTrace 86
7.2 Abstracting Communication 90
721 Containers 90

7.2.2 Well-Behaved Scheduling Policy 93

723 ExecutionCovers 96

724 Greatest ExecutionCover 98

7.24.1 Simple Illustrating Example 98

7.24.2 Shock Absorber Example 99

7.2.4.3 Seat Belt Alarm Controller Example 101

7.25 Least Execution Covers 105

7.2.5.1 Simple Illustrating Example 107

CONTENTS

7.2.5.2 Seat Belt Alarm Controller Example

7.2.5.3 ATM Switch Example .
7.2.6 Correctness Proof of Theorem 7.5
73 Conclusions

8 Refining Communication Analysis

8.1 Container Refinement
8.2 State Refinement
8.3 Pruning Execution Covers

8.4 Relationship with Exhaustive Simulation

9 Conclusions and Future Directions

9.1 Conclusions
9.2 Future Directions
9.2.1 Iterative Refinement Techniques
9.2.2 Component Repartitioning . . .

9.2.3 Multi-Clock Synchronous Systems

Bibliography

...................

....................

....................

....................

....................

....................

....................

....................

...................

vi

108
109
111
113

115
117
126
130
134

136
136
137
138
138
138

140

vii

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2

6.1
6.2
6.3
6.4

7.1

An Embedded System Architecture. 3
Current Embedded System Design Practice. 4
Proposed Design Approach. 7
The Designer's Flow Chart. 14
The POLIS System. o i i it e e e e e s e, 15
Seat Belt Alarm Controller Example. 16
Controller FSM in Seat Belt Example. 16
Timer FSM in Seat Belt Example. 17
C Code Synthesized for the Seat Belt Alarm Controller. 22
The Control and Data Flow Graph of the Seat Belt Controller. 23
Hierarchical Process Network. 25
The STG of an Automaton. 33
The Automaton Model of a CFSM. 37
The Control Part of Input Buffer Automaton IB;. 39
The Control Part of Output Buffer Automaton OB,. 40
A Generic Formal Verification Paradigm. 44
FSM Monitor for Seat Belt Alarm Controller. 49
FSM Representation of the Behavior of the Key Signals. 50
FSM Representation of the Abstract Behavior of the Timer. 50
The Shock Absorber Controller. 53
The Longitudinal Speed Strategy. 55
Motor Control. i 56
A Synchronous Approach to Design Exploration. 67
Trade-Off in Analysis Methods. 69
Example Illustrating Scheduling Points. 72
Converting into Tree of Nodes and Successor Free Subgraphs. 81
Example of Co-Processor Architecture. 84
Example of Synchronous Parallel Architecture. 85

Example for Execution Trace. 88

LIST OF FIGURES viii

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

An Execution Trace of the Example of Figure 7.1. 88
An Execution Trace of Seat Belt Example.. 89
Example for Well-Behaved Scheduling Policy. 95
Greatest Execution Cover for Example in Figure 7.1. 99
System Graph for Shock Absorber Controller. 100
Greatest Execution Covers for Shock Absorber Scheduling Policy 1. 101
Greatest Execution Covers for Shock Absorber Scheduling Policy 2. 102
Greatest Execution Covers for Shock Absorber Scheduling Policy 3. 102
Greatest Execution Covers for Shock Absorber Scheduling Policy 4. 103
Greatest Execution Covers for Shock Absorber Scheduling Policy 5. 103
Greatest Execution Cover for Seat Belt Controller. 104
Least Execution Cover for Example in Figure 7.1. 108
Least Execution Cover for Seat Belt Example. 110
Algorithm Block of a ATM Server. 111
A Simple Example for Container Refinement. 117
Least Execution Cover for Example of Figure 8.1. 118
Refined LEC for Example in Figure 8.1. 123
Further Refined LEC for Examples in Figure 8.1. 124
A Simple Example for State Refinement. 126
LEC for Examplein Figure 85., 127
Refined LEC for Example in Figure 85. 131
An Example Demonstrates the Need for Pruning. 131
Least Execution Covers for Example in Figure 8.8. 132
Pruned Least Execution Covers for Example in Figure 8.8.. 134

List of Tables

...............

..................................

........................

Acknowledgements

I am truly privileged to work alongside Prof. Alberto Sangiovanni-Vincentelli. His integrity,
quality of work, and breadth of knowledge have never ceased to amaze me. In many ways
he has inspired me, and will have a lasting influence on me. I am also grateful to Prof.
Jan Rabaey, Prof. Ilan Adler, and Dr. Felice Balarin for providing useful comments for this
dissertation. Dr. Balarin, more than anyone else, was there from the early stage of this re-
search. He tirelessly fought in the trenches with me, resolving inconsistencies and removing
misconceptions. For his guidance and constant encouragement, I am truly indebted.

Prof. Luciano Lavagno had given me invaluable help all through my stay here at
Berkeley. It is not an exaggeration to say that without him, this dissertation would not have
been possible. He helped to initiate many of the ideas and, being the principle architect
of POLIS, provided me with a framework to experiment within. Berkeley CADgroup is
a research environment most researchers can only dream about. I want to thank Prof.
Robert Brayton, Prof. Tom Henzinger, Prof. Kurt Keutzer, Prof. Richard Newton, along
with Prof. Sangiovanni-Vincentelli for their leadership and guidance that make CADgroup
what it was, what it is, and what it will be.

I am blessed to be able to collaborate with many of the brightest minds in CAD
community today. I want to give my sincere thanks to: Massimiliano Chiodo, Paolo Giusto,
Attila Jurecska, Dr. Claudio Passerone, Roberto Passerone, Dr. Ellen Sentovich, Marco
Sgroi, Kei Suzuki, and Dr. Bassam Tabbara. Many other CADgroup members, past and
present, have helped me professionally or personally. I want to thank all of them. Some
amongst them have to put up with me a little more than others: Luca Carloni, Wilsin
Gosti, Ken Yamaguchi, Dr. Yuji Kukimoto, Dr. Rajeev Murgai, Dr. Rajeev Ranjan, Dr.
Thomas Shiple, Suzan Szollar, Dr. Serdar Tasiran, Dr. lasson Vassiliou, Dr. Tiziano Villa,
Marlene Wang, and Dr. Yosinori Watanabe.

The staff support I received has been uniformly helpful and amiable. Thanks go to
Kia Cooper, Ruth Gjerde, Brad Krebs, Elise Mills, Flora Oviedo, and Judd Reiffin. I would
like to acknowledge the financial support of the Semiconductor Research Corporation. Most
of this work is conducted under the auspices of SRC research funding (DC-324).

I want to thank the folks at University of California Ballroom Dancers and Dance
Arts Studios. International Style Ballroom and Latin Dancing grew to become my second

passion and primary social venue in the past few years. Many of the dancers have become

xi

my close friends and confidants. They helped me to put aside all my troubles and worries,
for as long as the music plays. I also want to thank Joanne Turnpenny and Jennifer Litty,
who provided me with the greatest inspiration and much needed distraction.

My younger brother, Chia Hsing, has the distinction of being my only local family
member for most of the past fifteen years. He helped me to reconcile much of my professional
and social demands with my family obligations. I want to thank him both as a brother and
as a friend. My older sister, Wan Ling, fueled much of my life-long passion for classical
music. Finally, I owe everything to my father, Wen Ho Hsieh, and my mother, Chin Chi Wu
Hsieh, who bore me, raised me, and showed me the true meaning of dedication, integrity,
and compassion. All my past accomplishments serve witness to who they are, and all my

future achievements will stand testimony to who they continue to be.

Chapter 1

Introduction

1.1 Emergence of Embedded Systems

Embedded systems are loosely defined as any system that utilizes electronics but is
not perceived or used as a general purpose computer. Traditionally, one or more electronic
circuits or microprocessors are literally embedded in the system either taking up roles that
use to be performed by mechanical devices or providing functionality that is not otherwise
possible. As prices of microelectronics and microprocessors continue to fall, it becomes
increasingly attractive for systems to take on this electronic aspect and enjoy the advantage
of higher performance, lower cost, additional features, flexibility to design changes, and
faster time to market. Today, the low cost and high performance afforded by electronics
spurs the creation of many products and systems that could not even be dreamed of just
a few years ago. Some examples of embedded systems are automotive control systems,
manufacturing systems, network switches, climate control systems, home appliances such
as microwave ovens or refrigerators, cellular phones, Personal Digital Assistants, pagers,
pacemakers, weapons, and toys.

This added electronic dimension allows the performance and cost of an embedded
system to track the unbelievable improvement in the performance and cost of digital elec-
tronics. Traditional cellular phone transmission based on analog technology cannot compete
in performance (clarity) with the cellular phone transmission based on digital technology
and digital electronics. First generation microwave ovens often contained only a start/stop
button and a timer. A consumer grade microwave oven today easily handles different set-

tings for different food items, special functions such as reheating, defrosting, and browning,

CHAPTER 1. INTRODUCTION 2

and even contains sensors to sense the temperature of the food item for optimal result.
Adding this electronic dimension to existing products also offers tremendous opportunities
for improving the design. Electronic injection control in an automobile is an example where
the added electronic dimension provides higher performance and lower cost. The produc-
tion of traditional injectors needs to adhere to very stringent specifications to achieve high
fuel efficiency and low emission. However, when powerful electronics are used to perform
adaptive engine control, algorithms can be devised to control fuel injection taken into con-
sideration also the condition of the injector. A cheaper manufacturing process can then be
used to produce the injector and, at the same time, meet and exceed the requirements for
fuel efficiency and exhaust emission.

The improvement in performance and cost can often be attributed to the use of
electronic components that can be easily programmed or configured to perform various
functions. All electronic components become more performing and cheaper as integrated
circuit technology advances. Programmable and configurable components such as proces-
sors and gate arrays enjoy another dimension of economy of scale that is not available for
components with very limited programmability. Since programmable and configurable com-
ponents are able to perform a variety of functions, they can be applied to an ever-increasing
variety of embedded applications. Successive generations of a product can also share the
same components, or at least the same family of components, running different software
or with a different configuration. As larger and larger portions of embedded functionality
are performed on programmable components, the major cost factor of a design shifts from
material and hardware design to the design of software programs. An effective embedded
system design methodology must emphasize the design of software.

Another salient characteristic of embedded systems is their unconventional user
and environment interfaces. Instead of keyboards and monitors, or even buttons and Light
Emitting Diodes, the natural interfaces for embedded systems are more akin to sensors and
actuators. Consider an engine control application, where the inputs to the system are shaft
position and air and gas intakes, and outputs are control pulses for valves. Accelerome-
ters are being inserted into pens today and embedded electronics are then used to gather
authentication signatures. An effective embedded system methodology must take into con-
sideration the design of the interfaces, and be very careful in defining the boundary of the
electronic portion of the system.

The electronic aspect of embedded system can be implemented with many differ-

CHAPTER 1. INTRODUCTION 3

Custom
Hardware

Microprocessor/
Microcontroller

Input/Output

[Interface

0-Processor
dhieatd

Peripheral

Intellectual
Property

Input/Output

Figure 1.1: An Embedded System Architecture.

ent computational resources, ranging from off the shelf Small Scale Integration (SSI) and
Medium Scale Integration (MSI) chips, to application specific devices like custom chips,
semi-custom gate arrays, and field programmable gate arrays, to processors like Digital
Signal Processors (DSPs), microprocessors, and microcontrollers. A possible hardware ar-
chitecture for an embedded system is illustrated in Figure 1.1. The functionality of the
system may be implemented on the microprocessor, the co-processor, and the DSP as
threads. It may also be implemented by controlling the custom hardware and microcon-
troller peripherals via drivers. There may also be Intellectual Property (IP) blocks in the
system such as MPEG decoders and ethernet interfaces. Each processor has its own pro-
gram memory, data memory, and memory bus. The DSP additionally shares some datapath
memory with the processors. Bridges to the custom hardware, peripherals, and IP help to
interface these drastically different computational resources. The designer of embedded
systems faces many significant challenges, including the obvious burden to possess exper-
tise on software programming, hardware design, system design issues such as allocation of
the functions to resources and scheduling of tasks, and interface design between different
computational resources and to the rest of the system. Traditional simulation tools must
be combined to simulate a system consisting of heterogeneous elements. Synthesis tools
must synthesize interface and communication structures, and to some extent, software, if

a high-level description language is used. There also must be a method to perform design

CHAPTER 1. INTRODUCTION 4

{ Sécification]

|

Specification
Part 1,2,...,n

— T~

Reference

|

Simulator

1

Filter

™~ e
No / \Good

Figure 1.2: Current Embedded System Design Practice.

exploration, especially of the newly added dimension to the design freedom: a particular
piece of computation may now be performed on any number of computational resources,

with different performance characteristics.

1.2 Design of Embedded Systems

Current embedded system design practice, as illustrated in Figure 1.2, is quite
informal and application specific. Designers often start with a requirement written in En-
glish, use “intuition” to pick a particular interpretation of this requirement and break the
design into hierarchy so as to better manage the complexity of the design. Designers then
take each part of this hierarchy and write a so-called reference (or golden) model in VHDL,
Verilog, C, or any other language that has an execution semantics. The golden model is

executed on a computer to investigate whether it satisfies a set of requirements, including

CHAPTER 1. INTRODUCTION 5

a match with the original informal specification. This is done on parts of the design and
the result is extrapolated to the whole through simple logic deduction. A (candidate)! im-
plementation is then generated through a combination of manual labor and tools that are
often poorly connected. Different parts of the design may be manually mapped to different
computational resources. Synthesis for different resources, as well as the interfaces between
resources, usually utilizes tools that are based on completely different models of compu-
tation (e.g. finite state machines and data-flow networks), hence are very difficult to be
connected in any way. The correctness and optimality of the (candidate) implementations
are assessed with filtered simulation traces obtained from the reference model and from the
candidate implementations. Simulation tools for different resources are also often discon-
nected and have very different models of computation. This contorted and highly informal
design flow is obviously very error-prone. It does point out many fundamental difficulties

in the design of embedded systems.

1.3 Requirements For An Effective Design Methodology

The design of embedded system is a highly complicated process. Due to this com-
plexity in both size and characteristics of the problem, a push-button solution is highly
unlikely for the near future. It is not reasonable to expect the embedded system designers
to write down all the necessary detail of an embedded system specification, and only that
necessary detail. It is also not reasonable to expect the tools to be able to optimize accord-
ingly even if such a complex specification is written down. An effective methodology should
instead provide designers with a seamless interactive flow from high level abstract specifi-
cation all the way down to implementation. Central to this seamless flow is a formal model
that can be used to represent both the abstract specification and the final implementation.

A representation is abstract when it is devoid of details. A mathematical equation
is more abstract than a C program implementing the equation. The C program is more
abstract than the object code compiled from the C program. In each case, the more refined
representation contains more detail information than the more abstract representation. The
C program contains algorithmic detail, which is absent in the equation. The object code

contains memory requirements and delay characteristics, which are absent in the C program.

!An “implementation” generated through this process may only be considered a candidate because it
may not be correct. It is not generated through formal refinement. Some ad hoc manual procedures are
involved.

CHAPTER 1. INTRODUCTION 6

This absence of information has several important uses. First, it is easier for the designer
to analyze a simple, abstract, representation. It is easier to read a C program to figure
out what it is computing than to look at a piece of object code. Secondly, it is easier,
computationally, for the tools to work on a more abstract representation. Reachability
analysis of a set of equation implementing a sequential system is much more easily done on
the equations (often in terms of Finite State Machines) than on the C program representing
the sequential computation. The third important use of an abstract representation is that
one can prove properties for the abstract representation that will hold also for the refined
representation. Essentially, a refined representation is the abstract representation plus some
detail. A property is proven for the abstract representation if it is proven regardless of what
the resolution of that detail may be. It is therefore proven for every particular resolution,
including the chosen refined representation. For example, if a set of iterative equations does
not converge, then the C program should be non-terminating regardless of the algorithmic
detail, and the object code will be non-terminating regardless of the delay characteristic
and memory requirement.

Automatic tools are very important in supporting design decisions that may be
done interactively. In an effective methodology, automatic tools should be used to provide
the validation model for feedback to the interactive decision from the designer. Automatic
synthesis tools are also used when the specification is refined enough, so that more manual
intervention is not necessary. Only through formal specification, formal refinement, and
automatic synthesis can one guarantee the correctness of a design.

Theoretically, it may be desirable to have a single “best” formal language for em-
bedded system specification. Practically, this is very hard to achieve. Different types of
function are often more efficiently and more naturally represented in different formal lan-
guages. In addition, how a specification is written often affects the output of an automatic
synthesis tool. It is therefore more reasonable to have a set of formal languages for specifica-
tion; all sharing a formal model which supports formal refinement. This will allow efficient
synthesis because the designer can still write specifications in such a way that the given
synthesis algorithm will produce the best result. Formal analysis is still possible because of
the common formal semantics.

Design reuse, or Intellectual Property (IP) reuse, is another way to deal with the
issue of complexity. Having a hierarchical specification written in multiple formal languages

eases the process of IP integration. IP can be treated as just another hierarchy that has its

CHAPTER 1. INTRODUCTION 7

Behavioral Architecture
Libraries Libraries
Verify) Capture Verify]
Behavior Architecture Architecture Functional Level
Map Behavior to Verify Mapping Level
Architecture Performance
Implement Architectural Level

Performance Verify
Back-Annotation Implementation

Figure 1.3: Proposed Design Approach.

Behavior on
Architecture

own language and synthesis procedure and shares the same formal semantics. Character-
ization of the IP for analysis may be difficult, depending on the type of analysis required
and the information available from the IP providers.

Another unique difficulty to the design of embedded system is in the choice of the
target architecture. While conventional digital design problems usually focus on systems
with a single, specific computational resource, embedded system design can often be re-
alized using a variety of computational resources. To complicate the matter further, the
“optimal” architecture for the application may consist of more than one type of compu-
tational resources. In fact, to satisfy the requirement and achieve the optimal design, the
architecture needs to be designed, or “codesigned” alongside the algorithms. While it is
not possible for any embedded system design framework to accommodate all possible ar-
chitectures, it is important to accommodate a reasonable subset and make this restriction

explicit so that the designer will not unknowingly over-constrain the design problem.

1.4 Proposed Design. Approach

The overall design strategy that we envision is depicted in Figure 1.3. The design
flow consists of three levels, from the conception of the design to its implementation. A
single model of computation is used throughout, so the transition between different stages
of the design is formal and precise.

At the functional level, behavior is described formally using a simple and concise

CHAPTER 1. INTRODUCTION 8

mathematical model. The goal is to impose as little implementation detail as is possible.
A very large set of implementations may be the refinements of the specified behavior. In
order to weed out some of these refinements which may have undesirable characteristics, a
separate set of constraints may be needed to describe only those implementations that ex-
hibit desirable characteristics, such as short timing delay and low power consumption. The
relatively low complexity of the abstract behavior specification, however, makes it possible
to perform abstract analysis on the behavior at this early stage of design process. Designers
can perform property verification to see if the behavior exhibits certain critical properties
and if it does not, modify the behavior or constrain the refinement process. The character-
istic of a target architecture can be described by a set of succinct parameters. One such set
may be described as a Motorola 68hcl1 platform executing at 2MHz with an Introl compiler.
While the most detailed information should be gathered and indeed may be indispensable
for the final validation, abstract high level information, such as the “approximate” delay of
a basic block, can be very useful for high level analysis given a particular abstract model
of the behavior. Both the behavior and the architecture descriptions can be used for many
different designs and is consistent with the philosophy of IP reuse.

The first few stages of the refinement from behavior specification are usually done
manually and are collectively called the mapping level. The design space is simply too big
at this level for any meaningful automation. Any refinement decision will eliminate a large
set of implementations from consideration. It is more reasonable to allow the designers to
use their intuition for these decisions. The primary functions of the tools will be to assist
in making these decisions through analysis. Some examples of these mapping (also called
architectural mapping) decisions include mapping behavior onto computational resources
and choosing scheduling for shared resources. The types of interesting formal analysis at
this level may include property checking for an abstract specification, or equivalence check-
ing between two different implementations or between an implementation and a reference
(golden) model.

After the architectural mapping stage, the synthesis tools have enough information
to optimize the design all the way down to implementation. This includes technology-
independent optimization, as well as actual instruction selection and register allocation
for components mapped to programmable resources, and logic synthesis for components
mapped to be implemented as circuits. To reduce the possibility of manual error, the

synthesis procedure from this level down should be as automated as possible. The results of

CHAPTER 1. INTRODUCTION 9

synthesis are back annotated to the earlier part of the design process for possible iteration.

1.5 Motivation

We have developed a framework for the design of embedded system, POLIS, in
which a single formal model of computation is used throughout the design process. Steps
in the design process formally refine the abstract behavioral specification, synthesize the
behavior down to implementation under some objectives or constraints, or transform the
behavior to verification and simulation-oriented models. Due to the existence of this formal
model, formal verification tools [BSVA*96, McM93] can be applied to verify properties at
different levels of abstraction. The current generation of automatic formal verification tools
suffers from the issue of complexity. Many large designs are too complex for automatic
formal verification tools to analyze within reasonable time and memory resource. For the
domain of control dominated embedded applications, we want to establish a verification
methodology with systematic applications of abstractions and assumptions that will make
it possible to verify large systems. We deal with this issue in Chapter 4. Unfortunately, even
with the methodology in place, verification of arbitrary properties of arbitrary systems is
still very tedious and involves many manual abstraction operations. We establish efficient,
automatic, algorithms for formally analyzing specific, but important, properties of certain
classes of embedded systems. The “property” that we choose in this work is the equivalence
between two implementations of the same high level specification.

Current methods for specifying embedded system application are extremely ad
hoc. The desired behavior is often loosely represented as some filtered simulation trace
with special annotations, implicit assumptions, and so-called intuition. Therefore, a fun-
damental point of clarification to improve the design methodology is the formal definition
of correctness. Because embedded system designs are inherently complex, the principle of
“separation of concerns” in specification and verification is essential. Functional correctness
and timing should be verified independently.

We thus define synchronous equivalence, a “functional” equivalence among a set
of candidate implementations of embedded system specifications. An equivalence relation
divides behaviors into equivalence classes. Equivalence analysis can answer the question
whether two implementations are equivalent to each other or whether an implementation is

equivalent to the “golden” model representing the specification. This can be done precisely

CHAPTER 1. INTRODUCTION 10

through state reachabilityy analysis methods (e.g. model checking tools), or conservatively
(but more efficiently) through structural methods. We derive efficient structural algorithms
for synchronous equivalence analysis that can be used at the mapping level. These algo-
rithms can be used to explore the design space efficiently. Since the algorithms are conserva-
tive, they could sometimes lead to design choices that are sub-optimal. Trade offs between
the efficiency of the algorithms and the quality of the solution will need to be explored. We
deal with the definition and properties of synchronous equivalence in Chapter 5. Analysis
algorithms are presented in Chapters 6, 7, and 8, with different emphasis on the efficiency
or the quality of the solution.

Once a behavioral specification is architecturally mapped according to some crite-
ria, automatic synthesis can be done using any set of existing tools. SIS [SSL*92] or Design
Compiler from Synopsis can be used for synthesis of components mapped to FPGAs. Es-
terel [BCGY1] or Statechart [HLN*90] can be used for synthesis of components mapped to
microprocessors. The POLIS codesign framework, however, provides a complete synthesis
solution from behavioral specification all the way down to implementation with various

computational resources, all consistent with a formal model of computation.

1.6 Thesis Overview

In the next chapter we review the specification, mapping, simulation, and syn-
thesis aspects of the POLIS codesign framework [BCG*97]. These capabilities of POLIS
complement nicely the formal methods that we develop in the later chapters. In addition,
the formal model of computation used in POLIS, the network of Codesign Finite State Ma-
chines (CFSMs), will also be the formal model used to demonstrate the properties of the
algorithms. CFSMs are discussed in detail in Chapter 3. After discussing the framework
within which our formal methods will fit and the formal model we will use, in Chapter 4
we present an abstraction/refinement methodology for the formal verification of embed-
ded systems. Extensive abstraction is used to handle the complexity of the design, and
user-directed refinement is used as necessary to verify properties of the design. While our
formal verification methodology is effective in verifying properties of a design, it requires
extensive manual intervention. We develop automatic analysis algorithms for a specific,
and extremely important, analysis: synchronous equivalence between two implementations

of the same behavioral specification, or between an implementation and a reference model.

CHAPTER 1. INTRODUCTION 11

We define synchronous equivalence and the synchronous assumption in Chapter 5. We dis-
cuss the necessity of such an assumption and justify the resulting restriction on the design
space. We also discuss the consequences of the definition of equivalence relation and the
useful properties that come along with it. In Chapter 6, we present simple static algorithms
that can be used to prove synchronous equivalence with low computational complexity, of-
ten with no more than simple checking of implementation attributes or simple traversal of
system graphs. Unfortunately, an analysis of this sort is plagued by false negatives (pairs of
implementations that are declared not equivalent while actually they). In Chapter 7, we pro-
pose efficient analysis algorithms for synchronous equivalence based on the observation that
if the “communication” among components is the same for two implementations, then they
must be synchronously equivalent. Communication analysis removes many false negative
results from static algorithms, at a cost of higher complexity of the analysis. This effec-
tively introduces a partial order verification strategy for CFSMs. In Chapter 8 we make our
analysis method more precise by removing more and more of the false negative results. We
show that communication analysis can be transformed into exhaustive simulation through
the refining of “containers” and the pruning of unobservable events. We develop a whole
range of algorithms that can work at different points on the abstraction/refinement scale,
trading off the quality of solution with the complexity of the analysis. Finally, we conclude

with some summary remarks and future directions in Chapter 9.

12

Chapter 2

The POLIS Codesign Framework

The POLIS codesign framework is a collection of related tools that help the de-
signer to take behavioral specifications all the way down to actual implementations. The
target applications of POLIS are control dominated embedded systems such as automotive
control systems and ATM switches. There is no fixed target architecture per se. Design-
ers are free to utilize architectures consisting of any number of computational resources
connecting through simple interface generated automatically by POLIS. The designs in
POLIS are implemented as Globally Asynchronous Locally Synchronous (GALS) systems.
The designer breaks his design first into a set of hierarchical interacting networks. The
lowest (leaf) elements in the hierarchy are extended finite state machines called Codesign
Finite State Machines (CFSMs). These CFSMs also correspond to the smallest units that
can be assigned to computational resources. Each CFSM is locally synchronous, while the
interaction between CFSMs is asynchronous.

It is designer’s responsibility to decide which CFSM should be mapped to which
computational resource. If more than one CFSM is assigned to a computational resource,
scheduling policy has to be specified to coordinate their execution. The process of as-
signing CFSM to resources and deciding scheduling policy for shared resources is called
Architectural Mapping. A CFSM network, as initially specified by the designer, is abstract.
Many possible behaviors, including different interleaving of executions of the CFSMs, are
all consistent with the specification. An architecturally mapped CFSM network may have
deterministic behavior (hence it is simulatable) if low-level synthesis directives are set to
some deterministic (default) values. We believe that at this point in time, automation of the

architectural mapping selection process is very difficult, and in fact, probably not desirable.

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 13

! “intuition” and allow

It is better to leave these aspects of design freedom to the designers
the designer to choose his own architectural mapping. Oftentimes, designers will even write
their specification with a particular architectural mapping in mind. What POLIS provides
is, once a particular architectural mapping is chosen, a quick path to prototype and simu-
lation so the designers can test out their architectural mapping to see whether it actually
matches the requirement. This is enabled by a procedure for system level co-simulation of
heterogeneous computational resources.

Once a CFSM network has been specified and an architectural mapping has been
chosen, POLIS can take over and automatically synthesize hardware, software, as well as
any necessary interface. Components mapped to hardware are synthesized as sequential
circuits that may be implemented on some semi-custom ASICs or FPGAs. Components
mapped to software are first translated into reduced Control Data Flow Graphs called Soft-
ware graphs, or S-graphs. Technology independent optimization is performed on S-Graph.
Either object code or a subset-C code is generated. Subsequent technology dependent op-
timization is carried out by commercial compilers to obtain the final assembly codes for
the processors. The event base interfaces between hardware and software computational
resources are inserted automatically. Scheduling code is also automatically synthesized to
realize the high level directives from the designer at the architectural mapping stage.

