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Abstract

A Differential Geometric Approach to Computer Vision and its Applications in

Control

by

Yi Ma

Doctor of Philosophy in Engineering- Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Shankar Sastry, Chair

As an important feature of any autonomous mobile agent, such as the human or unmanned

(ground and aerial) vehicles, there is usually a vision system embedded within the decision

making loop. The role of the vision system, whether biological or artificial, is responsible

for retrieving 3D information of the environment from 2D images. Such 3D information

contributes to either low-level feedback control so as to safely navigate within and interact

with the surroundings, or high-level decision making so as to reliably recognize, evade,

pursue or manipulate 3D objects or coordinate with other agents.

Among all the cues available for computing 3D information, the motion cue (also

called the stereo, parallax or structure from motion cues) provides the most unequivocal

information about the camera motion, calibration and 3D structure. Thus the study of

the motion cue has been the subject of intense research in the computer vision community.

The majority of the results have been established primarily within a Projective Geometric

framework which is not easily exploited by the control and robotics community.

In the first part of this dissertation, we show how to further use a blend of novel

techniques in Differential Geometry, Estimation Theory, and Optimization to improve our

understanding of the basic geometric laws which govern the visual perception. This new

perspective has initiated a series of new developments in and geometric insights to almost

everyclassic problemassociated to the motion cue, such as motionestimation, structure re

covery and camera self-calibration. In the end, we are able to reach a coherent mathematical

theory for multiview geometry. This theory also helps us to discover and analyze certain



singularity, degeneracy and ambiguity inherent in the 2D to 3D reconstruction problem.

Further more, the use of differential geometry allows us to extend the existing theory of

multiviewgeometry to non-Euclidean spaces. The second part of this dissertation presents

some initial attempts towards such a theory.

The proposed conunon mathematical framework between computer vision- and

control/robotics theory enables a better formulation of vision based control. In the third

part ofthisdissertation, we will address two basic approaches to vision basedcontrol, namely

visual servoing and visual sensing. These two approaches are demonstrated through two

vision based control projects: vision based navigation of an unmanned ground vehicle and

vision based landing of an unmanned aerial vehicle.

Professor Shankar Sastry
Dissertation Committee Chair



To my deax parents,

for always haying faith in me.

iii



IV

Contents

List of Figures ix

List of Tables xv

1 Introduction 1

1.1 Context and Motivation 1

1.2 Research Areas 3
1.2.1 Vision Based Control System Hierarchy 3
1.2.2 Multiview Geometry 5
1.2.3 Vision Based Robotic Control 7

1.3 Dissertation Contributions 8
1.3.1 A Differential Geometric Framework for Multiview Geometry .... 9
1.3.2 Geometry, Estimation and Optimization 11
1.3.3 Singularity, Degeneracy and Ambiguity 12
1.3.4 Applications in Unmanned Ground and Aerial Vehicles 13

1.4 Dissertation Outline 14
1.4.1 Overview 14
1.4.2 Guidelines for Readers 15

1.5 Notation 17

1 Multiview Geometry: A Differential Geometric Approach 18

2 Problem Formulation 19
2.1 Camera Model in a Euclidean Space 19

2.1.1 The Three Dimensional Euclidean Space 19
2.1.2 Camera Motion 20
2.1.3 Calibrated Pinhole Camera Model 22
2.1.4 Uncalibrated Pinhole Camera Model 24
2.1.5 Image Correspondences and Optical Flows 26

2.2 Fundamental Problems in Multiview Geometry 26



Motion Recovery I: Linear Algorithms 29
3.1 Continuous Essential Matrix Approach 32

3.1.1 Review of the Discrete Essential Matrix Approach 32
3.1.2 Continuous Epipolar Constraint 35
3.1.3 Characterization of the Continuous Essential Matrix 38
3.1.4 Algorithm 43

3.2 Experimental Results 50
3.2.1 Comparing to Subspace Methods 50
3.2.2 Bias Analysis: Relation to Nonlinear Algorithms 52
3.2.3 Sensitivity to Depth Variation 54
3.2.4 Translation Estimates 55

3.3 Discussion 55

Motion Recovery II: Optimal Algorithms 57
4.1 Optimal Motion Recovery 61

4.1.1 Minimizing Epipolar Constraints 61
4.1.2 Minimizing Normalized Epipolar Constraints 66

4.2 Optimal Triangulation 69
4.3 Critical Values and Ambiguous Solutions 74
4.4 Experiments and Sensitivity Analysis 78

4.4.1 Axis Dependency Profile 80
4.4.2 Non-iterative vs. Iterative 83
4.4.3 Mutual Information Between Structure Estimates and Noises .... 85

4.5 Discussion 86

Motion and Structure from Multiple Images 88
5.1 Dependency of Multilinear Constraints 91

5.1.1 Multilinear Constraints on Multiple Images 92
5.1.2 Algebraic vs. Geometric Dependency 93

5.2 Motion Recovery from Normalized Epipolar Constraints 97
5.2.1 Geometric Interpretation of Multilinear Constraints 97
5.2.2 Normalized Epipolar Constraints of Multiple Images 98
5.2.3 Geometric Optimization Techniques 103
5.2.4 Simulations and Experiments 106

5.3 Continuous and Hybrid Cases 110
5.3.1 Continuous Multilinear Constraints 110
5.3.2 Recovery of Relative Scale in the Continuous Case 112
5.3.3 Hybrid Multilinear Constraints 114

5.4 Discussion 117

Camera Self-Calibration 119

6.1 Geometry of an Uncalibrated Camera 123
6.2 Geometric Invariants of an Uncalibrated Camera 126
6.3 Epipolar Constraint in the Uncalibrated Case 130
6.4 Geometric Characterization of the Space of Fundamental Matrices 132



VI

6.5 Kruppa's Equations I34
6.5.1 Solving the Kruppa's Equations 136
6.5.2 Renormalization and Degeneracy of Kruppa's Equations 137
6.5.3 Kruppa's Equations and Chirality 142
6.5.4 Necessary and Sufficient Condition for Unique Calibration 145

6.6 Continuous Case I47
6.6.1 General Motion Case 148
6.6.2 Pure Rotation Case 150

6.7 Simulation Results 152
6.8 Discussion 156

Reconstruction and Reprojection up to Subgroups 158
7.1 Reconstruction under Motion Subgroups 161

7.1.1 Some Preliminaries 161
7.1.2 Generic Ambiguities in Structure, Motion and Calibration 163

7.2 Reprojection under Partial Reconstruction 168
7.2.1 Valid Euclidean Reprojection 168
7.2.2 Invariant Reprojection 169

7.3 Discussion 17q

II Advanced Topics in Multiview Geometry 171

8 Absolute Vision in Spaces of Constant Curvature 172
8.1 An Axiomatic Formulation of Multiview Geometry 173
8.2 Non-Euclidean Multiview Geometry in Spaces of Constant Curvature .... 175

8.2.1 Spaces of Constant Curvature 175
8.2.2 Characteristics of Spaces of Constant Curvature 176
8.2.3 Euclidean Space as a Space of Constant Curvature 179
8.2.4 Camera Motion and Projection Model ISO
8.2.5 Epipolar Geometry and Multilinear Constraints 182
8.2.6 Non-Euclidean Structure from Motion 185

8.3 Discussion 189

9 Bayesian Motion Estimation: Likelihood and Geometry 191
9.1 Image Noise Models 192
9.2 A Bayesian Motion Estimation Model I94
9.3 Likelihood Functions and a priori Distribution 195

9.3.1 Local Likelihood Function of Optical Flow 195
9.3.2 Likelihood Function of Camera Motion 196
9.3.3 The a priori Distribution of Camera Motion 197

9.4 Sufficient Statistics for Rigid Body Motion Estimation 197
9.5 Discussion I99



Vll

III Applications: Vision Based Robotic Control 203

10 Vision Guided Navigation of an Unmanned Ground Vehicle (UGV) 204
10.1 Curve Dynamics 206

10.1.1 Mobile Robot Kinematics 206
10.1.2 Image Curve Dynamics Analysis 208

10.2 Controllability Issues 215
10.2.1 Controllability in the Linear Curvature Curve Case 217
10.2.2 Front Wheel Drive Car 218

10.3 Control Design in the Image Plane 220
10.3.1 Controlling the Shape of Image Curve 220
10.3.2 Tracking Ground Curves 222
10.3.3 Simulation Results of Tracking Ground Curves 226

10.4 Observabihty Issues and Estimationof Image Quantities 227
10.4.1 Sensor Models and Observabihty Issues 228
10.4.2 Estimation of Image Quantities by Extended Kalman Filter 231

10.5 Simulation of the Vision Based Closed-loop System 234
10.6 Discussion 235

11 Vision Guided Landing of an Unmanned Aerial Vehicle (UAV) 239
11.1 Camera Model 241
11.2 Motion Estimation from Planar Scene 241

11.2.1 Review of the Discrete Case 242
11.2.2 Continuous Case 245
11.2.3 Implementation Issues 251
11.2.4 Simulation of Motion Estimation Algorithms 251

11.3 Nonlinear Control for a UAV Dynamic Model 254
11.3.1 System Dynamics 255
11.3.2 Inner and Outer System Partitioning 257
11.3.3 Control Design 258
11.3.4 Stability Analysis 260

11.4 Vision in the Control Loop 263
11.4.1 Disambiguation of Motion Estimates 264
11.4.2 Simulation Results for the Closed-Loop System 265

11.5 Discussion 266

12 Conclusions 268

A Geometric Optimization on Manifolds 270
A.l Optimization on Riemannian Manifold Preliminaries 270
A.2 Riemannian Structure of the Essential Manifold 273
A.3 Optimization on the Essential Manifold 277

B UAV System Parameters 281



Vlll

Bibliography 282



IX

List of Figures

1.1 A conceptual hierarchyof vision based control (or decision making) systems.
Arrows indicate direction of information flow 4

1.2 The hierarchy of the three-stage stratification approach 6
1.3 The hierarchy of an alternative stratification approach. Details about chiral-

ity and Kruppa's equation can be found in Chapter 6 7
1.4 Dependency among the chapters and appendixes 16

2.1 Coordinate frames for specifying rigid body motion of a camera 21
2.2 Two projections xi,X2 € of a 3D point p from two vantage points. The

relative Euclidean transformation is given by (72, T) GSE{Z) 24
2.3 The actually received uncalibrated images x\x^ € of two 3D points

and p^. We here use to represent the calibrated images (with
respect to a normal coordinate system). The linear map tj) transforms the
calibrated image to an uncalibrated one 25

3.1 Vectors ui,U2,5 are the three eigenvectors of a special symmetric matrix
^{Qv + vQ). In particular, bis the normal vector to the plane spanned by u
and u, and ui, U2 are both in this plane. ui is the average of w and v. U2 is
orthogonal to both b and ui 41

3.2 Bias for each noise level was estimated by running 500 trials and computing
the average translation and rotation. The ratio between the magnitude of
linear and angular velocities is 1 51

3.3 Bias for each noise level was estimated by running 500 trials and computing
the average translation and rotation. The ratio between the magnitude of
linear and angular velocities is 5 51

3.4 Bias dependency on combination of translation and rotation axes. For exam
ple, "X-Y" means the translation direction is in X-axis and rotation axis is
the Y-axis. Bias for each combination ofaxes was estimated by running 500
trials at the noise level 0.9 pixel. The ratio between the magnitude of linear
and angular velocities is 1 52



3.5 IVanslation bias of using normalized and unnormalized epipolar constraints.
Bias for each noise level is estimated by running 50 trials. Both rotation and
translation is along the Z-axis and the ratio between the magnitude of linear
and angulax velocities is 1 54

3.6 Translation bias and rotation bias with respect to different depth variation
parameter c. Bias for each noise level and depth variation parameter is
estimated by running 500 trials. Translation is along the X-axis and rotation
axis is the Z-axis and the ratio between the magnitude oflinear and angular
velocities is 1 55

3.7 Bias and sensitivity of the translation estimates uq from the skew symmetric
part and v* from the special symmetric part of the continuous essential ma
trix. Bias and sensitivity for each noise level are estimated by running 200
trials for a cloud of 50 points. Both translation and rotation are along the
X-axis and the ratio between the magnitude of linear and angular velocities
is 5 56

4.1 Bifurcation which preserves the Euler characteristic by introducing a pair of
saddles and a node. The index of the circled regions is 1 75

4.2 Value ofobjective function Fg for allT at noise level 6.4 pixels (rotation fixed
at the estimate from the nonlinear optimization). Estimation errors: 0.014
in rotation estimate (in terms of the canonical metric on S0{3)) and 2.39®
in translation estimate (in terms of angle) 77

4.3 Value ofobjective function Fg for allT at noise level 6.5 pixels (rotation fixed
at the estimate from the nonhnear optimization). Estimation errors: 0.227
in rotation estimate (in terms of the canonical metric on 50(3)) and 84.66®
in translation estimate (in terms of angle) 77

4.4 Value of objective function Fg for all T at noise level 6.7 pixels. Rotation
is fixed at the estimate from the linear algorithm from the eigenvector vq
associated with the smallest eigenvalue. Note the verge of the bifurcation of
the objective function 78

4.5 Value of objective function Fg for all T at noise level 6.7 pixels. Rotation
is fixed at the estimate from the linear algorithm from the eigenvector vs
associated with the second smallest eigenvalue. The objective function is
well shaped and the nonlinear algorithm refined the linear estimate closer to
the true solution 78

4.6 Bas relief ambiguity. FOV is 20® and the random cloud depth varies from
ICQ to 150 units of focal length. Translation is along the X-axis and rotation
around the V-axis. Rotation magnitude is 2®. T/R ratio is 2. 20 runs at the
noise level 1.3 pixels 79

4.7 Axis dependency: estimation errors in rotation and translation at noise level
1.0 pixel. T/R ratio = 2 and rotation = 10® 81

4.8 Axis dependency: estimation errors in rotation and translation at noise level
3.0 pixels. T/R ratio = 2 and rotation = 10® 81

4.9 Axis dependency: estimation errors in rotation and translation at noise level
5.0 pixel. T/R ratio = 2 and rotation = 10® 82



XI

4.10 Axis dependency: estimation errors in rotation and translation at noise level
7.0 pixels. TjR ratio = 2 and rotation = 10° 82

4.11 Estimation errors of rotation (in canonical metric on 50(3)). 50 trials, rota
tion 10 degree around F-axis and translation along X-axis, T/R ratio is 2.
Noises range from 0.5 to 5 pixels 84

4.12 Estimation errors of translation (in degree). 50 trials, rotation 10 degree
around Y-axis and translation along X-axis, T/R ratio is 2. Noises range
from 0.5 to 5 pixels 84

4.13 Estimation errors of rotation (in canonical metric on 50(3)). 40 points, 50
trials, rotation 10 degree around Y-axis and translation along Z-axis, T/R
ratio is 2. Noises range from 2.5 to 20 pixels 85

4.14 Estimation errors of translation (in degree). 40 points, 50 trials, rotation 10
degree around Y-axis and translation along Z-axis, T/R ratio is 2. Noises
range from 2.5 to 20 pixels 85

4.15 Estimated x from noisy x 86

5.1 Degeneracy: Centers of camera lie on a straight line. Coplanar constraints
are not sufficient to uniquely determine the intersection hence trilineaj con
straints are needed 97

5.2 Sufficiency: Centers ofcamera and the point are not coplanar. Three (bilin-
eaj) coplanar constraints are sufficient to uniquely determine the intersection. 97

5.3 Motion estimate error comparison between normalized epipolax constraint
of three frames, normalized epipolar constraint of two frames and (bilineax)
epipolax constraint. The number of trials is 500, camera motions axeXX-YY
and T/R ratio is 1 107

5.4 Axis dependency profile: The algorithms axe run for all nine combinations of
camera rotation and translation w.r.t. the X, Y and Y axes. The number of
trials is 100, noise level is 3 pixel std and T/R ratio is 1 108

5.5 Histogram of relative scale estimates by normalized epipolax constraint in a
rectilinear motion case and a generic motion case. The number of trial is
100, noise level is 3 pixel std and the true relative scale between consecutive
translation is 2 IO9

5.6 Four images of a cubic corner taken by the camera 118
5.7 Comparison of estimated and measured camera configuration for the four

images llg

6.1 Two consecutive orbital motions: even if pairwise fundamental matrices
among the three views are considered, oneonlygets at most 1-1-1-1-2 = 4 effec
tive constraints on the camera intrinsic matrix if the three matrix Kruppa's
equations are not renormalized. After renormalization, however, we may get
back to2-f2-f2>5 constraints 141



Xll

6.2 A camera undergoes two motions (i2i,Ti) and (R2',T2) observing a rig given
by the three lines L\^L2iL^. Then the camera calibration is uniquely de
termined as long as J2i and R2 have independent rotation axes and rotation
angles in (0, tt), regardless of Ti,T2. This is because, for any invalid solution
A, the associated plane N (see the proof ofTheorem 6.16) must intersect the
three lines at some point, say p. Then the reconstructed depth of point p
with respect to the solution A would be infinite (points beyond the plane N
would have negative recovered depth). This gives us a criteria to exclude all
such invalid solutions I45

6.3 Pure rotation algorithm. Rotation axes X-Y 153
6.4 Pure rotation algorithm. Rotation axes X-Z 153
6.5 Rotation axes X-Y^ a = 2 I54
6.6 Rotation parallel to translation case. 6 = 20°. Rotation/Translation axes:

XX-YY-ZZ, T/R ratio = 1 154
6.7 Rotation parallel to translation case, a = 2. Rotation/Translation axes:

XX-YY-ZZ, T/R ratio = 1 I54
6.8 Rotation orthogonal to translation case. 9 = 20°. Rotation/Translation axes:

XY-YZ-ZX, T/R ratio = 1 155
6.9 Rotation orthogonal to translation case. 0 = 30°. Rotation/IVanslationaxes:

XY-YZ-ZX, T/R ratio = 1 I55
6.10 The relationofthe three rotation axes ui,U2,us and three translationsTi, T2, Ts. 156
6.11 Estimation error in calibration w.r.t. different angle (f>. Noise level (7 = 2.

Rotation and translation axes are shown by the figure to the left. Rotation
amount is always 20° and T/R ratio is 1 156

8.1 The cinrve 7 is the geodesic connecting o and p; arrows mean the inverse of
the exponential map exp : TqM M; x then represents the image of the
point p with respect to a camera centered at the point o 175

8.2 Geodesic triangle formed by two optical centers 01,02 and a point p in the
scene 188

9.1 Imaginary intersections 200
9.2 Imaginary intersections of curves 200
9.3 Multibody motion 200
9.4 Non-rigid body motion 201

10.1 Model of the unicycle mobile robot 207
10.2 The side-view of the unicycle mobile robot with a camera facing downward

with a tilt angle (f> > 0 207
10.3 An example showing that a ground curve r2 cannot be parameterized by y,

while the curve Fx can be 209
10.4 The orthographic projection of a ground curve on the 2: = 1 plane. Here

=71 and ^2 =^ 210
10.5 A' is the orthographic projection image of the point A where the wheel

touches the ground 216



Xlll

10.6 Front wheel drive car with a steering angle a and a camera mounted above
the center 0 218

10.7 Using arcs to connect curves which are piecewise straight lines 225
10.8 Simulation results for tracking a linear curvature curve (c = k'(s) ——0.05).

Subplot 1: the trajectory of the mobile robot in the reference coordinate
frame; subplot 2: the image curve parameters and ^2; subplot 3 and 4:
the control inputs v and u 227

10.9 Comparison between two schemes for tracking a piecewise straight-hne curve. 228
lO.lOThe simulation results of using the Extended Kalman Filter to estimate the

image quantities and t){= c = k'{s)) with the number of output mea
surements N =• b: Solid curves are for true states; dashed curves are for
estimates 234

10.11The closed-loop vision-guided navigation system for a ground-based mobile
robot 235

10.12Simulation results for the closed-loop vision-guided navigation system for the
case when the ground curve is a circle: In subplot 7, the solid curve is the
actual mobile robot trajectory (in the space frame Fj) and the dashed one is
the nominal circle; subplot 8 is the image of the circle viewed from the camera
at the last simulation step, when the mobile robot is perfectly aligned with
the circle 236

10.13A synthetic image of a piece of circular road viewed from the camera. ... 237

11.1 Geometry of camera frames relative to the landing pad 242
11.2 Depth sensitivity. 252
11.3 Noise Sensitivity 253
11.4 Discrete Case: sensitivity to translation-rotation axes 254
11.5 Continuous Case: sensitivity to translation-rotation axes 255
11.6 Block diagram of UAV dynamics 255
11.7 Partitioned inner and outer systems 258
11.8 Block diagram of control scheme 259
11.9 Block diagram of vision in control loop 264
ll.lOClosed-loop system simulation with 1 pixel noise 266
11.11Closed-loop system simulation with 4 pixel noise 266
11.12A member of UC Berkeley UAV fleet: a Yamaha R-50 helicopter 267

A.l Comparison between the Euclidean and Riemannian nonlinear optimization
schemes. At eachstep, an (optimal) updating vector Af 6 T^.M is computed
using the Riemannian metric at Xf. Then the state variable is updated by
following thegeodesic from Xi in thedirection Aj by a distance of -^^(Ai, Aj)
(the Riemannian norm of A,). This geodesic is usually denoted in Rieman
nian geometry by the exponential map exp(xj, Aj) 271



XIV

A.2 Comparison between the conventional update-then-project approach and the
Riemannian scheme. For the conventional method, the state Xi is first up
dated to xj+i according to the updating vector A, and then isprojected
back to the manifold at Xj+i. For the Riemannian scheme, the new state
Xi+i is obtained by following the geodesic, i.e., Xj+i = exp(xi, A,) 272



XV

List of Tables

1.1 A comparison of visual servoing and visual sensing 8
1.2 A comparison of projective and differential geometric frameworks 12

5.1 Simulation parameters 106
5.2 Motion estimate errors in degrees HQ

6.1 Dependency of Kruppa's equation on angle (f) € [0,7r) between the rotation
and translation 140

6.2 Simulation parameters 152



XVI

Acknowledgements

The new millennium undoubtly injects a big dose of frenzy into the entire world, and I,

at the last days of my PhD study, could not escape. As whether the year 2000 or 2001 is

the turn of the millenniumwas still an ongoing debate, modern technology and media had

already caused quite a hype at the end of year 2000, started with a sham Y2K bug. Before

January 1, 2000, even after I had made three backup CDs of the draft of this dissertation, I

still feaxed that there was not going to be any computer or printer alive after the attack of

the Y2K bug. But nothing happened! I felt very stupid, even after I managed to convince

myself that the emergency kit that I bought for Y2K might still be of some use in case of

an earthquake. The celebration of the new year 2000 is therefore ruined - the fireworks at

San Francisco's Embarcadero Center did not save it much. Not that I would feel better

if something bad had happened, I was simply angry with the misleading media and mad

at my poor judgment. So I have decided to celebrate the millennimn at January 1, 2001

instead. At least by then I will have something real - my PhD degree and a new job - to

celebrate, without any harassment from a "Y2K1" bug. Besides, it is such a unique honor

to receive the highest academic degree at such a unique time in history: the first generation

PhD of a new millennium. For that, I must sincerely thank all the wonderful people who

have made it possible.

My deepest gratitude must go to my MS and PhD advisor Professor Shankar Sas-

try, who is, by all means, a devoted teacher, caring mentor and role model to all his students.

It is his support, advice and even parenting that have helped me through those harshearly

days in my graduate life. His knowledge, insight, vision, inspiration and encouragement
have guided me through the wonder land of science and have taken me to the frontier of

scientific inquiry. His pleasant personality and the respect he has for his students have

certainly made such a journey extremely enjoyable. I will always be indebted to him for

everything he has taught and given to me.

I would like to thank Professor Jitendra Malik, David Tse, and Alan Weinstein

for serving on my Dissertation Committee. Professor Malik's expertise in computer vision
is an extremely valuable source that enriches my knowledge and culture in this area. His

suggestions have also motivated some of the work in this dissertation. Professor Weinstein

is also my MA advisor in mathematics. He and Professor Tse have given unlimited support
and encouragement for my PhD research.



XVll

There are many other professors who deserve a special thank note. It has been a

very pleasant and fruitful research partnership with both Professor Stefano Soatto currently
at Washington University at St. Louis (and soon moving to UC Los Angles), and Professor
Jana Kosecka at George Mason University. My research has also benefited from discussion

and interaction with Professor David Forsyth at UC Berkeley, Professor Kostas Daniilidis at

University ofPennsylvania, Professor Pietro Perrona at California Institute of Technology,
Professor Joao Hespanha at Southern California University and Professor Claire Tomlin at

Stanford University. Also Professor Ana Cannas da Silva, who is now at Instituto Superior
Tecnico, Portugal, will always be remembered for her excellent lectures on Symplectic and
Riemannian Geometry during her stay at Berkeley.

It is always a blessing to be surrounded by a big group ofintelligent and pleasant
people at the Berkeley Robotics Lab for there is never lack ofexcellent research partners
and wonderful firiends. Part of this dissertation is joint work with some of the members:

Shawn_Wayen Hsu, John Koo, Omid Shakernia and Rene Vidal. As both my firiends and
foosball partners, Cenk Cavusoglu, Xinyan Deng, Jianghai Hu, John Lygeros, George Pap-
pas, Cory Sharp, Bruno Sinopoli, Joseph Yan, Jun Zhang, Lizhong Zheng have made my
otherwise boring life at the office colorful and enjoyable.

I also like to acknowledge the financial support for my five-year graduate study.
I thank UC Berkeley for awarding me the 1995 Regents' Fellowship and thank the Army
Research Office for funding most ofthe remaining four years ofmy studyandresearch under

the Multi-disciplinary University Research Initiative (MURI) grant.

I finally thank my family, especially my parents, for being always supportive and
having more faith in me than I do. Although they are certainly more concerned about my
health than my career, I suppose that they would be just as happy about me finishing the
degree. This dissertation is dedicated to them.

Yi Ma



Chapter 1

Introduction

"The real voyage of discovering consists not in seeking new lands, but in seeing with
new eyes."

— Marcel Proust

1.1 Context and Motivation

According to a list recently released by the National Academy of Engineering,

"imaging" is ranked as the 14th greatest engineeringachievement of the 20th century. This

is not surprising. Recording the world the same way as we perceive it through our eyes is

by far the most effective way to keep and convey information. However, simply recording

images is not enough. The tremendous amount of information contained in all the images

still need to be processed, sorted, analyzed, extracted and utilized. The fact that the human

brain can process visual data with remarkable efficiency and reliability has motivated and

inspired the designing of computer vision systems to automate the process of extracting

information from images. Unfortunately, the performance of state of the art techniques has

not been anywhere near that of the human vision. For many reasons, "vision" seems to be

a problem left for the 21st centmry.

Ever since ancient times, human vision has been a fascinating subject for mathe

maticians, artists, philosophers, photographers, psycho-physicists and neurobiologists. The

colorful history of vision has certainly made it one of the most interdisciplinary endeavor
in science. An encyclopedic account of the study of human vision can be found in a recent

book by Stephen Palmer [88]. It is, however, not until late 1970s and early 1980s that



visionhas been systematically studied from a computational viewpoint, i.e., how to develop

computational models which may simulate certain functionalities of human vision. Such

an effort was initiated by pioneers such as David Marr [75]. In those two decades, much

effort was devoted to the problems of recovering three dimensional shape from cues such

as texture, shading or contom. While these topics remain to be active research subjects,

in 1990s, further advances in computer and imaging technologies have enabled and boosted

the study ofmotion analysis of multiple images or video sequences. The central problem is

to recover the scene structure as well as the camera motion from many images taken of the

same scene. In the computer vision literature, this is referred to as the structure from

motion (SFM) problem. The geometric theory developed for the study of this problem is

referred to as multiview geometry.

If we regard imaging roughly as a problem of generating realistic two dimensional

images from a given three dimensional scene or structure, vision is then very much the

inverse problem. This inverse problem by its very nature could be under-determined for

different scenes or camera poses may generate the same set of images. This makes computer

vision a very challenging subject: A systematic study therefore will not only include the

design of general-purpose algorithms, but also consist of a clear understanding of potential

singularity, degeneracy and ambiguity in the problem. Regarding the SFM problem in

computer vision, its various geometric aspects have been extensively investigated in late

1980s and 199Ds [22, 76,131] whereas there is still need of a unifiedmathematical framework

for reaching a full and satisfying understanding of the geometric nature of this problem.

The main purpose of this dissertation is then to propose such a framework. However, we

do not intend to encompass all existing and new results. Rather, we will emphasize on

demonstrating how to complete and improve existing results in multiview geometry and

how to approach new problems which were not able to be solved in the old paradigm.

In order for the reader to understand better the material covered, subjects studied

and mathematics used in this dissertation, it is important that we explain:

1. Why we are interested in computer vision, especially multiview geometry;

2. How we started studying it in the first place;

3. What we are going to use it for.

Five years ago, Berkeley Intelligent Machines and Robotics Laboratory started an ARO



MURI program on "An Integrated Approach to Intelligent Systems". There have been two

associated test-beds: intelligent vehicle highway and unmanned helicopter. The purpose of

both test-beds is to develop intelligent unmanned (ground or aerial) vehicles. Computervi

sionhas been considered as an option to replace some of the traditional navigation sensors;

magnetic lane marks or inertial navigationsensors (INS) such as gyroscopes and accelerom-

eters. Despite many of its advantages, computer vision, unlike most traditional sensors,

is the least understood for control purposes. So our study first focused on investigating

the role of computer vision in a feedback loop and how to design controllers around

the vision sensor. Some of the results of this effort have been summarized in Part III of

this dissertation. However, while we were studying vision based control, we realized that

existing mathematical framework in the computer vision literature for studying SFM was

not so compatible with that for control and robotics, and the existing theory for multiview

geometry wasnot complete yet or unified enough for the purpose ofdesigning robust control

system based on computer vision. We therefore decided to investigate the the problem of

SFM in more depth. The significance of such an investigation is believed to be three-fold:

1. We hope to unify, improve and complete existing results in multiview geometry so
that it directly benefits the computer vision community;

2. We try to present a clear picture ofthissubject within a unified geometric framework

which will be more accessible to the control and robotics community.

3. We want to establish a solid geometric theory ofSFM which may give useful guidance
for the design of better vision based control systems.

Part I and Part II of this dissertation summarize our effort and main results in these

directions.

1.2 Research Areas

1.2.1 Vision Based Control System Hierarchy

As we have mentioned above, multiview geometry per se is not the only interest
of our study. Our ultimate goal is to develop intelligent unmanned vehicles with computer
vision in the feedback control or decision making loop. Multiview geometry is one of the
most important subjects, of which we need to have a very good understanding, in order



to achieve such a goal. Although the architectures of such intelligent systems may be very

different depending on applications, conceptually they always can be decomposed into a

three-layer hierarchy, shown in Figure 1.1. One must be aware that the three layers in

Robotics & Active Vision

Control & Decision Making
Object Recognition
(3D Information)

Multiview Geometry

(2D to 3D Reconstrution)

Feature Tracking & Correspondence
Grouping & Segmentation

(2D Image Processing)

Figiure 1.1: A conceptual hierarchy of vision based control (or decision making) systems.
Arrows indicate direction of information flow.

this hierarchy are still coupled together. For example, the bottom layer provides input

information (such as image correspondences and optical flows) to the middle layer, which

multiview geometry uses to recover 3Dstructure and cameramotion. In the other direction,

knowledge about the structure and motion will certainly improve the accuracy of matching

up corresponding image points. A similar coupling also exists between the top two layers.

For example, 3D structure recovered from the multiview geometry may be necessary for

recognizing certain 3D objects. In return, recognition of a 3D object may dramatically

improve the 3D structure recovered from its 2D images.

Because of these couplings, the study of the overall systemis extremely complicated

and almost intractable. A traditional method to approach such a complicated problem is

divide and conquer. This dissertation will follow this old tradition. For example, in Part

I and Paxt II, we will focus our study on the second layer, i.e., multiview geometry. We

are going to indulge omselves and assume that there is no coupling with either the top or

the bottom layer. That is, we do not assume any knowledge about the object whose 3D

structure is to be recovered, nor do we consider the effect of the reconstructed 3D structme



and camera motion on the measurements of image correspondences or optical flows. Due

to these assumptions, we will then be able to formulate multiview geometry as a clean

mathematical problem and investigate it in depth.

1.2.2 Multiview Geometry

Ever since the landmark paper by Longuet-Higgins in 1981 [60], the study of the

geometry of 2D to 3D reconstruction has been revived. This revival has led to a blooming

of numerous algorithms on the problem of recovering 3D structure and motion from feature

image points. These algorithms differ in many aspects:

1. Linear versus Nonlinear (Suboptimal versus Optimal);

2. Discrete versus Continuous;

3. Two-view versus Multiview;

4. Calibrated Camera versus Uncalibrated Camera;

5. Batch Methods versus Iterative Methods;

6. Orthographic Projection versus Perspective Projection;

7. Euclidean versus Riemannian.

For most of the aspects, a thorough and detailed account of the state of the art techniques

can be found in later chapters.

Because the structure from motion problem has been so extensively studied, it

is then a very tempting, however extremely challenging task to try to encompass all the

existing results in a unified theoretic framework. In the computer vision literature, a well

celebrated framework is a three-stage stratification approach proposed by Faugeras in 1995
[23]. The basic concept may be roughly shown as in Figure 1.2. Based on Projective
Geometry, this approaches decomposes the original complicated nonlinear SFM problem to
a series of subproblems, each of which has an easier, or even linear, solution.

According to this stratification hierarchy, in order to obtain a final reconstruction

of the Euclidean structure and motion, one first seeks for a relaxed solution in a projec
tive space, i.e., finding the solution up to an arbitrary projective transformation. Such a



Euclidean Structure

Metric Calibration

Affine Structure

Affine Calibration

Projective Structure

Three-stage
Straitification

Figure 1.2: The hierarchy of the three-stage stratification approach.

solution is then referred as a projective structure. To a large extent, solving for the pro

jective structure is a linear problem. Once the projective structure is obtained, extra metric

information is used to "stratify" this structure back to a Euclidean structure, through an

intermediate stage: an affine structure.

A potential gain of such a projective geometric framework is in computation. The

computation of the projective structure is very much linear (therefore fast). Moreover, the

algorithm for each step is relatively robust and provides already good estimates even in

presence of noises, although such estimates may not be unbiased or optimal w.r.t. a given

noise model. However, seeking for a solution in a projective space may easily lose track of

geometric insight of what is exactly going on in the original Euclidean space. The reduction

of the rather geometric SFM problem to an algebraic one makes it harder to fully reveal

the geometric intuition behind the results and algorithms, and the focus on the design

of general-purpose algorithms may also take a risk with potential singularity, degeneracy

and ambiguity hidden in the original problem. Furthermore, we do need a more delicate

framework which will be able to unify all the results regarding different aspects of SFM,

as mentioned in the beginning of this section. Part I and Part II of this dissertation then

attempt to give a new perspective to multiview geometry which practically uses no projective

geometry but provides a clear resolution to these issues. Conceptually, this approach can



also be interpreted as an alternative stratification of motion and structure separately, as

illustrated in Figure 1.3. The gist of this approach is presented in detail in Chapter 6.

Euclidean Structure

Chirality

Structure Stratification

Kruppa's Equation

Motion Stratification

An Alternative
Stratification

Figure 1.3: The hierarchy of an alternative stratification approach. Details about chirality
and Kruppa's equation can be found in Chapter 6.

1.2.3 Vision Based Robotic Control

As one of its main applications, computer vision has been widely used in robotics

for many purposes: autonomous navigation, obstacle avoidance, object recognition or ma

nipulation, 3D map building and telepresence. In such a context, an important question

that naturally arises is:

How should the information from vision sensors he usedfor robotic control pur
poses ?

A naive approach would be to first recover all 3D information that vision could possibly

provide and then design feedback laws for a given control task based on all the information.

However, many 2D to 3D estimation schemes arerather time-consuming andnot yetsuitable
for real-time control tasks. This has been the motivation for the so called visual servoing
approach, i.e., to design feedback control laws based on measurements which are directly

available from images, hence certain unnecessary 2D to 3D estimation can be bypassed.
In general, the physical robot dynamics are first "lifted" onto the image plane and result
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in induced dynamics of certain image features or quantities. If a given control task can

be expressed in terms of the states of such image dynamics, we may design control laws

directly based on these image quantities.

A problem with the visual servoing approach is that it does not apply well to

robots with complicated dynamics: The induced dynamics of image features could easily

become intractable for consequent control analysis or synthesis. In such a case, it is then

more feasible to keep vision and control separate. However, to reduce the amount of 2D to

3D estimation, we must only request vision to provide estimates of states which are essential

to achieve the control task. The success of such a vision based control system then relies

on a good balance between what control needs and what vision can (efficiently) provide.

In this dissertation, we will (informally) refer to this approach as visual sensing. Table

1.1 summarizes a conceptual comparison between the visual servoing and visual sensing

approaches. In Part III ofthisdissertation, these two approaches will be compared through

two concrete examples: vision guided driving ofa ground vehicle and vision guided landing

of an aerial vehicle.

Table 1.1: A comparison of visual servoing and visualsensing
\ / ^ • A. .MK T T1 1 ^ *Visual Servoing Visual Sensing

Space
Dynamics Lifted Natural

States Image Quantities Physical Quantities
Estimation 2D to 2D 2D to 3D

Vision and Control Coupled Separate

1.3 Dissertation Contributions

The nine main chapters (Chapters 3 to 11) in this dissertation are essentially from

seven (journal or conference) papers and two (yet to be published) technical reports which

I have written during a span offour years on the subjectsofcomputer vision (mostly multi-

view geometry) and visionbased control. Therefore, each chapter alone consistsof a rather

self-contained story. At the time each paper was written, there were always very specific

reasons and technical contributions to the problem studied. The reader may find a more

detailed account in the introduction to each chapter. Here, for the reader to understand



better the gist of the overall dissertation, I would like mention a few things which highhght

the contributions of this dissertation, at a more conceptual level.

1.3.1 A Differential Geometric Framework for Multiview Geometry

The optimism caused by early success of the projective geometric framework (dis

cussed in Section 1.2.2) has made many people think that structure from motion is already

a "solved" problem. If so, it is then natural to ask:

What, if anything, is new in multiview geometry?

As an indirect response to this question, we ask instead a different question, simply out of

curiosity: How much is projective geometry really needed for understanding the problem of

structure from motion? As thereader will see, thisdissertation isgoing to cover almost every

important subject in multiview geometry whereas no projective geometry will be used at

all, nordo we assume the reader have any knowledge in projective geometry. Moreover, not

only will many existing results beunified, improved andeven corrected in the new approach,

but also many new problems will be raised andsolved which cannot be easily studiedin the

old paradigm. Many of the new proofs and results have shown how primitive some of our

knowledge on this subject yet is. Multiview geometry isstill at a young stage where almost

everything needs to be organized, clarified or given a better (geometric) interpretation. Is

the new perspective or new approach introduced in this dissertation going to lead it to
maturity? Maybe or maybe not. But a controversy has certainly been raised:

What if, anything is new in multiview geometry?

We can list a few things in this dissertation to support this point:

1. For computing discrete camera motion from image correspondences between two

views, there has been a well celebrated three-step singular value decomposition (SVD)
based linear algorithm discovered by Huang and Faugeras el al in I980's [24, 119].
However, there has not been much success in finding the continuous counterpart of
this algorithm until a new geometric viewpoint is introducedwhich unifies the discrete

and continuous cases (see Chapter 3).

2. The purely algebraic approach to study the constraints among multiple images has
been successful, but at a higher price: Heavy machinery from algebraic geometry
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must be deployed, and the results lack geometric intuition [43]. Nonetheless, a much

easier proof of the same results can be obtained from a new geometric perspective.

In addition to the algebraic relationship, both a geometric and statistical relationship

can also be revealed in this way (see Chapter 5).

3. The so called Kruppa's equation has been discovered since 1913 and then revived in

1990s for the purpose of camera self-calibration [77]. However, the projective geomet

ricinterpretation ofthis equation has done little in terms ofdiscovering its degeneracy.

Such degeneracy is discovered however from a dramatically diflFerent geometric inter

pretation of Kruppa's equation (see Chapter 6).

These new results and the way they are discovered encourage us to think twice about what

is an appropriate framework of multiview geometry. At least, they make us no longer so

confident with the projective geometric framework.

Mathematically speaking, multiview geometry can be viewed as a geometry which

studies the combination ofa (motion) group action ona space anda (perspective) projection

transformation. In the default case, the motion group is the special Euclidean group SE{Z)

acting on the space and the projection is the standard perspective projection tt :

In the projective geometric approach, with an emphasis on the effect of the perspective

projection, the motion group iS'.E(3) is artificially extended to the general linear group

GL{4)} From such a point of view, we can study vision under more general classes of
(motion) groups. For example, if we choose the motion group to be the isometry group

of a Riemannian manifold, with a proper interpretation of the "projection map", we then

can study multiview geometry on such a manifold. For this scheme to work, concepts and

techniques from differential geometry must be deployed. Chapter 8 presents some of the

preliminary results towards this direction. It basically extends the results that we have for

multiview geometry in a Euclidean space to spaces of constant curvature.

This is by no means the only reason why we name our approach "a differential ge

ometric approach". Although weemphasize that almost the entire dissertation is very much

basedon linear algebraand basic knowledge ofrigidbody motion, differential geometry does

serve wellas a conceptual framework which provides geometric intuition, interpretation and

various techniques to almost every problem that we have studied, for example:

'The space R® accordingly is extended to P^.
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1. The unification of discrete and continuous linear algorithms relies on a clean geomet

ric characterization of the space of essential and continuous essential matrices (see

Chapter 3).

2. The nonlinear algorithms for obtaining optimal (or suboptimal) estimates rely on mod

ern optimization techniques for special classes of Riemanniain manifolds (see Chapters

4 and 5).

3. The proof of geometric dependency of constraints among multiple images relies on a

clever trick on a quotient space of a Grassmann manifold (see Chapter 5).

4. The discovery of degeneracy of Kruppa's equation relies on a new interpretation of

Kruppa's equation as inner product invariants of certain isometry group action (see

Chapter 6).

5. A classification of generic ambiguities in the problem of 2D to 3D reconstruction is

done with respect to every Lie subgroup of 5E(3) (see Chapter 7).

Another reason is that differential geometry has been widely adopted in the study of lin

ear/nonlinear system theory and modern robotics. A theory of multiview geometry based

on such a language will be more accessible to people in these communities and provide a

more unified firamework for the study of vision based robotic control. Because of this, we

are able to use the same language throughout the entire dissertation: Part I and Part II

(Chapters 1 to 9) on multiview geometry and Part III (Chapters 10 and 11) on vision based

robotic control.

The diflferences between the projective and the diflferential geometric frameworks

can be summarized in Table 1.2. However, it would be unfair to simply claim that either

framework is better than the other since each framework isproposed for a different purpose.

As we have mentioned in Section 1.2.2, the projective geometric approach has certain com

putational advantage. On the otherhand, the differential geometric framework is proposed

for a better geometric insight and stronger connection with control and robotics.

1.3.2 Geometry, Estimation and Optimization

Multiview geometry is a very peculiar subject: The problem itself can be for

mulated as a pure mathematical one (see Chapter 8); however, traditionally it has been



Table 1.2: A comparison of projective and differential geometric frameworks
Projective Geometry Differential Geometry

Spaces: Groups IP : GL(4) IP : SE(Z)
Mathematics Algebraic Geometric

Metric None Euclidean

Invariants Projective Invariants Euclidean Invariants
Compatibility with Control Weak Strong
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studied for mostly practical purposes (in computer vision or robotics community). Many
of the existing results have been developed for very specific applications, rather than in a
unified theoretical program. This makes multiview geometry both a theoretical and applied
subject. We not only need a theory studying its geometric nature, but we also need effi

cient algorithms which provide robust solutions to the problem. Especially, in a practical
situation, the obtained images and measurements are always noisy. It is then crucial to

obtain statistically unbiased estimates. If such estimates are given as solutions to certain

optimization problems, we then need to know what are the proper optimization techniques

to apply.

In this dissertation, besides studying the geometric aspects ofmultiview geometry,
we also focus on an estimation theoretic approach to the structure from motion problem.

In many occasions, it helps us to gain a better understanding of the problem from an al

gorithmic viewpoint. Our study has revealed a close inter-relationship among geometry,
estimation and optimization in SFM. As we will show later in this dissertation, SFM in

general is an estimation problem with hard geometric constraints and the resulting opti
mization problem is mostly optimization on some special (and well-structured) geometric
spaces (see Chapters 4 and 5).

1.3.3 Singularity, Degeneracy and Ambiguity

As we have mentioned before, the problem of structure from motion by nature is

an inverse problem from 2D images to 3D structure and motion, and it may not be well-

determined. That is, there is likely inherent ambiguity in the solutions, or singularity and
degeneracy in the general-purpose algorithms. For example, the necessary and sufficient

conditions for being able to uniquely recover camera motion, calibration and 3D scene

structure from a sequence of images are very rarely satisfied in practice. We then need to
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know:

What exactly can be recovered in image sequences of practical importance when
such conditions are not satisfied?

In Chapter 7, we will give a complete answer to this question. For every camera motion

subgroup that fails to meet the conditions, we gave explicit formulas for the ambiguities in

the reconstructed scene, motion and calibration. Such a characterization is crucial both for

designing robust estimation algorithms that do not try to recover parameters that cannot

be recovered and for generating novel views of the scene by controlling the vantage point.

As another example, Kruppa's equation [58] has been widely used to solve the

problem of camera self-calibration. Although first discovered in 1913 by Kruppa and later

revived in 1993 by Maybank and Faugeras [77], the algebraic natme of this equation has

never been clearly understood. In fact, Kruppa's equation tends to become degenerate

under certain conditions. Hence any general-purpose self-calibration algorithm based on

Kruppa's equation may become ill-conditioned when applied to real image sequences. Our

analysis in Chapter 6 further shows that under the conditions when degeneracy occurs,

Kruppa's equation can however be normalized. Such normalization not only resolves the

degeneracy but also makes Kruppa's equation linear. This in fact malces self-calibration

relatively easier under the conditions when degeneracy occurs. Moreover, from the new

results, one may also achieve a cleax understanding of the relationship between Kruppa's

equation and all the other methods for self-calibration such as the ones based on absolute

quadric constraint, modulus constraint or chirality (see Chapter 6).

1.3.4 Applications in Unmanned Ground and Aerial Vehicles

Theemphasis of thisdissertation ison the theory ofmultiview geometry. Although

such a theory may have its impact onmany conventional applications ofmultiview geometry,

in this dissertation, we are more interested in its usage in vision based robotic control. For

that purpose, we have conducted two case studies: a vision guided navigation scheme for

unmanned ground vehicle (UGV) and a vision based landing system for unmanned

aerial vehicle (UAV) (in our case, a helicopter). In both studies, estimation issues for the

vision sensor and stability issues for the overall closed-loop system are successfully studied

together under a unified geometric control framework (see Chapters 10 and 11).
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In the unmanned ground vehicle case, instead of using point features as the entire

Part I and Part II do, we demonstrate how to analyze curve features in presence of mobile

dynamics. In the unmanned aerial vehicle case, we show why and how the general-purpose
algorithms given in Part I should be customized to a specific situation. That is, in the
case of landing, the standard motion estimation algorithms need to be modified in order

to incorporate the extra knowledge that the feature points are all lying a planar surface.

Moreover, these two case studies serve for a comparison between the visual servoing and
visual sensing approaches ofvision based control (discussed in Section 1.2.3).

1.4 Dissertation Outline

1.4.1 Overview

The main body of this dissertation consists of three parts, a total of ten chapters
(Chapters 1 to 11) and two appendices (Appendixes A and B):

• Part I - Multiview Geometry: A DifFerential Geometric Approach (Chap

ters 2 to 7)

• Part II - Advanced Topics in Multiview Geometry (Chapters 8 and 9)

• Part III - Applications: Vision Based Robotic Control (Chapters 10 and 11)

Part I essential covers the main theory of multiview geometry. Chapter 2 formu

lates the problem of structure from motion in a Euclidean space. The formulation ensures

that the whole dissertation is self-contained. The camera motion, camera imaging model

and the two types of image measurements; image correspondences and optical flows axe

clearly defined in this chapter. It is also the reference chapter of all the notation used

throughout the entire dissertation. For the rest of Part I, we partition the structure from

motion problem into four interrelated topics or subproblems:

1. Motion and structure from two views.

2. Motion and structure from multiple views.

3. Camera self-cahbration.

4. Euclidean reconstruction and reprojection up to subgroups.
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The results regarding these topics together form a coherent theory for the multiview ge

ometry. For the first two topics, to simplify the analysis, only calibrated camera model

will be considered (see Chapters 3, 4 and 5). We will especially study the geometry of

an uncalibrated camera in the third topic (see Chapter 6). In the first three topics, our

primary interest is in conditions and algorithms for obtaining a uniquesolution. In the final

topic, we will provide a complete characterization of the structure of the set of ambiguous

solutions when conditions for a unique solution fail (see Chapter 7).

Part II consists of two independent advanced topics of multiview geometry. A

generalization ofmultiview geometry to non-Euclidean spaces isgiven in Chapter8. Chapter

9 provides a (Bayesian) justification of the approach of using feature points for motion

estimation based on a simplified stochastic model of imaging.

Part III demonstrates the use ofvision in robotic control through two case studies.

Chapter 10 studies the problem of a ground mobile robot tracking a given ground curve
using on-board camera as the only sensor. The visual servoing approach is applied to this

problem. Chapter 11 investigates the problem of landing a helicopter on a ship deck. It

serves as an example for the visual sensing approach for vision based control. Since the

feature points are now lying on a planar surface, we also study how the motion estimation

algorithms given in Chapter 3 need to be modified for the planar case.

1.4.2 Guidelines for Readers

Since this dissertation covers a relatively large amount of material, we have tried

our best to reduce cross reference among chapters to the minimum so that readers with

different backgrounds and interests do not have to read the dissertation in a linear fashion.

Figure 1.4 illustrates the inter-dependency among all the ten chapters (and two appendixes
also):

Although "differential geometry" is in the title of the dissertation, the reader
should be able to grab the gist of most of Part I with a background in linear algebra,
basic robotics and nonlinear programming only. Only basic differential geometric terms are
used in Chapters 4 and 5 for optimization on manifolds and in Chapter 6 for a geometric
characterization offundamental matrix and Kruppa's equation. However, readers who are
not familiar with these terms can simply skip the related sections without loss of much

continuity. However, differential geometry is seriously used in Chapter 8 of Part H for a
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Chapter 10

Chapter II

Appendix B

Figure 1.4: Dependency among the chapters and appendixes.

generalization of multiview geometry to non-Euclidean spaces and in Chapters 10and 11 of

Part III for the analysis of nonlinear control systems. For good references on the subject of

differential geometry, we recommend the book by Boothby [5] or the one by Kobayashi and

Nomizu [55], on the subject of nonlinear control systems, we suggest the book by Sastry

[93].

For people with different interests, this dissertation can be read as different pack

ages:

• Classic Multiview Geometry and Algorithms

Chapters 2 to 6, and 9.

• Theoretical Multiview Geometry (Euclidean and Non-Euclidean)

Chapters 2, 3, 5 to 8.

• Vision Based Robotic Control

Chapters 2, 3, some of Chapter 5, and Chapters 10 and 11.

Material from Chapters 2 to 4, 6 and 10, with some supplementary material from the

robotics book by Murray, Li and Sastry [84] has been covered as a one semester graduate

level courseon computer vision and robotics by Professor Kosecka at Berkeley in Fall, 1999.
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1.5 Notation

The next chapter provides a systematic introduction to the notation that we are

going to use in this dissertation. Nevertheless, I would like to have a few words about it

before we start. Due to the wide scope of areas covered by this dissertation, we have to make

a compromise between the conventional notation used in computer vision and that used in

robotics or control theory. For example, we will use p to represent the skew symmetric

matrix:

0 -P3 P2

p = P3 0 -Pl

-P2 Pi 0

associated to a given vector p = [pi,P2,P3]^ € Due to this definition, we then have

p Xg = pg for all g G . This notation is widely used in robotics and matrix Lie group

theory. However, traditionally, in the computer vision literature, people prefer to use px

instead of p. Also, in the computer vision literature, a; € is usually used to represent

the absolute conic, we here however have to reserve it for the angular velocity since we are

dealing with both the discrete and continuous time cases. We will use 5 € E^^^ instead to

represent the absolute conic, which is however going to be under a difierent name: metric.

The rest of the notation is very consistent to robotics notation used in [84], except that we

use T 6 E^ for the translation vector and p for coordinates of a point.^ We will use bold

lower-case symbols to represent image quantities. For example, x G E^ is for coordinates

of the image point and u G E^ is for the optical fiow. This is very much consistent with

notation used in the computer vision literature. Finally, all vectors are column vectorsl

^In [84], p 6 is used for the translation vector and g6 R^ is used for coordinates of a point.
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Chapter 2

Problem Formulation

"As is well known, geometry presupposes the concept ofspace, as well as assuming the
basic principles for constructions in space."

—G. F. B. Riemann, On the Hypotheses Which Lie at the Foundations of Geometry

19

2.1 Camera Model in a Euclidean Space

We begin by introducing the mathematical model of a camera in a three dimen

sional Euclidean space. We also introduce the notation which will be consistently used

throughout this dissertation.

2.1.1 The Three Dimensional Euclidean Space

Consider that a camera is set in a three dimensional Euclidean space . We

use p to denote a generic point in E?. E? is then isometric to with its standard metric.

For convenience, E^ is usually considered as a hyper-plane embedded in and every point
p in E^ can be represented by homogeneous coordinates of the form:

P=[Xi,X2,X3,1]^€R^ (2.1)

In this expression, the effective part [Xi,X2,G R^ will be referred as the three

dimensional coordinates of the point p € E?. To separate them from the homogeneous
ones, we denote them by X G R^:

X = [XuX2,Xzf (2.2)
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In order to define the camera model properly, we also need the notion of a vector.

In a Euclidean space, a vector can be simply defined to be the difference between two points

with one of them as the starting point (or base point). The set of all vectors in with

the starting point p is denoted as TpE^ i.e., TpE^ is the tangent space of at p. By this

definition, a vector u 6 TpE? in homogeneous representation has the form:

u = [ui,U2,U3,0]^ G1^. (2.3)

As a vector space, TpE^ is isomorphic to . A non-redundant representation of the same

vector u GTpE^ is just:

u = [ui, U2, G . (2.4)

The Euclidean metric ^ x ^ E on E^ is simply given by the inner product:

^(u,v) = uiFv for all u,u GTpW.

2.1.2 Camera Motion

The isometry (metric preserving diffeomorphism) group of E^ is the so called Eu

clidean group, denoted by E{3). The motion of the camera is usually modeled as the

subgroup ofE{3) which preserves the orientation of the space E^, i.e., the socalled special

Euclidean group SE{3). In the homogeneous representation, 5£7(3) can be represented

as:

SE{3) = <
R T

0 1
R G50(3),T G >C E^ '̂̂ (2.5)

where 50(3) is the space of 3 x 3 rotation matrices (orthogonal matrices with determinant

+1). We know that the isotropy group ofE^ leaving a point p GE^ fixed is the orthogonal
group 0(3). 50(3) is just the subgroup of 0(3) which is the connected component con

taining the identity I G0(3). Given an element g GSE{3) and a point pGE^, g maps the

point p GIE? to a new one pp GE^.

Since the motion between a camera and points in the world is relative, without
loss of generality, we can and will assume throughout the dissertation that:

Assumption 2.1. It is the camera which is moving and the world is static.
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We use a curve g{t) E SE{Z),t E Mto represent the rigid body motion of the

camera, i.e., the displacement of the camera coordinate frame Ft at time t, relative to

its initial coordinate frame Ft^ at time to* By abuse of notation, the group element g(t)

serves both as a specification of the configuration of the camera and as a transformation

taking the coordinates ofa point p E IB? relative to the Ft^ frame to those relative to the
Ft frame. Clearly, g{t) is uniquely determined by its rotational part R{t) E 50(3) and

translational part T{t) E Sometimes we denote g{t) by (i?(t),T(t)) as a shorthand for

its homogeneous representation. Let p(t) E be the homogeneous coordinates of a point

p E IB? relative to the camera frame at time t E K. Then the coordinate transformation

of p under the motion g{t) is given by;

P{i) = 9{t)p{to).

In three dimensional coordinates, the above is simply:

X(t) = i2(t)X(to)-l-T(i).

(2.6)

(2.7)

This relationship is intuitively shown by Figure 2.1. To obtain a continuous version of the

P,

8 = (R. T)

Figure 2.1: Coordinate frames for specifying rigid body motion of a camera.

equation (2.6) we differentiate it with respect to time t:

P{t) =9{-t)p{to).

Since g{t) is a curve in the Lie group SE(3), g{t) must be of the form:

9{t) = 9{'t)^{t)-

(2.8)

(2.9)



Then ^{t) is an element of the Lie algebra se(3) of 5^(3):

se(3) =
UJ V

0 0
u 6 5o(3),?; €
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d4x4 (2.10)

where so(3) is the Lie algebra of the rotation group 50(3), or equivalently, the space of 3 x 3

skew symmetric matrices. In the above definition we already adopt the convention that, for

any vector a; E IR^, a; is the associated skew symmetric matrix such that Qu = lj x u foi

all u E . Using the above notation, we immediately obtain the continuous version of the

coordinate transformation (2.6):

P{t) = (2.11)

It is direct to check that 9{t)^{t)g~^{t) is still an element in se(3) and we denote:

Q{t) v{t)
9i^)i{i)9 (t) =

0 0

In terms of three dimensional coordinates, we then have the continuous version of (2.7):

X(i) = u}{t)X{t) + v{t). (2.13)

u and Vwill be referred to as the (body) angular and linear velocities respectively.

2.1.3 Calibrated Pinhole Camera Model

We assume that the camera coordinate frame is chosen such that the optical

center of the camera, denoted by o, is the same as the origin of the frame, and the optical

axis always coincides with the third coordinate axis {i.e., the Xa-axis, or the Z-axis if the

symbol [X, Y, E for coordinates is used). Define the image ofa point p E to be

the vector x ETqE^ which corresponds to the intersection of the half ray {o + A•u | u =
p - o, AEM"*"} with a pre-specified (two dimensional) image surface (in TqE^).

Both the spherical projection and perspective projection fall into this type

of imaging model. For the spherical projection, the imaging surface is simply a unit sphere

5^ = {u E I||u|p = l} with o as the center. Supposing that the coordinates of p EE^
relative to the camera frame is X E then the spherical projection is defined by the map
TTs from to 5^:

TTs : IR^ 5^
X

X x =
l|X||

(2.12)
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For theperspective projection, we choose the imaging surface to bethe plane ofunitdistance

away from the optical center o along the third coordinate axis. The perspective projection
onto this plane is then given by the map TTp from to

TTp : ->

In what follows, we will use the bold upper case symbol X = [Xi,X2,X3]^ € IR^ or X =

[-^j € IR^ for the 3D coordinates ofa point p, and use the bold lower case symbol
X= [xi, rc2, e IR^ orX= [x, y, GIR^ for the (homogeneous) coordinates of the image
of the point p.

In the most general case, for a point p € with homogeneous coordinates p =

[Xi,X2,X3,1]^ G]R^, since the optical center o has the coordinates [0,0,0,1]^ GIR^, the
vector u = p - o e ToE^ is then given by u = [Xi,X2,XzY' € We can define the

projection matrix P G IR3^^ to be:

P =

10 0 0

0 10 0

0 0 10

(2.14)

Then the projection matrix P can be interpreted as a map from the space E? to ToE?:

P: E? ToE?

p n = Pp.

According to the definition, the image x of a point p differs from the vector u = Pp by an

arbitrary positive scale, which depends on the pre-specified image surface. In general, the

relation between the coordinates X ofp GE^ and its image x is given by:

Ax = Pp (2.15)

forsome unknownAGIR"^. The scalarAencodes the depth informationofp and we call Athe

scale of the point p with respect to the image x. Simply, for perspective projection A= X3;

for spherical projection A= ||X||. The equation (2.15) characterizes the mathematical model

of an ideal calibrated camera. Figure 2.2 illustrates the images of a point p G E^ with

the camera at two different locations.
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o,

X

(R,T)

Figure 2.2: Two projections xi,X2 € of a 3D point p from two vantage points. The
relative Euclidean transformation is given by {R,T) GSB{Z).

