

Copyright © 2000, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LAYOUT AWARE SYNTHESIS

by

Wilsin Gosti

Memorandum No. UCB/ERL MOO/67

21 December 2000

LAYOUT AWARE SYNTHESIS

by

Wilsin Gosti

Memorandum No. UCB/ERL MOO/67

21 December 2000

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Layout Aware Synthesis

by

Wilsin Gosti

B.S. (University of Southwestern Louisiana) 1987
M.S. (Iowa State University) 1990

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Alberto L. Sangiovanni-Vincentelli, Chair
Professor Robert K. Brayton
Professor Steven N. Evans

Fall 2000

The dissertation of Wilsin Gosti is approved:

- C(^ ^
Chair Date

Date

.{z^yn^L /^/s Il^ooo
Date

University of California, Berkeley

Fall 2000

Abstract

Layout Aware Synthesis

by

Wilsin Gosti

Doctor of Philosophyin Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

As technology scales into smaller feature sizes, the gate delay scales down, the capacitance of

the interconnect per unit feature size in length scales down, but its resistance per unit feature size

in length scales up. As a result, the delay component due to the resistance of the interconnect

increases with scaling when compared with the gate delay. Not only that this is having adverse

effects on global wires which are wires that connect gates that are far apart, but also at the local

wires, which are wires that connect gates within a functional module as our results in this thesis

show.

The increase in interconnect delay requires that assumptions that have been traditionally

accepted be scrutinized. In particular, logic synthesis which assumes that majority of the circuit

delay is contributed by gates in the circuit needs to be re-visited. Weproposea novelapproach that

assumes all the circuit delay is contributed by the circuit interconnect. Under this assumption, we

show that conventional logic synthesis can produce a circuit that if placed produces a placement

that requires long wires. Weshowa theoretical framework to identify nodes in the Boolean network

representing the circuit that will cause long wires in placement, and an operation that eliminates

such nodes. We introduce a set of logic operations that optimizes the Boolean network under the

constraint that nodes produced do not require long wires.

Technology scaling enables the integration of many millions of devices on a single die.

Conventional design flow, which treat logic synthesis and physical design separately, exhibit an

inability to achievetiming closure. Timing closure problems occur when timing estimatescomputed

during logic synthesis do not match with timing estimates computed from the layout of the circuit.

In such a situation, logic synthesis and layout synthesis are iterated until the estimates match. The

Abstract

Layout Aware Synthesis

by

Wilsin Gosti

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

As technology scales into smaller feature sizes, the gate delay scales down, the capacitance of

the interconnect per unit feature size in length scales down, but its resistance per unit feature size

in length scales up. As a result, the delay component due to the resistance of the interconnect

increases with scaling when compared with the gate delay. Not only that this is having adverse

effects on global wires which are wires that connect gates that are far apart, but also at the local

wires, which are wires that connect gates within a functional module as our results in this thesis

show.

The increase in interconnect delay requires that assumptions that have been traditionally

accepted be scrutinized. In particular, logic synthesis which assumes that majority of the circuit

delay is contributed by gates in the circuit needs to be re-visited. Weproposea novelapproach that

assumes all the circuit delay is contributed by the circuit interconnect. Under this assumption, we

show that conventional logic synthesis can produce a circuit that if placed produces a placement

that requires long wires. We show a theoretical framework to identify nodes in the Boolean network

representing the circuit that will cause long wires in placement, and an operation that eliminates

such nodes. We introduce a set of logic operations that optimizes the Boolean network under the

constraint that nodes produced do not require long wires.

Technology scaling enables the integration of many millions of devices on a single die.

Conventional design flow, which treat logic synthesis and physical design separately, exhibit an

inability to achieve timing closure. Timing closure problems occur when timing estimates computed

during logic synthesis do not match with timing estimates computed from the layout of the circuit.

In such a situation, logic synthesis and layout synthesis are iterated until the estimates match. The

number ofsuch iterations is becoming larger as technology scales. Timing closure problems occur
mainly due to the difficulty in accurately predicting the interconnect delay during logic synthesis.
This is aggravated by the increase ofinterconnect delay relative to gate delay.

To address the timing closure problem, we propose an algorithm that integrates logic syn
thesis and global placement. We introduce technology independent optimization and technology
dependent algorithm that interleave their logic operations with incremental local and global place
ment, in order to maintain a consistent placement while the algorithm is run. In this integrated
approach, we introduce wire-planning based heuristics to minimize interconnect delay. We show
that by integrating logic synthesis and placement, we avoid the need to predict interconnect delay
during logic synthesis. We demonstrate that our scheme significantly enhances the predictabil
ity of wire delays, thereby minimizing the timing closure problem. Our results show that the
integrated approach result in a significant reduction in both interconnect delay and circuit delay.

Professor Alberto L. Sangiovanni-Vincentelli
Dissertation Committee Chair

To my parents Patrice and Siti, my wife Paylin, and my daughter Emily

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Thesis Outline 2

1.2 Technology and Design Trend 4
1.2.1 Technology Models Used in this Thesis 4
1.2.2 Technology Scaling 4

1.2.2.1 Predicting Sizes of Synthesized Blocks 6
1.2.2.2 Predicting Interconnect Delay 8

1.2.3 The Timing Closure Problem 9

2 Preliminaries 16

2.1 Logic Functions 16
2.2 Logic Synthesis

2.2.1 Technology Independent Optimization
2.2.2 Technology Dependent Optimization

2.3 Circuit Delay
2.3.1 Delay Models
2.3.2 Timing Analysis

17

18

21

22

22

23

3 Wire-planning 25
3.1 Previous Work 26

3.2 Preliminaries 27

3.3 Logic Synthesis and Interconnect Delay: An Example 27
3.4 Constraint Generation 30

3.4.1 Region Placement Constraints 31
3.4.2 Node Placement Constraints 32

3.4.3 Properties of Placement Constraints on Boolean Networks 32
3.4.4 Make-Legal 39

3.5 Constraint-Driven Synthesis 40
3.5.1 Fast Extract 40

3.5.2 Re-substitution 42

CONTENTS iii

3.5.3 FulI_Simpfily 43
3.5.4 Synthesis Flow 44

3.6 Experimental Results 44

3.6.1 Discussion of Results 47

3.7 Conclusions 47

4 Integrating Logic Synthesis and Placement 48
4.1 Design Flow 48

4.2 Previous Work 52

4.2.1 Pre-Layout Interconnect Estimation 52
4.2.2 Post-Layout Optimization 53
4.2.3 Integrated Logic Synthesis and Layout 53

4.3 Net Topology and Interconnect Delay Model 54
4.3.1 Semi-Perimeter Estimate 54

4.3.2 Steiner Tree Estimate 54

5 Global Placement 57

5.1 Quadratic Placement 58

5.2 Kraftwerk Algorithm 59

5.3 Implementation of Kraftwerk Algorithm 61
5.3.1 Conjugate Gradient 62
5.3.2 Net Weights 62
5.3.3 Discretization 62

5.3.4 Poisson Equation 63

5.3.5 Dimensionless Cells 64

5.3.6 Iteration Control 64

5.3.7 Incremental Kraftwerk Algorithm 65

6 Technology Dependent Optiniization 68
6.1 Local Placement 69

6.2 Technology Decomposition 70

6.3 Technology Mapping 75

6.3.1 Area and Wire-Length Minimization 76
6.3.2 Updating Placement 79

6.3.3 Delay Optimization 82
6.3.3.1 Fixed Load Method 83

6.3.3.2 Single Match Method 84

6.3.3.3 Multiple Match Method 85

6.4 Experimental Results 88
6.4.1 Delay Correlation 88

6.4.2 Area and Wire-Length Minimization 89

6.4.3 Delay Optimization 93
6.5 Conclusions and Future Work 93

CONTENTS iv

7 Technology Independent Optimization 101
7.1 Preliminaries 102

7.1.1 Value of a Kernel 102

7.1.2 Placement Interaction 102

7.2 Wired Kernel Extraction 103

7.3 Wire-planned Kernel Extraction 103
7.3.1 Weight of a Kernel 104
7.3.2 Wire-planned Duplication 105

7.4 Experimental Results 106
7.4.1 Area and Wire-Length Minimization 106
7.4.2 Delay Optimization 107

8 Conclusions and Future Research 115

8.1 Conclusions 115

8.2 Future Work 117

Bibliography 118

List of Figures

1.1 Buffer delay model 6
1.2 Actual vs estimated net length (industry2) 11
1.3 Actual vs estimated net length (industry3) 12
1.4 Actual vs estimated net length (avq.small) 12
1.5 Actual vs estimated net length (avq.Iarge) 13

2.1 A Boolean network 18

2.2 Arrival and required time 24

3.1 Network and its optimal placement 28
3.2 Network and its optimal placement 28
3.3 Network and its optimal placement 29
3.4 Legal region of node z 30
3.5 Conflicting legal region requirements for a: 31
3.6 Regions and labels of regions 32
3.7 Region intersection for node z of 34
3.8 Figure for proof of Lemma 3.2 36
3.9 Fast extract example 41
3.10 (a) Pin positions of fast extract example, (b) Legal region of node n 42
3.11 Number of literals vs number of nodes legalized for C1355 46

4.1 Conventional design flow 50
4.2 Integrated logic synthesis and placement design flow 51
4.3 Semi-perimeter estimate of a net 55
4.4 Topology model of a net 56
4.5 Delay model of a net 56

5.1 Working area, placement area, and grid points 63
5.2 Weight schedule 65
5.3 Illustration of spreading phase of Kraftwerk 66
5.4 Execution of Kraftwerk 67

6.1 Incremental placement 69
6.2 Technology Decomposition and Fanin Ordering Problem 72

LISTOFHGURES vi

6.3 Angle Ordering Solution 74
6.4 Furthest Pair Solution 75

6.5 Definition of Cost Elements 78

6.6 Creation of Boolean networkfor placement 80
6.7 Removing parallel inverters 81
6.8 Singlematch method 85
6.9 Delay models andmaximum computation of piece-wise linear functions 87
6.10 Delayand area variation withrespect to a, the wirecostcoefficient 92

7.1 Before and after extracting kernel k in wired kernel extraction 104
7.2 Primary output andfanout angles in wire-planned kernel extraction 105

Vll

List of Tables

1.1 Strawman technologies 5
1.2 Criticallength and delay of strawman technologies 7
1.3 Critical count of 0.25/t and 0. iO/x technologies 8
1.4 Extrapolated critical length (Icru)and critical count (kcru)for 0.05(i technology. . . 8
1.5 Gate delay vs interconnect delay for Xcnt 9
1.6 wire-load model 10

1.7 Circuits 10

1.8 Number of nets below and above than the wire-load estimated values 14

1.9 Percentages of nets below and above than the wire-load estimated values 15

3.1 Path length comparison of script.nigged, script.delay, and script.wire 45
3.2 CPU time comparison of script.rugged, script.delay, and script.wire 45
3.3 Delay comparison of script.rugged, script.delay, and script.wire 45

6.1 Estimated delay vs actual delay using wire-load model and our approach 89
6.2 Area and wire-length minimization 90
6.3 Area of areaand wire-length minimization (in /x^) 91
6.4 Fixed load delay minimization method 94
6.5 Area of the fixed load delay minimization method, (in 95
6.6 Single match delay minimization method 96
6.7 Area of thesingle match delay minimization method, (in fjt^) 97
6.8 Multiple match delay minimization method 98
6.9 Area of multiple match delay minimization method, (in /x^) 99

7.1 Comparing interconnect delay for different kernel extraction algorithms in area min
imization (delays in ps) 108

7.2 Comparing total delay for diiferent kemel extraction algorithms in area minimiza
tion (delays in ps) 109

7.3 Comparing area for different kemel extraction algorithms in area minimization (in
p^) 110

7.4 Comparing interconnect delay for different kemel extraction algorithms in delay
minimization (delays in ps) 112

7.5 Comparing total delay for diiferent kemel extraction algorithms in delay minimiza
tion (delays in ps) 113

LIST OF TABLES viii

7.6 Comparing area fordifferent kernel extraction algorithms indelay minimization (in
y?) 114

IX

Acknowledgements

My life as a graduate student at Berkeley has been an experience that I will treasure forever. It has

been made possible in great part by the support and encouragement of wonderful family members,

professors and friends.

I am indebted to my parents for their support and encouragement not only during my Ph.D.

program at Berkeley, but also my M.S. program at Ames and my B.S. program at Lafayette. My

father taught my siblings and I the value of education since we were very young. He always reminds

us that a good education is hard to come by and we should look for it and seize the opportunity

when one comes around. His tenacity, wisdom, and perseverance have been a constant inspiration

and guidance for me. My mother has been a source of support and comfort in hard times and a place

of sharing in good times.

The person that sacrifices the most during my program at Berkeley has been my wife. She

has been supportive and understanding throughout my program. I owe her for her warmth, patience,

and understanding and I thank her for her support and for being my best friend.

I am grateful to my advisor Professor Alberto Sangiovanni-Vincentelli for giving me the

opportunity to leam from the best in research in general and in CAD in particular. I thank him for

allowing me to explore different research avenues, and his guidance in my research. He never stops

to amaze me with his quickness in grasping my presentation. He is often a step ahead of what I

say. His unmatched level of energy fascinates me and often inspires me to do my best. Although

Professor Robert Brayton is not my advisor officially, he is like a second advisor to me and I am

grateful for that. Bob's meticulous and perseverance attitude in research is something I admire

greatly. I would also like to thank Professor Richard Newton for his interests in my research and for

his advices in my career search. I have been impressed with his enthusiasm towards the bettemess

of not only his students but also of other students. I am grateful to Professor Steven Evans, who

together with Professor Richard Newton, served on my qualifying examination committee.

I have been fortunate to have interacted with many wonderful fellow students. I enjoyed

the company of Marlene Wan, Min Zhou, Shaz Qadeer, and Alok Agrawal during my early years at

Berkeley. Amit Narayan amazed me with his ability to quickly grasp ideas and his practical views

of life. I was fortunate to have interacted with Sunil Khatri. I admire his attention to details and

his wisdom and I enjoyed greatly his company. I enjoyed chatting with Harry Hsieh and Sriram

Krishnan in various topics. Yuji Kukimoto's practical views of research impressed me. I was

fortunate to have worked with and learned from Rajeev Ranjan and Jagesh Sanghavi. I enjoyed the

interesting and sometimes animated discussions with Luca Carloni and Amit Mehrotra. I enjoyed

the company of Lixin Su. I acknowledge Edoardo Charbon's helpfulness with obtaining licenses

for the CADENCE software which I use in my experiments. I was fortunate to have interacted with

visiting scholarsEugene Goldbergand AndreasKuehlmann. I learneda lot about researchand work

in the industry from them.

I would also like to thank Semiconductor Research Corporation (SRC) and California

MICRO program for supporting my research at Berkeley.

Chapter 1

Introduction

A typical design flow for an integrated digital circuit starts with a functional description of

the circuit written in a high-level hardware description language like Verilog and a set of constraint

specifications. The objective of thedesign process is typically to minimize a cost function^ under

constraints which could include delay, area, power, etc. The functional description is first passed to a

logic synthesis tool to generate an optimized logic circuit meeting the constraints according to some

cost model. The logic circuit is then placed and routed on a two-dimensional plane by a placer and

a router minimizing the cost function while meeting the constraints according to their cost model.

Although a design can be carried strictly by hand without using any of these computer-aided design

(CAD) tools, no design today is carried out without any help of CAD tools.

Over the past several years, two major trends have been shaping up to push the envelopeof

the typical design methodology and current CAD tools. The first trend is the ever increasing pressure

of time-to-market considerations. This has put a tremendous amount of pressure on designers to rely

more heavily on CAD tools. Yet with the decreasing feature size of technology, certain effects, like

increasing wire delay due to an increase in wire resistance are becoming increasingly important.

The second trend is the increasing amount of integration into a single chip, especially with the

explosion of the need for networking chips to support the internet infrastructure. This increase in

integration also means that designers will have to rely more heavily on CAD tools to handle the

increased design complexity. Although these two trends mean that there will be an increasing need

for CAD tools, it also means that some assumptions and abstractions that CAD tools have been

operating on will have to be revisited. In particular, the assumption that gates in a circuit contribute

to the majority of the delay of the circuit needs to be re-evaluated. Also, the increasingly large

' A typical cost function include area, delay, andpower.

CHAPTER 1. INTRODUCTION 2

number of iterations between logic synthesis and physical synthesis, which is typically called the

timing closure needs to be studied.

This thesis addresses the increasing importance of wire delay in logic synthesis and the

timing closure problem.

1.1 Thesis Outline

The remaining of this chapter describes the technology trends and their implications to

the CAD problems. Several technologies ranging from 0.25/x to 0.05/i minimum feature sizes ob

tained after several feedback iterations from the industry is presented. The technologies are used

throughout this thesis. The questions of interconnect delay contribution to the total delay are ana

lyzed andstudied, together with thesizeof a module thatcansafely bedesigned without accounting

for interconnect resistance. The problem of a large number of iterations that need to be performed

in the industry, often referred to as the timing closure problem is discussed. The interconnect delay

estimates commonly used in logic synthesis called the wire-load model is analyzed anddiscussed.

