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Abstract

Order and Containment in Concurrent System Design

by

John Sidney Davis II

Doctor ofPhilosophy inEngineering-Electrical Engineering and Computer Science

University of Californiaat Berkeley

Professor Edward A. Lee, Chair

This dissertation considers thedifficulty ofmodeling and designing complex, concurrent

systems. The termconcurrent is used here to mean a system consisting of a network of commu

nicating components. The term complex is used here to mean a system consisting ofcomponents

with different models ofcomputation such that the communication between different components

hasdifferent semantics according to therespective interacting models of computation.

Modeling and designing a concurrent system requires a clear understanding of the types

ofrelationships that exist between the components found within a concurrent system. Two partic

ularly important types of relationships found in concurrent systems are the order relation and the

containment xtXdiiQn. Theorder relation represents therelative timing ofcomponent actions within

a concurrent system. The containment relation facilitates human understanding of a system by ab

stracting a system's componentsinto layers of visibility.

Theconsequence of improper management oftheorder and containment relationships ina

complex, concurrent system is deadlock. Deadlock isanundesirable halting ofa system's execution

and is the mostchallengingtype of concurrent systemerror to debug. The contentsof this disserta

tion showthat no methodology is currently available that can concisely, accurately and graphically



model both the order and containment relations found in complex, concurrent systems. The result
of the absence of amethod suitable for modeling both order and containment is that the prevention
ofdeadlock is very difficult. This dissertation offers asolution to this problem with the introduction
of the diposet.

Professor Edward A. Lee
Dissertation Committee Chair
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Chapter 1

Managing Inconsistency And

Complexity In Concurrent Systems

Thefirst rule of using threads is this: avoidthem ifyoucan.
- The online Java™Tutorial'

Aconcurrent system isa set ofinteracting components. Aconcurrent, computational sys

tem consists ofcomponents thatcooperate incomputing data [Andrews, 1991; Milner, 1989; Hoare,

1985]. We find concurrent, computational systems all around us. Forexample, the operating systems

found on personal computers concurrently run browsers, word processors and database programs.

The embedded systems found inautomobiles concurrently respond tothedriver's foot and the road

being travelled upon to properly operate an anti-lock braking system. State-of-the art cell phones

transfer the user's voice into bits and bytes while simultaneously responding to call waiting requests

and input from the phone touchpad.

In some cases, concurrency isapparent, meaning that only one action happens atany given

time although a human would perceive different actions happening simultaneously. In other cases,

concurrency isactual, meaning that two ormore actions occur simultaneously. Inthis lattercategory,

concurrent computation is supported bymultiple processing units while in theformer case a single

processing unit altemates between the actions ofeach component. Hence, an enterprise compute

^The onlineJava™TutoriaI can be found athttp; / / java. sun. com/docs/books / tutorial / index. html.
This quote can be found on the "Creating a GUI with JFC/Swing" trail in the "Using Other Swing Features" lesson
entitled "How to Use Threads."



server with multipleCPUs might perform actual concurrency while adesktop computer with asingle
CPU performs apparent concurrency. Perhaps the Internet is the largest example of acomputational
systemthatperforms actual concurrency.

Concurrent, computational systems are very complex, and this has placed agreat burden
on those who design such systems. I believe that much ofthe complexity associated with concur

rent systems is based on the sequential style ofthinking engaged in by humans. Human sequential

thoughtpattems are poorly matched for describing, comprehending and buildingconcurrent systems,
especially given the magnitude of many ofthe concurrent computational systems being built.^

Perhaps the more practical difficulties with concurrent programming are related to the prob

lem ofguaranteeing that disparate components in aconcurrent system have knowledge that is consis

tent with the knowledge ofother components. Consider areal world "soccer mom" example: mom,

her teenagers, the pets and other related persons are all components in aconcurrent system. Incon

sistent knowledge in such a system can lead to unwanted behavior: the soccer mom dropping the
dog off atthe veterinarian on the wrong day because ofa missed answering machine message from

the vet. Inconsistent knowledge can also lead to unnecessary wait periods: the teenager waiting for

mom topick him up after soccer practice and not realizing that mom expects him tobike home.

Easing the burden ofthe designers by managing the complexity ofconcurrent system de

sign has been, in part, the goal ofthe electronicdesign automation (EDA) community. One high level

technique for managing design complexity is through component-baseddesign. Component-based

design leverages the natural partitioning ofa concurrent system into components. A component-

based design approach presumes a mechanism for information transfer between components and a

mechanism for computation of the transferred information. The mechanisms for informationcom

munication and computation vary across different types ofsystems that might be described by a

component-based design approach. Forexample, thecommunication style ofcomponents in a cel

lularphone may be quite different from the communication stylein a medical device control unit.

Informally, thecharacterization of information transfer and computation arejointly referred toasa

model ofcomputation (MoC).

amconfident thatthere aremany whodisagree with myassertion thathumans think sequentially. If anyone in so
ciety thinks concurrently, surely it is thesoccermom dealing with a long shopping list,rowdy teenagers, dinner time and
dirty pets; I contend that soccer moms areatbestengaged inapparent concurrent thinking. Nevertheless, I will not vig
orously argue this point andinstead will let thecopious literature on thedifiiculties of concurrent programming serve as
my evidence.



In a typical computational system, the MoC associated with components ofone part of

the system can be quite distinct from that ofcomponents in a different part ofthe system. For this

reason, a heterogenous set ofMoCs is often necessary for specifying a complete system. While a

model ofcomputation specifies how components ofa particular MoC interact, it says little about

how interaction occurs across the boundary oftwo MoC's. In this dissertation, Ipresent atechnique

for dealing with communication between components ofdifferent MoC's. My approach applies to a

specific class ofmodels ofcomputation that are well suited for systems in which components have

autonomous control. In the remainder ofthis chapter, I will consider component-based design and

in so doing I will establish the background for heterogeneous MoCs and several other problems for

whichmy dissertation workprovides a solution.

1.1 Component-Based Design

Component-based design is applied in many disparate fields including object oriented pro
gramming, software engineering, formal semantics, and system level EDA. The various communi

ties that use a component-based design approach tackle different problems with unique solutions.

Many ofthese solutions can be leveraged by multiple communities. Considering multiple commu

nities and their varied techniques can provide the breadth upon which new solutions will arise.

1.1.1 Object-Oriented Programming

Object-orientedprogramming places components atthe core by equating components with

software objects. An object is a set ofvariables with a set of methods that may operate on those

variables and/or parameter data. The application of object-oriented techniques to asoftware system

results in a system of interacting objects. Each object maintains state based on the values of the

variables it contains. The behavior of an object represents how its functions can be invoked and

whether such invocations impact the object's state. Note that variables may be objects themselves.

The decomposition ofa system into objects is fundamentally about managing complex
ity by dividing and conquering. Grady Booch, a pioneer in object-oriented design, cites two ba

sic approaches for dividing and conquering through decomposition: algorithmic decomposition and

object-orienteddecomposition. Algorithmicdecompositionbreaks asystem into modules where each



module is a step in a logically sequential process. In object-oriented decomposition, objects each
have independent behavior and state and hence need not operate in any logically sequential manner.

Booch argues that while object-oriented models may not be superior to algorithmic decomposition

models for all systems, they are superior more often then not [Booch, 1994].

Booch defines object-oriented techniques ashaving four major elements and three minor

elements. I will present five elements that are most relevant to this work.

1. Abstraction

An abstraction focuses on a set ofessential characteristics ofan object relative to a given

perspective. Abstraction results in a particular interface foran object where the interface is

amenable toa relevant perspective. The notion ofabstraction isused ineveryday life when

ever people agree to focus on certain similarities and ignorecertain differences for comparing a

setofentities. Hence, weapply abstraction when, forexample, wedefine thenotion ofhouse-

holdpets. There are clearly many differences between dogs and cats, but from the perspective

of domestication andanimal companionship, dogs andcatsboth canbe defined as household

pets.

Abstraction plays acentral role in the object-oriented design process. Abstraction impacts the

particular details that need to be implemented for a given system being designed. Consider

how abstraction might impact the design of a database for storing music. One perspective

might place emphasis onthe song artists. Another perspective might emphasize the genre of

thesongs in thedatabase. Still another perspective might focus onthetitleof the songs. Dif

ferent perspectives impact the database's interface design.

2. Encapsulation

While abstraction determines an interface, encapsulation determines the implementation of

an interface. Through encapsulation, an interface is separated from its implementation. One

technique for accomplishingencapsulation is information hiding. In essence, the details of

an interface's implementation are hidden from view. Semantically, encapsulation results in a

has-a relationship. A typical object has-a variable.

A real worldexampleof encapsulation is realized whenever there is a spokesperson for a cor

porationor politicalbody. Whenthe pressquestionsa largecorporationabout recentprofitsor



about its role in legal proceedings, the question is typically answered by a single spokesper

son. Even though thesinglespokespersongivesa statement,we knowthat this statementis the

resultof numerous meetings, phonecallsandboardroomdebates. Nevertheless, thesedetails

are hidden from theview of thepress to simplify theprocess.

3. Modularity

Modularity is where the notion of objects enter into object-oriented design. Modularity is

wherewe decompose a system. In so doing, we partition an abstraction into discrete units:

objects. An object serves as a boundary within which a single abstraction lives. Given the

use ofobjects, it isoften advantageous tomaximize reuse. The reuse ofan object ispossible

if it can beused by different applications. Efficient reuse can play a powerful role inobject-

oriented design because it allows thetime spent onimplementating anobject tobeamortized

over several applications.

Closely related tothe notion ofan object isthe notion ofaclass. An object isan implementa

tion while itsclass istheblueprint. Presumably, theclass for a human being is realized inthat

person's DNA. The class fora bicycle isrealized inthedesign specs stating thecharacteristics

ofitstires, gears, pedals and handlebars. For a single class, several objects can be realized and

each object has itsown identity. Two bikes might bedesigned from the same blueprints but

they are distinct bikes that can exist ondifferent comers of theglobe.

4. Hierarchy

Hierarchy prioritizes a set ofabstractions. Such a prioritization isnecessary because for most

systems, a large number of abstractions are possible and it is necessary to organize the ab

stractions. Let's retum to our household pets, the cat and dog. Aside from household pet, it is

possible to abstract cats anddogs according to theirmammalian characteristics, thenumber of

limbs theyhave, andthecolorof theirfur. Hierarchy orders thesedifferent abstractions. Each

abstraction may result in a different set ofclasses. The household pet classes are cats, dogs

and perhaps goldfish and turtles. The mammalian classes include cats, dogs, cows, whales

and human beings among other mammals.

Semantically, hierarchy results inan is-a relationship. An is-a relationship is typically real

ized through inheritance. Inheritance prioritizes abstractions by hierarchically layering them



on top ofone another. Basic or more fundamental abstractions exist towards the top ofthe hi

erarchy while more refined and detailed abstractions exist toward the bottom ofthe hierarchy.

Note that in general, there is not necessarily one top or one bottom ofthe hierarchy. Ifaclass

inherits characteristics from another class due to their relative positions in aclass hierarchy,

then we say that the former is asubclass and the latter is asuperclass. Apossible hierarchy

might be Tnammal —> household pet —> dog —> light brown dog. Thus, a household pet

is-amammal; likewise a dog is-ahousehold pet; and soforth.

Hierarchy can also be viewed as a has-a relationship. Ahas-a relationship focuses on con

tainment and inobject-oriented programming considers how objects contain one another. If

object Ahas object B as one ofits variables than Acontains B. The has-a hierarchy found in

government systems serves as a good example: nations have states have counties have cities

have neighborhoods. In this example hierarchy, nation is the superclass with its immediate

subclass being state.

5. Type

Type is closely related to the notion of class. Typing places constraints on how abstractions

can becombined and allows the designer toenforce design decisions. Unlike the four major

elements presented above, Booch describes type as aminorelement ofobject-oriented design.

He considers it important but non-essential. There are examples ofobject-oriented languages

that are not typed (e.g., Smalltalk).

There aretwo key concepts intyping. The first concept is related torigor: how rigorously is

typing enforced. Astrongly typed language detects atcompile time whether typing constraints

areviolated. A weakly typed oruntyped language loosens (to a small or large degree, respec

tively) this detection. The secondconcept determineshow the names of variablesare bound

to (orassociated with) types. Static binding means that variables arebound at compile time.

Dynamicbinding (or late binding)means that the typesof some variables are not knownun

til a program is actually run. The interaction of typing and inheritance is polymorphism. In

polymorphism, a singlevariablename mayrepresent objectsof manydifferent classesthat all

have a common superclass.

Object-oriented techniques are generally applied within the context of software. Nevertheless, the



term "object" was originally used within ahardware context and was first associated with descriptor-

based architectures and later capability-based architectures inthe early 1970's. These architectures

served to close the gap between high level languages and the low level hardware that was being con

trolled. Many fundamental ideas ofobject oriented programming first appeared in Simula 67 [see

Booch, 1994, pg. 37]. Smalltalk evolved the concepts in Simula by requiring all objects to instan

tiate a class. Dijkstra was the first researcher to formally speak ofcomposing systems as layers of

abstractions [Dijkstra, 1968a]. Pamas introduced the idea ofinformation hiding [Yourdon, 1979].

Hoare contributed with his theory oftypes [Nygaard and Dahl, 1981, pg. 460]. Object-oriented pro

gramming isexperiencing ahigh point ofsorts as we exit the 20'̂ century through the Java program

ming language which enforces object-oriented programming in amanner that has not widely been

seen prior.

1.1.2 Software Engineering

Software engineering is the organized production of software using acollection of prede
fined techniques and notational conventions [Rumbaugh et al., 1991]. Although software engineer
ing as acommunity is very diverse, agreat deal ofeffort has been expended on extending and refining

object-oriented techniques. In particular, there has been emphasis on specifying object models and

in formalizing their reuse.

The Unified Modeling Language (UML) isan attempt at facilitating the specification of

an object model [Booch, Rumbaugh, and Jacobson, 1999]. The UML is a graphical language for

specifying an object-oriented model. The building blocks ofUML are things, relationships between

things and diagrams. Things are the objects that make up amodel. Examples of relationships be
tween things are the is-a and has-a relationships between objects. Diagrams serve as graphical tools

for representing aset of things. Different diagrams are employed depending on the types of things
being represented. Example diagrams include class diagrams, object diagrams and statechart dia

grams.

Designpatterns are object-oriented solution templates; they are methodologies for reusing
tried and true design approaches. In asense, design patterns extend the fmits of UML by canonizing
them. Design patterns have evolved from years of object-oriented design. Itbecame apparent over

time that certain common designs were being applied over and over to different problems that shared



essential qualities. Design patterns encourage design reuse. Objects that are good implementations

ofa particular design can potentially bereused aswell. Adesign pattem has four essential elements

[Gamma et aL, 1995].

1. Pattem Name

Thepattem name allows us to refer to a particular design andserves as a member ofa vocab

ulary of pattems. Ideally, thename should besuccinct butmeaningful.

2. Problem

The problem provides context anddetermines when a pattem should be used.

3. Solution

The solution describes theelements of theparticular pattem, their relationships, and collabo

rations.

4. Consequences

When choosing any design pattem there are always trade-offs. The designer ismade explicitly

awareof the trade-offs by a listingof pattemconsequences.

Software engineering as a field subsumes the field of object-oriented techniques. Boehm wrote a

classic survey p^er that brings to light theproblematic trends of software design [Boehm, 1976].

TheUML evolved from Booch and Jacobson's Object-Oriented Software Engineering (OOSE) ap

proach and Rumbaugh's Object ModelingTechnique(OMT)in the mid-1990's. The notionof soft

ware design pattems wasborrowed from thefield ofarchitecture. ChristopherAlexander recognized

the existence of design pattems in building houses and towns [Alexander et aL, 1977]. The"gang

offour" (Gamma, Helm, Johnson and Vlissides) adapted pattems tosoftware bycodifying 23com

monly used pattems [Gamma et aL, 1995]. There have been several extensions of their initial set.

A pictureis worth a thousand words andone of thekey benefits of the UMLcommunity

as wellas thegangof fouris theiremphasis on graphical representations. Unfortunately, noneof the

23 pattemsofferedby thegang of four are explicitly intendedfor concurrent systems. Although it is

tme that each pattem offers stmcturethat can be usedto specifyrelationships betweencomponents

within a concurrent system they include no description of how execution should occur. Concurrent

systems are often dealt with independent of the stmcture of a system and often books on concurrent



systems emphasize logic [Andrews, 1991; Schneider, 1997]. Graphical representations ofconcur

rent systems can help to clarify meaning and serve to convey ideas between designers. There are

very few well accepted graphical techniques in the concurrent programming community and cer

tainly there are no canonical techniques. In Chapter 2,1 offer agraphical technique that is easy to

understand and suitable for richly representing concurrent programs.

1.1.3 Formal Semantics

Intheformal semantics (orformal methods) community, what would beconsidered acom

ponent is referred to as aprocess, agent or actor. The formal semantics community typically reverses

the efforts of the other communities spoken ofthus far. Rather than emphasizing the decomposition
ofa system, formal semanticists study the systems that result from compositions ofprocesses. For

this reason, a formal semantics system isoften referred to as aprocess algebra - the elements ofa

process algebra are processes and the algebra consists ofoperations for composing processes. The

desired goal ofaprocess algebra is to show that properties about acomposition are guaranteed given
that the processes being composed satisfy certain criteria. The attainment ofthis goal means that

process algebra can be used to mathematically verify characteristics about asystem being designed.
Unfortunately, the degree to which process algebra are successful at attaining this goal is limited.

Formal semantics comes in many different flavors with each flavor represented by apartic
ular modeling system. Examples includeTony Hoare's CommunicatingSequentialProcesses (CSP),

Robin Milner's Calculus ofCommunicating Systems (CCS) and Gul Agha's Ac/orModel. Acon

cept that isshared by most systems offormal methods isthe separation ofcommunication from con

current computation. Thisseparation is made clearby thewords of Robin Milner:

"Each action ofan agent is either an interaction with its neighbouring agents, and then
itis acommunication, or itoccurs independently ofthem and then itmay occur concur
rently with their actions [Milner, 1989]."