The underlying mathematical model for POLIS is a network of Codesign Finite
State Machines (CFSMs). Any language with FSM semantics, such as Esterel [Ber96],
State Charts [DH89)], or the synthesizable subset of Verilog [BY93] and VHDL [Eng94], can
be compiled into a locally synchronous CFSM. The global connectivity is specified either
graphically in Ptolemy [BHLM90], or textually in a generic netlist. Since the communication
between CFSMs is asynchronous with finite buffers, there is no guarantee of delivery of
information. To ensure lossless communication, handshaking can be specified into the design
itself. Alternatively and more efficiently, a scheduler can be used to prevent the loss of
critical information. In Chapter 3, we will treat the subject of CFSM in full detail. Before
that, we describe some relevant aspects of the POLIS codesign methodology.

2.1 The POLIS Codesign Methodology

One possible embedded system design flow is presented in Figure 2.1. The concep-

tion of the design, in the form of existing Intellectual Properties (IPs) and ideas, is written

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 14

Ideas ‘ IPs Automatic

(@)
\ / Manual with support —

Design Specification
Processes
Interconnections
Constants, Types

(Translate Design into SHIFT)

- p : | Design
| Architectural Mapping Selection J+———— Modification

[Generate Simulation Model |

| Design Verification through Simulation |—————

(Software, Hardware, and Interface Synthesis)

Rapid proto!
Production

Figure 2.1: The Designer’s Flow Chart.

down as a set of processes, interconnection and other design information. POLIS translates
the processes into CFSMs, using the underlying FSM model of the specification languages.
Along with connectivity and other information, the design is written into Software-Hardware
Intermediate FormaT (SHIFT). After the designer selects an architectural mapping, POLIS
generates quick or accurate simulation models so the designer can verify, through simula-
tion, whether the design at this stage satisfies the functional and performance requirements.
If it does not, the designer may want to “try out” another architectural mapping (and pos-
sibly different low-level synthesis directives). Once the combination of CFSM network, the
architectural mapping, and the synthesis directives is deemed acceptable, the final imple-
mentation is automatically synthesized into actual codes for the target processors and the

configuration files for gate arrays.

The complete POLIS codesign framework is represented in Figure 2.2 where ovals
correspond roughly to tools and rectangles correspond roughly to models or files. Before
we go through some important aspects of the framework, we present a very simple example

that will serve to illustrate concepts throughout the rest of this dissertation.

Suppose that we want to specify a simple safety function of an automobile: a seat

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 15

Formal Languages

Translators

System Behavior

Architectural Mapping Selection

[Mapped Specification }

Scheduler Template
Timing Constraints

Interface Synthesis

HW Interfaces

HW Estimation
SW Estimatio

[Optimized HW }—————

Standard Components |

Board Level Prototyping

Physical Proto

Figure 2.2: The POLIS System.

belt alarm control system. A natural language specification written by a designer could
be: “Five seconds after the key is turn on, if the belt has not been fasten, an alarm will
beep for five seconds, or until the key is turn off.” The specification can be represented by
two reactive components as shown in Figure 2.3, consisting of two CFSMs: A controller
and a timer. CFSMs representing the controller and the timer are shown in Figure 2.4
and Figure 2.5, respectively. Input and output for a state transition are separated by “/”.

Conjunction is represented by “*”, disjunction by “+”, and negation by “I”.

2.1.1 High Level Language Translation

In POLIS, designers write their specification in a high level language. Any high

level language with precise semantics and underlying FSM model can be accommodated.

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 16

Key_Off]

Key_On

Belt_On

=

Alarm(Boolean)

Figure 2.3: Seat Belt Alarm Controller Example.

End_10+Belt_On+Key_Off/Alarm(false

Key_On *!Key_Off*!Belt_On/Start

/Alarm(false) ‘ @

Off+Belt_On/

End_5/Alarm(true)

Figure 2.4: Controller FSM in Seat Belt Example.

Examples of the accepted languages include synthesizable subset of Verilog [BY93] or
VHDL [Eng94], StateChart [DH89] or any other graphical FSM formalism, or Synchronous
Languages such as Esterel [Ber96] and Lustre [HCRP91]. Another “netlisting” language is

needed to describe the interconnection between these locally synchronous components. It

can be in the form of a simple text file or compiled from the graphically interface provided

by Ptolemy [BHLM90].

The seat belt controller can be specified as an Esterel text file as follows (the tran-

sition triggered by Reset did not appear in the graphical CFSM for the sake of simplicity):

module controller:

input Reset, Key_On, Key_Off, Belt_On, End_5, End_10;

output Alarm(boolean), Start;

loop
do
emit Alarm(false);

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 17

!Start*Sec

®
©

-

IStart*Sec IStart*Sec

(O)—
®

!Start*Sec IStart*Sec

!Start*Sec/End_10

IStart*Sec/End_5 F at
Tom any state

Start*!Sec: Next state is 1
Start*Sec: Next state is 2

O
O,

Figure 2.5: Timer FSM in Seat Belt Example.

every Key_On do
do
emit Start;
await End_5;
emit Alarm(true);
await End_10;
watching [Key_O0ff or Belt_On];
emit Alarm(false);
end
watching Reset
end.

The first two lines declare the input/output of the locally synchronous component.
All the input signals are control signals. They are called pure signal in Esterel. There are no

data portions associated with these signals. Output signal Alarm has a control portion, and

a data portion that is associated with a Boolean value. The loop statement loops forever.

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 18

This is necessary to make the locally synchronous component responsive to the inputs at
each “clock”. Program within Do ... watching Reset will be executed till termination
unless it is preempted by the occurrence of Reset. The every Key_On statement executes
its body every time Key_On occurs. The await End_5 statement stops the program and waits
for the occurrence of End_5 signal. It identifies a state of the system. In this case, state Off
corresponds to every Key.On (that implicitly awaits Key_On), state Wait corresponds to
await End 5, and state Alarm corresponds to await End_10. The Emit statement is used
to specify that an output is present in a given transition. It can also be used to write the
value associated with the signal. The Esterel file associated with the timer is as follows:

module timer:
constant Count_5:integer;
input Sec, Start;
output End_5, End_10;
every Start do
await Count_5 Sec;
emit End_5;
await Count_5 Sec;
emit End_10;
end.

The second line declares a symbolic constant whose actual value will be defined
elsewhere. The await Count_5 Sec statement counts Count_5 transitions in which signal
Sec has an event.

A CFSM component is locally synchronous. This means that each component
takes in a set of inputs, performs a computation and emits outputs. Upon the completion
of the computation, it takes in another set of inputs. Since the communication among
CF5SMs are asynchronous, other CFSM and the environment may send information to a
CFSM which may still be executing. This information will be kept in a one-place buffer.
It is through this buffer that CFSM network decouples the locally synchronous computa-
tion from the globally asynchronous communication. It also facilitates using synchronous
language, with its synchronous hypothesis, at the local level. There are no blocking writes,
so the sending CFSM simply emits its outputs and continues execution. The buffer may
overflow if the sending CFSM or the environment is too fast for the receiving CFSM.
Requiring blocking write for all communication will make the implementation too costly.
To prevent loss of information, synchronization can always be written into the design (e.g.

hand-shaking), or set as a requirement on the implementation (e.g. scheduling policy).

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 19
CFSM networks will be described in more detail in Chapter 3.

2.1.2 Architectural Mapping

Architectural Mapping, to be defined formally in Chapter 6, is the process of
selecting a particular target architecture, assigning CFSM components into computational
resources in the architecture, and selecting schedulers if there are shared resources in the
architecture. This decision is based heavily on design experience and is very difficult to
automate. POLIS provides the designer an environment to quickly make any such decisions
through various design hints from system co-simulation, and to quickly evaluate the resulting
implementations. ‘

The behavior of a specification is determinized in several stages. At the specifica-
tion level, the CFSM network specifies the structure of the design (i.e. I/O connectivity of
the components) and the functions of the components (i.e. transition and output functions
of individual CFSMs). A CFSM network specification by itself is non-deterministic. More
than one behavior is possible and many implementations can be consistent with a CFSM
network specification. The designer implements the CFSM network by selecting the ar-
chitectural mapping of the CFSM network. An architectural mapping makes the CFSM

network deterministic by additionally specifying:
o (Possible) Delays of component executions.

o Scheduling policy, i.e. the conditions for a component to be enabled for execution, as

well as the conditions for an enabled component to actually be executed.

Assigning CFSMs to particular computational resources limits the possible delays and
scheduling policies that a CFSM network may have. They can be completely determinized
when both the low-level synthesis directives (e.g. choice of compilers and compiler op-
tions) and schedulers for shared resources are specified. Some typical real-time scheduler
for processors includes Cyclic Executive Serial (CES) scheduler, where tasks are executed
in a fixed cyclic order that may contain repetitions, and Static Priority Serial (SPS) sched-
uler [LL73, ABD*95], where order of execution is based on a priority in that the task to
execute is dynamically chosen according to a statically determined priority order. Though
not often considered a scheduler for processors since it requires parallel resources, the Unit

Delay Parallel (UDP) scheduler executes all tasks in parallel with the same delay. Com-

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 20

ponents mapped to hardware circuit resources such as gate arrays can be implemented as
having an UDP scheduler.

A CFSM network can be simulated only if it is deterministic (i.e. architecturally
mapped and synthesis directives set). We refer to a specification with an architectural
mapping and a set of synthesis directives as an implementation of that CFSM network

specification.

2.1.3 System Co-Simulation

Simulation of a system with heterogeneous computational resources is generally
performed with separate simulation models. This makes trade-off evaluation difficult be-
cause the models must be re-compiled whenever a change in the mapping is made. System
co-simulation is a way to give designers early feedback on their mapping choices. Early
co-simulation of the entire system is possible in POLIS because of its simplifying delay
assumption, automatic software synthesis, and performance estimation based on character-
ization of possible target architectures. This technique is, in practice, almost cycle-accurate,
and uses the same model for all types of components. Only the timing information needs
t.o be changed for any change in mapping.

In system co-simulation, synthesized C code is used to model all the components
of a system, regardless of their future implementation. It is synthesized from an initial
specification written in a formal language that can be mapped to different computational
resources. Different implementation choices are reflected in different simulated times re-
quired to execute each task and in different execution constraints (e.g. mutual exclusion for
embedded software).

Each event occurring in the system is tagged with a time of occurrence. The time
of internal events, emitted by CFSMs in response to external or other internal events, is de-
termined by using an estimate of the timing characteristics of the CFSM executions. This
estimate is obtained by using a timing estimator to analyze the CFSM for speed character-
istics. The algorithm uses a formula, with parameters obtained from running benchmark
programs on the particular architecture, to compute the delay of each execution. If more
precise timing information is needed, an instruction set simulator can be used [LLSV99].

Figure 2.6 contains a fragment of the synthesized C file for co-simulation of the seat

belt controller. Figure 2.7 describes the complete code structure. One can see, for example,

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 21

the check for the presence of the Reset signal, near the top, and the communication of the
Alarm signal near the bottom of Figure 2.6. Variable v_alarm carries the value of the Alarm
event, which is emitted by emit_e_alarm (emit alarm in Figure 2.7). The state encoding is
0 for the initial (transient) state, entered when the CFSM starts its operation, 1 for ALARM, 2
for OFF and 3 for WAIT. The DELAY macro accumulates the timing information for each basic
block. At simulation time, the executed code accumulates timing information for the chosen
processor. The auxiliary code that is loaded as part of the Ptolemy simulation environment
uses that timing information, together with the user-selected architectural mapping and
synthesis directives in order to assign an appropriate time stamp to every simulation event.

For hardware CFSMs, the delay for every transition is just one time unit (clock cycle).

2.1.4 Synthesis

A CFSM sub-network chosen to be implemented as a sequential circuit is directly
mapped into an abstract hardware description format, BLIF [SSL+92]. POLIS implements
each transition function as a combinational circuit, optimizes it using logic synthesis, and
latches some circuit outputs to implement state variables. A CFSM sub-network chosen
to be implemented on a processor is mapped into a software structure that includes a pro-
cedure for each CFSM, together with a simple Real-Time Operating System (RTOS). The
CFSMs are synthesized through a two step process: A technology independent phase where
optimization is done on a restricted control data flow graph called S-Graph [CGH*99)], and
a technology dependent phase where compiler are used to optimized for a particular proces-
sor configuration and instruction set. The RTOS is generated according to the architectural
mapping chosen.

Interfaces between different computational resources are automatically synthesized
within POLIS. These interfaces are in the form of cooperating circuits and software proce-
dures (I/O drivers) embedded in the synthesized implementation. Together they implement

the chosen architectural mapping as well as event communication and one-place buffer.

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK 22

/* defines event emission and detection macros */
#include "os.c"

extern unsigned_int8bit v_alarm;

void _t_z_belt_control_O(int proc, int inst)

{

L1:

L3:

end:

L10:
Li1:
L12:

static unsigned_int8bit v_state_tmp; /* buffer of v_state */

v_state_tmp = v_state; /* update the state variable buffer */

startup(proc); /* update the input event buffers */

DELAY(69) ;

if (detect_e_reset_to_z_belt_control_0) { /* did reset occur ? */
DELAY(40); goto L4;

}
else {
DELAY(26); goto L2;
}
switch (v_state_tmp) { /* branch based on current state */

case 1: DELAY(41); goto L6;
case 0: DELAY(63); goto L4;
case 3: DELAY(85); goto Li4;
default: DELAY(107); goto L7;
}

DELAY(12); v_state = 2; goto LO; /* go to next state */
DELAY(10); v_alarm = 1; goto L12; /* alarm is true */
DELAY(14); emit_e_alarm(); goto L13; /#* emit event */

always_cleanup(proc); /* clear input event buffers */
return; /* return to RTOS/simulator */

Figure 2.6: C Code Synthesized for the Seat Belt Alarm Controller.

CHAPTER 2. THE POLIS CODESIGN FRAMEWORK

Figure 2.7: The Control and Data Flow Graph of the Seat Belt Controller.

23

24

Chapter 3

Codesign Finite State Machines

This chapter describes in detail Codesign Finite State Machines (CFSMs), the
formal model used in POLIS for specification, simulation, analysis, synthesis, and opti-
mization. It is also the model of computation that we used to demonstrate our formal
verification methodology and equivalence analysis algorithms.

In Section 3.1, we first provide background information on hierarchical process
network, finite state machines, and extended finite state machines. We present an intuitive
view of the operation of the CFSM and CFSM network in Section 3.2. Through such intu-
itions, we justify some of the choices in designing the model of computation. In Section 3.3
we present a rigorous formal semantics of CFSMs and CFSM networks in terms of finite

automata.

3.1 Background

A network of CFSMs can be seen as a hierarchical process network composed of

extended finite state machines.

3.1.1 Hierarchical Process Network

A hierarchical process network is a structural model that consists of a set of nodes
representing processes and/or sub-networks, and a set of edges representing communication
links. Its semantics is determined by a node model and a communication model.

Each node of a network can be:

CHAPTER 3. CODESIGN FINITE STATE MACHINES 25

Figure 3.1: Hierarchical Process Network.

1. A process (“leaf” node), which reads data from incoming edges, computes a function
based on those data and writes information along outgoing edges. This process may
be represented by a Finite State Machine, a Control/Data Flow Graph, or some code
in an imperative language (e.g. C, JAVA). In the case of network of CFSMs, the

process is represented by an extended finite state machine.

2. An instance of a network. The instantiation mechanism can be static if the total
number of nodes in a given hierarchy is fixed, or dynamic if it is variable. Dynamic
instantiation may increase the expressive power of the model, while static instan-
tiation is only a convenient mechanism to reduce the size of the representation. An
appropriate mechanism to dynamically update the communication structure must also
be provided for dynamic instantiation. In the case of network of CFSMs, only static

instantiation is allowed.

The communication can be generically represented by a uni-directional queue

which sits at the input of the receiver!

. Communication among processes involves writ-
ing to and reading from queues. Sometimes just the act of reading or writing is used for
synchronization purposes, and the transmitted information is ignored. We can characterize

communication according to the following two aspects:

e size of the queue: fixed, bounded, or unbounded.

!In this discussion, we can ignore the size of the data stored in each queue, and assume them to be equal
for the sake of simplicity.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 26

e synchronized /unsynchronized read/write: a communication link has the synchronized
read characteristic if the number of read operations at any point in time must be
less than or equal to the number of write operations up to that point (i.e., each
datum is read at most once). A communication link has the synchronized write
characteristic if the number of write operations minus the number of read operations
is less than or equal to the queue size (i.e., no data is lost by an overflowing queue).
The synchronization characteristics are usually imposed by an OS, a scheduler, or a

controller that is part of the definition of the formalism itself.

Synchronized and unsynchronized writes are equivalent in the case of unbounded queues.
A shared variable is an example of a communication method with unsynchronized
read, unsynchronized write, and queue of fixed size 1. Reactive systems where tokens are
consumed have synchronized read, but may or may not have synchronized write, depending
on whether or not overwrite is allowed to happen. Some flavors of data-flow graphs have
synchronized read, unsynchronized write over unbounded queues as a specification model
([Kah74, Den75]). Execution of a data-flow network in an embedded system generally as-
sumes (tightly) bounded resources. A central problem for the implementation of a given
data-flow network is the definition of a schedule (order of execution for its actors) that guar-
antees bounded queue size ((BHLM90, Buc93]). In the case of a CFSM, the communication

method chosen is synchronized read, unsynchronized write over the queue of fixed size 1.

3.1.2 Finite State Machines

Finite State Machine (FSM) is a popular model for embedded system specification,
due to the wealth of analysis and synthesis techniques that are available. In their most basic
form they are suited mostly for simple protocols, and need an extension (described below)

with integer variables and operations to efficiently represent real-life designs.

Definition 3.1 (Finite State Machine) A Finite State Machine (FSM) is a guintuple
F=(,0,X,R,F):

o I is a finite set of input symbols.
e O is a finite set of output symbols.

e X is a finite set of states.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 27

o R C X is the set of initial states.

o FCIxX xX xO ts the transiltion relation.

F is completely specified if for all i € I, z € X there exists at least one z’ € X,
o0 € O such that (i,z,z’,0) € F, i.e. if the FSM has at least one choice of next state/output
for each input/present state combination.

F is deterministic if R is a singleton and F is a function F : (I x X) = (X x O),
i.e., if the FSM has at most one choice of next state/output for each input/present state
combination.

In general, a FSM that is implemented is forcibly deterministic and completely
specified. An implementation usually has predictable behavior and has some (possibly

empty) output.

3.1.3 Extended Finite State Machines

The Ezxtended Finite State Machine (EFSM), or Finite State Machine with Data
path (FSMD) [GR94] model is similar to the FSM model, but the transition relation may
also depend on a set of internal variables. For notational convenience, the transition relation
of an EFSM is usually described using relational, arithmetic, and Boolean operators. If the
ranges of these variables are bounded, the set of possible states of the EFSM is still finite
and its power is still within regular languages. If the ranges of these variables are unbounded
integer or real, then the descriptive power is equivalent to that of Turing machines [HU79]
and the state space is no longer finite. The EFSM model is traditionally used in hardware
design, via the so-called “synthesizable subsets” of HDLs such as VHDL [Eng94] or Ver-
ilog [BY93]. The communication between EFSMs is usually through handshaking, which is
synchronized read, synchronized write on a queue of fixed size 0.

EFSMs suffer from the so-called state ezplosion problem, because their composi-
tion is described synchronously (queue size 0). This implies instantaneous communication,
which is difficult to implement efficiently in a distributed environment. For example, if
one EFSM is implemented in hardware and the other in software, the EFSM composition
mechanism requires that every transition be taken simultaneously by both. This is clearly
inefficient, because hardware is now required to run at the same speed as the software.

Moreover, EFSM composition is

CHAPTER 3. CODESIGN FINITE STATE MACHINES 28

e either non-responsive, if the EFSMs are Moore machines, in which outputs are delayed
by one cycle with respect to inputs. Moore EFSMs are more difficult to use than Mealy

machines for reactive design.

® or possibly non-causal, if the EFSMs are Mealy machines, in which outputs can appear
in the same cycle as the inputs that caused them. This means, intuitively, that
combinational feedback loops can happen when composing Mealy EFSMs, and hence
the correctness of the composition must be checked on a case-by-case basis. Checking
this correctness is a central problem also for compilation of synchronous languages,
whose semantics is defined by composition of Mealy EFSMs ([BCG91, SBT96]).

Network of CFSMs utilize EFSM only at the leaf node, and do not necessarily

implement synchronous communication like EFSM networks generally do.

3.2 CFSMs: Semantics

Implementations of the same piece of computation on different computational re-
sources should result in the same “functional” behavior, though they may be drastically
different in execution and communication time, as well as other non-functional character-
istics such as power and cost. We extend the FSM model to include a communication
mechanism that captures the essence of the timing behaviors of different implementation
styles. This communication mechanism is based on asynchrony. The CFSM network model
consists of extended FSMs that communicate among themselves asynchronously, which al-
lows the expression of the essential notion that communication and computation take time.

A system is described as a network of CFSMs. Each CFSM is an extended FSM,
where the extensions add support for data handling and asynchronous communication. In

particular, a CFSM network has

e a finite state machine part that contains a set of inputs, outputs, and states, a tran-

sition relation, and an output relation.

e a data computation part in the form of references in the transition relation to datapath

computation.

e a locally synchronous behavior: each CFSM executes a transition by producing a

single output reaction based on a single, snapshot input assignment in zero time.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 29

Once a reaction starts, it must continue to the end before the next reaction to some

other input assignment can start. This is synchronous from its own perspective.

o a globally asynchronous behavior: each CFSM reads inputs, executes a transition, and
produces outputs in an unbounded but finite amount of time as seen by the rest of

the system. This is asynchronous communication from the system perspective.

This semantics, along with a scheduling mechanism to coordinate the CFSMs, provides a
GALS communication model: Globally (at the system level) Asynchronous and Locally (at
the CFSM level) Synchronous.

A CFSM network is a hierarchical process network with static instantiation. A
process in a CFSM network (i.e. a single CFSM) is a flavor of reactive Finite State Ma-
chine extended with data path computation. There is a large body of knowledge about
FSM models both in hardware and in software design. Having an FSM-based model gives
easy access to existing synthesis and validation algorithms. In addition, the POLIS design
methodology targets control-dominated applications, which are well suited for specification
with FSMs. The CFSM network communication is characterized by synchronized read (for
control signals), unsynchronized write over a queue of fixed size 1. Synchronized read is
essential in implementing the “reactiveness” of the processes. In reactive systems, processes
only execute when there is something on their input ports. Unsynchronized write is neces-
sary with a bounded queue so that the sender can continue execution without waiting for
the receiver. This leads to a more efficient implementation than the full handshake required
by a synchronized write over a bounded queue. If communication over some specific link
cannot be lost due to overwriting, this synchronized write requirement can still be specified
either as a requirement on the scheduler, or by explicitly modeling a longer queue or a

handshake as part of the design.

3.2.1 Signals

CFSMs communicate through signals. A signal is an associated pair: an event
that is Boolean, and data from an integer subrange. A signal is communicated between two
CFSMs via a connection that has an associated I-place input buffer. The buffer contains
one memory element for the event (event buffer) and one for the data (data buffer). A
sender CFSM always writes the data first and then emits its event. This order ensures that

the data is ready when the event is communicated.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 30

CFSMs initiate communication through events. The input events of a CFSM
determine when it may react. That is, the model forbids a CFSM to react unless it has
at least one input event present (except for the initial reaction) Without this restriction,
a global clock would be required to execute the CFSMs at regular intervals, and this
clock would in fact be a triggering input for all CFSMs. This would imply a more costly

implementation.

3.2.2 Process Behavior

The functional behavior of a CFSM at each execution is determined by the spec-
ified ¢ransition relation (TR). This relation is a set of tuples: (F CIx X x X x 0). (refer
to Section 3.1.2). Each tuple of the TR represents a specified transition of the machine,
and the set of tuples is the specified behavior of the machine.

At each execution, a CFSM

1. Reads an input assignment and consume the inputs (setting input event buffers to 0)

2. Looks for a transition such that the read inputs I and the present state of the CFSM

matches the transition relation.
3. If Transition is found, it is executed by

(2) making the state transition to next state.

(b) writing the new output values and events.
4. If Transition is not found, the CFSM returns control to its scheduler.

Each state variable may have a designated set of initial values that are specified
with the transition relation. A set of initial values, one for each state variable, is a initial
state. The initial transition(s) is a special transition(s) where the present state part is equal
to the reset state. Moreover, this transition is allowed to not have any input events present

in the input assignment.

3.2.3 Network Behavior

A net is a set of connections on the same output signal, i.e., it is associated with

a single sender and at least one receiver. There is an input buffer for each receiver on a

CHAPTER 3. CODESIGN FINITE STATE MACHINES 31

net, hence the communication mechanism is multi-cast: a sender communicates a signal
to several receivers with a single emission, and each receiver has a private copy of the
communicated signal. Each CFSM can thus independently detect/consume and read its
inputs.

A network is a set of CFSMs and nets. The behavior of the network depends on
both the individual behavior, and that of the global system. In the specification model,
the system is composed of CFSMs and a scheduling mechanism coordinating them. The
scheduling mechanism at the specification level is non-deterministic and allows all possible
interleaving. The only restriction imposed is the locally synchronous behavior, i.e. once
an execution of a CFSM begins, it must execute to completion before the next execution
of the same CFSM can start. The scheduling mechanism in the specification model may
take several forms in the implementation: a simple RTOS scheduler for software on a single
processor and concurrent execution for hardware, or a set of RT'OSs on a heterogeneous
multi-processor for software and a set of scheduling FSMs for hardware.

Each CFSM execution can be associated with a single transition point, t;. ¢4
denotes the next transition point of the same CFSM. The model dictates that it is at
this point that the CFSM begins reacting: reading inputs, computing, changing state, and
writing outputs. Since the reaction time is unbounded, one cannot say exactly at which
time a particular input (event or data) is read, at which time that input had previously
been written, or at which time a particular output is written. There are, however, some
restrictions. For each execution, each input signal is read at most once, each input event is
cleared at every execution, and there is a partial order on the reading and writing of signals.
Since the data value of a signal (with an event and data part) only has meaning when that
signal is present, the model dictates that the event is read before the data. Similarly for
the outputs, the data is written before the event, so that it is valid at the time the event is

cast. This means that for transition point ¢;,

¢ an input may be read at any time between ¢; and ¢;4+; (but not later, because that

would correspond to transition point ¢;;),

e the event that is read may have occurred at any time between ¢;_; and t;;,,

the data that is read may have been written at any time between ty and ¢;,;, and

the outputs are written at some time between ¢; and t;,;.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 32

After reading an input, its value may be changed by the sender before t;, 1, but the receiver

reacts to the captured input and the new value is not read until the next reaction.

3.3 Mathematical Model

In this section we give a formal definition of CFSMs and their semantics in terms
of finite automata. Finite automata have precise mathematical semantics and are therefore

amendable to formal analysis of many kinds including formal verification.

3.3.1 Preliminaries
3.3.1.1 Finite Automata

Finite automata [HU79] are structures used to define a (possibly infinite) set of
sequences over some alphabet ¥. Formally, an automaton is a triplet (S, I,T) where S is
some finite set of states, I C S is the set of initial states, and T C S x T x S is the transition
relation.

An infinite sequence 3g, s;,... of states, where s; € S, is said to be a run of a
sequence 01,02, ... of elements of X, if so is an initial state, and for all 7 > 1 the triplet
(8i-1,0%, ;) is in the transition relation. The language of an automaton is the set of all
sequences of elements of ¥ that have a run. Both the sequence and the set may be infinite.
Automata are very powerful tools to describe infinite set of infinite sequences with concise
descriptions.

A composition of two automata (S1, I1,T}) and (Sa, I, T3) over the same alphabet

¥ is the automaton:

(Sl X 52’ Il X I21 {((31,82),0’, (qla 92)) |(81701 91) € Tl A (3210’ Q2) € T2}) .

where s1,q; € 51, and s, 92 € Sa2. The language of the composition of two automata is the
intersection of their languages.

With no loss of rigor, we can assume that the alphabet I is the set of assignments
to alphabet variables, which can take on some values. This allows a clearer connection with
Finite State Machines. Automata can be represented graphically as a state transition graph
(STG), or in a textual format. The two representations (textual and STG) are equivalent,
but STGs are more convenient for controller-like automata, and textual representations may

be more compact for data-path-like automata.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 33

Figure 3.2: The STG of an Automaton.

