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Abstract

A Differential Geometric Approach to Computer Vision and its Applications in
Control

by

Yi Ma

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Shankar Sastry, Chair

As an important feature of any autonomous mobile agent, such as the human or unmanned
(ground and aerial) vehicles, there is usually a vision system embedded within the decision
making loop. The role of the vision system, whether biological or artificial, is responsible
for retrieving 3D information of the environment from 2D images. Such 3D information
contributes to either low-level feedback control so as to safely navigate within and interact
with the surroundings, or high-level decision making so as to reliably recognize, evade,
pursue or manipulate 3D objects or coordinate with other agents.

Among all the cues available for computing 3D information, the motion cue (also
called the stereo, parallax or structure from motion cues) provides the most unequivocal
information about the camera motion, calibration and 3D structure. Thus the study of
the motion cue has been the subject of intense research in the computer vision community.
The majority of the results have been established primarily within a Projective Geometric
framework which is not easily exploited by the control and robotics community.

In the first part of this dissertation, we show how to further use a blend of novel
techniques in Differential Geometry, Estimation Theory, and Optimization to improve our
understanding of the basic geometric laws which govern the visual perception. This new
perspective has initiated a series of new developments in and geometric insights to almost
every classic problem associated to the motion cue, such as motion estimation, structure re-
covery and camera self-calibration. In the end, we are able to reach a coherent mathematical

theory for multiview geometry. This theory also helps us to discover and analyze certain



singularity, degeneracy and ambiguity inherent in the 2D to 3D reconstruction problem.
Further more, the use of differential geometry allows us to extend the existing theory of
multiview geometry to non-Euclidean spaces. The second part of this dissertation presents
some initial attempts towards such a theory.

The proposed common mathematical framework between computer vision and
control/robotics theory enables a better formulation of vision based control. In the third
part of this dissertation, we will address two basic approaches to vision based control, namely
visual servoing and visual sensing. These two approaches are demonstrated through two
vision based control projects: vision based navigation of an unmanned ground vehicle and

vision based landing of an unmanned aerial vehicle.

Professor Shankar Sastry
Dissertation Committee Chair
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Chapter 1

Introduction

“The real voyage of discovering consists not in seeking new lands, but in seeing with
new eyes.”
— Marcel Proust

1.1 Context and Motivation

According to a list recently released by the National Academy of Engineering,
“imaging” is ranked as the 14th greatest engineering achievement of the 20th century. This
is not surprising. Recording the world the same way as we perceive it through our eyes is
by far the most effective way to keep and convey information. However, simply recording
images is not enough. The tremendous amount of information contained in all the images
still need to be processed, sorted, analyzed, extracted and utilized. The fact that the human
brain can process visual data with remarkable efficiency and reliability has motivated and
inspired the designing of computer vision systems to automate the process of extracting
information from images. Unfortunately, the performance of state of the art techniques has
not been anywhere near that of the human vision. For many reasons, “vision” seems to be
a problem left for the 21st century.

Ever since ancient times, human vision has been a fascinating subject for mathe-
maticians, artists, philosophers, photographers, psycho-physicists and neurobiologists. The
colorful history of vision has certainly made it one of the most interdisciplinary endeavor
in science. An encyclopedic account of the study of human vision can be found in a recent

book by Stephen Palmer [88]. It is, however, not until late 1970s and early 1980s that



vision has been systematically studied from a computational viewpoint, i.e., how to develop
computational models which may simulate certain functionalities of human vision. Such
an effort was initiated by pioneers such as David Marr [75]. In those two decades, much
effort was devoted to the problems of recovering three dimensional shape from cues such
as texture, shading or contour. While these topics remain to be active research subjects,
in 1990s, further advances in computer and imaging technologies have enabled and boosted
the study of motion analysis of multiple images or video sequences. The central problem is
to recover the scene structure as well as the camera motion from many images taken of the
same scene. In the computer vision literature, this is referred to as the structure from
motion (SFM) problem. The geometric theory developed for the study of this problem is
referred to as multiview geometry.

If we regard imaging roughly as a problem of generating realistic two dimensional
images from a given three dimensional scene or structure, vision is then very much the
inverse problem. This inverse problem by its very nature could be under-determined for
different scenes or camera poses may generate the same set of images. This makes computer
vision a very challenging subject: A systematic study therefore will not only include the
design of general-purpose algorithms, but also consist of a clear understanding of potential
singularity, degeneracy and ambiguity in the problem. Regarding the SFM problem in
computer vision, its various geometric aspects have been extensively investigated in late
1980s and 1990s [22, 76, 131] whereas there is still need of a unified mathematical framework
for reaching a full and satisfying understanding of the geometric nature of this problem.
The main purpose of this dissertation is then to propose such a framework. However, we
do not intend to encompass all existing and new results. Rather, we will emphasize on
demonstrating how to complete and improve existing results in multiview geometry and
how to approach new problems which were not able to be solved in the old paradigm.

In order for the reader to understand better the material covered, subjects studied

and mathematics used in this dissertation, it is important that we explain:
1. Why we are interested in computer vision, especially multiview geometry;
2. How we started studying it in the first place;
3. What we are going to use it for.

Five years ago, Berkeley Intelligent Machines and Robotics Laboratory started an ARO



MURI program on “An Integrated Approach to Intelligent Systems”. There have been two
associated test-beds: intelligent vehicle highway and unmanned helicopter. The purpose of
both test-beds is to develop intelligent unmanned (ground or aerial) vehicles. Computer vi-
sion has been considered as an option to replace some of the traditional navigation sensors:
magnetic lane marks or inertial navigation sensors (INS) such as gyroscopes and accelerom-
eters. Despite many of its advantages, computer vision, unlike most traditional sensors,
is the least understood for control purposes. So our study first focused on investigating
the role of computer vision in a feedback loop and how to design controllers around
the vision sensor. Some of the results of this effort have been summarized in Part III of
this dissertation. However, while we were studying vision based control, we realized that
existing mathematical framework in the computer vision literature for studying SFM was
not so compatible with that for control and robotics, and the existing theory for multiview
geometry was not complete yet or unified enough for the purpose of designing robust control
system based on computer vision. We therefore decided to investigate the the problem of

SFM in more depth. The significance of such an investigation is believed to be three-fold:

1. We hope to unify, improve and complete existing results in multiview geometry so

that it directly benefits the computer vision community;

2. We try to present a clear picture of this subject within a unified geometric framework

which will be more accessible to the control and robotics community.

3. We want to establish a solid geometric theory of SFM which may give useful guidance

for the design of better vision based control systems.

Part I and Part II of this dissertation summarize our effort and main results in these

directions.

1.2 Research Areas

1.2.1 Vision Based Control System Hierarchy

As we have mentioned above, multiview geometry per se is not the only interest
of our study. Our ultimate goal is to develop intelligent unmanned vehicles with computer
vision in the feedback control or decision making loop. Multiview geometry is one of the

most important subjects, of which we need to have a very good understanding, in order



to achieve such a goal. Although the architectures of such intelligent systems may be very
different depending on applications, conceptually they always can be decomposed into a

three-layer hierarchy, shown in Figure 1.1. One must be aware that the three layers in

Robotics & Active Vision
Control & Decision Making
Object Recognition
(3D Information)

4

Y
Multiview Geometry
(2D to 3D Reconstrution)

) :

Y
Feature Tracking & Correspondence
Grouping & Segmentation
(2D Image Processing)

Figure 1.1: A conceptual hierarchy of vision based control (or decision making) systems.
Arrows indicate direction of information flow.

this hierarchy are still coupled together. For example, the bottom layer provides input
information (such as image correspondences and optical flows) to the middle layer, which
multiview geometry uses to recover 3D structure and camera motion. In the other direction,
knowledge about the structure and motion will certainly improve the accuracy of matching
up corresponding image points. A similar coupling also exists between the top two layers.
For example, 3D structure recovered from the multiview geometry may be necessary for
recognizing certain 3D objects. In return, recognition of a 3D object may dramatically
improve the 3D structure recovered from its 2D images.

Because of these couplings, the study of the overall system is extremely complicated
and almost intractable. A traditional method to approach such a complicated problem is
divide and conquer. This dissertation will follow this old tradition. For example, in Part
I and Part II, we will focus our study on the second layer, i.e., multiview geometry. We
are going to indulge ourselves and assume that there is no coupling with either the top or
the bottom layer. That is, we do not assume any knowledge about the object whose 3D

structure is to be recovered, nor do we consider the effect of the reconstructed 3D structure



and camera motion on the measurements of image correspondences or optical flows. Due
to these assumptions, we will then be able to formulate multiview geometry as a clean

mathematical problem and investigate it in depth.

1.2.2 Multiview Geometry

Ever since the landmark paper by Longuet-Higgins in 1981 [60], the study of the
geometry of 2D to 3D reconstruction has been revived. This revival has led to a blooming
of numerous algorithms on the problem of recovering 3D structure and motion from feature

image points. These algorithms differ in many aspects:
1. Linear versus Nonlinear (Suboptimal versus Optimal);
2. Discrete versus Continuous;
3. Two-view versus Multiview;
4. Calibrated Camera versus Uncalibrated Camera;
5. Batch Methods versus Iterative Methods;
6. Orthographic Projection versus Perspective Projection;
7. Euclidean versus Riemannian.

For most of the aspects, a thorough and detailed account of the state of the art techniques
can be found in later chapters.

Because the structure from motion problem has been so extensively studied, it
is then a very tempting, however extremely challenging task to try to encompass all the
existing results in a unified theoretic framework. In the computer vision literature, a well
celebrated framework is a three-stage stratification approach proposed by Faugeras in 1995
[23]. The basic concept may be roughly shown as in Figure 1.2. Based on Projective
Geometry, this approaches decomposes the original complicated nonlinear SFM problem to
a series of subproblems, each of which has an easier, or even linear, solution.

According to this stratification hierarchy, in order to obtain a final reconstruction
of the Euclidean structure and motion, one first seeks for a relaxed solution in a projec-

tive space, i.e., finding the solution up to an arbitrary projective transformation. Such a
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Figure 1.2: The hierarchy of the three-stage stratification approach.

solution is then referred as a projective structure. To a large extent, solving for the pro-
jective structure is a linear problem. Once the projective structure is obtained, extra metric
information is used to “stratify” this structure back to a Euclidean structure, through an
intermediate stage: an affine structure.

A potential gain of such a projective geometric framework is in computation. The
computation of the projective structure is very much linear (therefore fast). Moreover, the
algorithm for each step is relatively robust and provides already good estimates even in
presence of noises, although such estimates may not be unbiased or optimal w.r.t. a given
noise model. However, seeking for a solution in a projective space may easily lose track of
geometric insight of what is exactly going on in the original Euclidean space. The reduction
of the rather geometric SFM problem to an algebraic one makes it harder to fully reveal
the geometric intuition behind the results and algorithms, and the focus on the design
of general-purpose algorithms may also take a risk with potential singularity, degeneracy
and ambiguity hidden in the original problem. Furthermore, we do need a more delicate
framework which will be able to unify all the results regarding different aspects of SFM,
as mentioned in the beginning of this section. Part I and Part II of this dissertation then
attempt to give a new perspective to multiview geometry which practically uses no projective

geometry but provides a clear resolution to these issues. Conceptually, this approach can



also be interpreted as an alternative stratification of motion and structure separately, as

illustrated in Figure 1.3. The gist of this approach is presented in detail in Chapter 6.

Euclidean Structure

4
Chirality

An A]tern?tive
Structure Stratification Stratification

)
Kruppa’s Equation

Motion Stratification

Figure 1.3: The hierarchy of an alternative stratification approach. Details about chirality
and Kruppa's equation can be found in Chapter 6.

1.2.3 Vision Based Robotic Control

As one of its main applications, computer vision has been widely used in robotics
for many purposes: autonomous navigation, obstacle avoidance, object recognition or ma-
nipulation, 3D map building and telepresence. In such a context, an important question
that naturally arises is:

How should the information from vision sensors be used for robotic control pur-
poses?

A naive approach would be to first recover all 3D information that vision could possibly
provide and then design feedback laws for a given control task based on all the information.
However, many 2D to 3D estimation schemes are rather time-consuming and not yet suitable
for real-time control tasks. This has been the motivation for the so called visual servoing
approach, i.e., to design feedback control laws based on measurements which are directly
available from images, hence certain unnecessary 2D to 3D estimation can be bypassed.

In general, the physical robot dynamics are first “lifted” onto the image plane and result



in induced dynamics of certain image features or quantities. If a given control task can
be expressed in terms of the states of such image dynamics, we may design control laws
directly based on these image quantities.

A problem with the visual servoing approach is that it does not apply well to
robots with complicated dynamics: The induced dynamics of image features could easily
become intractable for consequent control analysis or synthesis. In such a case, it is then
more feasible to keep vision and control separate. However, to reduce the amount of 2D to
3D estimation, we must only request vision to provide estimates of states which are essential
to achieve the control task. The success of such a vision based control system then relies
on a good balance between what control needs and what vision can (efficiently) provide.
In this dissertation, we will (informally) refer to this approach as visual sensing. Table
1.1 summarizes a conceptual comparison between the visual servoing and visual sensing
approaches. In Part III of this dissertation, these two approaches will be compared through
two concrete examples: vision guided driving of a ground vehicle and vision guided landing

of an aerial vehicle.

Table 1.1: A comparison of visual servoing and visual sensing

| Visual Servoing Visual Sensing
Space RP? R’
Dynamics Lifted Natural
States Image Quantities | Physical Quantities
Estimation 2D to 2D 2D to 3D
Vision and Control Coupled Separate

1.3 Dissertation Contributions

The nine main chapters (Chapters 3 to 11) in this dissertation are essentially from
seven (journal or conference) papers and two (yet to be published) technical reports which
I have written during a span of four years on the subjects of computer vision (mostly multi-
view geometry) and vision based control. Therefore, each chapter alone consists of a rather
self-contained story. At the time each paper was written, there were always very specific
reasons and technical contributions to the problem studied. The reader may find a more

detailed account in the introduction to each chapter. Here, for the reader to understand



better the gist of the overall dissertation, I would like mention a few things which highlight

the contributions of this dissertation, at a more conceptual level.

1.3.1 A Differential Geometric Framework for Multiview Geometry

"The optimism caused by early success of the projective geometric framework (dis-
cussed in Section 1.2.2) has made many people think that structure from motion is already

a “solved” problem. If so, it is then natural to ask:
What, if anything, is new in multiview geometry?

As an indirect response to this question, we ask instead a different question, simply out of
curiosity: How much is projective geometry really needed for understanding the problem of
structure from motion? As the reader will see, this dissertation is going to cover almost every
important subject in multiview geometry whereas no projective geometry will be used at
all, nor do we assume the reader have any knowledge in projective geometry. Moreover, not
only will many existing results be unified, improved and even corrected in the new approach,
but also many new problems will be raised and solved which cannot be easily studied in the
old paradigm. Many of the new proofs and results have shown how primitive some of our
knowledge on this subject yet is. Multiview geometry is still at a young stage where almost
everything needs to be organized, clarified or given a better (geometric) interpretation. Is
the new perspective or new approach introduced in this dissertation going to lead it to

maturity? Maybe or maybe not. But a controversy has certainly been raised:
What if, anything is new in multiview geometry?
We can list a few things in this dissertation to support this point:

1. For computing discrete camera motion from image correspondences between two
views, there has been a well celebrated three-step singular value decomposition (SVD)
based linear algorithm discovered by Huang and Faugeras el al in 1980’s [24, 119].
However, there has not been much success in finding the continuous counterpart of
this algorithm until a new geometric viewpoint is introduced which unifies the discrete

and continuous cases (see Chapter 3).

2. The purely algebraic approach to study the constraints among multiple images has

been successful, but at a higher price: Heavy machinery from algebraic geometry
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must be deployed, and the results lack geometric intuition [43]. Nonetheless, a much
easier proof of the same results can be obtained from a new geometric perspective.
In addition to the algebraic relationship, both a geometric and statistical relationship

can also be revealed in this way (see Chapter 5).

3. The so called Kruppa’'s equation has been discovered since 1913 and then revived in
1990s for the purpose of camera self-calibration [77]. However, the projective geomet-
ric interpretation of this equation has done little in terms of discovering its degeneracy.
Such degeneracy is discovered however from a dramatically different geometric inter-

pretation of Kruppa’s equation (see Chapter 6).

These new results and the way they are discovered encourage us to think twice about what
is an appropriate framework of multiview geometry. At least, they make us no longer so
confident with the projective geometric framework.

Mathematically speaking, multiview geometry can be viewed as a geometry which
studies the combination of a (motion) group action on a space and a (perspective) projection
transformation. In the default case, the motion group is the special Euclidean group SE(3)
acting on the space R® and the projection is the standard perspective projection 7 : R® —
RP2. In the projective geometric approach, with an emphasis on the effect of the perspective
projection, the motion group SE(3) is artificially extended to the general linear group
GL(4).! From such a point of view, we can study vision under more general classes of
(motion) groups. For example, if we choose the motion group to be the isometry group
of a Riemannian manifold, with a proper interpretation of the “projection map”, we then
can study multiview geometry on such a manifold. For this scheme to work, concepts and
techniques from differential geometry must be deployed. Chapter 8 presents some of the
preliminary results towards this direction. It basically extends the results that we have for
multiview geometry in a Euclidean space to spaces of constant curvature.

This is by no means the only reason why we name our approach “a differential ge-
ometric approach”. Although we emphasize that almost the entire dissertation is very much
based on linear algebra and basic knowledge of rigid body motion, differential geometry does
serve well as a conceptual framework which provides geometric intuition, interpretation and

various techniques to almost every problem that we have studied, for example:

1The space R® accordingly is extended to P2,
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1. The unification of discrete and continuous linear algorithms relies on a clean geomet-
ric characterization of the space of essential and continuous essential matrices (see
Chapter 3).

2. The nonlinear algorithms for obtaining optimal (or suboptimal) estimates rely on mod-
ern optimization techniques for special classes of Riemannian manifolds (see Chépters
4 and 5).

3. The proof of geometric dependency of constraints among multiple images relies on a

clever trick on a quotient space of a Grassmann manifold (see Chapter 5).

4. The discovery of degeneracy of Kruppa’s equation relies on a new interpretation of
Kruppa’s equation as inner product invariants of certain isometry group action (see
Chapter 6).

5. A classification of generic ambiguities in the problem of 2D to 3D reconstruction is

done with respect to every Lie subgroup of SE(3) (see Chapter 7).

Another reason is that differential geometry has been widely adopted in the study of lin-
ear/nonlinear system theory and modern robotics. A theory of multiview geometry based
on such a language will be more accessible to people in these communities and provide a
more unified framework for the study of vision based robotic control. Because of this, we
are able to use the same language throughout the entire dissertation: Part I and Part II
(Chapters 1 to 9) on multiview geometry and Part III (Chapters 10 and 11) on vision based
robotic control.

The differences between the projective and the differential geometric frameworks
can be summarized in Table 1.2. However, it would be unfair to simply claim that either
framework is better than the other since each framework is proposed for a different purpose.
As we have mentioned in Section 1.2.2, the projective geometric approach has certain com-
putational advantage. On the other hand, the differential geometric framework is proposed

for a better geometric insight and stronger connection with control and robotics.

1.3.2 Geometry, Estimation and Optimization

Multiview geometry is a very peculiar subject: The problem itself can be for-

mulated as a pure mathematical one (see Chapter 8); however, traditionally it has been
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Table 1.2: A comparison of projective and differential geometric frameworks

| Projective Geometry | Differential Geometry
Spaces: Groups P : GL(4) R’ : SE(3)
Mathematics Algebraic Geometric
Metric None Euclidean
Invariants Projective Invariants | Euclidean Invariants
Compatibility with Control Weak Strong

studied for mostly practical purposes (in computer vision or robotics community). Many
of the existing results have been developed for very specific applications, rather than in a
unified theoretical program. This makes multiview geometry both a theoretical and applied
subject. We not only need a theory studying its geometric nature, but we also need effi-
cient algorithms which provide robust solutions to the problem. Especially, in a practical
situation, the obtained images and measurements are always noisy. It is then crucial to
obtain statistically unbiased estimates. If such estimates are given as solutions to certain
optimization problems, we then need to know what are the proper optimization techniques
to apply.

In this dissertation, besides studying the geometric aspects of multiview geometry,
we also focus on an estimation theoretic approach to the structure from motion problem.
In many occasions, it helps us to gain a better understanding of the problem from an al-
gorithmic viewpoint. Our study has revealed a close inter-relationship among geometry,
estimation and optimization in SFM. As we will show later in this dissertation, SFM in
general is an estimation problem with hard geometric constraints and the resulting opti-
mization problem is mostly optimization on some special (and well-structured) geometric

spaces (see Chapters 4 and 5).

1.3.3 Singularity, Degeneracy and Ambiguity

As we have mentioned before, the problem of structure from motion by nature is
an inverse problem from 2D images to 3D structure and motion, and it may not be well-
determined. That is, there is likely inherent ambiguity in the solutions, or singularity and
degeneracy in the general-purpose algorithms. For example, the necessary and sufficient
conditions for being able to uniquely recover camera motion, calibration and 3D scene

structure from a sequence of images are very rarely satisfied in practice. We then need to
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know:

What exactly can be recovered in image sequences of practical importance when
such conditions are not satisfied?

In Chapter 7, we will give a complete answer to this question. For every camera motion -
subgroup that fails to meet the conditions, we gave explicit formulas for the ambiguities in
the reconstructed scene, motion and calibration. Such a characterization is crucial both for
designing robust estimation algorithms that do not try to recover parameters that cannot
be recovered and for generating novel views of the scene by controlling the vantage point.
As another example, Kruppa’s equation [58] has been widely used to solve the
problem of camera self-calibration. Although first discovered in 1913 by Kruppa and later
revived in 1993 by Maybank and Faugeras [77], the algebraic nature of this equation has
never been clearly understood. In fact, Kruppa’s equation tends to become degenerate
under certain conditions. Hence any general-purpose self-calibration algorithm based on
Kruppa’s equation may become ill-conditioned when applied to real image sequences. Our
analysis in Chapter 6 further shows that under the conditions when degeneracy occurs,
Kruppa’s equation can however be normalized. Such normalization not only resolves the
degeneracy but also makes Kruppa’s equation linear. This in fact makes self-calibration
relatively easier under the conditions when degeneracy occurs. Moreover, from the new
results, one may also achieve a clear understanding of the relationship between Kruppa’s
equation and all the other methods for self-calibration such as the ones based on absolute

quadric constraint, modulus constraint or chirality (see Chapter 6).

1.3.4 Applications in Unmanned Ground and Aerial Vehicles

The emphasis of this dissertation is on the theory of multiview geometry. Although
such a theory may have its impact on many conventional applications of multiview geometry,
in this dissertation, we are more interested in its usage in vision based robotic control. For
that purpose, we have conducted two case studies: a vision guided navigation scheme for
unmanned ground vehicle (UGV) and a vision based landing system for unmanned
aerial vehicle (UAV) (in our case, a helicopter). In both studies, estimation issues for the
vision sensor and stability issues for the overall closed-loop system are successfully studied

together under a unified geometric control framework (see Chapters 10 and 11).
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In the unmanned ground vehicle case, instead of using point features as the entire
Part I and Part II do, we demonstrate how to analyze curve features in presence of mobile
dynamics. In the unmanned aerial vehicle case, we show why and how the general-purpose
algorithms given in Part I should be customized to a specific situation. That is, in the
case of landing, the standard motion estimation algorithms need to be modified in .order
to incorporate the extra knowledge that the feature points are all lying a planar surface.
Moreover, these two case studies serve for a comparison between the visual servoing and

visual sensing approaches of vision based control (discussed in Section 1.2.3).

1.4 Dissertation Qutline

1.4.1 Overview

The main body of this dissertation consists of three parts, a total of ten chapters

(Chapters 1 to 11) and two appendices (Appendixes A and B):

¢ Part I — Multiview Geometry: A Differential Geometric Approach (Chap-
ters 2 to 7)

e Part IT — Advanced Topics in Multiview Geometry (Chapters 8 and 9)
e Part III — Applications: Vision Based Robotic Control (Chapters 10 and 11)

Part I essential covers the main theory of multiview geometry. Chapter 2 formu-
lates the problem of structure from motion in a Euclidean space. The formulation ensures
that the whole dissertation is self-contained. The camera motion, camera imaging model
and the two types of image measurements: image correspondences and optical flows are
clearly defined in this chapter. It is also the reference chapter of all the notation used
throughout the entire dissertation. For the rest of Part I, we partition the structure from

motion problem into four interrelated topics or subproblems:
1. Motion and structure from two views.
2. Motion and structure from multiple views.
3. Camera self-calibration.

4. Euclidean reconstruction and reprojection up to subgroups.
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The results regarding these topics together form a coherent theory for the multiview ge-
ometry. For the first two topics, to simplify the analysis, only calibrated camera model
will be considered (see Chapters 3, 4 and 5). We will especially study the geometry of
an uncalibrated camera in the third topic (see Chapter 6). In the first three topics, our
primary interest is in conditions and algorithms for obtaining a unique solution. In the final
topic, we will provide a complete characterization of the structure of the set of ambiguous
solutions when conditions for a unique solution fail (see Chapter 7).

Part II consists of two independent advanced topics of multiview geometry. A
generalization of multiview geometry to non-Euclidean spaces is given in Chapter 8. Chapter
9 provides a (Bayesian) justification of the approach of using feature points for motion
estimation based on a simplified stochastic model of imaging.

Part ITT demonstrates the use of vision in robotic control through two case studies.
Chapter 10 studies the problem of a ground mobile robot tracking a given ground curve
using on-board camera as the only sensor. The visual servoing approach is applied to this
problem. Chapter 11 investigates the problem of landing a helicopter on a ship deck. It
seﬁes as an example for the visual sensing approach for vision based control. Since the
feature points are now lying on a planar surface, we also study how the motion estimation

algorithms given in Chapter 3 need to be modified for the planar case.

1.4.2 Guidelines for Readers

Since this dissertation covers a relatively large amount of material, we have tried
our best to reduce cross reference among chapters to the minimum so that readers with
different backgrounds and interests do not have to read the dissertation in a linear fashion.
Figure 1.4 illustrates the inter-dependency among all the ten chapters (and two appendixes
also):

Although “differential geometry” is in the title of the dissertation, the reader
should be able to grab the gist of most of Part I with a background in linear algebra,
basic robotics and nonlinear programming only. Only basic differential geometric terms are
used in Chapters 4 and 5 for optimization on manifolds and in Chapter 6 for a geometric
characterization of fundamental matrix and Kruppa’s equation. However, readers who are
not familiar with these terms can simply skip the related sections without loss of much

continuity. However, differential geometry is seriously used in Chapter 8 of Part II for a
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Chapter 2
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Chapter 5 Chapter 7 Appendix B

~.__

Chapter 8

Figure 1.4: Dependency among the chapters and appendixes.

generalization of multiview geometry to non-Euclidean spaces and in Chapters 10 and 11 of
Part III for the analysis of nonlinear control systems. For good references on the subject of
differential geometry, we recommend the book by Boothby [5] or the one by Kobayashi and
Nomizu [55], on the subject of nonlinear control systems, we suggest the book by Sastry
[93].

For people with different interests, this dissertation can be read as different pack-

ages:

o Classic Multiview Geometry and Algorithms
Chapters 2 to 6, and 9.

o Theoretical Multiview Geometry (Euclidean and Non-Euclidean)
Chapters 2, 3, 5 to 8.

e Vision Based Robotic Control

Chapters 2, 3, some of Chapter 5, and Chapters 10 and 11.

Material from Chapters 2 to 4, 6 and 10, with some supplementary material from the
robotics book by Murray, Li and Sastry [84] has been covered as a one semester graduate

level course on computer vision and robotics by Professor Kosecks at Berkeley in Fall, 1999.
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1.5 Notation

The next chapter provides a systematic introduction to the notation that we are
going to use in this dissertation. Nevertheless, I would like to have a few words about it
before we start. Due to the wide scope of areas covered by this dissertation, we have to make .
a compromise between the conventional notation used in computer vision and that uéed in

robotics or control theory. For example, we will use p to represent the skew symmetric

matrix:
0 -ps p2
p=| p3s 0 -p
-2 O

associated to a given vector p = [p;,p2,p3]7 € R®. Due to this definition, we then have
p X g = pg for all ¢ € R®. This notation is widely used in robotics and matrix Lie group
theory. However, traditionally, in the computer vision literature, people prefer to use py
instead of p. Also, in the computer vision literature, w € R?® is usually used to represent
the absolute conic, we here however have to reserve it for the angular velocity since we are
dealing with both the discrete and continuous time cases. We will use S € R3*3 instead to
represent the absolute conic, which is however going to be under a different name: metric.
The rest of the notation is very consistent to robotics notation used in [84], except that we
use T € R® for the translation vector and p for coordinates of a point.2 We will use bold
lower-case symbols to represent image quantities. For example, x € R3 is for coordinates
of the image point and u € R® is for the optical flow. This is very much consistent with

notation used in the computer vision literature. Finally, all vectors are column vectors!

*In [84], p € R® is used for the translation vector and q € R® is used for coordinates of a point.
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Chapter 2

Problem Formulation

“As is well known, geometry presupposes the concept of space, as well as assuming the
basic principles for constructions in space.”
— G. F. B. Riemann, On the Hypotheses Which Lie at the Foundations of Geometry

2.1 Camera Model in a Euclidean Space

We begin by introducing the mathematical model of a camera in a three dimen-
sional Euclidean space. We also introduce the notation which will be consistently used

throughout this dissertation.

2.1.1 The Three Dimensional Euclidean Space

Consider that a camera is set in a three dimensional Euclidean space E3. We
use p to denote a generic point in E*. E3 is then isometric to R? with its standard metric.
For convenience, E? is usually considered as a hyper-plane embedded in R* and every point

p in E? can be represented by homogeneous coordinates of the form:
p=[X1,X2,X3,1]7 € R. (2.1)

In this expression, the effective part [Xl,XQ,X,?,]T € R® will be referred as the three
dimensional coordinates of the point p € E*. To separate them from the homogeneous

ones, we denote them by X € R3:

X = [X1, X2, X3]T € B3, (2.2)



20

In order to define the camera model properly, we also need the notion of a vector.
In a Euclidean space, a vector can be simply defined to be the difference between two points
with one of them as the starting point (or base point). The set of all vectors in E3 with
the starting point p is denoted as T,E? i.e., TpE? is the tangent space of E? at p. By this

definition, a vector u € T,E® in homogeneous representation has the form:
U= [ul,'u.g,u;;,O]T € RY. (2.3)

As a vector space, T,,IE3 is isomorphic to R®. A non-redundant representation of the same

vector u € T,E3 is just:
U= ['u.l,uz,u;;]T e RS, (2.4)

The Euclidean metric & : R* x R®®* — R on E?® is simply given by the inner product:
®(u,v) = uTv for all u,v € THE.

2.1.2 Camera Motion

The isometry (metric preserving diffeomorphism) group of E? is the so called Eu-
clidean group, denoted by E(3). The motion of the camera is usually modeled as the
subgroup of E(3) which preserves the orientation of the space E?, i.e., the so called special
Euclidean group SE(3). In the homogeneous representation, SE(3) can be represented
as:

R T
SE(3) = 0 1 Re S0O(3), TeR ) c R¥*4 (2.5)

where SO(3) is the space of 3 x 3 rotation matrices (orthogonal matrices with determinant
+1). We know that the isotropy group of E® leaving a point p € E3 fixed is the orthogonal
group O(3). SO(3) is just the subgroup of O(3) which is the connected component con-
taining the identity 7 € O(3). Given an element g € SE(3) and a point p € E3, g maps the
point p € E? to a new one gp € E3.

Since the motion between a camera and points in the world is relative, without

loss of generality, we can and will assume throughout the dissertation that:

Assumption 2.1. It is the camera which is moving and the world is static.
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We use a curve g(t) € SE(3),t € R to represent the rigid body motion of the
camera, i.e., the displacement of the camera coordinate frame F; at time ¢, relative to
its initial coordinate frame Fj, at time #o. By abuse of notation, the group element g(t)
serves both as a specification of the configuration of the camera and as a transformation
taking the coordinates of a point p € E3 relative to the F,, frame to those relative to the
F, frame. Clearly, g(t) is uniquely determined by its rotational part R(t) € SO(3) and
translational part T'(t) € R®. Sometimes we denote g(t) by (R(t), T(t)) as a shorthand for
its homogeneous representation. Let p(t) € R* be the homogeneous coordinates of a point
p € E? relative to the camera frame at time ¢ € R. Then the coordinate transformation

of p under the motion g(¢) is given by:
p(t) = g(t)p(to). (2.6)
In three dimensional coordinates, the above is simply:
X(t) = R(t)X(tp) + T(¢). (2.7)

This relationship is intuitively shown by Figure 2.1. To obtain a continuous version of the

p

g=(RT)
Fto

Figure 2.1: Coordinate frames for specifying rigid body motion of a camera.

equation (2.6) we differentiate it with respect to time ¢:

B(t) = §(t)p(to)- (2.8)

Since g(t) is a curve in the Lie group SE(3), ¢(t) must be of the form:

9(t) = g()¢(2). (2.9)
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Then £(t) is an element of the Lie algebra se(3) of SE(3):

se(3) = { [ ‘(‘)’ Z | D€ s0(3),v € R3} C R4 (2.10)

where so(3) is the Lie algebra of the rotation group SO(3), or equivalently, the space of 3x 3
skew symmetric matrices. In the above definition we already adopt the convention that, for
any vector w € R3, & is the associated skew symmetric matrix such that &u = w x u for
all u € R®. Using the above notation, we immediately obtain the continuous version of the

coordinate transformation (2.6):

B(t) = g()E(t)g™ " (t)p(2). (2.11)

It is direct to check that g(t)¢(t)g~!(t) is still an element in se(3) and we denote:

5(t) w(t)
. ] . (2.12)

g()E(t)g™" (t) = [ 0

In terms of three dimensional coordinates, we then have the continuous version of (2.7):
X(t) = )X () + v(2). (2.13)

w and v will be referred to as the (body) angular and linear velocities respectively.

2.1.3 Calibrated Pinhole Camera Model

We assume that the camera coordinate frame is chosen such that the optical
center of the camera, denoted by o, is the same as the origin of the frame, and the optical
axis always coincides with the third coordinate axis (i.e., the X3-axis, or the Z-axis if the
symbol [X,Y, Z]T € R3 for coordinates is used). Define the image of a point p € E3 to be
the vector x € T,E® which corresponds to the intersection of the half ray {0+ A-u | u =
P — o0, € R*} with a pre-specified (two dimensional) image surface (in T,E3).

Both the spherical projection and perspective projection fall into this type
of imaging model. For the spherical projection, the imaging surface is simply a unit sphere
5% = {u € R*| ||u||® = 1} with o as the center. Supposing that the coordinates of p € E?
relative to the camera frame is X € R3, then the spherical projection is defined by the map
s from R3 to S2:
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For the perspective projection, we choose the imaging surface to be the plane of unit distance
away from the optical center o along the third coordinate axis. The perspective projection

onto this plane is then given by the map =, from R® to RP2:

In what follows, we will use the bold upper case symbol X = [X;,X>, X3]T € R® or X =
[X,Y,Z]T € R® for the 3D coordinates of a point P, and use the bold lower case symbol
x = [z1, 22, 73]T € R® or x = [z,9,2]T € R? for the (homogeneous) coordinates of the image
of the point p.

In the most general case, for a point p € E* with homogeneous coordinates p=
[X1, X2, X3,1]T € R*, since the optical center o has the coordinates [0,0,0,1)T € R?, the
vector u = p — o € T,LE? is then given by u = [X1,X2,X3]T € R®. We can define the

projection matrix P € R¥*4 to be:

1
P=|o0
0

S = O
= O O

0
0]- (2.14)
0

Then the projection matrix P can be interpreted as a map from the space E3 to T,E3:

P:E o T,
p — u= Pp.

According to the definition, the image x of a point p differs from the vector v = Pp by an
arbitrary positive scale, which depends on the pre-specified image surface. In general, the

relation between the coordinates X of p € E? and its image x is given by:
Ax = Pp (2.15)

for some unknown A € Rt. The scalar A encodes the depth information of p and we call A the
scale of the point p with respect to the image x. Simply, for perspective projection A = Xa;
for spherical projection A = ||X||. The equation (2.15) characterizes the mathematical model
of an ideal calibrated camera. Figure 2.2 illustrates the images of a point p € E3 with

the camera at two different locations.
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W

Figure 2.2: Two projections x;,%x2 € R? of a 3D point p from two vantage points. The
relative Euclidean transformation is given by (R,T) € SE(3).

2.1.4 Uncalibrated Pinhole Camera Model

Now we are ready to introduce the concept of an uncalibrated camera. By
an uncalibrated camera, we mean that the image received by the camera is distorted by
an unknown linear transformation.! This linear transformation is usually assumed to be
invertible. Mathematically, this linear transformation can be viewed as an isomorphism %

of the vector space T,E3:

P :T,E = T,E®

u — Au,

where A € R¥*3 is an invertible matrix representing the linear map 4. We will refer to
it as the calibration matrix? of an uncalibrated camera. The actually received image x
of a point p € E? is then determined by the intersection of the image surface and the ray
{o+ A-u} with u = ¢(Pp) = APp. Without loss of generality, we may assume that A
has determinant 1, i.e., A is an element in SL(3) (the Lie group consisting of all invertible
3 x 3 real matrices with determinant 1, i.e., the special linear group of R3). For the

(uncalibrated) image x € R?® of p, we then have the following relation:

Ax = APp (2.16)

! Although nonlinear transformations have also been studied in the literature, linear transformations give
a very good model of the physical parameters of a camera.

2“Calibration matrix”, “intrinsic parameter matrix” and “intrinsic parameters” are different names of
the same thing in the computer vision literature.
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for some scale A € R*. The equation (2.16) then characterizes the mathematical model of
the uncalibrated camera, as illustrated in Figure 2.3. In practice, the camera calibration A
might be time-varying. If so, we will denote it as A(t). Nevertheless, in this dissertation,
we usually assume the camera calibration is time-invariant, unless otherwise stated. From

(2.6), the image x(t) of a point p € E® at time ¢ satisfies the equation:

M&)x(t) = APg(t)p(to). (2.17)
pl
pZ
: e X!,
Y's y2 v X2,
X
/#2
L-h
o y
calibrated image uncalibrated image

Figure 2.3: The actually received uncalibrated images x!,x? € R® of two 3D points p* and
p®. We here use y!,y? € R® to represent the calibrated images (with respect to a normal
coordinate system). The linear map 1 transforms the calibrated image to an uncalibrated
one.

In the computer vision literature, the calibration matrix A is usually assumed to

be of the following form:

A=10 sy v |- (2.18)
0 0 1

The parameters of the matrix A are called intrinsic parameters associated to a camera
(as opposed to the extrinsic parameters, which usually stand for the displacement of the
camera). Note that such an A is not necessarily in SL(3). As we will see in chapter 6 where
camera self-calibration is studied, this choice is practically equivalent to ours. Moreover,
viewing camera calibration as an (unknown) isomorphism on T,E® makes it quite natural
to generalize the vision theory in the Euclidean space to more general Riemannian space.

Since Part I of this dissertation focuses on only the Euclidean case, the more advanced
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topics about multiview geometry for non-Euclidean spaces can be found in Chapter 8 of
Part II.

2.1.5 Image Correspondences and Optical Flows

Image correspondences and optical flows are two fundamental types of measure-
ments one may obtain from image sequences. If m images of n points p!,p?,...,p" € E® at

times #1,%9,...,tn € R are taken, from (2.17) we have:
N (t:)x’ () = APg(t:)p’(to), 1<i<m, 1<j<n (2.19)
Or in three dimensional coordinates, we have:
M (t:)x7 (t;) = AR(t:)X7 (to) + AT(t;), 1<i<m,1<j<n. (2.20)

By image correspondences we mean that we have the knowledge that for each j the set
of m image points {x7(t;)}7, correspond to images of a single 3D point named p’. When
the notion of time is not important, we usually use xf as a shorthand for x7(¢;).

If a sequence of images are taken at times close enough, the displacement of image
points on two consecutive images (x(t + At) —x(t)/At) is approximately the image velocity
%(t) which is also called optical flow in the literature. From (2.11) and (2.15) we have at

any time ¢:
Mxd 4+ ¥%J = APgeg™'p/, 1<j<n (2.21)

where all the (time-dependent) quantities are evaluated at time ¢. In three dimensional

coordinates, we have:

Nyl + M3d = ADXI + Av, 1<j<n. (2.22)

2.2 Fundamental Problems in Multiview Geometry

According to its mathematical model, we can think of a camera as a moving coordi-
nate frame with a perspective projection associated to it. It is exactly the interplay between
the Euclidean motion of the frame and the perspective projection that defines camera as a
very special geometric object and a very peculiar sensor. Clearly, the depth information of

a point p always gets lost in a single image. However, if two images of p are taken by the
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camera at two different vantage points and the camera motion g between the two locations
are known, then the 3D coordinates of p relative to the camera can be recovered. This is
the so called reconstruction by stereo. If the camera motion g and calibration A are not
known, the stereo problem becomes more complicated. Nevertheless, it can be shown that
the stereo problem is generically solvable if sufficiently many corresponding image points’
(or optical flows) are available.® Generally speaking, Part I of this dissertation is devoted

to the geometry of and algorithms for
reconstructing 3D scene structure and camera motion from a given set of image

correspondences or optical flows. If the camera calibration is not known, the
task also includes recovering the unknown camera calibration.

This is also referred to as the structure from motion problem in the computer vision
literature and has been extensively studied by numerous researchers for the past decade.
However most of the known results are established in a projective geometry framework.
One purpose of this paper is to study this problem from a nowvel differential geometric
perspective, for the reasons that I have already discussed in the opening introduction. I
hope that those reasons will become evident and more convincing when the reader follows
through the development of the theory.

In this part, we will partition the structure from motion problem into four inter-

related topics or subproblems:
1. Motion and structure from two views.
2. Motion and structure from multiple views.
3. Camera self-calibration.
4. Euclidean reconstruction and reprojection up to subgroups.

Results of each topic will be developed under a unified differential geometric framework and
a consistent notation. These results together form a coherent theory of multiview geometry
in E3. For the first two topics, to simplify the analysis, only calibrated camera models
will be considered (see Chapters 3, 4 and 5). We will especially study the geometry of

an uncalibrated camera in the third topic (see Chapter 6). In the first three topics, our

3For example, it is known that, for two images, the relative camera motion can be “generically” determined
up to ten solutions if five pairs of image correspondences are given.
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primary interest is in conditions and algorithms for obtaining a unique solution. In the final
topic, we will provide a complete characterization of the structure of the set of ambiguous

solutions when conditions for a unique solution fail (see Chapter 7).
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Chapter 3

Motion Recovery I: Linear

Algorithms

“We see because we move; we move because we see.”
— J. J. Gibson, the Perception of the Visual World

The problem of estimating structure and motion from image sequences has been
studied extensively by the computer vision community in the past decade. The various
approaches differ in the kinds of assumptions they make about the projection model, the
model of the environment, or the type of algorithms they use for estimating the motion
and/or structure. Most techniques try to decouple the two problems by estimating the
motion first, followed by the structure estimation. Thus the two are usually viewed as
separate problems. In spite of the fact that the robustness of existing algorithms has
been studied quite extensively, it has been suggested that the fact that the structure and
motion estimation are decoupled typically hinders their performance [79]. Some algorithms
address the problem of motion and structure recovery simultaneously either in batch [111]
or recursive fashion [79].

Approaches to motion estimation alone, can be partitioned into the discrete and
continuous methods depending on whether they use as input a set of image correspondences
or optical flows. Among the efforts to solve the motion estimation problem, one of the more
appealing approaches is the essential matrix approach, proposed by Longuet-Higgins,
Huang and Faugeras et al in 1980’s [47, 60]. It shows that the relative 3D displacement

of a camera can be recovered from an intrinsic geometric constraint between two images
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of the same point, the so-called epipolar constraint (also called the Longuet-Higgins
constraint, bilinear constraint or essential constraint). Estimating 3D motion can
therefore be decoupled from estimation of the structure of the 3D scene. This endows
the resulting motion estimation algorithms with some advantageous features: they do not
need to assume any a priori knowledge about the scene; and are computationally simpler
(compared to most non-intrinsic motion estimation algorithms), using mostly linear algebra
techniques. Tsai and Huang [119] have proved that, given an essential matrix associated
with the epipolar constraint, there are only two possible 3D displacements. The study of
the essential matrix then led to a three-step SVD-based algorithm for recovering the 3D
displacement from noisy image correspondences, proposed in 1986 by Toscani and Faugeras
[112] and later summarized in Maybank [76].

However, the essential matrix approach based on the epipolar constraint recovers
only discrete 3D displacement. The velocity information can only be obtained approximately
from the logarithm map (the inverse of the exponential map), as Soatto et al did in [99]. In
principle, displacement estimation algorithms obtained by using epipolar constraint work
well when the displacement (especially the translation, or the so called base-line) between
the two images is relatively large. However, in real-time applications, even if the velocity of
the moving camera is not small, the relative displacement between two consecutive images
might become small owing to a high frame rate. In turn, the algorithms become singular
due to the small translation and the estimation results become less reliable. Further more,
in applications such as robotic control, an on-board camera, as a feedback sensor, is required
not only to provide relative orientation of the robot but also its relative speed (for control
purposes).

A continuous version of the 3D motion estimation problem is to recover the 3D
velocity of the camera from optical flows. This problem has also been explored by many
researchers: an algorithm was proposed in 1984 by Zhuang et al [141) with a simplified
version given in 1986 [142]; and a first order algorithm was given by Waxman et al [125]
in 1987. Most algorithms start from the basic bilinear constraint relating optical flow to
the linear and angular velocities and solve for rotation and translation separately using
either numerical optimization techniques (Bruss and Horn [10]) or linear subspace methods
(Heeger and Jepson [40, 50]). Kanatani [52] proposed a linear algorithm reformulating
Zhuang’s approach in terms of essential parameters and twisted flow. However, in these

algorithms, the similarities between the discrete case and the continuous case are not fully
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revealed and exploited.

In this chapter, we develop, in parallel to the discrete essential matrix approach,
a continuous essential matrix approach for recovering 3D velocity from optical flows.
Based on the continuous version of the epipolar constraint, so called continuous essential
matrices are defined. We then give a complete characterization of the space of.these’
matrices and prove that there exists exactly one 3D velocity corresponding to a given
continuous essential matrix. As a continuous counterpart of the three-step SVD-based 3D
displacement estimation algorithm, a four-step eigenvector-decomposition-based 3D velocity
estimation algorithm is proposed.

One of the big advantages of the continuous approach is easy to exploit the non-
holonomic constraints of a mobile base where the camera is mounted. In this chapter,
we show by example that nonholonomic constraints may reduce the number of dimensions
of the motion estimation problem, hence reduce the number of minimum image measure-
ments needed for a unique solution. The proposed motion estimation algorithm can thus be
dramatically simplified. The continuous approach developed here can also be generalized to
the case of an uncalibrated camera (see [9, 122]), this will be further discussed in Chapter 6.
Finally, simulation results will be presented to evaluate the performance of our algorithm
in terms of bias and sensitivity of the estimates with respect to the noise in optical flow
measurements.

One must note that only linear algorithms will be studied and compared in this
chapter. It is well-known that linear algorithms are not optimal and give severely biased
estimates when the noise level is high. In order to obtain optimal or less biased estimates,
nonlinear schemes have to be used to solve for maximum likelihood estimates. In Chapter
4, we will propose an intrinsic geometric optimization algorithm based on Riemannian
optimization techniques on manifolds. However, since nonlinear algorithms are only locally
convergent, the linear algorithms studied in this paper can be used to initialize the search
process of nonlinear algorithms. Further more, due to their geometric simplicity, clearly
understanding the linear algorithms certainly helps in developing and understanding more
sophisticated motion estimation schemes. For example, it will be shown in Chapter 4 that
under the same conditions when the linear algorithms have a unique solution the nonlinear

algorithms have quadratic rate of convergence.
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3.1 Continuous Essential Matrix Approach

3.1.1 Review of the Discrete Essential Matrix Approach

Before developing the anal&sis of the continuous epipolar constraint which is the
main focus of this paper, we first provide a brief review of the epipolar geometry in the
discrete case, also known as the essential matrix approach, originally developed by
Huang and Faugeras [47]. Let the 3D displacement of the frame F; relative to the frame
Fiy be given by the rigid body motion g = (R,T) € SE(3), and let x;,%, be the images
of the same point p taken by the camera at frames F;, and F;, respectively.! From (2.7),

these two images are related through equation:
/\2X2 = R)qxl +7T (31)

for some positive depth scales A\;, A\ > 0. Multiply T to both sides of this equation and
we obtain /\ng2 = fRAlxl. Note that fxg = T X x5 hence x’{Txg = 0. This implies
ngRAle = 0. Since A; > 0, the two image points x1,x, satisfy the so called epipolar

constraint:
x3 TRx; = 0. (3.2)

The geometric explanation for this constraint is simply that the two optical centers oy, 0y
and the point p are coplanar and the two images x; x> are on the plane spanned by these
three points. See the Figure 2.2 in Chapter 2.

In the equation (3.2), we see that the matrix E = TR with R € SO(3) and
T e 50(3) contains the unknown motion parameters. A matrix of this form is called an

essential matrix; and the set of all essential matrices is called the essential space,
denoted by &:

£= {’fR |ReS0(3),T € IR3} C RS, (3.3)

Huang and Faugeras [47] established that a non-zero matrix E is an essential matrix if and

only if the singular value decomposition (SVD) of E: E = USVT satisfies:

L = diag{o, 0,0} (3-4)

'To simplify the notation, we here drop the time dependence.
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for some o € Ry. In order to answer the question: given an essential matrix E € £ , how
many pairs (R, T') exist such that TR = E, we first give the following lemma from linear

algebra:

Lemma 3.1. Consider an arbitrary non-zero skew symmetric matriz T € so(3) with T €.
R3. If, for a rotation matriz R € SO(3), TR is also a skew symmetric matriz, then R = I
or €% where u = T/||T||. Further, Te®r = —7T.

Proof: = Without loss of generality, we assume T is of unit length. Since TR is

also a skew symmetric matrix, (fR)T = —TR. This equation gives:
RTR=T. (3.5)

Since R is a rotation matrix, there exists w € R®, |lw|| = 1 and 6 € R such that R = €.
Then, (3.5) is rewritten as: e?Te®® = T. Applying this equation to w, we get: 0T 0y =
@6

Tw. Since €*’w = w, we obtain: e*°Tw = Tw. Since w is the only eigenvector associated to

the eigenvalue 1 of the matrix €®? and Tw is orthogonal to w, Tw has to be zero. Thus, w

-~

is equal to T or ~T'. R then has the form e”?, which commutes with 7. Thus from (3.5),

we get:
IO = T, (3.6)
According to Rodrigues’ formula [84], we have:
e2T0 = 1 + Tsin(28) + T2(1 — cos(26)) (3.7)
(3.6) yields:
T2 sin(26) + T(1 — cos(26)) = 0. (3.8)

Since T2 and T3 are linearly independent (Lemma 2.3 in [84]), we have sin(20) = 1 —
cos(26) = 0. That is, 6 is equal to 2kw or 2kw + 7, k € Z. Therefore, R is equal to I or

T, 1t is direct from the geometric meaning of the rotation T that 77T = —T. ]

Following this lemma, suppose (R3,T}) € SE(3) and (Ra,p2) € SE(3) are both
solutions for the equation TR = E. Then we have ﬁRl = T}Rg. It yields f’l = ngzR{.
Since ﬁ,fg are both skew symmetric matrices and RyRT is a rotation matrix, we then
have either (Rp,T2) = (R1,T1) or (R, T2) = (€™ Ry, —Ty) with u; = T} /||Ty||. Therefore,
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given an essential matrix E there are exactly two pairs (R, T') such that TR = E. Further,
if E has the SVD: E = USVT with U,V € SO(3),2 the following formulae give the two
solutions:

(3.9)

(T1,R1) = (URz(+%)SUT,URL(+Z)vT),
(T, Rs) = (URz(-3)SUT,URL(-Z)VT) _

where Rz(0) is defined to be the rotation matrix around the Z-axis by an angle 6, i.e.,
Rz(0) = €% with e3 = [0,0,1]T € R®.

Since from the epipolar constraint (3.2) one can only recover the essential matrix
up to an arbitrary scale (in particular, both E' and —F satisfy the same equation), so in
general four solutions (R,T’) will be obtained from image correspondences. Usually, the
positive depth constraint can be imposed to discard three of the ambiguous solutions.
We here omit these well known details and simply summarize the discrete essential matrix
approach for motion estimation as the following algorithm (which is essentially the same as
that given in Maybank [76]) and we repeat it here for comparison with the algorithm that

we will develop for the continuous case:
Algorithm 3.2 (Three Step SVD Based 3D Motion Estimation).

1. Estimate the essential matrix:
For a given set of image correspondences: (x{,x;), J=1...,n (n > 8), find the

mairiz E which minimizes the error function:
n
V(E) = (xy" Exi)? (3.10)
=1
subject to the condition ||E|| = 1;

2. Singular value decomposition:

Recover matriz E from e and find the singular value decomposition of the matriz E:
E = Udiag{o,,09,03}VT (3.11)
where 01 > 09 > 035

3. Recover displacement from the essential matrix:

Define the diagonal matriz T to be:

T = diag{1,1,0}. (3.12)
?An essential matrix always has a SVD such that U,V € SO(3).
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Then the 3D displacement (p, R) is given by:

R= URTZ‘(i-’zf)VT, T = URZ(:}:g)EUT. (3.13)

The epipolar geometric relationship between projections of the points and their
displacements transfers to the continuous case. So, intuitively speaking, the continuous case"
is an infinitesimal version of the discrete case. However, the continuous case is by no means
simply a “first order approximation” of the discrete case. When differentiation takes place,
while structure of the geometry of the discrete case is inherited by the continuous case, some
degeneracy may occur. Such degeneracy will become clear when we study the continuous
version of the epipolar constraint. It is also known that it is exactly due to the degeneracy
that camera calibration cannot be fully recovered from continuous epipolar constraint as
opposed to the discrete case (see Chapter 6). Generally speaking, the similarity between
these two cases is that methods and geometric intuition used in the discrete case can be
extended to the continuous case, even though geometric characterization of the objects
is different. One of the main goals of this paper is to clarify the geometric similarity and
difference between the discrete and continuous cases. Although the theory will be developed
in a calibrated camera framework, the clear geometric nature of this approach has helped

us to understand the uncalibrated situation as well, as we will see in Chapter 6.

3.1.2 Continuous Epipolar Constraint

We now develop a continuous essential matrix approach for estimating 3D
velocity from optical flow in a parallel way to the discrete essential matrix approach for
estimating 3D displacement from image correspondences.

The starting point of this approach is a continuous version of the epipolar con-
straint and associated concept of continuous essential matrix. This constraint is bilinear
in nature and has been used extensively in the motion estimation from optical flow mea-
surements [40, 122]. Here we give a characterization of such matrices and show that there
exists exactly one 3D velocity corresponding to a non-zero continuous essential matrix; as
a continuous version of the three-step SVD-based 3D displacement estimation algorithm,
we propose a four-step eigenvector-decomposition-based 3D velocity estimation algorithm;
finally, we discuss the reasons why the zero-translation case makes all essential constraint
based motion estimation algorithms fail and suggest possible ways to overcome this diffi-

culty.
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Assume that camera motion is described by a smooth curve g(t) = (R(t),T(¢)) €
SE(3) with body velocities (w(t), v(t)) € se(3). According to (2.13), for a point p € R?, its
coordinates X (t) = A(t)x(¢) satisfy:

X(t) = B)X () + v(t). (3.14).

From now on, for convenience we will drop the time-dependency from the notation. The
image of the point p taken by the camera is x which satisfies Ax = X. Denote the velocity

of the image point x by u = x € R®. u is also called optical flow.

Theorem 3.3 (Continuous Epipolar Constraint). Consider a camera moving with

body velocities (w,v). Then the optical flow u = x of an image point x satisfies:

u'ox + xToox = 0 (3.15)
or in an equivalent form:
?,xT] | " |x=0 (3.16)
s

where s is @ symmetric matriz defined to be s = 1(& + 1) € R®*3.
Proof: Take the inner product of the vectors in (3.14) with (v x x):
XT(v x x) = (@X +v)T(v x x) = XToTox. (3.17)
Since X = Ax + Ax and xT (v x x) = 0, from (3.17) we then have:
axTox — axToTox = 0. (3.18)
When ) # 0, we obtain a continuous version of the epipolar constraint:
T

wox +xToox =0 (3.19)

Due to the following fact 3.4, for any skew symmetric matrix A € R3*3, xT Ax = 0. Since

3(@7 — 9W) is a skew symmetric matrix, xT3(@9 — 9@)x = xTsx — xT0ox = 0. Thus,
xTsx = xT&ox. We then have:
u'ox +xTsx = 0. (3.20)
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The proof indicates that there is some redundancy in the expression of the con-
tinuous epipolar constraint (3.15). The following fact from linear algebra shows where this

redundancy comes from.

Fact 3.4. Consider matrices M1, My € R¥3. xT Myx = xT Myx for all x € R® if and only.

if M1 — Mz is a skew symmetric matriz, i.e., My — M> € so(3).