Communication is an action that is shared between a set ofprocesses. Computation is an internal
action that is independent ofother processes. The separation ofcommunication from computation is

avery powerful abstraction and can be thoughtofas extending an object by partitioning its functions

into an extemal/intemal dichotomy. Formal semantics give meaning to objects.
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At the highest level there are two mechanisms by which processes orcomponents commu

nicate. Shared variable communication involves aglobally accessible repository of data that pro
cesses write to and read from. Aprocess makes a portion ofits state available to other processes

through thisshared variable. Thecritical concern in this mechanism is in how to make sure that the

state ofthe shared variable is consistent with the intentions of the processes. Areal world example

ofthisis realized in ajointbank account shared bya husband and wife. If thehusband and wife si

multaneously attempt toretrieve money from the single account from separate branch locations, the

bank must make surethatit does notgiveoutmore money then isavailable. Thefundamental solu

tion to this problem is based onmutual exclusion. Only one patron can gain retrieval access from a

bank account at a time.

Message passing isthe second fundamental style ofcommunication. In message passing,

componentscommunicate throughchannels. A component musthavea channelfor each othercom

ponent it wants tocommunicate with. Communication through a channel falls into two categories:

asynchronous and synchronous. Synchronousmessagepassing requires both thesender and receiver

connected by achannel tobesynchronized when acommunication occurs. In synchronous message

passing, the notion of communication is atomic. Both the sender and receiver must be simultane

ouslyengaged during theduration ofthecommunication. An example ofthis styleofcommunication

occurs with the passing ofthebaton during a relay race. Asynchronous messagepassing does not re

quire sender andreceiver tobesimultaneously engaged. Aslong as room isavailable inthechannel,

a sender may place a message inthechannel and then continue with other activities independent of

whether thereceiver reads themessage. CCS and CSP are both examples ofsynchronous message

passing systems. Gilles Kahn's Process Networks model is an example of asynchronous message

passing.

Computation deals with twoquestions: when? and how? The when question addresses

how tightly coupled the concurrent activities of processes are with one another. At one extreme,

processesexecute their computationsin lock-step. This approach is referredto as the synchrony hy

pothesisand assumesthatprocessesalternatebetweenphasesof simultaneouslycomputingand then

simulateouslycommunicating withoneanother. Theoppositeextremeassumesthatthe timingof the

computationof oneprocessdoesnot necessarily overlap at all withthecomputation of othercompo

nents. Some systems fall in the middle between the synchronous and asynchronous extremes. The
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notions ofsynchrony and asynchrony mentioned inthis paragraph should not beconfused with those

associated with communication. Here we are simply considering whether processes jointly enter

their computation or communication phases. Asystem of processes could adhere to the synchrony
assumption yet communicate through asynchronous message passing.

Formal methods have roots in the study ofconcurrent systems and programming language

semantics. Dijkstra can becredited asone of the founding pioneers of both of these communities.

Dijkstra [1965] introduced the notion ofa critical section. Acritical section is a region of a pro

gram that accesses a shared variable and requires an entry/exit protocol. The entry/exit protocols

typically require some sort ofmutual exclusion. Dijkstra also introduced guarded commands and

non-deterministic control, both ofwhich are instmmental in many process algebras.

Kahn's Process Networks model was first introduced in 1974. Akey feature ofprocess net

works isthe guarantee ofdeterminacy given that certain reasonable constraints are obeyed. Hoare's

CSP and Milner's CSP independently offered very similar semantics to one another and were pre
sented in the late 70's. Ahost ofderivatives ofboth CSP and CCS sprouted in response. Recent activ

ity in formal verification has been valuable within the formal semantics community. As an example,
Alur and Henzinger [1996] proposed the Reactive Modules model as asystem using the synchrony

hypothesis but with the possibility ofmodeling a variety ofsystems with different communication

and computation schemes.

1.1.4 System Level EDA

The system level EDA community brings interoperability and heterogeniety to the table.

While process algebras generally incorporate asingle model ofcomputation (MoC), system level de

signers make no such assumptions. System level designers focus at the highest level and therefore

require meta-models for describing systems. From the point of view ofthe system level designer, a

complete system requires a variety ofcommunication and computation styles. For this reason, the

toolset ofthe system level designer typically consists ofa framework for incorporating heteroge

neous semantics, h framework isa language for describing languages. An example framework is

the Tagged Signal Model [Lee and Sangiovanni-Vincentelli, 1997]. The tagged signal model uses a

set theoretic approach for describing communication and computation ofcomponents.

The use ofmultiple MoCs increases the richness ofa system level design tool, but at the
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expenseof certaincosts: multiple MoCs require MoCinteraction and this interactionmustbe well

defined. The question ofheterogeneous semantics is one ofthe central concerns ofsystem level EDA

and I addressthis issue heavily in Chapter3.

System level design isarguably the least well understood design community ofthose dis

cussed. System level designers borrow techniques from each ofthe other communities and integrate

the fruits ofeach community's harvest. For this reason, the boundaries ofsystem level EDA are par

ticularly malleable. The indefiniteness ofsystem level design offers both agreat challenge as well

as a great opportunity.

1.2 Abstracting Component-BasedDesign

At this point we can digest a broad set of information associated with each of the previ

ous design communities. Indeed, it isworthwhile toapply some ofthe techniques we've learned to

manage the material just presented. One way to organize the information is to consider howreuse

ability evolves with theprogression of thefour communities presented.

• Object-Oriented Programming

Reuse ofobjects is enabled.

• Software Engineering

Reuse ofobject specifications is enabled.

• Formal Semantics

Reuseofcommunication and computationprimitives is enabled.

• System Level EDA

Reuse ofmodels ofcomputation is enabled.

An equally insightful way to organize the communities is to consider their results with respect to

syntax and semantics:

• Object-Oriented Programming

Syntax: Structure over space.
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• Software Engineering

Syntax: Structure over time.

• Formal Semantics

Semantics: The meaningofobjectto objectinteraction.

• System Level EDA

Semantics: Themeaning ofMoC to MoC interaction.

Component-based design as an umbrella term can leverage results from each ofthe design communi
ties above. Based on the layered abstractions according to reuse or syntax/semantics, the component-

based design community can select the appropriate level at which to focus. Iwill be doing precisely
this throughout my dissertation.

1.3 Dissertation Outline

This dissertation describes three research accomplishments. The first contribution is pre

sented in Chapter 2and addresses the difficulty ofmodelling concurrent systems. Modelling concur

rent, computational systems isdifficult and there are no graphical tools that sufficiently characterize

even the simplest concurrent systems. In Chapter 2,1introduce the diposet. Adiposet isa formal,

mathematical structure that is similar in nature to apartially ordered set. The rigorous characteri

zation ofa diposet facilitates mathematical proofs and allows the diposet to serve as a foundation

for precise description of semantics. In particular, a diposet is suitable for describing concurrent,

computational systems. Using a diposet torepresent concurrent systems isdistinct from traditional

concurrency methods that instead focus on logic. Diposets use an order-centric approach that offers

insight into the relative timing of events in aconcurrent system. Akey advantage of the diposet is
that it isamenable tosimple and intuitive graphical depiction.

An example ofa sequential, nested diposet can be found inFigure 1.1. Each node ina di

posetrepresents an eventin a concurrent, computational system. Thearrows withblack arrowheads

represent an order relationship between events. In Figure 1.1, the arrow between nodes dand / in

dicates that event d precedes event f. The arrows with white arrowheads represent acontainment

relationship between events. The arrow between nodes cand d in Figure 1.1 indicates that event d
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is contained in event c.

While thecontribution ofChapter 2 isoriented towards the formal semantics community,

Chapter 3presents a system level EDA contribution related tothe interaction ofheterogeneous mod

elsof computation. A difficulty in the execution of a network of components with heterogeneous

models of computation is how much the order of execution impacts the computed results. More

specifically, how much does the order of data consumption on input channels by message passing

components impact theexecution of a network of such components. It is known, forexample, that

Gilles Kahn's Process Networks (PN) model of computation is such that the order of execution of

components has no impact on the resulting stream of output data [Kahn, 1974]. It was not clear

whether the orderof dataconsumption on inputchannels would altertheexecution output in a net

work of PN components.

Unfortunately, unlike PN, most other modelsof computationoffer very little insight into

the relation between execution order and execution output. My contribution in Chapter 3 is the devel

opment of a way for characterizing this relation. I refer to the characterization as reorder invariance.

As discussed in Section 3.3.2, a modelof computation is reorder invariantifthe process of reordering

a component's communications with neighboringcomponentswill not impact the safety or liveness
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ofthe network ofcomponents. Chapter 3leverages the work ofChapter 2by using diposets.

Chapter 4 presents my third and final contribution by describing my implementation of

the work found in Chapter 3. The results ofthis chapter involve extensive use ofsoftware engineer

ing and object-oriented programming techniques. My implementation is part ofthe UC Berkeley

Ptolemy IIproject under the leadership ofProfessor Edward A. Lee. Ptolemy IIis amodelling and

design tool written in the Java™Programming Language. Chapter 5concludes the dissertation with

references following.
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Chapter 2

The Semantics of Concurrent Systems

Semantics isa strange kind ofapplied mathematics; itseeks profounddefinition rather
than difficult theorems.
- J.C. Reynolds, 1980'

Ensuring proper execution ofcomplex, concurrent, computational systems requires great

care. Such care can berealized through formal semantics. In this chapter, I present an approach

toformal semantics that focuses on the types ofrelationships that occur between components ina

complex, concurrent system. The relationships I am concemed with are the order relationship and

the containment relationship. The primary contribution of this chapter is thediposet. I created the

diposet tofacilitate modeling order and containment ina single mathematical entity. The diposet is

compact, precise and amenable to graphical representation.

Myemphasis on orderandcontainment is distinct from other expositions on concurrent

systems andprogramming language semantics thatinstead choosetofocus onlogic[Andrews, 1991;

Magee andKramer, 1999]. Forconvenience, I provide anoverview of traditional approaches tose

mantics in Appendix A.

2.1 The Semantics of Concurrent Programs

A concurrentprogramspecifies a set of two or moreprocesses that arecoordinated to per

form a task and a set of resources that are shared by the processes [Milner, 1989; Andrews, 1991;

^R. D.ToxaattiUSemanticsofProgrammingLanguages,{fxenticQ Hall: London, 1991), p. 3.
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Magee and Kramer, 1999; Schneider, 1997], Each process consists ofasequential program made up
of a sequence of instructions and this sequence is often referred to as a thread ofcontrol or thread
for short. Because each thread is asequence, the instructions contained within athread are totally
ordered; i.e., given two distinct instructions, a and 6, either a isbefore 6or6is before a.

The coordination of threads requires communication between them so that when appro
priate, threads may modify their activites based on information from other threads. Communication

is accomplished by the shared resources and is realized through communication instructions or syn
chronization. In some cases a shared resource might be aconduit through which communication
messages are transferred. In othercases ashared resource might be amemory location that multiple
threads have read/write access to. While communication is necessary to coordinate threads, undis
ciplined communication can lead to major problems. Iftwo ormore threads access the same shared

resource, they can potentially interfere with one another. There are many different types of inter
ference but at its core, interference occurs when two or more processes attempt to simultaneously
change the state of a shared resource.

Interference is one of the fundamental problems faced in concurrent programming. The
possibility of interference results in great emphasis being placed on the ordering of instructions in
concurrent programming. If two instructions from different threads modify a common resource,

it is essential that one instruction happen before the other so that interference is avoided. Adding
order constraints can be effective in preventing interference; unfortunately, lavish use of ordering
constraints can result in incomplete execution ofaconcurrent program. Consider for example two
threads, Aand 5, such that thread Ais instructed to wait on aparticular instruction of thread B. If
thread Bdecides to not invoke the instruction, perhaps in lieu ofamore favorable option, then thread
Awill end up waiting forever -an undesirable result. For these reasons, concurrent programming
can be viewed as the application of techniques and methodologies for enforcing an appropriate level
of ordering on a set of multithreadedinstructions.

The above discussion of ordering constraints in concurrent programming highlights two
fundamental classes of problems: safety and liveness. Safety is the property that no bad thing hap
pens during the execution ofa program [Andrews, 1991; Schneider, 1997]. Interference is an ex

ample of abad thing. Uveness is the property that something good eventually happens [Andrews,
1991; Schneider, 1997]. Liveness is violated if aprogram's execution terminates prematurely. All
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Thread A Thread B

Figure 2.1, Two Communicating Threads

errors found in aconcurrent program can be stated in terms ofsafety and liveness. These definitions

ofsafety and liveness have afoundation in mathematical logic. I prefer to cast the definitions into a

framework based on ordering. In the context of ordering, safety is violated in aconcurrent program
with too few ordering constraints; liveness is violated in aconcurrent program with too many order
ing constraints. In the following we will discuss methodologies for describing concurrent systems.

2.1.1 Concurrency and Order

Figure 2.1 can be thoughtofas asimple concurrent program in that itspecifies the ordering
ofinstructions inaconcurrent program. Thread Aconsistsofinstructions a,6, c,dand ewhile thread

Bconsists ofinstructions i and j. Note that the arrows indicate instruction ordering such

that the arrowhead indicates the preceding instruction; e.g., in the figure, instruction a occurs before

instruction b.

The angled arrow in Figure 2.1 indicates an ordering constraint imposed by conununica-

tion. The arrowdoesnot indicatepolarityof the communication but ratherservesto illustrate theor

deringconstraintthat the communication imposes. As shown,instruction h mustoccurafterinstruc

tion 6. Implicitly, instructionsi and j must also occurafter instruction 6. Such constraints between

instructions in separate threads would not exist if not for the communication between the threads.

Note that it isnotpossible todetermine the relative ordering ofallofthe instructions inFigure 2.1.
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Interleaving 1 Interleaving 2 Interleaving 3 Interleaving 4 Interleaving 5

a# a^ a^

_ •} •} -t
cl d4 d|

d^ b^ d^ b^
Figure 2.2. Sequential Interieavlngs

In particular, we can not determine whether instruction coccurs before or after instruction g. In gen
eral, a concurrent program will specify ordering constraints on only a subset ofthread instmctions.

If all instructions between distinct threads were totally ordered, the result would be asingle thread.
The absence of an ordering specification is usually taken to indicate that relative ordering

is inconsequential. In other words, the specification in Figure 2.1 indicates that instructions cand g
can berealized as c followed by or^ followed by c; either realization isallowed and the choice is

arbitrary. The notion of arbitrary ordering ofunordered instructions can be applied to all ofthe in

structions ofaset ofthreads and results in an interleaving. An interleaving is asequential realization
ofaset of threads that does not violate any of the ordering constraints of the threads. Figure 2.2 is an
example of an interleaving. Note that threads Aand Bcan be interleaved in either of the five ways
shown. What this means is that ifthe concurrent program specified by Figure 2.2 were executed,
any ofthe five sequential orderings could represent the actual execution. In fact, each execution can

randomly tum out to be any of the five orderings even without changing parameters! Multiple inter-
leavings facilitate both apparent and actual concurrency. In both cases, the goal is to ensure that the
sequential realization/model is correct; i.e., equivalent to what the designer wants.

Unfortunately the existence ofmultiple interleavings for asingleconcurrent program spec
ification leads to amajor difficulty with concurrent programming. The size of the set ofinterleavings
for agiven program is typically unmanageably large. In general, given N threads that each execute

M distinct non-communication instructions, there are

iNM)\

possible interleavings. Five threads with ten non-communication instructions result in over 4.83 x
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10^^ possible interleavings.

2.1.2 Representing Concurrent Systems

A key difficulty in designing and implementing concurrent systems is theabsence of ef

fective tools for specifying and representing such systems. Representation tools are extremely im

portant in the design process. Representation tools aid designers incommunicating with each other

about a given design aswell asinfinding errors. Graphical representation tools are especially help

ful in designing software. Forexample, graphical representation is theprimary thrust of theUML

movement [Booch, 1994; Rumbaugh et aL, 1991]. I will consider graphical representation tools for

concurrent programming. In previous sections I have shown several figures (e.g.. Figures 2.1 and

2.2) in an attempt to graphically represent concurrent programs. Unfortunately, these graphs have

significant shortcomings.

In this section, I survey four approaches that are used to graphically model concurrent

systems anddiscuss the pros andcons of each. Thefourapproaches I survey arepartially ordered

sets, interval orders, graphs and Petri nets. I chosethesefourmodeling techniques because of their

widespread use andmathematical rigor [West, 1996; Neggers and Kim, 1998; Peterson, 1981]. My

metric for measuring thesefour approaches willbe theirability to represent bothcontainment and

ordersimultaneously. I will show thatusing this metric, each of these techniques falls short. I will

then propose a new formalism for more effectively representing concurrent systems with contain

ment and order; I refer to this formalism as a diposet.

Partially Ordered Sets

Defiiiition 2.1. Partially Ordered Set

Let A" be a set. A partial order, R, on X is a binary relationthat is reflexive, anti-symmetric and

transitive. An ordered pair {X, R) is said to be a partially ordered set or a poset if is a partial

order on the set X. •

The three conditions on R hold for all x, y, z 6 X as follows

• Reflexive: (x,x) € R

• Anti-Symmetric: (x, y) e Rtiy^x) e R implies x = y
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• Transitive: (x,y) e R,{y, z)e R implies (x^z) e R

I will write < for Rsuch that (x, y) ^ R ifand only ifx < y; similarly (y, x) e i? ifand only if

y< x.^ Other common notations for Rinclude Cand Ifx<yory<x we say that xand yare
comparable. Ifx and yare incomparable we write x || y. We say that ycovers x ifx < yand there

is no element z e X such that x < z <y. The set A" ofapartially ordered set iscalled the ground

set. If all elements ofthe ground set are comparable, then the set iscalled a totally-orderedsetora

chain. If none of theelements oftheground set are comparable, then the setiscalled an anti-chain.

The up-set, Q C X, ofelement y is defined such that x e Q =i> y < x. We write the up-set of

element y as yup-set- The down-setis defined in a similarfashion.

Partially ordered sets can be graphically represented by Hasse diagrams. AHasse diagram

is a graph in which each vertex orpoint corresponds to one element ofthe ground set. An arrowed-

line is drawn from point x to point yifycovers x.^ Ifwe interpret the partial order as representing

precedence such that x < yifyprecedes x, then Figures 2.1 and 2.2 are examples ofHasse diagrams.
Forclarification, note that bis covered bya inFigure 2.1.

Program 2.1. Example Sequential Code '

public void start() {
a = val;

}

public void compute() {
do {) ;

undo();

}

public void finish() {
a = 0;

}

It would seem that partially ordered sets are a natural way to express the ordering rela

tionships in concurrent programming systems. Ifwe let each element ofaset represent amethod or
^Note that Ihave chosen to use reflexive notation so that < reads "less than or equal." Alternatively Icould use ir-

reflexive notation such as <, read "less than." Reflexive notation as given in the definition ofpartially ordered set defines
the relation, as aweak inclusion while iireflexive notation defines the relation, R, as astrong inclusion. In some cases
the relation associated with strong inclusion iscalled an order as opposed to apartial order.

