Copyright © 2000, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SIMULATION OF RTD-BASED
CNN CELLS

by

Martin Haenggi and Leon O. Chua

Memorandum No. UCB/ERL M00/51

20 October 2000

SIMULATION OF RTD-BASED
CNN CELLS

by

Martin Haenggi and Leon O. Chua

Memorandum No. UCB/ERL M00/51

20 October 2000

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Simulation of RTD-Based CNN Cells

Martin Haenggi and Leon O. Chua

Electronics Research Laboratory
Departement of Electrical Engineering and Computer Science
University of California at Berkeley
Berkeley, CA 94720
E-mail: haenggi@computer.org

Abstract

Resonant tunneling diodes (RTDs) have intriguing properties which make them a prima-
ry nanoelectronic device for both analog and digital applications. They excel in their size,
switching speed, and the negative differential resistance property, and they can readily be
integrated together with GaAs FETs. In this report, we present a simulator for Cellular
Neural Networks where the CNN cells are visualized in a grid structure, the values of
input and states being represented by colors.

Input and initial images can easily be generated and changed even while the integration
of the system is in progress, and an oscilloscope function allows the quantitative study of
CNN transients, thus providing insight into the dynamics of the network. The simulator
is written in Java and thus runs on a wide range of computer platforms.

1 Introduction

In this report, we will focus on CNNs with n = MN identical cells on a two-dimensional
rectangular grid and spatially invariant coupling laws, using the same notation and terminology
as in [1]. z;;(t) is the state, y;;(t) the output, u;; the (time-invariant) input, and z;; the threshold
of the cell C;; at position (i, j). Assuming that the coupling is linear, the dynamics of the network
is governed by a system of n differential equations,
d%z(tl = —zi(t) + Y (@roigmjthis(t) + broitmjurt) + 2ij + By (1)
k,lGMj

(¢,7) € {1,... , M} x {1,... , N}, where N;; denotes the neighborhood of the cell C;;, and ay;
and by, are the feedback and control template parameters, respectively. Since the cells on the
margins of the CNN do not have a complete set of regular neighbors, the CNN is assumed to
be surrounded by a virtual ring of cells whose input and output is constant (Dirichlet boundary
condition) or determined by regular cells (zero flux or periodic boundary condition); their
contribution is given by the quantities 3;;. The output function f(-) : R = R is a monotonically
increasing function, and y;;(t) = f(z:;(t)) is the output equation of the standard CNN.

If we restrict the neighborhood radius of every cell to 1 (nearest neighbors, Fig. 1) that z;;
is constant over the whole network, the cloning template {A, B, z} is fully specified by 19
parameters, namely the two 3 x 3 matricesl A = {ay} and B = {by} and the value of z. For
notational convenience, these 19 parameters are often rearranged into a single one-dimensional
vector 7 € R!?, henceforth called a template vector or, biologically inspired, a CNN gene.
Denoting the nine entries in A and B by

a, a2 as by by b3
A= ag as ag B= b4 b5 bﬁ N
ay; ag Qg bT b8 b9

en Ci2 Ci3 Cis
€2y €. Ca3 Cas
[€32 €33 C3s
Cq; Ca2 Ca3 Cas

Figure 1: Topology of a planar CNN with neighborhood radius 1.

the corresponding CNN gene is

T= [0'17 az, az, a4, as, a¢, a7, ag, a9, bl’ b2’ b33 b4a b;')a b67 b7v b87 b91 Z] .

2 The RTD-Based Cellular Neural Network

Nanoelectronics offers the promise of ultra-low power and ultra-high integration density. Among
the different nanoelectronic devices discovered and studied so far, the resonant tunneling diode
[2] has a prominent position. Its intriguing properties are its extreme compactness, picosecond
switching speed, its non-monotonic voltage-current characteristics, and its possible monolithic
and vertical integration with GaAs FETs [3].