2.1.4 Uncalibrated Pinhole Camera Model

Now we are ready to introduce the concept of an uncalibrated camera. By

an uncalibrated camera, we mean that the image received by the camera is distorted by

an unknown linear transformation.^ This linear transformation is usually assumed to be

invertible. Mathematically, this linear transformation can be viewed as an isomorphism ^

of the vector space TqE^ :

i) : ToE^ ToE^

u !->• i4u,

where A G is an invertible matrix representing the linear map ip. We will refer to

it as the ca.libra.tion matrix^ ofan uncalibrated camera. The actually received image x
of a point p GE^ is then determined by the intersection of the image surface and the ray
{o + A•u} with u = if}{Pp) = APp. Without loss ofgenerality, we may assume that A
has determinant 1, i.e., A is an element in SL{Z) (the Lie group consisting of all invertible
3x3 real matrices with determinant 1, i.e., the special linear group of R^). For the
(uncalibrated) image x GR^ ofp, we then have the following relation:

Ax = APp (2.16)
^Although nonlinear transformations have also been studied in the literature, linear transformations give

a very good model of the physical peirameters of a camera.
^"Calibration matrbc", "intrinsic parameter matrix" and "intrinsic parameters" are different names of

the same thing in the computer vision literature.
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for some scale A€ The equation (2.16) then characterizes the mathematical model of

the uncalibrated camera, as illustrated in Figure 2.3. In practice, the camera calibration A

might be time-varying. If so, we will denote it as A{t). Nevertheless, in this dissertation,
we usually assume the camera calibration is time-invariant, unless otherwise stated. From

(2.6), the image x(t) ofa point p € at time t satisfies the equation:

A(<)x(t) = APg{t)p{tQ). (2.17)

calibrated image uncalibrated image

Figure 2.3: The actually received uncalibrated images x\x2 6 of two 3D points and
p^. We here use y^y^ G to represent the calibrated images (with respect to a normal
coordinate system). The linear map ^ transforms the calibrated image to an uncalibrated
one.

In the computer vision literature, the calibration matrix A is usually assumed to

be of the following form:

Sx ^9 Uq

0 Sy Vo (2.18)

0 0 1

The parameters of the matrix A are called intrinsic parameters associated to a camera

(as opposed to the extrinsic parameters, which usually standfor the displacement ofthe

camera). Note that such an Aisnot necessarily in 5L(3). As we will see in chapter 6 where

camera self-calibration is studied, this choice is practically equivalent to ours. Moreover,

viewing camera calibration as an (unknown) isomorphism on ToE^ makes it quite natmral

to generalize the vision theory in the Euclidean space to more general Riemannian space.

Since Part I of this dissertation focuses on only the Euclidean case, the more advanced
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topics about multiview geometry for non-Euclidean spaces can be found in Chapter 8 of

Part 11.

2.1.5 Image Correspondences and Optical Flows

Image correspondences and optical flows are two fundamental types of measure

ments one may obtain from image sequences. If m images of n points G at

times ti,^2? •••5^ E are taJcen, from (2.17) we have:

= APg(ti)jP[to), 1 < ? < m, 1 < j < ti. (2.19)

Or in three dimensional coordinates, we have:

= Ai?(fi)X-?'(to) + AT(tj), l<i<m,l<j <n. (2.20)

By image correspondences we mean that we have the knowledge that for each j the set

of m image points {x-? (ii)}J^i correspond to images of a single 3D point named jp. When

the notion of time is not important, we usually use xj as a shorthand for x^ (fi).

If a sequence ofimages are taken at times close enough, the displacement of image

points on twoconsecutive images (x(t-|-At) -x(i)/Ai) is approximately the image velocity

x(t) which is also called optical flow in the literature. Prom (2.11) and (2.15) we have at

any time t:

-}- X^-x? = APg^g~^jP, 1< j < n (2.21)

where all the (time-dependent) quantities are evaluated at time t. In three dimensional

coordinates, we have:

X^x^ + X^x' = AQX' +Av, I <j < n. (2.22)

2.2 Fundamental Problems in Multiview Geometry

According to its mathematical model, we can think ofa camera asa moving coordi
nate frame with a perspective projection associated to it. It isexactly theinterplay between
the Euclidean motion of the frame and the perspective projection that defines camera as a

very special geometric object and a very peculiar sensor. Clearly, the depth information of

a point p always gets lost in a single image. However, if two images ofp are taken by the
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camera at two different vantage points and the camera motion g between the two locations

are known, then the 3D coordinates of p relative to the camera can be recovered. This is

the so called reconstruction by stereo. If the camera motion g and calibration A are not

known, the stereo problem becomes more complicated. Nevertheless, it can be shown that

the stereo problem is generically solvable if sufficiently many corresponding image points

(or optical flows) are available.^ Generally speaking. Part I of this dissertation is devoted

to the geometry of and algorithms for

reconstructing 3D scene structure and camera motion from a given set of image
correspondences or optical flows. If the camera calibration is not known, the
task also includes recovering the unknown camera calibration.

This is also referred to as the structure from motion problem in the computer vision

literature and has been extensively studied by numerous researchers for the past decade.

However most of the known results are established in a projective geometry framework.

One purpose of this paper is to study this problem from a novel differential geometric

perspective, for the reasons that I have already discussed in the opening introduction. I

hope that those reasons will become evident and more convincing when the reader follows

through the development of the theory.

In this part, we will partition the structure from motion problem into four inter

related topics or subproblems:

1. Motion and structure from two views.

2. Motion and structure from multiple views.

3. Camera self-calibration.

4. Euclidean reconstruction and reprojection up to subgroups.

Results of each topic willbe developed under a unified differential geometric framework and

a consistent notation. These results together form a coherent theoryof multiview geometry

in E^. For the first two topics, to simplify the analysis, only calibrated camera models

will be considered (see Chapters 3, 4 and 5). We will especially study the geometry of

an uncalibrated camera in the third topic (see Chapter 6). In the first three topics, our

^For example, it isknown that, for two images, the relative camera motion can be "generically" determined
up to ten solutions if five pairs of image correspondences are given.
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primary interest is in conditions and algorithms for obtaining a unique solution. In the final

topic, we will provide a complete characterization of the structure of the set of ambiguous

solutions when conditions for a unique solution fail (see Chapter 7).



Chapter 3

Motion Recovery I: Linear

Algorithms

"IVe see because we move; we move because we see."
— J. J. Gibson, the Perception of the Visual World

29

The problem of estimating structure and motion from image sequences has been

studied extensively by the computer vision community in the past decade. The various

approaches differ in the kinds of assumptions they make about the projection model, the

model of the environment, or the type of algorithms they use for estimating the motion
and/or structure. Most techniques try to decouple the two problems by estimating the
motion first, followed by the structure estimation. Thus the two are usually viewed as

separate problems. In spite of the fact that the robustness of existing algorithms has

been studied quite extensively, it has been suggested that the fact that the structure and

motion estimation are decoupled typically hinders their performance [79]. Some algorithms

address the problem ofmotion and structure recovery simultaneously either in batch [111]
or recursive fashion [79].

Approaches to motion estimation alone, can be partitioned into the discrete and

continuous methodsdepending on whether they useas input a set of image correspondences

or optical flows. Among the efforts to solve the motion estimation problem, one of the more

appealing approaches is the essential matrix approach, proposed by Longuet-Higgins,

Huang and Faugeras et al in 1980's [47, 60]. It shows that the relative 3D displacement

of a camera can be recovered from an intrinsic geometric constraint between two images
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of the same point, the so-called epipolar constraint (also called the Longuet-Higgins

constraint, bilinear constraint or essential constraint). Estimating 3D motion can

therefore be decoupled from estimation of the structure of the 3D scene. This endows

the resulting motion estimation algorithms with some advantageous features: they do not

need to assume any a priori knowledge about the scene; and are computationally simpler

(compared to most non-intrinsic motion estimation algorithms), using mostly linear algebra

techniques. Tsai and Huang [119] have proved that, given an essential matrix associated

with the epipolar constraint, there are only two possible 3D displacements. The study of

the essential matrix then led to a three-step SVD-based algorithm for recovering the 3D

displacement from noisy image correspondences, proposed in 1986 by Toscani and Faugeras

[112] and later summarized in Maybank [76].

However, the essential matrix approach based on the epipolar constraint recovers

only discrete 3D displacement. The velocity information can only be obtained approximately

from the logarithm map (the inverse of the exponential map), as Soatto et al did in [99]. In

principle, displacement estimation algorithms obtained by using epipolar constraint work

well when the displacement (especially the translation, or the so called base-line) between

the two images is relatively large. However, in real-time applications, even if the velocity of

the moving camera is not small, the relative displacement between two consecutive images

might become small owing to a high frame rate. In turn, the algorithms become singular

due to the small translation and the estimation results become less reliable. Further more,

in applications such as robotic control, an on-board camera, as a feedback sensor, is required

not only to provide relative orientation of the robot but also its relative speed (for control

purposes).

A continuous version of the 3D motion estimation problem is to recover the 3D

velocity of the camera from optical flows. This problem has also been explored by many

researchers: an algorithm was proposed in 1984 by Zhuang et al [141] with a simplified

version given in 1986 [142]; and a first order algorithm was given by Waxman et al [125]
in 1987. Most algorithms start from the basic bilinear constraint relating optical flow to

the linear and angular velocities and solve for rotation and translation separately using

either numerical optimization techniques (Bruss and Horn [10]) or linear subspace methods

(Heeger and Jepson [40, 50]). Kanatani [52] proposed a linear algorithm reformulating
Zhuang's approach in terms of essential parameters and twisted flow. However, in these

algorithms, the similarities between the discrete case and the continuous case are not fully
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revealed and exploited.

In this chapter, we develop, in parallel to the discrete essential matrix approach,

a continuous essential matrix approach for recovering 3D velocity from optical flows.

Based on the continuous version of the epipolar constraint, so called continuous essential

matrices are defined. We then give a complete characterization of the space of.these

matrices and prove that there exists exactly one 3D velocity corresponding to a given

continuous essential matrix. As a continuous counterpart of the three-step SVD-based 3D

displacement estimation algorithm, a four-step eigenvector-decomposition-based3D velocity

estimation algorithm is proposed.

One of the big advantages of the continuous approach is easy to exploit the non-

holonomic constraints of a mobile base where the camera is mounted. In this chapter,

we show by example that nonholonomic constraints may reduce the number of dimensions

of the motion estimation problem, hence reduce the number of minimum image measure

ments needed for a imiquesolution. The proposed motion estimation algorithm can thus be

dramaticallysimplified. The continuous approach developed here can also be generalized to

the case of an uncalibrated camera (see [9,122]), this willbe further discussed in Chapter 6.

Finally, simulation results will be presented to evaluate the performance of our algorithm

in terms of bias and sensitivity of the estimates with respect to the noise in optical flow

measurements.

One must note that only linear algorithms will be studied and compared in this

chapter. It is well-known that linear algorithms are not optimal and give severely biased

estimates when the noise level is high. In order to obtain optimal or less biased estimates,

nonlinear schemes have to be used to solve for maximum likelihood estimates. In Chapter

4, we will propose an intrinsic geometric optimization algorithm based on Riemannian

optimization techniques on manifolds. However, since nonlinear algorithms are only locally

convergent, the linear algorithms studied in this paper can be used to initialize the search

process of nonlinear algorithms. Further more, due to their geometric simplicity, clearly

understanding the linear algorithms certainly helps in developing and understanding more

sophisticated motion estimation schemes. For example, it will be shown in Chapter 4 that

under the same conditions when the linear algorithms have a unique solution the nonlinear

algorithms have quadratic rate of convergence.
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3.1 Continuous Essential Matrix Approach

3.1.1 Review of the Discrete Essential Matrix Approach

Before developing the analysis of the continuous epipolax constraint which is the

main focus of this paper, we first provide a brief review of the epipolar geometry in the

discrete case, also known as the essential matrix approach, originally developed by

Huang and Faugeras [47]. Let the 3D displacement of the frame Ft relative to the frame

Fto be given by the rigid body motion g = {R,T) € SE{3), and let xi,X2 be the images

of the same point p taken by the camera at frames Ft^ and Ft, respectively.^ From (2.7),

these two images are related through equation:

A2X2 = ilAiXi + T (3.1)

for some positive depth scales Ai,A2 > 0. Multiply f to both sides of this equation and
we obtain A2fx2 = THAiXi. Note that fX2 = T x X2 hence x^fx2 = 0. This implies
xfTRAiXi = 0. Since Ai > 0, the two image points xi,x2 satisfy the so called epipolar
constraint:

X2 TRxi = 0. (3.2)

The geometric explanation for this constraint is simply that the two optical centers 01,02

and the pointp axe coplanax and the two images xi X2 axe on the plane spanned by these

three points. See the Figure 2.2 in Chapter 2.

In the equation (3.2), we see that the matrix E = TR with R E 50(3) and

T E 50(3) contains the unknown motion parameters. A matrix of this form is called an

essential matrix; and the set of all essential matrices is called the essential space,

denoted by £:

s ={fR\Reso(,z),Teis^\c '̂'̂ . (3.3)

Huang and Faugeras [47] established that a non-zero matrix E is anessential matrix if and
only if the singular value decomposition (SVD) of B: E = UEV'̂ satisfies:

S = diag{a, a,0} (3.4)
^To simplify the notation, we here drop the time dependence.
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for some a € K-|.. In order to answer the question: given an essential matrix E G£, how
many pairs (i2, T) exist such that TR = E^ we first give the following lemma from linear

algebra:

Lemma 3.1. Consider an arbitrary non-zero skew symmetric matrix T Gso(3) with T G

^ • If} foT 0. rotation matrix RG50(3), TR is also a skew symmetric matrix, then R = I
or where u = T/||T||. Further, Te '̂̂ = -f.

Proof: Without loss of generality, we assume T is of unit length. Since TR is

also a skew symmetric matrix, (TR)"^ = -TR. This equation gives:

RTR = f. (3.5)

Since i? is a rotation matrix, there exists a; G ||a;|| = 1 and 0 G R such that R = e^^.

Then, (3.5) is rewritten as: = f. Applying this equation to u, we get: e^^fe^^u) =
Tu. Since e^^uj = u, we obtain: e^^Tu = Tuj. Since u is the only eigenvector associated to
the eigenvalue 1 of the matrix e^^ and Tu isorthogonal to uj, Tuj has to be zero. Thus, u
is equal to T or -T. R then has the form which commutes with f. Thus from (3.5),
we get:

^2fef ^ f ^3 gj

According to Rodrigues' formula [84], we have:

^7T9 f sin(20) +f 2(1 - cos(20)) (3.7)

(3.6) yields:

f2sin(2^) +f3(l - cos(20)) = 0. (3.8)

Since and are linearly independent (Lemma 2.3 in [84]), we have sin(20) = 1 -

cos(20) = 0. That is, 6 is equal to Iki: or 2k'K + tt. A: GZ. Therefore, R is equal to I or

e '̂". It is direct from the geometric meaning ofthe rotation that e^'^f = —f. •

Following this lemma, suppose (i2i,ri) G SE{Z) and (7^2,P2) e SE{Z) are both

solutions for the equation TR = E. Then we have fiRi = f2J?2. It yields Ti = f2R2Ri-
Since Ti,r2 are both skew symmetric matrices and R2R1 is a rotation matrix, we then

have either (i?2,T2) = (J?i,Ti) or (1^2,^2) = (e"i^i?i,-Ti) with m = Ti/||Ti||. Therefore,
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given an essential matrix E there axe exactly two pairs {R, T) such that TR = E. Further,

if E has the SVD: E = with U^V E •90(3),^ the following formulae give the two

solutions:

' (fuRi) = {URz(,+i)SU'̂ ,URl{+W^),
(f2,R2) =

where Rz{0) is defined to be the rotation matrix around the Z-axis by an angle 6, i.e.,

RzW = with es = [0,0,1]^ 6 1^.
Since from the epipolar constraint (3.2) one can only recover the essential matrix

up to an arbitrary scale (in particular, both E and —E satisfy the same equation), so in

general four solutions (i?,T) will be obtained from image correspondences. Usually, the

positive depth constraint can be imposed to discard three of the ambiguous solutions.

We here omit these well known details and simply summarize the discrete essential matrix

approach for motion estimation as the following algorithm (which is essentially the same as

that given in Maybank [76]) and we repeat it here for comparison with the algorithm that

we will develop for the continuous case:

Algorithm 3.2 (Three Step SVD Based 3D Motion Estimation).

1. Estimate the essential matrix:

For a given set of image correspondences: (xi,x^), j = l,...,n (n > 8j, find the

matrix E which minimizes the error function:

V(E)==Y,(4'b4)^ (3.10)
i=l

subject to the condition ||E|| = 1;

2. Singular value decomposition:

Recover matrix E from e and find the singular value decomposition of the matrix E:

E = Udiag{ai,a2,(T3}V'̂ (3.11)

where <Ji > (T2> <73;

3. Recover displacement from the essential matrix:

Define the diagonal matrix S to he:

S = diag{l, 1,0}. (3.12)
An essential matrix always has a SVD such that U,V e 50(3).
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Then the 3D displacement (p,i?) is given by:

R= f =URz(±\)T.U-^. (3.13)
The epipolar geometric relationship between projections of the points and their

displacements transfers to thecontinuous case. So, intuitively speaking, thecontinuous case
isan infinitesimal version ofthe discrete case. However, the continuous case is by no means

simply a "first order approximation" ofthe discrete case. When differentiation takes place,
while structureof the geometry ofthe discrete case is inherited by the continuous case, some

degeneracy may occur. Such degeneracy will become clear when we study the continuous

version of the epipolar constraint. It is also known that it is exactly due to the degeneracy
that camera calibration cannot be fully recovered from continuous epipolar constraint as

opposed to the discrete case (see Chapter 6). Generally speaking, the similarity between

these two cases is that methods and geometric intuition used in the discrete case can be

extended to the continuous case, even though geometric characterization of the objects

is different. One of the main goals of this paper is to clarify the geometric similarity and

difference between the discrete andcontinuous cases. Although the theory will bedeveloped
in a calibrated camera framework, the clear geometric nature of this approach has helped

us to understand the uncalibrated situation as well, as we will see in Chapter 6.

3.1.2 Continuous Epipolar Constraint

We now develop a continuous essential matrix approach for estimating 3D

velocity from optical fiow in a parallel way to the discrete essential matrix approach for

estimating 3D displacement from image correspondences.

The starting point of this approach is a continuous version of the epipolar con

straint and associated concept of continuous essential matrix. This constraint is bihnear

in nature and has been used extensively in the motion estimation from optical fiow mea

surements [40, 122]. Here we give a characterization of such matrices and show that there

exists exactly one 3D velocity corresponding to a non-zero continuous essential matrix; as

a continuous version of the three-step SVD-based 3D displacement estimation algorithm,

we propose a four-step eigenvector-decomposition-based 3D velocity estimation algorithm;

finally, we discuss the reasons why the zero-translation case makes all essential constraint

based motion estimation algorithms fail and suggest possible ways to overcome this diflBi-

culty.
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Assume that camera motion is described by a smooth curve g{t) = (R(t),T{t)) €

SE{3) with body velocities {u{t),v{t)) e se(3). According to (2.13), for a point p € its

coordinates X(t) = X{t)x{t) satisfy:

X(t) = D(t)X(<)+u(t). (3.14)

Prom now on, for convenience we will drop the time-dependency from the notation. The

image of the point p taken by the camera is x which satisfies Ax = X. Denote the velocity

of the image point xbyu = xGM^. uis also called optical flow.

Theorem 3.3 (Continuous Epipolar Constraint). Consider a camera moving with

body velocities (a;,v). Then the optical flow u = x of an image point x satisfies:

u^uix -h x^OvK = 0 (3.15)

or in an equivalent form:

X = 0 (3.16)

where s is a symmetric matrix defined to be s = ^{wv -I- vw) €

Proof: Take the inner product of the vectors in (3.14) with {v x x):

X^(v Xx) = (tDX -1- v)'̂ {v Xx) = X^uFvx. (3.17)

Since X = Ax -f Ax and x^(u x x) = 0, from (3.17) we then have:

Ax^ux - Xx^u^vx = 0. (3.18)

When A7^ 0, we obtain a continuous version of the epipolar constraint:

u^ux -I- x^cDux = 0 (3.19)

Due to the following fact 3.4, for any skew symmetric matrix A G x^Ax = 0. Since

\{u}v - vQ) is a skew symmetric matrix, x'̂ ^(u)v - vu))x = x^sx - x'̂ uvx = 0. Thus,
x^sx = x'^Qvx. We then have:

u^ux -I- x^sx = 0. (3.20)
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The proof indicates that there is some redundancy in the expression of the con

tinuous epipolar constraint (3.15). The following fact from linearalgebra shows where this

redundancy comes from.

Fact 3.4. Consider matrices Mi,M2 G1^^^. x^Mix = x^M2X for all if and only
if Ml —M2 is a skew symmetric matrix, i.e., Mi —M2 Gso(3).

Let us define an equivalence relationon the space , the spaceof3 x 3 matrices

over E: for x,y E a; ~ j/ifandonly \ix-y E so(3). Denote byx = {y G | y ~ a:}

the equivalence class ofx, and denote by X the set (Jxex^- The quotient space E^^^/ ~
can be naturally identified with the space of all 3 x 3 symmetric matrices. Especially, we

have s = ^(Qv -I- vQ) Ewv, which is the reason why we choose it in the equivalent form
(3.16). Using this notation, Theorem 3.3 can then be re-expressed in the following way:

Corollary 3.5. Consider a camera undergoing a smooth rigid body motion with linear

velocity v and angular velocity u. Then the optical flow u of a image point x satisfies:

V

uv

X = 0. (3.21)

Because of this redundancy, each equivalence class uiv can only be recovered up

to its symmetric component s = ^{cov + mD) E Qv. This redundancy is the exact reason
why different forms of the continuous epipolar constraint exist in the literature [141, 89,

122, 76, 9], and, accordingly, various approaches have been proposed to recover u and v (see

[109]). It is also the reason why the continuous case cannot be simply viewed as a first order

approximation of the discrete case - a first order approximation of the essential matrix TR

is vQ, but this is certainly not what one can directly estimate from the continuous epipolar

constraint. Instead, one has to deal with its symmetric part s = ^{Qv + vQ). This, in fact,
malces the study of the continuous case harder than the discrete case (in seek for linear

algorithms). Notice that the symmetric matrix s is the same as the matrix K defined in

Kanatani [53]. Although the characterization ofsuch matrices has been studied in [53], our

constructive proofs given below will lead to a natural algorithm for recovering (a;,v) from



3.1.3 Characterization of the Continuous Essential Matrix

We define the space of 6 x 3 matrices given by:

e' =

^i = \

\{Qv + vu)

to be the continuous essential space. A matrix in this space is called a continuous

essential matrix. Note that the continuous epipolar constraint (3.16) is homogeneous on

the linear velocity v. Thus v may be recovered only up to a constant scale. Consequently,

in motion recovery, we will concern ourselves with matrices belonging to normalized con

tinuous essential space:

+ vu)

a;, t; 6 d6x3

a; 6 6 S' 1)6x3

38

(3.22)

(3.23)

The skew-symmetric part of a continuous essential matrix simply corresponds to

the velocity v. The characterization of the (normalized) essential matrix only focuses on

the characterization of the symmetric part of the matrix: s = ^(uv + mD). We call the
space of all the matrices of such form the special symmetric space:

= < -{uv + vu) a; 6 , u € > C {x3 (3.24)

A matrix in this space is called a special symmetric matrix. The motion estimation

problem is now reduced to the one of recovering the velocity (a;, v) with a; € and v

from a given special symmetric matrix s.

The characterization of special symmetric matrices depends on a characterization

of matrices in the form: uv GE^^^, which is given in the following lemma. This lemma will

also be used in the next section for showing the uniqueness of the velocity recovery from

special symmetric matrices. Like the (discrete) essential matrices, matrices with the form

uv are characterized by their singular value decomposition (SVD): uv = moreover,

the orthogonal matrices U and V are related. Define the matrix i?y(^) to be the rotation

around the T-axis by an angle 0 € E, i.e., Ry{0) = e^^^ with 62 = [0,1,0]^ € E^.

Lemma 3.6. A matrix Q GE^^^ has the form Q = uv with a; GE^, v G z/ and only if
Q has the form:

Q = —Fi?y(0)dzap{A, Acos(0),O}V'' (3.25)
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for some rotation matrix V G5^0(3). Farther, A= ||a;|| and cos(0) = uFv/X.

Proof: We first prove the necessity. The proof follows fi:om the geometric
meaning of Qv: for any vector q

Qvq = uj X{v Xq). (3.26)

Let 6G be the unit vector perpendicular to both uj and v: ^= iS (if «Xw= 0, 6
is not uniquely defined. In this case, pick any h orthogonal to v and a;,then the rest of the

proof still holds). Then u = Xexp{bO)v (according this definition, 6 is the angle between u

and V, and 0 < 0 < tt). It is direct to check that if the matrix V is defined to be:

V= (e^ti;,6,v), (3.27)

then Q has the given form (3.25).

We now prove the suflficiency. Given a matrix Q which can be decomposed into

the form (3.25), define the orthogonal matrix U = -VRyiO) G 0(3).^ Let the two skew

symmetric matrices Q and v given by the formulae:

2 = (3.28)

where Ea = diag{X, A,0} and Si = diag{\.,1,0}. Then:

wv =

= C/dmp{A, Acos(^),0}V'̂

= Q' (3.29)

Since w and v have to be, respectively, the left and the right zero eigenvectors of Q, the

reconstruction given in (3.28) is unique. a

The following theorem gives a characterization of the specialsymmetric matrix.

Theorem 3.7 (Characterization of the Special Symmetric Matrix). A real sym

metric matrix s G is a special symmetric matrix if and only if s can be diagonalized

as s = VHV'̂ with V G50(3) and:

E = diag{ai,(72, a^} (3.30)

with C7i > 0, CTs < 0 and (72 = (7i +

®0(3) represents the space ofall orthogonal matrices (of determinant ±1.)
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Proof: We first prove the necessity. Suppose s is a special symmetric matrix,

there exist a; 6 G such that s = + vQ). Since s is a symmetric matrix, it is

diagonalizable, all its eigenvalues are real and all the eigenvectors are orthogonal to each

other. It then suffices to check that its eigenvalues satisfy the given conditions.

Let the unit vector b and the rotation matrix V be the same as in the proof of

Lemma 3.6, so are 9 and 7. Then according to the lemma, we have:

uv = -V"i?y(0)d2ap{A, Acos(0),O}y^. (3.31)

Since (Qv)^ = utD, it yields:

s = -(wu+{!a;) = -V (-RY{9)diag{X,Xcos{9),0} - dmp{A, Acos(0),O}J?y(0)) y^.(3.32)

Define the matrix D{X,6) G to be:

D{X,6) = --Ry(^)d«a5{A, Acos(^),0} - d2ap{A, Acos(0),O}i?y(^)

—2cos(0) 0 sin(^)

= A 0 -2cos(6l) 0 . (3.33)

sin(0) 0 0

Directly calculating its eigenvalues and eigenvectors, we obtain that:

D{X,9) =Ry diag{X{l -cos(0)),-2Acos(0), A(-l -cos(0))}i?^ ^^^^^(.3.34)
Thus s = ^^^^(A,^)!^^ has eigenvalues:

|̂ A(l-cos(«)), -Acos(e), iA(-l-cos(0))|, (3.35)
which satisfy the given conditions.

We now prove thesufficiency. Given s = Vidiag{(ji,a2,cfz}V^ with > 0,cjs < 0
and <72 = cTi + (73 and G 'S'0(3), these three eigenvalues uniquely determine A, 0 GK

such that the (jj's have the form given in (3.35):

A = <71 - <73, A > 0

6 = arccos(-<72/A), 0G[O,7r]

Define a matrix VG50(3) to be V= ViR^ (f - f )• Then s = ^VD(X,9)V^. According
to Lemma 3.6, there exist vectors u G and <*; G such that:

u;v = -VRY(9)diag{X,Xcos(9),0}V^. (3.35)
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Therefore, ^{Qv + vlj) = \VD{\6)V'^ = s. •

Figure 3.1 gives a geometric interpretation of the three eigenvectors of the special

S5rmmetric matrix s for the case when both uj, v are of unit length. Theorem 3.7was given as

b

V U2

Figure 3.1: Vectors ni, U2, b are the three eigenvectors of a special symmetric matrix
uS). In particular, h is the normal vector to the plane spanned by u and v, and ui,U2 are
both in this plane. u\ is the average of u and v. U2 is orthogonal to both 6 and ui.

an exercise problem in Kanatani [53] but it has never been really exploited in the literature

for designing algorithms. For that purpose, the constructive proof given above is more

important since it gives an explicit decomposition of the special symmetric matrix s, which

will be studied in more detail next.

According to the proof of the sufficiency of Theorem 3.7, if we already know the

eigenvector decomposition of a special symmetric matrix s, we certainly can find at least

one solution (w,u) such that s —^(cDu+ ua5). This section discusses the uniqueness ofsuch
reconstruction, i.e., how many solutions exist for s = ^(uv + vw).

Theorem 3.8 (Velocity Recovery from the Special Symmetric Matrix). There

exist exactly four 3D velocities (w,v) with a; € and v € corresponding to a non-zero

special symmetric matrix s € 5.

Proof:

Then we have:

Suppose (wi,ui) and {^2,02) are both solutions for s = + uw)

ViCJi + cDiUi = V2O2 + ^2V2-

From Lemma 3.6, we may write:

uiivi — -ViRYi0i)diag{Xi,Xicos{9i),0}V^

to2V2 = -V2RY{02)diag{X2,X2COs{62),0}V^.

(3.37)

(3.38)



Let W = V'̂ Vi 6 50(3), then from (3.37):

D(\xM = 'WD(\2,6iW'̂ -

Since both sides of (3.39) have the stime eigenvalues, according to (3.34), we have:

Aj = A2, Oi = 9\.
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(3.39)

(3.40)

We then can denote both 6i and 62 by 6. It is direct to check that the only possible rotation

matrix W which satisfies (3.39) is given by /sxs or:

—cos(0) 0 sin(0)

0-10

sm{0) 0 cos(^)

or

cos(9) 0 —sin(0)

0-10

- sin(^) 0 - cos(0)

(3.41)

Prom the geometric meaning of Vi and V2^ all the cases give either ^ivi = Q2V2 or V}\vi =

V2i^2- Thus, according to the proof of Lemma 3.6, if (a;, v) is one solution and uv =

Acos(0),O}V^, then all the solutions are given by:

0 = URz(±l)T,xU'̂ , v = VRz(±l)T.iV'̂ \
Q = VRz{±^)^xV'̂ , v = URz{±^)^iU'^

(3.42)

where Ea = diag{X, A, 0} and Ei = diag{l, 1,0}. •

Given a non-zero continuous essential matrix E E according to (3.42) its special

symmetric part gives four possible solutions for the 3D velocity (a;,u). However, in general

only one of them has the same linear velocity v as the skew symmetric part of E does. We

thus have:

Theorem 3.9 (Velocity Recovery from Continuous Essential Matrix). There is

only one solution of 3D velocity (a;,u) corresponding to a non-zero continuous essential

matrix E E £'.

In the discrete case, there axe two 3D displacements corresponding to an essential

matrix. However, the velocity corresponding to a continuous essential matrix is unique. This

is because, in the continuous case, the twisted-pair ambiguity (see Maybank [76]), which is

caused by a 180° rotation of the camera around the translation direction, is avoided.
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3.1.4 Algorithm

Based on the preceding study of the continuous essential matrix, we propose an

new algorithm which recovers the 3D velocity of the camera from a set of (possibly noisy)

optical flows.

V

Let E = GS[ with 5 = 5[ljv + VLj) be the essential matrix associated with

the continuous epipolar constraint (3.16). Since the sub-matrix v is skew symmetric and s

is symmetric, they have the following form:

0 -V3 V2 5l 52 S3

V = V3 0 -Vi , s = 52 S4 55

_ -V2 Vi 0 . "^3 55 56

Define the (continuous) essential vector e € R® to be:

e = (ui,U2,U3,5i,S2j53,S4,S5,S6]^.

(3.43)

(3.44)

Define a vector a 6 associated to optical flow (x,u) with x = [x,y,z]'^ 6 R^,u =

[ui,U2,uz]^ GlE^ to be'̂ :

a = [usy - U2Z, Uiz - U2X - uiy, x^, 2xy, 2xz, 2yz, z^f. (3.45)

The continuous epipolar constraint (3.16) can be then rewritten as:

(3.46)a^e = 0.

Given a set of (possibly noisy) optical flow vectors: (x-?, u-^), j = 1,..., n generated by the

same motion, define a matrix ^4 G associated to these measmements to be:

A = [a\a2,...,a.niT (3.47)

wherea^ are definedfor each pair (x^ , u^) using (3.45). In the absenceof noise, the essential

vector 6 has to satisfy:

Ae = 0. (3.48)

In order for this equation to have a unique solution for e, the rank of the matrix A has to

be eight. Thus, for this algorithm, in general, the optical flow vectors of at least eight points
''For perspective projection, z = 1and U3 = 0 thus the expression for a can besimplified.
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are needed to recover the 3D velocity, i.e., n > 8, although the minimum number of optical

flows needed is 5 (see Maybank [76]). When the measurements are noisy, there might be no

solution of e for Ae = 0. As in the discrete case, we choose the solution which minimizes

the error function ||Ae||^.

Since the continuous essential vector e is recovered from noisy measmrements, the

symmetric part s oi E directly recovered from e is not necessarily a special symmetric

matrix. Thus one can not directly use the previously derived results for special symmetric

matrices to recover the 3D velocity. In the algorithms proposed in Zhuang [141, 142], such

s, with the linear velocity v obtained from the skew-symmetric part, is directly used to

calculate the angular velocity w. This is an over-determined problem since three variables

are to be determined from six independent equations; on the other hand, erroneous v

introduces further error in the estimation of the angular velocity u.

We thus propose a diffierent approach: first extract the special symmetric com

ponent from the symmetric matrix s directly estimated from the continuous epipolar con

straint; then recover the four possible solutions for the 3D velocity using the results obtained

in Theorem 3.8; finally choose the one which has the closest linear velocity to the one given

by the skew-symmetric paxt of E. In order to extract the special symmetric component out

of a symmetric matrix, we need a projection from the space of all symmetric matrices to

the special symmetric space S, i.e., a continuous version of the projection of a matrix to

the essential manifold E given in Maybank [76].

Theorem 3.10 (Projection to the Special Symmetric Space). Ij a real symmetric

matrix F G is diagonalized as F = Vdiag{Xi,X2, with V € 50(3), Ai > 0, A3 <

0 and Ai > A2 > A3, then the special symmetric matrix E E S which minimizes the error

11^? —FWj is given by E = Vdiap{cri,cr2,a2}V^ with:

2Ai -f A2 —A3 Ai -1- 2A2 + A3 2A3 -1- A2 —Ai
^, <^2 = 5 , 0-3 = . (3.49)

Proof: Define 5s to be the subspace of 5 whose elements have the same

eigenvalues: S = diag{ai,a2,cr3}. Thus every matrix E ESj: has the form E = ViEV^ for
some Vi E 50(3). To simplify the notation, define Ea = diap{Ai, A2, A3}. We now prove
this theorem by two steps.
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Step 1: We prove that the special symmetric matrix E 6 <?s which minimizes the

error \\E - is given hy E = VT.V'̂ . Since £7 G has the form E = ViT,V^, we get:

I|£7-f||2 = \\Vii:v^ -vExV^Wj

= \\j:x-v^ViJ:v^v\\}. (3.50)

Define W = V^Vi G50(3) and W has the form:

W =

Then:

Wi W2 Wz

W4 W5 We

Wj Ws Wq

(3.51)

IIS-FII} = ||Sa -

= tr(Ei)-2fr(W'SI^^S;,) + tr(i:2). (3.52)

Substituting (3.51) into the second term, and using the fact that (j2 = £Ti + <73 and W is a

rotation matrix, we get:

tr(WEW '̂Ex) = «^i('̂ i(l —1^3) + A2(1 - iws) + ^3(1 —lyg))
+ a3(Ai(l - wj) + A2(1 - wl) + A3(1 - w^)). (3.53)

Minimizing ||£^-F||̂ is equivalent to maximizing tr(WSW^SA). Prom (3.53), tr{WY,W'̂ T,x)
is maximized if and only if W3 = we = 0, = 1, it;4 = lyj = 0 and = 1. Since W is

a rotation matrix, we also have W2 = wg = 0 and = 1. All possible W give a unique

matrix in which minimizes ||jE7 - FWj: E = VSV^.
Step 2: Prom step one, we only need to minimize the error function over the

matrices which have the form G5. The optimization problem is then converted to

one of minimizing the error function:

P - Pff = (-^1 - <^1)^ + (-^2 - <72)^ + (A3 - (73? (3.54)

subject to the constraint:

(72 = <71 +0-3. (3.55)

The formula (3.49) for <7i, <72, <73 are directly obtained from solving this minimization prob

lem. -
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Remark 3.11. For symmetric matrices which do not satisfy conditions Ai > 0 or A3 < 0,

one may simply choose AJ = maa:(Ai,0) or A3 = mm(A3,0).

We then have an eigenvalue-decomposition based algorithm for estimating 3D ve

locity from optical flow.

Algorithm 3.12 (Four Step Eigen-Decomposition Based 3D Velocity Estima

tion).

1. Estimate essential vector:

For a given set of optical flows: j = 1,... ,n, find the vector e which mini

mizes the error function:

V(e) = \\Aef (3.56)

subject to the condition ||e|| = 1;

2. Recover the special symmetric matrix:

Recover the vector uq € from the first three entries of e and the symmetric matrix

s € from the remaining six entries.^ Find the eigenvalue decomposition of the

symmetric matrix s:

s = Vidiag{\i,\2, A3}Vi^ (3.57)

with Ai > A2 > A3. Project the symmetric matrix s onto the special symmetric space

S. We then have the new s = Vidiag{<Ti,a2,(rs}V^ with:

2Ai + A2 —A3 Ai + 2A2 + A3 2A3 + A2 —Ai
= 3 , c^2 = 3 , <T3 = ; (3.58)

3. Recover velocity from the special symmetric matrix:

Define:

A = (Ji —(J3. A > 0,
(3.59)

9 = arccos(-£72/A), ^€(0,7r].

Let V = ViRy (I —I) € 50(3) and U= —VRy{9) G0(3). Then the four possible
3D velocities corresponding to the special symmetric matrix s are given by:

UJ = URz{±i)J:xU'̂ , v= VRz{±l)T.{ '̂̂
u> = VBz(±§)i:xV'̂ , v= URz(±§)Si(/'̂

®In order to guarantee vo to be of unit length, one needs to "re-normalize" e, i.e., multiply e by ascalar
such that the vector determined by the first three entries is ofunit length.
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where = diag{\^ A, 0} and Si = diag{l^ 1,0};

4. Recover velocity from the continuous essential matrix:

From thefour velocities recovered from the special symmetric matrix s in step 3, choose

the pair {uj*,v*) which satisfies:

v*^vo = m^vfvQ. (3.61)
i

Then the estimated 3D velocity {u,v) with u and v is given by:

u-u*, v = vo. (3.62)

Both uo and v* are estimates of the linear velocity. However, experimental results

show that, statistically, within the tested noise levels (see next section), uq yields a better

estimate than v* . Here, thus, wesimply choose uq as the estimate. Nonetheless,one can find

statistical correlations between vq and v* (experimentally or analytically) and obtain better

estimates for v, using both vq and v*. Another potential way to improve this algorithm is

to study the systematic bias introduced by the least square method in step 1. A similar

problem has been studied by Kanatani [53] and an algorithm was proposed to remove such

bias from Zhuang's algorithm [141].

Remark 3.13. Since both £7, —E G £[ satisfy the same set of continuous epipolar con

straints, both (cj, dbu) are possible solutions for the given set of optical flows. However, as

in the discrete case, one can get rid of the ambiguous solution by adding the "positive depth

constraint".

Remark 3.14. By the way of comparison to Heeger and Jepson's algorithm [40], note that

the equation (3.48) may be rewritten to highlight the dependence on optical flow as:

[Ai(u) IA2]e = 0

where i4i(u) G is a linear function of the measured optical flow and A2 G is

a function of the image points alone. Heeger and Jepson compute a left null space to the

matrix A2 (C G and solve the equation: C7Ai(u)?; = 0 forv alone. Then they use

V to obtain uj. Our method simultaneously estimates v G E^,s G E®. We make a detailed

simulation comparison of these two algorithms in section 4-
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One should note that this linear algorithm is not optimal in the sense that the re

covered velocity does not necessarily minimize the originally picked error function ||-4e(a;,

on €[ (see next section for a more detailed discussion). However, this algorithm only uses

linear algebra techniques and is particularly simpler than a one which tries to optimize on

the manifold €[ [69].

One potential problem with the (discrete or continuous) essential approaches is

that the motion estimation schemes are all based on the assumption that the translation is

not zero. In this section, we study what makes the epipolar constraint fail to work in the

zero-translation case.

For the discrete case, if two images are obtained from rotation alone i.e., p = 0

and A2X2 = Aii?xi, it is straightforward to check that, for all p € S^, we have:

xfi?^px2 = 0. (3.63)

Thus, theoretically, the estimation schemes working on the normalized essential space £i

will fail to converge (since there are infinitely many pairs of {R,p) satisfying the same set

of epipolax constraints). In the continuous case, we have a similar situation:

Theorem 3.15. An opticalflow field (x, u) is obtainedfrom a pure rotation with the angular

velocity u if and only if for all vectors v 6

[u^,x^]
V

Qv
x = 0. (3.64)

Proof: u = cDx since u isobtained from rotation a; ^ u^(u x x) = —x^uj{v x x)

V

Qv

This theorem impUes that the velocity estimation algorithm proposed in the pre

vious section will have trouble when the linear velocity v is zero, since there are infinite

many pairs of (cj, v) satisfying the same set of continuous epipolar constraints. However, it

is shown by Soatto et al [99] that, in the dynamical estimation approach, one can actually

make use of the noise in the measurements to obtain correct estimate of the rotational

component R regardless of the accuracy of the estimate for the translation vector p. The

same should hold also in the continuous case. That is, even in the zero-translation case,

the recovery of the angular velocity cj is still possible using dynamic estimation schemes.

for all V6 •<=> [u^,x^j x = 0.



49

Study ofsuch schemes is beyond the scope ofthis paper and will be addressed in our future

research work.

example 3.16 (Kinematic hlodel of an Aircraft). This example shows how to utilize

the so called nonholonomic constraints (see Murray, Li and Sastry [84]) to simplify
the proposed linear motion estimation algorithm in the continuous case. Let g(t) e SE{S)
represent the position and orientation ofan aircraft relative to the spatial frame, the inputs

u)i,u}2,uj3 eM. standfor the rates of the rotation about the axes ofthe aircraft andvi € K the

velocity of the aircraft. Using the standard homogeneous representation for g (see Murray,

Li and Sastry [84]), the kinematic equations of the aircraft motion are given by:

9 = 9

0 -W3 UJ2 Vi

wz 0 -Ui 0

-W2 Ui 0 0

0 0 0 0

(3.65)

where ui stands for pitch rate, U2 for roll rate, cjs for yaw rate and v\ the velocity of the

aircraft. Then the 3D velocity (uj,v) in the continuous epipolar constraint (3.16) has the

form: u = the algorithm given in section 3.1.4, this adds
1

2
extra constraints on the symmetric matrix s = ^{Qv-\-vu): s\ = = 0 and 34 = sq. Then
there are only four different essential parameters left to determine and we can re-define the

essential parameter vector e € io be: e = [vi, 52,53,54]^. Then the measurement vector

a € is to be: a = [u^y —U2Z, 2xy, 2xz, y^ + The continuous epipolar constraint can
then be rewritten as:

dFe = 0. (3.66)

If we define the matrix A from a as in (3.47), the matrix A^A is a Ax 4 matrix rather

than a 9 X9 one. For estimating the velocity (u,v), the dimensions of the problem is then

reduced from 9 to 4- In this special case, the minimum number of optical flow measurements

needed to guarantee a unique solution of e is reduced to 3 instead of 8. Further more, the

symmetric matrix s recovered from e is automatically in the special symmetric space S

and the remaining steps of the algorithm given in section 3.1.4 can thus be dramatically

simplified. From this simplified algorithm, the angular velocity u = [wi,u}2,wzY can be fully

recovered from the images. The velocity information can then be used for controlling the

aircraft.
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3.2 Experimental Results

We have carried out some initial simulations in order to study the performance

of our algorithm. We chose to evaluate it in terms of bias and sensitivity of the estimates

with respect to the noise in the optical flow measurements. Preliminary simulations were

carried out with perfect data which was corrupted by zero-mean Gaussian noise where the

standard deviation was specified in terms ofpixel size and was independent of velocity. The

image size was considered to be 512 x 512 pixels. Our algorithm has been implemented

in Matlab and the simulations have been performed using example sets proposed by [109]
in their paper on comparison of the egomotion estimation from optical flow®. The motion

estimation was performed by observing the motion of a random cloud of points placed in

front of the camera. Depth range of the points varied from a to 6 (> o) units of the focal

length /, which was considered to be unity. For example, if the focal length is 8mm and

a = 100 and b = 400, the point depth varies from 0.8 m to 3.2 m in front of the camera.

Thissetup makes the simulation depend only on the parameter c = {b —a)/a, called depth

variation parameter. The results presented below are for a fixed field of view (FOV) of
60 degrees unless otherwise stated.

3.2.1 Comparing to Subspace Methods

Each simulation consisted of500 trials for 50 randomly sampled points in a given
depth variation [a, b] = [100,400] with a fixed noise level and ratio between the optical flow
due to translation and rotation for the point in the middle of the random cloud. Figures
3.2 and 3.3 compare our algorithm with Heeger and Jepson's linear subspace algorithm
[40]. The presented results demonstrate the performance of the algorithm while rotating
around X-axis with rate of 1° per frame and translating along Y-axis with translation to

rotation ratio of 1 and 5 respectively (for the point at the center of the random cloud).
The first stage of our analysis was performed using benchmarks proposed by [109]. The
bias is expressed as an angle between the average estimate out of all trials (for a given
setting of parameters) and the true direction of translation and/or rotation. The sensitivity
was computed as a standard deviation of the distribution of angles between each estimated

vector and the average vector in case of translation and as a standard deviation of angular
®We would like to thank the authors in [109] for making the code for simulations of various algorithms

and evaluation of their results available on the web.
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Translation bias at noise level 0.9 pixel

Y-X Y-Y Y-2
Trans'atlon-Rolation axises

Rotation bias al noise level 0.9 pixel

Y-x Y-Y Y-Z
Translation-Rotation axises

Figure 3.4; Bias dependency on combination of translation and rotation axes. For example,
"X-Y" means the translation direction is in X-axis and rotation axis is the Y-axis. Bias for
each combination of axes was estimated by running 500 trials at the noise level 0.9 pixel
The ratio between the magnitude of linear and angular velocities is 1.

This is due to the fact that in our algorithm the rotation is estimated simultaneously

with the translation, so that its bias is only due to the bias of the initially estimated
continuous essential matrix obtained by linear least squares techniques. This is in contrast

to the rotation estimate used by the subspace method [40] which uses another least-squares

estimation bysubstituting an already biased translational estimate to compute the rotation.

Increasing the ratio between the magnitude of translational and rotational velocities, the
performance of both algorithms improves, especially the translation estimates.

3.2.2 Bias Analysis: Relation to Nonlinear Algorithms

A disadvantage of any linear algorithm is that it tries to directly minimize the

epipolar constraint, i.e., the objective function:

J=i

(3.67)

But this is not the likelihood function of u and v for commonly used noise models of the

optical flow. Consequently, estimates given by linear algorithms are usually not close to

maximum a posterior (MAP) or minimum mean square estimates (MMSE). In general, this



Translationbias w.r.t dflerent depth variationparameter

3.0 3.5
Depth variation parameter c

Rotationbras w.r.tdiflerenidepth variationparameter
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Depth variation parameter c

Figure 3.6: Translation bias and rotation bias with respect to different depth variation
parameter c. Bias for each noise level and depth variation parameter is estimated by
running 500 trials. Translation is along the X-axis and rotation axis is the Z-axis and
the ratio between the magnitude of linear and angular velocities is 1.

3.2.4 Translation Estimates

Further evaluation of the results and more extensive simulations are currently

underway. We believe that thoroughly understanding the source of translational bias, we

can obtain even better performance by utilizing additional information about the linear

velocity which is embedded in the special symmetric part of the continuous essential matrix,

Le., V* (see step 4 of the algorithm in the preceding section). In the above simulations, the

linear velocity v was estimated only from the uq, the skew symmetric part of the continuous

essential matrix. Figure 3.7 demonstrates that vq is in general a much better estimate than

3.3 Discussion

In this chapter, we have presented a unified (linecir) approach for the problem of

egomotion estimation using discrete and continuous epipolar constraints. In either the dis

crete or continuous setting, a geometric characterization is given for the space of (discrete)

essential matrices or continuous essential matrices. Such a characterization gives a natural
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Figure 3.7: Bias and sensitivity of the translation estimates uq from the skew symmetric
part and v* from the special symmetric part of the continuous essential matrix. Bias and
sensitivity for each noise level axe estimated by running 200 trials for a cloud of 50 points.
Both translation and rotation are along the X-axis and the ratio between the magnitude of
linear and angular velocities is 5.

geometric interpretation for the number of possible solutions to the motion estimation prob

lem. In addition, in the continuous case, understanding of the space of continuous essential

matrices leads to a new egomotion estimation algorithm, which is a natural counterpart of

the well-known three-step SVD based algorithmdeveloped for the discrete caseby [112]. In

order to exploit temporal coherence of motion and improve algorithm's robustness, a dy

namic (recursive) motion estimation scheme, which uses implicit extended Kalman filter for

estimating the essential parameters, has been proposed by Soatto et al [99] for the discrete

case. The reader should be aware that the same ideas certainly apply to the continuous

case.



Chapter 4

Motion Recovery II: Optimal

Algorithms

"Since the building of all the universe is perfect and is created by the wisdom creator,
nothing arises in the universe in which one cannot see the sense of some maximum or
minimum."

— L. Euler

57

In the previous chapter, we have discussed how to recover camera motion from two

views by linear techniques. While the epipolar geometric relationships governing the motion

recovery problem have been long understood, the robust or statistically less biased solutions

are still sought. New studies of sensitivity of different algorithms, search for intrinsic local

minima and new algorithms are still subjects of great interest. Algebraic manipulation of

intrinsic geometric relationships typically gives rise to different objective functions, making

the comparison of the performance of different techniques often inappropriate and often

obstructing issues intrinsic to the problem. In this chapter, we provide new algorithms

and insights by giving answers to the following three questions, what we beheve are the

main aspects of the motion and structure recovery problem (in the simplified two-view,

point-feature scenario):

(i) What is the correct choice of the objective function and its associated statis
tical and geometric meaning? What are the fundamental relationships among
different existing objective functions?
(ii) What is the core optimization problem which is common to all objective
functions associated with motion and structure estimation?
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(iii) How does the choice of the objective functions and configurations affect the
sensitivity and robustness of the estimates? What is the effect of the bas relief
ambiguity and other ambiguities on the sensitivity and robustness of the proposed
algorithms?

The seminal work of Longuet-Higgins [60] on the characterization of the so called

epipolar constraint, hcis enabled the decoupling of the structure and motion problems and

led to the development of numerous linear and nonlinear algorithms for motion estimation

(see [22, 53, 76, 131] for overviews). The epipolar constraint has been formulated both

in a discrete and a continuous setting in Chapter 3 and this work has demonstrated the

possibilityofa parallel development ofalgorithmsfor both cases: namely using point feature

correspondence and optical flow. A preliminary analysis of linear and nonlinear techniques,

exploring the use of different objective functions can be found in [63].

While the (analytic) geometrical aspects of the linear approach have been under

stood, the proposed solutions to the problem have been shown very sensitive to noise and

have often failed in practical applications. These experiences have motivated further stud

ies which focus on the use of a statistical analysis of existing techniques and understanding

of various assumptions which affect the performance of existing algorithms. These studies

have been done both in an analytical [14, 102] and experimental setting [109]. The appeal

of hnearalgorithms which use the epipolar constraint (in the discrete case [53, 60, 76, 131]

and in the continuous case [50, 67, 108]) is the closed form solution to the problem which,

in the absence of noise, provides true estimate of the motion. However, a further analysis of

linear techniques reveals an inherent bias in the translation estimates [50]. Attempts made

to compensate for the bias slightly improve the performance of the linear techniques [53].

Such attempts to remove the biashave led to different choice ofnonlinear objective

functions. The performance of numerical optimization techniques whichminimizenonlinear

objective functions has been shown superior to linear ones. The objective functions used

are either (normalized) versions of the epipolar constraint or distances between measured

and reconstructed image points (the so called reprojection error) [129, 63, 140, 45]. These
techniques either require iterative numerical optimization [131, 99] or use Monte-Carlo sim

ulations [50] to sample the space of the unknown parameters. Extensive experiments re
vealed problems with convergence when initialized far away from the true solution [109].
Since nonlinear objective functions have been obtained from quite different approaches, it
is necessary to understand the relationship among all the existing objective functions. Al-
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though a preliminary comparison has been made in [140], in this chapter, we provide a

more detailed and rigorous account of this relationship and how it affects the complexity of

the optimization. In this chapter, we will show, by answering the question (i), "minimiz

ing epipolar constraint", "minimizing (geometrically or statistically^) normalized epipolar

constraint" [63, 129, 140], "minimizing reprojection error" [129], and "triangulation" [33]
can all be unified in a single geometric optimization procedure, the so called "optimal tri

angulation". As a by-product of this approach, a much simpler triangulation method than

[33] is given along with the proposed algorithm. A highlight of our method is an iterative

scheme between motion and structure without introducing any 3D scale (or depth).

Different objective functions have been used in different optimization techniques

[45, 107, 129]. Horn [45] first proposed an iterative procedure where the update of the
estimate takes into account the orthonormal constraint of the unknown rotation. This

algorithm and the algorithm proposed in [107] are some of the few which explicitly con

sider the differential geometric properties of the rotation group 50(3). In most cases, the

underlying search space has been parameterized for computational convenience instead of

being loyal to its intrinsic geometric structure. Consequently, in these algorithms, solving

for optimal updating direction typically involves using Lagrangian multipliers to deal with

the constraints on the search space; and "walking" on such a space is done approximately

by an update-then-project procedure, rather than exploiting geometric properties of the

entire space of essential matrices as characterized in Chapter 3 or in [99]. As an answer

to the question (ii), we will show that optimizing existing objective functions can all be

reduced to optimization problems on the essential manifold. Due to recent developments of

optimization techniques on Riemannian manifolds (especially on Lie groups and homoge

neous spaces) [97, 19], we are able to explicitly compute all the necessary ingredients, such

as gradient, Hessian and geodesies, for carrying out intrinsic nonlinear search schemes.

In this chapter, we will first give a review of the nonlinear optimization problem associ

ated with the motion and structure recovery. Using a generalized Newton's algorithm as a

prototype example, we will apply our methods to solve the optimal motion and structure

estimation problem by exploiting the intrinsic Riemannian structure of the essential man

ifold. The rate of convergence of the algorithm is also studied in some detail. We believe

the proposed geometric algorithm will provide us with an analytic framework for design of

^In the literature, they are respectively referred to as distance between points and epipolar lines, and
gradient-weighted epipolar errors [140] or epipolar improvement [129].
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(Kalman) filters on the essential manifold for dynamic motion estimation (see [99]). It also

provides us new perspectives for design of algorithms for multiple views.

In this chapter, only the discrete case will be studied, since in the continuous case

the search space is essentially Euclidean and good optimization schemes already exist and

have been well studied, see [98, 139]. For the continuous case, recent studies [98] have clari

fied the source ofsome of the difficulties (for example, rotation and translation confounding)

from the point of view of noise and explored the source and presence of local extrema which

are intrinsic to the structure from motion problem (i.e., these localextrema are independent

of the choice of objective functions). The bas reliefambiguity, in general, can characterized

as the most sensitive direction in which the rotation and translation estimates are prone

to be confound with each other (for example, see [1, 98, 129] for a more detailed analysis).

Here we apply the same line of thought to the discrete case. Since the bas relief effect

is evident only when the field of view and the depth variation of the scene are small, we

here are more interested in characterizing, besides the bas relief ambiguity, other intrinsic

extrema which may show up at a high noise level even for a general configuration, i.e., with

large base line, field ofview and depth variation. As an answer to thequestion (ill), we will

show both analytically and experimentally that some ambiguities are introduced at a high

noise level by certain bifurcation of the objective function and usually result in a sudden

90° fiip in the translation estimate. Understanding such ambiguities is crucial for properly

evaluating the performance (especially the robustness) of the algorithms when applied to

general configurations. Based on analytical and experimental results, we will give a clear

profile of the performance of different algorithms over a large range ofsignal-to-noise ratio,

and under various motion and structure configurations.

Chapter Outline

Section 4.1 relies on some familiarity with Edelman et aVs work [19] on geomet
ric optimization and some background of Riemannian geometry (good references for Rie-

mannian geometry are [55, 103]).^ This section basically outlines how to optimize various
objective functions associated to the motion recovery problem using the (Riemannian) New
ton's algorithm. Formulae of all the necessary ingredients such as gradient, Hessian and

geodesies have been explicitly spelled out. Appendix A provides extra details that fill the

Readers who are not familiar with differential geometry termsmay skip technical details in this section
without losing much continuity.
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gap between Edelman's work and our application. Different objective functions proposed
in the literature are unified in Section 4.2 by a single optimization procedure proposed for
estimating optimal structure and motion altogether. Xhis procedure gives clear answers to

both questions (i) and (ii). Section 4.3 discusses extrema of an objective function on the

essential manifold. Among all the possible ambiguities, we characterize those which most

likely occur in the motion and structure recovery problem. Sensitivity study and experi
mental comparison between different objective functions are given in Section 4.4. Section

4.3 and 4.4 together give a clear answer to the question (iii).

4.1 Optimal Motion Recovery

In this section, we apply the Riemannian Newton's algorithm to various objective
functions associated with the motion recovery problem in computer vision. Relationship
among different objective functions will be studied in detail in the section after.

4.1.1 Minimizing Epipolar Constraints

From Chapter 3,we know that two corresponding image points Xi,X2 E satisfy

the so called epipolar constraint:

XjTRxi = 0 (4.1)

where R E 50(3) and T E are relative rotation and translation between the two image
frames, respectively. Thus to recover the motion (R, T) from a given set of image cor
respondences Xj,X2 E = l,...,n, it is natural to minimize the following objective
function:

n

F(R,T) = x{,x^6R',(/?,T)6 50(3)xS2. (4.2)
J=1

In this section, we apply the Newton's algorithm introduced in Chapter A to solve

this problem. We will give explicit formulae for calculating all the ingredients needed:
geodesies, gradient G of F, Hessian Hess(-, •) of E and the optimal updating vector A =

-Hess'̂ C? (and we will show later how these formulae can be extensively reused for obtain
ing corresponding formulae for other objective functions). It is well known that an explicit
formula for the Hessian is also important for sensitivity analysis ofmotion estimation [14].
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Farther, using the formula for the Hessian, we will be able to show that, under certain

conditions, the Hessian is guaranteed non-degenerate, whence the Newton's algorithm has

quadratic rate of convergence.

Instead of using formulae given in the previous section, the computation of the

gradient and Hessian can alsobe caxried out by usingexplicit formulae forgeodesies on these

manifolds. On 50(3), the formula for the geodesic at R in the direction Ai GTr{SO{S))

is:

R{t) = exp(i?, Alt) = e^*'R = (/ + wsint-I-a;^(l - cost))jR (4.3)

where t 6 IR,a; = Ailt^ 6 so(3). The last equation is called the Rodrigues' formula (see
[84]). (as a Stiefel manifold) also has very simple expression for geodesies. At the point

T along the direction A2 GTxiS^) the geodesic is given by:

T{t) = exp(T, A2t) = T cos at+ Usinat (4.4)

where a = IIA2II and U = A2/cr, then T'^U = 0 since T^A2 = 0.