Let us define an equivalence relation on the space R**3, the space of 3 x 3 matrices
over R: for z, y € R®*3, z ~ yifand only if z—y € s0(3). Denote by T = {y € R3*3 |y ~ 1z}
the equivalence class of z, and denote by X the set (J,cx Z. The quotient space R3*3/ ~
can be naturally identified with the space of all 3 x 3 symmetric matrices. Especially, we
have s = %(aﬁ+ 9W) € v, which is the reason why we choose it in the equivalent form

(3.16). Using this notation, Theorem 3.3 can then be re-expressed in the following way:

Corollary 3.5. Consider a camere undergoing a smooth rigid body motion with linear
velocity v and anguler velocity w. Then the optical flow u of a image point x satisfies:

~

7, x| 2 [x=o. (3.21)

wv

Because of this redundancy, each equivalence class @0 can only be recovered up
to its symmetric component s = (&% + 9@) € &o. This redundancy is the exact reason
why different forms of the continuous epipolar constraint exist in the literature [141, 89,
122, 76, 9], and, accordingly, various approaches have been proposed to recover w and v (see
[109]). It is also the reason why the continuous case cannot be simply viewed as a first order
approximation of the discrete case - a first order approximation of the essential matrix TR
is 9, but this is certainly not what one can directly estimate from the continuous epipolar
constraint. Instead, one has to deal with its symmetric part s = %(66+ vw). This, in fact,
makes the study of the continuous case harder than the discrete case (in seek for linear
algorithms). Notice that the symmetric matrix s is the same as the matrix K defined in
Kanatani [53]. Although the characterization of such matrices has been studied in [53], our
constructive proofs given below will lead to a natural algorithm for recovering (w,v) from

S.
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3.1.3 Characterization of the Continuous Essential Matrix

We define the space of 6 x 3 matrices given by:

~

v
&= w,v € R® 3 c RE*3, (3.22)

%(68 + VW) ‘

to be the continuous essential space. A matrix in this space is called a continuous
essential matrix. Note that the continuous epipolar constraint (3.16) is homogeneous on
the linear velocity v. Thus v may be recovered only up to a constant scale. Consequently,

in motion recovery, we will concern ourselves with matrices belonging to normalized con-

tinuous essential space:

o~

v
!
&

weR,veS?) c RS*S. (3.23)

%(Giz‘ + VW)

The skew-symmetric part of a continuous essential matrix simply corresponds to

the velocity v. The characterization of the (normalized) essential matrix only focuses on
the characterization of the symmetric part of the matrix: s = 1(@% + 9@). We call the

2
space of all the matrices of such form the special symmetric space:

S= {-;-(am o0)

weR,ve 82} C R3%3, (3.24)

A matrix in this space is called a special symmetric matrix. The motion estimation
problem is now reduced to the one of recovering the velocity (w,v) with w € R® and v € §?
Sfrom a given special symmetric matriz s.

The characterization of special symmetric matrices depends on a characterization
of matrices in the form: &% € R3*3, which is given in the following lemma. This lemma will
also be used in the next section for showing the uniqueness of the velocity recovery from
special symmetric matrices. Like the (discrete) essential matrices, matrices with the form
WY are characterized by their singular value decomposition (SVD): &% = USVT; moreover,
the orthogonal matrices U and V are related. Define the matrix Ry (8) to be the rotation
around the Y-axis by an angle § € R, i.e., Ry(8) = %2 with e, = [0,1,0]T € R3.

Lemma 3.6. A matriz Q € R3*® has the form Q = &0 with w € R3, v € S2 if and only if
Q has the form:

Q = —VRy(8)diag{), A cos(6),0} V7 (3.25)
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for some rotation matriz V € SO(3). Further, X = |w|| and cos(d) = wlv/).

Proof: We first prove the necessity. The proof follows from the geometric

meaning of &7: for any vector ¢ € R3,
Wug=w X (v X q). (3.26) -

Let b € S? be the unit vector perpendicular to both w and v: b = ﬂ%i—:ﬂ (ifoxw=0,b
is not uniquely defined. In this case, pick any b orthogonal to v and w,then the rest of the
proof still holds). Then w = )\exp(gﬂ)v (according this definition, 6 is the angle between w
and v, and 0 < 0 < 7). It is direct to check that if the matrix V is defined to be:

V = (¥3v,b,0), (3.27)

then @ has the given form (3.25).
We now prove the sufficiency. Given a matrix Q which can be decomposed into
the form (3.25), define the orthogonal matrix U = ~V Ry () € O(3).3 Let the two skew

symmetric matrices & and ¥ given by the formulae:
o= URz(ig)E,\UT, 5= VRZ(:i:g)ElVT (3.28)
where Xy = diag{\, \,0} and Z; = diag{1,1,0}. Then:
o5 = URZ(:hg)EAUTVRz(:tg)ElVT
= URz(x3)T:(-R}(O) Rz (+ )T:VT
= Udiag{), Acos(0),0}VT
= Q. (3.29)

Since w and v have to be, respectively, the left and the right zero eigenvectors of Q, the

reconstruction given in (3.28) is unique. n
The following theorem gives a characterization of the special symmetric matrix.

Theorem 3.7 (Characterization of the Special Symmetric Matrix). A real sym-

metric matriz s € R3*3 is a special symmetric matriz if and only if s can be diagonalized
as s = VEVT with V € SO(3) and:

= diag{01,02,0'3} (3.30)

with o1 2 0,03 < 0 and 0y = 0y + 03.

30(3) represents the space of all orthogonal matrices (of determinant +1.)
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Proof:  We first prove the necessity. Suppose s is a special symmetric matrix,
there exist w € R3,v € S2 such that s = (@9 + Uw). Since s is a symmetric matrix, it is
diagonalizable, all its eigenvalues are real and all the eigenvectors are orthogonal to each
other. It then suffices to check that its eigenvalues satisfy the given conditions.

Let the unit vector b and the rotation matrix V be the same as in the proof of

Lemma 3.6, so are € and . Then according to the lemma, we have:
@0 = —V Ry (0)diag{), X cos(6),0} V7. (3.31)
Since (&9)T = 9@, it yields:
s= %(am 50) = %v (= Ry (6)diag{), A cos(8), 0} — diag{A, A cos(6), 0}RE(6)) VT (3.32)

Define the matrix D(},8) € R¥*3 to be:

D(X\,0) = —Ry(0)diag{), Xcos(8),0} — diag{), Acos(8),0}RT(6)
—2cos(f) 0 sin(8)
= A 0 —2cos(d) O . (3.33)
sin(@) 0 0
Directly calculating its eigenvalues and eigenvectors, we obtain that:
D()\,8) = Ry (9 - ") diag {A(1 — cos(6)), —2A cos(6), A(—1 — cos(8))} RT (0 — 7r)(.3.34)
Thus s = $VD(X,0)VT has eigenvalues:
{%)\(1 —-cos(8)), —Acos(h), %)\(—1 - cos(0))} , (3.35)

which satisfy the given conditions.

We now prove the sufficiency. Given s = V;diag{o1, 0, 03}V1T witho; > 0,03 <0
and 02 = 01 + 03 and VT € SO(3), these three eigenvalues uniquely determine \,8 € R
such that the o;’s have the form given in (3.35):

A = o, —o3, A20
6 = arccos(—oz/)), 6 € [0,7]

Define a matrix V € SO(3) to be V = ViR] (§ - Z). Then s = LVD(),6)V7. According

to Lemma 3.6, there exist vectors v € S? and w € R® such that:

@9 = —V Ry (0)diag{\, X cos(8),0} V7. (3.36)
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Therefore, (@0 + 9@) = 3VD(\,0)VT =s. -

Figure 3.1 gives a geometric interpretation of the three eigenvectors of the special

symmetric matrix s for the case when both w, v are of unit length. Theorem 3.7 was given as

Figure 3.1: Vectors u,,ug,b are the three eigenvectors of a special symmetric matrix %(c?i?+
vw). In particular, b is the normal vector to the plane spanned by w and v, and u;, uy are
both in this plane. u, is the average of w and v. uy is orthogonal to both b and u;.

an exercise problem in Kanatani (53] but it has never been really exploited in the literature
for designing algorithms. For that purpose, the constructive proof given above is more
important since it gives an explicit decomposition of the special symmetric matrix s, which
will be studied in more detail next.

According to the proof of the sufficiency of Theorem 3.7, if we already know the
eigenvector decomposition of a special symmetric matrix s, we certainly can find at least
one solution (w,v) such that s = %(Gﬁ+ vw). This section discusses the uniqueness of such

reconstruction, i.e., how many solutions exist for s = (&% + 7).

Theorem 3.8 (Velocity Recovery from the Special Symmetric Matrix). There
ezist exactly four 8D velocities (w,v) with w € R® and v € S? corresponding to a non-zero

special symmetric matriz s € S.

Proof:  Suppose (w;,v;) and (wg,v2) are both solutions for s = -;-(:Tﬁi + vw).

Then we have:
V1w + W10 = Volg + WDy, (3.37)
From Lemma 3.6, we may write:

@t = =ViRy(61)diag{)1, ) cos(6:),0}V;T

(3.38)
Dotz = —VaRy(62)diag{2, A cos(6y), 0}V .
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Let W = VTV, € SO(3), then from (3.37):
D(M,61) = WD (A, 8)WT. (3.39)
Since both sides of (3.39) have the same eigenvalues, according to (3.34), we have:

Al=A2, G =06:. (3.40)

We then can denote both 8; and 8 by 6. It is direct to check that the only possible rotation
matrix W which satisfies (3.39) is given by I3x3 or:

—cos(f) 0 sin(6) cos(f) 0 —sin(f)
0 -1 0 or 0 -1 0 . (3.41)
sin@) 0 cos(8) —sin(@) 0 —cos(f)

From the geometric meaning of V; and Vs, all the cases give either @,9; = Wo¥s or W17 =
Uowe. Thus, according to the proof of Lemma 3.6, if (w,v) is one solution and @7 =
Udiag{), X cos(6),0}VT, then all the solutions are given by:

@ = URz(x3)=\UT, 9=VRz(x3)Z,VT; (3.42)
@ = VRz(xD)S\VT, 9=URz(x%)5,UT
where Iy = diag{}, A,0} and %, = diag{1,1,0}. =

Given a non-zero continuous essential matrix E € £’, according to (3.42) its special
symmetric part gives four possible solutions for the 3D velocity (w,v). However, in general
only one of them has the same linear velocity v as the skew symmetric part of £ does. We
thus have:

Theorem 3.9 (Velocity Recovery from Continuous Essential Matrix). There is
only one solution of 3D velocity (w,v) corresponding to a non-zero continuous essential
matriz E € £'.

In the discrete case, there are two 3D displacements corresponding to an essential
matrix. However, the velocity corresponding to a continuous essential matrix is unique. This
is because, in the continuous case, the twisted-pair ambiguity (see Maybank [76]), which is

caused by a 180° rotation of the camera around the translation direction, is avoided.
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3.1.4 Algorithm

Based on the preceding study of the continuous essential matrix, we propose an
new algorithm which recovers the 3D velocity of the camera from a set of (possibly noisy)

optical flows.

-~

v POSRPUR . . P
Let £ = € &] with s = (&3 + 90) be the essential matrix associated with
s

the continuous epipolar constraint (3.16). Since the sub-matrix ¥ is skew symmetric and s

is symmetric, they have the following form:

0 -v3 V2 S1 82 83
V= U3 0 —v1 |, =] s9 84 85 |- (3.43)
—V2 n 0 83 S5 Sg

Define the (continuous) essential vector e € R? to be:
e= [’01,'02, vs, S1, 2, 83, 84, Ss, SG]T' (344)

Define a vector a € R® associated to optical flow (x,u) with x = [z,,2]T € R, u =
[u1,u2,u3]T € R® to bet:

a = [ugy — upz, U1z — U3T, usT — w1y, =7, 22y, 222, y%, 2yz, 2°)7. (3.45)
The continuous epipolar constraint (3.16) can be then rewritten as:
a‘e=0. (3.46)

Given a set of (possibly noisy) optical flow vectors: (x7,u/), j = 1,...,n generated by the

same motion, define a matrix A € R**? associated to these measurements to be:
A=[al,a% ..., a"T (3.47)

where a’ are defined for each pair (x7, u’) using (3.45). In the absence of noise, the essential

vector e has to satisfy:
Ae = 0. (3.48)

In order for this equation to have a unique solution for e, the rank of the matrix A has to

be eight. Thus, for this algorithm, in general, the optical flow vectors of at least eight points

4For perspective projection, z =1 and us = 0 thus the expression for a can be simplified.
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are needed to recover the 3D velocity, i.e., n > 8, although the minimum number of optical
flows needed is 5 (see Maybank [76]). When the measurements are noisy, there might be no
solution of e for Ae = 0. As in the discrete case, we choose the solution which minimizes
the error function || Ae|.

Since the continuous essential vector e is recovered from noisy measurements, the
symmetric part s of E directly recovered from e is not necessarily a special symmetric
matrix. Thus one can not directly use the previously derived results for special symmetric
matrices to recover the 3D velocity. In the algorithms proposed in Zhuang [141, 142], such
s, with the linear velocity v obtained from the skew-symmetric part, is directly used to
calculate the angular velocity w. This is an over-determined problem since three variables
are to be determined from six independent equations; on the other hand, erroneous v
introduces further error in the estimation of the angular velocity w.

We thus propose a different approach: first extract the special symmetric com-
ponent from the symmetric matrix s directly estimated from the continuous epipolar con-
straint; then recover the four possible solutions for the 3D velocity using the results obtained
in Theorem 3.8; finally choose the one which has the closest linear velocity to the one given
by the skew-symmetric part of E. In order to extract the special symmetric component out
of a symmetric matrix, we need a projection from the space of all symmetric matrices to
the special symmetric space S, i.e., a continuous version of the projection of a matrix to

the essential manifold £ given in Maybank [76].

Theorem 3.10 (Projection to the Special Symmetric Space). If a real symmetric
matriz F € R3*3 is diagonalized as F = Vdiag{\, A2, \3}VT with V € S0(3), A\ > 0,3 <
0 and Ay > A2 > A3, then the special symmetric matrizc E € S which minimizes the error
|\E — F|[3 is given by E = Vdiag{o1,02,02}VT with:

201+ X2 — A A1 +2+ A 223+ Ao = A
o=tz Mt 2+l oM (3.49)
3 3 3
Proof: Define Sy to be the subspace of S whose elements have the same

eigenvalues: ¥ = diag{o1,02,03}. Thus every matrix E € Sy, has the form E = WEVT for
some V) € SO(3). To simplify the notation, define =) = diag{\;, X2, \3}. We now prove
this theorem by two steps.
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Step 1: We prove that the special symmetric matrix E € Sy which minimizes the
error ||E — Fll% is given by E = VEVT. Since E € Sy, has the form E = VIZVT, we get:

IE~FI} = WEVT -ve,vT|32
= |y - VTSV VS (3.50)

Define W = VTV; € SO(3) and W has the form:

wy w2 w3
W=1| 1w ws we|- (3.51)
wr wg wg
Then:
IE-FIF = |I=x—WwWswT|3
= tr(Z3) - 2wr(WEWTS,) + tr(Z2). (3.52)

Substituting (3.51) into the second term, and using the fact that oy = ¢y + 03 and W is a

rotation matrix, we get:

tr(WEWTE,) = o1(M(l - wd) + X1 — wf) + As(1 — wd))
+ o3(M(1 - wf) + (1 - wZ) + A3(1 - w?)) (3.53)
Minimizing |]E—F||% is equivalent to maximizing tr(WEW7TLZ,). From (3.53), tr(WEZWTS,)
is maximized if and only if w3 = wg = 0, 'wg =1, wyg =w; =0 and 'wi'2 = 1. Since W is
a rotation matrix, we also have wp = wg = 0 and w? = 1. All possible W give a unique
matrix in Sg which minimizes ||E — Fllf, E=VvzVT.
Step 2: From step one, we only need to minimize the error function over the

matrices which have the form VEV7 € S. The optimization problem is then converted to

one of minimizing the error function:
IE - FlI} = (A1 = 01)2 + (A2 — 02)% + (A3 — 03)? (3.54)
subject to the constraint:
02 = 01 + 03. (3.55)

The formula (3.49) for 01,02, 03 are directly obtained from solving this minimization prob-

lem. -
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Remark 3.11. For symmetric matrices which do not satisfy conditions Ay > 0 or A3 <0,

one may simply choose X] = maz(A1,0) or M\; = min(As3,0).

We then have an eigenvalue-decomposition based algorithm for estimating 3D ve-
locity from optical flow.
Algorithm 3.12 (Four Step Eigen-Decomposition Based 3D Velocity Estima-
tion).

1. Estimate essential vector:
For a given set of optical flows: (x7,u’), j =1,...,n, find the vector e which mini-

mizes the error function:
V(e) = || Ae|® (3.56)
subject to the condition |e| = 1;

2. Recover the special symmetric matrix:
Recover the vector vo € S? from the first three entries of e and the symmetric matriz
s € R¥*3 from the remaining siz entries.> Find the eigenvalue decomposition of the

symmetric matriz s:
s = Vidiag{\1, X, \s}VT (3.57)

with A1 > A2 > A3. Project the symmetric matriz s onto the special symmetric space
S. We then have the new s = Vidiag{o1, 02,03}V with:

2X1 + Ag — A A -
oy = 1+ Ag >\3’ oy = 1+2X + 3, 03=2)\3+/\2 )\1; (3.58)
3 3 3
3. Recover velocity from the special symmetric matrix:
Define:
A = o1—-03 A>0,
Lo (3.59)

6 = arccos(—o2/)), 6¢€]0,n].
Let V.= ViRY (§- %) € SO(3) and U = —~VRy(8) € O(3). Then the four possible
3D velocities corresponding to the special symmetric matriz s are given by:
@ = URz(x3)Z\UT, 9=VRz(£3):VT
= VRz(x3)Z2VT, 9=URz(x%)z,UT

5In order to guarantee vo to be of unit length, one needs to “re-normalize” e, i.e., multiply e by a scalar
such that the vector determined by the first three entries is of unit length.

(3.60)

£
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where X = diag{\, \,0} and I, = diag{1,1,0};

4. Recover velocity from the continuous essential matrix:

From the four velocities recovered from the special symmetric matriz s in step 3, choose

the pair (w*,v*) which satisfies:

v* Ty = max v7 vg. (3.61)
Then the estimated 3D velocity (w,v) with w € R® and v € S? is given by:

w=w", v=u. (3.62)

Both vg and v* are estimates of the linear velocity. However, experimental results
show that, statistically, within the tested noise levels (see next section), vy yields a better
estimate than v* . Here, thus, we simply choose vg as the estimate. Nonetheless, one can find
statistical correlations between vy and v* (experimentally or analytically) and obtain better
estimates for v, using both vp and v*. Another potential way to improve this algorithm is
to study the systematic bias introduced by the least square method in step 1. A similar
problem has been studied by Kanatani [53] and an algorithm was proposed to remove such

bias from Zhuang’s algorithm [141].

Remark 3.13. Since both E,—E € & satisfy the same set of continuous epipolar con-
straints, both (w,+v) are possible solutions for the given set of optical flows. However, as
in the discrete case, one can get rid of the ambiguous solution by adding the “positive depth

constraint”.

Remark 3.14. By the way of comparison to Heeger and Jepson’s algorithm [40], note that
the equation (3.48) may be rewritten to highlight the dependence on optical flow as:

[A1(u) | Ag]e =0

where A;(u) € R"*3 is a linear function of the measured optical flow and Ay € R™*6 is
a function of the image points alone. Heeger and Jepson compute a left null space to the
matriz Ay (C € R?=6)%" ) and solve the equation: CA;(u)v = 0 for v alone. Then they use
v to obtain w. Our method simultaneously estimates v € R3,s € R®. We make a detailed

simulation comparison of these two algorithms in section 4.
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One should note that this linear algorithm is not optimal in the sense that the re-
covered velocity does not necessarily minimize the originally picked error function || Ae(w, v)||?
on &] (see next section for a more detailed discussion). However, this algorithm only uses
linear algebra techniques and is particularly simpler than a one which tries to optimize on
the manifold £] [69). '

One potential problem with the (discrete or continuous) essential approaches is
that the motion estimation schemes are all based on the assumption that the translation is
not zero. In this section, we study what makes the epipolar constraint fail to work in the
zero-translation case.

For the discrete case, if two images are obtained from rotation alone i.e., p = 0

and Agxo = A\ RXy, it is straightforward to check that, for all p € S2, we have:
xTRTpxy = 0. (3.63)

Thus, theoretically, the estimation schemes working on the normalized essential space &
will fail to converge (since there are infinitely many pairs of (R, p) satisfying the same set

of epipolar constraints). In the continuous case, we have a similar situation:

Theorem 3.15. An optical flow field (x,u) is obtained from a pure rotation with the angular

velocity w if and only if for all vectors v € S?

v
Lf,xT]| _ |x=0. (3.64)
v
Proof: u = &x since u is obtained from rotation w & uT(v x x) = —xTH(v x x)
v
forallve §2 & [ul,xT]| __ [x=0. ]
o

This theorem implies that the velocity estimation algorithm proposed in the pre-
vious section will have trouble when the linear velocity v is zero, since there are infinite
many pairs of (w,v) satisfying the same set of continuous epipolar constraints. However, it
is shown by Soatto et al [99] that, in the dynamical estimation approach, one can actually
make use of the noise in the measurements to obtain correct estimate of the rotational
component R regardless of the accuracy of the estimate for the translation vector p. The
same should hold also in the continuous case. That is, even in the zero-translation case,

the recovery of the angular velocity w is still possible using dynamic estimation schemes.
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Study of such schemes is beyond the scope of this paper and will be addressed in our future
research work.

Example 3.16 (Kinematic Model of an Aircraft). This ezample shows how to utilize
the so called nonholonomic constraints (see Murray, Li and Sastry [84]) to simplify
the proposed linear motion estimation algorithm in the continuous case. Let g(t) € SE(3)
represent the position and orientation of an aircraft relative to the spatial frame, the inputs
w1, w, w3 € R stand for the rates of the rotation about the azes of the aircraft and vy € R the
velocity of the aircraft. Using the standard homogeneous representation for g (see Murray,

Li and Sastry [84]), the kinematic equations of the aircraft motion are given by:

] 0 —w3 w2 n |
w3 0 —-w O
g =g (3.65)
—Wo w1 0 0

0 0 0 0

where wy stands for pitch rate, wy for roll rate, w3 for yaw rate and vy the velocity of the
aircraft. Then the 3D wvelocity (w,v) in the continuous epipolar constraint (3.16) has the
form: w = [wy,ws, w3]T,v = [v1,0,0]T. For the algorithm given in section 3.1.4, this adds
extra constraints on the symmetric matriz s = %(GE-{- VW): sy = s5 =0 and s4 = sg. Then
there are only four different essential parameters left to determine and we can re-define the
essential parameter vector e € R to be: e = [v1, 82, 33,34]T. Then the measurement vector
a € R is to be: a = [ugy — upz, 22y, 222, y2 + 22]T. The continuous epipolar constraint can

then be rewritten as:
ale =0. (3.66)

If we define the matriz A from a as in (3.47), the matric ATA is a 4 x 4 matriz rather
than a 9 x 9 one. For estimating the velocity (w,v), the dimensions of the problem is then
reduced from 9 to 4. In this special case, the minimum number of optical flow measurements
needed to guarantee a unique solution of e is reduced to 3 instead of 8. Further more, the
symmetric matriz s recovered from e is automatically in the special symmetric space S
and the remaining steps of the algorithm given in section 3.1.4 can thus be dramatically
simplified. From this simplified algorithm, the angular velocity w = [wy,ws, w3]T can be fully
recovered from the images. The wvelocity information can then be used for conirolling the

aircraft.
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3.2 Experimental Results

We have carried out some initial simulations in order to study the performance
of our algorithm. We chose to evaluate it in terms of bias and sensitivity of the estimates
with respect to the noise in the optical flow measurements. Preliminary simulations were .
carried out with perfect data which was corrupted by zero-mean Gaussian noise where the
standard deviation was specified in terms of pixel size and was independent of velocity. The
image size was considered to be 512 x 512 pixels. Our algorithm has been implemented
in Matlab and the simulations have been performed using example sets proposed by [109]
in their paper on comparison of the egomotion estimation from optical low®. The motion
estimation was performed by observing the motion of a random cloud of points placed in
front of the camera. Depth range of the points varied from a to b (> a) units of the focal
length f, which was considered to be unity. For example, if the focal length is 8mm and
a = 100 and b = 400, the point depth varies from 0.8 m to 3.2 m in front of the camera.
This setup makes the simulation depend only on the parameter ¢ = (b—a)/a, called depth
variation parameter. The results presented below are for a fixed field of view (FOV) of

60 degrees unless otherwise stated.

3.2.1 Comparing to Subspace Methods

Each simulation consisted of 500 trials for 50 randomly sampled points in a given
depth variation [a, b] = [100,400] with a fixed noise level and ratio between the optical flow
due to translation and rotation for the point in the middle of the random cloud. Figures
3.2 and 3.3 compare our algorithm with Heeger and Jepson’s linear subspace algorithm
[40]. The presented results demonstrate the performance of the algorithm while rotating
around X-axis with rate of 1° per frame and translating along Y-axis with translation to
rotation ratio of 1 and 5 respectively (for the point at the center of the random cloud).
The first stage of our analysis was performed using benchmarks proposed by [109]. The
bias is expressed as an angle between the average estimate out of all trials (for a given
setting of parameters) and the true direction of translation and/or rotation. The sensitivity
was computed as a standard deviation of the distribution of angles between each estimated

vector and the average vector in case of translation and as a standard deviation of angular

®We would like to thank the authors in [109] for making the code for simulations of various algorithms
and evaluation of their results available on the web.
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Figure 3.4: Bias dependency on combination of translation and rotation axes. For example,
“X_Y” means the translation direction is in X-axis and rotation axis is the Y-axis. Bias for
each combination of axes was estimated by running 500 trials at the noise level 0.9 pixel.
The ratio between the magnitude of linear and angular velocities is 1.

This is due to the fact that in our algorithm the rotation is estimated simultaneously
with the translation, so that its bias is only due to the bias of the initially estimated
continuous essential matrix obtained by linear least squares techniques. This is in contrast
to the rotation estimate used by the subspace method [40] which uses another least-squares
estimation by substituting an already biased translational estimate to compute the rotation.
Increasing the ratio between the magnitude of translational and rotational velocities, the

performance of both algorithms improves, especially the translation estimates.

3.2.2 Bias Analysis: Relation to Nonlinear Algorithms

A disadvantage of any linear algorithm is that it tries to directly minimize the

epipolar constraint, i.e., the objective function:

n
V(w,v) = Z(uﬁﬁxj + xTooxd )2, (3.67)

=1
But this is not the likelihood function of w and v for commonly used noise models of the
optical flow. Consequently, estimates given by linear algorithms are usually not close to

maximum a posterior (MAP) or minimum mean square estimates (MMSE). In general, this
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Translation bias w.r.t different depth variation parameter
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Figure 3.6: Translation bias and rotation bias with respect to different depth variation
parameter ¢. Bias for each noise level and depth variation parameter is estimated by
running 500 trials. Translation is along the X-axis and rotation axis is the Z-axis and
the ratio between the magnitude of linear and angular velocities is 1.

3.2.4 'Translation Estimates

Further evaluation of the results and more extensive simulations are currently
underway. We believe that thoroughly understanding the source of translational bias, we
can obtain even better performance by utilizing additional information about the linear
velocity which is embedded in the special symmetric part of the continuous essential matrix,
i.e., v* (see step 4 of the algorithm in the preceding section). In the above simulations, the
linear velocity v was estimated only from the v, the skew symmetric part of the continuous
essential matrix. Figure 3.7 demonstrates that vg is in general a much better estimate than

v*.

3.3 Discussion

In this chapter, we have presented a unified (linear) approach for the problem of
egomotion estimation using discrete and continuous epipolar constraints. In either the dis-
crete or continuous setting, a geometric characterization is given for the space of (discrete)

essential matrices or continuous essential matrices. Such a characterization gives a natural
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Figure 3.7: Bias and sensitivity of the translation estimates vy from the skew symmetric
part and v* from the special symmetric part of the continuous essential matrix. Bias and
sensitivity for each noise level are estimated by running 200 trials for a cloud of 50 points.
Both translation and rotation are along the X-axis and the ratio between the magnitude of
linear and angular velocities is 5.

geometric interpretation for the number of possible solutions to the motion estimation prob-
lem. In addition, in the continuous case, understanding of the space of continuous essential
matrices leads to a new egomotion estimation algorithm, which is a natural counterpart of
the well-known three-step SVD based algorithm developed for the discrete case by [112]. In
order to exploit temporal coherence of motion and improve algorithm’s robustness, a dy-
namic (recursive) motion estimation scheme, which uses implicit extended Kalman filter for
estimating the essential parameters, has been proposed by Soatto et al [99] for the discrete
case. The reader should be aware that the same ideas certainly apply to the continuous

case.
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Chapter 4

Motion Recovery II: Optimal
Algorithms

“Since the building of all the universe is perfect and is created by the wisdom creator,
nothing arises in the universe in which one cannot see the sense of some mazimum or
minimum.”

— L. Euler

In the previous chapter, we have discussed how to recover camera motion from two
views by linear techniques. While the epipolar geometric relationships governing the motion
recovery problem have been long understood, the robust or statistically less biased solutions
are still sought. New studies of sensitivity of different algorithms, search for intrinsic local
minima and new algorithms are still subjects of great interest. Algebraic manipulation of
intrinsic geometric relationships typically gives rise to different objective functions, making
the comparison of the performance of different techniques often inappropriate and often
obstructing issues intrinsic to the problem. In this chapter, we provide new algorithms
and insights by giving answers to the following three questions, what we believe are the
main aspects of the motion and structure recovery problem (in the simplified two-view,

point-feature scenario):

(i) What is the correct choice of the objective function and its associated statis-
tical and geometric meaning? What are the fundamental relationships among
different ezisting objective functions?

(ii) What is the core optimization problem which is common to all objective
functions associated with motion and structure estimation?
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(iii) How does the choice of the objective functions and configurations affect the
sensitivity and robustness of the estimates? What is the effect of the bas relief
ambiguity and other ambiguities on the sensitivity and robustness of the proposed
algorithms? :

The seminal work of Longuet-Higgins [60] on the characterization of the so called
epipolar constraint, has enabled the decoupling of the structure and motion problems and
led to the development of numerous linear and nonlinear algorithms for motion estimation
(see [22, 53, 76, 131] for overviews). The epipolar constraint has been formulated both
in a discrete and a continuous setting in Chapter 3 and this work has demonstrated the
possibility of a parallel development of algorithms for both cases: namely using point feature
correspondence and optical flow. A preliminary analysis of linear and nonlinear techniques,
exploring the use of different objective functions can be found in [63).

While the (analytic) geometrical aspects of the linear approach have been under-
stood, the proposed solutions to the problem have been shown very sensitive to noise and
have often failed in practical applications. These experiences have motivated further stud-
ies which focus on the use of a statistical analysis of existing techniques and understanding
of various assumptions which affect the performance of existing algorithms. These studies
have been done both in an analytical [14, 102] and experimental setting [109]. The appeal
of linear algorithms which use the epipolar constraint (in the discrete case (63, 60, 76, 131]
and in the continuous case [50, 67, 108]) is the closed form solution to the problem which,
in the absence of noise, provides true estimate of the motion. However, a further analysis of
linear techniques reveals an inherent bias in the translation estimates [50]. Attempts made
to compensate for the bias slightly improve the performance of the linear techniques [53].

Such attempts to remove the bias have led to different choice of nonlinear objective
functions. The performance of numerical optimization techniques which minimize nonlinear
objective functions has been shown superior to linear ones. The objective functions used
are either (normalized) versions of the epipolar constraint or distances between measured
and reconstructed image points (the so called reprojection error) [129, 63, 140, 45). These
techniques either require iterative numerical optimization [131, 99] or use Monte-Carlo sim-
ulations [50] to sample the space of the unknown parameters. Extensive experiments re- -
vealed problems with convergence when initialized far away from the true solution [109).
Since nonlinear objective functions have been obtained from quite different approaches, it

is necessary to understand the relationship among all the existing objective functions. Al-
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though a preliminary comparison has been made in [140], in this chapter, we provide a
more detailed and rigorous account of this relationship and how it affects the complexity of
the optimization. In this chapter, we will show, by answering the question (i), “minimiz-
ing epipolar constraint”, “minimizing (geometrically or statistically!) normalized epipolar
constraint” [63, 129, 140], “minimizing reprojection error” [129], and “triangulation” [33]
can all be unified in a single geometric optimization procedure, the so called “optimal tri-
angulation”. As a by-product of this approach, a much simpler triangulation method than
[33] is given along with the proposed algorithm. A highlight of our method is an iterative
scheme between motion and structure without introducing any 3D scale (or depth).
Different -objective functions have been used in different optimization techniques

(45, 107, 129]. Horn [45] first proposed an iterative procedure where the update of the
estimate takes into account the orthonormal constraint of the unknown rotation. This
algorithm and the algorithm proposed in [107] are some of the few which explicitly con-
sider the differential geometric properties of the rotation group SO(3). In most cases, the
underlying search space has been parameterized for computational convenience instead of
being loyal to its intrinsic geometric structure. Consequently, in these algorithms, solving
for optimal updating direction typically involves using Lagrangian multipliers to deal with
the constraints on the search space; and “walking” on such a space is done approximately
by an update-then-project procedure, rather than exploiting geometric properties of the
entire space of essential matrices as characterized in Chapter 3 or in [99]. As an answer
to the question (ii), we will show that optimizing existing objective functions can all be
reduced to optimization problems on the essential manifold. Due to recent developments of
optimization techniques on Riemannian manifolds (especially on Lie groups and homoge-
neous spaces) [97, 19], we are able to explicitly compute all the necessary ingredients, such
as gradient, Hessian and geodesics, for carrying out intrinsic nonlinear search schemes.
In this chapter, we will first give a review of the nonlinear optimization problem associ-
ated with the motion and structure recovery. Using a generalized Newton’s algorithm as a
prototype example, we will apply our methods to solve the optimal motion and structure
estimation problem by exploiting the intrinsic Riemannian structure of the essential man-
ifold. The rate of convergence of the algorithm is also studied in some detail. We believe

the proposed geometric algorithm will provide us with an analytic framework for design of

'In the literature, they are respectively referred to as distance between points and epipolar lines, and
gradient-weighted epipolar errors [140] or epipolar improvement [129].
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(Kalman) filters on the essential manifold for dynamic motion estimation (see [99]). It also
provides us new perspectives for design of algorithms for multiple views.

In this chapter, only the discrete case will be studied, since in the continuous case
the search space is essentially Euclidean and good optimization schemes already exist and
have been well studied, see [98, 139]. For the continuous case, recent studies [98] have:clari-
fied the source of some of the difficulties (for example, rotation and translation confounding)
from the point of view of noise and explored the source and presence of local extrema which
are intrinsic to the structure from motion problem (i.e., these local extrema are independent
of the choice of objective functions). The bas relief ambiguity, in general, can characterized
as the most sensitive direction in which the rotation and translation estimates are prone
to be confound with each other (for example, see [1, 98, 129] for a more detailed analysis).
Here we apply the same line of thought to the discrete case. Since the bas relief effect
is evident only when the field of view and the depth variation of the scene are small, we
here are more interested in characterizing, besides the bas relief ambiguity, other intrinsic
extrema which may show up at a high noise level even for a general configuration, i.e., with
large base line, field of view and depth variation. As an answer to the question (iii), we will
show both analytically and experimentally that some ambiguities are introduced at a high
noise level by certain bifurcation of the objective function and usually result in a sudden
90° flip in the translation estimate. Understanding such ambiguities is crucial for properly
evaluating the performance (especially the robustness) of the algorithms when applied to
general configurations. Based on analytical and experimental results, we will give a clear
profile of the performance of different algorithms over a large range of signal-to-noise ratio,

and under various motion and structure configurations.

Chapter Outline

Section 4.1 relies on some familiarity with Edelman et al’s work [19] on geomet-
ric optimization and some background of Riemannian geometry (good references for Rie-
mannian geometry are [55, 103]).2 This section basically outlines how to optimize various
objective functions associated to the motion recovery problem using the (Riemannian) New-
ton’s algorithm. Formulae of all the necessary ingredients such as gradient, Hessian and

geodesics have been explicitly spelled out. Appendix A provides extra details that fill the

?Readers who are not familiar with differential geometry terms may skip technical details in this section
without losing much continuity.
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gap between Edelman’s work and our application. Different objective functions proposed
in the literature are unified in Section 4.2 by a single optimization procedure proposed for
estimating optimal structure and motion altogether. This procedure gives clear answers to
both questions (i) and (ii). Section 4.3 discusses extrema of an objective function on the
essential manifold. Among all the possible ambiguities, we characterize those which- most
likely occur in the motion and structure recovery problem. Sensitivity study and experi-
mental comparison between different objective functions are given in Section 4.4. Section

4.3 and 4.4 together give a clear answer to the question (iii).

4.1 Optimal Motion Recovery

In this section, we apply the Riemannian Newton’s algorithm to various objective
functions associated with the motion recovery problem in computer vision. Relationship
among different objective functions will be studied in detail in the section after.

4.1.1 Minimizing Epipolar Constraints

From Chapter 3, we know that two corresponding image points X1,X9 € R3 satisfy

the so called epipolar constraint:
T _
xTRx; = 0 (4.1)

where R € SO(3) and T € S? are relative rotation and translation between the two image

frames, respectively. Thus to recover the motion (R,T) from a given set of image cor-

respondences x{,x% € R, = 1,...,n, it is natural to minimize the following objective
function:
F(R,T) = ) ('TRx])?, xI,x} R, (R,T)€ SO(3)xS2 (4.2)
j=1

In this section, we apply the Newton’s algorithm introduced in Chapter A to solve
this problem. We will give explicit formulae for calculating all the ingredients needed:
geodesics, gradient G of F, Hessian Hess(:,-) of F and the optimal updating vector A =
—Hess™'G (and we will show later how these formulae can be extensively reused for obtain-
ing corresponding formulae for other objective functions). It is well known that an explicit

formula for the Hessian is also important for sensitivity analysis of motion estimation [14]).
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Further, using the formula for the Hessian, we will be able to show that, under certain
conditions, the Hessian is guaranteed non-degenerate, whence the Newton’s algorithm has
quadratic rate of convergence.

Instead of using formulae given in the previous section, the computation of the
gradient and Hessian can also be carried out by using explicit formulae for geodesics on these
manifolds. On SO(3), the formula for the geodesic at R in the direction A; € Tr(SO(3))

is:
R(t) = exp(R, A1t) = €”'R = (I + @sint + &*(1 — cost))R (4.3)

where t € R,@ = A1RT € 50(3). The last equation is called the Rodrigues’ formula (see
[84]). S2 (as a Stiefel manifold) also has very simple expression for geodesics. At the point
T along the direction Ay € Tr(S?) the geodesic is given by:

T(t) = exp(T, Ast) = Tcosot + Usinot (4.4)

where o = ||Azfl and U = Az /o, then TTU = 0 since TTA, = 0.
Using the formulae (4.3) and (4.4) for geodesics , we can calculate the first and
second derivatives of F(R,T) in the direction A = (A1, A;) € Tr(SO(3)) x Tr(S?):

dF(R(t),T(t L
dF(A) _(((IZJIH = > "R (xf T A0 + X7z Re] ),
j=1
d’F(R(t),T(¢
= 3 [ @1+ BoR)x]]” + <7 TR < (-TRAT A, - TRATA, + 2R;80)x]]
=1

From the first order derivative, the gradient G = (G1,G,) € Tr(S0(3)) x T5(S?)
of F(R,T) is:
G =) x}"TRx] (fT x3x]" — Rx]x} TR, —x}Rx] — Tx{TRT ;C’;T) (4.5)
j=1
It is direct to check that G1RT € s0(3) and TTG> = 0, so the G given by the above
expression is a vector in Tr(SO(3)) x Tr(S?).
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For any pair of vectors X,Y € Tr(SO(3)) x Tr(S?), polarize Hess(A, A) to get
the expression for Hess(X,Y):

Hess(X,Y)
= % [Hess(X +Y,X +Y) — Hess(X — Y, X - Y))

= > KT(TX1 + LR (TY: + PR)x]
=1

ren i [r( 1
+ TR " (-

STRXTY: + YT X1) - TRXTY, + (X + )?zn)) xi] (4.6)
To make sure this expression is correct, if we let X = Y = A, then we get the same
expression for Hess(A, A} as that obtained directly from the second order derivative.

The following theorem shows that this Hessian is non-degenerate in a neighborhood
of the optimal solution, therefore the Newton’s algorithm will have a quadratic rate of

convergence by Theorem 3.4 of Smith [97].

Theorem 4.1 (Nondegeneracy of Hessian). Consider the objective function F(R,T)
as above. Its Hessian is not degenerate in a neighborhood of the optimal solution if there'is

a unique (up to a scale) solution to the system of linear equations:
X Ex] =0, EcR™, j=1,..n
If so, the Riemannian Newton’s algorithm has quadratic rate of convergence.

Proof: It suffices to prove for any A % 0, Hess(A,A) > 0. According to the
epipolar constraint, at the optimal solution, we have x%Tfo{ = 0. The Hessian is then
simplified to:

Hess(8,4) = Y [« (P, + &R)::{]2 .
i=1

Thus Hess(A, A) = 0 if and only if
T (TA; +AgR)x =0, j=1,...,n.
Since we also have

TPR =0, j=1,....m
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Then both TA; + A,R and TR are solutions for the same system of linear equations which

by assumption has a unique solution, hence Hess(A, A) = 0 if and only if

fAl + 32}2 = kfR, for some A € R

& To+A;=2T, forw=ART

& To=)T, and Ap=0, since TTAy=0
& w=0,and Ap =0, sinceT #0

& A=0.

Remark 4.2. In the previous theorem, regarding the 3 x 3 matriz E in the equations
ngEx{ = 0 as a vector in R, one needs at least eight equations to uniquely solve E up to
a scale. This implies that we need at least eight image correspondences {(x{,xg)};-‘ﬂ,n >8
to guarantee the Hessian non-degenerate whence the iterative search algorithm converges in
quadratic rate. If we study this problem more carefully, using transversality theory, one may
show that five image correspondences in general position is the minimal date to guarantee
the Hessian non-degenerate [76]. However, the five point technique usually leads to many
(up to twenty) ambiguous solutions, as pointed out by Horn [{5]. Moreover, numerical
errors usually make the algorithm not work ezactly on the essential manifold and the eztra
solutions for the equations x%TE’x{ = 0 may cause the algorithm to converge very slowly in
these directions. It is not just a coincidence that the conditions for the Hessian to be non-
degenerate are ezactly the same as that for the eight-point linear algorithm (see [76, 67])
to have a unique solution. A heuristic erplanation is that the objective function here is a

quadratic form of the epipolar constraint which the linear algorithm is directly based on.

Returning to the Newton’s algorithm, assume that the Hessian is non-degenerate,
i.e., invertible. Then, we need to solve for the optimal updating vector A such that A =

Hess™!G, or equivalently:
Hess(Y,A) = g(—G,Y) = —dF(Y), for all vector fields Y.

Pick five linearly independent vectors, i.e., a basis of Tr(SO(3)) x Ts(S?): E¥,k=1,...,5.

One then obtains five linear equations:

Hess(E*,A) = —dF(E*), k=1,...,5.
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Since the Hessian is invertible, these five linear equations uniquely determine A. In par-
ticular, one can choose the simplest basis such that for £ = 1,2,3: E* = (€.R,0) with
er, k = 1,2,3 the standard basis for R?, and for k = 4,5: E* = (0, e;) such that {T,e4,e5}
form an orthonormal basis for R3. The vectors e4, e5 can be obtained using Gram-Schmidt
process.

Define a 5 X 5 matrix A € R%*® and a 5 dimensional vector b € R® to be:
Ap; = Hess(E*E'), by =—dF(E*), k,il=1,...,5.
Then solve for the vector a = [a1, a2, a3, a4, a5]T € R5:
a=A"lb.

Let u = [a1,a2,a3]7 € R® and v = aes + ases € R3. Then for the optimal updating vector
A = (A1, Ay), we have A} = %R and Ay = v. We now summarize the Riemannian Newton

algorithm for the optimal motion recovery, which can be directly implemented.

Algorithm 4.3 (Riemannian Newton’s Algorithm for 3D Motion Recovery).
Objective Function:

F(R,T)=) ('TRx))?, xi,x} € R, (R,T)€ SO@) x S2

i=1
1. Compute the optimal updating vector:
At the point (R, T) € SO(3)xS?, compute the optimal updating vector A = — Hess G

e Compute the vectors eq,es from T using Gram-Schmidt process and obtain the
five basis tangent vectors E* € Tr(SO(3)) x Tr(S?),1 < k < 5 as defined in the

above,

o Compute the 5 x 5 matrizc Ay, = Hess(E*, E'),1 < k,1 <5,

Compute the 5 dimensional vector by = —dF(E¥),1 < k <5,

Compute the vector a = [a1,a2,a3,a4,0a5]7 € R® such that a = A~'b,

Define u = [aj,az,03]T € R® and v = agey + ases € R3. Then the optimal

updating vector:

= —Hess"!G = (@R, v).
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2. Update the search state:
Move (R,T) in the direction A along the geodesic to (exp(R, A1), exp(T, A3)), using
the formula for geodesics on SO(3) and S? respectively:

exp(R,A;) = (I +@sint+&%(1 - cost))R,
exp(T,As) = Tcoso+ Usino,

where t = 4/ 1tr(ATA1),w = A1RT [t and 0 = /AT Ay, U = Ay /0.
2¢M A 342

3. Return to Step 1 if ||b|| > € for some pre-determined € > 0.

Remark 4.4. From calculations above, we note that one can consider a more general objec-

tive function with a (positive) weights w; € R* associated with each image correspondence

(x},%]):

n
F(RT) =) wi(x} TRx])?, xi,x} € R, (RT)ec SO() xS>
=1
For ezample, one may choose w;' = 2121153 |2 to convert the image points from perspec-
tive projection to spherical projection. Then, in the above elgorithm, the expressions for the

geodesics, the gradient and Hessian only need to be slightly modified.

4.1.2 Minimizing Normalized Epipolar Constraints

Although the epipolar constraint (3.2) gives the only necessary (depth indepen-
dent) condition that image pairs have to satisfy, motion estimates obtained from minimizing

the objective function (4.2):
F(R,T) = Y (&'TRx])?, xi,x}ecR (R,T)e SO(3) xS2 (4.7)

J=1

are not necessarily statistically or geometrically optimal for the commonly used noise model
of image correspondences. In general, in order to get less biased estimates, we need to nor-
malize (or weight) the epipolar constraints properly, which has been initially observed in
(129]. In this section, we will give a brief account of these normalized versions of epipolar
constraints. These normalized versions in general are still functions defined on the essential
manifold. The reason will become clear in the next section when we see that these normal-

izations in fact can be unified by a single procedure for getting optimal estimates of motion

and structure.
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We here discuss this issue for the perspective projection case.3 In the perspective
projection case, coordinates of image points x; .and x, are of the form [z,y,1)T € R°.

Suppose that the actual measured image coordinates of n pairs of image points are:
X]=%+d, =%+p, j=1...,n (48)

where i{ and :”c% are ideal (noise free) image coordinates, of = [ar{,ag,O]T € R and
B =[8,B5,0/T € B3, and o, a}, 4! and B} are independent Gaussian random variables of
identical distribution N(0,02). Substituting x{ and x% into the epipolar constraint (3.2),

we obtain:
x) TRx] = PTTR% + % TRo + FTTR .

Since the image coordinates x{ and x% usually are magnitude larger than o/ and 7, one
can omit the last term in the equation above. Then Jc;TfRJc{ are independent random
variables approzimately of Gaussian distribution N (0, o%(||&;TRx}||2 + ||x3T T Res||2)) where
es =[0,0,1)7 € R®. If we assume the a prior distribution of the motion (R,T) is uniform,
the maximum a posterior (MAP) estimates of (R,T) is then the global minimum of the
objective function:

S (] TRx)*

F(RT) =)  —=—; T ;
; EsT R |2 + llx)" TRET|I?

x},x) e B, (R,T) € SO(3) x S%.  (4.9)

We here use F to denote the statistically normalized objective function associated with
the epipolar constraint. This objective function is also referred in the literature under the

name gradient criteria [63] or epipolar improvement [131]. Therefore, we have:
(R,T)map =~ argminFy(R,T) (4.10)

Note that in the noise free case, F; achieves zero, just like the unnormalized objective
function F given by equation (4.2). Asymptotically, MAP estimates approach the unbiased
minimum mean square estimates (MMSE). So, in general, the MAP estimates give less
biased estimates than the unnormalized objective function F.

Note that Fj is still a function defined on the manifold SO(3) x S2. The discussion

given in Section A.3 about optimizing a general function defined on the essential manifold

3The spherical projection case is similar and is omitted for simplicity.



68

certainly applies to F;. Moreover, note that the numerator of each term of F, is the same

as that in F, and the denominator of each term in F; is simply:
ll&sTRx]||? + |3} TREY || = (e] TRx])? + (5 TRx))? + (x3T TRey)? + (xiT TRey)¥4.11)

where e; = [1,0,0]7 € R® and ez = [0,1,0]T € R®. That is, components of each term
of the normalized objective function F; are essentially of the same form as that in the
unnormalized one F. Therefore, we can exclusively use the formulae of the first and second
order derivatives dF(A) and HessF(A,A) of the unnormalized objective function F to
express those for the normalized objective F, by simply replacing x{ or x% with e; or e
at proper places. This is one of the reasons why the epipolar constraint is so important
and studied first. Since for each term of F;, we now need to evaluate the derivatives of
five similar components (effo{)z, (eszRx{)z, (x%TfRel)z, (x%TfRel)2 and (ngfo{')z,
as opposed to one in the unnormalized case, the Newton’s algorithm for the normalized
objective function is in general five times slower than that for the unnormalized objective
function F. But the normalized one gives statistically much better estimates, as we will
demonstrate in Section 4.4.

Another commonly used criterion to recover motion is to minimize the geometric
distances between image points and corresponding epipolar lines. This objective function

is given as:

Z (T TRx})? x:;TTRxJ )2

F,(R,T)
! & TR |12 ux;TTR”‘-{u?

x, € B, (R,T) € SO(3) x S2. (4.12)
We here use F, to denote this geometrically normalized objective function. For a more
detailed derivation and geometric meaning of this objective function see [63, 140]. Notice
that, similar to F and F;, F, is also a function defined on the essential manifold and can
be minimized using the given Newton’s algorithm.

The relationship between the statistically normalized objective function F; and the
geometrically normalized objective function F, will be clearly revealed in the next section
when we study the optimal motion and structure recovery as a constrained optimization
problem. As we know from [68], in the continuous case, the normalization has no effect
when the translational motion is in the image plane, i.e., the unnormalized and normalized
objective functions are in fact equivalent. For the discrete case, we have a similar claim.

Suppose the camera motion is given by (R, T) € SE(3) with T € S2 and R = ¢*? for some
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weES*and € R Ifw = [0,0,1]T and T = [T1,T3,0[7, i.e., the translation direction is
in the image plane, then it is direct to check that [[€&3TRx}||? = IxiTTReT|2 = 1. Hence,
in this case, all the three objective functions F, F, and F, are very similar to each other
around the actual (R,T).# Practically, this implies the normalization will have little effect
on the motion estimates, as will be verified by the simulation.5 Therefore, in certain cases,‘
minimizing the objective function F which is directly related to the epipolar constraint is

not necessarily a wrong thing to do.

4.2 Optimal Triangulation

Note that, in the presence of noise, for the motion (R, T') recovered from minimizing
the unnormalized or normalized objective functions F, F; or Fy, the value of the objective

functions is not necessarily zero. That is, in general:
XTTRx #£0, j=1,...,n. (4.13)

Consequently, if one directly uses x{ and x% to recover the 3D location of the point to
which the two images x{ and x% correspond, the two rays corresponding to x{ and x%
may not be coplanar, hence may not intersect at one 3D point. Also, when we derived the
normalized epipolar constraint F;, we ignored the second order terms. Therefore, rigorously
speaking, it does not give the exact MAP estimates. Here we want to clarify the effect of
such approximation on the estimates both analytically and experimentally. Furthermore,
since F; also gives another reasonable approximation of the MAP estimates, can we relate
both F; and Fy to the MAP estimates in a unified way? This will be studied in this section.
Experimental comparison will be given in the next section.

Under the assumption of Gaussian noise model (4.8), in order to obtain the op-
timal (MAP) estimates of camera motion and a consistent 3D structure reconstruction, in
principle we need to solve the following optimization problem:

Optimal Triangulation Problem: Seek camera motion (R, T) and points i{ € R® and
5:; € R on the image plane such that they minimize the distance from x{ and x%
n
FRT, &%) = Y I% - x| + 1% - x| (4.14)
j=1

4 Around a small neighborhood of the actual (R,T), they only differ by high order terms.
®Strictly speaking, this is the case only when the noise level is low, i.e., corrupted ob, jective functions are
not yet so different from the noise-free one.
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subject to the conditions:
WITRE =0, #Tes=1, #Tes=1, j=1,...,n (4.15)

We here use F; to denote the objective function for triangulation. This objective functionA
is also referred in literature as the reprojection error. Unlike [33], we do not assume a
known essential matrix TR. Instead we seek i{ 5?2 and (R, T) which minimize the objective
function F; given by (4.14). The objective function F; then implicitly depends on the
variables (R, T') through the constraints (4.15). Clearly, the optimal solution to this problem
is exactly equivalent to the optimal MAP estimates of both motion and structure. Using
Lagrangian multipliers, we can convert the minimization problem to an unconstrained one:

n
min Y 1% — x|+ 1% - 5|2 + M&ITTRE] + 47 (& es — 1) + (%7 es — 1).
R’T’i{’i‘; J=1

The necessary conditions for minima, of this objective function are:

2] = x3) + ¥RTTTR + yies = 0 (4.16)
2(%} — x}) + MTRE + nie3 = 0 (4.17)

Under the necessary conditions, we obtain:

¥ = x]- peleRTITy
%} = x} - INele TR (4.18)
%TTRE = 0

where ) is given by:

y 2(:f"TRE] + 5P

= — — o £ — 4.19
i‘{TRTTq"e\g"e\sTRi‘; + %TTR€§€3RTTT5€% ( )
or
e e
Mo 29 TRY 2% IR (4.20)
%]  RTTTele;TRx] %, TReJe;,RTTT],
Substituting (4.18) and (4.19) into F}, we obtain:
i =\ (3 TR + KT TRx])?
E(R,T,x%,x%) ( 2 1+ 2 RJC;) (4.21)

= IR |12 + |5 TR |2
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and using (4.18) and (4.20) instead, we get:

. . n iTA D~ 2 - iTS . 2
rRT g = Y IEE,
j=1 le&sTRX]||> ||%}” TRed||?

(4.22)

Geometrically, both expressions for F; are the distances from the image points x{ and_x% to
the epipolar lines specified by %J,%}, and (R, T). Equations (4.21) and (4.22) give explicit
formulae of the residue of ||i{ —x |2+, ~x}||? as x, %} being triangulated by %, %),. Note
that the terms in F; are normalized crossed epipolar constraints between x{ and :'cé or
between %) and xj. These expressions for F; can be further used to solve for (R,T) which
minimizes F;. This leads to the following iterative scheme for obtaining optimal estimates

of both motion and structure, without explicitly introducing scale factors (or depths) of the

3D points.

Algorithm 4.5 (Optimal Triangulation). The procedure for minimizing F; can be out-

lined as follows:

1. Initialization:
Initialize ic{(R, T) and i%(R, T) as x{ and x*% respectively.

2. Motion estimation:
Update (R,T) by minimizing F; (R, T) = F,(R, T, % (R, T),%,(R,T)) given by (4.21)
or (4.22) as a function defined on the manifold SO(3) x S2.

3. Structure triangulation:
Solve for i{(R, T) and J"cg(R, T) which minimize the objective function F, defined in
(4.14) with respect to a fizred (R, T) computed from the previous step.

4. Return to Step 2 until updates are small enough.

At step 2, Fy(R,T):

o G TRA 5 TRA) o g TR | @TRA? o

* —

FOD) = 2 et relle + TR ~ 2 Iefrdl” * IR TRa P
is a sum of normalized crossed epipolar constraints. It is a function defined on the manifold
SO(3) x S% again hence can be minimized using the Riemannian Newton’s algorithm, which
is essentially the same as minimizing the normalized epipolar constraint (4.9) studied in the

preceding section. The algorithm ends when (R, T') is already a minimum of F;. It can be
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shown that if (R,T) is a critical point of F}", then (R, T,i{(R, T),ic%(R, T)) is necessarily
a critical point of the original objective function F; given by (4.14).

At step 3, for a fixed (R, T), i{ (R,T) and i‘g(R, T') can be computed by minimizing
the distance ||:Tc{ - x{ll2 + |Ii'; - x§||2 for each pair of image points. Let t-; € R? be the
normal vector (of unit length) to the (epipolar) plane spanned by (i‘;,T). Given such a t‘%,
S'c{ and %} are determined by:

~T ~ ~T ~
; JT t’ +t
s = UL AG S B ) GHETEG G B
eat{ tles elt) thes
where t{ = Rthz' € R3. Then the distance can be explicitly expressed as:
i i 57 AIg) #Tc it
15 — 1% + 1% == = [Ixf)? + =2 + 12 + L= (4.25)
£}’ B t% D3t
where A7, B7,C7, D7 € R**® are defined by:
Al = (e;»,x’x’ 63 + XJes + 63}(‘7) B = €g€3 (4.26)
cI = (633(‘7)&‘7 63 +x’e3 +e3x’) DI =€§€3 .