In Chapter 2, background on logic synthesis and terminologies are reviewed. Basic def

initions about logic functions are stated. Algebraic and Boolean division operations which play a

major role in logic synthesis are discussed. Logic optimization operations based on algebraic di

vision are defined. The mapping procedure from logic functions to logic gates is described. This

chapter also defines thedelay model with and without interconnect. Thetopological timing analysis

used to compute the delay of the circuit is described.

Conventional logic synthesis minimizes the number of literals in the circuit when syn

thesizing a logic circuit. The number of literals is a measure of the effectiveness of the synthesis.

Chapter 3 describes our approach that takes the diametrically opposing view which minimizes the

interconnect length. The proposed approach is called the wire-planning approach. With this per

spective, the characteristics of when a logic circuit is easier to place than another is determined.

Based on the characteristics of good circuits, the notion of legal nodes is introduced. Intuitively, a

legal node is a cell or a group of cells, which if found, can produce an easy-to-place circuit. The

notion of legality of a node is then extended to the whole circuit, which says that if every node is

legal, then circuit is easy to place. The wire-planning approach forms the basicsof several heuristics

in the approaches described in later chapters of this thesis.

Chapter 4 describes a practical approach of accounting for interconnect delay in logic

synthesis. It is an approach that integrates logic synthesis and global placement procedures. This

CHAPTER!. INTRODUCTION 3

chapter describes the design flow of the proposed approach. A literature survey of related work is

described here. Models used in the approach like net topology and interconnect delay model are

described here. The detail of the approach is described in the remaining chapters of this thesis.

The integration of logic synthesis approach uses a placement algorithm called Kraftwerk

which is discussed in Chapter 5. Kraftwerk is a mixed quadratic and force-directed placement

algorithm. Its suitability for the integrated approach is discussed, followed by the detail of the

algorithm. Kraftwerk implementation uses numerical computation methods like conjugate gradient,

and Fast Fourier Transform. It is clear then that the algorithm is iterative. How to implement and

control the behavior of the algorithm in the work of this thesis is described in detail in this chapter.

As in the conventional logic synthesis, the proposed approach is separated into two phases:

the technology independent phase and the technology dependent phase. Technology dependent

phase is closer to the final implementation of the circuit being synthesized in logic gates. This

means that the gate and interconnect delays computed during this phase are closer to the actual

delay of the final logic circuit. Because of this, this phase is presented in Chapter 6 before the tech

nology independent phase. The other reason is that the technology independent optimization can

then use the algorithms in the technology dependent phase to measure more accurately the perfor

mance of the circuit. Two different optimization algorithms are presented: the area and wire-length

minimization, and the delay optimization algorithms. In the area and wire-length minimization, an

attempt is made to reduce the area and wire-length of the circuit simultaneously. In the delay op

timization, three different approaches corresponding to how the load of a gate is approximated are

described and compared.

In Chapter 7, the technology independent optimization phase of the proposed integrated

approach is described. This phase includes extracting common sub-expressions in the logic func

tions that describe the circuit such that the sizes of the logic functions, measured in the number of

literals in them, are reduced. Depending on how the value of a sub-expression of a node is eval

uated, two different algorithms are introduced and compared. In one algorithm, the value of the

sub-expression is computed directly using the structure of the circuit and the positions of their com

ponents. In the other algorithm, a heuristic based on the wire-planning approach is used to reduce

the interconnect delay contribution to the circuit. As a result of the wire-planning based approach,

a duplication operation is introduced. It duplicates logic when the interconnect delay is likely to

decrease.

Finally, this thesis will be concluded in Chapter 8. The summary of the thesis and future

directions for research are given.

CHAPTER]. INTRODUCTION 4

1.2 Technology and Design Trend

In the present day IC design, the ever-shrinking time-to-market trend has put pressure on

designers to use CAD tools to increase productivity. A company can no longerdesign an entirely

customchip because the penaltyof late introduction of the product into the markethas often meant

failure for the product. At the same time, design quality is ever important. Further, there is the

ability to integrate moreand morefunctionality on a singleIC thaneverbefore. Hence, not only do

CAD tools need to be faster, they also need to effective.

The time-to-market pressureand increasing scale of integration haveled CADresearchers

to predict the future of technology and re-examine the assumptions and abstractions that have been

valid thus far. This section looks into two particular problems: the effect of wire delay as technology

scales to smaller feature sizes, and the timing closure problem which will be aggravated by larger

scales of integration.

1.2.1 Technology Models Used in this Thesis

The analysis and experiments in this thesis uses the "strawman" technologies developed

in [KMB''"99]. The strawman technologies are a set of parameters for technologies with minimum

feature sizes ranging from 0.25/i to O.OSfi. They are based on the parameter values predicted by

the the Semiconductor Industrial Alliance's National Technology Roadmap for Semiconductor for

1997 (SIA NTRS) [Ass97] with feedbacks from leading semiconductor companies like IBM and

Motorola.

The technology parameters are shown in Table 1.1.

1.2.2 Technology Scaling

The 1997 SIA NTRS [Ass97] predicts that interconnect delay will start dominating the

total gate delay as we move down to 0.15fx technology and below. This is true mainly for global

wires (which are wires that are used to connect different blocks of design) as opposed to local wires

(which are used to interconnect cells in a block). In this section, we quantify this claim, showing

that interconnect delay will become significant due to technology scaling even within a relatively

small module.

For CMOS circuits, a gate driving another gate through a homogeneous wire of length

/ can be modeled by the circuit in Figure 1.1 [OB98]. The voltage source Vtr is controlled by the

CHAPTER 1. INTRODUCTION

Table 1.1: Strawman technologies

Process (n) 0.25 0.18 0.13 0.10 0.07 0.05

Vdd (V) 2 1.8 1.5 1.2 0.9 0.6

Leff (nm) 160 100 70 50 35 25

tax (A) 60 45 35 30 20 12

Levels 6 6 7 8 9 9

Poly

H(m) 0.2 0.15 0.13 0.1 0.07 0.07

W(Ai) 0.25 0.18 0.13 0.1 0.07 0.05

space (^) 0.25 0.18 0.13 0.1 0.07 0.05

sheet p (S2/D) 4 5.3 6.2 8 11.4 11.4

Ml-2

H(/i) 0.5 0.46 0.34 0.26 0.2 0.14

W(/t) 0.30 0.23 0.17 0.13 0.1 0.07

space ill) 0.30 0.23 0.17 0.13 0.1 0.07

sheet p (£2/n) 0.044 0.048 0.065 0.085 0.11 0.16

tuts (nm) 650 500 360 320 270 210

M3-4

H(m) 2.0 2.0 1.2 1.0 0.6 0.6

W(/x) 1.0 1.0 0.6 0.5 0.3 0.3

space (/x) 1.0 1.0 0.6 0.5 0.3 0.3

sheet p (Q/D) 0.011 0.011 0.018 0.0224 0.036 0.036

tins (nm) 900 900 900 900 900 900

M5-6

H(/x) 2.5 2.5 2.0 2.0 1.5 1.5

W(M) 2.0 2.0 1.0 1.0 0.75 0.75

space (/x) 2.0 2.0 1.0 1.0 0.75 0.75

sheet p (S2/0) 0.009 0.009 0.011 0.011 0.015 0.015

tins (nm) 1400 1400 900 900 900 900

M7-8

H(/x) - - 2.5 2.5 2.4 2.4

Will) -
- 2.0 2.0 1.2 1.2

space in) - - 2.0 2.0 1.2 1.2

sheet p (Q/D) - - 0.009 0.009 0.0094 0.0094

tins (nm) - - 1400 1400 900 900

M9

H(/x) - - - - 2.5 2.5

W(/x) - - - - 2.0 2.0

space in) -
- - - 2.0 2.0

sheet p (Si/D) - - - - 0.009 0.009

^i«.v (nm) - - - - 1400 1400

Via

(M1-M2)
size in) 0.5 0.36 0.26 0.2 0.14 0.1

R(Q) 0.46 0.69 0.95 1.43 2.16 3.27

K 3.3 2.7 2.3 2 1.8 1.5

CHAPTER 1. INTRODUCTION

voltage Vst stored at its input capacitance. It switches instantaneously once v« reaches x fraction

of the supply voltage. The delay between when v,r switches and when the voltage at the receiver

reaches x x 100% of the supply voltage is described by the following equation [Bak90]:

T= b{x)R,r(CL + Cp)-\-b{x){RtrC + rCL)l + a{x)rcl^ (1.1)

where a{x) and b{x) areconstants, Cp is theparasitic (diffusion) capacitance of thedriver, Cl is the

gate capacitance of the receiver, and r and c are resistance and capacitance per unit length of the

wire. For x = 0.5, a = OA,b = 0.7, and for x = 0.9, a= 1.0,b = 2.3. For this thesis, we will use

a: = 0.5.

Vst

Rtr
>AAAA-

-±rCr

Figure 1.1; Buffer delay model.

r-l
VW\^

C'l

Cl

If the homogeneous line is too long, then buffers can be inserted to minimize the delay.

A segment is defined as the part of the buffer inserted circuit from the input of a buffer to the input

of the next buffer. The work in [OB98] finds that for this model, the minimum overall delay is

achieved when nopt buffers are inserted. The optimum length ofeachsection is

Irrit —
I

'•opt \ rc

P

y/rc

It is also shown in [OB98] that the delay of each segment only depends on the device parameters

and not interconnect parameters. As a consequence, this delay is the same for all metal layers. The

critical delay Xcru, which is the delay of a section is described by

Xcrit = 2broco 1 +
y/rocoj

1.2.2.1 Predicting Sizes of Synthesized Blocks

Using the strawman technology parameters. Table 1.2 lists the values of lent and Xcru for

0.25/4 and 0. lO/x technologies. The numbers have been conveniently expressed in terms of feature

CHAPTER!. INTRODUCTION

size units. Hence, direct comparison of the numbers in the two technologies can be done.

Table 1.2: Critical length and delay of strawman technologies.

Critical parameter
Feature size units

0.25/t 0.10/i

Icrit (metal 1) 10,440 6,757

Icrit (metal 2) 10,600 7,162

Icrit (metal 3) 36,000 43,446

Icrit (metal 4) 38,400 45,135

Icrit (metal 5) 63,200 64,932

Icrit (metal 6) 62,000 56,892

Icrit (metal 7) — 97,581

Icrit (metal 8) — 93,378

'^cril 205 ps 80 ps

As seen in Table 1.2, the critical lengths for metal layer 1 and metal layer 2 are smaller

for 0.25jtias compared to O.lOjLC If we assume that the length lent is the length of a side of a square

block/module, which we call a critical square, we can then compute the number of cells that can

be placed in that square. We call this number the critical count. We would like to find out if

interconnect delay is negligible within this critical square for both 0.25/1 and O.lO/i technologies,

and also study and how it scales in the future. Hence, we are only interested in what is typically

called a module in which only metal layer 1 and 2 are used for routing.

A minimum size inverter typically has an equivalent Rtr of about 10/:^. Such an inverter

is not widely used in a design. A typical cell is usually a 2-input NAND gate, as suggested in recent

study by Sylvester and Keutzer [SK98]. This typical gate has R,r « UQ and ^ « 20. This device

has a dimension of about 80 x 10 or 800 feature size units. We believe using this 2-input NAND

gate to compute the critical counts is reasonable. The reason for this is that most of the cells in a

design are larger than this NAND gate (for speed purposes) and there are typically larger cells as

well (like latches) in a design.

Using the values in Table 1.2 and a typical 2-input NAND gate size, the critical count for

metal layer 1 and 2 are shown in Table 1.3. The formula used to compute the critical count {kcrit) is

The size of a block that is typically synthesized today is about 3,000 to 4,000 cells. The

kcrit values in Table 1.3 are much larger. Hence, no buffers need to be added. However, the reason

that larger blocks are not synthesized is not that state-of-the-art logic synthesis tools cannot handle

CHAPTER 1. INTRODUCTION

Table 1.3: Critical count of 0.25fi and O.lOfi technologies.

Layer
kerit

0.25/1 O.lO/i

Metal 1 136,242 57,071

Metal 2 140,450 64,117

larger designs. In fact, state-of-the-art logic synthesis tools can handle much larger blocks. The

reason is that the delay computed by logic synthesis tools is too inaccurate to be useful [She98].

These 3,000 to 4,000 cell blocks are typically part of a larger functional block. Functional blocks

of 10,000 to 30,000 cells are commonly designed today. Once synthesized, these blocks of 3,000

to 4,000 cells are then placed and routed as a single block. Now, if weattempt to synthesize larger

functional blocks directly, then the length lent will fall within a synthesized block within the next

few process generations. For the lack ofa good SPICE model for the 0.05/1 technology, we linearly

extrapolate the lent values for metal layer 1and 2 into this technology^. The results ofthis extrap
olation are shown in Table 1.4. It is clear that for 0.05/1 technology, kent is close to the size of a

typical functional block designed today. Since there is a continuous trend towards larger scales of

integration, the size ofa synthesized functional block could very well exceed the numbers shown in

this table.

Table 1.4: Extrapolated critical length (lent) and critical count (keru) for0.05/t technology.
Layer Icrit k-erit

Metal 1 5,467 37,346

Metal 2 6,049 45,738

1.2.2.2 Predicting Interconnect Delay

In addition to the values of kent* we are interested in the portion of Xcnt that is contributed

by interconnect delay. We simulate a ringoscillator circuit using SPICE to compute thegatedelay.

We note that thisgatedelay varies very little with the size of the buffer in a ringoscillator because

the increase in the drive strength is balanced by the increase in the input capacitance of the next

stage. As seen from Table 1.5, the interconnect delay dominates the gate delay for each section of

^Although there areconcerns in the research community that we may not be able to scale further. Prof. Chenming
Hu claimed that with the advances of silicon-on-insulator and double gate devices, the speed of devices should scale
according to Moore's law until the year 2025 [Hu99]

CHAPTER 1. INTRODUCTION

an optimally buffer line. This means that interconnect delay starts dominating gate delay well before

Icrit is reached. The contribution of interconnect delay becomes larger if we consider that when a

driver drives a long line followed by a receiver, the driver is usually sized up and the receiver

sized down to reduce the delay. This has the effect of reducing the delay contribution of gates and

therefore increasing thedelay contribution of theinterconnect. Inotherwords, theterm RtriCt+Cp)

ofEquation 1.1 decreases quadratically, {cRir + rCijl decreases linearly, and rcl^ remains thesame

due to sizing.

Table 1.5: Gate delay vs interconnect delay for Zcrit-

Technology T:crit{ps)
Gate delay Interconnect Delay

Value (ps) Percent Value (ps) Percent

0.25/i 205 53 26% 152 74%

O.lOfx 80 20 25% 60 75%

This discussion motivates the need for logic synthesis technologies that optimizes not

only for gate delay, but also for wire delay.

1.2.3 The Timing Closure Problem

Using a conventional design flow, it is becoming increasingly difficult to predict inter

connect delay during logic synthesis. This results in a large number of iterations between logic

synthesis, physical synthesis, parasitic extraction, and timing analysis. This is commonly known as

the timing closure problem. These iterations are time consuming.

During logic synthesis, the timing behavior of a gate is generally characterized by its

worst case behavior. This can be done accurately by using a circuit simulation tool because the

layout of the gate is known. On the other hand, interconnect layout information is not available

while performing logic synthesis. To estimate the contribution of interconnect to delay, a wire-load

model is typically used. A wire-load model is a statistical estimate of the length of a net given the

number of cells connected to the net. From this length estimate, the capacitance and resistance of

the net are computed. Hence, all nets with the same fanout count are estimated to be of the same

length during conventional logic synthesis.

To determine the validity of such a wire-load model, we conduct an experiment to study

the correlation between the length of a net computed using the wire-load model and the actual length

of the net after global and detailed placement. Since the delay of a net is directly proportional to its

CHAPTER 1. INTRODUCTION 10

length, we will be using net length as a measure.

The wire-load model used here is listed in Table 1.6 for nets with 2 to 10 pins. For nets

with more than 10-pins, net length is extrapolated by a line with slope equal to 1.6. This wire-load

model is consistent with an industrial 0.18jLt process technology. This table is interpreted as follows.

If the length of a net with 2 pins is /(2), then the length of a net with 3 pins is estimated to be

3 •/(2). For a net with 11 pins, its length is estimated to be (27-I-1.6)/(2). For our 0.1^ strawman

technology and the size of the circuits that we run our experiments on, l{2) is set to be 55/1

Table 1.6: wire-load model.

Pins Multiplier Length

2 1 55/1

3 3 165/1

4 7 385/x

5 11 605/x

6 15 825/t

7 19 1045/t

8 22 1210/i

9 25 1375/x

10 27 1485/x

In order to evaluate the effectiveness of the wire-load model, we compute the net length

using the wire-load model and compare them to the distribution of actual net length after global

and detail placement. The actual length of a net is computed using its half-perimeter estimate.

