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Abstract

Motivated by the increasing popularity of the Web-based applications, we have designed
a new transport protocol, called WebTP, that is suitable for today's complex network envi
ronment. Leveraged on the research work in the past decade on TCP and UDP, our transport
protocol integrates and implements various recommendations for protocol improvement. It
is a general-purpose protocol that promises to improve the performance of a diverse class of
applications, including short-interactive transactions, bulk file transfer, real-time and non-
real-time media streams. It supports fine-grained and application-specific control, which
includes: application-level firaming (ALF), reliability control at the level of application data
unit (ADU) and user-centric bandwidth management. In WebTP, the network condition is
constantly monitored and is visible to the application through a set of application program
ming interface (API). The applications can adapt to the time-varying network condition.
The connection-oriented protocol has a fast option that bypasses connection setup in a
controlled fashion and can improve the response time for interactive connections. WebTP
uses an abstraction, called pipe, which is the communication channel between a pair of IP
end-hosts. Because many connections between the IP pair can be multiplexed into the pipe,
the resulting traffic becomes smoother and can be more readily controlled. Moreover, due
to the concentration of the available bandwidth, quality-of-service (QOS) provision becomes
possible through differentiated treatment toward the connections within each pipe. Specifi
cally, the pipe bandwidth is allocated to the connections through a scheduler that provides
bandwidth-guaranteed service, delay-guaranteed service and best-effort service jointly. In
the paper, we contrast our end-to-end, layer-4 approach to QOS provision with those layer-3
approaches. In the area of congestion control, our goal is to speed up the start-up phase of
a pipe while reducing protocol-induced packet losses, as compared with TCP. We achieve
this by enhancing the window-based congestion control with the help of the observed rate
information.

Kejrwords: architecture, protocol, transport protocol, QOS, application-level framing,
scheduling, congestion control, reliability control, TCP, UDP, bandwidth allocation, slow
start, congestion avoidance, pipe, ADU
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1 Introduction

1.1 History of the WebTP Project

The objective of the WebTP project is to optimize the performamce of web-based applications
based on the user's preferences. Consider the following single-user scenarios.

Example 1 Suppose the user maJses a request to retrieve a familiar web page that
contains numerous objects, such as images and blocks of text. Assmne that he is allocated
some fixed bandwidth in the network path. Hence, the total transfer time for the web page
is fixed. If the user's satisfaction depends only on the time when the entire page is received,
then very Httle can be done to improve his satisfaction. However, it is reasonable to assume
that each object in the web page has certain value to the user, and the user receives certain
utility as he receives each object. The user can then exploit the differences in the values of
the objects. For instance, he might prefer to order the object transfer in such a way that gives
him the most utility at any fixed time. In practice, the user can specify either the utility or
the transfer order at various degrees of precision based on the knowledge he has about the
page, or based on his general knowledge about a laxge number of similar pages. Alternatively,
if the user has no information about the page and cannot specify his preferences a priori, the
server may know what an average user prefers based on its experiences with a large number of
users. In a separate paper [30], we have systematically explored the computational aspect and
application-level implementation for ordering the transmission of objects to improve the user's
satisfaction. In this paper, we present the transport support required by such a featmre.

Example 2 Suppose the user opens a connection to a CNN server and receives video

programming, and at the same time browses the CNN web site. The user prefers to receive
the video at the required bandwidth and use the leftover bandwidth for browsing. Later, the
user decides that a smaller video window suffices. He adjusts the bandwidth assigned to each
connection by using a separate bandwidth control application. Transport mechanisms and their
associated APIs are required for the user to statically or dynamically allocate bandwidth to his
connections. This scenario applies to information delivery/retrieval from rich content servers.
A slightly more general scenario can also take advantage of such transport mechanisms. While
watching the CNN video news, the user browses web pages on different servers located in
different geographical areas. All connections are bandwidth-limited at the same link in the
network, which might be the user's access line to the Internet, or a line at his Internet Service

Provider's access network.

Example 1 and 2 are single user scenarios in which the total bandwidth allocated to
the user is fixed. Optimization takes place when the user trades off bandwidth assigned to
each of his connections or when he arranges the transmission orders of objects within a single
connection. Initially, the WebTP project is aimed primarily at the single-user optimization
problem in which the resource limitation is the user's access line [13]. Improvement in the
Internet access speed with the help of DSL or cable modem does not diminish the importance
of this optimization by much. Firstly, the fast growing wireless data services mainly rely on

low-speed transmission technology. Secondly, we have shown in [30] that the Smallest-Object-
First transmission schedule leads to significant performance improvement perceived by the user
even at the access speed of 380 Kbps and 1.5 Mbps. Furthermore, as the speed of access lines

increases, the web contents also scale up their bandwidth requirement. Today's fastest access



line speed is still far below what is required by the full-motion picture. The need to trade-off
bandwidth assignment to different connections will still be there for very high speed Internet
access.

Transport support for user-centric optimization has led us through a critical investigation
of the transport functions. We have found that TCP and UDP lack some important features

that can support some obvious optimization in data transmission. New transport provisions

needed to support single-user optimization also support multi-user optimization, where the
optimization criterion is the total user-satisfaction for all users bottlenecked at the same link
in the network. Multi-user optimization is closely related to the notion of quality-of-service

(QOS) guarantee. Roughly, an optimizing service must guarantee the required service quality
for every user when the network resource permits. When the network resource is insuflficient,
some connections should not be admitted for service and the QOS should be guaranteed for
the admitted connections. An optimizing approach for the admission decision should admit
those connections so that certain performance measure is optimized. Without QOS support,
some Internet applications such as IP telephony will not be as attractive as they could have

been. Multi-user optimization problem is typically transformed into a scheduling problem for

connections from all users.

In this paper, we will examine carefully the requirements as well as the capabilities of the

transport layer. We argue that there are compelling reasons to design a new transport protocol

that subsumes the functions of TCP and UDP as well as provides improved or added features.
We will present the WebTP transport protocol, its architecture, and some control algorithms.
At various places, we discuss the motivations for each of the new features.

1.2 Overview of the Transport Requirements and Functions

Optimization of data communication can take place (i) at the sender and/or receiver, including
the application layer, any layer of the networking protocol stacks, and other aspects of the

operating systems, or (ii) within the network, such as the routers and switches. Although the
transport layer typically sits on the end-systems, it interacts with the networking layer and
can achieve results that have network-wide effects. For instance, some rate allocation schemes

use algorithms running at the transport layer. Since the end-to-end control of the network is
often far easier to deploy than the router or switch-based control, it is natural to for us to
concentrate on the transport layer for our optimization goals. The Internet has been rapidly
evolving and becoming increasingly complex in terms of both the types of hardware devices
and the types of applications. We beheve that the end-to-end approach for network control will

remain appealing.
The diversity and complexity of the network applications are typified by the web-based

applications. We briefiy siunmarize them here. More details can be found in [29].

• Multiple network applications run simultaneously on a host computer, and each apphca-
tion may open multiple connections, possibly destined for different remote hosts.

• Multiple media types with a wide range of quality requirements coexist. In terms of
connection duration, some connections have short lifetime, in the order of sub-seconds,
and others are stream-based long-lived connections, such as broadcast video. In terms of
bandwidth requirement, as DSL and cable modem technologies become more available, we



are likely to see video applications with bandwidth requirement on the order ofmegabits
per second. In terms of reliability requirements, file transfers and video/audio delivery
have very different requirements. In terms ofthe response to the network congestion and
bandwidth fiuctuation, some real-time applications are completely inelastic and cannot
react to the network congestion. Some real-time application can adapt to the network
conditions in application-specific ways. File transfers are mostly elastic and can delegate
the entire control to the transport layer.

• Interactive applications, such as web browsing and Internet games, are significant part of
the Internet. Communications ofthis typeare transactional, or request-response oriented.
The replied messages are oftensmalland connections oftenhave short life span. A content-
rich web page can have many inline images or Java scripts downloaded firom difierent
servers. Rapid connection establishment can help to reduce the latency of web browsing.

• Each replied message of the transactional application is typically an object with well-
separated semantic boundaries and identifiable utility to the user. The ordering rela
tionship among the replied objects can be very fiexible. Stream-based media also has
identifiable boundaries within the stream.

• "Greedy" applications without congestion control have become common, which endanger
the Internet's stability.

• The Internet is increasingly segmented into administration domains. Each domain may
have a number of "supper" servers or server clusters where the traffic is heavily concen
trated. These "supper" servers may be the gateways to the domain, web cache servers,
or other content or e-commerce servers. These servers are natural focal points of traffic
management and QOS provisioning.

The requirements for the transport layer by the new development of the Internet can
be adequately summarized by an IETF meeting [16]. The WebTP transport architecture is
designed to satisfy most of these requirements, in addition to its basic philosophy of provid
ing mechanisms to support user-centric optimization. The designers of the WebTP transport
attempt to build a comprehensive transport protocol based on the collective research and ex

periences of the last two decades. Features listed in [16] that are supported by the WebTP
transport protocol are printed in itaUc below.

• quick establishment/activation of connections^ which is in tension with security consider
ations (authentication, fiooding - not holding state)

• support for application level framing

• visibility into network conditions; control over reliability

• the ability to supercede previous application messages

• want to deal with transport at a frame' granularity (record marking)

• per-message priority control

• minimize state requirements; think of servers with le6 connections



• muxing: PDUs muxed, delivered ASAP, Want ACK aggregation across the different com
munication streams; isolate flow-control; QoS consciousness between the streams.

• failover: transport connection can survive across change in IP address

• on connection attempt, SYN timeout are viewed as expensive

• mid-stream, need to switch to backup interfaces

• Congestion control

• slow start hit (bursty vs. even flow)

• snappy after idle (bursty vs. even flow)

• optionally becoming aggressive during loss (for control traffic whose job is to stem the
congestion); e.g., FEC

• transaction-level reliability

• small footprint

• ability for application to indicate "a reply is coming" versus "no more coming now, go

ahead and ack, don't delay"

More detailed transport requirements can be found in [29]. In [29], we have partitioned
the transport functions into network functions, which are those functions related to the network

ing aspect, and application-support functions, which are more directly linked to applications.
It is important to point out that the boundary of the partition is not sharp. •For instance,
rate allocation or scheduling is an example of both, and is dependent on the network condi
tions. Since the two sets of functions often require the same underlying knowledge about the
network, network measurement is also an example of both. In the case of TCP, congestion
control is a network function. Rate allocation is achieved implicitly through the congestion
control algorithm and therefore is more a network function. Reliability control is primarily an
application-support function, with the exception that loss detection is also used to adjust the
congestion window size.

1.3 Overview of the WebTP Features

In the design of WebTP, efforts have been made to separate the network functions and the

application-support functions, reliability control and congestion control, and congestion control
and rate allocation. The first separation has resulted in the distinction of a connection and
a pipe. A connection exists between a pair of applications on two hosts and provides the
application with a logical view of the communication channel. It does not participate in the
network monitoring and control. A pipe is an abstraction of the network path between the
host pair. It monitors the network path and participates in the control of the network path.
Typically, many connections between a pair of hosts are multiplexed into a single pipe. In
the TCP/IP world, although the TCP port number alone is enough to specify the application,
each TCP connection serves a single application. Multiple TCP connections between the same
host pair are un-coordinated. In WebTP, by multiplexing connections into a pipe, several



advantages can be achieved. First, because connections are lightweight objects compared with
thepipe, applications have more freedom inopening connections without performance penalties.
Second, since a pipe ispersistent, quick establishment ofconnections ispossible. Third, because
the pipe abstraction encourages aggregation of traffic from many connections and because the
aggregated traffic can be much more smooth, congestion control can be made more effective.
Fourth, differentiated services can be provided to connections by centralizing the bandwidth
at the pipelevel and redistributing it to the connections according to their QOS requirements.
The ideaofintegrated congestion control and its benefit can be found in many previous studies
[8] [25] [12] [27] [5] [6] [28] [26] [3]. Adiscussion about these proposals can be found in [29].