Then the problem of finding i{(R, T) and i‘%(R, T) becomes one of finding tg* which mini-
mizes the function of a sum of two singular Rayleigh quotients:
t) 4’ & RCIRTY

min V() = 2.2 4 2 —_2 4.27
srladrg=’ P T gaig t}" RDIRT# 20

This is an optimization problem on a unit circle S! in the plane orthogonal to the vector T
(therefore, geometrically, motion and structure recovery from n pairs of image correspon-
dences is an optimization problem on the space SO(3) x S2 x T® where T" is an n-torus,
i.e., an n-fold product of S'). If Ny, N, € R® are vectors such that T, Ny, N» form an or-
thonormal basis of R?, then t% = cos(#) N1 + sin(0) N, with 6 € R. We only need to find §*
which minimizes the function V(tg(ﬂ)). From the geometric interpretation of the optimal
solution, we also know that the global minimum 6* should lie between two values: ¢, and
0, such that tg(ﬂl) and tg(eg) correspond to normal vectors of the two planes spanned by
(x%,T) and (Rx{,T) respectively (if x{,x% are already triangulated, these two planes coin-
cide). Therefore, in our approach the local minima is no longer an issue for triangulation,

as oppose to the method proposed in [33]. The problem now becomes a simple bounded
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minimization problem for a scalar function and can be efficiently solved using standard op-
timization routines (such as “fmin” in Matlab or the Newton’s algorithm). If one properly
parameterizes tg(G), tg* can also be obtained by solving a 6-degree polynomial equation, as
shown in [33] (and an approximate version results in solving a 4-degree polynomial equation
[131]). However, the method given in [33) involves coordinate transformation for each image
pair and the given parameterization is by no means canonical. For example, if one chooses
instead the commonly used parameterization of a circle S!:

— 2

sm(29) W,

cos(20) = AER, (4.28)

A
1+ A2
then it is straightforward to show from the Rayleigh quotient sum (4.27) that the necessary
condition for minima of V (/) is equivalent to a 6-degree polynomial equation in A\.6 The
triangulated pairs (i{,i%) and the camera motion (R, T) obtained from the minimization
automatically give a consistent (optimal) 3D structure reconstruction by two-frame stereo.
The optimal triangulation algorithm successfully resolves some mysteries about the
epipolar geometry. First, it clarifies the relationship between previously obtained objective
functions based on normalization, including F, and F,. In the expressions for F, if we
simply approximate 5({,:'(’2 by x{, x% respectively, we may obtain the normalized versions of

epipolar constraints for recovering camera motion. From (4.21) we get:

Z 4(x3T TRx})?
F,(R,T) = 4.29
" 1) Z; EsTRac] |12 + ||} TReT | 2 (429
or from (4.22) we have:
TR 2 iITH D Jy2
F,(R,T) Z (3 TRx)®  (x] TRx]) (4.30)

: T
& TeTRel? TR

The first function (divided by 4) is exactly the same as the statistically normalized objective
function F; introduced in the preceding section; and the second one is exactly the geomet-
rically normalized objective function Fy. From the above derivation, we see that there is
essentially no difference between these two objective functions - they only differ by a second
order term in terms of x] — %] and xJ, — %}. Although such subtle differences between Fj,
Fy and F; have previously been pointed out in [140], our approach discovers that all these

three objective functions can be unified in the same optimization procedure — they are just

SSince there is no closed form solution to 6-degree polynomial equations, directly minimizing the Rayleigh
quotient sum (4.27) avoids unnecessary transformations hence can be much more efficient.
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slightly different approximations of the same objective function Fy. Practically speaking,
using either normalized objective function F; or Fy, one can already get camera motion
estimates which are very close to the optimal ones.

Secondly, as we noticed, the epipolar constraint type objective function F} given
by (4.23) appears as a key intermediate objective function in an approach which initially'
intends to minimize the so called reprojection error given by (4.14). The approach of
minimizing reprojection error was previously considered in the computer vision literature
as an alternative to methods which directly minimize epipolar constraints [33, 129]. We here
see that they are in fact profoundly related. Further, the crossed epipolar constraint Fr
given by (4.23) for motion estimation and the sum of singular Rayleigh quotients V(t{,) given
by (4.27) for triangulation are simply different expressions for the reprojection error under
different conditions. In summary, “minimizing (normalized) epipolar constraints” [63, 140},
“triangulation” [33] and “minimizing reprojection errors” [129] are all deeply related to each
other. They are in fact different (approximate) versions of the same procedure for obtaining

the optimal motion and structure estimates from image correspondences.

4.3 Critical Values and Ambiguous Solutions

Note that all objective functions F, F, F, and Fy* that we have encountered are
even functions of S € S27 We can then view them as functions on the manifold SO(3) x RP2
instead of SO(3) xS?, where RP? is the two dimensional real projective plane. This objective
function could have numerous critical points, such as (local) minima, (local) maxima,
and saddles. Since the Euler characteristic of the manifold SO(3) x RP? is 0, any (Morse)
function defined on it must have all three kinds of critical values. The nonlinear search
algorithms proposed in the above are trying to find the global minimum of given objective
functions. The search process, if not properly initialized, may stop at any of the types
of critical points listed above, especially the local minima.® Moreover, like any nonlinear
system, when increasing the noise level, new critical points can be introduced through
bifurcation (see [93]). An example of bifurcation is shown in Figure 4.1. Although, in
general, many different types of bifurcations may occur when increasing the noise level,

the fold bifurcation illustrated in Figure 4.1 occurs most frequently in the motion and

A even function F(S) on S? satisfies F(=8) = f(S).
®Maxima and saddles have a at least one dimensional unstable submanifold hence the Newton’s algorithm
rarely ends at these points.
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Figure 4.1: Bifurcation which preserves the Euler characteristic by introducing a pair of
saddles and a node. The index of the circled regions is 1.

structure estimation problem. We therefore need to understand how such a bifurcation may
occur and how it affects the motion estimates.

Since the nonlinear search schemes are usually initialized by the linear algorithm,
not all the local minima are equally likely to be reached by the proposed algorithms. From
the preceding section, we know all objective functions are more or less equivalent to the
epipolar constraints, especially when the translation is parallel to the image plane. If we
let E = TR to be the essential matrix, then we can rewrite the epipolar constraint as
x%TE)c{ = 0,7 = 1,...,n. Then minimizing the objective function F is (approximately)

equivalent to the following least square problem:
min || Ae|? (4.31)

where A is a n X 9 matrix function of entries of x{ and x%, and e € R? is a vector of the
nine entries of E. Then e is the (usually one dimensional) null space of the 9 x 9 symmetric
matrix AT A. In the presence of noise, e is simply chosen to be the eigenvector corresponding
to the least eigenvalue of ATA. At a low noise level, this eigenvector in general gives a good
initial estimate of the essential matrix.® However, at a certain high noise level, the smallest
two eigenvalues may switch roles, as do the two corresponding eigenvectors — topologically,
a bifurcation as shown in Figure 4.1 occurs. Let us denote these two eigenvectors as e and
¢/. Since they both are eigenvectors of the symmetric matrix AT A, they must be orthogonal
to each other, i.e., eTe’ = 0. In terms of matrix notation, we have tr(ETE’) = 0. For the
motions recovered from E and E' respectively, we have tr(RTTTT'R') = 0. It is well known
that the rotation estimate R is usually much less sensitive to noise than the translation
estimates S. Therefore, approximately, we have R =~ R’ hence tr(TT f’) ~ 0. That is,
T and T' are almost orthogonal to each other. This phenomenon is very common in the

motion estimation problem: at a high noise level, the translation estimate may suddenly

?Such estimate might be biased towards the bas relief ambiguity.



76

change direction by roughly 90°, especially in the case when translation is parallel to the
image plane. We will refer to such estimates as the second eigenmotion. Similar to
detecting local minima in the continuous case (see [98]), the second eigenmotion ambiguity
can usually be detected by checking the positive depth constraints. A similar situation of
the 90° flip in the motion estimates for the continuous case has previously been reported in
[15]).

Figure 4.2 and 4.3 demonstrate such a sudden appearance of the second eigenmo-
tion. They are the simulation results of the proposed nonlinear algorithm of minimizing
the function F; for a cloud of 40 randomly generated pairs of image correspondences (in a
field of view 90°, depth varying from 100 to 400 units of focal length.). Gaussian noise of
standard deviation of 6.4 or 6.5 pixels is added on each image point (image size 512 x 512
pixels). To make the results comparable, we used the same random seeds for both runs. The
actual rotation is 10° about the Y-axis and the actual translation is along the X-axis.!0
The ratio between translation and rotation is 2.!! In the figures, “+” marks the actual
translation, “+” marks the translation estimate from linear algorithm (see [76] for detail)
and “o” marks the estimate from nonlinear optimization. Up to the noise level of 6.4 pixels,
both rotation and translation estimates are very close to the actual motion. Increasing the
noise level further by 0.1 pixel, the translation estimate suddenly switches to one which is
roughly 90° away from the actual translation. Geometrically, this estimate corresponds to
the second smallest eigenvector of the matrix AT A as we discussed before. Topologically,
this estimate corresponds to the local minimum introduced by a bifurcation as shown by
Figure 4.1. Clearly, in Figure 4.2, there are 2 maxima, 2 saddles and 1 minima on RP?;
in Figure 4.3, there are 2 maxima, 3 saddles and 2 minima. Both patterns give the Euler
characteristic of RP? as 1.

From the Figure 4.3, we can see that the the second eigenmotion ambiguity is even
more likely to occur (at certain high noise level) than the other local minimum marked by
“O” in the figure which is a legitimate estimate of the actual one. These two estimates
always occur in pair and exist for general configuration even when both the FOV and depth
variation are sufficiently large. We propose a way for resolving the second eigenmotion

ambiguity already by linear algorithm which is used for initialization. An indicator of the

1%We here use the convention that Y -axis is the vertical direction of the image and X-axis is the horizontal
direction and the Z-axis coincides with the optical axis of the camera.

"' Rotation and translation magnitudes are compared with respect to the center of the cloud of 3D points
generated.
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Figure 4.2: Value of objective function Fj
for all T at noise level 6.4 pixels (rotation
fixed at the estimate from the nonlinear op-
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Figure 4.3: Value of objective function Fj
for all T at noise level 6.5 pixels (rotation
fixed at the estimate from the nonlinear op-
timization). Estimation errors: 0.227 in ro-
tation estimate (in terms of the canonical
metric on SO(3)) and 84.66° in translation

estimate (in terms of angle). estimate (in terms of angle).

configuration being close to critical is the ratio of the two smallest eigenvalues of AT A og
and og . By using both eigenvectors vg and vg for computing the linear motion estimates and
choosing the one which satisfies the positive depth constraint by larger margin (i.e. larger
number of points satisfies the positive depth constraint) leads to the motion estimates closer
to the true one. The motion estimate (R,T) which satisfies the positive depth constraint

should make the following inner product greater then 0 for all the corresponding points.
(Tx))" (x]RTx4) > 0 (4.32)

While for low noise level all the points satisfy the positive depth constraint, with increasing
noise level some of the points fail to satisfy it. We therefore chose the solution where majority
of points satisfies the positive depth constraint. Simple re-initialization then guarantees
convergence of the nonlinear techniques to the true solution. Figures 4.4 and 4.5 depict a
slice of the objective function for varying translation and for the rotation estimate obtained
by linear algorithm using vg and vg as two different estimates of the essential matrix.

This second eigenmotion effect has a quite different interpretation as the one which
was previously attributed to the bas relief ambiguity. The bas relief effect is only evident

when FOV and depth variation is small, but the second eigenmotion ambiguity may show
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Figure 4.4: Value of objective function Fj
for all T' at noise level 6.7 pixels. Rota-
tion is fixed at the estimate from the lin-
ear algorithm from the eigenvector vy asso-
ciated with the smallest eigenvalue. Note
the verge of the bifurcation of the objec-
tive function.
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Figure 4.5: Value of objective function Fj
for all T at noise level 6.7 pixels. Rotation
is fixed at the estimate from the linear al-
gorithm from the eigenvector vg associated
with the second smallest eigenvalue. The
objective function is well shaped and the
nonlinear algorithm refined the linear esti-

mate closer to the true solution.

up for general configurations. Bas relief estimates are statistically meaningful since they
characterize a sensitive direction in which translation and rotation are the most likely to be
confound. The second eigenmotion, however, is not statistically meaningful: it is an artifact
introduced by a bifurcation of the objective function; it occurs only at a high noise level
and this critical noise level gives a measure of the robustness of the given algorithm. For
comparison, Figure 4.6 demonstrates the effect of the bas relief ambiguity: the long narrow
valley of the objective function corresponds to the direction that is the most sensitive to
noise.'”> The (translation) estimates of 20 runs, marked as “o”, give a distribution roughly
resembling the shape of this valley — the actual translation is marked as “+”in the center

of the valley which is covered by circles.

4.4 Experiments and Sensitivity Analysis

In this section, we clearly demonstrate by experiments the relationship among

the linear algorithm (as in [76]), nonlinear algorithm (minimizing F), normalized nonlinear

'2This direction is given by the eigenvector of the Hessian associated with the smallest eigenvalue.
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Figure 4.6: Bas relief ambiguity. FOV is 20° and the random cloud depth varies from 100 to
150 units of focal length. Translation is along the X-axis and rotation around the ¥ -axis.
Rotation magnitude is 2°. T'/R ratio is 2. 20 runs at the noise level 1.3 pixels.

algorithm (minimizing F;) and optimal triangulation (minimizing F}). Due to the nature
of the second eigenmotion ambiguity, it gives statistically meaningless estimates. Such
estimates should be treated as “outliers” if one wants to properly evaluate a given algorithm
and compare simulation results. In order for all the simulation results to be statistically
meaningful and comparable to each other, in following simulations, we usually keep the
noise level below the critical level at which the second eigenmotion ambiguity occurs unless
we need to comment on its effect on the evaluation of algorithms’ performance.

We follow the same line of thought as the analysis of the continuous case in [98].
We will demonstrate by simulations that seemingly conflicting statements in the literature
about the performance of existing algorithms can in fact be given a unified explanation
if we systematically compare the simulation results with respect to a large range of noise
levels (as long as the results are statistically meaningful). Some existing evaluations of the
algorithms turn out to be valid only for a certain small range of signal-to-noise ratio. In
particular, algorithms’ behaviors at very high noise levels have not yet been well understood
or explained. Since, for a fixed noise level, changing base line is equivalent to changing the
signal-to-noise ratio, we hence perform the simulations at a fixed base line but the noise
level varies from very low (< 1 pixels) to very high (tens of pixels for a typical image size of
512x512 pixels). The conclusions therefore hold for a large range of base line. In particular,

we emphasize that some of the statements given below are valid for the continuous case as
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well.

In following simulations, for each trial, a random cloud of 40 3D points is generated
in a region of truncated pyramid with a field of view (FOV) 90°, and a depth variation from
100 to 400 units of the focal length. Noises added to the image points are i.i.d. 2D Gaussian
with standard deviation of the given noise level (in pixels). Magnitudes of translation and
rotation are compared at the center of random cloud. This will be denoted as the translation-
to-rotation ratio, or simply the T'/R ratio. The algorithms will be evaluated for different
combinations of translation and rotation directions. We here use the convention that Y-axis
is the vertical direction of the image and X-axis is the horizontal direction and the Z-axis
coincides with the optical axis of the camera. All nonlinear algorithms are initialized by the
estimates from the standard 8-point linear algorithm (see [76]), instead of from the ground
truth.!3 The criteria for all nonlinear algorithms to stop are: 1. The norm of gradient is
less than a given error tolerance, which usually we pick as 10~8 unless otherwise stated;!

and 2. The smallest eigenvalue of the Hessian matrix is positive.l®

4.4.1 Axis Dependency Profile

It has been well known that the sensitivity of the motion estimation depends on
the camera motion. However, in order to give a clear account of such a dependency, one has
to be careful about two things: 1. The signal-to-noise ratio and 2. Whether the simulation
results are still statistically meaningful while varying the noise level.

Figure 4.7, 4.8, 4.9 and 4.10 give simulation results of 100 trials for each combi-
nation of translation and rotation (“T-R”) axes, for example, “X-Y” means translation is
along the X -axis and the rotation axis is the Y-axis. Rotation is always 10° about the axis
and the T'/R ratio is 2. In the figures, “linear” stands for the standard 8-point linear algo-
rithm; “nonlin” is the Riemannian Newton’s algorithm minimizing the epipolar constraints
F, “normal” is the Riemannian Newton’s algorithm minimizing the normalized epipolar
constraints Fj.

By carefully comparing the simulation results in Figure 4.7, 4.8, 4.9 and 4.10, we

13We like to point out that evaluation based on initializing from the ground truth is misleading for using
these algorithms in real applications since it usually does not reveal correctly the relationship between the
linear algorithm and nonlinear algorithms.

Our current implementation of the algorithms in Matlab has a numerical accuracy at 10~%.

15Since we have the explicit formulae for Hessian, this condition would keep the algorithms from stopping
at saddle points.
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Figure 4.8: Axis dependency: estimation
errors in rotation and translation at noise
level 3.0 pixels. T'//R ratio = 2 and rotation
= 10°.

nonlinear)

1. Minimizing F' in general gives better estimates than the linear algorithm at low

noise levels (Figure 4.7 and 4.8). At higher noise levels, this is no longer true

(Figure 4.9 and 4.10), due to the more global nature of the linear technique.

2. Minimizing the normalized F; in general gives better estimates than the linear

algorithm at moderate noise levels (all figures). Very high noise level case will

be studied in the next section.

e Optimization Criteria (F vs. Fj)

1. At relatively low noise levels (Figure 4.7), normalization has little effect when

translation is parallel to the image plane; and estimates are indeed improved

when translation is along the Z-axis.

2. However, at moderate noise levels (Figure 4.8, 4.9 and 4.10), things are quite the

opposite: when translation is along the Z-axis, little improvement can be gained

by minimizing F; instead of F since estimates are less sensitive to noise in this

case (in fact all three algorithms perform very close); however, when translation
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is parallel to the image plane, F' is more sensitive to noise and minimizing the

statistically less biased F; consistently improves the estimates.

e Axis Dependency (translation parallel to image plane vs. along Z-axis)

1. All three algorithms are the most robust to the increasing of noise when the

translation is along Z. At moderate noise levels (all figures), their performances

are quite close to each other.

. Although, at relatively low noise levels (Figure 4.7, 4.8 and 4.9), estimation errors

seem to be larger when the translation is along the Z-axis, estimates are in fact
much less sensitive to noise and more robust to increasing of noise in this case.
The larger estimation error in case of translation along Z-axis is because the
displacements of image points are smaller than those when translation is parallel
to the image plane. Thus, with respect to the same noise level, the signal-to-noise

ratio is in fact smaller in the case of translating along the Z-axis.

. At a noise level of 7 pixels (Figure 4.10), estimation errors seem to become

smaller when the translation is along Z-axis. This is not only because, estimates
are less sensitive to noise for this case, but also due to the fact that, at a noise
level of 7 pixels, the second eigenmotion ambiguity already occurs in some of the

trials when the translation is parallel to the image plane. Outliers given by the
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second eigenmotion are averaged in the estimation errors and make them look

even worse.

The second statement about the axis dependency supplements the observation given in
[130]. In fact, the motion estimates are both robust and less sensitive to increasing of-
noise when translation is along the Z-axis. Due to the exact reason given in [130], smaller
signal-to-noise ratio in this case makes the effect of robustness not to appear in the mean
estimation error until at a higher noise level. As we have claimed before, for a fixed base
line, high noise level results resemble those for a smaller base line at a moderate noise level.
Figure 4.10 is therefore a generic picture of the axis dependency profile for the continuous

or small base-line case (for more details see [68]).

4.4.2 Non-iterative vs. Iterative

In general, the motion estimates obtained from directly minimizing the normal-
ized epipolar constraints F; or Fy are already very close to the solution of the optimal
triangulation obtained by minimizing F; iteratively between motion and structure. It is
already known that, at low noise levels, the estimates from the non-iterative and iterative
schemes usually differ by less than a couple of percent [140]. This is demonstrated in Figure
4.11 and 4.12 - “linear” stands for the linear algorithm; “norm nonlin” for the Rieman-
nian Newton’s algorithm minimizing normalized epipolar constraint F; “triangulate” for
the iterative optimal triangulation algorithm. For the noise level from 0.5 to 5 pixels, at
the error tolerance 1075, the iterative scheme has little improvement over the non-iterative
scheme - the two simulation curves overlap with each other. Simulation results given in
Figure 4.13 and 4.14 further show that the improvements of the iterative scheme become
a little bit more evident when noise levels are very high, but still very slim. Due to the
second eigenmotion ambiguity, we can only perform high noise level simulation properly for
the case when the translation direction is along the Z-axis.

By comparing the simulation results in Figures 4.11, 4.12, 4.13 and 4.14, we can

therefore draw the following conclusions:

o Although the iterative optimal triangulation algorithm usually gives better estimates
(as it should), the non-iterative minimization of the normalized epipolar constraints

F; or Fy gives motion estimates with only a few percent larger errors for all range
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als, rotation 10 degree around Y-axis and
translation along X-axis, T/R ratio is 2.
Noises range from 0.5 to 5 pixels.
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X-axis, T/R ratio is 2. Noises range from
0.5 to 5 pixels.

of noise levels. The higher the noise level, the more evident the improvement of the

iterative scheme is.

o Within moderate noise levels, normalized nonlinear algorithms consistently give sig-
nificantly better estimates than the standard linear algorithm, especially when the
translation is parallel to the image plane. At very high noise levels, the performance
of the standard linear algorithm, out performs nonlinear algorithms. This is due to
the more global nature of the linear algorithm. However, such high noise levels are

barely realistic in real applications.

For low level Gaussian noises, the iterative optimal triangulation algorithm gives the MAP
estimates of the camera motion and scene structure, the estimation error can be shown
close to the theoretical error bounds, such as the Cramer-Rao bound. This has been shown
experimentally in [131]. Consequently, minimizing the normalized epipolar constraints F,
or F, gives motion estimates close to the error bound as well. At very high noise levels,
linear algorithm is certainly more robust and gives better estimates. Due to numerous local
minima, running nonlinear algorithms to update the estimate of the linear algorithm does

not necessarily reduce the estimation error further.
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4.4.3 Mutual Information Between Structure Estimates and Noises

So far, we have understood some of the difficulties in motion and structure esti-
mation caused by various ambiguities, such as the bas relief ambiguity which is related to
the sensitivity issue, or the second eigenmotion ambiguity which is related to the robustness
issue. We here like to address, from an information theoretic viewpoint, another difficulty
caused by noise in motion and structure estimation. More specifically, we like to ask the

following questions:

Is the (2-frame) motion and structure recovery problem well-defined from an
estimation theoretic viewpoint?'® If not, how much information can still be
preserved in the presence of noise? Consequently, is there any simple criteria
that a “good” estimation algorithm should achieve?

The answer to the first question is unfortunately negative due to following reasons. Let us
assume the same noise model as given by (4.8).!7 As shown in Figure 4.15, given the noisy
X = Xo + o where ¢ is any isotropic noise on the image plane. Then the valid estimate
of x¢ is given by X, the projection of x onto the epipolar line. Therefore, the component

of o which is parallel to the epipolar line is absorbed into the estimates. Without loss of

'It is certainly well defined geometrically: in the noise free case, the linear algorithm gives closed-from
solutions.

'"The Gaussian assumption is not necessary here. The following arguments hold for all isotropic noises.
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generality, we assume the variance of the noise o is 1.12 Then the variance left in the residue
Ax = x — X is about 0.5. In other words, regardless of algorithms, at least half of the noise
will always become part of the estimated 3D structure. Consequently, any good (2-frame)
motion and structure estimation algorithm should have a residue variance (relative to the
noise variance) close to 0.5. This is a very simple and important statistic for evaluating
any structure and motion estimation algorithm. For the proposed optimal triangulation
algorithm, we computed the average residue variance for all the runs which are presented

in Figure 4.11 and 4.12. It gives 0.4988, very close to the theoretical value.

epipolar line

Figure 4.15: Estimated % from noisy x.

4.5 Discussion

The motion and structure recovery problem has been studied extensively and many
researchers have proposed efficient nonlinear optimization algorithms. One may find histor-
ical reviews of these algorithms in [53, 76]. Although these algorithms already have good
performance in practice, the geometric concepts behind them have not yet been completely
revealed. The non-degeneracy conditions and convergence speed of those algorithms are
usually not explicitly addressed. Due to the recent development of optimization methods
on Riemannian manifolds, we now can have a better mathematical understanding of these
algorithms, and propose new geometric algorithms or filters (for example, following [99]),
which exploit the intrinsic geometric structure of the motion and structure recovery prob-
lem. As shown in this chapter, regardless of the choice of different objectives, the problem of
optimization on the essential manifold is common and essential to the optimal motion and
structure recovery problem. Furthermore, from a pure optimization theoretic viewpoint,

most of the objective functions previously used in the literature can be unified in a sin-

'®Note x is a vector, so here we mean the expectation E(||aj|?) = 1 where Il - || is the 2-norm.
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gle optimization procedure. Consequently, “minimizing (normalized) epipolar constraints”,
“triangulation”, “minimizing reprojection errors” are all different (approximate) versions of
the same simple optimal triangulation algorithm.

We have applied only Newton’s algorithm to the motion and structure recovery
problem since it has the fastest convergence rate (among algorithms using second -order
information, see [19] for the comparison). In fact, the application of other conjugate gradient
algorithms would be easier since they usually only involve calculation of the first order
information (the gradient, not Hessian), at the cost of a slower convergence rate. Like most
iterative search algorithms, Newton’s and conjugate gradient algorithms are local methods,
i.e., they do not guarantee convergence to the global minimum. Due to the fundamental
relationship between the motion recovery objective functions and the epipolar constraints
discovered in this chapter, at high noise levels all the algorithms unavoidably will suffer
from the second eigenmotion (except the case when translation is along the Z-axis). Such
an ambiguity is intrinsic to the problem of motion and structure recovery and independent
of the choice of objective functions.

In this chapter, we have studied in detail the problem of recovering a discrete
motion (displacement) from image correspondences. Similar ideas certainly apply to the
continuous case where the rotation and translation are replaced by angular and linear veloc-
ities respectively (as the linear case in Chapter 3). Optimization schemes for the continuous
case have also been studied by many researchers, including the most recent Bilinear Projec-
tion Algorithm (BPA) proposed in [98] and a robust algorithm proposed in [139]. Similarly,
one can show that they all in fact minimize certain normalized versions of the continuous
epipolar constraint. We hope the Riemannian optimization theoretic viewpoint proposed
in this chapter have provided people a different perspective.

Although the study of the proposed algorithms is carried out in a calibrated camera
framework, the same approach and optimization schemes can be generalized with little
effort to the uncalibrated case as well. As we pointed out in this chapter, Riemannian
optimization algorithms can be easily generalized to products of manifolds. Thus, although
the proposed Newton’s algorithm is for two views and a single rigid body motion, it can
be easily generalized to multiview and multi-body cases. This is to be shown in the next

chapter where motion (and structure) recovery from multiple images is studied.
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Chapter 5

Motion and Structure from

Multiple Images

“Algebra is but written geometry; geometry is but drawn algebra.”
— Sophie Germain

In this chapter, we study the classic problem in structure from motion: How to
recover camera motion and (Euclidean) scene structure from correspondences of a cloud of
points seen in multiple (perspective) images? With such a vast body of literature studying
almost every aspect of this problem (see, for example, reviews of batch methods [108],
recursive methods (79, 99], orthographic case [111] and projective reconstruction [114]), it
is quite reasonable to ask what, if anything, can still be new in this topic.

First of all, we want to have a clear picture about the relationship among multiple
images. While constraints involving two images at a time (epipolar constraints) have been
well understood from previous chapters and involve clean notation and geometric interpre-
tation, constraints among multiple images are more difficult to work with and to interpret.
On our way to develop algorithms, we then first pause to reflect on the nature of these
constraints. It seems therefore natural to ask the following question:

(i) Do constraints among multiple images carry information that is not contained
in the epipolar ones?

The nature of the constraints among images of the same point in different images has been

studied extensively, and is known to be multilinear (see for instance [25, 44, 117]). These
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multilinear constraints turn out to be reducible to three fundamental types: bilinear, trilin-
ear and quadrilinear constraints, named after the number of images that they respectively
involve. The bilinear constraint is exactly the epipolar constraints between two images.
Further algebraic dependency among these three types of constraints has been estab-
lished by means of elimination [132] or algebraic geometry tools [43]. However, an explicit
characterization of how the information is encoded in different constraints - which is crucial
in the design of robust estimation algorithms - is hard to derive by such means. In this
chapter, we will provide an more geometric way to study multilinear constraints. Especially
the geometric dependency among multilinear constraints will be introduced and clearly
studied.

After we have understood well the algebraic and geometric relationship among
multilinear constraints [43, 74, 95, 113] (which will be briefly reviewed in Section 5.2.1),
when it comes to using them for designing motion or structure recovery algorithms, they are
usually used as objectives rather than, constraints. Many researchers believe that multilinear
tensors should be directly computed in their natural linear form [34]. Algebraically, this is
true. Nevertheless, when a noise model is considered and the direct objective is to minimize
certain statistics, such as the reprojection error (also called nonlinear least squares
error as in [106]), it becomes quite unclear how to incorporate these multilinear constraints
into the objective, or how to obtain less biased estimates of these tensors. More specifically,

we want to answer the questions:

(ii) Can we convert such a constrained estimation (or optimization) problem to
an unconstrained one? If so, what weight should be assigned to each constraint?

As we will soon see, proper weighting usually ends up with nonlinear constraints, instead
of linear.

Secondly, we have every reason to believe that, for such a constrained estimation
problem, its a posteriori likelihood function (or some variation of it) still needs to be found.
From an estimation theoretic viewpoint, such a function should indeed capture some peculiar
statistical nature of the multiview structure from motion problem. Other than the well
known algebraic and geometric relationship between bilinear and trilinear constraints, we
may ask:

(iii) What is the statistical relationship between bilinear and trilinear con-

straints? Is trilinear constraint really needed for motion (or structure) estima-
tion in the degenerate rectilinear motion case?
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On the other hand, from an optimization theoretic viewpoint, with such a function we can

further understand:

(iv) What is the ezact nature of the optimization associated to the original
problem? What geometric space does the optimization take place on? Is there
any generic optimization technique available for minimizing such a function?

Finally, in applications which require high accuracy, noise sensitivity becomes
the primary issue [14, 73, 139]. Although a specific sensitivity study is needed for every
algorithm, it is still possible to study the intrinsic sensitivity inherent in the initial problem.
From statistics, we know that the Hessian of the a posteriori likelihood function at the
maximum closely approximates the covariance matrix of the estimates. Hence an ezplicit
expression for the likelihood function is absolutely necessary for a systematic study of the
intrinsic sensitivity issue. As we will soon see, the normalized epipolar constraint to be
derived is such a function and we will show how to compute its Hessian, even though the

sensitivity issue is not a main subject of this chapter (see Section 5.2.3).

Chapter Outline

In this chapter, we will give clear answers to the above questions through the devel-
opment of a solution to the constrained nonlinear least squares optimization problem which
minimizes the reprojection error subject to constraints among multiple images. Question
(i) is answered in Section 5.1 where a clean expression for all the multilinear constraints
is given. Also the concept of geometric dependency is introduced and compared with the
algebraic one. Question set (ii) will be answered in Section 4.1.2. The answers will be-
come evident from the derivation and the form of the normalized epipolar constraint. For
Question set (iii), the statistical relationship between bilinear and trilinear constraints will
be revealed by Simulation 3 in Section 5.2.4 and some further explanation will be given
in Comment 5.10. Question set (iv) are to be answered in Section 5.2.3 where a generic
optimization algorithm is explicitly laid out for minimizing the normalized epipolar con-
straint. Although our results, including the algorithm, can be easily generalized to trilinear
constraints or even to an uncalibrated framework, we choose to present the calibrated case
using bilinear (epipolar) constraints so as to clearly convey the main ideas. Nevertheless,
we will comment on the trilinear case and uncalibrated case in due time. In Section 5.3, an

extension to continuous or hybrid settings is briefly discussed.
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Relation to Previous Work: The algorithm to be proposed belongs to the so called batch
methods for motion and structure recovery from multiple views, like that of [106, 111, 114],
and is a necessary extension to the unconstrained nonlinear least squares method (108].
We here emphasize again that, our focus is not on an algorithm for computing motion
or structure faster than the ones in [86, 139], although we will mention briefly how to
speed up our algorithm. Instead, we are using our algorithm as a means of revealing the
interesting geometry in multiview structure from motion, by way of identifying it with the
optimality of each step of the algorithm. In doing so, one will be able to see what roles
multilinear constraints essentially play in the design of optimal algorithms. Especially,
the revelation of the statistical relationship between bilinear and trilinear constraints is an
important complement to the well known algebraic or geometric results [43, 74, 95, 113).
Our results, especially the normalized epipolar constraint, may also help improve existing
recursive methods such as in [79, 99] if the filter objective function is modified to the one
given by us. Moreover, studying the Hessian of such an objective will allow an extension of

existing sensitivity study [14, 73] to the multiview case.

5.1 Dependency of Multilinear Constraints

As before, we model the world as a collection of points in a three-dimensional
Euclidean space. We denote the homogeneous coordinates of a point p € E* with respect
to some inertial coordinate frame (as if the time is to) as p = p(tp) = [X1, X2, X3,1]T €
R%. The perspective projection of p onto a two-dimensional image plane is represented by

homogeneous coordinate x = [z1, z2,z3)7 € R3. According to (2.17), it satisfies:
At)x(t) = A(t)Pg(t)p, teR (5.1)

where A(t) € R is a scalar parameter related to the distance of the point p from the center
of projection and the non-singular matrix A(t) - called “calibration matrix” - describes
the intrinsic parameters of the camera. We for now assume the most general case that
the camera calibration may be time-varying. Without loss of generality we will re-scale
the above equation so that the determinant of A(t) is 1. The set of 3 X 3 matrices with
determinant one is called special linear group denoted by SL(3). The rigid motion of
the camera g(t) is represented by a translation vector T'(t) € R® and a rotation matrix
R(t) € SO(3); g(t) = (R(t),T(t)) then belongs to SE(3), the special Euclidean group of
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rigid motion in R3. In equation (5.1) we know that only x(t) is measured, while everything
else is unknown.
When we consider measurements at m different times, we organize the above

equations by defining:

M; = A(ti)Pg(ti) € R3x4 (5.2)
which we will assume to be full-rank, that is rank(M;) =3 for i = 1,...,m. So we have
[ x(t) 0 -~ 0 [[ae)] [ an]
0 x(t2) -~ 0 A(t2) M
. . . . . = . p
Y 0 - x(tm) | L Atm) | | Mm |

which we re-write in a more compact notation as
X4 = Mip (5.3)

where M¢ € R34 will be called the motion matrix, X¢ € R¥*™*™ the image matrix,
and X% € R™ the scale vector. We here use the superscript d to indicate the discrete
multiview case, in order to differentiate from the continuous or hybrid cases which will be

discussed later on in this chapter.

5.1.1 Multilinear Constraints on Multiple Images

Let my € R%™ k= 1,...,4 denote the four column vectors of the matrix M¢ and
Z; € RB®™,i = 1,...,m be the m column vectors of the matrix X¢. From the equation
(5.3), we know that these column vectors must be linearly dependent. This relationship is

concisely captured by the following statement:

Proposition 5.1 (Discrete Multilinear Constraints). The coordinates {x(t;)}7, rep-
resent images of the same point p € E* seen from m different views if and only if the column

vectors of the matrices M? and X¢ defined in the equation (5.8) satisfy the following wedge
product equation:

My AMa AMgAMg AT A ATy = 0. (5.4)
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This constraint is obviously multilinear in the measurements x(¢;) . Constraints
involving four different images are call quadrilinear, constraints involving three images are
called trilinear, and those involving two images are called bilinear.! It is then straight-
forward to check that the bilinear type constraints are exactly the epipolar constraints
that we have studied extensively in previous chapters for the two-view case. In general, the '
coefficients of all the multilinear constraints are minors of the motion matrix M9. As it has
been directly shown (see, for instance, Triggs in [117]), constraints involving more than four
frames are necessarily dependent on quadrilinear, trilinear and bilinear ones. In this section
we go one step further to discuss how trilinear and quadrilinear constraints are dependent
on bilinear ones.

When studying the dependency among constraints, one must distinguish between
algebraic and geometric dependency. Roughly speaking, algebraic dependency con-
cerns the conditions that a point in an image must satisfy in order to be the correspondent
of a point in another image. Vice versa, geometric dependency is concerned with the infor-
mation that corresponding points give on the operator that maps one to the other. The two
notions are related but not equivalent, and the latter bears important consequences when
one is to use the constraints in optimization algorithms to recover structure and calibration.
While the geometric dependency of multilinear constraints has been established before un-
der the assumption of constant calibration [44], we give a novel, simple and rigorous proof

that is valid under the more general assumption of time-varying calibration.

5.1.2 Algebraic vs. Geometric Dependency

To clarify the relation between algebraic and geometric dependency, note that in
general we can express a multilinear constraint in the form: 3, a;(M?)8;(X%) = 0 where o
are some polynomials of entries of M¢ and §; polynomials of entries of the image coordinates
X4, with M? and X¢ defined as before. a;’s are called the coefficients of multilinear
constraints. Studying the algebraic dependency between constraints then corresponds
to fixing the coefficients a; and asking whether there are some additional constraints among
the joint image coordinates X generated by three and four views?. This problem has

been studied many researchers and an elegant answer can be found in [43] by explicitly

'In the literature, these constraints may also be referred to as quadrifocal, trifocal and bifocal tensors.
%In other words, it addresses the dependency among algebraic ideals associated with the three types of
multilinear constraints.
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characterizing the primary decomposition of the ideal (in the polynomial ring of image
coordinates x;’s) generated by the bilinear constraints in terms of that generated by trilinear
ones or quadrilinear ones.

Geometric dependency, on the other hand, investigates whether, given the
image coordinates X¢, the coefficients ¢; corresponding to motion parameters in additional
views can give additional information about M¢. These two different types of dependencies
were previously pointed out (see for instance the work of Heyden [44]). For both types of
dependencies, the answer is negative, i.e., trilinear and quadrilinear constraints in general
are dependent of bilinear ones. We here give a simple but rigorous study of the geometric
dependency. The results will also validate the ambiguity analysis given in following sections.

Consider the case m = 3 and, for the moment, disregard the internal structure
of the motion matrix M¢ € R%*4. Its columns can be interpreted as a basis of a four-
dimensional subspace of the nine-dimensional space. The set of k-dimensional subspaces of
an n-dimensional space is called a Grassman manifold and denoted by G(n, k). Therefore,
M¢ is an element of G(9,4). By just re-arranging the three blocks M;, i = 1,...,3 into
three pairs, (M3, Mz), (M1, M3) and (M2, M3), we define a map ¢ between G(9,4) and three
copies of G(6,4)

$:G(9,4) — G(6,4) x G(6,4) x G(6,4)

M

M M, M,
M, > ) )

My M3 Ms
M,

The question of whether trilinear constraints are independent of bilinear ones is tightly
related to whether these two representations of the motion matrix M¢ are equivalent. Since
the coefficients in the multilinear constraints are homogeneous in the entries of each block

M;, the motion matrix M¢ is only determined up to the equivalence relation:
ME~M%ifIANER M, = MM, i=1,...,m (5.5)

where R* = R\ {0}. Thus for multilinear constraints the motion matrix is only well-defined
as an element of the quotient space G(3m, 4)/ ~ which is of dimension (11m — 15), 3 as was
already noted by Triggs [117].

3The Grassman manifold G(3m, 4) has dimension (3m — 4)4 = 12m - 16. The dimension of the quotient
space is m — 1 smaller since the equivalence relation has m — 1 independent scales.
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We are now ready to prove that coefficients q;’s in trilinear and quadrilinear con-

straints depend on those in bilinear ones.

Theorem 5.2 (Geometric Dependency). Given three (or four) views, the coefficients
of all bilinear constraints or equivalently the corresponding fundamental matrices uniquely.
determine the motion matriz M® as an element in G(9,4)/ ~ (or G(12,4)/ ~) given that

Ker(M;)’s are linearly independent.
Proof: It is known that between any pair of images (i,5) the motion matrix:
[ Mi :l € G(6,4), is determined by the corresponding fundamental matrix F;; up to two
J

AilM;

scalars \;, A ] € G(6,4), X; € R*. Hence for the three view case all we need to

gy
prove is that the map:

$:(G(9,49)/ ~) = (G(6,4)/ ~)®
is injective. To this end, assume (M%) = $(M ’d); then we have that, after re-scaling,
M A1 M M Ao M. M M
L = 1 Gy, 2] = 272 G, L = ! G3 for some
M, M, M; M; My Az M3
A €R and G; € GL(4),4 1 =1,2,3. This yields M; (\G, — G3) = 0, M3 (AGo — Gi) =

0, M3(A3G3 — G2) = 0. Therefore there exist U; € R**4,i = 1,2,3 with each column of U;
is in Ker(M;) such that:

G3—\G1=U1, G1—XGa=Us, G- X\G3=U;.
Combining these three equations, we obtain:
(1 = MA223)G1 = A A3Uy + Ao U3 + Us.

The matrix on the right hand side of the equation has a non-trivial null space since its
column vectors are in the space span{Ker(M,), Ker(M,), Ker(M3)} which has dimension
three. However, G is non-singular, and therefore it must be A\jA;A\3 = 1. This gives
AMG1 — G = —A1(A2G2 = G1) — M1 A2(A3G3 — G2). That is, the columns of A\;G; — G are
linear combinations of columns of A\2G> — Gy and A\3G3 — G5. But K er(M;),i =1,2,3 are

4GL(4) is the general linear group of all non-degenerate 4 x 4 real matrices.
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linearly independent. Thus we have A\;G) = G3, \2G2 = G1, A3G3 = G5. This implies

M! MMy
Mé = M2 G].
M A hsMs

which means that M’¢ and M? are the same, up to the equivalence relation defined in
equation (5.5). Therefore, they represent the same element in G(9,4)/ ~, which means
that the map ¢ is injective.

In the case of four views, in order to show that coefficients in quadrilinear con-
straints also depend on bilinear ones, one only needs to check that the obvious map from
G(12,4)/ ~ to (G(9,4)/ ~)* is injective. This directly follows from the above proof of the

three frame case. -

Comment 5.3. As a consequence of the theorem, coefficients oy’s in trilinear and quadri-
linear constraints are functions of those in bilinear ones. While the above proof shows that
the map ¢ can be inverted, it does not provide an explicit characterization of the inverse.
Such an inverse can in principle be highly non-linear and conditioning issues need to be
taken into account in the design of estimation algorithms. We emphasize that the geometric
dependency does not imply that two views are sufficient for reconstruction! It claims that
given n views, their geometry is characterized by considering only combinations of pairs of
them through bilinear constraints, while trilinear constraints are of help only in the case
of singular configurations of points and camera (see comment 5.4). For four views, the
condition that Ker(M;),i =1,...,4 are linearly independent is not necessary. A less con-
servative condition is that there ezist two groups of three frames which satisfy the condition

for the three view case.

Theorem 5.2 requires that the one-dimensional kernels of the matrices M;,i =
1,...,m (m = 3 or 4) are linearly independent. Note that the kernels of M; for i = 1,2,3,4
are given by (—T7 R;,1)T, where the vector —RTT; € R® is exactly the position of the it
camera center. Hence the condition of the theorem is satisfied if and only if the centers of
projection of the cameras generate a hyper-plane of dimension m — 1. In particular, when
m = 3, the three camera centers form a triangle, and when m = 4, the four camera centers

form a tetrahedron.
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Comment 5.4 (Critical Surfaces and Motions). Although we have shown that the
coefficients of multilinear constraints depend on those of bilinear ones, we have assumed
that the latter (or the corresponding fundamental matrices) are uniquely determined by the
epipolar geometry. However, this is not true when all the points lie on critical surfaces.
In this case, as argued by Maybank in [76], we may obtain up to three ambiguous solutions
from the bilinear constraints. This is one of the cases when trilinear and quadrilinear
constraints provide useful information. On this topic, see also [78]. Also, when the camera
is undergoing a rectilinear motion (i.e., all optical centers are aligned), trilinear constraints
provide independent information in addition to bilinear ones. This fact has been pointed

out before; see for instance Heyden in [{2].

5.2 Motion Recovery from Normalized Epipolar Constraints

5.2.1 Geometric Interpretation of Multilinear Constraints

Theorem 5.2 states a very important fact: information about the camera motion
is already fully contained in the bilinear constraints unless the camera center moves in
a straight line — such a motion is also called rectilinear motion. Geometrically, this
degenerate case is illustrated in Figures 5.1. In fact, a set of points {x;}72, on m image
planes satisfy all multilinear constraints if and only if “rays” extending from camera

centers along these image points intersect at a unigque point in 3D. As a consequence of this

02

Figure 5.1: Degeneracy: Centers of camera Figure 5.2: Sufficiency: Centers of camera
lie on a straight line. Coplanar constraints and the point are not coplanar. Three (bi-
are not sufficient to uniquely determine the linear) coplanar constraints are sufficient to
intersection hence trilinear constraints are uniquely determine the intersection.
needed.
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geometric interpretation of multilinear constraints, in order for an extra image to satisfy
all multilinear constraints, it only needs to satisfy two (bilinear) coplanar constraints given
that the new camera center is not collinear with the previous ones. For example, in Figure
5.2, in order for the fourth image to satisfy all multilinear constraints, it is sufficient for the
ray (0s,p) to be coplanar with the ray (o02,p) and the ray (o3,p). The coplanar condition

between the ray (o4,p) and the ray (o1, p) is redundant.

5.2.2 Normalized Epipolar Constraints of Multiple Images

Multilinear constraints have conventionally been used to formulate various objec-
tive functions for motion recovery. However, if we do use them as constraints, we only
need to pick a minimal set of independent ones. The minimal requirement is needed for
Lagrangian multipliers to have a unique solution. The dependency among multilinear con-
straints suggests that if the centers of the camera do not lie on a straight line, pairwise
epipolar constraints already provide a sufficient set of constraints. In this chapter we will
assume this condition is satisfied unless otherwise stated - Comments 5.6 and 5.10 will
discuss about the degenerate case. Furthermore, the (pairwise) epipolar constraints among
consecutive three images naturally give a minimal set of independent constraints. In this
section, we show how to use these constraints to derive a clean form of an optimal objec-
tive function for motion (and structure) recovery. In the next section, we will show how
to use geometric optimization techniques to find the optimal solution which minimizes the
objective function derived here.

Let us assume that we have m images {xf }m, of n 3D points p’,1 < j < n with
respect to m camera frames. The rigid body motion between the k** and i** camera frames
is gki = (Rki, Tki) € SE(3), 1 < i,k < m. Thus the coordinates of each 3D point p/ € R3

with respect to frames ¢ and k are related by:
X] = ReX? + Ty (5.6)

Recall the definition of essential matrix. Let us denote by Ej; = ﬁ,-Rk,- € R3%3 the essential
matrix associated with the camera motion between the k* and i** frames, then in absence

of noise, image points x{ satisfy the epipolar constraints:

X7 Exl = 0. (5.7)



99

Optimal Triangulation Problem (Multiview Case): In presence of isotropic noises,
we seek for points X = {i;’ } on the image plane and a configuration of m camera frames
G = {gki} such that they minimize the total reprojection error. That is, we are to

minimize the objective:

n m .
FG,%)=) Y IIx - «|? (5.8)
j=11i=1
subject to the constraints:
* B =0, K5, Brpapk] =0, &Tes=1 (5.9)

where e3 = [0,0,1]T e R®,1<i<m—1,1 Skim-21<l<mandl1<j<n.

The first two constraints are epipolar constraints among three consecutive im-
ages. From the previous section, we know that they form a minimal (but sufficient) set
of constraints among multiview images under a generic configuration. We will discuss the
degeneracy case in Comments 5.6 and 5.10. The last constraint is for the imaging model of
perspective projection.’ Using Lagrangian multipliers, the above constrained optimiza-

tion problem is equivalent to minimizing:

n 42
ZZ (le’ X2+ o T Briii Licrm + (& T e5 — 1))
=1i=1 k=i+1

for some a{,i, ,Bf € R From the necessary condition VF = 0 at local minima,

i4+2
2% —xd) + Z of . ELH Liem + Z L ExXllk>1 +fles = 0
k=i41 k=i-2

foralli=1,...,m, j =1,...,n. Multiplying the above equation by el'e; to eliminate ﬂf ,

we obtain:
i+2 ) i—1 ) )
2] - &) = e ( Y olBLA liem+ 3 o Bkl Lk>1 ) (5.10)
k=i+1 k=i-2
foralli =1,...,m, j = 1,...,n. It is readily seen that, in order to convert the above

constrained optimization to an unconstrained one, we need to solve for ar,’ci and a{k’s.

For this purpose, we define vectors %7, x7, AxJ € R®™ associated to the j™* point: %I =

SWithout loss of generality, we here will only discuss the perspective projection. The spherical projection
is similar and hence omitted for simplicity.
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. T . . T . . .
[i{Tw--,iJng‘] , x) = [JC{T,---,XJJ] ,AX) = x7 — X7, and the vector of all the La-

grangian multipliers o/ = [agl,agl,agz, oziz,arza, vy a]m’m_2, o’ I]T € R?"-3 and ma-

m,m—
trix D € R¥™*3™ with ele; as diagonal blocks:

eles -+ Oaxs
D= :
Osx3 -~ €363

We define, for m > 3, matrices E = E(m) € R¥™*3?m=3) and XJ = X7(m) e R3m*(2m-3)
recursively as:

E(m) = [ E(m— 1) I 0(3m—9)X6 ] ,
O3x3(2m-5) | E.,
Xim) = [Xj‘m‘” | Oam—s)x2 ]
O3x(2m-5) | X7
with
ET ] [ Efm-2 Osxs
E(2) = l: E21 3 E, = O3x3 E;J,:'m_l ;
2
' R Em,m—2 Em,m—l
i T [ %, O3
wo-[2] fe|on =
b & _, %
L *m-—2 m—1

We define the pseudo-array multiplication E - X7 recursively as:

E(m)- Xi(m) = [ E(m—1)-Xim—-1) | Ogm_g)x2

O3x(2m-5) | Em-Xi
with
_ . EI &
E(z)-X’(2)=[ 2‘_?],
Eyx)
E:'Tr;,m—zizn 03x1
En-Xi= 031 ETTI;.,m—li'zn

Em,m-2i]m_2 Em,m—li'zn-l

Using this notation, the equation (5.10) can be rewritten as:

2Ax} = DE - Xd/. (5.11)
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Note that D is a projection matrix, i.e., D2 = D. All the constraints in (5.9) then can be

rewritten compactly as two matrix equations:
#TE-X7 =0, DAxI = AxI. (5.12)

The first equation is simply a matrix expression for all the epipolar constraints. Thus we

can solve from equation (5.11) for o/:
. .. RS .
o =2 (XJT .ETDE . XJ) XiT . gTyi (5.13)

given that the matrix G = X/T-ETDE-X7 is invertible. We call matrix G the observability

Grammian.

Comment 5.5 (Observability Grammian). In general, the observability Grammian is
invertible even in cases that the algorithm is not designed for, i.e., the camera motions are
such that optical centers lic on a straight line, ezcept for points on the line. In fact, 3D
points which make the Grammian degenerate, i.e., det(G) = 0 are very rare. Geomeirically,
it means that, given a sequence of camera motions, the 3D location of a point whose images
make the Grammian degenerate is not observable. For ezample, for camera translating in
a straight line, points on the line itself then satisfy det(G) = 0 hence their images contain
no information about neither their 3D location nor the camera motion on the line. In this

sense, G can be thought of as the observability matrix in control theory.

Substituting the expression for o/ (5.13) into (5.11), we then obtain the expression

for Ax? and we have:
. . - s S )
lAx?|? = xITE - X7 (XJT .ETDE. XJ) XIT . ETxd. (5.14)
Substituting this expression into the objective function F(G,%) we obtain:
LI - [ RN R )
F(G,%) = xTE. X (X’T .ETDE. XJ) XiT . gTxd. (5.15)
j=1
Notice that the terms on the right hand side of the equation are exactly multiview versions
of the crossed normalized epipolar constraints, but it is by no means a trivial sum of
the pairwise crossed normalized epipolar constraints [73]. In order to minimize F(G, %), we

need to iterate between the camera motion G and triangulated structure %, which would be

essentially a multiview version of the optimal triangulation procedure proposed in [73].
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In this chapter, howéver, we will only demonstrate how to obtain optimal motion estimates.
Note that, in the expression for F(G,%), the matrix X7 is a function of X7 instead of the
measured x’. In general, the difference between %/ and x7 is small. Therefore, we may
approximate X7 by replacing J"cf in X7 by the known x‘z . We call the resulting matrix as

X7. We then obtain a new function (in camera motion only) F,(G) = F(G,x):

Fo(G) =Y xTE. X3 (X7 . ETDE - X7) ™ xIT . ETxI. (5.16)
=1

In absence of noise, each term of F;,(G) should be:
xTE- X3 (X7 . ETDE - X?) 7' XiT . ETxI = 0, (5.17)

We call this the normalized epipolar constraint of multiple images. This is a natural
generalization of the normalized epipolar constraint in the two view case [73]. Thus, as in
the two view case, F,(G) can be regarded as a statistically adjusted objective function for

directly estimating the camera motions.

Comment 5.6 (Bilinear vs. Trilinear Constraints). It is true that one can‘ also
use a set of independent trilinear constraints to replace those in (5.9) and, with a similar
ezercise, derive its normalized version for motion (and structure) estimation. However,
trilinear tensors (as functions of camera motions) do not have as good geometric structure
as the bilinear ones. This makes the associated optimization problem harder to describe,
even though it is essentially an equivalent optimization problem. One must also be aware
that, in the rectilinear motion case, the normalized epipolar constraint objective F, is not
supposed to have a unique minimum (as we will soon see in Simulation 3, in presence of
noise, this is not completely true. We will discuss further the new meaning of the minimum

in Comment 5.10) while the corresponding normalized trilinear one always gives o unique

solution.

Comment 5.7 (Calibrated vs. Uncalibrated Camera). In the case of an uncalibrated
camera, nothing substantial will change in the above derivation ezcept that the essential ma-

trices need to be replaced by fundamental matrices and that the camera intrinsic parameters

will introduce 5 new unknowns.
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5.2.3 Geometric Optimization Techniques

Fy, in the previous section is a function defined on the space of configurations of
m camera frames, which is not a regular Euclidean space. Thus conventional optimization
techniques cannot be directly applied to minimizing F,,. In this section, we show how to.
apply newly developed geometric optimization techniques [19, 97] to solve this problem.
We here will adopt the Newton’s method, although it may not be the fastest, because it
allows us to compute the Hessian of the objective function which is potentially useful for
sensitivity analysis.

The configuration G of m camera frames are determined by relative rotations and

translations:

R = [R21, R321 feny -Rm,m—l] € SO(S)m—I)

T -
T = [Tgi,Tg,...,T,ﬁ,m_l] e R3™-3,

Then F,(G) can be denoted as F,(R,T). It is direct to check that Fa(R,AT) = F,(R,T)
for all A # 0. Thus F,(R,T) is a function defined on the manifold M = SO(3)™1 x
$3m~4 where 3™~ is a 3m — 4 dimensional spheroid. M is simply a product of Stiefel
manifolds and it has total dimension 6m — 7. Furthermore, the (induced) Euclidean metrics
on SO(3) and S3™~* are the same as’ their canonical metrics as Stiefel manifolds. This
gives a natural Riemannian metric ®(,-) on the total manifold M. Note that any tangent
vector X € Tig,7)M can be represented as X = (Xg, Xr), with Xg € Tr(SO(3)™"!) and
X7 € Tr(S®™*) defined by the expressions:

Ir = [G2IR211'-wam,m—lR‘rn,m—l], (5'18)
T
Xr o= [A3,..., X% 1] (5.19)

where w;11; € R"’,Xi.l.l,,- eR,i=1,...,m—1and XTTT = 0. Then the Riemannian
metric ®(-,-) on the manifold M is explicitly given by:

m—1
(X, X) = Z wg—;—1,i“’i+1,i +XTxr. (5.20)

i=1
Similar to the two view case in Chapter 4, we can directly apply the Riemannian optimiza-

tion schemes developed in [19, 97] for minimizing the function F,,(R, 7).

Algorithm 5.8 (Riemannian Newton’s Algorithm Minimizing F,(R,T)).
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1. Pick an orthonormal basis {B}S™=" on T(r,ryM. Compute the vector g € R™7 with

its it entry given by (g); = dF,(B!). Compute the matriz H ¢ ROEm=7)x(6m=7) y;4p

its (i,7)%* entry given by (H);; = HessF, (B!, B7). Compute the vector § = ~H™lg €
R6m~7 .

2. Recover the vector A € Tig 7)M whose coordinates with respect to the orthonormal

basis B'’s are ezactly 6. Update the point (R, T) along the geodesic to exp(4).
3. Repeat step 1 if ||g|| > ¢ for some pre-specified tolerance € > 0.

In the above algorithm, we still need to know: how to pick an orthonormal basis
on T'M, how to compute geodesics on the manifold M, and how to compute the gradient
and Hessian of F,,.

Using the Gram-Schmidt process, we can find vectors V}},...,V2m~4 ¢ R3m-3
such that, together with 7", they form an orthonormal basis of R¥™~3. Let ey, ey, e3 € R®
be the standard orthonormal basis of R®. Then a natural orthonormal basis {5 $m=7 on

T(r,7yM is given by:

B¥3+ = ([0,...,0,;Ri41,4,0,...,0],0)
for1<i<m-1,1<j<3and

B3+ = (0,V}), forl1<i<3m-4.

Given a vector X = (Xg, A7) € T\, )M with X and X7 given by (5.18) and
(5.19) respectively, the geodesic (R(t), 7 (t)) = exp(Xt),t € R is given by:

R(t) = (e Ry, e®?Ryy,...,eo0mm1R ), (5.21)
T(t) T cos(ot) + Usin(ot), o = ||Xr|,U = Xr/o. (5.22)

The tangent of this geodesic at ¢ = 0 is exactly X.