We use GORDIAN [KSJA91] as the global placer and DOMINO [DJS91] as the detailed placer.

We run both GORDIAN and DOMINO on the four large circuits from the 1992 Layout Synthesis

benchmark set: industry!, industry3, avq.small, and avq.large.

Table 1.7 shows information for all 4 circuits used in this experiment.

Table 1.7: Circuits.

Circuit # cells # nets

industry2 12637 13420

industry3 15433 21968

avq.small 21918 30039

avq. large 25178 33299

From the results of global and detailed placement for the four circuits, we analyze the

CHAPTER 1. INTRODUCTION 11

distribution of net length for different nets.. Figures 1.2-1.5 show the scatter plot of the actual net

length superimposed with the net length estimated using the wire load model. The jc-axis represents

net size in terms of the number of pins on the net. The)'-axis represents the length of each net in

microns. The dashed lines represent the net length estimated using the wire-load model.

Figures 1.2-1.5 show that many small nets (i.e. nets with few pins) are not accurately

estimated. For example, the length of 2-pin nets range from 0.5fi to 1500/t for industry2. The wire

load model estimates it to be 55\l Large nets are pessimistically estimated. However, a pessimistic

estimation is necessary for large nets because they typically lie on critical paths. Besides, while a

semi-perimeter estimate is exact for 2-pin and 3-pin nets, it is increasingly pessimistic for larger

nets.

2500

2000

c 1500

a> 1000

500

I i

t

t

+

'It'"* +
I +

t +

i X
* i
+ I

I t
t ^

10 12

Number of pins

14

T r
'tndustry2'
'wireload'

' +

16 18

Figure 1.2: Actual vs estimated net length (industry2).

20

Having demonstrated the inaccuracy of wire-load model, we would like to find out the

fraction of nets that are under and over estimated. If only a few nets are under-estimated, then

the delay can be optimized by applying gate-sizing and/or buffer insertion. The number of nets

whose actual net length that is below and above the estimated length for each circuit are tabulated

in Table 1.8 and Table 1.9. Column 1 lists the sizes of nets. The remaining pairs of columns are the

data for each circuit. The first column for each circuit contains the number of nets that are below

CHAPTER 1. INTRODUCTION

180O

1600

1400

1200

.9 1000
E

800

600 •

400 •

200

3000

2500

2000

1500

1000

500

ill
* +

10 12

Number of pins

i *

14

'industryS'
'wireload'

+ + +

16 18

Figure 1.3: Actual vs estimated net length (industryS).

+

* ,-f'

i_L

* t
+

* i : '

10 12

Number of pins

+ t

14

'avq.smair +
'wireload'

16 18

Figure 1.4: Actual vs estimated net length (avq.small).

12

20

20

CHAPTER L INTRODUCTION

2500

2000

H 1500

® 1000

500

I
10 12

Number of pins

14

'avg.large'
'wi^load'

16 18

Figure 1.5: Actual vs estimated net length (avq.large).

13

20

the estimated length and the second column contains those that are above the estimated length. As

seen from Table 1.9, over 20% of small (i.e. < 3 pin) nets are underestimated. Many of these

nets are very long and consist of fe>v (3-pin or 4-pin nets) or no branches (2-pin nets). These nets

have higher wire resistance than larger nets, which have more branches, and hence higher RC delay.

Since the difference between the actual and estimated length is very large for these nets, nets that

are not regarded to be on critical paths by logic synthesis tools can turn out to be critical nets after

placement. If the number of such nets is large, as in all these four circuits, gate sizing and buffer

insertion may not be enough to meet the timing requirements.

In summary, we have shown that the wire-load model, widely used in state-of-the-art logic

synthesis tools, can dramatically underestimate the delay of nets, especially small nets. This results

in an inaccurate determination of the critical paths in logic synthesis which can cause the timing

closure problem. The timing closure problem will likely be aggravated if the current methodology

is used to synthesize larger functional blocks.

CHAPTER 1. INTRODUCTION

Table 1.8: Number of nets below and above than the wire-load estimated values.

Net

industry2 industry3 avq.small avq. large
below above below above below above below above

2-pin 6660 2747 7483 3476 11694 1960 14626 2288

3-pin 1598 426 5072 1040 5430 706 5359 777

4-pin 203 94 1458 401 1422 56 1409 69

5-pin 331 118 1696 112 702 10 701 11

6-pin 93 24 393 34 28 1 28 1

7-pin 125 13 194 7 10 0 10 0

8-pin 41 11 104 1 3 1 4 0

9-pin 279 14 242 0 12 9 15 6

10-pin 36 5 46 1 4 0 4 0

11-pin 32 3 21 0 2 0 2 0

12-pin 27 0 14 0 2 0 2 0

13-pin 43 3 18 0 2 0 2 0

14-pin 45 0 12 0 2 0 2 0

15-pin 19 1 7 0 0 0 0 0

16-pin 18 2 3 0 1 0 1 0

17-pin 171 2 23 0 2 11 2 11

18-pin 14 2 4 0 18 0 18 0

19-pin 7 1 4 0 1 0 0 1

20-pin 4 0 1 0 0 0 0 0

14

CHAPTER 1. INTRODUCTION

Table 1.9: Percentages of nets below and above than the wire-load estimated values.

Net

industry2 industry3 avq.small avq. large
below above below above below above below above

2-pin 71.0 29.0 68.0 32.0 86.0 14.0 86.0 14.0

3-pin 79.0 21.0 83.0 17.0 88.0 12.0 87.0 13.0

4-pin 68.0 32.0 78.0 22.0 96.0 4.0 95.0 5.0

5-pin 74.0 26.0 94.0 6.0 99.0 1.0 98.0 2.0

6-pin 79.0 21.0 92.0 8.0 97.0 3.0 97.0 3.0

7-pin 91.0 9.0 97.0 3.0 100.0 0.0 100.0 0.0

8-pin 79.0 21.0 99.0 1.0 75.0 25.0 100.0 0.0

9-pin 95.0 5.0 100.0 0.0 57.0 43.0 71.0 29.0

10-pin 88.0 12.0 98.0 2.0 100.0 0.0 100.0 0.0

11-pin 91.0 9.0 100.0 0.0 100.0 0.0 100.0 0.0

12-pin 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

13-pin 93.0 7.0 100.0 0.0 100.0 0.0 100.0 0.0

14-pin 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

15-pin 95.0 5.0 100.0 0.0 — — — —

16-pin 90.0 10.0 100.0 0.0 100.0 0.0 100.0 0.0

17-pin 99.0 1.0 100.0 0.0 15.0 85.0 15.0 85.0

18-pin 88.0 12.0 100.0 0.0 100.0 0.0 100.0 0.0

19-pin 88.0 12.0 100.0 0.0 100.0 0.0 0.0 100.0

20-pin 100.0 0.0 100.0 0.0 — — — —

15

16

Chapter 2

Preliminaries

This chapter introduces the basic terminologies of logic synthesis and timing analysis.

Section 2.1 states the definitions of logic functions. Section 2.2 overviews the logic synthesis pro

cess. Delay modelsand topological timing analysis are described in Section 2.3

2.1 Logic Functions

Definition 2.1 Let 5 = {0,1}. An n-input, completely specified logic function / is a mapping

f B. Each element in the domain B" iscalled a minterm off. f \l) = {v G | /(v) = 1}

is the on-set off, and (0) = {vGB" | /(v) = 0} theoff-setoff.

Definition 2.2 An n-input, incompletely specified logic function / isa mapping f\B'̂ y-^ {0,1,*}.

/-'(*) = {vG I/(v) —*} is thedon't care set of/.

Definition 2.3 A literal is a variable or its complement. A cube or a product term is a product or

conjunction ofoneor more literals such that ifx appears in the product, V does not, and vice versa.

A literal a {c^) represents the set of all minterms for which the variable a takes on the value 1 (0).

A cube represents the intersection of the sets of minterms represented by all the literals in it. If a

variable and its complement are present in a cube, the cube becomes identically 0.

Definition 2.4 A sum-of-products (SOP) is a Boolean sum or disjunction ofcubes.

An SOP represents the union of sets of minterms represented by the cubes in it.

Definition 2.5 A factored form is defined recursively as follows:

CHAPTER 2. PRELIMINARIES 17

• a literal is a factoredform

• the sum of twofactoredforms is a factoredform, and

• the product oftwofactoredforms is a factoredform.

Definition 2.6 An n-input, k-output logic function f is a mapping f:B"t->

Definition 2.7 A Boolean network is a representation ofa multiple-output logicfunction. It is a

directed acyclic graph (DAG), withprimary inputs PI(2{), primary outputs P0(9{), and internal

(intermediate) nodes IN{9f}. Primary inputs have no incoming arcs and primary outputs have

no outgoing arcs. Associated with each internal node i is a variable y-, and a representation of a

logic function f. The logic at each node is typically stored as a sum-of-products form. There is an

arcfrom node i to node j in the graph if j uses eitheryi or y'̂ explicitly in the representation of fj.

In that case, i is called a fanin of j, and j a fanout of i. The set offanins ofa node i is denoted as

FI(i) and the set offanouts as FO{i). It there existsa path from node i to node j, then node i is said

to be a transitive fanin of j, and j a transitive fanout or i. The set of transitive fanins of a node

i is denoted as TFI(i), whereas its transitivefanout set is denoted as TFO(i). The net driven by

node i is the set ofedges ofthe type(i,€ FO{i).

In this thesis, node i with variable y,- and logic function f is synonymously referred to as node y,-

or node f. The net driven by node i is called net i. Figure 2.1 shows a Boolean network with four

primary inputs a^b,c^d, primary output z, and internal nodes

2.2 Logic Synthesis

Logic synthesis is a process of reading a high-level description of a circuit and generating

an implementation of the circuit in terms of logic gates. The synthesis is done for an objective

function, such as minimizing area and delay.

Since logic synthesis is a complex process, it is typically divided into two phases: tech

nology independent optimization phase followed by technology dependent optimization phase

[BRSVW87]. The technology independent optimization phase attempts to generate an optimum

abstract representation of the circuit according to the objective function. The most commonly used

representation of the circuit is a Booleannetworkand the mostcommonly used measureis the num

ber of literals of the network in factored form, which is the sum over all the internal nodes of the

CHAPTER 2. PRELIMINARIES

r = cp-\-bq

p = ah

a b c d

18

Figure 2.1: A Boolean network.

network of the number of literals in the factored form representation of each node. The depen

dentoptimization phase attempts to implement the optimized Boolean network using a pre-defined

library of gates while optimizing the objective function.

2.2.1 Technology Independent Optimization

Technology independent optimization is also referred to as logic optimization in this the

sis. The main idea in this phase is to find sub-functions that can be shared by multiple functions in

the Boolean nodes. The basic operation to generate the sub-functions is division.

Definition 2.8 An algebraic expression is a sum of products representation of a logic function

which is minimal with respect to single cube containment (SCC), i.e. no cube is contained within

another cube.

Definition 2.9 The product of two algebraic expressions f and g, fg is a J^Cidj where {c,} =

{dj^ = g, made irrediindant with respect to single cubecontainment, e.g. ab + a = a. If f and g

have disjoint support, it is an algebraic product. Otherwise, it is a Boolean product.

Definition 2.10 Given twofunctions f and d, a division is an operation that generates a quotient q

and a remainder r such that f = dq + r. Ifdq is an algebraic product, then it is called an algebraic

CHAPTER 2. PRELIMINARIES 19

division. Otherwise, it is a Boolean division.

Although Boolean division is more powerful, i.e. it can generate fewer literals in the expression

dq + r than an algebraic division can, it is computationally difficult. Because of this, algebraic

division is mainly used in logic optimization.

Definition 2.11 Given two algebraic expressions f and d, a division is called weak division, de

noted by f /d, if f = dq-hr such that

1. dq is algebraic and

2. r has asfew cubes as possible

If n is the number of product terms in / and d, then weak division can be performed in O(nlogn)

[BM82].

Definition 2.12 An expression is cube-free if no cube divides the expression evenly.

As an example, ab-he is cube-free; while ab-f ac and abc are not cube-free. By this definition,

a cube-free expression must have more than one cube because a literal in a cube divides the cube

evenly.

Definition 2.13 The primary divisors ofan expression f are the set ofexpressions

D{f) = {fjc \c is a cube}

Definition 2.14 The kernels ofan expressionf are the set ofexpressions

Xif) = {^ I5 ^ ^if) 8 is cubefree).

In other words, the kernels of an expression / are the cube-free primary divisors of /.

Definition 2.15 A cube c used to obtain the kernel k = f/c is called a co-kemel ofk, and C{F) is

used to denote the set ofco-kemels off.

Division has been used as the basic operation of logic optimization operations in a Bool

ean network which include decomposition, extraction, re-substitution, and elimination. Decompo

sition is the logic operation that expresses a given logic function in terms of simpler sub-functions.

CHAPTER 2. PRELIMINARIES 20

A node associated with each sub-function is added into the Boolean network if it does not already

exist. For example, the function

/ = abc-f abd-fa'c'd' -I- b'c'd'

can be decomposed into

/ = xy+x!y'

X = ab

y = c-\-d

and Xand y are added as new nodes if nodes with the same functionality do not already exist.

Extraction is the operation that identifies common sub-expressions among different logic functions

in the Boolean network. Nodes associated with the sub-expressions are created if they do not already

exist. For example, extracting /, g, and h below

/ = (a + c)cd-^e

g = (a + b)e

h = cde

yields

/ = xy-\-e

g = xe

h = ye

X = a + b

y = cd

and Xand y are added as new nodes if necessary. Re-substitution is the operation that re-expresses a

function / in terms of anotherfunction g, where both / and g already exist in the Booleannetwork.

For example, if

g = a + b

f = ac + bc

then re-substituting g into / yields

Eliminating or collapsing a function g into / is the logic operation that re-expresses a function /

without explicitly using g. As a result. Boolean node g is removed from the fanin set of /. At the

CHAPTER 2. PRELIMINARIES 21

first glance, elimination seems to contradict other logic operations. In fact, it is purposely introduced

to get the technology independent optimization out of local minima.

The above logic operations are used to restructure the Boolean network. Another op

eration which minimizes the logic function stored at each Boolean node is called node mini

mization or simplification. It employs two-level logic minimization techniques to minimize each

node [BHMSV84]. However, nodes are not minimized independently of other nodes since some

flexibility is not used otherwise. The flexibility exists because the fanins of a Boolean node n are

related to each other by the nodes of the network in the transitive fanin set of n. Hence, the fanins

may not be free to take any combination of values. The set of combination of values, which the

fanins of n can not take, form the satisfiability don't cares (SDC) of n. Also, for some combination

of values the primary inputs take, the value evaluated at n may not be observable at any primary

outputs. In other words, the primary outputs remain unchanged by the change in value at n. This set

of combination of values is called the observability don't cares (ODC) of n. In addition, the circuit

being synthesized is usually a module in a system. For certain combination of values the primary

outputs take, the behavior of the system does not change. This set of combination of values is called

the external don't cares (XDC).

The set of all SDCs and ODCs of a node is typically large and cannot be efficiently

computed. In that case, a suitable subset of both SDCs and ODCs, together with the XDCs, are

used as don't cares in the two-level logic minimization of the node [Sav92].

After restructuring and simplification, the Boolean network is optimized and the next step

is the technology dependent phase or also called the mapping phase.

2.2.2 Technology Dependent Optimization

The optimized Boolean network is to be implemented using a set of gates that have been

carefully designed and characterized. This set of gates is referred to as the gate library. Each gate

has a cost that represents its area and/or delay. Hence, when a gate is being considered as a match

of a set of Boolean nodes in the network, the cost can be computed. To reduce the complexity of

having to map nodes with arbitrary number of fanins into gates in the library, the Boolean network is

first decomposed into basic gates like two-input NAND/NORgates and inverters. The decomposed

Boolean network is called the subject graph. This step is often call technology decomposition.

Each gate in the library is also represented as a Boolean network where each node is also of the

same basic gates. These graphs of gates are called the pattern graphs. A cover of the subject

CHAPTER 2. PRELIMINARIES 22

graph is a collection of pattern graphs such that every node in the subject graph is contained in one

or more of the pattern graphs. The cover is constrained such that each primary output is an output

of a pattern graph, and each input required by a pattern graph is either a primary input or an output

of another pattern graph in the cover. Finding a cover of the subject graph is often referred to as

technology mapping.

Technology mapping problem is NP-hard, which means that heuristics are used to solve

the problem. The most commonly used heuristic partitions the subject graph into trees and a dy

namic programming approach is used to find the optimum mapping of the trees like in [?].

2.3 Circuit Delay

2.3.1 Delay Models

The delay of a circuit depends on the delay of both gates and interconnect in the circuit.

