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Abstract

Eigentaste is a collaborative filtering algorithm that uses
universal queries to elicit real-valued user ratings on a com
mon set of items and applies principal component analysis
(PCA) to the resulting dense subset of the ratings matrix.
PCA facilitates dimensionality reduction for offline clus
tering of users and rapid computation of reconunendations.
For a database of n users, standard nearest-neighbor tech
niques require 0(n) processing time to compute recom
mendations, whereas Eigentaste requires 0(1) (constant)
time. We compareEigentaste to alternative algorithms us
ing data from Jester, an onlinejoke recommending system.

Jester has collected approximately 2,500,000 ratings
from 57,000 users. We use the Normalized Mean Abso
luteError (NMAE) measureto compareperformanceof dif
ferent algorithms. In the Appendix we use Uniform and
Normal distribution models to derive analytic estimates of
NMAE when predictions are random. On the Jester dataset,
Eigentaste computes recommendations two orders of mag
nitude faster with no loss of accuracy.Jester is online at:

hUp.V/eigentaste.berkeley.edu

1 Introduction

The networked world contains a vast amount of data. Vis
itors face the arduous task of retrieving information that
matches their preferences. The term "Collaborative Filter
ing" (OF) describes techniques that use the known prefer
ences of a group of users to predict the unknown prefer
ences of a new user; recommendations for the new user are
based on these predictions [26]. Other terms that have been
proposed are "social information filtering" [30], and "rec-
ommender system" [28]. In each case, users collaborate in
the sense that each rating improves the performance of the
overall system. The fundamental assumption is that if users
A and B rate k items similarly, they share similar tastes, and
hence will rate other items similarly. Approaches differ in
howthey define a "rating," howtheydefine k, andhowthey
define "similarly."

*
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A CF algorithm should be both accurate (the recom
mended objects should subsequently receive high ratings),
and efficient in terms of computational complexity. A CF
database represents n users and m items available for rat
ing and recommendation. In most existing CF algorithms,
online computation scales linearly with n. In this paper we
propose a new algorithm, Eigentaste, designed to provide
accurate and efficient recommendations to users in constant

online time.^

Most CF systems include only user-selected queries: the
user chooses which items to rate, yielding a sparse ratings
matrix with many null values. TTie Eigentaste algorithm
profiles user taste with universal queries: each item is pre
sented with a short unbiased description (eg, book summary
or film synopsis) so that users can form an opinion and
respond to any query. Using univeral queries, Eigentaste
presents each user with the same gauge set of items to rate
during its profiling phase. This has the advantage that the
subset of the ratings matrix containing the gauge set items
is dense. Universalratings also permit the system to collect
immediate feedback on all recommended items. It is often

argued that users who have not seen a film are not able to
rate it effectively. The opposite can be argued: the expe
rience of viewing a film can corrupt taste ratings by extra
neous factors (indigestion, a bad seat,...). The user's level
of familiarity with each item should properly be treated as
a confidence, a second-order measure notoriously difficult
to collect. Consumers implicitly rate unknown items when
ever they shop or make choices. Collecting ratings only
of familiar items can yield a highly-biased and incomplete
model of user taste. When properly designed, universal
queries offer the advantage of rapid and consistent profil
ing of new users.

Eigentaste captures user ratings on a continuous rating
scale. To rate items, users are asked to click their mouse
on a horizontal "ratings bar" which returns scalar values.
While technically notcontinuous (limited bythegranularity
of HTML image maps), we can distinguish approximately
200 levels of ratings in the scale. Continuous ratingsavoid
discretization effects in matrixcomputations and may offer

Âvery briefand preliminary report on this algorithm appeared
in [11]. A patent application that includes some elements of this
algorithm has been filed by the UC Regents.



measurement [1] and user-interface advantages as discussed
in the conclusion.

Eigentaste splits computations into offline and online
phases. Offline, Eigentaste uses principal component anal
ysis for optimal dimensionality reduction and then clusters
users in the lower dimensional subspace. The online phase
uses eigenvectors to project new users into clusters and a
lookup table to recommend appropriate items so that run
time is independent of the number of users in the database.