The conceptual separation of reliability control and congestion control helps the trans
port designers to trade-off fiexibility with efficiency. Since reliability control is inherently an
application support function, it should cater the specific requirement of each application. Its
tight coupling with congestion control hinders this capability. On the other hand, by sharing
certain aspects of reliability control and congestion control, the protocol can be made simpler.

With the first two notions of separation, we aimed at designing a protocol with inte
grated congestion monitoring at the pipe level, and highly customizable reliability control at
the connection and ADU levels. By sharing loss detection between the two, the complexity and
overhead of the protocol are both reduced.

The separationofcongestion control and rate allocation is possible because they typically
operate on different time scales. It is also necessary when the QOS needs to be guaranteed,
since the notionof rate ultimatelyhas meaning at the connection level while congestion control
occurs at the pipe level. This separation allows us to design different strategies to cope with
network congestion and at the same time to satisfy individual connection's need.

We willsummarize the transport capabilities of the WebTP transport layer.

• The transport supports fine-grained and application-specific control, which includes

- Application Level Framing (ALF) [7]. The transport layer is aware of and respects
Application Data Unit (ADU) boundaries. Because the application buffers most of
data, the application can dynamically control transmission of ADUs based on the
network condition and application's requirements.

- Per-ADU-based reliability control.

- Priority control at the ADU level.

- User-centric bandwidth and priority management for the connections.

• Congestion monitoring is integrated across connections between a pair of network hosts.
However, congestion control can be at the granularity of a connection. Trade-off among
connections at a very short time scale is possible through scheduling.

The network condition is visible to the application through a set of rate-related APIs and
through backpressure from the transport queues. The application and connections have
control over the bandwidth usage.

WebTP supports traditional three-way handshake for establishing a reliable communica
tion channel. It also has a feature for quick establishment/activation of communication
channels, which does not compromise secmrity arbitrarily.



• The transport is versatile and has a good level of generality. It can emulate TCP and
UDP in a number of ways, and can be configmredas a mixture of TCP and UDP in various
ways. It supports four traffic classes: short interactive traffic, bulk file transfer, real-time
and bufiiered media streams.

• The protocol provides QOS support through a sophisticated and fiexible scheduler.

• Congestion control uses measured information about the network. It aims at reducing
the protocol induced packet losses and quick ramp-up of the initial transmission rate.

In the remaining part of the paper, we will introduce the essential elements of the WebTP
protocol: its architecture, algorithms and their motivations. In the discussion section, we will
examine some of the WebTP's design philosophies and contrast them with other ideas and
approaches. We will end the paper with a note on future research direction regarding WebTP.

2 WebTP Transport Architecture: Protocol and API

2.1 An Overview

The layered structure of WebTP is shown in Figure 1. Between the apphcation and the transport
layer is the socket interface, resembling the Berkeley Socket Interface. The transport layer is
divided into Flow Management (FM) Layer, where connections and ADUs are managed. The
functions of the FM layer includes

• connection setup, teardown and management

• pipe setup, teardown and management

• ADU management, which includes accepting ADUs fi:om the application for transmission,
receiving ADUs from the network layer and delivering of the ADUs to the application,
segmentation of ADUs into packets and re-assembly of packets into ADUs, and managing
reliability of ADUs.

Measurement

Application

Socket Interface

Flow Management

Network Control

Congestion
Manager

Scheduler

Figure 1: WebTP layered structure

Here we refer the duplex communication channel between a pair of IP end-hosts as a pipe. A

connection, on the other hand, terminates its two endpoints at the application level. Multiple

connections can be multiplexed into a single pipe. Figure 2 illustrates the relationship between
a pipe and connections. The connection in WebTP is a lightweight structure whose purpose



is to provide the application with a simple logical view of the communication channel. A pipe
establishes the actual end-to-end path in the network, probes the available bandwidth on the
path, and participates in congestion control.

Host 1 Host 2

Application 1 Application 2 Application2 Application1

Connections

Pipe

Figme 2: Relationships of applications, connections and pipe

The layer below the FM layer is the Network Control (NC) layer, which has a Congestion
Manager module, a Scheduler module and a Measurement module. The Measurement module is

responsible for monitoring the congestion situation of the network path, i.e. the pipe, as well as
for measuring the rate and other statistics of the network path that are relevant for the control
algorithms. This module also measures the bandwidth usage by the outgoing or incoming
traffic of each connection. The pipe-level congestion manager can exploit the regularity in the
traffic statistics measured across all connections in a pipe. The Scheduler module performs rate
allocation for the connections by scheduling transmission of packets from each connection. It
should respect the ADU boundaries in that it always tries to complete transmission of an ADU
before starting transmission of a new ADU.

The main challenge in the transport design is to manage the complexity due to the
required fine-grained control of reliability, connection scheduling and integrated management
of congestion for the pipe. The transport needs to manage the ADUs, connections, and pipes.

2.2 Application-Level Framing

One of the objectives of WebTP is to provide support for arranging transmission orders of
objects in a web page. An application-level object is represented by a WebTP ADU. Since the

meanings of objects are application-specific, the framing of ADUs is done at the application
level. For the same reason, the application should be responsible for scheduling the ADU trans

missions, including ordering and dynamically re-ordering ADUs, changing an ADU's reliability
requirement, and canceling the transmission of an ADU. The application should buffer ADUs
and only send them to the transport layer when they can be transmitted immediately. Since

we expect very few ADUs buffered at the sender side of the transport layer, the transport does
not support re-ordering of ADUs or canceling of ADUs. The transport level should be aware of
the ADU botmdaries so that it can deliver data to the applications based on the ADU bound

aries. ADUs are segmented into transport packets before they are sent to the network layer.
At the receiver-side transport, packets are re-assembled into ADUs before they are delivered to

applications.

8



2.3 Connection and Pipe Management Services

A set of application programming interface (API) is needed so that the application and the
transport can communicate service requirements, their fulfillment status and network condi

tions. The services provided by the WebTP transport layer can be classified into connection

and pipe management services, quality management services, data management services, and
network monitoring services.

WebTP provides connection-oriented services. Under the normal mode of WebTP, a

connection is established before applications on two hosts can transfer any data. Unlike the
connection in TCP, the connection in WebTP is a lightweight object whose primary purpose
is to provide the application with a handle on a transparent commimication channel. Most

of the network control functions are delegated to a different object, the pipe. A pipe is an
abstraction of the network path between two IP hosts, possibly shared by many connections.

The distinction between the connections and the pipe reflects the view on the partition of the
transport into application-support functions and network functions. We will show later that,

as one of the benefits of this partition, network functions can be integrated across connections.

Another advantage of having both the connections and the pipe is that the application can

freely use connections without worrying about performance hit from heavy protocol processing

associated with network control. For instance, the application can open a connection for each

object request.

The transport provides interfaces for connection setup and close, status report of connec
tions and the pipe, and change of status.

2.3.1 Connection and Pipe Setup

When an application wants to commimicate with remote hosts, it first opens a socket with the

UNIX-style socket () and bindO calls [24].
socket(domain, type, protocol, flags);
int s, domain, type, protocol;

error = bindCs, addr, addrlen);

int error, s, addrlen;

struct sockaddr *addr;

where WebTP is among the choices for the protocol parameter. We add a type called SOCK_ADU
for which WebTP is the default protocol. The precise meaning of this socket type is explained
later. The parameter flags is used only when the protocol is WebTP. It is derived from the
following constants.

FAST 0x01

INTERACTIVE 0x02

BULK 0x04

REALTIME^TREAM 0x08

BUFFERED^TREAM 0x10

SHARED_PIPE 0x20

DEDICATEDJIPE 0x40

FAST indicates that fast WebTP option is requested. Each of the next four constants
refers to one of the traffic classes. The constants ending with PIPE are the types of pipes



requested. DEDICATEDJPIPE means that the connection does not share pipe with other
connections. A new pipe should be opened for the connection. SHAREDJPIPE means the
connection can share a pipe with other connections. At this moment, we assume that all pipes
are of the SHARED_PIPE t3q)e for simplicity. Only one of the traJQBic classes and one of the
pipe types should be selected for each socket.

The client application which initiates a connection uses the connect () call,

error = connect(s, serveraddr, serveraddrlen);

int error, s, serveraddrlen;

struct sockaddr *serveraddr;

The server uses listen() and accept () calls to wait and accept client's connection-setup re
quests.

error = listenCs, backlog);

int error, s, backlog;

snew = accept(s, clientaddr, clientaddrlen);

int snew, s, clientaddrlen;

struct sockaddr ♦clientaddr;

When executing connect () with the SHARED-PIPE socket type, the transport first
checks if the FAST fiag is specified. If FAST is not selected, the transport looks for a shared
pipe associated with the destination IP address of the connection. If such a pipe does not exist,
the transport calls an openpipeO function and creates a pipe data structiure. The connection
data structure and the pipe data structure are linked together. Then, the protocol sends a
SYNpacket to the destination host, trying to establish the pipe and the connection. Three-way
handshake is necessary for establishing a pipe in this case. When the transport retiurns from
connect 0, either both the pipe and the connection are established, or a "connection time
out" error message is returned when the connection can not be established. At the server side,
listen0 calls a pipelistenO routine, which is ready to receive SYN packets. At this point,
listen() returns. When the application calls accept(), the transport calls pipeacceptO
routine to establish the pipe data structure. A new socket descriptor is generated and linked
with the newly created pipe structure. If the application calls accept () again in the future,
the transport will return a new socket without calling pipeacceptO.

In the case when a shared pipe already exists, connect () also sends a SYN packet and
can immediately returns. No new pipe is created. When receiving the SYN packet, the server
creates a new connection and associates it with an existing pipe. The server acknowledges the
SYN packet with a SYN-fACK packet. The SYN packet in this case is automatically a reliable
packet. The transport is responsible for its successful transmission. The client can inunediately

send or receive data after connect 0 returns. The server can immediately send data after
the SYN packet is received. Since the data padcet can arrive at the receiver before the SYN

packet, the reception of the first data packet or SYN packet, whichever arrives first, triggers
the creation of a new socket. If connection setup fails, the received data will be dropped by the

transport.

Notice that when a pipe exists, WebTP speeds up connection setup by eliminating the
three-way handshake and by send data packets concurrently with the SYN packet used for
connection setup. If a pipe doesn't exist, the Fast WebTP option can also speed up connection
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setup.

2.3.2 Fast WebTP

If the FAST flag is selected with the socket () call, the application indicates its desire for a
fast connection startup, which can improve the responsiveness of interactive applications. This
can be especially beneficial in the case of browsing web pages that require many downloads
from many servers. One source of improvement comes from the reduction of the time taken by
the three-way handshake in establishing a pipe. Another source comes from less stringent con
gestion control. Fast WebTP is capable of emulating connectionless services. In Fast WebTP,
before the completion of three-way handshake, the transport of the sender side can start trans
mitting. When the receiver side receives data before the completion of three-way handshake,
the transport can set up the socket and deliver data to the application. The application decides
whether to accept or reject the data. If the pipe setup fails, the transport at the receiver side
needs to notify the application, and the application closes the socket.

At the client side, connect () call sends a SYN packet and immediately returns. The

application can start to sending or receiving data. Simultaneously, the transport tries to set up
the connection, and the pipe if necessary. When the client issues sendC) immediately after the
connect () call. The data packet will use the sequence number picked by the transport layer.

We next examine the details of different situations.

