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Abstract

The motivation of this paper is to optimize the downloading process of web pages when
the communication capacity is limited. We see a web page as a collection of objects, each
of which has certain utility to the user. The problem is to schedule the transmission of the
objects so that the total utility is maximized. In this paper, we examine various formula
tions of the problem and utiUty assignment schemes. We survey of the the relevant results
from the theory of single machine scheduling. The paper also contains some new results.
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1 Introduction

The problem that has motivated this paper is derived from the work of [5] which studies how
to optimize user's satisfaction in web browsing sessions via web object transmission scheduling.
By web objects, we mean items on a web page, such as a piece oftext, an image, an audio or
video clip, etc. We donot limit the notion ofweb objects to those items with complete semantic
boundaries, such as a complete JPEG image. A block of a JPEG image, or a low-resolution
copy ofa multi-resolution-encoded JPEG image can also be considered an object. In the same
line of thoughts, an application data unit (ADU) can be considered an object. The defining
property ofan object is that as a whole it has some utility to the user and any part ofit either
has no utility or cannot be rendered by the application.

The scenario is the following. Considered a web browsing session in which a user wants to
retrieve a particular web page with n objects. The rate of communication between the sever
and the user is a constant /z, possibly limited at a slow fink in the network or at the busy
server. Suppose the user has certain preference over each web object. The question is how
the server should schedule the transmission of these n objects in order to maximize the user's
overall satisfaction. The notion of user's satisfaction will be made concrete later.

The problem stated here belongs to the general area of single machine scheduling. This
paper surveys the results in that area which are relevant to our problem. Due to the online
nature of our problem, we pay particular attention to the time complexity of scheduling algo
rithms. We discuss specific requirements and characteristics of web object transmission and
make recommendations toward solving this problem.

The paper is organized as follows. In section 2, we introduce definitions in single machine
scheduling and discuss necessary elementary results in this area. In section 3, we formulate
the basic scheduling problem as an optimization problem whose objective is the sum of utility
functions of objects, and consider some details in general terms. In section 4, we discusses a few
families of utility functions and their associated schedules. In section 5, we introduce advanced
results for linear utility functions. Insection 6, 7and 8, we deviate a little from the main thread
ofthe paper and discuss three related problem formulations. We conclude insection 9.

2 Elementary Theory in Single Machine Scheduling

The results in this section can be found in [1] and [2]. Suppose that n objects, numbered from
1 to n, are to be transmitted by a single server with a constant capacity /z. We assume the
server is non-preemptive. The choice between preemptive and non-preemptive server will be
discussed ina separate section. We define the following variables.

r," The release time, i.e., the time when object i is available for transmission. We assume
Ti = 0, for all i.

Si The size of object i.

Pi The transmission time of object i. pi = Si/p.



Ci The completion time of transmitting object i.

Wi The waiting time of object i, before it is selected for transmission.

di The deadhne (or due date) of object i.e., the promised completion time for object i.

Li The lateness of object i. Li = Ci —di. Notice that Li is negative when object i is completed
ahead of schedule.

Ti The tardiness of object i. Ti = max{Ci —dj, 0}.

Ny_ (t) The number of unfinished jobs at time t.

2.1 Some Simple Results - Polynomial Time Problems

The objective is to find a schedule to optimize certain performance measmre. Following the
tradition of machine scheduling theory, the performance measures throughout section 2 are
cost functions that are to be minimized. We will list a few tjrpical measures in the scheduling
literature that might be relevant to the web object transmission problem, and present some
known facts. For a sequence of numbers, we denote the mean or average by
Y = Yi, and Ymax = max{yi, y2, In}- Also define

1 pCmax
Nu = 77— / Nu(t) dt

^max Jo

mean completion timeC.

weighted completion time where oti > 0 for all i.

mean tardiness T.

maximum tardiness Tmax-

number of tardy jobs ut = liQ > di}.

We did not list all obvious performance measures due to the facts that some of the measures
are equivalent.

Fact 2.1 For the single server problem, the following formance measures are equivalent (i) C,
(a) W, (Hi) L, (iv) Nu.

Fact 2.2 A schedule which is optimal with respect to Lmox is also optimal with respect to Tmax-

Definition 2.1 i4 regular measure R is one that is a non-decreasing function of completion
times. That is, R is a function o/Ci,C2, ...,C„ such that Ci < C[,C2 < C2,...,Cn <
together implies R(Ci, C2, C'n) < R(Ci, C2,..., C^).



C7, L,Lmaxi ^j 2uid Tmax are examples of regular measures.
A scheduler is called work-conserving if it may not stop when there are unfinished jobs in

the system. A scheduler is called non-preemptive if it has the property that, once an object
starts to be serviced, it will be completed before the scheduler services another object. When
dealing with regular measures, we can restrict our attention to the class ofwork-conserving and
non-preemptive schedulers due to the following facts.

Fact 2.3 When the performance measure is regular, there exists an optimal work-conserving
schedule.

Fact 2.4 When the performance measure is regular, no improvement may be gained in the
optimal schedule by allowing preemption.

Since the class of work-conserving and non-preemptive schedules corresponds to the set ofall
sequences ofthen objects, the scheduling problem isequivalent to finding anoptimal sequence
of the n objects. We now state some results for some common schedules.

Fact 2.5 SPT(Shortest Processing Time) schedule minimizes C, W, L, and N^.

Fact 2.6 If all jobs have the same due dates, SPT schedule minimizes T.

Fact 2.7 If it is impossible for any job to be on time in any sequence, then T is minimized by
SPT sequencing; if SPT yields no jobs on time, then it minimizes T.

Fact 2.8 EDD(Earliest Due Date) schedule minimizes Lmax o-nd Tmax-

Fact 2.9 There exists a schedule without tardy jobs iff the EDD schedule yields no tardy jobs.
Fact 2.10 The weighted completion time measure oiiCi, where ai > 0, is minimized
by the Weighted Shortest Processing Time (WSPT) first schedule. That is, object i is
transmitted before j if

Pi<Ei
Qi ~ aj

The number of tardy jobs, ny, can be minimized using Moore and Hodgson algorithm [2].

Algorithm 2.1 Moore and Hodgson's
step 1. Sequence the jobs according to the EDD rule to find the current sequence (Ja^i),
•^i(n)) such that < ^^(2) ^ ••• ^ ^i(n)'
step 2. Find the first tardy job in the current sequence. If no such job isfound, go to step
4-
step 3. Find the job in the sequence («/t(i), Jt(2)j—j«^t(/)) yjith the largest processing time and
reject this from the current sequence. Return to step 2 with a current sequence one shorter than
before.
step 4. Form an optimal schedule by taking the current sequence and appending to it the
rejected jobs, which may be sequenced in any order.

Fact 2.11 In the Moore and Hodgson algorithm, the rejected jobs are all tardy and will be the
only tardy jobs.



SPT, WSPT, EDD and MH schedules can all be suitable for web object transmission because
their optimization objectives are reasonable and the scheduling algorithms have a complexity
that is polynomial in n.

2.2 Some More Difficult Results - NP-Hard Problems

Notice we did not list a solution for minimizing the mean tardiness. Deriving such a schedule
is more difficult than the cases above. For many objective functions, the scheduling problems
are NP-hard, in which case we have three choices.

• Use some enumeration techniques to find the optimal schedule, such as dynamic program
ming, branch-and-bound, and curtailed enumeration. We can also formulate an integer
programming problem from the scheduling problem and use the techniques in the general
framework of integer programming. Or we can find pseudo-polynomial algorithms for
problems that are NP-hard but not in the strong sense.

• Find polynomial time approximation algorithms that guarantee a bound for the worst
case relative performance, such as the fully polynomial time approximation scheme.

• Find other polynomial time heuristic algorithms that either are locally optimal or have
good average performance. The neighborhood search technique [1] is one example of the
former.

Complete enumeration of all possible schedules takes 0(n!) operations. People have devel
oped various enumeration strategies to cut down unnecessary enumeration. Dynamic program
ming takes advantage of the sub-optimal structure of the scheduling problem, i.e., the some
sub-sequences of an optimal sequence are themselves optimal sequences for some sub-problem.
A dynamic programming approach can reduce the number of enumeration if the solutions at
level (with /:+1 objects, for instance) can use the solutions at level k. Typically, dynamic
programming needs to solve all sub-problems at level k before moving up to solve the sub-
problems at level k-\-l. This parallelism can be demanding on the memory requirement, since
the solutions to a potentially large number sub-problems need to be remembered before the
whole problem is completely solved. Branch-and-bound also branches out sub-problems. But
it quickly finds some trial sequence, typically through heuristic techniques. It then calculates
optimistic bounds for each of the branches and eliminates those whose results are worse then
the trial sequence.

For some performance measures, the candidate set of sequences for enumeration may be
reduced based on specific properties of the problems. The systematic application of this idea
is to look for dominance conditions that determine dominant sets. For any sequence outside a
dominant set, one can always find another sequence inside the dominant set that is at least as
good. Hence, it must be true the dominant set contains an optimal sequence.

2.3 Multiple Performance Measures - Efficient Schedule

Sometimes, it is possible to combine more than one performance measures in some fashion.