This paper is organized as follows. Section 2 reviews re
lated work. Section 3 introduces the Eigentaste algorithm,
PCA, and our recursive rectangular clustering method. Sec
tion 4 describes the application ofEigentaste to Jester, a CF
system for recommending jokes, including a description of
the bootstrapping process. Section 5 proposes the normal
ized Mean Absolute Error (NMAE) metric and compares
performance of several algorithms on the Jester dataset in
terms of accuracy and efficiency. Section 7 reviews the re
sults and discusses future work.

2 Related Work

In this section we reviewonly a small sampleof the papers
on CollaborativeFiltering. Rich [29] is considered an early
reference. There is a long history of patents related to CF,
ranging from [14] in 1989 to [9] in 2000. In 1992, D. Gold
berg et. al. coined the term "collaborative filtering" in the
contextof a system for filteringemail using binarycategory
flags [10]. Excellent surveys of research can be found in
[31.12, 7].

Shardanand and Maes [30] designed a collaborative fil
tering system for music (Ringo) and experimented with a
number of measures of distance between users, including
Pearson correlation, constrained Pearson correlation, and
vector cosine. They compare four different recommenda
tion algorithms based on the Mean Absolute Error of pre
dictions. All of their neighborhood-based algorithms re
quire time linear in the number of users.

GroupLens is a pioneering and ongoing effort in col
laborative filtering [28, 18, 19, 12]. The GroupLens team
initially implementeda neighborhood-basedCF system for
rating Usenet articles. They used a 1-5 integer rating scale
and computed distance using Pearson correlations.

One of the newsgroups that GroupLens considered was
rec.humor, an unmoderated newsgroup that receives hun
dreds of posts a day, most of them not very funny (not that
rec.humor.funny is much better). This was reflected in the
ratings, where 75% of the jokes received the lowest possi
ble rating of 1 (not funny). The GroupLens team reported
correlation values for 500 pairs of users; the relatively high
value of these correlations was used to claim that users gen

erally agree on the ratings of jokes, in contrast to the recipes
posted on rec.food.recipes.

However, the predominance of "not funny" ratings in
the data skewed all correlations dramatically upward. The
GroupLens team did note the existence of a substantial
number of low and negative correlations in rec.humor, sug
gesting that there may be indeed be some variance in user
tastes. To evaluate Eigentaste, we also use humor as a do
main but use jokes with a much higher variance. There are
a number of differences between Grouplens and Eigentaste.

Breese et. al. [4] classify collaborative filtering al
gorithms into two classes: Memory-based and Model-
based. Memory-based algorithms operate over the entire
user database to make predictions. The most common
memory-based model are based on the notion of nearest-
neighbors, using a variety of distance measures. Model-
based systems are based on a compact model inferred from
the data. In this framework Eigentaste would be consid
ered Model-based. Breese et. al. compare a number of
algorithms including Bayesian clustering and decision-tree
models. They show that Bayesian network and correlation
models are the best-performing but do not discuss compu
tational complexity.

Pennock and Horvitz [26] suggest Personality Diagno
sis (PD),a latentvariableapproachbasedon computing the
probability that a new user is of an underlying "personal
ity type," and that user preferences are a manifestation of
this personality type. The personality type of a given user
is taken to be the vector of "true" ratings for items the user
has seen. A true rating differs from the actual rating given
by a user in Gaussian noise. Given the personality type of
a user A, PD finds the probability that the given user is
of the same personality type as other users in the system,
and thus the probability that the user will like some new
item. To combat the problem common to memory-based
models of increased computational effort as the set of ex
isting users grow, Pennockand Horvitz explorea Value of
Information (VOI) computation which maximizes predic
tive value while minimizingthe number of explicit ratings
needed from a user. This approach requires the specifica
tion of utility functions. However, VOI can also be used
offline to "prune" the data in the system in order to reduce
the amountof datastoredwhilemaintaining maximum pre
dictive power.

In a differentpaper,Pennockand Horvitz[25]proposean
axiomaticfoundation for collaborative filtering. CF makes
preferencepredictionsby combiningpreferencesof existing
users. The authors note that "aggregation" of preferences
has been studied in Social Choice theory since the 1960's
[2]. They argue that only a single nearest-neighbor model
will satisfy the axiomatic conditions.