When there already exists a pipe before the connect () call, everything is the same as

the regular WebTP with an active pipe. The situation is far more complicated when the pipe

does not exist. The connect() call creates a socket, sends a SYN packet then returns. At

this point, the client can start sending or receiving data packets. Suppose the client sends
data. It is possible that the data packets arrive at the destination before the SYN packet.
First, if the server application specifies that it is unwilling to use Fast WebTP, i.e., it uses

regular WebTP, the early data packets are temporarily buffered, waiting for the completion of
pipe and connection setup. If the server application is willing to use Fast WebTP, the first
packet (either data or SYN packet) that arrived at the server initializes pipe data structure and
appends a connection to the connection queue. The server can now accept () the connection.
Properly assembled data can be delivered to the application by allowing recvO to return.
Data read by the application before the completion of the three-way handshake has its FAS bit

set. The application is required to issue a rejectdataO call to indicates whether it accepts or

rejects the data. Data can be rejected for many reasons, such as security concerns. When this

happens, the receiver-side transport rejects all data received before the completion of the three-
way handshake, and buffers them until three-way handshake completes. After the three-way

handshake, the connection is again appended to the connection queue, waiting to be accepted.
The application can now accept () the connection again and receive data packets by recvO.
If the data with FAS bit marked is accepted, it is still possible that the transport later decides
not to setup the pipe and the connection. Possible reasons are that the three-way handshake
cannot be completed, or that the SYN packet has never been received. The transport issues an
upcall to the application about such a decision so that the application can take actions such
as rolling back the received data and/or terminating the process/thread that is receiving on
that connection. The application is also responsible for closing the socket that will not be used
again. Data packets buffered at the transport layer will be dropped. The transport at the client
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side will simply timeout the connection and notifies the application.
Before the setup of thej)ipe is completed, the servercan alsosend data to the client. The

treatment of data with FAS bit set is the same at both client and the server side.
The basic rule for acknowledgment is that the transport does not acknowledge any data

packets until theapplication indicates its acceptance ofthepackets through rejectdataO ^all
and until the three-way handshake has completed. The SYN packet does not contain data
and is always reliable. The transport is responsible for retransmission of lost SYN packet.
The packets, including the SYN packet, transferred before the proper establishment of the
pipeare not congestion controlled. It is required that no more than n packets are allowed to be
transmitted in this fashion, where 7% is a small number, suchas 4. The parametern is somewhat
equivalent to an increased initial congestion-window size. The bandwidth measurement and
estimation algorithm can help to determine n adaptively.

Fast WebTP is designed so that some applications can avoid one round trip time (RTT)
for setting up the pipeusing the three-way handshake. It is suitable for applications withstrin
gent requirement for responsiveness. Three-way handshake is originally designed to prevent
data firom terminated connections firom being accepted. In Fast WebTP, after three-way hand
shake completed, the transport might discover that the accepted data are firom terminated
connections. Hence, Fast WebTP is useful either when receiving the erroneous data does not
matter or when the application has the ability to roll back and replace the erroneous data with
new data.

Web browsing presentsa specialcasefor the former situation. Imagine the client makes a
GET request ofweb page. The GETmessage is sent to the server while three-way handshake is
underway concurrently. The server temporarily accepts the connection. It verifies that the GET
message does not lead to security breaches and replies with the html file when the transport is
in the second step of the three-way handshake. The replied html file and the SYN-hACK are
very likely to arrive at the client in close proximity in time. From the client's point of view, it
is only necessary to complete the second step of the handshake before it can accept data with
confidence. Therefore, it is likely for the client to save one round-trip time.

Notice that if the pipesare available mostof the time, which happenswhenthere is a large
degree of connection/traffic aggregation, the regular WebTP already improves the connection
setup times over TCP. In that case, the gain firom the Fast WebTP over the regular WebTP is
not significant. It is when the pipe is unavailable that Fast WebTP improves the connection
setup time over both the regular WebTP and TCP.

2.3.3 Connection and Pipe Classes

WebTP supports four classes of connections, corresponding to short interactive fiow (INTER
ACTIVE), bulk file transfer (BULK), real-time stream (REALTIME-STREAM) and bufiered
stream (BUFFERED-STREAM). The connection class is specified by the flags parameter of
the socket () call. The class information is used by the protocol to assign connections to pipes
and to customize scheduling and congestion management. For example, the pipe scheduler
can determine to use a class-based scheduling algorithm. The congestion manager may take
less stringent approach of enforcing congestion control for short interactive traffic when the
additional traffic constitutes a small portion of the measured network capacity.

Each pipe has two attributes. The first attribute indicates if it is a shared pipe or a
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Connection Classes Pipe Classes (For Shared Pipe)

INTERACTIVE BULKJPIPE

BULK BULK-PIPE

REALTIME-STREAM BULK.PIPE

BUFFERED-STREAM BULK-PIPE

Table 1: Connection to Pipe Mapping: Example 1

Connection Classes Pipe Classes (For Shared Pipe)

INTERACTIVE BULK-PIPE

BULK BULK.PIPE

REALTIME-STREAM REALTIME.PIPE

BUFFERED-STREAM BULK.PIPE

Table 2: Connection to Pipe Mapping: Example 2

dedicated pipe. This attributed is specified by the flags parameter of the socket () call. At
the connection setup, if the SHARED-PIPE fiag in the socket () call is selected, the connection
is associated with a shared pipe; if the DEDICATED-PIPE fiag is selected, the connection is

associated with a dedicated pipe. The second attribute of the pipe indicates the class type of

the pipe, which takes a value fi:om among BULK_PIPE, BUFFERED_STREAM_PIPE, REAL-
TIMEJPIPE and INTERACTIVE-PIPE. A dedicated pipe contains one and only one connec
tion. It opens and closes with the connection, and inherits the class type from the connection.

Since traffic can not be aggregated across connections when dedicated pipe is used, we expect
rare use of this pipe class. The degree of traffic aggregation allowed by a shared pipe depends
on the mapping from connection classes to pipe classes. The following are three examples of a
mapping, which can be configured statically.

The class-mapping table allows the fiexibility of adapting the protocol to the physical
network. For instance, if the imderlying physical network can not differentiate different classes
of traffic, then the mapping in example 1 (Table 1) allows the most traffic aggregation. If the
network distinguishes real-time traffic from non-real-time traffic, the mapping in example 2
(Table 2) is the most appropriate. Because of service differentiation at the router and switches,
real-time traffic and non-real-time traffic see different network conditions even if they travel
through exactly the same network path. The bandwidth available to the real-time traffic and

Connection Classes Pipe Classes (For Shared Pipe)

INTERACTIVE INTERACTIVE-PIPE

BULK BULK-PIPE

REALTIME-STREAM REALTIME.PIPE

BUFFERED-STREAM BUFFERED-STREAMJPIPE

Table 3: Connection to Pipe Mapping: Example 3
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the non-real-time traffic might be completely different. Reliability concern also favors this
mapping, since lost real-time packets are not retransmitted, but lost non-real-time packets may
need to be retransmitted. Furthermore, congestion management of real-time traffic should also
be different from non-real-time traffic. If the network distinguishes all four classes of traffic, the
mapping in example 3 (Table 3) is the most appropriate. The class mapping should be chosen
carefully. Suppose the network does not differentiate real-time and non-real-time traffic, the
separation of real-time and non-real-time traffic at the pipe level leads to a smaller degree of
traffic sharing and integrated management. Thedefinition ofdifferent pipe classes gives WebTP
the flexibility to incorporate future advances for QOS support at the network layer.

2.3.4 Connection smd Pipe Close

WebTP uses the socket-style close () and shutdown() for terminating connections, both of
which have the similar meaning as in the Berkeley Socket Interface [24]. Closing a connection
will not automatically close a pipe. When a pipe has been idle for some fixed amount of time,
or when the resource for creating new pipes runs low, the transport is responsible for closing
a pipe by sending a packet with the PFI bit set. WebTP uses a similar set of states to those
in TCP for controlling the connection and pipe, except that the set of states are split between
the connection and the pipe.

2.4 Quality Management Services

2.4.1 Bandwidth Allocations Provisions

WebTP has a set of APIs that allow the application to specify the bandwidth when a connection
is opened and to adjust it during the lifetimeof the connection. The application can also query
the bandwidth of connections that belong to the same user. A bandwidth control application
can take advantage of these provisions and control the rate assignment for a set of connections
of the same user. The set of APIs are:

int getsockopt(int s, int level, int optname, void *optval, int optlen);

int setsockopt(int s, int level, int optname, void *optval, int optlen);

int getallsocketsCint id, int *8, int slen);

Getsockopt 0 and setsockopt (), which are borrowed from the BSD operating system
[24], manipulate the options associated with a socket. Options may exist at multiple protocol
levels; they are always present at the uppermost "socket" level. When manipulating socket
options, the level at which the option resides and the name of the option must be specified.
To manipulate options at the socket level, level is specified as SOL_SOCKET. To manipulate
options at any other level, the protocol number of the appropriate protocol controlling the
option is supplied. For example, to indicate that an option is to be interpreted by the WebTP

protocol, level should be set to the protocol number of WebTP, which is 100. In the case of

WebTP, we define options together with their meanings in Table 4. All options are for the

sending side of the connection.

Getallsockets 0 asks the operating system to return all sockets owned by a user denoted
by id. With these APIs, a control application can manipulate the rate on behalf the user at the

granularity of connection, connection class, or application. The final rate allocation depends on
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optname optval type optval

TRAFFIC-CLASS = 0 char* Name of the traffic class. The schedul

ing of WebTP outgoing traffic depends
on the traffic class. Currently four

classes are defined: "INTERACTIVE",
"BULK", "REALTIME.STREAM", and

"BUFFERED-STREAM". The administrator

of host defines different traffic classes and

corresponding policies for bandwidth allocation.
All available traffic class names are listed in

/etc/webtp-classes.

AVAILABLEJRATE = 1 float* Only valid for getsockoptO. Available rate in
bits per second. This is essentially the rate avzdl-

able from the pipe.

CURRENTJRATE = 2 float* Available rate in bits per second. GetsockoptO

returns the current sending rate of the connec

tion. If the application wants to specify a con

stant rate at which it wishes to send, it can call

setsockoptO. If such a rate cannot be guaran
teed by the scheduler, setsockoptO will fail.

RTT = 3 float* Only valid for getsockoptO. Round-trip time,
measured in microseconds.

LOSSJIATIO = 4 float* Packet loss ratio for this connection in the past

n RTT

LOSS.BURSTINESS = 5 float* Average number of consecutive packets lost in a
burst for the connection.

Table 4: Socket Options

the requested rates of the current user and competing users, as well as the scheduling policy at
the server and network routers. Congestion control can also interfere with the rate allocation
on a shorter time scales. The net effect of all these factors is a subject of further study.

Notice that when the total specified rate is unsustainable at a scheduler, rates will be

interpreted as weights for a weighted fair-queueing scheduler. Another subtle point is that a
connection is considered full-duplex only to the extent of connection setup. A connection can
have different rate specifications for its two directions. However, since the rate information for
each connection is only kept at the sending host, no difficulty arises from this ambiguity.

In a typical application, a client application makes a request to set up a connection with
the server. The client's application-level request message contains a rate requirement for the
connection in the direction from the server to the chent. The server application interprets the
rate information and makes a setscckoptO call to set the new rate.
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2.4.2 Loss Monitoring

The two loss-related options in Table 4 are used only with GetsockoptO. The LOSS-RATIO
is measured over the last n round-trip-time, where the parameter n is to be determined adap-
tively. Real-time application can take advantage of this provision to adapt to the network
conditions. An admission control application can also rely on it to make admission decision.
LOSSJBURSTINESS is the average size of loss-bursts. Different loss-burst sizes may indicate
different causes oflosses. For instance,a largeloss-burst maybe caused by an unreliable wireless
link rather than by congestion, and shouldbe coped with correspondingly.

