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Abstract

This paper addresses the control of a team of autonomous agents pursuing a smart evader in a non-
accurately mapped terrain. By describing this problem as a partial information Markov game, we are
able to integrate map-learning and pursuit. We propose receding horizon control policies, in which the
pursuers and the evader try to respectively maximize and minimize the probability of capture at the next
time instant. Because this probability is conditioned to distinct observations for each team, the resulting
game is nonzero-sum. When the evader has access to the pursuers’ information, we show that a Nash
solution to the one-step nonzero-sum game always exists. Moreover, we propose a method to compute
the Nash equilibrium policies by solving an equivalent zero-sum matrix game. A simulation example is
included to show the feasibility of the proposed approach.

}This research was supported by Honeywell, Inc. on DARPA contract B09350186, and Office of Naval Research.



1 Introduction

We deal with the problem of controlling a swarm of agents that attempt to catch a smart evader, i.e., an
evader that is actively avoiding detection. The game takes place in a non-accurately mapped region, therefore
the pursuers and the evader also have to build a map of the pursuit region. Problems like this arise, e.g., in

search and capture missions.

The classical approach to this type of games consists in a two-stage process: first, a map of the region is
built and then, the pursuit-evasion game takes place on the region that is now well known. In fact, there is a
large body of literature on any of these topics in isolation. On pursuit-evasion games the reader is referred to
the classical reference [1] or the more recent textbook [2]. For a formulation of this type of games that takes
visual occlusion into account, see [3, 4]. On map building, see, e.g., [5, 6] and references therein. Search and

rescue problems (7, 8] are also closely related to the pursuit-evasion games addressed here.

In practice, the two step solution mentioned above is, at least, cumbersome. The map building phase
turns out to be time consuming and computationally hard, even in the case of simple two dimensional
rectilinear environments [5]. Moreover, the solutions proposed in the literature to the pursuit-evasion phase
typically assume that the reconstructed map is accurate, ignoring the inaccuracies in the devices used to build
such a map. This is hardly realistic, as argued in [6], where a maximum likelihood algorithm is introduced
to estimate the map of the pursuit region based on noisy measurements and an e priori probabilistic map

of the terrain.

In this paper, we describe the pursuit-evasion problem as a Markov game, which is the generalization
of a Markov decision process to the case when the system evolution is governed by a transition probability
function depending on two or more players’ actions [9, 10, 11]. This probabilistic setting allows us to model
the uncertainty affecting the players’ motion. The lack of information about the pursuit region and the sensors
inaccuracy can also be embedded in the Markov game framework by considering a partial information Markov
game. Here, the obstacles configuration is considered to be a component of the state, and the probability
distribution of the initial state encodes the a priori probabilistic map 6f the pursuit region. Moreover, each
player’s observations of the obstacles and the other player’s position are described by means of an observation
probability function. In this way, different configurations of the obstacles correspond to different states of
the game, and the uncertainty in the actual obstacles configuration is translated into incomplete observation
of the state, thus allowing the map-learning problem to be integrated into the pursuit problem. In general,
partial information stochastic games are poorly understood and the literature is relatively sparse. Notable
exceptions are games with lack of information for one of the player [12, 13] and games with particular
structures such as the Duel game [14], the Rabbit and Hunter game [15], the Searchlight game [16, 17, etc.

An alternative method to model incomplete knowledge of the obstacles configuration (typical of the
reinforcement learning theory approach [18]) consists of describing the system as a full information Markov
game with the transition probability function depending on the obstacles configuration (19, 20]. Combining

exploration and pursuit in a single problem then translates into learning the transition probability function



while playing the game. However, this approach requires that the pursuit-evasion policies be learned for
each new obstacle configuration.

We propose here that both the pursuers’ team and the evader use a “greedy” policy to achieve their
goals. Specifically, at each time instant the pursuers try to maximize the probability of catching the evader
in the immediate future, whereas the evader tries to minimize this probability. At each step, the players
must therefore solve a static game that is nonzero-sum because the probability in question is conditioned
to the distinct observations that the corresponding team has available at that time. The Nash equilibrium
solution [21] is adopted for the one-step nonzero-sum games. On the one hand, playing at a Nash equilibrium
ensures a minimum performance level to each team. On the other hand, no player can gain from an unilateral
deviation with respect to the Nash equilibrium policy. Existence of a Nash equilibrium solution is proved and

the simplifications which make the solution computationally feasible using linear programming are explained.

This paper extends the probabilistic approach to pursuit-evasion games found in [22]. In this reference,
the pursuers’ team adopts a greedy policy that consists of moving towards the locations that maximize the
probability of finding the evader at the next time instant. The evader, however, is not actively avoiding to

be captured and, in fact, a model of its motion is supposed to be known to the pursuers.

The paper is organized as follows. In Section 2, the pursuit-evasion game is described using the formalism
of partial information Markov games, and the concept of stochastic policies is introduced. In Section 3
the one-step Nash solution to the pursuit-evasion game is motivated. Existence of a Nash equilibrium in
stochastic policies is proven by reducing the problem to that of determining a saddle-point solution to a
zero-sum matrix game. As a side result, linear programming is suggested for the computation of the Nash
equilibrium stochastic policies. A simulation example is shown in Section 4 and Section 5 contains concluding

remarks and directions for future research.

Notation: We denote by (Q, F) the relevant measurable space with Q the set of sample points, F a family of
subsets of 2 forming a o-algebra. We assume that the o-algebra F is rich enough so that all the probability
measures considered are well defined. Consider a probability measure P : F — [0,1]. Given two events
A,B € F with P(B) # 0, we write P(A|B) for the conditional probability of A given B, i.e., P(A|B) =
P(AN B)/P(B). In the sequel, whenever we compute the probability of some event A € F conditioned to
B € F, we always make the implicit assumption that the event B has nonzero probability. Bold face symbols
are used to denote random variables. Following the usual abuse of notation, given a multidimensional random
variable € = (§,,&2,..-,§,), where §; : @ = RU{o0},i=1,2,...,n, and some C = (C,Cy,...,Cy), where
Ci CRU {0}, i =1,2,...,n, we write P(§ € C) for P({w € Q: &;(w) € Ciyi = 1,2,...,n}). A similar
notation is used for conditional probabilities. Moreover, we write ¢(£) for the o-algebra generated by &, E[£]
for the expected value of £ and E[£|A] for the expected value of £ conditioned to an event A € F.



