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Abstract

This paper addresses the control of a team of autonomous agents pursuing a smart evader in a non-
accurately mapped terrain. By describing this problem as a partial information Markov game, we are
able to integrate map-learning and pursuit. We propose receding horizon control policies, in which the
pursuersand the evader try to respectively maximize and minimize the probability ofcapture at the next
time instant. Because this probability isconditioned to distinct observations for each team, the resulting
game is nonzero-sum. When the evader has access to the pursuers' information, we show that a Nash
solution to the one-step nonzero-sum game always exists. Moreover, we propose a method to compute
the Nash equilibrium policies bysolving an equiv£ilent zero-sum matrix game. A simulation example is
included to show the feasibility of the proposed appro£u:h.

tThis research was supported by Honeywell, Inc. on DARPA contract B09350186, and Office ofNaval Research.



1 Introduction

We deal with the problem of controlling a swarm of agents that attempt to catch a smart evader, i.e., an

evader that is actively avoiding detection. Thegame takesplace in a non-accurately mapped region, therefore

the pursuers and the evader also have to build a mapof the pursuit region. Problems like this arise, e.g., in
search and capture missions.

The classical approach to this typeofgames consists in a two-stage process: first, a mapofthe region is

built and then, the pursuit-evasion game takesplace on the region that is now well known. In fact, there is a

largebody of literature on any of thesetopics in isolation. On pursuit-evasion games the reader is referred to

the classical reference [1] or the more recent textbook [2]. For a formulation of this type of games that takes

visual occlusion into account, see [3, 4]. On map building, see, e.g., [5, 6] and references therein. Search and

rescue problems [7, 8] are also closely related to the pursuit-evasion games addressed here.

In practice, the two step solution mentioned above is, at least, cumbersome. The map building phase
turns out to be time consuming and computationally hard, even in the case of simple two dimensional

rectilinear environments [5]. Moreover, the solutions proposed in the literature to the pursuit-evasion phase
typicallyassume that the reconstructed map is accurate, ignoring the inaccuracies in the devices usedto build

such a map. This is hardly realistic, as argued in [6], where a maximum likelihood algorithm is introduced

to estimate the map of the pursuit region based on noisy measurements and am a priori probabilistic map
of the terrain.

In this paper, we describe the pursuit-evasion problem as a Markov game, which is the generalization
ofa Markov decision process to the case when thesystem evolution is governed by a transition probability
function depending ontwo or more players' actions [9, 10, 11]. This probabilistic setting allows us to model
theuncertainty affecting theplayers' motion. The lack ofinformation about thepursuit region and thesensors
inaccuracy canalso beembedded intheMarkov game framework byconsidering a partial information Markov
game. Here, the obstacles configuration is considered to be a component ofthe state, and the probability
distribution ofthe initial state encodes the a priori probabilistic map ofthe pursuit region. Moreover, each
player's observations oftheobstacles andtheother player's position aredescribed bymeans ofanobservation
probability function. In this way, different configurations of the obstacles correspond to different states of
thegame, and the uncertainty intheactual obstacles configuration is translated into incomplete observation
of thestate, thus allowing the map-learning problem to be integrated into the pursuit problem. In general,
partial information stochastic games are poorly understood and the literature is relatively sparse. Notable
exceptions are games with lack of information for one of the player (12, 13] and games with particular
structures such as the Duel game [14], the Rabbit and Hunter game [15], the Searchlight game [16, 17], etc.

An alternative method to model incomplete knowledge of the obstacles configuration (typical of the
reinforcement learning theory approach [18]) consists of describing the system as a full information Markov
game with the transition probability function depending on the obstacles configuration [19, 20]. Combining
exploration and pursuit in a single problem then translates into learning the transition probability function



while plajring the game. However, this approach requires that the pursuit-evasion policies be learned for
each new obsteicleconfiguration.

We propose here that both the pursuers' team and the evader use a "greedy" policy to achieve then-
goals. Specifically, at each time instant the pursuers try to maximize the probability ofcatching the evader
in the immediate future, whereas the evader tries to minimize this probability. At each step, the players
must therefore solve a static game that is nonzero-sum because the probability in question is conditioned
to the distinct observations that the corresponding team has available at that time. The Nash equiUbrium
solution [21] is adopted for the one-step nonzero-sum games. On the one hand, playing at a Nash equilibrium
ensures a minimum performance level to eachteam. Onthe otherhand, noplayer cangainfrom an unilateral

deviation with respect to theNash equilibrium policy. Existence ofa Nash equilibrium solution isproved and
thesimplifications which make thesolution computationally feasible using linear programming are explained.

This paper extends the probabilistic approach to pursuit-evasion games found in [22]. In this reference,
the pursuers' team adopts a greedy policy that consists of moving towards the locations that maximize the

probability offinding the evader at the next time instant. The evader, however, is not actively avoiding to
be captured and, in fact, a model of its motion is supposed to be known to the pursuers.

Thepaper isorganized asfollows. In Section 2, the pursuit-evasion game isdescribed using the formalism
of partial information Markov games, and the concept of stochastic policies is introduced. In Section 3

the one-step Nash solution to the pursuit-evasion game is motivated. Existence of a Nash equilibrium in

stochastic policies is proven by reducing the problem to that of determining a saddle-point solution to a

zero-sum matrix game. As a side result, linear programming is suggested for the computation of the Nash

equilibrium stochastic policies. Asimulation example isshown inSection 4and Section 5contains concluding
remarks and directions for future research.