2.5 ADU Management Services

2.5.1 Supported Reliability Requirements

WebTP supports ADU-level reliability, which is the main reason why the transport should be
aware of and respect ADU boundaries. When the application makes a request for transmission
of ADUs, the sender-side application specifies whether each ADU is reliable or unreliable. A
reliable ADU should be delivered without an error by the transport. This necessarily involves
retransmission of lost packets for the ADU. Lost packets for an unreliable ADU are not retrans
mitted. At the receiver side, if all packets of an unreliable ADU are received correctly, they
are assembled into the ADU and delivered to the apphcation. If the receiver decides that some

packets of the unreliable ADU are lost, the complete ADU is dropped and the transport notifies
the application that some unreliable ADU is dropped. Since a single packet loss triggers the
dropping of the entire unreliable ADU, the application should be aware of this fact and tries
to size the ADUs so that each will fit into one or a few transport packets. Note that the size
of unreliable ADUs is limited by the size of the re-assembly buffer at the receiver side. This is
not the case for reliable ADU, since the transport can deliver partial ADUs to the application.

WebTP guarantees that no more than one copy of each ADU is delivered to the receiver by
detecting and dropping duplicated packets. WebTP also guards against late packets firom earlier
terminated connections through three-way handshake. Fast WebTP provides this feature after
the completion of three-way handshake. It has a brief vulnerable period before the completion
of three-way handshake.

WebTP does not provide transport-level guarantee of in-order delivery of ADUs within
the same connection. The decision is based on the assumption that the ordering relationship of
data is encapsulated within each ADU and very often ordering among ADUs is not required.
We gain the benefit that ADUs can be delivered to the application quickly at the receiver side.
At the transport layer, an incomplete ADU does not block other completed ADUs from being
delivered. This also makes it easy for the transport to transfer expedite ADUs out of order.
When sequencing of ADUs is necessary, it is done at the application level with the help of
library functions and the ADU number. The sequencing of ADUs is typically a simple task
since the application does not have to worry about retransmission of packets.

2.5.2 Sending and Receiving Data at the Application

Blocks of data are sent through the socket interface via UNIX style sendO and recv() calls.
No more than one ADU is sent or received each time.
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int sendCint sockfd, char t'databuff, char I'header) ;

int recvCint sockfd, char ♦databuff, char 4<header);

where databnff is the starting address of the data portion of the ADU and header is the ADU
header. Since the size of ADUs varies and the header length is fixed, the header and the data
portion are kept in different data structures. Each sendO or recvO call can pass a complete

ADU or a partial ADU. The ADU header structure is defined as follows:

struct ADU_header {

int name;

int segnum;

int datalen;

int option;

};

The application is responsible for choosing unique names for ADUs within each connection.
The ADU name is needed mainly because we allow the passing of partial ADUs across the

socket interface, which can be interrupted by other partial or complete ADUs for two reasons.
First, after sending a partial ADU and before its completion, the application may decide to re
order the unsent ADUs. When it does sendO again, the application can send a different ADU.
Second, the ADUs can arrive at the receiving side out of order, and hence can be defivered
to the application out of order. The ADU name is also inserted into the transport packet
header so that the receiver can identify all packets that belong to the same ADU for ADU
re-assembly. It can also be used by the application for appfication-specific processing. For

instance, integer ADU names may indicate the order of ADUs. With four bytes, it can also
convey limited semantic information that is meaningful to the apphcation. The application

may handle ADUs differently based on their names. Note that if an application uses complex
naming scheme that assigns long string names, it can do so by defining application-specific
ADU frames. The standard ADU header will be added to each of these frames. Segnum is the
segment number, which is the initial byte number of the current ADU segment in the complete
ADU. For example, if the current ADU is a complete ADU or the first segment of an ADU,
segnum is 1. Datalen is the length of the ADU data portion. Option is the derived firom the
following constants.

Constants Hex Values Semantics

ADU_END 0x01 the end of an ADU

ADUJIELIABLE 0x02 ADU is reliable

ADU-URGENT 0x04 ADU has urgent priority

ADUJ'AST 0x08 Used in recvO only. ADU received before the
completion of three-way handshake in Fast

WebTR

To provide support for dynamic ADU rendering at the application level, the transport

layer should buffer minimum amount of user data subject to the consideration of system call
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overhead. The actual buffer sizemay dependon the transmission rate for that connection, and
depend on all connections sharing the same pipe.

By default, the sendO call is non-blocking. The return value of sendO indicates how
much data has been sent, and serves as a backpressure from the transport to the application.
The application can then evaluate the situation and choose appropriate strategy for sending
data. Forinstance, it canscan through the buffered data at the applicationlayer and manipulate
them basedon its need. When sending data, the application shoulddetermine the frequency of
sendO calls based on a number of considerations. For instance, delay sensitive data warrants
the application to call sendO frequently. In other cases, the application can chose a largerhnnk
of data to send in order to reduce the frequency of the sendO system call. An appropriate
scheme should balance three things. The transport should not be idling when bandwidth is
available in the transmission path. The application keeps most unsent data for dynamical
rendering. The number of system calls should be kept at a level that does not overburden the
CPU.

When receiving data from the transport, the application calls recvO. The recvO call is
blocking by default. The transport fills the receiving buffer up to the requested amount of data,
and returns. The transport tries to return as quickly as possible subject to the consideration
of system call overhead.

The application also needs an API to reject any received ADUs with FAS bit set, i.e.,
those ADUs that arrive before the proper set up of the connection and the pipe in Fast WebTP.
This is done with the rejectdataO call.

int rejectdata(int sockfd, int nam, int t);

where name is the ADU name and t is a fiag. If t = 0, the ADU has been accepted by the
application. Otherwise, it has been rejected.

2.5.3 Supported ADU Priority Levels

WebTP supports two priority levels at the granularity of an ADU: the urgent priority and the
normal priority. The urgent priority ADU is given scheduling priority for transmission at the
sender, and is delivered to the application with minimum delay at the receiver side. Since
supporting urgent ADU put more stress on the processor (e.g. due to context switching) and
can negatively affect other ADUs, it is recommended that urgent priority is used infrequently
and is applied only to ADUs of small sizes. Infrequent measurement and/or control ADUs are
examples that may use the urgent-priority service. The ADU priority information is encoded
in the ADU header.

2.6 ADU and Packet Formats

2.6.1 ADU Framing

Complex ADU framing should be left to the application, as the name Application LevelFraming
(ALF) implies, possibly with the help of libraries for different types of ADU frames. For
example, a video or audio frame may look like RTF frames. However, the ADU frames should
have a common part so that ADUs can be passed across the socket interface. In our design,
the ADU header assumes this role.
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2.6.2 Packet Format

0 1 2 3

01234567890123456789012345678901

1 Packet Number I

I Acknowledgment Number i

I Acknowledged Amount I

I ADU Name I

I Segment Number I

I lUlAlRlSlFlRlElFi

I Source Port |R|C|S|Y|I|E|N|A|

I i6|K|T|N|N|L|D|S|

I I C I P IPIPI I

I Destination Port I C I C IT|FIRES I

I I L I L lYjlj I

I Data I I I

I Offset! RES I Window I

III I

I Checksiun | Options I

I Options I Padding I

I data I
+-+-+-+-+-+-4—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3: WebTP Packet Header Format

The WebTP transport packet format is shown in figure 3. The first three header fields
are used by the Congestion Manager for congestion control and loss detection. The rest of the
fields are used mostly in the FM layer. Their meanings are as follows.
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Packet number (PN) The sequence number of the packet, which is the first byte of data
contained in the packet. The sequence number is shared by all con
nections for the pipe.

Acknowledgement Number The sequence number for the next packet expected.
Acknowledgement Amount The number of bytes acknowledged
ADU Name The name picked by the apphcation for the ADU; the same as the

name field contained in the ADU header

Segment Number The index number for the first data byte of the packet within the
same ADU; the same as the segnum field contained in the ADU
header

A value 1 for the control bits has the following meanings.
URG (Urgent) This is an mgent packet.
ACK (Acknowledgement) This packet carries acknowledgement information.
RST Abort the connection.

SYN (Synchronizaton) This isa synchronization packet for settingup a connection
and/or a pipe.

FIN This is the last packet of the connection. Close the connection
REL (Reliability) This is a reliable packet.
END (End) This is the last packet of the ADU.
FAS (FAST WebTP) The packet is sent before the completion of three-way hand

shake.

PFI Closethe shared pipe. (Note that dedicated pipe is non-persistent and closes
when the connection closes.)

CCL and PCL denote connection and pipe classes, respectively.
00 Short interactive traffic

01 Bulk file transfer

10 Real-time stream

01 Non-real-time stream (buffered stream)
PTY denotes the pipe tjrpe.

1 shared pipe
0 dedicated pipe

In Fast WebTP, all data packets transmitted before the completion of the three-way handshake
have their FAS bits set.

The rest of the fields have the same meaning as in TCP [15]

2.7 Packetization and Reassembly

Conceptually, the NC layer is a new layer with its own control fields in the header. Packetization
is performed in two steps. The fields that are relevant to the connection and ADU are filled
at the FM layer. Fields that are relevant to the pipe or that are used for congestion control
are filled at the NC layer. The latter include Packet Number , Acknowledgement Number,
Acknowledgement Amoimt , FAS, PCL, PTY, and Window.
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3 WebTP Algorithms

WebTP introduces some algorithmic challenges. We have already discussed the Fast WebTP
algorithm in the protocol section. Other important algorithms are in the areas of congestion
control, scheduling, loss detection, network measurement, and bandwidth estimation. In the
following, we will discuss a few at various levels of details.

3.1 Data Services

The FM layer maintains four ADU queues for each connection: the sending queue with urgent
priority, sending queue with normal priority, the receiving queue with urgent priority and the
receiving queue with normal priority. Each queue is a link list of ADU control blocks. A data
block can be a partial ADU instead of a complete ADU. The data blodc is cleared from memory,

- at the sender side, for a reliable ADU, after the data block is completed sent and acknowl

edged.

- at the sender side, for an unreliable ADU, after it is completely sent or after it is partially
sent and some packets from the ADU have been lost.

- at the receiver side, for a reliable ADU, after it is delivered to the application. (In Fast
WebTP, also after the application has accepted it through rejectdataO call.)

- at the receiver side, for an unreliable ADU, after it is delivered to the application, or one

or more packets have been lost. (In Fast WebTP, also after the application has accepted
it through rejectdataO call.)

The control block is cleared after the complete ADU data block is cleared from the memory.
Urgent ADUs take precedence over normal ADUs for transmission or delivery. The Packet
Niimber (PN) is a shared addressing space by all connections sharing the same pipe. Acknowl
edgement is based on PN. Demultiplexing of packets at the receiver and reliability handling
both use PN in conjunction with locally stored data structures. Here is how it works.