For STG, the nodes correspond to states of the automaton, and initial states are
marked by arrows. The edges are labeled with predicates over alphabet variables, such that
o satisﬁés a predicate p on the edge s — ¢ if and only if (s,p(o),q) is in the transition
relation.

Consider, for examplé the STG in Figure 3.2, and assume that the alphabet vari-
ables x and y are both binary valued. Note that if a predicate does not appear on the edge,
it is always satisfied.

One can easily check that that the sequence:

X

00 1
y[O0O O 1

11 1
1 0 0

is in the language of the automaton represented in Figure 3.2, because it hasarun 000 1
111....

A sequence that does not have a run would be

x|0 O
y|0 1

The state sequence corresponds to this input sequence begins with state 0 (initial state),
transitions to state 0 on z,y = 0,0, and then is blocked. In state 0 with input z,y = 0,1
there is no specified transition. Hence, the input sequence does not have a run.

Alternatively, we can use a textual form to represent a transition relation. We
view states as possible assignments to present state and to nezt state variables. We assign
an arbitrary name to a present state variable, and to every present state variable s we
associate a next state variable NEXT_s.

For example, using the binary present state variable s, we may specify the transi-

tion relation of the automaton in Figure 3.2 as follows:

CHAPTER 3. CODESIGN FINITE STATE MACHINES

if s=0 then
if x=0 A y=0 then
NEXT_s=0;
elseif x =1 then
NEXT.s=1;
else
norun;
elseif s=1 then
if x=1 then
NEXT.s=1;
else

norun;

34

One can easily see the correspondence with the figure. To be complete, one would need to

add initialization to the start of the description, and the whole thing need to be enclosed

in a loop statement to realize the infinite behavior. Lastly, constructs to load next state

values to present state variables need to be added.

The same description can be written more compactly by reordering:

if x=1 then
NEXTs=1;
else
if s=0 then
norun;
if y=0 then
norun;
NEXT _s=0;
endi f

3.3.1.2 Signals

Let X denote some non-empty and finite set of signals (with an implied attached
event), and let the function R be such that it assigns to every signal z € X a finite and

CHAPTER 3. CODESIGN FINITE STATE MACHINES 35

non-empty interval of integers. We say that R(z) is the range of z, and it represents the
set of values that = can have.

We define signals, associate to each a set of (data) values, and define event assign-
ment and value assignment functions to represent the (event, data) pairs for the signals at
a particular time. Any partial function f : X ~ {0,1} is called an event assignment. Any
partial function f assigning integers to signals, such that f(z) € R(z) for all z for which
f is defined, is called a value assignment. If f is some event or value assignment function,
then we use D(f) to denote the subset of X for which f is defined.

3.3.1.3 Transitions

A transition is a 5-tuple (p,v, s, 0, q), where p is an event assignment, v and o are
value assignments called input value assignment and output value assignment, respectively,
and states s and g are the present state and next state, respectively. If either p or v are
defined for some signal z € X, we say that z is an input signal of the transition (p, v, s, 0, g).
If 0 is defined for x, we say that z is an output signal of (p, v, s,0,q). If p(z) = 1 for at least
one z € X, we say that p is an input stimulus. If p is not an input stimulus, we say that
the transition is spontaneous.

Intuitively, p checks for presence (if p(z) = 1) or absence (if p(x) = 0) of certain
signal events in the captured input assignment, and v checks signal values. If both of these
are satisfied and a CF'SM is in state s, then it can move to state ¢ and emit signals in D(o)
with values specified by 0. Note that there is no separate output event assignment. It is

implicit that a signal is emitted if o is defined for it.

3.3.14 CFSM

Formally, a CFSM is specified as a FSM(see Section 3.1.2) with quintuple (I, O,

X, R, F). We require that the present state of every spontaneous transition in F be an

initial state, and that it has no incoming transitions. This implies that no reachable state

in the machine has a spontaneous outgoing transition. Recall that CFSMs react to events,

and hence are not allowed to execute spontaneously after initialization. The semantics of
such spontaneity are undefined and hence disallowed.

. We say that a signal z € X is an input (output) of a CFSM (1,0, X, R, F) if and

only if it is an input (output) of at least one transition in F.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 36

3.3.2 Semantics of CFSM

We define the behavior of a single CFSM in terms of the language of the associ-
ated automaton. The behavior of a CFSM network is defined by the composition of the
associated automaton. The structure of the automaton and its constituent components
associated with a CFSM is shown in Figure 3.3. Here, z and z are inputs, and y and w
outputs.

The alphabet variables of the automaton associated with a single CFSM are:

o for every input z: Boolean variables *x, read_x, read_*x, and *x_read, and R(z)-

valued variables x and x_read,

e for every output y: Boolean variables *y, *y_sent and send_y, and a R(y)-valued

variable y,
¢ a Boolean variable t.

In addition, each component has some internal variables.
The associated automaton of a single CFSM is a composition of the following

components:
¢ an input buffer automaton 1B, for every input z,
e an output buffer automaton OBy for every output y,
e a main automaton M.

Partitioning and modularizing the mathematical definition in this fashion enhance the ease
of understanding for this very complex model. The complexity of the modél is a direct
reflection of the complexity of embedded systems. Modularizing in this fashion also make
for more efficient implicit representation [TSL*90]. Ordering BDD for a set of FSMs with
regular structures is easier than a single, large FSM.

Roughly speaking, input buffer automata read signal events (e.g. *x) and data
(e.g. x), while output buffer automata non-deterministically (but still following certain
rules) emit the output signals. At the transition point of the CFSM (marked by t=1),
the main automaton ensures that the signals emitted by the output buffer automata are
consistent (with respect to the transition relation) with the signals observed by the input

buffer automata. This allows the implementation full freedom to choose when to read and

CHAPTER 3. CODESIGN FINITE STATE MACHINES 37

!

| 1 = '

1 ! 1
_.L> *x.unread *xread + : ¥ [}

1z *x_read xread | 1| y-semt o

T > z_read 1 :

1] '

| readx T *raad.tx 1 N T send y 1

| 1) .]

1 1]

! control | 1

1 ! 1

1 [}]

1 1 |

1 1 1

i 1

IB:
Lemececec e e == F]
M
[A R |
) 1 :
I s 1
_._z> *Z unread *z-read 4 v]
12z sz_read z.read Lo
T > zZread :
]
]

read z ? Trea&tz

control

*y _sent

OBy

b

Figure 3.3: The Automaton Model of a CFSM.

emit signals between two transition points. A flexibility that can translate to efficiency at

the implementation level.

In order to ensure that every non-deterministic emission is verified by the main
automaton, we restrict the language only to those sequences in which every emission (i.e.
*x=1 for some signal z) is followed eventually by a transition point (i.e. t=1). Such a
restriction is easily accomplished with fairness constraints [Tho90]). The behavior of a
CFSM is the projection of the language of the associated automaton onto all the input and
output signal variables x and *x. All the other variables are there just to help define the

semantics, and need not appear in any implementation.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 38

3.3.2.1 Input buffer automata

An input buffer automaton IB; is the composition of a data part and a control
part. Based on the read x and read_*x commands from the control part, the data part
reads the event and data of signal z, and stores them for the main automaton.

The control part is illustrated in Figure 3.4. It ensures that both the event and
the value of the input will be read exactly once when t is set to 1. It also ensures that the
event is read before the value. There are no restrictions on the timing of these operations,
only that they respond to the input t. .

The data part has three state variables. Two of them, *x_read and *x_unread, are
Boolean, while x_read is R(z)-valued. A value of 1 for *#x_unread means that an event came
in, but the read signal read_*x from the control part has not come in (i.e., x has appeared
but has not been read). A value of 1 for *x_read means that both an event came in, and the
read signal came in; at this point the event can be communicated to the main automaton.
Similarly, the x_read variable communicates the value to the main automaton. Note that
*x_read and x_read are state variables for the data part of the input buffer automaton and
also alphabet variables, since they must be communicated to the main automaton.

The initial value of *x_read and *x_unread must be 0, while x_read can initially

take any value from the range of z. The transition relation of the data part is given by:

if read_*x=1 then
if *x_unread=1 V *x=1 then
NEXT *x_read=1;
else
NEXT_*x_read=0;
endif
NEXT_*x_unread=0;
else
NEXT_*x_read=*x_read;
if *x=1 then
NEXT_ *x_unread=1;
else
NEXT _*x_unread=*x_unread;

endif

CHAPTER 3. CODESIGN FINITE STATE MACHINES 39

t=0;
read_*x=0;
read x=0;

t=0; t=0;
read_*x=0; read *x=1;
read x=1; read.x=0;

t=1;
read *x=1;
read.x=0;

t=1;
read *x=0;
read-x=0;

t=0;

read_*x=1;
t=0; t=1; read x=1; t=0;
read_*x=0; | V | read *x=1; read_*x=0;
read.x=0; readx=1; read x=0;

Figure 3.4: The Control Part of Input Buffer Automaton IB;.

endif
1f read x=1 then
NEXT x_read=x;
else
NEXT x_read=x_read;
endif

Intuitively, the input event is latched in *x_unread. When read_*x=1, the current
or latched value of the signal event is transferred to *x_read, and *x_unread is flushed (and
ready to latch the next incoming value). Similarly, when read x=1, the current value of

signal data is transferred to x_read.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 40

t=0;
send_x=0;
*x=0;
*X_sent=0;

=1; t=0; t=0;
send.x=0; send_x=1; send x=0;
*x=1; *x=0; *x=1;
*x_sent=1; *x. sent=0; *x sent=1;

t=0;
send._x=1;
*x=1;
*X_sent=1;

t=1;
send_x=0;
sendx=0; t=1; *x=0; t=0;
*x=0; V | sendx=1; *x.sent=1; send-x=0;
*x_sent=0; *x=1; *x=0;
*x_sent=1; *x.sent=1;

Figure 3.5: The Control Part of Output Buffer Automaton OB,.

3.3.2.2 Output buffer automata

The data part of the output buffer automaton OB, has a single R(z)-valued state
variable x_sent, the initial state of which is arbitrary. The transition relation of the data

part is given by;

x=NEXT x_sent;
if send_ x=0 then

NEXT _x_sent=x_sent;
endif

Intuitively, when send_x=1, x takes an arbitrary value (determined by the main automaton

to correctly implement the transition relation), which is then kept in x_sent until the next

send _x=1.

CHAPTER 3. CODESIGN FINITE STATE MACHINES 41

The STG of the control part is shown in Figure 3.5. Between any two transition
points it either generates both send_x=1 and *x=1, or neither. It will never generate *x=1
before sendx=1. If it generates *x=1, at the same time it also generates *x_sent=1, and
keeps generating it until the next transition point. The main automaton will use the *x_sent

signal effectively to set the output value.

3.3.2.3 Main automaton

The states and initial states of the main automaton M are the same as those of
the CFSM (1,0, X, R, F). In the STG of M the edge s — g is labeled with (t=1)AP if
s # q, and ((t=1)AP)V(t=0) if s = g, where P is the following predicate:

P = V /\ *x_read = p(z)
(pv,s,09)€F z€D(p)
A /\ x_read = v(z)
z€D(v)
A /\ (*x_sent = 1) A (x = o(x))
z€D(o)

A /\ *x_sent =0
z@D(o)
Intuitively, when t=0 the state cannot change, and when t=1, no transition is enabled unless
P is one, and that is true only if signals emitted at the outputs and the signals observed at

the inputs are consistent with at least one transition in F'.

3.3.2.4 Networks of CFSMs

A network of CFSMs is defined by simple composition of the automata represent-
ing individual CFSM. The transition variable t for each CFSM is completely free and all
possible interleaving and concurrent executions of the CFSMs are represented and consis-
tent with the CFSM network specification. An implementation is the refinement of the
behavior of the transition variables according to architectural mapping and the synthesis
directives for the implementation. For example, a Unit Delay Parallel (UDP) scheduling
policy on some FPGA dictates that the transition variables t for all CFSMs be 1 at the

same time, and the intervals between the adjacent occurrences are exactly equal to the

CHAPTER 3. CODESIGN FINITE STATE MACHINES 42

“clock” period. Static Priority Serial (SPS) scheduling policy on some processor has in-
dividual t to be mutually exclusive. The ordering of executions is set according to some
statically determined priority. The timing between the transitions is dependent upon the
delays of the executions, which in terms depend on the architectural mapping and synthesis

directives.

43

Chapter 4

Formal Verification of CFSM

Specifications

Design verification of embedded systems is traditionally performed by prototyping
and simulation. Prototyping is clearly expensive in terms of turn-around time, and, in
addition, cannot be performed until most of the detailed design is completed. Simulation
is valuable, but for complex systems, only relatively few input patterns can be tried, thus

reducing the power of simulation in exposing errors in design.

Formal verification is a set of techniques that facilitate proving mathematically
that some formally specified properties are true for a design. These techniques are obviously
very powerful, as they do not rely on the completeness of a set of simulation vectors.
However, the computational complexity is very high. We believe that formal verification
can be a useful tool for early error detection, especially for system design. At the early
stage of the design process, a design is usually specified at the behavioral level. Fewer
implementation details are present in the specification, so the overall complexity of analysis

through formal verification is usually lower at this stage.

Formal verification requires a formal model of the behavior of a system, as well
as of the properties we wish to verify. Figure 4.1 provides a general paradigm for formal
verification. A system description, preferably a behavioral specification that is devoid of
all unnecessary implementation details, is entered into the verification tool, along with a
set of properties. If the verification tool determines that the system description satisfies

those properties, we can then go to the synthesis stage. The synthesis stage may provide

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 4

(- —
| Implementation Detall’
Design modification
error
y | No { trace
' System Description '
— Formal Verification Tool —Do propenies hold?

Properties

Yes

Figure 4.1: A Generic Formal Verification Paradigm.

some implementation detail, which may be necessary to verify some other properties that
the designer has in mind. If the verification tool determines that the system description
does not satisfy those properties, it will produce an error trace. This trace is a sequence of
inputs and state transitions of the system, starting from an initial state. The designer can
use the error trace to discover the source of the error and modify the design accordingly.

In this chapter, we show how an automata-theoretic approach to formal verifica-
tion can be applied to CFSMs. In the automata theoretic approach [Kur94], systems are
modeled by automaton and the language of the automaton (i.e., the set of sequences of
inputs and outputs observable at the ports of the system) is taken to be the behavior of
the system. The task of formal verification is to show that all these sequences are “ac-
ceptable”. In one possible approach to formal verification [Kur94], acceptable sequences
are specified as a language of another automaton, so the verification problem reduces to
checking language containment between two automata. Another approach, called model
checking ([BCL*94]), is based on labeling states of the system automaton with properties
(described in some form of temporal logic) that they satisfy.

The main advantages of the automata-theoretic approach (including both language
containment and model checking) are that it can be completely automated, and that it
allows conservative abstractions to reduce the complexity of the computation. Let A be
some automaton. If A is modified (say to A’) in a manner that can only add new sequences,
but never eliminate a sequence from the language, then A’ is a conservative abstraction of
A in the sense that A satisfies all the safety properties that A’ does (i.e., the language of

A is contained in the language of A’, therefore, all the languages that contain the language

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 45

of A’ also contain the language of A). Conservative abstraction for “liveness” property is
more complex and will not be considered in this dissertation.

Practically, abstraction is applied to variables in the following two ways:

1. Free a variable completely. For the property that we are analyzing, it may not matter
at all what the value of some variables may be. Hence, we can safely remove all the
registers that are used to store these variables and all the components that are used

to compute them.

2. “Reduce” the range of the variable. For the property that we are analyzing, it may
only matter whether a variable is larger, equal to, or less than a constant, say 25. We
can then replace its range from 2! (if the underlying integer representation has 16
bits), to 3 values: < 25, = 25, and > 25. If we have 5 such variables (or 5 copies
of such a variable), we can reduce the state space contribution due to these variables

from over 10%° to less than 1000.

Often, even relatively simple systems are too complex to be handled by any formal
verification tool existing today. It is not unusual for a designer to specify a design that has
a tremendous number of states. For example, a single hardware circuit with 500 latches has
more that 10'% states, and a single program with 10 32-bit integer variables has more than
10%° states. Even the best existing formal verification tools can routinely verify systems
with no more than 10% states (even though some larger systems can be verified if they have
a special structure). Thus, some abstraction must always be applied to enable verification.

Figuring out automatically what abstractions should be applied for a given prop-
erty is computationally just as hard as verifying the property without those abstractions.
Hence, abstractions must be chosen by the user, but they can then be propagated automat-
ically. In addition, if an abstraction chosen from the two classes outlined above happens to
be “incorrect”, so that it affects the outcome of the verification, then it must be conser-
vative. This means that it can only turn a positive result into a negative result (a “false
negative”), and never turn a negative result into a positive one (a “false positive”). If the
result of verification is that the property does not hold for the abstracted system, the user
can analyze the source of the error through an error trace supplied by the verification tool
to see whether it is due to abstraction or a true error in the design.

Neither CFSMs nor automata deal with quantitative timing issues. In fact,

CFSMs are defined with the assumption that a reaction to an event can take an un-

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 46

bounded amount of time. This assumption provides an implementation-unbiased starting
point for a verification-driven design methodology. The first step in that methodology is
to try to verify the system with unbounded delays of the CFSMs. If the verification fails
(as it most often will), the error trace is analyzed in order to suggest timing constraints
necessary to satisfy the property. Then, the verification is attempted under the assumption
that timing constraints are met. If successful, the used assumptions are recorded as con-
straints to be met by the implementation. In this way, a verification tool is used as design
aid to refine the specification of the system. An example of this type of assumption is one
that can be placed on the correct scheduling. If the designer discovers through the error
trace analysis that overflow on a certain input buffer leads to an error condition, then an
assumption on the correct scheduling (i.e., that a specific input buffer never overflows) is
placed on that input signal, and verification continues. If these constraints are consistent
and implementable, downstream synthesis algorithms can then take this assumption into

consideration and implement it correctly.

4.1 Verification Methodology

To be able to apply the automata-theoretic verification approach to CFSMs, we
follow the procedure in Section 3.3 to generate for a given CFSM a set of automata that
together represents the behavior. Practically, the implementation of this procedure is a
translator from SHIFT to a format understood by verification tools. The verification tools
we currently interface to are VIS [BSVA*96] and HSIS [SAB+93]. They both read in a
description of the system and the property written in a format called BLIF-MV, build the
internal representation in terms of Binary Decision Diagrams [BRB90], and then verify the
system.

Verification of the FSMs translated from CFSMs uses the following five steps:

1. Verify general properties or error conditions.
Verifying “normal” operation is equivalent to a restatement of the system function-
ality. Hence, it is generally much easier to verify general properties, like “absence of
deadlock”, “mutual exclusion”, or checks for the system response to particular condi-

tions (often error conditions).

2. Decomposition.

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 47

Verify simple properties. Together with “back of the envelope” logic implication, the
designer can prove complex properties. Alternatively, theorem proving ((ORR*96,
GM92}) could be used to systematize this decomposition while automata-theoretic

techniques are used to prove the sub-properties.

3. Localization.
Verify local properties. Break down the property into smaller bits pertaining to only
one or a few modules. Together with “back of the envelope” logic implication, the

designer can prove the complete desired property.

4. Abstraction.
Abstraction is the process of eliminating specific details that are not relevant to the
property at hand. CFSM is a modular representation in which control and data
computations are modeled separately. This makes abstraction easier to perform. To
guarantee that abstraction is conservative, we limit our abstraction operations to
either freeing the entire variable, or breaking up the range into equivalent regions. For
each variable, the designer can determine the distinguishing values for the property
at hand. For example, given a variable as output of a counter. The property may
only care if the counter reached the counted value, say 25. Then the output of the
counter has only two distinguishing values: < 25 and > 25. In this case, we have two

equivalent regions.

5. Assumptions on timing (scheduler).
For some designs, it may be necessary to assume that CFSM scheduling is “correct”,
meaning that some CFSM input events are never lost, in order for some specific
property to hold. This assume-guarantee paradigm is a system level extension to the
one in [GL94], treating scheduler also as a component. There are two consequences

of this assumption:

e Separation of timing and functionality.
Timed verification is generally so complex that it cannot be applied to most
realistic design. However, we can argue about the correctness of a particular
form of timed property (overflow of input buffer) by using only untimed verifica-
tion tools. The complementary process, of verifying timing by using functional

assumptions, is still a topic of active research [Bal99).

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 48

e Verification-directed architectural mapping.
Most verification tools provide an error trace for a failed verification run. The
designer can analyze this error trace. If the error is due to a buffer overflow, and
if an assumption on the correct timing can eliminate this error, a downstream
design constraint is placed on that variable and that CFSM. This particular type
of constraint may be satisfied by the scheduling policy, or by assigning the CFSM
to a hardware implementation, or by introducing a more complex handshaking

mechanism at the specification level.

4.2 Verification Example: Seat Belt Alarm Controller

We first present a simple verification example, the seat belt alarm controller dis-
cussed in Section 2.1. The timer is assumed to be part of the external environment. While
too small to demonstrate the power of abstraction, or the need to make assumptions on
the scheduler, it is easily understood. We will present a real-life verification example in the
next section.

The question we would like to answer through formal verification is: “Can the
alarm sounds continuously?”. It would be most annoying if some specification bug or
possible combination of design choices could yield a product that reacts to some input

sequence by leaving the alarm on forever. More formally, the property we want to verify is:

P1: The alarm eventually goes off.
If the seat belt alarm controller ever turns the alarm on, then it must turn the alarm

off some time in the future.

This property is a general property of the seat belt alarm controller because it is a
general statement about the “goodness” of the system, not a detailed statement about one
particular execution of the system (as in simulation). It is also local to the seat belt alarm
controller, in that only moderate assumptions on the environment are needed in order to
prove it.

After translating the CFSM into a network of FSMs (or equivalent finite au-
tomata) according to the procedure outlined in Section 3.3, we checked property P1 by
writing it as a monitor which interacts with the network of FSMs. This monitor is shown

as an FSM in Figure 4.2. The monitor stays in state “O.K.” until it sees alarm_on, then it

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 49

tAlarm(1)/ Alarm(1)y/ /‘jAlarm(O)/
Pending
SN~ —
Alarm(0y

Figure 4.2: FSM Monitor for Seat Belt Alarm Controller.

transitions to state “Pending”. It stays in “Pending” till it sees alarm_off, then it transitions
back to state “O.K.”. We want to see if it is possible that the monitor remains in state
“pending” forever. Verification will be accomplished by the used of fairness constraints.
Description of fairness constraints and the details of the operation of verification tools are
beyond the scope of this dissertation. Please see [BSVA196] or other verification docu-
mentation. The notation “!” is used to denote the absence of the event. Note that unlike
CFSMs (which are a reactive model and respond only when there is at least one present
event), FSMs and automata may make a transition even without any present event.

The initial run of the verification tool gives us an error trace. By looking at the
error trace, we realize that we must further limit the behavior of the environment, namely
the generation of Key_On, Key_Off, End_5, and End_10, which up to this point is considered
completely non-deterministic. It is fair to assume that the environment can only generate
Key_on, and Key_off alternatively. This is captured in FSM form in Figure 4.3. In state
0, the FSM can non-deterministically choose to stay in state 0 or go to state 1 and emit
Key.On. In state 1, the FSM can non-deterministically choose to stay in state 1 or go to
state 0 and emit Key Off. By not specifying any precondition on a transition, we are saying
that it can transition on anything at the next cycle.

Another reasonable assumption on the environment is the abstract behavior of the
timer, represented in Figure 4.4. The FSM waits for a Start signal, then it goes to state 1.
It could stay at state 1 non-deterministically, or it could go to state 2 and emit End_5 as
long as anbther Start is not detected. If it receives a Start at state 2, it is reset and returns
to state 1, otherwise, it can choose to stay at state 2, or emit End_10 and go back to state
0. This timer FSM is really an abstraction of what would be translated from the Esterel
description of the timer in Section 2.1, because it is simpler and emits End_5 and End_10

in sequence after Start, but not necessarily after 5 and 10 seconds. A fairness constraint is

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 50
/Key_On
/Key_Off

Figure 4.3: FSM Representation of the Behavior of the Key Signals.

!Start/
Start/
IStart/End_5
!Start/End_10

'Start/

Figure 4.4: FSM Representation of the Abstract Behavior of the Timer.

put on this FSM such that it eventually goes back to state 0, i.e., it will not count forever.
(This is not part of the automata, but a characteristic given to it, and that it is assumed
to have in the implementation.)

With these specifications of the environment, property P1 still does not hold. One
can find the problem by looking at the error trace. The original CFSM in Figure 2.4 does
not specify what happens if End_5 and End_10 are both present in some CFSM execution.
In a particular implementation, the CFSM can be so slow that it does not react to its
input in 5 seconds. Hence, it can see both End_5 and End_10 at its input buffer at the same
time. The Esterel file in Section 2.1 actually gives End_5 a higher priority than End_10.
This means that the alarm will stay on forever in this case. A similar problem can occur
also with Key_-On and Key_Off, as well as with Key_On and Belt_On (albeit under different

conditions). A revised Esterel specification that passes property P1 is:

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 51

module controller:
input Reset, Key_on, Key_0ff, Belt_On, End_5, End_10;
output Alarm(boolean), Start;

loop
do
emit Alarm(false);
loop
do
every Key_On do
emit Start;
do
await End_5;
emit Alarm(true);
await End_10;
emit Alarm(false);
watching End_10;
emit Alarm(false);
end
watching [Key_0ff or Belt_On];
emit Alarm(false);
end
watching Reset
end.

There are two major modifications from the previous version of the seat belt alarm con-
troller. The first is in the do ... watching End_10. This is to make sure that if End_5
and End_10 occur at the same time, Alarm(false) will still be emitted. The second
is in putting do ... watching [Key_Off or Belt_On] outside of every Key.On do ...
end instead of inside it. This is so that if Key_Off or Belt_On is read together with Key_On,
Alarm(false) will still be emitted to turn off the alarm.

4.3 Verification Example: Shock Absorber Controller

In this section we present the verification of a shock absorber controller. The
design comes from a realistic specification of a commercial product of a major European
automotive subsystem supplier. The existing hand-designed board contains a single Mo-
torola 68HC11E9 microcontroller in expanded mode, with 32 Kbytes of external EPROM
and 8Kbytes of external RAM, plus on-chip RAM and EPROM. The design effort required

is approximately one engineer-year. The natural language specification is coded as 4507

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 52

lines of Esterel statements divided into 29 modules.

The controller sets the shock absorber motors to a HARD, MEDIUM, or SOFT
level, according to values from a set of sensors: steering wheel, vertical acceleration, speed,
and battery voltage. Figure 4.5 shows the structure of the complete controller. The modules
LONG_SPEED, LONG_ACC, VER_-ACC, STEER_ANG, and STEER_SPEED compute the
horizontal speed, horizontal acceleration, vertical acceleration, steering angle and steering
speed respectively, from the input sensors, and suggest the shock absorber level based on
the appropriate look-up table. The module BAT DIAG sends out signals if the battery
voltage is out of the given range. The module MOT_CTRL records current suggestions of
all the modules and sets the motors to the hardest of suggested values.

During normal operation, the output, MOT_CTRL, is continuously updated ac-
cording to input sensors. At the same time, input modules continuously check input sensors
for erroneous conditions, and send a signal if such a condition is detected. The specification
requires seven different conditions to be checked, and appropriate actions to be taken if

errors are detected.

P1: Speed parasitic(glitch): If the speed sensor indicates impossibly high speed on more
than three occasions, the shock absorbers are to be set to HARD until the RESET

event occurs.

P2: Open circuit: If there is an open circuit condition on the speed sensor, the shock
absorbers are to be set to HARD until RESET.

P3: Battery: If the battery voltage is out of range, the shock absorbers should be set to
HARD. If this condition persists for some time, then the setting should remain HARD
until the RESET event occurs.

P4: Speed sensor: If the horizontal speed appears to be zero, and shaking (vertical acceler-
ation) is detected, then the shock absorbers are to be set to HARD until the RESET

event occurs.

P5: Steering speed: If the steering speed is too high, the shock absorbers should not be set
to SOFT for at least the following minute. If this condition occurs more than three
times, the shock absorbers are to be set to HARD until the RESET event occurs.