Notation: We denote by (fl,T) therelevant measurable space with Qthesetofsample points, T a family of
subsets ofQ, forming a a-algebra. We assume that the cr-algebra T is rich enough so that allthe probability
measures considered are well defined. Consider a probability measure P : .F —♦ [0,1]. Given two events

A,B e T with P(jB) 0, we write P(i4|H) for the conditional probability of A given B, i.e., P(i4|B) =
P(A n B)/ P{B). In the sequel, whenever we compute the probability of someevent A € F"conditioned to

B e T, wealways makethe implicit assumption that the eventB has nonzero probability. Boldface symbols

are used to denote random -variables. Following the usual abuse of notation, givena multidimensional random

variable ^ •••»^n). where RU{oo}, i = 1,2,..., n, and some C = (Ci,C2,..., C7„), where

Ci C R U{00}, t = 1,2,... ,n, we write P(C e C) for P({a; e fi : 6 = 1,2,... ,n}). A similar
notation is used for conditional probabilities. Moreover, we write<t(^) for the cr-algebra generated by E[^]

for the expected value of ^ and E[^|A] for the expected value of ^ conditioned to an event A € T.



2 Markov Pursuit-Evasion Games

We consider a two-player game between a team of Tip pursuers, called player U, and a single evader, called

player D. We assume that the game is quantized both in spau:e and time, in that the pursuit region consists

of a finite collection of cells X := {1,2,... ,nc}, and all events take place on a set of equally spaced event

times T := {1,2,...}. Some cells may contain obstacles and neither the pursuers nor the evader can move

to these cells, but the configuration of the obstacles is not perfectly known by any of the players.

We denote by Xe(t) € X and Xp(t) = (x^(t),x^(t),...,Xp''(t)) € A""'* the positions at time t € T ofthe
evader and of the pursuers' team respectively. The obstacles configuration is described by a ric-dimensional

binary vector Xo(t) = (xj(f),xj(t),... ,x '̂=(t)) € {0,1}"% where x*(t) = 1 if cell i contains an obstacle

at time t and x*(t) = 0 otherwise. In the following we consider a fixed—although unknown—obstacle

configuration, i.e., Xo(t + 1) = Xo{t) for any t €T. Different configurations of the obstacles correspond to

different states of the game, and uncertainty in the actual obstaclesconfiguration correspondsto incomplete

knowledge of the initial state. Modeling the obstacles configuration as a component of the state allows

map-building to be directly taken into account in the pursuit problem. The state of the system describing

the game at time t eT is then given by the random variable s(t) := (xe(<),Xp(t),Xo(t)), which takes value

in the set S := X x X"^^ x {0,1}"'=.

Transition probabilities. The evolution of the game is governed by the probability of transition firom

a given state s € 5 at time t to another state s' € «S at time t -I- 1. The initial state s(0) is assumed to

be independent of all the other random variables involved in the game at time t = 0, and the probability

distribution of s(0) represents the common a priori knowledge of the players on their positions and on the

obstacle configuration before starting the game.

At every instant of time, each player is allowed to choose a control action. We denote by U and V the

sets of actions available to the team ofpursuers and the evader, respectively. According to the Markov game

formalism, the probability of transitionis onlya function of the actions u^U and d^V taken by players U

and D, respectively, at time t. By this we mean that s{t-H1) is a random variable conditionally independent

of all other random variables at times smaller or equal to t, given s(t), u(<), and d{t). Here we assume a

stationary trsmsition probability, i.e.,

P(s(t + 1) = s' |s(t) = s,u(t) = u,d(t) =d) =p(s,s',u,d), s,s' € S,u el(,d e V,t eT, (1)

where p:iSx.Sxl/xI)—>[0, l]is the transition probability function.

Moreover, we assume that giventhe current state s(t) of the game, the positions at the next time instant

of the pursuers and the evader are independently determined by u(t) and d(t) respectively. This can be

formalized by theconditional independence ofXe(t+1), given s{t) and d(t), with respect to Xp(t-l-l), Xo(<+l),
and all the other random variables at times smaller or equal to t. Similarly for Xp(t -f 1). Therefore, the
transition probability fi-om state s = {xe,Xp,Xo) e S to s' = {x'̂ ,x'p,x'̂ ) e S, when actions ueU SinddeV



are applied, is given by

where, for clarity of notation, we wrote p{s x'̂ ) for P(xe(t +1) = | s(t) = s, d(<) = d) and p{s ^ x'p)
for P (xp(t + 1) = Xp Is(t) = s, u(t) = n). Here, we also used the fact that the obstacles configuration is
fixed.

Ateach instant oftime teT, the control action u(f) € 1/ := consists ofthe desired positions for the
pursuers at the next instant of time. Similarly, the control action d(t) eV := X contains the next desired

position for the evader. We assume here that the one-step motion both for the pursuers and the evader

may be constrained and denote by A(x) C A* \ {x} the set ofcells reachable in one time step byan agent
located at x £ X. We say that the cells in A{x) are adjacent to x. Since the pursuit-region X is, in general,
the quantization of a metric space, the reachability set A{x) C X can be viewed as the quantization of the

neighborhood of x that is reachable from x given the actuators limitations. In the case of unconstrained

motion, A{x) := X \ {x}, for all x e X. For the pursuer team, we vectorize the notion of reachability by
defining A""(x) := A(x^) x Aix^)... x C X '̂p asthesetofordered rip-tuple ofcells reachable inone
time step by the pursuers' team located at x := (x^,... ,x"f') € X^p.

Here we assume that the pursuers and the evader effectively reach the chosen adjacent cells with prob
abilities pp and pe, respectively, which can be smaller than one. When Pp = 1 and pe < 1 we say that fast
pursuers are trying to catch a slow evader. This because pp and pe can be interpreted as average speeds.

This translates into the following expression for the transition probabifity function of the pursuers' team:

p((Xe,Xp,Xo) ^x'p)= i

Pp Xp = u € A^p{xp) and x"' = 0 for all i
1 - Pp Xp = Xp, ti € .4""(xp), and x^* = 0 for all i
1 Xp = Xp and (u ^ (xp) or x"' = 1 for somei)
0 otherwise

where (xe,Xp,Xo) G S and xj, € X"'p. A similar expression can be written for the evader's transition

probability function.