2 Markov Pursuit-Evasion Games

We consider a two-player game between a team of n, pursuers, called player U, and a single evader, called
player D. We assume that the game is quantized both in space and time, in that the pursuit region consists
of a finite collection of cells X := {1,2,...,n.}, and all events take place on a set of equally spaced event
times 7 := {1,2,...}. Some cells may contain obstacles and neither the pursuers nor the evader can move
to these cells, but the configuration of the obstacles is not perfectly known by any of the players.

We denote by x.(t) € X and x,(t) = (x3(),x2(t), ..., Xp" (£)) € X™ the positions at time ¢ € T of the
evader and of the pursuers’ team respectively. The obstacles configuration is described by a n.-dimensional
binary vector x,(t) = (x1(t),xZ(¢),...,x%(t)) € {0,1}", where x}(t) = 1 if cell ¢ contains an obstacle
at time ¢ and x:(t) = 0 otherwise. In the following we consider a fixed—although unknown—obstacle
configuration, i.e., Xo(t + 1) = X,(t) for any t € 7. Different configurations of the obstacles correspond to
different states of the game, and uncertainty in the actual obstacles configuration corresponds to incomplete
knowledge of the initial state. Modeling the obstacles configuration as a component of the state allows
map-building to be directly taken into account in the pursuit problem. The state of the system describing
the game at time ¢ € 7 is then given by the random variable s(t) := (x.(t), Xp(t), Xo(t)), which takes value
in the set S := X x X" x {0,1}".

Transition probabilities. The evolution of the game is governed by the probability of transition from
a given state s € S at time t to another state s’ € S at time ¢ + 1. The initial state s(0) is assumed to
be independent of all the other random variables involved in the game at time ¢ = 0, and the probability
distribution of s(0) represents the common & priori knowledge of the players on their positions and on the

obstacle configuration before starting the game.

At every instant of time, each player is allowed to choose a control action. We denote by & and D the
sets of actions available to the team of pursuers and the evader, respectively. According to the Markov game
formalism, the probability of transition is only a function of the actions u € U and d € D taken by players U
and D, respectively, at time ¢. By this we mean that s(t+ 1) is a random variable conditionally independent
of all other random variables at times smaller or equal to ¢, given s(t), u(t), and d(t). Here we assume a

stationary transition probability, i.e.,
P(s(t+1)=s"|s(t) = s,u(t) = u,d(t) = d) = p(s, s',u,d), s, €S,ueld,deD,teT, (1)

where p: § x S x U x D — [0, 1] is the transition probability function.

Moreover, we assume that given the current state s(t) of the game, the positions at the next time instant
of the pursuers and the evader are independently determined by u(t) and d(t) respectively. This can be
formalized by the conditional independence of x(t+1), given s(t) and d(t), with respect to x,(t+1), xo(t+1),
and all the other random variables at times smaller or equal to ¢. Similarly for Xp(t + 1). Therefore, the
transition probability from state s = (z.,Zp,z,) € S to s’ = (:z:’c,a:;,,x;) € S, when actionsu e andd € D



are applied, is given by

0 T, # T,
ps Sal)p(s Bal) z =z,

(s, ', u, d) = { (2
where, for clarity of notation, we wrote p(s 4, z,) for P (x(t + 1) = 2, | s(t) = 5,d(t) = d) and p(s % z,)
for P (xp(t+1) = z, | s(t) = s,u(t) = u). Here, we also used the fact that the obstacles configuration is
fixed.

At each instant of time ¢ € 7, the control action u(t) € i := X™» consists of the desired positions for the
pursuers at the next instant of time. Similarly, the control action d(t) € D := X contains the next desired
position for the evader. We assume here that the one-step motion both for the pursuers and the evader
may be constrained and denote by A(z) C X'\ {z} the set of cells reachable in one time step by an agent
located at z € X'. We say that the cells in A(z) are adjacent to z. Since the pursuit-region X is, in general,
the quantization of a metric space, the reachability set A(z) C X can be viewed as the quantization of the
neighborhood of z that is reachable from z given the actuators limitations. In the case of unconstrained
motion, A(z) := X \ {z}, for all z € X. For the pursuer team, we vectorize the notion of reachability by
defining A" (z) := A(z') x A(z?)...x A(z"*) C X™ as the set of ordered n,-tuple of cells reachable in one
time step by the pursuers’ team located at = := (z!,...,2") € A",

Here we assume that the pursuers and the evader effectively reach the chosen adjacent cells with prob-
abilities p, and pe, respectively, which can be smaller than one. When pp =1 and p, < 1 we say that fast
pursuers are trying to catch a slow evader. This because p, and p, can be interpreted as average speeds.

This translates into the following expression for the transition probability function of the pursuers’ team:

Pp z, =u€ A"(z,) and z% =0 for all ¢
1- z, = zp, u € A% (x,), and ¥ =0 for all i
p((xe,xpaxo) AN IL‘;,) = 1 Pr 7 B P ( P')‘ o : .
T, =zp and (u ¢ A" (zp) or z¥ =1 for some i)
0 otherwise

where (z¢,Zp,7,) € S and z, € A™. A similar expression can be written for the evader’s transition

probability function.

Observations. In order to choose their actions, a set of measurements is available to each player at
every time instant. We denote by ) and Z the measurement space for the pursuers’ team and the evader,
respectively. We assume that the sets ) and Z are finite. At each time instant ¢ € 7, the observations
of the players are the realizations of random variables y(t) and z(t), respectively. y(t) is assumed to be
conditionally independent, given s(t), of u(t), d(t), and all the other random variables at times smaller than
t. Similarly for z(t). Moreover, the conditional distributions of y(t) and z(t) are assumed to be stationary,

ie.,

P(y(t) =y |s(t) =s) =pv(v,s), P(a(t)=z]|s(t)=35)=p(z,5), se€Sye) zeZteT,



where py : Y x S — [0,1] and pz : Z x S — [0,1] are the observation probability functions for players U and

D, respectively. We defer a more detail description of the nature of the sensing devices to later.