3.1.1 Sender Side

The Congestion Manager (CM) of the sender sends packets sequentially. The receiver acknowl
edges all received packets. The sender can then detect packet losses in a way very similar to
TCP loss detection, i.e., based on timeout and on duplicated acknowledgement packets. At
the CM, the sender keeps a mapping between PN and the actual packet so that it knows the
ADU and connection associated with the lost packet. Each pipe maintains a list of transmitted

packets yet to be acknowledged. When an acknowledgement for a packet comes, that packet
is marked as having been acknowledged. This list is checked frequently for the purpose of
clearing data blocks. If a loss is inferred for a rehable packet, a retransmission is scheduled
immediately. The congestion manager informs the appropriate connection and ADU about the
lost packet. If the lost packet is unreliable, the complete ADU is dropped and the application

at the sender-side is notified about the loss.
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3.1.2 Receiver Side

When a packet is received, the CM sends appropriate acknowledgment packet back to the
sender. Notice that the receiver is capable ofdetecting packet losses. However, it is difficult to
infer to which connection a lost packet belongs. When a packet is received, it is demultiplexed
and sent to the connection at the FM layer with minimum delay, where ADU reassembly takes
place. For every connection, the urgent ADU queue takes priority over the normal ADU queue
when the transport returns the recvO call. ADUs should be delivered as soon as possible to
improve the perceived response time for interactive applications and to secure the delay bound
for real-time media delivery. The transport also needs to balance the system call overhead
and the timeliness when making a delivery decision. The amount of delay can be traded for
efficiency. Although it is desirable to deliver data on ADU boundaries, in practice, there has to
be an upper bound on the amount of data that can be accumulated before a delivery when a
ADU is large. Hence, botha complete ADU and a partial ADU are eligible for delivery. Within
an ADU boundary, the transport is responsible for in-sequence delivery of packets. Thus, a
partialADU canbe delivered to the application provided all its previous segments are delivered.
The transport maJces the decision when to deliver ADUs to the application or when to drop
incomplete unreliable ADUs. The ADU name will be taken jfrom the ADU Name field of the
packets. Hence, the application can identify each ADU unambiguously. A partial unreliable
ADU needs to be timed out if some of its packets are lost.

3.2 Congestion Control

The design of WebTP's congestion control algorithm has been a centerpiece of the project.
In the current Internet, connections are either congestion controlled rigorously with TCP, or
uncontrolled with UDP. The former typically applies to elastic data applications and the lat
ter applies to inelastic real-time applications. Clearly, there is some room in between these
two extreme control schemes. Because the real-time traffic is typically controlled by its data-
generating mechanism and has stringent delay requirement, the TCP congestion control is not
a good choice for it. However, congestion monitoring can still help real-time applications. For
instance, adaptive real-time applications can reduce their rates in response to network con
gestion. Admission control can be implemented to regulate the overall number of real-time
connections on the network path.

WebTP uses different congestion control schemes for different classes of pipes. Real
time pipes only monitor the network congestion. The packet loss information is passed to
the applications. Non-real-time pipes are congestion-controlled by TCP-styled algorithm. New
packets arenot allowed to be transmitted when the total number ofoutstanding packets reaches
the congestion window size. In the case when a real-time connection is multiplexed into a non-
real-time pipe, the real-time connection will be congestion controlled. This undesirable effect
of congestive blocking of real-time traffic can be mitigated by pipe-level scheduling that gives
real-time traffic priority. Application-level firaming makes it possible for the application to drop
outdated real-time packets before they are sent to the transport.
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3.2.1 Congestion Monitoring for Real-time Pipes

Each real-time pipe monitors the network congestion, but does not block the transmission of
packets. (Note that his does not mean that real-time connections are not congestioncontrolled.)
Typically, the transport sends a packet immediately after it is received from the application.
The degree of congestion is measured by the packet loss ratio experienced by the real-time pipe.
WebTP uses the Packet Number to detect packet losses in ways similar to TCP. Each packet
carries with it a sequence munber. The receiver acknowledges each received packet by issuing
an ACK packet. A packet is declared lost by the sender if (i) it has not been acknowledged
when the timer expires, or (ii) when there is a gap in the acknowledgement sequence numbers.
The gap is detected with the familiar three-duplicated-acknowledgement scheme used in TCP.

That is, the reception of three or more acknowledgements of the same packet indicates a packet

loss. We omit the details of the timer algorithm, which resembles the retransmission timer of
TCP. Compared with TCP, the complication about the acknowledgement scheme comes from
the fact that real-time packets are normally unreliable packets, which will not be retransmitted
when they are lost. A cumulative acknowledgement scheme as the one in TCP will fail when
an unreliable packet is lost, because the acknowledgement number will never be advanced after
that. We will specify a acknowledgement scheme in section 3.4. Loss statistics is passed to the
application through loss-related APIs.

3.2.2 Congestion Control of Non-real-time Pipes

For a non-real-time pipe, a congestion window is used to regulate the number of xmacknowledged

packets. The window size is increased with successful transmission of packets and decreased

when a loss is detected. Loss detection is the same as in the congestion monitoring for real-time
pipes.

WebTP uses past bandwidth information to help the window control algorithm. It also
combines the close-looped window-based control with an open-looped rate-based control in an

effort to reduce packet losses. We observe that TCP's congestion control is effective on a short

timescale during congestion avoidance. TCP's window-based control enforces the conservation
principle [18] that a packet is not released into the network until another packet has exited the
network. This principle has been proven effective in maintaining network stability, but is also

somewhat conservative. TCP takes no advantages on the past observations about the available
bandwidth. At any moment, the available bandwidth is assumed completely unknown. During

congestion avoidance, TCP probes the bandwidth very gradually by allowing no more than
one extra packet to be transmitted in one round-trip time than the previous round-trip time.

As a result, TCP's congestion avoidance can be slow in ramping up the window size to the
appropriate level. TCP's congestion avoidance eventually leads to packet loss by increasing the
traffic.

TCP's slow-start phase also has a few drawbacks. It starts its window size at one packet,
and then increases it exponentially. This behavior can be both too conservative and too ag
gressive depending on the network situation. It is too conservative since it takes quite a few

round-trip times before the window size becomes reasonably large. Interactive application will
suffer from the slow opening of the window. It is also too aggressive when the network reaches
congestion state. In particular, in an environment with many short interactive connections, the
poorly controlled connections can cause frequent packet losses at the router [26]. When the
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bufferat the routers overflows, many packets can be lost.
Consequently, packet loss in TCP can be frequent, as well as expensive due to the lank

ofa good loss-detection mechanism. More specifically, a few factors contribute to the frequent
packet loss in TCP's congestion control. First, the slow start connections rapidlyramp up their
rate and can quickly causes a large number of panket losses. Frequent connection arrival leads
to frequent packet losses induced by the slow-start phase. Second, packets can be dropped
during the normal operation of congestion avoidance. This source of loss depends crucially on
the buffer size at the router. When the buffer size is relatively small, the loss canbe significant.
It also depends on the number ofsimultaneous connections. Insufficient buffer space and large
number of simultaneous connections can both lead to significant losses.

A key drawback of the window-based scheme lies in that it only tells whether a packet
is lost or not, and it does not tell what the average sustainable rate is. In WebTP, the rate-
monitoring device for the pipe can tell the latter information. It is, therefore, possible to use
both the window information and the rate information to better control the traffic. WebTP

tries to reduce packet losses and increase the rate ramp-up speed in three ways. First, through
pipe sharing, only the very first connection of the pipe needs to start in the slow-start phase.
Later connections normally start in congestion avoidance phase. Not only can packet loss ratio
be reduced, but connections can also start at a higher rate than they would if they start in the
slow-start phase. For the interactive connections, higher starting rate means better response
time. Second, WebTP keeps the pipe alive and the available rate information remembered for
some time after all connections have ended. The pipe can be reused when a new cormection
starts. The new connection starts in slow-start phase and changes to congestion avoidance
phase as the connection rate exceeds the recorded available rate. The initial window size is tied
to the recorded rate. For instance, if the recorded rate is relatively high, the initialwindow size
canbesignificantly greater than one. Finally, rate isalso used in the congestion avoidance phase
to further reduce the packet loss ratio. In the normal operation of congestion avoidance, the
window size increases until the current rate is near the available rate. After that, the window
size stops increasing. Every once in a while, the bandwidth is probed again by increasing the
window sizeuntil a packet loss is detected. This will invalidate the previous rate measurement
and a new measurement is recorded. In short, WebTP reduces the frequency of loss-based
bandwidth probing technique.

Due to the time-correlation of the network traffic, weexpect the rate information should
be relevant for an extended period (e.g., many round-trip times). It is also useful to point out
that the rate and window size operate on different timescales. Note that since the measured
rate is an average quantity over certain time interval, it automatically has some memory of the
past. Therefore, it is natural to combine the use of rate and window in network control. The

rate information plays a pivotal role in scheduling, as will be discussed later.

3.2.3 Current Rate and Loss Monitoring

The current rate and number of lost packets for each connection and pipe are measured con
stantly. Within each prescribed measmrement interval, three quantities are measured: the
number of packet sent, the number of acknowledged packets and the number of lost packets.
The traffic rate and the loss ratio are derived from these quantities. Applications can query
the packet loss and rate information through the set of rate and loss query APIs for possible
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bandwidth adaptation and connection admission control.

3.2.4 Available Bandwidth Probing

Rate monitoring discussed in the previous subsection concerns about the actual bandwidth
usage. Although the current usage and the currently available bandwidth may coincide, they
can frequently diverge from each other. The latter can often be more useftd than the former
for the pmrpose of congestion control and scheduling. When the currently available bandwidth
is saved, it becomes the recorded or historical available bandwidth. WebTP normally uses the

congestion window size to estimate the available rate for non-real-time pipes. In the case when

not enough window-size samples are available at the startup of a pipe, WebTP estimates the

available bandwidth by an algorithm resembling the packet-pair algorithm [20].

3.3 Scheduling across Connections

The measiured available bandwidth for a pipe is allocated to the connections by the pipe sched

uler. Each pipe scheduler is an instance of a general scheduler we are developing. The higher-

level goals of designing a general scheduler are to provide mechanisms for implementing a wide
range of traffic classification and bandwidth management pohcies, to encourage traffic aggre
gation, hence increase bandwidth utilization and to have a structured implementation and
programming interfaces.

The general scheduler defines a few abstract connection classes. It generalizes the hierar
chical packet fair queueing scheduler (HPFQ) [4] in a number of ways. First, HPFQ scheduler
has only one connection class whose requirement is specified by its required rate. Our general
scheduler defines three connection classes, which are given the abstract names: type-I, type-II
and type-Ill. T5rpe-I connections require rate guarantee at the smallest possible timescale; type-
II connections require delay guarantee and are tjrpically real-time or interactive connections;
and type-Ill connections require a rate guarantee on the longer timescale and axe tjrpically best-
effort traffic. These class definitions make it possible for the scheduler to handle connections

and applications with diverse rate and delay requirements. Second, the general scheduler in
corporates weighted-fair-queueing and priority-queueing into the bandwidth sharing hierarchy.
Third, due to the regular architecture of the scheduler and due to the abstract definition of
the connection classes, each instance of the scheduler can be configured with fiexibihty. In one

example, we can map all connections into tjrpe-III connections of the scheduler. In another
example, we can map the real-time connections into type-II connections and everything else
into type-Ill connections.

To summarize the goals of the scheduler, we want the scheduler to support the following
services (combined with admission control): bandwidth guarantee at the shortest time scale;
various probabilistic delay-guarantees; bandwidth guarantee on longer time scales; and simple
priority class when bandwidth is uncertain. We also want a structured representation of the
above requirements, and a representation that leads directly to implementation. In our abstract

scheduler representation, the timescale on which the bandwidth is measured is explicit.
Each type-I class is associated with a number which is the rate assignment for the

class with index i. Each tjrpe-II class is characterized by a tuple (di,Pt,7t), indicating the
requirement that Ft{D >di) <Pi, where D is the queueing delay. Note that di can be infinity,
and the corresponding class is named type-II-infinity. The optional 7i stands for the average
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rate of this class, and is used for Eidmission control. Each type-Ill class is associated with a
number which is the average rate of class i.

Next, we define the rules for constructing the scheduling hierarchy. The purpose having
a formal procedure is to make the representation oftheconnection requirements unambiguous,
and to lead to a natural and structured implementation of the scheduler.