Using the formulae (4.3) and (4.4) for geodesies , we can calculate the first and

second derivatives ofF(R,T) in the direction A = (Ai,A2) Grij(50(3)) x Tr(S2):

dF(R{t\T{t))
t=n

j=l

Hess(A,A) =̂ £E|lim
n 2

= H [x2^(?Ai +A2i?)x5] + y^(-fflAfAi - TRA^Ai +2A2Ai)x^l.
i=i '

From the first order derivative, the gradient G = (Oi,02) GTr{SO{3)) x T5(S^)
ofF{R,T) is:

^ -Rx{x^2^fR, -x{Rx( -Tx{Vx^2^^ (4-5)
It is direct to check that G\lfF 6 so(3) and G2 —0, so the G given by the above
expression is a vector in Tr(SO(Z)) x Tt(S^).
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For any pair of vectors X,Y £ Tr(SO{Z)) x TriS^), polarize Hess(A, A) to get
the expression for Hess(X, V):

HessCX.y)

= i[Hess(X +y,A' +y)-Hess(X-y,X-y)]
It

= Y, +X2R)44^{fYi + y2fj)xi
i=i

*2^ (^-\fR(XfYi +yfXi) -TRX^Yi +(faXi +̂ 2^)j (4.6)

To make sure this expression is correct, if we let A" = y = A, then we get the same
expression for Hess(A, A) as that obtained directly from the second order derivative.

The following theorem shows that this Hessian is non-degenerate ina neighborhood
of the optimal solution, therefore the Newton's algorithm will have a quadratic rate of

convergence by Theorem 3.4 of Smith [97].

Theorem 4.1 (Nondegeneracy of Hessian). Consider the objective function F(R,T)
as above. Its Hessian is not degenerate in a neighborhood of the optimal solution if there is

a unique (up to a scale) solution to the system of linear equations:

If SO, the Riemannian Newton's algorithm has quadratic rate of convergence.

Proof: It suffices to prove for any A ^ 0, Hess(A, A) > 0. According to the
epipolar constraint, at the optimal solution, we have = 0. The Hessian is then

simplified to:

{TAi +A2R)x''̂
J=1

Thus Hess(A, A) = 0 if and only if

x^^(fAi A2il)x] =0, i = 1,..., n.

Since we also have

x^^TjRxj = 0, j = 1,..., n.

n

Hess(A, A) =Y, Ai +^2RH]
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Then both TAi + A2il and TR are solutions for the same systemof linear equations which

by assumption has a unique solution, hence Hess(A, A) = 0 if and only if

TAi + A2J? = ATi?, for some A G R

^ TcD + A2 = AT, for w —AiJ?^

^ Tu —AT, and A2 = 0, since T^A2 = 0

a; = 0, and A2 = 0, since T ^ 0

^ A = 0,

Remark 4.2. In the previous theorem, regarding the 3 x 3 matrix E in the equations

as a vector in R®, one needs at least eight equations to uniquely solve E up to
a scale. This implies that we need at least eight image correspondences {(x|,x^)}"_i,n > 8
to guarantee the Hessian non-degenerate whence the iterative search algorithm converges in

quadratic rate. If we study thisproblem more carefully, using transversality theory, one may

show that five image correspondences in general position is the minimal data to guarantee

the Hessian non-degenerate [76]. However, the five point technique usually leads to many

(up to twenty) ambiguous solutions, as pointed out by Horn [45]. Moreover, numerical

errors usually make the algorithm not work exactly on the essential manifold and the extra
iTsolutions for the equations ^ = 0 may cause the algorithm to converge very slowly in

these directions. It is not just a coincidence that the conditions for the Hessian to be non-

degenerate are exactly the same as that for the eight-point linear algorithm (see [76, 67])

to have a unique solution. A heuristic explanation is that the objective function here is a

quadratic form of the epipolar constraint which the linear algorithm is directly based on.

Returning to the Newton's algorithm, assume that the Hessian is non-degenerate,
i.e., invertible. Then, we need to solve for the optimal updating vector A such that A =

Hess~^G, or equivalently;

Hess(y, A) = g{—G,Y) = —dF{Y), for all vector fields Y.

Pick five linearly independent vectors, i.e., a basis ofTr(50(3)) x T5(§2): E '̂yk = 1,... ,b.
One then obtains five linear equations:

Hess(£;*, A) =-<//•(£'=), fc = l...,,5.
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Since the Hessian is invertible, these five linear equations uniquely determine A. In par

ticular, one can choose the simplest basis such that for A: = 1,2,3: = (e/.i2,0) with

ejk, A; = 1,2,3 the standard basis for and for A: = 4,5: = (0, tj) such that {T,64,65}

form an orthonormal basis for 1^. The vectors 64,65 can be obtained using Gram-Schmidt

process.

Define a 5 x 5 matrix A G and a 5 dimensional vector b G to be:

= Hess(B',£:'), hk = -dF(E''), k,l = l,...,5.

Then solve for the vector a = [01,02)03,04,05]^ GR^:

a = i4~^b.

Let u = [01,02,03]^ GR^ and v= 0464 + 0565 GR^. Then for the optimal updating vector

^ = (^1) ^2)) we have Ai = uR and A2 = v. We now summarize the Riemannian Newton

algorithm for the optimal motion recovery, which can be directly implemented.

Algorithm 4.3 (Riemannian Newton's Algorithm for 3D Motion Recovery).
Objective Function:

n

F(,R,T) = x{,x^ € IR', (B,T) € S0(3) x Sl
i=i

1. Compute the optimal updating vector:

Atthe point {R,T) G50(3)xS^, compute the optimal updating vector - -Hess~^G:

• Compute the vectors 64,65 from T using Gram-Schmidt process and obtain the

jive basis tangent vectors E^ GTr{SO{3)) x TriS"^), 1 <k<b as defined in the
above,

• Compute the 5 X5 matrix Aki = Hess{E^,E^), I < k,l < b,

• Compute the 5 dimensional vector b^; = —dF{E^), 1 < A; < 5,

• Compute the vector a = [01,02,03,04,05]^ GR® such that a = A~^h,

Define u = [01,02,03]^ G R^ and v = 0464 + 0565 G R^. Then the optimal
updating vector:

A = -Hess ^G —{uR,v).
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2. Update the search state:

Move {RiT) in the direction A along the geodesic to (exp(i?, Ai),exp(T, A2)), using

the formula for geodesies on SO{3) and respectively:

exp(il, Ai) = (/ +Dsini + 0)^(1 - cos£))i?,

exp(T, A2) = T cos <T + U sin cr,

where t=y^^£r(AfAi),tj =AiR^/t and a= U=A2/<j.

3. Return to Step 1 if ||b|| > e for some pre-determined e > 0.

Remark 4.4. From calculations above, we note that one can consider a more general objec

tive function with a (positive) weights wj 6 IK"*" associated with each image correspondence

n

F(R,T) = Wj(x^^T-Rxj)^, xj,x5 € (R,T) € 50(3) x S^.
j=i

For example, one may choose wj^ = HxjU^UxjlP to convert the image points from perspec
tiveprojection to spherical projection. Then, in the above algorithm, the expressionsfor the

geodesies, the gradient and Hessian only need to be slightly modified.

4.1.2 Minimizing Normalized Epipolar Constraints

Although the epipolar constraint (3.2) gives the only necessary (depth indepen

dent) condition that image pairshave to satisfy, motion estimates obtained from minimizing

the objective function (4.2):

n

F{R,T) = x{,xieR^,(fl,T)€50(3)xS2. (4.7)
j=i

are not necessarily statistically or geometrically optimal for the commonly used noise model

of image correspondences. In general, in order to get less biased estimates, we need to nor

malize (or weight) the epipolar constraints properly, which has been initially observed in

[129]. In this section, we will give a brief account of these normalized versions ofepipolar
constraints. These normalized versions in general are still functions defined on the essential

manifold. The reason will become clear in the next section when we see that these normal

izations in fact can be unified by a single procedure for getting optimalestimates of motion

and structure.
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We here discuss this issue for the perspective projection case.^ In the perspective

projection case, coordinates of image points xi and X2 are of the form [rc,y, l]^ e

Suppose that the actual measured image coordinates of n pairs of image points are:

x{ = x{ + a^, x^ = 3^ + y0J", j = (4.8)

where and x^ are ideal (noise free) image coordinates, = [a^,c4,0]^ € and
= [Pi,P2^0]^ G and and are independent Gaussian random variables of

identical distribution iV(0,a2). Substituting x} and x^ into the epipolar constraint (3.2),
we obtain:

Since the image coordinates xj and x^ usually are magnitude larger than and , one

can omit the last term in the equation above. Then xj^TibcJ are independent random
variables approximately of Gaussian distribution iV(0, a'̂ {\\ezfRx{ |p+ ||x^^fi^eslp)) where
63 = [0,0,1]^ e . If we assume the a prior distribution of the motion {R^ T) is uniform,
the maximum a posterior (MAP) estimates of (R, T) is then the global TniniTnuTn of the

objective function:

We here use Fs to denote the statistically normalized objective function associated with

the epipolar constraint. This objective function is also referred in the literature under the

name gradient criteria [63] or epipolar improvement [131]. Therefore, we have:

{R,T)map « argminFs(J?,r) (4.10)

Note that in the noise free case, Fg achieves zero, just like the unnormalized objective

function F given by equation (4.2). Asymptotically, MAP estimates approach the unbiased

minimum mean square estimates (MMSE). So, in general, the MAP estimates give less

biased estimates than the unnormalized objective function F.

Note that Fg is still a function defined on the manifold 50(3) x The discussion

given in Section A.3 about optimizing a general function defined on the essential manifold

^The spherical projection case is similar andis omitted for simplicity.
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certainly applies to Fs. Moreover, note that the numerator of each term of Fg is the same

as that in F, and the denominator of each term in Fg is simply:

WezTRx^f + \\x^2^fRelf = (eJfRx{f +{e^fRx{f +(-xP^TReif + (x5^fi?ei)2(4.11)

where ei = [1,0,0]^ € and 62 = [0,1,0]^ G That is, components of each term
of the normalized objective function Fg are essentially of the same form as that in the

unnormalized one F. Therefore, we can exclusively use the formulae of the first and second

order derivatives djP(A) and Hessi^(A, A) of the unnormalized objective function F to

express those for the normalized objective Fg by simply replacing xj or x^ with ei or 62
at proper places. This is one of the reasons why the epipolar constraint is so important

and studied first. Since for each term of Fg^ we now need to evaluate the derivatives of

five similar components (effilxj)^, (e^fiix^)^, (^^TReif, (x^^fiJei)^ and (x^^fibc{)2,
as opposed to one in the unnormalized case, the Newton's algorithm for the normalized

objective function is in general five times slower than that for the unnormalized objective

function F. But the normalized one gives statistically much better estimates, as we will

demonstrate in Section 4.4.

Another commonly used criterion to recover motion is to minimize the geometric

distances between image points and corresponding epipolar lines. This objective function

is given as:

I"')

We here use Fg to denote this geoinetrically normalized objective function. For a more

detailed derivation and geometric meaning of this objective function see [63, 140]. Notice
that, similar to F and Fg^ Fg is also a function defined on the essential manifold and

be minimized using the given Newton's algorithm.

The relationship between the statistically normalized objective function Fg and the

geometrically normalized objective function Fg will be clearly revealed in the next section

when we study the optimal motion and structure recovery as a constrained optimization

problem. As we know from [68], in the continuous case, the normalization has no effect

when the translational motion is in the image plane, i.e., the unnormalized and normalized

objective functions are in fact equivalent. For the discrete case, we have a similar claim.

Suppose the camera motion is given by {R,T) GSE(Z) with T and R = for some
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w6 and 0 GK. If a; = [0,0,1]^ and T = [Ti,T2,0]^, i.e., the translation direction is
in the image plane, then it is direct to check that Hesfibcjf = W^^^fReJf = 1. Hence,
in this case, all the three objective functions F, Fg and Fg are very similar to each other
around the actual {R,T).^ Practically, this implies the normalization will have little eflfect

on the motion estimates, as will be verified by the simulation.^ Therefore, incertain cases,
minimizing the objective function F which is directly related to the epipolar constraint is
not necessarily a wrong thing to do.

4.2 Optimal Triangulation

Note that, in the presence ofnoise, for the motion {R, T) recovered firom minimizing
the unnormalized or normalized objective functions F, Fg or Fg, the value of the objective
functions is not necessarily zero. That is, in general:

j = l,...,n. (4.13)

Consequently, if one directly uses x] and to recover the 3D location of the point to
which the two images x] and xj correspond, the two rays corresponding to x{ and x^
may not be coplanar, hence may not intersect at one 3D point. Also, when we derived the
normalized epipolar constraint Fg, we ignored the second order terms. Therefore, rigorously
speaking, it does not give the exact MAP estimates. Here we want to clarify the eflfect of
such approximation on the estimates both analytically and experimentally. Furthermore,
since Fg also gives another reasonable approximation ofthe MAP estimates, can we relate
both Fg and Fg to the MAP estimates in a unified way? Thiswill bestudied in this section.

Experimental comparison will be given in the next section.

Under the assumption of Gaussian noise model (4.8), in order to obtain the op
timal (MAP) estimates of camera motion and a consistent 3D structure reconstruction, in
principle we need to solve the following optimization problem:

Optimal Triangulation Problem: Seek camera motion {R,T) and points x^ € E® and
5c^ G55^ on the image plane such that they minimize the distance from Xj and x^.*

Ft{R,T,x{,^) = + ||x^-:^|p (4.14)
J=1

^Around asm^l neighborhood of the actual iR,T), they only differ by high order terms.
Strictly speaking, this is the case only when the noise level is low, i.e., corrupted objective functions are

not yet so different from the noise-free one.
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subject to the conditions:

y^TBS^i = 0, x^i^ea = 1, = 1, j = l,...,n. (4.15)

We here use Ft to denote the objective function for triangulation. This objective function

is also referred in literature as the reprojection error. Unlike [33], we do not assume a

known essential matrix TR. Instead we seek xj,5^ and (i2, T) which minimize the objective
function Ft given by (4.14). The objective function Ft then implicitly depends on the

variables (R,T) through theconstraints (4.15). Clearly, the optimal solution to this problem

is exactly equivalent to the optimal MAP estimates of both motion and structure. Using

Lagrangian multipliers, we can convert the minimization problem to an unconstrained one:

n

JH N - 1) + - 1).

The necessary conditions for minima of this objective function are:

2(x:} - x]) + \^RFT^i^2 + T-'es = 0 (4.16)

2(34 - x^) + X^TR^^ + rfez = 0 (4.17)

Under the necessary conditions, we obtain:

x{ = - ^\^eJezR'̂ T^x^2

= 34 - (4.18)

^ = 0

where is given by:

or

\ i -"^1 "T Xo i Jtx\)

^ 2x^^fjac{ ^ 2x^^fiix(

Substituting (4.18) and (4.19) into Ff, we obtain:

Ft(R Tx{ 5ti) = (x^ +34^rF3cj)'̂ .
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and using (4.18) and (4.20) instead, we get:

FiiRT^ ffJ) — (*2 . (^ TRx{)^

Geometrically, both expressions for Ft are the distances from the image points and to

the epipolar lines specified by xJjX^ and {R,T). Equations (4.21) and (4.22) give explicit
formulae of the residue of ||5c^ -x{p +||5c^ -x^IP as xj, x^ being triangulated by x{, 5^. Note
that the terms in Ft are normalized crossed epipolar constraints between x{ and 5^ or
between 5cJ and x^. These expressions for Ft can be further used to solve for {R,T) which
minimizes Ft. This leads to the following iterative scheme for obtaining optimal estimates

of both motion and structure, without explicitly introducing scale factors (or depths) of the

3D points.

Algorithm 4.5 (Optimal Triangulation). The procedure for minimizing Ft can he out

lined as follows:

1. Initialization:

Initialize iF^{R.,T) and5^(i?,T) os Xj and^2 respectively.

2. Motion estimation:

Update (H,T) by minimizing Ff(R,T) = Ft(i?, T,5^(i?,T),x^(i2,T)) given by (4.21)
or (4.22) as a function defined on the manifold 50(3) x

3. Structure triangulation:

Solve for SF^{R,T) and ii^{R,T) which minimize the objective function Ft defined in

(4-14) ^ith respect to a fixed {R,T) computed from the previous step.

4. Return to Step 2 until updates are small enough.

At step 2, Ft{R,T):

r'(r.T) ^' ' + ^iWezfRiip
is a sum of normalized crossed epipolar constraints. It is a function defined on the manifold

50(3) X again hence can be minimized using the Riemannian Newton's algorithm, which

is essentiallythe same as minimizing the normalizedepipolar constraint (4.9) studied in the

preceding section. The algorithm ends when (R,T) is already a Tniniimim of Ff. It can be



72

shown that if (i2,T) is a critical point of then (i?,T,x}(i2,T),x^(ii,r)) is necessarily
a critical point of the original objective function Ft given by (4.14).

At step 3, for a fixed {R, T), 5^(i2, T) and T) canbe computed byminimizing

the distance ||5^ —x}|p + ||3^ - x |̂p for each pair of image points. Let ^ be the
normal vector (of unit length) to the (epipolar) plane spanned by (x^,T). Given such a
Xj and 5^ are determined by:

where tj = G . Then the distance can be explicitly expressed as:

H-4f +11^1 -xjip = Nip + +iixjip +1^, (4.25)
2 2 11

where 6 are defined by:

Ai = I- (esx^x^^e^ +^es +63^), =ef63
= / - (eax^x^^ef" + xjea +eaxj), = e^ez

(4.26)

Then the problem of finding 5^ (i2,T) and x^(ii,r) becomes one of finding 4* which mini
mizes the function of a sum of two singular Rayleigh quotients:

iPJRCiff'A

This isan optimization problem on a unit circle in the plane orthogonal to the vector T
(therefore, geometrically, motion and structure recovery from n pairs of image correspon
dences is an optimization problem on the space 50(3) x ^ T" where T" is an n-torus,
i.e., an n-fold product ofS^). If ATi, jV2 G are vectors such that T,Ni,N2 form an or-
thonormal basis of then ^ = cos(0)iVi -I- sin(6')iV2 with 0 GM. We only need to find 9*
which minimizes the function V{i{{9)). From the geometric interpretation of the optimal
solution, we also know that the global minimum 6* should lie between two values: and

$2 such that ^2(^1) and <2(^2) correspond to normal vectors of the two planes spanned by
(x2,T) and (i?x^,T) respectively (if Xj,X2 are already triangulated, these two planes coin
cide). Therefore, in our approach the local minima is no longer an issue for triangulation,
as oppose to the method proposed in [33]. The problem now becomes a simple bounded
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minimization problem for a scalar function and can be efficiently solved using standard oj)-
timization routines (such as "fmin" in Matlab or the Newton's algorithm). If one properly

parameterizes ^2(^)5 ^2 also be obtained by solving a 6-degree polynomial equation, as
shown in[33] (and anapproximate version results insolving a 4-degree polynomial equation
[131]). However, the method given in [33] involves coordinate transformation for each image
pair and the given parameterization is by no means canonical. For example, if one chooses

instead the commonly used parameterization of a circle S^:

2A 1 —sin(20) = cos(2^) =^-^, AeM, (4.28)

then it is straightforward to show from the Rayleigh quotient sum (4.27) that the necessary
condition for minima of V{P) is equivalent to a 6-degree polynomial equation in A.® The

triangulated pairs (xj,3^) and the camera motion (jR, T) obtained from the minimization

automatically give a consistent (optimal) 3D structure reconstruction by two-frame stereo.

Theoptimal triangulation algorithm successfully resolves some mysteries aboutthe

epipolar geometry. First, it clarifies the relationship between previously obtained objective

functions based on normalization, including Fs and Eg. In the expressions for Ft, if we
simply approximate 5c},5^ byxj,x^ respectively, we may obtain the normalized versions of

epipolar constraints for recovering camera motion. From (4.21) we get:

F(RT\ = ^§ llesfilxilP +llx^^fileriP
or from (4.22) we have:

FIRT) = + (4.30)

The first function (divided by 4) isexactly the same as the statistically normalized objective

function Fg introduced in the preceding section; and the second one is exactly the geomet

rically normalized objective function Fg. From the above derivation, we see that there is

essentially nodifference between these two objective functions —they only differ by a second

order term in terms ofxj - xj and x4 - 3^. Although such subtle differences between Fg,
Fg and Ft have previously been pointed out in [140], our approach discovers that all these

three objective functions can be unified in the same optimization procedure - they are just
®Siiice there is no closed form solution to6-degree polynomial equations, directly minimizing theRayleigh

quotient sum (4.27) avoids unnecessary trainsformations hence cein be much more efficient.
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slightly different approximations of the same objective function F^. Practically speaking,

using either normalized objective function Fg or Fg^ one can already get camera motion

estimates which are very close to the optimal ones.

Secondly, as we noticed, the epipolax constraint type objective function F^ given

by (4.23) appears as a key intermediate objective function in an approach which initially

intends to minimize the so called reprojection error given by (4.14). The approach of

minimizing reprojection error was previously considered in the computer vision literature

as an alternative to methods which directly minimize epipolar constraints [33,129]. We here

see that they are in fact profoundly related. Further, the crossed epipolar constraint F*

given by (4.23) for motion estimation and the sum of singular Rayleigh quotients V(t^) given
by (4.27) for triamgulation are simply different expressions for the reprojection error under

different conditions. In summary, "minimizing (normalized) epipolar constraints" [63, 140],
"triangulation" [33] and "minimizing reprojection errors" [129] are alldeeply related to each

other. Theyare in fact different (approximate) versions of the same procedure for obtaining

the optimal motion and structure estimates from image correspondences.

4.3 Critical Values and Ambiguous Solutions

Note that all objective functions F^Fg.Fg and Fj* that we have encountered are

even functions ofF € We canthen view themas functions on the manifold 50(3) x ]RF^

instead of50(3) x§^, where MP^ isthe two dimensional real projective plane. This objective

function could have numerous critical points, such as (local) minima, (local) maxima,

and saddles. Since the Euler characteristic of the manifold 50(3) x is 0, any (Morse)

function defined on it must have all three kinds of critical values. The nonlinear search

algorithms proposed in the above are trying to find the global minimum of given objective

functions. The search process, if not properly initialized, may stop at any of the types

of critical points listed above, especially the local minima.® Moreover, like any nonlinear

system, when increasing the noise level, new critical points can be introduced through

bifurcation (see [93]). An example of bifurcation is shown in Figure 4.1. Although, in
general, many different types of bifurcations may occur when increasing the noise level,

the fold bifurcation illustrated in Figure 4.1 occurs most frequently in the motion and
even function f(S) on satisfies f{-S) = f{S).

®Maxima and saddles have aat least one dimensional unstable submanifold hence the Newton's algorithm
rarely ends at these points.
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Figure 4.1: Bifurcation which preserves the Euler characteristic by introducing a pair of
saddles and a node. The index of the circled regions is 1.

structure estimation problem. We therefore need to understand how such a bifurcation may

occur and how it affects the motion estimates.

Since the nonlinearsearch schemes are usually initialized by the linear algorithm,

not all the local minima are equally likely to be reached by the proposed algorithms. Prom

the preceding section, we know all objective functions are more or less equivalent to the

epipolar constraints, especially when the translation is parallel to the image plane. If we

let E = TR to be the essential matrix, then we can rewrite the epipolar constraint as

= 0,j —l,...,n. Then minimizing the objective function F is (approximately)

equivalent to the following least square problem:

min||Ae||̂ (4.31)

where A is a n x 9 matrix function ofentries ofx} and x^, and e GE® is a vector of the
nine entries of E. Then e is the (usually onedimensional) null space of the 9x9 symmetric

matrix A. In the presence of noise, e is simply chosen to be the eigenvector corresponding

to theleast eigenvalue ofA^A. At a low noise level, this eigenvector ingeneral gives a good
initial estimate of the essential matrix.® However, at a certain high noise level, the smallest

two eigenvalues may switch roles, as do the two corresponding eigenvectors - topologically,

a bifurcation as shown in Figure 4.1 occurs. Let us denote these two eigenvectors as e and

e'. Since they both are eigenvectors of the symmetric matrix A^A, they must be orthogonal

to each other, i.e., ^e' = 0. In terms ofmatrix notation, we have tr(E'^E') = 0. For the
motions recovered from E and E' respectively, we have tr{I^T^T'R') = 0. It is well known

that the rotation estimate R is usually much less sensitive to noise than the translation

estimates S. Therefore, approximately, we have R ^ R! hence tr(f^T') « 0. That is,
T and T' are almost orthogonal to each other. This phenomenon is very common in the

motion estimation problem: at a high noise level, the translation estimate may suddenly

®Such estimatemight be biased towards the has relief ambiguity.
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change direction by roughly 90®, especially in the case when translation is parallel to the

image plane. We will refer to such estimates as the second eigenmotion. Similar to

detecting local minima in the continuous case (see [98]), the second eigenmotion ambiguity
can usually be detected by checking the positive depth constraints. A similar situation of

the 90® flip in the motion estimates for the continuous case has previously been reported in

[15].

Figmre 4.2 and 4.3 demonstrate such a sudden appearance of the second eigenmo
tion. They are the simulation results of the proposed nonlinear algorithm of Tninimi9:ing
the function Fs for a cloud of40 randomly generated pairs ofimage correspondences (in a
field of view 90®, depth varying from 100 to 400 units of focal length.). Gaussian noise of
standard deviation of 6.4 or 6.5 pixels is added on each image point (image size 512 x 512
pixels). Tomake the resultscomparable, we used the samerandomseeds forboth runs. The

actual rotation is 10® about the V-axis and the actual translation is along the X-axis.^®
The ratio between translation and rotation is 2.^^ In the figures, "-f" marks the actual

translation, marks the translation estimate from linear algorithm (see [76] for detail)
and "o" marks the estimate from nonlinear optimization. Up to thenoise level of6.4 pixels,
both rotation and translation estimates are very close to the actual motion. Increasing the
noise level further by 0.1 pixel, the translation estimate suddenly switches to one which is

roughly 90® away from the actual translation. Geometrically, this estimate corresponds to
the second smallest eigenvector of the matrix A^A as we discussed before. Topologically,
this estimate corresponds to the local minimum introduced by a bifurcation as shown by
Figure 4.1. Clearly, in Figure 4.2, there are 2 maxima, 2 saddles and 1 minima on

in Figure 4.3, there are 2 maxima, 3 saddles and 2 minima. Both patterns give the Euler

characteristic of KIP^ as 1.

From theFigure 4.3, we can see that thethe second eigenmotion ambiguity iseven
more likely to occur (at certain high noise level) than the other local minimiim marked by
O in the figure which is a legitimate estimate of the actual one. These two estimates

always occur in pair and exist for general configuration even when both the FOV and depth
variation are sufficiently large. We propose a way for resolving the second eigenmotion
ambiguity already by linear algorithm which is used for initialization. An indicator of the

^®We here use the convention that V-axis is the vertical direction of the image and X-axis is the horizontal
direction and the Z-axis coincides with the optical axisof the camera.

"Rotation and translation magnitudes are compared with respect to the center of the cloud of 3D points
generated.
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Figure 4.2: Value of objective function Fg
for all T at noise level 6.4 pixels (rotation
fixed at the estimate from the nonlinear op
timization). Estimation errors: 0.014 in ro
tation estimate (in terms of the canonical
metric on 50(3)) and 2.39° in translation
estimate (in terms of angle).
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Figure 4.3; Value of objective function Fg
for all T at noise level 6.5 pixels (rotation
fixed at the estimate from the nonlinear op
timization). Estimation errors: 0.227 in ro
tation estimate (in terms of the canonical
metric on 50(3)) and 84.66° in translation
estimate (in terms of angle).

configuration being close to critical is the ratio of the two smallest eigenvalues of A^A ag

and o"8 . By using both eigenvectors vg and vs for computing the linear motion estimates and

choosing the one which satisfies the positive depth constraint by larger margin (i.e. larger

number of points satisfiesthe positive depth constraint) leads to the motion estimates closer

to the true one. The motion estimate {R,T) which satisfies the positive depth constraint

should make the following inner product greater then 0 for all the corresponding points.

(fxj)^(x^i2^x^) > 0 (4.32)

While for low noise level all the points satisfy the positive depth constraint, with increasing

noise levelsome of the points fail to satisfy it. We thereforechose the solution where majority

of points satisfies the positive depth constraint. Simple re-initialization then guarantees

convergence of the nonlinear techniques to the true solution. Figures 4.4 and 4.5 depict a

slice of the objective function for varying translation and for the rotation estimate obtained

by linear algorithm using vg and vs as two different estimates of the essential matrix.

This second eigenmotion effect has a quite different interpretation as the one which

was previously attributed to the has relief ambiguity. The bas relief effect is only evident

when FOV and depth variation is small, but the second eigenmotion ambiguity may show
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Figure 4.4: Value of objective function Fs
for all T at noise level 6.7 pixels. Rota
tion is fixed at the estimate from the lin

ear algorithm from the eigenvector vg asso
ciated with the smallest eigenvalue. Note
the verge of the bifurcation of the objec
tive function.

Figure 4.5: Value of objective function Fg
for all T at noise level 6.7 pixels. Rotation
is fixed at the estimate from the linear al

gorithm from the eigenvector vs associated
with the second smallest eigenvalue. The
objective function is well shaped and the
nonlinear algorithm refined the linear esti
mate closer to the true solution.

up for general configurations. Bas relief estimates are statistically meaningful since they

characterize a sensitive direction in which translation and rotation are the most likely to be

confound. The second eigenmotion, however, is not statistically meaningful: it is an artifact

introduced by a bifurcation of the objective function; it occurs only at a high noise level

and this critical noise level gives a measure of the robustness of the given algorithm. For

comparison, Figure 4.6 demonstrates the effect of the bas relief ambiguity: the long narrow

valley of the objective function corresponds to the direction that is the most sensitive to

noise.^^ The (translation) estimates of 20 runs, marked as "o", give a distribution roughly
resembling the shape of this valley - the actual translation is marked as "-l-"in the center

of the valley which is covered by circles.

4.4 Experiments and Sensitivity Analysis

In this section, we clearly demonstrate by experiments the relationship among
the linear algorithm (as in [76]), nonlinear algorithm (minimizing F), normalized nonlinear

^^This direction is given by the eigenvector of the Hessian associated with the smallest eigenvalue.
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Figure 4.6: Bas relief ambiguity. FOV is 20° and the random cloud depth varies from 100 to
150 units of focal length. Translation is along the X-axis and rotation around the T-axis.
Rotation magnitude is 2°. T/R ratio is 2. 20 runs at the noise level 1.3 pixels.

algorithm (minimizing Fg) and optimal triangulation (minimizing F(). Due to the nature
of the second eigenmotion ambiguity, it gives statistically meaningless estimates. Such
estimates should betreated as "outliers" ifone wants to properly evaluate a given algorithm
and compare simulation results. In order for all the simulation results to be statistically
meaningful and comparable to each other, in following simulations, we usually keep the
noise level below the critical level at which the second eigenmotion ambiguity occurs unless
we need to comment on its effect on the evaluation ofalgorithms' performance.

We follow the same line of thought as the analysis of the continuous case in [98].
We will demonstrate by simulations that seemingly conflicting statements in the literature

about the performance of existing algorithms can in fact be given a unified explanation
if we systematically compare the simulation results with respect to a large range of noise
levels (as long as the results are statistically meaningful). Some existing evaluations ofthe
algorithms turn out to be valid only for a certain small range of signal-to-noise ratio. In
particular, algorithms' behaviors at very high noise levels have not yet been well understood

or explained. Since, for a fixed noise level, changing base line is equivalent to changing the
signal-to-noise ratio, we hence perform the simulations at a fixed base line but the noise

level varies from very low (< 1pixels) to very high (tens of pixels for a typical image size of
512 X512 pixels). The conclusions therefore hold for a large range ofbase line. Inparticular,
we emphasize that some of the statements given below are valid for the continuous case as
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well.

In followingsimulations, for each trial, a random cloud of 40 3D points is generated

in a region of truncated pyramid with a field of view (FOV) 90°, and a depth variation from

100 to 400 units of the focal length. Noises added to the image points are i.i.d. 2D Gaussian

with standard deviation of the given noise level (in pixels). Magnitudes of translation and

rotation are compared at the center of random cloud. This will be denoted as the translation-

to-rotation ratio, or simply the T/i? ratio. The algorithms will be evaluated for dififerent

combinations of translation and rotation directions. We here use the convention that T-axis

is the vertical direction of the image and X-axis is the horizontal direction and the X-axis

coincides with the optical axis of the camera. All nonlinear algorithms are initialized by the

estimates from the standard 8-point linear algorithm (see [76]), instead of from the ground

truth. The criteria for all nonlinear algorithms to stop are: 1. The norm of gradient is

less than a given error tolerance, which usually we pick as 10~® unless otherwise stated;^^

and 2. The smallest eigenvalue of the Hessian matrix is positive.

4.4.1 Axis Dependency Profile

It has been well known that the sensitivity of the motion estimation depends on

the camera motion. However, in order to give a clear account of such a dependency, one has

to be careful about two things: 1. The signal-to-noise ratio and 2. Whether the simulation

results are still statistically meaningful while varying the noise level.

Figure 4.7, 4.8, 4.9 and 4.10 give simulation results of 100 trials for each combi

nation of translation and rotation ("T-R") axes, for example, "X-V" means translation is

along the X-axis and the rotation axis is the V-axis. Rotation is always 10° about the axis

and the T/R ratio is 2. In the figures, "linear" stands for the standard 8-point linear algo

rithm; "nonlin" is the Riemannian Newton's algorithm minimizing the epipolar constraints

F, "normal" is the Riemannian Newton's algorithm minimizing the normalized epipolar

constraints Fg.

By carefully comparing the simulation results in Figure 4.7, 4.8, 4.9 and 4.10, we

like to point out that evaluation based on initializing from the ground truth is misleading for using
these algorithms in real applications since it usually does not revezd correctly the relationship between the
linear algorithm and nonlinear algorithms.

'̂'Our current implementation ofthe algorithms in Matlab has a numerical accuracy at 10~®.
^®Since we have the explicit formulae for Hessism, this condition would keep the algorithms from stopping

at saddle points.
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can draw the following conclusions:

• Optimization Techniques (linear vs. nonlinear)

1. Minimizing F in general gives better estimates than the linearalgorithm at low

noise levels (Figure 4.7 and 4.8). At higher noise levels, this is no longer true

(Figure 4.9 and 4.10), due to the more global nature of the linear technique.

2. Minimizing the normalized Fs in general gives better estimates than the linear

algorithm at moderate noise levels (all figures). Very high noise level case will

be studied in the next section.

• Optimization Criteria (F vs. Fs)

1. At relatively low noise levels (Figure 4.7), normalization has little effect when

translation is parallel to the image plane; and estimates are indeed improved

when translation is along the Z-axis.

2. However, at moderate noise levels (Figure 4.8, 4.9 and 4.10), things are quite the

opposite: when translation is along the .Z-axis, little improvement canbe gained
by minimizing Fs instead of F since estimates are less sensitive to noise in this

case (in fact all three algorithms perform very close); however, when translation



Tandman Maiwl* ant dapenamey; now Iwil SS pxa

X-X X-V X-Z Y-X V-V Y-Z Z-X Z-Y
Trantlaaorv'RoaMnuMS

nouton Htmau ui> oapanomcy: noae IM S 0 pail

X-V X-Z Y-X V-Y Y-Z Z-X Z-Y
YnnalaMA-Roobon axuas

Figure 4.9: Axis dependency: estimation
errors in rotation and translation at noise

level 5.0 pixel. T/R ratio = 2 and rotation
= 10®.

TnnOUon wbnuv nt (Wptndtney: naiu Iml To pom

RoBMn asgmala am OapanOvKv:ma* Ifval 7.0fW

Figure 4.10: Axis dependency: estimation
errors in rotation and translation at noise

level 7.0 pixels. T/i2 ratio = 2 and rotation
= 10®.

is parallel to the image plane, F is more sensitive to noise and minimizing the

statistically less biased Fs consistently improves the estimates.

Axis Dependency (translation parallel to image plane vs. along Z-axis)

1. All three algorithms are the most robust to the increasing of noise when the

translation is along Z. At moderate noise levels (all figures), their performances

are quite close to each other.

2. Although, at relatively low noise levels (Figure 4.7, 4.8 and 4.9), estimation errors

seem to be larger when the translation is along the Z-axis, estimates are in fact

much less sensitive to noise and more robust to increasing of noise in this case.

The larger estimation error in case of translation along Z-axis is because the

displacements of image points are smaller than those when translation is parallel

to the image plane. Thus, with respect to the same noise level, the signal-to-noise

ratio is in fact smaller in the case of translating along the Z-axis.

3. At a noise level of 7 pixels (Figure 4.10), estimation errors seem to become

smaller when the translation is along Z-axis. This is not only because, estimates

are less sensitive to noise for this case, but also due to the fact that, at a noise

level of 7 pixels, the second eigenmotion ambiguity already occurs in some of the

trials when the translation is parallel to the image plane. Outliers given by the
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second eigenmotion axe averaged in the estimation errors and make them look

even worse.

The second statement about the axis dependency supplements the observation given in
[130]. In fact, the motion estimates are both robust and less sensitive to increasing of
noise when translation is along the Z-axis. Due to the exact reason given in [130], smaller
signal-to-noise ratio in this case makes the elfect of robustness not to appear in the mean

estimation error until at a higher noise level. As we have claimed before, for a fixed base

line, high noise level results resemble those for a smaller base line at a moderate noise level.

Figure 4.10 is therefore a generic picture of the axis dependency profile for the continuous

or small base-line case (for more details see [68]).

4.4.2 Non-iterative vs. Iterative

In general, the motion estimates obtained from directly TniTiiTni7.ing the normal

ized epipolar constraints Fs or Fg are already very close to the solution of the optimal

triangulation obtained by minimizing Ft iteratively between motion and structure. It is

already known that, at low noise levels, the estimates from the non-iterative and iterative

schemes usually differ by less than a couple ofpercent [140]. This isdemonstrated inFigure
4.11 and 4.12 - "linear" stands for the linear algorithm; "norm nonlin" for the Rieman-

nian Newton's algorithm minimizing normalized epipolar constraint Fs; "triangulate" for

the iterative optimal triangulation algorithm. For the noise level from 0.5 to 5 pixels, at

the error tolerance 10~®, the iterative scheme has little improvement over the non-iterative

scheme - the two simulation curves overlap with each other. Simulation results given in
Figure 4.13 and 4.14 further show that the improvements of the iterative scheme become

a little bit more evident when noise levels are very high, but still very slim. Due to the

second eigenmotion ambigmty, we canonly perform high noise level simulation properly for

the case when the translation direction is along the Z-axis.

By comparing the simulation results in Figures 4.11, 4.12, 4.13 and 4.14, we can

therefore draw the following conclusions:

• Although the iterative optimal triangulation algorithm usually gives better estimates

(as it should), the non-iterative minimization of the normalized epipolar constraints

Fs or Fg gives motion estimates with only a few percent larger errors for all range
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of noise levels. The higher the noise level, the more evident the improvement of the

iterative scheme is.

• Within moderate noise levels, normalized nonlinear algorithms consistently give sig

nificantly better estimates than the standard linear algorithm, especially when the

translation is parallel to the image plane. At very high noise levels, the performance

of the standard linear algorithm, out performs nonlinear algorithms. This is due to

the more global nature of the linear algorithm. However, such high noise levels are

barely realistic in real applications.

For low level Gaussian noises, the iterative optimal triangulation algorithm gives the MAP

estimates of the camera motion and scene structure, the estimation error can be shown

close to the theoretical error bounds, such as the Cramer-Rao bound. This has been shown

experimentally in [131]. Consequently, minimizing the normalized epipolar constraints Fs

or Fp gives motion estimates close to the error bound as well. At very high noise levels,

linear algorithm is certainly more robust and gives better estimates. Due to numerous local

minima, running nonlinear algorithms to update the estimate of the linear algorithm does
not necessarily reduce the estimation error further.
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4.4.3 Mutual Information Between Structure Estimates and Noises

So far, we have understood some of the difficulties in motion and structure esti

mation caused by various ambiguities, such as the has relief ambiguity which is related to

the sensitivity issue, or the second eigenmotion ambiguity which is related to the robustness

issue. We here like to address, from an information theoretic viewpoint, another difficulty
caused by noise in motion and structure estimation. More specifically, we like to ask the

following questions:

Is the (2-frame) motion and structure recovery problem well-defined from an
estimation theoretic viewpoint?^® If not, how much information can still be
preserved in the presence of noise? Consequently, is there any simple criteria
that a "good" estimation algorithm should achieve?

The answer to the first question is unfortunately negative due to following reasons. Let us
assume the same noise model as given by (4.8).^^ As shown in Figure 4.15, given the noisy
X = xo + a where a is any isotropic noise on the image plane. Then the valid estimate

ofxq is given by x, the projection ofx onto the epipolar line. Therefore, the component
of a which is parallel to the epipolar fine is absorbed into the estimates. Without loss of

^®It is certainly well defined geometrically: in the noise free case, the linear algorithm gives closed-from
solutions.

^^The Gaussian assumption is not necessary here. The following arguments hold for all isotropic noises.
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generality, we assume the variance of the noise a is 1.^® Then the variance left in the residue

Ax = X —X is about 0.5. In other words, regardless of algorithms, at least half of the noise

will always become part of the estimated 3D structure. Consequently, any good (2-frame)

motion and structure estimation algorithm should have a residue variance (relative to the

noise variance) close to 0.5. This is a very simple and important statistic for evaluating

any structime and motion estimation algorithm. For the proposed optimal triangulation

algorithm, we computed the average residue variance for all the runs which are presented

in Figure 4.11 and 4.12. It gives 0.4988, very close to the theoretical value.

epipolar line

Figure 4.15: Estimated x from noisy x.

4.5 Discussion

The motion andstructure recovery problem hasbeenstudiedextensively and many

researchers have proposed efficient nonlineai- optimization algorithms. Onemay find histor

ical reviews of these algorithms in [53, 76]. Although these algorithms already have good

performance in practice, the geometric concepts behind them have not yet beencompletely

revealed. The non-degeneracy conditions and convergence speed of those algorithms are

usually not explicitly addressed. Due to the recent development of optimization methods

on Riemannian manifolds, we now can have a better mathematical understanding of these

algorithms, and propose new geometric algorithms or filters (for example, following [99]),
which exploit the intrinsic geometric structure of the motion and structure recovery prob
lem. As shown in this chapter, regardless ofthechoice ofdifferent objectives, the problem of

optimization on the essential manifold is common and essential to the optimal motion and

structure recovery problem. Furthermore, firom a pure optimization theoretic viewpoint,

most of the objective functions previously used in the literature can be unified in a sin-

^®Note Xis a vector, so here we mean the expectation JE7(||a||̂ ) = 1where ||•|| is the 2-norm.



87

gle optimization procedure. Consequently, "minimizing (normalized) epipolar constraints",
"triangulation", "minimizing reprojection errors" are all diflFerent (approximate) versions of
the same simple optimal triangulation algorithm.

We have applied only Newton's algorithm to the motion and structure recovery
problem since it has the fastest convergence rate (among algorithms using second order
information, see [19] for the comparison). Infact, the application ofother conjugate gradient
algorithms would be easier since they usually only involve calculation of the first order

information (the gradient, not Hessian), at the cost ofa slower convergence rate. Like most
iterative search algorithms, Newton's and conjugate gradient algorithms are local methods,
i.e., they do not guarantee convergence to the global minimum. Due to the fundamental

relationship between the motion recovery objective functions and the epipolar constraints
discovered in this chapter, at high noise levels all the algorithms unavoidably will sufier
firom the second eigenmotion (except the case when translation is along the Z-axis). Such
an ambiguity is intrinsic to the problem ofmotion and structure recovery and independent
of the choice of objective functions.

In this chapter, we have studied in detail the problem of recovering a discrete
motion (displacement) firom image correspondences. Similar ideas certainly apply to the
continuous case where the rotation and translation are replaced byangular andlinear veloc

ities respectively (as the linearcasein Chapter 3). Optimization schemes for the continuous

case have also been studied by many researchers, including the most recent Bilinear Projec
tion Algorithm (BPA) proposed in [98] and a robust algorithm proposed in [139]. Similarly,
one can show that they all in fact minimize certain normalized versions of the continuous

epipolar constraint. We hope the Riemannian optimization theoretic viewpoint proposed
in this chapter have provided people a different perspective.

Although the study of the proposedalgorithmsis carried out in a calibrated camera

framework, the same approach and optimization schemes can be generalized with little

effort to the uncalibrated case as well. As we pointed out in this chapter, Riemannian

optimization algorithms can beeasily generalized to products ofmanifolds. Thus, although
the proposed Newton's algorithm is for two views and a single rigid body motion, it can

be easily generalized to multiview and multi-body cases. This is to be shown in the next

chapter where motion (and structure) recovery firom multiple images is studied.



Chapter 5

Motion and Structure from

Multiple Images

"Algebra is but written geometry; geometry is but drawn algebra."
— Sophie Germain
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In this chapter, we study the classic problem in structure from motion: How to

recover camera motion and (Euclidean) scene structure from correspondences of a cloud of

points seen in multiple (perspective) images? With such a vast body ofliterature studying
almost every aspect of this problem (see, for example, reviews of batch methods [106],
recursive methods [79, 99], orthographic case [111] and projective reconstruction [114]), it
is quite reasonable to ask what, if anything, can still be new in this topic.

First ofall, we want to have a clear picture about the relationship among multiple
images. While constraints involving two images at a time (epipolar constraints) have been
well understood from previous chapters and involve clean notation and geometric interpre
tation, constraints among multiple images are more difficult to work with and to interpret.
On our way to develop algorithms, we then first pause to reflect on the nature of these

constraints. It seems therefore natural to ask the following question:

(i) Do constraints among multiple images carry information that is not contained
in the epipolar ones?

The nature of the constraints among images of the same point in different images has been
studied extensively, and is known to be multilinear (see for instance [25, 44, 117]). These
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multilinear constraints turn out tobereducible to three fundamental types: bilinear, trilin-
ear and quadrilinear constraints, named after the number of images that they respectively
involve. The bilinear constraint is exactly the epipolar constraints between two images.
Further algebraic dependency among these three types of constraints has been estab

lished by means ofelimination [132] or algebraic geometry tools [43]. However, an explicit
characterization of how the information is encoded in different constraints- which is crucial

in the design of robust estimation algorithms - is hard to derive by such means. In this

chapter, we will provide an more geometric way tostudy multilinear constraints. Especially
the geometric dependency among multilinear constraints will be introduced and clearly
studied.

After we have understood well the algebraic and geometric relationship among
multilinear constraints [43, 74, 95, 113] (which will be briefly reviewed in Section 5.2.1),
when it comes to using them for designing motion or structure recovery algorithms, they are
usually used as objectives rather than, constraints. Many researchers believe that multilinear

tensors should be directly computed in their natural linear form [34]. Algebraically, this is
true. Nevertheless, when a noise model is considered and the direct objective is to minimize
certain statistics, such as the reprojection error (also called nonlinear least squares
error as in [106]), it becomes quiteunclear how to incorporate these multilinear constraints

into the objective, orhow to obtain less biased estimates of these tensors. More speciflcally,
we want to answer the questions:

(ii) Can we convert such a constrained estimation (or optimization) problem to
an unconstrained one? If so, what weight should be assigned to each constraint?

As we will soon see, proper weighting usually ends up with nonlinear constraints, instead
of linear.

Secondly, we have every reason to believe that, for such a constrained estimation

problem, its a posteriori likelihood function (or some variation ofit) still needs to be found.

Prom anestimation theoretic viewpoint, such a function should indeed capture some peculiar
statistical nature of the multiview structure from motion problem. Other than the well

known algebraic and geometric relationship between bilinear and trilinear constraints, we
may ask:

(iii) What is the statistical relationship between bilinear and trilinear con
straints? Is trilinear constraint really needed for motion (or structure) estima
tion in the degenerate rectilinear motion case?
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On the other hand, from an optimization theoretic viewpoint, with such a function we can

further understand:

(iv) What is the exact nature of the optimization associated to the original
problem? What geometric space does the optimization take place on? Is there
any generic optimization technique available for minimizing such a function?.

Finally, in applications which require high accuracy, noise sensitivity becomes

the primary issue [14, 73, 139]. Although a specific sensitivity study is needed for every

algorithm, it is still possibleto study the intrinsic sensitivity inherent in the initial problem.

Prom statistics, we know that the Hessian of the a posteriori likelihood function at the

maximum closely approximates the covariance matrix of the estimates. Hence an explicit

expression for the likelihood function is absolutely necessary for a systematic study of the

intrinsic sensitivity issue. As we will soon see, the normalized epipolar constraint to be

derived is such a function and we will show how to compute its Hessian, even though the

sensitivity issue is not a main subject of this chapter (see Section 5.2.3).

Chapter Outline

In this chapter, we will give clearanswers to the above questions through the devel

opment of a solution to the constrained nonlinear least squaresoptimizationproblem which

minimizes the reprojection error subject to constraints cunong multiple images. Question

(i) is answered in Section 5.1 where a clean expression for all the multilinear constraints

is given. Also the concept of geometric dependency is introduced and compared with the

algebraic one. Question set (ii) will be answered in Section 4.1.2. The answers will be

come evident from the derivation and the form of the normalized epipolar constraint. For

Question set (iii), the statistical relationship between bilinear and trilinear constraints will

be revealed by Simulation 3 in Section 5.2.4 and some further explanation will be given

in Comment 5.10. Question set (iv) are to be answered in Section 5.2.3 where a generic

optimization algorithm is explicitly laid out for minimizing the normalized epipolar con

straint. Although our results, including the algorithm, can be easily generalized to trilinear

constraints or even to an uncalibrated framework, we choose to present the calibrated case

using bilinear (epipolar) constraints so as to clearly convey the main ideas. Nevertheless,
we will comment on the trilinear case and uncalibrated case in due time. In Section 5.3, an
extension to continuous or hybrid settings is briefly discussed.
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Relation to Previous Work: Thealgorithm to beproposed belongs to the socalled batch

methods for motion and structure recovery from multiple views, like that of[106, 111, 114],
and is a necessary extension to the unconstrained nonlinear least squares method [106].
We here emphasize again that, our focus is not on an algorithm for computing motion
or structure faster than the ones in [86, 139], although we will mention briefly how to

speed up our algorithm. Instead, we are using our algorithm as a means of revealing the

interesting geometry in multiview structure from motion, by way ofidentifying it with the
optimality of each step of the algorithm. In doing so, one will be able to see what roles

multilinear constraints essentially play in the design of optimal algorithms. Especially,
the revelation of the statistical relationship between bilinear and trilinear constraints is an

important complement to the well known algebraic or geometric results [43, 74, 95, 113].
Our results, especially the normalized epipolar constraint, may also help improve existing
recursive methods such as in [79, 99] if the filter objective function is modified to the one

given by us. Moreover, studying the Hessian of such an objective will allow an extension of

existing sensitivity study [14, 73] to the multiview case.

5.1 Dependency of Multilinear Constraints

As before, we model the world as a collection of points in a three-dimensional

Euclidean space. We denote the homogeneous coordinates of a point p G with respect

to some inertial coordinate frame (as if the time is to) as P = p(to) = [A*!, X2,Xa, 1]^ €

. The perspective projection ofp onto a two-dimensional image plane is represented by

homogeneous coordinate x = [xi,X2yXzY € According to (2.17), it satisfies:

A(t)x(t) = A{t)Pg(t)p, t e R (5.1)

where A(t) GE is a scalar parzimeter related to the distance of the point p from the center

of projection and the non-singular matrix A{t) - called "calibration matrix" - describes

the intrinsic parameters of the camera. We for now assume the most general case that

the camera calibration may be time-varying. Without loss of generality we will re-scale

the above equation so that the determinant of A(t) is 1. The set of 3 x 3 matrices with

determinant one is called special linear group denoted by 5L(3). The rigid motion of
the camera g{t) is represented by a translation vector T{t) G and a rotation matrix

R{t) G50(3); g{t) = {R{t),T{t)) then belongs to 5^(3), the special Euclidean group of
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rigid motion in In equation (5.1) we know that only x(t) is measured, while everything

else is unknown.

When we consider measurements at m different times, we organize the above

equations by defining:

Mi = A(ti)Pg{ti) e (5.2)

which we will assume to be full-rank, that is rank(Mi) = 3 for z = 1,... ,m. So we have

x(ti) 0

0 x(<2) ••

0 0

which we re-write in a more compact notation as

(5.3)

where ]|̂ 3mx4 called the motion matrix, G the image matrix,
and G R"^ the scale vector. We here use the superscript d to indicate the discrete

multiview case, in order to difierentiate from the continuous or hybrid cases which will be

discussed later on in this chapter.

5.1.1 Multilinear Constraints on Multiple Images

Let rhk € R^'", fc = 1,..., 4 denote the four column vectors of the matrix and

Xi G R^"^,z = 1,... ,m be the m column vectors of the matrix X^. From the equation
(5.3), we know that these column vectors must be linearly dependent. This relationship is

concisely captured by the following statement:

Proposition 5.1 (Discrete Multilinear Constraints). The coordinates {x(ti)}g.j rep
resent images of the samepointp G seenfrom m different views if and only if the column

vectors ofthe matrices and X^ defined in the equation (5.3) satisfy the following wedge
product equation:

0 X{ti) ' Ml '
0 X{t2)

=

M2

X(tm) . .Mm _

mi A m2 A ms A m4 A f 1 A •• • A = 0. (5.4)
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This constraint is obviously multilinear in the measurements x(ti) . Constraints
involving four different images are call quadrilinear, constraints involving three images are
called trilinear, and those involving two images are called bilinear.^ It is then straight
forward to check that the bilinear type constraints are exactly the epipolar constraints
that we have studied extensively in previous chapters for the two-view case. Ingeneral, the
coefficients of all the multilinear constraints are minors of the motion matrix As it has

been directly shown (see, for instance, Triggs in [117]), constraints involving more than four
frames are necessarily dependent on quadrilinear, trilinear and bilinear ones. In this section

we go one step further to discuss how trilinear and quadrilinear constraints are dependent
on bilinear ones.

When studying the dependency among constraints, one must distinguish between
algebraic and geometric dependency. Roughly speaking, algebraic dependency con
cerns the conditions that a point in an image must satisfy inorder tobe the correspondent
of a point in another image. Vice versa, geometric dependency is concerned with the infor

mation that corresponding points giveon the operator that mapsoneto the other. The two

notions are related but not equivalent, and the latter bears important consequences when

one is to use the constraints in optimization algorithms to recover structure and calibration.

While the geometric dependency of multilinear constraints has been established before un

der the assumption ofconstant calibration [44], we give a novel, simple and rigorous proof
that is vahd under the more general assumption of time-varying calibration.

5.1.2 Algebraic vs. Geometric Dependency

To clarify the relation between algebraic and geometric dependency, note that in

general we can express a multilinear constraint in theform: ai(M^)^i(X'̂ ) = 0 where ai
aresome polynomials ofentries of andA polynomials ofentries ofthe image coordinates

with and X^ defined as before, ais are called the coefficients of multilinear

constraints. Studying the algebraic dependency between constraints then corresponds
to fixing the coefficients ai and asking whether there are some additional constraints among
the joint image coordinates X^ generated by three and four views^. This problem has
been studied many researchers and an elegant answer can be found in [43] by explicitly

^In the literature, these constraints may also bereferred toasquadrifocal, trifocal and bifocal tensors.
^In other words, it addresses the dependency among algebraic ideals associated with the three types of

multilinear constraints.
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characterizing the primary decomposition of the ideal (in the polynomial ring of image

coordinates Xj's) generated by the bilinear constraints in terms of that generated by trilineax

ones or quadrilinear ones.

Geometric dependency, on the other hand, investigates whether, given the

image coordinates the coeflScients ai corresponding to motion parameters in additional

views can give additional information about These two different types of dependencies

were previously pointed out (see for instance the work of Heyden [44]). For both types of

dependencies, the answer is negative, i.e., trilinear and quadrilinear constraints in general

are dependent of bilinear ones. We here give a simple but rigorous study of the geometric

dependency. The results willalso validate the ambiguity analysis given in following sections.

Consider the case m = 3 and, for the moment, disregard the internal structure

of the motion matrix G Its columns can be interpreted as a basis of a four-

dimensional subspace of the nine-dimensionalspace. The set of fc-dimensional subspaces of

an n-dimensional space is called a Grassman manifold and denoted by G{n,k). Therefore,

is an element of G(9,4). By just re-arranging the three blocks Mi, i = 1,... ,3 into

three pairs, (Mi, M2), (Mi, M3) and (M2, M3), we define a map (f) between Cj(9, 4) and three

copies of G(6,4)

<f>:G(9,4)

Ml

M2

M3

G(6,4) xG(6,4) x(?(6,4)

Ml M2 Ml

M2 M3 M3

The question of whether trilinear constraints are independent of bilinear ones is tightly

related to whether these two representations of the motion matrix M'̂ are equivalent. Since

the coefficients in the multilinear constraints are homogeneous in the entries of each block

Mi, the motion matrix M'̂ is only determined up to the equivalence relation:

M' (5.5)

where M* = M\{0}. Thus for multilinear constraints the motion matrix is only well-defined

as an element ofthe quotient space G{3m, 4)/ ~ which isofdimension (11m -15), ^as was

already noted by Triggs [117].

The Grassmaii msnifold ^(Stti, 4) has dimension (Sm —4)4 = 12Tn —16. Thedimension ofthe quotient
space is m —1 smaller since the equivalence relation has m —1 independent scales.
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We are now ready to prove that coefficients a^'s in trilinear and quadrilinear con

straints depend on those in bilinear ones.

Theorem 5.2 (Geometric Dependency). Given three (orfour) views, the coefficients
of all bilinear constraints or equivalently the corresponding fundamental matrices uniquely

determine the motion matrix as an element in G(9,4)/ r\j (or 0(12,A)/ given that
Ker(Mi) 's are linearly independent.

Mi

M,

Proof: It is known that between any pair of images (i,j) the motion matrix:

6 G(6,4), is determined by the corresponding fundamental matrix Fij up to two

XiMi
scalars Xi,Xj:

prove is that the map:

XjMj
GG(6,4), Xj G K*. Hence for the three view case all we need to

^ : (0(9,4)/r^) -> (0(6,4)/

is injective. To this end, assume 4>(M^) = then we have that, after re-scahng,
Mi

M^

XiMi

Ms

Mi

Mi

AsMs

Ma
^2,

Mi

Mi

Ml

A3 Ma
Oz for some

Xi € R* and Gi € GL(4)* i = 1,2,3. This yields Mi(Ai(3i - Gs) = 0,M2(A2G2 - Gi) =
0,M3(A3G3 - G2) = 0. Therefore there exist Ui e R^>''',i = 1,2,3 with each column of Ui

is in Ker(Mi) such that:

Oz —XiOi =Ui, Oi —X2O2 = C/s» G2 —XzOz —Uz-

Combining these three equations, we obtain:

(1 —AiAsAa)CTi = AsAaC/i + AsCfa +

The matrix on the right hand side of the equation has a non-trivial null space since its

column vectors are in the space span{i^er(Mi),iCer(Ms), A'er(Ma)} which has dimension

three. However, Gi is non-singular, and therefore it must be AiAsAa = 1. This gives

AiGi —Ga = —Ai(AsG3 —Gi) —AiAs(AaGa —Gs). That is, the columns of AiGi —Ga are

linear combinations of columns of AsGs - Gi and AaGa - Gs- But Ker(Mi),i = 1,2,3 are
^GL(4) is the general linear group of all non-degenerate 4x4 real matrices.



linearly independent. Thus we have AiGi = Gz^MG2 = G^i, A3G3 = G2. This implies

' M[ ' AiMi

Mi = M2 Gi

.K. A1A3M3
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which means that M'̂ and are the same, up to the equivalence relation defined in
equation (5.5). Therefore, they represent the same element in G(9,4)/ ~, which means

that the map } is injective.

In the case of four views, in order to show that coefficients in quadrilinear con

straints also depend on bilinear ones, one only needs to check that the obvious map from

G(12,4)/ ~ to (G(9,4)/ is injective. This directly follows from the above proof of the

three frame case. •

Comment 5.3. As a consequence of the theorem, coefficients cxi's in trilinear and quadri

linear constraints are functions of those in bilinear ones. While the above proof shows that

the map f) can be inverted, it does not provide an explicit characterization of the inverse.

Such an inverse can in principle be highly non-linear and conditioning issues need to be

taken into account in the design of estimation algorithms. We emphasize that the geometric

dependency does not imply that two views are sufficient for reconstruction! It claims that

given n views, their geometry is characterized by considering only combinations of pairs of

them through bilinear constraints, while trilinear constraints are of help only in the case

of singular configurations of points and camera (see comment 5.4). For four views, the

condition that Ker{Mi),i = 1,... ,4 are linearly independent is not necessary. A less con

servative condition is that there exist two groups of three frames which satisfy the condition

for the three view case.