As seen in Section 1.2.2, the delay of a circuit segment, i.e. a CMOS gate driving a piece of wire

with length I and another CMOSgate, can be described by Equation 1.1. For a: = l,a(A:) = 0.5, and

b{x) = 1.0 and the equation becomes

T=Rir{Ci-\rCp) {RtrC-\- rCi)!2^^^^ (2.1)

which is the widely used Elmore delay [Elm48]. If there is no interconnect between the driver and

the receiver, the equation becomes

Tg = R.r{CL + Cp) (2.2)

which is defined as the gate delay of the circuit segment. The difference between these two equa

tions is defined as the interconnect delay of the circuit segment, i.e

1 TT„. = {RtrC +rCijl + 2^cr (2.3)

The conventional logic synthesis model the delay of a gate g in the library as

^/g(^^) = ot(i) + P(OY (2.4)

where a{i) and P(/) are the intrinsic delay and drive strength (or output resistance) of the gate

from pin i to the output of the gate, and y is the load capacitances seen at the output of g. In

this model, interconnect capacitance is lumped into y, but interconnect resistance is neglected be

cause it has been negligible for circuits typically synthesized. Hence, dg{i^g) includes the terms

CHAPTER 2. PRELIMINARIES 23

R,rCL,RirCp, and R,rcl of Equation 2.1. In this thesis, this equation is still used as the delay of g

although the term Rircl is a part ofthe interconnect delay. The remaining terms HCl and jrcl^ are
called the interconnect resistance delay, and denoted as dr. Hence, the interconnect resistance

delay at the input pin j of a receiver h for a signal traveling from g to the receiver is

Ms, J) =flCi +irc/^ (2.5)

These definitions of gate delay and interconnect resistance delay allow the definitions of

arrival times and required times at the input pins and output of a node in the network, which are

described next.

2.3.2 Timing Analysis

Timing-driven logic synthesis of a combinational circuit takes as input a timing specifica

tion along with a functional specification to generate a circuit satisfying both the functionality and

timing. The timing specification is given as arrival time at each primary input and required time

at each primary output. The arrival time of a node is defined as the earliest time the signal at the

output of the node becomes stable. In other words, it is the latest time a signal can arrive at the

output of the node. The arrival time of a node g is denoted as a(g) and computed as follows

a{g) = {a{f)+dr{fj)+dg{i,g)}
f€FI(g)

where / is the input pin of gate g driven by the fanin node /. The terms in this equation is illustrated

in Figure 2.2. Similarly the required time of a node / is denoted as r{f) and computed as follows

= min {r(g) -rf,(/,/)}g£FO[f)

and the slack at node g denoted as s{g) is the difference between the required time and arrival time

atg

^(5) = '"U)-aU)

The arrival times of the nodes in the Boolean network can be computed by traversing the

network in topological order, and the required times in reverse topological order.

CHAPTER 2. PRELIMINARIES 24

Figure 2.2: Arrival and required time.

25

Chapter 3

Wire-planning

In Section 1.2.2, we demonstrated that interconnect delay is becoming more important

as we scale down the process feature size and as we increase the size of the functional block that

we synthesize. In this chapter, we propose a new logic synthesis methodology to deal with the

increasing contribution of the interconnect delay. Our focus is on logic synthesis. We first show that

conventional logic synthesis techniques can produce circuits which have long paths even if placed

optimally. Then, we characterize the conditions under which this can happen and propose logic

synthesis techniques which produce circuits which are "better" for placement.

Conventional logic synthesis assumes that the delay of a circuit depends only on the delays

of the gates in the circuit and mostly ignores the effect of interconnect delay^. However, we saw

in Section 1.2.2 that interconnect delay is becoming more important not only due to technology

scaling, but also due to the increase in size of blocks that we would like to synthesize. Therefore,

logic synthesis needs to account for the effect of interconnect delay during optimization.

In this chapter, we adopt a diametrically opposite approach to that of conventional logic

synthesis. We perform logic synthesis to optimize only for interconnect delay, ignoring the effect

of gate delays. We assume that the interconnect delay from an input i to an output o is a linear

function of the length of the path which connects i to o. This is supported by the work in [OB98].

Our approach is based on the simple observation that if an output o depends on an input i, then the

best way to connect i to o is through a path which is monotonic from i to o, that is, there are no

"diversions" in the path from i to o (In other words, the length of the path is exactly the Manhattan

distance between / and o). We first show, by means of an example, that conventional logic synthesis

'The interconnect delay is typically estimated using a wire-load model that underestimates many nets, as we have
demonstrated in Section 1.2.3

CHAPTER 3. WIRE-PLANNING 26

can produce a circuit for which it is impossible to find a placement with no diversions in the input-

output paths. Therefore, no place & route tool will be able to produce a circuit which is optimal in

terms of interconnect delay.

We define the notion of illegal nodes. Intuitively speaking, a node is illegal if it introduces

a diversion in the circuit no matter where it is placed. We characterize the condition under which a

node is illegal and provide a procedure to convert an arbitrary circuit into a circuit which has only

legal nodes. We call such a circuit a legal circuit. We show that for a legal circuit, there always exists

a point placement of the nodes such that every input-output path is monotonic. We also provide a

set of logic synthesis transformations which are guaranteed to preserve the "legality" of a circuit.

The chapter is structured as follows. Section 3.1 discusses related previous work. In

Section 3.2, we state our definitions and terminologies. In Section 3.3, we show examples of a circuit

that has monotonic placement and circuits that do not have monotonic placement. In Section 3.4,

the constraints placed on regions of the core area and Boolean nodes are described in detail. We also

describe a logic operation that transforms an illegal Boolean network into a legal one. In Section 3.5,

we present logic operations that optimizes the Boolean network while preserving its legality. In

Section 3.6, we present results of this approach and discuss the advantages and disadvantages of

wire-planning approach. Finally, we conclude this chapter in Section 3.7.

3.1 Previous Work

So far very little work has been done to model the effect of interconnect delay at the

logic level. This is mainly due to the fact that at the logic level, very little information is available

about the interconnect. Most of these approaches [PB91b, PB9ia, VP93] use a rough companion

placement to estimate the cost of various logic synthesis operations and make decisions based on

this cost. In [SRRJ97a] an iterative approach to combine synthesis and placement is presented.

Instead of using a companion placement to guide synthesis, they use actual placement which can be

modified incrementally based on the netlist changes. In [VP95] a heuristic to minimize the layout

cost is proposed which doesn't employ a companion placement solution. The method in [VP95] is

based on minimizing the average fanout range and evenly distributing fanouts in the chip. It was

shown that the chip delay could be reduced by this approach if all the input pins are located on one

side of the chip and all the output pins on the opposite. The wire-planning approach also does not

employ a companion placement. Instead, it provides a procedure to transform a Boolean network

that has diversions when placed into another Boolean network that does not.

CHAPTER 3. WIRE-PLANNING 27

3.2 Preliminaries

Given a placed circuit where every cell in the circuit is treated as a point, a path, P(,»,

from a primary input i to a primary output o is a sequence of connected nodes from i to o. The

length of path /?(/,<,), d(^i,o)y is the length of all thewires along the path from i too. The path p(/ o) is

called monotonic if its length is equal to the Manhattan distance from i to o.

Given a circuit represented as a Boolean network, the goal of the wire-planning approach

is to find a synthesized and placed circuit such that the interconnect delay of the circuit is minimized.

Rather than placing the circuit, the wire-planning approach finds an optimized Boolean network,

which when placed optimally, leads to a circuit with minimum interconnect delay. It is up to the

placement tool to find the optimal placement for such a network. Intuitively speaking, we are trying

to create a circuit for which a "good" placement exists.

We assume that the core of the circuit is represented by a rectangle R with width wr and

height hft and the input and output pin positions of the given circuit are known. We assume that

the delay of a path is a linear function of its length. In general, the interconnect delay depends

quadratically on the length of the interconnect. However, it can be made linear by buffer insertion

and wire sizing, as shown in the studies in [OB98] and [CP98]. A circuit is said to be optimal in

terms of interconnect delay if the length of a path from any primary input i to any primary output o

is its Manhattan distance (monotonic), i.e.

d{i,o) = +

In this chapter, the Boolean network being synthesized is denoted as

3.3 Logic Synthesis and Interconnect Delay: An Example

To understand the problem better, let us first look at an example where the conventional

logic synthesis which considers only gates during optimization may not be able to finda circuit with

minimum interconnect delay.

Figure 3.1(a) shows a minimum literal Boolean network fNxmn- This network has 10 lit

erals. The primary inputs of iA^nin are a,b,c^d,e, and /. The primary outputs of fA/Jnin areyi and

y2- The given positions of all primary input and output pins, and the optimal placement of 9\Qan
is shown in Figure 3.1(b). Pins e and / are not shown and are assumed to be close to y\. In this

solution, there are two longest paths of equal length, i.e. one path from b to yi and the other from

CHAPTERS. WIRE-PLANNING

y\=ze-^z'f y2 = z-)ra'

@ Gi.

z = (ab)cd

rxT
b a c d

(b)

Figure 3.1: Network and its optimal placement.

28

I'

b to yj. This circuit is not optimal because there is a better decomposition of the circuit that pro

duces shorter longest paths. The better decomposed network 9{^ has 11 literals and is shown in

Figure 3.2(a). Itsoptimal placement is shown inFigure 3.2(b). Although network fA^nin has fewer

literals than it has a path from bio yj- Consequently, an optimal placement tool places node z

of fA^nin in the position shown in Figure 3.1(b) in order to minimize the longest paths from b to yi

andy2- However, as wesee inFigure 3.2(a), y2 is independent of b and therefore, b canbe removed

from the support of>'2- There are three longest paths in the optimal placement of network 9^'. the

path from a to >'2» the path from c to yi, and the path from d to yi. The length of each of these

longest paths is smaller than the length of the longest path in network fA^n-

y\=ze-{-z!f y2 = z-\-a'

2:1 I 12

I i

z = (ab)cd

(b)

Figure 3.2: Network 9C and its optimal placement.

Although the length of the longest paths in network 9{! are shorter than those of iA/inin»

there is anotherdecomposition with fewer longestpaths. In 9{l, the path from c to yi is greater than

CHAPTERS. WIRE-PLANNING 29

its Manhattan distance. The same is true for the path from d to y2- A better decomposed network

with 11 literals is shown in Figure 3.3(a). For this network, its optimal placement is shown in

Figure 3.3(b). As seen from this figure, there are only two longest paths in the optimal placement

of this network: the path from a to yj and the path from d to y\. All paths in this network are

monotonic.

y\ =ze-\-z'f

>'1

©
z = (a + b)cd

(a)

y2 = cd-h a'

'1111• o o o

(b)

Figure 3.3: Network and its optimal placement.

I'

From the example above, we see that sometimes the output of a logic synthesis is not

"good" for placement, i.e. no matter how we place the nodes, there is at least one path which is

longer than its Manhattan distance. In our approach, the aim is to guide logic synthesis such that

it produces a circuit which is goodfor placement. It is up to the placement tool to find the optimal

placement for the decomposed circuit in the placement phase.

In Section 3.4 we define what we mean by a circuit which is "good" for placement and

then give a set of transformation rules which can find such a circuit. Our approach can be divided

into two broad stages: constraintgeneration and constraint driven synthesis. In the constraint gen

eration step, we partition the die into regions and identify the types of functions that are allowed

to fill them. We define the notion of illegal nodes. Intuitively speaking, a node is illegal if it can

not be placed somewhere on the die without causing a diversion in the circuit. We show that if a

circuit consists of only legal nodes then there exists a point placement of the nodes such that every

input-output path is monotonic. We call such a circuit a legal circuit. We characterize thecondition

underwhich a node is illegal and givea procedure to convert an arbitrary circuit intoa legal circuit.

Since nodes have areas, in the constraint driven synthesis step, we synthesize the legal

circuit to find another legal circuit with minimum area. We extend the algebraic transformations

and don't care minimization such that they operate on legal nodes and produce legal nodes. As

in the conventional logic synthesis case, we use the number of factored-form literals as our area

CHAPTERS. WIRE-PLANNING 30

estimates since it has been proven to be a good indication of the size of a Boolean network.

3.4 Constraint Generation

Since the length of every path from a primary input to a primary output is restricted to

its Manhattan distance (monotonic), there is a well defined region where a Boolean node can be

placed. Let us define region formally.

Definition3.1 A region r = {xi,yt,Xr,yb}, where xi < Xr and y, < yb, is the set of all points in

the rectangle bounded at opposite comers by the points {xi^yt) and {xr,yb)- Mathematically, r =

\xi<x<Xrandyt <y< y^,}.

Definition 3.2 Given twopoints pi = (A:i,yi) and p2 = {x2,y2). the region definedby p\ and p2 is

region r(p,,p2) = {mm(xp,,Xp^),mm{yp^,yp2),tn&x{xp,,Xp^),ma\{yp,,yp^)}.

With these definitions, we analyze why node z of the Boolean network in Figure 3.2 is

"good" but not x. Node z fans out to yi and its support set is c,d}. If z is placed in the region

defined by b and y\, y,), which isequal to region r- inFigure 3.4, then thepath from any primary

input in the support set, i.e. a, b, c, or d, to yi is monotonic. Node x fans out transitively to yl and

y2 and its support set is For the path from c to yi to be monotonic, node x needs to be placed

in the region defined by c and yi, which is equal to region ri in Figure 3.5. For the path from

d toy2 tobemonotonic, node x needs tobeplaced in theregion defined byd and y2, '•(c,y2)» which is

equal to region r2 in Figure 3.5. As shown in the figure, x can not be placed in both r\ and r2. One

of the two paths (the path from c to yi, and the path from d to y2) can not be monotonic due to x.

Hence, x is not a desirable factor.

•>'2

b a c d

Figure 3.4: Legal region of node z.

CHAPTERS. WIRE-PLANNING 31

yi

Figure 3.5: Conflicting legal region requirements for x

3.4.1 Region Placement Constraints

The example above illustrates that if there is a path from a primary input i to a primary

output o, then for the path to be monotonic, all the logic gates along the path should be placed in

the region This leads us to first partition the die into rectangles along the pin positions and

label each region with functions that can be placed in it. Continuing with our example, the core

area associated with yi,y2ja,b,c, and d is partitioned into regions = {n)''2,r3,r4,r5} as shown

inFigure 3.6. Region ri is labeled with {a,b,c,d}y^. Thislabel denotes thatif thesetof theprimary

inputs of a factor / is a subset of {a,b,c,d} and its primary output isyi, then factor/ can be placed

in region ri without violating the monotonicity of any path through it. Region is labeled with

{cJd}y^ and This labeldenotes that if the set of the primary inputs of a factor / is a subset

of {c,d} and its primary output is yi or the set of its primary inputs is a subset of {a,b} and its

primary output is y2» then factor / can be placed in region without violating the monotonicity of

any path through it. Other regions are labeled in a similar fashion. For the Boolean network we

see that node z is a "good" node and can be placed in r\ because its support set is {a^b,c^d} and

its primary output is yi. This matches the label of rj. Node x is not a "good" node because there is

no region whose label contains the set of its primary inputs and the set of its primary outputs

Definition 3.3 A placement constraint d is a 2-tuple where C PO{90, and C

Pl{9{). is called theoutput setand thesupport setofd. We also write d as {/i, /2» •••}oi ,02, .-

where (5^ = {/i,/2»- -} <^nd = {o\,02^ - }-

Each region is labeled with a set of placement constraints, e.g. r\ is labeled with

and r^ is labeled with and {a.,b}y, as shown in Figure 3.6. A placement con

straint on a region r is called its region placement constraint.

CHAPTERS. WIRE-PLANNING

>'1
n

{a,b,c,d}y,
ri r?>

{C,d}y,

{a,b}y.

r4

{d}y,
{a,b,c}y,

rs

{a,fe,c,d}yj

32

yi

Figure 3.6: Regions and labels of regions.

Hence, each region placement constraint dr = in a region r denotes that Boolean

nodes that fan out only to a subset of the primary outputs in O'" and have at most a'' in their support

can be placed in r.

3.4.2 Node Placement Constraints

We see that given a region r, only certain types of nodes can be placed in r and this is

captured in its region placement constraint. We now define the dual for nodes. Given a node n, it

can only be placed in certain regions. For example, node z of Boolean network 9{^ in Figure 3.2

can only be placed in region r\ as shown in Figure 3.6. Hence, we label each node with a placement

constraint and it is called its node placement constraint. The node placement constraint of node

n denotes the support of n and its transitive primary outputs. For example, the node placement

constraint of z of Boolean network is .

The node placement constraints of nodes of a Boolean network can be easily computed

by traversing the Booleannetwork in a breadth-first mannerfrom the primaiy inputs to compute the

support sets and from the primary outputs to compute the output sets.

3.4.3 Properties of Placement Constraints on Boolean Networks

In this section, we show what "good" nodes mean and having a Boolean Network with

only "good" nodes can lead to a monotonic point placement of the network.

Intuitively, a "good" node is one that can be placed in a region. We define such "good"

nodes as legal. However,before we can formally define the legalityof a node, we need the definition

of containment of placement constraints.

CHAPTER 3. WIRE-PLANNING 33

Definition 3.4 Placement constraint da = (0°,o^) is contained in placement constraint db =

(O*, a*), denoted as da C db, if 0° C 0^ and C o^.