• Tjrpe-I class can have type-I, type-II, or type-Ill as diildren.

• Type-II class has no children, except that type-II-Infinity may have type-Ill or type-II-
Infinity as children.

• Type-Ill class can have type-Ill or t3rpe-II-Infinity as children.

• All children of a class must themselves be the same type.

Notice that type I can only have type-I as parent. Type-II (not including type-II-infinity) can
only have type-I as parent. Tjrpe-III can have tjrpe-I, type-Ill, or type-II-Infinity as parent.
type-II-Infinity can have type-I, type-Ill, or type-II-Infinity as parent. As a result of the rules,
the bandwidth for all children ofa type-I (or type-Ill) class isdefined oncomparable timescale.
Figure 4 shows a complex instance of the class hierarchy. In the figure, the classes are indexed
from the top to bottom, and fi:om left to right, with the root being class 0. Class 1, 2 and 3
require bandwidth guarantee of <f>\^ ^2 sinid ^3 on the shortest possible timescale. Class 4 and
5 also require bandwidth guaranteed of04 and 05, where 04 + 05 = 0i on theshortest possible
timescale. Class 6 and 7 have delay requirements de and dr, respectively. The probabilities
ofdelay being satisfied are pg and p-j. Class 8 can be delayed for arbitrarily long time. The
children ofclass 8 are class 12 and 13. Each requires a bandwidth 0i2 and 0i3, respectively, on
a long timescale. It must be true that 012 and 0i3 sum up to the total bandwidth available to
the parent class 8. The relevant time scale here is determined by the timing requirements for
the siblings ofclass 8, since class 6 and 7 will be given higher scheduling priority than class 8.
In this example, we also allow class 13 to have type-II-infinity children, and they axe class 16,
17, and 18. Since they adl have the same delay requirement, some other means must be used
to differentiate them in the actual scheduling. In our scheduler implementation, they are given
different priorities.

We introduce a simple implementation of the scheduler. The immediate children of a
class are scheduled as follows:

• If the children classes are of Type-I, then PFQ is used.

• If they are of type-II, then a priority scheduler is used. Type-II classes are numbered by
1,2, ...,n, which stand for their scheduling priorities. For instamce, a class with a lower
delay bound takes priority over one witha higher delay bound. When two type-II classes
have the same delay bound, the onewith smaller pi value takes priority over the one with
larger pi value. Type Il-Infinity classes are numbered a priori.

• Type-Ill classes are scheduled according to PFQ among themselves.

In figure 4, the numerical labels (i.e., 1, 2, 3) for the type-II classes indicate the scheduling
priority.
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Figure 4: An example of the scheduler class hierarchy

In the framework of HPFQ, the timing requirement for a real-time connection can be
satisfied by proper bandwidth allocation. In our framework, real-time connections can achieve
their timing requirement by either being mapped to type-I classes or to type-II classes. Since
a type-II class can aggregate many connections with the same delay requirement, it can lead
to higher fink utilization through statistical multiplexing. Therefore, the use of type-II classes
is recommended for real-time connections. Type-I classes are still necessary for policy-based
bandwidth allocation. For instance, an organization may wish to request a fixed bandwidth for
all their connections.

Due to the tremendous generality, our scheduler can be used in complex situations such as
the central gateway for a corporate or ISP network. The construction of a particular scheduler
should be configurable, either statically or dynamically. With respect to WebTP, we propose
the following guideline for constructing the scheduler. First, no scheduling is needed for a
real-time pipe, since all packets are transmitted on first-come-first-serve basis. In this case,
the number of real-time connections should be hmited by admission control. Next, consider a

non-real-time pipe that can contain real-time connections (as determined by the connection-
to-pipe mapping table). Note that a pipe t3rpically has a time-varying bandwidth. The ability
that a pipe can handle real-time traffic critically depends on how the bandwidth varies. For
instance, if the bandwidth fluctuates between 10 Mbps and 45 Mbps, then the pipe can handle

at least as many real-time connections as a pipe with 10 Mbps constant bandwidth. Therefore,
if the bandwidth can deliver guaranteed QOS for real-time connections, the root should be a
type-I node. Otherwise, the root should be a type-Ill node. However, real-time and interactive
connections can still be given scheduling priority over file-transfer connections. Finally, if a non-
real-time pipe does not handle real-time connections, the root can be either type-I or type-Ill

node.

After the decision on the root node, the rest of the tree are configured by the inherent
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rules for constructing the scheduler tree. The parameters for each node are determined by a
combination ofthe user's request andadministrative policies, withthe latter taking precedence.
We show two simplecases in figure 5 and figure 6.

# type-I
^ tjrpe-II
@ type-II-infinity

O type-in

Real-time Interactive

Bulk 1 Bulk 2 Bulfered_Stream 3

Figure 5: Non-real-time pipe with real-time connections: with type-I root

Real-time Interactive

w

^ type-II
@ type-II-infinity

O type-in

Bulk 1 Bulk 2 Buffered.Stream 3

Figure 6: Non-real-time pipe with real-time connections: with type-Ill root

3.4 Loss Detection and Selected Acknowledgement

Since a single sequence space is used for both reliable and unreliable packets, loss detection
becomes very tricky. In the case ofTCP, the receiver performs positive acknowledgement of
the received packets. The acknowledgement is also cumulative in that an ACK packet with a
particular Acknowledgement Number acknowledges the successful reception ofallpackets before
that number. Since the packet loss probability is strictly less than 1, the lost packet eventually
will get through by retransmission. This guarantees that the acknowledgement is not stuck at
some packet sequence number. We can not use the same acknowledgement scheme in WebTP
without any modification. When an unreliable packet is lost, it will not be retransmitted. Since
the receiver never receives a lost unreliable packet, the acknowledgement sequence number can
get stuck forever.

The fundamental issue is that for reliable traffic, the sequence number is used for both
reliability control and for congestion control. The semantic for reliability control is very strict.
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The transport needs to give hard guarantee that all reliable packets are delivered eventually.
For that matter, the sender needs to receive eventual confirmation of delivery for every reliable
packet. Furthermore, positive confirmation rather than negative confirmation is necessary here.
The sender can not infer that a packet has been delivered successfully based on the absence

of negative feedback, since the negative feedback can be lost in the case of unreliable acknowl
edgement scheme, and can be delayed for unknown amount of time in the case of reliable

acknowledgement. On the other hand, positive acknowledgement is built on the conservative
assumption that an absence of a positive acknowledgement indicates the loss of the packet. The

price to pay for this pessimistic assumption is the unnecessary packet retransmissions that may

exacerbate network congestion and the complication that the receiver needs to detect duplicated
packets.

The semantic for congestion control is more relaxed, and fundamentally based on negative
feedback. It can be more relaxed because the consequence of a losing a congestion-notification

message is congestion itself, which will trigger more congestion notification messages. It re
quires negative acknowledgement indicating some packets have not been received. We can take

advantage of the fact that the requirement for reliability control is more stringent than that
for congestion control and design a control scheme for reliability control first, then add to it
congestion control mechanisms.

In the case of TCP, the unreliable, cumulative, and positive acknowledgement scheme

is sufficient because, first, the scheme eventually confirms delivery of all packets, and second,
the congestion indication can be inferred correctly in most situations. The sender guarantees
to retransmit packets that are not acknowledged imtil reception is confirmed, and the receiver
guarantees to acknowledge all received packets. Notice that, due to the nature of cumulative
acknowledgement, after the reception of a packet, the packet is acknowledged repeatedly until
the end of connection.

In the case of WebTP, the above scheme can lead to a deadlock because the sender
does not guarantee to retransmit all unacknowledged packets. Fundamentally, this is because
the unreliable traffic shares the same sequence space with the reliable traffic. Let us now
consider simple reliability control schemes first. Suppose the feedback channel is lossless and
acknowledgement packets are delivered in order. Then it is enough for the receiver to positively
acknowledge every received packet. In the case that the feedback channel is unreliable itself, i.e.,
it may lose or re-order acknowledgement packets, either the receiver keeps on acknowledging
each received packet positively until the end of connection, or it acknowledges positively each
received packet until it knows definitely the sender has received the acknowledgement. In
other words, forward acknowledgement is also necessary, which leads to a situation similar to
three-way handshake.

It is clearly undesirable and impractical to introduce forward acknowledgement or to
acknowledge each packet separately and repeatedly until the end of connection. We need to
seek a solution with some form of cumulative acknowledgement. In our solution, we use separate

sequence spaces for reliable and unreliable traffic, with the help of the REL bit in the packet
header. Logically, each pipe has two streams of traffic. Reliability control for the reliable traffic
is accomplished using the TCP-styled positive and cumulative acknowledgement scheme. Loss
detection is similar to that in TCP.

In the case of unreliable traffic stream, the sequence number is used pmrely for loss detec-
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tion, which is used for congestion control. It can be done in one of the following two schemes.
In the first scheme, loss detection is done at the sender and the receiver sends positive acknowl
edgement for the received packets. The sender detects packet loss by observing the gaps in the
acknowledged sequence nmnbers or by timeout. This scheme is conservative because all lost
packets can be detected but it is possible to incorrectly claim a successfully transmitted packet
lost. In the secondscheme, the receiver detects loss by observinggaps in the sequence numbers
of the forward packets and sends negative acknowledgement packet for each lost packet. It is
possible that a lost packet is undetected due to the loss of the acknowledgement packet. Since
we only try to control congestion, this problem can be somewhat tolerated. Upon detection
of a packet loss, the sender does not attempt to retransmit the lost packet, but may use the
information to adjust the congestion window size. Since loss detection is imprecise in both
schemes, the application can only get approximate loss notification from the transport.

The separation of the reliable and unreliable traffic streams has a slight drawback in that
congestion monitoring is not completely integrated, since it is not possible to infer the temporal
relationship between the two streams. To avoid this situation is the reason we do not choose a

naming scheme where each connection has its own sequencing space. For example, the sender
may send the following sequence of packets: (1, 2), (1, 3), (0, 2), (1, 4), (1, 5), (1, 6), (1,
7), (0, 3), (0,4), (0,5), where the first entry of each vector indicates reliability and the second
entry is the sequence number of the packet. (We assume each packet has one byte of data.)
Suppose the unreliable packet (0,2) has been lost. In the case of receiver-based loss detection,
the receiver won't know this until at least one of the unreliable packets from (0, 3) to (0, 5) is
received. In sender-based loss detection, the sender won't know about the packet loss until at
least one packet fi:om (0, 3) to (0, 5) is acknowledged or the timer for packet (0, 2) expires. The
sender-side loss detection can potentially take advantage of both packet streams for fast loss
detection if it remembers the sending sequence of all packets. In essence, that design partially
separates the sequence space for reliability control and congestion control. The congestion
control sequence is derived firom both the packet sequence nmnber in the packet header and
locally maintained records. The acknowledgement for reliability is strictly cumulative, whereas
the feedback for congestion control can at most be partially cumulative. Although this scheme
works, it requires more processing and more data structure to detect the out of sequenceevents
at the sender. This does not solve the problem that the receiver knows the loss later than it
could have been. Notice that the receiver needs to detect packet loss in order to drop incomplete
unreliable ADUs.