Observations. In order to choose their actions, a set of measurements is available to each player at

every time instant. We denote by y and Z the measurement space for the pursuers' team and the evader,

respectively. We assume that the sets 3^ and Z are finite. At each time instant t & the observations

of the players are the realizations of random variables y(f) and z(t), respectively. y{t) is assumed to be

conditionally independent, given s(t), of u(t), d{t), and all the other random variables at times smaller than

t. Similarly for z(t). Moreover, the conditional distributions of y{t) and z{t) are assumed to be stationary,

i.e.,

P(y(^) = y Is(t) = s)= py(y,s), P(z(t) = 2 Is(t) = s) = pz{z,s), seS,yey,zeZ,teT,



where py : 3^ x «S —♦ [0,1] amd : -2^ x 5 —> [0,1] are the observation probability functions for players U and

D, respectively. We defer a moredetaildescription of the nature of the sensing devices to later.

Todecide which actionto choose at timet € T, the information available to player U and D isrepresented

by the sequence of measurements Yt := {yo,yi,•••,yt-i,yt} and Zt := {zo,Zi,..., Zf-i,Zt}, respectively.
These sequences are said to be of length t since they contain all the measurements available to select the

control action at time t. The set of all possible outcomes for Yt and Zt, t € T, are denoted by y* and Z*,

respectively. Given a sequence Q in any of these sets, we denote its length by C{Q). For convenience of

notation we define Yt, Zt to be the empty sequence 0, for any t < 0.

Under a worst-case scenario for the pursuers, we assume that, at every time instant t, player D has

access to all the information available to playerU, i.e., a{Yt) C a{Zt), teT. In particular, we assumethat

<'"(y(<)) Q o{z{t)), t €T, and that y{t) is conditionally independent ofall the other random variables at
times smaller or equal to t given s{t) and z(t), with conditional distribution satisfying

P(yW =y|2W =̂ .s(«) =s) =^' . (3)
10, otherwise

s&Sfyey,z€Z,teT, where yz^y satisfies y(t,a;) = for every u e Q, such that z(t,a;) = z. Games
where this occurs are said to have a nested information structure [2]. We say that a pair of measurements

Y £ y* and Z ^ Z* for players U and jD, respectively, are compatible if they could be simultaneously

realized by the random variables Yt and Zt for some teT, i.e., if there is some u eQ and t € T for which

Yt{cu) = Y and Zt{uj) = Z. Nested information implies that each measurement for player U is compatible
with a unique measurement for player D. This is because we must have Yf(a;) = Yz for every u e Q such

that Zt{uj) = Z. However, the converse may not be true. In fact, there may be several values for Zt with

nonzero probability, for a given value of Yf.

Stochastic Policies. Informally, a "policy" for one of the players is the rule the player uses to select

which action to take, based on its past observations. We consider here policies that are stochastic in that,

at every time step, each player selects an action according to some probability distribution. In general, this

distribution is a function of past observations. Specifically, the stochastic policy fi of the pursuers' team is a

function fi-.y* [0,1]", where [0,1]" denotes the set (simplex) ofdistributions over U. We denote by Hu
the set ofall such policies. Given a sequence ofobservations Yt = Y ey* collected up to t, we call pl{Y) a
stochastic action. Similarly, a stochastic policy 5 of the evader is a function S: Z* —* [0,1]^, where [0,1]^
denotes the set (simplex) of distributions over V, and wedenote by Hp the set of all such policies. Given a

sequence of observations Zt = Z e Z* collected up to t, we call S{Z) a stochastic action.

In general, we have a different probability measure associated with each pair of policies p, and 5. In the

following we use the subscript ^5 in the probability measure P as a notation for the probability measure
associated with p € Hi; and 5 GH^. When an assertion holds true with respect to independently of

M , orofJ € Hf), or ofbothp 6 Hi; and <5 GHo, we use the notation P^, P^, or P, respectively. When
P^5 depends on the policy p GTiu only through its values for sequences Y with length C{Y) < t, we use



the notations P/xtft is defined analogously. Similar subscript notation is used for the expectation E.
According to this notation, the transition and observation probabilities introduced earfier are independent
of /i € lit; and 5 e Ho-

We can now give the precise semantics for a policy fi e Uu for player U:

p^(ut = u|Yt = y) = /iu(r), t--=ciY), ueu,Yey*, (4)

where each tiu{Y) denotes the scalar in the distribution n{Y) over U that corresponds to the action w, thus
meaning that the conditional probability ofthe pursuers' team taking the action Ut = ueU at time t given
the observations Yf = y ey* collected up to t is independent ofthe policy S. Moreover, Ut is conditionally
independent ofallotherrandom variables at times smaller or equal to t, given Yt. Similarly, a policy Se Hi)
for player D must be understood as

Fs{dt = ci\Zt = Z) = 6d{Z), t := C{Z), deV,ZeZ\ (5)

with dt conditionally independent of all other random variables at times smaller or equal to t, given Zt.

Equations (4)-(5) areto be understood as properties ofthe family ofprobabifity measures {P^s}-

Game-Over. The game is over when the evader is captured, i.e., when a pursuer occupies the same

cell as the evader. Therefore, the set ofgame-over states Sover is defined to be 5over := {{xe,Xp,Xo) 6
S : Xe = Xp for some ie {l,...,np}}. One can formalize the concept of game over in the Markov game
framework byconsidering the game-over statesasabsorbing stateswhere the system remains withprobability
1, independently of the players' actions. This means that the transition probability function in (2) has to
be modified as follows

0, x'o 7^ Xo or (s € «Sover and s' s)
p(s, s', U, d) =^1 S=S' £Sover

p{s ^ Xg)p(s Xp), otherwise

We denote by Tover the first time when the state of the game enters 5over- If this never happens we set

Tover = 00. The random variable Tover e T U{oo} is called the game-over time and it is defined by

Tover '•= inf{t* : s(t*) € «Sover}. Once the game enters the game-over set, both players can detect this
through their measurements. In particular, we assume that there exist measurements j/over € 3^, Zover € Z

such that

Py iVover, s) =PziZover, «) = ^ ^ '
10, otherwise

Problem Formulation. Herewe consider a two-player game in which, at eachtime instant, the pursuers'

teaun and the evader choose their stochastic actions so as to respectively maximize and minimize the proba

bility of finishing the game at the next time instant. This until the Markov gameenters a game-over state.