To decide which action to choose at time ¢t € 7', the information available to player U and D is represented
by the sequence of measurements Y := {yo,y1,...,¥t-1,¥:} and Z; := {zo,2,..., Z¢—1, 2t }, respectively.
These sequences are said to be of length ¢ since they contain all the measurements available to select the
control action at time t. The set of all possible outcomes for Y; and Z,, t € T, are denoted by J* and Z*,
respectively. Given a sequence Q in any of these sets, we denote its length by £(Q). For convenience of

notation we define Y, Z; to be the empty sequence @, for any ¢ < 0.

Under a worst-case scenario for the pursuers, we assume that, at every time instant ¢, player D has
access to all the information available to player U, i.e., (Y:) C 0(Z;), t € T. In particular, we assume that
o(y(t)) C o(z(t)), t € T, and that y(t) is conditionally independent of all the other random variables at
times smaller or equal to t given s(t) and z(t), with conditional distribution satisfying

P(y(t) = yla(t) = z,5(t) = 5) = {; e ~ 3)

s€S,ye),z€ Z,t €T, where y, € ) satisfies y(t,w) = y;, for every w € Q such that z(t,w) = z. Games
where this occurs are said to have a nested information structure [2]. We say that a pair of measurements
Y € Y* and Z € 2Z* for players U and D, respectively, are compatible if they could be simultaneously
realized by the random variables Y, and Z; for some ¢ € 7, i.e., if there is some w €  and ¢t € T for which
Y:(w) =Y and Z;(w) = Z. Nested information implies that each measurement for player U is compatible
with a unique measurement for player D. This is because we must have Y;(w) = Yz for every w € § such
that Z,(w) = Z. However, the converse may not be true. In fact, there may be several values for Z, with

nonzero probability, for a given value of Y;.

Stochastic Policies. Informally, a “policy” for one of the players is the rule the player uses to select
which action to take, based on its past observations. We consider here policies that are stochastic in that,
at every time step, each player selects an action according to some probability distribution. In general, this
distribution is a function of past observations. Specifically, the stochastic policy p of the pursuers’ team is a
function 4 : Y* — [0, 1]%, where [0, 1]¥ denotes the set (simplex) of distributions over &. We denote by ITyy
the set of all such policies. Given a sequence of observations Y; =Y € Y* collected up to ¢, we call u(¥)a
stochastic action. Similarly, a stochastic policy & of the evader is a function 6 : Z* — [0,1]P, where [0, 1)?
denotes the set (simplex) of distributions over D, and we denote by I, the set of all such policies. Given a

sequence of observations Z; = Z € Z* collected up to ¢, we call §(Z) a stochastic action.

In general, we have a different probability measure associated with each pair of policies p and 4. In the
following we use the subscript ,s in the probability measure P as a notation for the probability measure
associated with ¢ € IIy and § € IIp. When an assertion holds true with respect to P,s independently of
p € Ily, orof § € Ilp, or of both i € IIy and § € IIp, we use the notation Pg, P,, or P, respectively. When
P,s depends on the policy u € Iy only through its values for sequences Y with length L(Y) < t, we use



the notations Pu.s. Pus, is defined analogously. Similar subscript notation is used for the expectation E.
According to this notation, the transition and observation probabilities introduced earlier are independent
of u€Ily and & € IIp.

We can now give the precise semantics for a policy p € Iy for player U:
P#(ut =u l Yt = Y) = pu(Y), t:= L:(Y)’ u € L(, Ye y*1 (4)

where each 1, (Y") denotes the scalar in the distribution 1(Y’) over U that corresponds to the action u, thus
meaning that the conditional probability of the pursuers’ team taking the action u, = u € ¥ at time ¢ given
the observations Y; = Y € Y* collected up to ¢ is independent of the policy §. Moreover, u, is conditionally
independent of all other random variables at times smaller or equal to ¢, given Y. Similarly, a policy § € IIp

Jor player D must be understood as
Ps(d: = d| Z, = Z) = 6a(2), t:=L(Z), deD,Z € Z*, (5)

with d; conditionally independent of all other random variables at times smaller or equal to ¢, given Z;.

Equations (4)—(5) are to be understood as properties of the family of probability measures {P,s}.

Game-Over. The game is over when the evader is captured, i.e., when a pursuer occupies the same
cell as the evader. Therefore, the set of game-over states Sover is defined to be Syyer := {(xe,xp,x.,) €
S :ze =z, forsome i € {1,...,n,}}. One can formalize the concept of game over in the Markov game
framework by considering the game-over states as absorbing states where the system remains with probability
1, independently of the players’ actions. This means that the transition probability function in (2) has to
be modified as follows

0, Ty, # Zo OF (S € Sover and s’ # s)

(s, 8 u,d)=(1 $ =5 € Sover
(s 4, z,)p(s LN x;,), otherwise

We denote by Tover the first time when the state of the game enters Sver. If this never happens we set
Tover = 00. The random variable Tover € 7 U {00} is called the game-over time and it is defined by
Tover 1= inf{t* : s(t*) € Sover}. Once the game enters the game-over set, both players can detect this
through their measurements. In particular, we assume that there exist measurements Yover € V, Zover € 2
such that

1, s€ Spver

= Z y8) = '
Py (Yover, §) = Pz(Zover; 5) {0, otherwise

Problem Formulation. Here we consider a two-player game in which, at each time instant, the pursuers’
team and the evader choose their stochastic actions so as to respectively maximize and minimize the proba-
bility of finishing the game at the next time instant. This until the Markov game enters a game-over state.