^Alternatively, Hasse diagrams can be drawn with arrows firom z to yif xcovers y. Pay attention to the orientation
when viewinga Hassediagram.
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Figure 2.3. Insufficient Poset Representations of Program 2.1

function, then partially ordered sets can represent aprogram of method calls. Unfortunately, posets
are not expressive enough to accurately represent even very simple programs. Consider the code

fragment found in Program 2.1 (written in Java™syntax) where we assume that the methods do{)
and undo{) do not call any othermethods.

Assume a thread that invokes siartQ, computeQ and then finishQ. Aposet isnot able

to model the complete relationship between startQ, computeQ, finishQ, doQ and undoQ. More

specifically, how do we relate doQ and undoQ to computeQ. Both ofthe Hasse diagrams in Fig

ure 2.3 are less than accurate. The method computeQ is neither before orafter doQ and undoQ,

yet tosay that computeQ isincomparable todoQ and undoQ isnot quite right either. The method

computeQ isnon-atomic in that itcontains doQ and undoQ. The problem illustratedby this exam

pleisthatpartiallyordered sets can not represent both the notion oforderandthe notion ofcontain

ment. Order is necessary to relate startQ and computeQ while containment isnecessary to show

that computeQ is non-atomic.

Interval Orders

An interval order is a special class ofpartially ordered sets. The name implies that interval orders

are amenable to graphical representation, and on the surface an interval order seems suitable for de-
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I computeQ ^

startO do() undoO finishQ

Figure 2.4.An Interval Order Representation ofProgram 2.1

scribing elements thatare non-atomic. Nevertheless, interval orders can notdescribe containment

andindeed they are lessexpressive then posets.

Defiiiition 2.2. Interval Order

Aposet {X, <) is an interval order ifthere is afunction I: X [i(x), f(a:)] where i(x), i{x)e^
so thatX< y in A" iff t(x) < i(y) in 3?. •

An interval ordercorresponding to Program 2.1 is shown in Figure 2.4. The primary prob
lem with interval orders is that they can not represent certain posets. In particular, while interval

orders can represent incomparable points, they can not represent incomparable chains. Figure 2.5

illustrates the inability ofinterval order to represent chains. Given that the intervals ofa,band care
as shown, where do we place the interval for d? Interval dmust intersect aand 6without intersecting
c: an impossible constraint. Hence, an interval order must be free of the poset shown in Figure 2.5.

This precludes alarge set ofposets and renders interval orders insufficient for our purposes.

Graphs

• •

i .1
Figure 2.5. AParallel Chain Poset With No Corresponding Interval Order

Agraph, as its name implies, is amathematical structure that naturally lends itself to visual repre
sentation. Graphs are used extensively within the field of computer science. Examples include the

representation oflanguage grammars and network connectivity diagrams.
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Gr^h Directed Graph

Figure2.6.An Example Graph and Directed Graph

Definition 2.3. Graph

Agraph Gwith nvertices and medges consists of avertex set y(G) = {vi,and an edge

setf;(G) = {ci,..•t €m}' Each edge is a set of two (possibly e(]ual) vertices called its endpoints.
We write uvfor an edge e = {m, u}. If uv GE{G\ then u and v are adjacent. •

Graphs are illustrated bydiagrams inwhich a point isassigned toeach vertex and a curve

isassigned to each edge such that the curve isdrawn between the points ofthe edge's endpoints. An

example graph isshown in Figure 2.6 (on the left). In some cases, it isuseful to add directionality

to the edges ofagraph. Adirected graph models such directionality and is defined in the following

definition. An example directed graph can be found in Figure 2.6 (on the right) where arrowed curves

indicate direction.

Definition 2.4. Directed Graph

Adirectedgraph isa graph in which each edge is anordered pairof vertices. We write uv forthe

edge(u, v) with u being thetail andv being thehead. •

The definitions above are consistent with that used in many texts on the subject [West,

1996; Chen, 1997]. Note that the edge set ofa directed graph is simply a relation; e.g., E{G) C

V{G) XV{G). Focusing on the fact that the edge set ofa directed graph isa relation emphasizes

the shared traits between directed graphs and many other mathemathical structures. Inparticular, a

relation-oriented definition of directed graph makes it clear that a partially ordered set is a special

case of a directed graph.

Graphs and directed graphs both have definitionsfor several useful characteristics. For our

purposes, two particularly usefuldefinitions are path and cycle. Informally, a path in a graph is an

ordered listofdistinct vertices vi,..., Vn such that Vi-i v,- is anedge forall2 < i < n. A path may
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consist of asingle vertex. Acycle is apath vi,in which v^vi is an edge. The length of apath
(cycle) vi,...,u„is n.

In their basic form, directed graphs and graphs are insufficient for modelling software sys
tems for reasons similar to those cited for partially ordered sets. Adirected graph only has asingle
relation on its set ofvertices. Asingle relation will not sufficiently describe both the order and con

tainment characteristics that are found in the typical object-oriented software program since order
and containment are distinct qualities that require individual representation.

Petri Nets

Carl Adam Petri developed Petri theory with a concern for asynchronous communication between

components and the causal relationships between events. The basic theory from which Petri nets

developed can be found in the dissertation ofCarl Petri [Petri, 1962]. The definition ofa Petri net

structure is found below.

Definition 2.5. Petri Nets

APetri net structure, C, is afour-tuple, C = (P,TJ,0). P = {puP2.-..Pn} is afinite set of
places, 71 > 0. T = {<1, ^2,<rn} is afinite set of transitions, m> 0. The set of places and the
set of transitions are disjoint, P HT = ^. I : T P°° is the input function, amapping from
transitions to bags'̂ of places. 0 : T is the output function, amapping from transitions to
bags ofplaces. g

Tokens can reside in (or are assigned to) the places of aPetri net. Amarking is an as
signment ofanonnegative number oftokens to the places ofaPetri net. The number of tokens that

may be assigned is unbounded. Hence, there are an infinite number of markings for aPetri net.

APetri net executes by firing its transitions. Atransitionfires by removing tokens from
its input places and creating new tokens in its output places. Atransition may fire ifitis enabled. A
transition is enabled ifeach ofits input places contains at least as many tokens as connection arcs

from the place to the transition. Tokens that cause a transition to be enabled are called enabling
tokens. When atransition fires, itremoves all of its enabling tokens from its input places and then
deposits into its output places one token for each output arc.

*Abag is like aset except that itallows multiple occurrences ofelements.
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Figure 2.7. An Example Petri Net With Rring

A Petri net is often graphically displayed as shown in Figure 2.7. In fact, a Petri netis a

directed, bipartite multigraph. Abipartitegraphisa graph that consists oftwo classes ofnodes such

that each edge connects a node from one class to anode in the other class. In a Petri net, every arc

(edge) connects aplace to a transition. Amultigraph isagraph that allows multiple edges from one

node toanother. As shown inFigure 2.7, several arcs may connect a place/transition pair.

APetri net is not sufficient for representing order and containment. Even though it con

sistsof twoclassesof nodes, its bipartite naturewould constrain theorderandcontainment relations

tooccur adjacently. It isnot obvious how the containment relation could begraphically displayed

using a Petri net, thus making it difficult to represent hierarchy. In addition, Petri nets assume an

asynchronous styleofcommunication. Whileit is truethatasynchronous communication canserve

asa foundation forsynchronous communication [Brookes, 1999], asynchronous primitives can not

represent synchronous communication in a succinct manner.

2.1.3 Diposets

Intheprevious sections Ihave sununarized several mathematical formalisms andcritiqued their use

fulness in the contextof describing object-oriented software systems. In each case, I showed that

theseformalisms werenot sufficient for describing the richness of simple software systems. I have

developeda new mathematical structurethat I refer to as a diposet. In the remainderof this sectionI

willdefine diposetandinsubsequentsections I willmakea casethatdiposets aresuitable forrobustly
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describing software systems.

The key observation with each ofthe mathematical structures presented thus far is that a

single relation is not satisfactory for describing software systems. One way to deal with this problem
is to use apair of structures for describing software systems. Consider apair of directed graphs Gi
and G2 such that V{G{) = V(G2). For convenience I will refer to this paired directed graph as

{Gi,G2}. Associated with the pair of directed graphs are two relations, E{Gi) and E{G2). Each
relation spawns various characteristics. For example, {6^1,^2} may have two distinct paths, pi and

P2, such that Pi isassociated with f?(Gi) and p2 isassociated with f?(G2).

Apaired directed graph {Gi, G2} offers the beginnings of atool equipped for describing
a variety ofsystems that require two types ofrelations (e.g., order and containment) over a set of

elements. Inorder tomake a paired directed graph completely useful, more structure must beadded.

I created thediposet to fill theneed forjust such a structure.

Definition 2.6. DiPOSET

Let A" be aset. Adiorder on A is apair of binary relations on A referred to, respectively, as the

order relation, Rq, and the containment relation, Rc, such that Rc and Rq are both reflexive,

anti-symmetric and transitive. For all ar, yGA,if(x, y) € Ro then (x, y), (y, x) ^ Rc. Similarly,

for all a:, y GA,if(a;, y) GRc then (a;, y), (y, a;) ^ Rq. Aset A that is equipped with adiorder is
said tobea diposet and isdenoted (A, Rq, Rc)- •

It is immediately obvious that a diposet is a special case ofa paired directed graph. It is

also clear that (A, Rq) and (A, Rc)are both partially ordered sets with acommon ground set. The

ground set A ofadiposet is equivalent to the set of vertices V(= V(Gi) = V(G2)) of apaired
directed graph. The containment and order relations ofadiposet, {Rc, Ro}, are equivalent to the

two sets ofedges inapaired directed graph {£?(<7i), E(G2)}.

We saythattheground set.A, ofa diposetconsists ofevents. Theorderrelation determines

how events are ordered with respect to one another. Consider events a,6GA. If(a, 6) GRq then
we say that a <0 b. I.e., event a precedes event 6. If(a, b), (6, a) ^ Rq then we say that a \\o b\
e.g., a and6 are incomparable. Thecontainment relation facilitates non-atomic events and event

containment. An event is non-atomic ifitcontains another event. If(a, 6) GRc then we say that
a <c b. Le., event 6is non-atomic and contains event a. If(a, 6), (6, o) ^ Rc then we say that a ||c
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6; e.g., a and 6are mutually non-inclusive. Note the distinction between incomparable and mutually
non-inclusive. In the context ofdiposets, incomparability refers to the order relation; mutual non-

inclusiveness refers to the containment relation. Up-set is defined both for order and containment

and is denoted as such; e.g., up —seto and up —setc (similar definitions exist for down-set). An

order {containment) path in a diposet is a sequence ofevents ei,..., €„ such that ei <o ... <o e„

(ei <c ... <c e„).

Note that a direct result ofDefinition 2.6 is that Ror\Rc = 0. The fact that Rq and Rc

ofa diposet do not intersect leads to two results that hold for all diposets:

i) An event can not contain an event that itprecedes orthat itispreceded by.

ii) An event can not be contained by an event that itprecedes orthat itispreceded by.

The disjointness ofRq and Rc in adiposet serves as one ofthe key distinctions between adiposet

and a paired directed graph. In a paired directed graph {^1,^2} it is sufficient for and G2 to

share a common setofvertices but there is no constraint on the two sets ofedges associated with a

paired directed graph. For example, itiscompletely admissable for the edge sets ofapaired directed

graph tobeidentical; i.e., E{G\) = E{G2). The intuition behind the disjointness ofRq and Rc is

that each relation shouldprovideorthogonal information. If the orderandcontainment relations of

a diposet provide redundant information, then the usefulnessof distinct relationsis undermined.

Partially ordered sets are graphically represented via Hasse diagrams. Hasse diagrams

serve asa simple wayto represent posets with directed graphs where anarrow isdrawn from element

a toelement 6if6covers a. Diposets utilize Hasse diagrams as well, with the notion ofcovering be

ing extended tocontainment. I.e., hcovers a if there does not exist qsuch that a <c q <c b. Given

thatbcovers a according to a containment relation, we saythat6 is a covercontainer of a. Toac-

comodate bothrelations ina diposet, diposet Hasse diagrams require twotypes ofarrows. I will use

a blackarrow headto represent the the orderrelation and a white arrow head to represent thecon

tainment relation. Figure2.8 displays an example diposet. Fromthis figure we can see that eventa

is contained by eventc and is incomparable to eventd. Event6 is preceded by eventa andevent/

is preceded by event d.

In many systems, the kind of containment that can be modelledby a diposet is not suffi

ciently constrained. Most software systems require that containment be nested. I add this additional
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Figure 2.8. AnExample DIposet

constraint with the following principle.

Definition 2.7. The Nested Containment Rule

Adiposet, (X, Ro, Rc), satisfies the nested containment rule ifVx, y, 2e X, the following con
ditions are adhered to:

Condition I: If x ||c y, then {z <c x zv) <c y=> z x).
Condition II: Ifx <0 y, then (2 <c x 2<0 y) and (2 <c y=> x <0 z).
Adiposet that satisfies the nested containment rule is called anested diposet. •

In plain English, Condition I says that an event can have at most one cover container. Condition

n says that each event precedes (is preceded by) each event that its container events precede (are
preceded by). An example nested diposet can be found in Figure 2.9.

Akey distinction between the Hasse diagrams of diposets and nested diposets can be seen
when comparing Figures 2.8 and 2.9. In Figure 2.9 it is implicit that a <0 dby Condition II of Defi
nition 2.7. In asimilar fashion, we see that^ <0 c. These assumptions can not be made in ageneral
diposet, and hence in Figure 2.8 a and dare incomparable while in Figure 2.9 they are compara
ble. This distinction between the Hasse diagram for diposets versus nested diposets requires that one
clearly state which type ofdiagram is being displayed, so that confusion can be avoided. Nested di

posets are generally more useful than diposets. For example, most computer programs have anested

structure. For this reason, I will focus solely on nested diposets fi-om this point on and I will use the
term nested diposet and diposet interchangeably to mean nested diposet. Several interesting results
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Figure 2.9. An Example Nested Diposet

canbederived based onthenested containment rule, as theWeighted Chain Theorem^ illustrates.

Theorem 2.1. WEIGHTED CHAIN THEOREM

For nested diposet, (X, Rq, Rc), ifthere exists xq ^ X s.t. Va; € X, xq <c x then all events inX

are incomparable.

Proofby Contradiction Suppose that notallevents inX are incomparable. Then there must exist

two events y,z £ X such that either y <o z or z <o y. Consider the former case. We have

y Since xq <c y by the theorem statement, then we know from Condition n of Definition

2.7 that a;o <o Again referring to the theorem statement we havexq <c z. This contradicts

Definition 2.6 since anevent can not becontained by an event that itprecedes; e.g., the disjointness

of Ro and Rc hasbeenviolated. Hence our supposition was false. The altemative cases follow in

a similar manner. •

In considering the nestedcontainment mle, it is important to be clear on what it doesnot

imply. Inparticular, note thatfora given nested diposet, {X,Rq, Rc)^ with x,y,ze X

^ <0 y <c z ^^=>• X <o z

The simplestcounterexample that satisfies the abovestatement is the following threeeventnested

^The intuition behind the name "Weighted Chain" isthat ifever a subset ofa diposet contains a minimum contained
element (e.g., an element contained by all other members of the subset), then the minimum forces the elements in the
subset to be pulled down like a hanging chain with a weight tied at the bottom.



31

Figure 2.10. ASequential Nested DIposet (Explicit Representation)

diposet, x,y,z e X:

X <c z

y <c z

^ <o y

Note that ifx <o y<c z =:^ x <o zthen Def. 2.6 would be violated; i.e., RqC^Rc ¥" 0-

Definition 2.8. Sequential Nested Diposet (Thread)

Asequential nested diposet or thread is anested diposet, Xnd = {X, Rq, Rc}. for which 3xo €
X, called the maximum container of X, such that x <c xq, Vx € Xand such that Vx, y€ X, if
Xand 2/ have acommon cover container, then x <o yoty <o x. •

An example thread is shown in Figure 2.10. It is drawn in an explicit graphical format. Explicit
graphical format will be explained in Section 2.1.4.

Given that each event in athread has at most one cover container,^ it is useful to develop
®Acharacteristic that is true ofall nested diposets.
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a notion ofdepth. We define depth recursively. The depth ofthemaximum container ina thread is

0. For any event xcontained within athread other than the maximum container, the depth ofx is the

depth of its cover containerplus 1.

Theorem 2.2. CONNECTED THREAD Theorem

Any two events ina sequential nesteddiposet (thread) areeither related by the order relation orthe

containment relation but never both.

Direct Proof Consider any two events x,ycontained in asequential nested diposet with ground set

X. We know that a; and ycan not be related by both the order and containmentrelations by Definition

2.6. In terms of therest of theproof there arethree possible cases as listed below.

i) Ifa; and yare not mutually non-inclusive then x and y must be related by the containment

relation and we are done.

ii) IfXand yare mutually non-inclusive and have acommon cover container then by Defini

tion 2.8 Xand y must be relatedby the order relationand we are done.

iii) IfXand yare mutually non-inclusive and do not have aconunon cover container then ap

ply the following step. Select the event (either x ory) that has the greatest depth.'' Without

loss ofgenerality assume thatx has a greater depth then y. If thecover container ofx iscom

parable to y than we are done by virtue ofCondition n ofDefinition 2.7. Otherwise, repeat

this step.

Theorem 2.3. ACYCLIC DIPOSET THEOREM

Adiposet cannotcontain orderor containmentcycles oflength 2 or more.

ProofbyContradiction Suppose that a diposet (X,Rq, Rc) contains an order cycle oflength 2or

more. Then there must exist a path ei,..., e„ with ei ^ ... ^ e„ such that ei <o ... <o e„ <o ei.

By the anti-symmetry property of partially ordered sets, this implies that ei = ... = e„. Hence,

our supposition mustbe falseandthe diposet doesnotcontain a cycleof length 2 or more. Similar

reasoning applies to containment cycles of length 2 or more. Thiscompletes our proof. •

Notethatin general a paired directed graph cancontain bothorderandcontainment cycles

^Ifa; and y have the same depth then aibitiaiily choose one orthe other.
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of any length. As will be shown insubsequent sections, the existence ofa cycle indicates that a

system can not be modelled by a diposet but perhaps can be modelled by apaired directed graph.