Since each player computes the probability of finishing the game based on the information it collected up



to the current time instant, the resulting d3niamic game evolves through a succession of nonzero-sum static

games.

Formally, the stochastic poHcies n € lit; and 5 € Ilf) are then designed as follows. Consider a generic
time instant t eT when the game is not over, i.e., y{t) ^ j/over and z{t) Zover- Suppose that the values

realized by Yt and Zt are respectively Y € y* and Z € Z*. Then, player U selects a stochastic action

yLt(y) G[0,1]" so as to maximize

PM5(Tover = t + 1|Y^ = Y),

whereas player D selects a stochastic action 5{Z) G[0,1]® so as to minimize

P/i5(Tover = t l|Zi = Z).

The problem is well-posed since at timet the cost functions to be optimized depend only on the current

actions. This result is proven in the following proposition (proved in the Appendix), where it is also shown

which is the relation between the two players' cost functions in the case of nested information.

Proposition 1. Pick some t ^ T and assume that (7"(y(r)) C a(z{T)), t < t. Then, for any pair of
stochastic policies GXly x JId and any Y ey*, Z £ Z*,

P,.j(Tover =«+l|Y, = y)= iM.(Y)5i(Z) Y, P(«.s'.«.<i)P^...j,.,(s(t) = 5,Zi = Z|Y, = y),

P/iiCTover =<+ l|Zt = Z) = ^ lJ'u{Y)5d{Z) ^ p{s, s', u, d) (s(t) =s\Zt = Z),

where Y denotes the unique element ofy* that is compatible with Z. Moreover,

P,.«(T„ver =t+1|Y, =Y) =^ PM(Tovar =«+1|Z, =Z) P„,.,i,., (Zt =Z|Y, =Y). (6)
2

3 One-step Nash equilibrium solution

Suppose that at time t GT the game is not over and the observationscollected up to time t are Yt = Y and

Zt = Z. We denote by Z*[Y] the set of all Z G Z* compatible with Yi = Y and such that =

Z|Yt = y) > 0. Suppose that Z GZ*[Y] and define

Ju{p,q)-= Y P''<ld(Z) Y P(s.«'.«.'i)P/..-.«.-.(sW = «.Zi = Z|Y, = Y), (7)

and

JD{p,q,Z) :=Y^Puqd{Z) ^ p(s,s',u,d)P^,_j5,_,(s(t) = s|Zt = Z), (8)

where p := {pu : u £ U} £ [0,1]" and q := {q{Z) : Z £ Z*[Y]} with q{Z) := {qd{Z) : d £ V} £ [0,1]^.
Here, pu denotes the scalar in the distribution p over U that corresponds to the action u and qdiZ) denotes



the scalar in the distribution q{Z) over V that corresponds to the action d. Thesets of all possible p and q
as above are denoted by V and Q, respectively.

Because of Proposition 1, Ju{p,q) and JoiPiq^Z) represent the cost functions optimized at time t by
player U and D, respectively, with p corresponding to ii{Y) and q{Z) to 5{Z). According to definitions (7)
and (8), equation (6) can then be rewritten as follows:

Ju(p,q) = E;xt_i5t_i[«/D(p,q,Zt)|Yt =y], (9)

which means that the pursuers' teamis tryingto maximize the estimate ofthe evader's costcomputed based

on its observations.

In the context ofgames, it is not always clear what "optimize a cost" means, since eachplayer's incurred

cost depends on the other player's choice. A well-known solution to a game is that of Nash equilibrium

introduced in [21]. A Nash equilibrium occurs when the players select stochastic actions for which any

unilateral deviation from the equilibrium causes a degradation of performance for the deviating player.

Therefore, there is a natural tendency for the gameto be played at a Nashequilibrium. In the nonzero-sum

single-act game ofinterest, this translates into the players setting theirstochastic actions n{Y), Y ey, and
5{Z)y Z € Z^lY], equal to p* gV and q*{Z) € [0,1]®, respectively, satisfying

Ju{p*,q*) > Ju(p,q*),

and

JD{p\q\Z) < JD{p*,q,Z), qeQ, Zg Z*[Y].

When the above inequalities hold we say that the pair {p*,q*) GV x Q is a one-step Nash equilibrium for
the nonzero-sum game. It is worth noticing that, ingeneral, for nonzero-sum games there are multiple Nash
equilibria corresponding to different values ofthe costs. Moreover, the policies may not be interchangeable,
in the sense that if the players choose actions corresponding to different Nash equilibria, a non-equilibrium
outcome may be realized. Therefore, there is no guarantee of a certain performance level. However, we
shall show that this is not the case for the nonzero-sum static game with costs (7) and (8). As a matter of
fact, thedetermination ofa Nash equilibrium for the nonzero-sum static game with costs (7) and (8) can be
reduced to the determination ofa Nash equilibrium for a fictitious zero-sum static game with cost (7). By
solving this zero-sum game, the pursuers' team can choose a stochastic action which corresponds to a Nash
equilibrium with a known performance level, independently of the evader's choice and of the value of Zt
(which is infact notknown to the pursuers). This ismainly due to theinformation nesting oftheconsidered
two-player game.

Proposition2. Suppose that <7(y(r)) Ccr(z(r)), T<t, and that Yt = YGy*. Then, {p*,q*) is a one-step
Nash equilibrium for the nonzero-sum game if and only if

Ju{jP^q*)<Ju{p*,q*)<Ju{jP*,q), qGQ,pGV. (10)



We call a pair (p*iq*) € T' x Qsatisfying (10) a one-step Nosh equilibrium for the zero-sum game with cost
Ju(p,q).