P6: Vertical acceleration: If the number of times the vertical acceleration sensor reports

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 53

P 1
fores .
- i
_RESET] TIREN e
c ‘ CLOCK 12 fi”l]i‘
o ket 124 ‘El'l ;
‘ LG 80 Pl
H 16 AR
: J rody o
d I 0 i
o TONG-SPEED ST
S LONG_SPEED KM °
_SPEED_SENS_~ Gt
SN L onG_sPeeD LT ||
f | LONG_SPEED MOT, |
'———’-*'-‘—*-' osut I ti ! 4
Bt Sy
A Coophi
Hﬂ | ONG_SPEED_ERR: | ‘ .
| S
; [LONG ACC MOT FRONT .~ i — MOT_C}%L
b { e 1 [F s
ni LONGACCMOTREAR ., ——
i e-Aue R B——— N HANNEL_P1
" { LONG_DECC_MOT. S —— —| 8 HANNEL_N1
—-] LONG_DECC_MOT_REAR
] HAN|
MBTEHANNEL-R
LONG_ACC_DER_MOT_FBONT.-—
LONG_ACC DER MOT BEAR _______ — -MSF-RHANNEL P2
1]
i VER_AGC. LOW_MOT_FRONT——— |
] VERACE -LOW_MOT_FR
- -MBT-EHANNEL-Ré
| VER_ACC_LOW_MOT,REAR. "~ ——
_ACC_SENS__.] ; —
VER_ACC_MED_MOT_FRONT: ‘
| VER_ACC_MED_MOT_REAR
VERAGELER
—_ STEER ANG .
P
%EE%%%@: STEER_ANG_MOT_FRONT
o | STEER_ANG_MOT_REAR
_ RR
- SHEER-ANG-FAface
—— STEERSPEED
—_— | STEER_SPEED_MOT_FRONT
| STEER_SPEED_MOT_REAR

R
VBAT [SR T-HARD

Figure 4.5: The Shock Absorber Controller.

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 54

out-of-range data exceeds some given limit, then the shock absorbers are to be set to
HARD until RESET.

P7: Steering angle: There are two steering sensors. If there is no change in the sensed values
for either of the sensor for 1 minute, the shock absorbers are to be set to MEDIUM.
If this condition persists for 4 minutes, the setting should be HARD. If it persists for
more than 12 minutes, then the setting should remain HARD until RESET, even if
some changes are later detected. Similarly, if there is no change in the sensed values
for one of the sensor for 2 minutes, the setting should be MEDIUM. After 8 minutes
without a change, the setting should be HARD. After 24 minutes, the setting should
remain HARD until RESET.

The system responds correctly to error conditions if and only if the above seven
properties hold. Here we present in detail verification only of the first one. Since all
the properties have a similar form, the other properties are verified in a similar fashion.
Verifying one property at a time enables us to abstract signals and modules not related to
the property at hand.

The intended behavior of the system relevant to the property P1 is as follows. The
error is first detected by the module called LONG_SPEED_DIAG.PAR (see Figure 4.6). To
understand the behavior of that module more precisely, we first need to explain how speed
is calculated. The speed sensor generates a sequence of events (called SPEED_SENS), the
frequency of which is proportional to the speed of the vehicle. Speed is calculated by
counting clock events (called CLOCK_500) between any two occurrences of SPEED_SENS
events. The count is stored in variable D_.TIME. Even at the highest possible speed of
the vehicle, there can be no less than 6000 CLOCK_500 events between two SPEED_SENS
events. Thus, if D_TIME is less than 6000 when the new SPEED_SENS event occurs, that
must be a parasitic signal (glitch). Upon detection of a glitch, no immediate action is taken.
However, the number of detected glitches is recorded (in variable MIN_TPAR_NUM), and
if that number is larger or equal to 3 during any period of CLOCK_500, then an error event
(called ERR_PAR) is emitted.

The ERR_PAR event is received by a module called MOT_CTRL_DAMAGE. It
records error events from all the input modules (including SPEED.DIAG_PAR), and gen-
erates the DAMAGE event with a value HARD, MEDIUM, or SOFT, as required by the

specification (see Figure 4.7). This error status is stored and can only be cleared upon

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 55

srsTT Lonz_svEr
. - oAl LoNS_SFEED_KX i
RESET NS STEED 24 N Sier_ingyn | CISHEEEN
L LINGLSTEEI ALVAL — i FEE L3867, :
ot e e wpser i © e eNSSIEEI.FILT
. NI STEED ALY Vo : SPEEI_INST | SEEEI_IuST C i
e i §cLecr_1e + RESET A o T £HEEI_INET | A
PrTTT T) sreersps — SO0-t B Bt | Ths.2) ' _—
ol - SPEEC_SENT SPEEZ_OFF SPEL:_oPF ' L33 SERET_FILT LONG_SPEES_FILT
: T SFEES OFF SFER:_CFF - e rie f ! o
P roussPEET_FItT| | |
L SPEECINST \
! t
i LON3_STEES_SIAG 4
| ; [s
. ——— LING.STEEL_STRAT P
LG SFEES LIATALT LONI_SFEE: _WST
. 2. SRR TIATA i, ! eRsET MIT_FROUT_REAS - 4

cLew.it
L] LOMG_SPEEI_¥M

VENAIIFRE;NEL

- - " . cap CUNS.SFEEI_ERF Lonc_SPEET _EMM

Figure 4.6: The Longitudinal Speed Strategy.

RESET.

The DAMAGE event is received by a module called DRIVER. It also receives
another event called COMMAND_IN (the suggested setting of motors computed from look-
up tables used in normal operation), stores them both, and generates the COMMAND_OUT
event with the harder of two values.

The verification can be further simplified by decomposing a property into “local”
sub-properties that each module must satisfy. In particular, we prove property P1 by

proving the following:

P1.1: If the speed sensors indicate impossibly high speed at least three times and no
RESET events occur, then the ERR_PAR event will be generated.

P1.2: If the MOT_CTRL_.DAMAGE module receives the ERR_PAR event, and no RESET
events occur, then a DAMAGE event with a value HARD will be generated, and no
DAMAGE event with some other value will be generated before the RESET event

occurs.

P1.3: If the DRIVER module receives the DAMAGE event with value HARD, then the
setting of the shock absorber will be HARD, and the setting will not change until
either a RESET event, or a DAMAGE event with a value other than HARD occurs.

Often, properties decompose naturally into local sub-properties, and a simple check

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 56

Figure 4.7: Motor Control.

is needed to verify that sub-properties indeed imply the desired property. Finding a good,
correct decomposition can be a hard task, and it cannot be completely and efficiently
automated. In non-trivial cases, one needs to use another formal technique (e.g., automated

theorem proving [ORR+96, GM92]), to show that a set of sub-properties implies a property.

4.3.1 Verifying Property P1.1.

The precise formulation of the error condition is as complex (and thus as error-
prone) as the description of the module. To avoid the problem of incorrect property speci-

fication, we verify the following simple property instead:

P1.1’: If four SPEED_SENS events occur between two CLOCK_500 events, then the ERR_PAR

event is generated.

This obviously covers only a small portion of the intended behavior, because any other

“impossibly high speed” will not be captured by this property. However, it is often the case

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 57

that such simple “sanity checks” reveal interesting bugs in the system.

The automaton obtained from the original CFSM specification by the procedure in
Section 3.3 has 141 latches. The formal verification tool HSIS [SAB*93] and VIS [BSVA+96)
both run out of the 480Mb of main memory before even constructing the internal represen-

tation.

4.3.1.1 Verification with Abstracted Integers

The CFSM, on closer inspection, consists mainly of two 16-bit integers used as
counters, and two comparators comparing these integers to constants. However, for the
property we are interested in, only one value of D_.TIME is distinguished: 0, indicating
that no CLOCKL_500 events have occurred between two SPEED_SENS events. We can thus
abstract this counter to only two states: “0” and “> 0”, and modify the comparator and
incrementor accordingly. If the input of the incrementor is 0, the output must be > 0, and
if the input is > 0 the output is chosen non-deterministically to be > 0 or 0 (due to possible
overflow). Similarly, the comparator checking whether D_TIME is less than 6000 is modified
so that if its input is 0, the output is 1. If its input is > 0, then the output is either 0 or
1. In a similar way, we abstract MIN_TPAR_NUM to four distinguished values: 0, 1, 2,
and > 3. These abstractions introduce some new behaviors (e.g., when the actual value of
D_TIME is larger than 6000 but the comparator still outputs 1), but these additions do not
affect the outcome of verification. It is important to notice that these abstractions can be
done automatically, by syntactic modifications of the BLIF-MV description of the system,
so that the size of the description is guaranteed not to increase. However, deciding which
abstractions are consistent with the property is as hard as the original verification problem,
so user guidance is crucial in this step.

With these abstractions, building and verifying the model takes less than 10 sec-
onds. Unfortunately, the property fails. The error trace indicates that the CFSM can react
too slowly, so SPEED_SENS events can be over-written without being sensed by the CFSM
(e.g., if it is not assigned a high enough priority by the scheduler).

4.3.1.2 Verification Under Timing Assumptions

Indeed, the property can be satisfied only if some timing assumptions are made

about the CFSM. We will follow the usual methodology of separating timing and functional

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 58

properties as much as poséible. More precisely, we will verify the conditional property: “if
the CFSM reacts to every SPEED_SENS event, then the property holds”. Such a property
is local, i.e., it depends only on the behavior of the CFSM. On the other hand, verifying
that indeed the CFSM reacts to every SPEED_SENS event is a separate problem that need
to be addressed separately. We will just note that it is a hard problem, because it involves
the characteristics of the hardware, of all the other tasks in the system, as well as those of
the scheduling algorithm.

Fortunately, there is a very simple way to restrict the behavior of the system to the
case where no input events are ever over-written. It suffices to remove from the transition
relation of the input buffers IB; all the elements that correspond to overwriting. Again,
this modification requires a simple syntactic change on the intermediate description, which
does not affect its size.

The conditional property showed an error in the design. Under the original speci-
fication, the property is not satisfied if the error condition occurs immediately after initial-
ization. After correcting this error on the specification, the conditional property is verified

in less than 10 seconds of CPU time.

4.3.2 Verifying Property P1.2

The automaton modeling MOT_CTRL_DAMAGE has 81 binary latches. The tool
HSIS [SAB*93] could not construct the internal representation of the module even after
several hours of computation time. It is expected that even with the drastic improvements
in the implementation of the verification technology, the huge state space of the example
also prohibits direct use of VIS [BSVA*96] in verification.

4.3.2.1 Using Timing Assumptions and Freeing Variables

For the property at hand, the values of all the internal variables, except the one
holding the value of ERR.PAR, are irrelevant. We can thus “free” them, i.e., allow them
in every execution step to take any value from their respective domains, and remove from
the model all computation of these variables. Again such an abstraction can be done
automatically with a single pass through the intermediate description of the system, but
deciding which variables can be freed is generally a hard problem.

With this abstraction, the verification time is reduced to a few seconds. The

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 59

property is verified under the assumption that the system cannot ignore an input event
forever. Note that this is a weaker assumption than the one requiring that every input
event be detected, because it still allows “over-writing” of input events. The verification of

the conditional property takes less than a minute of CPU time.

4.3.3 Verifying Property P1.3

The module DRIVER is simple enough that it can be verified without any abstrac-
tions. During the verification, an error was found: the DAMAGE event was ignored if the
COMMAND.IN event occurred simultaneously with it. After correcting the description of
the DRIVER module, the property was successfully verified.

4.4 Conclusions

We have shown how existing formal verification tools can be used to verify prop-

erties of CFSMs. We draw two conclusions from this experience:

e Reactive systems of interest often have state spaces that are too large to handle
for existing formal verification tools, thus the use of abstraction is crucial. Typical
abstractions can often be performed automatically, by syntactic modification of the
intermediate representation of automata. However, choosing the abstraction that
is appropriate for the property to be verified can only be done by a designer with

knowledge of the intended behavior of the system.

e Even though CFSMs are based on the unbounded delay assumption, most of the
properties can be verified only if some timing constraints are imposed on the behavior
of CFSMs. The assumption of the CFSM reacting to every input events provides a
convenient way to separate timing and functional considerations. Verifying that this
assumption is satisfied depends mostly on timing characteristic of other CFSMs in
the system, as well as the environment and the scheduling algorithm. On the other
hand, checking that the property is satisfied under this assumption, typically depends
only on the functionality of the CFSM.

It is natural to ask, following the first conclusion, that for a specific property of

a specific type of systems, whether there could exist an abstraction that works for all the

CHAPTER 4. FORMAL VERIFICATION OF CFSM SPECIFICATIONS 60

designs. The second conclusion leads us also to think that if the “separation of timing and
functionality” is an inherent characteristic of the specification method, then one can exploit
this characteristic to verify systems. For the rest of this dissertation, we concentrate on
a subclass of specification where timing and functionality is strictly separated. We also
restrict ourselves to a single property: the equivalence of two implementations. We develop
a set of formal algorithms that are automatic and efficient. They can be used to find
out whether two implementations are functionally equivalent to each other, or whether an

implementation is functionally equivalent to a reference (golden) model.

61

Chapter 5

Synchronous Equivalence

Formal verification tools such as [McM93, BSVA+96] are very powerful in auto-
matically proving that some arbitrary properties hold for an arbitrary design. Essentially,
they perform exhaustive simulation for all possible input traces or system design parameters
in an efficient manner. Unfortunately, for real-life embedded systems, the size of the design
and the complexity of the analysis algorithms themselves cause the computer to consume
too much time or memory. The verification is often unable to complete. To remedy this
complexity problem, extensive user intervention is required to abstract away unnecessary
details in the design representation. Figuring out the right abstraction for a given property
is as hard as the verification problem itself, though designers usually have ideas as to what
is the right abstraction for a given property. User intervention in the formal verification
methodology is unavoidable.

The abstracted representation is not an exact representation of the design to be
verified. In the context of formal verification as described in Chapter 4, it represents more
behaviors than the exact representation. The same input trace can produce more than one
output trace, due to the non-deterministic abstract representation. With these “added”

behaviors, the result from the formal verification of safety properties ! can be:

e Positive.

Properties were satisfied.

e Inconclusive due to:

!These are properties of the type “something bad cannot happen”. Within a real-time embedded con-
text, liveness properties, such as “something good will eventually happen”, automatically become safety
properties, i.e. avoiding “bad” timeouts.

CHAPTER 5. SYNCHRONOUS EQUIVALENCE 62

— True Negative.
Properties were not satisfied, but they would have failed also for the exact

representation.

— False Negative.
Properties were not satisfied, though they would not have failed for the exact

representation.

—~ Space Out or Time Out.
The computation requires more time or memory than what is practically avail-
able.

It is impossible for the formal verification tools, by themselves, to distinguish be-
tween the true negatives and the false negatives. Obviously, no conclusion can be drawn
when the computer spaces out or times out (and thus this is conservatively the same as a neg-
ative result). By examining the error trace, designers usually have ideas as to whether the
inconclusive result is due to a true negative or a false negative. By examining intermediate
results from the verification tools, designers can also identify portions of the representa-
tion that cause the computational problem. The representation can then be modified to
exclude the false negatives or to abstract and simplify some portions of the system. User
intervention, again, is unavoidable.

The fundamental difficulty in automatic verification of arbitrary properties of an
arbitrary design is in finding the right abstraction level so that the verification can neither
fail because of the false negatives nor because of the computational problems. It is desirable
to have a property to either pass, or fail due to true negatives. This is in general impossible
without user intervention. However, for a specific class of properties and a specific class
of designs, it may be possible to establish simple formal algorithms at an abstraction level
that are computationally efficient, and give inconclusive result that are mostly due to true
negatives. By the choice of abstraction level, we hope to devise efficient algorithms that
produce few inconclusive results that are due to false negatives or limited resources. The
term “conservativeness” is used to qualitatively describe the amount of inconclusive results
that are not due to true negatives. We want to come up with efficient algorithms that are
not too conservative.

The specific property that we choose to investigate is one that determines whether

two implementations of the same CFSM specification are synchronously equivalent to each

CHAPTER 5. SYNCHRONOUS EQUIVALENCE 63

other. The class of designs for which we devised simple verification algorithms contains all
the designs that satisfy synchronous assumption. Equivalence analysis is indispensable for
verifying that some design optimizations did not alter the behavior or whether a physical
implementation is consistent with a simulation model. In the next section, we provide
further motivations for this choice of property and assumption, and in Section 5.2, we
formally define them. In Section 5.3, we present a methodology for design exploration
based on synchronous equivalence and synchronous assumption. In Section 5.4, we pave
the way for establishing a set of analysis algorithms, trading-off computational efficiency

with conservativeness. These algorithms will be presented in Chapters 6, 7, and 8.

5.1 Motivation

As we argued in the first chapter, a fundamental clarification to improve the de-
sign methodology is the formal definition of correctness. We advocate the principle of
“separation of concerns” in verification. Functional correctness and timing are verified
independently. This principle is the basis of the synchronous design methodology for se-
quential circuits [Ung89], where latches decompose the circuit into combinational islands.
Signals are propagated from island to island when an enabling input (clock) is given to the
latches. Any design of the combinational islands ensuring that the combinational circuits
stabilize before the enabling signal arrives at the latches, can be verified for equivalence
paying attention only to the Boolean functions computed by the circuits irrespective of the
propagation time. Timing can then be verified independently by performing a worst-case
timing analysis and making sure that this bound is within the clock cycle.

This powerful approach can be extended to higher levels of abstraction and to soft-
ware design, as demonstrated by synchronous languages [BCG91]. Synchronous languages
describe complex systems consisting of interconnected components each represented by a
Finite State Machine model. Both communication and execution take zero time to perform.
In practice, this means that the interaction with the environment has to be “much slower”
than all the communication and execution time required for the reaction to the environment.
In addition, the zero communication and execution times of the components imply unique
execution order, if it exists, which depends entirely on the causal relationships among the
component executions and not on the actual delays of the executions. While they are very

powerful, synchronous languages support a model of computation that restricts the design

CHAPTER 5. SYNCHRONOUS EQUIVALENCE 64

space considerably because of the synchronous communication hypothesis.

We relax the “synchronous hypothesis” by adopting a more general model of com-
putation (the one supported by Codesign Finite State Machines, as described in Chapter 3),
while retaining the fundamental idea of separation between timing and functionality. This
is analogous to relaxing the synchronous assumption to the fundamental mode assumption
when moving from synchronous to asynchronous circuits. We establish synchronous equiv-
alence, a “functional” equivalence among a set of candidate implementations of embedded
system specifications. Just as the sequential circuit design methodology abstracts away
different gate delays among different implementations and enables speed/area trade-offs
among functionally equivalent implementations, we abstract away the delays of embed-
ded system computational resources. Synchronous equivalence lends itself nicely to simple
analysis procedures so that we can figure out quickly whether two implementations are syn-
chronously equivalent. The synchronous equivalence relation divides the design space into
synchronous equivalence classes. Within an equivalence class, different implementations
represent different trade-offs among speed, power, reliability, expandability, and cost.

Equivalence analysis can be done precisely through exhaustive simulation and
reachable state analysis methods (e.g. formal verification tools [McM93, BSVA+96]), or
conservatively (but more efficiently) through methods that are abstract, static, and struc-
tural. In Chapters 6 and 7, we derive efficient structural algorithms for synchronous equiv-
alence analysis that can be used to explore the design space effectively. In Chapter 8, we

relate these structural algorithms to precise, exhaustive simulation.

5.2 The Synchronous Assumption and Synchronous Equiva-

lence

A key assumption is made on the class of “acceptable” specifications in order to
make it easier to specify desirable behaviors and at the same time, make efficient analysis
algorithms possible. We believe that this class includes many interesting examples, and
that other specifications may be re-specified to satisfy this assumption.

Many popular design methodologies separate time into intervals of interaction
with the environment and computation within the design. Software programs accept some

input to start the computations. Under most circumstances, they ‘finish computations be-

CHAPTER 5. SYNCHRONOUS EQUIVALENCE 65

fore accepting new sets of input. Synchronous sequential circuits are hazard free and race
free because interaction (propagation of state changes and signal changes) and computa-
tion (calculation of state changes and signal changes) are strictly separated. More recently,
synchronous languages [BCG91] used the zero delay assumption, i.e. assumed that compu-
tation is always faster than the environment changes. It is therefore impossible for inter-
action and computation to overlap. We can thus imagine to strictly separate computation
and interaction also for embedded system design based on CFSM. The advantage in ease
of specification and analysis outweighs some sub-optimality due to the restriction in design

style.

Definition 5.1 (Synchronous Assumption) The operation of the design is split into
two alternating non-overlapping phases. An interaction phase where the environment
interacts with the design and a computation phase where the components in the design

perform ezecutions and communicate among themselves.

This notion of synchronicity is a system-level extension to the fundamental mode
operation of asynchronous circuits [Ung69]. During an interaction phase, the design “stands
still” until the environment completes its receiving of outputs from and writing of inputs
to the design for use during the next computation phase. During a computation phase, the
design takes inputs that were generated by the environment, performs computations, and
generates outputs that will be read by the environment during the next interaction phase.
There are no interactions during a computation phase and no computations during an inter-
action phase. The interaction phase followed by its associated computation phase is called
a “cycle”. We will only consider specifications that satisfy this synchronous assumption.
The implementation process must guarantee to preserve it. This can be done by a separate
worst case timing analysis in the flavor of [BSV97]. If the worst case timing delay is within
the constraints imposed by the environment, the implementation can be said to conform to

the synchronous assumption.

Definition 5.2 (Synchronous Equivalence) Under the synchronous assumption, two
implementations are synchronously equivalent if and only if for all possible input traces

the outputs of the implementations are the same at the end of every cycle.

Note how internal events (among CFSMs) play absolutely no role in the definition

of synchronous equivalence. As we will see, they may or may not play a role in dectding it.

CHAPTER 5. SYNCHRONOUS EQUIVALENCE 66

As long as the results (outputs of the network of CFSMs) are the same at the end of the
cycle, the order of executions of CFSMs or even the parallel/serial nature of the executions
does not matter. The former can lead to freedom in scheduler selections while the latter
can lead to freedom in assigning components to computational resources.

Our restricted CFSM model can thus be defined as externally synchronous glob-
ally asynchronous locally synchronous (ESGALS), as opposed to the original GALS CFSM
model. The concepts of synchronous assumption and synchronous equivalence facilitate
specification. Designers can now think about the input /output reaction of the design to the
environment separately from the speed of the reaction. Synchronous assumption is not too
restrictive, especially for control-dominated applications. Designing with the synchronous
assumption is strongly analogous to designing synchronous circuits and fundamental mode
asynchronous circuits. In that domain, the ease of validation and synthesis often outweighs
the increased freedom with respect to full asynchrony. The same can be extended to em-
bedded system design, board-level or “system on a chip”, where different processors or
dedicated units can be considered as different computational resources. Much research in

embedded system design is also based on the synchronous assumption, as discussed below.

5.2.1 Related Work

Synchronous languages are a group of languages proposed for automatic synthesis
of embedded software [BCG91]). Synchronous languages have a unique notion of “syn-
chronous scheduler”, the scheduler that defines correct behavior. This scheduler is the
result of the assumption of synchronous communication among components of the design.
Our synchronous assumption, on the other hand, is related only to the “external” interac-
tion of the design with the environment. Hence, there is an intrinsic non-determinism in
our specification that results in many possible “functional” behaviors that are consistent
with the structural specification.

Synchronous data-flow is a powerful formalism for data-dominated embedded sys-
tems geared toward simulation and code synthesis for digital signal processors [LM87]. It
also exploits the synchronous assumption at the interface between the network and the envi-
ronment, but “blocking read” is required of all components in the design to ensure that the
behavior is the same (in Kahn's sense [Kah74]) independent of allocation and scheduling.

Our work does not restrict the implementation choices to those utilizing a syn-

CHAPTER 5. SYNCHRONOUS EQUIVALENCE 67

| Séecifi Desié |

Network of CFSMs)

—={ Pick Candidate Implementation | | Specify Reference Implementation |

(Candidate Implementation)

{ Formal Equivalence Analysis |
Yes

No

No —{ Performance Analysis |
Yes

| Synthesis |

Figure 5.1: A Synchronous Approach to Design Exploration.

chronous scheduler, nor does it require communications to have the “blocking read” prop-
erty. Therefore, many different functional behaviors are possible depending on the choice of
implementation parameters. Different implementations are grouped into equivalence classes
according to synchronous equivalence. We use equivalence analysis to tell us whether any
two implementations are equivalent to each other. Trade-off analysis for different design
metrics can then be performed on the “functionally” equivalent implementations.
Javatime [YMS*98] is inspired similarly by the fundamental mode operation of
asynchronous circuits and the concept of refinement. Their emphasis is on the specification
and simulation using the language Java. Our concentration, on the other hand, is on the

development of efficient formal algorithms for equivalence analysis.

5.3 Design Exploration Methodology

Figure 5.1 illustrates a possible design methodology using the synchronous as-
sumption and synchronous equivalence. The designer specifies the functionalities of the

components and the structure of the design as a network of CFSMs. One or more be-

CHAPTER 5. SYNCHRONOUS EQUIVALENCE 68

haviors among those allowed by the non-determinism in the network are chosen as golden
model(s). They are represented by reference implementations that produce those functional
behaviors and only those functional behaviors. The functional behaviors under synchronous
assumption of these implementations are considered “correct” and different implementations
with the same functional behavior are all functionally equivalent. Non-functional character-
istics such as delay, power, reliability, and cost can be used to differentiate one functionally
correct implementation from another. Separate analysis,in the flavor of [BSV97), of timing,
power, or cost is performed to be make sure that constraints are satisfied and to decide
whether one implementation is superior to others given some design metrics. The best one

is then chosen to be synthesized.

5.4 Analyzing Synchronous Equivalence

Given any two embedded system implementations of the same CFSM specification,
we want to determine whether or not they are synchronously equivalent. There are many
possible approaches. One could exhaustively simulate through all possible input traces.
Formal verification on exact representation can be a way to perform exhaustive simulation.
On the other side of the spectrum, one may be able to deduce synchronous equivalence by
statically analyzing the characteristics of the implementations. By static analysis, we mean
that only simple comparison on implementation parameters or simple search algorithms on
the system graph are allowed. In between these extremes are analyses where some abstract
simulations are performed. The analysis techniques span a continuum on computation time
and conservativeness of the analysis, as shown in Figure 5.2. Conservativeness is measured
by the number of false negative results produced by the analysis algorithm, given a set of
implementations of a CFSM specification.

Exhaustive analysis of any form produces no false negative results, but it often
has very long computation time. All other methods have the possibility of false negative
results given arbitrary designs. These methods, therefore, can only be used to prove that
two implementations are synchronously equivalent. They cannot be used to prove that
two implementations are not synchronously equivalent. This is a direct consequence of
the “yes/inconclusive” nature of abstract analysis. On the other extreme from exhaustive
simulation, one could therefore reach a conclusion of “don’t know” without performing any

analysis at all. In the design methodology proposed in the previous section, false negative

CHAPTER 5. SYNCHRONOUS EQUIVALENCE 69

1_ Just Say Don’t Know

__:.Static Analysis

_ gCommunication Analysis

of falsely negative results

... Refined Communication Analysis

--------- Exhaustive Simulation
o—

Time

Figure 5.2: Trade-Off in Analysis Methods.

results will show up as candidate implementations that are falsely declared to be functionally
incorrect. This may lead to sub-optimal final implementation. False positive results, on
the other hand, may produce incorrect implementations and hence must be avoided. Static
analysis methods can be very fast but generally produce many false negative results. In
Chapter 6, we present simple static analysis algorithms that give useful results for CFSM
network implementations, as supported by examples. In Chapter 7 and Chapter 8, we
introduce Communication Analysis and Refined Communication Analysis that will produce

fewer false negative results at a cost of higher computation time.

70

Chapter 6

Static Equivalence Analysis

In this chapter we present several static algorithms for the synchronous equivalence
analysis of CFSM networks. Only simple comparison on implementation parameters or
simple search on the system graph is needed for these algorithms. Consequently, they have
extremely low bounds on maximum computation time, at the cost that many inconclusive
results are possible due to the false negatives. We will show through examples that they
are still very useful for embedded system design based on CFSM networks.

In the next section, we show how equivalence can be established by just examin-
ing implementation parameters such as scheduling policies. In Section 6.2, we show that
some properties of the system graph can be used to guarantee synchronous equivalence. In
Section 6.3, some analysis result based on both implementation parameters and properties
of the system graph is presented. In Section 6.4 we show how some popular implementa-
tions of heterogeneous architectures are synchronously equivalent to those based on a single

computational resource.