In many situations itisuseful to label the events ofadiposet. For example, multiple events

in a diposet's ground set may each share a common label indicating that they represent acommon

entity orlabels may serve as abasis for relating aclass ofevents. Alabelling function facilitates this

process.

Defiiiition 2.9. Labelled Diposets

Adiposet labelling function, f : X ^ L, maps the ground set ofa diposet to a label set, L. A

diposet that is associated with alabelling function and label set is referred to as alabelled diposet.

•

Many ofthe example diposets that have been previously shown were labelled. Forexample, in Figure
2.9 the label set is L = {a, 6, c, d, e,/,^} and the labelling function is bijective.

2.1.4 lypes of Order

Thus far I have presented three partially ordered structures: diposet, nested diposet and

sequential nested diposet (thread). Nested diposets and sequential nested diposets are especially im
portant for our purposes because of the abundance ofnested stmctures in the field of computer sci
ence. When considering a nested diposet, it is always thecase that the order relation of a nested

diposet can beseparated into two subsets: Co UTo C Rq. Co is referred toas the set ofcom

munication order relations and To is referred to as the set of threaded order relations. For any two
events, x,y e X, Co{x, y) represents a subset of order relations that are associated with xand y,
i.e., Co(x,y) C Co- In a similar fashion To(x, y) C To.

The threaded order relation To relates events that are in the same thread. For any nested
diposet (X, Ro, Rc), we have To{x, y) = 0ifa;, ye X are not part of the same sequential nested
diposet. The communication order relation Co relates events that are not in the same thread. We

have Co{x, y) = 0ifx,y€ X are part ofthe same sequential nested diposet.

Asimple communication order relation is Co(x, y) = {x, y). As will be shown in Sec

tion 2.2.4, this order relation isequivalent to asynchronous communication between two threads in

which the thread containing event yreceives from the thread containing event x. Amore elaborate
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communication order relation is

Co(x, y) = ^ ^ ^ } ^2 1
u{(® ^y)\^ € ^down-seto } {(j/j x'̂ \x' € Xup-seto }

Iwill show that the communication order relation ofEquation 2.1 is aprecise characterization ofsyn
chronous message passing communication in which xand yrepresent the sending/receiving events
of twocommunicating threads (See Section 2.2.4).

Given nested diposet (X, Ro.Rc) wecan write

Ro — U
{x,y)^XxX

u U Toix.y)
,{x,y)£XxX

We can leverage the dichotomy found in Equation 2.2 to simplify our nested diposet Hasse diagrams.

Recall that Figure 2.10 isdrawn inan explicitgraphical format. Byexplicit I mean that allcovercon

tainer relationships are explicitlyshown. Altemativelyasequential nested diposetcan be represented

in an implicit graphical format. The implicit graphical representation ofa nested diposet relies on

the following three rules.

i) Order relations associated with To are drawn with a vertical line.

ii) Order relations associated with Cq are drawn with a non-vertical curve.

iii) Containment relations are drawn with a horizontal line.

An example sequential nested diposet that isdrawn inan implicit format isshown inFigure

2.11. The thread drawn inFigure 2.10 is identical tothat ofFigure 2.11. The only difference isthat

the former isrepresented explicitly while the latter isrepresented implicitly. Inthe remainder ofthis

dissertation, I will use implicit representation ofsequential nested diposets.

2.2 Diposets and Concurrent Programming

Diposets are amenable to modeling a wide variety of systems including manufacturing

schedules, distributed transactionsand hardware systems. Given our interests, we will use nested

diposets to model concurrent software systems. Ina concurrent system, theground setofournested

diposet consists of method invocations or code blocks. The label of an invocation is simply the

(2.2)
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Co relations are not
present in this diposet.

Figure 2.11. ASequential Nested Diposet (Implicit Representation)
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method's name. Hence, multiple invocations of a method share a common label. Notethatdeclar

inga nested diposet's ground setasconsisting ofmethod invocations canaccomodate a rich class of

programming constructs including recursion and software objects.

do

0 get

t
0 finish

Figure2.12. ANested Diposet Corresponding To Program 2.2

If the body ofmethod a contains aninvocation ofmethod b, then we say that 6 <c a. If

the body ofmethod a precedes method b(as inmethod a retums prior tothe invocation ofmethod b)

then wesay that6 <o a. Consider thecode fragment shown in Program 2.2. Here we seeboth the

notion ofcontainment and order. The methods get{) and finishQ are contained within the method

do{). E.g., get <c do and finish <c do. In addition, the method finish{) is ordered to occur

after the method get{). E.g., finish <o get. Asingle invocation ofthe method do{) would result

in the thread displayed in Figure 2.12.

Program 2.2. SAMPLE METHOD Calls

public void do() {

get () ;

finish 0;

}

public void get() {
zl = X + y;

}

public void finish() {

z2 = zl++;

}

In some cases a nested diposetor a diposetwill not be sufficient for describinga software

system. In particular, as Theorem 2.3 (the Acyclic Diposet Theorem) declares, a diposet can not

contain non-trivial cycles. In cases where inclusionof a cycle is crucial, the structureof a diposet

can be relaxedand transformed into a paireddirectedgraph. Paireddirectedgraphsare amenable to

describing cycles because they are not beholden to anti-symmetry.
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2.2.1 Safety and Synchronization

Recall that the key problems ofconcurrent programs fall into two classes: safety and liveness prob
lems. Let us consider how nested diposets can model these constucts. Safety is solved by applying
mutual exclusion to the critical section ofcode that should not be simultaneously accessed by multi
ple threads. Acommon way to guarantee safety in aconcurrent program is to require lock synchro
nization to code blocks. Only one process can synchronize with agiven lock and thus access to the

block of code will necessarily bemutually exclusive.

Safety vialock synchronization can berepresented with containment and order relation

ships. Locks apply to blocks ofcode, thus we can think ofa realized lock as an invoked method. In

nested diposet terms, the code that a realized lock synchronizes is contained by the lock. We must

make sure that multiple realizations of the same lock are not invoked simultaneously. This is ac
complished by ordering the lock invocations. This process is illustrated in Program 2.3 (written in
psuedo Java™code) and Figure 2.13. Note that the synchronized keyword means that the lock
for the corresponding method is an instatiation of the Obj class. Anested diposet showing apossi
ble interleaving of calls to methods do and undo that satisfies the synchronization lock constraints
is given in Figure 2.13.

Program 23. Synchronized Method Calls

public class Obj {
public synchronized void do() {

modi fy();

change();

}

public synchronized void undoO {
change();
modi fy();

}

private void change{) {
// Atomic; contains no methods

}

private void modify() {
// Atomic; contains no methods

}

}
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do

Obj 0 ta 0^ 0 modify

t
0 change

undo

Obj 0 -a 0 change

t
# modify

Figure 2.13. APossible interleaving Of Caiis To do() And undo () In Program 2.3

2.2.2 Liveness and Deadlock

The result ofliveness problems within concurrent, computational systems are perhaps the most rec

ognizabledifficulties that thetypical computeruser must face. Liveness isclosely associated with the

inter-dependencies and relative speeds ofautonomous threads. Relative thread speeds are tied tothe

thread scheduling algorithms ofoperating systems and such algorithms are typically beyond the con

trol ofsoftware developers. For this reason, liveness problems have an inherently non-deterministic

nature from theperspective of the software developer. Although theproblems associated with the

absence ofsafety can bejustasdevastating as those associated with the absence ofliveness, safety is

much easier tomaintain than liveness and thus for most computational systems safety isnot amajor

issue.® Doug Lea categorizes liveness into four groups [Lea, 1997].

I) Contention occurs when several processes wait onresources butonly a subset oftheprocesses

gain theresources. Contention isfundamentally related tofairness and isgenerally adetermin

isticproblem in thatit is based on thethread/process scheduling algorithm being used.

H) Dormancy occurs when a waiting thread isnotnotified thatthecondition it is waiting onbe

comes true. Thisproblem is relatively easytosolvewith well placed "wakeup"mechanisms.

For example, in the Java™programming language a notify () ornotifyAll () method

wouldbe used. Dormancy is typicallydeterministic in that the wakeup mechanisms are usu

ally not dependent upon a particular interleaving of threads.

®While conupt data (the result ofsafety problems) are faiely rare, who among us has not wimessed the blue screen of
deathl
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ni) Deadlock occurs when a cycle ofprocesses are mutually dependent upon each other at the

sametime. Moreprecisely, N processes eachwaiton exclusive access to one of N resources

whilesimultaneously holding exclusive access to another one of the N resources such that

each process isawaiting access toadistinct resource. Deadlock istypically non-deterministic

in that it isdependent upon the relative speeds ofthe processes acquiring the resources.

IV) Premature Terminationoccurs when aprocess ceases operation unexpectedly withoutproperly

notifying theother processes in theconcurrent system. Such termination can result in both

safety and liveness problems for theremaining processes. Premature termination is akin toa

reversal ofdormancy and is relatively easy to solve given appropriate exception handling.

Each ofthe types ofliveness problems can cause aconcurrent program tohalt inan undesirable man

ner. While they are allchallenging todeal with, inmy experience deadlock stands out ina class of

its own. In the best case scenario, deadlock istied to the interleaving ofthe threads involved. This

means that deadlock will non-deterministically occur based on the relative speeds ofthe threads and

how the relative speeds impact thread interleaving. In the worst case scenario deadlock is not depen
dent upon relative thread speeds. Inthis case deadlock is intrinsic inthesemantics ofthe communi

cating threads and there is no hope ofevasion. Hence, in the worst case scenario there is nothing one
can do while in the best case scenario one's view ofthe situation isblurred by randomness. Given

the heightened difficulty ofdeadlock, I will focus on its representation.

Definition 2.10. DEADLOCK

Apaired directed graph exhibits deadlock ifand only ifitcontains a cycle. •

Nested diposets can not exhibit deadlock as per the Acyclic Diposet Theorem (Theorem 2.3). What

Definition 2.10 tells us is that asoftware system that can be modelled by anested diposet can not ex
hibit deadlock. To determine ifasystemexhibits deadlock, apply the relavent order and containment

relationships and attempt to construct adiposet model of the system. Ifitis possible to apply order
and containment relationships without violating the nested containment rule and arrive ata cycle,
then deadlock can occur. In such instances the model is not a diposet but rather apaired directed

graph that isnot anti-symmetric. Otherwise, the model isa diposet and by definition it isdeadlock

free.
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Lockl Uck2

»ck2

Lockl Lock2

Lockl Lock2

Figure 2.14. Order/ContainmentConstraints Leading To Deadlock

Deadlock often comes about through the use of multiple synchronizationlocks. As stated

in the previous section on safety, synchronizationlocks that have a common label typically have an

ordering constraint that requires that they be comparable. In conjunction with the order constraint on

synchronization locks, deadlock-prone code often implements such locks so that they are contained

by one another. This containment constraint can often contradict the ordering constraint and lead to

deadlock. To illustrate this phenomenon see Figure 2.14. The first section (part a) of the figureshows

a diposet consisting of two distinct threads each involving two events with the displayed labels. If
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we treat these events as the holding ofsynchronization locks, then we know that an ordering relation

must be applied between the separate threads so thatthe locks are notconcurrent. Thenext three

sections of Figure 2.14 show distinct application of order constraints to the two threads. In each

case, the applied order constraints do not violate the nested containment rules. In part dofFigure

2.14 the thick lines indicate that acycle exists - deadlock! Given the order constraints imposed by

the synchronization locks, it ispossible for this system toexperience deadlock and infact the model

inpart d of Figure 2.14is not a diposet.

Figure 2.15 consists ofanalternative configuration such thatthecontainment constraint of

the left thread is reversed. Again, order constraints are applied to the nested diposet, however, be

cause ofthe reversed containment constraint, order constraints must be applied in amanner different

from Figure 2.14. In no case can order constraints be applied without violating the nested contain

ment rule and lead to cycles. Thus, the configuration ofthis software system is not deadlock-prone.

Note that there are only two ways to apply order constraints without violating the nested containment

rules in Figure 2.15.

Inconsidering Figures 2.14and2.15 notehowtheorderandcontainment constraints come

about in concurrent programs. Containment constraints are typically determined at compile time.

How thesource code ofa program is written determines what the containment constraints will be.

Order constraints between threads are typically determined at run-time and are a function ofrelative

thread speeds. This is why we show the containment constraints first followed by the order con

straints.

2.2.3 Conservative Compile Time Deadlock Detection

One ofthe key advantages ofdiposets istheir potential for compile time detection ofdead

lock. Detection ofdeadlock at compile time means that the determination of the possibility of dead

lock in asystem will occur prior to the execution of the system. Compile time detection takes place
during a system's design process and thus offers the opportunity for correction of the problem by
the system designers. Compile time deadlock determination isincontrast todetermination of dead

lock atrun-time. Run-time deadlock detection occurs while asystem is actually executing and be

ing used. There are many approaches for detecting deadlock atrun-time [Mattem, 1989; Chase and

Garg, 1998; Lynch, 1996]. Unfortunately, detection ofdeadlock at run-time suffers from two prob-
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Figure 2.15. Order/Containment Constraints That Do Not Lead To Deadlock

lems. First, it is better to prevent deadlock before using a system than to simply detect deadlock

during asystem's operation. Second, a solution for deadlock while the system isbeing used is typi

cally insufficient. This isespecially so with the advent ofwidely available embedded systems. Many

embedded systems are ofa safety critical nature such asan embedded system controlling an auto

mobile's antilock braking system. Obviously deadlock detection during theoperation ofanantilock

braking system willplace thelives of theautomotive passengers injeopardy.

Diposets offer theopportunity forconservative detection ofdeadlock atcompile time. By

conservative I mean thatonecandetermine thepossibilityofdeadlock, notthecertainty ofdeadlock.

Conservative deadlock detection determines whether deadlock can occur not whether deadlock will

occur. This is a key distinction. In general software systems, i.e., software systems with infinite-

valued variables,determiningif deadlockwill occur is undecidable. Undecidability stemsfrom the

fact thatthemodel of computation ofgeneral software systems isHiringcomplete.^ Determining if

^ATuring complete model ofcomputadon can implementaTuring machine. All ofthe processmodels ofcomputation
in this dissertation are Turing complete.
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deadlock will occur for aHiring complete system would require checking asearch space consisting

of an infinite set of possibilities. In contrast, using a conservative deadlock detection mechanism

requires theconsideration of a finite setof possibilities.

The basic approach for using diposets to determine the possibility ofdeadlock at compile

time issimple: ifandonly ifa software system can be represented by a diposet, then deadlock will

notbepossible. Ifasoftware systemcan be represented by adiposet then that implies that the system
does not contain cycles which further implies that deadlock is not possible. The general algorithm
for this process is as follows.

1) Create the System Specification

This step simply involves the system programmer(s) writing the software program.

2) Automatically Recognize Order and Containment

Determining order and containment in the system specification can be automated by an appro
priate tool.

3) Store the Orderand Containment inan Appropriate DataStructure

Storage ofthe order and containment relations will be similar to the storage techniques used

for binary trees and other common data structures.

4) Search for Cycles

The absence ofcycles indicates that the structure isa diposet.

The difficulty with arealization of the above algorithm is that it will be extremely computationally
complex. In fact, itwill likely be NP-Complete (see Garey and Johnson [1979]). Nevertheless, there

may be opportunities for developing heuristics that simplify the deadlock detection process consid

erably. Such heuristics are beyond the scope ofthis dissertation but will be part of any future work

on this topic (see Chapter5).

2.2.4 Communication Semantics

Communication between threads imposes an order constraint on their composite diposet.
These order constraints are precisely the communication order relations discussed inSection 2.1.4.

In this section Iwill discuss two important communication styles and describe their corresponding
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communication order relationsh. As mentioned in Section 1.1.3, message passing is one ofthe funda

mental ways tocommunicate within aconcurrent system. Message passing communication assumes

that components are connected via channels through which messages are transmitted. There are two

types ofmessage passing communication: synchronous and asynchronous. Synchronous message

passing requires both the sender and receiver connected by a channel to besynchronized when a

communication occurs. Asynchronous message passing does not require the sender and receiver to

be simultaneously engaged and involves a storage facility inwhich messages can be placed by the

sender until the receiver is ready.

Thecommunication order relations for asynchronous message passing isvery simple. Given

that the sending event isdenoted x and the receiving event isdenoted y,an asynchronous message

passingcommunication order relationfor x and y is written

Co{x,y) = {(a;,y)}.

In other words, x must precede y. A graphical example of such a relation is shown in Figure 2.16.

Here the left thread communicates to the right thread. Event x is the sending event and event y is

the receiving event.

^ w

1 i

1 i
Figure 2.16. A Diposet Representing Asynchronous Communication

The communication order relation for synchronous message passing is significantlymore

complex than asynchronous message passing. Given that the sending event is denoted x and the

receiving event is denoted y, a synchronous message passing communication order relation for x

and y is equivalent to that given in Equation 2.1. For convenience I have rewritten Equation 2.1

below. Note that synchronous message passing is symmetric; i.e., Co(a;,y) = Co(y,x). Thus,
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Figure 2.17. ADiposet Representing Synchronous Communication

there is no need to differentiate asender and receiver. The graphical representation of synchronous

message passing is shown inFigure 2.17 in which event x and y are synchronous.

y) ^ytip—seto }U{(y i®)|y €ydown—seto}
^ ^down—seto} € ^up-seto^

2.2.5 An Example: PtPIot And TheJava™Swing Package

I conclude this chapter with an informative and real world example. I will demonstrate

how diposets can model the threading mechanism that is part ofthe Swing package of the Java™

programming language. The Java™Swing package consistsofaset ofgraphical user interface (GUI)

components that have apluggable look and feel. The pluggable look andfeel lets one design asin

gle set of GUI components that can automatically have the look and feel of any OS platform (e.g.,
Microsoft Windows™, Sun Solaris™, Apple Macintosh™). As with all GUIs, the Swing graphi
cal user interface must respond both to human input such as mouseclicks and text entry as well as

computer input such as new image positions generated by aprogram or new windows to display. Re

sponding to both computer and human input is an inherently concurrent process. Swing addresses

this concurrency with a single event dispatch thread for all GUI operations.