Proof of Proposition 2. Assume that (10) holds and suppose that there exist q' e Qand Z' e Z*[Y] with
such that

JDip\q\Z')>JD(p\q',Z').

Define q€ Qas follows: q{Z') = q'{Z') and q{Z) = q*(Z) for Z € Z*[r] \ {Z'}. Then, because of (7) and
(8).

Ju(p*,q) = ^ '̂ D(p*,q*,Z)Pf,,_,s,.AZt = |̂Yt =Y) +JD(p*,q',Z')P^,_,s,_,(Zt =Z'\Yt =Y)
Zi^Z',Z€Z'\Y\

< Yl, JD{p%q\Z)P^,_^s,.A'̂ t =Z\Yt = Y) +JD{p*,q%Z')P^,_^St-^(Zt = Z'\Yt =Y)
Z:)tZ',Z€Z'[Y]

= Ju{p*,q*),

thus leading to a contradiction. To prove the converse statement, observe that, because ofequation (9) and
the monotonicity of the expected value operator,

= E^^-i5,_AJD(p*,q\Zt)\Yt = Y]< E^,_,s,.AJd{p*,q,Zt)\Yt = Y] = Ju{j>\q), g 6 Q,

whenever (p*,?*) is a Nash equilibrium for the nonzero-sum game. B

In Proposition 3, we show that all the one-step Nash pairs {p*,q*) € P x Q are interchangeable and

correspond to the same value for Ji/(p*,g*), which is called the value of the game. The proof is omitted

since it follows directly from (10).

Proposition 3. Assume that (p^,g^) and (p^,?^) ^ P y. Q are one-step Nash equilibria for the zero-sum
game with cost Ju{p,q)- Then, Ju{p^,q^) = Juip^^q^)- Moreover, (p^,?^) and {p^,q^) are cUso one-step
Nash equilibria with the same value.

Proposition 2 shows that by choosing a one-step Nash equilibrium policy for the zero-sum game with
cost Ju(p*,q*), the pursuers' team "forces" the evader to select a stochastic action corresponding to a Nash
equilibrium for the original nonzero-sum game. This isbecause, once the pursuers' teamchooses a certain p*,
thestochastic action q*{Z) given by theone-step Nash stochastic policy q* minimizes the cost Joip^.q, Z).
Moreover, from Proposition 3 it follows that the pursuers' team achieves a performance level for the original
nonzero-sum static game that is independent of the chosen Nash equilibrium for the zero-sum game. The

cost JD(p,q,Z) for player D instead depends, in general, of the Nash equilibrium selected. Paradoxically,
the pursuers' team—which is the one with less informations—can influence the best achievable value for

JD{p*,q,Z). On the other hand, it does not know which is the actual value for Joip*,q^Z), since it does
not know the value realized by Z^.

Theproblem now ishow to compute theone-step Nash equiUbrium stochastic pohcies (p*, g*) € P x Qfor
the zero-sum game with cost Ju{p,q)' We shall prove that determining a Nash equilibrium for the one-step



game is equivalent to determining a saddle-point equilibrium for a two-player zero-sum matrix game. The

existence of a Nash equilibrium then follows from the Minimax Theorem [2]. Moreover, the computation of

the corresponding stochastic poHcies is reduced to a linear programming (LP) problem, for which powerful

resolution algorithms are available.

Pick somet 6 T and let V € 3^* be the value realized by the measurements Yt available to player U at

time t. Wesay that peV is a. one-step pure policy for player U if its entries are in the set {0,1}. Similarly,

wesay that g € Q is a one-step pure policy for player D if all its distributions haveentries in the set {0,1}.

The sets of all one-step pure policy for players U and D are denoted by T'pure and Qpure» respectively.

Suppose now each player chooses randomly, according to some probabiUty distribution, one of its pure

policies. Moreover, assume that the players choose their policies independently. Denoting by 7 := {7(p) :

P € Ppure} and a := {o-(9) : q e Qpure} the distributions used by players U and D, respectively, to choose
among their pure policies, the expected cost is then equal to

Ju{'y,cr):= l(pW{Q)Ju{p,g)- (11)
pS^puro i9€ Qpuro

The distributions 7 and a are called mixed policies for players U and D, respectively. The sets of all mixed

policies for players U and D (i.e., the set of probability measures over Ppure and Qpure) are denoted by T
and S, respectively. The cost Ju{'y,a) can be also be expressed in matrix form as

where Au is the jT'purel x |QpureImatrix, with one row corresponding to each pure pohcy for player U and
one column corresponding to each pure policy for player D, defined by

[^y](p,9)€pp.,rexQpure •=Ju(p,q)- (12)

It iswell know that at least one Nash equilibrium always exists inmixed policies (cf. [2, p. 85]). Inparticular,
there always exists a pair of mixed policies (7*, a*) 6 F x E for which

I'Auc* < Y'Au(r* < Y'Auor, (7,(7) 6 F x E. (13)

Theorem 1. Let (7*, cr*) € F x E 6e a Nash equilibrium for the zero-sum matrix game with matrix Au, i.e.,
a pair of mixed policies for which (13) holds. Then ip*,q*) eV x Q, where p* := L^(7*), q* := is

a one-step Nash equilibrium for the zero-sum game with cost Ju{p,q), i-e., a pair of stochastic policies for

which (10) holds.

To prove Theorem 1, we need the following technical result that is proved in the Appendix.

Lemma 1. There exist surjective functions : T V and Q such that, for every pair
(7,t7) G F X E,

= Ju{p,q), (14)

with p := L^(7) and q := L^{a).
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Proof of Theorem 1. To prove the first inequality in (10), assume by contradiction that there is a one-step
stochastic policy p € 'P for which

Juip^q*) > Ju{p*,q'"y (15)

Since the map is surjective, there must exist some 7 € Tsuch thatp = ^^(7). FVom (15) and Lemma 1,
one then concludes that

Ji/(7,^r»)> Jt/(7%0.

which violates (13). The second inequality in (10) can be proved similarly. g

4 Example

In this section we consider a specific pursuit-evasion game that can be embedded in the probabilistic firame-

work introduced in Section 2, and to which the one-step Nash approach described in Section 3 can be applied.