Theorem 5.2 requires that the one-dimensional kernels of the matrices Mi,i =

1,..., m (m = 3 or 4) are linearly independent. Note that the kernels ofMi for z = 1,2,3,4
are given by {-TfRi, 1)^, where the vector -RfTi 6 is exactly the position of the i^^
camera center. Hence the condition of the theorem is satisfied if and only if the centers of

projection of the cameras generate a hyper-plane of dimension m - 1. In particular, when

m = 3, the three camera centers form a triangle, and when m = 4, the four camera centers

form a tetrahedron.
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Comment 5.4 (Critical Surfaces and Motions). Although we have shown that the

coefficients of multilinear constraints depend on those of bilinear ones, we have assumed

that the latter (or the corresponding fundamental matrices) are uniquely determined by the

epipolar geometry. However, this is not true when all the points lie on critical surfaces.

In this case, as argued by Maybank in [76], we may obtain up to three ambiguous solutions

from the bilinear constraints. This is one of the cases when trilinear and quadrilinear

constraints provide useful information. On this topic, see also [78]. Al&p, when the camera

is undergoing a rectilinear motion (i.e., all optical centers are aligned), trilinear constraints

provide independent information in addition to bilinear ones. This fact has been pointed

out before; see for instance Heyden in [42].

5.2 Motion Recovery from Normalized Epipolar Constraints

5.2.1 Geometric Interpretation of Multilinear Constraints

Theorem 5.2 states a very important fact: information about the camera motion

is already fully contained in the bilinear constraints unless the camera center moves in

a straight line - such a motion is also called rectilinear motion. Geometrically, this

degenerate case is illustrated in Figures 5.1. In fact, a set of points on m image

planes satisfy all multilinear constraints if and only if "rays" extending from camera

centers along these imagepoints intersect at a uniquepoint in 3D. As a consequence of this

r? Oj

02 03
04

Figure 5.1: Degeneracy: Centers of camera Figure 5.2: Sufficiency: Centers of camera
he on a straight line. Coplanar constraints and the point are not coplanar. Three (bi-
are not sufficient to uniquely determine the linear) coplanar constraints are sufficient to
intersection hence trilinear constraints are uniquely determine the intersection,
needed.
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geometric interpretation of multilinear constraints, in order for an extra image to satisfy

all multilinear constraints, it only needs to satisfy two (bilinear) coplanar constraints given

that the new camera center is not collinear with the previous ones. For example, in Figure

5.2, in order for the fourth image to satisfy all multilinear constraints, it is sufficient for the

ray (o4,p) to be coplanar with the ray (o2)P) and the ray (o3,p). The coplanar condition

between the ray (o4,p) and the ray (oi,p) is redundant.

5.2.2 Normalized Epipoleir Constraints of Multiple Images

Multilinear constraints have conventionally been used to formulate various objec

tive functions for motion recovery. However, if we do use them as constraints, we only

need to pick a minimal set of independent ones. The minimal requirement is needed for

Lagrangian multipliers to have a unique solution. The dependency among multilinear con

straints suggests that if the centers of the camera do not lie on a straight line, pairwise

epipolar constraints already provide a sufficient set of constraints. In this chapter we will

assume this condition is satisfied unless otherwise stated - Comments 5.6 and 5.10 will

discuss about the degenerate case. Furthermore, the (pairwise) epipolar constraints among

consecutive three images natmrally give a minimal set of independent constraints. In this

section, we show how to use these constraints to derive a clean form of an optimal objec

tive function for motion (and structure) recovery. In the next section, we will show how

to use geometric optimization techniques to find the optimal solution which minimizes the

objective function derived here.

Let us assume that we have m images of n 3D points 1 < j < n with

respect to m camera frames. The rigid body motion between the and camera frames

Is gki = {RkuTki) GSE{3), 1 < i,k < m. Thus the coordinates of each 3D point e

with respect to frames i and k are related by:

= i?jbiXj + Tjfci. (5.6)

Recall thedefinition ofessential matrix. Let us denote by Eki = fkiRki theessential
matrix associated with the camera motion between the k^^ and frames, then in absence

of noise, image points xj satisfy the epipolar constraints:

iT4 EjtixJ = 0. (5.7)
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Optimal Triaugulation Problem (Multiview Case): In presence o/isotropic noises,
we seek for points x = {x^} on the image plane and a configuration ofm camera frames

G = {pfci} such that they minimize the total reprojection error. That is, we are to
minimize the objective:

n m

= (5-8)
i=i i=l

subject to the constraints:

= 0, = 0, xj^es = 1 (5.9)

where es = [0,0,1]^ G ,1 < i < m- 1,1 < k < m- 2,1 < I < m and 1< j < n.
The first two constraints are epipolar constraints among three consecutive im

ages. Prom the previous section, we know that they form a minimal (but sufficient) set
of constraints among multiview images under a generic configuration. We will discuss the

degeneracy case in Comments 5.6 and 5.10. The last constraint is for the imaging model of
perspective projection.® Using Lagrangian multipliers, the above constrained optimiza
tion problem is equivalent to minimizing:

n m i+2

E E (ll^ - 11^ +E lfc<„ +0^(Seizes - 1))
J=1 i=l k=i+l

for some GK. From the necessary condition VF = 0 at local minima.

i+2 z—1

^iM-^i)+Y,oPkMi^k^h<m+Y,<4k^ikxllk>l+0{e3 = 0
fc=t+l k=i—2

for alH —1,...,m, j = 1,... ,n. Multiplying the above equation by e^es to eliminate pj,
we obtain:

i+2 i-i

2(xi-i|) =efe3( JZ + E <4kEik^k^k>i) (5.10)
A:=i+1 k=i-2

for all i = 1,•••5m,, j = 1,... ,n. It is readily seen that, in order to convert the above

constrained optimization to an unconstrained one, we need to solve for «(• and or?, 's.
iCt IK

For this purpose, we define vectors e associated to the j^^ point: x^" =
^Without loss of generality, we here will only discuss the perspective projection. The spherical projection

is similar and hence omitted for simplicity.
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iT iT1 ^ 'xj ,..., , Ax-' = x-' —x^, and the vector of all the La-

grangian multipliers ^ and ma

trix D € E^rnxSm ^ diagonal blocks:

ei 63 Osx3

D =

03x3 ••• el'es

We define, for m > 3, matrices E —E(m) GlK3mx3(2m 3) j^j _ ^ ]j^mx(2m-3)
recursively as:

with

E{m) =

X'(m) =

E{2) =

X'{2) =

El

E21

^2

L^i

E{m-\) I 0(3,„_9)x6

03x3{2m-5) I Em

X^{m —\) I 0(3„j_9)x2

. 03x{2m-5) I ^m

Err, =

XL =

El,m-2 03x3
03x3 Em,rn—1

Em,m—2 Em,m—1

03x1

O3XI x4
•X-' •5-'•^m-2 -^m-l

We define the pseudo-array multiplication E •X^ recursively as:

with

E{m) •X^{m) =
E{m- 1)•X^{m - 1) I 0(3„,_9)x2(3m—9):

Em-XL03x(2r7i-5)

E{2)-X^{2) = E1^2
£'21xj

Em-XL =
•^m,m-2*m O3XI

Osxi EI„^_^5cL

Em,m—2^L—2 Em,m—1^L.—1

Using this notation, the equation (5.10) can be rewritten as:

2Ax^" =DE-PoP. (5.11)
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Note that D is &projection matrix, i.e., = D. All the constraints in (5.9) then can be

rewritten compactly as two matrix equations:

- 0, DAxP = AxP. (5.12)

The first equation is simply a matrix expression for all the epipolar constraints. Thus we

can solve firom equation (5.11) for oP:

oP = 2 •E^DE • Xi'̂ •E'̂ x' (5.13)

given thatthe matrix G= X '̂̂ -E'̂ DE-X^ is invertible. We call matrix Gthe observability
Grammian.

Comment 5.5 (Observability Grammian). In general, the observability Grammian is

invertible even in cases that the algorithm is not designed for, i.e., the camera motions are

such that optical centers lie on a straight line, except for points on the line. In fact, 3D
points which make the Grammian degenerate, i.e., det(G) = 0 are very rare. Geometrically,

it means that, given a sequence of camera motions, the 3D location ofa point whose images

make the Grammian degenerate is not observable. For example, for camera translating in

a straight line, points on the line itself then satisfy det(G) = 0 hence their images contain

no information about neither their 3D location nor the camera motion on the line. In this

sense, G can be thought of as the observability matrix in control theory.

Substitutingthe expression for (5.13) into (5.11), we then obtain the expression

for Ax-' and we have:

IIAx^f =z '̂̂ E•X' •E'̂ DE •Xpy^ Xi'̂ •e'̂ xP. (5.14)
Substituting this expression into the objective function F{Q,-k) we obtain:

F{g, x) =^ xP'̂ E•X' (x '̂̂ •E^DE•xA X '̂̂ •E'xK (5.15)
1=1

Notice that the terms on the right hand side of the equation are exactly multiview versions

of the crossed normalized epipolar constraints, but it is by no means a trivial sum of

the pairwise crossed normalized epipolar constraints [73]. In order to minimize F(^,x), we

need to iterate between the camera motion Q eind triangulated structure x, which would be

essentially a multiview version of the optimal triangulation procedure proposed in [73].
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In this chapter, however, we will only demonstrate how to obtain optimal motion estimates.

Note that, in the expression for i^(^,x), the matrix is a function of x-^ instead of the

measured x-^. In general, the diflFerence between x-^ and "x? is small. Therefore, we may

approximate by replacing xj in X^ by the known xj. We call the resulting matrix as
X^. We then obtain a new function (in camera motion only) Fn{Q) = F{Qyx):

n

F„{g) =Y,xP'̂ E •X' {X''̂ •E'̂ DE •X')~^ •E'̂ :x?. (5.16)
j=i

In absence of noise, each term of Fn(Q) should be:

x '̂̂ E •Xi {X '̂̂ •E^DE •X'Y^ X''̂ •E^x' =0. (5.17)

We call this the normalized epipolar constraint of multiple images. This is a natural

generalization of the normalized epipolar constraint in the two view case [73]. Thus, as in
the two view case, Fn{Q) can be regarded as a statistically adjusted objective function for

directly estimating the camera motions.

Comment 5.6 (Bilinear vs. Trilinear Constraints). It is true that one can also

use a set of independent trilinear constraints to replace those in (5.9) and, with a similar

exercise, derive its normalized version for motion (and structure) estimation. However,

trilinear tensors (as functions of camera motions) do not have as good geometric structure

as the bilinear ones. This makes the associated optimization problem harder to describe,

even though it is essentially an equivalent optimization problem. One must also be aware

that, in the rectilinear motion case, the normalized epipolar constraint objective Fn is not

supposed to have a unique minimum (as we will soon see in Simulation 3, in presence of

noise, this is not completely true. We will discuss further the new meaning of the minimum

in Comment 5.10) while the corresponding normalized trilinear one always gives a unique
solution.

Comment 5.7 (Calibrated vs. TJncalibrated Camera). In the case of an uncalibrated

camera, nothing substantial will change in the above derivation except that the essential ma

trices need to be replaced by fundamental matrices and that the camera intrinsic parameters
will introduce 5 new unknowns.
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5.2.3 Geometric Optimization Techniques

Ffi in the previous section is a function defined on the space ofconfigurations of
771 camera frames, which is not a regular Euclidean space. Thus conventional optimization
techniques cannot be directly applied to minimizing Fn- In this section, we show how to.

apply newly developed geometric optimization techniques [19, 97] to solve this problem.
We here will adopt the Newton's method, although it may not be the fastest, because it
allows us to compute the Hessian of the objective function which is potentially useful for
sensitivity analysis.

The configuration Qoim camera frames are determined by relative rotations and

translations:

F, = 6 50(3)"^-!,

Then FniG) can be denoted as F„(7^,r). It is direct to check that Fn{n,XT) = Fn{F,T)
for all A^ 0. Thus Fn(F,T) is a fimction defined on the manifold M = 50(3)"*"^ x
S3m-4 ^here is a 3m - 4 dimensional spheroid. M is simply a product of Stiefel

mamfolds and it has total dimension 6m—7. Furthermore, the (induced) Euchdean metrics

on 50(3) and are the same as' their canonical metrics as Stiefel manifolds. This

gives a natural Riemannian metric ^(•, •) on the total manifold M. Note that any tangent

vector X e can be represented as -%' = (Xn.Xr), with X-ji Gr7^(SO(3)'"~^) and
Xj- G defined by the expressions:

[^21-1^21} ••• j (5.18)

(5.19)

where G 1R^,2 = l,...,m —1 and Xf^T —0. Then the Riemannian

metric ^(•, •) on the manifold M is explicitly given by:

m—1

X) = '^ '4+u'̂ i+i.i + X'̂ Xt- (5.20)
2=1

Similar to the two view case in Chapter 4, we can directly apply the Riemannian optimiza

tion schemes developed in [19, 97] for minimizing the function F„(7^,T).

Algorithm 5.8 (Riemannian Newton's Algorithm Minimizing Fn(n,T)).
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1. Pick an orthonormal basis onT^^j-^M. Compute the vector g E with

its i^^ entry given by (g), = dFn{B^)- Compute the matrix H E Il5(6"*-7)x(6m-7)

its (itjY^ entry given by (H)ij = HessFn{B^,B^)- Compute the vector 5 = —H~^g E
-7

2. Recover the vector A E whose coordinates with respect to the orthonormal

basis B^'s are exactly 6. Update the point (7^, T) along the geodesic to exp(A).

3. Repeat step 1 if ||g|| > € for some pre-specified tolerance e > 0.

In the above algorithm, we still need to know: how to pick an orthonormal basis

on TM, how to compute geodesies on the manifold M, and how to compute the gradient

and Hessian of

Using the Gram-Schmidt process, we can find vectors E

such that, together with T, they form an orthonormal basis of Let 61,62,63 E lE^

be the standard orthonormal basis of R^. Then a natural orthonormal basis on

is given by:

B3i-3+j ^ ([0,...,0,e,i?i+i,i,0,...,0],0)

for 1 < i < m —1, 1 < j < 3 and

^3m-3+i ^ (0,l4), for 1 <2 < 3m-4.

Given a vector X = {Xn^Xf) E with X-ji and Xj- given by (5.18) and

(5.19) respectively, the geodesic {1l(t),T{t)) = exp{Xt),t GR is given by:

nt) = (5.21)

T{t) = Tcos((7t) 4- Usin(crt), a = \\Xr\\, U = Xrjo. (5.22)

The tangent of this geodesic at <= 0 is exactly X.

With an orthonormal basis, the computation of gradient and Hessian can be re

duced to directional derivatives along geodesies on M. Given a vector X E let

(7^(t),7'(t)) = exp(/^t). Then we have:

dF„(X) =
dt

Hessian
dt^
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Polarizing HessFn (X, X) wecanobtain the expression forHessi '̂n {X, y) forarbitrary X,y €

HessF„(A',3') = j(Hessf„(;t++ -HessF„(Ar-D;,;r-3;)).

According to the definition of gradient, gradi^„ € which is given by:

dFn{X) = $(gradi^n> A"), VA* € (5.23)

is exactly equal to the l-form dFn with respect to an orthonormal frame. Therefore, at each

point (7^,T), we pick the orthonormal basis as above and compute

the first and second order derivatives of with respect to corresponding geodesies of the

base vectors. The gradient and Hessian of are then explicitly expressed by the vector g

and the matrix H as described in the above algorithm. The updating vector A computed

in the algorithm is in fact intrinsically defined® and satisfies:

HessFn(A, X) = $(-gradF„, X), VA" G (5.24)

Note that has a very good structure - only matrix E depends on (7^, T) and it

consists of blocks of essential matrices .Ei+i,! and Ei^2,i- The computation of the Hessian

can then be reduced to computing derivatives of these matrices with respect to the chosen

base vectors. Prom the definition of the essential matrix Eki-, we have:

Hence the computation can be further reduced to derivatives of essential matrix only.

For a vector X G of the form given by (5.18) and (5.19), by direct computation,

we have:

d-Ei^\^i(X) = + Xi^i^iRi^i^i.

HeSs£7t-|-ijt(Af, A') d* ^^i+l,i^i+l,iFi+l,i ~

for i = l,...,m —1. Note that these formulae are consistent to the corresponding ones

in the two view case. Thus we now have all the necessary ingredients for implementing

the proposed optimization scheme. For any given number of camera frames, we get an

optimal estimate of the camera relative configuration by minimizing the normalized epipolar

objective Fn-

®That is, the definition of A is independent of the choice of coordinate frame.
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Comment 5.9 (Newton vs. Levenberg-Msirquardt). The difference between New

ton and Levenberg-Marquardt (LM) methods is that in LM the Hessian is approximated by

some form of the objective function's gradient Since the gradient only involves first order

derivatives, LM in general is much less costly in each step. From our implementation of

the Newton's algorithm, the Hessian indeed takes more than P5% of the computing time.

Nevertheless, we computed the Hessian anyway since the formula would be useful for future

sensitivity analysis of motion estimation in the multiview case.

5.2.4 Simulations and Experiments

In this section, we show by simulations and experiments the performance of the

normalized epipolar constraint. We will apply it to cases with or without the sufficiency of

the epipolar constraint satisfied.

Setup: Table 5.1 shows the simulation parameters used. In the table, u.f.l. stands for unit

of focal length. The ratio of the magnitude of translation and rotation, or simply the TjR

Table 5.1: Simulation parameters

Parameter Unit Value

Number of trials 100 - 500

Number of points 20

Number of frames 3-4

Field of view degrees 90

Depth variation u.f.l. 100 - 400

Image size pixels 500 X 500

ratio, is compared at the center of the random cloud (scattered in the truncated pyramid

specified by the given field of view and depth variation). For all simulations, independent

Gaussian noise with std given in unit of pixel is added to each image point. In general, the

amount of rotation between consecutive frames is about 20® and the amount of translation

is then automatically given by the T/R ratio. In the following, camera motions will be

specified by their translation and rotation axes. For example, between a pair of frames, the

symbolXY means that the translation is along the X-axis and rotation is along the T-axis.

If n such symbols are connected by hyphens, it specifies a sequence of consecutive motions.

Error measure for rotation is arccos in degrees where R is an estimate of the

true R. Error measure for translation is the angle between Tki andfki in degrees where f is
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an estimate of the true T. All nonlinear (two view or multiview) algorithms are initialized

by estimates from the conventional two viewlinear algorithm/

Simulation 1 (Comparison with Two Frame Bilinear and Normalized Epipolar

Constraints) Figure 5.3 plots the errors of rotation estimates and translation estimates

compared with results from the standard 8-point linear algorithm and nonlinear algorithm

for pairwise views [73]. As we see, normalization among multiple images indeed performs

better than normalization among only pairwise images.

Motion estimates between trames 2 and 1
<s 2.5

1.5

0 1 2 3 4 5
Noise tevel in pixels for image size 500x500

Motion estimates between frames 3 and 2
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Two frame
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Noise level in pixels for image size 500x500

Motion estimates between frames 2 and 1
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Noise level Inpixels for image size 500x500

Figure 5.3: Motion estimate error comparison between normalized epipolar constraint of
three frames, normalized epipolar constraint oftwoframesand (bilinear)epipolar constraint.
The number of trials is 500, camera motions are XX-YY and T/R ratio is 1.

Simulation 2 (Axis Dependency Profile) We run the multiview algorithm withconsecu

tive motions along the same rotation and translation axes for all nine possible combinations.

See Figure 5.4. Note that our multiview algorithm is not designed to work in rectihnear

motion case, such as XX-XX, YY-YY and ZZ-ZZ. Nevertheless, the simulation results

in the figure show that the translation estimates still converge to the correct translational

direction and the error angles between estimates and the true ones are comparable to other

generic cases. As we see, the estimate error is larger when translation along the Z-axis is

present. This is because of a smaller signal to noise ratio in this case.

^In the multiview case, the relative scales between translations are initialized by triangulation since the
directions of translations are known from estimates given by the linear algorithm.
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Figure 5.4: Axis dependency profile: The algorithms are run for all nine combinations of
camera rotation and translation w.r.t. the X, Y and Y axes. The number of trials is ICQ,
noise level is 3 pixel std and T/R ratio is 1.

Simulation 3 (A Statistically Stable Solution for Rectilinear Motion from Nor

malized Epipolar Constraint) Prom the previous simulation, we notice that the algo

rithm indeed converges to the correct translational direction in the rectilinear motion case.

Then how about the relative scales between consecutive translations? They are usually

believed to be captured only by trilinear constraints but not by bilinear ones. This is not

completely true: The rectilinear motion is indeed a degenerate case for the bilinear con

straints, from which there is no unique solution for the relative scales —(for example see

Figure 5.1). However, statistically, the true relative scales must be a stable solution among
all the possible ones. That is, if we properly normalize the epipolar constraint w.r.t. the

noise model, the true relative scale should be captured by the epipolar constraints alone

as a statistically stable solution. Here, noise essentially plays a positive role of "singling
out" the stable solution which otherwise would be lost when degeneracy occurs. Figure 5.5
plots two histograms ofrelative scale estimates given by minimizing our normalized epipolar
constraint: One is for a rectilinear motion and the other one for a generic motion. Clearly,
in both cases, the histogram resembles a Gaussian distribution with the mean centered

at the true scale, as a result of the proper normalization. Moreover, the two histograms
are comparable to each other, which suggests that, using (normalized) epipolar constraint
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alone, scale estimates ina degenerate case are not necessarily worse than in a generic case.
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Figure 5.5: Histogram of relative scale estimates by normalized epipolar constraint in a
rectilinear motion case and a generic motion case. The number of trial is 100, noise level is
3 pixel std and the true relative scale between consecutive translation is 2.

Comment 5.10. (Bilinear vs. Trilinear Constraints Continued) Simulation 3 re
veals a remarkable statistical relationship between bilinear and trilinear constraints: If an

optimal estimate is obtained for generic cases, it can still be retrieved as the stable esti

mate in a degenerate case - the (noise-free) deterministic constraint may be degenerate,

but there is no reason for the a posteriori distribution of the estimate to be degenerate as

well. Geometrically, the estimate obtained in a degenerate configuration can be interpreted

as a "limit" of a sequence of estimates of generic configurations. Such an estimate may

also be viewed as the so called "viscous solution" of the normalized epipolar constraint if

the Gaussian noise added on images is regarded as some kind of "diffusion". Therefore, in

principle, we do not really need trilinear constraints in order to estimate motion (including

relative scales) correctly even in the rectilinear motion case, although such an estimate may

be more sensitive or less robust (if the noise model changes).

Bxperiment (Motion Recovery from Real Images) We simply tested our algorithm

on a set ofreal images taken by a commercial pan-tilt camera. Figure 5.6 shows four images

of a cubic corner with feature points. Figure 5.7 plots the estimated and hand measured

actual camera location, and Table 5.2 gives the errors between the estimated and measured

motions. The camera is self-calibrated by Hartley's method for a pure rotating camera.

Since our camera calibration and motion measurements are still crude, errors of this size

are expected. We are currently fine-tuning our hardware setup to get better results.



Table 5.2: Motion estimate errors in degrees

Motions Rotation Errors Translation Errors

Frames 2-1 8.1° 4.6°

Frames 3-2 6.3° 5.8°

Frames 4-3 4.4° 4.5°
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5.3 Continuous and Hybrid Cases

The continuous case is a limiting case of the discrete case. In this section, we

study the continuous version of some of the constraints from previous sections. Some of

these continuous constraints have already been used in computer vision to recover motion

or structure.

5.3.1 Continuous Multilinear Constraints

Suppose that the camera calibration matrix A{t) varies very slowly so that we may

treat it as constant A for a short period of time around time t, then the image x(t) of a

point p e satisfies:

A(t)x(t) = APg{t)p. (5.25)

At time t, difierentiating this equation (m —1) times, we obtain the equation that higher

order derivatives of the optical flow should satisfy:

X 0 0 A APg

XX 0 ••• 0 A APg

: A('' = APg^^

^(m—2) ••• X 0 APg{m-2)

X A('^-i)

P-

where cj. = GZ"*" for 0 < A: < 2< (m - 1). The quantities x^^\ 0 < i < (m —1) are

the order derivatives of the image point, similar for and If we define cj. = 0 for
i < k, the (i, entry (in fact a tuple) of the first matrix in the above equation has the
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unifiedform 0<i,k < (m-1). We may definematrices e e E3mx4

and such that the above matrix equation can be rewritten as:

= M^p (5.26)

We here use the superscript c to indicate the continuous case. We then have the continuous

version of the Proposition 5.1.

Proposition 5.11 (Continuous Multilinear Constraints). Consider the image x(t) e

R? ofa point p under the camera motion g{t) £ SB{3). Then for the matrices X*" £ R3mxm
andM^ £ E3mx4 inequation (5.26), the column vectors ^ of the matrix
X^ and column vectors mi,m2,m3,m4 G of the matrix satisfy the following wedge

product equation:

mi Am2 Ams Am4 Af 1A... Afm = 0. (5.27)

This wedge equation contains all the projective invariants associated with the

motion of the image of a single point. One would see that most of the constraints given

by the wedge product involve high order derivatives of the optical flows or the structural

scales. Due to numerical accuracy, they are not very useful for reconstruction purpose.

However, constraints involving the first derivative have been widely used. These are simply

the bilinear constraints on optical flows, which are a continuous version of the bilinear

epipolar constraints in the discrete case.

Without loss of generality, we may assume g{t) = I. Then g has the twist form:

9 =
U) V

0 0

where a; € is the angular velocity and v € the linear velocity. Then, in the special



case that m = 2 and A = I, the wedge product equation gives:

rhi A... /\m4 Axi Ax2 = det
P5 X 0

Pg X X
ei A ... A 66 = 0

det
Pp X 0

X X

= 0 det
J 0 X 0

cD ?; X X
= 0

det
/ 0 X 0

0 u X — Qx X

<=> x^ux + x^vux = 0.

= 0 det[?;, X—cDx, x] = 0
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This is exactly the continuous version of the epipolar constraint as we have discussed in

Chapter 3. Suppose that there are n image points observed. Then such a constraint holds

for all the n image points:

xP^vxP + = 0, 1 < i < n.

5.3.2 Recovery of Relative Scale in the Continuous Case

As we have seen in the discrete case, the purpose of exploiting Euclidean con

straints is to reconstruct the scales of the motion and structure. In the continuous case,

the scale information is encoded in A^ , A^ ,1 < j < n for the structure of the n points and

Tj G for the linear velocity v as in the following equation:

X^x^ -f X^x^ = a;(A-^x^) +rjv <=> A^x^ + X^{x^ - Qx^) -t)v = 0, l<j<n (5.28)

Known x,x,a; and v, these constraints are all linear in A-', A-' ,1 < j < n and 7?. Also, if

x^,l < j < n are linearly independent of v, i.e., the feature points do not Une up with
the direction of translation, these linear constraints are not degenerate hence the unknown

scales are determined up toa universal scale. As in thediscrete case, we call a configuration
critical if there is any x-', 1 < j <n which lines up with the translational direction v. In

fact, this is the limiting case of the critical configuration defined in the discrete case.

We can arrange all the scale quantities into a single vector A:

A= [A^...,A^A^...,A^77f 6E2-+1.

For 71 optical flows, Ais a27i-|-1 dimensional vector. (5.28) gives Sn (scalar) linear equations.
The problem of solving Afrom (5.28) is usually over-determined. As in the discrete case, it
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is easy to check that in the absence of noise the set of equations given by (5.28) uniquely

determine Aif the configuration is non-critical. As in the discretecase, we can write all the

equations in the matrix form:

MA = 0

with M £ ]R3nx(2n+i) ^eing a matrix depending on uj,v and Then in the
presence of noise, the LLSE estimate of Ais just the eigenvector of M'^M corresponding to

the smallest eigenvalue.

Notice that the rate of scales {A^}"_i are also estimated. This pieceof information

has been ignored in most of previous structme from motion algorithms. However, it turns

out to be a very important piece of information. If we do the above estimation for a time

interval, say (to»i/), then we obtain the estimation A(<) as a function of time t. But the

estimation of \(t) at each time t is only determined up to an arbitraryscale. Hence p{t)X{t)

is also a valid estimation for any positive function p{t). However, since p{t) is multiplied to

both X{t) and A(<). Their ratio:

r{t) = X(t)/X{t)

is independent ofthe choice of p{t) at each time t. Notice J^(ln A) = A/A. Let the logarithm
of the structural scale Ato be y = InA. Then a time-consistent estimation X{t) needs to

satisfy the following ordinary differential equation, we call it the dynamic scale ODE:

y{t) = r(t).

Given y{to) = yo = A(to)/A(to), solve this ODE and and obtain y{t) for t £ [<0) Vl* Then
the time-consistent scale X{t) is simply given by:

X{t) = exp(y(t)).

Thus, all the scales estimated at different times are with respect to the scales at time to.

One can also normalize all the scales with respect to those at time t/ by setting the final

valuey{tf) and then integrating the ODE backwards. Therefore, in the continuous case, we

are able to recover all the scales as a function of time up to a universal scale. Notice that

in particular the (relative) scales of the translational motion v are fully recovered, which is

very important to many applications in mobile robot navigation.



114

In the continuous case, the notion of triangulation is essentially the same: try to

find a consistent reconstruction of the Euclidean structure from all the structure estimated

over time. However, it is much harder to implement in a practical algorithmsince it involves

integration of the motion {uj{t),v(t)) unless we have an estimation of the transformation

g{t) = (il(t),r(t)) from other sources. The issue of estimating the velocity and the trans

formation together will be addressed in section 5.3.3 which deals with hybrid settings. In

practice, the ratio function r{t) may not be available for all the times t e [toytf]. One can
usesomesimple interpolation schemes to recover r(t), hence the time-consistent scale A(<).

It is up to the user to adjust the algorithm appropriately for the specific applications.

Comment 5.12. In both the discrete and continuous cases, the proposed algorithms re

construct both the Euclidean structure and motion up to a single universal scale. These

algorithms provide any vision-based autonomous agent, for example an autonomous mobile

robot, with complete information about its surrounding environment and its ego-motion

relative to the environment. The universal scale is not important since it only scales up or

down the overall configuration space. All the intrinsic geometric (including metric) proper
ties of the space are preserved. In this sense, no information is really lost through a vision

system.

5.3.3 Hybrid Multilinear Constraints

We now study the cases where both point correspondences and optical flow mea

surements are available. Such cases are referred to as hybrid. In practical systems the

quality of the motion/structure estimates naturally depend on the quality of the measure

ments. Large motions, occlusions, refiectance variations, aliasing etc. affect negatively the

quality of the flow estimates as well as the point correspondences. Therefore it is of inter

est to study the case when both types of measurements are used for motion and structure

estimation.

Like the continuous case, we assume that the calibration matrix A{t) varies slowly
so that we can treat it as constant nearby each time instant , for i = 1,..., m. Suppose
one point p is projected on all m image frames (in discrete positions) and its optical flows
on these frames are also measured. This is a natural combination (a "direct sum") of the
discrete case and the continuous case we studied in the preceding sections. For this case.



we have:

x(ti) 0 0 ••• 0 " A(<i) •
x(ti) x(ti) 0 ••• 0 kti)

0 ••• 0 x{tm) 0 ^(^m)

1—
0

0
X{tfn)

In general, 9{ti),g{ti)j 1 <i <m have the form:

9{ti) =
Ri Ti

0 1

Mh)P9(ti)

A{h)P9(ti)

•^{im)P 9{^m)

9{ti) = 9{U)
Oi Vi Ri^i RiVi

0 0 0 0
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Similar to the discrete and continuous cases, we may define matrices £ ]^6mx2m ^
]]^6mx4 ^ ]^2m ^bove matrix equation can be rewritten as:

= mV- (5.29)

We here use superscript h to indicate the hybrid case. We then have a hybrid version of the

Propositions 5.1 and 5.11.

Proposition 5.13 (Hybrid Multilinear Constraints). Consider n images and optical

flows for j = 1,..., n of a point p. Then for the matrices X^ £

defined in equation (5.29), the column vectors £ E®*" of the matrix

X^ and column vectors mi, 7712,7713,7714 £ E®'" of the matrix satisfy the following wedge

product equation:

fhi Am2 Arhs Arh/i Axi A ... Axrn = 0. (5.30)

Obviously, this wedge product equation gives all the discrete multilinear con

straints (bilinear, trilinear and quadrilinear ones); it also gives all the continuous (bilinear)

epipolar constraints. Further, some new constraints are given by this wedge product. These

constraints involving both velocity {(wt,^t)}g:i transformation{(i?i,Ti)}g,i are called

hybrid constraints. In fact all the constraints given by the wedge product equation are
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the same as that all the (2m + 4) x (2m + 4) minors of the 6m x (2m + 4) matrix M^)

are degenerate {i.e., the determinant is zero). All the non-trivial constraints given by these

minors will be homogeneous equations in terms of the entries of {(xi,Xi)}5^i. According

to the structure of the matrix X^, the degree of these homogeneous (hybrid) constraints is

from degree 2 to degree 8.

Without loss of generality, we will assume that consecutive frames are non-critical.

Then the homogeneous constraints above determine the velocities and motions

{(i2x,ri)}g,i with translational motion and up to unknown scales. In order

to reconstruct the structural scales and the scales of motions, one needs to use the following

set of Euclidean constraints from both the discrete case and the continuous case:

Ajx| - - 7iTi = 0, 2 < 2< m, 1 < j < n

A^xJ -t- \\(x| - GixJ) - 'qiVi = 0, 1 < 2< m, 1< j < n.

As long as the discrete case and continuous case respectively have unique solutions, the

overall hybridcase has a unique solution (up to a universal scale). The estimation is simply

an LLSE problem.

In particular, the scalesof velocities at a particular time can be uniquelyrecovered

with respect to the transformation between the current image frame and a reference image

frame. This is very important for applications such as mobile robot navigation since a

consistent estimation of the displacements and velocities can be obtained. Notice that, in

the i^^ image frame, we certainly can measure optical flows for points which do not have
projections in the other image frames at all. Their structural scales can also be determined

with respect to the same universal scale. Then the occlusion is usually not a problem at all

in the hybrid case for the recovery of depth.

Notice that in the hybrid case, the quantities {Aj}2;"j=i are not quite useful since
we are not measuring the optical flows in a continuous fashion. So one can get rid of them

by applying cross product with {xJ}2"j=i to the continuous Euclidean constraints:

- vm = 0 ^ Aj(xj - cjix{) xxj - 7]iVi Xxj =0.

Then the number ofstates in the associated LLSE estimation problem canbe reduced. This

is essentially the bilinear constraint used by some researchers in the structure from motion

algorithms using optical flow, see for example [98].
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5.4 Discussion

In this chapter, we have introduced and clearly studied the geometric relationship
ofconstraints among multiple images. It has been shown that epipolar constraints alone,
except in the degenerate rectilinear motion case, have provided sufficient constraints for

multiple images. We further contend by using (bilinear) epipolar constraint that multihn-

earconstraints need to be properly normalized in order to get less biased estimates (of the

multifocal tensors). There are several consequences ofsuch a normalization. First, the so
obtained objective function is no longer linear hence it does not preserve the tensor struc

ture of multilinear constraints. Second, such a normalization is a natural generalization

of the well known normalized epipolar constraint between two images but by no means a

trivial sum of them. Third, the normalization not only provides near optimal motion esti

mates but, more importantly, reveals certain statistical relationship between epipolar and

triUnear constraints —as a necessary complement to the well known algebraic or geometric

relationship. We now know that in principle normalized epipolar constraint alone suffices

for estimating correct motion as a statistically stable solution even in the rectilinear mo

tion case. However, more extensive simulation, experiments and analysis are still needed

to evaluate how really practical it is when applied to degenerate cases because it may be

less robust to model change. For example, in the case when the noise on the images is
no longer isotropic or identically independently distributed, we do not know whether the

rectilinear motion can still be well estimated. In a practical implementation, the reader is

recommended to extend the idea of normalization in this paper to trilineax constraints or

even to an uncalibrated camera.

In both this chapter andthe previous one, we use thegeneric Newton's algorithm to

minimize the normalized epipolarconstraint. Onedisadvantage is that it is slower than most

gradient based algorithms, such as the commonly used Levenberg-Marquardt algorithm.

For this reason, we recommend the reader to use those algorithms instead for practical

implementations. We hereoutlined the Newton's algorithm to demonstrate how to compute

all the necessary geometric entities associated to the optimization.
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Figure 5.6: Four images of a cubic corner taken by the camera.
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Figure 5.7: Comparison of estimated and measured camera configuration for the four
images.



Chapter 6

Camera Self-Calibration

"Thus arises the problem of seeking out the simplest data from which the
metric relations of Space can be determined, a problem which by its very nature is not
completely determined, for there may be several systems of simple data which suffice to
determine the metric relations of Space;..."

— G. F. B. Riemann, On the Hypotheses Which Lie at the Foundations of Geometry
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The problem of cameraself-calibration refers to the problem of obtaining intrinsic

parameters of a camera using only information from image measurements, without any a

priori knowledge about the motion between frames and the structmre of the observed scene.

The general calibration problem is motivated by a variety of applications in mobile robot

navigation and control using on-board computer vision system as a motion sensor. Many

navigation or control tasks, such as target tracking, obstacle avoidance or map building,

require the knowledge of both the camera (or the object) motion and a full Euclidean

structure of the environment, which is possible only when the intrinsic parameters of the

camera axe known. Both theoretical studies as well as practical algorithms of camera self-

calibration have recently received an increased interest in the computer vision sind robotics

community. The appeal of a successful solution to the camera self-calibration problem

lies in the elimination of the need for an external calibration object [118] as well as the

possibility of on-line calibration of time-varying internal parameters of the camera. The

latter feature is of great importance for active vision systems. The majority of the camera

self-calibration in the computer vision Uterature have been derived in a projective geometry

framework. Here, we redevelop the theory in a differential geometric framework which

enables not only new perspectives and algorithms but also a resolution of some mistreated
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problems in self-calibration.

The original problem of determining whether the image measurements "only" are

sufficient for obtaining the information about intrinsic parameters of the camera has been

answered in the computer vision context by [77]. The proposed approach and solution

utilize invariant properties of the image of the so called absolute conic. Since the absolute

conic is invariant under Euchdean transformations {i.e., its representation is independent

of the position of the camera) and depends only on the camera intrinsic parameters, the

recovery of the image of the absolute conic is then equivalent to the recovery of the camera

intrinsic parameter matrix. The constraints on the absolute conic are captured by the so

called Kruppa's equations derived by Kruppa in 1913 [58].

The derivation of the Kruppa's equations was mainly developed in a projective ge

ometry framework and its understanding required good intuition of the projective geometric

entities (with the exception of [35]). This derivation is quite involved and the development

appears to be rather unnatural since, both the constraints captured by Kruppa's equations

and the image of (dual) absolute conic are in fact directly linked to the invariants of the

group of Euclidean transformation (rather than projective transformation). We here pro

vide an alternative derivation of Kruppa's equations, which in addition to being conciseand

elegant, also provides an intrinsic geometric interpretation of the so called fundamental ma

trices and its associated Kruppa's equations. Such an interpretation is crucial for designing

intrinsic optimization schemes for solving the problem (for example, see [72]).

In spite of the fact that the basic formulation of appropriate constraints, such as

the Kruppa's equations, is in place and there are many successful applications [136], to

our knowledge, there is not yet a clear understanding of the geometry of an uncalibrated

camera, and there is no complete analysis of the necessary and sufficient condition for a

unique solution of the self-calibration problem. This often leads to situations where the

algorithms are applied in ill-conditioned settings or where a unique solution is not even

obtainable. The differential geometric approach we take in this chapter will allow us to

fully understand the intrinsic geometric characterization of an uncalibrated camera and it

will easily lead to a clear answer to the questions:

(i) What is the necessary and sufficient condition for a unique solution of cam
era self-calibration? Do Kruppa's equations provide sufficient conditions on the
camera intrinsic parameters?

The first question has been previously studied by [104]. However the analysis is incorrect
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since it makes a wrong assumption that one can at best recover the structure up to an

arbitrary projective transformation from uncalibrated images [38]. Therefore, the results

given in[104] areincorrect and have led toa misleading characterization ofthenecessary and
sufficient condition for a unique solution ofself-calibration (see Section 6.5.4 and 6.5.3 for a

more detailed account). In this chapter, we will give the necessary and sufficient condition

in a very clear and compact form. Our results imply that, in principle, one can recover 3D

Euchdean motion andstructure upto a one parameter family from two uncahbrated images,
as opposed to an arbitrary projective transformation [38]. Answer to the second question is

unfortunately no, as counter examples have been given in the literature (e.g. [116]). Here
we will give a complete account ofexactly what is missing in the Kruppa'sequations. As we

will see, there exist solutions of the Kruppa's equations which do not allow any Euclidean

reconstruction of the camera motion and scene structure. After excluding these solutions,

solving Kruppa's equations is then equivalent to the necessary and sufficient condition for

a unique self-calibration.

One class of approaches to the design of self-calibration algorithms instead of

directly using the Kruppa's equations, solves for the entire projection matrices which are

compatible with the camera motion and structure of the scene [36]. Such methods suffer

severely from numerous local minima. Another class of approaches, as we have mentioned,

directly utilizes the Kruppa's equations which provide quadratic constraints in the camera

intrinsic parameters. The so called epipolar constraint between a pair of images provides 2

such constraints, hence it usually requires the total of 3 pairs of images for a imique solution

ofall the 5 unknown parameters. The solution proposed to solve the Kruppa's equations in

the literature usinghomotopy continuation is quitecomputationally expensive and requires

a good accuracy of the measurements [77]. Some alternative schemes have been explored in

[62, 138]. It has been well-known that, in presence of noise, these Kruppa's equation based

approaches do not usually provide good recovery of the camera calibration [7]. Thus, it is

important to answer:

(ii) Under what conditions can the Kruppa^s equations become degenerate or
ill-conditioned? When such conditions are satisfied, how do the self-calibration
algorithms need to be modified?

The answer to the former question is rather unfortunate: for camera motions such that

the rotation axis is parallelor perpendicular to the translation, the Kruppa's equations are

degenerate (in the sense that constraints provided are dependent); most practical image
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sequences are in fact taken through motions close to these two types. This explains why

conventional approaches to self-cahbration based on the (nonlinear) Kruppa's equations

usually fail when being applied to real image sequences. However, we further show in

this chapter that when such motions occur, the corresponding Kruppa's equations can

be "renormalized" and become linear. This gives us opportunities to design linear self-

calibration algorithms besides the pure rotation case [36]. Our study also clarifies some

incorrect analysis and results that exist in the literature regarding the solutions of the

Kruppa's equations [138]. This is discussed in Section 6.5.2.

Prom previous chapters, we know that it is possible to develop a parallel set of

theory and algorithms for recovering camera motion and scene structure for the discrete

and continuous cases. We therefore ask:

(iii) Whether there is a parallel theory and a set ofalgorithms ofself-calibration
for the discrete and continuous cases?

The answer is unfortunately no, as was previously pointed out by [9]. Due to certain

degeneracy of the continuous epipolar constraint, it is in general impossible to obtain a

full calibration from it while, for the discrete case, full information of camera calibration

is already available from the epipolar constraint only. In this chapter, similarities and

diflPerences between the discrete and continuous cases are unified in the same geometric

framework.

Chapter Outline

Section 6.1 studies the geometry of an uncalibrated camera system. It gives an

intrinsic geometric interpretation of the camera self-calibration problem. As a theoretical

foundation for the design of self-calibration algorithms, geometric invariants associated to

an uncalibrated camera are studied in detail in Section 6.2. In particular, we show that

the (dual) absolute conics are generated by these basic invariants. Section 6.3 reviews the

epipolar geometry in the uncalibrated case. Based on invariant theory. Section 6.4 provides
a geometric characterization of the space of fundamental matrices. This characterization

naturally associates the Kruppa's equations with basic invariants of the uncalibrated cam

era. In Section 6.5, we then study the solvability ofKruppa's equations. Several important
cases which allow for linear self-calibration algorithms are presented. These cases also reveal

difficulties in the conventional Kruppa's equation based approaches. Section 6.6 provides a



123

brief study ofthe continuous case, as a comparison to the theory ofthe discrete case. Some
preliminary experimentsof proposed algorithms are presented in Section 6.7.

6.1 Geometry of an Uncalibrated Camera

Before trying to solve the camera self-calibration problem, we first need to know

some geometric properties of an uncalibrated camera: we will see that the study of an

uncalibrated camera is equivalent to that of a calibrated camera in a (Euclidean) space
with an unknown metric. Further, the problem of recovering the calibration matrix A is

mathematically equivalent to that of recovering this unknown metric. Consequently, the
camera intrinsic parameters given in (2.18) can be geometrically characterized as the space

5jL(3)/50(3). Some elementary Riemannian geometry notation will beused here. For good
references on Riemannian geometry, we refer the reader to [5, 55, 103].

Let E? be the three dimensional Euclidean space (isometric to K^). Consider a
map ^ fi:om E? to itself:

: E? E^

X X' = AX

where X and X' are 3 dimensional coordinates of the points p 6 IB? and p' = 7p(p) e E^
respectively. Then ijj is the transformation from the calibrated space to the uncalibrated

space. To difiierentiate these two spaces, we will use a prime on the entities associated to

the uncalibrated space, unless it is clear from the context. Let $(•,•) to be the standard

Euchdean metric on E^. Then the map ip induces a new metric $'(•,•) on E? as following:

'̂(u,v) = ^(il}~^{u),il)~^(v)) = u^A~'̂ A~^v, Vn,?;erp/]B?, Vp'€ IE?. (6.1)

We define the symmetric matrix 5 G associated to the matrix A as:

5 = i4"^i4~^ (6.2)

Then the metric <>'(•, •) is determined by the matrix S. Let IK C 5L(3) be the subgroup of
5L(3) which consists of all upper-triangular matrices. That is, any matrix >1 € IK has the

form:

an ^12 Ol3

A = 0 fl22 <^23

0 0 ^33

(6.3)
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Note that if A is upper-triangular, so is A~^. Clearly, there is a one-to-one correspondence

between DC and the set of all upper-triangular matrices of the form given in (2.18); also

the equation (6.2) gives a finite-to-one correspondence between DC and the set of all 3 x 3

symmetric matrices with determinant 1 (by the Cholesky factorization). Usually, only one

of the upper-triangular matrices corresponding to the same symmetric matrix has a physical

interpretation as the calibration of a camera. Thus, if the calibration matrix A does have the

form given by (2.18), the self-calibration problem is equivalent to the problem of recovering

the matrix 5, i.e., the new metric $'(•, ) of the uncalibrated space.

Now let us consider the general case that the uncalibrated camera is characterized

by an arbitrary matrix A £ 51/(3). A has the Qi?-decomposition:

A = QR, Q £K, Re 50(3). (6.4)

Then A~^ = R^Q~^ and the associated symmetric matrix 5 = A~^A~^ = In

general, if A = BR with A,B e SL{3),R € 50(3), the A~'̂ A~^ = B~'^B~^. That is A and

B induces the same metric on the uncalibrated space. In this case, we say that matrices

A and B are equivalent. The quotient space 5L(3)/50(3) will be called the intrinsic

parameter space. It gives an "intrinsic-indeed" interpretation for the camera intrinsic

parameters given in (2.18). This will be explained in more detail in the rest of this section.

We contend that, without knowing camera motion and scene structure, the matrix

A e 5L(3) can only be recovered up to an equivalence class A 6 5L(3)/50(3). To see this,

suppose B e 5L(3) is another matrix in the same equivalence class as A. Then A = BRq

for some Rq e 50(3). The coordinate transformation (2.7) yields;

AX{t) = AR(t)X{to) -f- AT{t) ^ BRoX{t) = BRoR{t)I^RoX{to) + BRoT(t). (6.5)

Notice that the conjugation:

Adr:SE{Z) ^ SE{Z)

h rhr~^

is a group homomorphism where r = Ro 0

0 1

no way that one can tell an uncalibrated camera with calibration matrix A undergoing the
motion {R(t),T{t)) and observing the point p € from another uncalibrated camera with

calibration matrix B undergoing the motion {RQR{t)RQ, RQT{t)) and observing the point

Then from the equation (6.5), there is



125

RqP GIE?. The effect of Rq is nothing but a rotation of the overall configuration space.
We will soon see that this property naturally shows up in the fundamental matrix (to be
introduced) when we study epipolar constraint for the uncafibrated case.

Therefore, without knowing camera motion and scene structure, the matrix A

associated with an uncalibrated camera can only be recovered up to an equivalence class A

in thespace 5L(3)/50(3). The subgroup K ofallupper-triangular matrices in SL{3) isone

representation of such a space, as is the space of 3 x 3 symmetric matrices with determinant

1. Thus, SL{3)/SO(3) does provide an intrinsic geometric interpretation for the unknown

camera parameters. In general, the problem of camera self-calibration is then equivalent to

the problem of recovering the symmetric matrix S = A~'̂ A~^^ i.e., the new metric

from which the upper-triangular representation of the intrinsic parameters can be easily

obtained from the Cholesky factorization.

The space with the new metric <&'(-,.) is still a Euclidean space. Nevertheless,

without knowing this metric, we do not know how to transform the chosen coordinate

charts ofthe uncaUbrated camera back to an orthonormal one. That is, the space is now

uncalibrated. Prom (2.7), the coordinate transformation in the uncafibrated space is given

by:

AX(t) = AiJ(t)X(<o) + AT{t) ^ X'{t) = AR(t)A-^X'{to) T'(t) (6.6)

where X' = AX and T' = AT. In homogeneous coordinates, the transformation group on

the imcafibrated space is given by:

G' =
ARA-^ r

0 I
T' Re S0{3) \ C (6.7)

It is direct to check that the metric $'(-,•) is invariant under the action of G'. Thus G' is

a subgroup of the isometry groups of the uncafibrated space. If the motion of a calibrated

camera in the uncafibrated space is given by g'{t) e G',t eR, the homogeneous coordinates

of a point p' GIE? satisfy:

p'{t) = 9'{t)p'{to). (6.8)

Prom the calibrated camera model, the image of the point p' with respect to a calibrated

^The isometry group of a manifold M is the set of all transformations which preserve its Riemannian
metric.
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camera is given by:

Ax = Pp'. (6.9)

It is then direct to check that this image is the same as the image ofp = 6 E' with

respect to the uncalibrated camera, i.e., we have:

Ax = APp. (6.10)

From this property, the problem of camera self-calibration is indeed equivalent to the prob

lemof recovering the unknown metric $'(•,•) of the uncalibrated spaceassuminga calibrated

camera.

6.2 Geometric Invariants of an Uncalibrated Camera

Since isometric transformation (group) G' preserves the metric <&'(•,•)» invariants

preserved by such transformation are therefore keys to recover such a metric. This section

will give a complete account of these invariants. Although the explicit form of the metric

#'(•,•) is unknown, we know the uncalibratedspace is isomorphic to the standard Euclidean

space through an isomorphism ip. Thus the invariants of the uncalibrated space under its

isometry group G' are inone-to-one correspondence to theinvariants oftheEuclidean group.

The complete Hst of Euchdean invariants is given by the following proposition:

Proposition 6.1 (Euclidean Invariants). For a n dimensional vector space V, a com

plete list of basic invariants of the group SO{n) consists of (1) the inner product $(u,v) =

u'̂ v of two vectors u,v £V and (2) the determinant det[u\ ..., u"] o/n vectors ..., u" G
V.

See [134] for a proof of this proposition. Then the set of all Euclidean invariants

is the algebra generated by these two types of basic invariants. In the uncalibrated camera

case, we have:

Corollary 6.2 (Invariants of an Uncalibrated Camera). For the space with the

metric $'(•,•)> « complete list of basic invariants of the isometry group G' consists of (1)
the inner product #'(u,v) = A ^A~^v oftwo vectors u,v ETIS? and (2) the determinant
det[A~^u^, of three vectors GTE^.
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Then the set of invariants associated to an uncalibrated camera is the algebra
generated by these two types of basic invariants. Since

it foUows that the Invariant is independent of the matrix A.
Therefore the determinant type invariant is useless for recovering the unknown matrix A
and only the inner product type invariant can be helpful.

For any n-dimensional vector space V, its dual space V* is defined to be the
vector space of all linear functions on V. An element in V* is called a covector. If

e\ z= 1,..., 71 are a basis for V, then the set of linear functions ej,j = 1,..., rz defined as:

ej{e ) = 6ij (6.11)

form a (dual) basis for the dual space V*. The pairing between V and its dual V* is
defined to be the bilinear map:

<-,->'.V*xV R (6.12)

(^,u) ^{u). (6.13)

If we use the coordinate vector ^ = [aj,..., ocn^ G R" to represent a covector ^ =

E"=i "j-ej € y*, GR, and similarly, u = [/?i,..., e R" to represent u = e
F,/3i e R (note that we use column vector convention for both vectors and covectors), then
with respect to the chosen bases the pairing is given by:

<^,u >=

For a linear transformation / : V —> F, its dual is defined to be the linear transformation

f* :V* V* which preserves the pairing:

< u,/(u) >=</*(u),z; >, yueV*,v^V. (6.14)

Let Ae R""^" be the matrix representing / with respect to the basis e', z= 1,..., n. Since:

< u, f{v) >=u^Av = (A^u)^u, (6.15)

it follows that the dual f* is represented by with respect to the (dual) basis ejJ =
l,...,n.
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The invaxiants given in Corollary 6.2 are invariants of the vector space TE^ =

under the action of the isotropy subgroup AS0{3)A~^ (here we identify an element in

AS0{3)A ^ with its dijfferential map since everything is linear). As we know from above,
this group action induces a dual action on the dual space of TE^, denoted by r*E^. This

dual action can then be represented by the transpose group A~^S0{3)A'̂ since

{ARA-Y = A-'̂ R'̂ A^ £ A-'̂ S0{3)A^

for all i? € 50(3). We call invariants associated with thisdualgroup action on the covectors

as coinvariants. Consequently we have:

Corollary 6.3 (Coinvariants of an Uncalibrated Camera). For the space E^ with the
metric $'(•,•)> o. complete list of basic coinvariants of the isometry group G' consists of (1)
the induced inner product ^AAl^t} of two covectors ^,77 GT*E^ and (2) the determinant

det[^i)^2,^3] of three covectors € T*E^.

Note that in the above we use the convention that vectors are enumerated by
superscript and covectors by subscript. One may also refer to Weyl [134] or Goodman and
Wallach [31] for a detailed study ofpolynomial invariants ofclassical groups - Corollary 6.2
and 6.3 can then be deduced from the First Fundamental Theorem ofgroups G C GL{V)
preserving a non-degenerate (symmetric) form (see [31]). Note that the induced inner

product onT*E^ isgiven by the symmetric matrix 5~^ = AA^, the inverse of5 = A~'̂ A~^.
In terms of projective geometry, 5 and S~^ define two conics dual to each other.

We next want to show that the so called absolute conic (or the dual absolute
conic) is actually a special invariant generated by inner product type invariants (or coinvari
ants). In the projective geometry approach to camera self-calibration, the absolute conic
plays an important role. In order to give a rigorous definition of the absolute conic, we
need to introduce the space OP^, the three dimensional complex projective space^. Let
P= bi»P2,P3,P4]^ G be the homogeneous representation of a point p in QP^. Then the
absolute conic, denoted by 11, is defined to be the set of points in OP^ satisfying:

Pl+P2+P3 = 0, P4 = 0 (6.16)
is the space of all one dimensional (complex) subspaces in C, i.e., the quotient space / where

the equivalence relation ~ is: [zi,22,23,24]^ ~ [z •21,2 •22,2 •23,2 •24)^ for all 2^ 0.
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Note that this set is invariant under the complex Euclidean group:

E(3,C) =
R T

0 1
Te^.Re C/(3) } C (6.17)

where 17(3) isthespace ofall (complex) 3x3 unitary matrices. The special Euclideaji group
SE{3) is just a subgroup ofJ?(3, C) hence the absolute conic is invariant under SE{3) as
well.

For anyp = \pi,P2,PiiP4]'̂ € suppose

Pj = Uj + ivj, Uj,Vj eR, y = 1,..., 4 (6.18)

where i = \/—1. Since U4 = V4 = 0, we obtain a pair of vectors u = [^1,^2,^3,0]^

and u = [ui,U2,V3,0]^ of the 3 dimensional (real) Euclidean space (in homogeneous
representation). From (6.16), these two vectors satisfy:

y^v = 0 (6.19)

Onthe otherhand, any pair ofvectors u,u € TE^ which satisfy the above conditions {i.e., u

and Vare orthogonal to each other and have the same length) definea point on the absolute

conic n. Therefore, the absolute conic Q, is the same as the set of all pairs of such vectors.

Since all the inner product type quantities in (6.19) are invariant under the Euclideangroup

5E(3), the absolute conic is simply generated by these basic invariants.

In the uncalibrated camera case, ifwe let S = andp' = [pi)P21^35^4]^ ^

C^, the corresponding absolute conic (6.16) is then given by:

\p'iyP2^P3]S\p'i,P2^P3f = 0, p'̂ = 0. (6.20)

Therefore, the cameraself-calibration problem isalsoequivalent to the problem ofrecovering

this absolute conic (for example see Maybank [76]). It is direct to check that this absolute

conic is generated by basic invariants given in Corollary 6.2. Define the dual absolute conic

ft* to be the set of points in QP^ satisfying:

\Pl,P2^P3]S~'̂ \p'l,P2yP3f = 0, P4= 0. (6.21)

Similarly, one can show that it is generated by the inner product type coinvariants given in

Corollary 6.3.
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6.3 Epipolar Constraint in the Uncalibrated Case

Before we can apply the invariant theory given in the previous section to the

problem of camera self-calibration, we first need to know what quantities we can directly

obtain from images and what type of geometric entities they are.

The epipolar (or Longuet-Higgins) constraint plays an important role in the study

of the geometry of calibrated cameras. In this section, we study its uncalibrated version.

Prom (6.6), for a point p' G we have:

X'{t) = AR(t)A-^X'(to) + T'(,t) =!. T'(t) XX'(t) = T'(t) x AR(<)A-'X'(io)

=!• X'{tff^)AR(t)A-^X'{to) =0. (6.22)

Let xi € and X2 € IR^ be images ofp' at time to and t respectively, i.e., there exist

Ai,A2 > 0 such that Ajxi = X'(to) and A2X2 = X'(f). To simplify the notation, we

will drop the time dependence from the motion {AR{t)A~^yT'{t)) and simply denote it by

{ARA~^,T'). Then (6.22) yields:

x^TARA'^xi = 0. (6.23)

Note that in the above equation the matrix:

Fi = T'ARA~^ G (6.24)

is of particular interest - it contains useful information about camera intrinsic parameters

as well as the motion of camera.

Recall that the motion {ARA~^,T') in the uncalibrated space is equivalent to the

motion (R,T) in the calibrated space, with T = A~^T'. Also from (6.6), we have:

A-^X'{t) = R{t)A-^X'(to) + T(,t) =s. r(«) XA-'X'(f) = T(4) Xfl(i)^-iX'(<o)
=f X'(tfA-'̂ f(t)R{t)A-'X'(to) =0 (6.25)

We then have a second form for the constraint given in (6.23):

X2 = 0. (6.26)

The matrix

F2 = A~'̂ fRA~^ (6.27)
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is called the fundamental matrix in the Computer Vision literature. When A = I, the

fundamental matrix simply becomes TR which is exactly the essential matrix E that we

havestudied extensively in previous chapters. In fact, the two constraints (6.23) and (6.26)

are equivalent and they axe both called the epipolar constraint for the uncalibrated case.

We prove this by showing that the two matrices Fi and F2 are actually equal.

Lemma 6.4 (The Hat Operator). IfT G1^, v4 GSL{Z) andT' = AT, then f = A^f'A.

Proof: Since both A^{-)A and i4~^(-) are linear maps from IR^ to using

the fact that det(i4) = 1, one may directly verify that these two linear maps axe equal on

the bases: [1,0,0]^, [0,1,0]^ or [0,0,1]^. •

This simple lemma will be frequently used throughout the paper. By this lemma,

we have:

F2 = A-'̂ TRA-^ = A-'̂ TA-^ARA'̂ = f'ARA'^ = Fi. (6.28)

We then can denote Fi and F2 by the same notation F. Define the space of fundamental

matrices associated to A G SL(Z) as:

T={A-'^fRA-^\ReSO{Z),Tel^}. (6.29)

The space F is also called fundamental space. Note that T —A~'^£A~^.

In the preceding section, we have shown that if two matrices A and B axe in the

same equivalence class of SL(Z)ISO(Z), we are not able to tell them apart only from images.