The Swing event dispatch thread takes events (e.g., the pressing ofabutton orclicking of

a mouse) and schedules them to occur in a sequential order. TheinvokeAndWait () and

invokeLater () methods are available so that other threads in a program can access the event
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dispatch thread (these methods are part ofthe javax. swing.SwingUtilities class). The

invokeAndWait () method communicates synchronously with the event dispatching thread. The

invokeLater () method communicates asynchronously with the event dispatching thread. Im
proper use ofthe invokeAndWait () orinvokeLater () methods isagreater source ofcon

fusion among Swing users and can result in deadlock.^®

PtPlot, created by Edward A. Lee and Christopher Hylands, is an example Java^^program
that uses the Swing package [Davis et ai, 1999, chapter 10]. '̂ PtPlot consists of Java™classes

(many of which are Swing classes) that plot data on a graphical display. The main thread in the

program ispart ofthe Plot class run () method. This thread (I'll refer to itas the PtPlot thread)

repeatedly calls the Plot. addPoint () method. addPoint () synchronizes on the Plot object

lock and then attempts to draw points on the display. This latter task (drawing points on the display)

requires the PtPlot thread to conununicate with the Swing event dispatch thread. Separate from the

Plot thread are several buttons for modifying the view ofthe PtPlot display. One such button is theJill

button. Ifauser clicks on the fill button the ButtonListener. actionPerformed () method

will becalled and this in turn calls the Plot. f illPlot () method. The Plot. f illPlot ()

method issynchronized on the Plot object lock. Since the fill button is aswing component,

ButtonListener. actionPerformed() and all ofits contents are part ofthe event dispatch

thread.

Inorder for the PtPlot thread toactually add points tothe display, itmust communicate with

theevent dispatch thread eitherthrough theinvokeLater () method orthe invokeAndWait ()

method. Diposets illustrate how the former method is deadlock free while the latter is deadlock

prone. Figure 2.18 shows the two separate threads - the PtPlot thread and the event dispatch thread -

without communication between them. Two order constraints must be added tothis figure. The first

constrains thetwo invocations of thePlot lock to notoccur concurrently. Thesecond constraint

is due to thecommunication between thePtPlot thread and theevent dispatch thread. This second

constraint is a function of the displayPoints event and the event labelled "communication

event." Figure 2.19 shows both constraints added to the two threads. Theupper section of Fig

ure 2.19consists of the asynchronous constraint that is imposed by invokeLater (). The lower

^°Foraglimpse atthe headaches faced by useis ofthe two invoke methods, view http: / / f orxun. j ava. sun .com/
and search on invokeLater.

^^PtPIot is available athttp: / /ptolemy. eecs. berkeley. edu/j ava/ptplot.
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section ofFigure 2.19 uses thesynchronous constraint of invokeAndWait (). In this latter case

a cycle exists.
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Can't we all get along ?
- Rodney King, 1992 ^

In Sections 1.1.3 and 2.2.4 several communication styles were introduced. Inparticular,

synchronous and asynchronous message passing communication was described and diposets were

used to represent both of these approaches. Synchronous and asynchronous message passing are

two very important classes ofconcurrent communication, but the range ofsemantics options for de

scribing communication and computation inaconcurrent systemgoes well beyond these approaches.

Any set ofsemantics serve to constrain and define the manner ofcommunication and computation

ofaconcurrent system. Aset ofsuch semantics describing how components in aconcurrent system

cancommunicate andcompute datais referred toas a model ofcomputation.

A model of computation (MoC) is a concept that traditionally has played a behind-the-

scenes role in the design of computational systems. Often the constraints imposed by a model of

computation fade into thebackground and only reside inthedesigner's subconscious. Nevertheless,

allspecification systems realize aparticular model ofcomputation. Von Neumann-style imperative

programming languages applied to sequential software systems utilize an automata-based model of

computation. Verilog and VHDL, two common hardware design languages, both usea discrete event

^This quote was made in response to aracial insurrection in Los Angeles spawned by a1992 Simi Valley, Califomia
court verdict
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model ofcomputation. Tools that implement digital signal processors often realize one ofseveral

possible dataflow MoCs [Giraultet a/., 1999; Buck, 1994; Bhattacharyya and Lee, 1994].

Amodel ofcomputation determines how acomponent communicates data and computes

data. The method by which acomponent communicates data isrealized by a communication inter

face or simply interface. Acommunication interface facilitates data transfer between acomponent
and the other components to which it communicates. A component's communication interface is

defined by the component's model of computation. For example, adiscrete event (DE) component
that keeps track oftime must have a mechanism for specifying time stamps in its communication

interface. Asynchronous dataflow (SDF) component need not incorporate time into its interface as

time is not a relavant parameter.

Given aparticular model ofcomputation, there are two approaches to executing anetwork
ofcomponents. One approach is schedule-based. In the schedule-basedapproach, aschedule is cre

ated that specifies an ordering of invocations of each component contained in the network. In many
cases the schedule is sequential, although this is not necessary. As each component is invoked, com

putation of data occurs. Aschedule-based execution model presumes that each component's com
putation is finite. Asecond approach to execution of a network of components is process-based.

Process-based execution ofanetwork of components does not assume that each component's exe
cution is finite. For the sake offairness in the face ofpossibly infinitecomputation, the process-based
method assigns an autonomous thread of control to each component. Due to the autonomy of each
component afforded bythe assigned thread, components ina process-based execution are often re

ferred to as processes.

For most models ofcomputation, a network of components can beexecuted ineither a

schedule-based orprocess-based manner. Certain models ofcomputation are more amenable to one

style or the other. For example, the Synchronous Dataflow (SDF) model of computation [Lee and

Messerschmitt, 1987] isbest executed according to a schedule-based execution model. This is be

cause it isrelatively easy todetermine efficient sequential schedules for SDF networks. On the other

hand, the distributed discrete event (DDE) model ofcomputation is best executed in aprocess-based
manner since its distributed nature is especially amenable to separate threads ofcontrol [Righter and

Walrand, 1989].

Models ofcomputation facilitate well defined specification ofconcurrent systems, but for
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most large, complex systems asingle model ofcomputation can not be used alone. Complex systems

typically consist of several subsections with different sections best described bydifferent MoCs. As

an example, consider an embedded system as displayed in Figure 3.1. This system, with charac

teristics ofcell phones and personal digital assistants, isnoteasily described bya single MoC. The

analog RF front end is best described by a model of computation thatuses differential equations.

Thecontrol-oriented aspects of theembedded system arebestdescribed by a discrete event model

ofcomputation. Thegraphical user-interface is suitable fordescription bya process-oriented model

of computation that can easily describe the non-deterministic interface. The voice coder DSP is best

describedby a dataflow modelof computation suchas synchronous dataflow.

Heterogeneous application of models of computation is an approach that recognizes the

need formultiple MoCs to beused inconjunction with oneanother fordescribing complex systems.

Asdiscussed inSection 1.1.4, many researchers intheSystem Level EDA community propose a het

erogeneous approach fordealing withcomplex system design. Given the useof a heterogeneous ap

proach, it becomes implicit that components of different models of computation communicate with

one another. I.e., heterogeneity implies that components with different communication interfaces
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must communicate. The question becomes how? How should heterogeneous components commu

nicate with one another. In general, there are two approaches for handling the interaction ofhetero

geneous MoCs. The amorphous approach to heterogeneity allows components of different MoCs

to communicate directly. ^ The structured approach to heterogeneity requires that components of

different MoCs communicate through anadapter.

The choice of amorphous versus structured heterogeneity has implications on both the

communication and computation ofanetwork ofcomponents. From the perspective ofcommunica

tion, amorphous heterogeneity implies that a single component must incorporate features ofmulti

ple MoCs and, hence, have multiple interfaces. For example, asingle component might be required

to support both asynchronous message passing and synchronous message passing. Asimilar phe

nomenon exists intherealm ofcomputation. Suppose a given component communicates with some

components that observe the synchrony hypothesis and others that do not. Should the component

in question observe synchrony or not? In effect amorphous heterogeneity burdens each component
with the possibility ofhaving to deal with every available model ofcomputation - aburden that ren

ders themodel of computation concept useless.

Structured heterogeneity enforces the application of asingle model ofcomputation to any
single component in a network by using adapters to connect incompatible interfaces. An adapter
converts the interface ofone component into the interface of another. Adapters (also called wrap

pers) play the role ofinterface translators. Atreatment ofadapters as object-oriented patterns can
be found in Gamma et al. [1995]. Adapters are advantageous for several reasons. First, adapters
can serve as boundaries for separating computation in addition to separating communication. Using

adapters to separate computation can be helpful in managing shared processor resources. Second, an

adapter simplifies the job ofthe designer. Adesigner with agiven expertise (e.g., familiarity with a

particular setofcommunication semantics) can focus onthesemantics that heorsheisfamiliar with.

The disadvantage ofstructured heterogeneity is that semantics must be determined for the adapters

themselves.

Aspecial class ofstructured heterogeneity ishierarchical heterogeneity. While structured

heterogeneity requires that components communicate across MoC boundaries through an adapter,
hierarchical heterogeneity adds the has-a relationship tocomponents within a network. To under-

^The term amorphous heterogeneity is due to Edward A. Lee.
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stand hierarchical heterogeneity, consider two components, Aand B, that communicate directly to

each other without the use ofan adapter (i.e., by structured heterogeneity we recognize that they

must have compatible communication interfaces and execute according tothe same model ofcom

putation). Ifthere exists a third component, C, that both Aand Bcommunicate directly to, then hi

erarchical heterogeneity requires that neither Anor Buse an adapter tocommunicate toCorboth A

and Buse an adapter such that the respective adapters serve as boundaries to the same pair ofMoCs.

Hierarchical heterogeneity has many advantages. From a syntactic point ofview hierar

chical heterogeneity allows a network ofcomponents to be abstracted into a single component. A

single abstracted component can contain another network ofcomponents with that network execut

ing according to adifferent model ofcomputation. Such abstraction allows adesigner to view asys

tem at the level ofdetail desired. Semantically hierarchical heterogeneity can be used to organize

heterogeneity in a telescoped fashion that facilitates successive refinement. Milner [1989] suggests

that computation can besuccessively refined into layers ofcommunication^ (this isalso dealt with in

Rowson and Sangiovanni-Vincentelli [1997]). Using hierarchical heterogeneity we can continually

peer deeper into a component to reveal new networks ofcommunication. Components ina hierar

chical system that contain other components are referred toas composite components. Components

ina hierarchical system that donotcontain other components are called atomic components.

Hierarchical heterogeneity has avery practical basis that isbecoming increasingly relevant

from an industrial standpoint. Based on industry trends it is rare for a single company todesign a

complete system including all subcomponents. Instead, certain firms specialize in subsystems and

sell thedesigns - theintellectualproperty orIP- toother firms that manufacture the complete system

[Dalpasso et at., 1999]. Components based ondifferent IP will often have incompatible interfaces

[Rowson andSangiovanni-Vincentelli, 1997; Passerone etal., 1998]. Furthermore, basedon timeto

market constraints and thedesire to seek thelowest possible costs, it is common to swap similar IP

throughout thedesign process. Theblack boxperspective that hierarchical heterogeneity affords is

very amenable to the "part swapping" of IP.

Defining thesemantics of adapters between hierarchical, heterogeneous components is the

centralquestionof this chapter. I willconsider a solution to thisproblem in the contextof process-

based models of computation. Attacking the adapter between processes of different MoCs is ar-

^See thebeginning ofChapter 1inMilner [1989] forthis discussion.
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guably more challenging than the equivalent problem for schedule-based components. The diffi
culty is analogous to the difference between sequential versus concurrent systems; both systems are
challenging but as outlined inChapter 1, concurrent systems are more difficult.

The remainderofthis chapter proceeds as follows. In Section 3.11considercriteria against
which to measure how effective a given adapter solution is. InSection 3.21review the semantics

ofthree process-oriented models ofcomputation that serve as case studies. InSections 3.3 and 3.41

propose asolution to the problem ofinterfacing heterogeneous process-oriented models of compu

tation.

3.1 Assessing The Effectiveness of an Adapter

Thegoalof anadapter is to translate thecommunication semantics between theinterfaces

ofheterogeneous components and to disaggregate execution. In order to clarify this goal Iconsider

desired characteristics ofinterfaces below. These characteristics will serve as agauge for comparing

various adapter alternatives.

Simplicity

We would like adapters to be simple. An overly complex solution would equate an adapter with a

component whose sole purpose isto translate communication semantics. The primary problem with

making an adapter acomponent isthat this adds an additional execution burden to the original net

work ofcomponents. Instead ofsimply executing a set ofconnected components, there must also

be execution ofthe adapter components between them. Another problem with assigning the task of

an adapter toa component isthat this solution sits on aslippery slope above amorphous heterogene

ity. Abetter option is todesign adapters with sufficient simplicity so that they do not perform any

computation of data.

Generality

Closely related to thedesire fora simple adapter is thedesire for an adapter that can be generally

applied toa broad setofMoC pairs. The desire for generality isanattempt toavoid the problem.
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Recall that an adapter always occurs between a pair of models ofcomputation. We certainly do

not want tohave todefine aunique adapter between every possible pairing ofMoC interfaces; given

N models of computation, such anapproach would require adapters. Instead, wewould like to

design a single adapter that operates properly between any pair of MoCs. Such generality will be

advantageous from a softwareengineering perspective.

Avoidance of Deadlock

We do not wantan adapter to introduce the possibility of deadlock. To make this issueclear, I in

troduce the concept of homosemantic abstraction. Homosemantic abstraction is the realization of

hierarchy without heterogeneity. It occurs when two components executing according to the same

model ofcomputationcommunicate with oneanother through anadapter. Homosemantic abstraction

facilitates separation ofexecution even though the components all have compatible communication

interfaces. Clearly, a network ofcomponents that incorporate homosemantic abstraction should be

semantically identical to the same network of components in which homosemantic adapters have

been removed. I apply this same reasoning todeadlock. Ifhomosemantic adapters are introduced to

a network ofcomponents, the network ofcomponents should be no more deadlock-prone than prior

to the addition of the adapters.

Determinacy

Many models ofcomputation guarantee deterministic execution ofa network ofcomponents. The

determinacy isgenerally a result ofthe MoC's denotational semantics; given that the components

themselves do not randomly compute data, then execution of the components will result in a de

terministic outcome even if the components are invoked according to a non-deterministic schedule.

Examples of models of computation with guarantees of determinacy in themanner cited above in

clude all dataflow models (e.g.. Process Networks, Dynamic Dataflow, Boolean Dataflow and Syn

chronous Dataflow [Lee and Parks, 1995]) aswell asdiscrete event models [Yates, 1993;Lee, 1999b].

Iwill apply homosemantic abstraction inamanner identical tomy previous use with deadlock: given

anetwork ofdeterminate components, thenetwork ofcomponents should maintain determinacy even

^Note the tacit constraint that adapters occurbetween exactly two components. While itis possible to have three (or
more) wayconnections, it is rare andhence I amnotconsidering those cases.
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with theaddition of homosemantic adapters.

3.2 Process Models

As stated, I am considering the issue ofheterogeneous semantics with emphasis placed

on the interaction between process models ofcomputation. As a case study, I will consider three

particular process models ofcomputation and for completeness I summarize these three models of

computation below.

3.2.1 Distributed Discrete Event (DDE)

The distributed discrete event (DDE) model of computation uses asynchronous message
passing in which the messages passed are time-stamped events. Each component maintains a local

notion oftime and components communicate their local notion oftime by producing and passing

timestamped events. When a component receives an event it advances its local notion of time to

that ofthe received event. By virtue ofacomponent's local clock, all events consumed orproduced

by aparticular component are totally ordered. Events associated with distinct components are par

tially ordered. Herein lies the distinction between distributed discrete event systems and traditional

discrete event systems. In traditional DE systems the set ofallsystem events are totally ordered,

notjustthose associated with a singlecomponent. Hence, components ina traditional discrete event

system must be invoked sequentially while distributed discrete event modeling leverages the natu

ral concurrency existing ina network based onthe networks's topology. Distributed discrete event

modeling and discrete event modeling have been studied extensively inChandy and Misra [1981];

Righter and Walrand [1989]; Morgan [1985]; Lamport [1978]; Jefferson [1985].

3.2.2 Process Networks (PN)

Gilles Kahn [Kahn, 1974; Kahn and MacQueen, 1977] developed Process Networks (PN)

asa way to takeadvantage ofDanaScott's work indenotational semantics andapply it toconcurrent

systems. Components inaprocess networks model communicate viaasynchronous message passing

without a notion of time. Communication occurs through blocking reads of FIFO queues. If the

queues havebounded memory, then writing to a queue when it is fiill becomes a blocking write.
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Figure 3.3. Non-deterministic Choice

Each component effectively maps an input stream to an output stream. The set ofall streams in the

network ofcomponents form acomplete partial order based on prefix ordering. Based on this CPO

ofstreams, the denotational semantics ofprocess networks guarantees determinacy. By determinacy
it is meant that neither relative computation speed nor ordering of invocation of the components in
a PN network will impact the outcomeof data streams.

3.2.3 Communicating Sequential Processes (CSP)

CommunicatingSequential Processes (CSP) is amodeling system developed by Tony Hoare
[Hoare, 1985]. Processes in CSP communicate via synchronous message passing without anotion
of time. In addition to synchronous message passing, processes in CSP may use non-deterministic

choice. Non-deterministic choice allows asinglecomponent to consider several possible communi
cation options and then randomly select a single option among the set ofchoices that are enabled.

Consider Figure 3.3 to understand the meaning of non-deterministic choice. In the block diagram,
component Ccan non-deterministically choose input from either the upper orlower channel. Cmust

then wait for communication on either ofthe channels to be enabled which occurs when either com

ponent AorBisready to communicate to C. Component Ccompletes communication with the first

channel that is enabled. If both channels are enabled simultaneously, than component Crandomly
chooses one ofthe channels to conununicate with. Non-deterministic choice may seem odd, but it is
afacility that has parallels in several different modeling languages. The inherent randomness ofnon-

deterministic choice is useful in allowing adesigner to partially specify asystem. Closely related to
CSP is Communicating Concurrent Systems (CCS) developed by Robin Milner [Milner, 1989]. The

semantics ofCSPandCCS arevirtually identical.
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3.3 Order & Atomic Processes

Itis worth comparing and contrasting the three process models ofcomputation presented

thusfar, andto do so I refer to a relevant quote:

Aconcurrent system isa network ofcommunicating sequential processes.
Robin Milner, 2989

I refer to this quote to draw attention to the word sequential. The context ofMilner's quote was di

rected athis communicating concurrentsystems (CCS) modeling language, but many other modeling

languages assume that the basic computational element issequential. Certainly all ofthe modeling

frameworks mentioned inthis dissertation assume a sequential primitive, including communicating

sequential processes, process networks, the Actor's model and many others. Modeling languages

that incorporate the synchrony assumption inconjunction with a state transition also implicitly as

sume a sequential primitive. Forexample, in theReactive Modules modeling language [Alur and

Henzinger, 1996], the existence of an atomic round during which all components simultaneously

change state permits one toextensionally view the state change asoccurring sequentially.