For CNN architectures with array sizes in the order of 1000 by 1000 cells, the use of nanos-
tructures is a prerequisite, since such integration densities are far beyond what can be achieved
by downscaling conventional CMOS devices. Due to its negative differential resistance property,
the RTD is a promising candidate for such nano CNNs. Different models of CNNs based on
RTDs have been proposed recently [4-7]. They are based on the negative differential resistance
property of the RTD. Fig. 2 displays a typical I-V characteristics of the RTD. The peak and
valley currents and voltages can be tuned in the design process.

An important research tool for such nonlinear nano-circuits is a versatile simulator which
provides insight into the dynamics of the network. This is where the simulator presented in this
report comes in.

3 Simulation and Visualization of the Dynamics of RTD-CNNs

The basic idea was to create a visualizing CNN simulator that allows to track how the state
trajectories evolve, thus gaining insight into the behavior of CNN dynamics. The simulator
permits the graphical creation of an input image, an easy change of template values, and
instant visualization of the resulting effect on the individual CNN cells.

The simulator numerically integrates a CNN defined by (1) of default size 20x20. The cloning
template is restricted to the nearest-neighbor case and assumed to be spatially invariant. The
graphical user interface (GUI, Fig.3) provides two M x N grids representing the input u;; on
the left grid, and the state z;;(t) or the output y;;(¢) on the other. White pixels represent the
value of -1, black pixels +1. When the color of a cell turns red it means that its state z;;(¢) is
greater than 1, whereas green cells signify z;;(t) < —1. For the values in between, a grey-scale

04 T T T v v

0.35}F R .) . . A

Current [mA]
o [~]
S 9o K ©
an N (4] W

(=4
-
T

% 02z o024 08 08 1 12 14
Voltage [V]

Figure 2: Typical current-voltage characteristics of a resonant tunneling diode.

is applied. A useful feature of this simulator is that it permits toggling input and state values
not only before starting the simulation, but even during the integration process which enlarges
the scope of interesting investigations.

The simulator is based on all the features of an earlier version [8] which was designed for
standard CNNs, and its operation is very similar. However, its functionality, is greatly enhanced,
which permits the user to carry out far more interesting experiments within a broad range of
theory and design.

In addition to the two grids, the user interface consists of buttons, numerical fields, and menu
cards (choices). Temporarily inactive buttons and menus appear in light gray, and values in
numerical fields may be mutated only when their background is white. Any mutations have to
be confirmed by hitting the key on the keyboard or by pressing the button, if
any.

Most features are accessible through the main menu in the lower left corner of the GUI
(Fig.3). When starting, the menu card Templates is open; by clicking on it, the menu cards
Input&State, Size&Boundary, Perturbation&Robustness, Model, Trajectory Viewer, and Library are accessible.

3.1 Cloning templates

In a submenu of the Templates choice that shows Manual input when the simulator is activated, the
user can either choose a template set from a predefined list, or enter these parameters manually
(Fig.4). Note that only if Manual Input is selected, the values may be altered manually. As
template parameters, any valid mathematical expression consisting of the addition, subtraction,
multiplication, and division operators (+, —, *, /), real numbers, and a parameter q is allowed.
If an invalid expression is entered, an error message appears in the status line (in the lower
right corner) saying “Parser: argument not valid” and the previously selected template set remains
active. The parameter q is specified in the lower right corner of the Templates menu and must
be nonnegative. By means of g, template scaling is achieved in a comfortable manner.

In the lower right corner of the GUI, the effective cloning template is presented — the
dependencies on ¢ are resolved.

i

Time t = l oo
Settling Time Ts = I o0

Input U= State ¥ = |

invert | ail -1 | alo| al+ | iwert | all -1 | a0 | all+1 | Initial State :

Templates : = [Templates :

1.
1.
1

oo

— | Aodly | Ciear |

g d d o

coo o-o
= NN =] ooo
os0
o000
oo o-0
(o om Y om | o000

1= 05

=]
Q
=5
E=3

2 L Initial State X(0): X
= ¥ = { ¥
o 3 e Status : No errors occured.

ﬁl Reset 5

Figure 3: The graphical user interface of the simulator.