Delgado [7] takes an agent-based approach to CF, de-



veloping severalalgorithmsthat combine ratings data with
othersourcesof informationsuchas the geographiclocation
of the user. Weighted majority voting is used to combine
reconunendations from different sources.

In their recent paper, Herlocker et. al. [12] divide
neighbor-based CF algorithms into three steps: i) weight
ing possible neighbors, ii) selecting neighborhoods and,
iii) producing a prediction from a weighted combination
of neighbors ratings. They explore alternative methods for
each step and propose Spearman (rank-based) correlation
weighting as an alternative to Pearson correlations and a
"significance weighting" based on the number of items two
users have rated in common. To compute predictionsthey
find that subtracting global means improves performance,
while conversion to Z-scores does not. To measure accu

racy, they propose Receiver Operator Characteristic (ROC)
sensitivity from decision-support theory.

Many CF researchers have recognized the problem of
sparseness: many values in the ratings matrix are null since
all usersdo not rate all items. Computing distancesbetween
users is complicated by the fact that the number of items
users have rated in common is not constant. An alterna

tiveto insertingglobalmeansfor null values or significance
weighting is Singular Value Decomposition (SVD), which
reduces the dimensionality of the ratings matrix and identi
fies latent factors in the data.

An application of SVD in the context of document re
trievalhas been patented and is widely knownas Latent Se
manticIndexing(LSI) [21,6,8,15]. In LSI, SVD is applied
to factor the non-square term-document frequency matrix
into othogonal factormatriceswith corresponding singular
values. The largest singular values correspond to the most
significant factor weightings, which can be used to create a
dimension-reducing linear projectionof the originaldata.

Billsus and Fazzani [3] and Pryor [27] haveapplied SVD
to CF in different ways. Billsus and Pazzani [3] treat CF as
a classification problem and discretize ratings into a small
number of classes (eg. two: like vs. dislike). Say there are n
users, k items that form the basis for recommendation, and
r items to considerrecommending. Let m = A: -I- r. They
discretize the n x m original ratings matrix into a Boolean
feature matrix F, with a row for each combination of user
and category. They apply SVD to F to reduce its dimen
sionality from 2n X m to V Xm. The principal vectorsare
used to project each item to a point in the u-dimensional
space.

Billsus and Pazzani then create n feedforward neural net
works, one for each user in the database. They use back-
propagation to train each network using k u-dimensional
vectors (one vector for each item rated by that user). Af
ter training, each network will map a u-dimensional vector
representing an unseen item to a predicted rating for that

item. Using the Movielens dataset, they demonstrate that
their method yields reasonable prediction accuracy but note
that it is significantly more computationally expensive than
other methods due to the need to train a neural network for

each user.

Pryor [27] recommends web pages based on Boolean
visit patterns and 7-point discrete ratings. Applying SVD
to the visit matrix produces a set of vectors corresponding
to features in the matrix. He found that using only the most
significant features (as measured by their singular values)
reduces dimensionality and provides an effective distance
meuic.

In Eigentaste we address sparseness using universal
queries, which insure that all users rate a common set of
k gauge items. Since the resulting submatrix is dense, we
directly compute the square symmetric correlation matrix
and then do a linear projection using Principle Component
Analysis, a closely-related factor analysis technique firstde
scribed by Pearson in 1901 [24, 5,20, 17]. Like SVD, PGA
reduces dimensionality by optimally projecting highly cor
related data along a smaller number of orthogonal dimen
sions.

3 The Eigentaste Algorithm

In this section we describe the generic Eigentaste algorithm.

3.1 Notation and Terminology

U set of all users in database

J set of all items to be rated and/or recommended

G set of items in the gauge set
n number of users, \U\
m total number of items, |J\
k number of items in the gauge set, |G| (thus there are

m —k items available for recommendation)
R nxm matrix of raw user ratings
A nxk normalizedmatrix of user ratings of items in G
C kx k correlation matrixof the k itemsin the gaugeset
E kx k orthogonal matrix of eigenvectors of C
A kx k diagonal matrix of eigenvaluesof C
fij rawrating of itemj by useri\fij e [fmin, rmax] U0
rij normalized rating of item j by user i
Pij predicted rating of item j for user i
fij average rating of item j
Ji set of items rated by user i
Uj setof users having rated itemj (Vj € G, lUjj = n)

3.2 Normalizing Ratings

The nxm matrix of raw ratings from n users and m items
is R. We selected k of these items to form the common
gauge set (all valid users rated all items in the gauge set).