Since each player computes the probability of finishing the game based on the information it collected up



to the current time instant, the resulting dynamic game evolves through a succession of nonzero-sum static
games.

Formally, the stochastic policies 4 € IIy and § € IIp are then designed as follows. Consider a generic
time instant ¢ € 7 when the game is not over, i.e., y(t) # Yover and z(t) # Zover. Suppose that the values
realized by Y; and Z; are respectively Y € Y* and Z € Z*. Then, player U selects a stochastic action
u(Y) € [0,1) so as to maximize

Pus(Tover =t +1|Y, =Y),
whereas player D selects a stochastic action §(Z) € [0,1]P so as to minimize

PuJ(Tover =t+ 1|Z¢ = Z)

The problem is well-posed since at time ¢ the cost functions to be optimized depend only on the current
actions. This result is proven in the following proposition (proved in the Appendix), where it is also shown

which is the relation between the two players’ cost functions in the case of nested information.

Proposition 1. Pick some t € T and assume that o(y(r)) C o(2(r)), 7 < t. Then, for any pair of
stochastic policies (1,6) € Iy x IIp and eny Y € Y*, Z € 2Z*,

Pus(Tover =t +1[Y. =Y) = > pu(¥)0a(Z) > pls,s',u,d) Py,_y6,.,(s(t) = 5,2, = Z|Y, = Y),

u,d,Z 8’ €Sovor,8
PuG(Tover =t+ llzt = Z) = Zﬂu(}_,)éd(z) Z P(Sa s’, u, d) Pm-:tsz_x(s(t) = slzt = Z),
u,d 8'€Sover,8

where Y denotes the unique element of Y* that is compatible with Z. Moreover,

Pus(Tover =t +1[Y: =Y) = Pys(Tover =t + 1|Z¢ = Z) Pp,_y5,_,(Z¢ = Z|Y: = Y). (6)
Z

3 One-step Nash equilibrium solution

Suppose that at time ¢t € 7 the game is not over and the observations collected up to time ¢ are Y; = Y and
Z, = Z. We denote by Z*[Y] the set of all Z € Z* compatible with Y; = Y and such that P,,_,s,_,(Z; =
Z|Y, =Y) > 0. Suppose that Z € Z*[Y] and define

Ju(p, Q) = Z y2n Qd(Z) Z p(s, st:uﬁ d) Pm-xﬁz-l(s(t) =852 = ZIYt = Y)’ (7)
u,d,ZeZ'(Y] S'ES(ivuna
and
JD(P, q, Z) = zpu qd(Z) Z p(s, sl’u:d) Pm—usz-l(s(t) = slzt = Z)v (8)
u,d s’esovervs

where p := {py : u € U} € [0,1]% and ¢ := {g(Z) : Z € Z*[Y]} with ¢(Z) := {gqa(Z) : d € D} € [0,1]P.
Here, p. denotes the scalar in the distribution p over I that corresponds to the action v and ¢a(Z) denotes

7



the scalar in the distribution ¢(Z) over D that corresponds to the action d. The sets of all possible p and ¢
as above are denoted by P and Q, respectively.

Because of Proposition 1, Jy(p,q) and Jp(p,q, Z) represent the cost functions optimized at time ¢ by
player U and D, respectively, with p corresponding to u(Y) and ¢(Z) to §(Z). According to definitions (7

and (8), equation (6) can then be rewritten as follows:

Ju(p, Q) = Em-usz-l[JD(p!Qr Zt)lyt = Y]? (9)

which means that the pursuers’ team is trying to maximize the estimate of the evader’s cost computed based
on its observations.

In the context of games, it is not always clear what “optimize a cost” means, since each player’s incurred
cost depends on the other player’s choice. A well-known solution to a game is that of Nash equilibrium
introduced in [21]. A Nash equilibrium occurs when the players select stochastic actions for which any
unilateral deviation from the equilibrium causes a degradation of performance for the deviating player.
Therefore, there is a natural tendency for the game to be played at a Nash equilibrium. In the nonzero-sum
single-act game of interest, this translates into the players setting their stochastic actions u(Y), Y € J*, and
6(Z), Z € Z*[Y], equal to p* € P and ¢*(Z) € [0,1]P, respectively, satisfying

Ju(p*,q*) 2 Ju(p,q*), PEP,

and

Jp(p*,¢%,Z) < Jp(p*,4,2), q€Q, Ze 2'Y)

When the above inequalities hold we say that the pair (p*,¢*) € P x Q is a one-step Nash equilibrium for
the nonzero-sum game. It is worth noticing that, in general, for nonzero-sum games there are multiple Nash
equilibria corresponding to different values of the costs. Moreover, the policies may not be interchangeable,
in the sense that if the players choose actions corresponding to different Nash equilibria, a non-equilibrium
outcome may be realized. Therefore, there is no guarantee of a certain performance level. However, we
shall show that this is not the case for the nonzero-sum static game with costs (7) and (8). As a matter of
fact, the determination of a Nash equilibrium for the nonzero-sum static game with costs (7) and (8) can be
reduced to the determination of a Nash equilibrium for a fictitious zero-sum static game with cost (7). By
solving this zero-sum game, the pursuers’ team can choose a stochastic action which corresponds to a Nash
equilibrium with a known performance level, independently of the evader’s choice and of the value of Z,
(which is in fact not known to the pursuers). This is mainly due to the information nesting of the considered

two-player game.