Manual Input : ey Apply Clear

=15 -2 |d

i -~

A= 95 (118 118 B= ‘g i d

g i-14 id i d id

ISI=REY g a= {1g

== SEL L s s ol e o

Figure 4: The Template menu.

o] b1 | ad0 | whet |

| ab| afo a1 wisloim: S| pust]

Figure 5: The grids for the input and the state (or output).

3.2 Creating input and initial state images

The simulator provides two grids representing the input u (on the left side) and the state x(t)
or the output y(¢) (on the right side) of the CNN cells as shown, for example, in Fig.5. The
button above the right grid toggles between |State X=| and |Output Y= |, indicating whether the
state or the output is currently shown in the grid. Regardless of the CNN dimension, regular
cells within the CNN boundary are always represented by squares. They are surrounded by the
boundary cells which have only half the width or height.

Note that the predefined templates in most cases prescribe the initial state to be £1, 0 or
identical to the input image. (See the initial state indicator in the lower right corner.) In the
case of X (0) = U, any changes in the input grid will be copied to the state grid. Nevertheless,
the initial state may still be altered manually. Such modifications cause the word modified to
appear in the Initial State X(0) line. The initial state is saved in an internal register and is reused
for the next simulation, unless the button is pressed, which causes the current state to
be taken as the initial state for the following run. retrieves the original state from the
internal register.

At any time, any cell in either of the grids may be changed by clicking in the respective
square. If the mouse button remains depressed while moving in the grid, several cells can be
set to a new value. As default, the cells are set to +1, i.e., black, when being clicked on. To
change this value, the /nput&State menu card has to be selected (Fig.6). 5 values (-1, —0.5, 0,
0.5, and 1) are predefined and may be selected by clicking on the round knobs. Any other value
is to be entered in the Manual field. Note that values of magnitude greater than 1 are permitted.
A useful alternative is Toggle. When activated, the sign of the value is toggled by a click of the
mouse.

At the bottom of this menu card, a hint is given: by simultaneously pressing the key
on the keyboard and the mouse button, the value of a cell is displayed. This works for both
regular and boundary cells.

Below the grids, four buttons allow the manipulation of all cells simultaneously when the
simulation is suspended or stopped; inverts the sign of their values, whereas [all -1],

[all 0], and sets all cells to —1 (white), 0 (gray), or +1 (black), respectively.

Input & State : T J

Choose one of the values and paint the grids.

O lop | o N W
-0.5 0.5 1.0

-10 0.0
™ 10) Toggk

]

Manual

Tp: To view the value of one specific czll use SHIF T+ Mouse.

Figure 6: The Input&State menu.

START | HiGREai:| HI0H d Fo :
Speed v= Ho {

Figure 7: The integration control panel.

3.3 Control of the integration process

To control the integration process, three buttons are provided: [START |. [SUSPEND |. and
(Fig. 7). The simulator has to be stopped manually, i.e., it continues integrating indefinitely in
order to support the possibility of changing pixels “online”. When the process is suspended,
the button turns into a button. By means of the Speed bar. the integration
process can be slowed down. A value of 10 indicates maximum speed (no wait states), whereas
for decreasing speed values. an increasing number of wait states is included in the integration
loop. The value is adjustable either by moving the scroll bar within the two arrows, or by
typing it directly into the numerical field below.

3.4 CNN size and boundary conditions

Valid CNN sizes range from 1 x 1 up to 50 x 50. To compensate for unequal numbers of rows
and columns, the blue margin around the grids is adjusted to keep the cells square. The grids

are repainted as soon as the key is hit on the keyboard or the | Apply | button is pressed

in this menu (Fig.8). Invalid (nonnumerical) entries will reset the size to the default value of
20, the button does the same for both dimensions. For the input, a fixed (Dirichlet)
and a periodic (toroidal) boundary condition are available, for the state, a zero flux (Neumann)
condition is provided as a third option.