We may assume B = ARq for some Rq G 50(3). Then with the same camera motion {R,T),

the fundamental matrix associated with B is:

B-'̂ TRB-^ = A-'̂ RoTRR^A-^ = A''^R^(RoRI^)A-\ (6.30)

As we noticed, the essential matrix TR is simply replaced by another essential matrix

RoT{RoRI^). Therefore, without knowing actual camera motion, only from the funda

mental matrix, one cannot tell camera B from camera A.
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6.4 Geometric Characterization of the Space of Fundamental

Matrices

In this section, we give a geometric characterization of the space of fundamental

matrices. It will be shown that this space can be naturally identified with the cotangent

bundle of the matrix Lie group A~^S0{3)A^, therefore, fundamental matrices by their

nature can be viewed as covectors. This characterization is quite different fi:om the conven

tional way of characterizing fundamental matrices as a degenerate matrix which represents

the epipolar map between two image planes (for example see [62]), but it directly connects

a fundamental matrix with its related Kruppa's equation, as we willsoon see in Section 6.5.

We define a metric •) on the space as:

C) = tr(B5C^), VB, C € (6.31)

where S = A ^A ^. It is direct to check that so defined g is indeed a metric. This metric
may be used to identify the space with its dual of linear functions

on R^^^). In other words, under this identification, given a matrix B 6 R^^^, we may
identify it as a member in the dual space (R^^^)* through:

/:t3x3 (]k3x3j*

B ^ B* = ^(5,-).

From the metric definition (6.31), B* can be represented in the matrix form as B* = BS

(with respect to the standard Euclidean metric on R^^^). Since S is non-degenerate, the
map / is an isomorphism and it induces a metric on the dual space as follows:

^*{B\C*) = ^(B,C) = tv{B*S-HC*f). (6.32)

A tangent vector of the Lie group A-^50(3)A^ has the form A-'^TRA^ 6

R^ 3 ^ijej-0 ^ 5*0(3) and T € R^. By restricting this metric to the tangent space
of A"^50(3)A^, i.e., T(A~^50(3)A^), the metric ^ induces a metric on the Lie group
A-^50(3)A^:

^{A-'̂ fiRA^, A-'̂ f2RA^) =^(A-^fi A'̂ fsA^). (6.33)

The equality shows that this induced metric on the Lie group A-^50(3)A^ is right in
variant.
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The cotangent vector corresponding to the tangent vector is given by:

(A-'̂ TRA^Y = A-'̂ TRA^S = A-'̂ TRA'̂ . (6.34)

Note that the matrix A ^TRA ^ is the exact form of a fundamental matrix. Therefore,
the space ofall fundamental matrices can be identified with the cotangent space of the Lie

group A ^SO{Z)Al^^ i.e., T*{A~^SO{Z)AiF). There is an induced metric on the cotangent
space:

^*(A-'̂ fiRA-^,A-'̂ f2RA-^) = (6.35)

where T[ = AT\ and T2 = >122. Since a fundamental matrix can only be determined up to
scale, we may consider the unit cotangent bundle T* (v4~^50(3)>l^). Define the space of

unit fundamental matrices to be:

= (A-'̂ TRA-^ IR€ SO(3),T e = 1}. (6.36)

The space is also called unit fundamental space. The relation between the unit

fundamental space and the imit cotangent space T{(A~'̂ S0(Z)JY^) is given by:

Theorem 6.5 (Geometric Characterization of Fundamental Space). The unit cotan

gent space Ti{A~'̂ SO{Z)A^) is a double covering of the unit fundamental space T\.

The proofessentially follows from the fact that the unit tangent bundle Ti(50(3))

is a double covering of the normalized essential space see Appendix A. For a fixed

matrix A GSL(Z), the normalized fundamental space Ti is, same as a five dimensional

connected compact manifold embedded in

Comment 6.6. The identification of the fundamental space as the cotangent space of the

Lie group A '̂ S0{3)A^ isonly artificial. That is, these two spaces happen to have the same
matrix representation. Such an identification by no means implies that the translation T is

by nature a tangent vector of the rotation R.

After all the preparation in geometry, we are now ready to investigate possible

schemes for recovering the unknown calibration matrix A, or equivalently, the symmetric

matrix S = A~^A~^.
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6.5 Kruppa's Equations

Without loss of generality, we may assume that both the rotation R and trans

lation T are non-trivial, i.e., R ^ I and T ^ 0 hence the epipolax constraint (6.23) is

not degenerate and the fundamental matrix can be estimated. The camera self-calibration

problem is then reduced to recovering the synunetric matrix S = A~^A~^ ot S~^ = AA^

from fundamental matrices. In previous sections, we have shown that, even if we here

have chosen A to be an arbitrary element in 5L(3), A can only be recovered up to a ro

tation, i.e., as an element in the quotient space SL{Z)/S0{3). Note that SL{3)/SO{3) is

only a 5-dimensional space. From the fundamental matrix, the epipole vector p' can be

directly computed (up to an arbitrary scale) as the null space of F. Given a fundamental

matrix F = T'ARA~^, its scale (usually denoted as A) is defined as the norm of T'. If

A= ||T'|| = I, such a F is called a normalized fundamental matrix.^ For now, we
assume that the fundamental matrix F happens to be normalized.

Suppose the standard basis of ]R3 is ei = [1,0,0^,62 = [0,1,0^,63 = [0,0, If €
Now pickany rotation matrix Rq G50(3) such that RqT' = 63. Using Lemma 6.4, we

have T' = li^ezRo- Define matrix D G to be:

D = RqF = ezRoARA-^ = [-e2,ei,0fRqARA'K (6.37)

Then D has the form D = [^1, ^2j 0]^ with ^1, ^2 € being the first and second row vectors

of D. Hence we have = A~^R^A^{—I^e2)^ ^2 — A^R^ci. Define vectors
r?i,7?2 G as 61,772 = -1^62, then it is direct to check that S~^ satisfies:

= = iTs-^i2 = viS-%. (e.ss)

We thus obtain three homogeneous constraints on the matrix S~^, the inverse of the matrix

S. These constraints can be used to compute S~^ hence S.

The above derivation is based on the assumption that the fundamental matrix F

is normalized, i.e., ||T'|| = I. However, since the epipolar constraint is homogeneous in the
fundamental matrix F, it can only be determined up to an arbitrary scale. Suppose Ais
the length ofthe vector T' G inF' = T'ARA~^. Consequently, the vectors ^1 and ^2
also scaled by the same A. Then the ratio between the left and right hand side quantities
in each equation of (6.38) is equal to A^. This gives two independent constraints on S~^,

^Here || • || represents the standard 2-norm.
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the so called Kruppa's equations (after its initial discovery by Kruppa in 1913):

)7^5-1j)2 vTs-^ni
Alternative means of obtaining the Kruppa's equations axe by utilizing algebraic relation

ships between projective geometric quantities [77] or via SVD characterization of F [35].

Here weobtain the sameequations from a quite different approach. Equation (6.39) further

reveals the geometric meaning of the Kruppa ratio: it is the square of the length of the

vector T' in the fundamental matrix F. This discovery turns out to be quite useful when

we later discuss the renormalization of Kruppa's equations. In general, each fundamental

matrix provides at most two algebraic constraints on if the two equations in (6.39) axe

independent. Since the symmetric matrix S has five degrees of freedom, in general at least

three fundamental matrices axe needed to uniquely determine 5. But, as we will soon see,

this is not the case for many special camera motions.

Comment 6.7. One must he aware that solving Kruppa's equations for camera calibration

is not equivalent to the camera self-calibration problem in the sense that there may exist

solutions of Kruppa's equations which are not solutions of a "valid" self-calibration. Given a

non-critical set of camera motions, the associated Kruppa's equations do not necessarily give

enough constraints to solve for the calibration matrix A. See Section 6.5.3 for a complete

account.

The above derivation of Kruppa's equations is straightforward, but the expression

(6.39) depends on a particular rotation matrix Rq that one chooses - note that the choice

of Rq is not unique. However, there is an even simpler way to get an equivalent expression

for the Kruppa's equations in a matrix form. Given a normalized fundamental matrix

F = T'ARA~^, it is then straightforwaxd to check that S~^ = AA'̂ must satisfy the

following equation:

FS'^F'^ = (6.40)

We call this equation the normalized matrix Kruppa's equation. It is readily seen

that this equation is equivalent to (6.38). If F is not normalized (since usually we can only

estimate it up to a scale), we may always assume it is of the form F —XT'ARA~^ with

||T'|| = 1 and AE Munknown. We then have the matrix Kruppa's equation:

FS-^F'̂ = X^f'S-^f'̂ . (6.41)
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This equation is equivalent to the scalar version given by (6.39) and is independent of

the choice of the rotation matrix Rq. In fact, the matrix form reveals that the nature of

Kruppa's equations is nothing but the inner product (co)invariants that we have studied

in Section 6.2.

6.5.1 Solving the Kruppa's Equations

Algebraic properties of Kruppa's equations have been extensively studied (see e.g.

[77, 138]). However, conditions on dependency among Kruppa's equations obtained from

the fundamental matrix have not been fully discovered. Therefore it is hard to tell in prac

tice whether a given set of Kruppa's equations suffice to guarantee a unique solution for

calibration. As we will soon see in this section, for very rich classes of camera motions

which commonly occur in many practical applications, the Kruppa's equations will become

degenerate. Moreover, since the Kruppa's equations (6.39) or (6.41) axe highly nonlinear in

S~^, most self-calibration algorithms based on directly solving these equations suffer from

being computationally expensive or having multiple local minima [7, 64). These reasons

have motivated us to study the geometric nature of Kruppa's equations in order to gain a

better understanding of the diflficulties commonly encountered in camera self-calibration.

Our attempt to resolve these difiicultieswill lead to simplified algorithms for self-calibration.

These algorithms are linear and better conditioned for these special classes of camera mo

tions.

Given a fundamental matrix F = T'ARA~^ withp' of unit length, the normalized

matrix Kruppa's equation (6.40) can be rewritten in the following way:

- ARA-^S-^A-'̂ R^A^)f'̂ =0. (6.42)

According to this form, ifwe define C = ARA~^^ a linear (Lyapunov) map cr:

as a :X X—CXC^, and a linear map r : -> as t :Y t-i- T'YT'̂ , then the
solution S~^ of equation (6.42) is exactly the (symmetric real) kernel of the composition
map:

TOa: (6.43)

This interpretation of Kruppa's equations clearly decomposes effects of the rotational and

translational partsofthemotion: if there is no translation i.e., p = 0, then there is no map
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t; if the translation is non-zero, the kernel is enlarged due to the composition with map

r. In general, the symmetric real kernel of the composition map r o a is 3 dimensional -

while the kernel of cr is only 2 dimensional as we will prove below. The solutions for the

unnormalized Kruppa's equations are even more complicated due to the unknown scale A.

However, we have the following lemma to simplify things a little bit.

Lemma 6.8. Given a fundamental matrix F = TARA~^ with T' = AT, a real symmetric

matrix G is a solution of FXF^ = }?T'XT' if and only if Y = A ^XA~^ is a

solution of EYE"^ = X'̂ TYT'̂ with E = TR.

Using Lemma 6.4, the proofof this lemma is simply algebraic. This simple lemma,

however, states a very important fact: given a set offundamental matrices Fi = flARiA'^
with T! = ATi,i = l,...,m, there is a one-to-one correspondence between the set of

solutions of the equations:

FiXFl =X^fixf'̂ , i=1,..., m. (6.44)

and the set of solutions of the equations:

EiYEj = \^iTiYTf, j = (6.45)

where Ei = TiRi are essential matrices associated to the given fundamental matrices. Note

that these essential matrices are determined only by the camera motion. Therefore, the

conditions of uniqueness of the solution of Kruppa's equations only depend on the camera

motion. Our next task is then to study how the solutions of Kruppa's equations depend on

the camera motion.

6.5.2 Renormalization and Degeneracy of Kruppa's Equations

Prom the derivation of the Kruppa's equations (6.39) or (6.41), we observe that

the reason why they are nonlinear is that we do not usually know the scale A. It is then

helpful to know under what conditions the matrix Kruppa's equation will have the same

solutions as the normalized one, i.e., with A set to 1. Here we will study two special

cases for which we are able to know directly what the missing A is. The fundamental

matrix can then be renormalized and we can therefore solve the camera calibration from

the normalized matrix Kruppa's equations, which are linear! These two cases are when

the rotation axis is parallel or perpendicular to the translation. That is, if the motion is



138

represented by {R,T) 6 5-E(3) and the unit vector u G is the axis of then the two

cases are when u is parallel or perpendicular to T. As we will soon see, these two cases are

of great theoretical importance: Not only does the calibration algorithm become linear, but

it also reveals certain subtleties of the Kruppa's equations and explains when the nonlinear

Kruppa's equations are most likely to become ill-conditioned.

Lemma 6.9. Consider a camera motion (i?,T) G SE{Z) where R = 0 G (0,7r) and

the axis u £ is parallel or perpendicular to T. If j £ R and positive definite matrix

Y are a solution to the matrix Kruppa's equation: TRYR^f^ = j^TYT^ associated to
the essential matrix TR, then we must have 7^ = 1, Consequently, Y is a solution of the

normalized matrix Kruppa's equation: TRYR^T^ = TYT^.

Proof: Without loss of generality we assume ||r|| = 1. For the parallel case, let

rc G be a vector of imit length in the plane spanned by the row vectors of f. All such x

lie on a imit circle. There exists a:o € on the circle such that XqYxq is maximum. We

then have x'̂ RYR^xq = j^x'̂ Yxq, hence 7^ < 1. Similarly, ifwe pick xq such that x^Yxq
is minimum, we have 7^ > 1. Therefore, 7^ = 1. For the perpendicular case, since the rows

of T span the subspace which is perpendicular to the vector T, the eigenvector u of is in

this subspace. Thus we have: u^RYR'̂ u = j^u^Yu ^ u^Yu - 'y^u^Yu. Hence 7^ = 1 if
Y is positive definite. i

Combining Lemma 6.9 and Lemma 6.8, we immediately have:

Theorem 6.10 (Kruppa's Equation Renormalization). Consider an unnormalized

fundamental matrix F = f'ARA-^ where R = 0 £ (0,7r) and the axis u £ ^ is
parallel or perpendicular to T = A'^T'. Let e = TVI|T'||. Then if X£ R and a positive
definite matrix S are a solution to the matrix Kruppa's equation: FS~^F^ = X^eS~^^,
we must have X^ = ||T'|p.

This theorem claims that, for the two types of special motions considered here,

there is no solution for A in the Kruppa's equation (6.41) besides the true scale of the

fundamental matrix. Hence we can decompose the problem into finding Afirst and then
solving for S or S~^. The following theorem allows to directly compute the scale Afor a
given fundamental matrix:

can always be written ofthe form R = e"® for some 6 € [0, tt] and u € 5^.
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Theorem 6.11 (Fundamental Matrix R.enormalization). Given an unnormalized fun

damental matrix F = Xf'ARA-^ with ||r'|| = 1, ifT = A'̂ T' is parallel to the axis of R,
then is ||F^T'F||, and ifT is perpendicular to the axis of R, then Ais one of the two
non-zero eigenvalues of F^T'.

Proof; First we prove the parallel case. It is straightforward to check that, in

general, F'^T'F = X^ARfT. Since the axis ofR is parallel to T, we have RFT = T so that
F'̂ T'F = A^T'. For the perpendicular case, let u e he the axis ofR. By assumption
T = A-^T' is perpendicular to u. Then there exists v such that u = TA'^v. Then it

isdirect to check that T'v is the eigenvector ofF'^T' corresponding to the eigenvalue A. •

Then for these two types of special motions, the associated fundamental matrix can

be immediately normalized by being divided by the scale A. Once the fundamental matrices

are normalized, the problem of finding the calibration matrix S~^ from normalized matrix

Kruppa's equations (6.40) becomes a simple linear one! A normalized matrix Kruppa's

equation in general imposes three linearly independent constraints given by (6.38) on the

unknown calibration. However, this is no longer the case for the special motions that we

are considering here.

Theorem 6.12 (Degeneracy of Kruppa's Equations). Let us consider the camera

motion {R,T) e SE{S) where R = has the angle 6 e (0,7r). If the axis u 6 is parallel

or perpendicular to T, then the normalized matrix Kruppa's equation: TRYIIFT^ = TY^

imposes only 2 linearly independent constraints on the symmetric matrix Y.

Proof: For the parallel case, by restricting Y to the plane spanned by the row

vectors ofT, it is a symmetric matrix Y in notation matrix R e SO{S) restricted

to this plane is a rotation R G 50(2). The normalized matrix Kruppa's equation is then

equivalent to RYRF = Y. Since 0 < 0 < tt, this equation imposes exactly 2 constraints
on the 3 dimensional space of 2 x 2 real symmetric matrices. The identity 12x2 is the only

solution. Hence the normalized Kruppa's equation imposes exactly 2 linearly independent

constraints on Y.

For the perpendicular case, since u in the plane spanned by the row vectors of

T, there exist u G such that (u,v) form an orthonormal basis of the plane. Then the

normalized matrix Kruppa's equation is equivalent to:

TRYR^T^ = fYf^ -M- (u,vfRYR'̂ (u,v) = {u,vfY{u,v). (6.46)
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Since R^u = u, the above matrix equation is equivalent to two equations v^RYu =

v^Yu,v^RYR'^v = v^Yv. These are the only two constraints given by the normalized

matrix Kruppa's equation. •

According to this theorem, although we can renormalize the fundamental matrix

when rotation axis and translation are parallel or perpendicular, we only get two inde

pendent constraints from the resulting (normalized) Kruppa's equation corresponding to a

single fundamental matrix. Hence for these motions, in general, we still need 3 such funda

mental matrices to uniquely determine the unknown calibration. On the other hand, if we

do not renormalize the fundamental matrix in these cases and directly use the unnormalized

Kruppa's equations (6.39) to solve for calibration, the two nonlinear equations in (6.39) are

in fact algebraically dependent! Therefore, one can only get one constraint, as opposed to

the expected two, on the unknown calibration S~^. This is summarized in Table 6.1.

Table 6.1: Dependency of Kruppa's equation on angle (f> G [0,tt) between the rotation and
translation.

Cases Type of Constraints # of Constraints on S ^

(<!> # 0) and (.f ^ f) Unnormalized Kruppa's Equation 2

Normalized Kruppa's Equation 3

= 0) or (<j> = |) Unnormalized Kruppa's Equation 1

Normalized Kruppa's Equation 2

Although, mathematically, motion involving translation either parallel or perpen

dicular to the rotation is only a zero-measme subset of 5£7(3), they are very commonly

encountered in applications: most images sequences are in fact tahen by moving the cam

era around an object in a planar or orbital trajectory, in which case the rotation axis and

translation direction are likely perpendicular to each other. Another example is a so called

screw motion, whose rotation axis and translation are parallel. Such a motion shows up

frequently in aerial mobile motion. This observation may explain why self-calibration based

on directly solving the Kruppa's equations (6.39) is likely to be ill-conditioned when being

applied to real image sequences taken imder such motions [7]. To intuitively demonstrate

the practical significance of our results, we give an example in Figure 6.1. Our analysis re

veals that in these cases, it is crucial to renormalize the Kruppa's equation using Theorem

6.12: once the fundamental matrix or Kruppa's equations are renormalized, not only is one

more constraint recovered, but we also obtain linear (normalized) Kruppa's equations.



141

Figure 6.1: Twoconsecutive orbitalmotions: even if pairwise fundamental matrices among
the three views are considered, one only gets at most 1 + 1 + 2 = 4 effective constraints on
the camera intrinsic matrix if the three matrix Kruppa's equations are not renormalized.
After renormalization, however, we may get back to2 + 2 + 2>5 constraints.

Comment 6.13 (Special Motion Sequences). Interestingly, for a walking human look-

ing forward, the main rotation of the eyes and the head is yaw and pitch whose axes are

perpendicular to the direction of walking. As the theorem suggests, self-calibration in this

situation is linear hence more robust to noise. Similar cases can also often be found in

vision-guided navigation systems, on-board planar mobile robots. The screw motion, on

the other hand, shows up very frequently in motion of aerial mobile robots such as an au

tonomous helicopter.

Comment 6.14 (Solutions of the Normalized Kruppa's Equations). Claims of The

orem 6.12 run contrary to the claims of Propositions B.5 hence B.9 in [138]: In Proposition

B.5 of [138], it is claimed that the solutions of the normalized Kruppa's equations when the

translation is parallel or perpendicular to the rotation axis are 2 or 3 dimensional. In The

orem 6.12, we claim that the solutions are always 4 dimensional. Theorem 6.12 does not

cover the case when the rotation angle 9 is tt. However, if one allows the rotation to be

TT, the solutions of normalized Kruppa's equations are even more complicated. For exam

ple, we know e^'^T = —explanationT if u is of unit length and parallel to T (see Lemma

3.1). Therefore, if R = the corresponding normalized Kruppa's equation is completely

degenerate and imposes no constraints at all on the calibration matrix.

Comment 6.15 (Number of Solutions). Although Theorem 6.11 claims that for the

perpendicular case A is one of the two non-zero eigenvalues of F^T', unfortunately, there
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is no way to tell which one is the right one - simulations show that it could be either the

larger or smaller one. Therefore, in a numerical algorithm, for given n > 3 fundamental

matrices, one needs to consider all possible 2" combinations. According to Theorem 6.10,

in the noise-free case, only one of the solutions can be positive definite, which corresponds

to the the true calibration.

6.5.3 Kruppa's Equations and Chirality

It is wellknown that if the scene is rich enough (with to come), then the necessary

and sufficient condition for a unique camera calibration (see [66]) says that two general

motions with rotation along different axes already determine a unique Euclidean solution

for camera motion, calibration and scene structure. However, the two Kruppa's equations

obtained from these two motions will only give us at most four constraints on 5, which is

not enough to determine S which is of five degrees of freedom. We hence need to know

what information is missing from the Kruppa's equation. State alternatively, can we get

other independent constraints on S from the fundamental matrix?

The proof of Theorem 6.11 suggests another equation can be derived from the

fundamental matrix F = XT'ARA~^ with ||r'|| = 1. Since F'^f'F = X^ABF'T, we can
obtain the vector a = X^AR'̂ T = )?AlfFA~^T'. Then it is obvious that the following

equation for S = A~'̂ A~^ holds:

a^Sa = A^T'̂ ST'. (6.47)

Notice that this is a constraint on S, not like the Kruppa's equations which are constraints

on S~^. Combining the Kruppa's equations given in (6.39) with (6.47) we have:

X2 ^ iTS ^ ^ (\S ^^2 _ /
8-^7)2 ^ T'̂ ST'

Is the last equation algebraically independent of the two Kruppa's equations? Although it

seems to be quite different from the Kruppa's equations, it is in fact dependent on them,

whichcan be shown either numericallyor usingsimplealgebraic toolssuch as Maple. Thus,

it appears that our effort to look for more independent constraints from the fundamental

matrix has failed. In the following, we will give an explanation to this by showing that not

all S which satisfy the Kruppa's equations may give valid Euclidean reconstructions of both

the camera motion andscene structure. Theextraconstraints which aremissing in Kruppa's
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equations are in fact captured by the socalled chirality criteria, which waspreviously studied

in [37]. We now give a clear andconcise description between the relationship ofthe Kruppa's

equations and chirality.

Theorem 6.16 (Kruppa's Equations and Chirality). Consider a camera with calibra

tion matrix I and motion IfT^O, among all the solutions Y = of the

Kruppa's equation EYE'̂ = X^TYT^ associated to E = TR, only those which guarantee
ARA~^ € 50(3) may provide a valid Euclidean reconstruction of both camera motion
and scene structure in the sense that any other solution pushes some plane iV C to the

plane at infinity, andfeature points on different sides of the plane N have different signs in

recovered depth.

Proof: The images X2, xi of any point p G satisfy the coordinates transfor

mation;

A2X2 = Aii2xi -I- T.

If there exists Y = A'^A'"^ such that EYE"^ = X^TYT^ for some AGE, then the matrix

F = A~'̂ EA~^ = T'ARA~^ is also an essential matrix where T' = AT, that is, there exists
R € 50(3) such that F = T'R (see [76] for an account of properties ofessential matrices).
Under the new calibration A, the coordinate transformation is in fact:

A2i4x2 = Ai^i?i4~^(>lxi) T'.

Since F = f'R = f'ARA'^, we have ARA'̂ = R-\-T'v'̂ for some veR^. Then the above
equation becomes: A2^X2 = Ai^(>lxi) + Air'v^(Axi) -H T'. Let ^ = Xiv'̂ {Ax.i) GR, we
can further rewrite the equation as:

A2AX2 = Ai.Ri4xi + (;0 + l)r'. (6.49)

Nonetheless, with respect to the solution A, the reconstructed images j4xi,Ax2 and (R,T')
must also satisfy:

72AX2 = 7i.Ri4xi H- T' (6.50)

for some scale factors 71,72 € M. Now we prove by contradiction that v ^ 0 is impossible

for a valid Euclidean reconstruction. Suppose that v ^0 and we define the plane N = {p £
v'̂ p = -1}. Then for any point p = AiAxi GN, we have ^ = -1. Hence, firom (6.49),
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Ax.i^Ax.2 satisfy A2i4x2 = Ai^Axi. Since ^4x1,^4x2 also satisfy (6.50) and T' ^ 0, both 71
and 72 in (6.50) must be 00. That is, the plane N is "pushed" to the plane at infinity by

the solution A. For points not on the plane we have /? + 1 7^ 0. Comparing the two

equations (6.49) and (6.50), we get 7^ = Ai/()0 + 1),« = 1,2. Then for a point in the far

side of the plane iV, i.e., /? + 1 < 0, the recovered depth scale 7 is negative; for a point in

the near side of iV, i.e., ^ + \ > 0, the recovered depth scale 7 is positive. Thus, we must

have that u = 0. 1

Comment 6.17. Theorem 6.16 essentially implies the chirality constraints studied in [37].

According to the above theorem, if only finite many feature points are measured, a solution

of the calibration matrix A which may allow a valid Euclidean reconstruction should induce

a plane N not cutting through the convex hull spanned by all the feature points and camera

centers.

As we will soon show in next section that, in general, all A's which make AEA~^

a rotation matrix form a oneparameter family. Consequently, there is only one A such that

both ARiA~^ and Ai?2-4"^ axe rotation matrices if Ri and R2 are two rotation matrices

with independent rotation axes. Theorem 6.16 then implies that the calibration matrix

A can be uniquely determined with two independent rotations regardless of translation if

enough feature points are available. An intuitive example is provided in Figure 6.2.

Thesignificance ofTheorem 6.16 is that it explains why we getonly two constraints

from one fundamental matrix even in the two special cases when the Kruppa's equations

can be renormalized - extra ones are imposed by the structure, not the motion. The

theorem also resolves thediscrepancy between theKruppa's equations andthenecessary and

sufficient condition for a unique calibration: the Kruppa's equations, although convenient

to use, do not provide sufficient conditions for a valid calibration which allows a valid

Euclidean reconstruction of both the camera motion and scene structure. However, the
fact given in Theorem 6.16 is somewhat difficult to harness in algorithms. For example,
in order to exclude invalid solutions, one needs feature points onor beyond the plane iV.®

Alternatively, if such feature points are not available, one may first obtain a projective
reconstruction and use the so called absolute quadric constraints [115] to calibrate
the camera. However, in such a method, the camera motions cannot be critical in the

®Some possible ways of harnessing the constraints provided by chirality have been discussed in [37].
Basically they give inequality constraints on the possible solutionsof the calibration.
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Figure 6.2: A camera undergoes two motions (i?i,Ti) and (R2,T2) observing a rig given
by the three lines Li^L2',L^. Then the camera calibration is uniquely determined as long
as jRi and i?2 have independent rotation axes and rotation angles in (0,7r), regardless of
Ti,T2. This is because, for any invalid solution A, the associated plane N (see the proofof
Theorem 6.16) must intersect the three lines at some point, say p. Then the reconstructed
depth of pointp with respect to the solution A would be infinite (points beyond the plane
N would have negative recovered depth). This gives us a criteria to exclude all such invahd
solutions.

sense specified in [104], which is obviously a more strict condition than requiring only two

independent rotations.

6.5.4 Necessary and Sufficient Condition for Unique Calibration

In this section, we establish in detail the conditions of A under which the matrix

ARA~^ isalso a rotation matrix given that i? isa rotation matrix. Let us suppose ARA~^
is a rotation matrix. We then have:

ARA-^(A-^IFA^) =7 ^ RXR^ = X (6.51)

where A" = A^A^isa positive definite matrix. Thus X has to be in the symmetric
real kernel of the Lyapimov map:

L :

X ^ X-RXR^. (6.52)

We will denote this kernel as SRKer(L). According to Callier and Desoer [11], the map

L has eigenvalues 1 —AiA^,l < <3 where Ai,z = 1,2,3 are eigenvalues of the matrix
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R. Without loss of generality, the rotation matrix R has eigenvalues 1,q;,a 6 C and

corresponding right eigenvectors € C?. Then the (complex) kernel ofL is given by:

Ker(L) = span{Xi = uu\X2 = vv\Xz = vv*} C (6.53)

where, for a vector u € C?, u is its conjugate and v* is its conjugate transpose. We assume

here R is neither the identity matrix 7 or a 180® rotation, i.e., R is not of the form

for some k e Z and some u e IR^ of unit length. Then only Xi is real and X2 = Xz

are complex, and L has a three dimensional real kernel but one dimension is spanned by

i(X2 - X3) which is skew-symmetric (here i = \/^). Therefore, the solution space for a

symmetric real X is 2 dimensional and must have the form X = ^Xi + 7(^2 + X3) with

/3,7 € R. Summarizing the above we obtain:

Lemma 6.18. Given a rotation matrix R not of the form for some k E Z and some

u G of unit length, the symmetric real kernel associated with the Lyapunov map L : X

X - RXifF is 2 dimensional. If R is of the form e^^^, then SRKer(L) is4 dimensional if
k is odd and 6 dimensional if k is even.

Note that the case when the rotation is 180® has little practical significance in real

situations, since no image correspondences are available in this case. Thus, from now on we

may assiune that all rotations that we consider for the camera self-calibration problem are

strictly less than 180® unless otherwise stated.

Suppose now we have m rotation matrices Ri,i = 1,... ,m. For ARiA~^ to be

rotation matrices, X = A~^A~^ has to be in the intersection of symmetric real kernels of

all the linear maps:

i = l,...,m

X 1—>• X —RiXRf. (6.54)

That is X € ng,iSRKer(Li).

Theorem 6.19 (Necessary & Sufficient Condition for Unique Calibration). Sup

pose the camera motion is given by a subset {(i?i,Tj)}5^i C SE{Z) with Ri are not of the

form for some k E Z and some u GR^ of unit length. Then the camera calibration ma

trix A can be uniquely determined if and only if there are at least two rotation components

Ri and Rj whose axes are linearly independent.
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Proof; Theorem 6.16 allows us to check that, if ^4 is a valid camera calibration,

then ARiA~^ has to be a rotation matrix for each Hi. The necessity is obvious: if two

rotation matrices Ri and R2 have the same axis, they have the same eigenvectors hence

SRKer(Li) = SRKer(jD2) where Li : X X —RiXRj,i = 1,2. We now only need to

prove the sufficiency. We may assume ui and U2 are the two rotation axes of Ri and i?2

respectively and are linearly independent. Since, by assumption, both Ri and R2 considered

are not 180® rotation, both SRKer(Xi) and SRKer(L2) are 2 dimensional. Since ui and

U2 are Unearly independent, the matrices uittf and U2iji^ are linearly independent and
are in SRKer(Li) and SRKer(X2) respectively. Thus SRKer(Li) is not fully contained in

SRKer(L2) hence their intersection SRKer(Z»i)nSRKer(L2) has at most 1 dimension. Thus

X^IioxXe 51(3). B

It is well know many motionsubgroups of SE{Z), though of practical importance,

do not have rotation along two independent axes. For example, the planar motion and

screw motion. According to the theorem, if the motion of the camera falls into such a

motion group, unique self-calibration is impossible. A more detailed analysis will be given

in Chapter 7 about to what extend we can still recover camera calibration, motion and

scene structure with respect to each Lie subgroup of SE(Z).

Although it has little practical importance, in order to make the theory complete,

we also give the results of self-calibration in presence of rotation of 180° (for simplicity,

we here do not give the proof). Combined with Theorem 6.19, they give conditions for a

unique calibration in more general cases.

Remark 6.20. Suppose Ri = = 1^2 are elements in 50(3). Ui are vectors of unit

length. Let Li be the Lyapunov map associated to Ri. Then we have the following cases:

U1U2 =0, l^il = 1^2! = TT => SRKer{Li) nSRKer{L2) = span{/, uiuf, U2U2},

0 < \uiU2\ < 1, |0i| = 1^21 = TT SRKer{L\) n SRKer(L2) = span{I^U2Ui'u^U2}

U1U2 = 0, l^il = TT, 0 < 1^21 < TT SRKer{Li) DSRKer[L2) = span{7,U2U^},

0< |m^U2| < 1,1^11 = 7r,0 < 1^21 < TT ^ SRKer{L\) n SRKer[L2) = span{I}.

6.6 Continuous Case

So far, we have understood camera self-calibration when the motion of the camera

is discrete - positions ofthe camera are specified as discrete points in 577(3). In this section.
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we study its continuous version. Suppose the coordinates of a point p € under the camera

velocities (a;(t),u(t)) is X(t). Let X'(t) = AX(t) be the coordinates in the uncalibrated

space. From (2.13), we directly have:

X'(t) = + Av(t). (6.55)

For simplicity, we will drop the time dependence and define two new vectors u' = ylu e

and uj' = Au) G .

6.6.1 General Motion Case

By the general case we mean that both the angular and linear velocities uj and v

are non-zero. Note that X = Ax yields X = Ax -b Ax. Then (6.55) gives:

X = Au)A~ '̂X, + v' => (u' 4- x) XX = [v' + x) x A(jjA~ '̂X.

A~'̂ vA~^-x. + x'̂ A~'̂ u)vA~^-x. = 0. (6.56)

The last equation is called the uncalibrated continuous epipolar constraint, which

is apparently the uncalibrated version of (3.15). As the calibrated case, define the optical

flow u = Xand the special symmetric matrix s = ^(aJu-buS). Define the continuous
fundamental matrix F' G to be:

F' =
A "^vA'^

A~'^sA~'^
(6.57)

Then fi*om (6.56) we have an equivalent expression of the uncalibrated continuous epipolar
constraint:

[u^,x^]F'x = 0 (6.58)

F' can therefore be estimated fi-om as few as eight optical fiows (x,x) from (6.56).
Note that v' —A '̂ vA ^and u' = A '̂ ljA~^. Applying Lemma 6.4 repeatedly,

we obtain

A~'̂ sA~^ =i(A"^a;AV -b v'AujA'̂ ) =i(a?5~^P -b (6.59)
Then the uncalibrated continuous epipolar constraint (6.56) is equivalent to:

x^u'x -b -b v'S~^u)')-x. = 0. (6.60)
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Suppose S ^ for another B e SL{3), then A= BRq for some Rq e SO{3). We
have:

^v' + = 0

^ x^v'x +x^i +i?BB'̂ oj')x =0
^ ic^B~'̂ RovB~^x +x^B~'̂ R^R^B~^x = 0. (6.61)

Comparing to (6.56), one cannot tell the camera A with motion (it;,u) from the camera B
with motion {Rqu^Rov). Thus, like the discrete case, without knowing the camera motion
the calibration can only be recovered in the space SL{3i)/SO{3), i.e., only the symmetric
matrix 5""^ hence S can be recovered.

However, unlike the discrete case, the matrix 5 cannot be fully recovered in the

continuous case. Since S~^ = AA'̂ is a symmetric matrix, it can bediagonalized as:

S ^= RiJjRi, Ri € 50(3) (6.62)

where S = diag{(Ti,(72,<J3}. Then let lj" = Riu' and v" = Riv'. Applying Lemma 6.4, we
have:

v' =

Thus the continuous epipolar constraint (6.56) is alsoequivalent to:

(6.63)

(ilix)^?;"(i?ix) +(Rixf^{u)"i:v" +u''Ea;'')(^ix) =0. (6.64)
Prom this equation, one cansee that there is noway to tella cameraA withAA^ = Ei^i

from a camera B —Ri A. Therefore, only the diagonal matrix E can be recovered as camera

parameters since both the scene structure and camera motion are unknown.

Note that E is in SL{3) hence <Tio'2cr3 = 1. The singular values only have two

degrees of freedom. Hence we have:

Theorem 6.21 (Self-Calibration in Continuous Case). Consider an uncalibrated cam

era with an unknown calibration matrix A 6 SL(3). Then only the eigenvalues ofAA^ can

be recovered from the uncalibrated continuous epipolar constraint.
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If we define that two matrices in SL{Z) are equivalent if and only if they have the

same singular values. The intrinsic parameter space is then reduced to the space SL{S) /

where ~ represents this equivgilence relation. The fact that only two camera parameters can

be recovered was known to Brooks et al. [9]. They have also shown how to do calibration

for certain matrices A with only two unknown parameters. But our proof has been much

more simpler due to the use of Lemma 6.4.

Comment 6.22. It is a little surprising to see that the discrete and continuous cases are

different for the first time, especially knowing that in the calibrated case these two cases

have almost exactly parallel sets of theory and algorithms. We believe that this has to do

with the map:

-fA :

X ^ AXA^

where A is an arbitrary matrix in Let so(3) be the Lie algebra of 50(3). The

restricted map ^a 150(3) endomorphism while ')a |50{3) Consider ^a Iso(3)
be the first order approximation of 7>i |5o(3)- Then the information about the calibration

matrix A does not fully show up until the second order term of the map ja- This also

somehow explains why in the discrete case the (Kruppa) constraints that we can get for A

are in general nonlinear.

Comment 6.23. From the above discussion, if one only uses the (bilinear) continuous

epipolar constraint, at most two intrinsic parameters of the calibration matrix A can be

recovered. However, it is still possible that the full information about A can be recovered

from multilinear constraints on the higher order derivatives of optical flow. A complete list

of such constraints has been given in Chapter 5.

6.6.2 Pure Rotation Case

Since full calibration is not possible in the general case when translation is present,

we need to know if it is possible in some special case. The only case left is when there is

only rotational motion, i.e., the linear velocity v is always zero. In this case the continuous

fundamental matrix is no longer well defined. However firom the equation (6.55) we have:

X = AujA'^X. =» Ax+ Ax = A£jAi4~^x

=> —9.A€jA~^-3^. (6.65)
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This is a degenerate version of the continuous epipolax constraint and it gives two in
dependent constraints on the matrix Au}A~'̂ for each (x,x). Given n > 4 optical flow

measurements {(xi,Xt)}g^i, one may uniquely determine the matrix AuiA''̂ by solving a
linear equation:

Mc = h (6.66)

where M 6 jg ^ matrixfunction of {(xi,Xi)}5Li, 66 K® is a vector function of XfXi's

and c € K® is the 9entries of AujA~^. The solution is given by the following lemma:

Lemma 6.24. If co ^ 0, then AuA ^= C—^I where C € is the matrix corresponding
to the least square solution c of the equation Mc = b and 7 is the unique real eigenvalue of

C.

The proof is straightforward. Then the self-calibration problem becomes how to

recover S = or 5"^ = AJ^ from matrices of the form AwA'^. Without loss of

generality, we may assume u is of unit length.

Let C = AljA-'^ € Then we have:

SC = A-'̂ QA-^ = u' (6.67)

where w' = Aw. Thus SC = -(SCy, i.e., SC + (CyS = 0. That is, S has to be in the

kernel of the Lyapunov map:

£,';C3x3 ^ (03x3

X {cyx + xc (6.68)

If w ^ 0, the eigenvalues of w have the form 0,ia, -ia with a GK. Let the corresponding

eigenvectors are a;,u,?2 € C^. According to Callier and Desoer [11], the null space of the
map L' has three dimensions and is given by:

Ker(L') = span{5i = A~'̂ ww*A~'̂ , S2 = A~'̂ uu*A~^, S^ = A~'̂ m*A~'̂ }. (6.69)

As in the discrete case, the symmetric real S is of the form S = pSi + 7(^2 + ^3), i.e., the

symmetric real kernel of V is only two dimensional. We denote this space as SRKer(L').

We thus have:

Lemma 6.25. Given a matrix C = AwA~^ with w £ S^, the symmetric real kernel asso

ciated with the Lyapunov map V : [CyX —XC is 2 dimensional.
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Similar to the discrete case we have:

Theorem 6.26. Given matrices Cj = AVjjA~^ G with ||a;j|| = 1. The
real symmetric matrix S = A~^A~^ G<S'L(3) is uniquely determined if and only if at least

two of the n vectors ujj,j = 1,... ,n are linearly independent.

6.7 Simulation Results

In this section, we test the performance of the proposed algorithms through dif

ferent experiments. The error measure between the actual calibration matrix A and the

estimated calibration matrix A was chosen to be:

11^-ill
error =

IWI
X 100%

Table 6.2 shows the simulation parameters used in the experiments.® The calibration

Table 6.2: Simulation parameters

Parameter Unit Value

Number of trials 100

Number of points 20

Number of frames 3-4

Field of view degrees 90

Depth variation u.f.l. 100 - 400

Image size pixels 500 X 500

matrix A is simplythe transformation from the original 2x2 (in unit of focal length) image

to the 500 X 500 pixel image. For these parameters, the true A should be:

/ 250 0 250 \
A = 0 250 250

V 0 0 1 y

The ratio of the magnitude oftranslation and rotation, or simply the T/R ratio, is compared

at the center ofthe random cloud (scattered in the truncated pyramid specified by the given

field of view and depth variation). For all simulations, the number of trials is 100.

In the following, we only simulate the three cases which have finear calibration

algorithms: pure rotation case, and the two cases when the translation is perpendicular or
stands for unit of focal length.
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parallel to the rotation axe. Although I do not outline the algorithms here, they are evident

from corresponding sections.

Pure rotation case: Figures 6.3, 6.4 and 6.5 show the experiments performed in the

pure rotation case. The axes of rotation are X and Y for Figures 6.3 and 6.5, and X and

Z for Figure 6.4. The amount of rotation is 20°. The perfect data was corrupted with

zero-mean Gaussian noise with standard deviation <j varying from 0 to 5 pixels. In Figures

6.3 and 6.4 it can be observed that the algorithm performs very well in the presence of

noise, reaching errors of less than 6% for a noise level of 5 pixels. Figure 6.5 shows the

effect of the amount of translation. This experiment is aimed to test the robustness of the

pure rotation algorithm with respect to translation. The T/R ratio was varied from 0 to

0.5 and the noise level was set to 2 pixels. It can be observed that the algorithm is not

robust with respect to the amount of translation.

Figure 6.3: Pure rotation al
gorithm. Rotation axes X-Y.

Figure 6.4: Pure rotation al
gorithm. Rotation axes X-Z.

Translation parallel to rotation axis: Figures 6.6 and 6.7 show the experiments per

formed when translation is parallel to the axis ofrotation.^ The non-isotropic normalization

procedure proposed by Hartley [35] and statistically justified by Muhlich and Mester [82]
was used to estimate the fundamental matrix. Figure 6.6 shows the effect of noise in the

estimation of the calibration matrix for T/R —1 and a rotation oiO —20° between consec

utive frames. It can be seen that the normalization procedure improves the estimation of

the calibration matrix, but the improvement is not significant. This result is consistent with

^For specifying the Rotation/Translation axes, we simply use symbols such as 'XY-YY-ZZ" which
meeins: for the first pair ofimages the relative motion is rotation along X and translation along Y-, for the
second pair both rotation and translation are along Y; and for the third pair both rotation and translation
are along Z.
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Figure 6.5: Rotation axes X-Y, cr = 2.

that of [82], since the effect of normalization is more important for large noise levels. On

the other hand, the performanceof the algorithm is not as good as that of the pure rotation

case, but still an error of 5% is reached for a noise level of 2 pixels. Figure 6.7 shows the

effect of the angle of rotation in the estimation of the calibration matrix for a noise level of

2 pixels. It can be concluded that a minimum angle of rotation between consecutive frames

is required for the algorithm to succeed.

Without noim&bzation
With nocmafization

rioo«tMl(pixalt|

Figure 6.6: Rotation parallel to translation
case. 6 = 20°. Rotation/Translation axes:
XX-YY-ZZ, T/R ratio = 1.

Amount oi rotatton [d»orM«l

Figure 6.7: Rotation parallel to translation
case. £7 = 2. Rotation/Translation axes:
XX-YY-ZZ, T/R ratio = 1.

Translation perpendicular to rotation axis: Figures 6.8 and 6.9 show the experiments

performed when translation is perpendicular to the axis of rotation. It can be observed that

this algorithm is much more sensitive to noise. The noise has to be less than 0.5 pixels in
order to get anerror of5%. Experimentally it was found that Kruppa's equations are very
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sensitive to the normalization of the fundamental matrix F and that the eigenvalues Ai

and A2 of F^T' are close to each other. Therefore in the presence ofnoise, the estimation
of those eigenvalues might be ill conditioned (even complex eigenvalues are obtained) and
so is the solution of Kruppa's equations. Another experimental problem is that more than

one non-degenerate solution to Kruppa's equations can be found. This is because, when

taking all possible combinations of eigenvalues of F'^f' in order to normalize F, the smallest
eigenvalue ofthe linear map associated to "incorrect" Kruppa's equations canbe very small.

Besides, the eigenvector associated to this eigenvalue can eventually give a non-degenerate
matrix. Thus in the presence of noise, you can not distinguish between the correct and one

of these incorrect solutions. The results presented here correspond to the best match (to

the ground truth) when more than one solution is found. Finally it is important to note

that large motions can significantly improve the performance of the algorithm. Figure 6.9

shows the error in the estimation of the calibration matrix for a rotation of 30®. It can be

observed that the results are comparable to that of the parallel case with a rotation of 20®.

Figure 6.8: Rotation orthogonal to trans
lation case. 0 = 20®. Rotation/Translation
axes: XY-YZ-ZX^ T/R ratio = 1.

Moo* towl tp6c*te)

Figure 6.9: Rotation orthogonal to trans
lation case. 6 = 30®. Rotation/Translation
axes: XY-YZ-ZX, T/R ratio = 1.

Robustness: In order to check how robust the algorithms are with respect to the angle 0

between the rotation axis and translation, we run them with (f) varyingfrom 0® to 90®. The

noise level is 2 pixels, amount of rotation is always 20® and the T/R ratio is 1. Translation

and rotationaxes are given byFigure 6.10. Surprisingly, as we cansee from the resultsgiven

in Figure 6.11, for the range 0® < (^ < 50®, both algorithms give pretty close estimates.

This is because, for this range ofangle, numerically the eigenvalues of the matrix F'^f' are
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complex and their norm is very close to the norm of the matrix F^T'F. Therefore, the

computed renormalization scale A from both algorithms is very close, as is the calibration

estimate. For (j) > 50", the eigenvalues of F^T' become real and the performance of the

two algorithms is no longer the same.

Ul

Figure 6.10: The relation of the three rota
tion axes ui,U2,U3 and three translations
TuT2,n.

6.8 Discussion

PftralM

totwMAtnfotaaion md «ss ol rotaion ((togrMi)

Figure 6.11: Estimation error in calibration
w.r.t. different angle (f). Noise level a = 2.
Rotation and translation axes are shown by
the figure to the left. Rotation amount is
always 20" and T/R ratio is 1.

In this chapter, we have revisited the Kruppa's equations based approach for cam

era self-calibration. Through a detailed study of the cases when the camera rotation axis

is parallel or perpendicular to the translation, we have discovered generic difiiculties in the

conventional self-calibration schemesbased on directly solving the nonlinear Kruppa's equa

tions. Our results not only complete existingresults in the literature regarding the solutions

of Kruppa's equations but also provide brand new linear algorithms for self-calibration other

than the well-known one for a pure rotating camera. Simulation results show that, under

the given conditions, these linear algorithms provide good estimates of the camera calibra

tion despite the degeneracy of the Kruppa's equations. The performance is close to that of

the pure rotation case.

The relationship between Kruppa's equations and chirality given in Theorem 6.16

has revealed an intrinsic condition for a unique calibration given in Theorem 6.19. This
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condition is extremely important for us to clearly characterize the generic ambiguities in
the problem of reconstruction from multiple images. This is the subject ofnext chapter.



Chapter 7

Reconstruction and Reprojection

up to Subgroups
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"The rise of projective geometry made such
an overwhelming impression on the geometers of the first halfof the nineteenth century
that they tried to fit all geometric considerations into the projective scheme. ... The
dictatorial regime of the projective idea in geometry was first successfully broken by the
German astronomer andgeometer Mobius, but the classical document of the democratic
platform in geometry establishing the group of transformations as the ruling principle
in any kind of geometry and yielding equal rights to independent consideration to each
and any such group, is F. Klein's Erlangen program."

— Hermaii Weyl, Classical Groups

Reconstructing spatial properties ofa scene from a number of images taJcen by an

uncalibrated camera is a classical problem in computer vision. It is particularly important

when the camera used to acquire the images isnot available for calibration, as for instance in

video post-processing, orwhen thecalibration changes intime, as invision-based navigation.
If we represent thescene by a number ofisolated points in three-dimensional space and the
imaging process by an ideal perspective projection, the problem can bereduced to a purely
geometric one, which has been subject to the intense scrutiny of a number of researchers

during the past tenyears. Their efforts have led to several important and useful results. The
problem is that conditions for a unique Euclidean reconstruction are almost never satisfied
in sequence of images ofpractical interest. In fact, they require as a necessary condition
that the camera undergoes rotation about at least two independent axes, which is rarely
the case both in video processing and in autonomous navigation.
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In this chapter we address the question of what exactly can be done when the

necessary and sufficient conditions for unique reconstruction are not satisfied. In particular:

(i) For all the motions that do not satisfy the conditions, to what extent can
we reconstruct structure, motion and calibration?
(ii) If the goal of the reconstruction is to produce a new viewof the scenefrom a.
different vantage point, how can we make sure that theimage generated portrays
a "valid" Euclidean scene?

Relation to Previous Work: The study ofambiguities in Euclidean reconstruction (i)
arises naturally in the problem of motion and structure recovery and self-calibration from

multiple cameras. Thereis a vast body ofliterature on this topic, which cannot be reviewed

in thelimited space allowed. Here we only comment onsome ofthe work that ismost closely

related to thischapter, while we refer the reader to the literature for more details, references

and appropriate credits (see for instance [12, 34, 65, 104, 117, 132] and references therein).

It has long been known that in the absence of any a priori information about

motion, calibration and scene structure, reconstruction can be performed at least up to

a projective transformation [21]. Utilizing additional knowledge about the relationship

between geometric entities in the image (e.g., parallelism) one can stratify the different

levels ofreconstructions from projective all the way to Euclidean [6, 13, 21, 81]. At such a
levelof generality, the conditions on the imiqueness and existence of solutions are restrictive

and the algorithms are computationally costly, often exhibiting local Tninima [64].
Recently, Sturm[104] hasproposed a taxonomy ofcritical motions, that is motions

which do not allow a unique reconstruction. However, notonly the given taxonomy is by no

means intrinsic to Euclidean reconstruction (see [66]), but also no explicit characterization

of the ambiguities in the reconstructed shape, motion and calibration has been given. A
natural continuation ofthese efforts involved the analysis ofcases where themotion and/or
calibration were restricted either to planar or linear motion [4, 81] and techniques were

proposed for affine reconstruction or up to a one-parameter family.

Several techniques have been proposed to synthesizenovelviewsof a reconstructed

scene (ii): in [2], trilinear constraints have been exploited to help generate reprojected
images for a calibrated camera. In the case of a partially uncalibrated camera, such a

method has to face the issues of whether the reprojected image portrays a valid Euclidean

scene.
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Chapter Outline

The well-known - but conservative - answer to question (i) is that structure can

at least be recovered up to a global projective transformation of the three-dimensional

space. However, there is more to be said, as we do in Section 7.1 for the case of constant

calibration.^ There, we give explicit formulae for exact ambiguities in the reconstruction
of scene structure, camera motion and calibration with respect to all subgroups of the

Euclidean motion. In principle, one should study ambiguities corresponding to all critical

configurations as given in [66]. However, it is only the ambiguities that exhibit a group

structure that are of practical importance in the design of estimation algorithms. In such

a case, not only can the analysis be considerably simplified but also clean formulae for all

generic ambiguities can be derived. Such formulae axe important for 3D reconstruction as

well as for synthesizing novel 2D views. Question (ii) is then answered in Section 7.2, where

we characterize the complete set of vantage pointsthat generate "valid" images of the scene

regardless of generic ambiguities in 3D reconstruction.

These results have great practical significance, because they quantify precisely to

what extent scene structure, camera motion and calibration can be estimated in sequences

for which many of the techniques available to date do not apply. Furthermore, the analysis

clarifies the process of 2D view synthesis from novel viewpoints. In addition to that, wegive

a novel account of knownresults on the role of multilinear constraints and their relationship

to bilinear ones.

Granted the potential impact on applications, this chapter is mainly concerned

with theory. We address neither algorithmic issues, nor do we perform experiments of any

sort: the validationofour statements is in the proofs. We have tried to keep our notation as

terseas possible. Our tools are borrowed from linear algebraand some differential geometry,

although all the results should be accessible without background in the latter. We use the

language of (Lie) groups because that allows us to give an explicit characterization of all

the ambiguities in a concise and intuitive fashion. Traditional tools involved in the analysis

of self-calibration involved complex loci in projective spaces (e.g., the "absolute conic"),
which can be hard to grasp for someone not proficient in algebraic geometry.

^In fact, even in the case of time-varying calibration, in principle, the best one can do is an affine
reconstruction, not just a projective one!
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7.1 Reconstruction under Motion Subgroups

The goal of this section is to study all "critical" motion groups that do not allow

unique reconstruction of structme, motion and calibration. While a classification of such

critical motions has been presented before (see [66]), we here go well beyond by giving

an explicit characterization of the ambiguity in the reconstruction for each critical motion.

Such an explicit characterization is crucial in deriving the ambiguity in the generation of

novel views of a scene, which we study in section 7.2.

In this section, we characterize the generic ambiguity in the recovery of (a) struc

ture, (b) motion and (c) calibration corresponding to each possible critical motion. A

subgroup of SE{3) is called critical if the reconstruction is not unique when the motion of

the camera is restricted to it. For the purpose of this section, we assume that the calibration

matrix A is constant.

7.1.1 Some Preliminaries

So far the only restriction we have imposed on the constant calibration matrix

A is that it is non-singular and is normalized as to have det(A) = 1. However, according
to Section 6.1, A can only be determined up to an equivalence class of rotations, that is

Ae 5L(3)/50(3).2 The unrecoverable rotation in our choice of Asimply corresponds to a
rotation of the entire camera system.

In Section 6.5.4, Theorem 6.19 states a very important and useful fact: the condi

tion for a unique calibration has nothing to do with translation (as opposed to the results

given in [104])! ®Due to this theorem, many proper continuous subgroups of SE(Z) are
critical for self-calibration. So the first step inouranalysis consists in classifying all contin
uous Lie subgroups ofSE(3) which are critical. It is a well known fact that a complete list

of subgroups of SE{3) can be classified by all Lie subalgebras of the Lie algebra se(3) of

SE(3) and then exponentiate them. It is then straightforward to show that each of these

subgroups must have the same ambiguity in reconstruction as one in the following list (as
^Here take left coset as elements in the quotient space. Arepresentation of this quotient space is given,

for instance, by upper-triangular matrices; such a representation is commonly used in modeling calibration
matrices by means of physical parameters ofcameras such as focal length, principal point and pixel skew.

^This is because we here only consider the generic ambiguity in reconstruction, i.e., such ambiguity exists
no matter what the camera sees and no matter what the algorithms do.
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we will explain in the comments):

Translational Motion: (IE^,+) and its subgroups

Rotational Motion: (50(3), •) and its subgroups

Planar Motion: SE{2)

Screw Motion: (50(2),-) x (]R,+)

Planar + Elevation: 55(2) x (E, +)

Rigid Body Motion: 55(3)

Comment 7.1 (Special Lie Subalgebras of se(3)). The above list is by no means a

complete list of ALL subgroups of SE{3). For example, the "planar orbital motion", i.e.,

camera moving on a circle with the optical axis always facing the center, is none of the

motion in the above list. However, it is can be treated as a special case of the planar

motion since, as far as reconstruction is concerned, they obviously have the same generic

ambiguities. In order to show that all subgroups have the same ambiguity in reconstruction

as one of the above motions, we must go through all the possible Lie subalgebras of se{3).

It can be shown that, if a Lie subalgebra has at least 4 dimension and has two independent

rotation components, then it must be se(3) itself. Now the only interesting case is some three

dimensional Lie subalgebras which, without loss of generality, are generated by elements:

•

61 u 62 V 63 w
— , y = , Z —

1

0

0

1

0

0

1

0

0
1

(7.1)

where 61,62,63 are standard basis and u,v and w are three vectors in In order

for the Lie algebra generated by X, Y, Z is three dimensional. IVe must have the vector

a = [u^,v^€ E® in the null space of the matrix:

62 -61 I

Q = I 63 -62

-63 I 61

(7.2)

That is Qa = 0. If a = 0, then the subgroup generated by the algebra is just the pure

rotation group 50(3). If q ^ 0, then the subgroup generated contains three independent
rotation axes and translation (parallax). For such subgroups, a unique reconstT^ction is

available. That is, they are not critical for reconstruction or have the same ambiguity as
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the full rigid body motion SE{Z). A generic example for such a three dimensional subgroup

is the isometry group ofS^.

We axe now ready to explore to what extent scene structure, camera motion and

calibration can be reconstructed when motion is constrained onto one of the above sub

groups. In other words, we will study the generic ambiguities of the reconstruction prob

lem. In what follows, we use p(t) = \pi{t),p2{t),p3{t)f e to denote the 3D coordi

nates of the point p = [pi,P2iP3> 1]^ ^ E^ with respect to the camera frame at time t:

p{t) = {R{t),T{t))p. To simplify notation, recall that, for any u e E^, we have defined u to

be a 3 skew-symmetric matrix such that Vv € E^ the cross product uxv = uv.

7.1.2 Generic Ambiguities in Structure, Motion and Calibration

Translational motion (E^ and its subgroups). Pure translational motion is generated
by elements of se(3) of the form:

03x3 U

0 0
ueR. (7.3)

In this special transformation subgroup, the coordinate transformation between different

views is given by

Ap{t) = Ap{to) + AT{t), (7.4)

where r(t) € E^ is the translation vector. According to Theorem 6.19, the calibration
A e SL{3) cannot be recovered from pure translational motion, and therefore the corre

sponding structure p and translational motion T can be recovered only up to the unknown

transformation A. We therefore have the following

Theorem 7.2 (Ambiguity under E^). Consider an uncalibrated camera described by
the calibration matrix A € SL{3), undergoing purely translational motion E^ (or any of
its nontrivial subgroups) and let B be an arbitrary matrix in iS'L(3). If the camera motion

T GE^ and the scene structure p GE^ are unknown, then B, B'̂ AT and B~^Ap are the
only generic ambiguous solutions for the camera calibration, camera motion and the scene

structure respectively.

Note that this ambiguity corresponds exactly to an affine reconstruction [81].
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Comment 7.3. Thus the group SL{3) can be viewed as chaTacterizing the generic ambi

guity of reconstruction under pure translation, and will therefore be called the "ambiguity

subgroup".

In section 5.1 we have argued that multilinear constraints do not provide additional
information. We verify here that, indeed, multilinear constraints do not reduce the generic
ambiguity. Without loss ofgenerality, we can assume the camera frame at time ti coincides
with that at to? T{ti) = 0. Suppose T{t2),T{tz) € axe translations from the second
and third frames to the original one respectively. We then have:

A 0 x(ti) 0 0

A AT{t2) 0 x(t2) 0

A AT(t3) 0 0 x(t3)

A-^B

0

uj 0

0 0
UJ e

B 0 x(ti) 0 0

B AT{t2) 0 x(t2) 0

B AT{t3) 0 0 x(i3)

Therefore the two sides of the equation span the same subspace. Hence trilinear constraints

are identical for all the ambiguous solutions. One can easily check that the same is true for

quadrilinear constraints.

Rotational motion (50(3)). Pure rotation is generated byelements of se(3) ofthe form:

(7.5)

If any two entries of uj are zero, the subgroup 50(2) is generated instead. The action of

50(3) transforms the coordinates in different cameras by

Ap(t) = AR{t)p{to), (7.6)

where R{t) G50(3) is the rotation. According to Theorem 6.26, the calibration A can be

recovered uniquely, and so can the rotational motion R{t) G 50(3). However, it is well

known that the depth information of the structure cannot be recovered at all due to lack of

parallax. We summarize these facts into the following:

Theorem 7.4 (Ambiguity under 50(3)). Consider an uncalibrated camera with calibra

tion matrix A G5L(3) undergoing purely rotational motion 50(3) and letXbe an arbitrary
(positive) scalar. If both the camera motion R G50(3) and the scene sti^cture p G
are unknown, then A, R and X*p are the only generic ambiguous solutions for the camera
calibration, camera motion and the scene structure respectively.
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Comment 7.5. The multiplicative group (K"*",-) can be viewed as characterizing the am

biguity of the reconstruction under pure rotation. Note that such a group acts in

dependently on each point. More specifically, the group consists of all smooth ^notions

(f): R+.