We normalize this subset of R to produce A, the n x k
submatrix of gauge set ratings.

Each rating is normalized by subtracting its mean rating
over all users, and then dividing by its standard deviation.
Since valid users have rated all items in the gauge set, there
will be no null ratings. The mean rating of the item in
the gauge set is

« =i E
i&Uj

and the variance of the gauge set item is

ieUj

In A, the normalized ratingry is set to .

3.3 Pearson's Correlation Matrix

If we assume a continuous rating scale and a linear relation
ship between variables,we can define the global correlation
matrix C{= [c^fc]) overall users.

C =

C is symmetricand positivedefinite.

3.4 Principal Component Analysis

PrincipalComponentAnalysis was first introduced in 1901
by Karl Pearson [24]. Hotelling generalized it to random
variables in 1933[16]. Weapplyeigen-analysis to solvefor
matrices E and A such that

C = E'^AE,

and

ECE"^ = A.

Let B = AE"^ be a linear transform of A such that the
transformed points are uncorrelated (its correlation matrix
is diagonal):

Cb = = ECE"^ = A.

Each column j of B has variance Xj. After sorting by
eigenvalue. Figure 1 shows the variance in B left unac
counted for by each successive column of B in a typical
dataset.

The idea is to keep only the "principal" eigenvectors. The
number of eigenvectors to retain depends on the variances
(eigenvalues) but is typically small. If v eigenvectors are
retained, data is projected along the first v principal eigen
vectors:
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Figure 1: Scree curve ofvariances explained by consecutive
eigenvectors. The largest amount of variance is explained
by thefirst eigenvector. Thefirst two eigenvectorstogether
accountforfor almost 50% ofthe total variance.

On popular choice is to set v = 2, so that data are pro
jected onto the "eigen-plane" for human visualization. PCA
and the Eigentaste algorithm generalize easily to higher di
mensions.

3.5 Recursive Rectangular Clustering

There are many ways to cluster the projected data. For the
data in Section 4, after plotting in two dimensions we dis
covered a high concentration around the origin. We imple
mented a recursiverectangular clustering where cell size de
creases near the origin. This can be generalized to higher di
mensions and a variety of alternate clustering methods can
be used with Eigentaste.

Clustering

1. Start with the minimal rectangular cell that encloses
all the points (user projections)in the eigenplane. This
forms the outermost rectangular subdivision.

2. Bisect this cell along the x and y axes to yield 4 rect
angular sub-cells.

3. For each new sub-cell that has the origin as one of its
vertices, perform the operation in step 2 to generate
sub-cells at the next hierarchical level.

4. Repeat Step 3 for each level until a desired depth is
reached.

Figure 2 is an illustt'ation of recursive rectangular cluster
ing in 2 dimensions after 4 levels of recursion

We treat each cell as a cluster of neighbors in the eigen
plane. For each cluster, we compute the mean for each non-
gauge item, based on the number of users who have rated



Figure 2: 4 levels of recursion, forming a total of 40 clus
ters.

that item. Sorting the non-gauge items in order of decreas
ing mean ratings yields a lookup table of recommendations
for thatcluster. Allof thisoccurs offline and periodically.

3.6 Online Computation of Recommendations

When a new user enters the system,

1. Collect ratings for all items in the gauge set.

2. Use the principal components to project this k vector
onto the eigen plane.

3. Find the representative cluster.

4. Look up appropriate recommendations, present them
to the new user, and collect ratings.

4 Experimental Implementation; Jester

We use humor as a domain for evaluatingEigentaste. Can
an automated system recommend a funny joke? Since the
criteria for humor are difficult to formalize, this is a non-
trivial information retrieval problem. There have been a
number of psychological studies on the human sense of hu
mor. Ziv [33] attempted to categorize taste in humor based
on social, emotional, and intellectual characteristics. These

characteristics in turndepend on factors such as gender, age,
social upbringing, etc. Our approach avoids such semantic
categories and relies solely on numerical ratings: We treat
each user and each joke as a black box. See [23] for research
on humor.