Sequential execution implies a total ordering on alloperations of a component. In other

words, a component's operations can berepresented bya thread. From an external point ofview, the

operations ofconcem are a component's communication operations. Ina message passing system,

communication can beeither thewriting ofdata messages toa channel {production) or the reading

ofdata messages (consumption) from a channel. Sequential execution ofamessage passing compo

nent means that all consumptions andproductions of a component are totally ordered. A model of

computation's semantics determine exactly howsuchtotalordering is realized.

3.3.1 Ordering Communication: Event Driven vs. Data Driven

An importantclassification of how a model of computationimpacts the ordering of a component's

communication actions is whether the components are event driven or data driven. Event driven

models of computation are common in graphical user interfaces (GUI), reactive embedded systems

and control systems. Data driven models of computation are often used to model the dataflow found

in computer architectures as well as data intensive parallel processing schemes such as image pro

cessing.
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Figure 3.4. Time-Stamped Events Awaiting Consumption by a DDE Component

Inevent driven models, theordering ofa component's communication actions aredeter

mined by the external environment. Event driven models ofcomputation, in which DDE is aspecial
case, have externally determined consumptions. Given aDDE component with multiple input chan

nels, itis not possible to determine apriori in what order consumptions ofdata messages will occur.

ADDE component with two input channels, 1and 2, can not specify that consumption will occur

first on channel 1followed by consumption on channel 2. Instead, the order ofconsumptions for
eventdriven components is imposed by theenvironment.

The ordering of incoming time stamped events determines the order a DDE component

consumes such data. Consider Figure 3.4 showing a DDE component with pending events (indi

cated by dots) destined for both input channels. Each number adjacent to an event indicates that

event's time stamp. The time stamps shown indicate that the component must consume the mes

sages as specified by the time stamp ordering. ADDE component can specify the relative ordering
of event productions. Often such production is specified in response to aconsumption. I.e., given a
consumption on aparticular input channel, produce an event on aparticular output channel.

In data driven models ofcomputation, acomponent autonomously makes the decision of

whether it will consume orproduce amessage on any ofits input channels. The absence ofa mes

sage may force a component to wait, as in the case of an attempt to consume a message from an

empty channel, but the relative ordering will be completely determined by the component. Hence,
acomponent that decides to consume a message first from channel 1followed by channel 2, may

have to wait (perhaps indefinitely) on channel 1but the decision to consume from channel 1before
consuming from channel 2will be upheld independent ofdata availability.

PN is an example ofadata driven model of computation and hence, the ordering of con
sumption and production actions are internally imposed. CSP components without the notion ofnon-
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deterministic choice are also examples ofconsumption/production ordering due to internal criteria.

The non-deterministic choice facility allows a CSP component tospecify a set ofaltemative order

ing constraints and then defer toa selection within theset based onexternal criteria. Ineffect, non-

deterministic choice allows a component to be event driven with respect to both consumption and

production.

33.2 Reordering Communication

Models of computation in which components intemally determine theordering ofcommunication

actions can befurther classified based on how the communication actions can be reordered. In Chap

ter 2we considered the impact ofordering on such undesirable properties as deadlock. For intemally

motivated models ofcomputation we would like tocharacterize the sensitivity toreordering ofcom

munication actions. Reordering is defined as the act ofswitching the order ofoperations within a

single thread. Reordering impacts only theorder relation and does notimpact thecontainment rela

tion. For example, iftwo operations are mutually non-inclusive, they will remain so after reordering.

Foragiven model ofcomputation, reordering may ormay notimpact acomponent's inter

action with other components. When a reordering does notimpact thesafety or liveness ofa setof

components, I saythatthemodel ofcomputation is reorder invariant with respect toa setofactions;

otherwise the MoC isreorder variant with respect toa setofactions. Whether ornotreordering will

impact liveness or safety willhave a profound impact on both the fiexibility of component execu

tion as wellas how the hierarchical composition of components should be organized. Toevaluate

the impact of reordering on communication actions for a given model of computation, let us recall

the fundamental ordering constraints of communication within both PN and CSP.

Figure 3.5 showsthe fundamental ordering constraint realized in process networks with

unbounded channels. Theconsumption of a datamessage through a channel andfroma production

simply requires that theconsumption (action g) occuraftertheproduction (action 6). Thisconstraint,

characteristicof asynchronous messagepassingschemes, is shownin the figure withtwothreadsthat

communicate via a single consumption/production pair. Process networks with bounded channels

require an additional ordering constraint. A network with channels that can store N unread messages

requires that at least one consumptionof data must occur for every N + I productions. Figure 3.6

illustrates this constraint with a channel that can store two unconsumed data messsages. Actions a, b



Figure 3.5. The Basic Unbounded Asynchronous Message Passing Order Constraint

^ • Ad

62

Figure 3.6. The Basic Bounded Asynchronous Message Passing Order Constraint

and care productions by the left thread and actions eis acorresponding consumption. The constraint
that action cmust occur after action e indicates that the production associated with action ccan not

occur until after action e enables sufficient capacity in thechannel.

The synchronous message passing feature ofCSP places amuch tighter ordering constraint
on a set ofcommunicating threads than does asynchronous message passing. Even in the case of

bounded asynchronous message passing with achannel capacity for one data message, the ordering
constraint impacts only three actions in a communication between two threads. Given two threads

that communicate via synchronous message passing, an ordering constraint will be imposed on a
total ofsix actions. This is illustrated in Figure 3.7 in which action 6and e are synchronous. Note

in particular that the synchronous ordering constraint impacts the predecessor and successor ofboth

band e. The choice operator of CSP is not illustrated, but recall that itimplements synchronous
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Figure 3.7. The Basic Synchronous Message Passing Order Constraint

messagepasssing with the allowancefor multiplealtemativesto be considered.

Unbounded process networks are reorder invariant with respect to a set ofconsumptions.

As an example, consider Figure 3.8. Any two consumption actions ofa thread can be rearranged

without introducing a cycle in the setof communicating threads. Thesame can be said for the re

ordering ofaset ofproductions within unbounded process networks. The sketch ofthe proof for the

previous two declarations isvirtually identical. First consider the case oftwo adjacent consumptions

(productions) with no intervening actions. Clearly these can rearranged regardless of whether the

consumptions (productions) communicate tothe same ordifferent threads. Subsequent application

ofreordering ofadjacent consumptions (productions) facilitates the reordering ofaset ofconsump

tions (productions).

Ingeneral a thread within a process network isnotreorder invariant with respect toa set

ofconsumptions and productions. As an example, consider Figure 3.9. Bounded process networks

have sufficientordering constraints that components arereorder variant forany setofcommunication

actions. Theordering constraints ofsynchronous message passing renders CSP components reorder

variant. Recall thata synchronous message between two communication actions a and b imposes

constraints on each other's respective successorsand predecessors of a and b. Hence, if a thread

reorders a synchronous communication action, this will lead tonew successors and predecessors that

can cause cyclic deadlock.
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Reordered actions

Figure 3.8. Reorder Invariance of Unbounded PN Consumptions

Reordered actions

Figure 3.9. Reorder Variance of PN Consumptions with Productions
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Figure 3.10. Reorder Variance of CSP Components

3.4 Order & Composite Processes

Thequestion of creating an adapter between different models of computation in a hierar

chical, heterogeneous network is really a question of determining how a composite component in

such a network should execute. Externally a composite component executes according to themodel

ofcomputation shared byitsexternal neighbors. Internally a composite component contains a setof

components that operateaccording to a model of computation that is generally different from that

outside of thecomposite component. Between theextemal and intemal worlds is an adapter that

translates between the two models of computation. If we apply Milner's quotecited in the begin

ningof Section 3.3,weshould execute theadapter of a composite component sequentially. Unfortu

nately, sequential execution ofcompositecomponents isgenerally notpossible if theMoCs involved

are process models of computation.

The primaryproblemwithsequentialexecutionof theadapterof a compositecomponentis

that sequential execution introduces deadlock. As an example, consider Figure 3.11 in which com

ponents A, B, C and D are atomic with A and B contained by composite actor E and C and D

contained by composite actor F. Assume that A and B perform no actions (produce nor consume

any data messages) but C produces an infinite stream of messages that are consumed by D. If we

execute composite actor F by performinga blocking read on the top input channel, then F will stall

indefinitely. By imposingan orderon F*sexecutionwe haveno wayof knowinga priori if ourorder
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Figure3.11. Sequential Execution ofan Adapter

of execution will result in this kind of stalling. The more general problem with asequential adapter
in aprocess composite component is that a sequential adapter imposes a total ordering on aset of

processes that are partially ordered. Ingeneral, this can cause cycles.

Since sequential adapters are deadlock-prone, consider a concurrent adapter instead. A

concurrent adapter associates athread with each channel flowing through the adapter. Each adapter
thread waits on data and then passes the data through the channel. An adapter thread talks to com

ponents on either side ofthe adapter according to the prevailing model ofcomputation. Consider a

synchronous message passing component, component A, that produces messages that are transfered
through an adapter to an asynchronous message passing component, component B. The adapter
thread associated with the channel will wait on a synchronous put from Aand then do an asyn
chronous put into B.

3.4.1 Concurrent Adapters

Concurrent adapters are useful for several reasons. First concurrent adapters essentially
make the adapter an identity function from the prespective ofdata transfer. Thus, it is trivial to

show that they maintain determinacy in the face ofhomosemantics abstraction. Second, concur

rent adapters can begenerally applied toa variety ofMoC pairs; the association ofa thread toeach

channel does not change as afunction of the MoC. Third, concurrent adapters are conceptually sim
ple. All channels are treated identically. Unfortunately, difficulty still lies ahead. The challenge in
concurrent adapters isnot solved simply by associating a separate thread to each channel. The dif

ficulty is in determining how the threads communicate with their respective channels and when that
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communication occurs. In Sections 3.4.2 and 3.4.31 consider the significance ofthe communication

semantics of the threads in aconcurrent adapter with respect to the process models of computation
I have previously introduced.

3.4.2 Non-Deterministic Choice: Blessing & Curse

Non-deterministicchoice has been mentioned as acommunication style that is part of CSP
and iscommon in many other models ofcomputation. The blessing ofnon-deterministic choice is

that it allows a component to choose between a set of communication alternatives. If any of the

choices inthe setare valid than communication will becompleted. Ineffect, non-deterministicchoice

allows acomponent to "increase its odds" for avoiding adeadlocked situation. Paradoxically, in the

context of a composite component's adapter, non-deterministic choice canintroduce deadlock con

ditions.

A verysimpleillustrationcanshowtheproblems withnon-deterministic choice. Consider

an atomic component. A, with two output channels that communicate through an adapter to asingle

two inputatomic component, B, as shown in Figure 3.12. Assume homosemantic abstraction with

both the inside and outside MoCs being CSP. IfAattempts non-deterministic choice through its two

output channels, what will happen? Since the goal ofnon-deterministic choice is to randomly se

lect an enabled communication channel, then ifAviews both the upper and lower channels as being

validsimplyby virtueof theirrespective adapter threads, theneitherchannel can be selected. Let us

suppose further that B isperforming a blocking read on the upper channel. Clearly, ifArandomly

selects thelower channel then execution fortheentire system will stall. Such a deadlock is inconsis

tent with the corresponding topology involving only the two atomic components and no composite

components; homosemantic abstraction has introduced deadlock.

To avoid the above scenario with non-deterministic choice, we must define a channel as

being enabled notsimply based on the existence of anadapter thread. I propose that a channel be

defined asenabled only after thepossibility ofa completed execution has been guaranteed. Inother

words, an adapter thread should transfer data in an atomic fashion. Applying an atomic transfer

mechanism to theabove scenario would work asfollows. A would check forvalidity ofeach output

channel. Thecorresponding adapter threads would notaccept a message from A until they had veri

fied thatcommunication on the inside of theadapter would complete. Onlythe upper adapter thread
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Figure 3.12. The Introduction of Deadlock Via Non-Deterministic Choice

would be validated since this thread could check for the blocking read on the upper channel. Hence,

the non-deterministic choice semantic ofAwould choose the upper channel.

The need foran atomic transfer mechanism isfundamentally related toreorder invariance.

Asselection of avalid output channel is equivalent to reordering the consumptions of component
B. Since component B is executing according to the CSP model ofcomputation and therefore is not

reorder invariant, a non-atomic adapter transfer mechanism leads to deadlock. Thesame result can

occur with bounded process networks. Anon-atomic adapter transfer mechanism is not a problem

ifnon-deterministic choice interacts with a set ofunbounded PN components, since unbounded PN

consists of components that are reorder invariant.

3.4.3 Totally Ordered Event Driven Models

In the previous section we determined that non-atomically transferring dataacross an adapter

could lead todeadlock ifnon-deterministicchoice interacts with components that are reorder variant.

Unfortunately an atomic transfer mechanism can cause problems ifa reorder variant model interacts

with event driven models in which events are totally ordered. Consideran event driven component in

which events (from mouse or keyboard activities perhaps) are totally ordered. Ifthe totally ordered

events are being transferred across an adapter to interact with a set ofreorder variant components,

then an atomic transfer mechanism can deadlock. Aslight variation ofFigure 3.12 can illustrate this

as shown in Figure 3.13. Ifan atomic transfer mechanism exists in the topology shown in Figure

3.13, deadlock will result.

Although there isaparadoxical twist to the difference between the scenarios in Figure 3.12

and Figure3.13, a simple explanation is available. In theformer case, non-deterministic choice re-
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Figure 3.13. Totally Ordered Event Driven Models with Reorder Variant Components

suits in an eventdriveneffect that is not totallyordered. In fact,becauseof the atomictransfermech

anism, the ordering ofcommunication actions inFigure 3.12 isdriven by component B. In Figure

3.13 the time stamps impose a total ordering. This total ordering isdue solely tocomponent Aand

has nothing todo with component B. The remedy istoallow asynchronous message passing across

adapters between totally ordered event driven components and reorder variant components. E.g., a

non-atomic adapter transfer mechanism.
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Chapter 4

Implementation

It isbetter topractice it than toknow how todefine it.
- Thomas k Kempis'

This chapter serves as apractical illustration ofthe preceding sections ofthis dissertation.

It includes adiscussion of my solution to the problem of interfacing heterogeneous models of com

putation that was discussed in Chapter 3.1also show the practical implications ofreorder invariance

and describe my architecture for facilitating heterogeneity and hierarchy of process-oriented mod
els of computation. In addition to these contributions, this chapter describes in detail alarge scale
system level design environment that served as the framework within which the implementations

discussed in this chapter occurred. The large scale system level design environment that I am re

ferring to is called the Ptolemy Project. Under the leadership of principal investigator Edward A.
Lee, The Ptolemy Project is asoftware development project that studies the modeling and design of
computational systems.

This chapterproceeds as follows. In Sections4.1 and 4.2,1 provide an overview of the gen
eral Ptolemy Project excluding process-oriented models ofcomputation. In Section 4.3,1 describe

the architecture Icreated as asolution to heterogeneous, hierarchical interaction ofprocess-oriented

models of computation. In Section 4.4,1 describe the impact of reorder invariance on domain poly
morphism within Ptolemy.

^FranfoisF^nelon, C/imft'an/'c//ecrion(New York: Harper &Brothers, 1947), p. 194.
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4.1 Modeling & Design

The Ptolemy Project ^studies the modeling and design ofcomplex computational systems.
Example computational systems considered in the Ptolemy Project include pagers, cell phones, se

curity systems and computational subsystems found inautomobiles (e.g., air bag systems). Ptolemy

11 is the latest software environment tobereleased by the Ptolemy Project. Ptolemy n facilitates the

modeling and design ofthe kinds ofsystems listed above. By modeling we mean the act ofrepresent

ing a system orsubsystem formally. By design we mean the act ofdefining a system orsubsystem.

Models and designs arecomplementary. Insome cases a system model might serve asaconstraint to

which a design must adhere. Inother cases a system design might bevalidated bya resulting model.

An executable model is one that defines a computational procedure that mimics a set of

properties of a system. Executable models might also becalled algorithmic orcomputable models.

A simulation is a special class of executable models. A simulation is an executable model that is

distinct from thesystem it models. Insome cases anexecutable model may start asa simulation and

then evolve into a software implementation of the system. This isoften the case inmany electronic

systems andresults in a blurred distinction between a model and thesystem it represents.

Executable models operate according toa model ofcomputation thatspecifies theinterac

tion between components within the executable model. The set of interaction rules associated with

a given model ofcomputation arethesemantics of themodel ofcomputation (MoC). InPtolemy 11,

a model of computation is realized as a domain. Allexecutable models that execute ina particular

domain obey a common model of computation. Central to thebeliefs of thePtolemy Project is the

maxim ofheterogeneoussemantics. Thepremise ofthisbeliefis thatnosinglemodel ofcomputation

caneffectively model all aspects of all systems. Instead complex systems aremosteffectively mod

elledby multiple models of computation with a given MoC being employed to design a particular

subsystem as appropriate.

^The Ptolemy Project isadynamic research initiative that is constantly being expanded and improved. For the most
up-to-date Ptolemy Projectdescription, see the following World WideWebpage: http://ptolemy.eecs.berkeley.edu.
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4.2 The Ptolemy H Architecture

Ptolemy n is a second generation system implemented in the Java'̂ ^programming lan

guage. The predecessor ofPtolemy H, Ptolemy Classic, was implemented in C++ in the early 1990's

[Buck etal.y 1994]. Through itsuseofJava, Ptolemy n offers aninfrastructure thatiswell suited to

modeling heterogeneous semantics. Two key features ofPtolemy n that leverage Java are concurrent

execution through the Java threading infrastructure and modularization through Java packages.

The threading support offered in Java can be very difficult to program correctly. The sup

port isso low level that users who are not experts in concurrent programming can create software that

is unpredictable and deadlock prone. Ptolemy 11 uses the threading infrastructure ofJava to support
models ofcomputation that consist ofautonomous components (components that control their own

execution). In the&t process domains, each component is assigned its own thread ofcontrol. The

process domains provide a "safety layer" on top ofthe threading infrastructure. This layer simpli
fies the use of Java threads by allowing anon-expert to correctly implement aconcurrent program.