With an orthonormal basis, the computation of gradient and Hessian can be re-
duced to directional derivatives along geodesics on M. Given a vector X € TirmyM, let
(R(¢), T(t)) = exp(Xt). Then we have:

dF) = an(Rgltt),T(t)),
P Fn(R(t), T (2))

di?

HessF,(X,X) =
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Polarizing HessF,, (X, X') we can obtain the expression for HessF;, (X, Y) for arbitrary X,) €
TirmM:

1
HessF,(X,)) = Z(Hesan(X +V,X +Y) — HessF (X — Y, X - ).
According to the definition of gradient, gradF;, € Tir,7yM, which is given by:
dFn(X) = ®(gradFy, X), VX € Tir1)M, (5.23)

is exactly equal to the 1-form dF;, with respect to an orthonormal frame. Therefore, at each
point (R, 7T), we pick the orthonormal basis {Bi}ﬁ‘;‘ﬁ on Tz )M as above and compute
the first and second order derivatives of F;, with respect to corresponding geodesics of the
base vectors. The gradient and Hessian of F,, are then explicitly expressed by the vector g
and the matrix H as described in the above algorithm. The updating vector A computed

in the algorithm is in fact intrinsically defined® and satisfies:
HessFn (A, X) = @(—gradFy, X), VX € Tir M. (5.24)

Note that Fy, has a very good structure — only matrix E depends on (R, 7) and it
consists of blocks of essential matrices E;y,; and E;;2;. The computation of the Hessian
can then be reduced to computing derivatives of these matrices with respect to the chosen

base vectors. From the definition of the essential matrix E};, we have:
Eiy1i = TipRing,
Eit2i = Eipoin1Rig1i+ Rigoir1Eir
Hence the computation can be further reduced to derivatives of essential matrix E;,, ; only.

For a vector & € Tiz M of the form given by (5.18) and (5.19), by direct computation,

we have:

dEi11i(X) = Tip1:@iv1iRiv1 + Xig1iRia,
o ~ T -
HessEip14(X, X) = Tip1,i@5 i Riv1,i + 204130541, Ri1i — Xipg i Xig1,iTi1,iRiv i

fori = 1,...,m — 1. Note that these formulae are consistent to the corresponding ones
in the two view case. Thus we now have all the necessary ingredients for implementing
the proposed optimization scheme. For any given number of camera frames, we get an
optimal estimate of the camera relative configuration by minimizing the normalized epipolar

objective Fy,.

SThat is, the definition of A is independent of the choice of coordinate frame.
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Comment 5.9 (Newton vs. Levenberg-Marquardt). The difference between New-
ton and Levenberg-Marquardt (LM) methods is that in LM the Hessian is approzimated by
some form of the objective function’s gradient. Since the gradient only involves first order
derivatives, LM in general is much less costly in each step. From our implementation of
the Newton’s algorithm, the Hessian indeed takes more than 95% of the computing-time.‘
Nevertheless, we computed the Hessian anyway since the formula would be useful for future

sensitivity analysis of motion estimation in the multiview case.

5.2.4 Simulations and Experiments

In this section, we show by simulations and experiments the performance of the
normalized epipolar constraint. We will apply it to cases with or without the sufficiency of

the epipolar constraint satisfied.

Setup: Table 5.1 shows the simulation parameters used. In the table, u.f.l. stands for unit

of focal length. The ratio of the magnitude of translation and rotation, or simply the T'/R

Table 5.1: Simulation parameters

| Parameter | Unit | Value |
Number of trials 100 - 500
Number of points 20
Number of frames 3-4
Field of view degrees 90
Depth variation u.fl. 100 - 400
Image size pixels | 500 x 500

ratio, is compared at the center of the random cloud (scattered in the truncated pyramid
specified by the given field of view and depth variation). For all simulations, independent
Gaussian noise with std given in unit of pixel is added to each image point. In general, the
amount of rotation between consecutive frames is about 20° and the amount of translation
is then automatically given by the T/R ratio. In the following, camera motions will be
specified by their translation and rotation axes. For example, between a pair of frames, the
symbol XY means that the translation is along the X-axis and rotation is along the Y -axis.
If n such symbols are connected by hyphens, it specifies a sequence of consecutive motions.
Error measure for rotation is arccos (Mﬂ) in degrees where R is an estimate of the

true R. Error measure for translation is the angle between T}; and f’k,- in degrees where T is
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an estimate of the true T'. All nonlinear (two view or multiview) algorithms are initialized

by estimates from the conventional two view linear algorithm.”

Simulation 1 (Comparison with Two Frame Bilinear and Normalized Epipolar
Constraints) Figure 5.3 plots the errors of rotation estimates and translation estimates
compared with results from the standard 8-point linear algorithm and nonlinear algorithm
for pairwise views [73]. As we see, normalization among multiple images indeed performs

better than normalization among only pairwise images.
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Figure 5.3: Motion estimate error comparison between normalized epipolar constraint of
three frames, normalized epipolar constraint of two frames and (bilinear) epipolar constraint.
The number of trials is 500, camera motions are X X-Y'Y and T/R ratio is 1.

Simulation 2 (Axis Dependency Profile) We run the multiview algorithm with consecu-
tive motions along the same rotation and translation axes for all nine possible combinations.
See Figure 5.4. Note that our multiview algorithm is not designed to work in rectilinear
motion case, such as XX-XX, YY-YY and ZZ-ZZ. Nevertheless, the simulation results
in the figure show that the translation estimates still converge to the correct translational
direction and the error angles between estimates and the true ones are comparable to other
generic cases. As we see, the estimate error is larger when translation along the Z-axis is

present. This is because of a smaller signal to noise ratio in this case.

"In the multiview case, the relative scales between translations are initialized by triangulation since the
directions of translations are known from estimates given by the linear algorithm.
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Figure 5.4: Axis dependency profile: The algorithms are run for all nine combinations of
camera rotation and translation w.r.t. the X,Y and Y axes. The number of trials is 100,
noise level is 3 pixel std and T'/R ratio is 1.

Simulation 3 (A Statistically Stable Solution for Rectilinear Motion from Nor-
malized Epipolar Constraint) From the previous simulation, we notice that the algo-
rithm indeed converges to the correct translational direction in the rectilinear motion case.
Then how about the relative scales between consecutive translations? They are usually
believed to be captured only by trilinear constraints but not by bilinear ones. This is not
completely true: The rectilinear motion is indeed a degenerate case for the bilinear con-
straints, from which there is no unique solution for the relative scales - (for example see
Figure 5.1). However, statistically, the true relative scales must be a stable solution among
all the possible ones. That is, if we properly normalize the epipolar constraint w.r.t. the
noise model, the true relative scale should be captured by the epipolar constraints alone
as a statistically stable solution. Here, noise essentially plays a positive role of “singling
out” the stable solution which otherwise would be lost when degeneracy occurs. Figure 5.5
plots two histograms of relative scale estimates given by minimizing our normalized epipolar
constraint: One is for a rectilinear motion and the other one for a generic motion. Clearly,
in both cases, the histogram resembles a Gaussian distribution with the mean centered
at the true scale, as a result of the proper normalization. Moreover, the two histograms

are comparable to each other, which suggests that, using (normalized) epipolar constraint
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alone, scale estimates in a degenerate case are not necessarily worse than in a generic case.
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Figure 5.5: Histogram of relative scale estimates by normalized epipolar constraint in a
rectilinear motion case and a generic motion case. The number of trial is 100, noise level is
3 pixel std and the true relative scale between consecutive translation is 2.

Comment 5.10. (Bilinear vs. Trilinear Constraints Continued) Simulation 3 re-
veals a remarkable statistical relationship between bilinear and trilinear constraints: If an
optimal estimate is obtained for generic cases, it can still be retrieved as the stable esti-
mate in a degenerate case - the (noise-free) deterministic constraint may be degenerate,
but there is no reason for the a posteriori distribution of the estimate to be degenerate as
well. Geometrically, the estimate obtained in a degenerate configuration can be interpreted
as @ “limit” of a sequence of estimates of generic configurations. Such an estimate may
also be viewed as the so called “viscous solution” of the normalized epipolar constraint if
the Gaussian noise added on images is regarded as some kind of “diffusion”. Therefore, in
principle, we do not really need trilinear constraints in order to estimate motion (including
relative scales) correctly even in the rectilinear motion case, although such an estimate may

be more sensitive or less robust (if the noise model changes).

Experiment (Motion Recovery from Real Images) We simply tested our algorithm
on a set of real images taken by a commercial pan-tilt camera. Figure 5.6 shows four images
of a cubic corner with feature points, Figure 5.7 plots the estimated and hand measured
actual camera location, and Table 5.2 gives the errors between the estimated and measured
motions. The camera is self-calibrated by Hartley’s method for a pure rotating camera.
Since our camera calibration and motion measurements are still crude, errors of this size

are expected. We are currently fine-tuning our hardware setup to get better results.
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Table 5.2: Motion estimate errors in degrees

Motions Rotation Errors | Translation Errors |
Frames 2-1 8.1° 4.6°
Frames 3-2 6.3° 5.8°
Frames 4-3 4.4° 4.5°

5.3 Continuous and Hybrid Cases

The continuous case is a limiting case of the discrete case. In this section, we
study the continuous version of some of the constraints from previous sections. Some of
these continuous constraints have already been used in computer vision to recover motion

or structure.

5.3.1 Continuous Multilinear Constraints

Suppose that the camera calibration matrix A(t) varies very slowly so that we may
treat it as constant A for a short period of time around time ¢, then the image x(t) of a

point p € E3 satisfies:
A(t)x(t) = APg(t)p. (5.25)

At time t, differentiating this equation (m — 1) times, we obtain the equation that higher

order derivatives of the optical flow should satisfy:

x 0 cee R TR | ] )y APg
x(9) : cfcx(i‘k) o Tel e A6 = APgtd) p.
x(m=2) ., e R | A(m=2) APg(m=2)
x(m-1) . v o x| L A(m-1) | i APg(m—1) |
where c}'c = ; €Z* for 0 < k <i < (m—1). The quantities x¥,0<i < (m — 1) are

the i* order derivatives of the image point, similar for A{) and g(). If we define ci, = 0 for

i < k, the (4,k)™ entry (in fact a tuple) of the first matrix in the above equation has the
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unified form c¢ix(=%), 0 < i,k < (m—1). We may define matrices X¢ € R¥mxm_pfc ¢ R3mx4

and )¢ € R™ such that the above matrix equation can be rewritten as:
XX = M (5.26)

We here use the superscript ¢ to indicate the continuous case. We then have the continuous

version of the Proposition 5.1.

Proposition 5.11 (Continuous Multilinear Constraints). Consider the image x(t) €
R? of a point p under the camera motion g(t) € SE(3). Then for the matrices X¢ € R3™x™
and M° € R¥*4 defined in equation (5.26), the column vectors {Z;}, € R of the matriz
X¢ and column vectors iy, M, M3, s € R¥™ of the matriz M® satisfy the following wedge

product equation:

M AMe AMIAMIATIA ... AT, = 0. (5.27)

This wedge equation contains all the projective invariants associated with the
motion of the image of a single point. One would see that most of the constraints given
by the wedge product involve high order derivatives of the optical flows or the structural
scales. Due to numerical accuracy, they are not very useful for reconstruction purpose.
However, constraints involving the first derivative have been widely used. These are simply
the bilinear constraints on optical flows, which are a continuous version of the bilinear
epipolar constraints in the discrete case.

Without loss of generality, we may assume g(t) = I. Then § has the twist form:
. W
g =

00

where w € R? is the angular velocity and v € R® the linear velocity. Then, in the special
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case that m = 2 and A = I, the wedge product equation gives:

. Pg x 0
M1 A... \NTg ATy ATy =det etN...Neg=10
Pj x x
—P 0 I 0x 0
& det| 7T V=0 & det| . =0
P x x W v X X
(1 0 0
& det x =0 © detfv,x — @x%,x] =0
0 v x—wx x

T

& xTox +xToox = 0.

This is exactly the continuous version of the epipolar constraint as we have discussed in
Chapter 3. Suppose that there are n image points observed. Then such a constraint holds

for all the n image points:

Tox! +x9T6ox7 =0, 1<j<n.

5.3.2 Recovery of Relative Scale in the Continuous Case

As we have seen in the discrete case, the purpose of exploiting Euclidean con-
straints is to reconstruct the scales of the motion and structure. In the continuous case,
the scale information is encoded in M, M ,1 £ j < n for the structure of the n points and

n € R for the linear velocity v as in the following equation:
Mxd 4+ Mxd = G+ o NxI+ N - Oox?)—qu=0, 1<j<n (5.28)

Known x,x,w and v, these constraints are all linear in )\ ,Xj ,1 £ 7 <nand7 Also, if
x7,1 < j < n are linearly independent of v, i.e., the feature points do not line up with
the direction of translation, these linear constraints are not degenerate hence the unknown
scales are determined up to a universal scale. As in the discrete case, we call a configuration
critical if there is any x7,1 < j < n which lines up with the translational direction v. In
fact, this is the limiting case of the critical configuration defined in the discrete case.

We can arrange all the scale quantities into a single vector X:
X=[1 o am AL LA )T e R

For n optical flows, X is a 2n+1 dimensional vector. (5.28) gives 3n (scalar) linear equations.

The problem of solving X from (5.28) is usually over-determined. As in the discrete case, it
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is easy to check that in the absence of noise the set of equations given by (5.28) uniquely
determine X if the configuration is non-critical. As in the discrete case, we can write all the

equations in the matrix form:
MX=0

with M € R¥*("+1) being a matrix depending on w,v and {x7,%’ }3-1- Then in the
presence of noise, the LLSE estimate of X is just the eigenvector of MT M corresponding to
the smallest eigenvalue.

Notice that the rate of scales {\/ }7=1 are also estimated. This piece of information
has been ignored in most of previous structure from motion algorithms. However, it turns
out to be a very important piece of information. If we do the above estimation for a time
interval, say (fo,%y), then we obtain the estimation X(¢) as a function of time ¢. But the
estimation of X(t) at each time ¢ is only determined up to an arbitrary scale. Hence p(£)X(t)
is also a valid estimation for any positive function p(t). However, since p(t) is multiplied to
both A(t) and A(t). Their ratio:

r(t) = Mt)/A®)

is independent of the choice of p(t) at each time . Notice %(ln A) = A/A. Let the logarithm
of the structural scale A to be ¥y = InA. Then a time-consistent estimation A(t) needs to

satisfy the following ordinary differential equation, we call it the dynamic scale ODE:
y(t) = r(2).

Given y(to) = yo = A(to)/A(tg), solve this ODE and and obtain y(t) for t € [to,t]. Then

the time-consistent scale A(t) is simply given by:

A(t) = exp(y(t)).

Thus, all the scales estimated at different times are with respect to the scales at time #.
One can also normalize all the scales with respect to those at time ¢; by setting the final
value y(t;) and then integrating the ODE backwards. Therefore, in the continuous case, we
are able to recover all the scales as a function of time up to a universal scale. Notice that
in particular the (relative) scales of the translational motion v are fully recovered, which is

very important to many applications in mobile robot navigation.
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In the continuous case, the notion of triangulation is essentially the same: try to
find a consistent reconstruction of the Euclidean structure from all the structure estimated
over time. However, it is much harder to implement in a practical algorithm since it involves
integration of the motion (w(¢),v(t)) unless we have an estimation of the transformation
g(t) = (R(t),T(t)) from other sources. The issue of estimating the velocity and the trans-
formation together will be addressed in section 5.3.3 which deals with hybrid settings. In
practice, the ratio function r(¢) may not be available for all the times ¢ € [to,%;]. One can
use some simple interpolation schemes to recover r(t), hence the time-consistent scale A(z).

It is up to the user to adjust the algorithm appropriately for the specific applications.

Comment 5.12. In both the discrete and continuous cases, the proposed algorithms re-
construct both the Euclidean structure and motion up to a single universal scale. These
algorithms provide any vision-based autonomous agent, for ezample an autonomous mobile
robot, with complete information about its surrounding environment and its ego-motion
relative to the environment. The universal scale is not important since it only scales up or
down the overall configuration space. All the intrinsic geometric (including metric) proper-
ties of the space are preserved. In this sense, no information is really lost through a vision

system.

5.3.3 Hybrid Multilinear Constraints

We now study the cases where both point correspondences and optical flow mea-
surements are available. Such cases are referred to as hybrid. In practical systems the
quality of the motion/structure estimates naturally depend on the quality of the measure-
ments. Large motions, occlusions, reflectance variations, aliasing etc. affect negatively the
quality of the flow estimates as well as the point correspondences. Therefore it is of inter-
est to study the case when both types of measurements are used for motion and structure
estimation.

Like the continuous case, we assume that the calibration matrix A(t) varies slowly
so that we can treat it as constant nearby each time instant tj, for i = 1,...,m. Suppose
one point p is projected on all m image frames (in discrete positions) and its optical flows
on these frames are also measured. This is a natural combination (a “direct sum”) of the

discrete case and the continuous case we studied in the preceding sections. For this case,
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we have:
[ x(t1) 0 0 11 At [ A(t1)Pg(t1) ]|
x(t1) x(t1) 0 Altr) A(t1)Pg(t1)
P : o= : P-
0 x(tm) 0 Altm) A(tm)Pg(tm)
I X(tm) X(tm) | | Atm) | | Altm)Pg(tm) |

In general, g(¢;), g(t;),1 < 2 < m have the form:

_|R T

N 'Givi=RiaiRri'Ui
g(t) = g(tz)[o 0] [ . . }

Similar to the discrete and continuous cases, we may define matrices X" € RE™*2m Mk ¢

RS™x4 and Xh € R2™ such that the above matrix equation can be rewritten as:
Xh3h = Mbop. (5.29)

We here use superscript h to indicate the hybrid case. We then have a hybrid version of the

Propositions 5.1 and 5.11.

Proposition 5.13 (Hybrid Multilinear Constraints). Consider n images and optical
flows x3,%7 € R® for j = 1,...,n of a point p. Then for the matrices X* € RS™m*2m gnd
M"* € RS™*4 defined in equation (5.29), the column vectors {Z:}, € R5™ of the matriz
X" and column vectors My, Mg, M3, M4 € R™ of the matriz M" satisfy the following wedge

product equation:

My AT AM3AMIATIN... ATy, =0. (5.30)

Obviously, this wedge product equation gives all the discrete multilinear con-
straints (bilinear, trilinear and quadrilinear ones); it also gives all the continuous (bilinear)
epipolar constraints. Further, some new constraints are given by this wedge product. These
constraints involving both velocity {(w;,v:)}2; and transformation {(R;,T;)}, are called

hybrid constraints. In fact all the constraints given by the wedge product equation are
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the same as that all the (2m +4) x (2m + 4) minors of the 6m x (2m + 4) matrix (X", M")
are degenerate (i.e., the determinant is zero). All the non-trivial constraints given by these
minors will be homogeneous equations in terms of the entries of {(x;,%;)}2,. According
to the structure of the matrix X", the degree of these homogeneous (hybrid) constraints is
from degree 2 to degree 8. |
Without loss of generality, we will assume that consecutive frames are non-critical.
Then the homogeneous constraints above determine the velocities {(w;,v;)}7*, and motions
{(R;, T3)}2, with translational motion {v;}™, and {T;}™, up to unknown scales. In order
to reconstruct the structural scales and the scales of motions, one needs to use the following

set of Euclidean constraints from both the discrete case and the continuous case:

Mxl = M_ R, -%T;=0, 2<i<m1<j<n
Mo + MG —@xd) —mw; =0, 1<i<m1<j<n

As long as the discrete case and continuous case respectively have unique solutions, the
overall hybrid case has a unique solution (up to a universal scale). The estimation is simply
an LLSE problem.

In particular, the scales of velocities at a particular time can be uniquely recovered
with respect to the transformation between the current image frame and a reference image
frame. This is very important for applications such as mobile robot navigation since a
consistent estimation of the displacements and velocities can be obtained. Notice that, in
the i** image frame, we certainly can measure optical flows for points which do not have
projections in the other image frames at all. Their structural scales can also be determined
with respect to the same universal scale. Then the occlusion is usually not a problem at all
in the hybrid case for the recovery of depth.

Notice that in the hybrid case, the quantities {}! }imt j=1 are not quite useful since
we are not measuring the optical flows in a continuous fashion. So one can get rid of them

by applying cross product with {x{ }:’;’ﬁjﬂ to the continuous Euclidean constraints:

Nl 4N —oaxd) o =0 & ME —@ad) x xd - po; xxd =0

Then the number of states in the associated LLSE estimation problem can be reduced. This
is essentially the bilinear constraint used by some researchers in the structure from motion

algorithms using optical flow, see for example (98].
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5.4 Discussion

In this chapter, we have introduced and clearly studied the geometric relationship
of constraints among multiple images. It has been shown that epipolar constraints alone,
except in the degenerate rectilinear motion case, have provided sufficient constraints for -
multiple images. We further contend by using (bilinear) epipolar constraint that muitilin—
ear constraints need to be properly normalized in order to get less biased estimates (of the
multifocal tensors). There are several consequences of such a normalization. First, the so
obtained objective function is no longer linear hence it does not preserve the tensor struc-
ture of multilinear constraints. Second, such a normalization is a natural generalization
of the well known normalized epipolar constraint between two images but by no means a
trivial sum of them. Third, the normalization not only provides near optimal motion esti-
mates but, more importantly, reveals certain statistical relationship between epipolar and
trilinear constraints — as a necessary complement to the well known algebraic or geometric
relationship. We now know that in principle normalized epipolar constraint alone suffices
for estimating correct motion as a statistically stable solution even in the rectilinear mo-
tion case. However, more extensive simulation, experiments and analysis are still needed
to evaluate how really practical it is when applied to degenerate cases because it may be
less robust to model change. For example, in the case when the noise on the images is
no longer isotropic or identically independently distributed, we do not know whether the
rectilinear motion can still be well estimated. In a practical implementation, the reader is
recommended to extend the idea of normalization in this paper to trilinear constraints or
even to an uncalibrated camera.

In both this chapter and the previous one, we use the generic Newton’s algorithm to
minimize the normalized epipolar constraint. One disadvantage is that it is slower than most
gradient based algorithms, such as the commonly used Levenberg-Marquardt algorithm.
For this reason, we recommend the reader to use those algorithms instead for practical
implementations. We here outlined the Newton’s algorithm to demonstrate how to compute

all the necessary geometric entities associated to the optimization.
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Frame 1

Frame 4

Figure 5.6: Four images of a cubic corner taken by the camera.

Motion Estmabon Expenmant

" [— Actual Camera Location
.+ |~ __Estmated Camera Location

Figure 5.7: Comparison of estimated and measured camera configuration for the four
lmages.
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Chapter 6

Camera Self-Calibration

“Thus arises the problem of seeking out the simplest data from which the
metric relations of Space can be determined, a problem which by its very nature is not
completely determined, for there may be several systems of simple data which suffice to
determine the metric relations of Space;...”

— G. F. B. Riemann, On the Hypotheses Which Lie at the Foundations of Geometry

The problem of camera self-calibration refers to the problem of obtaining intrinsic
parameters of a camera using only information from image measurements, without any a
priori knowledge about the motion between frames and the structure of the observed scene.
The general calibration problem is motivated by a variety of applications in mobile robot
navigation and control using on-board computer vision system as a motion sensor. Many
navigation or control tasks, such as target tracking, obstacle avoidance or map building,
require the knowledge of both the camera (or the object) motion and a full Euclidean
structure of the environment, which is possible only when the intrinsic parameters of the
camera are known. Both theoretical studies as well as practical algorithms of camera self-
calibration have recently received an increased interest in the computer vision and robotics
community. The appeal of a successful solution to the camera self-calibration problem
lies in the elimination of the need for an external calibration object [118] as well as the
possibility of on-line calibration of time-varying internal parameters of the camera. The
latter feature is of great importance for active vision systems. The majority of the camera
self-calibration in the computer vision literature have been derived in a projective geometry
framework. Here, we redevelop the theory in a differential geometric framework which

enables not only new perspectives and algorithms but also a resolution of some mistreated
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problems in self-calibration.

The original problem of determining whether the image measurements “only” are
sufficient for obtaining the information about intrinsic parameters of the camera has been
answered in the computer vision context by [77). The proposed approach and solution
utilize invariant properties of the image of the so called absolute conic. Since the absolute
conic is invariant under Euclidean transformations (i.e., its representation is independent
of the position of the camera) and depends only on the camera intrinsic parameters, the
recovefy of the image of the absolute conic is then equivalent to the recovery of the camera
intrinsic parameter matrix. The constraints on the absolute conic are captured by the so
called Kruppa’s equations derived by Kruppa in 1913 [58].

The derivation of the Kruppa’s equations was mainly developed in a projective ge-
ometry framework and its understanding required good intuition of the projective geometric
entities (with the exception of [35]). This derivation is quite involved and the development
appears to be rather unnatural since, both the constraints captured by Kruppa’s equations
and the image of (dual) absolute conic are in fact directly linked to the invariants of the
group of Euclidean transformation (rather than projective transformation). We here pro-
vide an alternative derivation of Kruppa’s equations, which in addition to being concise and
elegant, also provides an intrinsic geometric interpretation of the so called fundamental ma-
trices and its associated Kruppa’s equations. Such an interpretation is crucial for designing
intrinsic optimization schemes for solving the problem (for example, see [72]). .

In spite of the fact that the basic formulation of appropriate constraints, such as
the Kruppa’s equations, is in place and there are many successful applications [136], to
our knowledge, there is not yet a clear understanding of the geometry of an uncalibrated
camera, and there is no complete analysis of the necessary and sufficient condition for a
unique solution of the self-calibration problem. This often leads to situations where the
algorithms are applied in ill-conditioned settings or where a unique solution is not even
obtainable. The differential geometric approach we take in this chapter will allow us to
fully understand the intrinsic geometric characterization of an uncalibrated camera and it

will easily lead to a clear answer to the questions:

(1) What is the necessary and sufficient condition for a unique solution of cam-
era self-calibration? Do Kruppa’s equations provide sufficient conditions on the
camera intrinsic parameters?

The first question has been previously studied by [104]. However the analysis is incorrect
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since it makes a wrong assumption that one can at best recover the structure up to an
arbitrary projective transformation from uncalibrated images [38]. Therefore, the results
given in [104] are incorrect and have led to a misleading characterization of the necessary and
sufficient condition for a unique solution of self-calibration (see Section 6.5.4 and 6.5.3 for a
more detailed account). In this chapter, we will give the necessary and sufficient condition
in a very clear and compact form. Our results imply that, in principle, one can recover 3D
Euclidean motion and structure up to a one parameter family from two uncalibrated images,
as opposed to an arbitrary projective transformation [38]. Answer to the sec.ond question is
unfortunately no, as counter examples have been given in the literature (e.g. [116]). Here
we will give a complete account of exactly what is missing in the Kruppa’s equations. As we
will see, there exist solutions of the Kruppa’s equations which do not allow any Euclidean
reconstruction of the camera motion and scene structure. After excluding these solutions,
solving Kruppa’s equations is then equivalent to the necessary and sufficient condition for
a unique self-calibration.

One class of approaches to the design of self-calibration algorithms instead of
directly using the Kruppa’s equations, solves for the entire projection matrices which are
compatible with the camera motion and structure of the scene [36]. Such methods suffer
severely from numerous local minima. Another class of approaches, as we have mentioned,
directly utilizes the Kruppa’s equations which provide quadratic constraints in the camera
intrinsic parameters. The so called epipolar constraint between a pair of images provides 2
such constraints, hence it usually requires the total of 3 pairs of images for a unique solution
of all the 5 unknown parameters. The solution proposed to solve the Kruppa’s equations in
the literature using homotopy continuation is quite computationally expensive and requires
a good accuracy of the measurements [77]. Some alternative schemes have been explored in
[62, 138]. It has been well-known that, in presence of noise, these Kruppa’s equation based
approaches do not usually provide good recovery of the camera calibration [7]. Thus, it is

important to answer:

(ii) Under what conditions can the Kruppa’s equations become degenerate or
ill-conditioned? When such conditions are satisfied, how do the self-calibration
algorithms need to be modified?

The answer to the former question is rather unfortunate: for camera motions such that
the rotation axis is parallel or perpendicular to the translation, the Kruppa’s equations are

degenerate (in the sense that constraints provided are dependent); most practical image
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sequences are in fact taken through motions close to these two types. This explains why
conventional approaches to self-calibration based on the (nonlinear) Kruppa’s equations
usually fail when being applied to real image sequences. However, we further show in
this chapter that when such motions occur, the corresponding Kruppa’s equations can
be “renormalized” and become linear. This gives us opportunities to design linear self-
calibration algorithms besides the pure rotation case [36]. Our study also clarifies some
incorrect analysis and results that exist in the literature regarding the solutions of the
Kruppa’s equations [138]. This is discussed in Section 6.5.2.

From previous chapters, we know that it is possible to develop a parallel set of
theory and algorithms for recovering camera motion and scene structure for the discrete

and continuous cases. We therefore ask:

(iii) Whether there is a parallel theory and a set of algorithms of self-calibration
for the discrete and continuous cases?

The answer is unfortunately no, as was previously pointed out by [9). Due to certain
degeneracy of the continuous epipolar constraint, it is in general impossible to obtain a
full calibration from it while, for the discrete case, full information of camera calibration
is already available from the epipolar constraint only. In this chapter, similarities and
differences between the discrete and continuous cases are unified in the same geometric

framework.

Chapter Outline

Section 6.1 studies the geometry of an uncalibrated camera system. It gives an
intrinsic geometric interpretation of the camera self-calibration problem. As a theoretical
foundation for the design of self-calibration algorithms, geometric invariants associated to
an uncalibrated camera are studied in detail in Section 6.2. In particular, we show that
the (dual) absolute conics are generated by these basic invariants. Section 6.3 reviews the
epipolar geometry in the uncalibrated case. Based on invariant theory, Section 6.4 provides
a geometric characterization of the space of fundamental matrices. This characterization
naturally associates the Kruppa’s equations with basic invariants of the uncalibrated cam-
era. In Section 6.5, we then study the solvability of Kruppa’s equations. Several important
cases which allow for linear self-calibration algorithms are presented. These cases also reveal

difficulties in the conventional Kruppa’s equation based approaches. Section 6.6 provides a
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brief study of the continuous case, as a comparison to the theory of the discrete case. Some

preliminary experiments of proposed algorithms are presented in Section 6.7.

6.1 Geometry of an Uncalibrated Camera

Before trying to solve the camera self-calibration problem, we first need to know
some geometric properties of an uncalibrated camera: we will see that the study of an
uncalibrated camera is equivalent to that of a calibrated camera in a (Euclidean) space
with an unknown metric. Further, the problem of recovering the calibration matrix A is
mathematically equivalent to that of recovering this unknown metric. Consequently, the
camera intrinsic parameters given in (2.18) can be geometrically characterized as the space
SL(3)/SO(3). Some elementary Riemannian geometry notation will be used here. For good
references on Riemannian geometry, we refer the reader to (5, 55, 103].

Let E® be the three dimensional Euclidean space (isometric to R®). Consider a
map 9 from E? to itself:

P:E o B
X » X' =4X

where X and X' are 3 dimensional coordinates of the points p € E* and p' = y(p) € E3
respectively. Then ¢ is the transformation from the calibrated space to the uncalibrated
space. To differentiate these two spaces, we will use a prime on the entities associated to
the uncalibrated space, unless it is clear from the context. Let ®(-,-) to be the standard
Euclidean metric on E*. Then the map ¢ induces a new metric ®'(-,-) on E3 as following;
O'(u,v) = B(Pp~H(u), ¥ (v)) =uTATA Y, Vu,veTyE, Vp eB. (6.1)

We define the symmetric matrix § € R3*3 associated to the matrix A as:
S=A7Tpgt, (6.2)

Then the metric ®'(-,-) is determined by the matrix S. Let K C SL(3) be the subgroup of
SL(3) which consists of all upper-triangular matrices. That is, any matrix A € K has the
form:
11 a2 a13
A=1 0 axpn ay |- (6.3)
0 0 a3
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Note that if A is upper-triangular, so is A~1. Clearly, there is a one-to-one correspondence
between K and the set of all upper-triangular matrices of the form given in (2.18); also
the equation (6.2) gives a finite-to-one correspondence between K and the set of all 3 x 3
symmetric matrices with determinant 1 (by the Cholesky factorization). Usually, only one
of the upper-triangular matrices corresponding to the same symmetric matrix has a physicalb
interpretation as the calibration of a camera. Thus, if the calibration matrix A does have the
form given by (2.18), the self-calibration problem is equivalent to the problem of recovering
the matrix S, i.e., the new metric ®'(-,-) of the uncalibrated space.

Now let us consider the general case that the uncalibrated camera is characterized

by an arbitrary matrix A € SL(3). A has the QR-decomposition:
A=QR, QeKReS0@3). (6.4)

Then A~! = RTQ~! and the associated symmetric matrix S = A~TA-! = Q-TQ-!. In
general, if A = BR with A, B € SL(3), R € SO(3), the A~TA~! = B-TB~1, That is A and
B induces the same metric on the uncalibrated space. In this case, we say that matrices
A and B are equivalent. The quotient space SL(3)/SO(3) will be called the intrinsic
parameter space. It gives an “intrinsic-indeed” interpretation for the camera intrinsic
parameters given in (2.18). This will be explained in more detail in the rest of this section.

We contend that, without knowing camera motion and scene structure, the matrix
A € SL(3) can only be recovered up to an equivalence class A € SL(3)/SO(3). To see this,
suppose B € SL(3) is another matrix in the same equivalence class as A. Then A = BR,
for some Ry € SO(3). The coordinate transformation (2.7) yields:

AX(t) = AR(t)X(to) + AT(t) & BRoX(t) = BRoR(t)RI RyX(ty) + BRyT(t). (6.5)
Notice that the conjugation:

Ad,:SE(3) - SE(3)

h = rhrl

Ry

is a group homomorphism where r = o 1l Then from the equation (6.5), there is

no way that one can tell an uncalibrated camera with calibration matrix A undergoing the
motion (R(t), T(t)) and observing the point p € E* from another uncalibrated camera with

calibration matrix B undergoing the motion (RoR(t)R}, RyT'(t)) and observing the point
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Ryp € E3. The effect of Ry is nothing but a rotation of the overall configuration space.
We will soon see that this property naturally shows up in the fundamental matrix (to be
introduced) when we study epipolar constraint for the uncalibrated case.

Therefore, without knowing camera motion and scene structure, the matrix A
associated with an uncalibrated camera can only be recovered up to an equivalence class A
in the space SL(3)/SO(3). The subgroup K of all upper-triangular matrices in SL(3) is one
representation of such a space, as is the space of 3 x 3 symmetric matrices with determinant
1. Thus, SL(3)/SO(3) does provide an intrinsic geometric interpretation for the unknown
camera parameters. In general, the problem of camera self-calibration is then equivalent to
the problem of recovering the symmetric matrix S = A~TA~!, i.e., the new metric ®'(-,-),
from which the upper-triangular representation of the intrinsic parameters can be easily
obtained from the Cholesky factorization.

The space E? with the new metric ®'(-, ) is still a Euclidean space. Nevertheless,
without knowing this metric, we do not know how to transform the chosen coordinate
charts of the uncalibrated camera back to an orthonormal one. That is, the space E3 is now
uncalibrated. From (2.7), the coordinate transformation in the uncalibrated space is given
by:

AX(t) = AR(t)X(tg) + AT(t) < xm=Am¢rmm@+r@ (6.6)

where X' = AX and T’ = AT. In homogeneous coordinates, the transformation group on
the uncalibrated space is given by:
ARA™L T

G' = . . T'e R, Re SO(3) y c R**4 (6.7)
It is direct to check that the metric ®'(-,-) is invariant under the action of G'. Thus G’ is
a subgroup of the isometry group! of the uncalibrated space. If the motion of a calibrated
camera in the uncalibrated space is given by g'(t) € G',t € R, the homogeneous coordinates
of a point p’ € E? satisfy:

P'(t) = ¢'(#)p' (o). (6.8)

From the calibrated camera model, the image of the point p’ with respect to a calibrated

"The isometry group of a manifold M is the set of all transformations which preserve its Riemannian
metric.
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camera is given by:
Ax = Pp'. (6.9)

It is then direct to check that this image is the same as the image of p = ¢~ (p') € E3 with

respect to the uncalibrated camera, i.e., we have:
Ax = APp. (6.10)

From this property, the problem of camera self-calibration is indeed equivalent to the prob-
lem of recovering the unknown metric ®’(-, ) of the uncalibrated space assuming a calibrated

camera.

6.2 Geometric Invariants of an Uncalibrated Camera

Since isometric transformation (group) G’ preserves the metric ®'(-,-), invariants
preserved by such transformation are therefore keys to recover such a metric. This section
will give a complete account of these invariants. Although the explicit form of the metric
®'(-,) is unknown, we know the uncalibrated space is isomorphic to the standard Euclidean
space through an isomorphism 4. Thus the invariants of the uncalibrated space under its
isometry group G’ are in one-to-one correspondence to the invariants of the Euclidean group.

The complete list of Euclidean invariants is given by the following proposition:

Proposition 6.1 (Euclidean Invariants). For a n dimensional vector space V, a com-
plete list of basic invariants of the group SO(n) consists of (1) the inner product ®(u,v) =
uTv of two vectors u,v € V and (2) the determinant det[u?,... ,u") of n vectorsul,...,u" €
V.

See [134] for a proof of this proposition. Then the set of all Euclidean invariants
is the algebra generated by these two types of basic invariants. In the uncalibrated camera

case, we have:

Corollary 6.2 (Invariants of an Uncalibrated Camera). For the space E3 with the
metric ®(-,-), a completé list of basic invariants of the isometry group G' consists of (1)
the inner product ®'(u,v) = uT A=T A~ of two vectors u,v € TE? and (2) the determinant
det[A~1ul, A=2u?, A=145] of three vectors ul,u?,u8 € TES.
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Then the set of invariants associated to an uncalibrated camera is the algebra

generated by these two types of basic invariants. Since
det[A7 ul, 4712, 4718 = det(A™") - detfu!, 42,43,

it follows that the invariant det[A~'u!, A~'u? A~143] is independent of the matrix A.
Therefore the determinant type invariant is useless for recovering the unknown matrix A
and only the inner product type invariant can be helpful.

For any n-dimensional vector space V, its dual space V* is defined to be the
vector .spa,ce of all linear functions on V. An element in V* is called a covector. If

e',i=1,...,n are a basis for V, then the set of linear functions e;,j = 1,...,n defined as:
ej(€) = 6; (6.11)

form a (dual) basis for the dual space V*. The pairing between V and its dual V* is
defined to be the bilinear map:

<> V*xV 5 R (6.12)
(& u) = (). (6.13)
If we use the coordinate vector ¢ = [1,...,an]T € R* to represent a covector & =

Z;=1 ajej € V¥, o5 € R, and similarly, u = [8y,. .., ,]7 € R to represent u = n L Biet €
V., Bi € R (note that we use column vector convention for both vectors and covectors), then

with respect to the chosen bases the pairing is given by:
<&u>=ETu.

For a linear transformation f : V' — V, its dual is defined to be the linear transformation

f* : V* = V* which preserves the pairing:
<u,f(v) >=< f*(u),v>, VYueV*veV. (6.14)
Let A € R**™ be the matrix representing f with respect to the basis e,i=1,...,n. Since:
<u,f(v) >=uTAv = (ATw)Ty, (6.15)

it follows that the dual f* is represented by AT with respect to the (dual) basis ej,j =

1,...,n.
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The invariants given in Corollary 6.2 are invariants of the vector space TE? = R3
under the action of the isotropy subgroup ASO(3)A~! (here we identify an element in
ASO(3)A~! with its differential map since everything is linear). As we know from above,
this group action induces a dual action on the dual space of TE?, denoted by T*E3. This
dual action can then be represented by the transpose group A~TS0O(3)AT since

(ARA™1)T = A"TRTAT ¢ A T50(3)AT

for all R € SO(3). We call invariants associated with this dual group action on the covectors

as coinvariants. Consequently we have:

Corollary 6.3 (Coinvariants of an Uncalibrated Camera). For the space E3 with the
metric ®'(-,-), a complete list of basic coinvariants of the isometry group G' consists of (1)
the induced inner product T AATn of two covectors £, € T*E3 and (2) the determinant
det(€1, &2, &3] of three covectors &,&5, €3 € TES.

Note that in the above we use the convention that vectors are enumerated by
superscript and covectors by subscript. One may also refer to Weyl [134] or Goodman and
Wallach [31] for a detailed study of polynomial invariants of classical groups — Corollary 6.2
and 6.3 can then be deduced from the First Fundamental Theorem of groups G C GL(V)
preserving a non-degenerate (symmetric) form (see [31]). Note that the induced inner
product on T*E? is given by the symmetric matrix S~! = AAT, the inverse of § = A-T AL
In terms of projective geometry, S and S—! define two conics dual to each other.

We next want to show that the so called absolute conic (or the dual absolute
conic) is actually a special invariant generated by inner product type invariants (or coinvari-
ants). In the projective geometry approach to camera self-calibration, the absolute conic
plays an important role. In order to give a rigorous definition of the absolute conic, we
need to introduce the space CPP3, the three dimensional complex projective space®. Let
P = [p1,p2,p3,p4]" € C* be the homogeneous representation of a point p in CP3. Then the
absolute conic, denoted by €, is defined to be the set of points in CP3 satisfying:

Pi+p3+p3=0, py=0 (6.16)

2CP? is the space of all one dimensional (complex) subspaces in C*, i.e., the quotient space C* / ~ where
the equivalence relation ~ is: [21, 22, 23, 24)T ~ [z-21,2 22,2 23,2 24)7 for all z # 0.
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Note that this set is invariant under the complex Euclidean group:
R T
E(3,C)={[ 0 1 |TGC3,RGU(3)} c x4 (6.17)

where U(3) is the space of all (complex) 3 x 3 unitary matrices. The special Euclidean group
SE(3) is just a subgroup of E(3,C) hence the absolute conic is invariant under SE(3) as

well.

For any p = [p1,p2, p3,pa]” € Q, suppose
pi=uj+ww; u;v;EeER j=1,....4 (6.18)

where ¢ = v/—1. Since u4 = v4 = 0, we obtain a pair of vectors u = [ul,uz,u3,0]T
and u = [vy,v2,v3,0]” of the 3 dimensional (real) Euclidean space E? (in homogeneous

representation). From (6.16), these two vectors satisfy:
wTu=12Ty, wTv=0 (6.19)

On the other hand, any pair of vectors u,v € TE® which satisfy the above conditions (i.e., u
and v are orthogonal to each other and have the same length) define a point on the absolute
conic ). Therefore, the absolute conic € is the same as the set of all pairs of such vectors.
Since all the inner product type quantities in (6.19) are invariant under the Euclidean group
SE(3), the absolute conic 2 is simply generated by these basic invariants.

In the uncalibrated camera case, if we let S = A=TA~! and p' = [p}, p}, p}, P4}T €

C*, the corresponding absolute conic (6.16) is then given by:

1,05, P5)S[P1, PhphlT =0, ph=0. (6.20)

Therefore, the camera self-calibration problem is also equivalent to the problem of recovering
this absolute conic (for example see Maybank [76]). It is direct to check that this absolute
conic is generated by basic invariants given in Corollary 6.2. Define the dual absolute conic
Q* to be the set of points in CP? satisfying:

1,95, P38 b, ph, P57 =0, py=0. (6.21)

Similarly, one can show that it is generated by the inner product type coinvariants given in
Corollary 6.3.
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6.3 Epipolar Constraint in the Uncalibrated Case

Before we can apply the invariant theory given in the previous section to the
problem of camera self-calibration, we first need to know what quantities we can directly
obtain from images and what type of geometric entities they are.

The epipolar (or Longuet-Higgins) constraint plays an important role in the study
of the geometry of calibrated cameras. In this section, we study its uncalibrated version.

From (6.6), for a point p’' € E® we have:

X'(t) = AR()A™IX (L) + T'(t) = T'(t) x X'(t) = T'(t) x AR(t)A™1X' (o)
= X'OTT')AR(E)A™X () = 0. (6.22)

Let x; € R® and x; € R® be images of p’ at time ¢y and ¢ respectively, i.e., there exist
A1, A2 > 0 such that A\;x; = X'(fp) and Agxo = X'(t). To simplify the notation, we
will drop the time dependence from the motion (AR(t)A~!,T"(t)) and simply denote it by
(ARA™1,T'). Then (6.22) yields:

x}T'"ARA™x, = 0. (6.23)
Note that in the above equation the matrix:
Fy =T'ARA™! e R¥3 (6.24)

is of particular interest - it contains useful information about camera intrinsic parameters
as well as the motion of camera.

Recall that the motion (ARA™!,T") in the uncalibrated space is equivalent to the
motion (R,T) in the calibrated space, with T = A~!7T". Also from (6.6), we have:

ATIX'(t) = ROATIX () + T(t) = T(t) x A™1X'(t) = T(t) x R(t) A1 X'(to)
= X')TATTEREAIX () =0 (6.25)

We then have a second form for the constraint given in (6.23):
x3 A"TTRA %, = 0. (6.26)
The matrix

Fo=A"TTRA™! cR¥3 (6.27)
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is called the fundamental matrix in the Computer Vision literature. When A = I, the
fundamental matrix simply becomes TR which is exactly the essential matrix F that we
have studied extensively in previous chapters. In fact, the two constraints (6.23) and (6.26)
are equivalent and they are both called the epipolar constraint for the uncalibrated case.

We prove this by showing that the two matrices F; and F5 are actually equal.

Lemma 6.4 (The Hat Operator). If T € R}, A € SL(3) and T' = AT, then T = ATT'A.

Proof: Since both ATGA and A/‘IT) are linear maps from R to R3*3, using
the fact that det(A) = 1, one may directly verify that these two linear maps are equal on
the bases: [1,0,0]7,[0,1,0]T or [0,0,1]7. -

This simple lemma will be frequently used throughout the paper. By this lemma,

we have:
Fy=A"TTRA™ = A TTA'ARA™' = T"ARA™! = F,. (6.28)

We then can denote F; and F, by the same notation F. Define the space of fundamental

matrices associated to A € SL(3) as:
F={ATTRA™' |Re SO(3),T e R}}. ~ (6.29)

The space F is also called fundamental space. Note that F = A~ T£A47!.

In the preceding section, we have shown that if two matrices A and B are in the
same equivalence class of SL(3)/SO(3), we are not able to tell them apart only from images.
We may assume B = ARy for some Ry € SO(3). Then with the same camera motion (R, T),

the fundamental matrix associated with B is:
B TTRB™' = A" TRy TRRY A~ = A"TRyT(RyRRT)A™L. (6.30)

As we noticed, the essential matrix TR is simply replaced by another essential matrix
EO\T(RORR%' )- Therefore, without knowing actual camera motion, only from the funda-

mental matrix, one cannot tell camera B from camera A.
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6.4 Geometric Characterization of the Space of Fundamental

Matrices

In this section, we give a geometric characterization of the space of fundamental
matrices. It will be shown that this space can be naturally identified with the cotangent
bundle of the matrix Lie group A~7SO(3)A7, therefore, fundamental matrices by their
nature can be viewed as covectors. This characterization is quite different from the conven-
tional way of characterizing fundamental matrices as a degenerate matrix which represents
the epipolar map between two image planes (for example see [62]), but it directly connects
a fundamental matrix with its related Kruppa’s equation, as we will soon see in Section 6.5.

We define a metric ¥(-,-) on the space R3*3 as:
¥(B,C) = tr(BSCT), VB,C e R¥*3 (6.31)

where S = A"TA~!, It is direct to check that so defined g is indeed a metric. This metric
may be used to identify the space R3*® with its dual (R3*3)* (the space of linear functions
on R3*3). In other words, under this identification, given a matrix B € R3*3, we may

identify it as a member in the dual space (R3*%)* through:
f . R3X3 N (R3X3)*
B — B*=9(B,-).
From the metric definition (6.31), B* can be represented in the matrix form as B* = BS

(with respect to the standard Euclidean metric on R®*3). Since S is non-degenerate, the

map f is an isomorphism and it induces a metric on the dual space as follows:
¥*(B*,C*) = ¥(B,C) = tr(B*S~(C*)T). (6.32)

A tangent vector of the Lie group A~TSO(3)AT has the form A-TTRAT ¢
R**# where R € SO(3) and T € R®. By restricting this metric to the tangent space
of A~TSO(3)AT, i.e., T(A~TSO(3)AT), the metric ¥ induces a metric on the Lie group
A~TSO(3)AT:

YA THRAT, ATH,RAT) = W(A™TT AT, A-TT, AT). (6.33)

The equality shows that this induced metric on the Lie group A"TSO(3)AT is right in-
variant.
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The cotangent vector corresponding to the tangent vector A~TTAT is given by:
(ATTRAT)* = A TTRATS = A-TTRAY. (6.34)

Note that the matrix A~TTRA~! is the exact form of a fundamental matrix. Therefore,
the space of all fundamental matrices can be identified with the cotangent space of the Lie

group A~TSO(3)AT, i.e., T*(A~TSO(3)AT). There is an induced metric on the cotangent

space:

V(A TRRAT, A THRA™) = W (T], T)) (6.35)

where T} = AT} and T; = AT. Since a fundamental matrix can only be determined up to
scale, we may consider the unit cotangent bundle T} (A-TSO(3)AT). Define the space of

unit fundamental matrices to be:
F1={A"TTRA™' | R € SO(3),T € R®, ¥*(AT, 4T) = 1}. (6.36)

The space F is also called unit fundamental space. The relation between the unit

fundamental space F; and the unit cotangent space T} (A~TSO(3)AT) is given by:

Theorem 6.5 (Geometric Characterization of Fundamental Space). The unit cotan-

gent space T (A~TSO(3)AT) is a double covering of the unit fundamental space JF.

The proof essentially follows from the fact that the unit tangent bundle T} (SO(3))
is a double covering of the normalized essential space £1, see Appendix A. For a fixed
matrix A € SL(3), the normalized fundamental space F is, same as &;, a five dimensional

connected compact manifold embedded in R3%3.

Comment 6.6. The identification of the fundamental space as the cotangent space of the
Lie group A~TSO(3) AT is only artificial. That is, these two spaces happen to have the same
matriz representation. Such an identification by no means implies that the translation T is

by nature a tangent vector of the rotation R.

After all the preparation in geometry, we are now ready to investigate possible
schemes for recovering the unknown calibration matrix A, or equivalently, the symmetric
matrix § = A"TA™L,
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6.5 Kruppa’s Equations

Without loss of generality, we may assume that both the rotation R and trans-
lation T' are non-trivial, i.e., R # I and T # 0 hence the epipolar constraint (6.23) is
not degenerate and the fundamental matrix can be estimated. The camera self-calibration
problem is then reduced to recovering the symmetric matrix S = A~TA-! or §~! = AAT
from fundamental matrices. In previous sections, we have shown that, even if we here
have chosen A to be an arbitrary element in SL(3), A can only be recovered up to a ro-
tation, i.e., as an element in the quotient space SL(3)/SO(3). Note that SL(3)/S0O(3) is
only a 5-dimensional space. From the fundamental matrix, the epipole vector p’ can be
directly computed (up to an arbitrary scale) as the null space of F. Givén a fundamental
matrix F = TPARA-!, its scale (usually denoted as )) is defined as the norm of T". If
A = |IT’|| = 1, such a F is called a normalized fundamental matrix.? For now, we
assume that the fundamental matrix F happens to be normalized.

Suppose the standard basis of R is e; = [1,0,0]7,e2 = [0,1,0]7,e3 = [0,0,1]T €
R®. Now pick any rotation matrix Ry € SO(3) such that RyT’ = e3. Using Lemma 6.4, we
have T/ = RT&Ry. Define matrix D € R3*3 to be:

D = RyF = §RyARA™! = [—ey,€;,0]" RyARA™. (6.37)

Then D has the form D = [£1,&2,0]7 with £;,& € R® being the first and second row vectors
of D. Hence we have £, = A"TRTAT(-RJe;), & = A"TRTATRTe,. Define vectors
m,me €ERS asyy = Rg‘el,ng = —Rg' es, then it is direct to check that S—1 satisfies:

87 =0l e, &S =TS m, £S5 =nTS n. (6.38)

We thus obtain three homogeneous constraints on the matrix S~!, the inverse of the matrix
S. These constraints can be used to compute S~! hence S.

The above derivation is based on the assumption that the fundamental matrix F
is normalized, i.e., ||7"|| = 1. However, since the epipolar constraint is homogeneous in the
fundamental matrix F, it can only be determined up to an arbitrary scale. Suppose A is
the length of the vector 7" € R® in F = T'ARA~!. Consequently, the vectors & and &5 are
also scaled by the same A\. Then the ratio between the left and right hand side quantities

in each equation of (6.38) is equal to A?. This gives two independent constraints on S1,

3Here || - || represents the standard 2-norm.
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the so called Kruppa’s equations (after its initial discovery by Kruppa in 1913):

A2 = €57 _g57' _ 5%
M8l nfS-lp  nTS-lp,

(6.39)

Alternative means of obtaining the Kruppa’s equations are by utilizing algebraic relation-
ships between projective geometric quantities [77] or via SVD characterization of F [35].'
Here we obtain the same equations from a quite different approach. Equation (6.39) further
reveals the geometric meaning of the Kruppa ratio: it is the square of the length of the
vector T' in the fundamental matrix F. This discovery turns out to be quite useful when
we later discuss the renormalization of Kruppa’s equations. In general, each fundamental
matrix provides at most two algebraic constraints on S~!, if the two equations in (6.39) are
independent. Since the symmetric matrix S has five degrees of freedom, in general at least
three fundamental matrices are needed to uniquely determine S. But, as we will soon see,

this is not the case for many special camera motions.

Comment 6.7. One must be aware that solving Kruppa’s equations for camera calibration
is not equivalent to the camera self-calibration problem in the sense that there may exist
solutions of Kruppa’s equations which are not solutions of a “valid” self-calibration. Given a
non-critical set of camera motions, the associated Kruppa’s equations do not necessarily give
enough constraints to solve for the calibration matriz A. See Section 6.5.3 for a complete

account.

The above derivation of Kruppa’s equations is straightforward, but the expression
(6.39) depends on a particular rotation matrix Ry that one chooses — note that the choice
of Ry is not unique. However, there is an even simpler way to get an equivalent expression
for the Kruppa’'s equations in a matrix form. Given a normalized fundamental matrix
F = T'ARA™Y, it is then straightforward to check that S~! = AAT must satisfy the

following equation:
FS™'FT = frg-1pT, (6.40)

We call this equation the normalized matrix Kruppa’s equation. It is readily seen
that this equation is equivalent to (6.38). If F' is not normalized (since usually we can only
estimate it up to a scale), we may always assume it is of the form F = AT'ARA™! with

[IT’ll =1 and A € R unknown. We then have the matrix Kruppa’s equation:

FS1FT = \2Prs— 1" (6.41)
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This equation is equivalent to the scalar version given by (6.39) and is independent of
the choice of the rotation matrix Ry. In fact, the matrix form reveals that the nature of
Kruppa’s equations is nothing but the inner product (co)invariants that we have studied

in Section 6.2.

6.5.1 Solving the Kruppa’s Equations

Algebraic properties of Kruppa’s equations have been extensively studied (see e.g.
[77, 138]). However, conditions on dependency among Kruppa’s equations obtained from
the fundamental matrix have not been fully discovered. Therefore it is hard to tell in prac-
tice whether a given set of Kruppa’s equations suffice to guarantee a unique solution for
calibration. As we will soon see in this section, for very rich classes of camera motions
which commonly occur in many practical applications, the Kruppa’s equations will become
degenerate. Moreover, since the Kruppa’s equations (6.39) or (6.41) are highly nonlinear in
S~1, most self-calibration algorithms based on directly solving these equations suffer from
being computationally expensive or having multiple local minima [7, 64]. These reasons
have motivated us to study the geometric nature of Kruppa’s equations in order to gain a
better understanding of the difficulties commonly encountered in camera self-calibration.
Our attempt to resolve these difficulties will lead to simplified algorithms for self-calibration.
These algorithms are linear and better conditioned for these special classes of camera mo-
tions.

Given a fundamental matrix F = T'"ARA~! with P’ of unit length, the normalized

matrix Kruppa'’s equation (6.40) can be rewritten in the following way:
TI(S~1 — ARATIS 1A TRTAT)T —o. (6.42)

According to this form, if we define C = ARA™!, a linear (Lyapunov) map o : R3%3 — R3%3
aso:X — X —CXCT, and a linear map 7 : R3*3 5 R3*3 a5 7: Y s f’Yf’T, then the

solution S~! of equation (6.42) is exactly the (symmetric real) kernel of the composition

map:
Too: R I, R3x8 T, R3x3, (6.43)

This interpretation of Kruppa’s equations clearly decomposes effects of the rotational and

translational parts of the motion: if there is no translation i.e., p = 0, then there is no map
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7; if the translation is non-zero, the kernel is enlarged due to the composition with map
7. In general, the symmetric real kernel of the composition map 7 o o is 3 dimensional —
while the kernel of o is only 2 dimensional as we will prove below. The solutions for the
unnormalized Kruppa’s equations are even more complicated due to the unknown scale ).

However, we have the following lemma to simplify things a little bit.

Lemma 6.8. Given a fundaemental matriz F = T'ARA™! with T' = AT, a real symmetric
matriz X € B*3 is o solution of FXFT = XT'XT" if and only if ¥ = A-'X AT is a
solution of EY ET = X2 TYTT with E = TR.

Using Lemma 6.4, the proof of this lemma is simply algebraic. This simple lemma,
however, states a very important fact: given a set of fundamental matrices F; = ﬁ’AR,-A"l
with T = AT;,i = 1,...,m, there is a one-to-one correspondence between the set of

solutions of the equations:

EXFT = XTIXT", i=1,...,m. (6.44)
and the set of solutions of the equations:

EYET = NTYTT, i=1,...,m (6.45)

where E; = f’,-R,- are essential matrices associated to the given fundamental matrices. Note
that these essential matrices are determined only by the camera motion. Therefore, the
conditions of uniqueness of the solution of Kruppa’s equations only depend on the camera
motion. Our next task is then to study how the solutions of Kruppa’s equations depend on

the camera motion.