We refer to the implemented CF system basedon Eigen
taste as Jester. Jester includes an HTML client interface

AicAtftBaiifrivti mCu tftnflfbuvm Tiliiiir
"BiyuiCOo terwoilt.Kl Wv«fyfiaBC«YyMipM

MiMft U»M Imnry •• yMpMir»M 9/Tlu
Bifi iiy#; iMO eritfEtind Oxn Ailcnnl maa$ ht
4ifftr<nlftlip»ai^UM whymatt I ^
19^ SnSc Poor Mts ^ "Wa A« CMbOman h
rMoi $t mi fcty feiefc Ae m#)' ««m b««.

Figure 3: The Jester interface: users are shown a joke and
asked to rate it by clicking on the continuousratings bar at
the bottom ofthe screen.

that allows Internet users to rate jokes^. We chose only
jokes that can fit on 1-2 screens to minimize evaluation
time. We present jokes and collect real-valued ratings as
users click on a rating bar implemented using the image
map control provided in HTML. After the user rates each
joke, another is presented. After all jokes in the gauge set
are rated, Jester recommends jokes to the user and continues
to collect ratings on each recommended joke. The commu
nication between the interface and the server scripts takes
place through a CGI script written in C. Figure 3 illustrates
the interface.

All collaborative filtering systems experience the "cold
start" problem [22]. One needs ratings to predict ratings.
To address this, we started with a simple website to col
lect joke ratings. We chose the initial set of 40 jokes from
friends and newsgroups, doing our best to avoid highly of
fensive jokes. We then asked 80 friends and students to
rate all 40 jokes by visiting the website. We selected half
of these jokes (k —20) for the gauge set based on a com
bination of their correlations and variances. Herlocker et.

al. [13] hypothesize that giving high variance items more
influence in determining a correlation will improvepredic
tion effectiveness. How to choose the gauge set will be a
subject of a future paper.

We next implemented Jester 1.0, a naive recommender
system based only on the single nearest neighbor in Eu
clidean space. We added 30 newjokes to the system (m =
70). New users were asked to rateeachjoke in thegauge set
and 5 non-gaugejokes selected at random to seed future rec
ommendations. For each user, the single nearest neighbor
was used to generaterecommendations from the remaining

^See http://eigentaste.berkeley.edu



jokes. Figure 2 is an illustration of the recursive rectangular
clustering scheme in 2 dimensions, using 4 levels.

We registered the Jester site with a number of search en
gines. By the end of November 1998, about a month and a
half of the system inception, we had around 150 registered
users. On 2 December, at 9:25am, Jester was featured in
the Culture section of >A^red News [32]. Online news site
like Yahoo, Excite, and Netscape News went up with the
same story.. This produced a sudden influx of 41350 page
requests. Since system process time grew linearly with the
number of users. Jester 1.0 was quickly overwhelmed. It
crashed and was offline for several days.

Our experience with this trafflc overload motivated us
to develop a more scalable algorithm, Eigentaste. Jester
2.0 was released on March 1st, 1999. Its graphics were
redesigned, we added 30 newjokes to the system so that
m = 100,and the gaugeset was reducedto 10jokes.

5 Results

5.1 Normalized Mean Absolute Error (NMAE)

The error metric used most often in the CP literature is the
Mean Absolute Error (MAE) [30, 4, 26]. Ifpij is the pre
diction for how user i will rate item j, the MAE for user i
is defined as

MAE=i2|fy-p«|
j=l

where c is the number of items user i has rated. MAE for
a set of users is the average MAE over all members of that
set.

Since our numerical rating scale gives ratings over the
range [-10,4-10], we normalize to express errors as per
centages of full scale: Normalized Mean Absolute Error, is:

NMAE =
MAE

^max rmin

Herlocker et al. [12] discusses a variety of othererror
measures. In the Appendix, we consider NMAE from a
theoreticalperspective.