Proposition 2. Suppose that o(y(r)) C o(2(r)), 7 <t,and that Y, =Y € Y*. Then, (p*,q*) is a one-step

Nash equilibrium for the nonzero-sum game if and only if

JU(P,(I*) < JU(p*rq.) < JU(p‘,Q), qe Qv pEeE P. (10)



We call a pair (p*,¢*) € P x Q satisfying (10) a one-step Nash equilibrium for the zero-sum game with cost

JU(p’Q)'

Proof of Proposition 2. Assume that (10) holds and suppose that there exist ¢ € Q and Z' € Z*[Y] with
such that

JD(P‘: q‘a Z,) > JD(P*, qla Z,)'

Define ¢ € Q as follows: §(Z') = ¢'(2') and §(Z) = q*(Z) for Z € 2*[Y]\ {2'}. Then, because of (7) and
(8),

JU(P*,Q_) = Z JD(p')q"Z)P“C-l‘st—l(Zt = ZIYt =Y)+JD(p"q,7Zl)Pm—n5¢-x(zl =Z’|Yt =Y)
2#2',ZezZ"[Y)
< z JD(p*7 q*tZ_’) Puz-15t-1(zt = Z|Yt = Y) + JD(p"q" ZI) Pm-16¢-1 (Zt = ZlIYt = Y)
242',2€2°[Y)
= Ju(p",q“),

thus leading to a contradiction. To prove the converse statement, observe that, because of equation (9) and

the monotonicity of the expected value operator,

Ju(p',q') = Em-:&—n[JD(p"q*: zt)lYt = Y] < Em-ust-l [Jp(p*, q, Zt)IYt = Y] = JU(p*:Q)) g€ Q,
whenever (p*,¢*) is a Nash equilibrium for the nonzero-sum game. [ ]

In Proposition 3, we show that all the one-step Nash pairs (p*,g*) € P x Q are interchangeable and
correspond to the same value for Jy(p*,¢*), which is called the value of the game. The proof is omitted

since it follows directly from (10).

Proposition 3. Assume that (p',q') and (p?,¢%) € P x Q are one-step Nash equilibria for the zero-sum
game with cost Jy(p,q). Then, Jy(p',q") = Ju(p? q*). Moreover, (p*,q?) and (p?,q') are also one-step

Nash equilibria with the same value.

Proposition 2 shows that by choosing a one-step Nash equilibrium policy for the zero-sum game with
cost Jy (p*, ¢*), the pursuers’ team “forces” the evader to select a stochastic action corresponding to a Nash
equilibrium for the original nonzero-sum game. This is because, once the pursuers’ team chooses a certain p*,
the stochastic action ¢*(Z) given by the one-step Nash stochastic policy ¢* minimizes the cost Jp (p*,q, 2).
Moreover, from Proposition 3 it follows that the pursuers’ team achieves a performance level for the original
nonzero-sum static game that is independent of the chosen Nash equilibrium for the zero-sum game. The
cost Jp(p,q, Z) for player D instead depends, in general, of the Nash equilibrium selected. Paradoxically,
the pursuers’ team—which is the one with less informations—can influence the best achievable value for
Jp(p*,q,Z). On the other hand, it does not know which is the actual value for Jp(p*,q, Z), since it does
not know the value realized by Z,.

The problem now is how to compute the one-step Nash equilibrium stochastic policies (»*,q*) € Px Q for
the zero-sum game with cost Jy (p,q). We shall prove that determining a Nash equilibrium for the one-step



game is equivalent to determining a saddle-point equilibrium for a two-player zero-sum matrix game. The
existence of a Nash equilibrium then follows from the Minimax Theorem [2]. Moreover, the computation of
the corresponding stochastic policies is reduced to a linear programming (LP) problem, for which powerful

resolution algorithms are available.

Pick some ¢t € 7 and let Y € )* be the value realized by the measurements Y, available to player U at
time ¢. We say that p € P is a one-step pure policy for player U if its entries are in the set {0,1}. Similarly,
we say that g € Q is a one-step pure policy for player D if all its distributions have entries in the set {0,1}.
The sets of all one-step pure policy for players U and D are denoted by Ppyre and Qpure, respectively.

Suppose now each player chooses randomly, according to some probability distribution, one of its pure
policies. Moreover, assume that the players choose their policies independently. Denoting by v := {¥(p) :
P € Ppure} and 0 := {0(q) : ¢ € Qpure} the distributions used by players U and D, respectively, to choose

among their pure policies, the expected cost is then equal to

Juro):= Y. p)e(a)lu(p,9)- (11)

PEPpure9€ Lpure
The distributions «y and o are called mized policies for players U and D, respectively. The sets of all mixed
policies for players U and D (i.e., the set of probability measures over Ppure and Qpyre) are denoted by T

and T, respectively. The cost Jy(y, o) can be also be expressed in matrix form as
Ju(v,0) =v'Aya,

where Ay is the |Ppure| X |Qpure| matrix, with one row corresponding to each pure policy for player U and

one column corresponding to each pure policy for player D, defined by

[AU](P.G)G'Ppuru X qure = JU (p’ q) . (12)

It is well know that at least one Nash equilibrium always exists in mixed policies (cf. [2, p. 85)). In particular,

there always exists a pair of mixed policies (v*,0*) € ' x T for which
v Ayo* < y*'Ayo* < v Ayo, (v,0)eT x =. (13)

Theorem 1. Let (v*,0*) € ' x T be a Nash equilibrium for the zero-sum matriz game with matriz Ay, te.,
a pair of mized policies for which (13) holds. Then (p*,q*) € P x Q, where p* := LU (v*), ¢* := LP(0*), is
a one-step Nash equilibrium for the zero-sum game with cost Jy(p,q), i.e., a pair of stochastic policies for
which (10) holds.

To prove Theorem 1, we need the following technical result that is proved in the Appendix.

Lemma 1. There ezist surjective functions LV : ' — P and LP : £ — Q such that, for every pair
(v,0) €T x I,

jU('YvU) = JU(p)Q)’ (14)

with p := LY (v) and q := LP(0).
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Proof of Theorem 1. To prove the first inequality in (10), assume by contradiction that there is a one-step
stochastic policy p € P for which

JU(psq') > JU(ptiq')' (15)

Since the map LY is surjective, there must exist some 7 € T such that p = LY (y). From (15) and Lemma 1,
one then concludes that

ju('y,o“) > Ju(y*,0%),

which violates (13). The second inequality in (10) can be proved similarly. ]

4 Example

In this section we consider a specific pursuit-evasion game that can be embedded in the probabilistic frame-
work introduced in Section 2, and to which the one-step Nash approach described in Section 3 can be applied.
In this game the pursuit takes place in a rectangular two-dimensional grid with n. square cells numbered
from 1 to n.. Moreover, the set of cells .A(x) reachable in one time step by a pursuer or the evader from

position £ € X contains all the cells y # z which share a side or a corner with = (see Figure 1). The

112134...

nc

Figure 1: The pursuit region with the shaded cells representing the reachability set A(z).

transition probability function is defined by equation (2) in Section 2, whereas the observation probability
functions are detailed next.