In this game the pursuit takes place in a rectangular two-dimensional grid with ric square cells numbered

from 1 to ric. Moreover, the set of cells A{x) reachable in one time step by a pursuer or the evader from

position X ^ X contains all the cells y ^ x which share a side or a corner with x (see Figure 1). The

1 2 3 ...

X

He

Figure 1: The pursuit region with the shaded cells representing the reachability set A{x).

transition probability function is defined by equation (2) in Section 2, whereas the observation probability

functions are detailed next.

The pursuers' team is capable of determining its current position and sensing the surroundings for ob

stacles/evader, but the sensor readings may be inaccurate. In this example, we assume that the visibility

region of the pursuers' team from position x € Af"'' coincides with the reachability set A^^'{x). Each obser

vation y(t), t eTy therefore consists of a triple (Pj/(t),Oy(t),ey(t)) where Py(t) € X^f denotes the measured

position of the pursuers, and Oy(t),ey(t) C X denote the sets of cells adjacent to the pursuers' team where

obstacles and evader are respectively detected at time t. For this game we then have y = X^ '̂ x2^ x 2^,

where 2^ denotes the set of all subsets of X.

We assume that the random variables Py(t),Oy(t), and ey{t) are conditionally independent, given s{t),

i.e.,

Py{y, s) =P{Py{t) = Py IS(t) = s) P(Oy(t) = Oy \ s{t) = s) P(ey(t) = ey Is(t) = s)

11



s = (xe,Xp, Xo) € S, y = (py,Oy,ey) € y. Then, if the pursuers' team is able to determine its current position

perfectly, i.e., Py(i) = Xp(t), and the obstacles sensorsare accurate, i.e., Oy{t) = {i e : x* (t) =

1}, we have

P(Py(i) =Py Is(t) ={Xe,Xp,Xo)) =| qJ] = Xp

otherwise

and

PKW =o, Is(t) =(x.x,.x„)) ={J; -i=1}.
Asforthe observations ofthe evader's position, we assume that the information the pursuers report regarding

the presence of the evader in the cell they are occupjdng is accurate, whereas there is a nonzero probability

that a pursuer reports the presence of an evader in an adjacent cell when there is no evader in that cell and

vice-versa. Specifically, the sensor model is a function of two parameters; the probability of false positive

fp € [0,1], i.e., the probability of the pursuers' team detecting an evader in a cell without pursuers and
obstacles adjacent to the current position ofa pursuer, given that none is there, and the probability offalse
negative fn € [0,1], i.e., the probability of the pursuers' team not detecting an evader in a cell without
pursuers and obstacles adjacent to the current position of a pursuer, given that the evader is there. If the

sensors are not perfect, then at least one of these two parameters is nonzero. We then have that:

If Xp = Xe for some i, i.e., the evader is in a cell occupied bysome pursuer, then

P(e„W =a„|s(t) =.) ={j; =
If xj, 7"^ Xe, i = 1,..., Tip, i.e., there are no pursuers in the same cell of the evader, then

P(ey(t) =ey Is(t) =s) =/ ~fp) ~ e.y C^.4(xp,Xo)
[ 0, otherwise '

where 6A{xp,Xo) denotes the subset of the cells adjacent to the pursuers' team A^^^ixp) not occupied by any
pursuer or obstacle, 5A{xp,Xo) := {y € U^^iA{Xp) : y ^ Xp,i = 1,.. .np,x^ = 0}. Here, ki is thenumber of
empty cells adjacent to the pursuers where the evader is detected, given that the evader is not there (false
positives), Aji = [cy \ {xe}|, /i:2 is the number ofempty cells adjacent to the pursuers where the evader is not
detected, and in fact is not there (true negatives), k2 = \5A{xp,Xo) \ (cy U{xe})|, fea is the number ofcells
adjacent to the pursuers where the evader is not detected, given that the evader is there (false negatives),
kz = |(<5.4(xp, Xo)\ey)n{xe})|, k^ is the number of cells adjacent tothe pursuers where the evader is detected,
given that the evader is there (true positive), k^ = |ey n {xc}|. Note that ki + k2kzk^ = |<5>l(xp,Xo)|.

As for the evader's observations, it is capable ofdetermining itscurrent position and sensing the adjacent
cells for obstacles, and it can also access the information available to the pursuers' team. This means that
each observation z(t), t € T, consists of a triple (e2(t),02(t),y(t)), where e^{t) € X denotes the measured
position of the evader, Oz(t) c X denotes the set of cells adjacent to the evader where the obstacles are

detected at time t, and y(t) € y denotes theobservation ofthepursuers' measurements y{t). We then have
Z = X y.y.

12



We assume that the random variables ez(t),02(t),y(t), are conditionally independent given the current
state s(t), i.e.,

Pz{z, s) =P(e^(t) = e, Is(t) = s)P(o,(t) = | s{t) = s) P(y(t) = y\s{t) = s),

s = (xgfXpjXo) 6 «S, (cz, Oz,y) EZ. As for the pursuers, we suppose that the evader is able to determine its
current position perfectly and its obstacles sensors are accurate, thus leading to

P(ez(t) =Cz Is(t) ={xe,Xp,Xo)) =I 0
and

Cz — Xg

otherwise '

p(o.(t) =0.1 sm = ={J; =
According to a worst case perspective, we assume that theevader knows perfectly thepursuers' observations,
i.e., y{t) = y(t), from which we get

P(y(0 = y Is{t) = s) = P(y(f) = y Is{t) = s).