5.2 The Jester Dataset

Since March 1999, Jester has collected approximately
2,500,000 ratings from 57,000 users. There are 10jokes
in thegaugeset and90 non-gauge jokes. The average num
berof ratings per user is 46. We based ourexperiments on
18,000random users from this sample. The Jester Dataset,

including anonymous ratings from these users, is available
uponrequest.^

For the experiments below, we randomly divide the users
into two disjoint sets: training and test. We use data from
the training set to compute predictions using each algorithm
(ie, to "train" the system). Data from the test set is then used
to evaluate efficiency and accuracy.

5.3 POP Algorithm

The simplest recommendation algorithm is to treat all users
as coming from the same global cluster and to base recom
mendations for all users on global mean ratings. We used
this "POP" algorithm as our control case. (Note: The name
"POP" is taken from [4]).

POP predicts ratings for every joke based on its global
average. We use the training set to compute the global aver
age and the test set to evaluatethe predictions. POP yields
NMAE of 0.203.

5.4 Nearest Neighbor Algorithms

The nearest neighboralgorithm and its variantsare the ones
mostwidely referenced in the literature. Theformulagener
ally used to find the predicted rating pij for user i and item
j is

Pij = fi +K'̂ w{i,p){fpj - Tp)
k=l

wherefi is the average joke rating for user z, and /c is a
normalizing factor ensuring that the absolute value of the
weights sumto 1.The weights w{i^p) canreflect distances,
correlations, or similarities between user i and other users
that have rated the same items. Most commonly, w{i,p) is
thePearson correlation coefficient between users i and p:

w{i,p) =
lljifij - fi){fpj - fp)

yJUjirij - fiY Y^jifpj - fpY

where the summations over j include items that both user
z and user p have rated in common [4, 30].

We also implemented a weighted nearest neighbor al
gorithm. We used a function of Euclidean distance from
user i to user p as the weight it;(z,p), and k = J^pW{i,p).
Specifically, if we are interested in q nearest neighbors,

= d{i^ g + 1) —d{ijp). Thisensures thatz's closest
neighborhas the largest weight.

®To request this data, please email your contact information
and a description of intended research to the first author.



Using only one nearest neighbor (1-NN) proved to be a
less accurate predictor than the global average joke rating
(POP). For nearest neighbor calculations, the predicted rat
ingfor a giventest user was the actualratingof his/hernear
est neighborin the trainingset. Usingone nearestneighbor,
the normalized MAE was 0.238, an increase over POP.

In addition to finding the prediction error for one near
est neighbor, we calculated errors when recommendations
were based on q or more nearest neighbors (g-NN). In these
cases, the predicted rating for a user in the test set was the
(unweighted) average of the ratings of his q nearest neigh
bors (one can view this as a special case of the similarity-
basedweighting, where w{i, k) = Ifd for aWd < q neigh
bors that have rated the item). For q = 2, there is sharp
improvement: NMAE = 0.224. In addition, the error mono-
tonically decreases until q = 80. After this point, the er
ror increases again, and asymptotically approaches the POP
value as expected. See Figures 4 and 5.
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Figure 4: MAEas afunction ofthe number ofnearest neigh
bors used,for 1 <q< 150.
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Figure 5: MAE as a function of the number of nearest
neighbors used, for 1 < q < 1700. The error decreases
sharply, then steadily increasesfor q > 90.

As visible in Figure 4, the lowest NMAE is 0.187, for
approximately 80 nearest neighbors.

5.5 Eigentaste

For the Jester dataset, the first two eigenvectors accounted
for nearly 50% of all the variance (see Figure 1). We took
the first two principal components (v = 2) and projected
the data onto the eigenplane:

x = AEj'

Each user represents a point in this two-dimensional
eigenplane. After computing predictions using the train
ing set and comparing with actual ratings in the test set, the
NMAE for Eigentaste is 0.187.

6 Computational Complexity

Recall that the ratings database contains n users and m
items for rating and recommendation. In Eigentaste there
are fc << m items in the gauge set.

6.1 POP Algorithm

The computational complexity for the POP algorithm is
0{nm) to compute global means and 0(1), constant time,
to provide recommendations.