The pursuers’ team is capable of determining its current position and sensing the surroundings for ob-
stacles/evader, but the sensor readings may be inaccurate. In this example, we assume that the visibility
region of the pursuers’ team from position £ € X™ coincides with the reachability set A"»(z). Each obser-
vation y(t), t € T, therefore consists of a triple (p,(t), 0,(t), ey(t)) where py(t) € X"» denotes the measured
position of the pursuers, and oy(t), e,(t) C X denote the sets of cells adjacent to the pursuers’ team where
obstacles and evader are respectively detected at time ¢. For this game we then have J = X™r x 2% x 2%,
where 2% denotes the set of all subsets of X.

We assume that the random variables py(t), 0,(t), and ey(t) are conditionally independent, given s(t),

ie.,

Pr(y,5) =P(py(t) = py | s(t) = 5) P(oy(t) = 0y | s(t) = s) Pley(t) = ey | s(t) = s)

11



s = (Ze, Tp,To) € S, ¥y = (py,0y,€y) € V. Then, if the pursuers’ team is able to determine its current position
perfectly, i.e., py(t) = Xp(t), and the obstacles sensors are accurate, i.e., 0,(t) = {i € U"} A(xE(2)) : x5 (¢) =
1}, we have ‘

1, =z
P(py(t) = py | s(t) = (Te, Zp, To)) = { 0, ﬁgherw?se

and

Ploy(t) = |80 = (@eypae)) = { 3 2o U ViEnA) 20 =1}
As for the observations of the evader’s position, we assume that the information the pursuers report regarding
the presence of the evader in the cell they are occupying is accurate, whereas there is a nonzero probability
that a pursuer reports the presence of an evader in an adjacent cell when there is no evader in that cell and
vice-versa. Specifically, the sensor model is a function of two parameters: the probability of false positive
J» € [0,1], i.e., the probability of the pursuers’ team detecting an evader in a cell without pursuers and
obstacles adjacent to the current position of a pursuer, given that none is there, and the probability of false
negative f, € [0,1], i.e., the probability of the pursuers’ team not detecting an evader in a cell without
pursuers and obstacles adjacent to the current position of a pursuer, given that the evader is there. If the
sensors are not perfect, then at least one of these two parameters is nonzero. We then have that:
If a::, = z, for some i, i.e., the evader is in a cell occupied by some pursuer, then

Plesti) =y sty =)= { & o= (o)

If :z:;', # Ze,i =1,...,np, i.e., there are no pursuers in the same cell of the evader, then
_ _oo [ A=) (- f)ks, ey C0A(Zy, o)
Pley(t)=ey 5t =) = { & € Alap,z0)

where §.A(zp, T,) denotes the subset of the cells adjacent to the pursuers’ team A™ (Tp) not occupied by any
pursuer or obstacle, 6. A(z, 2o) = {y € U A(zl) : y # zh,i=1,...np,2Y = 0}. Here, k; is the number of
empty cells adjacent to the pursuers where the evader is detected, given that the evader is not there (false
positives), k1 = |ey \ {Ze}], k2 is the number of empty cells adjacent to the pursuers where the evader is not
detected, and in fact is not there (true negatives), k2 = |6.A(zp, z,) \ (ey U{ze})|, k3 is the number of cells
adjacent to the pursuers where the evader is not detected, given that the evader is there (false negatives),
ks = |(6A(Zp, To) \ ey)N{ze})|, k4 is the number of cells adjacent to the pursuers where the evader is detected,

given that the evader is there (true positive), k4 = |ey N {z.}|. Note that ky + ko + k3 + k4 = |6 A(zp, To)]-

As for the evader’s observations, it is capable of determining its current position and sensing the adjacent
cells for obstacles, and it can also access the information available to the pursuers’ team. This means that
each observation z(t), ¢ € 7, consists of a triple (e,(t),0,(t), ¥(t)), where e.(t) € X denotes the measured
position of the evader, 0,(t) C X denotes the set of cells adjacent to the evader where the obstacles are
detected at time ¢, and §(t) € J denotes the observation of the pursuers’ measurements ¥(t). We then have
Z=Xx2%¥x).

12



We assume that the random variables e, (t), 0, (t), ¥(t), are conditionally independent given the current
state s(t), i.e.,

Pz(2,5) =P(e(t) = e; | s(t) = 5) P(0:(t) = o, | s(t) = s) P(F(t) = § | s(t) = s),
8 = (Te, Tp, To) € S, (€2,0,,9) € Z. As for the pursuers, we suppose that the evader is able to determine its
current position perfectly and its obstacles sensors are accurate, thus leading to

l, e;=
P(e.(t) = e, | s(t) = (e, Zp, To)) = { 0, zther:;se !

and

1, o.={ieur A(z}): 2z} =1}
P = = = ! z i=1 P °
(Oz(t) Oz I S(t) (mc,:c,,, $o)) { 0, Otherwise M
According to a worst case perspective, we assume that the evader knows perfectly the pursuers’ observations,

ie., ¥(t) = y(t), from which we get
P(y(t) =91s(t) =s) =P(y(t) = §|s(t) = 5).

Note that both the players can detect when the game is over. This because the pursuers’ team reports to
see the evader in a single cell occupied by a pursuer if and only if the game is actually over, and the evader
perfectly knows the pursuers’ team observations. This statement obviously holds true path-wise over almost
all the realizations of the Markov game. According to the formalism in Section 2, and based on the introduced
assumptions on the devices used to sense the surroundings from obstacles/evader, this can be expressed as
follows: For every y and z belonging to the game-over observations sets Vover := {(Py,0y.€y) € YV : €y =
{p}} for some i} and Zover := {(€z,0:, (By, 6y, &y)) € Z : &, = {p}} for some i}, py(y,s) = pz(z,s) = 1, if

s € Sgver, 0, otherwise.