3.5 Examples

The mathematical model of the RTD-CNN cell can be chosen arbitrarily. For the cell discussed
in [7], for example, a piece-wise linear approximation of the RTD characteristics is used:

See & Boundary : ey l

CSeeciowi: mwyerow:
! periodic
Columns : ’ 16 Smwe: {8 3 -1

) perodic) zero flux

Apply | Hesetl : Apply I Reset

Figure 8: The Size&Boundary menu.

Ujj Tij Yij
o R o
RTD C LL:-‘J' L‘:u‘ I
“@ X =T O O O

Figure 9: The circuit representation of an RTD-CNN cell.

i(v) = av + Bl + Vol = [v = Vyl) + (v + Vel = o = Vl) @)

where a, 3, and v are positive coefficients, and V,, and V,, are the peak and valley voltages,
respectively. Similarly. I}, and I,, denote the peak and valley currents. The circuit representation
of this type of cell is shown in Fig. 9.
The dynamical equation is
dLE,;j(t)

el —g(zi;(t)) + z (ak—i1—jij(t) + bk—ig—jur) + 2ij + 84, (3)

"'711 E.N‘m_;'

where g(-) represents the /-1 characteristics of the RTD. Note that for this particular cell, state
and output are identical. Such equations can be entered in the simulator in a straightforward
manner.

Example 1 (Horizontal line detection (HLD))
The RTD-CNN permits also the simultaneous detection of the ending points of horizontal lines.
With

A=[000. B=[121], I=-2, (4)

the steady state of the endings will be precisely 0, whereas the inner points of the lines and the
background are black and white, respectively. An example of an input/output configuration is

(a) Input image (b) Output image, g=1.

Figure 10: Horizontal line detection with RTD-CNN.

o
=
Gk BT R

(a) Input image (b) Output image, g=1. (c) Output image, q=0.16.

Figure 11: Edge extraction with RTD-CNN.

given in Fig. 10.

Example 2 (Edge extraction)
The template for this operation is

0 0 0 0 —q 0
A=|1000]|, B=|-g9g 4 —q |, I=0.
0 0 0 0 —q 0

Fig. 11 shows the input image and the output images for ¢ = 1 and ¢ = 0.16. The RTD-
CNN discriminates between edge cells (black), cells around the edge (white), and “background”
cells, whose steady state is 0 (gray). For smaller ¢ (Fig. 11) (b), corner cells can apparently be
separated from other edge cells. To achieve binary output, as in the standard CNN, we may
either set the self feedback to 1 or use a bias of —¢. For corner detection. a5 may be set to 4.

Any implementation of the network has an upper limit for the state voltage swing; for the
next example, we assume that the cell circuit is designed in such a way that the state is limited

Figure 12: The trajectory viewer.

to £1. In the simulator, this boundary can be set in the Mode/ menu.

Example 3 (Connected component detection (CCD))

CCD, also called horizontal hole detection, is a row-wise operation that reduces connected
components (i.e., contiguous blocks) along the horizontal direction to a single pixel and shifts
them toward the right with a one-pixel separation (Fig. 13).

A=[11 -1, B=[0], I=0, (5)

3.6 Trajectory viewer

The state grid with its colored cells provides qualitative information on the dynamics of the
CNN. To examine the transients more quantitatively, a trajectory viewer is included in the
simulator. It has its own window and works like a five channel oscilloscope, plotting the state
of up to five cells versus time. Fig.12 shows an example of the transients of five cells for a
connected component detection (CCD) task.