Definition 2.2 A schedule^ s, is efficient with respect to measures 71, 72, 7*: if there does
not exist a schedule s' such that 71(5) < ^i{s'), 72(5) < ^^2(5'), 7jb(s) < 7/b(5')» strict
inequality holding in at least one case.

Suppose g : M* —> Ris an increasing function in each of its components. Define a performance
measure ^(7i(s),72(s),••.,7fc(«))- Then, it is sufl&cient to optimize this measure in the set of
efficient schedules. An example of this is g{Tmaxi C) = 4Tmax + QC.

3 Considerations of Object Transmission Formulation with Reg
ular Utility Function

Inthis section, we will take a more intrinsic approach offormulating the web object transmission
problem.

3.1 Objective Functions

Before dealing with the question of how to optimize user's satisfaction, we need to consider
how the user's satisfaction is expressed. We assume that each object on a web page has certain
utility to the user andthat the overall utility ofthe page is thesum ofthe utilities ofindividual
objects. Ifan object cannot be displayed until it arrives completely, its utility should depend
on the completion time only and can be denoted by Vi{Ci). Since one would expect that the
user is more satisfied if the transmission is completed sooner, the function Vi{Ci) should be
non-increasing. The total utility for the page becomes,

n

viCuC2,...,Cn)
t=i

Note that, unlike the cost functions insection 2, the utility function reflects user's satisfaction
and is to be maximized. The mean completion time, weighted completion time, and mean
tardiness all have the same form as the right hand side of (1), butare cost functions. Another
commonly used cost function of this sort is the tardiness penalty measure or weighted tardiness,

WiTi, where wi > 0 for all i.

Autility function is said to be regular ifthe negative of it is regular. Since the utility fimction
of the form as in (1) is regular, optimality can be achieved by non-preemptive schedules. The
corollary is that processor sharing does not make further improvement.

On the other hand, if the object can be displayed progressively in very fine granularity,
we can idealize the situation by assuming every infinitesimal piece ofdata is useful. Then, the
utility of object i can be denoted by the function Vi(t, x), which represents the value received by
the user when x bits have arrived by time t. Inthis case, preemptive schedule may be required
to achieve optimality.



3.2 Specifying Values of Utility Functions

In practice, a user faces two problems with specifying the utility functions. First, he needs to
decide on a large number of function values for every Cj and for every object i. Second, since
each value corresponds to an abstract notion of utility, he may find it impossible to determine
the value. Paradoxically, the user might find it more natural to assign a ranking directly
to each possible sequence of the objects, if he has the patience to enumerate the potentially
large number of possible sequences. On the other hand, a particulax permutation can be the
optimal schedule for more than one utility functions. This suggests that we can approximate the
true utility functions by simpler parametric functions and still derive optimal or near optimal
permutation.

3.3 Specifying Deadlines

In traditional job scheduling problems, it is common for a job to have a due date so that costs
can be associated with violation of the due date. The concept of deadline for a web object can
be problematic. A deadline for the transmission of a web object may not have real significance.
For example, a non-real time object has no hard deadline; however, it is always preferable for
it to arrive sooner. It is plausible that the time requirement for interactivity (normally around
200 ms) can be used as the deadline. However, the significance of this kind of deadline depends
crucially on the transmission speed. If the link speed is so low that the transmission time
of the object far exceeds the its deadline, specifying such a deadline appears to be pointless.
Similarly, if we choose the values for the deadfines so large that no deadline is violated by any
permutation, then any permutation is an optimal schedule. It is, therefore, burdensome for the
server or the user to make a decision on the deadline.

3.4 Uncertainty in Processing Capacity

In our context, the processing capacity is determined jointly by the web server's capacity
and the transmission bandwidth in the network path from the web server to the user. The
processing capacity can vary due to many factors, such as variation of cross-traflBic load in the
path, variation of server load, transport's congestion control algorithms, and retransmission of
lost packets, etc. The processing capacity fiuctuates on different time scales, depending on its
cause. Sometimes, we need to model the processing capacity as a changing quantity rather than
as a constant.

3.5 Precedence Constraints

Sometimes a web transfer is subject to precedence constraints. That is, it is required that some
objects on the web page be transmitted before some other objects. An optimal schedule should
respect the precedence constraints. Many factors may impose precedence constraints among
objects. For instance, on-screen objects should be transmitted before off-screen objects. We
will discuss a very important factor related to the notion of fine-grained encoding.



A peculiar characteristic of the current web documents is the large imbalance of the object
sizes, which can differ by orders of magnitude. Text objects can be as small as a few kilobytes
and image files can be as large as hundreds of kilobytes. Large objects often dominate the
transmission delay. When large objects are present, an optimal schedule might be as obvious
as transmitting small objects before large ones. However, the improvement perceived by the
user can be very limited. If the encoding allows a large object to be further divided into smaller
objects and each of the smaller objects can be displayed separately, then, the size imbalance
of the web objects is reduced and further performance optimization is possible. For example,
when multi-level encoding of images is possible, the user obtains certain utility for each coarse
copy he receives. As additional copies are received, the image quality improves. For correct
reconstruction of the large object, fine-grained encoding may subject those smaller objects to
precedence constraints instead of allowing arbitrary orders.

3.6 Computation Complexity

Optimal object-sequencing problems are often NP-hard for even simple utility functions. Find
ing polynomial-time approximation to the optimal solution can also be difficult. Due to the
on-line natiure of web object transmission, we prefer utility functions that do not lead to NP-
hard scheduling problems or that have simple nearly-optimal solutions, (see Appendix A for
relevant results from complexity theory)

4 Several Regular Measures and Their Optimal Schedules

For most cases, the measures are interpreted as utility functions that are to be maximized.
Occasionally, we relate them to their corresponding cost functions used in machine scheduling
literature.

Formulation 4.1 Let Vi{t) be the value ofobject i if it is completed at time t. Findan ordering
ofthe n objects so that is optimized, where Ci is the time when object i is completed.

In the following, we will consider several functions for u,, for a generic object i. These functions
are summarized in Table 1.

Table 1: Objective Functions

Function Expression Utility Cost

I
, X_ f Wi if 0 < t < di

^ \ 0 otherwise

«<(t)

Wi

Vi{t)

di t di t



VI

VII

Table 1: Continued

Function Expression

viit) = ait + pi

ViCt) = Oie^^ + Pi

if 0 < t < di

' \ ait + Pi otherwise

/.V r otit + Pi if 0 <t<di
^ \ 0 otherwise

Vi{t) ={
Wi if 0 <t <di

ait + Pi if di <t <di
0 otherwise

= A- n-a,efp(-7.e)

Utility

d d' t

Viit)

Cost

Vi(t)

di

Vi(*)

d d! t

Viit)



Table 1: Continued

Function Expression Utihty Cost

VIII
* \ 0 otherwise

«,-(<) Viit)

d t d t

4.1 Function I - Step Functions

Vi{t) =I Wi if 0 < t < df
0 otherwise

where Wi's axe positive numbers, representing the values of the objects. In this model, a utility
Wi IS gained if the object is received before the due date df. Otherwise, the object becomes
useless. A minimization version of the problem is as follows.

={
0 if 0 < t < di
Wi otherwise (2)

where Wi's are also positive numbers, representing a penalty when an object is completed
after its due date. The corresponding scheduling problem is proved to be NP-hard in [7].
Pseudo-polynomial solution based-on dynamic programming was found for the minimization
problem by Lawler and Moore [10]. It has a complexity 0(nr), where T = XliLiPt- The
technique can be naturally extended to the maximization problem. Fully polynomial time
approximation algorithms were found in [15] for the maximization version of the problem with
time complexity 0(n2/e), and in [4] for the minimization version of the problem with time
complexity 0{n^log n -}- n^/e).

We will introduce the algorithm by Lawler and Moore [10] because the technique also serves
as basis for some other more difficult problems. They start by considering the following general
formulation. Suppose njobs are to be processed in the fixed order, 1, 2, ..., n. Each job can be
performed in either one of two different modes. In the first mode, the processing time of job
j is ttj and the cost function is Pj{t). In the second mode, the processing time of job j is
and the cost function is p|(t). The objective is to assign one mode to each object so that the
total cost is minimized. Let f{j, t) be the minimum total cost for the first j jobs, subject to the
constraint that job j is completed no later than time t. The dynamic programming solution for
this problem is as follows.

Algorithm 4.1 Lawer and Moore

10



/(0,t) = 0 (t>0),

f{j, t) = +00 {j = 0,1,n; t<0),

t) =min ^ Pj (^) +/O 1} ^~®})
p?W + /(i-1,^-0?)

0 = l,2,...,n;<>0)

The assignment problem is solved by computing /(n,T), where T is a sufficiently large
number. For instance, we can choose T = max{aj,a?} when the cost functions are
regular. The computation requirement is 0(nr).