As for the caseof pure translation, there is no independent constraint among three

or more images.

Planar motion {SE{2)). While the previous two cases were of somewhat academic interest

and the theorems portray well-known facts, planar motion arises very often in applications.

We will therefore study this case in some more detail.

Let ei = [1,0,0)^,62 = [0,1,0)^,63 = [0,0,1]^ € be the standard basis of R^.
Without loss of generality, we may assume the camera motion is on the plane normal to 63

and is represented by the subgroup SE{2).

R T
SE(2) =

0 1
R = e IR,T = {TuT2,0f € > . (7.7)

Let A be the unknown calibration matrix of the camera. As described in section 7.1.1

we consider A as an element of the quotient space 5L(3)/50(3). According to Section

6.5.4, any possible calibration matrix Aq € 5'L(3)/50(3) is such that the matrix X =

(Aq ^A)~^(Ao ^A)~^ is in the symmetric real kernel (SRKer) of the Lyapunov map for all
R G 50(2):

L:C3x3^C3x3. X^X-RXR^. (7.8)

By the choice of 61,62,63, the real eigenvector of R is 63. Imposing X G5L(3), we obtain

X = 0(s), where D{s) GR^^^ is a matrix function of s:

/ s 0 0 \

0(s) = 0 s 0

V0 0 l/s2 J

Geometrically, this reveals that only metric information within the plane can be recovered

while the relative scale between the plane and its normal direction cannot be determined.

That is, if wechoosean erroneous matrix Aq from the set of possiblesolutions for calibration

other than the true A, then AqB = A for some matrix B G 5L(3). We then have that, for

some s G R,

s G R \ {0}. (7.9)

(7.10)



166

A solution of (7.10) is of the form B = HD{t) with H 6 50(3) and some t € M- Let us

define a one-parameter Lie group Gse{2)

Gse{2) = Wis) Is 6 R \ {0}}. (7.11)

Then the solution space of (7.10) is given by 50(3)05£;(2)- Thegroup Gsb(2) canbeviewed

as a natinral representation of ambiguous solutions in the space 5L(3)/50(3).

Once we have a calibration matrix, say Aq, we can extract motion from the

fundamental matrix F = A~^TRA~^ as follows: we know that A = AqB for some

B = HD(s) GSO{3)Gse{2)' Then we define E = AqFAq and note that, for R = exp(e30),

we have that D{s) commutes with R i.e., D{s)RD(s)~^ = R and also = H~^. Then E

is an essential matrix since

E = H-'̂ D-'̂ {s)fRD-^(s)H-^ = HDi^THRH^.

The motion recovered from E is therefore [HRH'^,HD(s)T) G SE{3), where {R,T) G

SE(2) is the true motion. Note that {HRH^,HD{s)T) is actually a planar motion (in a

plane rotated by H from the original one). The coordinate transformation in the uncali-

brated camera frame is given by AT{t) —ARp{to) + AT(t). If, instead, the matrix Aq is

chosen to justify the camera calibration, the coordinate transformation becomes:

A^Bpit) = AoBRp{to) AoBT{t)

HD{s)p(t) = HRH'̂ {HD{s)p{to)) -h HDis)T{t).

Therefore, any point p viewed with an uncalibrated camera A undergoing a motion {R, T) G

SE{2) is not distinguishable from the point HD(s)p viewed with an imcalibrated camera

Aq = AD~^{s)H^ undergoing a motion {HRH^,HD{s)T) G SE{2). We have therefore

proven the following

Theorem 7.6 (Ambiguity under SE{2)). Consider a camera with unknown calibration

matrix A G 5L(3) undergoing planar motion SE{2) and let B{s) = HD(s) with H G 50(3)

and D{s) G Gse{2)- 7/ both the camera motion {R,T) G SE{2) and the scene structure

p G are unknown, then A5~^(s) G5L(3), (HRH'^,B(s)T) GSE{2) and B(s)p G
are the only generic ambiguous solutions for the camera calibration, camera motion and

scene structure respectively.
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Comment 7.7. Note that the role of the matrix H G 150(3) is just to rotate the overall

configuration. Therefore, the only generic ambiguity of the reconstruction is characterized

by the one parameter Lie group Gse{2)-

Further note that the aboveambiguities axe obtained only from bilinear constraints
between pairs of images. We now verify, as we expect from section 5.1, that multilinear
constraints do not reduce the ambiguity. In fact, the matrix D(s) commutes with the
rotation matrix, so that

A 0 x(ti) 0 0

AR{t2) AT{t2) 0 x(t2) 0

AR{t2,) AT{t2,) 0 0 x(i3)

^0 0 x(ti) 0

AoHR{t2)H^ AT{t2) 0 x(t2)
AoHR{t2)H'̂ AT{tz) 0 0

B-i(s) 0

0

0

x(t3)

0

Subgroups S0{2), S0{2) x Kand SJE{2) x M. We conclude our discussion on subgroups
of SE{3) by studying 50(2), 50(2) x E and SE{2) x E together. This is because their
generic ambiguities are similar to the case of SE{2), which we have just studied. Notice

that in the discussion of the ambiguity we did not use the fact that the translation

p has to satisfy ps = 0. Therefore, we have;

Corollary 7.8 (Ambiguity under 50(2)xE and 5.^(2) xE). The generic reconstruction
ambiguities ofSO{2) x E and SE{2) x E are exactly the same as that ofSE(2).

The only different case is 50(2). It is readily seen that the ambiguity of50(2) is
the "product" ofthat of SE(2) and that of 50(3) due to the fact 50(2) = SE(2) n 50(3).
As a consequence of Theorem 7.4 and Theorem 7.6 we have:

Corollary 7.9 (Ambiguity under 50(2)). Consider an uncalibrated camera with cal

ibration matrix A e SL(3) undergoing a motion in 50(2) and let B(s) = HD(s) with
H 6 50(3), D(s) 6 Gse{2) o>nd XG If both the camera motion R G50(3) and
the scene structure p e ^ are unknown, then AB-i(s) G5L(3), HRH'̂ G50(3) and
X' B{s)p GE^ are the only generic ambiguous solutions for the camera calibration, camera
motion and scene structure respectively.

From the above discussion ofsubgroups ofSE(3) we have seen that generic am
biguities exist for many proper subgroup ofSE{3). Furthermore, such ambiguities - which



168

have been derived above based only on bilinear constraints, are not resolved by multilinear

constraints according to Theorem 5.2.

7.2 Reprojection under Partial Reconstruction

In the previous section we have seen that, in general, it is possible to reconstruct

the calibration matrix A and the scene's structure p only up to a subgroup - which we call

K, the ambiguity subgroup. For instance, in the case of planar motion, an element in K

has the form D{s) given by equation (7.9). Therefore, after reconstruction we have

p{K)=Kp, A(K) = AK-K (7.12)

Now, suppose onewants to generate a novel view ofthe scene, x from a new vantage point,

which isspecified by a motion g GSE{S) and must satisfy Xx{K) = A(K)gp{K). In general,
the reprojection x(i '̂) depends bothon the ambiguity subgroup K andonthe vantage point

g and there is no guarantee that it is an image of the original Euclidean scene.

It is only natural, then, to ask what is the set of vantage points that generate

a valid reprojection, that is an image of the original scene p taken as if the camera A

was placed at some vantage point g(K). We discuss this issue in section 7.2.1. A stronger

condition to require is that the reprojection be independent (invariant) of the ambiguity
K, so that we have g(K) —g regardless of A"; we discuss this issue in section 7.2.2.

7.2.1 Valid Euclidean Reprojection

In order to characterize the vantage points - specified by motions g - that produce a

valid reprojection we must find gsuch that: A{K)gp{K) = Ag{K)p for some g{K) € SE{Z).
Since the reprojected image x is Ax(A:) = A{K)gp{K) = Ag{K)p, the characterization of

all such motions g is given by the following Liegroup:

R{K) = {ge SE{Z) IK-'gK C5E(3)}. (7.13)

We call R(A') the reprojection group for a given ambiguity group K. For each of the

generic ambiguities we studied insection 7.1, the corresponding reprojection group is given
by the following

Theorem 7.10 (Reprojection Groups). The reprojection groups corresponding to each
of the ambiguity groups K studied in section 7.1 are given by:
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1. R(K) = (E^,+) for K = SL(3) (ambiguity o/(R^,+)^.
2. R(K) = 50(2) for K = Gse{2) x (ambiguity ofSO(2)).
3. R(K) = SE(2) XR /or = 05^(2) (ambiguity ofSE(2),SO(2) xm^SE(2) x Rj.

i2(A") = SE{3) for K = I (ambiguity of SE(3)).

Even though the reprojected image is, in general, not unique, the family of all

such images are still parameterized by the same ambiguity group K. For a motion outside

of the group R{K)j i.e., for &g £ SE{Z) \ R[K), the action of the ambiguity group K on

a reprojected image cannot simply be represented as moving the camera: it will have to

be a more general non-Euclidean transformation of the shape of the scene. However, the

family ofall such non-Euclidean shapes are minimally parameterized by the quotient space

SE(Z)IR(K).

Comment 7.11 (Choice of a *'Basis" for Reprojection). Note that in order to specify

the viewpoint it is not just sufficient to choose the motion g for, in general, g(K) ^ g.

Therefore, an imaginary "visual-effect operator" will have to adjust the viewpoint g(K)

acting on the parameters in K. The ambiguity subgroups derived in section 7.1 are one-

parameter groups (for the most important cases) and therefore the choice is restricted to

one parameter. In a projective framework (such as [21]), the user has to specify a projective

basis of three-dimensional space, that is 15 parameters. This is usually done by specifying

the three-dimensional position of 5 points in space.

7.2.2 Invariant Reprojection

In order for the view taken from g to be unique, we must have

Ax = A(K)gp(K) = AR-^gKp (7.14)

independent of K. Equivalently we must have K~^gK = g where K is the ambiguity

generated by the motion on a subgroup G of SE{Z). The set of g that satisfy this condition

is a group N{K), the so called normalizer of K in SE{Z). Therefore, all we have to do is

to characterize the normalizers for the ambiguity subgroups studied in section 7.1.

Theorem 7.12 (Normalizers). The set of viewpoints that are invariant to reprojection

is given by the normalizer of the ambiguity subgroup. For each of the motion subgroups

analyzed in section 7.1 the corresponding normalizer of the ambiguity group is given by:
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1. N{K) = I for K = SL{3) (ambiguity of (l^ +);.

2. N(K) = 50(2) for K = 05^(2) x (R+, •) (ambiguity of50(2)

3. N{K) = 50(2) for K = 05£;(2) (ambiguity ofSE(2),SO(2) x R,SE{2) x R).

4. N{K) = 5£7(3) forK = I (ambiguity of SE(Z)).

For motions in every subgroup, the reprojection performed under any viewpoint

determined by the groups above is unique.

7.3 Discussion

When the necessary and sufficient conditions for a unique reconstruction of scene

structure, camera motion and calibration are not satisfied, it is still possible to retrieve

a reconstruction up to a global subgroup action (on the entire configuration of the cam

era system). We characterize such subgroups explicitly for all possible motion groups of

the camera. The reconstructed structure can then be re-projected to generate novel views

of the scene. We characterize the "basis" of the reprojection corresponding to each sub

group, and also the motions that generate a unique reprojection. We achieve the goal by

using results from two view analysis established through previous chapters. This is possible

because the coefficients of multilinear constraints are geometrically dependent of those of

bihnear constraints. Therefore, the only advantage in considering multilinear constraints

is in the presence of singular surfaces and rectilinear motions. Our future research agenda

involves the design of optimal algorithms to recover all (and only!) the parameters that

can be estimated from the data based upon their generic ambiguities. The reconstruc

tion and reprojection problem studied in this chapter is for a constant calibration matrix.

Generalization to the time-varying case is yet a largely open problem.



Part II

Advanced Topics in Multiview

Geometry
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Chapter 8

Absolute Vision in Spaces of

Constant Curvature

"In order to investigate a subfield of a science, one bases it on the smallest
possible number of principles, which are to be as simple, intuitive, and comprehensible
as possible, and which one collects together and sets up as axioms."

— David Hilbert, The New Grounding of Mathematics: First Report
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In Part I, following the formnlation given in Chapter 2, we have studied sdmost

every aspect of the classical structure from motion problem in multiview geometry. Never

theless, all the results axe developed under a default assumption: the underlying space is a

Guchdean space . Mathematically, it is then natural to ask: If the Guclidean assumption

on the underlying space is violated, can we still study vision, and how? In order to answer

this question, we need clearly understand what are all the hidden assumptions which have

essentially enabled the development in Part I, and how these assumptions can be re-stated

in a more abstract mathematical form so as to also work for non-EucUdean spaces. In

this chapter, we attempt to provide an answer to these questions. Basically, we want to
show that, under certain assumptions, it is possible to generalize multiview geometry to
non-Euclidean spaces. As we will see, many results that we have obtained in Part I have

their natural extensions in the non-Euclidean case and the Euclidean case in many ways
can be interpreted as a special case ofa non-Euclidean multiview geometry. We hope that
such a generalization not only captures essential geometric characteristics of any imaging
system but also provides a meaningful mathematical model inwhich we may gain a deeper
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understanding of underlying principles of multiview geometry in general.

8.1 An Axiomatic Formulation of Multiview Geometry

Imagine an intelligent creature living in a sphere —a typical example of non-
Euclidean space. Then what kind of multiview geometry it could have developed? Let us
put ourselves in the shoes of the creature and try to understand what are the basic elements

ofwhich a vision system insuch a space must consist. Inthis section, we give an axiomatic
formulation ofa mathematical model ofan abstract vision system (in a Riemannian man
ifold). Although this model seems to be given in a rather abstract manner, it is a natural
generalization of the conventional camera model in a Euclidean space. Such a generaliza
tion allows us to fully discover the geometric nature ofa computer vision system, in a very
concise and precise way.

Let us consider a (connected) Riemannian manifold (M,#), i.e., a differentiable
manifoldequipped with a positive definite symmetric 2-form $ as its metric. If the reader is

not familiar with differential geometry, he or she may simply view [M, $) as the Euclidean
space with its standard inner product metric. In thispaper, we will be mostly interested
in three dimensional spaces although the model given below is for the most general case.

Assumption 8.1 (Camera). A camera is modeled as a point oe M, which usually stands
for the optical center ofthe camera, and an orthonormal coordinate chart is chosen on TqM,
the tangent space of M at the point o.

Assumption 8.2 (IMotion). M is a complete and orientable Riemannian manifold. G is
the orientation-preserving subgroup of the isometry group of M. This group then models
valid motions of the camera. Rs representation might depend on the position of the optical
center o.

Assumption 8.3 (Light). In the manifold M, light always travels along geodesies with
constant speed. For simplicity, we may assume this speed to be infinite.

Assumption 8.4 (Image). The image ofa point p E M is a ray inTqM which corresponds
to the direction of the geodesic connecting p and the optical center o.

Assumption 8.5 (Calibration). The effect of camera calibration can be modeled as an

unknown isomorphism ip : TqM TqM (as a vector space). In the calibrated case, one
may assume this isomorphism is known or simply the identity map.
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The Lie group G which models the motion of the camera is obtained in the model

as being the isometry group of M. In fact the relation between G and M is symmetric

at least in the case that the motion group G acting transitively on M: letting H be the

isotropy subgroup^ of G, then the manifold M is simply the quotient space G/H. The

Riemannian metric $ on M can be derived from the canonical metrics of G and H by this

quotient. In practice, this viewpoint is far more useful than the above axiomatic definition

since, as we will soon see, interesting manifolds are usually given as submanifolds of an

Euchdean space which are invariant under the action of certain Lie groups G. Therefore,

geometric properties of a vision system in such manifolds are uniquely determined by the

structure of G.

As pointed out by Weinstein [127], different requirements on the properties of the

motion group G in fact determine the types of manifolds that M must be. For example, if

we require G act transitively on the frame bundle of M, it can be shown that M must be

spaces of constant curvature [55]. A less restrictive requirement on G is to allow that

the optical axis of the camera can point to any direction at any point of M. In this case,

M is the so call symmetric spaces of rank 1. One can further relax the Assumption 8.2

so that G does not have to be a subgroup of the isometry group of M. Then M can be any

Riemannian manifold. A study of vision theory in general Riemannian manifolds is out of

the scope of this dissertation. For the remaining of this Chapter, we will focus only on the

spaces of constant curvature and demonstrate how to generalize the vision theory that we

have developed for Euclidean space in previous chapters.

Assumptions 8.1 to 8.5 formally define a camera model in a class of Riemannian

manifolds. When the manifold M is the Euclidean space E^, the so obtained model is

exactly equivalent to the conventional model that we have been using in Part I. Even in

the most general case, the above model is based on direct geometric intuition. The only

difference is that the world space (represented by M) is explicitly distinguished from the

image space (represented by TqM). In the Euclidean case, these two spaces happen to

coincide. Intuitively, this can be illustrated in the Figure 8.1.

'A subgroup of G which fixes a point of M.
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Figure 8.1: The curve 7 is the geodesic connecting o and p; arrows mean the inverse of the
exponential map exp : TqM M; x then represents the image of the point p with respect
to a camera centered at the point 0.

8.2 Non-Euclidean Multiview Geometry in Spaces of Con

stant Curvature

Can the abstract model introduced in the preceding section of any use? In this

section we will demonstrate that, using this model, one can actually extend most of the

results that we have developed in Part I for Euclidean space to a much larger classof spaces:

the spaces of constant curvature. For example, the epipolar geometry has no peculiar

meaning to Euclidean space. It is also true in more general spaces. For simpHcity, in this

chapter we will only investigate the cahbrated case although extension to uncalibrated case

is straightforward.

8.2.1 Spaces of Constant Curvature

Spaces of constant curvature are Riemannian manifolds with constant sec

tional curvature. In differential geometry, they are also referred to as space forms. A

Riemannian manifold of constant curvature is said to be spherical, hyperbolic or fiat

(or locally Euclidean) according as the sectional curvature is positive, negative or zero.

Geometry about spacesof constant curvature is also called absolute geometry, coined by

one of the co-foimders non-Euchdean geometry: Janos Bolyai [46].

Not until Einstein's general relativity theory, non-Euclidean geometry, or Rieman

nian geometry in general, is just a pure mathematical creation rather than geometry of

physical spaces. In general relativity theory, the physical space is typically described as a

(3 dimensional) Riemannian manifold (with possibly non-zero curvature). In such a space.
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light travels the geodesies of the manifold (corresponding to straight lines in the Euclidean

case). Locally, the curvatureof a Riemannian manifold is approximatelyconstant. Thus the

study of vision theory in spaces of constant curvature will help understand vision problems

in general Riemannian manifolds.

In this paper, westudy vision theory in 3 dimensional spaces of constant curvature,

as a natural generalization of the vision theory we have developed so far for 3 dimensional

Euclidean space. In particular, we will focus on vision in spherical and hyperbolic spaces

since the Euclidean case has been well understood. On the other hand, the Euclidean case

will always show up as a special limit case of generic cases.

Geometric properties of n dimensional space of constant curvatures have been well

studied in differential geometry [55, 135] (as an important case of symmetric spaces).

In the rest of this section, we briefly review some of the main results which serve for our

purposes.

8.2.2 Characteristics of Spaces of Constant Curvature

In this section, we characterize 3 dimensional spaces of constant curvature. In

fact, most of the results directly follow from general results about n dimensional spaces of

constant curvature, in Kobayashi [55] and Wolf [135].

The next theorem which follows directly from Kobayashi [55] (Theorem 3.1 Chap

ter V) characterizes the 3 dimensional space of constant curvatures:

Proposition 8.6 (3D Spaces of Constant Curvature). Let [xi,X2,X3,X4f^ be the co

ordinate system of and M be the hyper-surface of defined by:

x\-\-x\ + x\ + rx\ = r (r: a nonzero constant). (8.1)

Let g be the Riemannian metric of M obtained by restricting the following form to M:

dx\ -I- dx2 + dxl r dx\.

Then

1. M is a 3 dimensional space of constant curvature with sectional curvature 1/r.

2. The group G of linear transformations ofM) leaving the quadratic form x\-k-x\-\-x\^-
rx\ invariant acts transitively on M as the group of isometry of M.
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S. Ifr> 0, then M is isometric to a sphere of a radius yfr. Ifr < 0, then M consists of
two mutually isometric connected manifolds each ofwhich is diffeomorphic with .

Now let Q be the 4 X4 matrix associated to the quadratic form defining M:

Q =
H 0

0 r

The isometry group C? ofM is then given as a subgroup ofGL{4,R):

G={g€R^x''|5^(3ff = Q}. (8.2)

For an element p G G, it has the form:

9 =
W y

w

with W 6 G 6 G M and the conditions:

+ r •zz^ = /s, W^y + r •wz = 0, y^y + r • = r. (8.3)

It follows that the Lie algebra q ofthe group G (as a Lie group) is the set of the matrices

of the form:

A b

c ^ 0

where AeR^^^.b eR^ and c G satisfy the conditions:

^^ + .4 = 0, 6+ r •c = 0.

(8.4)

(8.5)

The isotropy group H ofGwhich leaves the point o = [0,0,0,1]^ GM fixed is isomorphic
to 0(3):

H =
0(3) 0

0 1
(8.6)

As a result, the manifold M is identified with the homogeneous space G/H. In fact, the
orthonormal firame bundle ofM is isomorphic to G as a principle H bundle, Kobayashi [55].
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Let m be the linear subspace of the Lie algebra g of G consisting of matrices of

the form:

0 b

(F 0

d4x4 (8.7)

with b,c ^ and 6+ rc = 0. Let be the Lie algebra of if as a subspace of g consisting

of matrices of the form:

A 0

0 0
(8.8)

with G and AF + .4= 0. Then we have a canonical decomposition:

Q^h+rn. (8.9)

It is direct to check the following relations between the subspaces hold:

WC [f),m] C m, [m,m] C 1) (8.10)

where [•,•] stands for Lie bracket. Let f) be the vertical tangent subspace of G and
tn be the horizontal tangent subspace. Then this decomposition gives a canonical

connection on the principle bundle G(G/H,H) (Theorem 11.1 of Chapter II, Kobayashi

[55]) which induces constant sectional curvature 1/r on G/H = M.

The space M is a symmetric space with the symmetry So of M at the point

o = [0,0,0,1]^ given by:

Sq : M —>• M

[a;i,a:2,a;3,a:4]^ i->- [-xi,-X2,~xz,X4^.

Obviously, si = Id{M). Due to Kobayashi [55] (Theorem 1.5 of Chapter XI), this induces
a (symmetric) automorphism <7 on G such that H lies between G<r (subgroup of G fixed
under a) and the identity component of G^.

Denote theprojection from G to GfH as tt and Let exp(*) be the exponential map
from g to G. Then according to Kobayashi [55] (Theorem 3.2 ofChapter XI), we have:

Proposition 8.7 (Geodesies in 3D Spaces of Constant Curvature). Consider the 3
dimensional space of constant curvature M = G/H as above. For each X £m, 7r(exp(tX')) =
exp(tX') ' o is a geodesic starting from a and, conversely, every geodesic from o is of this
form.
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As we will soon see, this theorem is very important for modeling and studying
vision in the spsices of constant curvature.

Let T be the subset of G consisting of all the matrices of the form expCX) with

X € m. Then T corresponds to transvection on M (see Kobayashi [55]), an analogy to the

translation inthe Euclidean space. Notice that ingeneral T isnota subgroup ofG (although
it is in the Euclidean case) and its representation depends on the base point. Naturally,

the subgroup H of G corresponds to rotation on M. As in the Euclidean case, for a "rigid

body motion" on M, it isnatural to consider the rotation is in the special orthogonal group

50(3) instead ofthe full group 0(3). One ofthe reasons for only considering 50(3) is that
it preserves the orientation of the space.

8.2.3 Euclidean Space as a Space of Constant Curvature

Proposition 8.6 requires the curvature parameter r e R\ {0} hence only the spher

ical and hyperbolic spaces were considered. However, the Euclidean case can be regarded

as the limit case when r goes to infinite, i.e., the curvature 1/r goes to zero.

When r = oo, a point in which satisfies the quadratic form (8.1) always has the

form [x\,X2,xz, 1]^ GR'*. This isjust the homogeneous representation ofthe 3 dimensional

Euclidean space E^, see Murray [84]. From (8.3), we have = 1, z = {), W'̂ W = J3 and
y GE^. Thus the group G is just the Euclidean group jE7(3). In particular, the special
Euclidean group SE{3) with elements:

9 =

R T

0 1

d4x4 (8.11)

with R G50(3) and T GE^ is a subgroup of O = E(3). SE(Z) then represents the rigid
body motion in M = E^.

When r = 00, the Lie algebra se(3) of SE{Z) or e(3) of E(Z) then has the form

given in (8.4) with the condition c = 0. In robotics literature [84], an element this Lie

algebra is usually represented as:

c =
LJ V

0 0

fi4x4 (8.12)



180

where a;,i; G and u is the skew-symmetric matrix associated with u = [a;i,a;2,t(;3]^:

u =

0 -UJ3 fjJ2

0 -U)l (8.13)

—u;2 U)i 0

According to Proposition 8.7, the geodesies in are given in the form:

exp
0 V \ h vt

= G

1—
o

o

) 0 0
(8.14)

This is exactly the straight line in E^ in the direction of v.

From the above discussion, the Euclidean space can be treated as a limit case of

general spaces of constant curvature given in Proposition 8.6. Because of this, the vision

theory for Euclidean space should also be a limit case of vision theory for general spaces of

constant curvature.

8.2.4 Camera Motion and Projection Model

Based upon the mathematical facts given in the preceding section, we are ready

to study vision in the spaces of constant curvature. Similar to the Euclidean case, we first

need to specify the (valid) motion of the camera and the projection model of the camera,

i.e., how the 2 dimensional image is formulated in spaces of constant curvature.

First notice that, as in the Euclidean case, the transvection set T of the isometry

group G acts transitively on a space M of constant curvature. Then for any g € G, there

exists Qt &T such that gt^{g{o)) = o, i.e., g^^g fixes the origin o. So g^^g = gh € H, the
isotropy group of o. It then follows that the group G is equal to G = TH. This is the so-

called Cartan decomposition. By rigid body motion in spaces of constant curvature,

we mean the connected subgroup of G which preserve the orientation of the space M. That

is, the rotation group H is just 190(3) (the subgroup of 0(3) which is connected to the

identity element). We still use G to denote the group of rigid body motion:

G = TH with 6 50(3).

A point p, in the space M ofconstant curvature, can be represented in homoge
neous coordinates asp = \pi,P2^P3,P4]^ GE^ which satisfies the quadratic form:

Pi+P2-^Pl + 'rpl = r
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with 1/r the sectional curvature of M. Then under the motion g(t) e G, t 6 [to, tf] CKof
the camera, the homogeneous coordinates ofthe point p (with respect to the camera frame)

satisfy the transformation:

(8.15)

Notice that, with this representation, the point o = [0,0,0,1]^ 6 is always in M. We

then call the point o the origin in the homogeneous representation of M. Without loss of

generality, the origin is identified with the center of the camera.

According to Proposition 8.7, anygeodesic connecting a pointp = [pi,P2,P3,P4]^ ^

M to the origin o has the form: p = exp(tX) •o for some t € K,A" G m. Without loss of

generality, we may assume X has the form:

0 b

—6^/r 0

for some unit vector 6 GIR^, ||6|| = 1. It is then direct to check that:

p = exp(tA') •o =
f(r,t)bb'^ /ii(r, t)b 0 hi(r,t)b

h2(r,t)b'^ gir.t) 1 9{r,t)

for some real scalar functions f{r,t),g(r,t),hi{r,t) and h2{r,t) of r and t (the explicit

expressions of these functions are given in the next section). Thus the unit vector b is equal

to:

_ bi,P2,P3r
b =

\/Pi+P2+P3

This is exactly the unit tangent vector of M at the origin o. In this way, we may identify

the tangent space To{M) of M at o to the subspace m by:

<f>: To{M)

beToiM)

m

0 b

—b^/r 0
G m.

Under this identification, the exponential map exp : To{M) —> M is given by:

exp(6) = exp(0(6)) •o, be To{M).

(8.16)



182

Then from previous discussion, the light from p= [pi,P2,P3jP4] € M to the origin

o has the direction 6 € To{M) given by (8.16). In homogeneous coordinate, the vector 6 can

be represented as

\pi,P2,Pzf € lE^

which only keeps the information of the direction of the light from p.

Then in the caseof the space M of constant curvature, if the space M is represented

by the homogeneous coordinates as above, the image of a point p = [pi,P2,J03,P4]^ GM is

simply given byx = A~^[pi,p2}P3]^ € where A6 andx 6 Define the projection

matrix to be:

P =

We then have the relation:

10 0 0

0 10 0

0 0 10

Ax = Pp.

tx4

(8.17)

We call the scalar Athe scale of the point p with respect to the image x. The scale Athen

encodes the depth information of the point p in the scene.

8.2.5 Epipolar Geometry and Multilinear Constraints

In this section, we study the relation between the images of a point p £ M before

and after a rigid body motion of the camera. We know that the motion of the camera r-an

be expressed in the form:

9 = 9t'9h, 9teT,gkeH.

The transvection part gt and rotation part g^ respectively have the forms:

gt = exp(X) =
W y R 0

w

5 gh —
0 1

X em,50(3). (8.18)

We will later give the expressions of W G e^,z elS^ and w eR in terms of X.

Denote the images ofp = \pi,P2iP3^Pi]^ before and after the transformation g are
xi G and X2 GIR^, respectively. Then according to (8.15) and (8.17) we have:

AiXi = Pp, A2X2 = Pgp.
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It yields:

A2X2 = WR- Aixi +p^y =» yx A2X2 = y X{WR •AiXi) x^^ibci = 0. (8.19)

In the Euclidean case, (8.19) would exactly give the well-known bilinear epipolar
constraint. In thecase ofspaces ofconstant curvature, the role ofessential matrix isreplaced
by yWR. We need to study the structure of such matrices.

Any matrix A" G m has the form:

0 b

—iFIr 0

with vector 6 G To simply the notation, denote 7 = ||6|| and T = 6/7 GIF^. Here by
abuse of language, we use the same notation T as the transvection group to represent a
translational vector. We consider sin(-) and cos(-) as the complex functions:

sin(n) = - e~'"), u GC

cos(u) = ^(e*"" -I- e~'"), uGC
Also define p= ^/T/r GC. Then through direct calculation we get:

exp(X) =[^ ^ 1. (8.20)
w /osin(7p)T^ cos(7p)

Notice that we always have TTT^ = 0. Then suppose sin(7p) ^ 0, (8.19) yields:

xlfWRxi=0 ^ x^f(73-f (cos(7p) - l)TT^)i?xi xI'TTIxi =0. (8.21)

This is exactly the well-known bilinear epipolar constraint. Here we see that this con

straint holds for all spaces ofconstant curvature. As in the Euclidean case, we call E = TR

the essential matrix.

Oominent 8.8. The condiiionsin(7p) ^ 0 is equivalent to the condition that the translation

T ^ 0 in the Euclidean case. The reason is when sin(7p) = 0, we have exp{X) = /4,
i.e., the motion is equivalent to the identity transformation on M. In spaces of constant

curvature, we may have sin(7p) = 0 without T = 0. This occurs only when the curvature r

is positive, i.e., the space is spherical. If so, let 7 = 2A:7rv^ GM, k = 1,2,..., we then have

sin(7p) = sin(2k7r) = 0. This implies that translation with distance 2Try/r along the geodesies



184

(big circles) in a spherical space of radius y/r is equivalent to the identity transformation

(back to the initial position). One can simply check this phenomenon on the 2 dimensional

sphere S^.

As a summary of the above discussion, we have the following theorem:

Theorem 8.9 (£)pipolar Constraint). Consider a rigid body motion of a camera in a

space M of constant curvature. If T ^ ^ is the vector associated to the direction of the

translation and R G 50(3) the rotation, then the images xi G and X2 G of a point

p E M before and after the motion satisfy the epipolar constraint:

X2TjRxi = 0. (8.22)

As in the Euclidean case, the normalized essential matrix E = TR can be estimated

from more than eight image correspondences {(xj, x^)}^^i, n >8in general positions using
linear or nonlinear estimation schemes given in Part L The rotation matrix R and the

translation vector T can fmther be recovered from the essential matrix E.

Comment 8.10. Notice that the epipolar constraint is independent of the scale A of the

pointp, the scale 7 of the translational motion b and the curvature l/r of the space M. The

motion recovery is then decoupled from the 3D structure, as in the Euclidean case.

It is already known that in the Euclidean case, m images of a point satisfy more

general multilinear constraints besides the bilinear epipolar constraint. Similar constraints

exist in the case of spaces of constant curvature. Suppose Xj GR^,i = 1,2,... ,m are m

images of the same point p with respect to the camera at m different position. Suppose the

relative motion between the i^^ and l*'̂ positions is gi GG,i = 1,2,... ,m. Without loss
of generality, we may always assume gi = I. Let Ai GR+,i = 1,2,... ,m be the scales of

Xi,i = 1,2,..., m with respect to p. Then we have the following equation (for a calibrated

camera):

0 0 1 A
i

•P9I
'

0X2•••
0 A

2
=

P92

.00•••Xm_
Ajti .
P9m.
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P91

P92

P9m

D3mx4

185

and the four columns of M® are denoted by mi,7712,7713,7714 respectively. Here we use

superscript a to indicate the case of absolute vision. Define the vector Xi 6 associated

to the z*'* image Xj as:

Xi = [0,...,o,xf,o,...,o]^ e bSm
1 < z < m.

Similar to the Euclidean case [71], in spaces of constant curvature, we also have:

Theorem 8.11 (Multilinear Constraints). Consider m images of a point

p in a space M of constant curvature, and the motion matrix is = [7711,7^2,7713,7714] G
I^3mx4 ^ defined above. Then the associated vectors G satisfy the following

wedge product equation:

7711 A 7712 A 77Z3 A 7714 A f 1 A . . . A = 0. (8.23)

The proof is essentially the same as the Euclidean case in Chapter 5. The reason

that this wedge product constraint is called projective constraint is because it is invariant

under projective transformation (see [71]). For the same reasons as in Euclidean case, the

non-trivial constraints given by the wedge product equation are either bilinear, trilinear

or quadrilinear. One may use these constraints to design more delicate motion estimation

schemes.

8.2.6 Non-Euclidean Structure from Motion

Knowing motion, the next problem is how to reconstruct the scale information

from images, which includes the depth Aof the point p with respect to its image x, the

scale of the translational motion p and, if possible, the constant cmvature 1/r of the space

M (but we will soon see, the curvature cannot be recovered from vision). Although our
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formulation allows to study reconstruction from multiple image frames, we here simply

demonstrate the case of two image frames so as to convey the main ideas.

To simplify the notation, in this section, we assume the image x of a point p is

always normalized, i.e., ||x|| = 1 (in the Euclidean case, this corresponds to the spherical

projection). Suppose the distance from p to the optical center o is 77 G Recall that (j)(-)

is the map from To(M) to m. Then the homogeneous coordinate of p is given in terms of x

and 77 by:

p~^ sin(77p)x

cos(77p)

Consequently, the scale Aofp with respect to x is given by A = sin(77p). To differentiate

from the scale A, the distance quantity 77 will be called the depth of the point p with respect

to the image x.

Let 771 and 772 be the depths of the point p with respect its two images xi and

X2 taken by the camera at two positions, respectively. Suppose the camera motion g £ G

is specified by the rotation R e SO(3), the translation direction T e and the scale of

translation 7 (as in the preceding section). Then the first equation in (8.19) yields;

p~^ sin(772p)x2 = [/s + (cos(7p) - l)Tr^] Rp'̂ sin(77ip)xi + cos(77ip)p-^ sin(7p)r. (8.24)

This is the coordinate transformation formula in spaces of constant curvature.

It looks kind of complicated. However, it is no more than a natural generalization of the

Euclidean coordinate transformation formula which people are familiar with. Notice when

the curvature 1/r goes to zero, so does p. Since

limcos(a;p) = 1, liin sin(a:p) = a;, x G IR,

when the curvature of the space goes to zero, we have:

\i = lim sin(77ip) = 77,, i = 1,2,
p—>0

and (8.24) simply becomes:

A2X2 = RAiXi + 7T. (8.25)

That it, in the limit case, the scale Aand the depth 77 are the same; and the equation
(8.24) gives the Euclidean coordinate transformation formula. The Euclidean transforma

tion (8.25) is extensively used for reconstructing Euclidean structure in Part I. Naturally,

p = exp(7/<^(x)) •o =
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to reconstruct structure in spaces of constant curvature, the equation (8.24) has to be
exploited.

Notice that equation (8.24) is homogeneous in the scale ofp. Since the quantities

7)1,7)2 and 7 are all multiplied with p, they can only be determined with respect to an
arbitrary scale of p. In Euclidean case, this corresponds to the fact that the Euclidean

structure can only bereconstructed up toa universal scale [71]. Thus in thecase ofspaces of
constant curvature, we may normalize everything with respect to the scale of the curvature:

if r > 0, let p = 1; if r < 0, let p = i That is, now the space M has constant

sectional curvature of either +1 or -1. Then (8.24) becomes:

sin(7?2)x2 = [h + (cos(7) - 1)TT^] R•sin(77i)xi + cos(77i) sin(7)r, p= 1;

sinh(7?2)x2 = [73 + (cosh(7) - l)Tr^] R•sinh(7?i )xi -fcosh(r?i) sinh(7)r, p= i.

These two equations correspond to coordinate transformations in (normalized) spherical
and hyperbolic spaces, respectively.

From the preceding section, we know R and T can be estimated from epipolar

constraints. The problem left is to reconstruct 7)i, 7)2 and 7. In computer vision, this problem

is usuallyreferredto as structure from motion (this name is used by someauthors for the

problem of reconstructing both motion and structmre from images, but we shall maintain

the distinction here). One may directly use the above coordinate transformation formula to

formulate objective function for estimating scales 771,7)2 and 7. In the Euclidean case, such

objective functions are linear in the scales [71]. However, in the Non-Euclidean case, such

objective functions are usually nonlinear.

In stead of directly using the coordinate transformation formula, one may use some

well-known constraints in spaces of constant curvature, i.e., Bolyai's law of sine and law

of cosine (for absolute geometry), which have been well summarized by Hsiang in [46].

Define functions:

aW =/ m=\
1 sinh(a;), p = i, I cosh(a;), p = i.

The next theorem follows from Hsiang [46] as a special case:

Proposition 8.12 (Laws of Absolute Trigonometry). CoTisider a geodesic tria7igle

AABC m a space M of consta7it cuT^ature ±1, and let a,b,c be the le7igths of the opposite
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sides of angles A^B^C respectively. Then we have:

sin(i4) sin(jB) sin(C)
Bolyai's sine law. (8,26)

a{a) a{b) a{c) '

and

a{a)a(b) cos(C) = y3(c) - /?(o)^(6),

Q:(6)a(c) cos(i4) = p{a) —p{b)p{c), law of cosine (8.27)

Qr(c)Q:(a) cos(5) = p{b) —P(c)p(a).

Suppose the two optical centers of the camera are oi and 02- A geodesic triangle is

formed by the three points (oi,02,p), see Figure 8.2. The angle A is given by the angle be-

P

y

Figure 8.2: Geodesic triangle formed by two optical centers oi, 02 and a point p in the scene.

tween the two vectors Rx.i and —T; B is givenby the angle between X2 and T; C is given by

the angle between Rx.i and X2. The quantities sin(A),sin(5), sin(C), cos(A),cos(B),cos(C)

can be directly calculated from those vectors.

Applying Bolyai's sine law (8.26) to the geodesic triangle, Q;(7/i),a(?^) and 0(7)

are determined up to a unknown scalar k eRhy linear equations:

sin(A)Q:(7?i) = sin(B)Q:(772), sin(C)a(772) = sin(A)Q:(7). (8.28)

The scalar k can be then determined by using one of the cosine law (8.27). Suppose

(51,52,53)^ = ika{7}i),ka{r)2),ka{'y))'̂ 6

is a solution of (8.28). In the hyperbolic case, from the first equation of (8.27), the scalar k

satisfies:

S1S2cos(C) =kyjsl - k^ - (8 29)
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In the spherical case, we may assume 0 < ?7i,772)7 ^ ^/2 {i.e., comparing to the size of the

whole space, the structure we consider is relatively small). Then thefirst equation of (8.27)
yields:

SiS2 COS(C) =kyjk"^ - - yj{k'̂ - ^f) •(fc2 _^2) |rg 3qj

In order to calculate k, the above equations can be easily reduced to algebraic equations in

k"^ of degree 4. Since there is a general formula for roots of algebraic equations ofdegree 4,
k has a closed-form solution. Knowing fc, a(7?i), a{r)2) and 0(7) can be calculated hence

7)1,7)2 and 7. The above approach clearly outlines the geometry of stereo in any space of

constant curvature.

8.3 Discussion

In this chapter, we have generalized basic vision theorems in Euclidean space to

spaces of constant curvature. A uniform treatment is possible because a unified homoge

neous representation of these spaces exists and the isometry groups of these spaces have

similarstructures. As we have seen, the Euclidean vision theory can always be viewed as a

limit case of the general one.

One may have noticed that the epipolar geometry in spaces of constant curvature

is remarkably similar to that of Euclidean space. Especially, the bilinear epipolar constraint

is exactly the same. As in the Euclideancase, the motion is nicely decoupled from structure

by the epipolar constraint. This allows us to use most of the motion recovery algorithms

which were previously developed onlyforEuchdean spaceto spherical and hyperbolic spaces,

without any modification. In the continuous case, the epipolargeometry also remains to be

the same as in Euchdean case.

As for the structure from motion problem, the three dimensional structure can

onlybe reconstructed up to a universal scale, the same as the Euclidean case. In a spaceof

non-zero curvature, the curvature of the space cannot be recovered from vision. However,

the three dimensionalstructure of objects can be determinedwith respect to the curvature.

In this paper, we normahze the curvature with absolute value I. Although the (noise-free)

structure from motion can be solved as a linear problem in the Euclidean case, it is no

longer linear for spherical and hyperbolic spaces. We have shown that using sine and cosine

laws for Absolute Geometry there is a closed-form solution for the structure from motion
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problem.

Although any Riemannian manifold locally can be approximated by spaces of

constant curvatmre (when the sectional curvature in all directions is close each other), it is

still interesting to know if the results of epipolar geometry hold for more general classes of

Riemannian manifolds (for example, symmetric spaces); and how the structure from motion

problem needs to be changed in general. These will be interesting research topics for the

future.



Chapter 9

Bayesian Motion Estimation:

Likelihood and Geometry
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In Part I and the previous chapter, we have established motion (and structure)

recovery schemes using image point features: image correspondences in the discrete case and

optical flows in the continuouscase. However, point features are not a type of measurements

that images directly provide. A raw image is better modeled to be a real function defined

on the image plane I : > R which indicates the gray level of the image intensity.

The purpose of this chapter is trying to study the motion estimation problem from this

level of raw inputs. The concept of point feature hence must be derived. Based on a very

simphfled noise model, we are going to establish an argument for why the use of point

features (in the Part I) is the correct thing to do for motion estimation. More strictly

speaking, under certain conditions and assumptions, point features are sufficient statistics

for motion estimation. Verymuch like the previous chapter, the study in this chapter is only

conceptual and suggestive. The emphasis is on analysis but not on algorithm. In the end,

we will discuss how the feature point based approach may fail whencertain assumptionsof

the model are violated. This discussion - although does not really undermine all the study

given in Part I and Chapter 8 - will indeed reveal a more complicated picture of motion

estimation in general.



192

9.1 Image Noise Models

For a perspective image point, we still use x = [xi,X2,1]^ to denote its homoge

neous coordinates. In this chapter, we will use the vector x = [rc1,0:2]^ € ^ to denote its

2D coordinates. Let t GMdenote the time. Points on the image plane evolve according to

some vector field - also called image velocity in computer vision literature:

x = <l){x,t). (9.1)

Let $a:(t) denote the solution of this ODE with x as the initial state. That is:

Kit) = (9.2)

For a sequence of gray-level images of the same 3D scene, we may assume that the image

intensity function Iix,t) is invariant under the flow ofthe vector field (f){x,t). Therefore,

we have:

= I{x,to). (9.3)

We choose the noise model to be:

I(^xit)-^Niix,t),t) = I(x,to)+N2{x,t) (9.4)

where the random process Ni G models the spatial noise - firom quantization error

of the location of the image points, and N2 e R models the temporal noise - from

quantization error or variation of the image intensity function. The stochastic processes

Ni{x,t) and N2ix,t) are assumed to be independent Brownian motions (in time t) with
initial states Ni(x,to) = 0 and N2ix,to) = 0 .

Let VI = (^,^)^ GE^, = If, m = ^ and n2 = Differentiating
equation (9.4) with respect to time t, we obtain:

V {<p + ni) + It = n2. (9.5)

Note that in this equation VI and It are evaluated at ($x(<) + iVi, t). In order to obtain the

equation in which all quantities are evaluated at (a;,to), note that according to assumption

we have iV2(a;, to) = 0, ViV2(a:, to) = 0 and this gives the relations:

\mVI{^j,it)+Nut) = V/(a:,to) (9.6)

1^^7t($xW+Wi,t) = hix.to) (9.7)
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Then at (a;,^o), the equation (9.5) yields:

+ Til) + /t = 712 (9-8)

where all quantities are evaluated at (x,to). We call the random vector:

u = (p + ni 6 (9.9)

the optical flow, and the previous equation can then be rewritten as:

V/^U + /t = 7l2. (9.10)

Note that this optical flow model is similar to that used in [96] but the assumptions on

noises are slightly different. Since both Ni and N2 are independent Brownian motions,

their temporal derivatives are independent Gaussian. Without loss of generality we may

assume that rii ~ N{0,<TiI), 712 iNr(0,o-2).

Given u, the random variable y = Vl^u + It is of the distribution:

y^N(0,al). (9.11)

Then the conditional distribution P{VI,It\u) has the density function:

p{VI,It\u) (X e 2cr2 (9.12)

Comment 9.1. Although in the rest of the paper we will only use the noise model (9.5)

to illustrate how Bayesian method is carried onfor motion estimation, we here discuss one

possible variation of this model. Note that, in the model (9.5), we implicitly assumed that

we can apply the differential operators V and ^ to the image intensity function I{x,t)
precisely. However, in practice, this is questionable - numerical approximation usually

introduces noises to computation. If we simply assume that numerical errors introduced by

these operators do not depend on which function they apply to, we have:

V(.) = V(-)+7i3 (9.13)

d d
^(•) = ^(•)+n4 (9.14)

where 713 ~ iV(0,0-3) and 714 ~ iV(0,(j|) are Gaussian random noises independent of ev
erything else, and V and ^ stand for ideal differential operators. Then (9.10) is modified
to:

VI^u + It = n2 +nJu-\-n4. (9.15)
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Consequently, the conditional density function (9.12) becomes:

(vr u+j,)

p{VI,It\u) <X e 2(<T3«ru+,r2+<r2)

Comment 9.2. i4n implicit assumption we made in order to get the expression (9.12) is

that, given u, the random vector (V/^,Jf)^ € is ofuniform distribution on the plane
orthogonal to the vector bi = {u^, 1)^ G . If we view uniform distribution as degenerate
Gaussian, in general, we may assume that conditional distribution of (V/^, It)^ given u is

the joint Gaussian:

p{VI,It\u) (X e \'2 " J ' (9.17)

where a e R is usually a large variance, and 62, ^3 € are unit vectors and form an

orthogonal basis with bi. Note that if cr = 00, this gives the same model as (9.12).

9.2 A Bayesian Motion Estimation Model

The question we axe interested now is, given V/ and It at time t, what is the

optical flow estimate u*{x), and what is the estimate of camera velocity cjJ*,v* assuming
that the scene is static and optical flows are generated by the motion of the camera only.

From a Bayesian viewpoint, we need to derive the a posterior distribution:

p(u(x),u),v\VI,It). (9.18)

In this paper, we choose u*(x),u)*,v* to be the maximum a posterior (MAP) estimate:

argmax p{u{x),uj,v \ VI, It). (9.19)

By the Bayesian estimation method, the a posterior distribution can be computed

from the following relation of probability density functions:

p{u(x),u},v IVI,It) « p(VI,It Iu(a:)) •p(u(x) \uj,v) •p(ijj,v) (9.20)

where we in fact assume that VI, It are conditionally independent ofa;,u given u(a;). The

conditional distributions p{VI, It | u(x)) and p(u{x) \ uj, v) are also called likelihood func

tions, and p{uj,v) is the a priori distribution of uj,v.
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9.3 Likelihood Functions and a priori Distribution

In this section, westudy how to determine the likelihood functionsp(V7, It | u(a;))

and p(u{x) | a;, v) from geometric properties of the image.

9.3.1 Local Likelihood Function of Optical Flow

Let ui 6 be the minimum-norm solution of the equation:

= 0. (9.21)

The the density function | u) in (9.12) can be rewritten as:

p(V/, Ii\u) oc e ^"2 . (9.22)

Then the likelihood of {u—ui) has a Gaussian-like form, but the inverse of the covariance

matrix isdegenerate because VJV/^ isofrank 1. It therefore does not impose any penalty
onu-ui in the direction perpendicular to V/. In order to obtain a non-degenerate local

likelihood at a image location xq, the matrix V/V/^/2(j| is usually replaced by a local
integration (average):

= A / VI(,x)VI(xfdx e (9.23)
^^2 JU{xo)

where i7(a:o) is a neighborhood of xq. Then Qi will be non-degenerate if xq is on a curve

or is near the intersection ofseveral curves or straight lines. In the later case, xq is usually

called a corner or point feature. The local likelihood p(V/, It | u) now becomes:

p(VIJt\u) a (9.24)

where ui is simply replaced by a local linear least square estimate (LLSE) of u for all flow

equations (9.21) in the neighborhood U(xq)-.

'̂ 1= ([ V/(x)V/^(x) dx) f V/(x)/f(x) dx. (9.25)
yuixo) J Juixo)

It can be shown that the covariance matrix of this LLSE estimate is exactly given by Qf^
(see [32] chapter 16 of volume II). Connection between Qi and image local geometry is
exemplified by the fact that, for a point on a single curve, the ratio of the eigenvalues of
the matrix Qi is (approximately) proportional to square ofthe curvature at the point of
interest.
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9.3.2 Likelihood Function of Camera Motion

Let X= (a:i,a;2,l)^ G and consequently x = (0^,0)^ G It is well-known

that if the optical flow (f> is generated from a rigid body motion, it must satisfy the epipolar

constraint (which has been used as a hard constraint on optical flows, see Chapter 3):

x^ux + x^wux = 0. (9.26)

Thus, for some functions f(v) G and p(a;,v) 6 K, we have:

/(v)^<^ + g(u, v) = 0. (9.27)

Substitute u = <f) + ni into this equation and we have:

f(v)'̂ u -{- g(u, v) = /(u)^ni. (9.28)

Therighthand sideissimply a randomvariable ofa Gaussian distributionN(0, /(v)^/(u)).

Then given lj and u, we have:

f{v)'̂ u-\-g{u},v) ~ N{0,aif{v)'̂ f{v)). (9.29)

Let U2 G be the minimum norm solution of the equation:

f{v)'̂ u -fg{uj, v) =0 (9.30)

That is: U2 = —p('t', ^^)/(u)//(t;)^/(u), and let

o — ^ Tp2x2 ro
- 2ouwm

Then the conditional density function p(u | a;,u) is given as:

p{u\(jj,v) a e-("-^2r'52(ix-tx2)^ (9 32)

Comment 9.3. Note that the expression:

/ \Tr\ t \ + //> oo\iu-u,fQ,(u-n,) = (9.33)

in the absence of noise should be zero. This immediately gives us a probabilistically (v.s.

geometrically) "canonical" normalized version of the epipolar constraint.
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Comment 9.4. Similar to the comments we gave in Comment 9.2, in order to obtain

(9.32), we implicitly assumed that, givenu),v, the random vector {u—U2) is joint Gaussian

and of uniform distribution on the line orthogonal to the vector f{v). A more general model

may be obtained by modifying the matrix Q2 to:

where 6 € is a unit vector orthogonal to f{v) and a £ R as before is a large variance.

If a = 00, this gives the same model as (9.32). This explains the geometric meaning of the

covariance matrix. What is then the geometric meaning of the mean U2 ? It is more clear

from the epipolar constraint which yields the following:

(x^ + x^w)t)x = 0 (9.35)

that the optical flow in homogeneous coordinates has a mean given by ux - velocity generated

by rotation. Then U2 is simply the 2D version of it.

9.3.3 The a priori Distribution of Camera Motion

The a priori distributions of w and v can be assumed to be independent, a; G

has the Gaussian distribution:

a;(9.36)

Note that the likelihood function (9.32) takes the same value on v and \v for all AGR\ {0}.

u G then should a distribution on the 2D sphere S^. We here simply use the uniform

distribution. If a; or u has an initial estimate, say lvq or vq, it can be assumed to be the

mean of the distribution. In that case, v may be assumed to be a "Gaussian" distribution

on the 2D sphere (induced from the stereo-graphic projection).

9.4 Sufficient Statistics for Rigid Body Motion Estimation

In order to compute the MAP estimate:

argmax p(u,cj,v | V7,It), (9.37)
u,w,w ^ '
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we first compute the optical fiow estimate u* at each location x of interest as a function of a;

and V. Note that this computation only involves the likelihoods p(V7,| u) andp(u | a;, v):

u*(x,u,v) = argmax p(VIJt Iu) •p(u Iu},v). (9.38)

This is equivalent to minimize the function:

Vi(u) = (u-ui)'^Qi(u-ui) + {u-U2)'̂ Q2{u-U2). (9.39)

It yields:

u*{x,u},v) = (Qi + Q2)~^ {Qiui + Q2U2) (9.40)

Now notice that we are in fact estimating u},v from a field of measurements

V/(a;),7t(x), a; € instead of firom a single point. We therefore need the a posterior

distribution p(u, w,u | VI, It) where u, VI, It are viewed as random fields - random func

tionson (anopensubsetof) We may assume the two Brownian process Ni(x, t), N2(x, t)

are spatially independent, i.e., Ni{xi,t) and Ni{x2,t) are independent at diflFerent points

rci,a;2 for i = 1,2. Then we have:

piVI,It,u\u},v) oc (9.41)

Then the MAP estimates of the camera motion u* and v* axe given by:

argmax p{u*,Lj,v | VI,It). (9.42)
U},V

Substitutingthe estimateu* into the Bayesian formula (9.20) and use (9.41) for p{VI, It, u \

ijj,v), we get:

a (9.43)

Let matrix W e R^^^ beQi(Qi + Q2)~^Q2- Note that W is in fact a (non-negative definite)

symmetric matrix and its entries axe functions of v only. The MAP estimates of lj and v

axe therefore given by global minima of the objective function:

/T
(ui - U2)'̂ W{ui - U2) dx -I- (9.44)

Note that U2 is a linear function in u since g{u),v) is. Hence, the objective function V2{i*J,v)

is quadratic in uj. One can first solve cj* as an expUcit function of v and then convert the

optimization problem to one for v on the 2D sphere only.
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Prom the definition of the matrix W, note that if Qi is a singular matrix, it can be

shown that W is exactly zerol This means that at points near a straight line, because of the

aperture problem, the gradient measurements V/, It will have absolutely no contribution

to the MAP estimate (or even the MMSE estimate) —one of the reasons why we favor

using corners or line intersections in motion estimation. Prom a statistical viewpoint, we

conclude:

Theorem 9.5. For the given image noise model, gradient measurements VJ, It at locations

where Qi is non-singular are sufficient statistics for estimating motion u and v.

Comment 9.6. In the expression of T^(a;,u), the term {u2 - ui)'̂ W{u2 —ui) gives a

probabilistically "canonical" distance between the LLSE estimate U2 from theflow equation

(9.10) and the estimate ui from the epipolar constraint (9.26). The MAP estimate intends

to minimize this distance.

9.5 Discussion

We here investigate representative cases when some of the assumptions of the mo

tion estimation model proposed above are violated and therefore the proposed optimization

scheme no longer provides valid estimates. We also discuss possible ways to resolve such

problems.

1. Imaginary corners and intersections. The motion estimation model proposed

above explicitly relies on the assumption that the intensity of a image point changes

is due to the (rigid body) motion of the corresponding 3D point. If there is no one-to-

one correspondence between a image point and a 3D point, the model is violated. For

example, as illustrated in Figure 9.1, intersections of those lines are "imaginary" - the

image ofsuch a intersection in fact corresponds to (at least) two spatialpoints. Figure

9.1 is an conceptual example. In real images, such imaginary corners or intersections

usually occur along contours ofsolid objects, as the so called "T"-junctions. One way

to resolve such a problem is to buildan estimation model based directly on "motion" of

(parameterized) lines instead of that ofpoints. However, such a scheme still does not
apply to cases when imaginary intersections are caused by curves instead ofstraight
lines, for example Figure 9.2 shows an image ofa trefoil curve in - the imaginary
intersections have to be discarded.
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Figure 9.1: Imaginary intersections.

Figure 9.2: Imaginary intersections of curves.

2. Multiple rigid body motion. The proposed motion explicitly assumes that there

is only a single rigid body motion of the whole scene. If there are multiple rigid body

moving, as shown in Figure 9.3, the proposed estimation scheme no longer applies.

However, this problem can be resolved using the Expectation-Maximization (EM)

Figure 9.3: Multibody motion.

schemewith little change of previously given likelihoods, for example see [128]. In such

a case, motion estimation and segmentation are solved together in a single Bayesian

estimation framework. However, such segmentation will be based on different rigid
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body motions, not simply on multiple smooth motion layers (as in [128]) which may

encounter difficulties in segmenting a rigid object such as the trefoil (see Figure 9.2).

3. Non-rigid body motion. Roughly speaking, non-rigid body motion can be viewed

as an extreme case of multiple rigid body motion - there are infinitely many small

rigid bodies linked together. Figure 9.4 gives an example of non-rigid body motion.

In such a case, the proposed motion estimation scheme will fail since it relies on the

assumption that optical fiows are generated by a rigid body motion such that the

epipolar constraint (9.26) can be used to determine the motion likelihood function.

In a case that an object indeed exhibits non-rigidity property, the proposed motion

estimation schemehas to be fundamentally changed since the motion space is no longer

the pair For computational convenience, an efficient parameterization scheme

is usually needed (and used) for a particular non-rigid body motion. The space of

a non-rigid motion is not necessarily always infinitely dimensional - as the example

shown in Figure 9.4, the motion can be simply parameterized by the principle radius

of the ellipse. However, the likelihoodp{u | 0 G0) between the new motion parameter

space, say 0, and the optical fiow field u has to be carefully re-determined.

Figure 9.4: Non-rigid body motion.

4. Non-Lambertian surfaces. Clearly, our model is primarily based on the equation

(9.3) which assumes that the intensity (or colors) ofa pointdoes notchange even ifthe
viewing angle varies, i.e., the surfaces of objects have to be Lambertian. However,

for metallic or plastic surfaces, this is usually not the true: they do not only have

Lambertian refiection but also have specular reflection which gives these surfaces

local shiny effects. In such a case, the estimates given by the given algorithm may be
erroneous. Fortunately, since places where specular occurs usually have a much higher
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local intensity (than the average of the image), we can simply exclude measurements

at these places from the algorithm.

Besides the cases discussed above, any change of assumptions on the noises, such

as the Markovness, Gaussianness, temporal or spatial dependencies, will also change the

difficulty of analysis, resulting objective functions and eventually the estimates. Since these

changes are more technical than conceptual, we do not discuss them in detail here.



Part III

Applications: Vision Based

Robotic Control
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Chapter 10

Vision Guided Navigation of an

Unmanned Ground Vehicle (UGV)

Sensing of the environment and subsequent control axe important features of the

navigation of an autonomous mobile agent. In spite of the fact that there has been an

increased interest in the use of visual servoing in the control loop, sensing and control

problemshaveusually beenstudied separately. The literature in computer visionhas mainly

concentratedon the process ofestimating necessary information about the state of the agent

in the environment and the structure of the environment, e.g., [30, 40, 99, 111]. Control

issues are often addressed separately. On the other hand, control approaches typically

assume the full specification of the environment and task as well as the availability of the

state estimate of the agent.