WebTP uses positive and partially cumulative acknowledgement for loss detection of the
unreliable traffic. Consider a sdieme where the receiver acknowledges every received packet
separately, and the sender detects packet losses by observing gaps in the acknowledgement se
quence numbers or by timeout. The unreliable nature of the feedback path introduces some
problems. First, lost ACK packets induce unnecessary traffic load on the forward path. More
significantly, since packet loss triggers reduction in the congestion window size, spurious loss
declaration can decrease the throughput of the pipe. Finally, the ACK packets also constitute
a significant amount of traffic on the reverse path. Partially cumulative acknowledgement can
help to solve these problems. Each ACK packet acknowledges all packets received contiguously,
up to the most recently received packet. Since unreliable packets in WebTP are not retrans

mitted, the received packet sequence will have gaps. The acknowledgement scheme proposed
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here can handle the situation. For example, suppose the most recently received packet is packet
100. Packet 50 has never been received. Packets 51 to 99 have all been received. The next

ACK packet eu:knowledges packets 51 to packet 100. This scheme resembles cumulative ac
knowledgement scheme, with possible gaps in the acknowledged sequence. It can help to reduce
the reverse path traffic by acknowledging many packets together. Since with high probability
the same received packet is acknowledged many times, ACK packet loss in the reverse direction
introduces very little spurious retransmission.

4 Discussions and Conclusions

4.1 QOS Provisioning

Being able to provide QOS guarantee has been the holy grail of data networking. We have
seen different schools of thoughts about QOS provisioning during the short history of data
networking. In the research ofof ATM networks, QOS requirement is communicated hop-by-hop

before the establishment of a coimection via a signaling protocol and is provided by algorithms

running in the network switches. Signaling protocol is complex, requires standardization and

slows down the connection setup. At that time, the Internet had few ATM switches. As

researchers were trying to iron out the complexity of ATM technologies, the Internet became
increasingly non-ATM. The Internet protocols, such as TCP/IP, did not provide differentiated
services. Perhaps partially because of their simplicity, they quietly took over the Internet.

As the public are drawn by the Internet frenzy and as the market force extends its reach

in the Internet, it has becomes obvious that QOS provisioning should be a necessary part of
the network service. The most prominent recent proposal in this area is the Differentiated
Services (diflfeerv) architecture from the IETF [9]. In that proposal, differentiated services are
provided by the network layer and by the routers. By diffserv's view, the Internet is segmented
into many Differentiated Services domains (DS domains), each of which normally corresponds
to one or more networks under the same administration. Examples of a DS domain include a

corporate intranet or an ISP [9]. With the segmentation, differentiated services are provided
in a hierarchical fashion. At the first level, each DS domain negotiates a service contract

(the so-called Service Level Agreement or SLA) with its customer, which can be a user/user
organization or another DS domain. At the second level, each router within a DS domain applies
different packet-forwarding behavior (the so-called per-hop-behavior or PHB) to different traffic
classes. The traffic class (in diffserv terminology, DS behavior aggregate) is denoted by the DS
codepoint carried by the IP packet. The DS codepoint can be changed as the packet passes

across DS domain boundaries.

Diffserv's QOS provisioning is more static than that provided by the ATM. The SLA
between the customer and the DS domain is expected to remain unchanged for a long time.

Since the SLA can be statically negotiated among the relatively few DS domains, there is no
need for hop-by-hop signaling to set up each connection. However, diffserv does not specify
algorithms that can carry out the SLA at a DS domain. Nor has the research community

discovered efficient algorithms that fulfill the SLAs when the network resources permit. In
practice, the network providers might try to solve the problem by over-provisioning of the
network capacity. To summarize, diffserv is a segment-by-segment and layer-3 solution to the

QOS problem. Due to the limitation on the size of the codepoint, service differentiation is
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applied to traffic classes instead of to each individual connection. Since diflfeerv requires a large
number of network devices to be DS-capable before it can deliver differentiated services, we
expect it to have a slow deployment process.

WebTP is an end-to-end and layer-4 approach that provides differentiated services to in
dividualconnections. End-to-endand layer-4 approachto network controlhas been the original
philosophy of the TCP/IP protocol. If we view the Internet as an opaque cloud, it is natural
to wonder what we can infer about the state of the network by observing the input and output
traffic. WebTP relies on the idea that much can be inferred based on the network measurement.

Each WebTP pipe grabs some bandwidth through its congestion control algorithm over an end-
to-end network path. The pipe bandwidth is then allocated among connections according to
a combination of the scheduling policy and user requirements. WebTP's approach has several
advantages.

The application's service requests can be directly accepted and dynamically adjusted as
the user observes the service quality. Applications can obtain necessary network information
from the transport layer for bandwidth adaptation. End-to-end QOS assurance is possible
without a hop-by-hop signaling procedure during the connection setup. The transport-level
solution needs only to be deployed at the end-systems or the boundaries of sub-networks.
Because routers and switches axe not involved in the QOS provisioning, it is better suited to
today's heterogeneous network environment.

Since the pipe bandwidth depends on other pipes and connections in the network, as well
as on the particular congestion control algorithm used in WebTP, it seems that some layer-3
control is necessary to allocate bandwidth to each of the pipes. A recent work by La [21]
shows that, if the switches and routers use first-in-first-out (FIFO) queueing, then each pipe
needs only to observe its own round-trip delay and to run an algorithm in isolation firom each
other, and the resulting bandwidth allocation maximizes the total utilities of all pipes. For
practical purpose and for simplicity, WebTP does not try to accurately achieve such bandwidth
allocation. At the minimum, WebTP can provide differentiated service quality to connections
within a pipe. WebTP observes the available bandwidth for the pipe, and then decides what
service quality is possible to the connections. The less bandwidth fluctuation the pipe has, the
better can WebTP guarantee service qualities to connections.

Hence, WebTP's approach for QOS provisioning is more effective when the pipe band
width is high and when many connections are multiplexed into the pipe. It is particularly
attractive to run WebTP between two points in the network where the traffic volume is high.
Examples of such places are content or application server, web caches, and ISP or Intranet
gateways. As the Internet becomes increasingly segmented by these "super servers", we can
modify WebTP so that it can manage the service quafity on segments between any two "super
servers".

4.2 Aggregation of Connections into Pipe

Many previous studies have identified the need of integrated control for connections that mul
tiplex on to the same network path. The integration can be at the bottom of the transport
layer [8] [25] , at the session layer [12] [27], at the transport layer [5] [6] [28] [26], or below
the transport layer [3]. Integration at or below the transport layer can aggregate the largest
number of connections. Although the transport-layer approach requires the most changes to
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the transport, it is also the most powerful one. WebTP's integrated congestion management is
most similar to the congestion manager (CM) proposed by Balakrishnan et al. [3]. However, in
WebTP the pipe structure is more tightly couple with the transport proper. We view WebTP as
an alternative design to the CM with respect to the idea of integrated congestion management.
Overall, the two proposals differ tremendously in their focuses, feature sets, architecture and
algorithms.

The advantages of aggregating connections into a pipe are as follows.

1. Integrated congestion management leads to easier bandwidth estimation, less packet loss,
and faster connection setup.

2. Network bandwidth can shared by all connections within a pipe. QOS can be provided
to connections by scheduling and admission control.

3. The aggregated traffic is smoother. This is particularly helpful to ensure the service

quality of real-time and interactive traffic. For the same quality-of-service level, the

aggregated traffic needs to reserve less bandwidth than in the case when each individual
connection makes separate reservation.

We need to stress the fairness issue when integrated congestion management is adopted.

Suppose we use a TCP-styled congestion control algorithm on each pipe. A pipe with 100
connections obtains the same amount of bandwidth as a pipe with 10 connections, assuming

they are bottlenecked at the same network link and they have equal round-trip delay. Since

the average bandwidth depends critically on the increase rate for the window size, the fairness

problem can be partially solved by assigning a higher rate of increase to the pipe with 100
connections.

4.3 Separating Real-time and Non-real-time Traffic

By defining different pipe classes, WebTP allows separation of real-time from non-real-time
traffic. Traditionally, real-time traffic is serviced by UDP, and non-real-time traffic is serviced

by TCP. In principle, real-time traffic should also be congestion controlled. For, if a real-time

packet will be dropped in the network, it should not have been released into the network in

the first place. However, in practice, the knowledge about the network congestion is imprecise,
and it is not known which packets will be dropped by the network when congestion occurs.
Furthermore, real-time traffic is inelastic in the sense that its packets should not be delayed

by more than the amount required for interactivity. TCP's congestion control will not be very
effective for real-time traffic. A common strategy is to leave real-time traffic uncontrolled. One
added benefit of the strategy is that when real-time and non-real-time connections share a
transmission path, controlling the non-real-time traffic but not the real-time traffic effectively

gives "priority" to the real-time traffic.

On the other hand, uncontrolled access to the network by the real-time traffic threatens
the stability of the network, as well as deteriorates the service quality received by all competing
users. Inelastic, real-time traffic can be responsive to two other forms of congestion control.
First, if multi-resolution encoding is available, the source can offer a lower-resolution version of
the object in response to network congestion, hence reduces the amoimt of traffic that enters
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the network. Second, if connection-admission control is available, the number of connections
can be regulated at a level that the service quality is guaxanteed.

The above anal3rsis leads to the conclusion that real-time traffic should be monitored for
congestion but should not be congestion-controlled by the transport. One remainingquestion is
whether congestion monitoring should be combined for both real-time and non-real-time traffic.
If the network routersall useFIFO queueing, integrated congestion monitoring canprovide more
timely information on packet losses due to the additionalaggregation of the traffic. An example
of the integrated congestion control algorithm looks like the following. The acknowledgment
of a non-real-time packet increases the congestion window size, while the adknowledgement of
a real-time packet does not. When any packet is lost, the congestion window size is halved.
The non-real-time packets are not allowed to be sent when the total number ofunacknowledged
packets exceeds the current window size. The real-time packets are always transmitted as they
are generated, regardless the window size.

If the network routers treat real-time and non-real-time packets differently, separating
their congestion monitoring appears to be a better idea. In this case, only the loss of a non-
real-time packet should trigger the reduction of the window size. For instance, if the router
allocates 80% of the bandwidth to the real-time traffic and 20% to the non-real-time traffic,
a loss from the real-time traffic should not affect the non-real-time traffic. Anticipating more
deployment of routers that provide differentiated services, we prefer a complete separation of
the congestion monitoring for the real-time and non-real-time traffic. One way to achieve this
is by using separate real-time and non-real-time pipes. Short-interactive flows can either be in
the real-time pipe or the non-real-time pipe. Buffered stream is in the non-real-time pipe.

4.4 ADU-level Reliability Control

ADU-level reliability control isone ofthe most salient examples ofWebTP's fine-grained control
philosophy. Traditionally, a connection is either completely reliable or completely unreliable.
However, it is not hard to find applications that generate a mixture of reliable and unreli
able packets, such as MPEG video streams. For these applications, the packets are carried
separately by reliable and unreliable connections. Timing information must be recorded into
the application-level data unit in order to synchronize packets at the receiver. By allowing
fine-grained reliability control at the ADU-level, the design and implementation of these appli
cations canbe made easier. The need for supporting ADU-level reliability is particularly strong
in WebTP since a WebTP pipe can contain traffic from many connections and many types of
applications. Moreover, it also allows differentiated treatment of the ADUs within a connection.
Since the lost unreliable ADUs are not retransmitted, the transfer of reliable ADUs appears
to be faster. For instance, suppose the entire ADU becomes useless when one packet from it
is lost, and it is too late to retransmit the packet. Then, discarding the entire ADU helps to
save bandwidth and to speed-up the transmission of later ADUs. [22] illustrated similar point
with some experimental study. For the web application, we can think about designating the
important objects on a web page as reliable and others as unreliable. When interactivity is
strongly desired, the connection can be assigned into a real-time pipe and certain ADUs can
be designated as unreliable. Unreliable real-time ADUs can then bypass both retransmission
and congestion control. Finally, by making the SYN packet rehable, the fine-grained reliability
control in WebTP has the additional benefit of speeding up loss recovery of the SYN packet,
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and hence, the setup of real-time connections.