To simulate the game, at every time instant ¢ € 7, Y and Z being the values realized by Y; and Z;, we
have to

1. Build the matrix Ay in equation (12), i.e., compute Jy(p,q), for every pair of pure policies (p,q) €
Ppure X Qpure- For a given pair of pure policies (p, g) € Ppure X Qpure, Ju (P, q) is determined by equation
(21), where P,,,_,5,_,(s(t) = 5,Z; = Z|Y, = Y) is known as information state for player U and can

be recursively computed based on equations (17) and (18), and the observations and motion models.

2. Determine saddle-point mixed policies for the zero-sum matrix game with cost (11) by using the linear
programming method in [2, pag.31], and map them into the corresponding one-step Nash stochastic
actions p* and ¢*(Z) for the nonzero-sum game with costs (7) and (8) by using the functions LV and
LP in Lemma 1. The actions u € U/ and d € D to be applied at time t are then extracted at random
from U and D according to the distributions (YY) = p* and 6(2) = p*(Z), respectively.

It is important to note that, in order to compute the information state in step 1 of the dynamic game taking

place, player U should know which is the one-step stochastic policy selected by player D. There are in fact,

13



in general, multiple Nash equilibria for the static game solved at every time instant (just think about all the
equivalent éhoices for player D when it is far away from player U), which, though equivalent as for the one-
step game, give origin to different information state distributions. In the example considered in this section,
we assume that the evader chooses the solution that corresponds to maximizing the minimum deterministic
distance from all the pursuers. Actually, this may not be the “smartest” choice for the presumably smart
evader, since this makes its behavior in some sense predictable. Different alternatives might be considered.

In the case considered in this section, at each time instant ¢ the evader knows exactly its current position
and the cells occupied by player U, as well as the position of the obstacles present in the adjacent cells.
These information are in fact contained in z(t) = (e,(t), 02(t),y(t)) wherey(t) = (py(t),0,(t),ey(t)). On the

other hand, this is what is effectively needed to compute player D’s cost, in the sense that

Pu& (Tover =t+ 1|Z(t) = (ez, 0z, (ﬁy, 6y, éy))a Zyy = Z)
- P”J (Tover = t + llez(t) = ez, Oz(t) = OZ,,py(t) = ﬁy,‘by(t) = 6y)-

Player D does not need to keep track of all its past observations, since the outcome of the game depends only
on its current observations. This highly reduces the dimension of matrix Ay and hence the computational
load. Similar considerations apply to expression (21), which can be simplified, the information state becoming
Py 16021 (Xe(t) = ze,0;(t) = 0,]Y, = Y).

Figure 2 shows a simulation for this pursuit-evasion game with n, = 400 cells, n, = 3 fast pursuers in
pursuit of a slow evader (pp = 1 and p, = 50%), with f, = f,, = 1%. We assume that there are no obstacles
so that the information state reduced to P,,_,s,_, (Xe(t) = z[Y: = Y), which we can then encode by the
background color of each cell: a light color for low probability and a dark color for high probability. As the

game evolves in time, the color map changes.

5 Conclusion

In this paper, we consider a game where a team of agents is in pursuit of an evader that is actively avoiding
detection. The probabilistic framework of partial information Markov games is suggested to take into account
uncertainty in sensor measurements and inaccurate knowledge of the terrain where the pursuit takes place.
A receding horizon policy where both the pursuers’ team and the evader use stochastic greédy policies is
proposed. We prove the existence and characterize the Nash equilibria for the nonzero-sum games that arise.
An example of pursuit-evasion game implementing the proposed approach is included. In this example,
among all Nash equilibria, the evader chooses the one which maximizes its deterministic distance to the
pursuers’ team. We are currently considering different alternative for the evader’s behavior. Another issue
that requires further investigation is the performance of these policies in terms of the expected time to

capture, as a function of the evader’s speed.
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Figure 2: Pursuit using the one-step Nash approach. The pursuers are represented by light stars, and the
evader by a dark circle. The background color for each cell = encodes Ps(x(t) = z|Y; = Y), with a light
color for a low probability and a dark color for a high probability. Frames are taken every time step.

A Appendix

Proof of Proposition 1. Observe that

Pus(Tover =t + 1Y =Y) Z Pus(st41 = s’lYt =Y)

3" ESuver
> p(s,8,14,d)Pus(s(t) = s,u, = u,dy = d|Y, = Y)

S‘ESth'rl
s,u,d

Il

> (s, u, d)pu(Y)0a(Z) Pus(s(t) = s,Z = Z|Y, = Y).

S’E-qun_n
su,d,Z

We now prove by induction on ¢ that
Pus(s(t) =8,2:=2|Y: =Y) =Py,_,5..(8t) = 5,Z, = Z[Y; =Y), (16)

for any Y € Y*,Z € Z* such that P.s(Y¢ = Y,Z; = Z) > 0. We start with ¢t = 0. For s € S, and
y € V,z € Z with P(2(0) = z,y(0) = y) > 0, using Bayes’ rule, we obtain

Pus(yo =y |s0o=s5,20 = 2) Pus(zg = 2 | s5p = 5) P,s(so = s)
> ses Pus(Yo =y | so = 5) Pys(so = 5)

_ Pv(y,8)pz(2,5) P(so = s)

- Xipv(®,3)P(so=3)

Pus(so=s,20=2|yo=y) =
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Suppose that (16) is satisfied for ¢ = 7. Consider now Y’ € Y*, Z' € Z* for which £(Y") = £(Z') = 7+1 and
Pus(Yr41=Y",Zr41 = 2') > 0. Pick s’ € S. Partitioning Y’ = {Y,y}, 2’ = {Z, z} with L(Y) = £(Z) =T,

then we can write

Pus(sr41=5"2741 = 2'|Yr11 =Y') = Pps(2r41 = 2,541 = ', 2, = Z|Y, =Y, yr41 = 1)
= Zs.u,d Pus(Yr+1 =9,2r41=z,5-11 =5 ,uy =u,d, =d,s;, = 5,Z, = Z2lY, =Y)