6.5.2 Renormalization and Degeneracy of Kruppa’s Equations

From the derivation of the Kruppa’s equations (6.39) or (6.41), we observe that
the reason why they are nonlinear is that we do not usually know the scale A. It is then
helpful to know under what conditions the matrix Kruppa’s equation will have the same
solutions as the normalized one, i.e., with A set to 1. Here we will study two special
cases for which we are able to know directly what the missing A is. The fundamental
matrix can then be renormalized and we can therefore solve the camera calibration from
the normalized matrix Kruppa’s equations, which are linear! These two cases are when

the rotation axis is parallel or perpendicular to the translation. That is, if the motion is
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represented by (R,T) € SE(3) and the unit vector u € R is the axis of R,* then the two
cases are when u is parallel or perpendicular to 7. As we will soon see, these two cases are
of great theoretical importance: Not only does the calibration algorithm become linear, but
it also reveals certain subtleties of the Kruppa'’s equations and explains when the nonlinear

Kruppa’s equations are most likely to become ill-conditioned.

Lemma 6.9. Consider o camera motion (R,T) € SE(3) where R = ¢%, 6 € (0,7) and
the azis u € R® is parallel or perpendicular to T. If v € R and positive definite matriz
Y are a solution to the matriz Kruppa’s equation: TRYRTTT = 72foT associated to
the essential matriz fR, then we must have v*> = 1. Consequently, Y is a solution of the
normalized matriz Kruppa’s equation: TRY RTTT = TYTT.

Proof: Without loss of generality we assume ||T'|| = 1. For the parallel case, let
z € R3 be a vector of unit length in the plane spanned by the row vectors of T. All such z
lie on a unit circle. There exists 2o € R® on the circle such that zJ ¥ z¢ is maximum. We
then have =¥ RY RTz¢ = v2xT Y o, hence 42 < 1. Similarly, if we pick zo such that z3 Yz
is minimum, we have 42 > 1. Therefore, ¥> = 1. For the perpendicular case, since the rows
of T span the subspace which is perpendicular to the vector T, the eigenvector u of R is in
this subspace. Thus we have: u" RY RTu = y2uTYu = vTYu = y2uTYu. Hence 42 = 1 if

Y is positive definite. m

Combining Lemma 6.9 and Lemma 6.8, we immediately have:

Theorem 6.10 (Kruppa’s Equation Renormalization). Consider an unnormalized
fundamental matric F = T'"ARA~! where R = e®, 0 € (0,7) and the azis u € B3 is
parallel or perpendicular to T = A™'T'. Let e = T'/||T'||. Then if A € R and a positive
definite matriz S are a solution to the matriz Kruppa’s equation: FS—'FT = \2g5-1¢T,

we must have A2 = ||T'||2.

This theorem claims that, for the two types of special motions considered here,
there is no solution for A in the Kruppa’s equation (6.41) besides the true scale of the
fundamental matrix. Hence we can decompose the problem into finding A first and then
solving for S or S~!. The following theorem allows to directly compute the scale X for a

given fundamental matrix:

“R can always be written of the form R = e® for some 0 € [0,7] and u € S2.
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Theorem 6.11 (Fundamental Matrix Renormalization). Given an unnormalized fun-
damental matriz F = XT"ARA-! with IT'|| = 1, if T = A=YT" is parallel to the azis of R,
then A2 is IIFTT\’F l, and if T is perpendicular to the azis of R, then X is one of the two

non-zero eigenvalues of FTT'.

Proof:  First we prove the parallel case. It is straightforward to check tHat, in
general, FTT'F = X2ARTT. Since the axis of R is parallel to T, we have RTT = T so that
FTT'F = X2T". For the perpendicular case, let u € R? be the axis of R. By assumption
T = A7IT' is perpendicular to u. Then there exists v € R® such that u = TA~ly. Then it

is direct to check that T'v is the eigenvector of FTT corresponding to the eigenvalue \. =

Then for these two types of special motions, the associated fundamental matrix can
be immediately normalized by being divided by the scale A. Once the fundamental matrices
are normalized, the problem of finding the calibration matrix S~! from normalized matrix
Kruppa's equations (6.40) becomes a simple linear one! A normalized matrix Kruppa’s
equation in general imposes three linearly independent constraints given by (6.38) on the
unknown calibration. However, this is no longer the case for the special motions that we

are considering here.

Theorem 6.12 (Degeneracy of Kruppa’s Equations). Let us consider the camera
motion (R,T) € SE(3) where R = ¢* has the angle 6 € (0,7). If the azis u € R® is parallel
or perpendicular to T, then the normalized matriz Kruppa’s equation: TRYRTTT = TYTT

imposes only 2 linearly independent constraints on the symmetric matriz Y.

Proof:  For the parallel case, by restricting Y to the plane spanned by the row
vectors of T, it is a symmetric matrix ¥ in R2*2. The rotation matrix R € SO(3) restricted
to this plane is a rotation R € SO(2). The normalized matrix Kruppa's equation is then
equivalent to RYRT = ¥. Since 0 < 0 < m, this equation imposes exactly 2 constraints
on the 3 dimensional space of 2 x 2 real symmetric matrices. The identity Ix2 is the only
solution. Hence the normalized Kruppa’s equation imposes exactly 2 linearly independent
constraints on Y.

For the perpendicular case, since u in the plane spanned by the row vectors of
T, there exist v € R3 such that (u,v) form an orthonormal basis of the plane. Then the

normalized matrix Kruppa’s equation is equivalent to:

TRYRTTT =TYTT & (u,v)TRYRT(1,) = (u,v)TY (u, ). (6.46)
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Since RTu = u, the above matrix equation is equivalent to two equations v RYu =
vTYu,vTRYRTv = vTYv. These are the only two constraints given by the normalized

matrix Kruppa’s equation. »

According to this theorem, although we can renormalize the fundamental matrix
when rotation axis and translation are parallel or perpendicular, we only get two inde-
pendent constraints from the resulting (normalized) Kruppa’s equation corresponding to a
single fundamental matrix. Hence for these motions, in general, we still need 3 such funda-
mental matrices to uniquely determine the unknown calibration. On the other hand, if we
do not renormalize the fundamental matrix in these cases and directly use the unnormalized
Kruppa’s equations (6.39) to solve for calibration, the two nonlinear equations in (6.39) are
in fact algebraically dependent! Therefore, one can only get one constraint, as opposed to

the expected two, on the unknown calibration S~!. This is summarized in Table 6.1.

Table 6.1: Dependency of Kruppa’s equation on angle ¢ € [0, 7) between the rotation and
translation.

Cases Type of Constraints # of Constraints on S~!
Unnormalized Kruppa’s Equation 2
z
(¢ #0) and (¢ # 2) Normalized Kruppa’s Equation 3
Unnormalized Kruppa’s Equation 1
- =T
(¢=0) or ($=3) Normalized Kruppa’s Equation 2

Although, mathematically, motion involving translation either parallel or perpen-
dicular to the rotation is only a zero-measure subset of SE(3), they are very commonly
encountered in applications: most images sequences are in fact taken by moving the cam-
era around an object in a planar or orbital trajectory, in which case the rotation axis and
translation direction are likely perpendicular to each other. Another example is a so called
screw motion, whose rotation axis and translation are parallel. Such a motion shows up
frequently in aerial mobile motion. This observation may explain why self-calibration based
on directly solving the Kruppa’s equations (6.39) is likely to be ill-conditioned when being
applied to real image sequences taken under such motions [7]. To intuitively demonstrate
the practical significance of our results, we give an example in Figure 6.1. Our analysis re-
veals that in these cases, it is crucial to renormalize the Kruppa’s equation using Theorem
6.12: once the fundamental matrix or Kruppa’s equations are renormalized, not only is one

more constraint recovered, but we also obtain linear (normalized) Kruppa’s equations.
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Figure 6.1: Two consecutive orbital motions: even if pairwise fundamental matrices among
the three views are considered, one only gets at most 1 + 1 + 2 = 4 effective constraints on
the camera intrinsic matrix if the three matrix Kruppa’s equations are not renormalized.
After renormalization, however, we may get back to 2 + 2 + 2 > 5 constraints.

Comment 6.13 (Special Motion Sequences). Interestingly, for a walking human look-
ing forward, the main rotation of the eyes and the head is yaw and pitch whose azes are
perpendicular to the direction of walking. As the theorem suggests, self-calibration in this
situation is linear hence more robust to noise. Similar cases can also often be found in
vision-guided navigation systems, on-board planar mobile robots. The screw motion, on
the other hand, shows up very frequently in motion of aerial mobile robots such as an au-

tonomous helicopter.

Comment 6.14 (Solutions of the Normalized Kruppa’s Equations). Claims of The-
orem 6.12 run contrary to the claims of Propositions B.5 hence B.9 in [138]: In Proposition
B.5 of [138], it is claimed that the solutions of the normalized Kruppa’s equations when the
translation is parallel or perpendicular to the rotation azis are 2 or 3 dimensional. In The-
orem 6.12, we claim that the solutions are always 4 dimensional. Theorem 6.12 does not
cover the case when the rotation angle 6 is m. However, if one allows the rotation to be
m, the solutions of normalized Kruppa’s equations are even more complicated. For ezam-
ple, we know T = —ea:planationf if u is of unit length and parallel to T (see Lemma
8.1). Therefore, if R = €®", the corresponding normalized Kruppa’s equation is completely

degenerate and imposes no constraints at all on the calibration matriz.

Comment 6.15 (Number of Solutions). Although Theorem 6.11 claims that for the

perpendicular case X is one of the two non-zero eigenvalues of FTT , unfortunately, there
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is no way to tell which one is the right one - simulations show that it could be either the
larger or smaller one. Therefore, in a numerical algorithm, for given n > 3 fundamental
mairices, one needs to consider all possible 2" combinations. According to Theorem 6.10,
in the noise-free case, only one of the solutions can be positive definite, which corresponds

to the the true calibration.

6.5.3 Kruppa’s Equations and Chirality

It is well known that if the scene is rich enough (with to come), then the necessary
and sufficient condition for a unique camera calibration (see [66]) says that two general
motions with rotation along different axes already determine a unique Euclidean solution
for camera motion, calibration and scene structure. However, the two Kruppa’s equations
obtained from these two motions will only give us at most four constraints on S, which is
not enough to determine S which is of five degrees of freedom. We hence need to know
what information is missing from the Kruppa’s equation. State alternatively, can we get
other independent constraints on S from the fundamental matrix?

The proof of Theorem 6.11 suggests another equation can be derived from the
fundamental matrix F = \T'ARA~! with IT'| = 1. Since FTT'F = ,\ZZET\T, we can
obtain the vector @ = AM2ARTT = A2ARTA-'T’. Then it is obvious that the following
equation for S = AT A~ holds:

oTSa = NT7TST'. (6.47)

Notice that this is a constraint on S, not like the Kruppa’s equations which are constraints

on S~1. Combining the Kruppa’s equations given in (6.39) with (6.47) we have:

2 87 _ g5 (5% _ [ dfSa
A= g = To-1, — 791, ~ \ 7Tom (6.48)
78 ne miS7lm  np{S-lpy T+ 8T

Is the last equation algebraically independent of the two Kruppa’s equations? Although it

seems to be quite different from the Kruppa’s equations, it is in fact dependent on them,
which can be shown either numerically or using simple algebraic tools such as Maple. Thus,
it appears that our effort to look for more independent constraints from the fundamental
matrix has failed. In the following, we will give an explanation to this by showing that not
all S which satisfy the Kruppa’s equations may give valid Euclidean reconstructions of both

the camera motion and scene structure. The extra constraints which are missing in Kruppa'’s



143

equations are in fact captured by the so called chirality criteria, which was previously studied
in [37]. We now give a clear and concise description between the relationship of the Kruppa’s

equations and chirality.

Theorem 6.16 (Kruppa’s Equations and Chirality). Consider a camera with calibra-.
tion matriz I and motion (R,T). If T # 0, among all the solutions Y = A~1A~T bf the
Kruppa’s equation EYET = XNTYTT associated to E = fR, only those which guarantee
ARA™! € SO(3) may provide a valid Euclidean reconstruction of both camera motion
and scene structure in the sense that any other solution pushes some plane N C R3 to the

plane at infinity, and feature points on different sides of the plane N have different signs in

recovered depth.

Proof: The images x2,x; of any point p € R? satisfy the coordinates transfor-

mation:
Aoxs = \1Rx; + 7.

If there exists Y = A~1A~7 such that EYET = A2TYTT for some A € R, then the matrix
F =ATEA™' = T"ARA™! is also an essential matrix where T' = AT, that is, there exists
R € SO(3) such that F = T'R (see [76] for an account of properties of essential matrices).

Under the new calibration A, the coordinate transformation is in fact:
MAxy = /\1ARA-1(AX1) + T

Since F = T"R = T"ARA™!, we have ARA~! = R+T"T for some v € R®. Then the above
equation becomes: ApAxy = A\ R(Ax;) + M\ T'vT (Ax;) + T'. Let 8 = AT (4Ax;) € R, we

can further rewrite the equation as:
AoAxy = M RAx) + (B +1)T". (6.49)

Nonetheless, with respect to the solution A, the reconstructed images Ax;, Ax; and (R, T")
must also satisfy:

')'2AX2 = ')’1RAX1 +7T (6.50)

for some scale factors 7,72 € R. Now we prove by contradiction that v # 0 is impossible
for a valid Euclidean reconstruction. Suppose that v # 0 and we define the plane N = {pe
R3|vTp = —1}. Then for any point p = A\;Ax; € N, we have 8 = —1. Hence, from (6.49),
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Ax,, Ax, satisfy ApAxs = A} RAx;. Since Ax;, Ax; also satisfy (6.50) and T” # 0, both v,
and 2 in (6.50) must be oco. That is, the plane N is “pushed” to the plane at infinity by
the solution A. For points not on the plane N, we have 8 + 1 # 0. Comparing the two
equations (6.49) and (6.50), we get v; = A;/(8 +1),i = 1,2. Then for a point in the far
side of the plane N, i.e., 8+ 1 < 0, the recovered depth scale v is negative; for a point in
the near side of N, i.e., 4+ 1 > 0, the recovered depth scale v is positive. Thus, we must

have that v = 0. =

Comment 6.17. Theorem 6.16 essentially implies the chirality constraints studied in [37].
According to the above theorem, if only finite many feature points are measured, a solution
of the calibration matriz A which may allow e valid Euclidean reconstruction should induce
a plane N not cutting through the convez hull spanned by all the feature points and camera

centers.

As we will soon show in next section that, in general, all A’s which make ARA™!
a rotation matrix form a one parameter family. Consequently, there is only one A such that
both AR;A~! and ARyA™! are rotation matrices if R; and R, are two rotation matrices
with independent rotation axes. Theorem 6.16 then implies that the calibration matrix
A can be uniguely determined with two independent rotations regardless of translation if
enough feature points are available. An intuitive example is provided in Figure 6.2.

The significance of Theorem 6.16 is that it explains why we get only two constraints
from one fundamental matrix even in the two special cases when the Kruppa’s equations
can be renormalized - extra ones are imposed by the structure, not the motion. The
theorem also resolves the discrepancy between the Kruppa’s equations and the necessary and
sufficient condition for a unique calibration: the Kruppa’s equations, although convenient
to use, do not provide sufficient conditions for a valid calibration which allows a valid
Euclidean reconstruction of both the camera motion and scene structure. However, the
fact given in Theorem 6.16 is somewhat difficult to harness in algorithms. For example,
in order to exclude invalid solutions, one needs feature points on or beyond the plane N.5
Alternatively, if such feature points are not available, one may first obtain a projective
reconstruction and use the so called absolute quadric constraints [115] to calibrate

the camera. However, in such a method, the camera motions cannot be critical in the

SSome possible ways of harnessing the constraints provided by chirality have been discussed in [37).
Basically they give inequality constraints on the possible solutions of the calibration.
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Figure 6.2: A camera undergoes two motions (R;,T}) and (Rp,T5) observing a rig given
by the three lines L,, Ly, L3. Then the camera calibration is uniquely determined as long
as Ry and R; have independent rotation axes and rotation angles in (0, ), regardless of
T1,T>. This is because, for any invalid solution A, the associated plane N (see the proof of
Theorem 6.16) must intersect the three lines at some point, say p. Then the reconstructed
depth of point p with respect to the solution A would be infinite (points beyond the plane
N would have negative recovered depth). This gives us a criteria to exclude all such invalid
solutions. '

sense specified in [104], which is obviously a more strict condition than requiring only two

independent rotations.

6.5.4 Necessary and Sufficient Condition for Unique Calibration

In this section, we establish in detail the conditions of A under which the matrix
ARA™! is also a rotation matrix given that R is a rotation matrix. Let us suppose ARA™!

is a rotation matrix. We then have:
ARA™TY(ATRTAT)=1 & RXRT=X (6.51)

where X = A7'A~T is a positive definite matrix. Thus X has to be in the symmetric

real kernel of the Lyapunov map:
L:O% o ¢
X ~ X-RXRT. (6.52)

We will denote this kernel as SRKer(L). According to Callier and Desoer [11], the map
L has eigenvalues 1 — )\i)\;, 1 <4,5 <3 where A\;,i = 1,2,3 are eigenvalues of the matrix
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R. Without loss of generality, the rotation matrix R has eigenvalues 1,a,& € C and

corresponding fight eigenvectors u, v, € C3. Then the (complex) kernel of L is given by:
Ker(L) = span{X; =uu*, Xy =w* X3 =05"} cC>3 (6.53)

where, for a vector v € C3, 7 is its conjugate and v* is its conjugate transpose. We a38ume’
here R is neither the identity matrix I or a 180° rotation, i.e., R is not of the form %"
for some k € Z and some u € R® of unit length. Then only X, is real and X, = X;
are complex, and L has a three dimensional real kernel but one dimension is spanned by
#(X2 — X3) which is skew-symmetric (here i = /=1). Therefore, the solution space for a
symmetric real X is 2 dimensional and must have the form X = 8X; + y(X2 + X3) with

B,7 € R. Summarizing the above we obtain:

Lemma 6.18. Given a rotation matriz R not of the form e®7 for some k € Z and some
u € R? of unit length, the symmetric real kernel associated with the Lyapunovmap L : X —
X — RXRT is 2 dimensional. If R is of the form e®*7, then SRK er(L) is 4 dimensional if

k is odd and 6 dimensional if k is even.

Note that the case when the rotation is 180° has little practical significance in real
situations, since no image correspondences are available in this case. Thus, from now on we
may assume that all rotations that we consider for the camera self-calibration problem are
strictly less than 180° unless otherwise stated.

Suppose now we have m rotation matrices R;,i = 1,...,m. For AR;A™1 to be
rotation matrices, X = A7'A~7 has to be in the intersection of symmetric real kernels of

all the linear maps:

L; : C3*3 o (C8%3, i=1,...,m
X - X-RXRT. (6.54)

That is X € N2, SRKer(L;).

Theorem 6.19 (Necessary & Sufficient Condition for Unique Calibration). Sup-
pose the camera motion is given by a subset {(R;,T;)}™, C SE(3) with R; are not of the
form €% for some k € Z and some u € R3 of unit length. Then the camera calibration ma-
triz A can be uniquely determined if and only if there are at least two rotation components

R; and R; whose azes are linearly independent.
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Proof: Theorem 6.16 allows us to check that, if A is a valid camera calibration,
then AR;A™! has to be a rotation matrix for each R;. The necessity is obvious: if two
rotation matrices R; and Ry have the same axis, they have the same eigenvectors hence
SRKer(L;) = SRKer(L;) where L; : X — X — R,-XR,T,i = 1,2. We now only need to
prove the sufficiency. We may assume u; and us are the two rotation axes of R; and Ry
respectively and are linearly independent. Since, by assumption, both R; and R, considered
are not 180° rotation, both SRKer(L;) and SRKer(L,) are 2 dimensional. Since u; and
up are linearly independent, the matrices uju] and upul are linearly independent and
are in SRKer(L;) and SRKer(L3) respectively. Thus SRKer(L;) is not fully contained in
SRKer(L2) hence their intersection SRKer(L;) N\SRKer(Ly) has at most 1 dimension. Thus
X =1for X € SL(3). [

It is well know many motion subgroups of SE(3), though of practical importance,
do not have rotation along two independent axes. For example, the planar motion and
screw motion. According to the theorem, if the motion of the camera falls into such a
motion group, unique self-calibration is impossible. A more detailed analysis will be given
in Chapter 7 about to what extend we can still recover camera calibration, motion and
scene structure with respect to each Lie subgroup of SE(3).

Although it has little practical importance, in order to make the theory complete,
we also give the results of self-calibration in presence of rotation of 180° (for simplicity,
we here do not give the proof). Combined with Theorem 6.19, they give conditions for a

unique calibration in more general cases.

Remark 6.20. Suppose R; = e%% i = 1,2 are elements in SO(3). u; are vectors of unit
length. Let L; be the Lyapunov map associated to R;. Then we have the following cases:

ulug =0, || =] =7 = SRKer(Ly) N SRKer(L2) = span{I, wyul, upul},

(
= SRKer(L;) N SRKer(Ls) = span{I, Gau u? Gp},
wug =0, 01| =7, 0< 6] <7 = SRKer(Li)N SRKer(Ls) = span{I,upul},
= SRKer(L1) N SRKer(L2) = span{I}.

0< [uTupl < 1,161 = 0) =

0< |ufus| < 1,|0 =7,0< |62] <

6.6 Continuous Case

So far, we have understood camera self-calibration when the motion of the camera

is discrete ~ positions of the camera are specified as discrete points in SE(3). In this section,
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we study its continuous version. Suppose the coordinates of a point p € [E* under the camera
velocities (w(t),v(t)) is X(t). Let X'(t) = AX(t) be the coordinates in the uncalibrated
space. From (2.13), we directly have:

X/(t) = Aw(t) A 1X () + Ao(2). (6:55).

For simplicity, we will drop the time dependence and define two new vectors v/ = Av € R3
and o' = Aw € R3.

6.6.1 General Motion Case

By the general case we mean that both the angular and linear velocities w and v

are non-zero. Note that X = Ax yields X = Ax + Ax. Then (6.55) gives:

X=A0A7X+v = (0 +x)xX=('+x)x 404"1X

= %XTA T4 %+ xTA TovA 1x = 0. (6.56)

The last equation is called the uncalibrated continuous epipolar constraint, which
is apparently the uncalibrated version of (3.15). As the calibrated case, define the optical
flow u = x and the special symmetric matrix s = %(556+ vw). Define the continuous
fundamental matrix F' € R6*3 to be:
, A T541
F'= . (6.57)
A Tsp-1
Then from (6.56) we have an equivalent expression of the uncalibrated continuous epipolar

constraint:
[T, xT)F'x =0 (6.58)

F' can therefore be estimated from as few as eight optical flows (x,%) from (6.56).
Note that o/ = A~T54~! and o’ = A-TGA™L. Applying Lemma 6.4 repeatedly,
we obtain

(ATGATS + T ADA™Y) = %(5,5-1;, +98715). (6.59)

A Tgp"1 =

NI =

Then the uncalibrated continuous epipolar constraint (6.56) is equivalent to:

KToix + xT%(J's-lz? + 7S 10)x =0, (6.60)
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Suppose S~! = BBT for another B € SL(3), then A = BRy for some Ry € SO(3). We

have:
- 1 -~ -~ ~ Eal
xTv'x + xTE(w’S‘lv’ +v'S7lw)x =0

& xTux+ xT%(J’BBT{f' +vBBTw)x =0

& xTBTRywB x +xTBTRywRwB 'x = 0. (6.61)
Comparing to (6.56), one cannot tell the camera A with motion (w,v) from the camera B
with motion (Row, Rov). Thus, like the discrete case, without knowing the camera motion
the calibration can only be recovered in the space SL(3)/SO(3), i.e., only the symmetric
matrix S~! hence S can be recovered.

However, unlike the discrete case, the matrix S cannot be fully recovered in the

continuous case. Since S~! = AAT is a symmetric matrix, it can be diagonalized as:
S~'=RTER), R, € S0(3) (6.62)

where ¥ = diag{o1,09,03}. Then let w” = Rjw' and v" = Ryv'. Applying Lemma 6.4, we

have:
v = RTY'R,
%(5’5‘117+1?S‘1u7) = R{%(Zﬁzﬁwzﬁ'zﬁ)}zl. (6.63)

Thus the continuous epipolar constraint (6.56) is also equivalent to:
(Rix)To"(Byx) + (Rlx)T%(Jﬁzz?' + IS (Ryx) = 0. (6.64)

From this equation, one can see that there is no way to tell a camera A with AAT = RTSR,
from a camera B = R A. Therefore, only the diagonal matrix & can be recovered as camera
parameters since both the scene structure and camera motion are unknown.

Note that ¥ is in SL(3) hence 010303 = 1. The singular values only have two

degrees of freedom. Hence we have:

Theorem 6.21 (Self-Calibration in Continuous Case). Consider an uncalibrated cam-
ere with an unknown calibration matriz A € SL(3). Then only the eigenvalues of AAT can

be recovered from the uncalibrated continuous epipolar constraint.
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If we define that two matrices in SL(3) are equivalent if and only if they have the
same singular values. The intrinsic parameter space is then reduced to the space SL(3)/ ~
where ~ represents this equivalence relation. The fact that only two camera parameters can
be recovered was known to Brooks et al. [9]. They have also shown how to do calibration
for certain matrices A with only two unknown parameters. But our proof has been -much

more simpler due to the use of Lemma 6.4.

Comment 6.22. It is a little surprising to see that the discrete and continuous cases are
different for the first time, especially knowing that in the calibrated case these two cases
have almost ezactly parallel sets of theory and algorithms. We believe that this has to do

with the map:

4 R3x3 - R3X3

X —» AxAT

where A is an arbitrary matriz in R3*3. Let so(3) be the Lie algebra of SO(3). The
restricted map Y4 |so(3) 15 an endomorphism while y4 |so(s) s not. Consider v, |so(3) to
be the first order approzimation of y4 | so(@3)- Then the information about the calibration
mairiz A does not fully show up until the second order term of the map y4. This also
somehow ezplains why in the discrete case the (Kruppa) constraints that we can get for A

are in general nonlinear.

Comment 6.23. From the above discussion, if one only uses the (bilinear) continuous
epipolar constraint, at most two intrinsic parameters of the calibration matriz A can be
recovered. However, it is still possible that the full information about A can be recovered
from multilinear constraints on the higher order derivatives of optical flow. A complete list

of such constraints has been given in Chapter 5.

6.6.2 Pure Rotation Case

Since full calibration is not possible in the general case when translation is present,
we need to know if it is possible in some special case. The only case left is when there is
only rotational motion, i.e., the linear velocity v is always zero. In this case the continuous

fundamental matrix is no longer well defined. However from the equation (6.55) we have:
X=ABAT'X = Jx+Xik=ADAx

= Xx=RAGA x. (6.65)
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This is a degenerate version of the continuous epipolar constraint and it gives two in-
dependent constraints on the matrix AGA~! for each (x,%). Given n > 4 optical flow

measurements {(x;,%;)}{.,, one may uniquely determine the matrix AGA~! by solving a

linear equation:

Mc=b (6.66)

where M € R**? is a matrix function of {(x;, %;)}%,, b € R? is a vector function of X;%;’s

and ¢ € R? is the 9 entries of ADA™!. The solution is given by the following lemma:

Lemma 6.24. Ifw # 0, then AWA™" = C— I where C € R**3 is the matriz corresponding

to the least square solution c of the equation Mc = b and v is the unique real eigenvalue of

C.

The proof is straightforward. Then the self-calibration problem becomes how to
recover S = A"TA~! or §~! = AAT from matrices of the form ADA~!. Without loss of
generality, we may assume w is of unit length.

Let C' = AwA~! € R3*3, Then we have:

SC' = A" THA = o (6.67)

where w' = Aw. Thus SC' = —(SC")7, i.e., SC' + (C")TS = 0. That is, S has to be in the
kernel of the Lyapunov map:
L e o 9
X = &)X +xC (6.68)
If w # 0, the eigenvalues of & have the form 0,ic, —ia with o € R. Let the corresponding

eigenvectors are w,u,@ € C3. According to Callier and Desoer [11], the null space of the

map L' has three dimensions and is given by:
Ker(L') = span{S; = A Tww* 47,8 = A Tuu* A", 53 = A Taa*A"!}.  (6.69)

As in the discrete case, the symmetric real S is of the form S = B8S; + (S; + S3), i.e., the
symmetric real kernel of L' is only two dimensional. We denote this space as SRKer(L').
We thus have:

Lemma 6.25. Given a matriz C' = ABA™! with w € S?, the symmetric real kernel asso-
ciated with the Lyapunov map L' : (C)TX — XC' is 2 dimensional.
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Similar to the discrete case we have:

Theorem 6.26. Given matrices C; = AG;A™! € B33, j = 1,...,n with |wj|| = 1. The
real symmetric matriz S = A~TA™! € SL(3) is uniquely determined if and only if at least

two of the n vectors wj,j = 1,...,n are linearly independent.

6.7 Simulation Results

In this section, we test the performance of the proposed algorithms through dif-
ferent experiments. The error measure between the actual calibration matrix A and the

estimated calibration matrix A was chosen to be:

|4 - Al
error = ——— x 100%
HAI

Table 6.2 shows the simulation parameters used in the experiments.® The calibration

Table 6.2: Simulation parameters

Parameter Unit | Value ]
Number of trials 100
Number of points 20
Number of frames 3-4
Field of view degrees 90
Depth variation u.fl 100 - 400
Image size pixels | 500 x 500

matrix A is simply the transformation from the original 2 x 2 (in unit of focal length) image

to the 500 x 500 pixel image. For these parameters, the true A should be:

250 0 250
A= 0 250 250
0 0 1

The ratio of the magnitude of translation and rotation, or simply the T'/ R ratio, is compared
at the center of the random cloud (scattered in the truncated pyramid specified by the given
field of view and depth variation). For all simulations, the number of trials is 100.

In the following, we only simulate the three cases which have linear calibration

algorithms: pure rotation case, and the two cases when the translation is perpendicular or
®u.fl. stands for unit of focal length.
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parallel to the rotation axe. Although I do not outline the algorithms here, they are evident
from corresponding sections. '

Pure rotation case: Figures 6.3, 6.4 and 6.5 show the experiments performed in the
pure rotation case. The axes of rotation are X and Y for Figures 6.3 and 6.5, and X and
Z for Figure 6.4. The amount of rotation is 20°. The perfect data was corrupted with
zero-mean Gaussian noise with standard deviation o varying from 0 to 5 pixels. In Figures
6.3 and 6.4 it can be observed that the algorithm performs very well in the presence of
noise, reaching errors of less than 6% for a noise level of 5 pixels. Figure 6.5 shows the
effect of the amount of translation. This experiment is aimed to test the robustness of the
pure rotation algorithm with respect to translation. The T'/R ratio was varied from 0 to
0.5 and the noise level was set to 2 pixels. It can be observed that the algorithm is not

robust with respect to the amount of translation.
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Figure 6.3: Pure rotation al- Figure 6.4: Pure rotation al-
gorithm. Rotation axes X-Y. gorithm. Rotation axes X-Z.

Translation parallel to rotation axis: Figures 6.6 and 6.7 show the experiments per-
formed when translation is parallel to the axis of rotation.” The non-isotropic normalization
procedure proposed by Hartley [35] and statistically justified by Miihlich and Mester [82]
was used to estimate the fundamental matrix. Figure 6.6 shows the effect of noise in the
estimation of the calibration matrix for T/R = 1 and a rotation of § = 20° between consec-
utive frames. It can be seen that the normalization procedure improves the estimation of

the calibration matrix, but the improvement is not significant. This result is consistent with

"For specifying the Rotation/Translation axes, we simply use symbols such as “XY-YY-ZZ” which
means: for the first pair of images the relative motion is rotation along X and translation along Y'; for the
second pair both rotation and translation are along Y; and for the third pair both rotation and translation
are along Z.
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Figure 6.5: Rotation axes X-Y, o = 2.

that of [82], since the effect of normalization is more important for large noise levels. On
the other hand, the performance of the algorithm is not as good as that of the pure rotation
case, but still an error of 5% is reached for a noise level of 2 pixels. Figure 6.7 shows the
effect of the angle of rotation in the estimation of the calibration matrix for a noise level of
2 pixels. It can be concluded that a minimum angle of rotation between consecutive frames

is required for the algorithm to succeed.
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Figure 6.6: Rotation parallel to translation Figure 6.7: Rotation parallel to translation
case. § = 20°. Rotation/Translation axes: case. o0 = 2. Rotation/Translation axes:
XX-YY-ZZ,T/R ratio = 1. XX-YY-ZZ, T/R ratio = 1.

Translation perpendicular to rotation axis: Figures 6.8 and 6.9 show the experiments
performed when translation is perpendicular to the axis of rotation. It can be observed that
this algorithm is much more sensitive to noise. The noise has to be less than 0.5 pixels in

order to get an error of 5%. Experimentally it was found that Kruppa’s equations are very
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sensitive to the normalization of the fundamental matrix F and that the eigenvalues A;
and A; of FTT" are close to each other. Therefore in the presence of noise, the estimation
of those eigenvalues might be ill conditioned (even complex eigenvalues are obtained) and
so is the solution of Kruppa’s equations. Another experimental problem is that more than
one non-degenerate solution to Kruppa’s equations can be found. This is because, -when
taking all possible combinations of eigenvalues of FTT" in order to normalize F, the smallest
eigenvalue of the linear map associated to “incorrect” Kruppa’s equations can be very small.
Besides, the eigenvector associated to this eigenvalue can eventually give a non-degenerate
matrix. Thus in the presence of noise, you can not distinguish between the correct and one
of these incorrect solutions. The results presented here correspond to the best match (to
the ground truth) when more than one solution is found. Finally it is important to note
that large motions can significantly improve the performance of the algorithm. Figure 6.9
shows the error in the estimation of the calibration matrix for a rotation of 30°. It can be

observed that the results are comparable to that of the parallel case with a rotation of 20°.

i i
t B oo
) 0:5 ; l‘.s Zw ~2'.§' M]’ 1‘.5 4 ‘? o (1] ; lfﬁ ;um:.::mé as ; 4:5
Figure 6.8: Rotation orthogonal to trans- Figure 6.9: Rotation orthogonal to trans-
lation case. 6 = 20°. Rotation/Translation lation case. § = 30°. Rotation/Translation
axes: XY-YZ-ZX, T/R ratio = 1. axes: XY-YZ-ZX, T/R ratio = 1.

Robustness: In order to check how robust the algorithms are with respect to the angle ¢
between the rotation axis and translation, we run them with ¢ varying from 0° to 90°. The
noise level is 2 pixels, amount of rotation is always 20° and the T'/R ratio is 1. Translation
and rotation axes are given by Figure 6.10. Surprisingly, as we can see from the results given
in Figure 6.11, for the range 0° < ¢ < 50° both algorithms give pretty close estimates.

This is because, for this range of angle, numerically the eigenvalues of the matrix FTT" are
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complex and their norm is very close to the norm of the matrix FTT'F, Therefore, the
computed renormalization scale A from both algorithms is very close, as is the calibration
estimate. For ¢ > 50°, the eigenvalues of FTT" become real and the performance of the

two algorithms is no longer the same.
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Figure 6.10: The relation of the three rota- Figure 6.11: Estimation error in calibration
tion axes uy,us,u3 and three translations w.r.t. different angle ¢. Noise level o = 2.
T, 15, T;. Rotation and translation axes are shown by

the figure to the left. Rotation amount is
always 20° and T'/R ratio is 1.

6.8 Discussion

In this chapter, we have revisited the Kruppa’s equations based approach for cam-
era self-calibration. Through a detailed study of the cases when the camera rotation axis
is parallel or perpendicular to the translation, we have discovered generic difficulties in the
conventional self-calibration schemes based on directly solving the nonlinear Kruppa'’s equa-
tions. Our results not only complete existing results in the literature regarding the solutions
of Kruppa’s equations but also provide brand new linear algorithms for self-calibration other
than the well-known one for a pure rotating camera. Simulation results show that, under
the given conditions, these linear algorithms provide good estimates of the camera calibra-
tion despite the degeneracy of the Kruppa’s equations. The performance is close to that of
the pure rotation case.

The relationship between Kruppa’s equations and chirality given in Theorem 6.16

has revealed an intrinsic condition for a unique calibration given in Theorem 6.19. This
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condition is extremely important for us to clearly characterize the generic ambiguities in

the problem of reconstruction from multiple images. This is the subject of next chapter.
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Chapter 7

Reconstruction and Reprojection

up to Subgroups

“The rise of projective geometry made such
an overwhelming impression on the geometers of the first half of the nineteenth century
that they tried to fit all geometric considerations into the projective scheme. ... The
dictatorial regime of the projective idea in geometry was first successfully broken by the
German astronomer and geometer Mcbius, but the classical document of the democratic
platform in geometry establishing the group of transformations as the ruling principle
in any kind of geometry and yielding equal rights to independent consideration to each
and any such group, is F. Klein’s Erlangen program.”

— Herman Weyl, Classical Groups

Reconstructing spatial properties of a scene from a number of images taken by an
uncalibrated camera is a classical problem in computer vision. It is particularly important
when the camera used to acquire the images is not available for calibration, as for instance in
video post-processing, or when the calibration changes in time, as in vision-based navigation.
If we represent the scene by a number of isolated points in three-dimensional space and the
imaging process by an ideal perspective projection, the problem can be reduced to a purely
geometric one, which has been subject to the intense scrutiny of a number of researchers
during the past ten years. Their efforts have led to several important and useful results. The
problem is that conditions for a unique Euclidean reconstruction are almost never satisfied
in sequence of images of practical interest. In fact, they require as a necessary condition
that the camera undergoes rotation about at least two independent axes, which is ra.rely

the case both in video processing and in autonomous navigation.
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In this chapter we address the question of what ezactly can be done when the

necessary and sufficient conditions for unique reconstruction are not satisfied. In particular:

(i) For all the motions that do not satisfy the conditions, to what extent can
we reconstruct structure, motion and calibration?

(ii) If the goal of the reconstruction is to produce a new view of the scene from a.
different vantage point, how can we make sure that the image generated portrays
a “valid” Euclidean scene?

Relation to Previous Work: The study of ambiguities in Euclidean reconstruction (i)
arises naturally in the problem of motion and structure recovery and self-calibration from
multiple cameras. There is a vast body of literature on this topic, which cannot be reviewed
in the limited space allowed. Here we only comment on some of the work that is most closely
related to this chapter, while we refer the reader to the literature for more details, references
and appropriate credits (see for instance [12, 34, 65, 104, 117, 132] and references therein).

It has long been known that in the absence of any a priori information about
motion, calibration and scene structure, reconstruction can be performed at least up to
a projective transformation [21]. Utilizing additional knowledge about the relationship
between geometric entities in the image (e.g., parallelism) one can stratify the different
levels of reconstructions from projective all the way to Euclidean (6, 13, 21, 81]. At such a
level of generality, the conditions on the uniqueness and existence of solutions are restrictive
and the algorithms are computationally costly, often exhibiting local minima [64).

Recently, Sturm [104] has proposed a taxonomy of critical motions, that is motions
which do not allow a unique reconstruction. However, not only the given taxonomy is by no
means intrinsic to Euclidean reconstruction (see [66]), but also no explicit characterization
of the ambiguities in the reconstructed shape, motion and calibration has been given. A
natural continuation of these efforts involved the analysis of cases where the motion and/or
calibration were restricted either to planar or linear motion [4, 81] and techniques were
proposed for affine reconstruction or up to a one-parameter family.

Several techniques have been proposed to synthesize novel views of a reconstructed
scene (ii): in [2], trilinear constraints have been exploited to help generate reprojected
images for a calibrated camera. In the case of a partially uncalibrated camera, such a
method has to face the issues of whether the reprojected image portrays a valid Euclidean

scene.
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Chapter Outline

The well-known - but conservative - answer to question (i) is that structure can
at least be recovered up to a global projective transformation of the three-dimensional
space. However, there is more to be said, as we do in Section 7.1 for the case of constant
calibration.! There, we give explicit formulae for exact ambiguities in the reconstruction
of scene structure, camera motion and calibration with respect to all subgroups of the
Euclidean motion. In principle, one should study ambiguities corresponding to all critical
configurations as given in [66]. However, it is only the ambiguities that exhibit a group
structure that are of practical importance in the design of estimation algorithms. In such
a case, not only can the analysis be considerably simplified but also clean formulae for all
generic ambiguities can be derived. Such formulae are important for 3D reconstruction as
well as for synthesizing novel 2D views. Question (ii) is then answered in Section 7.2, where
we characterize the complete set of vantage points that generate “valid” images of the scene
regardless of generic ambiguities in 3D reconstruction.

These results have great practical significance, because they quantify precisely to
what extent scene structure, camera motion and calibration can be estimated in sequences
for which many of the techniques available to date do not apply. Furthermore, the analysis
clarifies the process of 2D view synthesis from novel viewpoints. In addition to that, we give
a novel account of known results on the role of multilinear constraints and their relationship
to bilinear ones.

Granted the potential impact on applications, this chapter is mainly concerned
with theory. We address neither algorithmic issues, nor do we perform experiments of any
sort: the validation of our statements is in the proofs. We have tried to keep our notation as
terse as possible. Our tools are borrowed from linear algebra and some differential geometry,
although all the results should be accessible without background in the latter. We use the
language of (Lie) groups because that allows us to give an explicit characterization of all
the ambiguities in a concise and intuitive fashion. Traditional tools involved in the analysis
of self-calibration involved complex loci in projective spaces (e.g., the “absolute conic”),

which can be hard to grasp for someone not proficient in algebraic geometry.

'In fact, even in the case of time-varying calibration, in principle, the best one can do is an affine
reconstruction, not just a projective one!
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7.1 Reconstruction under Motion Subgroups

The goal of this section is to study all “critical” motion groups that do not allow
unique reconstruction of structure, motion and calibration. While a classification of such
critical motions has been presented before (see [66]), we here go well beyond by giving.
an ezplicit characterization of the ambiguity in the reconstruction for each critical m;)tion.
Such an explicit characterization is crucial in deriving the ambiguity in the generation of
novel views of a scene, which we study in section 7.2.

In this section, we characterize the generic ambiguity in the recovery of (a) struc-
ture, (b) motion and (c) calibration corresponding to each possible critical motion. A
subgroup of SE(3) is called critical if the reconstruction is not unique when the motion of
the camera is restricted to it. For the purpose of this section, we assume that the calibration

matrix A is constant.

7.1.1 Some Preliminaries

So far the only restriction we have imposed on the constant calibration matrix
A is that it is non-singular and is normalized as to have det(A) = 1. However, according
to Section 6.1, A can only be determined up to an equivalence class of rotations, that is
A € SL(3)/S0O(3).2 The unrecoverable rotation in our choice of A simply corresponds to a
rotation of the entire camera system.

In Section 6.5.4, Theorem 6.19 states a very important and useful fact: the condi-
tion for a unique calibration has nothing to do with translation (as opposed to the results
given in [104])! 3 Due to this theorem, many proper continuous subgroups of SE(3) are
critical for self-calibration. So the first step in our analysis consists in classifying all contin-
uous Lie subgroups of SE(3) which are critical. It is a well known fact that a complete list
of subgroups of SE(3) can be classified by all Lie subalgebras of the Lie algebra se(3) of
SE(3) and then exponentiate them. It is then straightforward to show that each of these

subgroups must have the same ambiguity in reconstruction as one in the following list (as

Here take left coset as elements in the quotient space. A representation of this quotient space is given,
for instance, by upper-triangular matrices; such a representation is commonly used in modeling calibration
matrices by means of physical parameters of cameras such as focal length, principal point and pixel skew.

3This is because we here only consider the generic ambiguity in reconstruction, i.e., such ambiguity exists
no matter what the camera sees and no matter what the algorithms do.



162

we will explain in the comments):

Translational Motion: (R?, +) and its subgroups
Rotational Motion: (SO(3),-) and its subgroups
Planar Motion: SE(2)

Screw Motion: (SO(2),) x (R, +)

Planar + Elevation: SE(2) x (R, +)

Rigid Body Motion: SE(3)

Comment 7.1 (Special Lie Subalgebras of se(3)). The above list is by no means a
complete list of ALL subgroups of SE(3). For ezample, the “planar orbital motion”, i.e.,
camera moving on a circle with the optical azis always facing the center, is none of the
motion in the above list. However, it is can be treated as a special case of the planar
motion since, as far as reconstruction is concerned, they obviously have the same generic
ambiguities. In order to show that all subgroups have the same ambiguity in reconstruction
as one of the above motions, we must go ihrough all the possible Lie subalgebras of se(3).
It can be shown that, if a Lie subalgebra has at least 4 dimension and has two independent
rotation components, then it must be se(3) itself. Now the only interesting case is some three

dimensional Lie subalgebras which, without loss of generality, are generated by elements:

P elu’Y= e v z= es w (7.1)
0 0 00 0 0

where ey, ez, €3 are standard basis of R? and u,v and w are three vectors in R3. In order
for the Lie algebra generated by X,Y,Z is three dimensional. We must have the vector

o = [uT,oT,wT]T € R® in the null space of the matriz:

az —31 I
Q=| I & - |. (7.2)

That is Qa = 0. If a = 0, then the subgroup generated by the algebra is just the pure
rotation group SO(3). If a # 0, then the subgroup generated contains three independent
rotation azes and translation (parallaz). For such subgroups, a unique reconstruction is

available. That is, they are not critical for reconstruction or have the same ambiguity as
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the full rigid body motion SE(3). A generic ezample for such a three dimensional subgroup

is the isomelry group of S2.

We are now ready to explore to what extent scene structure, camera motion and
calibration can be reconstructed when motion is constrained onto one of the above sub- .
groups. In other words, we will study thé generic ambiguities of the reconstruction hrob-
lem. In what follows, we use p(t) = [p1(t),p2(t),p3(t)]T € R® to denote the 3D coordi-
nates of the point p = [p;,po, p3,1]T € R* with respect to the camera frame at time ¢:
p(t) = (R(t),T(t))p. To simplify notation, recall that, for any u € R®, we have defined @ to

be a 3 skew-symmetric matrix such that Vv € R3 the cross product u x v = 7.

7.1.2 Generic Ambiguities in Structure, Motion and Calibration

Translational motion (R® and its subgroups). Pure translational motion is generated
by elements of se(3) of the form:
0 u
e= |93 " Ler (73)
0 0
In this special transformation subgroup, the coordinate transformation between different

views is given by
Ap(t) = Ap(to) + AT(2), (7.4)

where T(t) € R® is the translation vector. According to Theorem 6.19, the calibration
A € SL(3) cannot be recovered from pure translational motion, and therefore the corre-
sponding structure p and translational motion 7' can be recovered only up to the unknown

transformation A. We therefore have the following

Theorem 7.2 (Ambiguity under R®). Consider an uncalibrated camera described by
the calibration matriz A € SL(3), undergoing purely translational motion R3 (or any of
its nontrivial subgroups) and let B be an arbitrary matriz in SL(3). If the camera motion
T € R® and the scene structure p € R* are unknown, then B, B~1AT and B~1Ap are the
only generic ambiguous solutions for the camera calibration, camera motion and the scene

structure respectively.

Note that this ambiguity corresponds exactly to an affine reconstruction [81].
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Comment 7.3. Thus the group SL(3) can be viewed as characterizing the generic ambi-
guity of reconstruction under pure translation, and will therefore be called the “ambiguity

subgroup”.

In section 5.1 we have argued that multilinear constraints do not provide additional
information. We verify here that, indeed, multilinear constraints do not reduce the generic
ambiguity. Without loss of generality, we can assume the camera frame at time #; coincides
with that at 2o, i.e., T'(t;) = 0. Suppose T'(t3),T(t3) € R® are translations from the second
and third frames to the original one respectively. We then have:

A 0 x(t) 0 0
A AT(t,) 0 x(t2) 0
A AT(3) O 0 x(t3)

B 0 x(t1) 0 0
= | B AT(t2) 0 x(t) 0
B AT (t3) 0 0 x(t3)

A-lB 0
0

Therefore the two sides of the equation span the same subspace. Hence trilinear constraints
are identical for all the ambiguous solutions. One can easily check that the same is true for
quadrilinear constraints.

Rotational motion (SO(3)). Pure rotation is generated by elements of se(3) of the form:

£

0
£€= ol we RS (7.5)

o

If any two entries of w are zero, the subgroup SO(2) is generated instead. The action of

S0(3) transforms the coordinates in different cameras by
Ap(t) = AR(t)p(to), (7.6)

where R(t) € SO(3) is the rotation. According to Theorem 6.26, the calibration A can be
recovered uniquely, and so can the rotational motion R(t) € SO(3). However, it is well
known that the depth information of the structure cannot be recovered at all due to lack of

parallax. We summarize these facts into the following:

Theorem 7.4 (Ambiguity under SO(3)). Consider an uncalibrated camera with calibra-
tion matriz A € SL(3) undergoing purely rotational motion SO(3) and let ) be an arbitrary
(positive) scalar. If both the camera motion R € SO(3) and the scene structure p € RS
are unknown, then A, R and X -p are the only generic ambiguous solutions for the camera

calibration, camera motion and the scene structure respectively.
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Comment 7.5. The multiplicative group (RY,-) can be viewed as characterizing the am-
biguity of the reconstruction under pure rotation. Note that such a group (RY,-) acts in-
dependently on each point. More specifically, the group consists of all smooth functions
¢ : RP?2 - R*.

As for the case of pure translation, there is no independent constraint among three
or more images.
Planar motion (SE(2)). While the previous two cases were of somewhat academic interest
and the theorems portray well-known facts, planar motion arises very often in applications.
We will therefore study this case in some more detail.

Let e; = [1,0,0/7, ez = [0,1,0]7,e3 = [0,0,1]T € R® be the standard basis of R3.
Without loss of generality, we may assume the camera motion is on the plane normal to e3

and is represented by the subgroup SE(2).

SE(2) = { ' ? :: J |R =™ 0eRT = (T1,1,0)7 € IR3} : (7.7)
Let A be the unknown calibration matrix of the camera. As described in section 7.1.1
we consider A as an element of the quotient space SL(3)/SO(3). According to Section
6.5.4, any possible calibration matrix Ag € SL(3)/SO(3) is such that the matrix X =
(AgtA)~Y (A5 A)7T is in the symmetric real kernel (SRKer) of the Lyapunov map for all
R € SO(2):

L:C¥ 5%, Xw—- X-RXRT. (7.8)

By the choice of ey, e2, €3, the real eigenvector of R is e3. Imposing X € SL(3), we obtain
X = D(s), where D(s) € R®*? is a matrix function of s:

s 0 O
D(s)y=]10 s 0 , s€R\{0}. (7.9)
0 0 1/s2

Geometrically, this reveals that only metric information within the plane can be recovered
while the relative scale between the plane and its normal direction cannot be determined.
That is, if we choose an erroneous matrix Ag from the set of possible solutions for calibration
other than the true A, then AgB = A for some matrix B € SL(3). We then have that, for

some s € R,

(A5 A)"HA4; 4T = D(s) = B~'B~T = D(s). (7.10)
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A solution of (7.10) is of the form B = HD(t) with H € SO(3) and some ¢t € R Let us

define a one-parameter Lie group Ggg(g) as:

Gsg(e) = {D(s) | s € R\ {0}}. (7.11)

Then the solution space of (7.10) is given by SO(3)Gsg(2)- The group Ggg(s) can be viewed |
as a natural representation of ambiguous solutions in the space SL(3)/SO(3).

Once we have a calibration matrix, say Ag, we can extract motion from the
fundamental matrix F = A~TTRA™! as follows: we know that A = AgB for some
B = HD(s) € SO(3)Gsg(2)- Then we define E = AT F Aq and note that, for R = exp(€30),
we have that D(s) commutes with R i.e., D(s)RD(s)~! = R and also HT = H~!. Then E

is an essential matrix since
E=HTDT(s\TRD Y(s)H~! = HD(s)THRHT.

The motion recovered from E is therefore (HRHT,HD(s)T) € SE(3), where (R,T) €
SE(2) is the true motion. Note that (HRHT, HD(s)T) is actually a planar motion (in a
plane rotated by H from the original one). The coordinate transformation in the uncali-
brated camera frame is given by AT(t) = ARp(to) + AT(t). If, instead, the matrix Ay is

chosen to justify the camera calibration, the coordinate transformation becomes:

AoBp(t) = AgBRp(ty) + AeBT(t) =
HD(s)p(t) = HRHT (HD(s)p(to)) + HD(s)T(t).

Therefore, any point p viewed with an uncalibrated camera A undergoing a motion (R,T) €
SE(2) is not distinguishable from the point HD(s)p viewed with an uncalibrated camera
Ap = AD7!(s)HT undergoing a motion (HRHT,HD(s)T) € SE(2). We have therefore

proven the following

Theorem 7.6 (Ambiguity under SE(2)). Consider a camera with unknown calibration
matriz A € SL(3) undergoing planar motion SE(2) and let B(s) = HD(s) with H € SO(3)
and D(s) € Gsg). If both the camera motion (R,T) € SE(2) and the scene structure
p € R® are unknown, then AB~Y(s) € SL(3), (HRHT,B(s)T) € SE(2) and B(s)p € B3
are the only generic ambiguous solutions for the camera calibration, camera motion and

scene structure respectively.
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Comment 7.7. Note that the role of the matriz H € SO(3) is just to rotate the overall
configuration. Therefore, the only generic ambiguity of the reconstruction is characterized

by the one parameter Lie group Gsg()-

Further note that the above ambiguities are obtained only from bilinear constraints ‘
between pairs of images. We now verify, as we expect from section 5.1, that multilinear
constraints do not reduce the ambiguity. In fact, the matrix D(s) commutes with the
rotation matrix, so that

A 0 x(t1) 0 0
B-1(s) 0
AR(tz) AT(t2) O =x(t2) O [ R ]
| AR(ts) AT(s) 0 0 x(ts)
[ A4 . 0 x(t) 0 0
= AoHR(tz)HT AT(t,) 0 x(t2) 0
| AoHR(ts)HT AT (t3) 0 0 x(t3)

Subgroups SO(2), SO(2) x R and SE(2) x R. We conclude our discussion on subgroups
of SE(3) by studying SO(2), SO(2) x R and SE(2) x R together. This is because their
generic ambiguities are similar to the case of SE(2), which we have just studied. Notice
that in the discussion of the ambiguity G SE(2), we did not use the fact that the translation
p has to satisfy p3 = 0. Therefore, we have:

Corollary 7.8 (Ambiguity under SO(2) xR and SE(2)xR). The generic reconstruction
ambiguities of SO(2) X R and SE(2) x R are ezactly the same as that of SE(2).

The only different case is SO(2). It is readily seen that the ambiguity of SO(2) is
the “product” of that of SE(2) and that of SO(3) due to the fact SO(2) = SE(2)NSO(3).

As a consequence of Theorem 7.4 and Theorem 7.6 we have:

Corollary 7.9 (Ambiguity under SO(2)). Consider an uncalibrated camera with cal-
ibration matriz A € SL(3) undergoing a motion in SO(2) and let B(s) = HD(s) with
H € 50(3), D(s) € Gsg(z) and X € (R*,-). If both the camera motion R € SO(3) and
the scene structure p € R® are unknown, then AB~!(s) € SL(3), HRHT € SO(3) and
A B(s)p € R® are the only generic ambiguous solutions for the camera calibration, camera

motion and scene structure respectively.

From the above discussion of subgroups of SE(3) we have seen that generic am-

biguities exist for many proper subgroup of SE(3). Furthermore, such ambiguities - which
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have been derived above based only on bilinear constraints, are not resolved by multilinear

constraints according to Theorem 5.2.

7.2 Reprojection under Partial Reconstruction

In the previous section we have seen that, in general, it is possible to reconstruct
the calibration matrix A and the scene’s structure p only up to a subgroup - which we call
K, the ambiguity subgroup. For instance, in the case of planar motion, an element in K

has the form D(s) given by equation (7.9). Therefore, after reconstruction we have
#(K)=Kp, A(K)=AK™ (7.12)

Now, suppose one wants to generate a novel view of the scene, % from a new vantage point,
which is specified by a motion § € SE(3) and must satisfy A\x(K) = A(K)§p(K). In general,
the reprojection X(K') depends both on the ambiguity subgroup K and on the vantage point
g and there is no guarantee that it is an image of the original Euclidean scene.

It is only natural, then, to ask what is the set of vantage points that generate
a valid reprojection, that is an image of the original scene p taken as if the camera A
was placed at some vantage point g(K). We discuss this issue in section 7.2.1. A stronger
condition to require is that the reprojection be independent (invariant) of the ambiguity

K, so that we have g(K) = § regardless of K; we discuss this issue in section 7.2.2.

7.2.1 Valid Euclidean Reprojection

In order to characterize the vantage points - specified by motions § - that produce a
valid reprojection we must find § such that: A(K)gp(K) = Ag(K )p for some g(K) € SE(3).
Since the reprojected image % is Ax(K) = A(K )§p(K) = Ag(K)p, the characterization of
all such motions § is given by the following Lie group:

R(K)={ge€ SE(3) | K~'§K Cc SE(3)}. (7.13)

We call R(K) the reprojection group for a given ambiguity group K. For each of the
generic ambiguities we studied in section 7.1, the corresponding reprojection group is given

by the following

Theorem 7.10 (Reprojection Groups). The reprojection groups corresponding to each

of the ambiguity groups K studied in section 7.1 are given by:
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1. R(K) = (R®,+) for K = SL(3) (ambiguity of (R3, +)).