6.1 Scheduling Policy Analysis

Under synchronous assumption, synchronous equivalence will hold for some subsets
of implementations based solely on the scheduling policy, for any given CFSM specification.
A sufficient condition for two implementations to be synchronously equivalent is that they
both are implemented on a single computational resource (processor or circuits) and have

the same scheduling policy. We need the following definitions to prove this property:

Definition 6.1 (Implementation) A CFSM implementation is a completely determin-

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 71

istic behavior defined by:
e a network of CFSMs, as defined in Chapter 3,
e an architectural mapping, consists of

— a scheduling policy, to be defined later,

— possible ranges of execution delays for CFSM components,

e an optional synthesis directives, defining exzecution delays for CFSM components, if

it is not already deterministic.

Definition 6.2 (Global State Pattern) Given a CFSM implementation, the global state
pattern is the state of all main automata, all input buffer automata and all output buffer
automata of the CFSM network.

Definition 6.3 (Stabilization) An implementation is stable if and only if no change in
the global state pattern or output is possible without the application of a new primary input

pattern.

A system that satisfies the synchronous assumption stabilizes at or before the end
of a cycle.

A single primary input pattern can stimulate the design and “generate” a sequence
of global state patterns until stabilization is reached. A sequence of primary input patterns
(i.e. a primary input trace) “generates” a sequence of sequences of global state patterns. A

primary input trace also generates a sequence of sequences of scheduling points.

Definition 6.4 (Scheduling Point) A scheduling point is a point in time where some

CFSM component completes computation, or produces some output.

A scheduling point corresponds to the point in time when some “scheduling deci-
sion” needs to be made. There are often many scheduling points within a single computation
phase.

Scheduling points are related to the behavior of the components of the design.
When the implementation is stabilized, the computation phase ends. The end of the com-

putation phase corresponds to a scheduling point. The end of interaction phase is also

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 72

m Interaction
: Computation

== Scheduling point

i

b ¢ d

Time

Figure 6.1: Example Illustrating Scheduling Points.

considered a scheduling point because that is when the environment finishes interaction.
This concept is demonstrated in Figure 6.1 where scheduling points generated by a simple
three buffer chain is shown. Time a is a scheduling point because the environment finishes
interaction. At scheduling point b, component X finishes execution and component Y starts
to execute because it is the only component with input and consequently the only compo-
nent that can be scheduled. At time ¢, component Y finishes execution and component Z
starts, so it is another scheduling point. At scheduling point d, Z finishes execution and
the computation phase ends because the design has stabilized.

A network of CFSMs, an architectural mapping, and synthesis directives together
correspond to an implementation that is fully deterministic. An input trace i = {t1,92, ...}
can be said to generate a sequence of sequences of scheduling points {{a}, a2, ...}, {a}, a2, ...}, ...
for an implementation where {a},a}, ...} is due to 4 and {a}, a3, ...} is due to i,. Scheduling

points have the following important property:

Lemma 6.1 Given two implementations, A and B, of the same specification, and an ar-
bitrary input trace i = {i1,4,...}, i generates a sequence of sequences of scheduling points
{{al,a}, ..}, {a},63,...}, ..} for implementation A, and {{b},5?,...}, {b}, 82, ...}, ...} for im-
plementation B. Let the global state pattern be {{P}, P2,...}, {P},PZ,..},..} for imple-

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 73

mentation A, and {{Q},@3,...},{Q},Q3,...},...} for implementation B at the scheduling

points. A and B are synchronously equivalent, if Pt = Q*, for all integer m,n.

Proof: By definition, the implementation stabilizes at some scheduling point. Since PJ* =
Q7 for all scheduling points, they must also be the same at all stabilizing points. In
addition, an output can only occur at a scheduling point. Since P;* = Q7, output patterns
are the same at the stabilizing points also. Therefore, outputs are the same at the end of
the cycle (stabilization). Therefore, A and B are synchronously equivalent to each other.

Definition 6.5 (Scheduling Policy) A scheduling policy for a CFSM network is com-
posed of three functions: Enable, which defines the condition under which a CFSM should
be considered for execution. Select, which defines a subset of the enabled CFSMs to ac-
tually be executed, and Execute, which defines the condition under which selected CFSMs

can start erecutions.

A component is usually considered enabled for execution if one or more of its inputs
have arrived. However, a scheduling policy may enable a component even when no input
events are present. In this case, the execution should consume no input, produce no output
and leave the component in the same state. This is known as empty ezecution. This feature,
and indeed the whole reason for splitting the Enable and Select, make it much easier
to define and analyze worst case communication scenarios. A worst case communication
signature can be related to real execution traces by padding execution traces with empty
executions. We will use this notion of worst case communication extensively in Chapter 7
and Chapter 8.

An enabled component can be always selected, or it can be selected according to
some list or priority condition. For a non-preemptive policy, selected component can only
ezecute when all previously executing components have completed their executions. Under
a preemptive policy, an executing component may be suspended to have a newly selected
component executing in its place.

Some of the more common scheduling policies include Unit Delay Parallel (UDP),
Static Priority Serial (SPS), and Cyclic Executive Serial (CES).

Definition 6.6 (Unit Delay Parallel) Unit delay parallel scheduling policy for a CFSM
network is defined by:

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 74

¢ all components are Selected,

e all selected component are Executed upon stabilization of all previous ezecutions.

Definition 6.7 (Static Priority Serial) Static priority serial scheduling policy for a CFSM
network is defined by:

e A component is Enabled if one or more of its inputs have arrived,
o An enabled component is Selected by some statically determined priority order.

® The selected component is Executed upon stabilization of the previous execution.

Definition 6.8 (Cyclic Executive Serial) Cyclic ezecutive serial scheduling policy for a
CFSM network is defined by:

e A component is Enabled if one or more of its inputs have arrived,
e An enabled component is Selected by some statically determined list.

o The selected component is Executed upon stabilization of the previous ezecution.
UDP, SPS, and CES scheduling policies are delay insensitive.

Definition 6.9 (Delay Insensitive Scheduling Policy) A scheduling policy for a given
CFSM network is delay insensitive if different delay assignments to the (CFSM) com-
ponent ezecutions will result in implementations that are guaranteed to be synchronously

equivalent to each other.

For a CFSM network, the UDP scheduling policy essentially implements Moore
synchrony. It should not be surprising that all UDP implementations (i.e. implementations
with UDP scheduling policy, but possibly with different clock speeds) are synchronously

equivalent to each other.

Theorem 6.2 UDP implementations of the same CFSM specification are synchronously

equivalent.

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 75

Proof: Given two such implementations A and B and an arbitrary input trace, P{ = Q9
because they are specified by the initial state, initial output and the environment. We can

now proceed by induction.
e Base Case P§ = Q3
e Induction Hypothesis P§ = Q}

e Prove: Pjt! = Qit!
% = @Qi. UDP dictates that all components are executed in parallel with the same
delay. Outputs and next state of each component are computed at the next scheduling
point ¢ + 1. Since the output and transition relations are identical for A and B,

i+1 _ i+l
PO - QO

At stabilization point j, P; = Q;. At the next scheduling point, it must be that

P}] = Q? +1 because they are the same pattern as at previous scheduling point plus primary
input, which has to be the same given the same environment.

Therefore, PJ* = QT for any integer m and n. Due to Lemma 6.1, the theorem is

proven. (]

The very popular SPS and CES scheduling polices are also delay insensitive.

Theorem 6.3 Single processor SPS implementations of the same CFSM specification and

priority order are synchronously equivalent.

Proof: Given two such implementations A and B and an arbitrary input trace, P§ = QJ
because they are specified by the initial state, initial output and the environment. We can

now proceed by induction.
e Base Case P{ = QJ
e Induction Hypothesis Pi = Qi

¢ Prove: P(;"“ = Qf)"'l
Because P} = @i, the SPS implementations with the given priority order make the
same scheduling decision and execute corresponding components. Output and next
state of that components are calculated for the next scheduling point 7 + 1. Since the

output and transition relations are identical for A and B, P(;"*'l = Qf,"'l.

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 76

At each stabilization point j, P; = Q;. At the next scheduling point, it must be
that ng+1 = Qg +1 because they are the same pattern as at previous scheduling point plus
primary inputs, which have to be the same given the same environment.

Therefore, P* = Q' for any integer m and n. Due to Lemma 6.1, the theorem is

proven.]

Theorem 6.4 Single processor CES implementations of the same CFSM specification and

list order are synchronously equivalent.

Proof: Given two such implementations A and B and an arbitrary input trace, Py = Q3
because they are specified by the initial state, initial output and the environment. We can

now proceed by induction.
e Base Case P = QY
¢ Induction Hypothesis P} = Q})

e Prove: Pg’“ = Qf)'”
P} = @Q}. the CES implementations with the same list order make the same scheduling
decision and execute corresponding components. Output and next state of those
components are calculated for the next scheduling point ¢ + 1. Since the output and

transition relations are identical for A and B, P;*! = Q}*!

At stabilization point j, P; = Q;. At the next scheduling point, it must be that
P,-?+1 = Q? +1 because they are the same pattern as at previous scheduling point plus primary
inputs, which have to be the same given the same environment.

Therefore, P;* = Q7 for any integer m and n. Due to Lemma 6.1, the theorem is
proven.]

Theorem 6.3 and Theorem 6.4 can be easily extended to preemptive scheduling
because for SPS and CES, preemptions always occur at scheduling points. The environment
is not allowed to interact with the design during a computation phase and the only event
that can occur to “preempt” an execution must be produced by some component in the
design. As previously mentioned, production of an output event corresponds to a scheduling
point.

In essence, a scheduling policy is delay insensitive if the execution ordering of the

components is not dependent on time. An example of scheduling policies that are not delay

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 77

insensitive is the class that is referred to as “time-slicing”. In “time-slicing”, each enabled
component is allotted a certain amount of time and if the execution has not been completed
within the allotted time, the component will be preempted. For a CFSM network, changing
some execution delays of CFSM may result in different time-slicing implementations that
are not synchronously equivalent to each other. Multi-processor architectures for a CFSM
network are also generally not delay insensitive because the communication between the
processors may depend on the speeds of the processors.

If a delay insensitive scheduling policy is chosen at the architectural mapping
stage, the previous theorems state that different implementations with that same delay
insensitive scheduling policies are synchronously equivalent to each other. Delay insensitive
scheduling policies provide the advantage that the designer is free to optimize individual
components and the resulting implementation is guaranteed to be synchronously equivalent
to the original one. A design with a delay insensitive scheduling policy is functionally robust
with respect to uncertainty in timing delays, such as those that may be caused by cache
misses. The designer can thus have a high confidence that the dynamically varying delay
can affect only the performance of a design, not the functionality of a design. Furthermore,
functional simulation of an implementation with a delay insensitive scheduling policy can
be done without costly and often inaccurate timing estimation. Delay insensitive scheduling
policies take full advantage of the synchronous assumption where function and timing are
strictly separated. This property of SPS and CES helps to explain why they are so popular

among embedded system designers.

6.1.1 Validating Experiment: Seat Belt Alarm Controller

Performing a scheduling policy analysis is extremely straightforward. If two im-
plementations have the same scheduling policy which is delay insensitive (e.g. UDP, SPS,
CES), then they are synchronously equivalent. Otherwise, the analysis result is inconclusive.
This analysis can be applied to any design based on CFSM networks. To show that this
result is not trivial, we use formal verification tools to perform exact equivalence analysis
for a particular design: the seat belt alarm controller from Section 2.1. Implementations

with the following scheduling policies are considered:

e UDP

Fully synchronous hardware (unit delay parallel) implementations.

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 78

e SPS-TC
Single processor implementations with static priority serial scheduling policy. Timer

is at higher priority than controller.

e SPS-CT
Single processor implementations with static priority serial scheduling policy. Con-

troller is at higher priority than timer.

e CES-TC
Single processor implementations with Round Robin (single appearance cyclic execu-

tive serial) scheduling policy. The list is timer, then controller.

o CES-CT
Single processor implementations with Round Robin scheduling. The list is controller,

then timer.

All execution policies are non-preemptive. All delays are set to non-zero, arbitrary, finite,
and non-deterministic. By comparing two “scheduling policies” with the formal verification
tools, we are essentially comparing all possible delay assignments of one scheduling policy
with all possible delay assignments of the other (maybe the same) scheduling policy. All
examples are written in BLIF-MV, and the formal verification tool, VIS [BSVA+96], is
used to test the synchronous equivalence of the implementations. The experiments are
run on a 625MHz Alpha processor with 2 gigabytes of memory. The results are shown
in Table 6.1.1. All the results are consistent with our prediction. Notice that although
the system is extremely simple, consisting of a 3-state CFSM and a 10-state CFSM, it
still takes 21 seconds in the worst case on a very powerful machine.! For any realistic
design, the result is likely to be inconclusive due to extremely long computation times by
the formal verification tools. For this example, the formal verifications all finish within
reasonable time and memory requirement. Since the representation is exact, the results are
either yes or no (as oppose to yes/inconclusive for abstract analysis). The static scheduling
policy analysis is performed by a simple comparison of the scheduling policies and takes
essentially no time at all. It achieves the same result for comparing implementations of the
same scheduling policy with different delay characteristics (UDP to UDP, SPS-TC to SPS-
TC, SPS-CT to SPS-CT, CES-TC to CES-TC, and CES-CT to CES-CT). These are the

!Communication buffers, that are non-deterministic, significantly increase the state space size even in
this case.

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 79

Implementation 1 | Implementation 2 | Synchronous Equivalent? | CPU time(seconds)
UDP UDP Yes 21.0
UDP SPS-TC No 12.1
UDP SPS-CT No 7.5
UDP CES-TC No 14.9
UDP CES-CT No 9.5

SPS-TC SPS-TC Yes 16.5
SPS-TC SPS-CT No 9.9
SPS-TC CES-TC Yes 19.2
SPS-TC CES-CT No 12.5
SPS-CT SPS-CT Yes 13.8
SPS-CT CES-TC No 11.8
SPS-CT CES-CT Yes 18.1
CES-TC CES-TC Yes 204
CES-TC CES-CT No 12.7
CES-CT CES-CT Yes 194

Table 6.1: Full Reachability Analysis of Seat Belt Example.

true positives. In the case of comparing SPS-TC with CES-TC, and SPS-CT with CES-CT,
the result of static analysis is inconclusive due to false negatives (i.e. exact analysis returns
positive). All other combinations of comparison are inconclusive due to true negatives (i.e.
exact analysis returns negative). For this example, the implementation space is split into
3 different equivalence classes: 1) UDP, 2) SPS-TC, CES-TC, and 3) SPS-CT, CES-CT.
In the next chapter, we will introduce communication analysis, that requires a little more
computation time but is able to give us the equivalence between SPS-TC and CES-TC, and
between SPS-CT and CES-TC.

6.2 System Graph Analysis

Definition 6.10 (System Graph) In the system graph of a CFSM network, each CFSM
component is represented by a node and each signal from a sender CFSM to a receiver
CFSM is represented by a directed edge. All primary inpuls are represented by a single
node with only outgoing edges and all primary outputs are represented by a single node with

only incoming edges.

The system graph for the seat belt example is shown in Figure 2.3. Note that a

system graph may be cyclic. In the figure, the single source and sink are split into individual

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 80

PI's and PO’s for the sake of clarity. A given node in a graph may have many predecessors

and many successors.

Definition 6.11 (Predecessor) A node is the predecessor of another node if it is in its

transitive fan-in. The set of nodes that are predecessors of node i is denoted by Pred(i).

In the seat belt example, Pred(controller) and Pred(timer) include all nodes ex-
cept the node that represents primary outputs. A cycle in the system graph makes every
node in the cycle both a predecessor and a successor of every other node in the cycle. For
the example in Figure 6.1, Pred(X) includes only the primary input. Pred(Y) includes X
and the primary input. Pred(Z) includes X, Y, and the primary input.

Definition 6.12 (Successor) A node is the successor of another node if it is in its tran-

sitive fan-out.

Definition 6.13 (Liveness) An implementation is live if and only if any event at the

input of components must eventually be consumed by an ezecution.

Most interesting implementations of interesting specifications are live. System

graphs have the following property:

Theorem 6.5 Live implementations of the same CFSM specification are synchronously

equivalent to each other if the system graph without the primary output node is a tree.

Proof: Since the system graph without the primary output node is a tree, each component
has only one input and hence can execute at most once for any set of primary inputs. In fact,
it can only execute after its immediate predecessor has executed, regardless of the choice
of architectural mapping and synthesis directives. In addition, it must execute because the
implementation is live.]

The system graph of the seat belt example is not a tree, while the one for the
example in Figure 6.1 is. For the design in Figure 6.1, all live implementations satisfying
the synchronous assumption are synchronously equivalent to each other.

The reason why some graph may not be a tree is due to reconvergence. In a directed
tree, there is at most one way to traverse from one node to another. A reconvergence exists
if there is more than one way to traverse from node a to some node b. Node a will be

called a split-off point if it has more than one immediate successor and some node b can

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 81
O
O,
o

Figure 6.2: Converting into Tree of Nodes and Successor Free Subgraphs.

be reached through more than one successor of a. Our goal is to replace the nodes and
edges starting from the split-off point by a single node representing a subgraph. Any non-
tree system graph can be transformed into a tree of nodes and subgraphs. The following
algorithm performs one such transformation. There is no canonical transformation. This
transformation produces a graph where the nodes representing subgraphs are successor-free.

The starting point is a system graph minus the primary output node:

1. Perform Depth First Search (DFS) from the primary input node. Mark each node as

it is visited.

2. If a node previously visited is encountered again, there is a reconvergence. Perform a
Breadth First Search (BFS) on the reverse graph to find and mark the split-off point

of the reconvergence. Continue with the original DFS.

3. Split-off points represent the root of subgraphs. Discard split-off points that represent
subgraphs that are contained in another subgraph represented by another split-off

point. This can be done by a second pass of DFS.

An example of the transformation is shown in Figure 6.2. Transforming the system graph of

the seat belt example returns the original system graph as the only subgraph in the system.

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 82

The next theorem can be used to establish synchronous equivalence hierarchically.
It starts from a transformed system graph that is a tree of nodes and successor-free sub-
graphs. By successor-free we mean that the nodes representing the subgraphs at the top

level do not have successors.

Theorem 6.6 Two live implementations are synchronously equivalent to each other if the
system graph without the primary output node can be transformed into a tree of nodes
and successor-free subgraphs such that each corresponding subgraph pair is synchronously

equivalent.

Proof: Since the transformed system graph is a tree, all nodes can be executed once and
all subgraphs can be “invoked” once. Hence, all corresponding subgraphs of the imple-
mentations can be “invoked” once with the same input. Since corresponding subgraphs
are synchronously equivalent to each other, they will produce the same outputs and state
changes. Other components that are not part of the subgraphs are part of the tree. Ac-
cording to Theorem 6.5, they must produce the same outputs and state changes as well.
Therefore, the two implementations are synchronously equivalent to each other.]

Theorem 6.6 suggests a hierarchical synchronous equivalence checking algorithm.
After splitting the system into a tree of nodes and subgraphs, other algorithms can be used
to check the synchronous equivalence of the corresponding subgraphs. Together they imply

the synchronous equivalence of the two implementations.

6.3 Mixed Analysis

Obviously, one can utilize both the system graph and the scheduling policies to

help in analyzing synchronous equivalence statically.

Theorem 6.7 A processor implementation with single appearance Cyclic Ezecutive Schedul-
ing (also known as Round Robin) is synchronously equivalent to Unit Delay Parallel imple-

mentation if
o the system graph is acyclic, and

e if i € Pred(j), then j is earlier in the list than i.

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 83

Proof: Assume a synchronous hardware implementation A, and a single processor imple-
mentation with round robin scheduling B of the same specification. Consider an arbitrary
input trace and its generated set of scheduling points e and b, respectively, and set of global
state/signal pattern P and Q, respectively. At start up, Pg = Qg because they are specified
by the initial state, initial output and the environment. Let Q} be the scheduling point
corresponding to a single “list” execution of the round robin list. Since all successors are
executed before their predecessor, from Q9 to Qf,, the input to each executed component at
its execution time remains unchanged from startup. Since each component has the oppor-
tunity to execute once with the signal pattern of QJ, the state and output pattern will be
the same as a single parallel execution, therefore P} = Q.

Similarly, there exists a j corresponding to the second “list” execution of the round

robin list, and P? = Q{;. More formally by induction:

e Base Case
P = Qg

e Induction Hypothesis

% = {; where j corresponds to the end of the “list”.

e Prove: P{;“ = Qé, where k& corresponds to end of the next “list” execution
P = Qé. A single execution of the “list” executes all successors before their prede-
cessor. Not only does that execute each component once, but each component sees
Q{; at the time of its execution, therefore the executions are not dependent, therefore

at the end of the list execution, Pé“ = Q'&.

At the stabilization point !, P, = @;. At the next scheduling point, Pffl_l and Q?_H
both have the pattern at the previous scheduling point plus the primary inputs, which have
to be identical for both implementations also. Therefore P, = Qf, ,, and induction applies
again.

By induction, since all components execute exactly once for both implementations
and with the same input, the primary outputs also agree on this basis, therefore the two
implementations are synchronously equivalent.]

This theorem suggests a synthesis approach. Given a UDP implementation of an
acyclic specification, one can easily come up with an equivalent CES implementation by

levelizing the components.

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 84

1
Digital '

Signal >
/ Processor
~a——»| Micro

! | Processor

' \ Programmable
1

1

Gate Array

Figure 6.3: Example of Co-Processor Architecture.

6.4 Analysis of Heterogeneous Architectures

One of the salient characteristics of embedded systems is that they may be im-
plemented on heterogeneous architectures. Different parts of the system may be better
suited for mapping to computational resources with very different performance and cost
factors. Here we consider two very common heterogeneous architectures, the co-processor
architecture and the synchronous parallel architecture, and show how they can be modeled

for efficient synchronous equivalence analysis.

An example of the co-processor architecture is shown in Figure 6.3. The micropro-
cessor acts as a master of the communication to and from the co-processors. Whenever there
is some computation to be done on the co-processors, the microprocessor emits the events
and associated data to the co-processors, and waits for the operation on the co-processors to
be completed. An acknowledge event is sent back to the master, before continuing with its
own operation. The operations of the master and the co-processors thus become serialized.
A co-processor architecture can be modeled as, and is indeed synchronously equivalent to,
a static priority serial scheduling policy on a single processor architecture with all the com-
ponents mapped to the co-processors having higher priority than the ones that are mapped

to the master.

The synchronous parallel architecture is characterized by processors executing in
parallel, but communication is allowed only at a time when all the processing on each
processor has been completed. An example is shown in Figure 6.4. A synchronous parallel
architecture can be hierarchically modeled as having a unit delay parallel scheduling policy

on top of the original single processor scheduling policies for individual processors.

CHAPTER 6. STATIC EQUIVALENCE ANALYSIS 85

]
]
! .
) Micro
] 1
' Processor J
]]
]]
]]
] . '
v | Micro '
i e |]
, | Processor - .
' Micro '
] 1t
' Processor '
]
]

Figure 6.4: Example of Synchronous Parallel Architecture.

6.5 Conclusions

The definition of synchronous equivalence and the application of synchronous as-
sumption lead to very powerful static algorithms where equivalence is conservatively verified
by the characteristics of the scheduling policies or the structure of the system graph. How-
ever, the result may be inconclusive due to false negatives.

Viewing static equivalence analysis from the standpoint of abstraction/refinement
provides useful insight. The analysis at this level is extremely abstract. Lots of information
about the system is abstracted away. Utilizing this information will inevitably add to
computational complexity of the analysis algorithms. One must refine and include more
information in the analysis in a judicious manner to make it worthwhile.

In the next chapter we introduce Commaunication Analysis. The starting point is
delay insensitive scheduling policies and the pieces of “information” added are those related
to the system graph and abstracted local functions of the components. Communication
analysis is no longer considered static because a single pass of execution on the abstract
model is used to capture information of the system graph and local functions (i.e. about

the communication between the components).

86

Chapter 7

Communication Analysis

While two implementations with the same delay insensitive scheduling policy are
guaranteed to be synchronously equivalent to each other, two implementations with different
delay insensitive scheduling policies may still be synchronously equivalent to each other,
depending on the behavior of the design. In this chapter, we introduce communication
analysis that can be used to conservatively check the equivalence between two different
delay insensitive scheduling policies.

There is a simple intuition for looking at the communication between components.
Since the corresponding components in the two implementations are guaranteed to have
the same functionality, and the connectivity among the components is also guaranteed to
be the same, it should thus be possible to deduce the equivalence of two implementations
from the behavior of the communication. It should be possible to establish a communi-
cation signature in the flavor of worst-case analysis in real-time scheduling [LL73]. If two
implementations have the same communication signature, they should be synchronously
equivalent to each other. By looking at only the worst-case communication characteristics
and not at the details, the analysis can be efficient, though at a cost of being conservative.

The communication signature is derived from the erecution traces of an implementation.

7.1 Execution Trace

During a computation phase, there is no interaction between the design and its
environment. Within the design, however, components receive events, perform executions

in some order, and send out events that can trigger other executions. A given component

CHAPTER 7. COMMUNICATION ANALYSIS 87

can be executed many times during a computation phase.

Definition 7.1 (Local Execution Trace) Given a legal input trace (i.e. one that sat-
isfies the synchronous assumption), the sequence of input event patterns consumed by a

component at each execution is called its local execution trace.

Definition 7.2 (Execution Trace) Given a legal input trace, the execution trace of

the implementation is the list of all local execution traces of all components.

An execution trace does not contain any timing information, except in the form
of ordering among the sequential atomic executions of the same component. The ordering
of the executions of different components is not part of the execution trace. This feature
allows widely different implementations to have the same execution traces.

Consider the example in Figure 7.1. For component B, if only m; or i3 is present at
the time of execution, o; will not be emitted, though the input will be consumed, according
to the semantics of the CFSM. Figure 7.2 shows how an execution trace can be obtained
through simulation. An SPS implementation with A<B, given primary input ;,42 = 11 has
B executing first with input m;,i2 = 01, then A executing with input 1, then B executing
again with input 10.

The design in Figure 7.1 is memoryless, so every computation phase has the same
response to the same primary input pattern. We present all possible execution traces for
three different implementations of the design in Table 7.1. Three implementations are being
considered: a single processor SPS with component A at a lower priority than component
B, a concurrent hardware UDP implementation where A and B execute in parallel with the
same delay, and a single processor SPS with A at a higher priority than B. 1/0 in the table
indicates the presence/absence of an event. Recall that the components are reactive, so a
non-empty execution will take place only when there is some event “1” at the input.

The execution trace from Figure 7.2 is recorded in the second column, third row
of Table 7.1. Time proceeds downward within a cell for the local execution trace of a
component, and there is no relationship between local execution traces of different com-
ponents. For the case of Figure 7.2, there is no ordering information implied between the
local execution trace of A: 1, and the local execution trace of B: 01,10. There is, however,
an implication that 01 occurs before 10. Information for all the other cells in the table are

obtained in a similar fashion as in Figure 7.2.

CHAPTER 7. COMMUNICATION ANALYSIS 88

il A A if (il) then emit(m1)

— ml

12 \ ___01 . . .
B | B: if (m1) and (i2) then emit(o1)

Figure 7.1: Example for Execution Trace.

Primary Input

Primary Output
Execution Trace

A i1=1

ml= ml=1
B i2=1 i2=0
time

Figure 7.2: An Execution Trace of the Example of Figure 7.1.

An execution trace of the seat belt alarm controller example for a static priority
serial scheduling policy with the controller at higher priority than the timer is shown in
Figure 7.3. Consider the first cycle. The priority ordering allows the controller to execute
first, and produce internal event Start to be received and consumed by the timer.

Execution traces have the following important property:

Lemma 7.1 For every legal input trace (i.e. the synchronous assumption is valid), if the
execulion traces from two implementations are identical, then the two implementations are

synchronously equivalent to each other.

Proof: Identical execution traces means that the ordered lists of input patterns are the
same for all components. Since the outputs of the components and changes in global
state patterns are the result of the executions of the components using the sequences of

input patterns, they have to be the same for both implementations also. Since output and

CHAPTER 7. COMMUNICATION ANALYSIS 89

A<B UDP A>B
f1i2 [A(Z1) B(ma,i2) | A(Z) B(ma,i2) | A(G) B(ma,iz)
11 1 01 1 01 1 11
10 10
10 1 10 1 10 1 11
01 01 01 11

Table 7.1: Execution Traces.