Definition 3.5 Boolean node n with node placement constraint dn is legal with respect to region

r with region placement constraints {dr^^drj-,---}, denoted as n \.r, if there exists a j such that

^ drj-

Definition 3.5 says that node n is legal with respect to region r if wcan be placed in r.

Definition 3.6 A Boolean node n is legal if there is a region r such that n r.

Definition 3.6 says that node n is legal if there is a region r where n can be placed. This

definition and Definition 3.5 are about the legality of a Boolean node. Now given a node, the next

definition defines the region in which the node is legal.

Definition3.7 The legal regions of a node n, denotedas R{n), is the set ofregions 5^= {ri, r2,. •• ?

r/} such thatfor any region rj E ^ n I rj and rj n^rj.

For clarity purposes, we denote the legal region of a node n with node placement con

straint d,, as R{d„). We will then assume that given a node placementconstraint, the node is implic

itly defined.

It can beeasily seen that R{{ik}o,) is theregion defined bypoints 4 and oi, o,). If we

define R(di)r\R{d2) to be the overlapping region between R{d\) and Ridj), then it is easy to see

that •. • fm}ouo2,...,o„) is equal to;

R{{ii u) n R{{i2}o,) n •.. n /?({/,„}«,) n

R{{h U) n R{{i2}o2)n •••n/?({/,n

• ••n

R{{ii}o„) Fl^({^2}o„) Fl •••n/?({z,„}o^).

/?({zi,Z2, ••. fm}oi,02,...,o„) is a rectangle since it is a region defined by overlapping rectangles. This

is called the intersection rule. For example, as shown in Figure 3.7, for node z of Boolean network

iA/:',

=)n RiWy^) n R{{c}y,) n R{{d}y,)

= n rj:2 n n

CHAPTER 3. WIRE-PLANNING

y\

a

a c

y\

b

y2 y\
rZ2

•yi

I r

a c

b a c d

•yi

Figure 3.7: Region intersection for node z of 5A '̂.

34

•yi

•yi

CHAPTER 3. WIRE-PLANNING 35

Based on Definition 3.6, the legality of a node n with node placement constraint d„ =

(0",a") can be checked by traversing all regions and check if n is legal for each region. Assum

ing \PI(9{)\ > ||PO(fAt)|, the complexity of this algorithm is 0[\Pl{9{)^ |PO(lA/i)l) because the

number of regions is 0{\PI{9Q\ \P0(9{)\) and the number of region placement constraints in a

region is 0(\PI{9{) \+ |PO(iV!)|). A better algorithm would be to check if the legal region of n is

empty or not. This can be done by using the intersection rule defined above. The complexity is then

0(\0"\ Ia" I) (Note that n here is not an exponent, but O" and a" are the output set and the support

set of the placement constraint of n, respectively.), which is much smaller. However, there is a linear

algorithm with complexity 0{\0"\ + |(y |) according to the next three lemmas.

Lemma 3.1 below says that nodes that transitively fan out to only one output are always

legal.

Lemma3.1 For a node placement constraint Jm}oy,02,...,o„ with n = I, »

-,On) ^

Proof: From the definition of regions in Definition 3.1 and the intersection rule, the point (xo,,yo,)

is 'm R{{ii,i2,... ,i,n}o,)' •

Lemma 3.2 below enumerates the cases when nodes that transitively fan out to two outputs

are legal.

Lemma 3.2 Fora node placement constraint {I'l, i2) ••• >̂ /i}oi,02 m>2 and n = 2, R{{i\,

ill -••1hn\o\,02,... ,o„) ^0 W

1. (ViVo JCj > Xo Ayi > yo) V{iNoxi > Xo Ayi < yo) V(V/Vojc,- < Xo Ay,- > yo) V(iNoxt < Xo Ay/ <

yol or

2. R{{ii, J2, •••,im}o,) is a point, i.e. ^ yi = yoi = >'02 ^

Ce9i.

Proof: If part:

1. Let us assume without lossof generality that{^Noxi > x„Ayi > yo), and let Zmin = (min{x/},

min{y/}) and Omax = (max{x„}, max{yo}), then the legal region is and it is not

empty.

2. If the legal region is a point, then it is not empty.

CHAPTER 3. WIRE-PLANNING 36

Only if part: Without loss of generality assume that the legal region is notempty and it

is not a point, but j:,, < jc,,, < jc/j, i.e. oi isonthe top side of the die, then /?({ii,i2}o,) is a point if

both i] and 12 are on the top side as well (Figure 3.8a); it is a line otherwise (Figure 3.8b). Since

R{{ii, i2}oi,02) = 1h}ox) AR{{ii, 12)02)»it is notempty iffy,-, = and = ^^^2, i.e. o\ and02
are at opposite side (Figure 3.8c). If we have more than two inputs, then they all have to be either

on the top or the bottom side of the chip for the legal region to be non-empty and the legal region

has to be a point (Figure 3.8d). Hence, it is a contradiction. •

oi M '2 13 0\ I4

(a) (b)

Figure 3.8: Figure for proof of Lemma 3.2.

The following lemma says if a node transitively fans out to more than two outputs, then

there can only be one case where it is legal.

Lemma3.3 For a node placement constraint - ,im}oi,o2,...,o„ m > 2, and n > 2,

R{{i\,i2,--- Jm}oi,02,...,o„) # 0 iffi^Noxi > Xohyi > yo) V(ViVox,- > Ay,- < y^) V(ViVoxj <

Xo Ayi > yo)V(ViVo x, < x^, Ay/ < yo).

Proof: The proof is similar to the proof of Lemma 3.2.

If part: This is the same as the first case of the if part of Lemma 3.2 proof.

Only if part: Without loss of generality assume that the legal region is not empty but

Xii < Xo^ < x,2, i.e. o\ is on the top side of the die, then /?({ii,i2}o, is a point if both i\ and (2 are

on the top side as well (Figure 3.8a); it is a line otherwise (Figure 3.8b). Since R{{i]j2}01,02) =

R{{h^h}o]) AR{{i\j2}o2)^ it is not empty iffy^ =yi2 and Xo, =Xo2, i.e. oi and 02 are at opposite

side (Figure 3.8c). There is no way to add a third output to {(1,12)01,02 with a non-empty legal

region. Hence, it is a contradiction. •

CHAPTER 3. WIRE-PLANNING 37

By the input-output symmetric natureof legal regions, the abovethree lemmas apply with

the role of m and n interchanged.

Let the condition (ViVo Xi > Ay,- > yo) V(VA/o Xi > j:© Ay,- < y^)V(ViVo jc,- < Ay,- >

yo) V(ViVo Xi < XoAyi < y^) be called the non-overlapping condition. Then, with these three lem

mas, the legality of a node with node placement constraint ^hn}01,02 o„ can be checked

with the following algorithm:

1. If n is 1, then the node is legal.

2. If the non-overlappingcondition is true, then the node is legal. This can be checked in 0{m +

n) by first finding the largest and smallest x and y coordinates of both inputs and outputs and

then check for the overlapping condition using these values.

3. If the node placement constraint satisfies Condition 2 of Lemma 3.2, then it is legal.

4. If none of the above are satisfied, then the node is illegal.

It is obvious that this legality checking algorithm is 0{m n). Hence, it is very efficient.

Corollary 3.4 There exists a comer point pcofR{{ii, 12 j•••, hn}ox,02,... ,o„) that is closest indistance

to all outputs, and a comerpoint pffurthest from all outputs. Thepoint pc is called the closestpoint

ofthe region and pf thefurthest point.

Lemma 3.5 1. ,/m}o,,02 o„)C)R{{ik}oi,o2,...,o„). where ik ^ {iifi,-- Jm}. isnot

empty, then it contains the closestpoint of ,12,..., im}o\ ,02,- ,o„)-

2. If R{[i\,i2i- 'jm}01,02, dm}ok' ^here Ok ^ {01,02,... ,0,,}, is not empty,

then it contains thefurthestpointofR{{ii,12, •••, im}ox ,02,... ,»«)•

Proof: Assume that m > 2 and n>2. The proof is similar for other cases.

1. Assume iytioxi > Xo Ayt > yo) (the proofs of the other cases are the same), then Xk > x„Ayjt >

y„. If Xk is greaterthan the jc-coordinates of anyother input, then R{{i], *2, •••, hn}o\ ,02,... ,o„) C

^{{^k}ox,02,...,On) = R{{i\f2,--' jm}ox,02,...,On)- If is Icss than the ;r-coordinate of all other
inputs, then the vertical line goingthrough ik partitions R{{ii,ii, --• ,im}ox,02,...,o„) into two re

gionsand /?({/i,12,... ,im}ox,02 oj ^^{{k}ox,o2 On) is the partition that includes the clos

est point.

CHAPTER 3. WIRE-PLANNING 38

2. The proof is similar to case 1.

•

Lemma 3.5 says that:

1. Adding inputs to a node placement constraint will not change the closest point of its legal

region.

2. Adding outputs to a node placement constraint will notchange the farthest point of its legal

region.

At this point, we have defined what legal nodes are and how to check for legality of

nodes. We now put the legal context into Booleannetworks and discuss the implication of legality

of Boolean network on placement.

Definition 3.8 A Boolean network is legal is every node in the network is legal.

There is a nice property of a legalBooleannetworkas describedby the following theorem.

Theorem 3.6 Given a legal boolean network, there exists a monotonic point placement for the

network

Proof:

This is an induction proof. We traverse the Boolean network in a reverse topological

order, i.e. a node is visited only after all its fanouts have been visited.

The base case is where we have all primary outputs. Let o be an arbitrary primary output,

then place o at its pin location. For o, its pin location is its closestpoint. The induction hypothesis

is that fanouts of a node n are placed at their closest points and still maintaining monotonicity, i.e.

the distances from their closest points to their primary outputs are their Manhattan distances, we

show that n can also be placed at its closest point while still maintaining monotonicity.

Let n/ be an arbitrary fanout of n. Let c' be the node placement constraint of n/ with all

fanins except n removed. Also let the nodeplacementconstraints of n and n/bec and c/. Then c/ is

derived from c' by adding the primary inputs of fanins of nj other than n and c is derived from a' by

adding theprimary outputs of fanouts ofn other than n/. We know that/?((/) # 0 because c' C c and

R{c) 7^ 0 by the assumption that n is legal. By applying Lemma 3.5 for each primary input added

to c' to form c/, R{cf) includes theclosest pointof R{c'). Since R{c) C /?(c'), thedistance from the

closest point of /?(c) to a primary output o is the same as the sum of the distance from the closest

CHAPTER 3. WIRE-PLANNING 39

point of R{c) to the closest point of R{cf) and the distance from the closest point of R{cf) and o.

Hence, the monotonic property is maintained and n can be placed at the closest point of R{c).

•

Theorem 3.6 reduces our problem of finding a monotonic point placement of a circuit

into the problem of finding a legal Boolean network. The logic synthesis transformations we use to

convert an illegal Boolean network into a legal one is called make-legal, and it is explained below.

3.4.4 Make-Legal

The make-legal operation takes a Boolean network as its input and produces a legal

Boolean network. In the effort of producing a legal Boolean network, it attempts to minimize

the number of new Boolean nodes created.

The following lemma and corollary guarantee that a Boolean network can always be made

legal.

Lemma 3.7 If n is a fanin of nj, and n is illegal but n/ is legal, then collapsing n into n/ will not

make nj illegal

Proof; Collapsing n to nj does not change the support of n/, nor does it add any primary output

to the transitive fanout of n/. Therefore, the node placement constraint of n/ does not change and

hence ny stays legal. •

By the proof of Theorem 3.6, we know that every primary output is legal. Then it is easy

to see the following corollary.

Corollary 3.8 An illegal Boolean network can always be made legal by collapsing all nodes into

the primary output nodes.

Beside collapsing, node duplication can also legalize a node.

Lemma 3.9 Letnodes nyand ng befanouts of n, and n is illegal but both n/ and ng are legal If n

is duplicated into ni and /12, such that nj is a fanin ofn/ but not ng and ni is a fanin of ng but not

nf, then both n\ and ni are legal

Proof: The support of n is a subsetof both the supports of ny and ng, but the output set of the node

placement constraint of n is a superset of the node placement constraints of both ny and ng. By

CHAPTER 3. WIRE-PLANNING 40

duplicating n into n\ and n2 such that n\ is a fanin ol nj and n2 is a fanin of node placement

constraint of is contained in thatof «/ andthus n\ is legal. Similarly for n2- •

Make-legal traverses the Boolean network in a reverse topological order, i.e. a node is

visited after all its fanouts have been visited. During the traversal, if it sees an illegal node, it

collapses thenode into its fanouts until thenode becomes legal. Hence, there is a frontier moving

from each primary output to primary inputs in its support where every node is legal on the side of

the frontier toward the primary output. If the sum-of-product expression of the fanout, as a result

of collapsing a node into one of its fanouts, exceeds t literals, the node is replicated for each fanout

until it becomes legal. The intuition behind this parameter is that large nodes tend to have more

common sub-functions with other nodes and thus allow for sharing. However, the parameter should

not be too large since it can result in explosion in memory usage.

As shown above, legality of a node can be checked efficiently, that is, it is linear in the

size of the node placement constraint. Hence, the make-legal operation is efficient.

3.5 Constraint-Driven Synthesis

Theconstraint generation step takesa possibly illegal Booleannetwork and makesit legal.

Theorem 3.6 guarantees that there existsa point placement for this network. However, by definition

of the point placement of a circuit, nodes are assumed to be a point; hence, they have no area. In

reality, nodes have area and the length of a longest path depends strongly on the size of a Boolean

network. The constraint-driven synthesis step is responsible for minimizing the area of an already

legalBoolean network while preserving its legality. As mentioned in Section 3.3, we use the number

of literals of a Boolean network as a measure of the area of the circuit represented by the Boolean

network. So this step is to optimize the network such that we get a minimum literal legal Boolean

network.

We leverage the well developed algebraic transformations in the conventional logic syn

thesis by extending them to deal with and produce legal Boolean nodes. Each of these operations is

explained below.

3.5.1 Fast Extract

The fast extract algorithm is explained in [VR90]. Given a Boolean network, the fast

extract algorithm traverses the network and extract divisors while minimizing the literal count of

CHAPTERS. WIRE-PLANNING 41

the network. The algorithm iterates until there is no improvement in literal count. In each iteration,

the divisor that reduces the literal count the most is chosen. The network is then re-expressed using

the new divisor. The divisors considered during each iteration are two-cube divisors and two-literal

cubes. A two-cube divisor is a divisor that consists of only 2 cubes and is minimum with respect to

single cube containment. A two-literal cube is a cube that consists of only 2 literals.

When dealing with legal Boolean network, this algorithm may result in illegal divisors.

For example, assume that node n with fanins a and b is the best divisor found and it divides nodes

X, y, and z as shown in Figure 3.9. Then the output set of the node placement constraint of n is the

union of the output sets of the node placement constraints ofx, y, and z. From Section3.4, we know

that the legal region of n may be empty and n may therefore be illegal.

Figure 3.9: Fast extract example.

However, it may be the case that n remains legal if it only dividesx and y, x and z, or y

and z. For example, let a and b be primary inputnodes and let the outputset of x be a singleton o\,

the output set of y be a singleton 02, and the output set of z be a singleton 03. Furthermore, let the

positions of these primary inputs andoutputs be as shown in Figure 3.10(a). It is clear thatn is not

legal if it divides x,y, andz. However, if weremove x from itsfanout, then thelegal region is shown

as region r„ in Figure 3.10(b).

As seen from the example in Figure 3.10, a divisor can have multiple values (which is

the number of literals that can be reduced if the divisor is extracted), each associated with a subset

of fanouts it can be extracted from. If node n divides a set of nodes N, then complexity of finding

CHAPTERS. WIRE-PLANNING 42

o\ 02

03

(a) (b)

Figure 3.10: (a) Pin positions of fast extract example, (b) Legal region of node n.

a subset N/ of N which preserves the legality of n and has the largest reduction in the number of

literals is exponential in the size of N. Hence, a heuristic is used to select an optimal subset. First

the nodes in N are ordered in decreasing sizes of the legal regions to form a list Nsorted- Then Nsorted

is linearly traversed. Each node is added to the subset Ni if the legality of n is preserved. Node n is

used as a divisor if it reduces the number of literals in the network.

3.5.2 Re-substitution

In the conventional logic synthesis, a node n is re-substituted into another node jc if n

divides x. The value of the re-substitution is the number of literals reduced by the re-substitution.

The algorithm traverses the network in many iterations. In each iteration, the re-substitution with

the largest value is chosen. The iteration stops when no reduction in literal count can be achieved.

If both nodes n and x are legal and n is re-substituted into node x, the legality of both n

and Xmay be affected. The following observation states when n and x can become illegal.

Observation 3.1 If n divides x and both n and x are legal before re-substitution, then after re-

substitution

1. Xcan become illegal if its support is not the superset of that ofn.

2. n can become illegal if its output set is not the superset of that ofx.

CHAPTER 3. WIRE-PLANNING 43

In other words, node ;c can become illegal if we add a new primary input into its transitive

fanin. Node n can becomeillegal if we add a new primaryoutput into its transitive fanout. Because

algebraic operations do not add new primary inputs to any node, x will remain legal if we only do

algebraic re-substitution. Node n can become illegal if a new primary output is added to « as a result

of the re-substitution.