2. R(K) = SO(2) for K = Gggg) x (RY,) (ambiguity of SO(2)).

3. R(K) = SE(2) x R for K = Ggg() (ambiguity of SE(2),SO(2) x R, SE(2) x R).
4. R(K) = SE(3) for K = I (ambiguity of SE(3)).

Even though the reprojected image is, in general, not unique, the family of all
such images are still parameterized by the same ambiguity group K. For a motion outside
of the group R(K), i.e., for a § € SE(3) \ R(K), the action of the ambiguity group K on
a reprojected image cannot simply be represented as moving the camera: it will have to
be a more general non-Euclidean transformation of the shape of the scene. However, the

family of all such non-Euclidean shapes are minimally parameterized by the quotient space
SE(3)/R(K).

Comment 7.11 (Choice of a “Basis” for Reprojection). Note that in order to specify
the viewpoint it is not just sufficient to choose the motion § for, in general, g(K) # §.
Therefore, an imaginary “visual-effect operator” will have to adjust the viewpoint g(K)
acting on the parameters in K. The ambiguity subgroups derived in section 7.1 are one-
parameter groups (for the most important cases) and therefore the choice is restricted to
one parameter. In a projective framework (such as [21]), the user has to specify a projective
basis of three-dimensional space, that is 15 parameters. This is usually done by specifying

the three-dimensional position of 5 points in space.

7.2.2 Invariant Reprojection

In order for the view taken from § to be unique, we must have

Mk = A(K)gp(K) = AK 5Kp (7.14)
independent of K. Equivalently we must have K~'§K = §j where K is the ambiguity
generated by the motion on a subgroup G of SE(3). The set of § that satisfy this condition
is a group N(K), the so called normalizer of K in SE(3). Therefore, all we have to do is

to characterize the normalizers for the ambiguity subgroups studied in section 7.1.

Theorem 7.12 (Normalizers). The set of viewpoints that are invariant to reprojection
is given by the normalizer of the ambiguity subgroup. For each of the motion subgroups

analyzed in section 7.1 the corresponding normalizer of the ambiguity group is given by:
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For motions in every subgroup, the reprojection performed under any viewpoint

determined by the groups above is unique.

7.3 Discussion

When the necessary and sufficient conditions for a unique reconstruction of scene
structure, camera motion and calibration are not satisfied, it is still possible to retrieve
a reconstruction up to a global subgroup action (on the entire configuration of the cam-
era system). We characterize such subgroups explicitly for all possible motion groups of
the camera. The reconstructed structure can then be re-projected to generate novel views
of the scene. We characterize the “basis” of the reprojection corresponding to each sub-
group, and also the motions that generate a unique reprojection. We achieve the goal by
using results from two view analysis established through previous chapters. This is possible
because the coefficients of multilinear constraints are geometrically dependent of those of
bilinear constraints. Therefore, the only advantage in considering multilinear constraints
is in the presence of singular surfaces and rectilinear motions. Our future research agenda
involves the design of optimal algorithms to recover all (and only!) the parameters that
can be estimated from the data based upon their generic ambiguities. The reconstruc-
tion and reprojection problem studied in this chapter is for a constant calibration matrix.

Generalization to the time-varying case is yet a largely open problem.
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Part 11

Advanced Topics in Multiview

Geometry
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Chapter 8

Absolute Vision in Spaces of

Constant Curvature

“In order to investigate a subfield of a science, one bases it on the smallest
possible number of principles, which are to be as simple, intuitive, and comprehensible
as possible, and which one collects together and sets up as azioms.”

— David Hilbert, The New Grounding of Mathematics: First Report

In Part I, following the formulation given in Chapter 2, we have studied almost
every aspect of the classical structure from motion problem in multiview geometry. Never-
theless, all the results are developed under a default assumption: the underlying space is a
Euclidean space E3. Mathematically, it is then natural to ask: If the Euclidean assumption
on the underlying space is violated, can we still study vision, and how? In order to answer
this question, we need clearly understand what are all the hidden assumptions which have
essentially enabled the development in Part I, and how these assumptions can be re-stated
in a more abstract mathematical form so as to also work for non-Euclidean spaces. In
this chapter, we attempt to provide an answer to these questions. Basically, we want to
show that, under certain assumptions, it is possible to generalize multiview geometry to
non-Euclidean spaces. As we will see, many results that we have obtained in Part I have
their natural extensions in the non-Euclidean case and the Euclidean case in many ways
can be interpreted as a special case of a non-Euclidean multiview geometry. We hope that
such a generalization not only captures essential geometric characteristics of any imaging

system but also provides a meaningful mathematical model in which we may gain a deeper
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understanding of underlying principles of multiview geometry in general.

8.1 An Axiomatic Formulation of Multiview Geometry

Imagine an intelligent creature living in a sphere — a typical example of non-
Euclidean space. Then what kind of multiview geometry it could have developed? Let us
put ourselves in the shoes of the creature and try to understand what are the basic elements
of which a vision system in such a space must consist. In this section, we give an axiomatic
formulation of a mathematical model of an abstract vision system (in a Riemannian man-
ifold). Although this model seems to be given in a rather abstract manner, it is a natural
generalization of the conventional camera model in a Euclidean space. Such a generaliza-
tion allows us to fully discover the geometric nature of a computer vision system, in a very
concise and precise way.

Let us consider a (connected) Riemannian manifold (M, ®), i.e., a differentiable
manifold equipped with a positive definite symmetric 2-form ® as its metric. If the reader is
not familiar with differential geometry, he or she may simply view (M, ®) as the Euclidean
space R3 with its standard inner product metric. In this paper, we will be mostly interested

in three dimensional spaces although the model given below is for the most general case.

Assumption 8.1 (Camera). A camera is modeled as a point 0 € M, which usually stands
for the optical center of the camera, and an orthonormal coordinate chart is chosen on T.M,

the tangent space of M at the point o.

Assumption 8.2 (Motion). M is a complete and orientable Riemannian manifold. G is
the orientation-preserving subgroup of the isometry group of M. This group then models
valid motions of the camera. Its representation might depend on the position of the optical

center o.

Assumption 8.3 (Light). In the manifold M, light always travels along geodesics with

constant speed. For simplicity, we may assume this speed to be infinite.

Assumption 8.4 (Image). The image of a point p € M is a ray in T,M which corresponds

to the direction of the geodesic connecting p and the optical center o.

Assumption 8.5 (Calibration). The effect of camera calibration can be modeled as an
unknown isomorphism ¢ : T,M — To,M (as a vector space). In the calibrated case, one

may assume this isomorphism is known or simply the identity map.
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The Lie group G which models the motion of the camera is obtained in the model
as being the isometry group of M. In fact the relation between G and M is symmetric
at least in the case that the motion group G acting transitively on M: letting H be the
isotropy subgroup! of G, then the manifold M is simply the quotient space G/H. The
Riemannian metric ® on M can be derived from the canonical metrics of G and H by this
quotient. In practice, this viewpoint is far more useful than the above axiomatic definition
since, as we will soon see, interesting manifolds are usually given as submanifolds of an
Euclidean space which are invariant under the action of certain Lie groups G. Therefore,
geometric properties of a vision system in such manifolds are uniquely determined by the
structure of G.

As pointed out by Weinstein [127], different requirements on the properties of the
motion group G in fact determine the types of manifolds that M must be. For example, if
we require G act transitively on the frame bundle of M, it can be shown that M must be
spaces of constant curvature [55]. A less restrictive requirement on G is to allow that
the optical axis of the camera can point to any direction at any point of M. In this case,
M is the so call symmetric spaces of rank 1. One can further relax the Assumption 8.2
so that G does not have to be a subgroup of the isometry group of M. Then M can be any
Riemannian manifold. A study of vision theory in general Riemannian manifolds is out of
the scope of this dissertation. For the remaining of this Chapter, we will focus only on the
spaces of constant curvature and demonstrate how to generalize the vision theory that we
have developed for Euclidean space in previous chapters.

Assumptions 8.1 to 8.5 formally define a camera model in a class of Riemannian
manifolds. When the manifold M is the Euclidean space E2, the so obtained model is
exactly equivalent to the conventional model that we have been using in Part I. Even in
the most general case, the above model is based on direct geometric intuition. The only
difference is that the world space (represented by M) is explicitly distinguished from the
image space (represented by T,M). In the Euclidean case, these two spaces happen to

coincide. Intuitively, this can be illustrated in the Figure 8.1.

'A subgroup of G which fixes a point of M.
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Figure 8.1: The curve +y is the geodesic connecting o and p; arrows mean the inverse of the
exponential map exp : T,M — M; x then represents the image of the point p with respect
to a camera centered at the point o.

8.2 Non-Euclidean Multiview Geometry in Spaces of Con-

stant Curvature

Can the abstract model introduced in the preceding section of any use? In this
section we will demonstrate that, using this model, one can actually extend most of the
results that we have developed in Part I for Euclidean space to a much larger class of spaces:
the spaces of constant curvature. For example, the epipolar geometry has no peculiar
meaning to Euclidean space. It is also true in more general spaces. For simplicity, in this
chapter we will only investigate the calibrated case although extension to uncalibrated case

is straightforward.

8.2.1 Spaces of Constant Curvature

Spaces of constant curvature are Riemannian manifolds with constant sec-
tional curvature. In differential geometry, they are also referred to as space forms. A
Riemannian manifold of constant curvature is said to be spherical, hyperbolic or flat
(or locally Euclidean) according as the sectional curvature is positive, negative or zero.
Geometry about spaces of constant curvature is also called absolute geometry, coined by
one of the co-founders non-Euclidean geometry: Janos Bolyai [46].

Not until Einstein’s general relativity theory, non-Euclidean geometry, or Rieman-
nian geometry in general, is just a pure mathematical creation rather than geometry of
physical spaces. In general relativity theory, the physical space is typically described as a

(3 dimensional) Riemannian manifold (with possibly non-zero curvature). In such a space,
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light travels the geodesics of the manifold (corresponding to straight lines in the Euclidean
case). Locally, the curvature of a Riemannian manifold is approximately constant. Thus the
study of vision theory i;x spaces of constant curvature will help understand vision problems
in general Riemannian manifolds.

In this paper, we study vision theory in 3 dimensional spaces of constant curvature,
as a natural generalization of the vision theory we have developed so far for 3 dimensional
Euclidean space. In particular, we will focus on vision in spherical and hyperbolic spaces
since the Euclidean case has been well understood. On the other hand, the Euclidean case
will always show up as a special limit case of generic cases.

Geometric properties of n dimensional space of constant curvatures have been well
studied in differential geometry [55, 135] (as an important case of symmetric spaces).
In the rest of this section, we briefly review some of the main results which serve for our

purposes.

8.2.2 Characteristics of Spaces of Constant Curvature

In this section, we characterize 3 dimensional spaces of constant curvature. In
fact, most of the results directly follow from general results about n dimensional spaces of
constant curvature, in Kobayashi [55] and Wolf [135].

The next theorem which follows directly from Kobayashi [55] (Theorem 3.1 Chap-

ter V) characterizes the 3 dimensional space of constant curvatures:

Proposition 8.6 (3D Spaces of Constant Curvature). Let [z1, T2, T3,74)7 be the co-
ordinate system of R* and M be the hyper-surface of R* defined by:

Z2+ 15+ 23+r23 =r (r: o nonzero constant). (8.1)
Let g be the Riemannian metric of M obtained by restricting the following form to M:
dz? + dad + dz? + rdz2.
Then

1. M is a 3 dimensional space of constant curvature with sectional curvature 1 /r.

2. The group G of linear transformations of R* leaving the quadratic form :1:%+:z:§ +z2+

rz2 invariant acts transitively on M as the group of isometry of M.
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3. Ifr >0, then M is isometric to a sphere of a radius Vr. Ifr <0, then M consists of

two mutually isometric connected manifolds each of which is diffeomorphic with R3.

Now let @ be the 4 x 4 matrix associated to the quadratic form defining M:

o=|1?)
The isometry group G of M is then given as a subgroup of GL(4, R):
G={geR™|g"Qg=Q}. (8:2)
For an element g € G, it has the form:

z w

with W € R3*3 5y € R%, 2 € R?,w € R and the conditions:
WIW 4+ 7. 2.7 = I, WTy+r-wz=0, VYy+r-w=r (8.3)

It follows that the Lie algebra g of the group G (as a Lie group) is the set of the matrices

of the form:

A b
= € Rix4 (8.4)
where A € R¥*3 b € R? and ¢ € R® satisfy the conditions:

AT+ A=0, b+r-c=0. (8.5)

The isotropy group H of G which leaves the point 0 = [0,0,0,1]T € M fixed is isomorphic
to O(3):

_ 1 0@ o
H_.[ 0 1]. (8.6)

As a result, the manifold M is identified with the homogeneous space G /H. In fact, the
orthonormal frame bundle of M is isomorphic to G as a principle H bundle, Kobayashi [55].
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Let m be the linear subspace of the Lie algebra g of G consisting of matrices of

the form:

b
[ (; 0] € R4 (8.7)
C

with b,c € R® and b+ rc = 0. Let h be the Lie algebra of H as a subspace of g consisting

[ 4 0 ] € R4 (8.8)

of matrices of the form:

0 0

with A € R**® and AT + A = 0. Then we have a canonical decomposition:
It is direct to check the following relations between the subspaces hold:

b, Ch, [hm]Cm, [mm]cCh (8.10)

where [-,-] stands for Lie bracket. Let h be the vertical tangent subspace of G and
m be the horizontal tangent subspace. Then this decomposition gives a canonical
connection on the principle bundle G(G/H, H) (Theorem 11.1 of Chapter II, Kobayashi
[55]) which induces constant sectional curvature 1/r on G/H = M.

The space M is a symmetric space with the symmetry s, of M at the point
0=[0,0,0,1)T given by:

So: M — M

[$1,$2,$3,$4]T = [-xl)_$2a—x37$4]T'

Obviously, s2 = Id(M). Due to Kobayashi [55] (Theorem 1.5 of Chapter XI), this induces
a (symmetric) automorphism o on G such that H lies between G, (subgroup of G fixed
under o) and the identity component of G,.

Denote the projection from G to G/H as 7 and Let exp(-) be the exponential map
from g to G. Then according to Kobayashi [55] (Theorem 3.2 of Chapter XI), we have:

Proposition 8.7 (Geodesics in 3D Spaces of Constant Curvature). Consider the 3
dimensional space of constant curvature M = G/H as above. For each X € m, m(exp(tX)) =

exp(tX) - o is a geodesic starting from o and, conversely, every geodesic from o is of this

form.
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As we will soon see, this theorem is very important for modeling and studying
vision in the spaces of constant curvature.

Let T be the subset of G consisting of all the matrices of the form exp(X) with
X € m. Then T corresponds to transvection on M (see Kobayashi [55]), an analogy to the
translation in the Euclidean space. Notice that in general T is not a subgroup of G (although
it is in the Euclidean case) and its representation depends on the base point. Naturally,
the subgroup H of G corresponds to rotation on M. As in the Euclidean case, for a “rigid
body motion” on M, it is natural to consider the rotation is in the special orthogonal group
S0(3) instead of the full group O(3). One of the reasons for only considering SO(3) is that

it preserves the orientation of the space.

8.2.3 Euclidean Space as a Space of Constant Curvature

Proposition 8.6 requires the curvature parameter r € R\ {0} hence only the spher-
ical and hyperbolic spaces were considered. However, the Euclidean case can be regarded
as the limit case when r goes to infinite, i.e., the curvature 1 /T goes to zero.

When r = 00, a point in R* which satisfies the quadratic form (8.1) always has the
form [z, 22, 23, l]T € RY. This is just the homogeneous representation of the 3 dimensional
Euclidean space R?, see Murray [84]. From (8.3), we have w? = 1, z = 0, WIW = I; and
y € R3. Thus the group G is just the Euclidean group E(3). In particular, the special
Euclidean group SE(3) with elements:

g= [102 "f] € Rx4 (8.11)

with R € SO(3) and T € R® is a subgroup of G = E(3). SE(3) then represents the rigid
body motion in M = R3.

When r = oo, the Lie algebra se(3) of SE(3) or e(3) of E(3) then has the form
given in (8.4) with the condition ¢ = 0. In robotics literature [84], an element this Lie

algebra is usually represented as:

£ = [‘g’ Z] € R4 (8.12)
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where w,v € R® and & is the skew-symmetric matrix associated with w = [w;, wa, w3]T:

0 —ws w
W= w3 0 -w | € R3%3, (8.13)
—wy W) 0

According to Proposition 8.7, the geodesics in R® are given in the form:

exp |t 0 v = Is vt € R4, (8.14)
00 0 0
This is exactly the straight line in R? in the direction of v.
From the above discussion, the Euclidean space can be treated as a limit case of
general spaces of constant curvature given in Proposition 8.6. Because of this, the vision
theory for Euclidean space should also be a limit case of vision theory for general spaces of

constant curvature.

8.2.4 Camera Motion and Projection Model

Based upon the mathematical facts given in the preceding section, we are ready
to study vision in the spaces of constant curvature. Similar to the Euclidean case, we first
need to specify the (valid) motion of the camera and the projection model of the camera,
i.e., how the 2 dimensional image is formulated in spaces of constant curvature.

First notice that, as in the Euclidean case, the transvection set T of the isometry
group G acts transitively on a space M of constant curvature. Then for any g € G, there
exists g; € T such that g;!(g(0)) = o, i.e., g; lg fixes the origin 0. So 9:'g =gn € H, the
isotropy group of o. It then follows that the group G is equal to G = TH. This is the so-
called Cartan decomposition. By rigid body motion in spaces of constant curvature,
we mean the connected subgroup of G which preserve the orientation of the space M. That
is, the rotation group H is just SO(3) (the subgroup of O(3) which is connected to the
identity element). We still use G to denote the group of rigid body motion:

G=TH with H € SO(3).

A point p, in the space M of constant curvature, can be represented in homoge-

neous coordinates as p = [p1, ps, pa,p4]T € R which satisfies the quadratic form:

Pi+pi+pi+rpi=r
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with 1/r the sectional curvature of M. Then under the motion g(t) € G,t € [to, ;] C R of
the camera, the homogeneous coordinates of the point p (with respect to the camera frame)

 satisfy the transformation:

p(t) = g(t)p(to). (8.15)-

Notice that, with this representation, the point o = [0, 0,0, l]T € R! is always in M. We
then call the point o the origin in the homogeneous representation of M. Without loss of
generality, the origin is identified with the center of the camera.

According to Proposition 8.7, any geodesic connecting a point p = [p;, 2, p3, p4]T €
M to the origin o has the form: p = exp(tX) - o for some ¢t € R, X € m. Without loss of

generality, we may assume X has the form:

0 b
X= R4
[ —bT/r 0 ] €

for some unit vector b € R3, ||b|| = 1. It is then direct to check that:

—_ o= f(T, t)bbT hy(r, )b 0 _ h1('r', t)b
p=-exp(tX)-o= [hz('r,t)bT a(r1) ] !1 ] = [ P ] eRr

for some real scalar functions f(r,t),g(r,t), h1(r,t) and ho(r,t) of r and t (the explicit
expressions of these functions are given in the next section). Thus the unit vector b is equal

to:

b= [plap2ap3]T

VoI +P+p%

This is exactly the unit tangent vector of M at the origin 0. In this way, we may identify

(8.16)

the tangent space T,(M) of M at o to the subspace m by:

6: To(M) = m

0 b
beT,(M) — [—bT/'r 0] €m.

Under this identification, the exponential map exp : T,(M) — M is given by:

exp(b) = exp(4(b)) -0, b € T,(M).
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Then from previous discussion, the light from p = [p1, p2, p3, ps] € M to the origin
o has the direction b € T, (M) given by (8.16). In homogeneous coordinate, the vector b can

be represented as
b= [Pl,PZaPS]T € R3

which only keeps the information of the direction of the light from p.

Then in the case of the space M of constant curvature, if the space M is represented
by the homogeneous coordinates as above, the image of a point p = [p1, p2, p3, p4]T EMis
simply given by x = A~}[p1, p2, p3]T € R where A € R and x € R3. Define the projection

matrix to be:

1000
P=1010 0] eR¥™,
0 010
We then have the relation:
Ax = Pp. (8.17)

We call the scalar ) the scale of the point p with respect to the image x. The scale A then

encodes the depth information of the point p in the scene.

8.2.5 Epipolar Geometry and Multilinear Constraints

In this section, we study the relation between the images of a point p € M before
and after a rigid body motion of the camera. We know that the motion of the camera can

be expressed in the form:

9=9gt-9n, 9t€T,gr € H.

The transvection part g; and rotation part g, respectively have the forms:

gt=exP(X)=[W y], 9h=[R 0], X em,Re SO(3). (8.18)

2T w 0 1

We will later give the expressions of W € R®*3 4y ¢ R3,2 € R? and w € R in terms of X.

Denote the images of p = [p1, p2, p3,ps]T before and after the transformation g are
x1 € R® and x; € R?, respectively. Then according to (8.15) and (8.17) we have:

Aixy = Pp, Joxg = Pgp.
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It yields:

Aoxo =WR- X1 +psy = yxdgxa=yXx (WR-\x1) = xFgWRx; =0. (8.19)

In the Euclidean case, (8.19) would exactly give the well-known bilinear epipolar
constraint. In the case of spaces of constant curvature, the role of essential magtrix is replaced
by YW R. We need to study the structure of such matrices.

Any matrix X € m has the form:

0 b € R4X4
-bT/r 0

with vector b € R®. To simply the notation, denote y = ]l and T = b/ € R3. Here by
abuse of language, we use the same notation 7" as the transvection group to represent a

translational vector. We consider sin(-) and cos(-) as the complex functions:

sin(u) = %(ei“ —-e™), yeC
1 . .
cos(u) = E(e"‘ +e ™), ueC

Also define p = 1/1/r € C. Then through direct calculation we get:

(8.20)

W oy I3 + (cos(vp) = )TTT p~!sin(yp)T
exp(X) = E = .

T psin(yp)TT cos(vp)

Notice that we always have 7777 = 0. Then suppose sin(yp) # 0, (8.19) yields:
x3IWRx1 =0 & xiT(I3+ (cos(vp) - )TTT)Rx; & xITRx;=0. (8.21)

This is exactly the well-known bilinear epipolar constraint. Here we see that this con-
straint holds for all spaces of constant curvature. As in the Euclidean case, we call E = TR

the essential matrix.

Comment 8.8. The condition sin(yp) # 0 is equivalent to the condition that the translation
T # 0 in the Euclidean case. The reason is when sin(yp) = 0, we have exp(X) = I,
i.e., the motion is equivalent to the identity transformation on M. In spaces of constant
curvature, we may have sin(yp) = 0 without T = 0. This occurs only when the curvature r
is positive, i.e., the space is spherical. If so, let v = 2kn\/r e Rk =1,2,.. ., we then have
sin(yp) = sin(2km) = 0. This implies that translation with distance 27/7 along the geodesics
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(big circles) in a spherical space of radius \/r is equivalent to the identity transformation
(back to the initial position). One can simply check this phenomenon on the 2 dimensional

sphere §2.
As a summary of the above discussion, we have the following theorem:

Theorem 8.9 (Epipolar Constraint). Consider a rigid body motion of a camera in a
space M of constant curvature. If T € R3 is the vector associated to the direction of the
translation and R € SO(3) the rotation, then the images x; € R® and xo € R® of a point

P € M before and after the motion satisfy the epipolar constraint:
x3 TRx; = 0. (8.22)

As in the Euclidean case, the normalized essential matrix E = TR can be estimated
from more than eight image correspondences {(x{, xg)};;l, n 2> 8 in general positions using
linear or nonlinear estimation schemes given in Part I. The rotation matrix R and the

translation vector T' can further be recovered from the essential matrix E.

Comment 8.10. Notice that the epipolar constraint is independent of the scale \ of the
point p, the scale vy of the translational motion b and the curvature 1/r of the space M. The

motion recovery is then decoupled from the 3D structure, as in the Euclidean case.

It is already known that in the Euclidean case, m images of a point satisfy more
general multilinear constraints besides the bilinear epipolar constraint. Similar constraints
exist in the case of spaces of constant curvature. Suppose x; € R3,i = 1,2,...,m are m
images of the same point p with respect to the camera at m different position. Suppose the
relative motion between the i and 1** positions is g; € G,i = 1,2,...,m. Without loss
of generality, we may always assume gy = I. Let \; € R*,i = 1,2,...,m be the scales of
Xi,t = 1,2,...,m with respect to p. Then we have the following equation (for a calibrated

camera):

x; 0 --- 0 A1 Pg,
0 X9 - 0 /\2 sz

0 0 b x"n Am Pgm
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Now define the motion matrix M2 € R3™*4 o be:

Pg
Pgo

Ma e R3mx4

Pgy,

and the four columns of M* are denoted by 77, s, 73,4 respectively. Here we use
superscript a to indicate the case of absolute vision. Define the vector Z; € R3™ associated

to the ** image x; as:
£ =10,...,0,x7,0,...,0T e R®™, 1<i<m.
Similar to the Euclidean case [71], in spaces of constant curvature, we also have:

Theorem 8.11 (Multilinear Constraints). Consider m images {x;}7, € R® of a point
P in a space M of constant curvature, and the motion matriz is M® = [y, g, M3, 4] €
R3m%4 o5 defined above. Then the associated vectors {Z;}™, € R®™ satisfy the following

wedge product equation:

My AMa AMZAMUATIAN ... ATy, =0. (8.23)

The proof is essentially the same as the Euclidean case in Chapter 5. The reason
that this wedge product constraint is called projective constraint is because it is invariant
under projective transformation (see [71]). For the same reasons as in Euclidean case, the
non-trivial constraints given by the wedge product equation are either bilinear, trilinear
or quadrilinear. One may use these constraints to design more delicate motion estimation

schemes.

8.2.6 Non-Euclidean Structure from Motion

Knowing motion, the next problem is how to reconstruct the scale information
from images, which includes the depth X of the point p with respect to its image x, the
scale of the translational motion p and, if possible, the constant curvature 1/r of the space

M (but we will soon see, the curvature cannot be recovered from vision). Although our
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formulation allows to study reconstruction from multiple image frames, we here simply
demonstrate the case of two image frames so as to convey the main ideas. '

To simplify the notation, in this section, we assume the image x of a point p is
always normalized, i.e., ||x|| = 1 (in the Euclidean case, this corresponds to the spherical
projection). Suppose the distance from p to the optical center o is n € Rt. Recall that ¢(-) ‘
is the map from T,(M) to m. Then the homogeneous coordinate of p is given in terms of x
and 7 by:

p~tsin(np)x

p =exp(n$(x)) -0 = e R
cos(np)

Consequently, the scale A of p with respect to x is given by A = p~!sin(np). To differentiate
from the scale A, the distance quantity » will be called the depth of the point p with respect
to the image x.

Let m; and 7 be the depths of the point p with respect its two images x; and
x2 taken by the camera at two positions, respectively. Suppose the camera motion g € G
is specified by the rotation R € SO(3), the translation direction T € S? and the scale of
translation y (as in the preceding section). Then the first equation in (8.19) yields:

P~ sin(nap)x2 = [I3 + (cos(yp) — )TTT] Rp~" sin(mp)x; + cos(mp)p~" sin(yp)T. (8.24)

This is the coordinate transformation formula in spaces of constant curvature.
It looks kind of complicated. However, it is no more than a natural generalization of the
Euclidean coordinate transformation formula which people are familiar with. Notice when

the curvature 1/r goes to zero, so does p. Since
i - . -1 - -
pl_x)% cos(zp) =1, Flg(l) p_sin(zp) =z, T ER,
when the curvature of the space goes to zero, we have:
A= ,l,i_l)l(ll p~tsin(mp) =n;, i=1,2,
and (8.24) simply becomes:
Aoxa = RA\ix; + ~T. (8.25)

That it, in the limit case, the scale A and the depth 7 are the same; and the equation
(8.24) gives the Euclidean coordinate transformation formula. The Euclidean transforma-

tion (8.25) is extensively used for reconstructing Euclidean structure in Part I. Naturally,
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to reconstruct structure in spaces of constant curvature, the equation (8.24) has to be
exploited.

Notice that equation (8.24) is homogeneous in the scale of p. Since the quantities
7,72 and v are all multiplied with p, they can only be determined with respect to an
arbitrary scale of p. In Euclidean case, this corresponds to the fact that the Euclidean
structure can only be reconstructed up to a universal scale [71]. Thus in the case of spaces of
constant curvature, we may normalize everything with respect to the scale of the curvature:
ifr>0,let p=1;ifr <0, let p=1i=+/-1. That is, now the space M has constant
sectional curvature of either +1 or —1. Then (8.24) becomes:

sin(n2)xe = [I3 + (cos(y) — 1)TTT] R-sin(m)x; + cos(m)sin(7)T, p=1;
sinh(n2)xz = [I3+ (cosh(y) — 1)TTT] R- sinh(m;)x; + cosh(n ) sinh(Y)T, p = i.

These two equations correspond to coordinate transformations in (normalized) spherical
and hyperbolic spaces, respectively.

From the preceding section, we know R and T can be estimated from epipolar
constraints. The problem left is to reconstruct #;, 7, and «y. In computer vision, this problem
is usually referred to as structure from motion (this name is used by some authors for the
problem of reconstructing both motion and structure from images, but we shall maintain
the distinction here). One may directly use the above coordinate transformation formula to
formulate objective function for estimating scales 7;,72 and 7. In the Euclidean case, such
objective functions are linear in the scales [71]. However, in the Non-Euclidean case, such
objective functions are usually nonlinear.

In stead of directly using the coordinate transformation formula, one may use some
well-known constraints in spaces of constant curvature, i.e., Bolyai’s law of sine and law
of cosine (for absolute geometry), which have been well summarized by Hsiang in [46].

Define functions:

olz) = sin(z), p=1, Bz) = cos(z), p=1,

sinh(z), p=1, cosh(z), p=i.
The next theorem follows from Hsiang [46] as a special case:

Proposition 8.12 (Laws of Absolute Trigonometry). Consider a geodesic triangle
AABC in a space M of constant curvature £1, and let a,b,c be the lengths of the opposite
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sides of angles A, B, C respectively. Then we have:
sin(A) _ sin(B) _ sin(C)

afa) a(b) a(e) ’

Bolyai’s sine law. (8.26)

and

a(a)a(b)cos(C) = B(c) - B(a)B(b),
a(b)a(c)cos(A) = B(a) - B(b)B(c), law of cosine (8.27)
a(c)a(a)cos(B) = B(b) — B(c)B(a).

Suppose the two optical centers of the camera are 0; and 0. A geodesic triangle is

formed by the three points (01, 02, p), see Figure 8.2. The angle A is given by the angle be-

Figure 8.2: Geodesic triangle formed by two optical centers o7, 02 and a point p in the scene.

tween the two vectors Rx; and —T'; B is given by the angle between x2 and T'; C is given by
the angle between Rx; and x,. The quantities sin(A), sin(B), sin(C), cos(A), cos(B), cos(C)
can be directly calculated from those vectors.

Applying Bolyai’s sine law (8.26) to the geodesic triangle, a(m), a(n:) and a(y)

are determined up to a unknown scalar k € R by linear equations:
sin(A)a(m) = sin(B)a(ne), sin(C)a(n) = sin(4)a(y). (8.28)
The scalar k£ can be then determined by using one of the cosine law (8.27). Suppose
(51,82, 83)" = (ka(m), ke(n2), k(7)) € R®

is a solution of (8.28). In the hyperbolic case, from the first equation of (8.27), the scalar k

satisfies:

5152008(C) = ky/s3 — k2 — \/(s3 — k2) - (s — k?). (8.29)
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In the spherical case, we may assume 0 < 71,72,7 < 7/2 (i.e., comparing to the size of the
whole space, the structure we consider is relatively small). Then the first equation of (8.27)

yields:

5152008(C) = ky/k2 — s — /(K2 — 52) - (k2 = B). (8.30)

In order to calculate k, the above equations can be easily reduced to algebraic equations in
k? of degree 4. Since there is a general formula for roots of algebraic equations of degree 4,
k has a closed-form solution. Knowing k, a(n;), @(n2) and a(y) can be calculated hence
7,72 and . The above approach clearly outlines the geometry of stereo in any space of

constant curvature.

8.3 Discussion

In this chapter, we have generalized basic vision theorems in Euclidean space to
spaces of constant curvature. A uniform treatment is possible because a unified homoge-
neous representation of these spaces exists and the isometry groups of these spaces have
similar structures. As we have seen, the Euclidean vision theory can always be viewed as a
limit case of the general one.

One may have noticed that the epipolar geometry in spaces of constant curvature
is remarkably similar to that of Euclidean space. Especially, the bilinear epipolar constraint
is exactly the same. As in the Euclidean case, the motion is nicely decoupled from structure
by the epipolar constraint. This allows us to use most of the motion recovery algorithms
which were previously developed only for Euclidean space to spherical and hyperbolic spaces,
without any modification. In the continuous case, the epipolar geometry also remains to be
the same as in Euclidean case.

As for the structure from motion problem, the three dimensional structure can
only be reconstructed up to a universal scale, the same as the Euclidean case. In a space of
non-zero curvature, the curvature of the space cannot be recovered from vision. However,
the three dimensional structure of objects can be determined with respect to the curvature.
In this paper, we normalize the curvature with absolute value 1. Although the (noise-free)
structure from motion can be solved as a linear problem in the Euclidean case, it is no
longer linear for spherical and hyperbolic spaces. We have shown that using sine and cosine

laws for Absolute Geometry there is a closed-form solution for the structure from motion
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problem.

Although any Riemannian manifold locally can be approximated by spaces of
constant curvature (when the sectional curvature in all directions is close each other), it is
still interesting to know if the results of epipolar geometry hold for more general classes of
Riemannian manifolds (for example, symmetric spaces); and how the structure from motion
problem needs to be changed in general. These will be interesting research topics for the
future.
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Chapter 9

Bayesian Motion Estimation:

Likelihood and Geometry

In Part I and the previous chapter, we have established motion (and structure)
recovery schemes using image point features: image correspondences in the discrete case and
optical flows in the continuous case. However, point features are not a type of measurements
that images directly provide. A raw image is better modeled to be a real function defined
on the image plane I : RP? — R which indicates the gray level of the image intensity.
The purpose of this chapter is trying to study the motion estimation problem from this
level of raw inputs. The concept of point feature hence must be derived. Based on a very
simplified noise model, we are going to establish an argument for why the use of point
features (in the Part I) is the correct thing to do for motion estimation. More strictly
speaking, under certain conditions and assumptions, point features are sufficient statistics
for motion estimation. Very much like the previous chapter, the study in this chapter is only
conceptual and suggestive. The emphasis is on analysis but not on algorithm. In the end,
we will discuss how the feature point based approach may fail when certain assumptions of
the model are violated. This discussion - although does not really undermine all the study
given in Part I and Chapter 8 — will indeed reveal a more complicated picture of motion

estimation in general.
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9.1 Image Noise Models

For a perspective image point, we still use x = [z;, zo, l]T to denote its homoge-
neous coordinates. In this chapter, we will use the vector z = [$1,$2]T € R? to denote its
2D coordinates. Let ¢ € R denote the time. Points on the image plane evolve according to-

some vector field — also called image velocity in computer vision literature:

& = ¢(z,1). (9.1)

Let ®;(t) denote the solution of this ODE with z as the initial state. That is:
®4(t) = ¢(2:(t),2)- (9:2)

For a sequence of gray-level images of the same 3D scene, we may assume that the image
intensity function I(z,t) is invariant under the flow of the vector field ¢(z,t). Therefore,

we have:
I(®.(t),t) = I(z,1g). (9.3)
We choose the noise model to be:
I(®(t) + Ni(z,t),t) = I(z, 1) + No(z, t) (9.4)

where the random process N; € R? models the spatial noise — from quantization error
of the location of the image points, and N; € R models the temporal noise — from
quantization error or variation of the image intensity function. The stochastic processes
Ni(z,t) and N(z,t) are assumed to be independent Brownian motions (in time t) with
initial states N1(z,%9) = 0 and Np(z,%) =0.

Let VI = (798?]1" z’z Y eR, I = %, ny = ‘%1 and ng = %’2. Differentiating
equation (9.4) with respect to time ¢, we obtain:

VIT(¢+7L1) +1I; =n,. (9.5)

Note that in this equation VI and I; are evaluated at (®,(t) + Ny, t). In order to obtain the
equation in which all quantities are evaluated at (z, %)), note that according to assumption

we have No(z,%9) = 0, VNa(z,%p) = 0 and this gives the relations:

lim VI(22(t) + Nijt) = V(s,t0) (9.6)
0
lim I;(®(t) + N1,t) = Iz, to) (9.7)
t—=rig
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Then at (z,%g), the equation (9.5) yields:
VIT(¢+n1) + I =ny (9.8)
where all quantities are evaluated at (z,%y). We call the random vector:
u=¢+n €R (9.9)
the optical flow, and the previous equation can then be rewritten as:
VITu + I, = ny. (9.10)

Note that this optical flow model is similar to that used in [96] but the assumptions on
noises are slightly different. Since both N; and N, are independent Brownian motions,
their temporal derivatives are independent Gaussian. Without loss of generality we may
assume that n;, ~ N(0,0%]), np ~ N(0,03).

Given u, the random variable y = VITu + I, is of the distribution:
y ~ N(0,03). (9.11)

Then the conditional distribution P(VI, I; | u) has the density function:

_ (1T us1p)?
p(VI,I |u) « e . (9.12)

Comment 9.1. Although in the rest of the paper we will only use the noise model (9.5)
to illustrate how Bayesian method is carried on for motion estimation, we here discuss one
possible variation of this model. Note that, in the model (9.5), we implicitly assumed that
we can apply the differential operators V and % to the image intensity function I(z,t)
precisely. However, in practice, this is questionable - numerical approzimation usually
introduces noises to computation. If we simply assume that numerical errors introduced by

these operators do not depend on which function they apply to, we have:

V() = V()+ns (9.13)
%(.) = %(-)+n4 (9.14)

where n3 ~ N(0,03) and ng ~ N(0,02) are Gaussian random noises independent of ev-

erything else, and V and % stand for ideal differential operators. Then (9.10) is modified
to:

VITu+ I, =ny + nu+ ny. (9.15)
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Conseguently, the conditional density function (9.12) becomes:

_ (v17'u+15)2

p(VI,I; |u) o e 2e3uiuter+oq) (9.16)
Comment 9.2. An implicit assumption we made in order to get the expression (9.12) is
that, given u, the random vector (VIT,L,)T € R® is of uniform distribution on the plane
orthogonal to the vector by = (u”,1)T € R3. If we view uniform distribution as degenerate
Gaussian, in general, we may assume that conditional distribution of (VIT, I,)T given u is
the joint Gaussian:
~orm (2 ) v

p(VLL |u) x e (9.17)

where 0 € R is usually a large variance, and by,b; € R® are unit vectors and form an

orthogonal basis with b1. Note that if o = oo, this gives the same model as (9.12).

9.2 A Bayesian Motion Estimation Model

The question we are interested now is, given VI and I; at time ¢, what is the
optical flow estimate u*(z), and what is the estimate of camera velocity w*,v* assuming
that the scene is static and optical flows are generated by the motion of the camera only.

From a Bayesian viewpoint, we need to derive the a posterior distribution:
plu(z),w,v | VI, I,). (9.18)
In this paper, we choose u*(z),w*,v* to be the maximum a posterior (MAP) estimate:
argmax p(u(z),w,v | VI, I,). (9.19)

By the Bayesian estimation method, the a posterior distribution can be computed

from the following relation of probability density functions:
p(u(z),w,v | VL,I}) o p(VI I | u(z)) - p(u(z) | w,v) - p(w, ) (9.20)

where we in fact assume that VI, I; are conditionally independent of w, v given u(z). The
conditional distributions p(VI, I; | u(z)) and p(u(z) | w,v) are also called likelihood func-

tions, and p(w, v) is the a priori distribution of w, v.
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9.3 Likelihood Functions and a priori Distribution

In this section, we study how to determine the likelihood functions p(V1I, I, | u(z))
and p(u(z) | w,v) from geometric properties of the image.
9.3.1 Local Likelihood Function of Optical Flow
Let u; € R? be the minimum-norm solution of the equation:
VITu+T,=0. (9.21)

The the density function p(VI,I; | u) in (9.12) can be rewritten as:

(u—u))TvIVIT (u—ny)
- 1 o 1

p(VLLL; |u) « e 23 . (9.22)

Then the likelihood of (u — u;) has a Gaussian-like form, but the inverse of the covariance
matrix is degenerate because VIVIT is of rank 1. It therefore does not impose any penalty
on u — wu; in the direction perpendicular to VI. In order to obtain a non-degenerate local
likelihood at a image location zp, the matrix VIVIT /202 is usually replaced by a local
integration (average):

1

— VI(z)VI(z)Tdr e R2*? (9.23)
203 JU(zo)

Q1 =

where U(zp) is a neighborhood of zo. Then @; will be non-degenerate if zq is on a curve
or is near the intersection of several curves or straight lines. In the later case, z is usually

called a corner or point feature. The local likelihood p(V1, I; | ©) now becomes:
p(VLI |u) o e @ u)TQilu-w) (9.24)

where u, is simply replaced by a local linear least square estimate (LLSE) of u for all flow

equations (9.21) in the neighborhood U(zg):

-1
u = ( VI(z)VIT (z) d:z:) VI(z)I(z) dz. (9.25)
U(zo) U(zo)

It can be shown that the covariance matrix of this LLSE estimate is exactly given by Ql‘1
(see [32] chapter 16 of volume II). Connection between Q; and image local geometry is
exemplified by the fact that, for a point on a single curve, the ratio of the eigenvalues of

the matrix @ is (approximately) proportional to square of the curvature at the point of

interest.
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9.3.2 Likelihood Function of Camera Motion

Let x = (21,22,1)7 € R® and consequently x = (¢7,0)T € R3. It is well-known
that if the optical flow ¢ is generated from a rigid body motion, it must satisfy the epipolar

constraint (which has been used as a hard constraint on optical flows, see Chapter 3):
*Tox + xTadx = 0. (9.26)
Thus, for some functions f(v) € R? and g(w,v) € R, we have:
f@T¢+g(w,v) =0. (9.27)
Substitute u = ¢ + n; into this equation and we have:
F(@)Tu + g(w,v) = f(v)Tn,. (9.28)

The right hand side is simply a random variable of a Gaussian distribution N (0, o? f (v)T f (v)).

Then given w and v, we have:
fO) u+glw,v) ~ N(0,03f(v)7f(v)) (9-29)
Let up € R? be the minimum norm solution of the equation:
F@)Tu+g(w,v) =0 (9.30)

That is: u2 = —g(w, v)f(v)/f(v)T f(v), and let

f()f )"
201 f(v)T f(v)

Then the conditional density function p(u | w,v) is given as:

Q2 € R?x2, (9.31)

plu|wv) o e (#-u)TQalu—u2) (9.32)

Comment 9.3. Note that the ezpression:

(f () u + g(w,v))?
203 (0)T ()

in the absence of noise should be zero. This immediately gives us a probabilistically (v.s.

(u—u2)TQa(u—u2) = (9.33)

geometrically) “canonical” normalized version of the epipolar constraint.
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Comment 9.4. Similar to the comments we gave in Comment 9.2, in order to obtain
(9.32), we implicitly assumed that, given w,v, the random vector (u — uz) is joint Gaussian
and of uniform distribution on the line orthogonal to the vector f(v). A more general model
may be obtained by modifying the matriz Qo to:

OO

L = T TP

(9.34)

where b € R? is a unit vector orthogonal to f(v) and o € R as before is a large variance.
If 0 = oo, this gives the same model as (9.32). This ezplains the geometric meaning of the
covariance matriz. What is then the geometric meaning of the mean uy? It is more clear

from the epipolar constraint which yields the following:

T +xTo)ox =0 (9.35)
that the optical flow in homogeneous coordinates has a mean given by x — velocity generated
by rotation. Then uy is simply the 2D version of it.

9.3.3 The ¢ priori Distribution of Camera Motion

The a priori distributions of w and v can be assumed to be independent. w € R®

has the Gaussian distribution:
w~ N(0,021). (9.36)

Note that the likelihood function (9.32) takes the same value on v and Ao for all X € R\ {0}.
v € R® then should a distribution on the 2D sphere $2. We here simply use the uniform
distribution. If w or v has an initial estimate, say wgy or vy, it can be assumed to be the
mean of the distribution. In that case, v may be assumed to be a “Gaussian” distribution

on the 2D sphere S? (induced from the stereo-graphic projection).

9.4 Sufficient Statistics for Rigid Body Motion Estimation
In order to compute the MAP estimate:

argmax p(u,w,v | VI, I;), (9.37)

uWw,v
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we first compute the optical flow estimate u* at each location z of interest as a function of w

and v. Note that this computation only involves the likelihoods p(VI, I; | u) and p(u | w,v):
u*(z,w,v) = arg mf.;c (VLI | u) - p(u | w,v). (9.38)

This is equivalent to minimize the function:
Vi(w) = (u—u1)TQi(u —u) + (u — u2)T Q2 (u — ua). (9.39)

It yields:

u*(z,w,v) = (Q1 + Q2) ! (Qiu1 + Qou) (9.40)

Now notice that we are in fact estimating w,v from a field of measurements
VI(z),Ii(z), z € R?, instead of from a single point. We therefore need the a posterior
distribution p(u,w,v | VI, I;) where u, VI, I; are viewed as random fields — random func-
tions on (an open subset of) R?. We may assume the two Brownian process Ny (z, t), Na(z, t)
are spatially independent, i.e., Nj(z1,t) and N;(z,,t) are independent at different points

Z1,%9 for 1 = 1,2. Then we have:
(VI I,u|w,v) eJ In(p(VI(2),1:(z)u(z)w,v))dz (9.41)
Then the MAP estimates of the camera motion w* and v* are given by:
arg max p(u*,w,v | VI, L). (9.42)

Substituting the estimate u* into the Bayesian formula (9.20) and use (9.41) for p(VI, I;, u |

w,v), we get:

= J(u1~u2)T Q1(Q1+Q2) ! Q2(u1 —uz)dz— %

p(u*,w,v |VLL;) « e (9.43)

Let matrix W € R?*2 be Q(Q1+Q2) "' Q2. Note that W is in fact a (non-negative definite)
symmetric matrix and its entries are functions of » only. The MAP estimates of w and v
are therefore given by global minima of the objective function:

wTw

Volw,v) = /(u1 —up)TW (uy — up) dz + 257" (9.44)

w
Note that u2 is a linear function in w since g(w,v) is. Hence, the objective function V2(w,v)
is quadratic in w. One can first solve w* as an explicit function of v and then convert the

optimization problem to one for v on the 2D sphere S? only.
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From the definition of the matrix W, note that if Q; is a singular matrix, it can be
shown that W is exactly zero! This means that at points near a straight line, because of the
aperture problem, the gradient measurements VI, I; will have absolutely no contribution
to the MAP estimate (or even the MMSE estimate) — one of the reasons why we favor
using corners or line intersections in motion estimation. From a statistical viewpoint, we

conclude:

Theorem 9.5. For the given image noise model, gradient measurements VI, I, at locations

where Q1 is non-singular are sufficient statistics for estimating motion w and v.

Comment 9.6. In the ezpression of Va(w,v), the term (us — u))TW(ug — u;) gives a
probabilistically “canonical” distance between the LLSE estimate uy from the flow equation
(9.10) and the estimate u, from the epipolar constraint (9.26). The MAP estimate intends

to minimize this distance.

9.5 Discussion

We here investigate representative cases when some of the assumptions of the mo-
tion estimation model proposed above are violated and therefore the proposed optimization
scheme no longer provides valid estimates. We also discuss possible ways to resolve such

problems.

1. Imaginary corners and intersections. The motion estimation model proposed
above explicitly relies on the assumption that the intensity of a image point changes
is due to the (rigid body) motion of the corresponding 3D point. If there is no one-to-
one correspondence between a image point and a 3D point, the model is violated. For
example, as illustrated in Figure 9.1, intersections of those lines are “imaginary” — the
image of such a intersection in fact corresponds to (at least) two spatial points. Figure
9.1 is an conceptual example. In real images, such imaginary corners or intersections
usually occur along contours of solid objects, as the so called “T"-junctions. One way
to resolve such a problem is to build an estimation model based directly on “motion” of
(parameterized) lines instead of that of points. However, such a scheme still does not
apply to cases when imaginary intersections are caused by curves instead of straight
lines, for example Figure 9.2 shows an image of a trefoil curve in R® - the imaginary

intersections have to be discarded.
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Figure 9.1: Imaginary intersections.

Figure 9.2: Imaginary intersections of curves.

2. Multiple rigid body motion. The proposed motion explicitly assumes that there
is only a single rigid body motion of the whole scene. If there are multiple rigid body
moving, as shown in Figure 9.3, the proposed estimation scheme no longer applies.

However, this problem can be resolved using the Expectation-Maximization (EM)

Figure 9.3: Multibody motion.

scheme with little change of previously given likelihoods, for example see [128]. In such
a case, motion estimation and segmentation are solved together in a single Bayesian

estimation framework. However, such segmentation will be based on different rigid
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body motions, not simply on multiple smooth motion layers (as in [128]) which may

encounter difficulties in segmenting a rigid object such as the trefoil (see Figure 9.2).

. Non-rigid body motion. Roughly speaking, non-rigid body motion can be viewed
as an extreme case of multiple rigid body motion - there are infinitely many small
rigid bodies linked together. Figure 9.4 gives an example of non-rigid body motion.
In such a case, the proposed motion estimation scheme will fail since it relies on the
assumption that optical flows are generated by a rigid body motion such that the
epipolar constraint (9.26) can be used to determine the motion likelihood function.
In a case that an object indeed exhibits non-rigidity property, the proposed motion
estimation scheme has to be fundamentally changed since the motion space is no longer
the pair w,v. For computational convenience, an efficient parameterization scheme
is usually needed (and used) for a particular non-rigid body motion. The space of
a non-rigid motion is not necessarily always infinitely dimensional — as the example
shown in Figure 9.4, the motion can be simply parameterized by the principle radius
of the ellipse. However, the likelihood p(u | § € ©) between the new motion parameter

space, say ©, and the optical flow field u has to be carefully re-determined.

Figure 9.4: Non-rigid body motion.

. Non-Lambertian surfaces. Clearly, our model is primarily based on the equation
(9.3) which assumes that the intensity (or colors) of a point does not change even if the
viewing angle varies, i.e., the surfaces of objects have to be Lambertian. However,
for metallic or plastic surfaces, this is usually not the true: they do not only have
Lambertian reflection but also have specular reflection which gives these surfaces
local shiny effects. In such a case, the estimates given by the given algorithm may be

erroneous. Fortunately, since places where specular occurs usually have a much higher
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local intensity (than the average of the image), we can simply exclude measurements

at these places from the algorithm.

Besides the cases discussed above, any change of assumptions on the noises, such
as the Markovness, Gaussianness, temporal or spatial dependencies, will also change the:
difficulty of analysis, resulting objective functions and eventually the estimates. Since these

changes are more technical than conceptual, we do not discuss them in detail here.
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Part 111

Applications: Vision Based
Robotic Control
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Chapter 10

Vision Guided Navigation of an

Unmanned Ground Vehicle (UGV)

Sensing of the environment and subsequent control are important features of the
navigation of an autonomous mobile agent. In spite of the fact that there has been an
increased interest in the use of visual servoing in the control loop, sensing and control
problems have usually been studied separately. The literature in computer vision has mainly
concentrated on the process of estimating necessary information about the state of the agent
in the environment and the structure of the environment, e.g., [30, 40, 99, 111]. Control
issues are often addressed separately. On the other hand, control approaches typically
assume the full specification of the environment and task as well as the availability of the
state estimate of the agent.

The dynamic vision approach proposed by Dickmanns, Mysliwetz and Graefe [16,
17, 18] makes the connection between the estimation and control tighter by setting up
a dynamic model of the evolution of the curvature of the road in a driving application.
Curvature estimates are used only for the estimation of the state of the vehicle with respect
to the road frame in which the control objective is formulated or for the feed-forward
component of the control law. Control for steering along a curved road directly using the
measurement of the projection of the road tangent and its optical flow has been previously
considered by Raviv and Herman [91]. However, stability and robustness issues have not
yet been addressed, and no statements have been made as to what extent these cues are

sufficient for general road scenarios. A visual servoing framework proposed in [20, 92] by
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Espiau, Rives and Samson et al addresses control issues directly in the image plane and
outlines the dynamics of certain simple geometric primitives. Further extensions of this
approach for nonholonomic mobile platforms has been made by Pissard-Gibollet and Rives
[87]. Generalization of the curve tracking and estimation problem outlined in Dickmanns
to arbitrarily shaped curves addressing both the estimation of the shape parameters as well
as control has been explored in [29] by Frezza and Picci. They used an approximation of
an arbitrary curve by a spline, and proposed a scheme for recursive estimation of the shape
parameters of the curve, and designed control laws for tracking the curve.

For a theoretical treatment of the problem, a general understanding of the dy-
namics of the image of an arbitrary ground curve is crucial. Therefore, before we specify
particular control objectives (such as point-stabilization or trajectory tracking), we first
study general properties of dynamic systems associated with image curves. In a talk given
at Berkeley in October 1996, Soatto [100] formulated the problem of tracking as that of
controlling the shape of the ground curve in the image plane. In spite of the fact that
the system characterizing the image curve is in general infinite-dimensional, we show that
for linear curvature curves the system is finite dimensional. When the control problem is
formulated as one of controlling the image curve dynamics, we prove that the controllabil-
ity distribution has dimension 3 and show that the system characterizing the image curve
dynamics is fully controllable only up to the linear curvature term regardless of the kine-
matics of the mobile robot base. The controllability results indicate that the parameters
characterizing the images of linear curvature curves (to be defined in Section 10.1.2) can be
controlled using the driving and steering inputs. We show that the dynamics of the images
of linear curvature curves can be transformed to a canonical chained-form, which already
has existing point-to-point steering control scheme in Murray and Sastry [84, 85].

We then formulate the task of tracking ground curves as a problem of control-
ling the image curves in the image plane. We design stabilizing feedback control laws for
tracking general piecewise analytic curves (for general treatments of stabilizing trajectory
tracking control of nonlinear systems, one could refer to, e.g., [39, 123]). We also propose
to approximate general curves by piecewise linear curvature curves. We present how to
compute the image parameters for such approximating virtual curves so as to obtain the
appropriate controls to track them. Simulation results are given for these control schemes.

We also study the observability of curve dynamics from the direct measurements

of the vision sensor. Based on sensor models, an extended Kalman filter is proposed to
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dynamically estimate the image quantities needed for the feedback control. We thus obtain

a complete closed-loop vision-guided navigation system for non-holonomic mobile robots.

Chapter Outline

Section 10.1 introduces the dynamics of image curves, i.e., how the shape of the
image of a ground curve evolves in the image plane. Section 10.2 studies controllability
issues for the dynamic systems derived in Section 10.1. Section 10.3 shows how to formulate
specific control tasks for the mobile robot in the image plane. Corresponding control designs
and their simulation results are also presented in the same section. Section 10.4 develops
an extended Kalman filter to estimate on-line the image quantities needed for feedback
control. Observability issues of the sensor model are also presented. Simulations for the

entire closed-loop vision-guided navigation system are presented in Section 10.5.

10.1 Curve Dynamics

We derive equations of motion for the image curve under motions of a ground-based mobile
robot. We begin with a unicycle model for the mobile robot and consider generalizations

later.

10.1.1 Mobile Robot Kinematics

Consider the case where g7, (t) € SE(2) is a one parameter curve in the Euclidean
Group SE(2) (parameterized by time) representing a trajectory of a unicycle: more specif-
ically, the rigid body motion of the mobile frame F,, attached to the unicycle, relative to
a fixed spatial frame Fy, as shown in the Figure 10.1.

Let Ttm(t) = [2,9,2]T € R? be the position vector of the origin of frame F, from
the origin of frame Fy and the rotation angle 6 is defined in the counter-clockwise sense
about the y-axis, as shown in Figure 10.1. For the unicycle kinematics, (t) and Tfm(t)
satisfy:

£ = wvsind
= wvcosf (10.1)

= w



Figure 10.1: Model of the unicycle mobile robot.

where the steering input w controls the angular velocity 9; the driving input v controls the
linear velocity along the direction of the wheel.

Now, suppose a monocular camera mounted on the mobile robot which is facing
downward with a tilt angle ¢ > 0 and the camera is elevated above the ground plane by
distance d, as shown in Figure 10.2. The camera coordinate frame F, chosen for the
camera is such that the z-axis of F, is the optical axis of the camera, the z-axis of F, and

z-axis of F, coincide, and the optical center of the camera coincides with the origins of
both F,, and F,.!

g

R R R eyt S,

Image Plane
z=1

3

>

‘"[7//\'

Figure 10.2: The side-view of the unicycle mobile robot with a camera facing downward
with a tilt angle ¢ > 0.

Then the kinematics of a point p, = [z, y, z]T attached to the camera frame F, is

'Without loss of generality, we assume the camera is in such a position that such a choice of coordinate
frame is possible.
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given in the (instantaneous) camera frame by:

z 0 ysing + 2 cos ¢
y|=|sing |v+ ~zsing w. (10.2)
z cos t,b —Z Ccos¢

For a unit focal length camera, the image plane is z = 1 in the camera coordinate frame,
as shown in Figure 10.2.

The use of dynamic models for the task of steering the vehicle along the roadway
has been explored by Koseckd et al [57]. In applications such as high speed highway driving
the dynamic considerations play an important role. The full nonlinear dynamic model of
a car has 6 degrees of freedom of motion and 4 additional degrees of freedom for tires. A
simplified version of this nonlinear dynamic model which captures lateral and yaw dynamics
is used for controller design. The additional parameters of the dynamic model such as load,
inertia, speed and cornering stiffness may vary depending on the driving situation and/or
road conditions, and affect the design of the control laws. The modeled dynamics also allows
incorporation of the ride comfort criteria expressed in terms of limits on lateral acceleration
into the performance specification of the system.