Going back to the object sequencing problem that minimizes the total cost
where Vi is the step function as in (2), we only need to partition the objects into two groups:
those that are completed before their deadlines and those that are tardy. In the actual schedule,
all tardy objects simply follow those on-time objects in arbitrary order among themselves. Given
an optimal sequence, we can always order those objects that are on time by the EDD schedule.
These objects will still be completed before their deadhnes in the resulting new order. Hence,
the algorithm for finding an optimal schedule is as follows. First, order the n objects by the
EDD schedule. Without loss of generality, we assume this order is 1,2,..., n. For each object j,
if it is in the first mode, let.

a] = Pj

Pj{t) = I
If it is in the second mode, let

0 ifO<t<dj
00 otherwise

,2

a'j = 0
pj(t) = Wj

Then, apply Lawler and Moore's algorithm. The objects with the second mode assignment are
tardy ones.

4.2 Function II - Linear Functions

Vi{t) = ait -bf3i

When Vi is interpreted as the utility function, we require ai < 0, and Pi > 0 for all i. That
is, the value of the object decreases linearly with the completion time. The corresponding
minimization version, where aj > 0 for all i, is recognized as minimizing weighted completion
times. For both problems, the optimal schedule is to transmit the objects in increasing order
of p,/|ai|, which has a complexity 0(n logn). Notice that /5t's play no role in determining the
optimal sequencing. In fact, as long as all objects have to be transmitted, the /?t's contribute

11



the same constant term for any permutation of the n objects. The proof of optimality of the
schedule is a standard "adjacent pair interchange" argument.

Proof: Let us consider the maximization problem. Suppose the optimal sequence is
TT = (1,2, ...,n). Suppose we interchange the positions of object i and object i + 1 in the
optimal sequence. The loss of utility in object i is lotilpi+i, and the gainofutility in object i +1
is |Q:i+i|pt. Since the sequence tt is optimal, the total change of utility should be non-positive.
Therefore, -|Q:»|pi+i + \ai+i\pi < 0. Or,

Pi ^ Pi+1
Itttl |at+i|

•

One possible drawback with function II is that it decreases indefinitely with t. Jobs that
axe completed late are penalized when Vi becomes negative. In the context of web object
transmission, it may be more reasonable to assume that a late object has zero or small positive
value to the user instead of negative value. For that piu:pose, we can either choose the functions
Vi so that they become negative only for very large t, or choose alternative functions such as I,
III (where 7 < 0) , V, VI, VII or VIII.

4.3 Function III - Exponential Functions

Vi{t) = + A

where Vi(t) is interpreted as a utility function and is a decaying function of t. The optimal
schedule is to sort the n objects in decreasing order of

Proof: We again use adjacent pair interchange argument. Suppose the optimal sequence
is TT = (1,2, ...,n). Take object i and i 1 in the sequence. In the optimal schedule, object
i starts to be transnutted at time C7j_i, where we assume Co = 0. Starting with the optimal
sequence, switching the position ofobject i and i + 1 decreases the utility ofobject i by

-I- Pi) - (aiC^^ '̂-'+Pi+^+Pi) + p^) = e^P*{1 -

and increases the utility of object i -f-l by

+ A+i) - + ft+i) = {1 - e^<)

Since the sequence tt is optimal, the total change ofutility should be non-positive. Therefore,

-aie'̂ ^i-'e'̂ P'il - + ai+ieT^^*-'e'̂ P'+'{l - e^P') < 0

Equivalently,
aie^Pi ^ ai+ie^Pi+^

(3)1 _ efpi — 1 - eTPi+i

12



Notice again that /3i's play no role in determining the optimal schedule.

We can have two t3rpesof decaying exponential functions, a convex function when 7 < 0 and
a concave function when 7 > 0. In order for the function to represent the "value" of an object,
we need to require Ofj > 0 and A > 0 when 7 < 0. The convex function remains positive for
alH > 0. Since we may expect the value of an object eventually decays to zero, we can assume
/3i = 0 for all i. With this choice of /?i, Oj can be interpreted as the initial value of the object,
and I/I7I can be interpreted as a "soft" deadline. Unlike the constant function with a hard
deadline, when the deadline is violated by all permutations or when the deadline is satisfied by
any permutation, the exponential fxmction still matters in the sense that most schedules are
not optimal.

When 7 > 0 and the function is concave, we need to require > 0, ai < 0 and /?»+ Oi > 0
in order to have an appropriate utility function. Caution should be taken with this function,
since its value becomes negative and rapidly decreases when t becomes sufficiently large. The
concave version of Vi may be appropriate when the deadline constraint needs to be rigorously
enforced.

One potential drawback with the exponential function is that a single parameter 7 is used
for all objects. That is, all objects have the same deadline.

4.4 Function IV

«('! -{ ifO <t < di

t + Pi otherwise

In order to interpret u, as the utility function for object i, we require Oj < 0 and aidi-\-pi = Wi.
However, WiS have no influence on the optimal schedule.

It is more convenient to discuss the minimization version of the problem, which minimizes
total weighted tardiness, ociTi. In this case, the weights a, are positive and can be
interpreted as the prices to pay per unit of time for completing the object late. The problem is
proved to be NP-hard in the strong sense in [12] and [8]. If all weights are equal, the problem is
NP-hard in the ordinary sense [6] and can be solved in pseudo-polynomial time by the Lawler
and Moore's algorithm (4.1) [8]. If all deadlines are equal with arbitrary weights, the problem
is NP-hard in the ordinary sense [21], and can also be solved by the Lawler and Moore's
algorithm (4.1). If precedence constraints are added, the problem is NP-hard even with equal
deadlines and equal weights [11]. Researchers have developed branch-and-boimd and integer
programming techniques for finding an optimal sequence, as well as many heuristic techniques
for finding approximate solutions. Many general textbooks on scheduling discuss this problem,
e.g. [18] and [14].

4.5 Function V

{
.V _ j ocit-\- Pi if 0 <t <di

—S Q otherwise

13



When considered as an utility function, we require af < 0, and ^% > Qfor all i. We also
require afdj + > 0 so that the function is non-increasing. This function can be viewed as a
compromise of the step function I and the linear function II.

Lemma 4.1 The scheduling problem is NP-hard in the strong sense.

Two other problems that appear to be related to the current problem are proved to be
NP-hard in the strong sense, the n|l|| and the n\l\Ci < dt| E oci^u where a '̂s are non-
negative weights. The notation here is in the standard machine scheduhng notation. The first
problem stands for n jobs, single machine and minimizing total weighted tardiness. The second
problem minimizes total weighted completion time subject to the constraint that all jobs are
completed before their due dates. As mentioned in the case offunction IV, the first problem is
NP-hard in the strong sense. So is the second problem, as proved in [19] and suggested in [12].
Notice the second problem can be considered to have the following extended cost function v,-.

,,.u\ _ / "i* if0 < t < di
\ oo otherwise

where Oj > 0.

We now returns to our problem. When cxi < 0 for all i and all objects axe required to be
completed before their due dates, the problem is NP-hard inthe strong sense, by its equivalence
to the second problem above. We also know when a, < 0, the problem is at least NP-hard in
the ordinary sense. To see this, let oci = 0, and /0i > 0 for all i, then Vi becomes function I.

The proof ofstrong NP-hardness is accomplished by reducing the 3-partition problem tothe
current problem. The 3-partition problem is known to be NP-hard in the strong sense. We will
adapt the proof for the n|l|| ^^cxiTi problem in [8]. We also work with the "decision" version
of the problem rather than the "optimization" version of the problem. If the optimization
problem has a polynomial-time solution, then the decision problem trivially has a polynomial-
time solution. Therefore, to show the optimization problem is NP-hard, it issufficient to show
the decision problem is NP-complete.

We will work with the minimization version of the problem. Let us first redefine Vi(t).

I Wi otherwise

where Qfj > 0 and Wi > aidi.

3-Partition Problem: Given a set of3n integers fli,02,...,osn between 1 and B -2 such
that "-S- Is there a partition of the ais into groups of 3, each summing to B1

scheduling problem:

14



«X"-jobs: Xi,l<i<n.
"A"-jobs: At, 1 < i < 3n.

Processing times: p(Xi) = L = (165^)+ 1, 1 < « <
p(Ai) = B -t- Ct, 1 < i < 3n.

Weights ot(Xi) = 0, 1 < i < n,
a(At) = p(Ai) = B + Ot, 1 < i < 3n.

Due dates d{Xi) = iL-\- {i —1)4B, 1 < « < n,
d(.Ai) = E?=iP(^i) + E?;iP(^i) + 1, 1< i < 3n.

Constants w(Xi) = W= (L +4B)(4B)2i^ + 1, 1<»< n,
w{Ai) can be any value greater than w{Ai)d{Ai), 1 <i < 3n.

Question: Is there a schedule tt with total cost B(7r) < W —1?

We need to establish that the 3-partition problem has a solution if and only if the scheduUng
problem above has a solution.