3.5.3 Full-Simpfily

There are two types of don't cares, i.e. the observability don't cares (ODCs) and the satis

fiability don't cares (SDCs). Computing the exact ODCs of a node is computationally expensive. In

practice, a subset of the ODCs called the compatible ODCs (CODCs) are computed. These CODCs

are expressed in terms of the primary inputs. Then together with the external don't cares (XDCs) of

the primary outputs, a don't care set in terms of the immediate fanins is computed using an image

computation. In computing the SDCs, a support filter is used. A node is included in the SDCs

if its support set intersects the support set of the node being considered. Employing SDCs in the

minimization procedure can result in boolean re-substitutions. The support filter procedure can also

be used in the image computation of the CODCs and XDCs. Once the SDCs are computed and the

XDCs and CODCs are expressed in terms of immediate fanins, a two-level minimization algorithm

is invoked to find an optimized expression. This is simply a brief description of the fullsimplify.

For a more detail explanation, we refer the readers to [Sav92].

Lemma 3.10 Throughout jidlsimplify computation, the only steps that can introduce illegality into

the network are the image computation and the SDC computation.

Proof; Let node n be the node we are computing don't cares for. Legality of the Boolean network

can only change if an edge is added to the network. During the whole fiilLsimplify process, only the

fanin edges of n can be added. Edges of fanins of other nodes can not change. Adding a fanin edge

to n means that a re-substitution happens and Observation 3.1 applies. Potential new fanin edges

of n are added only during the image computation and SDC computation through the support filter,

which basically says that a node x is a potential divisor of n if the support of x intersect the support

of n. •

We therefore constrain this operation by allowing a node x to be in the support filter when

computing fulLsimplify for node n if the inclusion of node x preserves the legality of the network

according to Observation 3.1.

CHAPTER 3. WIRE-PLANNING 44

3.5.4 Synthesis Flow

With all the above basic operations, a synthesis flow is then a script similar to therugged

script, script.rugged, in SIS. Anempirical study needs to beconducted to derive anoptimal script.

3.6 Experimental Results

To see the effect of the proposed approach, we have implemented the basic operations

described in Section 3.5. An optimization script has been created and we call it script.wire, which

consists of:

make.legal
eliminate 5

sweep; eliminate -1

simplify -m nocomp

eliminate -1

sweep; eliminate 5

simplify -m nocomp

resub -a

fx

resub -a; sweep

eliminate -1; sweep

full_simplify -m nocomp

Our experiment uses SIS and Ritual version 3.4, a timing-driven standard cell placer

[SCK92]. The input blif file and a randomly generated pad assignment file is read into SIS. The

script.wire optimization script is run in SIS to generate an optimized logic netlist. The optimized

netlist is mapped to the standardcell technology librarystdcell2J2.genlib of SIS. The mappednetlist

is then placedby Ritual with a fixed pad assignment. We measurethe lengthof the longestpath and

the delay of the Ritual output. The distanceof two cells is measured as the Manhattan distancefrom

the center of both cells. The length of a path is the sum of all distances between consecutive cells

along the path.

Table 3.1 shows the results for four circuits. The circuit bbaraComb is obtained from the

sequential circuit bbara by removing all latches and treating the outputs of the latches as primary

inputs and the inputs to the latches as primary outputs of the network. Column 2, 3, and 4 show

the number of literals in factored forms of the scripts script.rugged, script.delay, and script.wire

respectively. Columns 5,6, and 7 list the length of the longest path for each script. The experiments

CHAPTERS. WIRE-PLANNING 45

were run on a DEC AlphaServer 8400 with 2GB of memory. The runtime is for the technology

independent step.

As shown in this table, although the number of literals in script.wire approach is more

than that of script.rugged; the length of its longest path is the same for rd53 and better in other

circuits. The longest paths are much shorter than script.delay results.

Table 3.2 shows the run time in seconds. As seen from this table, the runtime is com

parable. This is expected since the legality checking is linear in the size of the node placement

constraints and hence its runtime is a minor part of the total runtime.

Table 3.3 shows the delay computed by Ritual for the four circuits. Columns 2, 3, and 4

show the wire delay for each script The total delay is listed in columns 5, 6, and 7. Except for the

total delay of z4ml running script.delay, the total delay of all circuits is the best using script.wire.

Table 3.1: Path length comparison of script, rugged, script.delay, and script.wire.

Name

Number of Literals Length of Longest Path
sc.rugged sc.delay sc.wire sc.rugged sc.delay sc.wire

z4ml 41 84 49 1324 1342 1025

rd53 42 62 50 1122 1624 1122

rd73 74 178 87 1689 2457 1680

bbaraComb 69 79 109 2021 1573 1464

Table 3.2: CPU time comparison of script.rugged, script.delay, and script.wire.

Name

CPU time (sees)
sc.rugged sc.delay sc.wire

z4ml 0.2 0.3 0.3

rd53 0.1 0.3 0.2

rd73 0.8 1.8 1.2

bbaraComb 0.5 0.5 0.3

Table 3.3: Delay comparison of script.rugged, scriptdelay, and scripLwire.

Name

Wire Delay Total Delay
sc.rugged sc.delay sc.wire sc.rugged sc.delay sc.wire

z4ml 0.93 1.03 0.97 6.59 6.31 5.75

rd53 1.67 2.13 1.42 11.40 9.50 7.36

rd73 1.37 0.88 0.86 8.38 5.97 6.45

bbaraComb 2.19 1.72 1.08 10.37 7.94 5.98

CHAPTERS. WIRE-PLANNING

Literals x 10 3

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

C1355

46

C1355.xg

legalized nodes

0.00 50.00 100.00 150.00 200.00

Figure 3.11: Number of literals vs number of nodes legalized for C1355.

CHAPTER 3. WIRE-PLANNING 47

3.6.1 Discussion of Results

Though the results in the previous section shows that the approach performs satisfactorily,

these circuits are fairly small. For bigger circuits, the numberof nodes in a legal network can be

large and optimizing such large networks using operations likefast.extract andfidlsimplify can be

very expensive. To illustrate this, we plot the number of literals versus the number of nodes in the

constraint generation step for C1355 as shown in Figure 3.11. On the jc-axis is the number of illegal

nodes that are legalized. On the y-axis is the number of literals in the Boolean network. The network

increases from 1032 literals to 23709 literals after 216 nodes have been legalized out of a total of

514 nodes in the network.

Although the wire-planning approach only works for small circuits, the theory of when

a circuit will generate long wires has led us to devise heuristics in our practical approach, which

is integrating logic synthesis and placement. The integrated approach will be described in the next

chapter.

3.7 Conclusions

We have proposed a novel approach to deal with the increasingly importance of wire

delays in deep sub-micron technologies. It is based on the fact that the shortest path between any

two points in a circuit is the Manhattan distance between them. We showed an example of why

conventional logic synthesis may produce circuits where the minimum distance can not be achieved.

The proposed approach decouples logic synthesis phase and place & route phase. It con

sists of a constraint generation step which produces a legal Boolean network, which can be placed

such that every path is monotonic, and a constraint-driven synthesis step which minimizes the legal

Boolean network while preserving legality.

The wire-planning approach is theoretical in nature and computational expensive for large

circuits. However, it is the first approach that characterizes circuits with long wires without perform

ing layout. We have implemented heuristics based on the wire-planning approach in our integrated

logic synthesis and placement scheme.

Chapter 4

Integrating Logic Synthesis and

Placement

48

In Chapter 3, we introduced a logic synthesis flow which guarantees a monotonically

place-able layout. Logic synthesis and layout synthesis were decoupled in this approach. In this

chapter, we integrate logic synthesis and placement to specifically address the timing closure prob

lem. As we discussed in Section 1.2.3, timing closure problem is caused by the non-convergence of

the timing estimates obtained during logic synthesis and after physical synthesis. This potentially

results in a large number of iterations of logic synthesis and physical synthesis.

The timing closure problem occurs mainly due to the difficulty of predicting wire lengths

in logic synthesis. Our solution integrates logic synthesis and placement in a tightly coupled fashion.

4.1 Design Flow

A typical application specific integrated circuit (ASIC) design flow is shown in Figure 4.1.

A design described in a high level language, is passed to the logic synthesis tools. Within the logic

synthesis tools, the design is synthesized into a gate level description while minimizing area and

satisfying the design constraints. Although the constraints can be in terms of delay, power con

sumption, etc, we only focus on delay in this thesis. The optimized logic circuit is then placed by

a global placement tool, again minimizing area and satisfying delay constraints. After this step, the

placement is usually not legal^, meaning thatcells can overlap (Although the amount of overlap is

^Note that this notion of legality isnot the same as that ofChapter 3

CHAPTER 4. INTEGRATING LOGIC SYNTHESIS AND PLACEMENT 49

usually minimum). The illegal placement is thendetailed placed. The detailed placement tool legal

izes the placement by perturbing the location of cells minimally so that the optimization performed

in the global placement step is not nullified. The optimization done during detailed placement usu

ally involves swapping neighboring cells while minimizing area or delay. The wiringbetween cells

is then performed during routing, which consists of global routing and detailed routing steps. In

global routing, the circuit area is typically partitioned into grids and the routes of nets are planned

with respect to these grids so as to minimize wire length and delay. In detailed routing, all nets are

routed according to the routing plan obtained from the global routing step. It is often the case that

not all nets can be routed in one iteration of global and detailed routing. In such a case, multiple it

erations are needed, which usually involve ripping up and rerouting non-critical nets. After detailed

routing, the design is complete. The parasitics of the circuit are extractedand a timing analysis tool

is used to check if the design satisfies the delay constraints. If so, the design is finished. Otherwise,

the design steps (logic synthesis, placement, and routing) need to be iterated.

As seen from Figure 4.1, there are many choices of iteration points. If there is a need

to iterate, the choice of which preceding step to jump to is determined by how much the design

needs to be improved in order to satisfy the delay requirement. An iteration that jumps to the logic

synthesis step is usually called a big loop\ while others are called small loops.

Analyzing the flow, we notice that from the global placement step onwards, an estimate

of a net's wire length exists because the positions of all cells are known. This is not true at the logic

synthesis step and therefore the wire-load models are used to estimate net lengths in a conventional

flow. As we discussed in Section 1.2.3, wire-load models are inaccurate especially for larger design.

The use of wire-load models is the main cause of the timing closure problem, which limits the size

of a circuit that can be practically synthesized.

In an attempt to introduce more accurate wire length estimates during logic synthesis, we

propose a different flow. In our flow, the logic synthesis step and the global placement step are

integrated, as seen in Figure 4.2. In other words, while performing logic optimization, we will be

placing Boolean nodes as well. Then unlike conventional logic synthesis, each Boolean node will

have a position, or an (x,y) coordinate. With the integrated flow, we eliminate the big loop and show

results to support this.

CHAPTER 4. INTEGRATING LOGIC SYNTHESIS AND PLACEMENT

Start

Logic Synthesis

Global Placement

Detail Placement

Global Routing

Detail Routing

Parasitic Extraction

Timing Analysis

Converged?

Done

Figure 4.1: Conventional design flow.

50

CHAPTER 4. INTEGRATING LOGIC SYNTHESIS AND PLACEMENT 51

Start

Logic Synthesis

Global Placement

Detail Placement

Global Routing

Detail Routing

Parasitic Extraction

Timing Analysis

Converged?
No

Yes

Done

Figure 4.2: Integrated logic synthesis and placement design flow.

CHAPTER 4. INTEGRATING LOGIC SYNTHESIS AND PLACEMENT 52

4.2 Previous Work

There have been many related efforts addressing interconnect length and interconnect

delay. These efforts can be broadly divided into three categories:

• pre-layout interconnect estimation

• post-layout optimization

• integrated logic synthesis and layout

In pre-layout interconnect estimation, logic optimizations are guided by heuristics that measure the

interconnect length. In post-layout optimization, logic operations are performed on a placed or

placed and routed circuit to minimize the interconnect delay. The layout is minimally perturbed

and updated incrementally. In integrated logic synthesis and layout approaches, placement is per

formed along with logic optimizations, and the positions of Boolean nodes are used to compute the

cost function for logic optimizations. The majority of the previous efforts fall into the post-layout

optimization category.

4.2.1 Pre-Layout Interconnect Estimation

Examples of interconnect estimation include the work in [KP89]. In this work, the au

thors propose a probabilistic model for area estimation of VLSI layouts. Based on Rent's rule, a

geometric distribution for the wire-lengths is assumed. A model is constructed for the standard cell

design style and analytical expressions are derived to estimate the layout area. In [VP93] a fanout

optimization algorithm is proposed which maintains the order of the fanouts to simplify routing. A

similar idea is used in [ASSP90] to minimize routing factor during logic synthesis. The approach

is based on lexicographical expression of Boolean function controlling input dependency. In a lex

icographic expression, for a given sum of products form, all the literals respect the same order in

each product term. Maintaining this order in all expressions results in a simpler layout which takes

less area. In [VP95] a heuristic to minimize the layout cost is proposed which doesn't employ a

companion placement solution. Although impressive gains are reported for some cases, the exper

iments designed to obtain these are not very realistic. All the input pins are located on one side of

the chip and all the output pins are located on the other side of the chip. Their method is based on

minimizing the average fanout range and evenly distributing the fanout range through the chip.

CHAPTER 4. INTEGRATING LOGIC SYNTHESIS AND PLACEMENT 53

4.2.2 Post-Layout Optimization

In the category of post-layout optimization approaches, re-wiring idea is used in

[SRRJ97b] to restructure logic after detailed placement followed by an incremental detail place

ment. The re-wiring and incremental detailed placement optimizations are iterated until no im

provement in delay is achieved. A gain of about 13% is reported. The work in [LCP99] collapses

a group of cells along critical paths and re-maps them to satisfy delay requirement. Also in this

category are the buffer insertion algorithm presented in [vG90], and the simultaneous driver and

wire sizing algorithm found in [CK94].

4.2.3 Integrated Logic Synthesis and Layout

In the category of integrated approach, there have been attempts to address the intercon

nectdelay problem. However, except for the work in [SID"'"99], the timing closure problem hasnot

been addressed. A step between logic synthesis and global placement is introduced in [SID'̂ 99].

In this step, the design is iteratively improved by eliminating the maximum capacitance violations.

By eliminating these violations, the authors claim to minimize the timing closure problem. The

work in this thesis is orthogonal to their work. In [HV97] a re-synthesis algorithm is presented

which is invoked after each minimum cut placement iteration. The re-synthesis algorithm is re

stricted to gate and fanout optimization. The number of electrical violations are reduced and slacks

of the critical paths are increased and timing convergence is improved. A library-less technology

mapping algorithm integrated with placement is presented in [JS99]. The Booleannetwork is first

decomposed into 2-input NAND gates and inverters, and placed. Gates that are close together are

then collapsed and the cell is generated on the fly using combined pass transistor logic and CMOS.

An algorithm integrating technology mapping and linear placement is shown in [LSP97]. In this

work, an optimum simultaneous technology mapping and linear placement is used to approximate

the two-dimensional technology mapping and placement. A layout driven technology independent

optimization procedure was introduced in [PB91a]. A companion placement is maintained and the

positions of Boolean nodes are used to drive kernel extraction and elimination algorithms. A lay

out driven technology mapping approach is described in [PB91b]. While performing technology

mapping, a companion placement is maintained and the positions of nodesare used to estimate the

wire-lengths of nets. The estimated length is then usedas partof the cost function in the technology

mapping step.

The work described in this thesis is similar to the work in [PB91a] and [PB91b] as far

CHAPTER 4. INTEGRATING LOGIC SYNTHESIS AND PLACEMENT 54

as integrating logic synthesis and quadratic placement. However it is very different in terms of

goals and approaches. The work of [PB91a] and [PB91b] is geared towards minimizing circuit

delay, whereas the goal of our work is to solve the Timing Closure problem. We believe the key to

successfully integrate logic synthesis and placement lies in the ability to incrementally perform logic

operations and placement in an integrated manner. One significant difference between our work

and [PB91a] [PB91b] is that our placement tool is incremental. It is not clear how the placement

tool in their work, GORDIAN [KSJA9i], behaves from iteration to iteration because GORDIAN

is a mixed quadratic and min-cut placement tool. While our placement algorithm is integrated

with our logic synthesis tool, GORDIAN is externally invoked in their work. While our placement

algorithm is run incrementally given an initial placement, GORDIAN is invoked from the beginning

repeatedly in their work. Another significant difference is that in [PB91a] and [PB91b] different net

models are used for the cost computation algorithms and GORDIAN while we use the same net

models in order to minimize the perturbation of the existing placement.

4.3 Net Topology and Interconnect Delay Model

In our integrated logic synthesis and placement flow, a Boolean node has an (j:,y) coor

dinate. If the node is mapped to a library cell, then it also has a width and a height and the (jc,y)

coordinate is the coordinate of the center of the node. If the node is not mapped, then it is treated

as a point. Since we do not perform any routing in our algorithms, the topologies of nets are not

known and need to be estimated.