For steering tasks at low speed and normal driving conditions dynamic effects are
not very prevalent so that the use of kinematic models may be well justified. Consequently,
for simplicity of analysis, we stick to kinematic models in this paper. Extensions of our
results to dynamic models is possible as well. We first establish our results for the kinematics
of the unicycle model and then extend it to the bicycle model capturing the kinematics of

the car.

10.1.2 Image Curve Dynamics Analysis

In this section, we consider a planar curve I on the ground, and study how the
shape of the image of the curve I' evolves under the motion of the mobile robot. For the

rest of this paper, we make the following assumptions:

Assumption 10.1. The ground curve I' is an analytic curve, i.e., ' can be locally repre-

sented by its convergent Taylor series ezpansion.

Assumption 10.2. The ground curve I' is such that it can be parameterized by y in the

camera coordinate frame F.
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Assumption 10.2 guarantees that the task of tracking the curve I' can be solved
using a smooth control law. For example, if the curve is orthogonal to the direction of

the heading of the mobile robot, such as the curve I'; shown in Figure 10.3, it can not be

y
r2
——_//
I z
X
/ 0E

Figure 10.3: An example showing that a ground curve I'; cannot be parameterized by y,
while the curve I'y can be.

parameterized by y. Obviously, in this case, if the mobile robot needs to track the curve
2, it has to make a decision as to the direction for tracking the curve: turning right or

turning left. This decision cannot be made using smooth control laws [8].

Relations between Orthographic and Perspective Projections

According to Assumption 10.2, at any time ¢, the curve I can be expressed in the
camera coordinate frame as [vi(y, t), v2(¥,t), 13(¥,t)]T € R3. Since I is a planar curve on
the ground, y»(y,t) and v3(y, t) is given by:

d+ycos¢

i (10.3)

T2 (v, t) =y, 73(y,1)

which is a function of only y. Thus only v:(y,t) changes with time and determines the
dynamics of the ground curve. In order to determine the dynamics of the image curve we
consider both orthographic and perspective projections and show that under certain
conditions they are equivalent.

The orthographic projection image curve of I in the image plane z = 1 given by
[71(¥,%),9,1]T € R? is denoted by T', as shown in Figure 10.4.

On the other hand, the perspective projection image curve, denoted by A =
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Fc

Figure 10.4: The orthographic projection of a ground curve on the z = 1 plane. Here
&Li=mand = %7;-

[A1(w,t), A2(w, ), 1]7, is given in the image plane coordinates by:

= = nlyt)sing
{ M(y,t) = % = 7:i-|?yc:::b (10.4)

A2(y, t) = %3’ = a+;l:°s¢
Note in equation (10.4) that A2(y, t) is a function of y alone and that the derivative
of A2(y,t) with respect to y is given by:

Ola(y,t) _ dsing
dy  (d+ycosg)?

so long as ¢ > 0 and y # —d/cos¢. Using the inverse function theorem, locally, the

(10.5)

image curve A can be re-parameterized by Y = Ay(y,t) when %yﬁﬂ # 0. A can then
be represented by [M\(Y,t),Y]T € R? in the image plane coordinates, where the function
A1(Y,t) can be directly measured. However, since, as we will soon see, for the given ground
curve I', it is easier to get an explicit expression for the dynamics of its orthographic image
I' than the perspective projection image A. Thus, it will be helpful to find the relation
between these two image curves I and A, i.e., the relations between the two functions v,
and A;.
First, let us simplify the notation. Define:

. = _J__M'Yl it , =
£t+1 = a‘)\ayx},t ’ 7" 0,1,2,... (106)
Gi+1 = 4-'—2,91,,.’ , 1=0,1,2,...
and:
— AT i — ¢00
5‘ = [61)521"'76¢]T€Ka €—§ (107)
Cz = [<17C2)'“1Ci] € R11 C ECOO
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If 41(y,t) is an analytic function of y, v1(y,t) is completely determined by the
vector £ evaluated at any y; similarly for A;(Y,t). Thus, the relations between [ and A are

given by the relations between ¢ and { for the case of analytic curves.

Lemma 10.3. (Equivalence of ¢, { Coordinates) Consider the orthographic projec-
tion image curve T = [v1(y,t),, 1J7 and the perspective projection image curve A =
MY,1), Y, 1T, with £ and ¢ defined in (10.6) and (10.7). Assume that the tilt angle ¢ > 0
and y # —d/cos ¢. Then for any fized y,

("= A.(y)€", VneN (10.8)
where An(y) € R**™ is a nonsingular lower triangular matriz.

Proof: We prove this lemma by using mathematical induction. For n = 1, from
(10.4), ¢t = gﬁ-’%{ 1 so that the lemma is true for n = 1. Now suppose that the lemma

is true for all n < k, i.e.,
=A,(y)", n=12,...,k (10.9)

where all A,(y) are nonsingular lower triangular matrices. Clearly, in order to prove that
for n = k + 1 the lemma is still true, it suffices to prove that (x4, is a linear combination
of ¢k+1 ie.,

k+1

i1 = D Bily)éi. (10.10)

i=1
Since Ag41(y) is nonsingular, Bx4+1(y) needs to be non-zero. Differentiating (10.9) with

respect to y, we have:

a¢ck oY (y, 1) k ok ok Aw) k. Aey) g
W 9y = Ai(y)€* + Arly )3 =3y aY(yt)§ ngt) By (10.11)
where the last entry of the column vector %‘;Yi is (k41 and:
8. k
T =l bl (10.12)

Therefore, according to (10.11), (r41 is a linear combination of £%¥+! and, since Ax(y) i

G

) is a
k x k nonsingular lower triangular matrix, Ai(y)gx # 0,2 the coefficient Br4q(y) = iéll-.'gu
is non-zero. " m

2Ai(y)x is the (k, k) entry of the matrix Ax(y).
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sin
d+ycos¢ 0 0 0
__cos d+y ;os ¢ 0 0
d
¢t = . dty cos o)’ ¢ (10.13)
sin ¢ 0 :
0 0 g{d+ycos ¢)icos¢ (d+ycosg)®
B d3sin? ¢ d3sin®¢

Lemma, 10.3 tells us that under certain conditions, the dynamics of the system &
for the orthographic projection image curve and that of { for the perspective projection
image curve are algebraically equivalent. We may obtain either one of them from the other.
¢ are quantities that we can directly measure from the perspective projection image A. Our
ultimate goal is to design feedback control laws exclusively using these image quantities.
However, as we will soon see, it is much easier to analyze the curve’s dynamics in terms
of £, the quantities in the orthographic projection image. It also turns out to be easier
to design feedback control laws in terms of {. For these reasons, in the following sections,
we choose system £ (i.e., the orthographic projection image) for studying our problem and

design control laws since it simplifies the notation.

Dynamics of General Analytic Curves

While the mobile robot moves, a point attached to the spatial frame Fy moves in
the opposite direction relative to the camera frame F,. Thus, from (10.2), for points on the

ground curve I' = [’71 (y) t)) Y73 (y)]Ta we have:

N1 (y,t) = —(ysing + 3 cos p)w. (10.14)
Also, by chain rule:
SRR o N W a | UE A W ;
vl(y,t? =% + By V=75 + By (—(vsin¢ — wsin ¢)). (10.15)

The shape of the orthographic projection of the ground curve T' = [y,(y,1),,1]T then
evolves in the image plane z = 1 according to the following Riccati-type partial differential
equation 3:

on
ot

3This equation is called a Riccati-type PDE since it generalizes the classical well-known Riccati equation
for the motion of a homogeneous straight line under rotation around the origin [29, 30].

= —(ysin¢ + y3 cos P)w + %(v sin ¢ — ywsin ¢). (10.16)
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Using the notation £ from (10.6) and the expression (10.3) for +s3, this partial differential
equation can be transformed to an infinite-dimensional dynamic system ¢ through differen-

tiating equation (10.16) with respect to y repeatedly:

3 [ &162sing + deot ¢ + g [ & sing |
& £163sing + &3 sing + s £ssing
& £1€45in ¢ + 3Ex€3 sin g &asing
=" : w+ : v (10.17)
& £1€i+18in ¢ + gi(&2, - - -, &) éiv18ing

where g;(&2, . .., ;) are appropriate functions (polynomials) of only &, ..., ;. In the general

case, the system (10.17) is an infinite-dimensional system.

Comment 10.5. It may be argued that the projective or orthographic projections induce a
diffeomorphism (so-called homography, in the vision literature (see for example Weber et al
[126])) between the ground plane and the image plane. Thus, we could write an equation of
the form (10.17) for the dynamics of the mobile robot following a curve in the coordinate
frame of the ground plane. These could be equivalent to the curve dynamics (10.17) described
in the image plane through the push forward of the homography. We have not taken this

point of view for reasons that we ezplain in Section 10.2.

Dynamics of Linear Curvature Curves

In this section, we consider a special case: the ground planar curve I is a linear
curvature curve (defined below). Its image dynamics in £ can then be reduced to a

three-dimensional system, which will be shown to be controllable in the following sections.

Definition 10.6. We say that a planar curve has linear curvature if the derivative of
its curvature k(s) with respect to its arc-length parameter s is a non-zero constant, i.e.,
k'(s) = c # 0. These curves are also referred to as clothoids. If k'(s) = 0, the curve is a

constant curvature curve.

Note that, according to this definition, both straight lines and circles are con-
stant curvature curves, but not linear curvature curves. Constant curvature curves may

be regarded as degenerate cases of linear curvature curves. For linear curvature curves, we

have
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Lemma 10.7. For a ground curve I' of linear curvature, i.e., k'(s) = c# 0, for any i > 4,

&; can be exzpressed as a function of £1,&2, and &3 alone.

Proof:  Consider the ground curve I' = [y,(y,t),y,73(y,t)]T where y3(y,t) is

given in (10.3). For the arc-length parameter s and the curvature k, the following relation-

ships hold:
s'(y) = \/@L‘) +1+(%°')2  (10.18)

/ 1" aaz 1
k) = D@ T@e il : (10.19)
s'(y) ( az_*_(%'};_)z

where a is defined as a = /1 + cot? ¢ = (sing)~!. Thus the derivative of the curvature k

with respect to the arc-length parameter s is given by:

M) | S+ (3R 3% (5n)

K(s)==<=a 3 Y =c. (10.20)
s'(y) (az + (% )2)
Using the definition of §;, from (10.20) &4 can be expressed by:
2 4 ¢2)3 2
64 — c(a +§2) /U»+352§3. (1021)

a? + &
Therefore, £, is a function of &;, {2, and &3 alone. According to the definition of &;, it follows
that, for all ¢ > 4, &; are functions of &;,£2,and &3 alone. u

Using Lemma 10.7, for a ground linear curvature curve I', the dynamics of its
orthographic projection image I, i.e., system (10.17) for &, can then be simplified to be the
following three-dimensional system &3 = [£;, &, £3]7:

13 E2¢1sing +dcot ¢ + L E £asin¢
b | =-| Glsing+&Gsing+ gy |w+ | &sing | v (10.22)
& £4€15in ¢ + 3263 sin @ £4sing

where &4 is given by (10.21).

Combining Lemma 10.3 and Lemma 10.7, we have the following remark
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Remark 10.8. For a ground curve of linear curvature, the dynamics of { for the perspective
projection image of the curve are completely determined by three independent states (1, (2, (s,
or equivalently, for i > 4, {; is a function of only (1,{2, and (3. The two systems (% =
[€1,¢2, 3] and €3 = [€1,62,&3]T are equivalent and related by equation (10.18). This implies,

for instance, that these two systems have the same controllability properties.

Comment 10.9. In the case that T is a constant curvature curve, i.e., k'(s) =0, one can
show that &3 is actually a function of only &,&2, so for all &;,1 > 3 are functions of only

&1,€2. There are then only two independent states £1,&2 for the dynamics of system €.

Linear curvature is an intrinsic property (which is preserved under Euclidean
motions i.e., SE(2)) of planar curves. Thus, the expression (10.21) always holds under all
planar motions of the robot. However, some other seemingly natural and simple assumptions
that the literature has taken for the ground curve (so as to simplify the problem) might fail
to be preserved under the robot’s motions. For example, if, in order to simplify (10.17),

one assumes §; = 0 for ¢ > 4, i.e., 71(y,t) is of the form:

71(¥:t) = &1(yo, 1) + Ea(wo, 1) (y — wo) + %&a(yo, £)(y — %0)? (10.23)

This property is not preserved under rotations. More generally, it is not an intrinsic property
for a planar curve that its Taylor series expansion has a finite number of terms. Therefore,
one cannot simplify system (10.17) to a finite-dimensional system by assuming that the

curve’s Taylor series expansion is finite (which might be the case only at special positions).*

10.2 Controllability Issues

We are interested in being able to control the shape of the image curves. From the above
discussion, this problem is equivalent to the problem of controlling system £ (10.17) in the
unicycle case. For linear curvature curves, the infinite-dimensional system £ is reduced to
the three-dimensional system £ (10.22). In this section, we study the controllability of
such systems. If the systems characterizing the curve I' are controllable, that essentially
means that given our control inputs we can steer the mobile base in order to achieve desired
position and shape of the curve in the image plane. Controllability of system (10.22) is

“Essentially, it only “simplifies” the initial conditions of the system (10.17), not the system dimension.
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directly checked in Section 10.2.1. Controllability of system (10.17) can be obtained through
studying the controllability for a general ground-based mobile robots (for details on this
subject, see [70]).

Note that £ and ¢ are still functions of y (or Y). They need to be evaluated at a
fixed y (or Y). Since the ground curve I is analytic, it does not matter at which specific
y they are evaluated (as long as the relation between ¢ and ¢ is well-defined according to
Lemma 10.3)°. However, evaluating £ or ¢ at some special y might simplify the formulation

of some control tasks.

Image Plane
z=1

A “-“"‘-.
/A

Figure 10.5: A’ is the orthographic projection image of the point A where the wheel touches
the ground.

For example, suppose a mobile robot is to track the given ground curve I. Ac-
cording to Figure 10.5, let A’ be the orthographic projection image of the point A where the
wheel of the mobile robot touches the ground. Obviously, the coordinates of A’ are given
by [0, —dcos ¢, 1)7. When the mobile robot is perfectly tracking the given curve I, i.e., the
wheel keeps touching the curve, the orthographic projection image ' = M (w,t),,1)T of
the curve I" should satisfy:

'Yl(y: t)ly:-dcosd; =0. (10.24)
Furthermore, the tangent to the curve I' at y = —d cos ¢ should be in the same direction as
the mobile robot. This requires:

My, t) —

——ay’ ly=—dcos¢ = 0. (10.25)

5For analytic curves, there is a one-to-one correspondence between the two sets of coefficients of the
Taylor series expanded at two different points.
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Thus, if £ is evaluated at y = —dcos ¢, the task of tracking I' becomes a control problem
of steering both &; and & to O for the system (10.17). For these reasons, from now on, we

always evaluate £ (or () at y = —d cos ¢ unless explicitly stated.

10.2.1 Controllability in the Linear Curvature Curve Case

If the given ground curve I' is a linear curvature curve, the dynamics of its image
is given by (10.22).

Theorem 10.10 (Dimension of Controllability Lie Algebra). Consider the system
of (10.22):

£ = fiw+ fav (10.26)
where the vector fields (f1, fo) are:
£1€2sing + deot ¢ + i 25in¢
i = - | b&sing+Esing+ g5 |, f2= | &sing (10.27)
§184sin ¢ + 3¢2838in ¢ §asing
and & = c(a2+§§2":’*./:2+3§2§§' If ¢ #0, and y = ~dcos ¢, then the distribution A spanned
2

by the Lie algebra L(f1, f2) generated by (f1, f2) is of rank 3 when ¢ # 0, and is of rank 2

when ¢ = 0.
Proof: Directly calculate the Lie bracket [f1, f2]:
[fl, f2] = [-170, O]T (1028)

The determinant of matrix (f1, f2, [f1, f2]) is:

det(f1, f2, [f1, f2]) = —c(a® + £3)%/a®. (10.29)

Therefore, the distribution Az spanned by L(fy, f2) is of rank 3 if ¢ # 0, and of rank 2 if

c=0. |

Comment 10.11. Since A is of full rank at all points, it is involutive as a distribution.
Chow’s Theorem [84] states that the reachable space of system (10.22) for €3 is of dimension
3 when ¢ # 0, and 2 when ¢ = 0. This makes sense since, when ¢ = 0, i.e., the case of
constant curvature curves, there are only two independent parameters, &, and &, needed to

describe the image curves, the reachable space of such system can be at most dimension 2.
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10.2.2 Front Wheel Drive Car

In this section, we show how to extend the study of unicycle model to the kinematic

model of a front wheel drive car as shown in Figure 10.6.

X

Figure 10.6: Front wheel drive car with a steering angle o and a camera mounted above
the center O.

The kinematics of the front wheel drive car (relative to the spatial frame) is given

by:
£ = sinfuy;
2 = cosfu; (10.30)
17! tan oy
a = U2

where u; is the forward velocity of the rear wheels of the car and uy is the velocity of the

steering rate angle.

Comment 10.12. The dynamic model of the front wheel drive car, the so called “bicycle
model” [57] has the same inputs and the same kinematics as this kinematic model of the
car. In the dynamic setting the lateral and longitudinal dynamics are typically decoupled
in order to obtain two simpler models. The lateral dynamics model used for the design
of the steering control laws captures the system dynamics in terms of lateral velocity (or
alternatively slip angle) and yaw rate. The control laws derived using this kinematic model
are applicable to the highway driving scenarios providing that the 3D effects of the road
curvature are negligible and the variations in the pitch angle can be compensated for. Under

normal operating conditions and lower speeds the dynamical effects are not so dominant.
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Comparing (10.30) to the kinematics of the unicycle, we have:
w=I1"tanau;, v=u. (.10.31)
If we rewrite the system (10.17) as:
£ = fiw+ fov (10.32)

the dynamics of the image of a ground curve under the motion of the front wheel drive car

is given by:
A 0 1 .
1= ut | | ue= fru+ fous. (10.33)
¢ I"ltanaf, + fo 0
Calculating the controllability Lie algebra for this system, we get:
f 1 ] f 0
2 = ) = )
0 ' I“ltanafi + fo
J— 0 s s - 0
f ’ f2 = ) fla fl ’ f2 = .
[ ! ] —I"1sec? af; [ [ ]] L 1= sec? alf1, fo

Clearly, as long as sec? a # 0, i.e., a is away from 7/2, we have:

ra’nk(fla [f2) fl]v [fls [f2’ fl]]) = rank(fla f2) [fl’ f2]) (1034)

Thus, the controllability for the front wheel drive car is the same as the unicycle. As a

corollary to Theorem 10.10, we have

Corollary 10.13. For a linear curvature curve, the rank of the distribution spanned by the
Lie algebra generated by the vector fields associated with the system (10.33) is exactly 4.

For constant curvature curves, i.e., straight lines or circles, the rank is ezxactly 3.

Therefore, under the motion of the front wheel drive car, the shape of a image
curve is controllable only up to its linear curvature terms, as is the unicycle case. The
reader may refer to [70] for a discussion on the controllability of an arbitrary analytic curve
under the motion of an arbitrary ground mobile vehicle. The conclusion can be roughly

summarized as in the following remark:

Remark 10.14. The shape of the image curve is only controllable up to its linear curvature

terms, i.e., &1,£&2,83 at most under the motion of any ground mobile vehicle.
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10.3 Control Design in the Image Plane

In this section, we study the design of control laws for controlling the shape of the image
curve in the image plane so as to facilitate successful navigation of the ground-based mobile
robot. We consider two basic control tasks: 1. Controlling the apparent shape of the curve

on the image; 2. Tracking a given ground curve.

10.3.1 Controlling the Shape of Image Curve

According to the controllability results presented in the previous section, one can
only control up to three parameters (£}, &2,&]7 of the image of a given ground curve. This
means the shape of the image curve can only be controlled up to the linear curvature features
of a given curve. In this section, we study how to obtain control laws for controlling the
image of a linear curvature curve, as well as propose how to control the image of a general

curve.

Unicycle

For a unicycle mobile robot, the dynamics of the image of a linear curvature
ground curve is given by system (10.22). According to Theorem 10.10, this two-input three-
dimensional system is controllable (i.e., has one degree of nonholonomy) for ¢ # 0. Thus,
using the algorithm given in Murray and Sastry [84, 85], system (10.22) can be transformed
to the canonical chained-form.

The resulting change of coordinates is:

,

T = &
= a%&3
T = e
{33 = (&~ girdy) (10.35)
- 2+ 2 3+3 2 2
—  —ca(a®+£3)3+3a26263(a +€2+63) a®+£3+63
[ v = T+ E])" U

where a = (sin ¢)~!. Then, the transformed system has the chained-form:

.'i:l = u
fo = up (10.36)

T3 = Tow
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For the chained-form system (10.36), using piecewise smooth sinusoidal inputs
[85], one can arbitrarily steer the system from one point to another in R®. More robust
closed loop control schemes based on time varying feedback techniques can also be found
in [120]. In principle, one can therefore control the shape of the image of a linear curvature
curve.

As for controlling the image of an arbitrary ground (analytic) curve, the best we
can do is to approximate this curve locally by a linear curvature curve (if k”(s) =~ 0) and
then, the controls for controlling the image of this approximating linear curvature curve can
approximately control the image of the original curve freely up to its first three parameters
[é1,€2,&)7 in a local range.

Note that when ¢ = 0, i.e., the curve is of constant curvature, the above trans-
formation is not well-defined. This is because the system ¢ now only has two independent
states £; and £>. It is much easier to steer such a two-input two-state system than the above

chained-form system.

Remark 10.15. Using Lemma 10.8, the dynamic system (3 of the perspective projection

image of a linear curvature curve can be also transformed to chained-form.

Front Wheel Drive Car

In this section we show that the image curve dynamical system (10.33) for the
front wheel drive car model is also convertible to chained-form. According to Tilbury [110],
the necessary and sufficient conditions for a system to be convertible to the chained-form

are given by the following theorem:

Proposition 10.16 (Murray [83]). Consider a n-dimensional system with two inputs

Uy, Uz’
T = giu; + gous, <z € R". (10.37)

Let the distribution A = span{gi, g2} and define two nested sets of distributions:

EO = A) F() = A
E, = Ey+[Eo,Ey, F = Fy+|[F,Fy
E, =

B\ +[EnL B, F = F+[R,F) (10.38)

Eiyn = E;+[E,E), Fiy = F,+[F,FR).
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The system is convertible to chained-form if and only if:

dim(E;) = dim(F;) =i+2, i=0,...,n-2. (10.39)

Then we can directly check the two sets of distributions for the dynamical system

(10.33) of the image curve for the front wheel drive car:

@ 0 w | = fiu; + f: (10.40)

£ R tanaf; + fo ' 0 = it et .
BEo=F = span{fi,fo} (10.41)
Ey=F, = span {fhfz, [1, fz]} (10.42)

Clearly, [f1, [f1, fo]] € [F1,Fo] C Fa. For a linear curvature curve, (10.33) is a 4-dimensional
system. According to Corollary (10.13), dim(F,) = dim(F + [F, Fp)) = 4. Since F> C E,
we have dim(E3) = dim(F;) = 4. Thus, according to Theorem 10.16, the system (10.33)
is convertible to chained-form. The coordinate transformation may be obtained using the
method given by Tilbury , Murray and Sastry in [110].

Everything we discussed in the previous section for the unicycle also applies to the
front wheel drive car model. In the rest of the paper, only the unicycle case will be studied

in detail but it is easy to generalize all the results to the car model as well.

10.3.2 Tracking Ground Curves
Tracking Analytic Curves

In this section, we formulate the problem of mobile robot tracking a ground curve
as a problem of controlling the shape of its image with the dynamics described by (10.17).
We design a state feedback control law for this system such that the mobile robot (unicycle)
asymptotically tracks the given curve.

First, let us study the necessary and sufficient conditions for perfect tracking
of a given curve. As already explained at the beginning of Section 10.2, when the mobile

robot is perfectly tracking the given curve:

&1 = N t)ly=—dcosg =0 (10.43)

Oy, t
£ = J%L,:_mwso. (10.44)
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From (10.22) when &; = & = 0, we have:

& = —&sing + w/sing = 0. (10.45)
This gives the perfect tracking angular velocity:
w = €3sin’ ¢ v. (10.46)

It is already known that system (10.17) is a nonholonomic system. According to
Brockett [8], there do not exist smooth state feedback control laws which asymptotically
stabilize a point of a nonholonomic system. However, it is still possible that smooth control
laws exist for the mobile robot to asymptotically track a given curve, i.e., to stabilize the
system ¢ around the subset M = {¢ € R® : £ = & = 0}.

A global tracking scheme has been proposed by Hespanha and Morse [41] based

on the idea of “partial” feedback linearization.

Proposition 10.17 (Hespanha and Morse). For the system £ (10.17), set:

v = y+&w, v>0
sin . (10.47)
w = mgﬂ—%(vo sin ¢é3 + a&y + béa), a,b>0
Then the partial closed loop system of &1,&2 is linearized and given by:
£, = wpsin
f = vosinge (10.48)

f = —ab1—bly

This control law guarantees the partial system that we are interested is globally
exponentially stable regardless of the boundness on the curvature. Thus the closed loop
mobile robot globally asymptotically tracks an arbitrarily given analytic curve.

In the above, we have assumed that the set point for the linear velocity vg is
always nonzero. In the case that vy = 0, the control (10.47) is still stabilizing but no longer
asymptotically. From the partially linearized system (10.48), & remains constant but £»
can still be steered to zero. This makes sense because, without linear velocity, one can
only rotate the unicyle and line up its heading with the curve but the distance to the curve
remains the same.

Although Proposition 10.17 only deals with analytic (C“) curves, it actually can

be generalized to Cl-smooth piecewise analytic curves®.

64C1.smooth” means that the tangent vector along the whole curve is continuous.
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Corollary 10.18. Consider an arbitrary C'-smooth piecewise analytic (ground) curve. If
the mazimum curvature |k|mq. ezists for the whole curve, the linearization feedback control

law given by (10.47) guarantees that the mobile robot locally asymptotically tracks the given

curve.

Remark 10.19. Using Lemma 10.3, the control law (10.47) can be converted to a stabilizing

tracking control law for { of the perspective projection image.

Tracking Arbitrary Curves

Corollary 10.18 suggests that, for tracking an arbitrary continuous (C°-smooth)
ground curve (not necessarily analytic), one may approximate it by a C''-smooth piecewise
analytic curve, a virtual curve, and then track this approximating virtual curve by using
the tracking control law. However, since the virtual curve cannot be “seen” in the image,
how could one get the estimates of £ for the “image” of the virtual curve so as to get the
feedback controls v and w subsequently? It turns out that, the virtual £ is exactly the
solution of the differential equation of the closed-loop system (10.17) with v and w given
by the tracking control law. The initial conditions for solving such differential equation can
be obtained from when designing the virtual curve.

Now, the control becomes an open-loop scheme, and in order to track this virtual
curve, one has to solve the differential equation (10.17) in advance and then get the desired
controls v and w. It is computationally expensive to approximate a given curve by an
arbitrary analytic curve in which case, in principle, we have to solve the infinite-dimensional
differential equation (10.17).

However, as argued in Section 10.1.2, a special class of analytic curves, the linear
curvature curves, can reduce the infinite-dimensional system (10.17) to a three-dimensional
system (10.22), and the three states &3 of the system (10.22) also have captured all the
controllable features of the system &, according to [70]. Therefore, it is much more com-
putationally economical to approximate the given curve by a C!-smooth piecewise linear
curvature curve and then solve the three-dimensional differential equation (10.22) to get
the appropriate controls v and w.

Few applications do require tracking of arbitrary (analytic) curves. The target
curves usually can be modeled as piecewise linear curvature curves. For instance, in the

case of vehicle control, in the United States, most highways are designed to be of piecewise
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constant curvature, and in Europe, as clothoids. Therefore, piecewise linear curvature

curves are simple as well as good models for most tracking tasks.

Comment 10.20. Strictly speaking, when approzimating a given curve by a piecewise poly-
nomial curve, for example by using splines [29], in order to get the estimate of £ for the
evolution of the approzimating virtual curve, one has to solve the infinite-dimensional differ-
ential equation (10.17). What the “polynomial” property really simplifies is just the initial
conditions of the differential equation but not the dimension of the problem, as already

argued in Section 10.1.2.

Example 10.21 (Mobile Robot Tracking Corridors). Consider a simple ezample: the
mobile robot is supposed to track a piecewise linear curve consisting of intersection of
and ly (as a reasonable model for corridors inside a building), as shown in Figure 10.7. A
natural and simple way to smoothly connect them together is to use a piece of arc AB which
is tangential to both of the straight lines (at points A and B respectively). From point A,
the mobile robot switches to track the virtual curve, arc AB until it smoothly steers into the
next piece, i.e., the line ly. The £3(t) for tracking this virtual arc AB is then given by the
solution of the closed-loop system of (10.22) with ¢ = k'(s) = 0 and the initial conditions at
point A: £3(0) = [0,0, —a?/r]T.
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Figure 10.7: Using arcs to connect curves which are piecewise straight lines.

In the above example, since the approximating virtual curve is to be as close to the
original curve as possible, the radius r of the arc AB should be as small as possible. But,
in real applications, the radius r is limited by the maximal curvature that the mobile robot

can track (r = 1/|k|). Thus, one needs to consider this extra constraint when designing the
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virtual curves. The following result tells us a way to decide the maximal curvature |klmaz
that the mobile robot can track:

Remark 10.22. Consider the unicycle mobile robot. If its linear velocity v and angular
velocity w satisfy [v| > ¢1 and w? +v? < ¢, then the mazimal curvature that it can track is:.

c2

k| < (—)2 -1 (10.49)

9]

Consider now that the image curve obtained is not even continuous, i.e., the robot
“sees” several chunks of the image of the real curve that it is supposed to track. Basically,
there are two different approaches that one might take in order to track such a curve: first,
one may use some estimation schemes and based on the estimated features of the real curve
to apply the feedback control law (as studied by Frezza and Picci [29]); second, one may
just smoothly connect these chunks of the image curve by straight lines, arcs or linear
curvature curves and then apply the virtual tracking scheme as given above to track the

approximating virtual curves.

10.3.3 Simulation Results of Tracking Ground Curves

In this section, we show simulation results of the mobile robot tracking some
specific ground curves using the control schemes designed in previous sections. We assume
that all the image features ¢ are already available. In next section, we discuss how to
actually estimate £ from the real (probably noisy) images. For all the following simulations,
we choose the camera tilt angle ¢ = 7/3, and vp = 1. The reference coordinate frame Fy is

chosen such that the initial position of the mobile robot is z¢o = 0,259 = 0 and 6y = 0.

Tracking a Linear Curvature Curve

For the simulation results given in Figure 10.8, the nominal trajectory is chosen
to be a linear curvature curve with the constant curvature varying rate ¢ = k'(s) = —0.05.

Its initial position given in the image plane is £19 = 0.1, &3¢ = 0.1, and &3 = 2.

Tracking Piecewise Straight-Line Curves

Consider now the example discussed in Section 10.3.2: the mobile robot is to track

a piecewise linear curve consisting of intersection of I, and I, as shown in the Figure 10.9. We
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Figure 10.8: Simulation results for tracking a linear curvature curve (¢ = k'(s) = —0.05).

Subplot 1: the trajectory of the mobile robot in the reference coordinate frame; subplot 2:
the image curve parameters §; and &;; subplot 3 and 4: the control inputs v and w.

compare the simulation results of two schemes: 1. Using only the feedback tracking control
law; 2. Using a pre-designed approximating virtual curve (an arc in this case) around the
intersection point. From Figure 10.9, it is obvious that, by using the pre-designed virtual
curve, the over-shoot can be avoided. But the computation is more intensive: one needs to

design the virtual curve and calculate the desired control inputs for tracking it.

10.4 Observability Issues and Estimation of Image Quanti-

ties

As we have discussed in Section 10.1.2, £ are the features of the orthographic projection
image I of the ground curve I', and are not yet the real image (which, by convention, means
the perspective projection image A) quantities (. However, £ and ¢ are algebraically related
by Lemma 10.3. In principle, one can obtain ¢ from the directly-measurable <.

In order to apply the tracking control laws given before, one need to know the

values of £1,&2, and &3, i.e., (1,{2 and (3. Suppose, at each instant t, the camera provides

N measurements of the image curve A:

{[Al(Ykat)’ Y}cv 1]T} ’ k= L---aN (10'50)
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Figure 10.9: Comparison between two schemes for tracking a piecewise straight-line curve.

where {Y1,Y>,...,Yn} are fixed distances from the origin. If the distances between Y; are

small enough, one can estimate the values of {1(Y%),(2(Yx), and {3(Y}) simply by:

G(Ye) = M(Yk,1)

oY) = Alipu-a(id (10.51)
: M Ve )= (Yertd) _ A Fesnt) =M (Y,

G(Yy) = ( i k}:_:i_y;ilk“ 9 - aul k;,:_:,)_y;(yk t))/(Yk+l—Yk)

for k=1,...,N —2. However, in practice, the measurements {[\; (Yk,t),Yk,l]T}::,=1 are
noisy and the estimates (10.51) for (3 become very inaccurate, especially for the higher order
terms (2 and (3. It is thus appealing to estimate (3 or £2 by only using the measurements
{[M Yk, 1), Yi, 1]7’}::’=l but not their differences.

10.4.1 Sensor Models and Observability Issues
General Analytic Curves

The curve dynamics are already given by (10.17). If we only use the measurement

¢1 = A1(Y, t) as the output of the vision sensor, then we have the following sensor model:
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& §1§2 sing + dcot ¢ + == sm¢ &osing

& Li€ssing +E3sing + g Easing

& _ §18asin g + 3€2€3 sin ¢ ot €4sin ¢ |
: : : (10.52)
& &i&ivising + gi(f, - - -, &) i+15in ¢

RO = G = gt

where h(£) is the measurable output.

Theorem 10.23 (Observability of the Camera System). Consider the system given
by (10.52). Let:

§1§281n¢+dcot¢+sm¢ ] I &asin¢ 1
&1€3sing + {2 sin¢ + sin¢ &3sin¢

P £1€45in ¢ + 323 sin g = &4 S:in ¢ . (1053)
&16iv1sing + gi(€e, . .-, &) iv15in¢g

If ¢ # 0, then the annihilator Q of the smallest codistribution Q invariant under fy, fo and
which contains dh(£) is empty.

Proof: Through direct calculations, the k-th order Lie derivative of the covector
field dh(€) along the vector field f is:

L% dh(€) = sin*’ ¢ L k=0,1,2,...,00 (10.54)
f2 d+yCOS¢ k+1, — Uy éy .., 0. .
Thus, €2 contains all d¢;, i € N and therefore Q is an empty distribution. n

Comment 10.24. According to the Theorem 1.9.8 in Isidori [48], Theorem 10.23 guaran-
tees that the system (10.52) is observable. In other words, the (locally) maximal output
zeroing manifold of the system (10.52) does not ezist, according to the Proposition 10.16
in Sastry [93]. Since this system is observable, ideally, one then can estimate the £ from

the output h(£). However, the observer construction may be difficult.
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Linear Curvature Curves

The sensor model (10.52) is an infinite-dimensional system. In order to build an
applicable estimator for £3 (so as to apply the tracking control laws), one has to assume
some regularity on the given curve I' so that the sensor model becomes a finite-dimensional
system. In other words, one has to approximate I’ by simpler curve models which have
finite-dimensional dynamics.

In Frezza and Picci [29], the models chosen are third-order B-splines. However,
as we have pointed out in Section 10.1.2, the polynomial form is not an intrinsic property
of a curve and it cannot be preserved under the motion of the mobile robot. Furthermore,
simple curves like a circle cannot be expressed by third-order B-splines. We thus propose to
use (piecewise) linear curvature curves as the models. The reasons for this are obvious from
the discussions in previous sections: the dynamics of a linear curvature curve is a three-
dimensional system (10.22); such a system has very nice control properties; and piecewise
linear curvature curves are also natural models for highways. However, a most important
reason for using linear curvature curves is that, according to Proposition 10.17, one actually
only needs the estimation of three image quantities, i.e., &,&; and &3 to be able to track
any analytic curve. All the “higher order terms” ¢;, ¢ > 4 are not necessary.

For a linear curvature curve, since we do not have a priori knowledge about the
constant curvature varying rate ¢ = k'(s), we also need to estimate it. Let n = c and we

have the following sensor model for linear curvature curves:

&1 [ fzflsin¢+dcot¢+s_il% T - fzsinqs-
5:2 - |8 sing + & sin + ﬁ w4 §3sing v
€3 €al1sing + 3éaéssing £4sing (10.55)
ER 0 |
ME) = 6= gy
n(a®+£2)3 /a+3£262 and h(¢3,7) is the measurable output.

Whel‘e 54 = a2+§g

Theorem 10.25 (Observability of the Simplified Sensor Model). Consider the sys-
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tem (10.55). Let:

[ 261sin g + deot ¢ + s §2sin¢g
f=- | BhsinotGemst e | o | SRO (10.56)
€a€15in¢ + 382{38in ¢ §48ind
O L 0 .

If  # 0, then the smallest codistribution Q invariant under fi, fo and which coniains
dh(€3,n) is of constant rank 4. . T

Proof: Through direct calculations, we have:

Lk dh(£3,n) = sin** ¢ de k=0,1,2 (10.57)
f2 i -d+yCOS¢ k+1, = UL .
and:
2 4 2\25:5
3 3 (a® +&3)°sin° ¢

= 10.58

Lpdh(&n) = iy (10.58)

Thus, € contains all d¢;, d€2, d¢3, and dn and it has constant rank 4. =

Therefore, the system (10.55) is observable according to the Theorem 1.9.8 in
Isidori [48] or the Proposition 10.16 in Sastry [93].

10.4.2 Estimation of Image Quantities by Extended Kalman Filter

The sensor model (10.55) is a nonlinear observable system. Extended Kalman
filter (EKF) is a widely used scheme to estimate the states of such systems. In the computer
vision community, estimation schemes based on Kalman filter have been commonly used
for dynamical estimation of motion [99, 101] or road curvature [17, 18], etc. Here, we use '
the EKF algorithm to estimate on-line the &;, fz, és, and 7). Alternatives to the EKF, which

are based on nonlinear filtering, are quite complicated and are rarely used.

Multiple-Measurement Sensor Model

In order to make the EKF converge faster, we need to use more than one mea-

surement (in the sensor models (10.52) and (10.55)). From the N measurements:

{8, %, 17}, k=1,...,N (10.59)
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we have N outputs:

sin ¢

hi(§) = (Vi) = dTurcosd

&i(ye), k=1,...,N (10.60)

where Y; and yj are related by (10.4) Y; = ﬁ%.
For linear curvature curves, all the measurements &, (y) are functions of ‘only &3
and the linear curvature 7 since all the Taylor series expansion coefficients ¢;, i € N are

functions of only &3 and 5 according to Lemma, 10.7. Let:
— &
h(ﬁaa"h y) = Z (2 11) (y + dcos ¢) (1061)
=1

&1(ye) are then given by & (yx) = h(6%,7, yx)-
The sensor model (10.55) can be modified as:

-él ] 525131n¢+dcot¢+sm¢ ] -§2sin¢-
5:2 _ | &Esing+&sing+ kg oy | G509 |
£3 §4€18in P + 3263 sin ¢ &y sing (10.62)
KN 0 ] 0
() = G¥) = Tand sk n ), k=1,...,N
n(a®+£2)° [a+36>63

where &4 = , and h; are the measurable outputs.

a?+E5
Noise Model

In order to track the variations in the rate of change of the curvature of a curve,

we choose:

7= iy (10.63)

where 4, is white noise of appropriate variance.”
Uy PP

The output measurements are inevitably noisy, and the actual ones are given by:

sin ¢

he(€3m) = Q(Y) = m

( 3aﬂayk) + By, k=1,...,N (1064)

where pp, are appropriate noise models for the N outputs. Strictly speaking, pp,, are color

8

noise processes since image quantization errors® are main sources for u,, which generically

"One may also model 7 as a second order random walk.
®Including the errors introduced by the image-processing algorithms used to process the original images.
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produce color noises. The explicit forms for the output Ay are given by the Taylor series
expansion (10.61). Truncating the higher order terms of the expansion can be regarded as
another color noise source for the output noises up,. However, in order to approximately
estimate the states £3 and 7, we may simplify ir, to white noise processes and then actually
build an extended Kalman filter (Jazwinski [49], Mendel [80]) to get the estimates 3 and

7} for the states of the nonlinear stochastic model:

[ ¢ ] [ &61sing +deotd+ 5Lg | [ gosing | [ 0]

{:2 _ _ | lsing+&sing+ g O K<L T S o

&3 E4€1sin ¢ + 3E2€ssing £4sin¢ 0 (10.65)
KN 0 | 0| |1

hk(gsa 77) = Cl(Yk) = %h(f:;,ﬂ,yk) +ﬂ'hk! k= 17 1N

n(a®+£63)%/a+362€3
a+£3

For a detailed implementation of this extended Kalman filter, one may refer to the technical
report [70].

The computational complexity of Kalman filter is O(n®) where n is the system

where {4 = , and py and pp, are white noises with appropriate variances.

dimension [80]. Although, in some sense, both linear curvature curves and third-order
B-splines (Frezza and Picci [29]) are third-order approximations for general curves, the
dimension of the Kalman filter for estimating the B-spline parameters is N + 2 where N
is the number of measurements. However, the EKF we propose here is only 4-dimensional.
Since the number of measurements N is usually larger than 4, the scheme proposed above

is less computationally expensive.

Simulation Results of the Extended Kalman Filter

For illustration, we here give some simulation results of using the EKF to estimate
the image quantities £3 and 7 (i.e., the states of the system (10.65)). We first show a
simple example for which the EKF converges. The curve is simply chosen to be a constant
curvature curve (a circle) i.e., ¢ = k'(s) = 0. The initial values chosen for the estimates
are £3(0) = [0,0,0]7 and #(0) = 0.1, and for the nominal states £3(0) = [0.1,1,1]T. The
number of output measurements N is 5. The feedback tracking control laws now use the
estimates £3 for v and w. Since we use synthetic images here, we do not add noise here.

The simulation results are shown in Figure 10.10.
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Figure 10.10: The simulation results of using the Extended Kalman Filter to estimate the

image quantities ¢3 and 7 (= ¢ = k(s)) with the number of output measurements N = 5:
Solid curves are for true states; dashed curves are for estimates.

These results show that the estimates £3 and # converge to the nominal values
¢3 and 7 (= ¢). fl and fz converge especially quickly to £; and & and their curves almost
coincide. The results also show that the mobile robot eventually tracks the circle by using

the estimates £3 for the tracking control laws since both £; and &2 eventually converge to
zero.

10.5 Simulation of the Vision Based Closed-loop System

In the previous sections, we have developed control and estimation schemes for mobile robot
navigation (tracking given curves) using vision sensors. The image parameters needed for
the tracking control schemes can be efficiently estimated from direct, probably noisy, image
measurements. Combining the control and estimation schemes together, we thus obtain

a complete closed-loop vision-guided navigation system which is outlined in Figure
10.11.

In order to know how this system works, we simulate it by using synthetic images

of the ground curve. A synthetic image of a ground curve I = [y;(y,t),y,13(¥,1)]7 is a
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Figure 10.11: The closed-loop vision-guided navigation system for a ground-based mobile
robot.

set of image points:

I={M(,1),Y, 17 =m0 [y1(%,t), i, vs (9, £)]T 1, (10.66)

where 7, denotes the perspective projection map and the number of image points M maybe
different for different time . The output measurements from this synthetic image I are
taken at N pre-fixed distances: Y),...,Yy. Linear interpolation is used to obtain an
approximate value of A;(Y%,t) if there is no point in I whose Y coordinate is Y.
Simulation results show that the control and the estimation schemes work well with
each other in the closed-loop system. For illustration, Figure 10.12 presents the simulation
results for the simple case when I' is a circle. We have also developed animations for
synthetic images and simulation data. Figure 10.13 shows a synthetic image of a circular

road viewed from the camera.

10.6 Discussion

In order to use the vision sensors inside the control servo loop, one first need to
study the dynamics of the image. The dynamics of certain simple geometric primitives, like
points, planes and circles, have been studied and exploited by Espiau [20], Pissard-Gibollet
and Rives [87] ef al. In this paper, we show that, for ground-based mobile robot, it is
possible to study the dynamics of the image of a more general class of objects: analytic
curves. Based on the understanding of image curve dynamics, we design control laws for
tasks like controlling the shape of a image curve or tracking a given curve. Our study

indicates that the shape of the image curve is controllable only up to its linear curvature
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Figure 10.12: Simulation results for the closed-loop vision-guided navigation system for the
case when the ground curve is a circle: In subplot 7, the solid curve is the actual mobile
robot trajectory (in the space frame Fy) and the dashed one is the nominal circle; subplot
8 is the image of the circle viewed from the camera at the last simulation step, when the
mobile robot is perfectly aligned with the circle.

terms (in the 2-dimensional case). However, there exist state feedback control laws (using
only “up to curvature” terms) enabling the mobile robot to track arbitrary analytic curves.
Such control laws are not necessarily the only ones. In applications, other control laws may
be designed and used to obtain better control performances.

In the cases that one has to approximate a general curve (which has infinite-
dimensional dynamics) by simpler models, it is crucial to use models with properties which
are invariant under the Euclidean motion (so-called intrinsic properties). We propose that
linear curvature curves are very good candidates for such models. In some sense, linear
curvature curves are a third-order approximation for general curves, so are third-order B-

splines used by Frezza and Picci [29]. However, the Extended Kalman Filters needed to
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Figure 10.13: A synthetic image of a piece of circular road viewed from the camera.

estimate their parameters are 4-dimensional and (N + 2)-dimensional respectively (where
N is the number of output measurements). The computation intensities of the two schemes
therefore are different.

We are aware of the extensive literature on vision based control in driving appli-
cations. The models and the control laws that we propose are more appropriate for mobile
robot applications, where typically in typically indoor environments that the ground plane
assumption is satisfied, and kinematic models are appropriate. We are currently working on
generalizing some of the ideas presented in this Chapter to the context of dynamic models.
Some of the work in this direction can be found in Kosecks [57].

Although visual servoing for ground-based mobile robot navigation has been exten-
sively studied, its applications in aerial robot navigation have not received much attention.
In the aerial robot case, the motions are 3-dimensional rigid body motions SE(3) instead of
SE(2) for ground-based mobile robots. Generally speaking, due to the complexity of aerial
robot — such as a helicopter — dynamics, the analysis based on lifting mobile kinematics (or
dynamics) up to the image plane likely becomes intracté,ble. Therefore, in this case, vision
is usually used as a pure sensor for estimating the states of the robot dynamics and control
analysis is done separately. Then the central issue becomes for a given task, how to design

good controllers based on states which can be reliably and effectively estimated through
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vision, and how to choose or customize vision algorithms for the specific task. This issue

will be investigated further in the next chapter.
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Chapter 11

Vision Guided Landing of an
Unmanned Aerial Vehicle (UAV)

Unmanned air vehicles (UAVs) are being used more and more in a number of
civilian and military applications, for example remote monitoring of traffic, search and
rescue operations, and surveillance. This has generated considerable interest in the control
community, mainly due to the fact that the design of UAVs brings to light research questions
falling in some of the most exciting new directions for control. One of these directions is the
use of computer vision as a sensor in the feedback control loop. The task of autonomous
aircraft landing is particularly well suited to vision based control, especially in cases where
the landing pad is in an unknown location and is moving, such as the deck of a ship.

Typically, a vision system on board a UAV augments a sensor suite including a
Global Positioning System (GPS) which provides position information relative to the inertial
frame, and Inertial Navigation Sensors (INS) which provide acceleration information [133].
As a cheap, passive and information-abundant sensor, computer vision is gaining more
and more importance in the sensor suite of mobile robots. There has been a growing
interest in control design around a vision sensor. In [94], stereo vision systems are proposed
to augment a multi-sensor suite including laser range-finders in the landing maneuver of
a UAV. In [137], the use of projections of parallel lines is proposed for the purpose of
estimating the location and orientation of the helicopter landing pad. Using this approach,
the vision sensor provides position and orientation estimates of the camera relative to the

landing pad, but can not estimate the camera velocity, which is important for controlling
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a UAV. In this chapter, we present computer vision algorithms to estimate UAV motion
(position and orientation, linear and angular velocity) relative to a landing pad using a
calibrated monocular camera. The given algorithms are linear, computationally inexpensive,
numerically robust, and amenable to real-time implementation. We also present a thorough
performance evaluation of the vision based motion estimation under varying levels of image
measurement noise, altitudes, and camera motions relative to the landing pad.

Further more, the use of computer vision in the control of UAVs is more challenging
than in the classical “visual servoing” approach discussed in the preceding chapter because
UAVs are under-actuated nonlinear dynamical systems. In order for a guaranteed perfor-
mance such as stability for the overall closed-loop system, a thorough characterization of
the UAV dynamics are absolutely necessary. We hereby present a full dynamic model of the
UAV. Based on geometric control theory, we decompose the dynamics into two subsystems:
inner and outer systems. A nonlinear controller is proposed based on differential flatness of
the outer system. In addition to the work in [121], we also give a detailed stability analysis of
the closed-loop system, and clear conditions are derived for system stability. The proposed
controller is tightly coupled with the vision based state estimation and the only auxiliary
sensor needed to implement the controller is an INS for measurement of acceleration. The
INS is used since second order derivatives of image features are highly sensitive to noise.
Finally, we show through simulation that the designed vision-in-the-loop controller is stable
even for large levels of image measurement noise. Implementation on real helicopters will

be reported in future work.

Chapter Outline

In Section 11.1, we review a little the camera imaging models. In Section 11.2 we
formulate the problem of motion estimation from image measurements of a planar scene. We
present a new geometrical scheme for the recovery of the camera linear and angular velocities
from the velocities of feature image points. In Section 11.2.4 we provide simulation results
of the planar ego-motion estimation algorithms and evaluate their performance under the
presence of noise, and different types of motion relative to the plane. In Section 11.3 we give
the dynamic model of the UAV and the design of a controller based on differential flatness.
Conditions for closed-loop stability are also studied in detail. In Section 11.4 we describe

how the obtained vision algorithms can be placed in the feedback loop as a state estimator
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for the controller, and provide simulation results of the vision based landing maneuver.

11.1 Camera Model

We assume that a monocular camera is fixed to the UAV and the optical axis
of the camera coincides with the vertical axis of the UAV body frame. As for notation,
we will adhere to the convention specified in Chapter 2: We denote the three dimensional
coordinates of a point p with respect to the camera frame as X = [X1, X, X3]7 € R3.

The imaging of the camera is given by the perspective projection of points
in the 3D world onto the image plane. We assume a calibrated camera, and without loss
of generality we take the image plane to be at a unit distance from optical center of the

camera. Then the perspective projection of the camera is then given by:

7: R — RP?
X
X - Ys (11.1)

If x is the image of the point p, i.e., x = 7(X), then we can write:
Ax =X (11.2)

where A = X3 € R encodes the depth of p from the optical center of the camera. Denoting
the optical axis by e3 = [0,0, 1], we have A = ] X. Rewriting equation (11.2), we get the
following identity:

(I-xe)X=0 (11.3)

which will be useful in the later development.

11.2 Motion Estimation from Planar Scene

In this section, we first study an ego-motion estimation problem associated to
landing a UAV. Ego-motion estimation in general settings has been extensively studied in
Part I. The goal is to recover the motion of the camera using image measurements of fixed
points in the scene. The ego-motion estimation problem for the purpose of landing a UAV
is a special case of the general one: All the image features correspond to coplanar points

on the landing pad. It is well known that the case where all features points in the scene are
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Figure 11.1: Geometry of camera frames relative to the landing pad.

coplanar is a degenerate case for the general-purpose 8-point algorithm and it gives rather
poor estimation results [24]. Hence we need algorithms customized to the planar case. The
discrete version of the planar ego-motion problem has been studied extensively [26, 61, 131].
Here we only formulate the problem and briefly revisit well-known results that can be found
in [131]. Our contribution is to the continuous version of the problem. The continuous
version is important when the task is to control a dynamic mobile robot such as a UAV,
since velocity estimates are needed for the computation of control inputs. The continuous
planar ego-motion estimation problem has also been studied by many researchers [51, 61,
105, 124], however each using a different approach. In the same spirit of the general purpose
8-point algorithms studied in Part I, We here propose a new geometric approach which
unifies both the discrete and continuous scenario: First a planar discrete (or continuous)
epipolar constraint is derived for image correspondences (or optical flows); secondly, such
planar epipolar constraints are used to estimate a planar discrete (or continuous) essential
matrix; finally use SVD (or eigenvalue-decomposition) of the essential matrix to recover the

unknown motion or structure parameters.

11.2.1 Review of the Discrete Case

Suppose we have a set of n fixed coplanar points {pi};-;l C P, where P denotes
the landing plane. Without loss of generality, we take the origin of the inertial frame to
be in P. Figure 11.1 depicts the geometry of the camera frame relative to the landing

pad. We will assume throughout the chapter that the optical center of the camera never
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passes through the plane. We have the following proposition, which gives a constraint on

the coordinates of the coplanar points.

Proposition 11.1. Suppose that the (R,T) € SE(3) is the rigid body transformation from
frame 2 to 1. Then the coordinates {X{ | N {X% }}=1 of the fized coplanar points {» }i=1C
P in the two camera frames are related by:

XI = (R+$TNT) X, j=1,...,n (11.4)

where d is the perpendicular distance of camera frame 2 to the plane P and N € S? is the

unit surface normal of P relative to camera frame 2.

Proof: Let (Ry,T1),(R2,T2) € SE(3) be the configurations of camera frames 1
and 2, respectively. Without loss of generality, we take R) = I, and hence the rigid body
transformation from frame 2 to frame 1 is (R,T) = (R},T1 — R¥Ts). Foreach j =1,...,n

we have:
XS =RX}+T (11.5)

where X{,X‘% are the coordinates of p’ in camera frames 1 and 2 respectively. Let N € S2
be the unit normal vector of the plane P in terms of the inertial frame. Then the surface
normal in the coordinate frame of camera 2 is given by N = RT Np. If d > 0 denotes the

distance from the plane P to the optical center of camera frame 2, then we have:

1

ENTxg =1, j=1,...,n (11.6)

Substituting equation (11.6) into equation (11.5) gives the result. []
We call the matrix:

A= (R + %TNT) € R¥*3 (11.7)

the planar essential matrix, since it contains all the motion parameters {R,T} and
the structure parameters {N,d} that we need to recover about the relative configuration
between frames 1 and 2. Notice that due to the inherent scale ambiguity in the term 5T
in equation (11.7), the vision sensor can in general only recover the ratio of the camera
translation scaled by the inverse distance to the plane. In section 11.4.1 we show how to

resolve this ambiguity when the vision sensor is used for landing.
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Proposition 11.2 (Planar Discrete Epipolar Constraint). The matriz A = (R +
%TNT) satisfies the constraint:

(I-xjel)Ax, =0, j=1,...,n (11.8)

where {x{ }i=1, {)é};;l , are the images of {p’ }j=1 with respect to camera frames 1 and 2

respectively.

Proof: Simply apply equation (11.3) to equation (11.4) "

Equation (11.8) is the planar discrete epipolar constraint. Since the con-

straint given by Lemma 11.2 is linear in A, by stacking the entries of A as a vector:
a = (an,012,313,021,. - ., a33)7 € R°

, We may re-write equation (11.8) as f;a = 0, where f; € R**? is a function of xJ, x}. Since the
third row in equation (11.8) is all zeroes, the third row of f; contains all zeroes, so we simply
drop it and take f; € R?%%. With this notation, given n image points correspondences, by
defining F = (f7,...,f2)T € R?"*® we can combine the equations (11.8) and rewrite them

as:
Fa =0. (11.9)

In order to solve uniquely (up to a scale) for @, we must have rank(F) = 8. Each pair of
image point correspondences gives two constraints, hence we would expect that at least four
point correspondences would be necessary for the estimation of A. We say a set of coplanar
points are in general configuration if there is a set of four points such that no three are

collinear.

Proposition 11.3 (Weng [131]). rank(F) = 8 if and only if the points {p'}?_; are in

general configuration in the plane.

Proposition 11.3 says that if there are at least four point correspondences of which
no three are collinear, then we may apply standard linear least squares estimation to recover
A up its scale. That is, we can recover Ay = {A for some unknown £ € R. Due to the
nature of least squares estimation, as the number of feature points increases, the estimation

of the A matrix, and hence the motion estimates, improves.
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It turns out that the middle singular value of any matrix of the form A = R+§TN T
is identically equal to 1 [26, 131]. Then, if (01,02, 03) are the singular values of Ay, we set
A= ;‘;AL, which determines A up to a sign. To get the correct sign, we use /\{x{ = )\%Axg
and the fact that AJ, /\g > 0 to impose the constraint (x{ )TAxé >0 for j =1,...,n. Thus,
we have that if the points {p}7_, are arranged in general configuration then the matrix A can
be uniquely estimated from the image measurements. Once we have recovered A, we need
some more SVD analysis in order to decompose it into its motion and structure parameters.
For the details on the decomposition please refer to [131]. In general, for a matrix A = (R+
%TN T), there are two physically possible solutions for its decomposition into parameters
{R, %,N }. In section 11.4.1 we give a method of disambiguating the solutions when the

task is landing a UAV on a landing pad whose geometry is known a priori.

11.2.2 Continuous Case

Here, in addition to measuring image points, we measure optical flows u = x.