Proof: Suppose the desired partition exists. Without the loss of generality, suppose
(a3j_2,a3j-i,03j) is a group, i <j <n. Consider the schedule

TT —^X1, Ai, A2) A3,X2, A4,A5,Ag, A3?•••} Xi, A3t_2, A^i—1, A3i j•••jXfi, A3n—2 jA3n—1 jA^fi)

Since Si=_2 p(A3j+i) = 4B, for 1 < i < n, A, finishes at time d(Xi) = iL + (i —1)4B, for
1 < 2 < n. That is, X-jobs all finish on time. Note that the conunon due date for A-jobs is
chosen so that all jobs are completed before it in any work-conserving schedule. A3j_2,A3j_i
and A3j all finish by j(L -t- 4B) and their total weight is 4B, 1 < j < n. Their total cost is no
greater than j{L + 4B)4B. Therefore,

•R(t) <51 +4B)4B =(L +4B)(4B)"^" - 1 (4)
i=i

Conversely, suppose there is a schedule tt such that B(7r) < W —1. We need to show there
is a 3-partition. First, notice that no X-job can be tardy, because the cost contributed by any
tardy X-job is W. Next, define Wi to be the total weight of the A-jobs following A,, with
Wn+i = 0 by convention. The total cost due to the group of A-jobs between A,- and Aj+i is no
less than (Wi - Wi+i)2jL. Hence,

n n

flW > = LX)Wi
t=l t=l

Note that Wi is also the total processing time for A-jobs following Af. The total processing
time for A-jobs proceeding Xi is (4B)n —Wj. Since all X-jobs meet their due dates, we must
have

iL + {i —1)4B > (4B)n —Wi + iL I <i <n
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Equivalently,
Wi > (n —2+ 1)4B 1 < 2 < n

Suppose for some 2, > (n —2+ 1)45 + 1. Then,

>1+^(n -!+1)4S = +1
i=l t=l

Then,

> lC^^^ab+d
jL

= (L +4B)(4B)2(E^ +1
= w

This contradicts (4). Hence, it must be true that = (n- 2+ 1)45, for 1 < 2< n. Prom this
we conclude that the total weight for the group ofA-jobs between Xi and Xj+i must be45 in
TT, 1 < i < n - 1. Similarly, the total weight for the group of A-jobs following Xn must also
be 45. Since all A-jobs have 5 -H 1< w{A) < 25 —2, each such group must contain exactly 3
A-jobs. The n groups of3 jobs correspond to the desired partition. •

4.5.1 Case of Common Deadline

When all objects have a common deadline, d, the algorithm of Lawler and Moore (4.1) gives
a pseudo-polynomial solution for finding an optimal sequence. Again, an optimal sequence
divides the objects into two groups: those that are completed before the deadline and those
that are tardy. For the objects that are on time, they must be ordered in increasing order of
Pi/^it with the understanding that Pi/0 = oc. Therefore, to find an optimal schedule, first sort
the n objects in this order. Without loss of generality, we assume this order is 1,2, ...,n. For
each object 2, if it is in the first mode, let

= Pi

Pht) = {^
If it is in the second mode, let

'iv ifO<t<d
00 otherwise

o? = 0

PiW = wi

Then apply Algorithm 4.1.
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4.5.2 Case of Continuoiis Function

Suppose Qj < 0 and aidi + /S, = 0 for all It turns out this continuity requirement makes the
problem easier. Then, there is a pseudo-polynomial algorithm for finding an optimal sequence.
Let TT be an optimal sequence and be the subset of all objects that are on time in tt. Then,

Lemma 4.2 In schedule tt, objects in must be ordered in increasing order ofpil\ai\.

Proof: First, notice that, in any optimal sequence, all objects in A^r must be contiguous
and occupy the first 1^4^ | positions, followed by tardy objects. Suppose the lemma is not true.
There must exists two neighboring objects i and j, i,j G A^, with i proceeding j, such that
Pi/|«i| > Pj/\oij\' By exchanging i and j, the value of j increases by \aj\pi, and the value of i
decreases by no more than \ai\pj. But, because \aj\pi > exchanging the positions of i
and j improves the total utility, which contradicts the optimality of tt. •

The optimal sequencing problem can be solved by applying Lawler and Moore's algorithm.
We first write the minimization version of the problem, where

. .V ( (Xit iiO <t<di"iW =I otherwise

where a, > 0 and aidi = /?,, for 1 < z < n.

Without loss of generahty, let us suppose the objects are numbered so that pil\oti\ <
P2/|tt2| < ••• < PnlWnV Given that the objects are ordered from 1 to n, we need to decide, for
each object j, whether it should be completed before dj. Apply Lawler and Moore's algorithm
with the following parameters for 1 < i < n.

4.6 Function VI

— Pj

"iW = {Z'
a| = 0

pjW = 0]

if 0 < t < dj
otherwise

jji if 0 < t < dj
Vi(t) = { aitPi i£di<t< d'i

) otherwise

where iWi > 0, 0 < dj < dJ and ai < 0. In order to have a non-increasing utility function, we
also require Wi > aidi + Pi and ajdj +Pi>0' The value of the object starts at a fixed value and
remains unchanged until time di. It decreases linearly from di to dJ. After dJ, the value of the
object becomes zero. This function is more versatile in approximating "real" utility functions
than function V. Since this fimction becomes function V when all dj's become zero, or when
all dj's become very large, the scheduling problem is NP-hard in the strong sense. Even when
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di —d and dj —d' for all z, we suspect that the problem is still NP-hard in the strong sense.
In this case, it will be interesting to find good approximate algorithms.

Two other functions (VII and VIII) can approximate this function when their parameters
are properly chosen, as can be seen firom figure I.

4.7 Function VII

VI
\

\ VII

d d' t

Figure 1: Function VI, VTI and VEII

Vi(i) = A - A
1 + ai exp (—7t)

where we assume 7 > 0, aj 1and A > 0- With these constraints on the parameters, Vi is
the logistic function reflected against the t = 0and shifted. This function has three operating
regions. It starts at i;j(0) = ^ » ft and decreases graduaUy for smaU t. At around t = lilSi
is a transition region where the value of iij(t) decreases tonearly zero. After that, the function
continues todecrease, tending tozero. This Vi can be interpreted as a fuzzy version of function
I in the sense that the transition fi*om a positive constant to zero occurs over a period of
time rather than instantaneously. The time complexity ofthis problem is unknown. It will be
interesting to find an efficient approximation for this problem.

When ttj = a for all z, this function can also be viewed as a smoothed version for function
VI. In this case, we can find a "locally" optimal solution easily. Suppose object z and j are
adjacent inan optimal schedule, tt, in that order. Let t be the starting time of object z. Denote

SiU) =
(1 + ae-'y(^+Pi)){l - e-'TPi)

Using the neighborhood exchange argument, one can show that in tt,

<^(z,<) > <l){j,t) (5)

Our algorithm starts at time to = 0. We choose the object with the largest value of 0(z, to)
among all n objects to be the first one. Suppose the object in our schedule finishes at
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time tk' The (k + I)*'* object in the schedule should have the largest value of ^(i,tk) among
the remaining objects. The resulting schedule cannot be improved by exchanging neighboring
objects.

The condition in (5) only characterizes the relationship between two neighboring objects in
an optimal sequence. The hope is that this necessary condition for optimality severely limits
the number of "locally" optimal sequences in practice, and that the resulting sequence from
our algorithm is often nearly optimal.

4.8 Function VIII

/.X _ / Oiie^^ + pi iiO <t<d
^ ^0 otherwise

where we assume 7 > 0, Oj < 0, ai + /3i > 0, and + A > 0. With these choices, the utility
function first decreases as a concave exponential function until time d. After that, its value
becomes zero. Notice that all objects have the same deadline in this case.

We again use Lawler and Moore's algorithm (4.1) to find a pseudo-polynomial solution for
optimal sequencing. First, we construct a minimization version of the problem by defining
Pi + Oii —Vi{t) as the cost function for each object. The cost function thus defined is non-
negative. An optimal sequence divides the objects into two groups: those that are completed
before the deadline and those that are tardy. For the objects that are on time, they must be
ordered in decreasing order of (aie'^*)/(l — Therefore, to find an optimal schedule, first
sort the n objects in this order. Without loss of generality, we assume this order is 1,2, ...,n.
For each object i, if it is in the first mode, let

aj = Pi

"••w ={^—aiC^^ iiO <t <d
00 otherwise

If it is in the second mode, let

a- = 0

pf(t) = ai + Pi

Then apply Algorithm 4.1.

Remark 1. In the cases of function II and III, the position of an object in the optimal
schedule depends only on some function of its own parameters. This function is called priority-
generating function in [19]. We will implicitly use this notion when we develop schedules for
objects under precedence constraint.

Remark 2. It is interesting to find the general requirement on the functions Vi so that
pseudo-poljmomial time algorithms exist.
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5 Advanced Results for Linear Utility Function

The results in this section applies to the linear utility function as in Formulation 4.1 (ii). We
will show that the optimal schedules are still simple under more complicated situations for this
utility function. We will occasionally compare the linear utility function with the exponential
utility function, since these two functions have some common features asfarasobject scheduling
is concerned.