4.3.1 Semi-Perimeter Estimate

In our algorithms, we need to estimate the lengths of nets and to compute the delay of

the circuit. In our area and wire-length minimization algorithms, we use the semi-perimeter of

the bounding box of a net to estimate the length of a net. This is a very simple estimate and can

be efficiently computed. For example, a net with driver d driving receivers rj, r2, and r-^ as in

Figure 4.3. The semi-perimeter estimate is simply w-\-h.

4.3.2 Steiner Tree Estimate

For delay minimization and delay computation, the semi-perimeter estimate is not suffi

ciently accurate because all receiversconnected to the driver of a net have the same delay under this

CHAPTER 4. INTEGRATING LOGIC SYNTHESIS AND PLACEMENT 55

Q-

w

Figure 4.3; Semi-perimeter estimate of a net.

estimate. This is inaccurate since the delay of a receiver close to the driver is over-estimated and

that of another receiver far from the driver is under-estimated. In order to avoid such inaccuracies,

we use a Steiner tree topology. For efficiency reasons, the center of gravity of all the cells connected

to the net is estimated to be the Steiner point. An example is shown in Figure 4.4. In this figure,

p is the Steiner point. The length of the net is estimated to be the sum of all the net segments in

Figure 4.4. Each segment is modeled as a 7i-circuit, as shown in Figure 4.5. With this topology,

the Elmore delay [Elm48] is used to estimate the delay of the net. For example, the delay from the

input of d to the input of r\ is

Li = ^rf(Co + Ci 4-C2-l-C3-l-Cf,,-f Cf,2+0.3)

+ "FC*!-fC2-fCs-l-Q,,-f CL2-f C£,3^

where Rj is the output resistance of d and Cz.,, and C^ are the gate capacitances of ri, r2, and

r3 respectively. In this example, we have ignored the diffusion capacitance of d.

CHAPTER 4. INTEGRATING LOGIC SYNTHESIS AND PLACEMENT

©-1

G}

Figure 4.4: Topology model of a net.

(S>
Ri

2

2

^ 2 P -
Lc-,
^ 2

Cs J-
2

1R3

Figure 4.5: Delay model of a net.

56

57

Chapter 5

Global Placement

The placement problem is one of the first CAD problems to receive the attention of the

research community. There has been a lot of research on this topic. The approaches to solve the

placement problem can be classified into 3 categories:

• Partitioning based approaches

• Mathematical programming approaches

• Stochastic approaches

Examples of partitioning based placement approaches are [DK85] and [HK97]. The first work

on mathematical programming approaches is by Cheng and Kuh [CK84], and the most successful

stochastic placement is TimberWolf [SSV84].

Although these approaches all generate reasonably good results, we require that the place

ment approach in our integrated algorithm be incremental. This means that given an initial place

ment, the algorithm should only minimally perturb it while finding a new placement when new

placement constraints are imposed. During logic operations in our integrated approach, new Bool

ean nodes are created in some cases while existing nodes are deleted in other cases. Therefore we ad

ditionally require that the placement algorithm find good positions for newly created Boolean nodes

and fill in the voided space when nodes are deleted in the algorithm. Stochastic approaches use

random moves within the algorithm and therefore not incremental. Partitioning based approaches

are incremental but the placement quality is usually inferior to that of mathematical programming

approaches. Moreover, partitioning based approaches are recursive in nature which means that it

is difficult to accept an initial placement without executing the whole algorithm. A widely popular

CHAPTER 5. GLOBAL PLACEMENT 58

placement toolwhich produces goodresults is GORDIAN [KSJA91]. Although quadratic program

ming is used extensively within the algorithm, GORDIAN is a mixed quadratic programming and

partitioning based approach. Hence, it does not satisfy our requirements. An interesting place

mentalgorithm developed in [EJ98] is called "Kraftwerk". It is a quadratic programming approach

combined with an approach that mimics the behavior of a vector field. Kraftwerk matches all the

requirements above.

We describe the Kraftwerk algorithm and our implementation of this tool in this chapter.

We start by describing the formulation of placement as a quadratic programming problem in Sec

tion 5.1. In Section 5.2, we describe the formulation of Kraftwerk algorithm. The details of our

implementation are described in Section 5.3.

5.1 Quadratic Placement

Let C be the set of cells and N be the set of nets in a circuit. The circuit is modeled as

an undirected graph, called the placement graph G. The placement graph has a vertex for each cell.

A net connecting k cells is modeled as a clique of size k in the graph. Let C,„ C C be the set of

movable cells, andC/ C C be theset of fixed cells, where C,„ UC/ = C andC,„ flC/ = 0. Let

be the coordinate of the centerof cell c,. The cost of an edge (c,,cy) of the placementgraph G is the

squared Euclidean distance between c, and Cy, i.e. (xi—XjY + (yi - yj)^- The cost / ofaplacement

of the circuit is sum of the cost of all edges

(ci,cj)€G

where w/y is the weight of the edge and is often used as a measure of criticality of the net. For ease

of explanation, let us look at only the jc component of the cost function / and denote it as fx- Hence

fx= S S Wij{:^-2XiXj+x])
(ci,Cj)€G n,Cj€C

Rewriting fx in terms of movable cells and fixed cells, we get

fx= 2 Wij{xf -2xiXj-h:>^j)-\- X Wik{xf -2xiXk-\-4) (5.1)
(ci,cj)€GAci,rj€Cm (cj,a.)€CArj€C„Aft€C/

This cost function can be written in matrix form

fx = Ax —2bx -I- const

CHAPTER 5. GLOBAL PLACEMENT 59

where x is the vector ofand yi (the size of x is 2|C,„|, |C,„| jc; elements and |C,„| y, elements) for

each movable cell c, GC,„. The terms w/yx? and w/yjcy of Equation 5.1 contribute w/y to the diagonal
entry a„- and ajj of A respectively, the term —IwijXiXj contributes —w,y to entries a/y and aji. of A,

the term contributes to the diagonal entry an of A, the term —IwikXiXk contributes wikXk to

row i ofb and finally the term Wik^ is a constant.

Multiplying fx by \ generates the familiar quadratic programming equation
1 1 T
^fx = 2* Ax - bx +const (5.2)

which is minimized by solving the linear equation system

Ax - b = 0

There are two important advantages of formulating the placement problem as Equa

tion 5.2. First, the matrix A is sparse, hence the storage requirement is linear in the size of vector

X. Second, the matrix A is symmetric positive semi-definite, hence rather than using direct methods

like LU decomposition, we can use conjugate gradient [GvL96] method to solve it. The conjugate

gradient method is very efficient in both time and space. The most time consuming operation in this

case is a multiplication of a sparse matrix and a vector which is linear in the number of edges in the

placement graph G. Unlike LU decomposition, conjugate gradient does not introduce which

destroy the sparsity of the matrix and increase storage and run time.

The above formulation requires that there be some fixed cells. If there are no fixed cells,

then b = 0 and x = 0 is a solution. For this reason, the positions of pins need to be known before

the placement problem can be formulated as a quadratic programming problem.

Unfortunately, since cells that are not connected can overlap in the quadratic program

ming formulation, the solution tends to cluster all cells at the center of the placement area. The

different quadratic placement algorithms in the literature usually differ in the technique they use to

spread overlapping cells apart evenly in the placement area. For example, GORDIAN starts with the

placement area as a single partition, and repulsive forces are introduced from the center of gravity

of the partition to all cells in order to spread cells apart. It iteratively partitions each partition into

two smaller partitions. The iteration stops when a minimum sized partition is reached.

5.2 Kraftwerk Algorithm

Kraftwerk [EJ98] is a quadratic placement algorithm with an interesting algorithm to

spread overlapping cells apart from the center of the placement area. For completeness, we briefly

CHAPTER 5. GLOBAL PLACEMENT 60

describe the algorithm. Kraftwerk introduces a force from each point in the placement area to every

cell in the circuit. From the set of all such forces acting on a cell, the resultant force acting on the

cell is determined and added to the vector b in Equation 5.2, written as a new vector e

1 1 T
-/c = -X Ax —(b + e)x + const (5.3)

Let the additional force // at cell Ci with location be fi = Let the

rectangle function be

, / 1 if-j <z< j
''(z) = < „ ^ .

I 0 otherwise

Let the width and height of c, be w, and hi respectively, then ai{x,y) is defined as an

indicator function which is one if the point (.x:,y) is covered by cell c,-, and zero otherwise. Using

the rectangle function defined above, ai{x,y) can be written as

Similarly, an indicatorfunction A{x,y) is defined which is one if the point (j:,y) is within the place

ment area and zero otherwise. If the center of the placement area is and the width and

height of the placement area are W and H respectively, then A(A:,y) can be written in terms of the

rectangle function as

For an evenly distributed placement, the density of each point should be

£r,-6C^A-
^ WH

For a particular placement, the density of each point D{x,y) can be computed by

-•sA(x,y)
rj€C

which means that the density of a point (jc,y) is the number of cells covering the point minus the

desired density s. Hence, D{x,y) is positive if there are fewer than s cells covering the point and

negative otherwise. Fora typical placement problem, 5< 1because thereisnotenough areato place

all cells with no overlaps.

CHAPTERS. GLOBAL PLACEMENT 61

With the above definitions of densities, the purpose is to move cells away from higher

density regions to lowerdensity regions. With proportional constant k, the force at point (jc,y) can

be described as

^f{x,y)=k-D{x,y) (5.4)

Since the purpose of adding forces is to evenly distribute the cells in the placement area,

forces are required not to form circles. In other words, /(jc,y) is conservative, i.e. there exists a

scalar function 0(x,>') with

^^{x,y) = f{x,y) (5.5)

Combining 5.4 and 5.5 results in the Poisson's equation

AO(x,y) =/:-D(x,y) (5.6)

with boundary conditions

lim [^^(Xjy)! = 0, with r = (jc,}*)^
|r|->oo

which has a unique solution for f{x,y)

fc /.oo poo -p J

5.3 Implementation of Kraftwerk Algorithm

In this section, we describe our implementation of the Kraftwerk algorithm described
above. The pseudo-code of the algorithm is as follows:

KraftwerkO

1 build matrix A and vector b

2 solve Ax - b = 0 for Xusing the Conjugate Gradient method
3 while (stopping criterion is not met) do
4 compute e

5 update A and b
6 solve Ax - b = 0 for Xusing the Conjugate Gradient method
6 end while

The detail of the algorithm is explained below.

CHAPTER 5. GLOBAL PLACEMENT 62

5.3.1 Conjugate Gradient

At the core of the Kraftwerk algorithm is the quadratic programming problem. As de
scribed in Section 5.1, the quadratic programming problem can be solved using conjugate gradient
method. Given matrix A, vector b, and initial guess of the solution xq, the conjugate gradient algo
rithm computes the solution x as follows:

ConjugateGradient(A, b, xq)
1 k = 0

2 ro = b - Axo

3 while Fit ^ 0 do
4 k=^k-\-l

5 if /: = 1 then

6 Pi = ro
7 else

8 PA = r[_ir)t-i/r[_2rjt-2
9 Pit = rik_i+PitPit-i
10 end if

11 aji = r[_,rit_i/p[Apit
12 X)t = xjt-i+aitPit
13 r)t = rit-i+ajtApi
14 end whUe

15 X = x^

16 retum x

5.3.2 Net Weights

Net weights may be used to minimize the lengths critical nets. This is often done by

timing-driven placement algorithms like Ritual [SCK92]. Weights are increased for critical nets to

increase their contribution to the cost function which results in shorter critical net lengths. In our

implementation, we keep all net weights equal to unity. This means that the weight of each edge

in the placement graph G of a net of size n (i.e. n —\ fanouts) is given by vv/y = This is

because each net is modeled as a clique as described in the construction of the placement graph G

in Section 5.1.

5.3.3 Discretization

The formulation of the Kraftwerk algorithm applies on an infinite space and for infinite

number of points in the placement area. In our implementation, the space is approximated by

2W X2H, where W and H are the width and height of the placement area. Let this space be called

CHAPTERS. GLOBAL PLACEMENT 63

the working area. The working area is then divided into grids. Then quantities like densities in the

algorithm are computed only for these grid points. Quantities for points other than the grid points

are interpolated from their values for the surrounding grid points. Figure 5.1 shows the working

area and the grid points.

•• r •! i 1 1

Working
Area

Placement
Area

V
\

v
\ /

Grid Points

Figure 5.1: Working area, placement area, and grid points.

The number of grid points is determined by the smallest cell in the circuit. Let w<- be the

widthof a narrowest cell and he be the heightof a shortestcell. The numberof grid points is gx x gy,

where gx is the smallest multiple of 2 that is larger than 2WJw^ and gy is the smallest multiple of

2 that is larger than 2H/wh. We require that gx and gy be multiples of two for the Fast Fourier

Transform computation purposes (described in the next section).

With such a discretization scheme, we can compute D{x,y) for all the grid points. We

then solve the Poisson equation shown in Equation 5.6.

5.3.4 Poisson Equation

The Poisson equation can' be solved by convoluting the right hand side of Equation 5.6

with Green's function

G(x,y) =In (V'x2+y2^
to get

=/:'0(jc,y)*G(jr,y)

CHAPTER 5. GLOBAL PLACEMENT 64

If we take the Fourier transform of this equation, we get

0^(co,t) = !D(co,t) •^(co,t)

where 0^(a),T), iD(co,T), and ^((0,t) are the functions d>(A:,3?), D{x,y), and G(x,y) in Fourier

space.

The Green's function G{x,y) only depends on the x and y values for each grid point and

thus can be easily precomputed. To compute the Fourier transform, we use the Fast FourierTrans

form package FFTW [FJ98].

Finally, f{x,y) can be computed from Equation 5.5.

5.3.5 Dimensionless Cells

After the forces are computed, they need to be added into the quadratic programming

formulation. This is handled by introducing a fixed cell for each cell in the circuit and connect

them through a net. These fixed cells have no dimension and are called dimensionless cells. The

positions of the fixed cells are determined by the additional forces acting on their corresponding

cells as follows. First, a scaling factor S is computed. From all the forces found for the grid points,

let the force with the largest magnitude be /max- The scaling factor S is found by dividing the quarter

perimeter of the placement area by the magnitude of /max

W-hf/

2|/nax|

Then the positions of all dimensionless cells are found by scaling the additional forces acted on their

corresponding cells by 5, i.e. for cell c,- with location (x,,y/) and the additional force /(x/,y,) = /ti+

fy}, which is interpolated if is not one of the grid points, the location of the dimensionless

cell is {xi "t" fx X5,y/"b /> x 5).

5.3.6 Iteration Control

Let di be the dimensionless cell of cell c,. Let the net connecting cell c, to di be nf.

While the weight ofeach net in the circuit is 1, the weight wfofnet nf ischanged from iteration to

iteration. In the first iteration, di does not exist since we have not introduced any additional force.

In the subsequent iterations, the weight is scheduled according to the function

^ I wf{iter —1) +aXiter^ +bx iter if 1<iter <50
wf{iter —1)-b a X50^ + bx50 if iter > 50

CHAPTERS. GLOBAL PLACEMENT 65

where iter is the iteration count and wf(0) = 0, a = 4 x 10"^, and b = 2 x 10"^. This function

is shown in Figure 5.2. In the initial iterations, the weight of nf is kept to be small to allow the

connectivity of the circuit to determine the relative positions of cells. The weight increases as

objective of later iterations is to evenly spread the cells over the placement area.

weightSchedule.dat

0.009

0.008

0.007

5 0.006

w 0.005

0.004

0.003

0.002

Iteration

Figure 5.2: Weight schedule.

To better understand the spreading algorithm, we illustrate the procedure in Figure 5.3.

After the first iteration, the additional force //(i) is computed for cell c,- as shown in Figure 5.3(a).

Then the position of the dimensionless cell di is computed. The weight of the net connecting c, to di

is computed according to the above weight equation and it is shown in Figure 5.3(b). Figure 5.3(c)

and Figure 5.3(d) show the additional force fi{2) and position of di in the second iteration, and

Figure 5.3(e) and Figure 5.3(f) show the additional force ^ (3) and position ofdi in the third iteration.

An iteration by iteration progess of the Kraftwerk algorithm is illustrated in Figure 5.4.

In this figure, a picture of the placement is drawn after every 6 iterations.

5.3.7 Incremental Kraftwerk Algorithm

We noted above that the advantage of Kraftwerk over other algorithms is its ability to run

in incremental mode. Given an initial placement, i.e. x vector, we can compute the b + e vector

CHAPTERS. GLOBAL PLACEMENT

m)

/
/

(a)

»f(i)

(b) (c) (d) (e)

Figure 5.3: Illustration of spreading phase of Kraftwerk.

66

^(3) »f{3)

(0

which is Ax. The e vector can be easily computed since b depends only on the connectivity of the

circuit. After e is found, the algorithm continues with adding additional forces until the stopping

criterion is reached.