] ']] t]

]] 1] 1]

]] |] 1]

Primary Input | Key_on ! Sec | Sec | Sec | Sec X
] Sec]] 1] 1

]) 1]]]

] 1 1 1 1 [}

Primary Output | | X ' :Alaun_On:
: I I I : ;

] 1] 1]]

] I] 1] 1

.] 1]]]]
Execution Trace 1 ' 1 ' '
] 1] 1]]

] I

controller Key_on : : X 1 End_5)

, : Start : " : :
timer ! Sec ! Sec ! Sec ! Sec ! Sec !

] 1] 1 | 1

] 1]]])

]] 1 ']]

]] I)]]

N 1 L = | 1]

oycle | : : : |

) 1 1

Figure 7.3: An Execution Trace of Seat Belt Example.

global state patterns are the same for all possible primary input traces, they have to be
the same at all stabilization points. Since all local execution traces (i.e. input traces) are
identical, outputs must be identical at all scheduling points (including stabilizing points).
Two implementations are therefore synchronously equivalent to each other.]

This lemma suggests a straightforward algorithm for checking synchronous equiva-
lence: simulate all possible input traces and compare the resulting execution traces. Accord-
ingly, implementations A<B and UDP for design in Figure 7.1 are synchronously equivalent
to each other. Exhaustive simulation is clearly not practical for all but the most trivial de-
signs. Hence, we introduce communication analysis. It is based on the intuition that since

two implementations of the same specification have identical component functionalities and

CHAPTER 7. COMMUNICATION ANALYSIS 90

connectivity, the only thing that requires analysis is the communication characteristics. To

this end, we look for a “signature” that summarizes the communication.

7.2 Abstracting Communication

We want to abstract, or summarize, communication between the components for
a particular implementation. To find a signature that is “worst-case”, we use the concept of
non-decreasing functions defined in a container space that is an abstraction of the space of
event presence/absence. To find a signature that is correct, though conservative, we utilize
the concept of container space cover for a event space function. The word “container” is
chosen to denote an entity that is necessary, but not sufficient, to contain an actual event.

The rationale for this choice will become obvious shortly.

7.2.1 Containers

Intuitively, a container is an entity that may or may not contain an “event”. The
presence of a container implies the possibility of an event. The absence of a container means

that definitely there is not an event. We define a container set and an event set.

Definition 7.3 (Container Set) A container set, C, is a set with two symbols: 0 and
x. Le. C={0,x}.

Definition 7.4 (Event Set) An event set, E, is a set with two symbols: 0 and 1. Le.
E ={0,1}.

Definition 7.5 (Container-Event Set) A container-event set, CE, is a set with four
symbols: 0, x, 0, and 1. Le. CE = {0,x,0,1}.

Notice that the symbols in the container set and the event set are written with
different fonts. If the reader finds it hard to distinguish a 0 in the container set from a 0
in the event set, he can rest assure that the distinction is only necessary in the strictest
mathematical sense. Both of them mean that an event definitely has not occurred. We can

define n-dimensional space for each set as follows:

CHAPTER 7. COMMUNICATION ANALYSIS 91

Definition 7.6 (Container Space) A n-dimensional container space is defined as C* =
{0,x}".

Definition 7.7 (Event Space) A n-dimensional event space is defined as E® = {0,1}".

Definition 7.8 (Container-Event Space) A n-dimensional container-event space is de-
fined as CE" = {0,x,0,1}".

A value of 0 for a variable or function in the container space denotes the absence
of a container, which corresponds to absence (0) of an event in the event space. A value
of x in the container space denotes the presence of the container, which may correspond to
either the presence (1) or the absence (0) of an event in the event space. Since the container
space defined here is only binary in nature, we could have easily defined all container space
variables and container space functions in the Boolean space. However, in Chapter 8, we
will extend the container set to be ternary. It is then easier to define a space that is distinct
from the Boolean space, once and for all. All the formalism developed in this chapter will
also be extended to the ternary container space.

We can define a binary relation, information ordering, between symbols in the
container set to be 0 > x. 0 has at least as much information as x (i.e. 0 is at least as
definite). Information ordering can also be defined in event set and in the container-event

set.

Definition 7.9 (Information Ordering) Information ordering (>) is defined as a bi-
nary relation between two symbols in the event set, container set, and the conlainer-event

set:

e FEvent set:
0-0;1>1;

e Container set:
02 0;0 = x;x > x;

e Container-event set:

0-0;1>=1;0=0;0>=x;x>x;0>0;0>x%;0>0;1>x.

CHAPTER 7. COMMUNICATION ANALYSIS 92

The information ordering can be extended to minterms in spaces.

Definition 7.10 (Minterm) A single element, m, of a given space S is called a minterm
of S, denoted bym € S.

A minterm of n-dimensional container space, m € C*, is automatically a minterm
of n-dimensional container-event space, m € CE" because container set is contained in the
container-event set. The same applies to a minterm in event space. A minterm in container-
event space, on the other hand, may not necessarily be a minterm in the container space or
the event space.

The definition of information ordering can be extended to event and container
space minterms by coordinate-wise extension. For example: 00 > 00, but 01 ¥ 00; x0 > xx,
but x0 ¥ 0x; 01 > Ox, but 11 ¥ Ox.

Definition 7.11 (Non-Decreasing) Given two container space minterms m; and my,

and a container space function f : {0,x}” — {0,x}. f is Non-Decreasing if and only if
my > mz = f(m,) > f(mg2) (7.1)

For a non-decreasing container space function, changing any input from x to 0 will
not change its value from 0 to x. This is sometime called the order-preserving mapping.

Similar to the notation for multi-valued logic synthesis [MBNSV93], 1} is used
to denote that container space function f; has the value x. Variables are similarly denoted.
Thus a value of x for function F; with input x0 is denoted as f3 (x0)=x, or f; =} (x0)=True.

Container space function f; *}=a{*}+b{*} (meaning that f; is x iff a is x or b is
x, and O otherwise) is non-decreasing. fo{x}=alx}*p{0} i5 not non-decreasing in b, because
the valuation of f2 at a = x and b = x is computed by f{*}(xx) = al*}(x) * b{%}(x) =
True * False = False, and therefore f2(xx) = 0. Similarly, we can compute f{*}(x0) =
alx}(x) * b19}(0) = True » True = True, that is f2(x0) = x. Therefore, changing the input

from ab=xx to ab=x0 will change output from 0 to x.

Definition 7.12 (Cover) A container space function f is a cover of the event space func-
tion f : {0,1}" — {0,1} if:

o there is a one to one correspondence between input variables, and

CHAPTER 7. COMMUNICATION ANALYSIS 93

e given any event space minlerm m and any container space mintermm m

m zm = f(m) = f(m) (7.2)

Intuitively, or any input minterm m in the container space, we generate the cor-

responding event space minterm m by:

e assigning 0 to a event space variable if its corresponding container space variable has
the value 0,

¢ assigning 0 or 1 to a event space variable if its corresponding container space variable

has the value x,

then f is a cover of f if for every m that f evaluates to 1, the corresponding m evaluates
f to x. Function f;{*}=b{x} is a non-decreasing cover of f=a*b*c. So are f2{(*}=b{x}tc{x}
and fa{‘}=b{‘}+a{‘}. f4{"}=a{‘} +clxlisa non-decreasing function but is not a cover of

f, while f5 =} =b{=} +c{=}*al%} is a cover of f but is not non-decreasing.

7.2.2 Well-Behaved Scheduling Policy

Worst case analysis for any general delay insensitive scheduling policy is difficult.
We concentrate on algorithms that can be applied to a “well-behaved” subset of delay

insensitive scheduling policies.
Definition 7.13 (Well-Behaved Scheduling Policy) A scheduling policy is well-behaved
if:

1. it is delay insensitive,

2. Enable is true at least for all CFSMs with some events on its inputs,

3. if Enable is replaced with an alternative that enables a finite number of additional
CFSMs, then the execution trace remains the same, except possibly for the insertion

of some empty ezecutions.

Whether or not a given scheduling policy is well-behaved needs to be established
separately through formal proofs manually, or with the help of formal verification tools.
The proofs will only need to be done once, since the property is not design dependent.
Many common scheduling policies are well-behaved. The next three theorems show that

UDP, SPS, and CES, are all examples of well-behaved scheduling policies.

CHAPTER 7. COMMUNICATION ANALYSIS 94

Theorem 7.2 The Unit Delay Parallel scheduling policy for a CFSM network is well-
behaved.

Proof: From Theorem 6.2, UDP is delay insensitive. CFSMs are reactive, so executing
components without input events produces empty executions. Since UDP executes all
components in parallel, execution of one component does not affect the delay of others.
Communication only occurs at the end of atomic execution. Since empty execution does
not produce any output, it will not communicate anything to other components. Adding
more component to the Enable function therefore does not change the execution except

for the addition of empty executions. UDP is therefore well-behaved. [

Theorem 7.3 The Static Priority Serial scheduling policy for a CFSM network is well-
behaved.

Proof: From Theorem 6.3, SPS is delay insensitive. CFSMs are reactive, so executing
components without input events produces empty executions. For SPS, the result of the
Select function depends on what is enabled, and on the priority list. By additionally
enabling components, Select can choose one of the additionally enabled component and
perform an empty execution. Since there is only a finite number of additional enabled
.components, Select must eventually select the originally selected component after a finite
number of empty executions. Therefore, the execution trace is the same modulo those
additionally enabled components (corresponding to empty executions). SPS is therefore

well-behaved. .

Theorem 7.4 The Cyclic Ezecutive Serial scheduling policy for a CFSM network is well-
behaved.

Proof: From Theorem 6.4, CES is delay insensitive. CFSMs are reactive, so executing
components without input events produces empty executions. Since the Select function of
CES is not dependent on what is enabled, changing the Enable function does not change
the selection and execution except for adding some empty executions. CES is therefore
well-behaved.]

An example of a policy that is not well-behaved is the following (quite un-natural)
Select rule: “If CFSM C is enabled, the (dynamic) priority is C>B>A. Otherwise, the
priority is A>B.” At some point in time when B and A are enabled, additionally enabling

CHAPTER 7. COMMUNICATION ANALYSIS 95

il o A: if (i1) then emit(m1)
i2 (B2 B: if (m1) and (i2) then emit(ol)

3 [CH22 C:if (3) then emit(02)

Figure 7.4: Example for Well-Behaved Scheduling Policy.

WB WB mod NWB NWB mod
41923 | A B(ml,i2) C|A B(ml,j2) C|A B(ml,i2) C|A B(mli2) C
110 1 01 1 01 01 11 1 01 0
10 10 10
100 1 10 1 10 1 11 1 10
010 01 01 11 01

111 1 01 111 01 11 01 111 01 1

10 10 10 10
101 1 10 1(1 10 1|1 10 111 10 1
011 01 1 01 1 01 1 01 1
001 1 1 1 1

Table 7.2: Execution Traces for Figure 7.4.

C (which will cause an empty execution on C) can actually change the execution traces of
B and A. Figure 7.4 and Table 7.2 illustrate that this scheduling policy is not well-behaved.
In the example, we additionally enable C whenever A and B are both enabled. Columns
titled “WB” and “WB mod” correspond to an SPS (A<B<C) scheduling policy (a well-
behaved scheduling policy). “NWB” and “NWB mod” correspond to the non well-behaved
scheduling policy described above. “WB mod” and “NWB mod” correspond to additionally
enabling C whenever A and B are both enabled. “WB mod” is identical to “WB” except
for the empty execution represented by O for the local execution trace of component C.
We can see that for the scheduling policy that is not well-behaved, even after taking into
account the empty transitions, the execution traces for “NWB” and “NWB mod” are still

very different.

CHAPTER 7. COMMUNICATION ANALYSIS 96

7.2.3 Execution Covers

A good communication signature must be easy to compute, so that it can be used
in the inner loop of some automatic design exploration procedure. It must also have the
property that if two implementations have the same communication signature, they must
be synchronously equivalent to each other. For this purpose we introduce a set of ezecution
covers (ECs). An execution cover of a given CFSM network is a directed acyclic graph. EC
nodes can be thought of as “ containers” representing possible events, in the flavor of event
graphs representing partially order histories [NPW81, McM93], but using the additional
notion of possibility to further abstract it. Thus, a container can contain either a “0”
(event absence) or a “1” (event presence). Each node is labeled with the corresponding
signal. The EC construction procedure also labels each container with a level, but this
label is discarded after the construction is completed. Roughly speaking, edges in the EC
represent dependencies between input and output events, as well as the ordering among
events belonging to the same signal.

The EC for an implementation with a given scheduling policy can be obtained by
“simulating”, ”abstractly executing”, or “unfolding” the system graph using the following

Ezecution Cover Generation Procedure:

1. Create a container (an x) for each primary input and label it with level 0. Set the

current level to 0.

2. Determine the set of active inputs for each (CFSM) node. A CFSM input is active
if there exists a corresponding container with a level that is larger than that used by
previous execution level of that CFSM (i.e. there exists a container that has not been

“consumed” by the previous execution).

3. Let all CFSMs with at least one active input be enabled. If no CFSM is enabled,
then STOP.

4. Apply the Select function of the original scheduling policy to choose the CFSMs to

be “executed”.

5. Abstractly ezecute the selected CFSMs by increasing the current level by 1, and
evaluate a non-decreasing cover of each CFSM output function with all active inputs

set to x and other inputs set to 0. If the non-decreasing cover evaluates to x, then

CHAPTER 7. COMMUNICATION ANALYSIS 97

e create a new container and label it with the current level and the name of that

output,

e for every active input: create an edge from the most recent container correspond-

ing to that input, to the newly created container,

e create an edge from the previous container labeled with the same name (if any

exists) to the new container.
6. “de-activate” the inputs of the executed CFSMs. Go to Step 2.

We can (conservatively) check two implementations for synchronous equivalence
by comparing their ECs, as stated by the following result. The theorem applies to any two
execution covers, no matter how each of them are generated according to Step 5 above. The

proof of this important theorem is postponed until Section 7.2.6.

Theorem 7.5 If two implementations of a given CFSM network with well-behaved schedul-

ing policies have identical ECs, then they are synchronously equivalent.

The EC generation procedure may not terminate, even if the CFSM network sta-
bilizes for every input pattern. This non-termination is due to looping through the same
patterns, and thus can be easily identified in the algorithm implementation. In this case,
the algorithm can be aborted and the communication analysis returns inconclusive result.
However, if the procedure terminates successfully, then identical ECs implies synchronous
equivalence. The abstract nature of EC gives it efficiency, but also makes it reach many in-
conclusive results due to the false negatives or non-termination. We will show the usefulness

of EC on industrial designs.

The abstract execution in Step 5 is performed by evaluating a non-decreasing cover
of the CFSM output function. There are many non-decreasing covers of a function, so there
is a whole set of different ECs that can be used as communication signatures. We present
only the Greatest Execution Cover (GEC) and the Least Execution Cover (LEC). GEC is
very easy to understand and compute, and also shows that more than one cover is possible.
LEC is only slightly more complex and is more useful in practice. It is also least abstract,

" in a sense that will be explained in Section 7.2.5.

CHAPTER 7. COMMUNICATION ANALYSIS 98

7.2.4 Greatest Execution Cover

The Greatest Execution Cover is computed by creating a new container in Step 5
whenever a CFSM is selected, regardless of what active inputs there may be. Due to the
reactive nature of the CFSM, the weakest criterion for a CFSM to be selected is that
some event be possibly present at some input. We first convert all signals consisting of an
event part and a value part into vectors of pure events. This is done through encoding,
usually in a one-hot fashion. An example of this conversion is shown in Section 7.2.4.3. For
large systems, this may be quite expensive. Some form of value abstraction similar to those
introduced in Chapter 4 may be necessary. The greatest cover function F in the container
space is a disjunction of all the input variables having the value x:

FEO = 3 (739)
i=1

F, the greatest non-decreasing cover of F, is non-decreasing because changing
some input from x to 0 cannot cause the function to change from 0 to x. The output is 0
only if all inputs are 0. The only way to change that output to an x is by changing some
input from 0 to x. We can show that F covers F as follows. There is only one minterm of
F that does not evaluate to an x: the one with inputs all at 0. A minterm in the container
space can correspond to many minterms in the event space in general. This minterm of F,
however, corresponds to only one minterm of F, namely, the one with inputs all at 0. Due
to the reactive nature of CFSM, all 0 at the inputs cannot produce a 1 at the output. F
therefore covers F. It is the greatest, in the sense that it contains all the minterms of all
the other covers of the reactive function F. The single all 0 input is not necessary to cover
any reactive function.

To abstractly execute a CFSM and obtain the greatest execution cover, we eval-
uate its greatest non-decreasing cover with all active inputs set to x and all others set to
0.

7.2.4.1 Simple Illustrating Example

The greatest non-decreasing cover for the output function of the CFSMs in the
example in Figure 7.1 is:
m; & = i , (7.4)

01 = my &}y i,lx

CHAPTER 7. COMMUNICATION ANALYSIS 99

il SPS A<B
i2
ml
ol

0 B 1 A 2 B 3 time
il UDP
i2
ml
ol

0 AB 1 B 2 3 time
il SPS A>B
i2
ml
ol

0 A 1 B 2 3 tme

Figure 7.5: Greatest Execution Cover for Example in Figure 7.1.

The Greatest Execution Covers for the example in Figure 7.1 are shown in Figure 7.5 for
the given three different execution policies, SPS A>B, UDP, and SPS A<B. The GECs
are identical for scheduling policies A<B and UDP, and the two scheduling policies indeed
do have identical execution traces as was shown in Table 7.1. According to Lemma 7.1,
they are synchronously equivalent to each other. If the GECs are different, as they are
between UDP and A>B, we cannot conclude whether the scheduling policies are or are not
synchronously equivalent, due to the fact that the analysis is abstract and the possibility

of a false negative result cannot be automatically excluded.

7.2.4.2 Shock Absorber Example

We applied the GEC analysis to a real-life industrial design: the shock absorber
controller from Chapter 4. The controller sets the shock absorbers’ motors to appropriate
absorption levels according to inputs from a vertical acceleration (vibration) sensor and a
speed sensor. The system graph for this design is shown in Figure 7.6. It is a simplified

version of the one in Chapter 4 for the sake of simplicity in visual presentation. In this

CHAPTER 7. COMMUNICATION ANALYSIS 100

i2

—=]

Figure 7.6: System Graph for Shock Absorber Controller.

simplified model, the system receives input i;, which represents the current shock absorber
position, iz, which represents the wheel motion (present once every wheel revolution), and
i3, which indicates the vertical acceleration. Component A calculates the speed of the au-
tomobile. B calculates the acceleration. C calculates a shock absorption strategy according
to the speed and acceleration. E calculates the recommended absorption level according
to the current position and the one calculated from speed and acceleration. D computes
the vertical acceleration and sends it to G. F determines whether or not there is an error
condition, from speed, acceleration, or vertical acceleration. H utilizes all the information
and computes the next absorption strategy.

We use communication analysis algorithm to decide synchronous equivalence among

the following five scheduling policies:

1. Synchronous Hardware (UDP).

[3V)

. Single processor with list scheduling (CES): A,B,C,D,E,F,G,H.

w

. Single processor with list scheduling (CES): H,G,F,E,D,C,B,A.

e

. Single processor with priority (SPS): A>B>C>D>E>F>G>H.

ot

. Single processor with priority (SPS): A<B<C<D<E<F<G<H.

We obtained the greatest execution covers for all five scheduling policies in Fig-
ures 7.7, 7.8, 7.9, 7.10, and 7.11. Lower case “b” represents the output containers form
component “B” and “a-B” represents the output containers from component “A” to be
received by component “B”. For ease of understanding, we also label the “time” axis with

both the “level” in the EC generation algorithm and the components executing at that

CHAPTER 7. COMMUNICATION ANALYSIS 101

il Implementation 1:
g’g Unit Delay Parallel Scheduling Policy
i3-C
i3-D
a-B
a-C

c-E
c-F
d-F
d

i
= Q™ ('Do

0 ACDE IBCEFGH2 CEFH 3 EFH 4 H 3

Figure 7.7: Greatest Execution Covers for Shock Absorber Scheduling Policy 1.

level. When checking two ECs for identity, it is not necessary to compare the levels. Only
the partial ordering as implied by the edges matters.

From the figures, we can conclude by checking labeled graph isomorphism that
scheduling policies 1 and 3 are synchronously equivalent to each other because their GECs
are identical. Combining this result with Theorems 6.2, 6.3, and 6.4, we can conclude that
any synchronous hardware implementation and any single processor implementation (with
any delay characteristics) with the given CES ordering are synchronously equivalent to each
other. If they both satisfy timing constraints, a software implementation may have a lower
cost and a circuit implementation may have better performance in terms of timing. We
can also conclude similarly that scheduling policies 2 and 4 are synchronously equivalent to
each other. The conservative analysis was performed in a very short computing time and

with negligible memory occupation.

7.2.4.3 Seat Belt Alarm Controller Example

We next attempt to apply GEC communication analysis to the seat belt con-
troller example. We first convert the valued event Alarm(Boolean) into two pure events:

Alarm_On and Alarm_Of f. The greatest non-decreasing cover for the output function is:

CHAPTER 7. COMMUNICATION ANALYSIS 102

Implementation 2:

Cyclic Executive Serial Scheduling Policy
AB,C,DEF,GH

0 A 1 B 2 ¢ 3 p 4 E 5 F 6 c 7 H g time

Figure 7.8: Greatest Execution Covers for Shock Absorber Scheduling Policy 2.

il O Implementation 3:
:g:g : Cyclic Executive Serial Scheduling Policy
i3-C O\ H.GFED.CB.A
i3-D O
a-B \ [
a-C -
b O
c-E O

c-F

AANSSRANN

time
OEID2C3A4HSGGF7ESC9BIOHII 12 13 14 15 _ 16 17H18

/
/
J

Figure 7.9: Greatest Execution Covers for Shock Absorber Scheduling Policy 3.

CHAPTER 7. COMMUNICATION ANALYSIS 103

il
i2-A
i2-D
i3-C
i3-D

a-B
a-C

Implementation 4:

Static Priority Serial Scheduling Policy
A>B>C>D>E>F>G>H

c-E
c-F

: T

0 A 1 B 2 ¢ 3 p 4 E 3 F 6 G 7 H g time

= 0q ™

Figure 7.10: Greatest Execution Covers for Shock Absorber Scheduling Policy 4.

Implementation 5:

Static Priority Serial Scheduling Policy
A<B<C<D<E<F<G<H

time
0 E IH2DSG4F5 H6C‘IF8H9EIOHIIAI2CI3F14HIS 16 17818c|9F20H21522H23

Figure 7.11: Greatest Execution Covers for Shock Absorber Scheduling Policy 5.

CHAPTER 7. COMMUNICATION ANALYSIS 104

Key_On
Key_Off
Belt_On
Alarm_Off
Alarm_On
Start
End_5
End_10
Sec

Unit Delay Paralle Scheduling Policy

c_ntr] 5
timer

cntrl 4
timer

cntrl 3
timer

entrl 2
timer

0 qntrl 1
timer

Key_On
Key_Off
Belt_On
Alarm_Off
Alarm_On
Start
End_5
End_10
Sec

Static Priority Serial Scheduling Policy
ctrl>timer

5 lime

0 cntrl 1 timer 2 entl 3 timer 4 cntrl

Figure 7.12: Greatest Execution Cover for Seat Belt Controller.

Alarm On®} = Key_on!*! + Key Off*} + Belt_Onf*} + End_5(*} + End_10{%}

Alarm Off®} = Key.on™! + Key Off{*} + Belt_On!*} + End_5¢} + End_ 101
Start’} = Key on*} + Key Off*} + Belt_On{*} + End_5{*} + End_10{*}
End 5%} = Start{*} + Sec!®}
End 10} = Start{*} + Sec(* (7.5)

The GECs for the seat-belt example are shown in Figure 7.12 for two different
scheduling policies. Unfortunately, the GEC is infinite for both cases. One abstract exe-
cution is as follows: primary inputs first cause the controller to emit a container at Start,
which causes the timer to execute and emit End_5 and End.10, which in turn cause the

controller to execute and emit Start again. The GEC is infinite and the analysis result

CHAPTER 7. COMMUNICATION ANALYSIS 105

inconclusive. In the next section, we introduce the Least Execution Cover that abstracts
away less information, so that the controller does not emit Start when it receives only
End.5 and End_10 at its input. LEC will in fact generate finite ECs for some systems
with loops, while any system with loops will have infinite GECs.

7.2.5 Least Execution Covers

To obtain the Least Execution Cover, the abstract execution in Step 5 of the
EC generation algorithm is performed by evaluating the least non-decreasing cover of the
CFSM output function. To obtain this cover function, we similarly existentially quantify
state variables from the output function, to obtain event space function F' that depends
only on input event space variables z,...z,. We then manipulate, in the event space, the
function F to obtain an auxiliary function F also in the event space. F is then translated,

one to one, into the container space to obtain cover function F.

Definition 7.14 (Translation) A container space function F is a translation of a event
space function F if and only if, under a given one to one correspondence between input

variables, if we

® assign 0 to a container space variable if its corresponding event space variable has the

value 0,

e assign x to a container space variable if its corresponding event space variable has the
value 1,

then F evaluates to x if and only if the output of F is 1.

F{x}=alx} 1 b{z} is the translation of the event space function F = a + b.

We want an auxiliary function that has the following property: every minterm in
the on-set of F must also be in the on-set of . In addition, if a minterm with variable
z; = 0 is in the on-set of F, then the same minterm, but with variable x; = 1, must also be

in the on-set of 7. This can be express by the following formulae, for functions with 1, 2,

CHAPTER 7. COMMUNICATION ANALYSIS 106

or 3 input variables:

F(z) = F+Fg (7.6)
.7:(.’171,:32) = F+F5+F5+FW
.7’-(:1:1,22,1:3) = F+F’ﬁ+Fﬁ+Fﬁ+Fm+Fm+Fm+Fm

The computation of F can be simplified drastically with the following recursive formulation

for a function with n input variables, thanks to the commutativity of cofactors:

F* = F (7.7)
F = ,7-"""1+.7-';—‘,'1 fori=1,...,n
F = F

For the case of F' having three input variables, the recursive computation is carried out as

follows:

F = F3 (7.8)
= F+rF%
= F 4P+ (F' + Fies
= Fl4 Fop+ Fort+ Fhos
= P+ Fr+(F+ e+ (F + Fm+ (F + Fass
= FO+Fh+ P+ Form + Fo+ o + Floe + Fle
= PO TR+ P+ Fop+ Flogs + P + Foom + Pl
= F+ Fg + F + Fz + Frie; + Frss + Fogms + Fryas

The least non-decreasing cover F is obtained as the translation of F in the con-

tainer space:
F = Translation(F) (7.9)

To see that F is non-decreasing (changing some input from x to 0 cannot cause the function

to change from 0 to x), we only have to see that changing some input from 1 to 0 cannot

CHAPTER 7. COMMUNICATION ANALYSIS 107

cause F to change from 0 to 1. By the definition of translation, F is non-decreasing. To
see that F covers F, we note that for each minterm in the on-set of F with variable z;=0,
the same minterm and with the one with ;=1 will both be in the on-set of 7. This means
that the corresponding minterm with x;=x will evaluate F to x, a sufficient condition for
F to cover F. To see that it is the least such function, we note that taking away any set of
minterms of F which is also in F will make F not a cover, because it will make it such that
changing some input from 1 to 0 will cause F to change from 0 to 1. By the definition of
translation, this would make F decreasing.

To abstractly execute a CFSM, we evaluate its least non-decreasing cover with all

active inputs set to x and all others set to 0.

7.2.5.1 Simple Illustrating Example

The output function of the CFSMs in the example in Figure 7.1 is as follows:

m = 1:1 (7.10)

0] = My *1iy
The least non-decreasing cover for this function is:

ml{"} = il{x} (7.11)

01 = my (4,00

The LECs for the example in Figure 7.1 are shown in Figure 7.13 for the given three
different scheduling policies, SPS A>B, UDP, and SPS A<B. The LECs are identical for
scheduling policies A<B and UDP, and the two scheduling policies indeed produce identical
execution traces as was shown in Table 7.1. According to Lemma 7.1, they are synchronously
equivalent to each other. If the LECs are different, as they are between UDP and A>B,
we cannot conclude whether the implementations are or are not synchronously equivalent,
due to the possibility of inconclusive result being caused by false negatives because the
analysis is abstract. Notice the containers without outgoing edges in the figure. They are
the containers that participate in an execution but the execution did not produce an output
container. There are obviously fewer containers in LECs than GECs. The analysis is less

abstract at a cost of negligible increase in computation time.