5.1 Optimal Sequencing with Precedence Constraint

Suppose the objects to be scheduled have precedence constraints among themselves. We use
the notation z if object i is required to be transmitted before object j. Precedence
constraints can be represented on a directed acyclic graph (DAG) G = (iV, A), in which each
node i e N represents an object and each arc (z, j) € A represents a precedence constraint
that object zmust be transmitted before object j. We will look at cases when the precedence
constraints take the forms of parallel-chains, outtrees and intrees in the DAG representation
(See figure 2). A type ofDAG named series-parallel DAG covers a large class of precedence
constraints including the above three types. Figure 3 shows one example of a series-parallel
DAG. All these problems have polynomial time solutions. The simplest known solution for the
case ofseries-parallel constraints was developed by Lawler [9], which has a time complexity
0(n log n). The problem with general precedence constraint is NP-hard in the strong sense [9].
However, we can argue that restricting ourselves to series-parallel DAGs is quite adequate for
the web object transmission problem, as we will see after the concept is defined.

©—@—©—® ?© s?—-®—®

(D © @ ® @
(a) (b) (c)

Figure 2: Precedence Constraints: (a) Parallel-Chains, (b) Intree, (c) Outtree

Figure 3: Series-Parallel Precedence Constraints

In the following we will first introduce a parallel chain algorithm, which was developed to
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solve the problem with paxallel-chain constraints, and is then used as a sub-algorithm in the
solution to the problem with series-parallel constraints. Even though this algorithm is not as
efficient as Lawler's algorithm, it is simpler to explain and it motivates more abstract treatment
for more general precedence constraints. We then turn to Lawler's algorithm.

5.1.1 Parallel-Chains

A chain of k jobs is a type of precedence constraint taking the form i\ —> Z2, ..., -> ik- Let
G = (N,A) be DAG representation of the precedence constraint. Then, G A, for
Z= 1,2, ...,fe —1. Suppose the precedence constraints take the form of chains in parallel, and
the utility function for object i is Vi(t) = aitpi, where a, < 0 and Pi > 0. Associate the chain
i\ ->• ik with a number ^(21,^2, —ik)i defined by,

• • \ l^il^(21,22,...2A:) = (6)
Ej=iPj

Let I* be the index for which the above maximum is achieved. We say that job ii* determines
the chain. Then the scheduling algorithm can be stated as the follows.

Algorithm 5.1 (Sidney's Parallel Chains)
step 1. Calculate ^ and 1* for each chain. Transmit the chain with the smallest ^ factor without
interruption upto and including the object that determines the chain.
step 2. Then repeat step 1. with the rest of the objects.

One can observe that this algorithm is a generalization of the WSPT schedule.

5.1.2 Series-Parallel Constraints

Let N = {1,2, ...,n} be the set of objects. Let G = (AT, A) be the DAG that represents the
precedence constraints. We will first define the class of transitive series-parallel directed graphs
(digraph) recursively.

Definition 5.1 [9] (Transitive Series Parallel)
(i) A digraph consisting of a single node is a transitive series parallel.
(ii)If G\ = (N\,A\) and G2 = (N2,A2) where Nir\N2 = 0, are transitive series parallel, then,

G = Gi X G2 = {NiU N2,AiU A2U Ni X N2)

is also transitive series parallel. G is said to beformed by the series composition ofGi and G2.
(Hi) )If Gi = (iVi,Ai) and G2 = (A2,A2) where NiD N2 = 0, are transitive series parallel,
then,

G = Gi U G2 = (iVi U N2, Ai UA2)

is also transitive series parallel. G is said to be formed by the parallel composition of Gi and

G2-
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Adigraph G= (iV, A) is the transitive closure of a digraph G= (AT, A) ifAD A, and for every
ihj) ^ there is a path from node i to node j is G. Adigraph is said to be series parallel if
its transitive closure is transitive series and parallel (See figure 3). Every series-parallel digraph
is acyclic. The class of series-parallel digraph is large enough to include chains, outtrees, where
every node has no more than one predecessor, and intrees, where every node has no more than
one successor. By definition, the series or parallel compositions of the above three types of
DAGs are also series parallel.

We argue that the class ofseries-parallel DAG is adequate torepresent precedence constraint
at different levels of granularity for the web objects. We start with the coarsest level where
ea.ch web object is a complete image, audio or video file, or text, etc. In other words, each web
object has well defined semantic boundary. At this level, the number of objects on a typical
web page is small, and the precedence relations among objects are typically simple, maybe
taking the form of chains, outtrees and intrees in parallel. At a finer granularity, each of the
above objects can be further divided into smaller objects. Let us call aset of objects originated
from the same larger object an object group. Ifthe precedence constraint among these finer
objects in each object group can be represented by series-parallel DAGs, then the precedence
constraints among all objects can be represented by a series-parallel DAG.

Any series-parallel DAG, G, can be decomposed into series and parallel components. The
final decomposition representation of Gcan used to see how to recursively construct the transi
tive closure of Gas in the definition 5.1. The decomposition takes the form of a binary tree in
which each leaf node is a single node in G, and each non-leaf node is either labeled P oi S. A
P node indicates that its two children, each of which is asubtree rooted at the current P node,
will form a parallel composition in the transitive closure of G. An S node indicates that its two
children will form a series composition in the transitive closure of G. By convention, the left
child of Scorresponds to the subgraph Gi and the right child corresponds to the subgraph G2
in the definition. As an example, figure 4shows the decomposition tree for the series-parallel
DAG shown in figure 3. The decomposition tree not only shows that Gis indeed series parallel,
It IS also the starting point for the scheduling algorithm. In the following, we assume that the
decomposition tree is available for G. There exists an algorithm ofatime complexity 0(n+m)
to recognize and decompose aseries-parallel DAG, where mis the number of arcs in G[20].

5.1.3 Sidney's Theory

The results of this section comes from Sidney's paper [16], and summarized by Lawler [9]. Given
the DAG G = (TV, A),

Definition 5.2 Anonempty subset M QN is a (job) module if, for each job, j GN\M,
exactly one of the following three conditions holds:
(i) j must proceed every job in M;
(a) j mustfollow every job in M;
(Hi) j is not constrained with respect to any job in M.

Every singleton subset ofiV is a job module. Achain ora subsequence ofconsecutive elements
in a chain are also examples of job modules. An important fact is that, given a series parallel
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Figure 4: Decomposition Tree for Series-Parallel DAG in Figure 3

G, a subtree rooted at any node of its decomposition tree is identified with an module. The
significance of the concept of job module is contained in the following theorem.

Theorem 5.1 Let M be a module of G —{N,A) and a is an optimal sequence for M. Then
there exists an optimal sequence for N consistent with a in the sense that the jobs in M appear
in the same order as in o.

The theorem and the fact that all subtrees in the decomposition tree for G are modules suggest
a divide-and-conquer approach to find an optimal sequence for N. The theorem imphes that
the elements of module M can be considered to be subject to precedence constraints among
themselves in the form of a chain a. We can then work from the bottom of the decomposition
tree for G upto the root, and combine modules into larger modules. For series composition of
two modules, Mi and M2, rooted at the same node, each with precedence constraints in the
form of chains <7i and <72, respectively, we can simply concatenate the cri and 02 together. For
parallel composition of the two modules, we can merge the chain cri and (72 using the parallel-
chain algorithm 5.1. In the following, we specify the algorithm for finding an optimal sequence
for jobs subject to precedence constraints in the form of a series-parallel DAG, G. Assmne that
levels of the decomposition tree for G are numbered from top down and the root is at level 0.

Algorithm 5.2 (Sidney's Series Parallel)
step 1. Let k be the second level from the bottom of the decomposition tree for G.
step 2. At level k, if a node is labeled S, find a subsequence by simply concatenating its left
child with the right child in that order. If a node is labeled P, find a subsequence by running the
parallel-chain algorithm 5.1 on its children. Record the newly found subsequence at the current
node.

step 3. If k > 0, then let k = k —1. Repeat step 2.
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5.1.4 Lawler's Algorithm for Series-Parallel Constraints ^

Lawler develops an algorithmwith a time complexity 0(n logn) once the decomposition tree for
G is found [9]. We will summarize this result here. The following two definitions and theorem
are by Sidney [16].

Definition 5.3 LetM be a module. A subset I C M is an initial set ofM, iffor each j GI,
all predecessors of j in M are also in I.

For example, let the set of nodes of a chain to be module M. The subset consisting of the
first k consecutive elements of the chain is an initial set ofM, where k is no greater than the
cardinality of M. For any subset I C N, let

Definition 5.4 Let M be a module. An initial set I* of M is said to be p-maximal ifp{I*) >
p(I), where I is any initial set of M.

Theorem 5.2 Let M be a module ofG= {N,A) and I be a p-maximal initial set ofM. Then
there exists an optimal sequence for N in which the jobs in I are a consecutive subsequence,
preceding all other jobs in M.

The theorem implies that all elements in a p-maximal initial set I for a module M can be
treated as a 'single' composite job. The weight factor for the composite job is M
the processing time is ^j^jPj. In the case when module M is a chain ii i2, -)•..., ik and
ii' determines the chain, {i\,i2^ •••j®/*} is a. p-maximal initial set for M. The theorem says that
there exists an optimal sequence for N consistent with (®i,?2j a,nd hence ha-«t justified
the use of parallel-chain algorithm 5.1 to merge parallel chains.