= _ ~ : (17)
> Pus(yri1 =¥,Zrs1 = 48,1 = 5,0, =4,d, =d,s, = 5,%, = Z|Y, = Y)

YﬁD

!El’

N o
N

where the summations are over the values of the variables for which the corresponding event has nonzero
conditional probability. Each nonzero term in the summation in the numerator and denominator in (17) can

be expanded as follows

Pus(Yre1=92r11=2,5-y1 =8\ uy =u,d, =d,s, =5,2, = Z|Y, =Y)

= pv (¥, 8")p2(2, 8)p(s 2 ") (Y)6u(2) Py _16,_,(8: =8,2, = Z|Y, =Y), (18)

where we used the induction assumption and equation (3)- This concludes the proof by induction of equation
(16). A similar procedure can be used to prove the equation for Pus(Tover = t+1|Z; = Z), the only difference
being that in this case P,s5(s(t) = s, Y; = Y|Z, = Z) satisfies:

Py, _15._.(s(t) = s|Z, = Z), ¥ compatible with Z
0, otherwise

Pus(s(t)=s,Y,=Y|Z,=2) = {
To prove equation (6), observe that Ps(Tover = ¢ + 1|Y; = Y) can be rewritten as

Pus(Tover =t +1|Y, =Y) = > Pus(Tover =t +1|Y, =Y, 2, = Z)P,4(Z, = Z|Y, = Y)
P,‘ﬁ(z;fgﬁ;lﬂpo
= ) Pus(Tover =t +1|Z = Z)Pyy,_5,_,(Zs = Z|Y, = V),
Zez-
where the last equality follows from P,s(Z; = Z|Y, = Y) = 2 s Pus(s(t) = 5,2y = Z|Y, = Y) and (16).

Proof of Lemma 1. The functions LY and L? can be defined as follows: for a givenyel, o€, LY(y):=p
and LP(0) := ¢, with
= Y. (@), uel, ()= Y  o@, ZeZ'[Y], deD,
ﬁe'Ppum! Pu=1 ge qure5 Gu(2)=1

where p,, denotes the scalar in the distribution p over U that corresponds to the action u and, similarly, g4(Z)
denotes the scalar in the distribution g(Z) over D that corresponds to the action d. It is straightforward
to verify that p and ¢(Z), Z € Z*[Y], are in fact probability distributions over the action sets &/ and D,

respectively.
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To prove that LV and L? are surjective it suffices to show that they have right-inverses. We show next that
the functions LY : P =T and LP : Q — %, defined by LY (p) := v and LP(q) := o, with

'Y(i’.) = Zﬁuptn pe Ppure; U(l?) = H Z q_d(Z)(Id(Z), ge qures
ueu ZeZ+[Y)dED
are right-inverses of LU and LP, respectively. To verify that this is true, let § := LP(LP(q)) for some g € Q.
From the definitions of L? and L?, we have that
~ —- — 4 E— ure = qd(Z) HZ Z e ZJ q&(Z)q -(Z)
AE DY II X a(2)a2)= === g‘z) : T ’éz'zsz ('g) =
G€Qpure: §a(Z)=1 Z€ 2+ (Y] deD 4€Qpuro 112e2+[v) 220 92(Z)a4(2)

_ YO 2u2)=1 W) zpz2¢2- Tata(D)aa(Z)  _  qu(2)
224 224€ Qpue: 45(2)=1 94(Z) [z4z2z2e2-v1 2a93(2)9a(2)  >4394(2)

d € D,Z € Z*[Y]. Here, we used the fact that

> II Y a2z = > II D d@)ea2), dep. (20

qEquro: ﬂJ(Z)=1 Z#Z,ZGZ‘[Y] d éegpurez éJ(Z):l Z#Z,ZGZ' [Y] d

= ga(2), (19)

This equality holds true because for each § € Qpure such that §s(Z) = 1 there is exactly one § € Qpure such
that §;(Z) = 1 and §(Z) = §(Z), Z # Z,Z € Z*[Y). This means that each term in the summation on the
right-hand-side of (20) equals exactly one term in the summation in the left-hand-side of the same equation
(and vice-versa). Equation (19) proves that L? is a right-inverse of LP. A proof that LY is a right-inverse

of LY can be constructed in a similar way.

We are now ready to prove that (14) holds. To accomplish this, consider

Jupa)= D, puaalZ) Y. p(s,5'u,d)Pp_ys,_,(S(t) = 5,2, = Z|Y, = Y)
u,d,ZEZ*[Y] 8'€Suver,$

given in equation (7). Substituting into this equation the expression

Puaa(Z) =LVMLP@)= > B Y, 0@, Ze z'l),
ﬁeppuru: Pu=1 iiEqum: fi:l(z)=1
we get:
Ju(p,q) = Z Z ¥(P)o(q) Z p(s,s',u, d) Pui16,-1(s(t) = 5,2, = ZlY, =Y)
u,d.zez'[}’] ﬁeppurui Pu=1, 3'€Sover, s

ge quru: 6,1(Z)=1

= Y @ 3 Y p(s,8\u,d)Py,_i5,_,(s(t) = 5,2 = Z|Y, = ).
ftG‘Ppum.ﬁG quru ZezZ" [Y], 8'€Suver,8
uEU: Py =1,
de€D: G4(2)=1
If we specialize this equation to pure policies § € Ppure; § € Qpure, We then have
EH = . > p(s,8',u,d)Py,_5_, (s(t) = 5,2, = Z|Y, = Y), (21)
ZGZ‘[Y], 8'€Saver,8
u€U: p,=1,
deD: Gu(2Z)=1
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and hence
= Y, 1)o@ Iu59),
PEPpure,§€ Lpure

which is equal to Jy(v,0) in equation (11). [ ]
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