CHAPTER 7. COMMUNICATION ANALYSIS 108

il . SPS A<B
i2 0O
ml

ol

0 B 1 A 2 B 3 time
il UDP
i2 0O
ml
ol

0 AB 1 B 2 3 time
il SPS A>B
i2
mli
ol

0 A 1 B 2 3 time

Figure 7.13: Least Execution Cover for Example in Figure 7.1.

7.2.5.2 Seat Belt Alarm Controller Example

We apply LEC analysis to the seat belt controller example. Recall that GEC
analysis produced inconclusive result because the execution cover is infinite, and static
scheduling policy analysis from Section 6.1 produced conservative result as compared to
exact analysis. After converting the valued events to pure events through one-hot encoding

and existentially quantifying out state variables, the output function is:

Alarm_ On = Key Off * Belt_On x End_5 (7.12)
Alarm Off = Key Off + Belt_On+ End_10
Start = Key Onx Key Off * Belt_On
End5 = Startx Sec

End_10 = Start * Sec

Now, the least non-decreasing cover for this function is:

CHAPTER 7. COMMUNICATION ANALYSIS 109

Alarm On!®} = End_5{%} (7.13)
Alarm Off*} = Key Off{*} + Belt_On{*} + End_10{%}

Start{*} = Key_on{*}

End.5%*} = Secl®

End 10} = Secl®}

The LECs for the seat belt example are shown in Figure 7.14 for several different
scheduling policies. For the sake of readability, the LEC for SPS : T > C (Timer at higher
priority than controller) has been compressed so that there is an edge from all (5) inputs
to all (3) outputs.

The LECs for the seat belt example are finite, unlike its GECs. From the LECs,
we can conclude that implementations with SPS : C > T are synchronously equivalent
to implementations with CES : C,T. -We could not make that conclusion from static
analysis alone. In fact, for the five sets of implementations considered in Section 6.1.1,
LEC analysis returns the same result as exhaustive simulation in the context of the design
exploration methodology described in Section 5.3. It does so with negligible time and

memory requirement.

7.2.5.3 ATM Switch Example

We applied LEC communication analysis to another real-life industrial design.
The algorithm block of a server that supports ATM-based Virtual Private Networks. The
complete server [CDV94, FLL*98] required a design effort of approximately 3 man-years.
The algorithm block was re-specified as 1200+ lines of Esterel code separated into 13 differ-
ent CFSMs. If we were to represent even just the control portion of the system (excluding
tables) as a Boolean network, it would have required more than 500 binary latches. With-
out extensive manual abstraction, verifying this design is clearly beyond the capability of
existing formal verification tools [BSVA+96]. .

The algorithm block decides which input cells must be accepted or discarded to
avoid node congestion, and implements the shaping and bandwidth partition functions
among ATM VPCs. Figure 7.15 provides a functional description of the algorithm block.

Upon arrival of a new cell, it receives the Cell ID from the address-lookup module. If

CHAPTER 7. COMMUNICATION ANALYSIS 110

Key_On SPS C>T
Key_Off

Belt_On

Alarm_Off 0
Alarm_On 0

Start

End_5

End_10

Sec

0 2 time

executing cntrl 1 timer © cntrl 3

Key_On SPS T>C
Key_Off

Belt_On
Alarm_Off

(m]
Alarm_On . <D
Start (u]
End_s g/
End_10 D/
Sec
0

executing timer

1 3 time

cntrl 2 timer

Key_On CESCT
Key_Off

Belt_On

Alarm_Off

Alarm_On 0

Start

End_5

End_10

Sec

0 2 time

executing cntrl 1 timer cntrl 3
Key_On UDP
Key_Off

Belt_On

Alarm_Off
Alarm_On
Start

End_5
End_10 D/
Sec

0

0o

cntrl lcntrl 2 3 time

timer timer

executing

Figure 7.14: Least Execution Cover for Seat Belt Example.

CHAPTER 7. COMMUNICATION ANALYSIS 111

Threshold | Full | Bandwidth
Table Table| Table

Supervisor Addr Lookup LQM
r-_-_i 1 ----------- I o ----.'
' '
! Y 1
1 Y . 1
! Collision | MSD . » LQM Counter | !
! Dectector Technique Interface .
1 \ \ :
i | Extract |
Arbiter X ‘
: ‘ cel [T
, RT
| | Queue ID | State | Last Space |, Sorter
i | Table Table| Table Controller
'
]
]
1
1

[
\

Figure 7.15: Algorithm Block of a ATM Server.

the cell is accepted, the Message Selective Discarding Technique sends instructions to the
Logic Queue Manager about where (i.e. in which queue) to store the cell in the shared
buffer. Communication between the algorithm block and the LQM is handled by the LQM
interface, which performs the required protocol adaptations.

We used LEC communication analysis to decide synchronous equivalence among
many different implementations, including ones with UDP and various SPS and CES
scheduling policies. The LECs were generated using POLIS [BCG*97] on a network where
CFSMs were replaced with their least non-decreasing covers. In all cases, the generation
of the LEC took less than 1 second of CPU time. The LEC associated with the SPS policy
chosen by an expert designer consists of 314 containers. Even with such a complex LEC,
we have found a CES scheduling policy that is synchronously equivalent to the designer-
specified SPS, therefore resulting in an implementation with less scheduling overhead.

We have performed LEC communication analysis for several different SPS, CES,
and UDP scheduling policies. In each case, the LEC is finite even though there are many
loops in this heavily interacting design. The analysis was performed in a very short com-

putation time and with negligible memory occupation.

7.2.6 Correctness Proof of Theorem 7.5

We were able to (conservatively) check two implementations for synchronous equiv-

alence by comparing their ECs, as implied by Theorem 7.5, that we repeat here for read-

CHAPTER 7. COMMUNICATION ANALYSIS 112

ability.

Theorem 7.6 If two implementations of a given CFSM network with well-behaved schedul-

ing policies have identical ECs, then they are synchronously equivalent.

We prove the theorem in several steps. Given two policies P and Q, we first
construct auxiliary policies PEC and QFC. The policy PEC (QF€) has the same Select
function as P (Q), but uses a different Enable function, based on the EC of P (Q respec-
tively). Then, we prove that P and PEC are synchronously equivalent (the same proof
applies to equivalence of Q and QEC). Finally, we show that PZC and QEC are equivalent,

and the desired result follows by transitivity.

Lemma 7.7 Consider two scheduling policies for an arbitrary CFSM network. If the two
policies are well-behaved and have the same Select function, then they are synchronously

equivalent.

Proof: By definition, the execution traces generated by the two policies will be the same,
except for empty executions. Therefore, the value of the last event emitted on some output
will be the same for both policies.]

For some well-behaved scheduling policy P we construct a policy PEC, by chang-
ing the Enable function. The rules for PEC follow the outline of the EC-generating proce-
dure, except that in Step 5, in addition to abstract execution, the actual selected CFSM
is executed with actual inputs. Note that P and PZC are synchronously equivalent by

Lemma 7.7.

Lemma 7.8 The following holds:

o when a CFSM is ezecuted in Step 5 of the EC algorithm, any input with value 1 is

also an active input (as determined in Step 2),

¢ if a CFSM emits an output in Step 5, then a corresponding container is also created

by abstract execution.

Proof: By induction, using the fact that the non-decreasing cover evaluates to x (presence
of container) whenever the actual output function evaluates to 1. It will remain at x if some

of its inputs are changed from 0 to x. (]

CHAPTER 7. COMMUNICATION ANALYSIS 113

In other words PEC can be seen as determining the contents of the containers in
the EC, 1 if the event is present and 0 if it is absent. Lemma 7.8 ensures that for every

~event that is actually generated, there exists a container to put it in.

Corollary 7.9 The content of a container determined by PEC depends only on the contents
of its immediate predecessors in the EC, and the CFSM output function.

Proof: By definition, all active inputs are immediate predecessors, and by Lemma 7.8, all
other inputs are 0. a
The following result states that the EC contains sufficient information to decide

synchronous equivalence.

Lemma 7.10 If two scheduling policies P and Q have identical ECs and if PEC and QEC
assign to corresponding nodes the same contents for every primary input assignment, then

P and Q are synchronously equivalent.

Proof: We first show that PEC and QEC are synchronously equivalent. Indeed, by defini-
tion of EC, all containers corresponding to some primary output form a chain, and the last
container in the chain has the highest level (which may be different for PE€ and QE€). By
assumption, the contents of the last containers are the same for PEC and QFC, implying
that PEC and QEC are synchronously equivalent. It follows then by Lemma 7.7 that P and
Q are also synchronously equivalent.]
Now we have all the pieces to prove the theorem.
Proof:[of Theorem 7.6] By Lemma 7.10 we only need to show that given two different
well-behaved policies P and Q, their modifications PEC and QFC assign the same values
to corresponding containers. This is shown by induction, using Corollary 7.9, and the fact

that the CFSM functions are the same in the two implementations. (]

7.3 Conclusions

Communication analysis strives to answer the equivalence question by a single
pass abstract execution of the implementations. We have shown how it can effectively
analyze synchronous equivalence between different implementations. We also presented a
detailed proof of the correctness of using execution covers as communication signatures

in analyzing synchronous equivalence. The efficiency of communication analysis comes at

CHAPTER 7. COMMUNICATION ANALYSIS 114

the cost of the conservativeness of the result, either in the form of simple false negatives
or infinite execution covers, even when the actual implementation does not have infinite
execution traces. By storing the presence/absence pattern of signals at each invocation
of Select function of the scheduling policy, the execution cover generation procedure can
detect when the abstract execution of an implementation is caught in an infinite loop.
Practically, we generate execution covers for the two implementations in parallel. The
analysis returns an inconclusive result if the execution covers differ at any point, or if
either implementation is caught in an infinite loop. Otherwise, the two implementations
are synchronously equivalent.

We still need to answer the question as to what happens when the result is incon-
clusive. We need a way to refine the analysis to make the execution cover finite, and to
determine whether the inconclusive result is due to a true negative or a false negative. In
the next chapter, we formally present a method to refine communication analysis. It can
remove the false negatives and generate finite execution covers in more cases, at the cost of
longer computation times. At the limit of this refinement process, the analysis becomes no

longer abstract (i.e. it is an exact analysis).

115

Chapter 8

Refining Communication Analysis

Communication analysis is efficient in deciding the equivalence between two differ-
ent implementations of the same high level specification. When two implementations have
communication signatures (i.e. execution covers) that are identical and finite, they are guar-
anteed to be synchronously equivalent to each other. Unfortunately, when two execution
covers are different, or when one or both of the execution covers are infinite, the result of
the analysis is inconclusive. In the context of design exploration, the inconclusive result in
equivalence analysis means that an implementation must be declared, possibly falsely, to be
functionally different from the reference. If that implementation has a better performance
characteristic than all the implementations that were declared to be functionally correct, it
will still not be selected. If the negatives do turn out to be false, the final implementation
is suboptimal.

In this chapter, we identify and remove, bit by bit, the sources of these false
negatives through the process of refinement and pruning. By successive applications of
refinement of containers and pruning of unobservable containers, we establish a smooth
path to exhaustive simulation, where the analysis result is absolutely precise and no false
negative is possible. When two implementations are actually synchronously equivalent to
each other, communication analysis, perhaps with some refinement and pruning, can prove
this positive result without going all the way down to exhaustive simulation. Figuring out
precisely how much refinement and pruning are needed, and on which containers, is as hard
as the verification problem itself. Heuristic algorithms can be developed, but that is left as
possible topic of future research.

We deal with the issue of refinement in Section 8.1 and 8.2. In Section 8.1, we

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 116

discuss refinement on event containers. The containers in the previous chapter are all event
containers. Refining an event container is the same as setting it to event presence, or event
absence, and performing separate abstract simulations. It is not hard to see that if the
corresponding “pre-split” EC portions, the “presence” EC portions, and the “absence” EC
portions for the two implementations are all identical, they are synchronously equivalent to
each other. The complication comes in that the non-decreasing cover functions have to take
on an additional value, 1, which represents the event that is certainly present, as opposed
to “possible” presence denoted by x. We prove that the ternary execution covers are also

correct communication signatures.

The communication analysis of Chapter 7 abstracted away state information com-
pletely. Conservatism stemmed from ignoring the CFSM state need to be removed for more
precise analysis. In Section 8.2, we represent state information as “state value” containers,
one for each state value. One-hot encoding of state values allows easy representation of
“sets of states”. The various flavors of communication analysis of the previous chapter can
be seen as representing state abstractly as a set containing all states. Refining the “set of
all states” into subsets of states or individual states is similar to the container refinement.
A separate abstract simulation is performed for each different case. It is not hard to see
that if the corresponding “pre-split” portions and the separate refined portions of the two
implementations are all identical, the implementations are synchronously equivalent to each
other. Partitioning into subsets of states is similar in spirit to state space decomposition
techniques [CHM*94], though with different goals. We want to partition the states to

quickly show either equivalence or a counterexample.

In Section 8.3, we show that the local nature of communication analysis can be
dealt with by pruning away unobservable containers from the execution cover. A container
is unobservable if its content cannot affect, even transitively, the content of containers
associated with primary outputs. Only the “observable” portions of the execution covers

need to be compared for synchronous equivalence to hold.

With refinement and pruning, communication analysis can be made precise. We
place communication analysis in the context of abstraction and refinement, and provide
primitives, in the form of splitting and combining containers, to move around this abstrac-
tion/refinement spectrum. Using these primitives to devise heuristics or domain specific

solutions is left as future work.

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 117

il ol
FLAIT

A: if ((il1 or 02) and not(i2)) then emit(o1)

2| LgB)L9? B:if ((i2 or ol) and not(i1)) then emit(o2)

Figure 8.1: A Simple Example for Container Refinement.

8.1 Container Refinement

In communication analysis, containers are used to represent the possibility of an
event. If there is no container at some input, it is interpreted as event absence. If there is
a container present at some input, the event may be actually present, or it may not.

Consider the example in Figure 8.1. The output function is:
01 = i1%ip+02%1g (8.1)
02 = dgxi1+01%%
The least non-decreasing cover for this function is:

Ol{x} = i1(x} + 02{x} (8.2)
02{1} = iz{x} + ol{x}

The LECs for two different implementations are shown in Figure 8.2. In both
cases, the LEC are infinite and the communication analysis returns inconclusive result.

It can be established independently through exhaustive simulation not only that
these two implementations produce finite output traces for any finite input trace, but also
that they are actually synchronously equivalent to each other. The infinite LEC in Fig-
ure 8.2 is due to the abstraction of event containers. To make the abstract simulation
finite, containers need to be “refined” to take on more precise information.

With the definition of container given in the previous chapter, there is no way to
represent the precise presence of event, as it is possible to represent the precise absence
of event by the absence of container at the input of a component. Execution covers in
the previous chapter are computed with two values for each input variable of a component
function: event absence, represented by 0, and event unknown, represented by x. For the
analysis to be more precise, and less conservative, we need to represent the case where the

event is definitely present.

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 118

il-A
il-B
i2-A
i2-B
ol-B
ol
02-A
02

il-A CES AB
il-B
i2-A
i2-B
ol-B
ol

02-A

02 g S ~J

0, 12,3 ,4,5_.6 time

Figure 8.2: Least Execution Cover for Example of Figure 8.1.

Definition 8.1 (Ternary Container Set) A ternary container set, C, is a set with
three symbols: 0, 1, and x. Le. C = {0,1,x}.

Definition 8.2 (Ternary Container-Event Set) A ternary container-event set, CE,
is a set with five symbols: 0, 1, x, 0, and 1. Le. CE= {0,1,x,0,1}.

Notice that symbols in the container set and the event set are written with dif-
ferent fonts. If the reader finds it hard to distinguish a 1 in the container set from a 1
in the event set, he can rest assure that the distinction is only necessary in the strictest
mathematical sense. Both of them mean that an event definitely has occurred. We can

define n-dimensional spaces as follows:
Definition 8.3 (Ternary Container Space) A n-dimensional ternary container space

is defined as C* = {0, 1,x}".

Definition 8.4 (Ternary Container-Event Space) A n-dimensional ternary container-
event space is defined as CE" = {0, 1,x,0,1}".

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 119

0 in the tem&y container space denotes the absence of the container, which corre-
sponds to the absence (0) of event in event space. 1, or 1-container, in the ternary container
space denotes the presence of event and the container, which corresponds to the presence
(1) of the event in event space. x, or x-container, in the ternary container space denotes
the presence of the container only, which corresponds to both the presence (1) and absence
(0) of the event in the event space.

The information ordering in the ternary container set is naturally defined to be 0
> x,1 > x. 0 and 1 both have at least as much information as x (i.e. 0 and 1 are at least
as definite). 0 and 1 are incomparable in terms of information ordering. More formally, we

extend the definition from the previous chapter.

Definition 8.5 ((Ternary) Information Ordering) Ternary information ordering (>)
is defined as a relation between two symbols in the event set, ternary container set, and the

ternary container-event set:

o FEvent set:

0>-0;1>1;

o Ternary container set:

0=-0;1>1,0=x51 = x;x = x5

e Ternary container-event set:

0-0;1=10>20;1>1;0>x51>=x;x>-x;0>0;0>=x;1>1;1>x%x;0>0;1>1.

The information ordering can be extended to minterms in spaces by coordinate-
wise extension. For example: 01 > 01, but 01 ¥ 00; x1 > xx, but x0 ¥ 0x; 01 > 0x, but
11 ¥ 01,

The definition of non-decreasing functions and cover functions for the ternary
container space are identical to those for the binary container space. We restate them here

for convenience.

Definition 8.6 ((Ternary) Non-Decreasing) Given two ternary container space minterms

m; and mgz, a ternary container space function f is Non-Decreasing if and only if

mj t mg — f(ml) bt f(mz) | (8.3)

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 120

A ternary container space function is Non-Decreasing if and only if changing

any input from x to 0 or 1 will not change its value from 0 or 1 to x.

Definition 8.7 ((Ternary) Cover) A ternary container space function f is a ternary
cover of the event space function f if, under a given one to one correspondence between

input variables.

® given any event space minterm m and any ternary container space minterm m

m z m= f(m) = f(m) (8.4)

Intuitively, a ternary container space function f is a cover of the event space

function f if, for any input minterm m in the container space,

e assigning 0 to an event space variable if its corresponding ternary container space

variable has the value 0,

* assigning 1 to an event space variable if its corresponding ternary container space

variable has the value 1,

e assigning 0 or 1 to an event space variable if its corresponding ternary container space

variable has the value x,

all the resulting minterm m in the event space evaluate F to 1(0), F evaluates to 1(0) or
x for m; otherwise, F evaluates to x for m.

Ternary execution covers for an implementation with a given scheduling policy can
be obtained by “simulating”, “abstractly executing” or “unfolding” the system graph by

the following Ternary Ezecution Cover Generation Procedure:

1. Create containers for primary inputs and label them with level 0. Set the current
level to 0. The input container may be filled, left with content unknown, or not be
created at all, depending on what is known about the inputs. For example, if an input

is known to be present for all cycles, then it can be set to be a 1-container.

2. Determine the set of active inputs for each (CFSM) node. A CFSM input is active
if there exists a corresponding container with a level that is larger than that used by
the previous execution level of that CFSM (i.e. there exists a container that has not

been “consumed” by the previous execution).

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 121

3. Let all CFSMs with at least one active input be enabled. If no CFSM is enabled,
then STOP.

4. Apply the Select function of the original scheduling policy to choose the CFSMs to

be “executed”.

5. Abstractly ezecute the selected CFSMs by increasing the current level by 1 and eval-
uating a ternary non-decreasing cover of each CFSM output function, with all active
inputs with a i-container set to 1, all active inputs with an x-container set to x, and

all other inputs set to 0. If the ternary non-decreasing cover evaluates to 1 or x then:

e create a new 1-container or x-container, respectively, and label it with the current

level and the name of that output,

o for every active input: create an edge from the most recent container correspond-

ing to that input, to the newly created container,

e create an edge from the previous container labeled with the same name (if any

exists) to the new container.
6. “de-activate” the inputs of the executed CFSMs. Go to Step 2.

The ternary non-decreasing covers in Step 5 are computed by converting the output
functions from event space to ternary container space. We present only the least ternary
non-decreasing cover. We perform the following operations to obtain the least ternary

cover function F. For every ternary minterm:

e The output of the ternary cover function is 1 if and only if, for all states, assigning

any combination of 0 and 1 to the input x’s produces 1 in the event space.

o The output of the ternary cover function is 0 if and only if, for all states, assigning

any combination of 0 and 1 to the input x’s all produces 0 in the event space.
e otherwise, the ternary cover function evaluates to x.

The ternary non-decreasing cover can be computed implicitly, or conservatively.
Both topics are beyond the scope of this dissertation. The formulation of the ternary cover
is reminiscent of symbolic simulation in the circuit domain [SB94]. The major difference is

that symbolic simulation utilizes x to represent both 1 and 0 in a continuous waveform. An

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 122

interval at value z in the waveform means that the value of the signal can be 0 or 1 at any
point of the interval. It says nothing about how many transitions (0 to 1 or 1 to 0) there
may be. Our ternary container space is defined for discrete event systems. An event is
defined as a 0 to 1 transition on the “wire” carrying the signal. Our x is used to denote the
possibility of a single 0 to 1 transition. x in the container analysis represents the possibility
of a single discrete event which, if it exists, can only be used (or consumed) once.

The ternary function calculated above is a cover of the corresponding event space
function. It can output 0 only when all corresponding assignments in the event space never
produce an output in any state. It can output 1 only when all corresponding assignments
in the event space always produce an output for all states. The ternary cover function
calculated above is non-decreasing. If the output is already 0 or 1, “resolving” any input
that originally had the value x into 0 or 1 can only produce the same (0 or 1) output as
before.

The ternary cover for the example in Figure 8.1 is:

o1t = i1 {0 4 o, (114,00 (8.5)
010 = 5,{} 45,0, 0,00

01"} = 0,1} 40,00

ox{th = (b (0} 4 o {1}, i (0}

02 = 11 45,000 4, (0}

0z} = 0,1} 40,00

Computing the ternary execution cover with primary inputs set to x at Step 1
produces an infinite execution cover exactly like that in Figure 8.2. This is expected because
we have not really done any refinement on the containers at all. We only changed the cover
functions so that they can handle the 1-containers. Abstract execution with i3 refined at
the primary input produces the execution covers shown in Figure 8.3. We now have a
“split” execution cover. One, on the left side of the figure, with i;=1, denoted by a solid
box. The other, on the right side of the figure, with i3=0, denoted by no box at i;. If
the corresponding portions of the execution covers are identical, we can say that the two
implementations are synchronously equivalent to each other, since i; can only be 0or 1 in
the original event space.

Unfortunately, the refined LEC is still infinite. Further refinement is needed. The

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 123

il-A SPS A<B il-A SPS A<B
il-B il-B

i2-A i2-A

i2-B i2-B

ol-B ol-B

ol ol

02-A 02-A

02 02 (i,

OBIA283A4BSA6 time

il-A CESAB il-A CESAB
il-B il-B
i2-A i2-A 0O
i2-B i2-B
ol-B ol-B
ol ol -
02-A 02-A
02 02 }

OAle 3 4 5 6 time OAIBZA3B4ASB6 time

Figure 8.3: Refined LEC for Example in Figure 8.1.

new execution covers is shown in Figure 8.4. After both i; and iz input containers are
refined, the corresponding LECs are indeed identical. The implementations are therefore
synchronously equivalent to each other. We do not have to consider the case where both iy
and iz are refined to 0, since the system is reactive by definition. The absence of all inputs
cannot cause any reaction.

We are able to (conservatively) check two implementations for synchronous equiv-

alence by comparing their ternary ECs, as stated by the following result.

Theorem 8.1 If two implementations of a given CFSM network with well-behaved schedul-

ing policies have identical ternary ECs, then they are synchronously equivalent.

The theorem and its proof are ternary extensions of the ones in Section 7.2.6. We
prove the theorem in several steps. Given two policies P and @, we first construct auxiliary
policies PEC and QEC. The policy PEC (QEC) has the same Select function as P (Q), but
uses a different Enable function, based on the ternary EC of P (Q respectively). Then, we
prove that P and PEC are synchronously equivalent (the same proof applies to equivalence
of Q and QFC). Finally, we show that PEC and QFC are equivalent, and the desired result
follows by transitivity.

For some well-behaved scheduling policy P we construct a policy PZC, by changing
the Enable function. The rules for PZC follow the outline of the ternary EC-generating

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 124

i-A = SPS A<B il-A SPS A<B il-A SPS A<B
il'B m il-B ® i1-B
A W i2-A A W
2B W i2-B i2-B
ol-B ol-B ol-B
ol ol ol
02-A 02-A 02-A
02 02 02
O0g 1,2 8 Ta 2 ime 08 'A 2 iime
il-A = CESAB il-A CESAB il-A CES AB
il'B m il-B = il-B
A = i2-A A W
i2B m i2-B i2-B
ol-B ol-B ol-B
ol ol ol
02-A 02-A 02-A
02 02 02
oAle OA]B2 time oA]B2 time

Figure 8.4: Further Refined LEC for Examples in Figure 8.1.

procedure, except that in Step 5, ‘in addition to abstract execution, the actual selected
CFSM is executed with actual inputs. Note that P and PZC are synchronously equivalent
by Lemma, 7.7.

Lemma 8.2 The following holds:

o when a CFSM is executed in Step 5 of the ternary EC algorithm in this chapter, any

input with value 1 is also an active input (as determined in Step 2),

e if a CFSM emits an output in Step 5, then a corresponding container, 1 or x, is also

created by abstract ezecution.

Proof: By induction, using the fact that the non-decreasing ternary cover evaluates to x or
1 whenever the actual output function evaluates to a event space 1. If the non-decreasing
ternary cover evaluates to x, then it will remain x even if some inputs are changed from 0
or 1 to x. If the non-decreasing ternary cover evaluates to 1, then it may either remain 1
or become x when some input is changed from 0 or 1 to x. In either case, the container is

still present. -

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 125

In other words PEC can be seen as determining the contents of the x containers
in the ternary EC, 1 if the event is present and 0 if it is absent. Lemma 8.2 ensures that

for every event that is actually generated, there exists a container to put it in.

Corollary 8.3 The content of a container determined by PEC depends only on the contents
of its immediate predecessors in the ternary EC, and on the CFSM oulput function.

Proof: By definition, all active inputs are immediate predecessors, and by Lemma 8.2, all
other inputs are 0. (]
The following result states that the ternary EC contains sufficient information to

decide synchronous equivalence.

Lemma 8.4 If two scheduling policies P and Q have identical ternary ECs and if PEC and
QEC assign to corresponding nodes the same contents for every primary input assignment,

then P and Q are synchronously equivalent.

Proof: We first show that PEC and QEC are synchronously equivalent. Indeed, by defini-
tion of ternary EC, all containers corresponding to some primary output form a chain, and
the last container in the chain has the highest level (which may be different for PEC and
QFC). By assumption, the contents of the last containers are the same for PEC and QEC,
implying that PZ€¢ and QFC are synchronously equivalent. It follows then by Lemma 7.7
that P and @ are also synchronously equivalent. .
Now we have all the pieces to prove the theorem.
Proof:[of Theorem 8.1] By Lemma 8.4 we only need to show that given two different
well-behaved policies P and Q, their modifications PZC¢ and QFC assign the same values
to corresponding containers. This is shown by induction, using Corollary 8.3, and the fact
that the CFSM functions are the same in the two implementations.]
The refinement does not have to be limited to the primary input containers (as is
the case of Figure 8.4). At any point in the ternary execution cover generation procedure,
we can decide to refine any x-container and generate a “split” execution cover from that
point. One side of the split corresponds to placing a 1-container at that point, the other side
of the split corresponds to placing a O-container at that point, or no container at all. The
refined ternary execution cover is still a valid communication signature, as demonstrated

by the following theorem:

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 126

1”1 9
ml A: "‘ 10
il TBH2' B: if (m1) or (i1) then emit(ol)

Figure 8.5: A Simple Example for State Refinement.

Theorem 8.5 If two implementations of a given CFSM network with well-behaved schedul-

ing policies have identical refined ternary ECs, then they are synchronously equivalent.