Sidney s algorithm for series-parallel DAGs can be summarized as joining chains of jobs
for series composition and merging chains of jobs for parallel composition. Lawler's algorithm
IS based on the same theorems but operates slightly diflterently to achieve 0(nlog n) time
complexity. An optimal sequence for a module is represented simply as a set ofjobs, some of
which may be composite. For any such set of jobs, an optimal sequence can be found by simply
placing them in non-increasing order of the ratio p{j) = lojl/pj* The precedence constraints will
have been dealt with by the formation of composite jobs so that such a sequence is necessarily
feasible. Then for parallel composition ofMi and M2, all that is necessary is to form the union
ofthe two sets Mi and M2. Non-increasing ratio order is feasible and optimal for M = M1UM2
assuming this is true for Mi and M2 individually.

Series composition of Mi and M2 is more complicated since it is responsible for forming
the composite jobs. First, find the minimum-ratio job i inMi and the maximum-ratio job j in
M2. Ifp(i) > p{j), all that is needed is to form a union ofthe sets Mi and M2. Non-increasing
ratio order is feasible and optimal for M = Mi UM2, assuming this is true for Mi and M2
individually.
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If p(i) < p(i)j then {i,i} can be treated as a module. Since p(i) < p(j)^ {«)i} is an initial
/o-maximal set of Hence, by Theorem 5.2, there exists an optimal sequence for N in
which i and j are consecutive. We remove i from Mi and j from M2 and form a composite job
k = {i,j).

Next, we find the next minimal element i in Mi. If p{i) < p{k), we remove i from Mi
and form a new composite job k = (i^k). We continue in this way until either Mi is empty
or p(i) > p(k). Then we find the next maximal element j in M2. If p(k) > p(j), we can let
M = Ml U M2 U {k}. If p{k) < p{j)j we remove j from M2 and form a new composite job
k = {k,j). Then, we repeat from the beginning of this paragraph.

The procedure for series composition is outlined below. In order to avoid tests for empty set,
we assume Mi contains a dummy element with ratio +00 and M2 contains a dummy element
with ratio —00.

step 1. Find a minimal element i in Mi and a maximal element j in M2. If p(i) > p(j), let
M = Ml U M2 and halt. Otherwise, remove i from Mi, j from M2 and form a composite
job k = (ij).

step 2.

2.1. Find a minimal element i in Mi. K p(i) > p(A;), go to Step 3.1.
2.2. Remove i from Mi and form the composite job k = (i, k). Return to Step 2.1.

step 3.

3.1. Find a maximal element j in M2. If p{k) > p(j)^ let M = Mi UM2 U{A;} and halt.
3.2. Remove j from M2 and form the composite job k = (k,j). Go to Step 2.1.

Remark 3. Module-based decomposition approach has been extended to the case of
general precedence constraints. Refer to [17] and [13] for this development.

Remark 4. Suppose the utility functions are exponential functions with the form
= ciie^^ + Pi^ for i = 1,2, ...,n. It turns out there exist polynomial time solutions when

the precedence constraints can be represented by series-parallel digraphs. A general frame
work treating both linear and exponential utility functions is based on the concept of priority-
generating function, which is related to the concept of sequencing function in [13]. Refer to
[19] for the development of this concept and its application to the exponential utility functions
with series-parallel precedence constraints.

5.2 Optimal Schedule for Random Processing Times

Given the n objects to be transmitted, each with a fixed size, the transmission times for each
object can be random due to a few factors. For instance, the bandwidth in the transmission
pipe can be random, or the server's processing capability can vary due to the random load. If we
consider the fact that utility is received only when the object arrives at the user's workstation,
the random delay in the transmission route has to be added to the processing time. Another
interesting situation is, when a packet is lost in the network, retransmission of the packet will
take some additional time.
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5.2.1 Some Results from Stochastic Scheduling

Let us denote the random processing time of object i by Xiy i = 1,2, which are not
necessarily independent of each other. Since the object completion times are random, the
objective is to schedule the n objects in order to optimize the expected utility. Unlike the
deterministic scheduling case, we need to consider two classes of scheduling poHcies in the
stochastic case.

Definition 5.5 [14] In a non-preemptive static policyy the complete schedule is determined
at time 0, and will not change for the entire processing session ofthe n objects. Non-preemption
has the usual meaning.

Definition 5.6 In a non-preemptive dynamic policy, every time the server is free, the
next object to be transmitted is determined using all the currently available information. Non-
preemption has the usual meaning.

The reason to make the above distinction is that the stochastic process {Xi,X2, yields
more information as they are observed, and therefore, the dynamic policy corresponds to a
larger classes ofscheduling algorithms than the static policy.

For the linear utility function in Formulation 4.1 (ii), let us use the same schedule as the
deterministic case with the expected processing times replacing the deterministic processing
times. That is, the objects are sequenced in the increasing order of WXil\ai\. The following
theorem is quoted from [14].

Theorem 5.3 The sequencing rule that follows the increasing order of¥Xil\oti\ maximizes the
expected value of the linear utility function in the class of non-preemptive static policies and in
the class of non-preemptive dynamic policies.

The optimahty of the above sequencing rule goes further. It can be shown that it is optimal
also in the class of preemptive dynamic policies when all distributions of the processing times
have increasing completion rate [14], where the completion rate of object i, Ci(t), is defined by

Ci(t)=

Here, we assume that the processing time ofobject i, Xi, isa continuous random variable with
distribution Fi and density /,.

Remark 5. Ifthe objects have precedence constraints in the form of parallel-chains, then
Algorithm 5.1 still applies, with p to be defined using expected processing times, E;ft, instead
of processing times, pi.

Remark 6. Suppose the objective is to optimize the expected value of the exponential
utility function, as in Formulation 4.1 (iv). Then, the optimal schedule in both the class of
non-preemptive static policies and non-preemptive dynamic policies is to sequence the objects
in decreasing order of aiE(eT^* )/(l - E(e'y^<)) (See page 187 in [14]).

26



5.2.2 A Simple Object Processing Time Model

In the deterministic model, the processing time of object i is simply pi = Si/p, where fj. is
the constant bandwidth. In the case of random transmission times, it is not a trivial task for
the server to know the processing time distributions, which is essential for forming the optimal
schedule. We hope to leverageon the only piece of information that is certain, the object sizes.
Suppose the processing time distributions are such that the expected processing times are in
agreement with the object sizes, i.e.,

_ £p /o\
EXg Sq

for any pair of p,q £ {1,2, ...,n}. Then, in the case of the linear utility function, the sequence
that follow the increasing order of Si/a, is optimal for both the deterministic case and the
stochastic case in the class of non-preemptive static or dynamic policies.

It is reasonable to beUeve that the condition in (8) can be satisfied in many realistic situa
tions. We propose the following model to justify this. Suppose the basic transmission unit is
a packet of a fixed size, and suppose the processing times for packets are independently and
identically distributed. Consider two objects p and q. Let , Zg be the processing times for the

packet for object p and g, respectively. Let Sp and Sg be the sizes of the objects in number
ofpackets for object p and g, respectively. Then, the total processing times are Xp = Yfk=i
and Xg = Z*, and condition in (8) is satisfied.

Remark 7. We have seen that the linear utility function has some nice properties when the
processing times are random. The situation for the exponential utility function is different. In
general, we cannot replace the expected quantities in aiE(e'''̂ * )/(l —E(e'̂ '̂ ')) by deterministic
functions of the object sizes except in specific cases. Even when the processing capacity p is a.
deterministic constant, we cannot simply replace the processing times in (3) by the object sizes
and hope the sequencing rule still derives an optimal schedule.

We will discuss a particular stochastic case with the exponential utility function where the
object sizes determine the optimal schedule. Suppose the parameters for the exponential utility
function Vi(t) = -{• pi are such that 7 > 0 and Oi < 0 for « = 1,2,..., n. Let us look at two
concepts of stochastic ordering between two random variables.

Definition 5.7 A random variable Xp is said to be stochastically larger than a random
variable Xg if

P(Xp > t) > P(Xg > t) for every t > 0

We denote the relation by Xp >st Xg.

Definition 5.8 A random variable Xp with distribution Fp is said to be larger than a random
variable Xg with distribution Fg in the increasing convex sense if

rh{t)dFp{t)> r h(t)dFg(t)
Jo Jo

for all increasing convex functions h.
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If Xp is larger than Xq in the increasing convex sense, we denote this relation by Xp "^icx Xq.
It can be shown that

Xp >st Xq impliesXp >icx Xq (9)

When Sp > Sg, the object processing model discussed above implies Xp >st Xq. Since the
function is increasing and convex when 7 > 0, Xp >st Xq implies . The
function g{t) = t/(l -1) is increasing for t > 1. Hence, g{Ee^^p) > g{Ee^ '̂'). We see that
when the utility function is + /?,• with a, < 0 and 7 > 0, for alH = 1,2, ...,n, and when
Sp > Sq implies ttp > a^, we have

app(Ee^^O < aqgiEe^^")
Since theoptimal sequencing in this case is thedecreasing order ofaig{Ee^^*) = orjEe'''̂ */(I ~

we see that sequencing the n objects in increasing order of their sizes actually yields
the optimal schedule.