Note that both the players can detect whenthe gameis over. This because the pursuers' team reports to

see the evader in a single celloccupied by a pursuer if and only if the game is actually over, and the evader

perfectly knows the pursuers' team observations. This statement obviously holds true path-wise over almost

all the realizations of the Markov game. According to the formalism in Section 2, and based on the introduced

assumptions on the devices used to sense the surroundings from obstacles/evader, this can be expressed as

follows: For every y and z belonging to the game-over observations sets Drover := {(Py,Oy,ey) ^ y : Cy =

[p],} for some i} and Zover := {(cz.Oz, {Py,Oy,ey)) e Z : iy = {pj,} for some i}, py(y,s) = pz{z,s) = 1, if
s e «Sover> 0, otherwise.

To simulate the game, at every time instant t eT,Y and Z being the values realized by Yt and Zt, we

have to

1. Build the matrix Au in equation (12), i.e., compute Ju{PfQ)i for every pair of pure policies (p,q) €

^pure XQpure- For a givenpair of pure policies (p,q) € Vpure x Qpure, q) is determined byequation
(21), where P^t_i5t_i(s(f) = s,Zt = Z\Yt = Y) is known as information state for player U and can

be recursivelycomputed based on equations (17) and (18), and the observations and motion models.

2. Determine saddle-point mixed policies for the zero-sum matrix game with cost (11) by using the linear

programming method in [2, pag.31], and map them into the corresponding one-step Nash stochastic

actions p* and q*{Z) for the nonzero-sum gamewith costs (7) and (8) by using the functions and

in Lemma 1. The actions u &14 and d € D to be applied at time t are then extracted at random

from U and V according to the distributions p.{Y) = p* and 5{Z) = p*{Z), respectively.

It is important to note that, in order to compute the information state in step 1 ofthe dynamic game taking
place, player U should know which is the one-step stochastic policy selected by player D. There are in fact,
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in general, multiple Nash equilibria for the static game solved at every time instant (just think about all the

equivalent choices for player D when it is far away from player U), which, though equivalent as for the one-

step game, give origin to different information state distributions. In the example considered in this section,

we assume that the evader chooses the solution that corresponds to maximizing the minimiim deterministic

distance from all the pursuers. Actually, this may not be the "smartest" choice for the presumably smart

evader, since this makes its behavior in some sense predictable. Different alternatives might be considered.

In the caseconsidered in this section, at eachtime instant t the evader knows exactly its current position

and the cells occupied by player U, as well as the position of the obstacles present in the adjacent cells.

These information areinfact contained in z(<) = {ez{t),o^{t),y{t)) where ^(t) = (Py{t),Oy{t),\{t)). Onthe
other hand, this is what is effectively needed to compute player D's cost, in the sense that

P/i(5 (Tover = t + l|z(t) = (CzjOzi (Py» Oy, Cy)), Zf—i =

(Tover "̂I" l|®z(^) —62,02(t) —Oz,'Py(t) = Py^Oy^t) = dy).

Player D does not need tokeep track ofall itspast observations, since the outcome of thegame depends only
on its current observations. This highly reduces the dimension ofmatrbc Au and hence the computational
load. Similar considerations apply to expression (21), which can be simplified, the information state becoming

(*c(0 ~^c>Oz(0 —Oz\Vt —
Figure 2shows a simulation for this pursuit-evasion game with Tic ~ 400 cells, tip —3 fast pursuers in

pursuitof a slow evader [pp = 1 and pe = 50%), with /p = /n = 1%. We assume that there are no obstacles

so that the information state reduced to Pp,_,tf,_i(Xe(t) = Xe\Yt = Y), which we can then encode by the
background color of each cell: a light color for low probability and a dark color for high probability. As the
game evolves in time, the color map changes.

5 Conclusion

In this paper, we consider agame where a team of agents is in pursuit of an evader that is actively avoiding
detection. The probabilistic framework ofpartial information Markov games is suggested totake into account
uncertainty in sensor measurements and inaccurate knowledge of the terrain where the pursuit takes place.
Areceding horizon policy where both the pursuers' team and the evader use stochastic greedy policies is
proposed. We prove the existence and characterize the Nash equilibria for the nonzero-sum games that arise.
An example of pursuit-evasion game implementing the proposed approach is included. In this example,
among all Nash equilibria, the evader chooses the one which maximizes its deterministic distance to the

pursuers' team. We are currently considering different alternative for the evader's behavior. Another issue

that requires further investigation is the performance ofthese policies in terms of the expected time to
capture, as a function of the evader's speed.
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Figure 2: Pursuit using the one-step Nash approach. The pursuers are represented by light stars, and the
evader by a dark circle. The background color for each cell x encodes P^5(xe(f) = a:|Yf = Y), with a light
color for a low probability and a dark color for a high probability. Frames are taken every time step.

A Appendix

Proof of Proposition 1. Observe that

PM(Tover = t + l|Yt = y)= Y. P^5{^t+l=s'\Yt^Y)

= Y = 5, = u, dt = d|Y( = Y)
^ €*Sovcri

s^u^d

= Y Pt,s{s{t) = s,Zt = Z\Yt = Y).
s'€5oviir,
s,xi,d,Z

We now prove by induction on t that

P^^(s(f) = s,Z, = Z\Yt = Y) = P^,_,5,_,(s(t) = s,Z, = Z\Yt = Y),

for any Y e y'',Z € Z* such that P^s{Yt = Y,Zi = Z) > 0. We start with t = 0. For s € S, and

y €y,z e Z with P(z(0) = 2,y(0) —y) > 0, using Bayes' rule, we obtain

P,,(s„ =..zo =zIy„ =y) =PM(yo - y\so =s, zo =z) P,.(zo =- \J =s) P..(so ^s)
hses PAi5(yo = y ISo = s) P/x5(so = s)

_ PYiy,s)pz{z,s) P(so = s)
T.sPyiy^s)P{so = s)



Suppose that (16) issatisfied for t = T. Consider now Y' ey*, 2' e Z* for which C{Y') = C{Z') = r +1 and

P/i5(YT+i = Y\ Zr+i = Z') > 0. Pick s' GS. Partitioning Y' = {V, y}, Z' = {Z, z) with C{Y) = C{Z) = r,
then we can write