Proper design ofthe process domains was made significantly easier through the aid of diposets.

The Java package structure allows for easy organization ofPtolemy II into subsystems.

This is in contrast to many electronic design automation (EDA) tools that have large, monolithic de

signs that impose an "all ornothing" feel. In Ptolemy n, as long as package dependencies are not

violated, programmers may use only the packages that are relevant to their needs. The package orga
nization ofPtolemy II covers awide set ofsemantics and execution features with over ten top-level
packages (each of which may consist ofseveral subpackages). The package structure of Ptolemy n
is particularly useful in separating domains.

4.2.1 The Ptolemy n Packages

Figure 4.1 shows the key packages ofPtolemy H. Note that the figure consists ofa Uni

fied Modeling Language (UML) static structure diagram. UML is awidely used graphical modeling
language for describing large, object-oriented software systems. The Unified Modeling Language
fiises the best practices of the Booch and Object Modeling Technique (GMT) methodologies. There
are several types of UML diagrams, each with special uses. In thecaseof the UML static stmc-

ture diagram, syntactic relationships between classes are shown. Figure 4.1 shows how each ofthe
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Figure 4.2. ASample Ptolemy II Graph

Ptolemy n packages are related. Subpackages are shown by block diagram containment; e.g., the
kernel package has two subpackages: kemel.util and kemel.event. Arrows represent dependency
relationships. As an example, note that the graph package depends on the kemel.util package.

The kemel, actor and domains packages are of special relevance to this discussion. The

kemel package, as its name implies, is at the core ofPtolemy n.The primary contribution ofthe ker

nel package is an abstract syntax. The abstract syntax ofthe Ptolemy n kemel allows one to specify

hierarchical graphs. Ahierarchicalgraph is one in which vertices ofthe graph may themselves con
tain graphs. The vertices of the hierarchical graphs inPtolemy n are called entities while the arcs

are called relations. Relations are connected to entities via ports. Note that there is no concept of a

port in traditional graph theory [West, 1996; Chen, 1997]. Entities play the role ofcomponents (the

term used inprevious sections ofthis dissertation) and relations serve asthecommunication channels

through which componentscommunicateto one another.

Hierarchy is supported through containment. Acomposite entity may contain composite
entities while componententities are aspecial class ofcomposite entity that can not contain entities.

We say that a component entity is atomic while a composite entity is not. Acomposite entity is

opaque if its contents (the entities and ports that itcontains) are visible outside ofthe composite
entity. An opaque composite entity has opaque ports as opposed to transparent ports for entities

that are not opaque. An example ofaPtolemy n hierarchical graph can be found in Figure 4.2. Note

how composite entity E2 contains atomic entity E3 as well as ports P2 and P4. Note further that all
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three atomic entities -El,E3, and E4 -are opaque (indicated by the black shaded squares) while the

compositeentity E2 happens to be transparent with transparentports (indicated by the white squares).

The hierarchical graphs that can be specified by the Ptolemy n kernel are strictly syntactic

and can not be executed. The actor package adds semantics to the graphs and provides an infras

tructure for execution. Specific semantics ofexecution are achieved in the domain packages. Each

ofthe domain packages use the infrastrucmre ofthe actor package to implement a specific model of

computation. Currently alldomains except one realize a message passing form ofexecution. The

one exception isthe FSM (Finite State Machine) domain that implements an automata-based style

ofcomputation. In this document we are only concemed with the message passing domains and will

not describe the architecture of the FSM domain.

The actor package introduces several key classes and interfaces relevant tomessage pass

ing. These classesand interfaces facilitate executable entitiesthat communicate data. Wecall these

executable entities actors, a term inspired by Gul Agha's Actors model [Agha, 1986]. Informally

ournotion of actor is a node in a hierarchical graph that can process data. Formally an actor is an

entity that implements the Actor interface, can contain lOPorts and has a Director and a Manager.

lOPortsareextensions ofports through which data can flow. In Ptolemy IIa unit ofdata is referred

toas a token. lOPorts aredirectional andcanbeeither inputs, outputs or both.

AnactorinPtolemy n isexecutable byvirtue of thefact thatit implements theExecutable

interface. As shown in Figure 4.3, the Executable interface consists of fiveaction methods:

• initialize()

• prefireO

• fireO

• postfireO

• wrapupO

An iteration is definedto be one invocationof prefire (), any numberof invocationsof f ire (),

followed by one invocation of postfire (). An execution is defined to be one invocation of

initializeO, any number of iterations, followed by one invocation of wrapup (). A Director
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Figure 4.3. Execution and Iteration in a Sample Ptolemy II Model

controls the execution ofaset ofactors and determines an actor's model ofcomputation. AManager
controlsthe execution of a complete model.

Adirector specifies an actor's model ofcomputation by allocating an implementation of

the Receiver interface toeach ofthe actor's input lOPorts. Areceiver iscontained within an actor's

lOPort and specifies how communication through the lOPort occurs. Areceiver may support either
asynchronous or synchronous message passing. In the case of asynchronous message passing, re
ceivers are used to store tokens. Areceiver may assume a notion oftime associated with all tokens

or it may assume no ordering constraints on tokens that it stores. For synchronous message passing,
receivers have implicit states for indicating intermediate stages within a rendezvous. Each distinct

implementation of the Receiver interface implies adistinct communication style for the actors that
contain the receiver realizations.

Through allocation ofreceivers, adirector controls both the communication and execution

of an actor. This means that an actor's model ofcomputation can change depending on the director
that controls it. This is quite distinct from making an actor's model ofcomputation an inherent qual
ity. We refer to this characteristic as domainpolymorphism [Lee and Xiong, 2000]. Through domain
polymorphism, code reuse is facilitated: an actor with particular functionality can be implemented
once and then used in multiple domains. Furthermore, the functionality of an actor can be changed
at runtime with the substitution of a different director.

Avery simple example of domain polymorphism is illustrated in Figure 4.4 consisting of
two almost identical systems. Both the system on the right and left have a ramp source actor con

nected to a data plotter actor. The ramp source outputs a stream of increasing integer data values;
e.g., 0, 1,2,3, ... . The data plotter simply reads the incoming data and plots it to a screen. The

ramp source and data plotter on the left and right are implemented identically. The difference is in
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therespective directors. Thesystem onthelefthas a Process Networks (PN) director. This means

that input port P2 on the left contains areceiver that receives data asynchronously. The system on the

right has a Communicating Sequential Processes (CSP) director implying that input port P2 on the

right receives data synchronously. The result is that the two actors onthe right execute atthe same

speed while it ispossible thatinthesystem ontheleft, theramp source will execute much faster than

the data plotter.

4.2.2 Hierarchical Heterogeneity

Ptolemy n supports hierarchical heterogeneity by allowing different directors to existin

sideandoutside of opaque composite actors. Figure 4.5 shows anexample of hierarchical hetero

geneity. Opaque composite actor E2contains a synchronous dataflow (SDF) director implying that

E3 executes with SDF semantics. External to E2a process networks (PN) director is used imply

ingthatEl andE4execute according to PNsemantics. Extemally E2acts likea PNactor while the

internals of E2 execute according to SDF semantics.

A boundaryport is anopaque lOPort contained ontheboundary ofa composite actor. In

Figure 4.5, ports P2 and P4 are boundary ports. A receiver that is contained in, receives data di

rectly from or transmits datadirectly to a boundary portis a boundary receiver. If a boundary port

is an inputport (i.e., data is transfered fromoutsideof the containing composite actor to the inside

through the port)thentheboundary portcontains boundary receivers external to thecomposite actor.

If a boundary port is an output port (i.e., data is transfered from inside of the containingcomposite

actor to the outside through the port) then the boundary port contains boundaryreceivers internal to
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Figure 4.5. Hierarchical Heterogeneity in a Sample Ptolemy II Model

the composite actor. Figure 4.6 displays aboundary receiver contained in an input boundary port
as well as aboundary receiver that receives data from the boundary port. Note that pairs of bound
ary receivers are associated with boundary ports (as is the case for the two boundary receivers in
Figure 4.6 associated with the boundary port P2). Data transfer is directional for apair of bound
ary receivers; i.e., data flows through one ofthe boundary receivers first (theproducer receiver) and
then flows through the second one (the consumer receiver). In Figure 4.6, the receiver contained in

lOPort P2 is the producer receiver; the receiver contained in lOPort P3 is the consumer receiver.

4.2.3 The ProcessPackage

The ptoleirvy. actor. process package (or processpackage) incorporates extensive
use of Java'̂ ^threads to facilitate execution in the process-oriented domains: PN, CSP and DDE.^
In the schedule-oriented domains of Ptolemy n, each actor's executable methods are invoked by the
controlling director. In the process-oriented domains each actor is assigned aunique thread by the
controlling director. The director starts the thread and the thread invokes its assigned actor's exe

cutable methods. Once the director has handed control ofthe actors to their threads, the director

then monitors the execution ofthe actors. The actors may continue executing until each actor vol
untarily completes execution oruntil the set ofactors deadlock. Determination ofwhether deadlock

has been reached is made by the director who monitors the actors while they are being invoked by
their threads.

Monitoring for deadlock is asignificant difference between the process-oriented domains
and the schedule-oriented domains. All receivers have hasRoom () and hasToken () methods

^The design of the process package excluding heterogeneous interaction was initiated by Mudit Goel and Neil Smyth.
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for determining ifan actor is able to transmit data or receive data through the receiver, respectively.

The hasRoom () and hasToken() methods return true when communication through the receiver

isenabled andfalse if communication isnotenabled. Thedefinition of enabled communication de

pends onthemodel ofcomputation. Informally, deadlock occurs when allactors ina network block

while attempting to communicate through receivers in which communication is notenabled. All

receivers in theschedule-oriented domains implement theReceiver interface. TheProcessReceiver

interface extends the Receiver interface and is implemented by each of the process-oriented domains.
The ProcessReceiver interface isdesigned so that when blocking occurs, the total number ofblocked

actors can be monitored.

In schedule-oriented domains an actor will not attempt to transmit data through areceiver

ifhasRoom () = false for that receiver. Likewise a schedule-oriented actor will not attempt
to receive data from a receiver ifhasToken () = false. Process-oriented actors ignore the

hasRoom() andhasToken () methods oftheprocess receivers. Ifcommunication isnot enabled

a process receiver will force the calling actorto block andwait untilcommunication is enabled. A

blocked communication attempt in which an actor waits to receive data is called ablocking read. A
blocked communication attempt in which an actor waits to transmit data is called ablocking write.
Aset ofPtolemy n process-oriented actors are deadlocked ifall of them are blocked waiting to com

municate.

Once deadlock has been reached in aset ofprocess-oriented actors, the director has the op
tion ofresolving the deadlock so that execution can continue. Whether adeadlock can be resolved is

domain-specific. In Communicating Sequential Process (CSP) models, for example, deadlock can
not be resolved. In the case ofBounded Queue Process Network (Bounded PN) models, it is possible
to resolve deadlock in which at least one of the actors is blocked waiting to put data in afull queue.

Thomas Parks developed an algorithm for such deadlock resolution that can be applied at runtime
[Lee and Parks, 1995]. In any process-oriented model, ifdeadlock isresolved then the actors con

tinue execution until deadlock is reached again or until the actors voluntarily end execution. Using
deadlock as the mechanism for stopping and starting actor execution leads to aunique definition of
iteration inthe case ofprocess-orienteddomains: inprocess-orienteddomains aniteration lasts until

deadlock is reached.
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4.3 Hierarchical Heterogeneity and the Process Package

I extended the Ptolemy n process package to allow interaction between heterogeneous

process-oriented domains. In accomplishing my task, I had the very important goal of maximizing

code reuse. As outlined in Chapter 1, code reuse simplifies the software development process by al

lowing the work ofindividuals as well as groups ofengineers tomore easily share work. Code reuse

allows engineers toleverage the past and prepare for the future. In leveraging the past, I recognized

that my implementation was a small part ofa large software project (Ptolemy II). Therefore, I intro

duced a system that did not require significant changes to the previous infrastructure. In preparing

for the future, I designed a system that anticipated expansions by providing asuitably general set of

classes that would remain useful as future researchers expanded Ptolemy n inyears to come. Figures

4.7 and 4.8 consist ofstatic structure UML diagrams of the process package classes and interfaces.

Figure 4.7 focuses on the classes and interfaces that are used tomonitor deadlock. Figure 4.8 con

sists ofclasses and interfaces associated with ProcessReceiver and the mechanism for detecting ifa

receiver is at a CompositeActor boundary.

Mysystemarchitecture is founded on a simple dichotomy: externalvs. internaldeadlock.

Anetwork ofactors isdeadlocked if theactors have thesame opaque composite actor container and

they are each blocked waiting to write to or read from receivers contained in their network. A net

work of actors is externally deadlocked if the network of actors is deadlocked and at least one of

the receivers involved is a boundary receiver. A network of actors is internally deadlocked if the

network of actors aredeadlocked and none of thereceivers involved areboundary receivers.

Giventhe extemal/intemal deadlock dichotomy my systemworks as follows. If thecon

tents of an opaquecompositeactor are internallydeadlocked, then the intemaldirectorhas solecon

trol. The director may attempt to resolve the deadlock or simply end execution of the deadlocked

actors. If the contentsof an opaquecompositeactor are externally deadlocked, then controlof the

situation is given to the director outsideof the compositeactor. In some cases, the externaldirector

will resolveexecution and in other cases execution of the deadlocked actors will simplyend. The

resultof this approach is that the special abilities of each model of computation are usedwhen ap

propriate. I provide more detail on how my solutionis implemented in the followingsection.
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43.1 ControllingProcessReceivers at ComposlteActor Boundaries

The ProcessReceiver interface was initially written by Mudit Goel and Neil Smyth. It

was designed tobeimplemented bythe CSPReceiver, DDEReceiver and PNQueueReceiver classes.

Each ofthese three receiver classes implements the hasToken (), hasRoom (), get () and put ()

methods to facilitate blocking reads and blocking writes. Prior to my extension of the ProcessRe

ceiver class, it was assumed thatany object calling theget () or put () methods ofa ProcessRe

ceiver object was an actor; the exception to this rule occurs in the case ofCSPReceiver objects, in

which ptolemy. domains. csp. kernel. ConditionalBranch objects call the receivers

to support non-deterministic choice.

My extension ofthe ProcessReceiver class to facilitate heterogeneous interaction ofpro

cess domains does not assume that the put () and get () methods ofboundary ProcessReceivers

are invokedby actors. In my extension, the put {) method ofboundary receivers contained in input

boundary ports is called by an actor but the get () method is called by aspecial proxy. The get ()

method ofboundary receivers contained in input boundary ports is called by an actor but the put ()

method iscalled by a special proxy. In both cases the proxy is realized by the

ptolemy. actor. process . Branch class.

The ptolemy. actor. process. Branch class implements theJava™Runnable in

terface. Thus, each instantiationofBranch results in aseparate thread ofcontrol. Each Branch object
is assigned to two boundary receivers. Branch threads are controlled by BranchController objects.
Once aBranch thread is started by a BranchController, itattempts to repeatedly pass data between

its pair ofassigned receivers in the appropriate direction. As an example, consider Figure 4.6. In
this case, aBranch object is assigned both boundary receivers shown. The Branch object repeatedly
attempts toget data from the boundary receiver inthe boundary port and put the data into the receiver

of the intemal actor.

As with all ProcessReceivers, boundary receivers can incur blocking reads or writes. In

such cases the Branches controlling the blocked receivers must register the block with their Branch-

Controller objects. This procedure works as follows. Each opaque composite actor consists oftwo

BranchControllers; the input BranchController and the output BranchController. The input Branch-
Controller controls N Branch objects that are assigned to a total of N boundary receiver pairs as-



85

sociated with the composite actor's input boundary ports. The output BranchController controls M

Branch objects assigned to Mboundary receiver pairs associated with the composite actor's output
boundary ports. Each BranchController (input or output) is blocked when the boundary receivers
ofeach ofitsBranches isblocked; the BranchController. isBlocked () method isused to

determine such status.

The director inside ofan opaque composite actor ofaprocess-oriented model ofcompu
tation monitors three states: the state ofthe input BranchController, the state ofthe output Branch-

Controller and the state ofthe contained actors. The primary state monitored by the director isthat

ofthecontained actors. Here theconcern is whether thecontained actors aredeadlocked. Given that

the contained actors are deadlocked, the secondary concern ofthe director is whether input or output

BranchControllers are blocked. The action ofthe director given these states depends upon whether

the director's opaque composite actor iscontained by a composite actor that isprocess-oriented or

schedule-oriented. Tables 4.1 and 4.2 summarize the actions taken.

Note in both tables (4.1 and 4.2) that the label postfire () = false indicates that

the contained actors will no longer be permitted to execute. A label of postfire () = true

indicates thatexecution maycontinue for an additional iteration. In several casesthe tables indicate

that thedirector will wait until theinput oroutput branch controllers are blocked. Inallsuch cases,

blocked input or output branch controllers are imminent. For example, if the contained actors are

blocked and the input branch controller isblocked (see the left column ofTable 4.1), then the output

branches will eventually have no data to transfer out ofthe composite actor and they will necessarily

block.

4.3.2 Allocating Receivers at CompositeActor Boundaries

As with all receivers, ProcessReceivers are allocated to lOPorts by directors. Allocation

occurs during an opaque composite actor's initialize () method priorto any iterations. De

termining theplacement ofboundary receivers vs. normal receivers is a question of topology. One

approach for allocating boundary receivers is to let the director determine which receivers should

be boundary receivers and which should be normal receivers. The problem with this approach is

twofold. First it requires two receiver objects (a boundary and normal receiver) for each model of

computation. Maintaining consistency among two separate receiver objects is very difficult. The
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second problem isthat such an approach does not easily support mutable topologies. Itis desirable

to not have to replace or re-instantiate receivers ifthe topologychanges (e.g., ifareceiver is no longer

connected to a boundary port).

I chose not todistinguish boundary and normal receivers. Any receiver can act as either

a boundary receiver or a normal receiver; there is no separate class for the two types. To achieve

this, each receiver contains a ptolemy.actor. process. BoundaryDetector object. An

instantiated BoundaryDetector iscontained ina receiver and provides the receiver with services for

determining if it is a BoundaryReceiver. A BoundaryDetector provides such services via a rather

expensive topological sort. Fortunately the result is cached and remains valid until achange in the

topology occurs. Branch objects are assigned to receiver pairs as appropriate and the receivers con

tain the appropriate methods tobe invoked by the Branch objects.