5.3 Linear Utility Function and Time-Varying Bandwidth

Suppose the bandwidth is deterministic but time varying and piece-wise continuous, denoted
by ^(t), and suppose thesize ofthen objects are fixed. It isstill true that, for a regular utility
function, there exists an optimal schedule that is (i) work-conserving and (ii) non-preemptive,
(iii) The optimal sequence in general depends on the bandwidth trajectory. For many utility
functions, the scheduling problem becomes very hard, (iv) For linear utility functions with
identical slope, an optimal schedule is to order the objects by their sizes in increasing order,
which is independent of the bandwidth trajectory. We will give justifications for these claims.

Suppose that in an optimal schedule, the server has a period of inactivity firom time <1 to
t2. Then, eliminating the inactive gap bymoving all objects scheduled after time <2 ahead does
not decrease the utility, since the utility function is non-increasing in the reception times. This
proves (i).

Now, suppose TT is a work-conserving optimal schedule, in which object i is preempted by
other objects before its completion. Let tf he the completion time ofobject i in tt. Let s, be
the size of object i and define

fift =sup{t: J ^{T)dr =Sj}
Let TT* be the new schedule inwhich object i starts service at time t* and ends at Complete
or partial objects that preempt i in tt are moved ahead without changing their relative orders,
filling the void left by object i. The new schedule tt* is at least as good as tt, and hence is
also optimal. This procedure can berepeated for each object to get anoptimal non-preemptive
schedule, and hence, (ii).

To show (iii), consider a case with two objects. Let the size si = 5 and S2 = 10. The utility
function for each object is defined as follows.

ui(t) =I ID if0<t<3

0 otherwise
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V2(t) = 20 —

Let the schedule tt^ = {1,2} and tt^ = {2,1}. Consider a bandwidth trajectory = 5. The
total utility gainedfrom each schedule is: g(TT^) = 24 and = 26. Hence, is the optimal
sequence. Consider another bandwidth trajectory g^(t) = 2.5. In this case, p(7r^) = 18 and
p(7r^) = 12. Hence, tt^ is the optimal sequence.

Now suppose all objects have a linear utility function of the form Vi(t) = —ajt, where
Qj > 0 and /3i > 0. Given a fixed bandwidth trajectory fjL{t) and an optimal sequence tt, let us
suppose object i and j are adjacent in tt and i proceeds j. Let i starts service at time ^i, ends
service at <2 and let j ends service at Let tt' be a sequence with object j and i interchanged.
In tt', object j starts service at ti and ends service at t2> aJid object i ends service at Since
TT is optimal, we must have,

which yields,
t3j^ < (10)

Oi aj

Let us denote pi{t) as the service time for object i when it ends service at time t. We then have
Pi(tz) = ts —<2 Pjih) = h —h- Suppose all ais are identical. Then, (10) becomes

Pi(t3) <Pj(tz) (11)

Since at any time t, Si < Sj if and only if Pt(^) < Pj(^)j if suffices to sequence the n objects
according to the increasing order of their sizes. This demonstrates (iv).

When Qtj's are not identical, optimal sequencing seems to be a very difficult problem. The
condition in (10) is only necessary but not sufficient for optimality. The following algorithm
can find us a "locally" optimal sequence in the sense that the resulting sequence cannot be
improved by exchanging positions of two neighboring objects.

Let tn be the completion time for the entire transfer session. The last object to be transmit
ted, denoted by 7r(n), should have the largest value of pi(t„)/ai of all objects. Suppose we have
determined the last k objects to be transmitted, 7r(n—A;4-l),7r(n —A;-b2), ...,7r(n —l),7r(n). Let
tn-k+i be the completion time ofobject 7r(n-A;-|-l). Then, tn-k = tn-k+i-P?r(n-A:+i)(fn-fc+i)
is the starting time of object 7r(n —A: +1). Then, the (n — object, 7r(n—A:), should have the
largest value Pi(tn-k)loti among the remaining objects yet to be scheduled. The total running
time is O(n^) for this algorithm, where n is the number objects.

In reality, the complete bandwidth trajectory may not be known ahead of time. In that
case, one can modify the above algorithm as follows. After finishing transmission of an object
at time f, the object with the smallest value of among all remaining objects is chosen
for the next transmission, where )u(f) is the bandwidth at time t. The modified algorithm also
applies when the bandwidth is random but with unknown statistics.
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6 Class-Based Utility Function Assignment

As we have seen that many optimal sequencing problems are very difficult. When the problem
is strongly NP-haxd, finding approximations that guarantee certain performance can also be
difficult. In this section, we consider the situation where the n objects can be grouped into a
small number of classes. This formulation may either faithfully refiected the reality, or may be
regarded as a systematic approximation to reality. In either case, we hope for simpler solution
coming out of this formulation. We will use function V as a canonical example, since it is both
very versatile and very hard. We will show that, indeed, there exist algorithms which have
polynomial complexity in n, the number of objects.

A group of objects with identical dj, Oj, jSi and pi are considered as one object class.
Suppose there are total K classes, from 1 to K. Prom now on, let subscript indices denote
classes. Let rii be the number ofobjects for class i, 1 < i < AT. Without loss ofgenerality, let
d\ < < ... < d^. These K deadlines divide [0, oo) into K -^-1 intervals or semi-intervals. Let
us index interval (dj-i,dj] the interval, l<j<K, where do = 0. Let us call (dK,oo) the
{K + 1)*'̂ interval (See figure 5 for an example).

2nd grd ^th
0 I 1 1 1

do di d2 ds

Figure 5: Half Real Line [0,oo), iiT = 3

Let the non-negative integer, n|, be the number of class i objects that are completed in the
interval. It must be true that = rii, 1 < i < K. The problem is, therefore, to

determine a feasible set of {n^; l<j<iir-f-l}so that the resulting sequence is
optimal. Feasibility means that the sequence indeed has the property that n{ class i objects
are completed in the interval, for all i and j.

After time djb, the value of any class i object becomes zero, where i < k . In an optimal
schedule, if any class i object, i < k, is serviced on the k*^ interval, it can be moved after all
class Iobjects on the interval, where I ^ k, without affecting the optimaiity. We also know that,
on the k^^ interval, objects from classes I> kshould be in increasing order ofpf/|a/|. Therefore,
on each interval A;, if we know the set of number I < i < K, the order of these
objects can be made unambiguous. Therefore, given the set {nj; 1< i < iiT, 1< j < ir+l}, the
order of the n objects can be made unambiguous. The feasibility of this set ofnumbers can be
checked after the objects are ordered. Let ^denote the matrix <i < K,1 < j < K +1,
and let the resulting value from the schedule corresponding toa feasible n beu(n). The problem
is to find a feasible n such that v{^ is maximized. This can be accomplished by enumerating
all possible ^'s.

We can compute the number of possible matrices n- Let us first focus on class i. When

SjLV M 62ich n{ is a non-negative integer, the total number of distinct vectors
is Mfdi) = {rii -h 1)^/2 -f (nj + l)/2. This can be shown inductively. First,

When if = 1, it is clear that the vector has the form {k,ni - k)^ 0 < k < rii. Hence,
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M\(i) = ni + 1. Suppose for K = Mm(i) = (n, + 1)^/2 + (rij + l)/2. Then, when
iif = m + 1, can take values from 0 to nj. Therefore,

+!5i^) + ^

(ni + ir+i , Jii + l
2

Hence, the total number of possible matrices n is

< n£i(ni + l)^

- ^ ir ^

KK'
as n —)• 00

Therefore, the algorithm for finding anoptimal sequence is 0(n^^which isdefinitely
polynomial in n. More careful counting shows that the power to n can be reduced further.
Notice that, after time we do not need to consider class k objects anymore because they
all have zero value. Hence, on the (k+ 1)*'* interval, i.e., (dk,dk+i], we need only to determine

for I > k. Very crudely, the number of matrices, to be considered is
However, with this complexity, the corresponding algorithm is only practical for iif < 4 when
n is around 100.

6.1 Case of Continuous Function

Suppose Qi < 0 and ajdj + /?{ = 0 for all i. In this case, an optimal schedule can be foimd using
the algorithm from section 4.5.2. This algorithm does not take advantage of knowledge about
object classes and has a running time 0(nJ2^i "f^iVi)-

We will present another algorithm that does utilize the class information. Without loss of
generality, supposepi/|ai| < P2/I02I < ••• < PkI\oik\' By lemma 4.2, an optimal schedule must
be a sequence that starts with mi class 1 objects, followed by m2 class 2 objects, ..., followed
by rriK class K objects, all of which are on time, then followed by tardy objects in arbitrary
order. We only need to determine the integers rriiS through emuneration, where 0 < mj < n,,
\ <i<K. Since J^^-i nj = n, for iiC > 1, the total number ofchoices is

(K -1)^-1

where the upper bound above is obtained by standard maximization technique. The resulting
algorithm is polynomial in n. For n around 100, the algorithm is practical for iif < 5.
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7 Version Selection

In this section, we consider a different model for web object transmission. Suppose each object
canbe encoded at different resolutions. When a user requests the page, we would like to choose
a resolution for each object and a transmission schedule so that the total utility is maximized.
To model this situation, let each object i have m versions, with processing time and utiUty
function 1 < j < m.