6.2 Nearest Neighbor Algorithms

For 1-NN, the online time needed to find recommendations
for a new user is 0(n). In an implementation of finding
the nearest neighbor, all training set users are scanned into
memory, and then traversed for each test set user. The time
required to scan all 8853 training set users was 31.64 sec
onds. To find the nearest neighbor and generate the pre
dictions for one test user took 438 msec. It is important to
note that the overriding factor is scanning in the training set
users. For a user online, it would take over 32 seconds to

get his/her recommendations—assuming there are no other
processes running on the system. It may also become nec
essary to scan training set users from a file if their number
grows larger than is reasonable to have in memory. This
would significantly increase the time necessary to find pre
dictions.

For q-NN (where q > 1) the time required will slightly
increase as q grows, but the time to find the q nearest neigh
bors remains 0(n).

6.3 Eigentaste Algorithm

For the offline phase, finding the correlation matrix, cal
culating the eigenvectors, projecting users into the eigen
plane, and clustering them takes 0{k^n) time. Note that



k is small (in our case k = 10), so this phase is not too de
manding. Using a similar implementation to the one used
for the nearest neighbor algorithm above, it took 27.85 sec
onds to scan all 8853 training set users, 444 msec to gener
ate the eigenvectors/eigenvalues, and 298 msec to generate
the clusters and the predictions for each cluster. The total
offline time needed for 8853 training set users was 29.59
seconds.

Online, however, recommendations can be made in con
stant time; 0(A;). Thus, thereis no increasein timerequired
to find a recommendation as the number of users in the sys
tem increases. For Jester, the time to project the ratings
from the gauge set and to look up the recommendations is
3.22 msec per user. The Eigentaste algorithm provides a
significantdecrease in online computation time.

7 Discussion

In this paper we describe Eigentaste, a new CP algorithm
that applies PCA to a dense subset of the ratings matrix.
Eigentaste uses universal queries to elicit real-valued user
ratings on a common set of items. PCA facilitates dimen
sionality reduction for offline clustering of user and rapid
online clusterassignment. Accuracy and efficiency results
on the Jester dataset are summarized in the table below.

Algorithm
Accuracy
(NMAE)

Ofnine Online Online

time

per user

POP 0.203 0{nm) 0(1) -

1-NN 0.237 - 0{nk) 350 msec
80-NN 0.187 - 0{nk) 350 msec

Eigentaste 0.187 Oik^n) 0{k) 3.2 msec

TheseNormalized MeanAbsolute Error(NMAE) values
indicate that predicted ratings values will bewithin roughly
20%of the trueratings values for eachalgorithm. So items
with predicted ratings well above the mean for a new user
will in many cases correspond to desireable items for that
user.

It is interesting to note that these accuracies are compa
rable withthose reported for a completely different dataset
(movies); the algorithms in Herlockeret al [12], whennor
malized to the 4 unit rating scale (1-5), yield NMAE from
0.192 to 0.207.

The POP (global mean) algorithm offers a useful baseline
foraccuracy (seeAppendix onotherbaseline comparisons).
In termsof NMAE the POPalgorithm performs reasonably
well, as other researchers have found [12]. It is compu
tationally efficient but completely ignores differences be
tween users.

Nearest-neighbor methods offer improved accuracy, un
lessnotenoughneighbors areconsidered (eg. 1-NN),which
makesindividual recommendations highlysusceptible to to

noise. If the 80 nearest neighbors are considered (80-NN),
noise is reduced and accuracy improves about 8% over POP,
but at the cost of considerable online computational as the
number of users grows. Ofcourse it may be possible to pre-
process the user group to select or create a small number of
representative users ("mentors") to keep n small.

For this dataset and implementation, Eigentaste's accu
racy is as good as 80-NN but its online computation is faster
by two orders of magnitude. These results suggest that
speedup can be achieved without compromising prediction
accuracy.

We are experimenting with a number of variations, such
as offline k-means clustering with cosine distance measures,
and hybrid approaches with adaptive online weighting to
further improve accuracy withoutalteringonline computa
tion time.