Proof: By Lemma 8.4 we only need to show that given two different well-behaved policies P
and Q, their modifications PEC and QFC assign the same values to corresponding contain-
ers. This is shown by induction, using Corollary 8.3, the fact that the container refinement
procedure assigns the same values to corresponding “split” portions of the execution cover,

and the fact that the CFSM functions are the same in the two implementations.]

8.2 State Refinement

For some design, the false negatives from communication analysis cannot be re-
moved without explicitly representing states. Consider the example in Figure 8.5. The

ternary least non-decreasing covers for the functions are:

m{t = o (8.6)
m© = o,

m{® = o) 4o, {1}

o1} = m, () 44,1}

01 = m O 4,

01 = my ¥}y 4 m, {0}, i1 o my (3 gy 0

The ternary LECs for two selected scheduling policies are shown in Figure 8.6.
One cannot conclude whether or not the two implementations are synchronously equivalent

because the LECs are infinite. Even though the infinite LECs “look” similar, one cannot

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 127

il SPS A<B
ml

NS =

0B1A2B3A4B5A6 time

il UDP

M= =Y

0B1A2B3A4B5A6 time

Figure 8.6: LEC for Example in Figure 8.5.

draw any conclusion about the finite execution traces from the infinite execution covers.
The infinite execution cover may “block” the analysis algorithm from analyzing the entire
execution trace. It can also be shown that no amount of event container refinement can
make the execution cover finite. The infinite execution cover is caused by the abstraction
of state values.

To represent state information, we encode state in one-hot fashion much like we

did for the valued events. State values have the following property.

Lemma 8.6 A set of one-hot encoded state value signals for a CFSM has a 1-container if

and only if it is the only container present for that set of state values.

Proof: By definition, any CFSM must be in some state at any given time. Only one
container present means that there is only one state that it can ”possibly” be in. The

”

“event” is therefore definitely present. Conversely, if there is a 1-container at some state
value, then the CFSM can not possibly be in any other state, so other state values must
not have any container present. []

For the sake of brevity and clarity, we will convert state value signals with a single
x-container immediately into a 1-container. Minor modifications need to be made for the
ternary execution cover generation procedure to handle state value containers differently.
After converting both value event and state values into “events” with one-hot encoding, the

Modified Ternary Execution Cover Generation Procedure is:

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 128

1. Create containers for primary inputs and state values of the CFSMs and label them
with level 0. Set the current level to 0. The input containers may be filled, left with
content unknown, or not be created at all, depending on what is known about the

inputs.

2. Determine the set of active inputs for each (CFSM) node. A CFSM input is active
if there exists a corresponding container with a level that is larger than that used by
the previous execution level of that CFSM (i.e. there exists a container that has not

been “consumed” by the previous execution).

3. Let all CFSMs with at least one non-state active input be enabled. If no CFSM is
enabled, then STOP.

4. Apply the Select function of the original scheduling policy to choose the CFSMs to

be “executed”.

5. Abstractly ezecute the selected CFSMs by increasing the current level by 1 and eval-
uating a ternary non-decreasing cover of each CFSM output function, with all active
inputs with a 1-container set to 1, all active inputs with an x-container set to x, and

all other inputs set to 0. If the ternary non-decreasing cover evaluates to 1 or x then:

® create a new 1-container or x-container, respectively, and label it with the current
level and the name of that output,

e for every active input: create an edge from the most recent container correspond-
ing to that input, to the newly created container,

e create an edge from the previous container labeled with the same name (if any

exists) to the new container.

e for state value containers, additionally create an edge from all previous state

value containers to all new state value containers.

6. “de-activate” the inputs of the executed CFSMs. Go to Step 2.

The ternary non-decreasing cover in Step 5 is computed by converting the output
function from event space to the ternary container space, taking into consideration the state
values. There are many possible covers, but we only present the modified least ternary non-
decreasing cover. We perform the following operations to obtain the modified least ternary

cover function F. For every ternary minterm:

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 129

e The output of the ternary cover function is 1 if and only if all event space minterms
obtained by assigning any combination of 0 and 1 to the input x’s produce that output
(1) in the event space. At any given time, one and only one state value container is

assigned 1 while other x-containers for that state are assigned 0.

o The output of the ternary function is 0 if and only if all event space minterms obtained
by assigning any combination of 0 and 1 to the input x’s produce no output (0) in the
event space. At any given time, one and only one state value container is assigned 1

while other x-containers for that state are assigned 0.

e otherwise, the ternary function evaluates to x.

The modify ternary non-decreasing cover for component A in the example in Fig-

ure 8.5 becomes:

my {1 = oy}« (so{t} +5,1°h) 8.7
m, O = 0,1 4 5o 4, (1)
m =m0+ m, 0

Nextsol? = 0111 « (5o +51{1) + 011 # (s5o{!} 4+ 5,{%)

Nexts;{t = o,{1}« (50{1} + 51{0}) +0,1% % (SO{O} + 81{1})

Nextso{® = Nexts;{!}

Next.sl{°} = Next_so{l}

Nextso!®} = Next_sp!!} + Next_so!%

Nexts; X} = Next_s;'} + Next_s; (%}
(8.8)

From the fact that there are only two state values, Lemma 8.6 explains why so = 1 whenever

s1 = 0, and why s9 = 0 whenever s; = 1. Component B has the same cover function as

before:
0,1} = m,{th 44,1 (8.9)
01 {0} = ml{o} * il{o}
o1 = my ™« O 4 my O a1 4 m, 3 gy 0

With the new ternary non-decreasing cover, which takes state values into consideration,

we are able to “refine” also the state value containers and “split” the execution cover.

CHAPTER 8. REFINING COMMUNICATION ANALYSIS . 130

In Figure 8.7, the LECs on the left-hand side correspond to computation phases where
component A starts at state so. The right-hand side corresponds to computation phases
where component A starts at state s;. The state in which a component “starts” during a
computation phase does not have anything to do with the initial state of that component.
Potentially, a component can start a computation phase in any one of its reachable states.
It is not hard to see that, after splitting the execution covers according to the starting
states, if the corresponding execution covers are identical, then the two implementations
are synchronously equivalent to each other.

We do not have to refine state value containers into individual states all at once.
x-containers at multiple state value signals represents a subset of states. The procedure we
outlined can already take subsets of states into consideration. The state refinement also
does not have to be limited to the beginning of the generation procedure. At any point in
the modified ternary execution cover generation procedure, we can decide to refine any state
value container and generate a “split” execution cover from that point. One side of the split
corresponds to a particular subset of states, while the other side of the split corresponds
to the rest of the states. The refined ternary execution cover is still a valid communication

signature, as demonstrated by the following theorem:

Theorem 8.7 If two implementations of a given CFSM network with well-behaved schedul-
ing policies have identical refined modified ternary ECs, then they are synchronously equiv-

alent.

Proof: By Lemma 8.4 we only need to show that given two different well-behaved poli-
cies P and Q, their modifications PZC and QFC assign the same values to corresponding
containers. This is shown by induction, using Corollary 8.3, the fact that the refinement
procedure assigns the same values to corresponding “splits” of the execution cover, and the
fact that the CFSM functions are the same in the two implementations. In particular,
splitting the execution cover for state refinement assigns the same “subset of states” for

each corresponding portion of the execution cover. []

8.3 Pruning Execution Covers

Synchronous equivalence, as defined in Chapter 5, relates to the primary inputs

and outputs of a design. Communication analysis infers this global property from the

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 131

SPS A<B SPS A<B
sO s0
sl sl
il il
ml ml
ol-A ol-A
ol ol
OBIAZBBAAI 5 6 time OBIAZ 3 4 5 6 time
uDP UDP
sO s0
sl sl
il il
mli ml
ol-A ol-A
ol ol
OBIAZB3A4 5 6 time OBIAZ 3 4 5 6 time

Figure 8.7: Refined LEC for Example in Figure 8.5.
A: if (i1) then emit(m1)
B: if (m1) and (i2) then emit(m2)

C: if (13) then emit(o1)

Figure 8.8: An Example Demonstrates the Need for Pruning.

communication between components, which is not a strictly global characteristic. Inferring
a global property from characteristics of local elements can be conservative. Consider the
example in Figure 8.8. LECs for three different scheduling policies are shown in Figure 8.9.
It can be established through exhaustive analysis, or simple observation, that the three
implementations are actually synchronously equivalent to each other, though there are two
different sets of LECs. It is equally apparent that many containers in the LECs have nothing

to do with the primary output o; and are indeed unobservable from the primary outputs.

Definition 8.8 (Observable Container) A container ¢ in an ezecution cover is observ-
able if there is an assignment of x-containers, consistent with transition and output re-
lations, such that assigning 0 or 1 to ¢ produces different primary outputs for the actual

implementation. Otherwise, c is unobservable.

The next lemma clarifies the relationship between an implementation producing a

primary output, and the primary output containers in an execution cover.

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 132

il SPS A<B<C
i2 O

i3

w \

m2
ol
0 C 1 B 2 A 3 B time
il UDP
i2 O
i3
mil
m2
ol
0 ABC 1 B 2 3 time
il SPS A>B>C
i2
i3
ml
m2
ol
0 C 1 B 2 A 3 time

Figure 8.9: Least Execution Covers for Example in Figure 8.8.

Lemma 8.8 If there are one or more 1-containers at some primary output of an execution

cover, the output is emitied by the corresponding implementation.

Proof: By the definition of synchronous equivalence (Definition 5.2), primary outputs
matter only at the end of a cycle. By the definition of CFSM, an emitted output cannot
be “cancelled”. [

A container that is not observable can be removed from the execution cover.

Theorem 8.9 Removing unobservable containers, along with all their edges, results in an

ezecution cover that remains a communication signature of the implementation.

Proof: Consider an implementation, A, its execution cover, C, and an execution cover,

CPruned | where some unobservable containers have been removed. Let APrumed be an imple-

mentation that will produce the execution cover CPruned, By the definition of unobservable

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 133

containers and synchronous equivalence, APT*ned is synchronously equivalent to A. By
transitivity of equivalence relations, any implementation that is synchronously equivalent
to APruned i also synchronously equivalent to implementation A. [

Removing all the unobservable containers from an execution cover is analogous to
the classical observability problem in sequential circuits [Wan96]. Finding an exact solution
could require an exponential computation, though simple pruning can go a long way in

removing a large number of these unobservable containers.

Corollary 8.10 If there are one or more 1-containers at some primary outpul of an eze-
cution cover, all but one of the 1-containers of that primary output can be removed and the

ezecution cover remains a communication signature of the implementation.

Proof: By Lemma 8.8, the output will be emitted if one or more 1-containers exist at
some primary output of the execution cover. This will remain true if all but one of these 1
containers are removed. By Theorem 8.9, the pruned execution cover is a communication

signature of the implementation.]

Corollary 8.11 Any non-primary-output container that has no directed edge to an x-
container can be removed and the ezecution cover remains a communication signature of

the implementation.

Proof: Assigning 1 or 0 to a container with no directed edge to an x-container clearly cannot
affect the primary output, so the container is unobservable and can be removed. By The-
orem 8.9, the pruned execution cover is a communication signature of the implementation.
n

A large number of unobservable containers can be removed by the following pro-
cedure, and according to Corollary 8.10 and Corollary 8.11, the pruned execution cover is

a communication signature of the implementation.

1. For all primary outputs that have one or more 1-container, remove all containers of

that primary output except a single i-container.

2. Remove all non-primary-output containers that do not have an edge to an x-container.
If no such container can be found, STOP.

3. Return to Step 2.

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 134

il SPS A<B<C
i2
i3

ml

m2

ol

oo

(=]
—
[
w

time

il
i2
i3
ml
m2
ol

UDP

oo

(=]
—
[38}
w

ABC B time

il
i2
i3

SPS A>B>C

oo

m2
ol

0 C | B 2 A 3 time

Figure 8.10: Pruned Least Execution Covers for Example in Figure 8.8.

The pruned execution covers for the example in Figure 8.8 (derived by pruning the original
execution cover in Figure 8.9) are shown in Figure 8.10. The original primary input con-
tainers are retained for clarity. The implementations are indeed synchronously equivalent
to each other.

8.4 Relationship with Exhaustive Simulation

With container refinement and pruning, execution covers can be related to ex-
haustive simulation. Exhaustive simulation requires a deterministic transition and output
relation, as well as a deterministic input trace. A deterministic input trace for an actual
implementation corresponds to an “abstract” execution with an input trace consisting of

only 1-containers.

CHAPTER 8. REFINING COMMUNICATION ANALYSIS 135

Theorem 8.12 Given a deterministic transition relation and output relation, a well-behaved
scheduling policy, and deterministic input trace, the output trace from simulation is identical
to a trace of the pruned ezecution cover from the corresponding abstract simulation of the

cover functions.

Proof: The transition and output relations are deterministic, and the primary input of the
abstract simulation consists of only 1-containers. By Step 5 of the modified ternary EC
generation algorithm, only 1-containers will exist in the execution cover. By Corollary 8.10
and Corollary 8.11, only a single 1-container at each primary output will remain. The
trace of the execution cover is therefore the same as the output trace of the corresponding
simulation run. ™

The theorem relates a simulation run of the implementation to an abstract execu-
tion of its non-decreasing covers. Not all refined pruned execution covers have corresponding
simulation runs, since not all combinations of the states of the components are reachable,
and the given pruning algorithm does not identify all unobservable containers. Both of
these problems can be solved with existing state reachability techniques either exactly or

heuristically.

136

Chapter 9

Conclusions and Future Directions

In this chapter we summarize our contributions and point out some directions

where further research work can proceed.

9.1 Conclusions

The goal of this dissertation was to investigate how formal methods can be applied
to the domain of embedded system design. The emphasis was on the specification, repre-
sentation, validation, and design exploration of such systems from a high level perspective.
We started by reviewing the framework and formal model upon which the theories and
experiments are based, and in which the formal methods that we developed are linked to
synthesis and simulation. We then took on the issues of formal verification and abstract
equivalence checking.

We formulated a formal verification methodology to verify general properties of
CFSM networks. We demonstrated that this methodology is efficient in dealing with the
problem of complexity and effective in finding bugs. However, manual intervention is re-
quired, coming in the form of assumption and abstraction selection. Assumptions are made
in the form of separate timing and functionality verifications through constraints on the
architectural mappings. The application of formal verification techniques to CFSM net-
works led us to the following conclusion. For a formal abstract methodology to be effective,
it must be applied to a specific property, not just any arbitrary property. The property
must also allow for the separation of concerns. In specific, it must allow for the separate

specifications and validations of timing and functionality.

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 137

Therefore, we focused on the abstract analysis of the synchronous equivalence of
two implementations under the synchronous assumption. This property is analogous to
functional equivalence for sequential circuits and takes full advantage of the separation of
timing and functionality. One powerful result of this equivalence criterion is the identifi-
cation of a set of delay insensitive scheduling policies. Once a delay insensitive scheduling
policy is chosen, any variation in delay does not affect the functional behavior. Static
analysis of this sort is very efficient and effective in proving equivalence, though it may at
times be conservative. To check for equivalence between implementations using different
delay insensitive scheduling policies, we proposed algorithms based on worst-case analysis
of the communication among components. The events communicated between components
are abstracted into a signature that is maximal in the sense that it represents all possible
communication patterns of that implementation. By comparing the signatures of different
delay insensitive scheduling policies for a given system, we were able to determine equiva-
lence conservatively. We demonstrated with real-life examples that synchronous equivalence
opens design exploration avenues uncharted before.

Lastly, we related communication analysis to exhaustive simulation through a
series of refinement and pruning operations on the communication signatures. An algorithm
can choose to work at any abstraction level trading off computational efficiency with the
possibility of inconclusive result due to false negatives. We provided primitives to move
amongst different abstraction levels that exist between abstract communication analysis

and exhaustive simulation.

9.2 Future Directions

Much research work is still needed before the synchronous approach can be as
popular in the embedded system domain as it is in the sequential circuit domain. There

are three different research directions that may prove to be crucial in this regard. They are
o Iterative refinement techniques.
e Repartitioning of the components.

e Multi-clock operation.

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 138

9.2.1 Iterative Refinement Techniques

During communication analysis, if two communication signatures differ, or if either
of them is infinite, the result of the analysis is inconclusive. The “error trace” of the analysis
is simply the difference in execution covers. Based on the error trace, containers can be
refined to make the analysis more precise. This can be accomplished manually, with the
primitives suggested in Chapter 8. It could also be done through automatic techniques
similar to those proposed in [Bal94] for formal verification of timed systems.

The goal of the iterative refinement will be to reach a positive result as early as
possible, or to reach a single branch (split) of completely refined execution covers where for
some primary output, one implementation produces a 1 while the other produces a 0. These
two objectives are contradictory and user hints such as “probably equivalent” or “probably

not equivalent” can help in choosing the refinement that can more quickly lead to a solution.

9.2.2 Component Repartitioning

An interesting open question is what happens if we violate the assumption that the
component functionalities and the component connectivity are the same among all possible
implementations. General repartitioning can be thought of as a series of decompositions
and compositions of the CFSMs. It is not hard to compare two implementations where the
difference is only that one component is decomposed into two or two components are com-
bined into one through synchronous decomposition and composition. If the “subnetwork”
represented by the two decomposed components, for the given implementation, satisfies the
synchronous assumption, then it is equivalent to the implementation with a single, syn-
chronously composed component. How this check can be done efficiently and locally will

be crucial for an efficient general repartitioning methodology.

9.2.3 Multi-Clock Synchronous Systems

It is straightforward to apply abstract communication analysis to acyclic systems
with two different hardware resources running at two different “clocks”, since a complete
ordering of the component executions can be found which has a period equal to the least
common multiplier of the two periods. In fact, we can show that one can always construct
a single process CES implementation that is synchronously equivalent to the multi-clock

synchronous hardware implementation of the same acyclic specification. This principle can

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 139

also be extended to synchi'onized processors running at different “macro cloc s”. However,
it is not clear that under what condition can this “synthesis” approach to design exploration

be extended to cyclic networks.

140

Bibliography

[ABD+95]

(Bal94]

[Bal99)

[BCG91]

[BCG+97]

[BCL+94]

[Ber96]

[BHLM90)

Neil C. Audsley, Alan Burns, Robert 1. Davis, Ken W. Tindell, and Andy J.
Wellings. Fixed priority pre-emptive scheduling: An historical perspective.
Real-Time Systems, 8(2-3):173-198, 1995.

Felice Balarin. lterative Methods for Formal Verification of Discrete Event

Systems. PhD thesis, University of California Berkeley, 1994.

F. Balarin. Worst-case analysis of discrete systems. In Proceedings of the

International Conference on Computer-Aided Design, November 1999.

G. Berry, P. Couronné, and G. Gonthier. The synchronous approach to reactive

and real-time systems. JEEE Proceedings, 79, September 1991.

Felice Balarin, Massiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska,
Luciano Lavagno, Claudio Passerone, Alberto Sangovanni-Vincentelli, Ellen
Sentovich, Kei Suzuki, and Bassam Tabbara. Hardware-software co-design of
embedded systems: the Polis approach. Kluwer Academic Publishers, Boston;
Dordrecht, 1997.

J. Burch, E. Clarke, D. Long, K. McMillan, et al. Symbolic model checking for
sequential circuit verification. JEEE Transactions on Computer-Aided Design,
13(4):401-424, April 1994.

Gérard Berry, 1996. See http://cma.cma.fr/Esterel.

J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt. Ptolemy: a framework
for simulating and prototyping heterogen eous systems. Interntional Journal
of Computer Simulation, special issue on Simulation Software Development,

January 1990.

BIBLIOGRAPHY 141

[BRB90]

[BSV97]

[BSVA+96

[Buc93)

[BY93]

[CDV94]

[CGH*99)

[CHM*94]

[Den75)

K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a
BDD Package. In Proc. of 27" Design Automation Conference, pages 40-45,
June 1990.

F. Balarin and A. Sangiovanni-Vincentelli. Schedule validation for embedded
reactive real-time systems. In Proceedings of the Design Automation Confer-

ence, June 1997.

R. Brayton, A. Sangiovanni-Vincentelli, A. Aziz, S. Cheng, S. Edwards,
S. Khatri, Y. Kukimoto, S. Qadeer, R. Ranjan, T. Shiple, G. Swamy, T. Villa,
G. Hachtel, F. Somenzi, A. Pardo, and S. Sarwary. VIS: A System for Verifica-
tion and Synthesis. In Proc. of the 8th International Conference on Computer
Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages
428-432. Springer-Verlag, 1996.

J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using
the Token Flow Model. PhD thesis, U.C. Berkeley, 1993. UCB/ERL Memo
M93/69.

Felice Balarin and Gary York. Verilog HDL modeling styles for formal ver-
ification. In Proceedings of the IFIP Conference on Hardware Description

Languages and their Applications, April 1993.

Coppo, M. D’Ambrosio, and V. Vercellone. The A-VPN server, a solution for
atm virtual private networks. Proceedings of ICCS, November 1994.

M. Chiodo, P. Guisto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-
Vincentelli, E. Sentovich, and K. Suzuki. Synthesis of software programs for
embedded control applications. IEEE Transactions on Computer-Aided De-
sign, 18(6):834-849, June 1999.

H. Cho, G. Hachtel, E. Macii, M. Poncino, and F. Somenzi. A structural
approach to state space decomposition for approximate reachability analysis.

In Proc. of Int’l Conference on Computer Design, October 1994.

J. B. Dennis. First version data flow procedure language. Technical Report
MAC TM61, Massachusetts Institute of Technology, May 1975.

BIBLIOGRAPHY 142

[DH9]

(Eng94]

[FLL+98]

[GL94]

[GM92]

[GR94]

[HCRP91)

[HLN+90]

[HU79]

[Kah74]

{Kur94]

D. Drusinski and D. Har’el. Using statecharts for hardware description and
synthesis. IEEE Transactions on Computer-Aided Design, 8(7), July 1989.

Institute of Electrical and Electronics Engineers. IEEE standard VHDL lan-
guage reference manual. IEEE, 1994.

E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro, M. Paolini, R. Passerone,
M. Sgroi, and A. Sangiovanni-Vincentelli. Intellectual property re-use in em-
bedded system co-design: an industrial case study. International Symposium

on System Synthesis, December 1998.

O. Grumberg and D. Long. Model checking and modular verification. IEEE
Transactions on Programming languages and Systems, 16(3), May 1994.

M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem

proving environment for higher order logic. Cambridge University Press, 1992.

D. Gajski and L. Ramachandran. Introduction to high-level synthesis. IEEE
Design and Test of Computers, 11(4):44-54, 1994.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305—
1320, September 1991.

D. Har’el, H. Lachover, A. Naamad, A. Pnueli, et al. STATEMATE: a working
environment for the development of complex reactive systems. IEEE Trans-

actions on Software Engineering, 16(4), April 1990.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, languages
and Computation. Addison Wesley, 1979.

G. Kahn. The semantics of a simple language for parallel programming. In
Proceedings of IFIP Congress, August 1974.

R. P. Kurshan. Automata-Theoretic Verification of Coordinating Processes.

Princeton University Press, 1994.

BIBLIOGRAPHY 143

[LL73]

[LLSV99]

[LMs7]

[MBNSV93]

[McM93]

[NPWS81]

[ORR+96]

[SAB*93]

[SB94]

[SBT96]

C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the Association for Computing

Machinery, 20(1):46 - 61, January 1973.

M. Lajolo, M. Lazarescu, and A. Sangiovanni-Vincentelli. A compilation-
based software estimation scheme for hardware/software co-simulation. In
Proceedings of the International Workshop on Hardware-Software Codesign,
May 1999.

E. A. Lee and D. G. Messerschmitt. Synchronous data flow. IEEE Proceedings,
September 1987.

A. Malik, R. Brayton, A. Newton, and A. Sangiovanni-Vincentelli. Two-level
minimization of multivalued functions with large offsets. IEEE Transactions
on Computers, 42(11), November 1993.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and
domains. part 1. Theoretical Computer Science, 13:85-108, 1981.

S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining
Specification, Proof Checking, and Model Checking. In Proc. of the 8th Inter-
national Conference on Computer Aided Verification, volume 1102 of Lecture

Notes in Computer Science, pages 411-414. Springer-Verlag, 1996.

T. Shiple, A. Aziz, F. Balarin, S. Cheng, R. Hojati, T. Kam, S. Krishnan,
V. Singhal, H. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Formal
design verification of digital systems. In Proceedings of TECHCON, 1993.

Carl Seger and Janusz Brzozowski. Generalized ternary simulation of sequen-
tial circuits. Informatique Theorigue et Applications, 28(3-4):159-86, 1994.

T. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic circuits. In

Proceedings of European Design and Test Conference, March 1996.

BIBLIOGRAPHY 144

[SSL*92]

[Tho90)

[TSL*90]

[Ung69]

[Wan96)

[YMS+98]

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Technical Report UCB /ERL M92/41,
U.C. Berkeley, May 1992.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science. Elsevier, 1990.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Implicit State Enumeration of Finite State Machines Using BDD’s. In Proc.
of Int’l Conference on Computer-Aided Design, November 1990.

S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley Interscience,
1969.

Huey-Yih Wang. Hierarchical Sequential Synthesis: Logic Synthesis of FSM
Networks. PhD thesis, University of California Berkeley, 1996.

J. Young, J. MacDonald, M. Shilman, A. Tabbara, P. Hilfinger, and A. New-
ton. Design and Specification of embedded Systems in Java Using Successive,

Formal Refinement. In Proc. of 35** Design Automation Conference, pages
70-75, June 1998.

Index

CFSM, 32

semantics, 36
FSM, 26, 28

extended (EFSM), 27
POLIS, 13

abstraction
examples, 5

architectural mapping, 19, 71

causality, 28
communication
synchronized, 26
unsynchronized, 26
connection, 29
container
observable, 131
state value, 127
container set, 90
container space
binary, 91
ternary, 118
container-event set, 90

container-event space, 91

ternary, 119
cover
binary, 93

least ternary non-decreasing, 121

145

cover function
ternary, 120
cyclic executive serial scheduling policy,
74

data, 29
delay insensitive scheduling policy, 74

embedded systems
architecture, 2
current design practice, 4
examples, 1
proposed approach, 7
user interface, 2

event, 29

event set, 90

event space, 91

execution cover generation procedure, 96

execution covers, 96

execution trace, 87

false negative result, 62

finite state automata, 32
composition, 32
run, 32

Finite State Machine (FSM), 26

formal verification, 43
abstraction, 44, 47, 57

INDEX

conservative abstraction, 45
error trace, 44

false negative, 45

false positive, 45

paradigm, 43

state explosion, 27

GALS, 29
generation procedure

binary execution cover, 96

modified ternary execution cover, 127

ternary execution cover, 120
global state pattern, 71

greatest execution cover, 98

hierarchical process network, 24

high level language translation, 15

implementation, 71
inconclusive result, 61
information ordering
binary, 92
ternary, 119
initial
state, 30
initial transition, 30
input
stimulus, 35

iterative refinement, 138

language
automaton, 44
least execution cover, 105
least ternary non-decreasing cover, 121

liveness, 80

local execution trace, 87

minterm, 92

146

modified ternary execution cover genera-

tion procedure, 127

multi-cast, 31
multiclock, 138

net, 30

network, 31

non-decreasing

binary, 92

non-decreasing function

ternary, 119

observable container, 131

positive result, 61

predecessor, 80

processes, 24

refinement, 115

repartitioning, 138

responsiveness, 28

scheduling point, 71

scheduling policy, 73

cyclic executive serial, 74
delay insensitive, 74
static priority serial, 74
unit delay parallel, 74
well-behaved, 93

scheduling policy analysis, 70

set

container, 90

container-event, 90

INDEX

event, 90
ternary container, 118
ternary container-event, 118
signal, 34
space
container, 91
container-event, 91
event, 91
stabilization, 71

state value container, 127

static priority serial scheduling policy, 74

sub-networks, 24
subnetwork

instantiation, 25
successor, 80
symbolic simulation, 121
synchronous assumption, 65
synchronous equivalence, 65
synthesis, 21
synthesis directives, 71
system co-simulation, 20

system graph, 79

ternary container set, 118

ternary container space, 118
ternary container-event set, 118
ternary container-event space, 119

ternary cover function, 120

ternary execution cover generation proce-

dure, 120

ternary information ordering, 119

ternary non-decreasing function, 119

timing

147

assumption, 46, 47, 57
transition, 30, 35

spontaneous, 35
transition relation, 30
translation, 105

true negative result, 62
unit delay parallel scheduling policy, 74

well-behaved scheduling policy, 93

	Copyright notice 2000
	ERL-00-37