Prior to my extension, the ProcessReceiver. get () method contained no argument
and retumed a token ofdata (ptolemy. data. Token). Likewise, the put () method contained

ptolemy. data. Token as the sole argument with avoid retum value. To accomodate the pos

sibility ofbeing part ofaboundary, all ProcessReceivers must implement the following methods.

• get(Branch)

• put (Token, Branch)"^

When a Branch calls either the get () or put () methods of areceiver, then itpasses itself as the

Branch argument. When an actor calls the get () orput () methods ofa receiver the Branch ar

gument is set to null. My approach has very few receiver methods that are required solely for
boundary receivers. Two of these methods are (get () and put()). The other methods leverage
BoundaryDetectorwhich is asingleclass that can be used by every model ofcomputation. The result
is a very high level of code reuse.

4.4 Domain Polymorphism and Reorder Invariance

Domain polymorphism allows acomponent's model ofcomputation to be changed during
execution. The usefulness ofdomain polymorphismis that the semantics ofanetwork ofcomponents

*Token =ptolemy.data.Token and Branch =ptolemy.actor.process.Branch
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Contained

Actors

Input/Output Branches
Input Blocked,
Output UnBlocked

Input UnBlocked,
Output Blocked

Input/Output
UnBlocked

Internally
Blocked

• Wait until Output Blkd
• Deactivate Branches

• postfireQ = false

• Deactivate Branches

• postfireO = false
• Wait until Output Blkd
• Deactivate Branches

• postfireO = false
Externally
Blocked

• Wait until Output Blkd
• Register block w/container

• Wait until Input Blkd
• Register block w/container

• Do Nothing

UnBlocked • Do Nothing • Do Nothing • Do Nothing

Table 4.1. Actor and Branch States when a Process is Contained by a Process

Contained

Actors

Input/Output Branches
Input Blocked,
Output UnBlocked

Input UnBlocked,

OutputBlocked
Input/Output
UnBlocked

Internally
Blocked

• Wait until Output Blkd
• Deactivate Branches

• postfireO = false

• Deactivate Branches

• postfireO = false
• Wait until Output Blkd
• Deactivate Branches

• postfireO = false
Externally

Blocked

• postfireO = true • Wait until Input Blkd
• postfireO = true

• Do Nothing

UnBlocked • Do Nothing • Do Nothing • Do Nothing

Table 4.2. Actor and Branch States when a Process Is Contained by a Non-Process

can be modified in apredictable manner while maximizing code reuse. Domain polymorphism frees

a component to make only a minimal assumption about themodel of computation in which it will

operate. Acomponent can assume aparticular function but not be constrained to assume aparticular

style ofcommunication for the function's input and output data, since the communication style may

vary with the model of computation.

The Ptolemy n Actor Library package (ptolemy/actor/lib) consists ofa large set

ofdomain polymorphic actors. These actors do not assume aspecific model ofcomputation and are

intended for use with a variety ofthe models ofcomputation that come with Ptolemy II. Example

domain polymorphic actors are listed below.

• ptolemy/actor/actor/lib/Average

Outputs the average of M input values.

• ptolemy/actor/actor/lib/Clock

Produces a periodic signal.
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• ptolemy/actor/actor/lib/Gaussian

Generates random numbers according to a Gaussian distribution.

• ptolemy/actor/actor/lib/Sine

Produces anoutput thatisequal to thesin{) of theinput.

In Ptolemy U, all domain polymorphic actors attempt to consume input data through an input port
polling mechanism. This means that as a domain polymorphic actor iterates, itchecks each input
channel ina round robin fashion and consumes data when available. Theround robin order isbased

ontopology. Asan actor's channels are linked (connected) together, theorder inwhich theactor will

poll inputchannels is determined. Ifthe linking order ofan actor's input channels are changed, then

theorder of input channel polling will change as well.

Given the round robin polling mechanism ofPtolemy H, care must be taken when attempt
ing to execute adomain polymorphic actor in certain models of computation. If amodel of compu
tation isnot reorder invariant, then the use ofdomain polymorphic actors can lead todeadlock. The

possibility for deadlock isquite subtle but very deadly. Consider Figure 4.9 in which both actor A

and Bare domain polymorphic. Ifactor A's top port is linked before A's bottom port while 5's bot
tom port is linked before B's top port, then in around robin polling scheme actor Bwould attempt to

consume data from its bottom port first, while actor Awould attempt to produce data on its top port
first. In anon-reorder invariant domain such as CSP, this would lead to deadlock.^ Fortunately the
solution issimple. As long as the channels for actors Aand B are linked in the same order, deadlock

due to the round robin polling willbe avoided.

This type ofproblem iniUaUy was noUced with the Ptolemy II Butterfly Demo. Typically executed in the Synchronous
Dataflow (SDF) domain, auser attempted to execute the Butterfly Demo in the CommunicaUng SequenUal Processes
(CSP) domain. An inconsistency in the order oflinked channels served as one ofthe first clues to the issue ofreorder
invariance.
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Director

Figure 4.9. Deadlock Potential with Domain Polymorphic Actors
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Chapter 5

Conclusion

Whatgood is a newbom baby?
- Benjamin Franklin, 18'^Century'

In this dissertation, I consider the difficulty ofmodeling and designing complex, concur
rent systems. By concurrent I mean a system consisting ofa network of communicating compo

nents. By complex I mean a system consisting of components with different models of computa
tion such that the communication between different components has different semantics according
to the respective interacting models of computation. In Chapter 1,1 showed how the components in
acomplex, concurrent computational system are related to one another. I recognized that two par
ticularly important relationships found in complex, concurrent systems are the ort/er relation and the

containment relation. The order relation represents the relative timing ofcomponent actions within
aconcurrent system. The containment relation facilitates human understanding ofa system by ab

stracting asystem scomponents into layers ofvisibility. The consequence of improper management
of the order and containment relationships in acomplex, concurrent system is deadlock. Deadlock is

an undesirable halting ofasystem's execution and is the most challenging type ofconcurrent system
error to debug. In Chapter 2,1 showed that no methodology is currently available that can concisely,
accurately and graphically model both the order and containment relations found in complex, concur
rent systems. The resultofthe absence ofamethod suitable for modeling both orderand containment

is that the prevention of deadlock is very difficult. To fill this void Icreated the diposet.
B̂enjamin Franklin's question was made in response to the question "What good is ahot air balloon?"
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5.1 Primary Contributions

• Icreated the diposet for representing order and containment in complex, concurrent sys
tems. The diposet isa formal, mathematical structure that represents order and containment

relations in asingle entity. Chapter 2consisted of several theorems and proofs demonstrating
theability to rigorously manipulate diposets.

• I showed that the diposet robustly represents complex, concurrent computational sys
tems. I provided several examples that show that the diposet is well suited for graphically

modeling significant systems. My examples illustrated that diposets can represent a wide va

riety ofcommunication semantics including asynchronous and synchronous message passing.

• I described how diposets can serve as the core ofan automated compile-time deadlock

detection mechanism. I defined deadlock in Definition 2.10 and using this definition, I de

scribed a conservative approach for automatically determining the possibility ofdeadlock in

software systems modeled by diposets.

5.2 Secondary Contributions

• I introduced the conceptof reorder invariance. Reorder invariance is a characteristic ofa

model ofcomputation thatdetemunes thepossible orderin which communications canoccur

for components in aconcurrent system. Reorder invariance impacts how amodel ofcompu

tation supportsdomainpolymorphism.

• I implemented a software system tomodel and design complex, concurrent systems. My

implementation was part of thePtolemy Project led byprincipal investigator Edward A. Lee

at UC Berkeley. The software system used threads in theJava™programming language to

supportconcurrency. Complexdesignswerefacilitated througha run-timedeadlockdetection

mechanism that incorporated hierarchical, heterogeneity.
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5.3 Future Work

• Diposets and Static Methods

While I explored the use ofdiposets for modeling a very broad set ofsoftware constructs, I

did not consider static methods. Considering the best approach for modeling static methods

with diposets would extend the applicability ofdiposets and further justify their usefulness.

• Diposetsand Shared Memory

I applied diposets only to message passing systems. The set ofmessage passing systems is
large enough to single handedly justify diposets. Nevertheless, shared memory systems are

widely used (The Yale Linda Group^, Javaspaces™, etc.) and merit consideration for being
modeled by diposets.

• Implementation ofan Automatic Compile-Time Deadlock Detection Tool

Astudy ofthe feasibility ofan automatic deadlock detection system isneeded. It is certain that

such a tool will be computationally complex. An implementation will clarify the practicality

of such a tool.

5.4 Final Remarks

I have benefited tremendously from thework involved in thisdissertation. I look forward

totheopportunity toextend theconcepts contained herein and tocollaborate with other researchers

on improving and expanding these ideas for the betterment ofsociety.

See http://vvww.cs.yale.edu/Linda/tinda.html
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Effective comniiinication requires sl well defined vocnbulnry aswell asclear rules for how

to use thewords contained within thevocabulary. To precisely convey ideas and avoid misunder

standing, a vocabulary must clearly associate meaning tothe words the speaker uses. The notion of

associating meaning to words is embodied in the wordsemantics. WhenMichel Br6al introduced

this word in 1900, it referred to the study of how words change their meanings. Since 1900, the

meaning ofsemantics has itselfchanged and today semantics isgenerally understood as the study of

the attachment of meaning to words or sentences.

There are three major branches in the discipline ofsemantics: natural language, mathe

matical logic and programming languages. In the case ofnatural languages, meaning isassociated

with words and phrases asspoken and written by human beings. With mathematical logic the words

and phrases are expressions oflogic. With programming languages the words and phrases are key

words and variables. Mathematical logic and programming languages share the trait ofdealing with

arfiyicia/languages, inthat thelanguages ofmathematics and programming are designed. This isin

sharp contrast to natural languages which arenotdesigned andexistpriorto theirstudy ina semantic

framework.

A commonalitybetween languagesof all types is the requirement of an alphabet. An al

phabet is a set of symbols or characters such as a, tt and 5. Combinations of these characters lead



104

to strings ofwords and sentences. Alanguage is simply aset ofstrings formed from agiven alpha

bet. Language semantics assign meaning to the strings. The bedfellow ofsemantics is syntax. The

syntax ofa language provides rules for how characters can be correctly combined. Aprogramming

language requires asyntax and semantics which give meaning as well as rules for combining the key

words ofa language. Closely related to aprogramming language isamodel ofcomputation (MoC).

Informally an MoC is a programming language without an explicit syntax. There are three major
approaches tothe semantics ofprogramming languages: axiomatic, operational and denotational.

A.1 Axiomatic Semantics & Predicates

In axiomaticsemantics, the meaning ofa string 5 isdescribed in terms ofapre-condition

and post-condition. Apre-condition of5 is a predicate that holds true prior to the execution of5.

Similarily apost-condition of5 is a predicate that holds tme after the execution ofS. The goal of

axiomatic semantics is to use rules ofinference to deduce the effect ofexecuting aprogramconsisting
of a set of statements. For this reason, axiomatic semantics are particularly amenable to proving

properties about a given program.

A.2 Operational Semantics & Automata

Operationalsemantics defines an abstract machine with aset ofdata structures and opera

tions. The semantics ofthe abstract machine are assumed to be known. The semantics ofaparticular

programming language can then be described in terms ofthis abstract machine. The result isthat op

erational semantics specify how the state ofthe abstract machine changes as aprogram isexecuted,

orhow acomputation isearned out. This issimilar in spirit to the notion ofaHiring machine, which

iseffectively the canonical abstract machine. Operational semantics are particularly useful to com

pilerwriters but often involvetoo much implementation detail to be ofuse by others such as language

users.
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In order to fully specify operational semantics, atechniquemust be available for describing

the abstract machine. Most often, the abstract machine is represented by atransitionsystem [Hopcroft

and Ullman, 1979; Winskel, 1994; deBakker and deVmk, 1996; Lynch, 1996]. deBakker and de

Vink provide a very general definition ofa transition system asfollows.

Definition A.I. TRANSITION SYSTEM

A transition system, T, is a triple {Conf,Obs,->) in which

• Conf is a set of configurations.

• 065 is a set of observations.

• —Conf X Obs XConf.

•

Typically, the configuration ofa transition system isbased on anotion ofstate, an input symbol from

an input alphabet and insome cases a notion ofmemory (representing past configurations). The set

ofpossibleconfigurations ofa transition system consist ofboth initial andfinal configurations. The

observations ofa transition system are based upon actions that correspond to characters in an output

alphabet. Insome cases thesetofobservation actions can beempty, meaning that foreach transition

the null observation occurs. The transition relation indicateshow transitions can occur from one

configuration to another and the observation that results.

There are several concrete examples of transition systems that may be familiar to many

readers. Afinite automaton is a transition system in which the configuration is based on a finite

set of states,Q, and a finite set of inputsymbols, E. In the caseof a finite automaton, the transition

relation becomes a transition function inwhich thedomain isQx E and therange isQ. Apushdown

automatonaugments a finite automaton withan infinite stack. A Turing machine augments a finite

automaton withan infinitecapacitymemory. Ascanbe guessedbasedonthe memory augmentation,

a Ttiring machine is morecomplex thana pushdown automaton which is morecomplex thana finite

automaton.
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A.3 Denotational Semantics & Recursion

While operational semantics focuses on the "how" ofexecution, denotational semantics

focuses on the "what." Denotational semantics gives information on what mathematical function is

being computed by a program. Operational semantics describes a program in terms ofthe under

stood meaning ofan abstract machine. Denotational semantics describes aprogram in terms of the

understood meaning of mathematical objects. For each entity (string) contained within aprogram
ming language, amathematical object and function which maps the entity to the mathematical object
is defined. The mathematical objects can then be rigorously manipulated, unlike their corresponding
programming language entities. The name denotational semantics indicates thefact that mathemat

ical objects denote the meaning oftheir corresponding entities.

Denotational semantics observes two principles, the first being that a program computes
(or denotes) aparticular mathematical function. The second (often called the compositionalityprin
ciple) being that the meaning of aprogram is composed of the meanings of its syntactic parts.

Semantic denotationofamathematical function isrelatively straightforward ifthe function

happens to be finite (i.e., the domain is finite). In such cases, the function of the program is simply
the composition of the constituent functions at each step of the algorithm. Unfortunately, many in
teresting programs can only berepresented by infinite functions. How do we describe the behavior

of these infiniteobjects?

Clearly there are some infinite functions which are easy to describe. One example is the
identity function, I{n) = n. Nevertheless, there are many more infinite functions that can not be

easily described. Avery important class of infinite functions include recursive and/or indefinitely
iterative functions. Arecursive definition of agiven entity is one in which the name of the entity
"recurs" in its own definition. Areal world example of recursion can be found in two facing mir
rors. Ifone attempts to describe the image in one ofthe mirrors, the description will contain itself.

Engineering and mathematical examples of recursive functions include the factorial function and

feedback systems. In indefinite iteration the number ofrepetitions ofarepetitive operation are not
known apriori, leaving open the possibility of an arbitrarily large number ofrepetitions. Awhile

loop is an example of indefiniteinteration.

Recursion and indefinite iteration are interchangeable. Any function involving a while
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loop canbe rewritten using a recursive function and visa versa. Examples of recursion and itera

tion are pervasive inprogranuning languages. ^The popularity ofthese kinds offunctions isdue in

part to thefact that although they are infinite, they can beeasily specified using finite descriptions.

The key problem with arecursive definition isthat itmay not uniquely represent afunction.

Consider for example thefollowing recursive definition operating onthe integers:

={;f/ \ - if 71 = 0f{n) = ^ (A.1)
f(n + 1) otherwise

It isclear that /(O) = 1and hence that / applied toany negative integer isalso 1. Things become

less clear if we apply f to positive integers. To make this plain, note that the following functions

both satisfy Equation A.l:

fi(n) = ^
1 if n < 0

undefined otherwise

f2{n) =
1 if 71 < 0

2 otherwise

There isnoway todetermine whether / equals fi or/2 orfor that matter any one ofthe infinite other

possibilities. Part ofthe uncertainty relates tothe fact that our definition of/ itself depends on the

definition of/. We can eliminate confusion by re-writing / asan argument ofa function.

F{f;n) =
1 if 71 = 0

(A.2)
/(7i + 1) Otherwise

F, which is sometimes called sl functional, operates on a function and is completely defined. By

substition we have that Vti 6 do77ioi7i(/), F(/; 71) = /(71) or more succinctly F(/) = /. An

equation of thislatter form says that/ isSLfixpoint of F and hence theprogram computes a function

which is a fixpoint of F.

There are many fixpoints of F including fi and /2. Note that / is a function mapping

integers to integers and, as withall functions, wecan thinkof / as a set of ordered pairs. Thisbegs

the question, whichset of ordered pairs(e.g., / = /i or / = /2) is the best fixpoint solution for F.

^L. Peter Deutsch stated that toiterate is human but tolecurse divine. Peihaps the problem isour desire to meddle in
the affairs ofGod.
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The standard approach for selecting the best fixpoint is to define apartial order on the sets ofpossible

choices for /. In this case, set inclusion is used to order the sets. Thus, the fact that fi is asubset of

/2 means that fi is considered less than /2. Indeed, based on set inclusion /i is less than every other
possible fixpoint for F. We call this smallest fixpoint function the leastfixpoint, and this reasoning
leads us to interpret / as being equivalent to fi?

Dana Scott and Christopher Strachey developed denotational semantics in part to apply
the above reasoning torecursive functions inprogramming languages. Atthe core ofScott and Stra-

chey's denotational semantics isa theory ofcomputation developed by Scott known asdomain the

ory. Interested readers can find detailed expositionsofdomain theory in Davey and Priestley [1990];

Gordon [1979]; Stoltenberg-Hansen etal. [1994]; Tennent [1991]; Winskel [1994]. Additional dis

cussion on partiallyordered sets can be found in Section2.1.1 of this dissertation.

The intuition behind choosing the smallest function (or set ofordered pairs) for / is as follows. Smaller sets gener
ally provide more information about their contents than larger sets. Certainly, the set ofhuman beings (a very large set)
implies less information than the set of55 year old Nigerian males living in Alaska (a relatively smaU set). An emphasis
onmaximal information is common within theheldof computer science.
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