Eigentasteaddresses the sparseness problem with univer
sal queriesinstead of user-selected queries; eachquery con
tains a short unbiased description (eg, book summary or
film synopsis) so that users can form an immediate opin
ion. Using univeral queries, Eigentaste presents each user
with the same gauge set of items to rate during its pro
filing phase. The resulting subset of the ratings matrix is
dense. As discussed in Section 1, it can be arguedthat uni
versal queries are less effective than user-selected queries.
But universal queriesare particularly appropriate for some
domains, such as jokes, news articles, images, and music
clips, where a briefsample is available to be evaluated by
all users. Although we applied universal queries in the do
main of jokes (where the query is simply the joke itself),
weare in the processof testingEigentaste in otherdomains
including books. We plan to write another paper onthede
sign of universal queries and the choice of which items to
include in thegauge set. When properly designed, universal
queries offertheadvantage ofrapid andconsistent profiling
and the ability to collect immediate feeback on all recom
mended items. The effectiveness of universal queries, con
fidence queries, and the potential for hybrid query models
depends on thedomain and is a subject forfuture study.

Eigentaste captures user ratings on a continuous rating
scaleusingtheHTMLimagemapprotocol. Continuous rat
ingshave threeadvantages: 1) theyavoid discretization ef
fects in matrixcomputations 2) theycapturetaste withfiner
granularity [1], and 3) users report that they find the con
tinuous ratingbar easierto use. Usersoftenreporta desire
to choose a value"between" two discreteoptions. The et
ymology of the word"taste" suggeststhe digestive system:
a user's rating is literally a "gut reaction". If so, the contin
uous rating bar may offer a more visceral interface. Last,
users may provide more data if the interface feels more like
navigating a video game than answering a questionnaire.
More research on this issue is needed.



In the Appendix, we consider the accuracy metric from
a theoretical perspective. We have reported Normalized
Mean Absolute Error values for our experiments and noted
that these values compare surprisingly well to values re
ported in other domains and experiments. How significant
is a NMAE of 20%? To compare the CF performance to
random guessing, we use Uniform and Normal noise distri
bution models to derive analytic estimates of NMAE. We
find that if user ratings are uniformly distributed, random
predictions yieldNMAE= 33%. This suggeststhat there is
room for improved accuracy for all current CF algorithms.

A Appendix: NMAE for Random Predic
tions

To compare the CF performance to random guessing, we
use Uniform and Normal distribution models to estimate

Normalized Mean Absolute Error (NMAE) analytically.
Let X be the user's rating and Y be the predicted rating.
Let X and Y be independent random variables.

Uniform Distribution

Let X and Y be uniform random variables on the interval
[—10,10]. The probability distribution of the error,X —Y,
is a triangular function over the range (—20,20). Taking
the absolute value folds this function onto the positive axis.
Normalizing to integrate to 1, the MAE density function,
|X - Y\, is f{x) = 0.1 - 0.005x,0 < x < 20. The
expected value for the MAE\x-y\ is

r20

E[MAE] = / (0.1 —0.005x)x(ix = 6.667
Jo

Normalizing over the range of values, NMAE = 0.333.
That is, if actual and predicted values are uniformly dis
tributed, we'd expect the random predictions, on average,
to be off by a third of full scale.

To confirm, we performed a Monte Carlo experiment
where the actual and predicted ratings are random numbers
uniformly distributed between -10 to +10. The NMAE we
found was 0.320, very close to the analytic prediction.

Normal Distribution

Assume now that both the measured and predicted ratings
are Normally distributed random variables with the same
mean, /x, and variances and respectively, X and Y
are, again, independent. From the moment-generatingfunc
tion of random variables,

Mx-Y{t) = Mx{t)M.Y{t) = ^

_ g(<r?+<r|)X^/2+(/x-/x)t

Therefore, A" —F is also Normally distributed, with mean
0 and variance (af + ^2)-

For the Jester dataset, the average standard deviation is
a fv 5. Assume both the actual and predicted ratings have
CT = 5, the density function for \X —Y\ is

m =
,-1^/100

The expected MAE, then, is:

/•oo 1

E[MAE] = / T-7^e-' /^°°xdx = 5.642.
Jo Oy/lT

The expected NMAE is 0.282. That is, if actual and pre
dicted values are normally distributed, we'd expect the pre
dictions, on average, to be off by 28%.
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