Proposition 11.4. Suppose the camera undergoes a rigid motion with body linear and
angular velocities w(t),v(t). Then the coordinates of coplanar points {p};-;1 in the camera

frame satisfy:
XI(t) = (a + %vNT) Xi(t), j=1,...,n. (11.10)
Proof: Each of the points X7 satisfies:
X7 = 5X7 +v. (11.11)

Let N(t) = R(t)NF, be the surface normal to P in the camera frame at time ¢, where R(t)
is the orientation of the camera frame. Then, if d(f) > 0 is the distance from the optical

center of the camera to the plane P at time ¢, then:

#N(t)TXi(t) =1, j=1,...,n. (11.12)

Substituting equation (11.12) into equation (11.11) gives the result. (]

We call the matrix:

L1
B= (w + a-vNT) € R3x3 (11.13)
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the planar continuous essential matrix, since it contains all the continuous motion
parameters {w,v} and structure parameters {N, d} that we need to recover. B is exactly a
continuous version of the planar discrete essential matrix A. As in the discrete case, there is
an inherent scale ambiguity in the term %v in equation (11.13). Thus the vision sensor can
in general only recover the ratio of the camera translational velocity scaled by the inverse
distance to the plane. In section 11.4.1 we show how to resolve this ambiguity when the

vision sensor is used for landing.

Estimating Matrix B

We first give a proposition which will be used to prove the main result of this
section: Given image velocities of at least four points in general configuration in the plane,

we can uniquely estimate the planar continuous essential matrix.

Proposition 11.5 (Planar Continuous Epipolar Constraint). The matriz B = (& +

1oNT) satisfies the constraint:
w = (I-xe)Bx), j=1,...,n (11.14)

where {x’(t),u’ (t)}7_, are image points and optical flow of points {p/ Y3, in the landing

plane.

Proof: We will drop the superscript j for ease of notation. Differentiating
Ax = X and substituting X = BX gives A + Ax = ABx. Differentiating A = €] X gives

A= Aed Bx. Using these relations and eliminating ) gives the result. [

Equation (11.14) is the planar continuous epipolar constraint. Since the
constraint is linear in B, by stacking the entries of B as b = (b11, b12, b13, b21, ..., b33)T € R?,
we may re-write (11.14) as uw/ = g77b, where g/ € R%*3 is a matrix function of x7. However,
since the third row of equation (11.14) contains only zeros, each image point velocity only
imposes two constraints on the matrix B. Given a set of n image point and velocity pairs
{x7, u}?_; of fixed points in the plane, we may stack each equation u’ = giTb into a single

equation:
U=Gb (11.15)

where U = (u/T,...,wT)T € R*" and G = (g!,...,g")T € R3"*9,
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Proposition 11.6. rank(G) = 8 if and only if the points {p’ }j=1 ore in general configu-

ration in the plane.

Proof: We will use the fact that a set of points in the plane are collinear if and
only if the images of the points are collinear in the image plane [131]. This allows us to_
work with the images of features points on the plane.

For sufficiency, suppose there exists a set of four points in the plane such that no
three are collinear. By contradiction, we will prove that the corresponding eight rows of G
are linearly independent. In the following we use the notation x/ = [z7,47, 2], j = 1,...,4.

Suppose that the matrix:

1 0

x x2 0 x3 0 x4 0
GT = - 0 x! 0 x2 0 x3 0 x4 € R9x®
—zlx! —ylxl —a2x? 22 3% —3x3 —zixt —yix?

has rank(G) < 8. Then there exists £ = (a1, ¢, a2, ¢2,a3,C3,a4,¢4)7 € R® such than £ # 0
and GT¢ = 0. Define d; = ajz’ + ¢cju’. Now let a = (a1,0a2,0a3,a4)7, ¢ = (c1,¢2,¢3,¢4)7,
d = (di,ds,d3,ds)T and define X = (x!,x2,x3,x%) € R¥*%. With this notation, the
condition GT¢ =0, ¢ # 0 impliesa# 0 or ¢ #0 and Xa = Xc = Xd =0.

Without loss of generality, take a # 0. Since by the hypothesis, no three of x’
are collinear, each set of 3 columns of X are linearly independent. Since Xa = 0, then
if one component of a is zero, then we must have a = 0. Hence a # 0 implies a; # 0
for j = 1,...,4. Since each set of 3 columns of X are linearly independent, we have
dim(ker(X)) < 1 and 3y, € R such that ¢ = ya and d = da. This implies:

d; = a,jmj + c,-yj = ajxj + fya_.,-yj = da;. (11.16)

But since a; # 0 for each j, we have 77 + vy = § which implies that all four image points
xJ are collinear in the image plane, resulting in a contradiction.
For necessity, we first show that if all points are collinear, then rank(G) < 5. Let

u = (a,B8,0) € R? be the unit normal to the line in the image plane containing the image

points x?,j =1,...,n. That is x’Tu =0 for j = 1,...,n. Define four vectors in R® by:
U 0 0 (31
hi=10], ha=|wu|, ha=| 0|, ha=| e | R (11.17)
0 u €3
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where (e1,e2,e3) = I3x3. Using uTy = 1 and eg‘u = 0, it is direct to check that for
H = (h1,ho, h3, hy) € R4, det(HT H) = 2 and hence rank(H) = 4. From the structure of
G in equation (11.16) is is clear that Gh; = 0 for i = 1,...,4. Then dim(ker(G)) > 4 and
hence rank(G) < 9-4=35.

Now suppose condition of the proposition is not satisfied. The claim is trivially
proved if the number of image points is less than 3. Suppose there are more than 4 image
points, not all collinear, and for each set of four points at least 3 are collinear. Without loss

2,x3,x* lie on a line (call this the common line), and x! does not

of generality, suppose x
lie on the common line. By induction, we prove that all x7’s for j > 4 lie on the common
line. Suppose x? lies on the common line for some j > 4 and x7*! does not. Choose two
points out of x2,x3, x7 such that they do not lie at the intersection of the common line and
the line connecting x!,x7*+!. Call these points x*,x!. Then the four points x!,x*,x!, x7+!
are in a general configuration. This is a contradiction, and hence x*! lies on the common

line. Since all image points lie on a single line expect for x!, then rank(G) < 5+2=7. m

If the points are in general configuration in the plane then using linear least squares
techniques equation (11.15) can be used to recover b up to one dimension, since G has a
one dimensional null space. That is, we can recover B = By, + £ By where By, corresponds
to the minimum norm linear least squares estimate of B, Bi corresponds to a vector in
ker(G) and £ € R is an unknown scale. By inspection of equation (11.14) one can see that

By = I. Then we have:
B =B +¢1. (11.18)

Thus, in order uniquely estimate B, we only need to recover the unknown £. So far, we have
not considered the special structure of the B matrix. Next we give constraints imposed by

the structure of B which can be used to recover £, and thus uniquely estimate B.

Lemma 11.7. Suppose u,v € B3, and ||ul?> = ||v||? = a. Ifu # v, the matriz D =
uv? + vul € R3*3 has eigenvalues {\1, 0, A3}, where A\; > 0, and A3 < 0. Ifu = +v, the

matriz D has eigenvalues {£2a,0,0}.

Proof: Let 8 = uTv. If u # £v, we have —a < 8 < a. We can solve the
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eigenvalues and eigenvectors of D by inspection:

Du+v) = (B+a)(u+v)
D(uxv) = 0
D(u-v) = (B-a)(u—0v).

Clearly A\ = (+a) > 0and A3 = 8 — a < 0. It is direct to check the conditions on D

when v = +v. =

Theorem 11.8. The matriz B can be uniquely estimated from the image measurements if

and only if there are four points of {p’ }7=1 in the plane such that no three are collinear.

Proof: In this proof, we will work with sorted eigenvalues, that is if {)\1, A9, A3}
are eigenvalues of some matrix, then A\; > Ay > A3. If the points are not in general con-
figuration, then by Proposition 11.6, rank(G) < 7, and the problem is under-constrained.
Now suppose the points are in general configuration. Then by least squares estimation
we may recover B = By + £I for some unknown £ € R By Lemma 11.7, we have that
B + BT = LuNT + INoT has eigenvalues {1, A2, A3} where A; > 0, Ay =0, and A3 < 0.
Compute the eigenvalues of By + BZ and denote them as {v;,72,73}. Since we have
B = Bp +¢I, then A\; = ~; + 2¢, for ¢« = 1,2,3. Since we must have Ay = 0, we have
£ = —372, and set B = By, — 1y,1. "

Decomposing Matrix B

We now address the task of decomposing B into its motion and structure parame-
ters. The following constructive proof gives a new technique for the recovery of motion and

structure parameters.

Theorem 11.9. Given a matriz B € R3*3 in the form B = & + %vNT, one can recover
the motion and structure parameters {©, 4, N} up to at most 2 physically possible solutions.
There is a unique solution if v =0, v X N = 0 or eJv = 0, where e3 = [0,0,1]T is the

optical axis.

Proof: Compute the eigenvalue/eigenvector pairs of B + BT and denote them
as {A\;, ui}, ¢ =1,2,3. If \;, = 0 for i = 1,2,3, then we have v = 0 and & = B. In this

case we can not recover the normal of the plane N. Otherwise, if A\; > 0, and )3 < 0, then
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we have v x N # 0. Let a = ||lv/d|| > 0, let % = v//&@ and N = \/aN, and let 8 = #TN.

According to Lemma 11.7, the eigenvalue/eigenvector pairs of B + BT are given by:

— — 1 ~ \

AM=F+a>0, up = I|5+N||(U+N) (1119)
= — = 1 7 — \

A=8-a<0, uj T (9 = N).

Then a = (A1 — A3). It is direct to check that || + N|2 =2\, |5 — N||> = —2)3. Then

together with (11.19), we have a solution:

U = %(\/2A1U1+\/—2)\3U3)
Fio= B - v u) (11.20)

&) 3B —5.NT) — (B - 5, NT)T).

The estimate of & is computed as above because, in the presence of noise, in general
B — 4, NT is not necessarily an element in 50(3). We here take the projection of B — &, NT
onto so(3).

However, the eigenvalue-decomposition {Xi,u;} is not unique — there is a sign
ambiguity in the eigenvectors u; and u3. This sign ambiguity leads to a total of 4 possi-
ble solutions for 4 and N computed according to (11.20). It is direct to check that that
if {&, 4, N} are the true motion and structure parameters, then the 4 possible solutions
obtained by (11.20) are:

v = vfd v3 = -1
Solution1 f Ny = N Solution3 || N3 = -N;
(true) W = @ W3 =
v = |lv/d|N vy = -v
Solution 2 | Ny = ]]5}7[[” /d Solution4 || v4 = -N;
Wy = LTJ—N’UT/d-i-vNT/d 83 = W

In order to reduce the number of physically possible solutions, we impose the so-called
“positive depth constraint” ~ since the camera can only see points that are in front of it, we
must have NTe3 > 0. This constraint eliminates solution 3 as being physically impossible.
If vTe3 # 0, one of solutions 2 or 4 will be eliminated, whereas if vTe3 = 0 both solutions 2
and 4 are eliminated. For the case that v x N = 0, it is easy to see that solutions 1 and 2
are equivalent, and that imposing the positive depth constraint leads to a unique solution

for all motion and structure parameters. n
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The results for the ambiguities of solutions were also reported in [51, 105, 124]. In
section 11.4.1 we give a method of disambiguating the solutions when the task is landing a

UAV on a landing pad whose geometry is known a priori.

11.2.3 Implementation Issues

For both the discrete and continuous algorithms, the most computationally inten-
sive task is the linear least squares estimation of the A and B matrices, which involves the
singular value decomposition (SVD) of the matrices F, G € R?®*9 where n is the number of
tracked feature points. The cost of the SVD of a matrix M € R™*" for m < n is O(m?n)
flops. Then, as the number of tracked feature points n increases, the cost of the vision
algorithms grows as O(n).

We have implemented the above algorithms using the MATHLIB C++ library in
Matlab, and have found that on a 450 MHz Pentium II running Linux, the vision algorithms
can perform motion estimation based on 25 tracked feature points at a rate of over 150 Hz,

a rate far beyond that of most current real-time feature tracking hardware.

11.2.4 Simulation of Motion Estimation Algorithms

Since our goal is to use the estimated motion and structure from the vision as
a sensor in a control loop, of utmost consideration is the performance of this sensor in
the presence of noise in the measurements of point correspondences and image velocity.
Another important criteria to analyze is how the estimation errors depend on different
camera motions with respect to the observed plane. To this end, we have implemented
both the discrete and continuous algorithms and performed various simulations in order to
evaluate their performance. In order to assess the performance of the planar algorithms, for
all simulations we compare the results with the traditional 8-point algorithm as described
in Chapter 3.

For all simulations, we generated 50 random points uniformly distributed within
the field of view of the camera, FOV = 60°. The image correspondences and the image
velocity measurements were corrupted by additive white Gaussian noise. For evaluating
the 8-point algorithm, we randomly scattered the depths of these points uniformly between
distance of zmin and zmax focal lengths, where for all simulations, we set zmax = 400 and

zmin = 100 unless otherwise noted. For evaluating the planar algorithm, we placed the
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points on the fronto-parallel plane at a distance of (zmax+zmin)/2. Each data point on
each plot is the mean result of 50 trials for a given motion, noise level, and distance. We
studied the performance of the algorithms as a function of depth variation, noise in the

image measurements, and motion about different translation/rotation axes.

Depth Sensitivity

In planar case, our depth variation analysis attempts to see how the errors in the
estimates depend on the depth of the plane being viewed. Notice that in the matrices
A=R+ %TN Tand B=3+ %’uNT, the translation term is scaled by the inverse distance
of the plane. Thus, for a fixed translation and a fixed noise level, as the distance of the
plane increases, the “signal” from the translation term decreases while the noise level stays
constant. Thus, one would expect that as the signal to noise ratio decreases, the performance
of the algorithms also decrease. Also, from the structure of the A and B matrices, we see
that the errors in the rotational components should not depend on the depths of the points.
This expectation was validated as shown in Figure 11.2.
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Figure 11.2: Depth sensitivity.

Notice that for very low depth variation, the 8-point algorithm for both discrete
and continuous case performs poorly. This is a result of singularities that occur in the
algorithm when the feature points are coplanar. Also, notice that for the planar case,
as expected, the errors increase as the distance of the plane increases. One interesting

observation is that for the discrete case, the rotation estimate is always better in the planar
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case than in the general case.

Noise Sensitivity

In the simulations presented in Figure 11.3, for a given motion we corrupted the
correspondences and image velocities with increasing levels additive white Gaussian noise.
Notice from the simulation results that for both discrete and continuous cases, the planar

algorithm performs better that the 8-point algorithm.
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Motion Sensitivity

Next we study the sensitivity of the algorithm with respect to different motions rel-
ative to the plane. We ran the algorithms for a motion about each translation-rotation axis
pair for two different noise levels (low and high). In general, the planar algorithms perform
better than the 8-point algorithms except when the translation axis is parallel optical axis
(and hence the surface normal of the plane). The higher sensitivity in that case can seen
as an overall numerical sensitivity to perturbations in the algebraic eigenvalue/eigenvector
problem when there are repeated eigenvalues. For example, if a matrix has a pair of re-
peated eigenvalues then any vector in certain two dimensional subspace can be considered
an eigenvector corresponding to the repeated eigenvalue. Because the eigenvectors corre-

sponding to repeated eigenvalues are defined up to subspace, it is intuitive to see that for
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two different perturbations of the matrix, the corresponding eigenvectors could be quite
different. A similar phenomenon occurs in the case of repeated singular vectors. Thus, an
algorithm that uses the computation of eigenvectors (singular vectors) is inherently sensitive
to noise in the case of repeated eigenvalues (singular values).

The situation of having repeated eigenvalues (singular values) occurs in the planar
continuous (discrete) algorithm in the case that the translational motion is parallel to the
surface normal of the plane. In the 8-point algorithm, the situation of repeated eigenvalues
occurs in the case that the translation and rotation axes are parallel. The simulation results
for both the discrete (in Figure 11.4) and the continuous case (in Figure 11.5) validate our

expectation of higher noise sensitivity in the case of repeated singular values and eigenvalues.
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Figure 11.4: Discrete Case: sensitivity to translation-rotation axes.

11.3 Nonlinear Control for a UAV Dynamic Model

In this section, we present the dynamical model of the UAV, a control design based
on differential flatness, and a stability analysis of the closed-loop system. The proposed
controller is general in the sense that it can be applied towards trajectory tracking. For
the purpose of landing, the UAV is asked to track a fixed point at the desired configuration
above the landing pad.

We parameterize the orientation R € SO(3) of the UAV relative to the inertial
frame by the ZY X (or “roll, pitch, yaw”) Euler angles denoted by © = [¢,6,%]T. Thus
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we have R = exp(€3y)) exp(€20) exp(€14) with e; = [1,0,0]7, e2 = [0,1,0]7, e3 = [0,0,1]7.
Under this parameterization, there is a mapping ¥(©) € R**3 given by:

1 sin¢gtanf cos¢ptand
@) = |0 cos ¢ —sin¢ (11.21)
0 sing/cos® cos¢/cosd

which maps the body rotational velocity to Euler angle velocity, that is: © = Tw.

11.3.1 System Dynamics
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Figure 11.6: Block diagram of UAV dynamics.

A complete model of a helicopter can be divided into four different subsystems:
actuator dynamics, rotary wing dynamics, force and moment generation pro-
cesses, and rigid body dynamics. The dynamics of the engine and actuators (which

depend on the flexibility of the rotors and fuselage) are quite complex and intractable for
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analysis. We here consider a helicopter model including only the rigid body dynamics, the
force and moment generation process and a simplified rotary wing dynamics. This model
is illustrated in Figure 11.6.

We now articulate each of the three subsystems. First, the equations describing

the rigid body dynamics are given by:

p = RS
0 = Tu (11.22)
w = I7Yr - wx Tw)

where m > 0 is the body mass, Z € R3*3 is the inertial matrix and f% 7% € R® are the
body force and torque given by:

( [ X 0
b= Yu+Yr | +RT| o
| ZMm mg
4 ) (11.23)
Ry Yvhp + Zyyse + Yrhr
™ = | My+Mp |+ | ~Xupha + Zuly
| | Nm =Yumly — Yrir

The body forces and torques generated by the main rotor are controlled by Ty, a1s and
b1s, in which a1 and by are the longitudinal and lateral tilt of the tip path plane of the
main rotor with respect to the shaft, respectively. The tail rotor is considered as a source
of pure lateral force Y7 and anti-torque Qr, which are controlled by Tr. The forces and

torques can be expressed as:

4
Xy = —Tysinag Ry =~ %%g—bls—QMsinals
Yu = Tuysinby My =~ 9fe), + Qusinby,

¢ s (11.24)
Zy = —Tpcosapscosbs Ny =~ —Qpcosayscosbys

 Yr = -Tr Mr = -Qr.

The moments generated by the main and tail rotor can be calculated from the constants

{Im>ynm, har, by, lr}, where h;, I; and y; denote the vertical, longitudinal, and lateral dis-
tance between the center of gravity and the center of the rotor specified by i = M or 7.

These system parameters are given in Appendix B. In the simulation, we will approximate
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the rotor torque equations by Q; ~ CPT!S + D¥ for i = M, T, with details described in
[59]. The values of CP, D? are also given in Appendix B.

Finally, the rotary wing dynamics are in general harder to express explicitly.
In an operating region near hovering, the rotary wing dynamics can be approximated by

the following equations (for details see [90]):
Ty = cmify + cm3by, Tr=cribr +crsby, a1, =-B, b,=A4

where 0,7, 0 are the main and tail rotor collective pitch, and B, A are the longitudinal and

lateral cyclic pitch.

11.3.2 Inner and Outer System Partitioning

A system = = f(z,t,u) is called differentially flat if there exist output functions,
called flat outputs, such that all states and inputs can be expressed in terms of the flat
outputs and their derivatives [28]. Differential flatness has been applied to approximate
models of aircraft [27] and helicopter [56] for trajectory generation. The full helicopter
dynamics are not flat in general, however it can be shown that the dynamics can be par-
titioned into an “inner system” (e.g. the attitude dynamics) and an “outer system” (e.g.
the position dynamics) where the outer system is flat. This scheme has been successfully
used for generating a two stage control synthesis for many systems which are not completely
flat {121]. Such a scheme which utilizes the flatness of the outer system is roughly illustrated
in Figure 11.7. In the figure, Pp is the outer system which is flat, and P; is the inner sys-
tem which is not necessarily flat. Given a desired output trajectory, say y(?(-), the mapping
F in Figure 11.7 utilizes the flatness property of the outer system to generate an desired
output trajectory y{i(-) for the inner system. The control synthesis for the overall system
then reduces to the design of an inner system controller, C, which drives the inner system
output y’(¢) — yj(t) (exponentially) as t — co. As the inner system output converges,
one can show that the outer system output converges to the desired one, y©(t) — y§(t) as
t — oo. That is, the overall system asymptotically tracks the desired trajectory.

It has been shown in [56] that the helicopter dynamics are approzimately differen-
tially flat with the position and heading {p, ¥} as the flat outputs. The approximation is

based on the assumption that the coupling terms a,, bys, Tr are small and can be neglected
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in the model. So if ays, b1, Tr = 0, the outer system dynamics (11.22) can be rewritten as:

0 0
p = %R(e) 0 |+|o] + & (11.25)
—Tm g
with
~Tysina

1
h = ER(@) Tarsinbys — T

—Tnm(cosayscosbys — 1)

where the inputs are u© = y’ = [0T,Ti;]7, and the outputs are y© = [p,p,5,%]T. One
must notice that this approximation introduces a small non-vanishing modeling error h
which depends on ©, T, a15,b15, Tr. We will soon show its effect on the stability of the

closed-loop system.

o
o

(o]
Y4 Y4 u
A RY -
1/ F
+

T
>
0
o=}

+

Figure 11.7: Partitioned inner and outer systems.

11.3.3 Control Design

The control design for the overall system is be based on an assumption that there
exists a controller C such that e/ = 0 is an exponentially stable equilibrium point for the
inner error system:

¢ = f(e!,e% t)loco, (0,0,8)=0

where e©

= y9 - yQ and ¢ = 3y’ — y} . There have been various design methodologies
proposed for the controller of the inner system, e.g. [59]. We here are only interested in
the performance of the overall system assuming such a controller C is already available. As

shown in [56}, for the approximated outer system (11.25), there exists a smooth mapping
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Figure 11.8: Block diagram of control scheme.

<V

!

from the outer system output to the inner system output:
$: R* -+ R
®B,%) - (0,Tu)
which is defined by the equations:

Tv = m/(Bz)?+ (By)? + (B — 9)?

[ ¢ = oo (Bfgpenr)
R )

v = 1P

\

where ¢,6 # *w/2. Suppose that the desired output trajectory of the outer system is

y$ = [pa,Pd,Pa, ¥a]T- To obtain the desired trajectory of the inner system, we define a

pseudo-input vector:

Vp = Pa + Ko(p — pa) + Kp(p — pa) (11.26)

where Kp, K, € R**3 are control parameters. With the above pseudo-input, the desired

output of the inner system yc’, is given by:

(©d, Tma) = @(vp, Ya)- (11.27)

A more detailed schematic of the controller for this system is illustrated in Fig-
ure 11.8. Clearly, if the inner system ezactly tracks the desired trajectory (O4,Taq), that
is, ¥} = y' in Figure 11.7, then the behavior of the overall closed-loop system is specified
by the outer system only, which, due to chosen the control law (11.26), is approzimately a

linear system with poles assigned by the parameters K, K.
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Now if we summarize all conditions so far and rewrite the dynamics of the overall
closed-loop system in terms of the tracking errors e/ and € of the inner and outer systems

respectively, they have the form:

el = f(ele9)
(11.28)
é0 = Ael+g(e,t) + h(el,e%,1)
where
0 0
o) = ~r@)| o |-Lrosy| o
’ m m

Ty -Tpmq

In the above equations, f(e/, €9, 1) is in general a function of both e! and €© since the input
of the inner system is a function of €®. The function h(e!,e®,t) from (11.25) is a small
non-vanishing approximation error, and g(e,t) vanishes when the inner system exactly
tracks the desired trajectory, i.e., g(0,t) = 0. Since the helicopter model is smooth and
many of the parameters are physically bounded, g(e’,t) is in fact (globally) bounded as
llg(e, )|l < L||e|| for some constant L > 0.1

11.3.4 Stability Analysis

We now analyze the performance of the overall closed-loop system. As we have
argued before, the function f in (11.28) is in general a function of both e/ and e®. However,
in practice, the inner system is usually designed to have a much faster convergence rate than
the outer system. To simplify the analysis, for now we assume that the inputs Tps4(+) and
©4(-) of the inner system are approximately constant, and thus f is only a function of e/
(the more general case will be presented afterwards).

Recall that given an general system £ = f(z,t), by the Lyapunov theorem and
its converse [93], the system is exponentially stable if and only if there exists a Lyapunov

function V(z,t) satisfying:

allzll? < V(z,t) < oollz|? (11.29)
v v
E+a—$f($,t) < —aoglz)? (11.30)
v
a2l S sl (11.31)

!'Such a L can be estimated from the system equation (11.22).
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for some positive Lyapunov constants a;,a2,a3,a4 > 0. We can apply this theorem
to both the nominal outer system é° = Ae® and the inner system ¢/ = f(e,t) and
denote the corresponding Lyapunov functions as V and V7 and the Lyapunov constants

as ay, a2, a3,a4 > 0 and By, B2, f3, B4 > 0 respectively.
Theorem 11.10. Consider the following system:

el = f(e,1)

(11.32)
¢0 = AeC +g(e,t)

where g(el,t) is a perturbation term that satisfies ||g(e’,t)|| < Ll|le’||. If both the nominal
outer system ¢0 = AeC and inner system ¢ = f(e!,t) are ezponentially stable, then the

overall system is ezponentially stable for any L > 0.

Proof: Apply the converse Lyapunov theorem to both the outer and inner
systems, and denote the corresponding Lyapunov functions as VO, V! and the constants as
{ai}i,, {Bi}i respectively. We consider the candidate Lyapunov function V = V7 + VO

for the overall system. Then we have:

V=vV14uV? < —Blle!|? - pasle®|* + paaLlle] |l
= (I’ le? Qe 11 1)T

where the matrix Q € R?*2 is:

B3 —tpayl
—ipoul  pas

Q:

The matrix @ can be positive definite if and only if there exists a small enough ¢ > 0 such
that det(Q) > 0. It is easy to check that it suffices to have 0 < u < %%3-. Such a p always
4

exists. Therefore, the overall system is always exponentially stable regardless of L. n

This theorem states a very interesting fact for the system (11.32): as long as the
inner system and outer system are exponentially stable, the system is extremely robust (in
terms of exponential stability) to any (vanishing) perturbation of the outer system which
only depends on the tracking error of the inner system.

In the above theorem we assumed that the inner system does not depend on the

tracking error e© of the outer system. For the more general case, we may write:

f(el,e0,t) = f(e,0, t) + d(el,eo,t)
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where d(e/,e%,t) = f(e,e2,t) — f(e!,0,t). The nominal system &/ = f(el,0,1) is expo-
nentially stable as designed and we still denote its Lyapunov function as V! and Lyapunov
constants as {f; ;?:1. Then for the overall system, following the spirit of Theorem 11.10,

we have the result:
Theorem 11.11. Consider the following perturbed system:

el = fle,e%t) = f(e!,0,1) +d(el,e0,1)

11.33
é© = Ae% +g(e,t) ( )

where g(e’,t) is o perturbation term that satisfies ||g(e,t)|| < Ly|le’|| for some Ly > 0. If,

for d(e!, €9, 1), there exists Ly > 0 such that ||d(e!, €©, t)|| < Lo||e®|l, then the overall system

is ezponentially stable if the product of the two Lipschitz constants satisfies the inequality:

Ly-Ly< Zz gz (11.34)

Proof:  The proof is very similar to that of Theorem 11.10. We consider the
candidate Lyapunov function V = V! + uVO for the overall system. Then we have:

V=Vi+uV® < —Bslle'I? + BaLalle el — paslle®||? + paaLy |l lle |
= (e’ le®IHQClle" 1l e )T

where the matrix Q € R?*2 is

Bs —3(BsLs + pasLy)

Q=
—3(BaLy + payLy) pas

Q is positive definite if and only if det(Q) > 0. That is, there exists z > 0 such that:
—ofLiu® + (46303 — 264 Lo Ln)p — BFL3 >

This is true if and only if the discriminant of the quadratic function of x on the left hand

side is positive which yields: Ly - Ly < g2 - 3% =

This theorem states a very interesting fact about the system (11.33): heuristically,
a3 and B3 are proportional to the convergence rates of the outer and inner systems respec-
tively,2 hence the stability of the perturbed systems requires only that the product of the
Lipschitz constants of the perturbation terms is less than the product of the two convergence

rates, regardless of the rate of each individual system.

2 A more precise estimates of the convergences rates are given by -5,;35 and
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Comment 11.12. The stability of a similar model of the overall closed-loop system has
been studied before in [121], however, no ezplicit conditions are provided under which a p
exists such that the overall system is stable. Here, Theorems 11.10 and 11.11 give more

detailed and useful results in characterizing the properties of the closed-loop system.

Although we have established the conditions for the system (11.33) to be expo-
nentially stable, estimates of its Lyapunov constants indeed depend on Lrl,Lg and all the
Lyapunov constants of the inner and outer systems. These constants can be optimized by
maximizing the smaller eigenvalue of Q with respect to u. We here omit the detail and
carry on the analysis by assuming that the system (11.33) is exponentially stable and its
Lyapunov constants are denoted by 71,72,73,7s > 0. We now want to estimate the effect
of the non-vanishing error term h on the performance of the closed-loop system (11.28). In
general, we can no longer expect asymptotic stability when a non-vanishing perturbation is
introduced. However, according to [54], we can still have good estimates of a bound on the

tracking error and the rate of convergence outside this bound.

Proposition 11.13. Assume that the system (11.33) has the Lyapunov constants {;}i;.
Then, for the closed-loop system (11.28), if ||h(e!,e%,t)|| < 6 < 5'7,;’—4 %, then the tracking

error of the overall system is bounded by b = 273'34 %6, and, outside this bound, the error

ezponentially decreases with a rate larger than \ = 4%.

The control parameters K, and K, can be adjusted so as to minimize the error
bound b. For the helicopter model, the error term h(el, €9, t) is usually extremely small, as
is 0. We can also choose the control parameters such that the inner and outer systems have
very fast rates of convergence, hence a large ;. Consequently, the error bound b is very

small, and usually barely noticeable in simulations and experiments, as we will soon see.

11.4 Vision in the Control Loop

In this section, we discuss how the discrete and continuous motion estimation
algorithms described in section 11.2 are used in the control loop for landing a UAV onto a

landing pad with a known geometry.
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Figure 11.9: Block diagram of vision in control loop.

11.4.1 Disambiguation of Motion Estimates

We assume that the image of the landing pad taken from the desired landing
configuration are given. The feature points on the landing pad are assumed to be in general
configuration (they could for example be corners on the typical “H” pattern). Without loss
of generality, suppose (I,T1) € SE(3) is the configuration of the desired camera frame, and
di = —NET, > 0 is the desired distance of the camera to the landing plane with known
surface normal Nr € R3.

Proposition 11.14. Suppose A = (R + %TNT) € R®*3 s the planar essential matriz
associated with two camera frames relative to a plane. If dy > 0 is the distance from the

first camera to the plane, then the distance of the second camera to the plane is given by
d = d;/det(A).

Proof: Suppose the configuration of the second camera frame is (Ry,T) €
SE(3). Then dy = —N}ET),d = —NERIT, are the distances from the first and second
cameras to the plane. Since Nr = RN, we have ART = (I + 1T NT), hence the eigenvalues
of ART are {), 1, 1} where A = 1+ INIT. But NIT = NL(T) — RI'Ty) = —d + d,. Using
det(A) = det(ART) = }, it is direct to check that det(A) = d,/d. »

The knowledge of N allows us to disambiguate the pair of solutions discussed in
Theorem 11.9 by taking the one that minimizes || Nes; — RL, Np||, where Neg; is the vision
estimated surface normal, and Rest is the estimated rotation matrix according to the discrete
algorithm. Also, the knowledge of d; allows to find d according to Proposition 11.14, which
solves the scale ambiguity in T'/d in the discrete case and v/d in the continuous case.

The vision algorithms described above generate estimates of {R, T, v,w}. However,
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to compute the control signals such as (11.26) we need estimates of {p,p,®, ©}. Note that
given R € SO(3), the ZY X Euler angles (away from the singularity) can be recovered by:

atan2(rse/ cos 8,133/ cos ) (11.35)

¥ = atan2(ry/cosf,ry/ cosb)

where r;; is the entry of the i—th row and j—th column of R. Thus, we can recover {©, @}
from {R,w} by applying equations (11.35), (11.21) and © = —¥w. We can recover p using
the estimates {R,v} through p = —Rv. The closed-loop system configuration is depicted
in Figure 11.9. For the estimate of Tjs one needs $ as in equation (11.26), which can be

measured by accelerometers that give a = RTj

11.4.2 Simulation Results for the Closed-Loop System

We present the simulation results of the proposed vision based landing scheme. In
these simulations, we apply the proposed controller for the full dynamic model of the UAV.
We add Gaussian noise of standard deviation (in pixel units) to the correspondences and
image velocities, and perform the discrete and continuous motion estimation algorithms
based on the noisy data. In Figures 11.10 and 11.11, we present the simulation results for
image measurement noise levels of 1 and 4 pixels standard deviation in both the image
correspondences and the image velocities.

In these simulations, the initial position is p = [2,1,5]7 meters away from the
desired landing configuration above the landing pad (the origin), the initial orientation is
6, 6,97 = [0,0,0.4]7 radians. The dominant poles of the outer loop controller are placed at
—2,—.45. The inner loop attitude controller is designed based on feedback linearization [56),
and it has the form ©®) = Vg, where Vp is designed as three decoupled pole-placement
controllers with poles located at —10 and —7 + 7.1414: for each controller. The main rotor
thrust is controlled based on dynamic inversion and the pole is placed at —5.

Since the origin of the closed-loop system is exponentially stable, it is robust to
relatively large levels of noise. As we see, the controller performs very well at a noise level of
1 pixel standard deviation, which is the accuracy of most state-of-the-art feature-tracking
techniques [3], and remains stable at a large noise level of 4 pixel standard deviation. Due to
the gain margin in the controller, the closed loop system is also robust to possible modeling

errors which are omitted, such as the camera calibration.
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Figure 11.10: Closed-loop system simula- Figure 11.11: Closed-loop system simula-
tion with 1 pixel noise. tion with 4 pixel noise.

11.5 Discussion

In this chapter have we studied the problem of using computer vision as a feedback
sensor to control the landing of a dynamic Unmanned Aerial Vehicle. We derive a novel
geometric algorithm for estimating the camera angular and linear velocity relative to a pla-
nar scene, and give a thorough performance evaluation. We propose a nonlinear controller
based on differential flatness for a full UAV dynamic model, and give detailed conditions for
stability of the overall closed loop system. Through extensive simulation, the vision based
controller is shown to result in stable landing maneuvers for large noise levels.

We are currently implementing the above vision algorithms and controller on a
model helicopter as part of the UC BErkeley Aerial Robot (BEAR) project. One of our
UAVs is a Yamaha R-50 model helicopter, on which we have mounted computers, INS,
GPS, and a vision system, consisting of a camera, a real-time feature tracker board, and a
Pentium IT running Linux. Figure 11.12 shows one of the UC Berkeley UAVs on which we
will implement the proposed landing scheme.
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Figure 11.12: A member of UC Berkeley UAV fleet: a Yamaha R-50 helicopter.
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Chapter 12

Conclusions

“Supposing truth is a woman — what then?”
— Friedrich Nietzsche, Beyond Good and Evil

“The essential political problem for the intellectual is not-to criticize
the ideological contents supposedly linked to science, or to ensure that his own scientific
practice is accompanied by a correct ideology, but that of ascertaining the possibility of
constituting a new politics of truth... Hence the importance of Nietzsche.”

— Michel Foucault, Truth and Power

As its title suggests, this dissertation attempts to make a connection among three relatively
independent research disciplines: Computer Vision, Differential Geometry, and (Robotic)
Control. Such an interdisciplinary study is probably just as promising as it is risky. It
certainly produces tremendous opportunities with new perspectives, new methods and new
problems; however, the effort might be easily under appreciated by either of the above
disciplines. Maybe because of this, ever since I decided to explore this rocky road as my
PhD program, every once a while, there have been warm-hearted people warning me of
the hardship I would expect down the road. At those occasions, 1 just have to take the
warnings as encouragement for me to try extra harder. Due to the ever growing practice in
vision based robotic control, a unified study of both computer vision and control is simply
inevitable, neither can it wait any longer. Had there not been us, someone would have done
the same work already.

This dissertation summarizes the main work that I have been doing for the past
four years on the subjects of computer vision and vision based control. When the time

comes for me to put all the related papers together (to make this dissertation), to my
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surprise, all the pieces of the jigsaw puzzle seem to fit with each other very well. The six
chapters of Part I consist of a rather coherent theory of the classic structure from motion
problem from an entirely new perspective. In addition to presenting new results, we take
a lot of effort to clarify some misunderstandings among the literature. Undoubtly, most
of the results will directly benefit the computer vision community. At the mean time, this
new perspective opens the door to a unified study of multiview geometry in both Euclidean
and non-Euclidean spaces. We pursue this quest in Chapter 8 of Part II, where we have
laid out basic ingredients for the study of multiview geometry in more general classes of
spaces or Riemannian manifolds. Many new and interesting problems are therefore raised
regarding how to study geometric properties of certain spaces from a vision point of view.
While these questions mostly attract mathematicians, especially differential geometers, it
is the improved understanding in multiview geometry that benefits control theorists the
most. Therefore in Part III of this dissertation, we shift the focus from vision to control
and demonstrate how to design vision based control systems. The two examples presented
are both representative applications of vision in robotic control: vision guided driving of
ground mobile vehicles and vision guided landing of aerial mobile vehicles.

It would be very hard to picture any next generation intelligent robots without any
on-board visual sensors. In fact, the level of intelligence and automation of the future robots
will be very much determined by how well the on-board computer processes information
collected from the visual sensors. However, despite that we seem to know quite a lot
about vision already, especially it as an information processing entity, state of the art
computer vision systems still have no match for the human vision, not even close. This
can only mean one thing: A large part about the nature of vision is yet unknown to us.
While mathematics allow us to study fundamental geometric principles underlying visual
perception as this dissertation has shown, a full understanding of the phenomena of vision
must however rely on a more interdisciplinary effort from many other disciplines such as

neurobiology, psychophysics, computer science, and cognitive science.
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Appendix A

Geometric Optimization on
Manifolds

A.1 Optimization on Riemannian Manifold Preliminaries

Newton’s and conjugate gradient methods are classical nonlinear optimization
techniques to minimize a function f(z), where z belongs to an open subset of Euclidean
space R". Recent developments in optimization algorithms on Riemannian manifolds have
provided geometric insights for generalizing Newton’s and conjugate gradient methods to
certain classes of Riemannian manifolds. Smith [97] gave a detailed treatment of a theory
of optimization on general Riemannian manifolds; Edelman, Arias and Smith [19] further
studied the case of Stiefel and Grassmann manifolds,! and presented a unified geomet-
ric framework for applying Newton and conjugate gradient algorithms on these manifolds.
These new mathematical schemes solve the more general optimization problem of min-
imizing a function f(z), where z belongs to some Riemannian manifold (M,®), where
®:TM x TM — C*®(M) is the Riemannian metric on M (and TM denotes the tangent
space of M). An intuitive comparison between the Euclidean and Riemannian nonlinear
optimization schemes is illustrated in Figure A.1.

Conventional approaches for solving such an optimization problem are usually ap-

plication dependent. The manifold M is first embedded as a submanifold into a higher

!Stiefel manifold V(n, k) is the set of all orthonormal k-frames in R"; Grassmann manifold G(n, k) is
the set of all k dimensional subspaces in R". Then canonically, V(n, k) = O(n)/O(n — k) and G(n, k) =
O(n)/O(k) x O(n — k) where O(n) is the orthogonal group of R™.
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Euclidean  Xi+1 = % + Ai Riemannian  Xis1= exp(X; Aj)

Figure A.1: Comparison between the Euclidean and Riemannian nonlinear optimization
schemes. At each step, an (optimal) updating vector A; € Ty, M is computed using the
Riemannian metric at z;. Then the state variable is updated by following the geodesic from
z; in the direction A; by a distance of 1/g(A;, A;) (the Riemannian norm of A;). This
geodesic is usually denoted in Riemannian geometry by the exponential map exp(zi, A;).

dimensional Euclidean space RY by choosing certain (global or local) parameterization of
M. Lagrangian multipliers are often used to incorporate additional constraints that these
parameters should satisfy. In order for z to always stay on the manifold, after each update,
it needs to be projected back onto the manifold M. However, the new analysis of [19] shows
that, for “nice” manifolds, i.e., for example Lie groups or homogeneous spaces such as Stiefel
and Grassmann manifolds, one can make use of the canonical Riemannian structure of these
manifolds and systematically develop a Riemannian version of the Newton’s algorithm or
conjugate gradient methods for optimizing a function defined on them. Since the param-
eterization and metrics are canonical and the state is updated using geodesics (therefore
always staying on the manifold), the performance of so obtained algorithms is no longer
parameterization dependent, and in addition they typically have polynomial complexity
and super-linear (quadratic) rate of convergence [97]. An intuitive comparison between the
conventional update-then-project approach and the Riemannian method is demonstrated
in Figure A.2 (where M is illustrated as the standard 2D sphere S? = {z € B3 | ||z||? = 1}).

One of the purposes of this paper is to apply these new Riemannian optimization
schemes to solve the nonlinear optimization problem of recovering 3D motion from image
correspondences. As we will soon see the underlying Riemannian manifold for this problem

(the so called essential manifold) is a product of Stiefel manifolds instead of a single one. We
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Update-Project Riemannian

Xj41

Figure A.2: Comparison between the conventional update-then-project approach and the

Riemannian scheme. For the conventional method, the state z; is first updated to zi,,

according to the updating vector A; and then z],; is projected back to the manifold at
Z;4+1. For the Riemannian scheme, the new state z;1; is obtained by following the geodesic,
i.e., Tit1 = exp(z;, A;).

first need to generalize Edelman et al’s methods [19] to the product of Stiefel (or Grassmann)
manifolds. Suppose (M;,®;) and (M>, ®;) are two Riemannian manifolds with Riemannian

metrics:

q)l(', ) :TM; x TM1 — Coo(Ml),
@2(~,-) :TMy x TMy — Coo(Mz)

where TM; is the tangent bundle of M;, similarly for TM>. The corresponding Levi-
Civita connections (i.e., the unique metric preserving and torsion-free connection) of these

manifolds are denoted as:

Vi X(Mi) x X(M1) = X(My),
Va: X(Mg) X X(Mz) — X(Mz)

where X' (M) stands for the space of smooth vector fields on M;, similarly for X'(M>).
Now let M be the product space of My and My, i.e., M = My x M,. Let i :
M) - M and i3 : My — M be the natural inclusions and 7y : M — M) and 7 : M — M,
be the projections. To simplify the notation, we identify TM; and T M, with 4,,(T'M;) and
i2:(T M2) respectively. Then TM = TM; x TM; and X(M) = X(M;) x X(M,). For any
vector field X € X' (M) we can write X as the composition of its components in the two
subspaces TM; and TM,: X = (Xy,X3) € TM; x TM,. The canonical Riemannian metric
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®(-,-) on M is determined as:
B(X,Y) = &1(X1, 1) + 82(X2,V2), X,Y € X(M).
Define a connection V on M as:
VxY = (Vix, 11, Vax,Y2) € X(M1) x X(M), X,Y € X(M).

One can directly check that this connection is torsion free and compatible with the canon-
ical Riemannian metric ® on M (i.e., preserving the metric) hence it is the Levi-Civita
connection for the product Riemannian manifold (M, ®). From the construction of V, it is
also canonical.

According to Edelman et al [19], in order to apply Newton’s or conjugate gradient
methods on a Riemannian manifold, one needs to know how to explicitly calculate parallel
transport of vectors on the manifolds and an explicit expression for geodesics. The reason
that Edelman et al’'s methods can be easily generalized to any product of Stiefel (or Grass-
mann) manifolds is because there are simple relations between the parallel transports on
the product manifold and its factor manifolds. The following theorem follows directly from

the above discussion of the Levi-Civita connection on the product manifold.

Theorem A.l. Consider M = M; x My the product Riemannian manifold of M; and M,.
Then for two vector fields X,Y € X(M), Y is parallel along X if and only if Y is parallel
along X; and Y, is parallel along Xo.

As a corollary to this theorem, the geodesics in the product manifold are just
the products of geodesics in the two factor manifolds. Consequently, the calculation of
parallel transport and geodesics in the product space can be reduced to those in each factor

manifold.

A.2 Riemannian Structure of the Essential Manifold

In this section we study the Riemannian structure of the essential manifold, which
plays an important role in motion recovery from image correspondences (for details see [67)).

Recall that, for any vector u = (uj,u2,u3)T € R3, the notation % means the associated
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skew-symmetric matrix:

i=| ug 0 - € R3*3,

-—U2 uy 0

Then for any two vectors u,v € R3, the cross product u x v is equal to %v.
Camera motion is modeled as rigid body motion in R®. The displacement of the

camera belongs to the special Euclidean group SE(3):
SE(3) = {(R,T): R€ SO(3), T € R*} (A.1)

where SO(3) € R®*3 is the space of rotation matrices (orthogonal matrices with determinant
+1). An element g = (R, T) in this group is used to represent the coordinate transformation
of a point in E®. We already know that two corresponding images x; and x5 of the same

point p € E3? satisfy the so called epipolar constraint:
ngRxl =0. (A.2)

A good property of this constraint is that it decouples the problem of motion recovery
from that of structure recovery. The matrix TR in the epipolar constraint is the so called
essential matrir, and the essential manifold is defined to be the space of all such matrices,
denoted by:

£={TR|Re SO(3),T € so(3)}.

SO(3) is a Lie group of 3 x 3 rotation matrices, and so(3) is the Lie algebra of SO(3), i.e.,
the tangent plane of SO(3) at the identity. so(3) then consists of all 3 x 3 skew-symmetric
matrices. As we have seen in Chapter 4, for the problem of recovering camera motion
(R, S) from image correspondences, the associated objective functions are usually functions
of the epipolar constraint. Hence they are of the form f(E) € R with E € £&. Moreover
such functions in general are homogeneous in E. Thus the problem of motion recovery is

equivalent to optimize functions defined on the so called normalized essential manifold:
& ={TR| R e SO(3),T € so(3), §t'r(TT )y =1}

Note that %tr(TfT) = TTT. Strictly speaking, the essential manifold £ is not a differential

manifold because of the singularity at T' = 0.2 On the other hand, the normalized essential

*1t is, however, shown to be an algebraic variety [76).
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manifold £; is indeed a differential manifold which has a natural Riemannian structure, as

we will soon see.

In order to study the optimization problem on &, it is crucial to understand its
Riemannian structure. We start with the Riemannian structure on the tangent bundle of
the Lie group SO(3), i.e., T(SO(3)). The tangent space of SO(3) at the identity e is simply
its Lie algebra so(3):

Te(SO(3)) = so(3).

Since SO(3) is a compact Lie group, it has an intrinsic bi-invariant metric [5] (such metric

is unique up to a constant scale). In matrix form, this metric is given explicitly by:
®(T1, 1) = Etr(Tsz ), Th,Th e so(3).

Notice that this metric is induced from the Euclidean metric on SO(3) as a Stiefel subman-
ifold embedded in R**3. For any R € SO(3) we define 65 : SO(3) x R — SO(3) to be the
right action of R on SO(3), i.e., Or(R1) = Ry R for all R; € SO(3). The tangent space at
any other point R € SO(3) is then given by the push-forward map Og,:

Tr(SO(3)) = Or.(50(3)) = {TR | T € s0(3)}.
Thus the tangent bundle of SO(3) is:

TS0E) = |J Tr(50(3))
ReSO(3)

Since the tangent bundle of a Lie group is trivial {103], T(SO(3)) is then equivalent to the
product SO(3) x so(3). T(SO(3)) can then be expressed as:

T(SO(3)) = {(R,TR) | R € SO(3),T € s0(3)} = SO(3) x s0(3).

If we identify the tangent space of so(3) with itself, then the metric ®¢ of SO(3) induces a
canonical metric on the tangent bundle T(SO(3)):

(X,Y) = Bo(X1, X2) + Bo(V1,Y2), X,Y € s0(3) x s0(3).

Note that this metric restricted to the fiber so(3) of T(S0O(3)) is the same as the Euclidean
metric if we identify so(3) with R®. Such an induced metric on T(SO(3)) is invariant under
the right action of SO(3).
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Then the metric & on the whole tangent bundle T(SO(3)) induces by restriction
a canonical metric ® on the unit tangent bundle of T(SO(3)):

Ty(SO(3)) = (R, TR) | R € SO(3),T € s0(3), -;-tr(:F:FT) =1}

It is direct to check that, with the identification of so(3) with R®, the unit tangent bundle is
simply the product SO(3) xS? where S is the standard 2-sphere embedded in R3. According
to Edelman et al [19], SO(3) and S? both are Stiefel manifolds V (n, k) of the type n = k = 3
and n = 3,k = 1, respectively. As Stiefel manifolds, they both possess canonical metrics
by viewing them as quotients between orthogonal groups. Here SO(3) = O(3)/0(0) and
S2=0(3)/0(2). Fortunately, for Stiefel manifolds of the special type k =n or k =1, the
canonical metrics are the same as the Euclidean metrics induced as submanifold embedded

in R***, From the above discussion, we have

Theorem A.2. The unit tangent bundle Ti(SO(3)) is equivalent to SO(3) x S2. Its Rie-
mannian metric ® induced from the bi-invariant metric on SO(3) as above is the same as
that induced from the Buclidean metric with T1(SO(3)) naturally embedded in R3** by the
map i : (R, TR) — (R,T). Further, (T\(SO(3)),®) is the product Riemannian manifold
of (80(3),®1) and (S?,®;) with ®; and &, canonical metrics for S0(3) and S? as Stiefel

manifolds.

However, the unit tangent bundle T3 (SO(3)) is not exactly the normalized essential
manifold €. Due to the equation (3.9), it is a double covering of the normalized essential
manifold &, i.e., £&; = T1(SO(3))/Z2. The natural covering map from T3 (SO(3)) to &, is:

h T](SO(3)) - 81
(R,TR) € T,(SOB3)) ~ TRe&,.

The inverse of this map is given by:
h~Y(TR) = {(R, TR), (TR, —fef"R)} .

Comment A.3. As we know from Lemma 3.1, the two pairs of rotation and translation
corresponding to the same normalized essential matriz TR are (R,T) and (eT“R, =T). As
pointed out by Weinstein, this double covering h is equivalent to identifying a left-invariant
vector field on SO(3) with the one obtained by flowing it along the corresponding geodesic
by distance m, the so-called time-m map of the geodesic flow on SO(3).
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If we take for £; the Riemannian structure induced from the covering map A, the
original optimization problem of optimizing f(F) on £ can be converted to optimizing
f(R,S) on T1(SO(3)).> Generalizing Edelman et aPs methods to the product Riemannian
manifolds, we may obtain intrinsic geometric Newton’s or conjugate gradient algorithms
for solving such an optimization problem. Due to Theorem A.2, we can simply choose the
induced Euclidean metric on T7(SO(3)) and explicitly give these intrinsic algorithms in
terms of the matrix representation of T1(SO(3)). Since this Euclidean metric is the same as
the intrinsic metrics, the apparently extrinsic representation preserves all intrinsic geometric
properties of the given optimization problem. In this sense, the algorithms we are about
to develop for the motion recovery are different from other existing algorithms which make

use of particular parameterizations of the underlying search manifold T (SO(3)).

A.3 Optimization on the Essential Manifold

Let f(R,T) be a function defined on 73(SO(3)) = SO(3) x S? with R € SO(3)
represented by a 3 x 3 rotation matrix and T' € S? a vector of unit length in R3. This section
gives Newton’s algorithm for optimizing a function defined on this manifold (please refer
to [19] for the details of the Newton’s or other conjugate gradient algorithms for general
Stiefel or Grassmann manifolds).

In order to apply Newton’s algorithm to a Riemannian manifold, we need to know
how to compute three things: the gradient, the Hessian of a given function and the geodesics
of the manifold. Since the metric of the manifold is no longer the standard Euclidean metric,
the computation for these three needs to incorporate the new metric. In the following, we
will give general formulae for the gradient and Hessian of a function defined on SO(3) x S2
using results from [19]. In the next section, we will however give an alternative approach
for directly computing these ingredients by using the explicit expression of geodesics on this
manifold.

Let ®; and ®; be the canonical metrics for SO(3) and S? respectively and V; and
V2 be the corresponding Levi-Civita connections. Let ® and V be the induced Riemannian

metric and connection on the product manifold SO(3) x S2. The gradient of the function

3Although the topological structures of £, and T} (SO(3)) are different, the nonlinear optimization only
relies on local Riemannian metric and this identification will not affect effectiveness of the search schemes.
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f(R,T) on SO(3) x S?is a vector field G = grad(f) on SO(3) x S? such that:
df(Y)=®(G,Y), for all vector fields Y on SO(3) x S2

Geometrically, so defined gradient G has the same meaning as in the standard Euclidean
case, t.e., G is the direction in which the function f increases the fastest. On SO(3) x s?,

it can be shown that the gradient is explicitly given as:
= (fr — Rf%R, fr — T{FT) € Tr(SO(3)) x Tr(S?)

where fgp € R3*3 is the matrix of partial derivatives of f with respect to elements of R and
fr € R® is the vector of partial derivatives of f with respect to the elements of T, i.e.,

_of
= 3R;’

Geometrically, the Hessian of a function is the second order approximation of the

(FR)is () = j—zi 1<ijk <3

function at a given point. However, when computing the second order derivative, unlike the
Euclidean case, one should take the covariant derivative with respect to the Riemannian
metric ® on the given manifold.* On SO(3) x §2, for any X = (X3, X,),Y = (V1,Y2) €
T(SO(3)) x T(S?), the Hessian of f(R, S) is explicitly given by:

Hess f(X,Y) = frr(X1,Y1) - trfETr(X1,Y1)
+ f:IT(X%Y2) - trf%rT(X2) Y2)
+  frr(X1,Y2) + frr(Vh, X2).

where the Christoffel functions I'g for SO(3) and 't for S2 are:

1
Tr(X,1h) = —2-R(X1TY1+Y1TX1),
1
I'p(X,,Y2) = ET(ngz + Y7 Xa)
and the other terms are:
32f 82
frr(X1, 1) = UZM R0 (X1)i;(M)rt,  frr(Xa,Ya) = aTé{T (X2)i(Y2)5,
82f 32f
frr(X1,Ya) = % oR a7, V(2 Ire(fi, X2) = Z omam, YK

%It is a fact in Riemannian geometry that there is a unique metric preserving and torsion-free covariant
derivative.
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For Newton’s algorithm, we need to find the optimal updating tangent vector A
such that:

Hess f(A,Y) = ®(-G,Y) for all tangent vectors Y.

A is then well-defined and independent of the choice of local coordinate chart. In order to
solve for A, first find the tangent vector Z(A) = (21, 2,) € Tr(SO(3)) x Tr(S?) (in terms

of A) satisfying the linear equations:

frReR(ALY1) + frrR(V1,42) = @1(Z1,Y1) for all tangent vectors Y € Tr(SO(3))
frr(&2,Y2) + frr(A1,Y2)

®9(Z3,Y3) for all tangent vectors Y3 € Tr(S?)

From the expression of the gradient G, the vector A = (A;, A;) then satisfies the linear

equations:

Z, — R skew(ff A1) — skew(A1fE)R = —(fr - RfLR)
Zy - fTTAy = —(fr — TfET)

with A;RT being skew-symmetric and A77T = 0. In the above expression, the notation
skew(A) means the skew-symmetric part of the matrix A: skew(A4) = (4 — AT)/2. For
this system of linear equations to be solvable, the Hessian has to be non-degenerate, in
other words the corresponding Hessian matrix in local coordinates is invertible. This non-
degeneracy depends on the chosen objective function f.

According to Newton’s algorithm, knowing A, the search state is then updated
from (R,T) in direction A along geodesics to (exp(R,A;), exp(T,Az)), where exp(R,-)
stands for the exponential map from Tr(SO(3)) to SO(3) at point R, similarly for exp(T,-).
Explicit expressions for the geodesics exp(R, A;t) on SO(3) and exp(T, Ast) on S? are given

in Chapter 4. The overall algorithm can be summarized in the following:

Riemannian Newton’s algorithm for minimizing f(R,T) on the normalized es-

sential manifold:
o At the point (R,T),

— Compute the gradient G = (fr — Rf;"{R, fr— Tf;’:T),

— Compute the updating vector A = — Hess™'G.
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® Move (R,T) in the direction A along geodesic to (exp(R, A1), exp(T,As)).

o Repeat if ||G|| > € for pre-determined € > 0.

Since the manifold SO(3) x S? is compact, this algorithm is guaranteed to converge
to a (local) extremum of the objective function f(R,T). Note that this algorithm works
for any objective function defined on SO(3) x S% For an objective function with non-
degenerate Hessian, the Riemannian Newton’s algorithm has quadratic (super-linear) rate

of convergence [97].
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Appendix B

UAYV System Parameters

All variables except for the state variables and inputs are numeric constants, which

can be obtained by measurements and experiments. The followings are the values of the

constants:
I, = 0142413 [, = 0271256 I, = 0.271492
IM = —0.015 ymy = 0 ha 0.2943
hr = 0.1154 lr = 08715 m 4.9
Cy = 0004452 DY = 0.6304 Giu 25.23
Cf = 0005066 Df = 0008488 9 25.23
c1 = 6.4578 ems = 1003752 ¢pp = 0.1837

crs = 0.1545

The operation regions in radian for as,b15 and newton for Ty, Tr are: lais| < 0.4363,
|b1s] < 0.3491, —20.86 < Ty < 69.48, —5.26 < Tr < 5.26.
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