The cells are selected by pressing the key and simultaneous mouse-clicking. The
trajectory viewer window is invoked as soon as the first cell to be examined is selected. All
cells that are under investigation are marked by a small colored triangle; the color corresponds
to the color of the plot in the trajectory viewer. Note that there is an upper limit of five cells.
To deselect. —click again. If the last cell is deselected, the window will disappear — it
cannot be closed manually.

Fig. 13 depicts the initial and steady states for the CCD operation whose transients are
visualized in Fig. 12. Since CCD is a row-wise operating task, the number of rows was reduced
to one. As a default, the time axis ranges from 0 to 10, the x axis from —5 to 5. In the Trajectory
viewer menu (Fig. 14), these values may be changed to zoom in on a particularly interesting part
of the transient, or zoom out to get an overview over a longer section. Modifications will clear

: O

(a) Initial state. (b) Steady state.

Figure 13: Connected component detection. The colors of the small triangles correspond to the color in
the trajectory viewer (Fig. 12).

Figure 14: The Trajectory viewer menu.

up the window and replot the #- and z-axis. Another possibility to examine the trajectories
in more detail is of course to change the size of the window. This is possible even when a
simulation is running, and will result in immediate replotting of the curves.

4 Summary and Concluding Remarks

A simulator for the class of two-dimensional, spatially invariant cellular neural networks with a
neighborhood radius of one has been presented. It is written in Java and runs on any virtually
any hardware platform.

The key idea behind this simulator is to graphically display the input and the state or output
of all CNN cells, which allows the user to conveniently examine the CNN dynamics. The input
image can easily be generated by a few mouse clicks, and template values may be chosen either
from a predefined set of image processing or pattern formation applications, or entered manually.
Furthermore, input image and states may be altered while the integration is in progress.

In summary, the simulator permits the incorporation of any mathematical cell model and,
hence, provides a useful tool when designing and exploring CNNs which are based on nanoelec-
tronic devices such as RTDs.

Acknowledgment

This work was partly supported by the ONR grant N00014-99-1-0339 and by the MURI ONR
grant N00014-98-1-0594.

10

References

[1] L. O. Chua, “CNN: A Vision of Complexity,” International Journal of Bifurcation and

[2]
[3]

[4]

(5]

[6]

[7]

(8]

Chaos, vol. 7, pp. 2219-2425, Oct. 1997.

H. Mizuta and T. Tanoue, The Physics and Applications of Resonant Tunnelling Diodes.
Cambridge University Press, 1995. ISBN 0-521-43218-9.

K. J. Chen, T. Akeyoshi, and K. Maezawa, “Monolithic Integration of Resonant Tunneling
Diodes and FETs for Monostable-Bistable Transition Logic Elements (MOBILEs),” IEEE
Electronic Device Letters, vol. 16, pp. 70-73, Feb. 1995.

R. Dogaru, L. O. Chua, and M. Hénggi, “A Compact Universal Cellular Neural Network Cell
Based on Resonant Tunneling Diodes: Circuit Design, Model, and Functional Capabilites,”
in IEEE International Workshop on Cellular Neural Networks and their Applications, (Cata-
nia, Italy), May 2000.

M. Hinggi, R. Dogaru, and L. O. Chua, “Physical Modeling of RTD-Based CNN Cells,” in
IEEE International Workshop on Cellular Neural Networks and their Applications, (Catania,
Italy), pp. 177-182, May 2000.

M. Hinggi, L. O. Chua, and R. Dogaru, “A Simple RTD-Based Circuit for CNN Cells,” in
IEEE International Workshop on Cellular Neural Networks and their Applications, (Catania,
Italy), pp. 189-194, May 2000.

M. Hinggi and L. O. Chua, “Cellular Neural Networks Based on Resonant Tunneling
Diodes,” International Journal of Circuit Theory and Applications. submitted for publi-
cation.

M. Hénggi and G. S. Moschytz, “Visualization of CNN Dynamics,” Electronics Letters,
vol. 33, pp. 1714-1716, Sept. 1997.

11

	Copyright notice 2000
	ERL-00-51