4.5 General Scheduler and Bandwidth Management

Bandwidth management typically means to assign more bandwidth to some connections at
the expense of reducing it for other connections. In theory, it is needed at any connection-
multiplexing point. In practice, transport-level bandwidth management can take place at the
end-systems such as the cUent or server computers, the network access device for a corporate
intranet, Internet service provider's backbone access point or peering point, and the layer-4
switch for a content server farm. Bandwidth management ideally involves a user or a connec
tion making a request for certain service from the network and the resource's administrator
making policy-based decisions on whether the request can be met. Since the set of possible

network services and bandwidth-sharing policies can be diverse, it is extremely useful that the

transport layer has the flexibility to provide mechanisms for implementing a wide range of

bandwidth management schemes. In our approach, the transport layer can implement a hi
erarchical and class-based scheduler that manages bandwidth guarantee service classes at the
shortest timescale, various levels of delay guarantee classes and bandwidth guarantee classes
at the timescale of the longest guaranteed delay. The objective of resource sharing can be
achieved by a combination of scheduling, connection usage accounting and measurement-based
admission control provided jointly by the transport layer and the application layer. The trans

port layer provides the information on the available bandwidth from the network, and the

bandwidth usage and service quality information for each connection or class. A bandwidth

management application implements the resource-sharing practice by mapping the connections

into the scheduler classes, accepting service requests from the users, connections or the admin
istrator, assigning scheduler parameters to each class based on these requests and the policy,
maintaining usage and service quality statistics for each class, and making admission control
decisions.

4.6 Rate vs. Window

The debate of rate or window-based flow control has been with us since the early days of com
puter network research. Although the two approaches can emulate each other to a large degree,

window-based control is much easier in sizing the operating parameters. For instance, in TCP's
congestion avoidance, the congestion window increases roughly by one packet in each roimd-trip
time. TCP's congestion window evolution might be on the conservative side in many situations.
But, its abilities to minimize users' involvement in the operation and to maintain the network

stability win itself wide-spread acceptance. The "conservation principle" and bandwidth prob

ing are both easily achieved in TCP. On the other hand, sizing the parameters for a rate-based

control algorithm can be tricky. For instance, one difficult question is how much the rate should
be increased when the network is not congested. In the control of available-bit-rate (ABR) traf-
flc in ATM technologies, the rate is increased by a flxed proportion of the peak bandwidth on
the path. In order to make the right decision, it seems that the total available bandwidth and
the total number of competing users on the transmission path should be known. Before the
queue buildup at the bottleneck router, the eflfective transmission rate of TCP grows linearly.
When the bufier starts to flll up, the transmission rate of TCP grows much more slowly than
a linear growth. At the bottleneck link, the total rate of incoming traffic stays above but very
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close to the link capacity until the buffer becomes full. It is not easy to emulate this behavior
with a pmely rate-based scheme. Moreover, while the window size is an unambiguous quan
tity at any time instance, the rate that can be used for control must be a value averaged over
some time interval. One must choose a time interval relevant to congestion control. On the
other hand, rate is an extremely natural notion when the network control is viewed as a rate
allocation problem. The objective there is to find a rate allocation for all connections so that
(i) the network is not congested, (ii) the allocation is "fair", (iii) some objective function is
optimized [19]. The QOS for a connection can be expressed most conveniently by the rate in
most situations.

One can think of combining the window and rate in network control. The congestion
window is used to control congestion on the very short time scale, and the rate is used on a
longer time-scale. WebTP provides a suitable platform for such mechanisms. The window-
based algorithm works at the pipe level. It controls the amoimt of outgoing traffic in the pipe
and obtains an estimate of the pipe bandwidth. The rate control works at both the connection
and pipe level by allocating the pipe bandwidth among the connections. With one further step,
the pipe bandwidth can also be used to help the window-based congestion control. For instance,
the initial window size can be assigned based on a rough estimate of the pipe bandwidth, or
the past bandwidth estimation can be used to guide the window size evolution.

4.7 Network Measurement

The goals of network measurement are broad, including transport performance monitoring,
serviceprovisioningand network control. For instance, some applications need to be aware of the
time-varying available bandwidth for adaptation. The scheduler at the transport layerneedsthe
same informationfor bandwidth allocation. Congestion control module needs to detect packet
losses and to adapt to the varying network bandwidthon behalfof non-adaptive applications.
TVaditional transport protocols use minimal network information. We believe that WebTP can
makegreat improvement over the traditional protocols through more active use of the measured
network information. The candidates of measurement include the bottleneck link capacity, the
available bandwidth, the queueing delay, the current bandwidth usage by connections and
pipes. From these it is possible to compute the connection's bandwidth allocation according
to a number of criteria. Knowing the available bandwidth can help the connection to quickly
ramp up its rate whileminimizingpacket losses at the same time. Another interesting statistical
inference problem is to decide the subset of connections that share the same bottleneck link
from the edge of the network. That information is useful for integrated congestion control and
bandwidth allocation.

4.8 Separation of Reliability and Congestion Control

The idea of separating reliability and congestion control comes naturally from the understand
ing that the former belongs to application-support functions and the latter belongs to network
functions. From a system design point of view, the conceptual separation of the two control
functions should leads to a modular protocol design. From functional point of view, the sep
aration of the two is necessary in WebTP, since congestion control is at the pipe level, and
reliability is specific to connections and ADUs. In [22], the authors also advocated the decou
pling of the two functions. However, a complete separation of the two may not be efficient from
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the engineering point of view, because both functions need to observe the network for packet
losses. This is why, in WebTP, they share the same loss detection function.

4.9 User Utility Characterization

This motivates the framework of user-centric optimization and can help us to design tradeoff
strategies among users, among different connections of the same user and among different
objects within a single connection. Our goal is to build the capability inside the transport for
implementing various tradeoff strategies. We need to understand the correct abstraction that
characterizes user's preferences for different applications, and hence, the objectives of network
resource sharing. To better conceptualize the problem, we look at the user's utility at two
different levels. Within each connection, the user has some valuation over the objects being

transferred. Given fixed network resource assigned to that connection, the optimal user utility
is achieved through object transmission scheduling. The network resomce is assigned based on
a combination of the user's valuation for each connection and the resource-sharing policy when

multiple users are involved. The user can dynamically alter his valuation during the lifetime of

the connection.

4.10 Protocol Design and Verification

Three aspects of the WebTP protocol are novel compared with the traditional transport proto
cols. Firstly, the conceptual separation of the connection and the pipe reflects the orthogonal
nature of reliability control and congestion control in the transport layer. Since WebTP uses
a window-based mechanism similar to TCP, the sharing of the feedback sequence space, and
hence, the packet loss information, necessarily couples them. The WebTP protocol needs to
resolve the issue of congestion management at the pipe level and reliability control and the
connection level. Secondly, because the data stream in each connection may consist of a mix
ture of reliable and unrehable packets, traditional cumulative acknowledgement scheme used in
TCP does not work when some unreliable data packets are lost and are never retransmitted.
We have proposed a scheme that views the data stream as two logical streams: a reliable one
and an unreliable one. The challenge here is to satisfy the reliability requirement and to con
trol congestion timely and efficiently. Finally, in addition to a TCP-styled connection setup,
WebTP also has an option to emulate a connectionless service with Fast WebTP. Fast WebTP
can transfer data before the completion of connection and pipe setup and hence expedites inter
active applications. Since the connection will eventually be established, the protocol remains
reliable as a whole. The initial period before the completion of connection setup needs to be
handled with care to ensure the reliability semantics. As the protocol becomes increasingly
complex, we plan to adopt formal design and verification methods.

4.11 Sender vs. Receiver-driven Protocol

Whenever we consider an efficient resource allocation problem, we first need to understand
what the resource is. In the case of networked communications, the users may be competing

for the server resomrces and/or network resources. From a single user's point of view, it is
possible he is competing for resources with other users at places within the network or at the
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edge of the network. Transport protocol design is difficult since we face a variety of multi
user resource allocation problems in which the contended resources may be unknown. Some
global coordination or centralized control is necessary in this case. When we design a transport
protocol, which by nature is used by a large number of users and implicitly provides some
degree of global coordination, we must consider how the amount of resource is determined for
each user.

When we think of user-centric optimization, we mainlyrefer to the single-user optimiza
tion problem, in which he has no control over the amount of the resources he receives, but
has control over how the resources should be used. (It is not easy to talk about user-centric
optimization when other users are involved, because users may have conflicting objectives.)
The next issue is to determine what entities are sharing which resource, in our case, which
connections are bottlenecked at the same link. One question is whether the user can determine
this by making inference based on end-to-end observations.

In a simpler scenario, suppose all connections of the user are bottlenecked at the user's
access link. A receiver driven control might have advantages in controlling bandwidth for the
single user. In the web-related applications, each receiver tjrpically corresponds to a single user.
The receiver knows all the connections that belong to the user, therefore, is the natural aggre
gation point for bandwidth control. To optimize the user's utility, for instance, the receiver's
congestion or rate control can allocate dffierent rates to the connections. This is not easy to
do in the case of a sender-driven control because the connections may be mmrminip.fl.ting with
difierent servers. In [13], a receiver-driven congestion control has been proposed.

Since congestion control and reliability control are coupled through the shared sequencing
space for the packets, we have to examine receiver-driven reliability control, which has several
disadvantages. First, the receiver does not always know the reliability requirement on per-ADU
basis. On the other hand, the sender always knows about the requirements, either by default
or by examining the receiver's request. It would take signiflcant amount of extra control traffic
for the sender to communicate this information to the receiver. Second, because the receiver
does not know what have been sent, loss detection and retransmission can be difficult.

Finally, we believe that the more general multi-user-resource-sharing problem in net
worked communications is the more critical one than the single-user problem. Since the sender
is typically the aggregation point ofusers, connections and traffic, it would be the natural point
for resource partitioning and network control. For that reason, we still favor a sender-based
control protocol. The single-user bandwidth allocation is accomplished by commimicating the
user's requirement at the application level. For example, the receiver sends an application-level
message to the sender, requesting certain bandwidth. The sender application translates the
request into parameters for the rate-related API, and sends the request to the transport.

4.12 Related Previous Research: Extended List

In a way, WebTP represents a synthesis of last decade's research on transport protocol design
and improvement. Floyd has organized a webpage containing many research papers in this area
[10]. In the previous sections, we have already quoted many papers. The following noticeable
works extend the list further (with repeats).
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On speeding up TCP's startup phase Allman et. al. [1] propose to increase the upper
bound for TCP's initial window size from one segment to between two and four segments, or
up to 4KB. In both TCP Fast Start [26] and T/TCP [6], congestioncontrol parameters such as
the congestion window size (cwnd) and the slow-start threshold (ssthresh) from earlier TCP
connections are cached and shared by later connections. To guard against overly aggressive
fast-start connections, TCP Fast Start also has a router algorithm that drops the packets of
fast-start connections with priority. T/TCP can bypass the three-way handshake by using a
32-bit connection incarnation number, called connection count (CC). Because the CC values
increase monotonicahy for successive connections, the listening side of the transport can distin
guish a new connection from an old one. Hoe [14], Aron and Peter Druschel [2] set the initial
ssthresh at about the measured bandwidth-delay product.

Scheduling In this area, our scheduler is most related to the CBQ scheduler [11], the HPFQ
scheduler [4] and the HFSC scheduler [17].

Acknowledgement Scheme TCP's SelectiveAcknowledgement scheme (SACK) [23] should
be mentioned here. SACK acknowledges all packets that have been received by the receiver

so that the sender only needs to retransmit the lost packets. Without SACK, TCP can only

detect one lost packet at a time, causing delay in retransmission.
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