This problem seems to be very difficult even for linear utility functions (However, we were
unable to show it isstrongly NP-hard in thiscase). In thefollowing, we'll look at stepfunctions.

7.1 Step Functions

In this case, for each object 1 < i < n and version 1 ^ j < tti, let the utility function be

wi if0 < t < djvi(t) =I t

0 otherwise

where > 0 is the value ofthe object if it arrives before the deadline dj. Note that, for each
object, the deadhne is conomon for all versions. The objective is tochoose a version assignment
for each object and the ordering of transmission so that v{(Q) is maximized. It is clear
that there exists an optunal schedule in which the objects are ordered by the increasing order of
their deadlines. We therefore arrange the objects in that order. Without loss ofgenerahty, we
assume this order is l,2,...,n. Version assignment can be made by straightforward extension
to Lawler and Moore's algorithm (4.1). Let us define the (m +1)*'' "version" for each object i,
which corresponds to object i being imable to finish before its deadline.

vrHt)=o

= 0

We will convert the problem into the minimization version so that we can reuse some
notation firom Algorithm (4.1). For each 1 < « < n, without the loss of generahty, let us
suppose wY" >w{ for all 1< j < m. For each 1< i < n and each 1<i < m, define

pi(t) ={ - wi if0 < t < df
+00 otherwise

For each 1 < i < n, define

pT-'Ht) = <
Then, the dynamic programming relation is captured by

= forfc =l,2,...,m +l} U= t>0)
A different version of the problem is to maximize ]C"=iv/(Ci), subject to the constraint

that all objects will be completed before their deadlines. In this case, we simply remove the
artificial (m+ l)''^ version from the above algorithm.
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8 Preemptive Server Formulations

Formulation 8.1 Let Vt(t,x) be the utility of completing x unit of object i by time t. Suppose
for each t, Vi(t^x) is non-decreasing in x; and for each x, it is non-increasing in t. Let T =

S?=i s = (51,52, ...,5„)^. Denote S the class ofall continuous arcs {x : Xi(t) (0 <
t < T;i = 1,2, ...,n)} possessing piecewise continuous derivatives Xi(t) on {0 <t <T). Find a
schedule, i.e, x £S, by solving the following problem.

1 rT n
di (12)

^ *'0 x=l

subject to
Xi{t) = 0 for i = 1,2,...,n (13)

Xi(T) = s for i = 1,2,...,n (14)
n

Y, ^ /<"• ^ [0- (1®)
i=l

Xi{t) > 0 for i = 1,2, .,.,n and all t G [0,r] (16)

At each point of discontinuity, td, for Xi(t), we define Xi(td) = limt_>t^+a;i(t), so that Xi is
defined for all t > 0, We also assume necessary smoothness for the utility functions Vi{t,x) so
that the formulated problem here may be solved by the techniques firom calculus of variations
and optimal control theory.

9 Design Example of Web Object Transmission Schedule and
Conclusion

9.1 Linear Utility Function for Web Object Transmission

The discussions in the paper lead to the conclusion that the linear utility function is among good
choices of utility fimctions. Without precedence constraint, the optimal schedule is to sequence
the n objects in the increasing order of Pi/Qi. Since pi is not easily calculated due to the
uncertainty in the transmission speed, we propose to sequences the objects in increasing order
of Si/ai, where Si is the size of object i. Assuming precedence constraint can be represented
by series-parallel digraphs, we can use Lawler's algorithm [9] to find the optimal schedule, with
the sizes 5i replacing the processing times pi. The scheduling algorithm leads to an optimal or
near-optimal schedule that maximizes the expected sum of utilities for a wide class of random
bandwidth variations, and it is very likely that in reality the bandwidth distributions belong to
this class. We summarize the advantages of linear utility function and its associated schedule
as follows.

• Since the parameters /Sj's are irrelevant for finding the optimal schedule, the algorithm
requires only one parameter ai to be specified for each object.
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• Linear utility function is suitable in many situations when the notion of due dates and
values of the objects are vague.

• Computational complexity for finding the optimal schedule is O(nlogn) even in complex
situations.

The optimal schedule follows Weighted Shortest Processing Time first rule, which is an ex
tensionof the Shortest Processing Time (SPT) scheduling rule. To somedegree, WSPT schedule
inherits someof the advantages of the SPT schedule. Given a fix time, SPT schedule completes
more objects than any other scheduler. This is especially beneficial when a page consists of
many small objects and one or a few large objects, because the large objects are pushed to
the end of the transmission sequence and most objects will arrive during the early period of
the transfer session. SPT sdiedule is also firiendly to fine-grained encoding of document. For
instance, in the caseofmulti-resolution encoding, the size of the lower resolution object is small,
and can arrive early and be displayed quickly. It possible that, in many situations, most of
the value is delivered to the user at this point. There can be a valuable trade-off in sending
some smaller objects first at the expense of slight increase in the delay of larger objects. On
the other hand, in the case when larger objects are much more valuable to the user and when
the increase in the delay oflarger objects becomes significant, WSPT schedule can move larger
objects ahead of smaller objects.

9.2 General Conclusion

In this paper, we study a collection ofscheduling problems motivated by the desire to arrange
the downloading order of web objects. We formulated these problems as to optimize combined
utilities received by the user. This formulation is somewhat different from traditional single
machine scheduling formulation. As a result, new scheduling problems arise. We hope the
collection of solutions we provide can have a wider range of applications of similar nature.

We stress that thinking about objects as having some utility to the user is very natural. In
this paper, we do not address how the utilityfunctions are obtained. Presiunably, they can be
either be measured, or directly assigned by the user. The user either can view utility functions
from our paper as approximations to the true utility functions, or, a priori, he is restricted to
choose from one of these families but can choose function parameters freely.

Finally, all our utility functions are non-increasing with time, and possibly have one or
two discontinuities (or discontinuities in the first derivatives), which can be interpreted as
deadlines. A salient thread in this paper is that the solutions are often based on the simple
building blocks of linear or exponential functions with Lawler and Moore's algorithm (4.1) to
handle the deadlines.

Appendix A: Relevant Results from Complexity Theory

The theory introduced in this section is concerned with the computational complexity of the
optimal sequencing problem. Most of the results can be found in [3]. We begin with some
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definitions. Given a problem 11 and one of its instances /, let R*{I) be the value of the optimal
solution and R(I) be the value of the solution generated by an approximation algorithm.

Definition 9.1 [15] An algorithm will be said to be an e-approximation algorithm for a
problem 11 if \{R*(1) —R(I))/R(I)\ < e for all instances /, where 0 < e < 1 ifH is a maximiza
tion problem and e> 0 if U is a minimization problem.

Definition 9.2 A family of e-approximation algorithm, one for each e, is said to be a fully
polynomial time approximation scheme if the time complexity is polynomial in both the
problem size and in 1/e.

Loosely speaking, being a fully polynomial approximation scheme ensures the algorithm to be
practical for very good approximations.

For an instance I of the problem 11, let length(7) be the size of the instance and max(7) be
an upper bound on the magnitude of each of the data.

Definition 9.3 A pseudo-polynomial algorithm for H is one whose time complexity is
bounded above by a polynomial function in both length(I) and max(7).

Hence, if data valuesof all instances of a problem11 is boimded, a pseudo-polynomial algorithm
appears to have a time complexity polynomial in the size of the instance.

For any polynomial p over integers, let Hp be the subproblem of H obtained by restricting
n to only those instances 7 that satisfy max(7) < p(length(7)). If H can be solved by a
pseudo-polynomial time algorithm, then Hp can be solved by a polynomial time algorithm.

Definition 9.4 An optimization problem is NP-hard in the strong sense if there exists a
polynomialp over integers for which Hp is NP-hard.

When a problem is NP-hard, our first priority is to find either a pseudo-polynomial time
algorithm or a fully polynomial timeapproximation scheme, where the latter is typically derived
from the former. We typically want to find out first if the problem 11 is NP-hard in the strong
sense due to the following fact, which is a direct consequence of the definition of NP-hard in
the strong sense.

Fact 9.1 If P ^ NP, then IT cannot be solved in pseudo-polynomial time if it is NP-hard in
the strong sense.

The relationship between pseudo-polynomial algorithm and fully polynomial time approxima
tion scheme is captured by the following theorem (See page 140 of [3]). Let us assume the
problem 11 has integer solution values.

Theorem 9.2 If there exists a two-variable polynomial q such that for all instances of I,
R*(I) < q(length[I),max(I)), then the existence of a fully polynomial time approximation
scheme for 11 implies the existence of a pseudo-polynomial time optimization algorithm for H.

Because of Fact 9.1, we have the following result as a corollary of Theorem 9.2.
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Corollary 9.3 Let 11 he an integer-valued optimization problem satisfying the hypothesis of
Theorem 9.2. IfTl is NP-hard in the strong sense, then II cannot he solved hy afully polynomial
approximation scheme unless P = NP.

The requirement R*{I) < q{length{I),max{I)) roughly says thevalue for the optimal solution
is not very large, which issatisfied by many scheduling problems. Aproblem's being NP-hard
inthe strong sense rules out the existence ofa pseudo-polynomial time solution, and very often,
also rules out the existence of a fully polynomial approximation scheme.
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