The dynamic vision approach proposed by Dickmanns, Mysliwetz and Graefe [16,

17, 18] makes the connection between the estimation and control tighter by setting up

a dynamic model of the evolution of the curvature of the road in a driving appHcation.

Curvature estimates are used only for the estimation of the state of the vehicle with respect

to the road frame in which the control objective is formulated or for the feed-forward

component of the control law. Control for steering along a curved road directly using the

measurement of the projection of the road tangent and its optical flow has been previously

considered by Raviv and Herman [91]. However, stabiUty and robustness issues have not

yet been addressed, and no statements have been made as to what extent these cues are

sufficient for general road scenarios. A visual servoing framework proposed in [20, 92] by
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Espiau, Rives and Samson et al addresses control issues directly in the image plane and

outlines the dynamics of certain simple geometric primitives. Further extensions of this

approach for nonholonomic mobile platforms has been made by Pissard-Gibollet and Rives

[87], Generalization of the curve tracking and estimation problem outlined in Dickmanns

to arbitrarily shaped curves addressing both the estimation of the shape parameters as well

as control has been explored in [29] by Frezza and Picci. They used an approximation of

an arbitrary curve by a spline, and proposed a scheme for recursive estimation of the shape

parameters of the curve, and designed control laws for tracking the curve.

For a theoretical treatment of the problem, a general understanding of the dy

namics of the image of an arbitrary ground curve is crucial. Therefore, before we specify

particular control objectives (such as point-stabilization or trajectory tracking), we first

study general properties of dynamic systems associated with image curves. In a talk given

at Berkeley in October 1996, Soatto [100] formulated the problem of tracking as that of

controlling the shape of the ground curve in the image plane. In spite of the fact that

the system characterizing the image curve is in general infinite-dimensional, we show that

for linear curvature curves the system is finite dimensional. When the control problem is

formulated as one of controlling the image curve dynamics, we prove that the controllabil

ity distribution has dimension 3 and show that the system characterizing the image curve

dynamics is fully controllable only up to the linear curvature term regardless of the kine

matics of the mobile robot base. The controllability results indicate that the parameters

characterizing the images of linearciuwature curves (to be defined in Section 10.1.2) can be

controlled using the driving and steering inputs. We show that the dynamics of the images

of linear curvature curves can be transformed to a canonical chained-form, which already

has existing point-to-point steering control scheme in Murray and Sastry [84, 85].

We then formulate the task of tracking ground curves as a problem of control

ling the image curves in the image plane. We design stabilizing feedback control laws for

tracking general piecewise analytic curves (for general treatments of stabilizing trajectory

tracking control of nonlinear systems, one could refer to, e.g., [39, 123]). We also propose

to approximate general curves by piecewise linear curvature curves. We present how to

compute the image parameters for such approximating virtual curves so as to obtain the

appropriate controls to track them. Simulation results are given for these control schemes.

We also study the observability of curve dynamics from the direct measurements

of the vision sensor. Based on sensor models, an extended Kalmsm filter is proposed to
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dynamically estimate the image quantities needed for the feedback control. We thus obtain

a complete closed-loop vision-guided navigation system for non-holonomic mobile robots.

Chapter Outline

Section 10.1 introduces the dynamics of image curves, i.e., how the shape of the

image of a ground curve evolves in the image plane. Section 10.2 studies controllability

issues for the dynamic systems derived in Section 10.1. Section 10.3 shows how to formulate

specific control tasks for the mobile robot in the imageplane. Correspondingcontrol designs

and their simulation results axe also presented in the same section. Section 10.4 develops

an extended Kalman filter to estimate on-line the image quantities needed for feedback

control. Observability issues of the sensor model are also presented. Simulations for the

entire closed-loop vision-guided navigation system are presented in Section 10.5.

10.1 Curve Dynamics

We derive equations of motion for the image curve under motions of a ground-based mobile

robot. We begin with a unicycle model for the mobile robot and consider generalizations

later.

10.1.1 Mobile Robot Kinematics

Consider the casewheregjmii) ^ SE{2) is a one parameter curve in the Euclidean

Group SE{2) (parameterized by time) representing a trajectory of a unicycle: more specif

ically, the rigid body motion of the mobile frame Fm attached to the unicycle, relative to

a fixed spatial frame F/, as shown in the Figure 10.1.

Let Tfm(t) = [a:,2/,z]^ € be the position vector of the origin offrame Fm from
the origin of frame Ff and the rotation angle 6 is defined in the counter-clockwise sense

about the y-axis, as shown in Figure 10.1. For the unicycle kinematics, 0{t) and Tfm{t)

satisfy:

X = Vsin 9

z = vcosO (10-1)

9 = u)



y

Ff

Figure 10,1: Model of the unicycle mobile robot.

where the steering input u) controls the angular velocity 6; the driving input v controls the

linear velocity along the direction of the wheel.

Now, suppose a monocular camera mounted on the mobile robot which is facing

downward with a tilt angle 0 > 0 and the camera is elevated above the groimd plane by

distance d, as shown in Figure 10.2. The camera coordinate &ame Fc chosen for the

camera is such that the z-axis of Fc is the optical axis of the camera, the rc-axis of Fc and

a:-axis of Fm coincide, and the optical center of the camera coincides with the origins of

both Fm and Fc.^

k

Image Plane
z= 1

Figure 10.2: The side-view of the unicycle mobile robot with a camera facing downward
with a tilt angle 0 > 0.

Then the kinematics of a point pc = [r, y, attached to the camera frame Fc is

^Without loss ofgenerality, we assume the camera is in such a position that such a choice of coordinate
frame is possible.
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given in the (instantaneous) camera frame by:

X 0 y sin <l>-\-z cos (f)

y
= sin<^ V + —xsm(f> uj. (10.2)

z COS(f) —XCOS(f)

For a unit focal length camera, the image plane is 2: = 1 in the camera coordinate frame,

as shown in Figure 10.2.

The use of dynamic models for the task of steering the vehicle along the roadway

has been explored by Kosecka et al [57]. In applications such as high speed highway driving

the dynamic considerations play an important role. The full nonlinear dynamic model of

a car has 6 degrees of freedom of motion and 4 additional degrees of freedom for tires. A

simplifiedversion of this nonlinear dynamic model whichcaptures lateral and yaw dynamics

is used for controller design. The additional parameters of the dynamic model such as load,

inertia, speed and cornering stiffness may vary depending on the driving situation and/or

road conditions, and affect the design of the control laws. The modeled dynamics also allows

incorporation of the ride comfort criteria expressed in terms of limits on lateral acceleration

into the performance specification of the system.

For steering tasks at low speed and normal driving conditions dynamic effects are

not very prevalent so that the use of kinematic models may be well justified. Consequently,

for simplicity of analysis, we stick to kinematic models in this paper. Extensions of our

results to dynamic models is possible as well. We first establish our results for the kinematics

of the unicycle model and then extend it to the bicycle model capturing the kinematics of

the car.

10.1.2 Image Curve Dynamics Analysis

In this section, we consider a planar curve F on the ground, and study how the

shape of the image of the curve F evolves under the motion of the mobile robot. For the

rest of this paper, we make the following assumptions:

Assumption 10.1. The ground curve F is an analytic curve, i.e., F can be locally repre

sented by its convergent Taylor series expansion.

Assumption 10.2. The ground curve F is such that it can be parameterized by y in the

camera coordinate frame Fq.
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Assumption 10.2 guarantees that the task of tracking the curve T can be solved

using a smooth control law. For example, if the curve is orthogonal to the direction of

the heading of the mobile robot, such as the curve r2 shown in Figure 10.3, it can not be

y

Figure 10.3: An example showing that a ground curve r2 cannot be parameterized by y,
while the curve Fi can be.

parameterized by y. Obviously, in this case, if the mobile robot needs to track the cmrve

r2j it has to make a decision as to the direction for tracking the curve: turning right or
turning left. This decision cannot be made using smooth control laws [8].

Relations between Orthographic and Perspective Projections

According to Assumption 10.2, at any time t, the curve F can be expressed in the

camera coordinate frame as Since F is a planar curve on

the ground, 72(2/, t) and jsiy^t) is given by:

d + y cos ^
72(y,i)=y, 73(y,<) =

sin(f)
(10.3)

which is a function of only y. Thus only 7i(y,t) changes with time and determines the

dynamics of the ground curve. In order to determine the dynamics of the image curve we

consider both orthographic and perspective projections and show that under certain

conditions they are equivalent.

The orthographic projection image curve of F in the image plane z = 1 given by

[71(2/5^)52/51]^ € is denoted by f, as shown in Figure 10.4.
On the other hand, the perspective projection image curve, denoted by A =



; y

Itari'(^) z

X
^\i / z=1

Vv Fc
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Figure 10.4: The orthographic projection of a ground curve on the z = 1 plane. Here
= 71 and ^2 =

[Ai(2/,t), A2(2/,t), 1]^, is given in the image plane coordinates by:

and;

X^(v t) = ^i\yi ) .yg d-\-yCOS<j)

Note in equation (10.4) that A2(2/, t) is a function of y alone and that the derivative

of X2(y,t) with respect to y is given by:

dX2{y,t) _ dsm<l)
dy (d + ycos(^)2

so long as ^ > 0 and y ^ —df cos <f>. Using the inverse function theorem, locally, the

image curve A can be re-parameterized by F = X2{y,t) when ^ 0. A can then

be represented by [Ai(y,t), F]^ G in the image plane coordinates, where the function

Ai(F,t) can be directly measured. However, since, as we will soon see, for the given ground

curve r, it is easier to get an explicit expression for the dynamics of its orthographic image

r than the perspective projection image A. Thus, it will be helpful to find the relation

between these two image curves F and A, i.e., the relations between the two functions 71

and Ai.

First, let us simplify the notation. Define:

_ 11 — ysin0
73 d+j/cos^

z=

SZ+l ay» 5
^ = d'XiiY,t)
Si+1 — ^yt

i = 0,1,2,.

i = 0,1,2,

c = [Ci,C2,...,Cire c = c~

(10.4)

(10.6)

(10.7)
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If 7i(2/,i) is an analytic function of y, 7i(y,t) is completely determined by the

vector ^ evaluated at any y; similarly for Thus, the relations between F and A are

given by the relations between ^ and C for the case of analytic curves.

Lemma 10.3. (Equivalence of Coordinates) Consider the orthographic projec

tion image curve V = [7i(y, t),y, 1]^ and the perspective projection image curve A =

[Ai(y, t),y, 1]^, with ^ and^ defined in (10.6) and (10.7). Assume that the tilt angle (f) > 0
and y ^ —d/cos j>. Then for any fixed y,

c = An{y)e, Vn 6 N (10.8)

where An{y) E is a nonsingular lower triangular matrix.

Proof: We prove this lemma by using mathematical induction. For n = 1, from

(10.4), lemma is true for n = 1. Now suppose that the lemma

is true for all n < fc, i.e.,

C" = A„(y)^", n=l,2,...,fc (10.9)

where all An(y) are nonsingular lower triangular matrices. Clearly, in order to prove that

for n = A; + 1 the lemma is still true, it suffices to prove that Ca+i is a linear combination
0f^A:+l, j.e.j

k+l

(k+i='Y,Pimi- (10.10)
1=1

Since Ak+i{y) is nonsingular, fik+i{y) needs to be non-zero. Differentiating (10.9) with

respect to y, we have:

di'SYjy.t) ^ , k. ^ ^ ^ A'.jy) ,
dY dy ay dY dy (lO-ll)

dy dy

where the last entry of the column vector ^ is (^k+i and:

^ = (10.12)
Therefore, according to (10.11), (^^4.1 is a linear combination of ^*=+1 and, since Ak{y) is a

kx k nonsingular lower triangular matrix, Ak{y)kk ^ 0,^ the coefficient fik+i(y) =

is non-zero. ^ _

Ak(y)kk is the {k,k) entry of the matrix Akiy).



Example 10.4. We calculate the matrix A/^(y) € to he:

c' =

sin«^
d+y cos (p

cos<f>

0

d+y cos (f>
d

0

0

0

0

(d+ifCos<^)^
sin <f>

2 jd+y cos cos <t>
d^ sin^ (j)

0

0

0

(d+y cos 0)°
d^ sin'-'4>
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(10.13)

Lemma 10.3 tells us that under certain conditions, the dynamics of the system ^

for the orthographic projection image curve and that of C for the perspective projection

image curve are algebraically equivalent. We may obtain either one of them from the other.

Care quantities that we can directly measure from the perspective projection image A. Our

ultimate goal is to design feedback control laws exclusively using these image quantities.

However, as we will soon see, it is much easier to analyze the curve's dynamics in terms

of the quantities in the orthographic projection image. It also turns out to be easier

to design feedback control laws in terms of For these reasons, in the following sections,

we choose system ^ {i.e., the orthographic projection image) for studying our problem and

design control laws since it simplifies the notation.

Dynamics of General Analytic Curves

While the mobile robot moves, a point attached to the spatial frame Fj moves in

the opposite direction relative to the camera frame Fc- Thus, from (10.2), for points on the

ground curve T = [7i(y,t),2/,73(2/)]^, we have:

71 (y, t) = -{y sin + 73 cos<l))u.

Also, by chain rule:

• / ^71 , ^71. ^71 , ^71/ , . , .= —+ —2/ = — + —[-{vsm(f> - jiujsm(j))).

(10.14)

(10.15)

The shape of the orthographic projection of the ground curve f = [7i(2/,t),2/, 1]^ then

evolves in the image plane z = 1 according to the following Riccati-type partial difierential

equation

^7i ^7i= —(ysin^ + 73cos^)a; + -^(usin^ —71a; sin^).
ot oy

(10.16)

^This equation is called a Riccati-type PDE since it generalizes the classical well-known Riccati equation
for the motion of a homogeneous straight line under rotation around the origin [29, 30].
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Using the notation ^ from (10.6) and the expression (10.3) for 73, this partial differential

equation can be transformed to an infinite-dimensional dynamic system ^ through differen

tiating equation (10.16) with respect to y repeatedly:

Ci6sin(;6 + dcot(?i-|-^
Ci6sin(^ + |̂sin(^ + ^

^1^4sin ^-f 3^26 sin

Ci^i+isin«5^-bpi(C2,-..,^i)

6

CO

ii

6sin«^

6sin^

^4 sin (f)
OJ +

:

^i+isini^

(10.17)

where Pi(^2) •••, Ci) are appropriate functions (polynomials) of only ^2? ••• j^i- In the general

case, the system (10.17) is an infinite-dimensional system.

Comment 10.5. It may be argued that the projective or orthographic projections induce a

diffeomorphism (so-called homography, in the vision literature (see for example Weber et al

[126])) between the ground plane and the image plane. Thus, we could write an equation of

the form (10.17) for the dynamics of the mobile robot following a curve in the coordinate

frame of the ground plane. These could be equivalent to the curve dynamics (10.17) described

in the image plane through the push forward of the homography. We have not taken this

point of view for reasons that we explain in Section 10.2.

Dynamics of Linear Curvature Curves

In this section, we consider a special case: the ground planar ciurve F is a linear

curvature curve (defined below). Its image dynamics in ^ can then be reduced to a

three-dimensional system, which will be shown to be controllable in the following sections.

Definition 10.6. We say that a planar curve has linear curvature if the derivative of

its curvature k{s) with respect to its arc-length parameter s is a non-zero constant, i.e.,

k'{s) = c ^ 0. These curves are also referred to as clothoids. If k'{s) = 0, the curve is a

constant curvature curve.

Note that, according to this definition, both straight lines and circles are con

stant curvature curves, but not linear curvature curves. Constant curvature curves may

be regarded as degenerate cases of linear curvature curves. For linear curvature curves, we

have
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Lemma 10.7. For a ground curve V of linear curvature, i.e., k'{s) = c ^ 0, for any « > 4,

can be expressed as a function o.^d ^3 alone.

Proof: Consider the ground curve F = [7i(2/,t),y,73(2/,t)]^ where 73(2/,^) is

given in (10.3). For the arc-length parameter s and the curvature k, the following relation

ships hold:

k(y) =
||r(2/)xr^^(y)||2

S'(y)3

J
(10.18)

(10.19)

where a is defined as o = yTTcot^ = (sin^)"'. Thus the derivative of the curvature k
with respect to the arc-length parameter s is given by:

«(y) +(^)2y
Using the definition of from (10.20) ^4 can be expressed by:

^ _ c(a^ -t- ^2)^/0- + 3^2^!

(10.20)

(10.21)

Therefore, ^4 is a function of ^1,6, and ^3 alone. According to the definitionof it follows

that, for alH > 4, are functions of ^i,^25and ^3 alone. •

Using Lemma 10.7, for a ground linear curvature curve F, the dynamics of its

orthographic projection image f, i.e., system (10.17) for can then besimplified to bethe
following three-dimensional system = [41,^2,^3]^:

^1 ^2^1 sin<^-|-dcot(^-|- ^ 6sin<^

= — ^3^1 sm(l) +Qsm<i)+^ cv + ^sin^

^3 . ^4^1sin (j) + 3^26 sin ^4 sin (f>

where ^4 is given by (10.21).

Combining Lemma 10.3 and Lemma 10.7, we have the following remark

(10.22)



215

Remark 10.8. For a ground curve of linear curvature, the dynamics of for the perspective

projection image of the curve are completely determined by three independent states Ci? C2) Ca?

or equivalently, for i > A, Q is a function of only Ci5C2; ^3. The two systems =

[Ci5 C25 Cs]^ equivalent and related by equation (10.13). This implies,
for instance, that these two systems have the same controllability properties.

Comment 10.9. In the case that T is a constant curvature curve, i.e., k'{s) = 0, one can

show that ^3 is actually a function of only ^1,(2, so for all ^i,i > Z are functions of only

^1j^2- There are then only two independent states ^1,^2 for the dynamics of system

Linear curvature is an intrinsic property (which is preserved under Euclidean

motions i.e., SE(2)) of planar curves. Thus, the expression (10.21) always holds under all

planar motionsof the robot. However, someother seemingly natural and simpleassumptions

that the literatmre has taken for the ground curve (so as to simplify the problem) might fail

to be preserved under the robot's motions. For example, if, in order to simplify (10,17),

one assumes = 0 for i > 4, i.e., is of the form:

71 (2/5 =^i{yo,t) +6(2/0, t)(y - yo) +^6(yo,^)(y - yo)^ (10.23)
Thisproperty isnotpreserved underrotations. More generally, it isnotan intrinsic property

for a planar curve that its Taylor series expansion has a finite number of terms. Therefore,

one cannot simplify system (10.17) to a finite-dimensional system by assuming that the

curve's Taylor series expansion is finite (which might be the case only at special positions).'̂

10.2 Controllability Issues

We are interested in being able to control the shape of the image curves. Prom the above

discussion, this problem is equivalent to the problem ofcontrolling system ^ (10.17) in the
unicycle case. For linear curvature curves, the infinite-dimensional system ^ is reduced to
the three-dimensional system (10.22). In this section, we study the controllability of
such systems. If the systems characterizing the curve F are controllable, that essentially
means that given our control inputs we can steer the mobile base in order to achieve desired

position and shape of the curve in the image plane. Controllability of system (10.22) is
"Essentially, it only "simplifies" the initial conditions of the system (10.17), not the system dimension.
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directly checked in Section 10.2.1. Controllability ofsystem (10.17) canbe obtained through

studying the controllability for a general ground-based mobile robots (for details on this

subject, see [70]).

Note that ^ and Care still functions of y (or Y). They need to be evaluated at a

fixed y (or Y). Since the ground curve T is analytic, it does not matter at which specific

y they are evaluated (as long as the relation between ^ and Cis well-defined according to

Lemma 10.3)^. However, evaluating ^ or at some special y might simplify theformulation
of some control tasks.

Image Plane
z= 1

Figure 10.5: A' is the orthographic projection image of the point A where the wheel touches
the ground.

For example, suppose a mobile robot is to track the given ground curve F. Ac

cordingto Figure 10.5, let A! be the orthographic projection image of the point A where the

wheel of the mobile robot touches the ground. Obviously, the coordinates of A' axe given

by [0, -dcos <^, 1]^. When themobile robot is perfectly tracking thegiven curve F, i.e., the
wheel keeps touching the curve, the orthographic projection image f = [7i(2/,t),y, 1]^ of
the curve F should satisfy:

lfl{yii)\y=—dcos<f> = 0. (10.24)

Furthermore, the tangent to the curve F at t/ = —dcos <f) should be in the same direction as

the mobile robot. This requires:

dy |y=—dcos^ = 0. (10.25)

®For analytic curves, there is a one-to-one correspondence between the two sets of coefficients of the
Taylor series expanded at two different points.
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Thus, if ^ is evaluated at y = —dcos0, the task of tracking F becomes a control problem

of steering both and ^2 lo 0 for the system (10.17). For these reasons, from now on, we

always evaluate ^ (or at y = —dcos<f> unless explicitly stated.

10.2.1 Controllability in the Linear Curvature Curve Case

If the given ground curve F is a linear curvature curve, the dynamics of its image

is given by (10.22).

Theorem 10.10 (Dimension of Controllability Lie Algebra). Consider the system

of (10.22):

= fiw + f2V

where the vector fields (/i,/2) are:

fi = -

^i^2sin(^ + dcot^ + ^
^i^3sin<^ + |̂sin<?^+ ^

^1^4sin <^ + 3^26 sin

^2sin <f)

, /2 = ^ssincf)

^4sin ^

(10.26)

(10.27)

and ^4 = a2+|| V and y = —dcos<p, then the distribution Ac spanned
by the Lie algebra C{fi,f2) generated by (/i,/2) is of rank 3 when c ^ 0, and is of rank 2

when c = 0.

Proof: Directly calculate the Lie bracket [/i,/2]:

[/i./2] = [-l,0,0f. (10.28)

The determinant of matrix (/i, /2, [/i, /2]) is:

det(/i,/2, [/i, /2]) = -c(a2 + ilf/a^. (10.29)

Therefore, the distribution Ac spanned by C{fi,f2) is of rank 3 if c 0, and of rank 2 if

c = 0. g

Comment 10.11. Since Ac is of full rank at all points, it is involutive as a distribution.

Chow's Theorem [84] states that the reachable space ofsystem (10.22) for is ofdimension

3 when c ^ 0, and 2 when c = 0. This makes sense since, when c = 0, i.e., the case of

constant curvature curves, there are only two independent parameters, and ^2, needed to

describe the image curves, the reachable space of such system can be at most dimension 2.
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10.2.2 Front Wheel Drive Car

In this section, weshow how to extend the study of unicyclemodel to the kinematic

model of a front wheel drive car as shown in Figure 10.6.

Figure 10.6: Front wheel drive car with a steering angle a and a camera mounted above
the center O.

by:

The kinematics of the front wheel drive car (relative to the spatial frame) is given

X — sin Bui

z = cos du\

6 = l~^tanaui

a = U2

(10.30)

where ui is the forward velocity of the rear wheels of the car and U2 is the velocity of the

steering rate angle.

Comment 10.12. The dynamic model of the front wheel drive car, the so called "bicycle

model" [57] has the same inputs and the same kinematics as this kinematic model of the

car. In the dynamic setting the lateral and longitudinal dynamics are typically decoupled

in order to obtain two simpler models. The lateral dynamics model used for the design

of the steering control laws captures the system dynamics in terms of lateral velocity (or

alternatively slip angle) and yaw rate. The control laws derived using this kinematic model

are applicable to the highway driving scenarios providing that the 3D effects of the road

curvature are negligible and the variations in the pitch angle can be compensated for. Under

normal operating conditions and lower speeds the dynamical effects are not so dominant.



Comparing (10.30) to the kinematics of the unicycle, we have:

u) = taxiaui^ v = ui.

If we rewrite the system (10,17) as:

i = fi(^ + f2V
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(10.31)

(10.32)

the dynamics of the image of a ground curve under the motion of the front wheel drive car

is given by:

a 0
Ui +

1
U2

l~^ tana/i + /2 0
U2 = flUi +f2U2-

Calculating the controllability Lie algebra for this system, we get:

h =

[fuh] = 0

sec^ afi

Clearly, as long as sec^ a ^ 0, i.e., a is away from db7r/2, we have:

rank(fi, [f2, /i], [/i, [h, /i]]) = rank{fi, h, [/i, A])

fl =

[/lj/l5/2]] =

0

I Uana/i + f2

0

r^sec^ a[/i,/2]

(10.33)

(10.34)

Thus, the controllability for the front wheel drive car is the same as the unicycle. As a

corollary to Theorem 10.10, we have

Corollary 10.13. For a linear curvature curve, the rank of the distribution spanned by the

Lie algebra generated by the vector fields associated with the system (10.33) is exactly 4.

For constant curvature curves, i.e., straight lines or circles, the rank is exactly 3.

Therefore, under the motion of the front wheel drive car, the shape of a image

curve is controllable only up to its linear curvature terms, as is the unicycle case. The

reader may refer to [70] for a discussion on the controllability of an arbitrary analytic curve

under the motion of an arbitrary ground mobile vehicle. The conclusion can be roughly

summarized as in the following remark:

Remark 10.14. The shape of the image curve is only controllable up to its linear curvature

terms, i.e., od most under the motion of any ground mobile vehicle.
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10.3 Control Design in the Image Plane

In this section, we study the design of control laws for controlling the shape of the image

curve in the image plane so as to facilitate successful navigation of the ground-based mobile

robot. We consider two basic control tasks: 1. Controlling the apparent shape of the curve

on the image; 2. Tracking a given ground curve.

10.3.1 Controlling the Shape of Image Curve

According to the controllability results presented in the previous section, one can

only control up to three parameters [6,^2>6]^ of the image ofa given ground ciurve. This

means the shape of the image curve can only be controlled up to the linear curvature features

of a given curve. In this section, we study how to obtain control laws for controlling the

image of a linear curvature curve, as well as propose how to control the image of a general

curve.

Unicycle

For a unicycle mobile robot, the dynamics of the image of a linear curvature

ground curve is given by system (10.22). According to Theorem 10.10, this two-input three-

dimensional system is controllable (i.e., has one degree of nonholonomy) for c ^ 0. Thus,

using the algorithm given in Murray and Sastry [84, 85], system (10.22) can be transformed

to the canonical chained-form.

The resulting change of coordinates is:

= ^2

To —- c(a2+{^)3

= (Cl - c(ll2^+{|)2 ) (10.35)
,, _ -00(0^+^7)^+302^2^.1

-ca(a2+^2)3+3a2^2C3(o2+^2+^3)

. -

where a = (sin^)"'. Then, the transformed system has the chained-form

(10.36)
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For the chained-form system (10.36), using piecewise smooth sinusoidal inputs

[85], one can arbitrarily steer the system from one point to another in More robust

closed loop control schemes based on time varying feedback techniques can also be found

in [120]. In principle, one can therefore control the shape of the image of a linear curvature

curve.

As for controlling the image of an arbitrary ground (analytic) curve, the best we

can do is to approximate this curve locally by a linear curvature curve (if k"{s) ~ 0) and

then, the controls for controlling the image of this approximating hnear curvature curve can

approximately control the image of the original curve freely up to its first three parameters

in a local range.

Note that when c = 0, i.e., the curve is of constant curvature, the above trans

formation is not well-defined. This is because the system ^ now only has two independent

states and ^2* H is much easier to steer such a two-input two-state system than the above

chained-form system.

R.emark 10.15. Using Lemma 10.3, the dynamic system of the perspective projection

image of a linear curvature curve can he also transformed to chained-form.

Front Wheel Drive Car

In this section we show that the image curve dynamical system (10.33) for the

front wheel drive car model is also convertible to chained-form. According to Tilbury [110],

the necessary and sufficient conditions for a system to be convertible to the chained-form

are given by the following theorem:

Proposition 10.16 (Murray [83]). Consider a n-dimensional system with two inputs

ui,U2:

X- giui -f g2U2, xeW. (10.37)

Let the distribution A = span{gi,g2} and define two nested sets of distributions:

Eq = A, Fq = A

El = Eq -\-[Eo,Eo\, Fi = jPq + [^0?-i^o]

E2 = Ei + lEuEi], F2 = Fi-F[Fi,Fo] (10.38)

Ei+i = Ei-i-[Ei,Ei], Fi+i = Fi-h[F;-,Fo].



The system is convertible to chained-form if and only if:

dim(Bi) = dim{Fi) = i + 2, z = 0,..., n - 2.
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(10.39)

Then we can directly check the two sets of distributions for the dynamical system

(10.33) of the image curve for the front wheel drive car:

a 0 1
=

l~^ tan afi -j- /2
ui -1-

_e _ 0
'^2 = flU-l + f2U2- (10.40)

Eo =Fo = 5pan|/i,/2| (10.41)
Ei=Fi = span |/i,h,[A, A]} (10.42)

Clearly, [A? [A? A]] ^ C F2. For a linear curvatiure curve, (10.33) is a 4-dimensional
system. According to Corollary (10.13), dim{F2) = dim{Fi + [Fi,Fo]) = 4. Since F2 C E2,

we have dim(E2) = dim{F2) = 4. Thus, according to Theorem 10.16, the system (10.33)

is convertible to chained-form. The coordinate transformation may be obtained using the

method given by Tilbury , Minrray and Sastry in [110].

Everything we discussed in the previous section for the unicycle also applies to the

front wheel drive car model. In the rest of the paper, only the unicycle case will be studied

in detail but it is easy to generalize all the results to the car model as well.

10.3.2 Tracking Ground Curves

Tracking Analytic Curves

In this section, we formulate the problem of mobile robot tracking a ground curve

as a problem of controlhng the shape of its image with the dynamics described by (10.17).

We design a state feedback control law for this system such that the mobile robot (unicycle)

asymptotically tracks the given curve.

First, let us study the necessary and sufficient conditions for perfect tracking

of a given curve. As already explained at the beginning of Section 10.2, when the mobile

robot is perfectly tracking the given curve:

^1 71(2/5 Olj/=-d cos = 0
^71(2/5 i)

^2 = dy \y=—d cos (p = 0.

(10.43)

(10.44)
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From (10.22) when = ^2 = 0, we have:

^2 = —+ w/sin^ = 0. (10.45)

This gives the perfect tracking angular velocity:

(j = ^3 sin^ (j) V. (10.46)

It is already known that system (10.17) is a nonholonomic system. According to

Brockett [8], there do not exist smooth state feedback control laws which asymptotically

stabilize a point of a nonholonomic system. However, it is still possible that smooth control

laws exist for the mobile robot to asymptotically track a given curve, i.e., to stabilize the

system ^ around the subset M = {^ € E°° : ^1 = ^2 = 0}-

A global tracking scheme has been proposed by Hespanha and Morse [41] based

on the idea of "partial" feedback linearization.

Proposition 10.17 (Hespanha and Morse). For the system ^ (10.17), set:

V = Uo + Vo > 0

^ = i+s1X |̂ (^0 +a^i + a,b>0
Then the partial closed loop system 0/^1,^2 Is linearized and given by:

^1 = Wo sin (^^2

^2 = - ^^2

(10.47)

(10.48)

This control law guarantees the partial system that we are interested is globally

exponentially stable regardless of the boundness on the curvature. Thus the closed loop

mobile robot globally asymptotically tracks an arbitrarily given analytic curve.

In the above, we have assumed that the set point for the linear velocity wq is

always nonzero. In the case that vq —0, the control (10.47) is still stabilizing but no longer

asymptotically. From the partially linearized system (10.48), remains constant but ^2

can still be steered to zero. This makes sense because, without linear velocity, one can

only rotate the unicyle and line up its heading with the curve but the distance to the curve

remains the same.

Although Proposition 10.17 only deals with analytic (C^) curves, it actually can

be generalized to C^-smooth piecewise analytic curves®.
®"C^-smooth" means that the tangent vector along the whole curve is continuous.
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Corollary 10.18. Consider an arbitrary -smooth piecewise analytic (ground) curve. If

the maximum curvature \k\max existsfor the whole curve, the linearization feedback control

law given by (10.47) guarantees that the mobile robot locally asymptotically tracks the given

curve.

Remark 10.19. Using Lemma 10.3, the control law (10.47) can be converted to a stabilizing

tracking control law for of the perspective projection image.

Tracking Arbitrary Curves

Corollary 10.18 suggests that, for tracking an arbitrary continuous (C®-smooth)

ground curve (not necessarily analytic), one may approximate it by a C^-smooth piecewise

analytic curve, a virtual curve, and then track this approximating virtual curve by using

the tracking control law. However, since the virtual curve cannot be "seen" in the image,

how could one get the estimates of ^ for the "image" of the virtual curve so as to get the

feedback controls v and w subsequently? It turns out that, the virtual ^ is exactly the

solution of the differential equation of the closed-loop system (10.17) with v and w given

by the tracking control law. The initial conditions for solving such differential equation can

be obtained from when designing the virtual curve.

Now, the control becomes an open-loop scheme, and in order to track this virtual

curve, one has to solve the differential equation (10.17) in advance and then get the desired

controls v and uj. It is computationally expensive to approximate a given curve by an

arbitrary analytic ciuve in which case, in principle, we have to solve the infinite-dimensional

differential equation (10.17).

However, as argued in Section 10.1.2, a special class of analytic curves, the linear

curvature curves, can reduce the infinite-dimensional system (10.17) to a three-dimensional

system (10.22), and the three states of the system (10.22) also have captured all the

controllable features of the system according to [70]. Therefore, it is much more com

putationally economical to approximate the given curve by a -smooth piecewise linear

curvature curve and then solve the three-dimensional differential equation (10.22) to get

the appropriate controls v and u.

Few applications do require tracking of arbitrary (analytic) curves. The target

curves usually can be modeled as piecewise linear curvature curves. For instance, in the

case of vehicle control, in the United States, most highways are designed to be of piecewise
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constant curvature, and in Europe, as clothoids. Therefore, piecewise linear curvature

curves are simple as well as good models for most tracking tasks.

Comment 10.20. Strictly speaking, when approximating a given curve by a piecewise poly

nomial curve, for example by using splines [29], in order to get the estimate of ^ for the

evolution of the approximating virtual curve, one has to solve the infinite-dimensional differ

ential equation (10.17). What the "polynomial" property really simplifies is just the initial

conditions of the differential equation but not the dimension of the problem, as already

argued in Section 10.1.2.

Example 10.21 (Mobile Robot Tracking Corridors). Consider a simple example: the

mobile robot is supposed to track a piecewise linear curve consisting of intersection of li

and I2 (as a reasonable model for corridors inside a building), as shown in Figure 10.7. A

natural and simple way to smoothly connect them together is to use a piece of arc AB which

is tangential to both of the straight lines (at points A and B respectively). From point A,

the mobile robot switches to track the virtual curve, arc AB until it smoothly steers into the

next piece, i.e., the line l2- The for tracking this virtual arc AB is then given by the

solution of the closed-loop system of (10.22) with c = k'(s) = 0 and the initial conditions at

point A: ^^(0) = [0,0, -a^/r]^.

O A

Figure 10.7: Using arcs to connect curves which are piecewise straight lines.

In the above example, since the approximating virtual curve is to be as close to the

original curve as possible, the radius r of the arc AB should be as small as possible. But,

in real applications, the radius r is limited by the maximal curvature that the mobile robot

can track (r = l/|fc|). Thus, one needs to consider this extra constraint when designing the
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virtual curves. The following result tells us a way to decide the maximal curvature |A:|max
that the mobile robot can track:

liemark 10.22. Consider the unicycle mobile robot. If its linear velocity v and angular

velocity u) satisfy |u| > ci and + then the maximal curvature that it can track is:

(10.49)

Considernow that the image curve obtained is not even continuous, i.e., the robot

"sees" several chunks of the image of the real curve that it is supposed to track. Basically,

there are two different approaches that one might take in order to track such a curve: first,

one may use some estimation schemes and based on the estimated features of the real curve

to apply the feedback control law (as studied by Prezza and Picci [29]); second, one may

just smoothly connect these chunks of the image curve by straight lines, axes or linear

curvature curves and then apply the virtual tracking scheme as given above to track the

approximating virtual curves.

10.3.3 Simulation Results of Tracking Ground Curves

In this section, we show simulation results of the mobile robot tracking some

specific ground curves using the control schemes designed in previous sections. We assume

that all the image features ^ are already available. In next section, we discuss how to

actually estimate ^ from the real (probablynoisy) images. For all the following simulations,

we choose the camera tilt angle (f> —it/Z, and i>o = 1. The reference coordinate frame Ff is

chosen such that the initial position of the mobile robot is z/o = = 0 and Oq —0.

Tracking a Linear Curvature Curve

For the simulation results given in Figure 10.8, the nominal trajectory is chosen

to be a linear curvature curve with the constant curvature varying rate c = A:'(s) = —0.05.

Its initial position given in the image plane is ^lo = 0,1, ^20 = 0-1, and ^30 = 2.

Tracking Piecewise Straight-Line Curves

Consider now the example discussed in Section 10.3.2: the mobile robot is to track

a piecewise linearcurveconsisting ofintersection of Zi and I2 as shown in the Figure 10.9. We
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Figure 10.8: Simulation results for tracking a linear curvature curve (c = k'{s) = —0.05).
Subplot 1: the trajectory of the mobile robot in the reference coordinate frame; subplot 2:
the image curve parameters and ^2; subplot 3 and 4: the control inputs v and u.

compare the simulation results of two schemes: 1. Usingonly the feedback tracking control

law; 2. Using a pre-designed approximating virtual curve (an arc in this case) around the

intersection point. From Figure 10.9, it is obvious that, by using the pre-designed virtual

curve, the over-shoot can be avoided. But the computation is more intensive: one needs to

design the virtual curve and calculate the desired control inputs for tracking it.

10.4 Observability Issues and Estimation of Image Quanti

ties

As we have discussed in Section 10.1.2, ^ are the features of the orthographic projection

image F of the ground curve F, and are not yet the real image (which, by convention, means

the perspective projection image A) quantities C However, ^ and Care algebraically related

by Lemma 10.3. In principle, one can obtain ^ from the directly-measurable C-

In order to apply the tracking control laws given before, one need to know the

values of^1,^2, and ^3, i.e., Ci,C2 and Cs- Suppose, at each instant t, the camera provides
N measurements of the image curve A:

(10.50)
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Figure 10.9: Comparison between two schemes for tracking a piecewise straight-line curve.

where {yi, >2,... are fixed distances from the origin. If the distances between Yk are

small enough, one can estimate the values of Ci(^A:)jC2(F)t), and simply by:

Ci(n) =

iiiYk) = (10.51)

for A: = 1,..., iV - 2. However, in practice, the measurements {[Ai(Yk, t), Ffc, are

noisy and the estimates (10.51) for become very inaccurate, especially for the higher order

terms C2 and 1^3. It is thus appealing to estimate or by only using the measurements

{[Ai(yjk,t), Vjfc} but not their differences.

10.4.1 Sensor Models and Observability Issues

General Analytic Curves

The curve dynamics are already given by (10.17). If we only use the measurement

Ci = Ai(Y,t) as the output of the vision sensor, then we have the following sensor model:
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6

6

1 ...
...

^i^2sin(^ + dcot(^+ ^

^1^4sin <^ + 3^26 sin <;6

^i^i+isin(^ + Pi(^2,---,^z)

^2 sin <!>

^3 sin (f>

^4 sin ])
U +

:

^i+isin^
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(10.52)

HO — Cl —dH-tcos<^^l
where /i(^) is the measurable output.

Theorem 10.23 (Observability of the Camera System). Consider the system given

by (10.52). Let:

fi = -

6C2 sin + dcot 6sin</>

^i^3sin<^ + |̂sin(^+ ^ ^3sin <j)

^1^4sin ^ + 3^26 sin </>
) /2 =

^4 sin (f>

^i^i+isin<^ + 5i(^2,.--,^i) ^i+i sin <f>

(10.53)

then the annihilator Q of the smallest codistribution Q, invariant under fi, /2 and

which contains dh{i) empty.

Proof: Through direct calculations, the fc-th order Lie derivative of the covector

field dh{^) along the vector field /2 is:

* A\

A = 0,1, 2,..., 00.

Thus, fi contains all z € N and therefore Q is an empty distribution.

(10.54)

Comment 10.24. According to the Theorem 1.9.8 in Isidori [48], Theorem 10.23guaran

tees that the system (10.52) is observable. In other words, the (locally) maximal output

zeroing manifold of the system (10.52) does not exist, according to the Proposition 10.16

in Sastry [93]. Since this system is observable, ideally, one then can estimate the | from

the output h{^). However, the observer construction may be difficult.
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Linear Curvature Curves

The sensor model (10.52) is an infinite-dimensional system. In order to build an

applicable estimator for (so as to apply the tracking control laws), one has to assume

some regularity on the given curve F so that the sensor model becomes a finite-dimensional

system. In other words, one has to approximate F by simpler curve models which have

finite-dimensional dynamics.

In FVezza and Picci [29], the models chosen are third-order B-splines. However,

as we have pointed out in Section 10.1.2, the polynomial form is not an intrinsic property

of a curve and it cannot be preserved under the motion of the mobile robot. Furthermore,

simple curves like a circlecannot be expressedby third-order B-splines. We thus propose to

use (piecewise) linear curvature curves as the models. The reasons for this are obvious from

the discussions in previous sections: the dynamics of a lineax curvature curve is a three-

dimensional system (10.22); such a system has very nice control properties; and piecewise

linear curvature curves are also natural models for highways. However, a most important

reason for using linear curvature curves is that, according to Proposition 10.17, one actually

only needs the estimation of three image quantities, i.e., ^1,^2 aJ^d ^3 to be able to track

any analytic curve. All the "higher order terms" i > 4 are not necessary.

For a linear curvature curve, since we do not have a priori knowledge about the

constant curvature varying rate c = A;'(s), we also need to estimate it. Let 77 = c and we

have the following sensor model for linear curvature curves:

^2^1 sin0-l-dcot0-f ^ ^2sin<^

6
= -

^3^1 sin<7^-he2sin0+^
^4^1 sin 3^2(3sin (f)

UJ -1-
(3sin<f>

^4 sin (f)

.

0 0

— Cl —d+ycOS0^1

where ^4 = +^2) 7^+36^3 is the measurable output.
® ' S2

(10.55)

Theorem 10.25 (Observability of the Simplified Sensor Model). Consider the sys-



tern (10.55). Let:

fi = -

sm<l)-^dcot4> + ^
^3^1 siii0H- |̂sin(^+ ^

^4^1 sm</» + 366sin(^

0

^2sm<l)

, /2 =
6 sin (f)

^4sin0

0
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(10.56)

If (f> ^ 0, then the smallest codistribution Q invariant under /i,/2 o.nd which contains

dh{^^^r}) is of constant rank 4. .

and:

Proof: Through direct calculations, we have:

L%dh{f,r)) = /J = 0,1,2
a + ucosffl

/c+l
sm'

+ y cos (i>

- d + ycos,^

(10.57)

drj. (10.58)

Thus, contains all d^i, d^2)d^s, and drj and it has constant rank 4. •

Therefore, the system (10.55) is observable according to the Theorem 1.9.8 in

Isidori [48] or the Proposition 10.16 in Sastry [93].

10.4.2 Estimation of Image Quantities by Extended Kalman Filter

The sensor model (10.55) is a nonlinear observable system. Extended Kalman

filter (EKF) is a widely used scheme to estimate the states of such systems. In the computer

vision community, estimation schemes based on Kalman filter have been commonly used

for dynamical estimation of motion [99, 101] or road curvature [17, 18], etc. Here, we use

the EKFalgorithm to estimate on-line the|i,|2j|3? andfj. Alternatives to the EKF, which
axe based on nonlinear filtering, are quite complicated and are rarely used.

Multiple-Measurement Sensor Model

In order to make the EKF converge faster, we need to use more than one mea

surement (in the sensor models (10.52) and (10.55)). Prom the N measurements:

{[A,(yfc,<),n,iF}, k = i,...,N (10.59)



we have N outputs;

hkiO = CiiXk) =
sin^

•iiiVk), k = l,...,N
d-\-yk cos <f)

where Yk and yk are related by (10.4) Yk = dlyfcostp-
For linear curvature curves, all the measurements ii{yk) are functions of'only

and the linear curvature rj since all the Taylor series expansion coefficients i 6 N are

functions of only and 77 according to Lemma 10.7. Let:

+ c«cos(^)' ^

^liVk) are then given by 4i(yjfe) = h{^^,T},yk).
The sensor model (10.55) can be modified as:

6 ' ^26 sin(j6 + dcot0-b^ ^2 sin (f)

OJ +
^3 sin (j)

is ^4^1 sin (^ + 3^26 sin ^4 sin (f)

.

0 0

hk(e,n) = (i{Yk) = k = l,...,N

where £4 = and h* me the measurable outputs.
a

Noise Model
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(10.60)

(10.61)

(10.62)

In order to track the variations in the rate of change of the curvature of a curve,

we choose:

(10.63)

where is white noise of appropriate variance.^

The output measurements axe inevitably noisy, and the actual ones are given by:

hk{.f,ri) = Ci(yt) =jJTt^Mf'V'yk)+l^h,, k=l,...,N (10.64)
" + 2/fc cos <t> "

where yhk ^^6 appropriate noise models for the N outputs. Strictly speaking, yhk color

noise processes since image quantization errors® axe main sources for y^k which generically
^One may also model 77 as a second order random walk.
®Including the errors introduced by the image-processing algorithms used to process the original images.
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produce color noises. The explicit forms for the output hk are given by the Taylor series

expansion (10.61). Truncating the higher order terms of the expansion can be regarded as

another color noise source for the output noises However, in order to approximately

estimate the states and 7;, we may simplify to white noise processes and then actually

build an extended Kalman filter (Jaawinski [49], Mendel [80]) to get the estimates and

fj for the states of the nonlinear stochastic model:

'6 '
6

. ^ .

C2C1 sin (^ + d cot (j) +

^36 sin«^ +C|sin(^+^
^46 sin <^ +3^26 sin

0

hkie.v) = Ci{Yk) = ^4^h{e,V.yk) +fJ>h,. A: = l,...,Ar

^2sin<^ ' 0 '

UJ +
6 sin ^ 0

V -t-

^4sin0 0

0 1

l^T}
(10.65)

where ^4 = >^tnd fij) and fi^k white noises with appropriate variances.

For a detailed implementation of this extended Kalman filter, one may refer to the technical

report [70].

The computational complexity of Kalman filter is O(n^) where n is the system

dimension [80]. Although, in some sense, both linear curvature curves and third-order

B-splines (Prezza and Picci [29]) are third-order approximations for general curves, the

dimension of the Kalman filter for estimating the B-spline parameters is AT -f 2 where N

is the number of measurements. However, the EKF we propose here is only 4-dimensional.

Since the number of measurements N is usually larger than 4, the scheme proposed above

is less computationally expensive.

Simulation Results of the Extended Kalman Filter

For illustration, we here give some simulation results of using the EKF to estimate

the image quantities and rj {i.e., the states of the system (10.65)). We first show a

simple example for which the EKF converges. The curve is simply chosen to be a constant

curvature curve (a circle) i.e., c = k'{s) = 0. The initial values chosen for the estimates

are ^^(0) = [0,0,0]^ and 57(0) = 0.1, and for the nominal states ^^(0) = [0.1,1,1]^. The
number of output measurements N is 5. The feedback tracking control laws now use the

estimates for v and u. Since we use synthetic images here, we do not add noise here.

The simulation results are shown in Figure 10.10.
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Figure 10.10: The simulation results of using the Extended Kalman Filter to estimate the
image quantities and 77 (= c = k'{s)) with the number of output measurements N = b:
Sohd curves are for true states; dashed curves are for estimates.

These results show that the estimates and fj converge to the nominal values

and 77(= c). and ^2 converge especially quickly to and ^2 and their curves almost

coincide. The results also show that the mobile robot eventually tracks the circle by using

the estimates for the tracking control laws since both and ^2 eventually converge to

zero.

10.5 Simulation of the Vision Based Closed-loop System

In the previous sections, we have developed control and estimation schemes for mobile robot

navigation (tracking given curves) using vision sensors. The image parameters needed for

the tracking control schemes can be efficiently estimated from direct, probably noisy, image

measurements. Combining the control and estimation schemes together, we thus obtain

a complete closed-loop vision-guided navigation system which is outlined in Figure

10.11.

In order to know how this system works, we simulate it by using synthetic images

of the ground cmrve. A synthetic image of a ground curve F = [71(2/, t), 2/, 73(2/, t)]^ is a
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Figure 10.11: The closed-loop vision-guided navigation system for a ground-based mobile
robot.

set of image points:

I = If-= o[7i(yi,<),yj,73(!/i,i)r}i^i (10.66)

where TTp denotes the perspective projection map and the number of image points M maybe

different for different time t. The output measurements from this synthetic image I are

taken at N pre-fixed distances: yi,...,y}v. Linear interpolation is used to obtain an

approximate value of Ai(yfc,i) if there is no point in I whose Y coordinate is yjfc.

Simulation results show that the control and the estimation schemes work well with

each other in the closed-loop system. For illustration, Figure 10.12 presents the simulation

results for the simple case when F is a circle. We have also developed animations for

synthetic images and simulation data. Figure 10.13 shows a synthetic image of a circular

road viewed from the camera.

10.6 Discussion

In order to use the vision sensors inside the control servo loop, one first need to

study the dynamics of the image. The dynamics of certain simple geometric primitives, like

points, planes and circles, have been studied andexploited by Espiau [20], Pissard-Gibollet

and Rives [87] et al. In this paper, we show that, for ground-based mobile robot, it is

possible to study the dynamics of the image of a more general class of objects: analytic

curves. Based on the understanding of image curve dynamics, we design control laws for

tasks like controlUng the shape of a image curve or tracking a given curve. Our study

indicates that the shape of the image curve is controllable only up to its linear curvature
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Figure 10.12: Simulation results for the closed-loop vision-guided navigation system for the
case when the ground curve is a circle: In subplot 7, the solid curve is the actual mobile
robot trajectory (in the space frame Fj) and the dashed one is the nominal circle; subplot
8 is the image of the circle viewed from the camera at the last simulation step, when the
mobile robot is perfectly aligned with the circle.

terms (in the 2-dimensional case). However, there exist state feedback control laws (using
only "up to curvature" terms) enabling the mobile robot to track arbitrary analytic curves.

Such control laws are not necessarily the only ones. In applications, other control laws may

be designed and used to obtain better control performances.

In the cases that one has to approximate a general curve (which has infinite-

dimensional dynamics) by simpler models, it is crucial to use models with properties which

are invariant under the Euclidean motion (so-called intrinsic properties). We propose that

linear curvature curves are very good candidates for such models. In some sense, linear

curvature curves are a third-order approximation for general curves, so are third-order B-

sphnes used by Prezza and Picci [29]. However, the Extended Kalman Filters needed to
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Figure 10.13: A synthetic image of a piece of circular road viewed from the camera.

estimate their parameters are 4-dimensional and {N + 2)-dimensional respectively (where

N is the number of output measurements). The computation intensities of the two schemes

therefore are different.

We are aware of the extensive literature on vision based control in driving appli

cations. The models and the control laws that we propose are more appropriate for mobile

robot applications, where typically in typically indoor environments that the ground plane

assumption is satisfied, and kinematic models are appropriate. We are currently working on

generalizing some of the ideas presented in this Chapter to the context of dynamic models.

Some of the work in this direction can be found in Kosecka [57].

Although visual servoing for ground-based mobile robot navigation has been exten

sively studied, its applications in aerial robot navigation have not received much attention.

In the aerial robot case, the motions are 3-dimensional rigid body motions SE{S) instead of

SE{2) for ground-based mobile robots. Generally speaking, due to the complexity of aerial

robot - such as a helicopter- dynamics, the analysis based on lifting mobile kinematics (or

dynamics) up to the image plane likely becomes intractable. Therefore, in this case, vision

is usually used as a pure sensor for estimating the states of the robot dynamics and control

analysis is done separately. Then the central issue becomes for a given task, how to design

good controllers based on states which can be reliably and effectively estimated through
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vision, and how to choose or customize vision algorithms for the specific task. This issue

will be investigated further in the next chapter.
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Unmanned air vehicles (UAVs) are being used more and more in a number of

civilian and military applications, for example remote monitoring of traffic, search and

rescue operations, and surveillance. This has generated considerable interest in the control

community, mainly due to the fact that the design of UAVs brings to Hght research questions

falling in some of the most exciting new directions for control. One of these directions is the

use of computer vision as a sensor in the feedback control loop. The task of autonomous

aircraft landing is particularly well suited to vision based control, especially in cases where

the landing pad is in an unknown location and is moving, such as the deck of a ship.

Typically, a vision system on board a UAV augments a sensor suite including a

Global Positioning System (GPS) which provides position information relative to the inertial

frame, and Inertial Navigation Sensors (INS) which provide acceleration information [133].

As a cheap, passive and information-abundant sensor, computer vision is gaining more

and more importance in the sensor suite of mobile robots. There has been a growing

interest in control design around a vision sensor. In [94], stereo vision systems are proposed

to augment a multi-sensor suite including laser range-finders in the landing maneuver of

a UAV. In [137], the use of projections of parallel lines is proposed for the purpose of

estimating the location and orientation of the helicopter landingpad. Using this approach,

the vision sensor provides position and orientation estimates of the camera relative to the

landing pad, but can not estimate the camera velocity, which is important for controlling
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a UAV. In this chapter, we present computer vision algorithms to estimate UAV motion

(position and orientation, linear and angular velocity) relative to a landing pad using a

calibrated monocularcamera. The givenalgorithmsare linear, computationally inexpensive,

numerically robust, and amenable to real-time implementation. We also present a thorough

performanceevaluationof the vision based motionestimation under varying levels of image

measurement noise, altitudes, and camera motions relative to the landing pad.

Further more, the useof computer vision in the control of UAVs is more challenging

than in the classical "visual servoing" approach discussed in the preceding chapter because

UAVs are under-actuated nonlinear dynamical systems. In order for a guaranteed perfor

mance such as stability for the overall closed-loop system, a thorough characterization of

the UAV dynamics are absolutely necessary. We hereby present a fuU dynamic model of the

UAV. Based on geometric control theory, we decompose the dynamics into two subsystems:

inner and outer systems. A nonlinear controller is proposed based on differential flatness of

the outer system. In addition to the workin [121], wealsogivea detailed stability analysisof

the closed-loop system, and clear conditions are derived for system stability. The proposed

controller is tightly coupled with the vision based state estimation and the only auxiliary

sensor needed to implement the controller is an INS for measurement of acceleration. The

INS is used since second order derivatives of image features are highly sensitive to noise.

Finally, we show through simulation that the designed vision-in-the-loop controller is stable

even for large levels of image measurement noise. Implementation on real helicopters will

be reported in future work.

Chapter Outline

In Section 11.1, we review a little the camera imaging models. In Section 11.2 we

formulate the problem of motion estimation from image measurements of a planar scene. We

present a new geometricalschemefor the recovery of the camera linear and angular velocities

from the velocities of feature image points. In Section 11.2.4 we provide simulation results

of the planar ego-motion estimation algorithms and evaluate their performance under the

presence of noise, and different types of motion relative to the plane. In Section 11.3 we give

the djmamic model of the UAV and the design of a controller based on differential flatness.

Conditions for closed-loop stability are also studied in detail. In Section 11.4 we describe

how the obtained vision algorithms can be placed in the feedback loop as a state estimator
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for the controller, and provide simulation results of the vision based landing maneuver.

11.1 Camera Model

We assume that a monocular camera is fixed to the UAV and the optical axis

of the camera coincides with the vertical axis of the UAV body frame. As for notation,

we will adhere to the convention specified in Chapter 2: We denote the three dimensional

coordinates of a point p with respect to the camera frame as X = [Xi,X2, G

The imaging of the camera is given by the perspective projection of points

in the 3D world onto the image plane. We assume a calibrated camera, and without loss

of generality we take the image plane to be at a unit distance from optical center of the

camera. Then the perspective projection of the camera is then given by:

TT : -> rF

^ ^ T,-
If X is the image of the point p, i.e., x = 7r(X), then we can write:

Ax = X (11.2)

where A= X3 GR encodes the depth ofp from the optical center of the camera. Denoting

theoptical axis by 63 = [0,0,1]^, we have A= e^^X. Rewriting equation (11.2), we get the
following identity:

(/-xe3)X = 0 (11.3)

which will be useful in the later development.

11.2 Motion Estimation from Planar Scene

In this section, we first study an ego-motion estimation problem associated to

landing a UAV. Ego-motion estimation in general settings has been extensively studied in

Part I. The goal is to recover the motion ofthe camera using image measurements of fixed

points in the scene. The ego-motion estimation problem for the purpose oflanding a UAV
is a special case of the general one: All the image features correspond to coplanar points
on the landing pad. It iswell known that the case where all features points in the scene are
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Figure 11.1: Geometry of camera frames relative to the landing pad.

coplanar is a degenerate case for the general-purpose 8-point algorithm and it gives rather

poor estimation results [24]. Hence we need algorithms customized to the planar case. The

discrete version of the planarego-motion problem has been studied extensively [26, 61,131).

Here we only formulate the problem and briefly revisit well-known results that can be found

in [131]. Our contribution is to the continuous version of the problem. The continuous

version is important when the task is to control a dynamic mobile robot such as a UAV,

since velocity estimates are needed for the computation of control inputs. The continuous

plan2u: ego-motion estimation problem has also been studied by many researchers [51, 61,

105,124], however eachusinga diflFerent approach. In the samespirit of the general purpose

8-point algorithms studied in Part I, We here propose a new geometric approach which

unifles both the discrete and continuous scenario: First a planar discrete (or continuous)

epipolax constraint is derived for image correspondences (or optical flows); secondly, such

planar epipolar constraints axe used to estimate a planax discrete (or continuous) essential

matrix; flnally use SVD (or eigenvalue-decomposition) of the essential matrix to recover the

unknown motion or structure parameters.

11.2.1 Review of the Discrete Case

Suppose we have a set of n flxed coplanax points C V, where V denotes

the landing plane. Without loss of generality, we take the origin of the inertial frame to

be in V. Figure 11.1 depicts the geometry of the camera frame relative to the landing

pad. We will assume throughout the chapter that the optical center of the camera never
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passes through the plane. We have the following proposition, which gives a constraint on

the coordinates of the coplanar points.

Proposition 11.1. Suppose that the {R^T) € SE{Z) is the rigid body transformation from

frame 2 to 1. Then the coordinates {Xi}"_i, of thefixed coplanarpoints C

V in the two camera frames are related by:

X{ =(r+ xi, j=1,...,n (11.4)

where d is the perpendicular distance of camera frame 2 to the plane V and N E is the

unit surface normal of V relative to camera frame 2.

Proof: Let (i?i,Ti), {R2,T2) G SE{Z) be the configurations of camera frames 1

and 2, respectively. Without loss of generality, we take Ri —/, and hence the rigid body

transformation from frame 2 to frame 1 is (i?,T) = (i?^, Ti - R^T2). For each j = 1,...,n

we have:

X{=RX{+ T (11.5)

where XjjXj are the coordinates ofp? in camera frames 1and 2 respectively. Let Np G5^

be the unit normal vector of the plane V in terms of the inertial frame. Then the surface

normal in the coordinate frame of camera 2 is given by AT = R^Np. If d > 0 denotes the

distance from the plane V to the optical center of camera frame 2, then we have:

iiV^X^ =1, j =l,...,n. (11.6)

Substituting equation (11.6) into equation (11.5) gives the result. •

We call the matrix:

A=(i? +̂ TnA 6 (11.7)
the planar essential matrix, since it contains all the motion parameters {i?,T} and

the structure parameters {AT, d} that we need to recover about the relative configuration

between frames 1 and 2. Notice that due to the inherent scale ambiguity in the term

in equation (11.7), the vision sensor can in general only recover the ratio of the camera

translation scaled by the inverse distance to the plane. In section 11.4.1 we show how to

resolve this ambiguity when the vision sensor is used for landing.
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Proposition 11.2 (Planar Discrete Epipolar Constraint). The matrix ^4 = (il +

^TN^) satisfies the constraint:

{I-x{e^)Ai4 = 0, j = l,...,n (11.8)

where {x5}J=i, are the images o/with respect to camera frames 1 and 2
respectively.

Proof: Simply apply equation (11.3) to equation (11.4) •

Equation (11.8) is the planar discrete epipolar constraint. Since the con

straint given by Lemma 11.2 is linear in A, by stacking the entries of .A as a vector:

a = (0ll,ai2)fll3)021) ••• € E®

, we may re-write equation (11.8) as fja = 0, where fj 6 isa function of ,Xj. Since the

third row in equation (11.8) is all zeroes, the third row of fj contains all zeroes, so we simply

drop it and take fi € E^^®. With this notation, given n image points correspondences, by

defining F = (fj^,... ^ ]^2nx9 combine the equations (11.8) and rewrite them
as:

Fa = 0. (11.9)

In order to solve uniquely (up to a scale) for a, we must have rank{F) = 8. Each pair of

image point correspondences gives two constraints, hence we would expect that at least four

point correspondences would be necessary for the estimation of A. We say a set of coplanar

points are in general configuration if there is a set of four points such that no three are

collinear.