P^s{Sr+l = 5', Zr+l = Z'\Yr+l = Y') = = 2,8^+1 = s', = Z\Yr = l^Yr+l = v)
^^a,u,d ^T+i 2,Sr-f-i ~ 8, ut" —u, —d,s^. —s, z^- —z\Yf —y^)

= ^ . : 3 = (17)
/ , P/i5(yT+l —y> Z-r+l —2,87-^1 —S,Ut- —U, dT- = d,87- —S, Zt- = ^ |Yt- = Y)

s,u,d,
z,a',Z

where the summations are over the values ofthe variables for which the corresponding event has nonzero
conditional probabifity. Each nonzero term in the summation in the numerator and denominator in (17) can
be expanded as follows

P/i5(yT+i j/> ^T+i 2,87-^1 = s, U7- —Uf d7- = d, 87- = s,Z7. = z IY7- = y)

=Pr{y,s')p!,(z,s')p{s ^ s')Mu(l')<5<i(2)P„,..i,.,(s, =s,Zr =Z\Yr =Y), (18)

where we used the induction assumption and equation (3). This concludes the proof by induction of equation
(16). Asimilar procedure can be used to prove the equation for P^rf(Tover = M\Zt = Z), the only difference
being that in this case Pn6{s{t) = s,Yf = y|Zt = Z) satisfies:

P^5(s(t) =s,Yt =Y\Zt =Z) =f ^ compatible with Z
1 0> otherwise

To prove equation (6), observe that P/i6(Tover = t + l|Yf = Y) can be rewritten as

PAi5(Tover =t+l|Yf =Y) = ^ ^t^siToyer =t+l\Yt =Y,Zt =Z) = Z\Yt =Y)
Z€Z',

P^s(Zt=Z\Yt=Y)>0

~ X/ ^M^(Tover =t +l\Zt = Z) PfH-iSt-i (Zt = . |̂Yf = Y),
zez-

where the last equality follows from P^siZt = Z\Yt = Y) = = s,Zt = Z\Yt = Y) and (16).

Pfvof of LeTTiTUQ, 1, The functions and can be defined as follows: for agiven 'y GP, (t GE, LP('y) := p
and L^{a) := q, with

P^-= 7(p), ueU, qd{Z):= ^ a{q), ZeZ*[Y],deV,
?€T'p„r«: p« =l flGQpure: 9,l(Z)=l

where denotes the scalar in the distribution pover Uthat corresponds to the action uand, similarly, qaiZ)
denotes the scalar in the distribution q{Z) over Vthat corresponds to the action d. It is straightforward
to verify that p and q{Z), Z GZ*[Y], are in fact probability distributions over the action sets U and V,
respectively.
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To prove that and are surjective it suffices to show that they have right-inverses. We show next that
the functions Tand : Q E, defined by L^(p) :=7 and L^{q) := <7, with

7(p):= pePpure, <t(?):= ]][ Y.^i(Z)qi(Z), qe Q^„„,
Z€2*[V)d€D

are right-inverses of and respectively. To verify thatthis is true, let q:= L^(L^(g)) for some qe Q.
Prom the definitions of and L^, we have that

UZ)= E n
96Qpure: qdiZ)=l 2€Z'[Y] d€V ^q€Qpuro il.Z€Z*[Y] lud^dK^jQdi^}

^-'9€Qpuro! qd{Z)=l ^d^^) i- 1-Z^Z,ZSZ'IY] lld^d(Z)qi{Z) ^ q^[Z) _
Z^dI^q€Qp„re:9j(Z)=l9d('̂ )nz#Z,ZG2-(V)I3j9d('̂ )9d(-^) Y^d^d^^)

d e Z*\Y]. Here, we used the fact that

E n E n e«(^)9j(^)' (20)
q^QvuT^-qs{Z)=^\ Z^Z,Z€Z'\Y\ d q€Qp„ro: q.i(Z)=l ZjiZ,Z€Z'lY] d

This equality holds true because for each q e Qpure such that qd{Z) = 1there is exactly one q e Qpure such
that q^{Z) = 1 and q{Z) = q{Z), Z ^ Z,Z € Z*[Y]. This means that each term in the summation on the

right-hand-side of (20) equals exactly oneterm in the summation in the left-hand-side of the same equation

(and vice-versa). Equation (19) proves that is a right-inverse of L^. A proof that is a right-inverse
of can be constructed in a similar way.

We are now ready to prove that (14) holds. To accomplish this, consider

Ju{p,q) = PuQdiZ) Pis,s',u,d)F^^_^s^.^{s(t) = s,Zt = Z\Yt = Y)
€-2* (V] s'€<Sf»vcr

given in equation (7). Substituting into this equation the expression

p^qd{Z) =L"{y)L'̂ (,7)= ^ y(p) ^ a{q), Z€Z'IY\,
pSPpuro: P«=l ?€Qpure: qd(Z)=l

we get:

Ju{p, q)= YL yiPMQ) Y1 (s(t) =s, Zt = Z\Yt = Y)
U,d,Z^Z*[Y] pCPpuru: Pii= l, s'€5over.S

9€Qpure: qdiZ) = l

^ yiPMq) X! II P{s.s\u,d)P^,_,s,.Mt) =s,Zt = Z\Yt = Y).
PCPpiirei^CQpiiru Z^Z'[Y\, s'€<SovoriS

u€W: Pti = l,
deV: qd(Z)=l

If we specialize this equation to pure policies p € Ppure, q € Qpure, we then have

du{p,q) = X X! Pises',u,d)P^,_,s^.^{s{t) =s,Zt = Z\Yt = Y), (21)
Z&Z'[Y], s'€5„vcr.a

U^U: Pu= i,
de-D-. qd{Z)=l
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and hence

Ju{p^ q)= 'riPMQ)Ju(p, g),
p€Ppuroi9€Qpuro

which is equal to Ju{'y,a) in equation (11). _
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