Proposition 11.3 (Weng [131]). ranfe(F) = S if and only if the points are in

general configuration in the plane.

Proposition 11.3 says that if there axe at least four point correspondences of which

no three are collinear, then we may apply standard linear least squares estimation to recover

A up its scale. That is, we can recover Ai = ^A for some unknown ^ G E. Due to the

nature of least squares estimation, as the number of feature points increases, the estimation

of the A matrix, and hence the motion estimates, improves.



245

It turns outthat themiddle singular value ofany matrix oftheform A= R^-^TN^
is identically equal to 1 [26, 131]. Then, if (a\^a2-,crz) are the singular values oi Ai^ we set

A= ^Al^ which determines .4 up to a sign. To get the correct sign, we use
and the fact that Aj, Aj > 0 to impose the constraint > 0 for y = 1,...,n. Thus,

we have that ifthe points {p}^—i axe arranged ingeneral configuration thenthematrix Acan

be uniquely estimated firom the image measurements. Once we have recovered A, we need

somemoreSVD analysis in order to decompose it into its motion and structure parameters.

Forthe details on the decomposition please refer to [131]. In general, for a matrix A = {R+

there are two physically possible solutions for its decomposition into parameters

{•^5 section 11.4.1 we give a method of disambiguating the solutions when the
task is landing a UAV on a landing pad whose geometry is known a priori.

11.2.2 Continuous Case

Here, in addition to measming image points, we measure optical flows u = x.

Proposition 11.4. Suppose the camera undergoes a rigid motion with body linear and

angular velocities a;(t),u(t). Then the coordinates ofcoplanar points {p}"=i in the camera

frame satisfy:

xHt) =(s+^vNAxHt), j =l,...,n. (11.10)

Proof: Each of the points satisfies:

X.^=QX^ + v. (11.11)

Let N{t) = R{t)Npj be the surface normal to V in the camera frame at time t, where R{t)
is the orientation of the camera frame. Then, if d{t) > 0 is the distance from the optical
center of the camera to the plane V at time t, then:

= 1, j = l,...,n. (11.12)

Substituting equation (11.12) into equation (11.11) gives the result. •

We call the matrix:

5 = [a) + ) 6 (11.13)
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the planar continuous essential matrix, since it contains all the continuous motion

parameters {a;, v} and structme parameters {AT, d] that we need to recover. B is exactly a

continuous version of the planar discrete essential matrix A. As in the discrete case, there is

an inherent scale ambiguity in the term gv in equation (11.13). Thus the vision sensor can

in general only recover the ratio of the camera translational velocity scaled by the inverse

distance to the plane. In section 11.4.1 we show how to resolve this ambiguity when the

vision sensor is used for landing.

Estimating Matrix B

We first give a proposition which will be used to prove the main result of this

section: Given image velocities of at least four points in general configmation in the plane,

we can uniquely estimate the planar continuous essential matrix.

Proposition 11.5 (Planar Continuous Epipolar Constraint). The matrix B = (S +

\vN'̂ ) satisfies the constraint:

U-? = (/ - Xie|')Bx- '̂, j = 1,..., n (11.14)

where {x^(t),u.' (t)}^^i are image points and optical flow of points {p^}^-i in the landing
plane.

Proof: We will drop the superscript j for ease of notation. Differentiating

Ax = X and substituting X = BX gives Ax + Ax = ABx. Differentiating A= 63 X gives

A= Ae^Bx. Using these relations and eliminating Agives the result. •

Equation (11.14) is the planar continuous epipolar constraint. Since the

constraint is linear in B, by stacking the entries of B as 6 = (611,612,613, ^21) ••• j^>33)^ ^ j

we may re-write (11.14) as where gf G is a matrixfunction of x^ . However,

since the third row of equation (11.14) contains only zeros, each image point velocity only

imposes two constraints on the matrix B. Given a set of n image point and velocity pairs

{x^ , u^ }J=i offixed points in the plane, we may stack each equation u.' = into a single

equation:

U = G6 (11.15)

where U = (u.^^,..., u^-^)^ G and G = (g\..., g")^ G .
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Proposition 11.6. rank{G) = S if and only if the points are in general configu

ration in the plane.

Proof: We will use the fact that a set of points in the plane are collineax if and

only if the images of the points are collinear in the image plane [131]. This allows us to

work with the images of features points on the plane.

For sufl&ciency, suppose there exists a set of four points in the plane such that no

three are collinear. By contradiction, we will prove that the corresponding eight rows of G

are linearly independent. In the following we use the notation x-^ = [x\ j = 1,..., 4.

Suppose that the matrix:

G^ = -

xi 0 x2 0 x® 0 x4 0

0 xi 0 x2 0 x® 0 x4

—x^x^ -y^x^ -a:2x2 -y2x2 -x®x® -y®x® —a:^x^ -y^x^

d9x8

has rank{G) < 8. Then there exists ^ = (oi,ci,a2jC2,a3,C3,a4,C4)^ € K® such than ^ 7^ 0

and G^^ = 0. Define dj = ajx^ + CjyK Now let a = (01,02,03,04)^, c = (01,02,03,04)^,
d = {d\yd2.,dz^d^)^ and define X = (x^,x^,x®,x^) G With this notation, the

condition G^^ = 0, ^ 7^ 0 implies a 7^ 0 or c 7^ 0 and Xa = Xc = Xd = 0.

Without loss of generality, take a 7^ 0. Since by the hypothesis, no three of x^

are collinear, each set of 3 colimms of X axe linearly independent. Since Xa = 0, then

if one component of a is zero, then we must have a = 0. Hence a 7^ 0 implies Oj 7^ 0

for j = 1,...,4. Since each set of 3 columns of X are linearly independent, we have

dim(ker(X)) < 1 and 37, <5 G IR such that c = 7a and d = <5a. This implies:

dj = ajx^ + Cjy^ —ajx^ + = 5aj. (11.16)

But since aj 7^ 0 for each j, we have x^ + = 6 which implies that all four image points

axe collinear in the image plane, resulting in a contradiction.

For necessity, we first show that if all points axe collineax, then rank{G) < 5. Let

u = (q,/3,0) GIR® be the unit normal to the line in the image plane containing the image
points x^, j = 1,..., n. That is x^^u = 0 for j = 1,..., n. Define four vectors in IR^ by:

u ' 0 ' " 0 ' ei

/il = 0 , h2 = u •> ^3 — 0

II

62

_ 0 0 u
. .

(11.17)
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where (61,62,63) = hxd- Using u^u = 1 and eju = 0, it is direct to check that for

H = {hi,h2, hzt h^) G det(J?^JEr) = 2 and hence rank{H) = 4. From the structure of
G in equation (11.16) is is clear that Ghi = 0 for i = 1,..., 4. Then dim(ker(G)) > 4 and

hence rank(G) <9 —4 = 5.

Now suppose condition of the proposition is not satisfied. The claim is trivially

proved if the number of image points is less than 3. Suppose there are more than 4 image

points, not all collinear, and for each set of four points at least 3 are collinear. Without loss

of generality, suppose x2,x^,x^ lie on a line (call this the common line), and x^ does not

lie on the common line. By induction, we prove that all x-^ 's for j > i lie on the common

line. Suppose xP lies on the common line for some j > 4 and x-'"'"^ does not. Choose two

points out of x^, x^, xP such that they do not lieat the intersection of the common line and

the line connecting x^x-'"**^ Call these points x^,x^. Then the four points x\x^,x',x-^+^

are in a general configuration. This is a contradiction, and hence x^+^ lies on the common

fine. Since all imagepoints lieon a single lineexpect for x^ then rank{G) <5 + 2 = 7. •

If the points are in general configuration in the plane then using Unear least squares

techniques equation (11.15) can be used to recover b up to one dimension, since G has a

one dimensional null space. That is, we can recover B = Bl + where Bl corresponds

to the minimum norm hnear least squares estimate of B, Bk corresponds to a vector in

ker(G) and ^ G R is an unknown scale. By inspection of equation (11.14) one can see that

Bk = I- Then we have:

B = Bl + (L (11.18)

Thus, in order uniquely estimate B, we only need to recover the unknown So far, we have

not considered the special structure of the B matrix. Next we give constraints imposed by

the structure of B which can be used to recover and thus uniquely estimate B.

Lemma 11,7. Suppose u,v G R^, and ||u|p = ||up = a. If u ^ v, the matrix D =

uv^ + viF GR^^^ has eigenvalues {Ai, 0, A3}, where Ai > 0, and A3 < 0. Ifu = ±v, the

matrix D has eigenvalues {±2a, 0,0}.

Proof: Let ^ = xiFv. If u ^ ±?;, we have —a < P < a. We can solve the
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eigenvalues and eigenvectors of D by inspection:

D{u-\-v) — {p + a){u -\- u)

D{u X v) = 0

D(u —v) = (^ —a){u —v).

Clearly Ai = (/? + a) > 0 and A3 = /? —a < 0. It is direct to check the conditions on D

when u = ±i>. a

Theorem 11.8. The matrix B can he uniquely estimated from the image measurements if

and only if there are four points of in the plane such that no three are collinear.

Proof: In this proof, wewill work with sorted eigenvalues, that is if {Ai,A2, A3}

are eigenvalues of some matrix, then Ai > A2 > A3. If the points are not in general con

figuration, then by Proposition 11.6, rank{G) < 7, and the problem is under-constrained.

Now suppose the points are in general configuration. Then by least squares estimation

we may recover B = El + for some unknown ^ 6 K. By Lemma 11.7, we have that

B B"^ = ^vN'̂ + has eigenvalues {Ai, A2, A3} where Ai > 0, A2 = 0, and A3 < 0.
Compute the eigenvalues of B^ "f" and denote them as {71,72573}. Since we have

B = Bl H- ^/, then Af = 7, -I- 2^, for i = 1,2,3. Since we must have A2 = 0, we have

C= -^72, and set B = Bl- \i2l- •

Decomposing Matrix B

We now address the task of decomposing B into its motion and structure parame

ters. The following constructive proof gives a new techniquefor the recovery of motion and

structure parameters.

Theorem 11.9. Given a matrix B e in the form B = lj + one can recover

the motion and structure parameters (tD, 5, iV} up to at most 2 physically possible solutions.

There is a unique solution u = 0, i; x iV = 0 or ej"!; = 0, where 63 = [0,0,1]'̂ is the
optical axis.

Proof: Compute the eigenvalue/eigenvector pairs of B and denote them

as {Ai, Ui}, i = 1,2,3. If Ai = 0 for i = 1,2,3, then we have ?; = 0 and u) = B. In this

case we can not recover the normal of the plane N. Otherwise, if Ai > 0, and A3 < 0, then
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we have v x N 0. Let a = ||v/d|| > 0, let v = v/y/a and N = y/aN, and let ^ = v^N.

According to Lemma 11.7, the eigenvalue/eigenvector pairs ofB + are given by:

Ai —^ + o; > 0,

A3 = - a < 0, Uz =
1

IIO-ATII
(V - N).

(11.19)

Then a = |(Ai - A3). It is direct to check that ||v + iV||2 = 2Ai, ||{; - = -2A3. Then
together with (11.19), we have a solution:

vi = 5(V2A7ui + V~2A3 U3)

N\ = \(y/^iui-yr^zuz) (11.20)

a)i = \{(B-viN'()-{B-viN'[Y).

The estimate of to\ is computed as above because, in the presence of noise, in general

B-viN'[ is not necessarily an element in so(3). We here take the projection of B- viNj
onto so(3).

However, the eigenvalue-decomposition {Ai,Ui} is not unique - there is a sign

ambiguity in the eigenvectors ui and U3. This sign ambiguity leads to a total of 4 possi

ble solutions for £1 and N computed according to (11.20). It is direct to check that that

if {D, ^,N} are the true motion and structure parameters, then the 4 possible solutions

obtained by (11.20) are:

Solution 1

(true)

vi = v/d
Ni = N

LJl = Q
Solution 3

Vz — -vi

Nz = -Ni
Oz = Wi

Solution 2

V2 = lb/d||Ar
^2 = pTdiF"/''
0)2 = u) —Nv^/d/d

Solution 4

V4 = -V2

V4 = -N2

^3 — ^2

In order to reduce the number of physically possible solutions, we impose the so-called

"positive depth constraint" - since the cameracan only seepoints that are in front of it, we

must have N'̂ ez > 0. This constraint eliminates solution 3 as being physically impossible.
If v^ez 7^ 0, one ofsolutions 2 or 4 will be eliminated, whereas if v'̂ ez = 0 both solutions 2
and 4 are eliminated. For the case that v x AT = 0, it is easy to see that solutions 1 and 2

are equivalent, and that imposing the positive depth constraint leads to a unique solution

for all motion and structure parameters. n
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The results for the ambiguities of solutions were also reported in [51, 105, 124]. In

section 11.4.1 we give a method of disambiguating the solutions when the task is landing a

UAV on a landing pad whose geometry is known a priori.

11.2.3 Implementation Issues

For both the discrete and continuous algorithms, the most computationally inten

sive task is the linear least squares estimation of the A and B matrices, which involves the

singular value decomposition (SVD) of the matrices F, G G ^ jg number of

tracked feature points. The cost of the SVD of a matrix M G for m < n is Oirri^n)

flops. Then, as the number of tracked feature points n increases, the cost of the vision

algorithms grows as 0{n).

We have implemented the above algorithms using the Mathlib C++ library in

Matlab, and have found that on a 450 MHz Pentium II running Linux, the vision algorithms

can perform motion estimation based on 25 tracked feature points at a rate of over 150 Hz,

a rate far beyond that of most current real-time feature tracking hardware.

11.2.4 Simulation of Motion Estimation Algorithms

Since our goal is to use the estimated motion and structure from the vision as

a sensor in a control loop, of utmost consideration is the performance of this sensor in

the presence of noise in the measurements of point correspondences and image velocity.

Another important criteria to analyze is how the estimation errors depend on different

camera motions with respect to the observed plane. To this end, we have implemented

both the discrete and continuous algorithms and performed various simulations in order to

evaluate their performance. In order to assess the performance oftheplanar algorithms, for
all simulations we compare the results with the traditional 8-point algorithm as described
in Chapter 3.

For all simulations, we generated 50 random points uniformly distributed within

the field ofview of the camera, FOV = 60°. The image correspondences and the image
velocity measurements were corrupted by additive white Gaussian noise. For evaluating
the 8-point algorithm, we randomly scattered the depths ofthese points uniformly between
distance ofzmin and zmax focal lengths, where for all simulations, we set = 400 and
zniin - 100 unless otherwise noted. For evaluating the planar algorithm, we placed the



252

points on the fronto-parallel plane at a distance of (zmax+zniin)/2. Gach data point on

each plot is the mean result of 50 trials for a given motion, noise level, and distance. We

studied the performance of the algorithms as a function of depth variation, noise in the

image measurements, and motion about different translation/rotation axes.

Depth Sensitivity

In planar case, our depth variation analysis attempts to see how the errors in the

estimates depend on the depth of the plane being viewed. Notice that in the matrices

= and B = uj the translation term is scaled by the inverse distance

of the plane. Thus, for a fixed translation and a fixed noise level, as the distance of the

plane increases, the "signal" from the translation term decreases while the noise level stays

constant. Thus,onewould expect that as thesignal to noise ratiodecreases, the performance

of the algorithms also decrease. Also, from the structure of the A and B matrices, we see

that the errors in the rotational components should not depend on the depths ofthe points.

This expectation was validated as shown in Figure 11.2.

Discrete case: 2 pixels std noise

depth variation: zmax/znun
Discrete case: 2 pixels std noise

- S-PoinI

depth variation; zmax/zmin

Differentiaicase: 2 pixels std noise

depth variation: zmaxtenln
Differentialcase: 2 pixels std noise

depth variation: zmax/2min

Figure 11.2: Depth sensitivity.

Notice that for very low depth variation, the 8-point algorithm for both discrete

and continuous case performs poorly. This is a result of singularities that occur in the

algorithm when the feature points are coplanar. Also, notice that for the planar case,

as expected, the errors increase as the distance of the plane increases. One interesting

observation is that for the discrete case, the rotation estimate is always better in the planar
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case than in the general case.

Noise Sensitivity

In the simulations presented in Figure 11.3, for a given motion we corrupted the

correspondences and image velocities with increasing levels additive white Gaussian noise.

Notice from the simulation results that for both discrete and continuous cases, the planar

algorithm performs better that the 8-point algorithm.

Discrete Case: noise dependency

noise level (pixels std)
Discrete Case: noise dependency

noise level (pixels std)

Differential Case: noise dependency

S-Poml

noise level (pixels std)

Differential Case: noise dependency

noise level (pixels std)

Figure 11.3: Noise Sensitivity.

Motion Sensitivity

Next westudy the sensitivity of the algorithm with respect to different motions rel

ative to the plane. We ran the algorithms for a motion about each translation-rotation axis

pair for two dijfferent noise levels (low and high). In general, the planar algorithms perform

better than the 8-point algorithms except when the translation axis is parallel optical axis

(and hence the surface normal of the plane). The higher sensitivity in that case can seen

as an overall numerical sensitivity to perturbations in the algebraic eigenvalue/eigenvector
problem when there are repeated eigenvalues. For example, if a matrix has a pair of re
peated eigenvalues then any vector in certain two dimensional subspace can be considered

an eigenvector corresponding to the repeated eigenvalue. Because the eigenvectors corre

sponding to repeated eigenvalues are defined up to subspace, it is intuitive to see that for
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two different perturbations of the matrix, the corresponding eigenvectors could be quite

different. A similar phenomenon occurs in the case of repeated singular vectors. Thus, an

algorithm that uses the computation ofeigenvectors (singular vectors) is inherentlysensitive

to noise in the case of repeated eigenvalues (singular values).

The situation of having repeated eigenvalues (singular values) occurs in the planar

continuous (discrete) algorithm in the case that the translational motion is parallel to the

surface normal of the plane. In the 8-point algorithm, the situation of repeated eigenvalues

occurs in the case that the translation and rotation axes are parallel. The simulation results

for both the discrete (in Figure 11.4) and the continuous case (in Figmre 11.5) validate our

expectation ofhigher noise sensitivity in the case of repeated singularvalues and eigenvalues.

JS "

M 4

Discrete: motion dependency: 3 pixels noise std
9-?oirA

BB Ptow

X-X X-Y X-Z Y-X Y-V Y-Z Z-X Z-Y Z-Z

translation-rotation axes

Discrete: motion dependency: 3 pixels noise std
S-Poirir]

E3 Ptenw I

X-Z Y-X Y-Y Y-Z Z-X Z-Y

translation-rotation axes

Discrete: motion dependency: 7 pixels noise std

X-X X-Y X-Z Y-X V-Y Y-Z Z-X Z-Y Z-Z

translation-rotation axes

Discrete: motion dependency: 7 pixels noise std
8-Poini I

P?? Planar |

X-2 Y-X V-Y Y-Z Z-X

translatton«>rotatton axes

fl

Figure 11.4: Discrete Case: sensitivity to translation-rotation axes.

11.3 Nonlinear Control for a UAV Dynamic Model

In this section, we present the dynamical model of the UAV, a control design based

on differential flatness, and a stability analysis of the closed-loop system. The proposed

controller is general in the sense that it can be applied towards trajectory traicking. For

the purpose of landing, the UAV is asked to track a flxed point at the desired configuration

above the landing pad.

We parameterize the orientation R e SO(S) of the UAV relative to the inertia!

frame by the ZYX (or "roll, pitch, yaw") Euler angles denoted by © = Thus
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Figure 11.5: Continuous Case: sensitivity to translation-rotation axes.

we have R = exp{e3^) exp(e20) exp(ei^) with ei = [1,0,0]^, 62 = [0,1,0]^, 63 = [0,0,1]'̂ .

Under this parameterization, there is a mapping ^^(0) € given by;

1 sin (j) tan 6 cos 0 tan 9

•$(0) = 0 cos^ —sin^

0 sin 0/cos 0 cos cos 0

which maps the body rotational velocity to Euler angle velocity, that is; 0 =

11.3.1 System Dynamics

Rotary Tt Force & Rigid

Wing ais ^ Moment Body

Dynamics Generation Dynamics

Figure 11.6: Block diagram of UAV dynamics.

(11.21)

A complete model of a helicopter can be divided into four different subsystems:

actuator dynamics, rotary wing dynamics, force and moment generation pro

cesses, and rigid body dynamics. The dynamics of the engine and actuators (which
depend on the flexibility of the rotors and fuselage) are quite complex and intractable for
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analysis. We here consider a helicopter model including only the rigid body dynamics, the

force and moment generation process and a simplified rotary wing dynamics. This model

is illustrated in Figure 11.6.

We now articulate each of the three subsystems. First, the equations describing

the rigid body dynamics are given by:

p =

© =

= - (jj xXu))u

(11.22)

where m > 0 is the body mass, X G is the inertial matrix and 6 axe the

body force and torque given by:

' Xm 0

f = Ym + Yt + R'' 0

. . "^9 .

=

Rm

Mm + Mt

Nm

+

YmIim + ZmVm + Yrhr

-XMhM + ZmIm

-YmIm —YtIt

(11.23)

The body forces and torques generated by the main rotor are controlled by Tm, ais and

bis, in which ais and bu are the longitudinal and lateral tilt of the tip path plane of the

main rotor with respect to the shaft, respectively. The tail rotor is considered as a source

of pure lateral force Yt and anti-torque Qt, which are controlled by Ty. The forces and

torques can be expressed as:

Xm — Tjvfsin<2i5

Ym = Tm sin 6is

Zm — —Tm cos ai5 cos 615

Yj, = -Tt

Rm ^ ^^bis-QM sinais

- ^^o,is + QMsinbis
Nm — —Qm cosaiscosbis

Mt = —Qt-

(11.24)

The moments generated by the main and tail rotor can be calculated firom the constants

where hi, k and yi denote the vertical, longitudinal, and lateral dis

tance between the center of gravity and the center of the rotor specified by i = M or T.

These system parameters are given in Appendix B. In the simulation, we will approximate
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the rotor torque equations by Qi ~ + vf for i = M,T, with details described in
[59]. The values of are also given in Appendix B.

Finally, the rotary wing dynamics are in general harder to express explicitly.

In an operating region near hovering, the rotary wing dynamics can be approximated by

the following equations (for details see [90]):

Tm —cmiOm + = ctiOt + "is = ^is —^

where 6m, 6t are the main and tail rotor collective pitch, and B, A are the longitudinal and

lateral cyclic pitch.

11.3.2 Inner and Outer System Psirtitioning

A system i; = /(x, t, u) is called differentially fiat if there exist output functions,

called fiat outputs, such that all states and inputs can be expressed in terms of the flat

outputs and their derivatives [28]. Differential flatness has been applied to approximate

models of aircraft [27] and helicopter [56] for trajectory generation. The full helicopter

dynamics are not flat in general, however it can be shown that the dynamics can be par

titioned into an "inner system" {e.g. the attitude dynamics) and an "outer system" {e.g.

the position dynamics) where the outer system is flat. This scheme has been successfully

used for generating a two stage control synthesis for many systems whichare not completely

flat [121]. Such a scheme which utilizes the flatness of the outer system is roughly illustrated

in Figure 11.7. In the figure, Pq is the outer system which is flat, and Pj is the inner sys

tem which is not necessarily flat. Given a desired output trajectory, say y^{-)., the mapping
F in Figure 11.7 utilizes the flatness property of the outer system to generate an desired

output trajectory ?/^(-) for the inner system. The control synthesis for the overall system
then reduces to the design of an inner system controller, C, which drives the inner system

output {t) —> 2/^(t) (exponentially) as t —> oo. As the inner system output converges,
one can show that the outer system output converges to the desired one, y^{t) 2/J(t) as
< oo. That is, the overall system asymptotically tracks the desired trajectory.

It has been shown in [56] that the helicopter dynamics are approximately differen

tially flat with the position and heading {p, V*} as the flat outputs. The approximation is

based on the assumption that the coupling terms au, 6is, Tt are small and can be neglected
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in the model. So if ais^big^Tr ^ 0, the outer system dynamics (11.22) can be rewritten as:

+ h (11.25)p = -R(e)
m

0 " 0 '

0 + 0

. 9 .

with

—Tmsin ais

TMsinbu - Tt

—Tm [cos ais cosbis - 1)

where the inputs are vP = and the outputs are One

must notice that this approximation introduces a small non-vanishing modeling error h

which depends on GjTMjaisjfeisjTr. We will soon show its effect on the stability of the

closed-loop system.

h = -R(Q)
m

Figure 11.7: Partitioned inner and outer systems.

11.3.3 Control Design

The control design for the overall system is be based on an assumption that there

exists a controller C such that = 0 is an exponentially stable equilibrium point for the

inner error system:

= /(e^ 6*^,^)1^0=0. /(0,0,t) = 0

where = y^ —y^ and = y^ —y^ . There have been various design methodologies

proposed for the controller of the inner system, e.g. [59]. We here are only interested in

the performance of the overall system assuming such a controller C is already available. As

shown in [56], for the approximated outer system (11.25), there exists a smooth mapping
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Figure 11.8: Block diagram of control scheme,

from the outer system output to the inner system output:

{p,i>) (0,Tm)

which is defined by the equations:

= rriy/ipx)^ + (py)2 -\-{pz- gY

r-i ^
Tm cos <l>/m ' —Tm cos <^/m J

^ = sin-i (^=h^^+hssii'̂
6 = atan2

ijj = tf)
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where <f>^d ^ ±7r/2. Suppose that the desired output trajectory of the outer system is

Vd — obtain the desired trajectory of the inner system, we define a

pseudo-input vector:

+ Ky{p - Pd) + Kp[p - Pd) (11.26)

where Kp, Ky e are control parameters. With the above pseudo-input, the desired

output of the inner system is given by:

i^d.^Md) —^{Vp,'tpd)' (11.27)

A more detailed schematic of the controller for this system is illustrated in Fig

ure 11.8. Clearly, if the inner system exactly tracks the desired trajectory (©d,TMd), that

is, Vd = in Figure 11.7, then the behavior of the overall closed-loop system is specified
by the outer system only, which, due to chosen the control law (11.26), is approximately a

linear system with poles assigned by the parameters Ky^Kp.
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Now if we summarize all conditions so far and rewrite the dynamics of the overall

closed-loop system in terms of the tracking errors and of the inner and outer systems

respectively, they have the form:

where

= Ae^ + g(e\t)h(e\e^,t)

S(e',() = -fl(0)
m

0 0

0 - -RiBi)
771

0

. -^Md _

(11.28)

In the above equations, /(e^, t) is ingeneral a function ofboth and since the input
of the inner system is a function of e^. The function /i(e^,e^,<) from (11.25) is a small
non-vanishing approximation error, and p(e^,t) vanishes when the inner system exactly
tracks the desired trajectory, i.e., g{0,i) = 0. Since the helicopter model is smooth and

many of the parameters are physically bounded, g(e^ ,t) is in fact (globally) bounded as

< Irlle^ll for some constant L > 0.^

11.3.4 Stability Analysis

We now analyze the performance of the overall closed-loop system. As we have

argued before, the function / in (11.28) is in general a function of both and e^. However,

in practice, the inner system is usually designed to have a muchfaster convergence rate than

the outer system. To simplify the analysis, for now we assume that the inputs TMd(-) and

©rf(') of the inner system are approximately constant, and thus / is only a function of

(the more general case will be presented afterwards).

Recall that given an general system x = /(x,t), by the Lyapimov theorem and

its converse [93], the system is exponentially stable if and only if there exists a Lyapunov

function V{x, t) satisfying:

oii\\xf < V{x,t) < Q:2||a;|p
9V dV , „ .,2

dV

dx
< Q:4||x|

^Such a L can be estimated from the system equation (11.22).

(11.29)

(11.30)

(11.31)
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for some positive Lyapunov constants 01,02,0:3,0:4 > 0. We can apply this theorem

to both the nominal outer system = Ae^ and the inner system = f(e^,t) and

denote the corresponding Lyapunov functions as and and the Lyapunov constants

as oi,02,03,04 > 0 and >0 respectively.

Theorem 11.10. Consider the following system:

e^ — f{e^^t)
\ r (11-32)= Ae^ + g(e^ ^t)

where g{e^^t) is a perturbation term that satisfies ||p(e^,t)|| < L||e |̂|. If both the nominal
outer system e^ = Ae^ and inner system e^ —f{e^,t) are exponentially stable, then the
overall system is exponentially stable for any L > 0.

Proof: Apply the converse Lyapunov theorem to both the outer and inner

systems, and denote the corresponding Lyapunov functions as V^, and the constants as

{oi}|_i, {A}i=i respectively. We consider the candidate Lyapunov function V = V^ + fjV^
for the overall system. Then we have:

V= V'+fiV° < -Me'f-nai\\e°f + ^aiL\\e°\\\\e'\\

= -(l|e'lU|e''ll)Q(l|e'lU|eO||f

where the matrix Q G is:

Q =
)03 - 5/1^04L

-\lla4L /203

The matrix Q can be positive definite if and only if there exists a small enough /j, > 0 such

that det(Q) > 0. It is easy to check that it sufiices to have 0 < /i < Such a p always

exists. Therefore, the overall system is always exponentially stable regardless of L. •

This theorem states a very interesting fact for the system (11.32): as long as the

inner system and outer system are exponentially stable, the system isextremely robust (in

terms of exponential stability) to any (vanishing) perturbation of the outer system which

only depends on the tracking error of the inner system.

In the above theorem we assumed that the inner system does not depend on the
tracking error e^ of the outer system. For the more general case, we may write:

f(e', e°,t) = f(e',0, t) + d(e',e°, t)
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where d(e\e^,t) = f{e^,e^,t) - f(e^,0,t). The nominal system = /(e^,0,t) is expo
nentially stable as designed and we still denote its Lyapunov function as and Lyapunov

constants as Then for the overall system, following the spirit of Theorem 11.10,

we have the result:

Theoremll.il. Consider the following perturbed system:

e' = f{e',e°,t) = f{e',0,t) + d{e',e°,t)
e° = AeO+s(e^^) ^ ^ ^

where g{e',t) is a perturbation term that satisfies ||s(e',f)|| < ii||e'|| for some Li > 0. If,
ford(e',e°,t), there exists L2 > 0such that\\d(e',e° ,t)\\ < L2l|e''||, then the overall system
is exponentially stable if the product of the two Lipschitz constants satisfies the inequality:

Li-L2< —-^. (11,34)
Qi fit ^ '

Proof; The proof is very similar to that of Theorem 11.10. We consider the

candidate Lyapunov function V = V^ for the overall system. Then we have:

V= V' + p.V° < -Alle'lP + Ai2l|e'||||eO|| -pa3l|e°|p+/ia4Li||e°||||e'||

= -{l|e'lU|e°IIW(l|e'||,||e®||)^

where the matrix Q G is:

Q_ Ps ~^{^4L2ya^Li)
—̂{^4L2 + pocaLi) fias

Q is positive definite if and only if det(Q) > 0. That is, there exists y> 0 such that:

-f- (4)0303 - 2p^L2a4Li)y - 011% > 0.

This is true if and only if the discriminant of the quadratic function of y on the left hand

side is positive which yields: *̂ 2 < ^ • • •

This theorem states a very interesting fact about the system (11.33): heuristically,

03 and )03 are proportional to the convergence rates of the outer and inner systems respec

tively,^ hence the stability of the perturbed systems requires only that the product of the

Lipschitz constants of the perturbation terms is less than the productof the two convergence

rates, regardless of the rate of each individual system.

more precise estimates ofthe convergences rates are given by ^ and
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Comment 11.12. The stability of a similar model of the overall closed-loop system has

been studied before in [121], however, no explicit conditions are provided under which a n

exists such that the overall system is stable. Here, Theorems 11.10 and 11.11 give more

detailed and useful results in characterizing the properties of the closed-loop system.

Although we have established the conditions for the system (11.33) to be expo

nentially stable, estimates of its Lyapunov constants indeed depend on Li,L2 and all the

Lyapunov constants of the inner and outer systems. These constants can be optimized by

maximizing the smaller eigenvalue of Q with respect to p. We here omit the detail and

carry on the analysis by assuming that the system (11.33) is exponentially stable and its

Lyapunov constants axe denoted by 71,72,73,74 > 0. We now want to estimate the effect

of the non-vanishing error term h on the performance of the closed-loop system (11.28). In

general, we can no longer expect asymptotic stability when a non-vanishing perturbation is

introduced. However, according to [54], we can still have good estimates of a bound on the

tracking error and the rate of convergence outside this bound.

Proposition 11.13. Assume that the system (11.33) has the Lyapunov constants {7i}i=i-

Then, for the closed-loop system (11.28), if \\h{e^,e^,t)\\ <6< then the tracking

error of the overall system is bounded by b = and, outside this bound, the error

exponentially decreases with a rate larger than A =

The control parameters Ky and Kp can be adjusted so as to minimize the error

bound b. For the helicopter model, the error term h(e^, e^,t) is usually extremely small, as

is We can also choose the control parameters such that the inner and outer systems have

very fast rates of convergence, hence a large 73. Consequently, the error bound b is very

small, and usually barely noticeable in simulations and experiments, as we will soon see.

11.4 Vision in the Control Loop

In this section, we discuss how the discrete and continuous motion estimation

algorithms described in section 11.2 are used in the control loop for landing a UAV onto a

landing pad with a known geometry.
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Figure 11.9: Block diagram of vision in control loop.
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11.4.1 Disambiguation of Motion Estimates

We assume that the image of the landing pad taken from the desired landing

configuration are given. The feature points on the landing pad are assumed to be in general

configuration (theycould for example be corners on the typical "H" pattern). Without loss

of generality, suppose (/,ri) € SE{Z) is the configuration of the desired cameraframe, and

di = -NfTi > 0 is the desired distance of the camera to the landing plane with known
surface normal Np € .

Proposition 11.14. Suppose A = {R -\r ^TN^) 6 is the planar essential matrix
associated with two camera frames relative to a plane. If di >0 is the distance from the

first camera to the plane, then the distance of the second camera to the plane is given by

d = di/det(i4).

Proof; Suppose the configuration of the second camera frame is (i?2,^2) 6

SE{Z). Then di = -NfTi, d = -Nfl^Ti are the distances from the first and second

cameras to the plane. Since Np = RN, we have AR^ = {I+ gTiVj), hence the eigenvalues
ofAR^ axe {A, 1, 1} where A= 1+ jiVjr. But iVjT = Nf{Ti - 1^X2) = -d-[- di. Using
det(A) = det(Ai?^) = A, it is direct to check that det(i4) = di/d. •

The knowledge of Np allows us to disambiguate the pair of solutions discussed in

Theorem 11.9 by taking the one that minimizes ||iVest - R'̂ ^Np\\, where N^st is the vision

estimated surface normal, and i?est is the estimated rotation matrix according to the discrete

algorithm. Also, the knowledge of di allows to find d according to Proposition 11.14, which

solves the scale ambiguity in T/d in the discrete case and v/d in the continuous case.

The vision algorithms described above generate estimatesof{R,T,v,u}. However,
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to compute the control signals such as (11.26) we need estimates of {p,p, 0,0}- Note that

given R G 50(3), the ZYX Euler angles (away from the singularity) can be recovered by:

e = atan2(-r3i,

< ^ = atan2(r32/cos0,r33/cos0) (11.35)

"0 = atan2(r2i/cos^,rii/cos0)

where rij is the entry of the z—th rowand th columnof R. Thus, we can recover {0,0}

from by applying equations (11.35), (11.21) and 0 = —fe. We can recover p using

the estimates through p = —Rv. The closed-loop system configuration is depicted

in Figure 11.9. For the estimate of Tm one needs p as in equation (11.26), which can be

measured by accelerometers that give a = R^p

11.4.2 Simulation Results for the Closed-Loop System

We present the simulation results of the proposed vision based landing scheme. In

these simulations, we apply the proposed controller for the full dynamic model of the UAV.

We add Gaussian noise of standard deviation (in pixel units) to the correspondences and

image velocities, and perform the discrete and continuous motion estimation algorithms

based on the noisy data. In Figures 11.10 and 11.11, we present the simulation results for

image measurement noise levels of 1 and 4 pixels standard deviation in both the image

correspondences and the image velocities.

In these simulations, the initial position is p = [2,1,5]^ meters away from the

desired landing configuration above the landing pad (the origin), the initial orientation is

[^, (/•, = [0,0,0.4]^ radians. The dominant poles oftheouter loop controller are placed at

—2, - .45. The inner loop attitude controller is designed based on feedback linearization [56],

and it has the form 0^^^ = V©, where V© is designed as three decoupled pole-placement
controllers with poles located at -10 and -7 ± 7.1414z for each controller. The main rotor

thrust is controlled based on dynamic inversion and the pole is placed at —5.

Since the origin of the closed-loop system is exponentially stable, it is robust to

relatively large levelsof noise. As wesee, the controller performs very well at a noise levelof

1 pixel standard deviation, which is the accuracy of most state-of-the-art feature-tracking

techniques [3], and remainsstable at a large noise level of4 pixelstandard deviation. Dueto

the gain margin in the controller, the closed loop system is also robust to possible modeling

errors which are omitted, such as the camera calibration.
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In this chapter havewestudied the problem of using computer vision as a feedback

sensor to control the landing of a dynamic Unmanned Aerial Vehicle. We derive a novel

geometric algorithm for estimatingthe camera angular and linear velocity relative to a pla

nar scene, and give a thorough performance evaluation. We propose a nonlinear controller

based on differential flatness for a full UAV dynamic model, and give detailed conditions for

stability of the overall closed loop system. Through extensive simulation, the vision based

controller is shown to result in stable landing maneuvers for large noise levels.

We are currently implementing the above vision algorithms and controller on a

model hehcopter as part of the UC BErkeley Aerial Robot (BEAR) project. One of our

UAVs is a Yamaha R-50 model helicopter, on which we have mounted computers, INS,

GPS, and a vision system, consisting ofa camera, a real-time feature tracker board, and a

Pentium II running Linux. Figure 11.12 shows one of the UC Berkeley UAVs on which we

will implement the proposed landing scheme.





Chapter 12

Conclusions

"Supposing truth is a woman - what then?"

— FViedrich Nietzsche, Beyond Good and Evil

"The essential political problem for the intellectual is not to criticize

the ideological contents supposedly linked to science, or to ensure that his own scientific
practice is accompanied by a correct ideology, but that of ascertaining the possibility of

constituting a new politics of truth... Hence the importance of Nietzsche."
— Michel Foucault, Truth and Power
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As its title suggests, this dissertation attempts to make a connection among three relatively

independent research disciplines: Computer Vision, Differential Geometry, and (Robotic)

Control. Such an interdisciplinary study is probably just as promising as it is risky. It

certainly produces tremendous opportunities with new perspectives, new methods and new

problems; however, the effort might be easily under appreciated by either of the above

disciplines. Maybe because of this, ever since I decided to explore this rocky road as my

PhD program, every once a while, there have been warm-hearted people warning me of

the hardship I would expect down the road. At those occasions, I just have to take the

warnings as encouragement for me to try extra harder. Due to the ever growing practice in

vision based robotic control, a unified study of both computer vision and control is simply

inevitable, neither can it wait any longer. Had there not been us, someone would have done

the same work already.

This dissertation summarizes the main work that I have been doing for the past

four years on the subjects of computer vision and vision based control. When the time

comes for me to put all the related papers together (to make this dissertation), to my
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surprise, all the pieces of the jigsaw puzzle seem to fit with each other very well. The six

chapters of Part I consist of a rather coherent theory of the classic structure from motion

problem from an entirely new perspective. In addition to presenting new results, we take

a lot of effort to clarify some misunderstandings among the literature. Undoubtly, most

of the results will directly benefit the computer vision community. At the mean time, this

new perspectiveopens the door to a unifiedstudy of multiview geometry in both Euclidean

and non-Euclidean spaces. We pursue this quest in Chapter 8 of Part II, where we have

laid out basic ingredients for the study of multiview geometry in more general classes of

spaces or Riemannian manifolds. Many new and interesting problems are therefore raised

regarding how to study geometric properties of certain spaces from a vision point of view.

While these questions mostly attract mathematicians, especially differential geometers, it

is the improved understanding in multiview geometry that benefits control theorists the

most. Therefore in Part III of this dissertation, we shift the focus from vision to control

and demonstrate how to design vision based control systems. The two examples presented

are both representative applications of vision in robotic control: vision guided driving of

ground mobile vehicles and vision guided landing of aerial mobile vehicles.

It would be very hard to picture any next generation intelligent robots without any

on-board visual sensors. In fact, the level of intelligence and automation of the futme robots

will be very much determined by how well the on-board computer processes information

collected from the visual sensors. However, despite that we seem to know quite a lot

about vision already, especially it as an information processing entity, state of the art

computer vision systems still have no match for the human vision, not even close. This

can only mean one thing: A large part about the nature of vision is yet unknown to us.

While mathematics allow us to study fundamental geometric principles underlying visual

perception as this dissertation has shown, a full understanding of the phenomena of vision

must however rely on a more interdisciplinary effort from many other disciplines such as

neurobiology, psychophysics, computer science, and cognitive science.
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A.l Optimization on Riemannian Manifold Preliminaries

Newton's and conjugate gradient methods are classical nonlinear optimization

techniques to minimize a function /(rc), where x belongs to an open subset of Euclidean

space . Recent developments in optimization algorithms on Riemannian manifolds have

provided geometric insights for generalizing Newton's and conjugate gradient methods to

certain classes of Riemannian manifolds. Smith [97] gave a detailed treatment of a theory

of optimization on general Riemannian manifolds; Edelman, Arias and Smith [19] further

studied the case of Stiefel and Grassmann manifolds/ and presented a unified geomet

ric framework for applying Newton and conjugate gradient algorithms on these manifolds.

These new mathematical schemes solve the more general optimization problem of min

imizing a function f{x), where x belongs to some Riemannian manifold where

^ : TM xTM —C°°(M) is the Riemannian metric on M (and TM denotes the tangent

space of M). An intuitive comparison between the Euclidean and Riemannian nonlinear

optimization schemes is illustrated in Figure A.l.

Conventional approaches for solving such an optimization problem are usually ap

plication dependent. The manifold M is first embedded as a submanifold into a higher
^Stiefel manifold V{n,k) is the set of all orthonormal fc-frames in R"; Grassmann manifold G(n,k) is

the set of all k dimensional subspaces in R". Then canonically, V{n,k) = 0{n)f0{n - k) and G{n,k) =
0{n)f0{k) X0(n —k) where 0{n) is the orthogoncil group of R".
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Euclidean Xi+i = Xi + Ai Riemannian Xj+i = exp(Xj Ai)

Figure A.l: Comparison between the Euclidean and Riemannian nonlinear optimization
schemes. At each step, an (optimal) updating vector A, GTx-M is computed using the
Riemannian metric at Xi. Then the state variable isupdated by following thegeodesic from
Xi in the direction Ai by a distance of y/g{A~Ai) (the Riemannian norm of Ai). This
geodesic is usually denoted in Riemannian geometry by the exponential map exp(xi, Ai).

dimensional Euclidean space by choosing certain (global or local) parameterization of
M. Lagrangian multipliers are often used to incorporate additional constraints that these

parameters should satisfy. In order for x to always stay onthe manifold, after each update,
it needs to be projected bax:k onto the manifold M. However, the new analysis of[19] shows
that, for "nice" manifolds, i.e., for example Lie groups or homogeneous spaces such as Stiefel

and Grassmann manifolds, one can make use of the canonical Riemannian structure of these

manifolds and systematically develop a Riemannian version of the Newton's algorithm or
conjugate gradient methods for optimizing a function defined on them. Since the param

eterization and metrics are canonical and the state is updated using geodesies (therefore

always staying on the manifold), the performance of so obtained algorithms is no longer

parameterization dependent, and in addition they typically have polynomial complexity

and super-linear (quadratic) rate ofconvergence [97]. An intuitive comparison between the

conventional update-then-project approach and the Riemannian method is demonstrated

inFigure A.2 (where M is illustrated as the standard 2D sphere = {a; € | ||a;|p = 1}).

One of the purposes of this paper is to apply these new Riemannian optimization

schemes to solve the nonlinear optimization problem of recovering 3D motion from image

correspondences. As we will soon see the underlying Riemannian manifold for this problem

(the so called essential manifold) is a product ofStiefel manifolds instead ofa single one. We
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Figure A.2: Comparison between the conventional update-then-project approach and the
Riemannian scheme. For the conventional method, the state Xi is first updated to
according to the updating vector Aj and then is projected back to the manifold at
Xj+i. For the Riemannian scheme, the new state Xj+i is obtained by following the geodesic,
i.e., Xi+i = exp(a;i, Ai).

first need to generalize Edelman et aPs methods [19] to the product of Stiefel (or Grassmann)

manifolds. Suppose (Mi, $i) and (M2,$2) a<re two Riemannian manifolds with Riemannian

metrics:

$i(-,-) : TMi XTMi ^ C~(Mi),

$2(-, •) : TM2 XTM2 C°°{M2)

where TMi is the tangent bundle of Mi, similarly for TM2. The corresponding Levi-

Civita connections (i.e., the unique metric preserving and torsion-free connection) of these

manifolds are denoted as:

Vi : A:'(Mi) XX{My) X[Mi),

V2 : X(M2) X A:'(M2) X{M2)

where X(Mi) stands for the space of smooth vector fields on Mi, similarly for X(M2).

Now let M be the product space of Mi and M2, i.e., M = Mi x M2. Let ii :

Ml —> M and 12 • M2 M he the natmal inclusions and tti : M —> Mi and 7r2 : M —>• M2

be the projections. To simplify the notation, we identify TMi and TM2 with iu{TMi) and

i2*(TM2) respectively. Then TM = TMi x TM2 and ;i^(M) = A'(Mi) x X{M2). For any
vector field X € X(M) we can write X as the composition of its components in the two

subspaces TMi and TM2' X = (Xi,^"2) € TMi x TM2. The canonical Riemannian metric
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$(-,•) on M is determined as:

HX,Y) = <&i(Xi,yi) + $2(^2,1^2), X,Y£ X(M).

Define a connection V on M as:

= (ViXiVi,V2X2V2) 6 X(M{) XX(M2), X,Y e X(M).

One can directly check that this connection is torsion free and compatible with the canon

ical Riemannian metric $ on M [i.e., preserving the metric) hence it is the Levi-Civita

connection for the product Riemannian manifold (M, $). From the construction of V, it is

also canonical.

According to Edelman et al [19], in order to apply Newton's or conjugate gradient

methods on a Riemannian manifold, one needs to know how to explicitly calculate parallel

transport of vectors on the manifolds and an explicit expression for geodesies. The reason

that Edelman et aVs methods can be easily generalized to any product of Stiefel (or Grass-

maim) manifolds is because there are simple relations between the parallel transports on

the product manifold and its factor manifolds. The following theorem follows directly from

the above discussion of the Levi-Civita connection on the product manifold.

Theorem A.l. Consider M = Mi x M2 the product Riemannian manifold of Mi and M2.

Thenfor two vector fields X, y GX{M), Y is parallel along X if and only ifYi is parallel

along Xi and Y2 is parallel along X2.

As a corollary to this theorem, the geodesies in the product manifold axe just

the products of geodesies in the two factor manifolds. Consequently, the calculation of

parallel transport and geodesies in the product space can be reduced to those in each factor

manifold.

A.2 Riemannian Structure of the Essential Manifold

In this section we study the Riemannian structure of the essential manifold, which

playsan important role in motion recovery from image correspondences (for details see [67]).

Recall that, for any vector u = (ui,7/2,143)^ G the notation u means the associated
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^ 0 -U3 U2

u = "3 0 -Ui e R^^^
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Then for any two vectors u G , the cross product u xv is equal to uv.

Camera motion is modeled as rigid body motion in . The displacement of the

camera belongs to the special Euclidean group 5^(3):

SE{3) = {(R,T): Re 50(3),T e^} (A.l)

where 50(3) € is the space of rotation matrices (orthogonal matrices with determinant

+1). An element g = (i?, T) in this group is used to represent the coordinate transformation

of a point in E?. We already know that two corresponding images xi and X2 of the same

point p € satisfy the so called epipolar constraint:

x^TRxi = 0. (A.2)

A good property of this constraint is that it decouples the problem of motion recovery

from that of structure recovery. The matrix TR in the epipolar constraint is the so called

essential matrix^ and the essential manifold is defined to be the space of all such matrices,

denoted by:

£ = [fR\Re 50(3),f € so(3)}.

50(3) is a Lie group of 3 x 3 rotation matrices, and so(3) is the Lie algebra of 50(3), i.e.,

the tangent plane of 50(3) at the identity. 5o(3) then consists of aU 3 x 3 skew-symmetric

matrices. As we have seen in Chapter 4, for the problem of recovering camera motion

{R, 5) jhom image correspondences, the associated objective functions are usually functions

of the epipolar constraint. Hence they are of the form f{E) G R with E e S. Moreover

such functions in general are homogeneous in E. Thus the problem of motion recovery is

equivalent to optimize functions defined on the so called normalized essential manifold:

El ={fR\R€ 50(3), f €so(3}, hriff^) =1}.

Note that ltr{TT^) = T^T. Strictly speaking, the essential manifold € isnot a differential
manifold because of the singularity at T = 0.^ On the other hand, the normalized essential

is, however, shown to be an algebraic variety [76].
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manifold £i is indeed a differential manifold which has a natural Riemannian structure, as
we will soon see.

In order to study the optimization problem on 5i, it is crucial to understand its

Riemannian structure. We start with the Riemannian structure on the tangent bundle of

theLie group <90(3), i.e., T{SO{Z)). The tangent space ofSO{3) at the identity e issimply
its Lie algebra so(3):

Te{SO{Z)) = so(3).

Since 50(3) is a compact Lie group, it has an intrinsic bi-invariant metric [5] (such metric
is unique up to a constant scale). In matrix form, this metric is given exphcitly by:

$o(Ti,f2) = fi,f2 6so(3).

Notice that this metric is induced from the Euclidean metric on 50(3) as a Stiefel subman-

ifold embedded in For any R G50(3) we define Or : 50(3) x 50(3) to be the
right action of R on 50(3), i.e., dR{R\) = R\R for all Ri G50(3). The tangent space at

any other point R G 50(3) is then given by the push-forward map 9r^:

Tr{S0(3)) = eR^{so{3)) = {fi? If Gso(3)}.

Thus the tangent bundle of 50(3) is:

T(50(3))= U rfl(S0(3))
ReSO{3)

Since the tangent bundle of a Lie group is trivial [103], T(50(3)) is then equivalent to the

product 50(3) x so(3). T(50(3)) can then be expressed as:

r(50(3)) = {(R,fR) IRG50(3),f Gso(3)} ^ 50(3) x so(3).

If we identify the tangent space of so(3) with itself, then the metric $o of 50(3) induces a

canonical metric on the tangent bundle T(50(3)):

^(-^5^) = ^o(-X^1j-X^2) + ^o(^1j5^), X,Y Gso(3) Xso(3).

Note that this metric restricted to the fiber so(3) of T(50(3)) is the same as the Euclidean

metric if we identifyso(3) with Suchan induced metric on r(50(3)) is invariant under

the right action of 50(3).
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Then the metric $ on the whole tangent bundle T{S0{3)) induces by restriction

a canonical metric $ on the unit tangent bundle of T(5'0(3)):

Ti(SO(3)) a {{R,fR) IReS0(3),f e so(3), hr{ff^) =1}.

It is direct to check that, with the identification ofso(3) with , the unit tangent bundleis

simply theproduct 50(3) x where isthestandard 2-sphere embedded in . According

to Edelman et al [19], 50(3) and both areStiefel manifolds V(n,k) ofthe typen = k = 3

and n = 3,/: = 1, respectively. As Stiefel manifolds, they both possess canonical metrics

by viewing them as quotients between orthogonal groups. Here 50(3) = 0(3)/0(0) and

= 0(3)/0(2). Fortunately, for Stiefel manifolds of the special type = n or A; = 1, the

canonical metrics are the same as the Euclidean metrics induced as submanifold embedded

in From the above discussion, we have

Theorem A.2. The unit tangent bundle Ti(50(3)) is equivalent to 50(3) x Its Rie-

mannian metric $ induced from the bi-invariant metric on 50(3) as above is the same as

that induced from the Euclidean metric with Ti(50(3)) naturally embedded in by the

map i : {R,TR) (i?,T), Further, (Ti(50(3)),is the product Riemannian manifold
of(50(3), $i) and (S^, $2) ^ith $1 and $2 canonical metrics for 50(3) and as Stiefel
manifolds.

However, the unit tangent bundleTi(50(3)) is not exactly the normalized essential

manifold £1. Due to the equation (3.9), it is a double covering of the normalized essential

manifold 5i, i.e., £i = Ti(50(3))/Z^. The natural covering map from Ti(50(3)) to £i is:

h:Ti{S0{3)) £i

{R,fR)eTi{S0{3)) ^ TReSi.

The inverse of this map is given by:

Comment A.3. As we know from Lemma 3.1, the two pairs of rotation and translation

corresponding to the same normalized essential matrix TR are {R,T) and ( '̂̂ R, -T). As
pointed out by Weinstein, this double covering h is equivalent to identifying a left-invariant
vector field on 50(3) with the one obtained by flowing it along the corresponding geodesic
by distance n, the so-called time-rr map of the geodesic flow on 50(3).
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If we take for E\ the Riemannian structure induced from the covering map h, the

original optimization problem of optimizing on €\ can be converted to optimizing

f(R,S) on Ti{SO{S)).^ Generalizing Edelman et aPs methods to the product Riemannian

manifolds, we may obtain intrinsic geometric Newton's or conjugate gradient algorithms

for solving such an optimization problem. Due to Theorem A.2, we can simply choose the

induced Euclidean metric on ri(iS'0(3)) and explicitly give these intrinsic algorithms in

terms of the matrix representation of Ti(jS'0(3)). Since this Euclidean metric is the same as

the intrinsic metrics, the apparently extrinsic representation preserves all intrinsic geometric

properties of the given optimization problem. In this sense, the algorithms we are about

to develop for the motion recovery axe diflferent from other existing algorithms which make

use of particular parameterizations of the underlying search manifold Ti(«S'0(3)).

A.3 Optimization on the Essential Manifold

Let f{RiT) be a function defined on Ti(50(3)) = 50(3) x with R e 50(3)

represented by a 3 x 3 rotation matrix and T G a vector of unit length in . This section

gives Newton's algorithm for optimizing a function defined on this manifold (please refer

to [19] for the details of the Newton's or other conjugate gradient algorithms for general

Stiefel or Grassmann manifolds).

In order to apply Newton's algorithm to a Riemannian manifold, we need to know

how to compute three things: the gradient, the Hessian of a given function and the geodesies

of the manifold. Since the metric of the manifold is no longer the standard Euclidean metric,

the computation for these three needs to incorporate the new metric. In the following, we

will give general formulae for the gradient and Hessian of a function defined on 50(3) x

using results from [19]. In the next section, we will however give an alternative approach

for directly computing these ingredients by using the explicit expression of geodesies on this

manifold.

Let $1 and $2 be the canonical metrics for 50(3) and respectively and Vi and

V2 be the corresponding Levi-Civita connections. Let $ and V be the induced Riemannian

metric and connection on the product manifold 50(3) x §^. The gradient of the function

^Although the topological structures of €1 and Ti(50(3)) are different, the nonlinear optimization only
relies on local Riemcmniaji metric and this identification will not affect effectiveness of the search schemes.
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/(J?,T) on 50(3) X is a vector field G = grad(/) on 50(3) x such that:

df(Y) = $(G, y), for all vector fields Y on 50(3) x S^.

Geometrically, so defined gradient G has the same meaning as in the standard Euclidean

case, i.e., G is the direction in which the function / increases the fastest. On 50(3) x S^,

it can be shown that the gradient is explicitly given as:

G = Ur- R/rR, It - Tf^T) € TdS0{3)) x Tt(S^)

where //j € is the matrix of partial derivatives of / with respect to elements of R and

is the vector of partial derivatives of / with respect to the elements of T, i.e.,

(/r)2j =^7, (/t)*: =̂ ,
Geometrically, the Hessian of a function is the second order approximation of the

function at a given point. However, when computing the second order derivative, unlike the

Euclidean case, one should take the covariant derivative with respect to the Riemannian

metric $ on the given manifold.'̂ On 50(3) x S^, for any X = (Xi,X2),Y = {Yi,Y2) €

T(50(3)) XT(S^), the Hessian of f{R,S) is explicitly given by:

Hess/(X,y) = fRR{Xi,Yi)-trflrR{Xi,Yi)

+ fTT(X2, Y2) - rr(X2, Y2)

+ fRT(XuY2) + fTR{Yi,X2).

where the Christoffel functions Fr for 50(3) and Ft for are:

rii(Xi,yi) = \r(xJy^ +yTxx),
rT{X2,Y2) = \t(XIY2 +Y^X2)

and the other terms are:

Srr(Xx,Yx) = Ygj^^lj^JXx)ij{Yxhi, frr{X2,Y2) ='£-^^^(,X2)i{Y2)j,
fM,Y2) =g^^(X0y(y2)., =
Ît is a fact inRiemannian geometry that there is a unique metric preserving and torsion-free covariant

derivative.
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For Newton's algorithm, we need to find the optimal updating tangent vector A

such that:

Hess /(A,y) = $(—G,y) for all tangent vectors Y.

A is then well-defined and independent of the choice of local coordinate chart. In order to

solve for A, first find the tangent vector Z{A) = (Zi,Z2) GT/t(iS'0(3)) x Tt(S^) (in terms

of A) satisfying the linear equations:

fRRi^i^Yi) + jA2) = ^i{Zi,Yi) for all tangent vectors Yi e Tr{S0{3))

/7-r(A2,y2) + /i2r(Ai,y2) = ^2(-^2>^2) for all tangent vectors I2 ^ 2V(§^)

From the expression of the gradient G, the vector A = (Ai, A2) then satisfies the linear

equations:

Zi-R skew(/2Ai) - skew(Ai/J)i? = -(/^ - Rf'̂ R)

Z2-/fTA2 = -(/T-T/fT)

with AijR^ being skew-symmetric and A^T = 0. In the above expression, the notation
skew(i4) means the skew-symmetric part of the matrix A: skew(A) = (A — /2. For

this system of linear equations to be solvable, the Hessian has to be non-degenerate, in

other words the corresponding Hessian matrix in local coordinates is invertible. This non-

degeneracy depends on the chosen objective function /.

According to Newton's algorithm, knowing A, the search state is then updated

from {R,T) in direction A along geodesies to (exp(i?,Ai), exp(r,A2)), where exp(i2, )

stands for the exponential map firom Tij(50(3)) to 50(3) at point R, similarly for exp(T, •).

Explicit expressions for the geodesies exp(i2, Ai<) on 50(3) and exp(T,A2t) on are given

in Chapter 4. The overall algorithm can be summarized in the following:

Riemannian Newton's algorithm for minimizing f{R,T) on the normalized es

sential manifold:

• At the point (R,T),

- Compute the gradient G = {/r —R/rR, fr - TffT),

- Compute the updating vector A = —Hess'^G.
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• Move (i2,T) in the direction A along geodesic to (exp(i?, Ai), exp(T,A2)).

• Repeat if ||G|| > e for pre-determined e > 0.

Since the manifold x is compact, this algorithmis guaranteed to converge

to a (local) extremum of the objective function f{R,T). Note that this algorithm works

for any objective function defined on 50(3) x For an objective function with non-

degenerate Hessian, the Riemannian Newton's algorithm has quadratic (super-linear) rate

of convergence [97].
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Appendix B

UAV System Parameters

Allvariables except for the state variables and inputs are numeric constants, which

can be obtained by measurements and experiments. The followings are the values of the

constants:

Ix = 0.142413 ly = 0.271256 Iz = 0.271492

Im = -0.015 2/M = 0 b-M = 0.2943

Ht = 0.1154 It == 0.8715 m = 4.9

= 0.004452 D% = 0.6304 dR^
dbu

= 25.23

(^Q = 0.005066 = 0.008488 dM{^
da\s = 25.23

CMl = 6.4578 Cms = 100.3752 Ct\ = 0.1837

crs = 0.1545

The operation regions in radian for au,bis and newton for Tm.Tt are: |ois| < 0.4363,

\bu\ < 0.3491, -20.86 < Tm < 69.48, -5.26 <Tt< 5.26.
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