@jlL

DKilllili

Wiiiiilsii
iiSiiiiSpmn

Wi^-iinL

MMaipaillfflgM™

m

rJiiiPiii

alsfiBsir

n.iJIKMIIilllMI'l
llgjgifiiiifiiiil

flllJMWlliiiiiilB^
ijlM
isiiii

iBiB
HiB
ilssi™®®

HMgmaai
iSiS»!illil

Figure 5.4: Execution ofKraftwerk.

i^iii

liliif

i
ajajfagia^B

iP.!iffiilL'Jiiriliiii^

68

Chapter 6

Technology Dependent Optimization

Logic synthesis is a process of reading a high-level description of a circuit to generate a

gate-level description of the circuit while minimizing some cost function like area and delay. It is

typically divided into two optimization steps, technology independent optimization and technology

dependent optimization [SSL'''92]. In technology independent optimization, the high-level descrip

tion of the circuit is transformed into a Boolean network of logic functions, which is a directed

acyclic graph (DAG) where each node of the graph represent a logic function. The cost function

is typically modeled by literal count of the Boolean network. Logic operations are then performed

on the network to minimize its literal count. In technology dependent optimization, the optimized

Boolean network is mapped into a library of gates. In this step, the cost function can be directly

estimated because library gates are used. The Boolean network is mapped using mapping algo

rithms that minimizes the cost function. In the proposed integrated logic synthesis and placement

approach, the cost function can be computed more accurately in the technology dependent step be

cause library gates are used and the circuit is closer to the final circuit as compared to the technology

independent step. For this reason, we address the technology dependent step in this chapter and the

technology independent step in the next chapter.

The technology dependent optimization process is divided further into technology de

composition and technology mapping. Technology decomposition is the process of decomposing

a Boolean network (representing the circuit to be implemented) into primitive gates, e.g. 2-input

NOR gates and inverters. During technology mapping, the decomposed Boolean network (which

consists of only primitive gates) is mapped into library gates.

CHAPTER 6. TECHNOLOGY DEPENDENT OPTIMIZATION 69

6.1 Local Placement

In practice, we cannot repeat the placement of all nodes in the Boolean network for every

logic operation and cost function while our algorithm performs its computation. This would result

in excessive run time. For cost computation, and when the Boolean network is minimally perturbed

during logic operations, we locally place the affected nodes. We require that the local placement

results and the final placement result are similar. To achieve this, the net model and algorithm used

for the local placement must be the same as those used in the global placement algorithm. Since we

use a quadratic global placement tool, we locally place nodes by formulating the local placement

problem as a quadratic programming problem as well. Because the net model used in the quadratic

global placement tool is the clique model, we use the same clique model in our local placement

algorithm. The clique model is illustrated in Figure 6.1. Let node n shown in Figure 6.1(a) be a new

node, generated during logic synthesis optimizations. Let the positions of all fanout nodes, fanin

nodes, and the fanouts of the fanin nodes (other that n itself) be known. We first model all fanin

and fanout nets of n as cliques. The corresponding placement graph is shown in Figure 6.1(b). The

quadratic programming problem is then formulated on this local placement graph. Since node n is

the only node without a position, the problem can be solved in constant time.

(a) (b)

Figure 6.1: Incremental placement.

The idea of performing local placement with the same quadratic placement formulation

and same net model as the global placement algorithm is one of the contributions of this thesis. Our

results show that this minimizes the timing closure problem while resulting in a significant reduction

in interconnect delay.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 70

6.2 Technology Decomposition

As mentioned above, technology decomposition is a process of decomposing an optimized

Boolean network whose nodes are usually complex logic functions into another Boolean network

whose nodes are primitive gates (either 2-input NOR gates and inverters or 2-input NAND gates

and inverters). This step is introduced in logic synthesis to reduce the complexity of the mapping of

Boolean nodes into library gates. After this step, mapping a set of Boolean nodes into a library gate

reduces to a graph isomorphism problem.

Our placement-aware technology decomposition algorithm decomposes a Boolean net

work using primitive gates in a manner that minimizes wire-lengths in the decomposed network.

The algorithm consists of the steps outlined below. Here we describe the algorithm where each

node is decomposed into 2-input NOR gates and inverters. The algorithm where each node is de

composed into 2-input NAND gates and inverters is similar.

1. Wefirst invoke the global placement algorithm to find thepositions of all nodes inthe original

(optimized) Boolean network.

2. Next we decompose every Boolean node N of the original network into AND nodes (corre

sponding to each cube of the Boolean node N) and an OR node with all the AND nodes as

its fanins. After all the nodes of the original network have been decomposed in this manner,

we compute the positions of the new AND and OR nodes by invoking the global placement

algorithm. Let the AND nodes becalled NqjA^i , ••• , and let theORnode becalled N,„.

Here, thecardinality of the sum-of-products coverrepresenting the logic function of N is m.

3. Foreach AND orOR node n e {A^Oj^i >•*•)Mn} with fanins F/ = {/i ,/2,... ,/i}, we decom

pose ninto n' with fanins NI =|ni ,n2,..., |, where fi GFI. After such adecomposition
step, each node G is a 2-input AND or ORnode with a pairof nodes in FI as its fanins.

We call this decomposition a two-step decomposition.

The objective of the two-step decomposition process is to choose a pair of fanins from FI

for each nj, so as to minimize the total wire-length of all the nets connected to the outputs

of NI and FI, where the positions of nodes NI are computed utilizing the local placement

algorithm. We call this problem thefanin ordering problem.

Figure 6.2 illustrates this process. In this figure, all nodes are drawn to scale. Figure 6.2(a)

shows a node N in the original Boolean network being decomposed. Figure 6.2(b) shows

CHAPTERS. TECHNOLOGYDEPENDENT OPTIMIZATION 71

the decomposition of N into AND and OR nodes as described in step 2. The logic function

computed by the node N is fxfihhhhfih + hf\Q- Figure 6.2(c), shows node Nq before

two-step decomposition. For consistency in notation, n is also used to refer to Nq in Fig

ure 6.2(c). The result of two step decomposition is shown in Figure 6.2(d). The fanin ordering

problem essentially attempts to find a two-step decomposition of the nodes in Figure 6.2(c)

such that the sum of wire-lengths of all wires in the resulting decomposition (Figure 6.2(d))

is minimized.

At theend of this step, not all nodes are 2-input nodes. For example, noden' in Figure6.2(d)

has 4 fanins.

4. After all AND and OR nodes in the network have been decomposed using the two-step de

composition method, we run the global placement algorithm in incremental mode to update

all node positions.

5. We then iterate steps 3 and 4 over all Boolean nodes of the network until all nodes have at

most two fanins.

6. Finally, we run global placement on the resulting network of primitive gates. The reason for

running the global placement at this stage is to minimize the overlaps between cells. Since the

core algorithm and net model of both the local algorithm and the global placement algorithm

are the same, the resulting placement is minimally perturbed.

The algorithm above decomposes a complex node into a balanced tree of primitive gates.

Such decomposition ensures that no path becomes excessively long and increases the delay of the

circuit. However, if delay information is available or different cost functions are being optimized,

other decomposition algorithms can be performed. One such algorithm [BraOO] selects two nodes

from the set of leaf nodes to pair to form a new node. The two selected nodes are removed from the

set of leaf nodes and the new node is added to it. The procedure is repeated until all leaf nodes have

been paired.

In addition to the invocations of the global placement algorithm described above, we

additionally invoke global placement at most P times (where P is a user definedvariable)during the

technology decomposition algorithm. This is to ensure that our local placement runs utilize accurate

node placement information at all times. We experimented with several values of P, and found that

P = 10 resulted a good trade-off between run-time and circuit optimality.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 72

(a) (b)

n = No n = No

(C)

Figure 6.2: Technology Decomposition and Fanin Ordering Problem.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 73

When the global and local placement are invoked during technology decomposition, the

Boolean nodes are either 2-input NORs, inverters, or complex gates (i.e. NOR gates with more

than two inputs). Each node needs to have a finite size for our global placement tool to execute.

Since this is the early stage of the technology dependent optimization, we treat all Boolean nodes as

points, which is handled by treating them as cells of equal sizes for placement. Since many nodes

are created during technology decomposition, these cells are scaled while maintaining their aspect

ratio. The size of a cell is scaled according to the number of nodes in the network such that the total

area matches the available placement area. This results in minimum overlap throughout technology

decomposition.

Rather than treating each Boolean node as points as what we have done in this thesis, the

area of each Boolean node can be estimated according to the number of literals in the Boolean node.

The area can be used to estimate a rectangle representing the Boolean node. All these rectangles

can then be placed by the global placement tool. However, the placement of such a scheme is not

likely to be better than the placement which treats each Boolean node as a point. The reason is that a

complex Boolean node will be decomposed into small gates and the placement of these small gates

will not be a rectangle. In fact, these small gates tend to spread across the placement area. Hence,

the placement of big rectangles may be very different from the placement of the final circuit.

Theorem 6.1 Thefanin ordering decision problem is NP-complete.

Proof: In the decision problem, we ask the question if a decomposition whose total wire length is

less than a constant B exists. The problem is clearly in P because we can compute the total wire

length given a decomposition and check if it is less than B. Let nij be the new node obtained by

pairing fi € FI and fj GFI. The position of nij can be computed using incremental placement as

described above. Let d(fi,fj) be the costof pairing / and fj. The costc?(/•,/;) is the sum of the

length of nets f, fj, and n,y. We perform reduction from the clustering problem [GJ79]. Let the

finite set X of the clustering problem be the set of nodes FI. Let the distance between any pair

{xi,Xj) of X be d(fi,fj) as described above. Then it is easy to see that thereexists a partition of X

into f|] disjoint sets such that the total distance is < Bifand only ifthere is adecomposition whose
total wire length is < B. •

Since the fanin ordering problem is a hard problem, we utilize heuristics to solve it. The

two heuristics that we use are angle ordering andfurthest-pair ordering. In both heuristics, we look

for a linearorderFig = (/i, j/^,,... ,/iJ of FI. Then nodes NI are created by pairing nodes in Fig

in this linear order, i.e. by paring with /ij with fg^, and so on.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 74

In angle ordering, we traverse the fanins of node n in a counter clockwise direction to

form a circular order. The two consecutive fanins in this traversal that are furthest apart in terms

of linear distance form the end points of the final linear order. The remaining nodes are ordered

in the counter clockwise manner. For the example shown in Figure 6.2(c), the counter clockwise

traversal gives the following circular order: (/i, /z, /s, A, /s, /e >/? i/s >/i >—) • The two consecutive

fanins that are furthest apart in terms of linear distance are f\ and /g. Hence these two nodes form

the two end points of the linear order, and this linear order is therefore (/i,/2,/3,/4,/5,/6,/7,/8)-

A node is created and becomes the parent of each pair of nodes in this order. For this example, the

new nodes are as shown in Figure 6.3(a). These four new nodes become the leaves

of a new ordering problem for node n' and are ordered in the next iteration in the same way. The

angle order is (ni ,n2:«3»«4)- The new nodesformed after pairing these nodes are {«5,«6} as shown

in Figure 6.3(b).

(a) (b)

Figure 6.3: Angle Ordering Solution.

In furthest pair ordering, we iteratively pair fanin nodes (i.e. nodes in FT) until there are

no more nodes to pair. In each iteration, we first find the fanin // e FI that is furthest away from

node n in terms of linear distance. We then pair node // with the unpaired fanin node fg € FI that is

closest to ff in termsof lineardistance. Nodes// andfg form the inputsto a new2-inputnode in NI.

The result of furthest pair ordering for the example given in Figure 6.2(c) is shown in Figure 6.4(a).

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 75

In this example, we first pair /o and /4, then f\ and /g, then /2 and /i, and finally and /$. The

new nodes created are {ni,n2i«3i«4}- These nodes are ordered in the next iteration. The order of

pairing is /13 and /14, and n\ and nj. The new nodes are ns and n(, as shown in Figure 6.4(b).

(a) (b)

Figure 6.4: Furthest Pair Solution.

For each node, we perform technology decomposition using both the angle order and the

furthest pair order and compute the cost of each order in terms of total net lengths. The cost of an

order is the sum of the length of the fanin nets and the new nets (i.e. the total length of the nets in

Figures 6.4 and 6.3).

6.3 Technology Mapping

After technology decomposition, the original Boolean network is transformed into a net

work consisting exclusively of primitive gates, i.e. 2-input NOR/NAND gates and inverters. This

network is called the subject graph. The gates in the library are also decomposed using the same

primitive gates, and each such decomposed gate is called a pattern graph. Technology mapping

is the process of covering the subject graph with the pattern graphs while minimizing an objective

function. For area minimization, the objective function is the total area of the mapped circuit. For

delay minimization, the objective function is the total delay of the mapped circuit. If the subject

graph is a tree, technology mapping with the objective function of area minimization can be solved

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 76

optimally using dynamic programming [?].

We describe our area and wire-length, and delay minimization algorithms below.

6.3.1 Area and Wire-Length Minimization

In our approach, we decompose the subject graph into trees and use dynamic program

ming to solveit. Thedynamic programming algorithm consists of two steps: the forward propaga

tion step to compute the costof a best match and to store it on the node, andthe backward tracing

step to construct the match. The pseudo-code technology mapping algorithm implemented in this

thesis is shown as the Areall'eeMapO procedure below. A match m at node n with gate g is de

noted as m(n,g). The forward propagation stepconsists of lines 1 through 25 of the procedure. The

remaining lines are pseudo-code of the backward tracing step, which include an invocation of the

TVeeMapBuildNetworkO procedure.

ArealVeeMapCiA^, p)
1 N <- DfsFromPrimaryOutputs(fA^)
2 maxCount |/A^(iA^)l/P
3 count •(— 0

4 foreach node n£N do

5 count <— count 1

6 if count —maxCount then

7 UpdateGlobalPlacement(fA^)
8 count 0

9 end if

10 n.bestMatch 0

11 n.bestCost <-«»

12 foreach gate g do
13 foreach pattern graph Gp of gate g do
14 fn{n,g) <- Match(Gp,n)
15 if m(n,g) 0 then
16 = LocalPlacenient(m(«,g))
17 costOfMatch •(— MapCost(m(n,g), Xm, ym)
18 if {costOfMatch < n.bestCost) then
19 n.bestMatch <r- m

20 n.bestCost •<— costOfMatch
21 end if

22 end if

23 end for

24 end for

25 end for

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 11

^^apped ^ ®
27 foreach primary output p GP0(9{) do
28 lVeeMapBuiIdNetwork(iA^apped'

'IVeeMapBuildNetwork(5Vjnapped'
1 newNode -f- createMappedNode(fA4napped' n.bestMatch)
2 n.mapped TRUE
3 foreach fanin / of n.bestMatch do
4 if /.mapped = FALSE then
5 TVeeMapBuildNetworkCfA^apped'/)
6 end if

7 end for

The forward propagation step traverses the trees in topological orderfrom primary inputs

to primary outputs such that optimum matches for all fanins of a node n are found before a match

for n is found. Let n,„ be the new node for match m{n,g). Let FI = {/i,/2,... ,fk} be the fanins

of n,„. We recursively define thefanin wirecost wi{n,„) of match m{n,g) as the total length of the

fanin nets of n,,, plus the fanin wire cost of all its fanins. Formally,

wi{n,n)= S +
fi€FI

where nf. is the node of the best match at f and l{nf.) is the length of its net, as illustrated in

Figure 6.5. In this figure, node n,„ of match m{n,g) has three fanins, which are «/,, /i/j, and n/3

(Node n/^, n/,, and /1/3 are the mapped nodes of the best matches at fi, f2, and fi respectively).

Note that net n/. is a two-terminal net, since the network being mapped consists of primitive gates

which are 2-input gates, andweoperate on treedecompositions of this network. Essentially, wi{n,„)

is the total wire length of all nets in the mapped circuit rooted at node n,„.

Similarly, we recursively define the area cost a{m) of match m{n,g) as the area of g plus

the total area of all its fanin matches. The total cost c{m) of match m(n,g) is then the weighted

sum of the areacost of m{n^g) and the sum of the fanin wirecost of m{n,g) plus the length of net

n, or c(m) = a{m) -H a(w/(m) 4- /(n,„)),where a is a user-defined weighting variable. The function

MapCostO computes this total cost c{m).

In the example of Figure 6.5, the fanin wire cost of match m{n,g) is the sum of the lengths

of nets nj\^nf2, and n/3, and the fanin wire costs of nodes nf^,nf^, and n/3. The area cost of match

m{n,g) is the sumof the areaof g and the area costsof nodes , w/j, n/3.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 78

match

Figure 6.5: Definition of Cost Elements.

In order to compute the cost of a match, the position of the new node n„, corresponding

to the match needs to be computed (i.e. the node which is shown in the ellipse containing n in

Figure 6.5). As in technology decomposition, we could re-run global placement on all nodes in

the design (including the new node). However, this is too time consuming and so we use the local

placement algorithm described in Section 6.1 to estimate the position of the new node.

Even though the local placement algorithm uses the same net model and the same quadrat

ic placement based formulation as the global placement algorithm, after a certain number of nodes

have been matched, the global placement algorithm is run on the entire circuit. Just as in technology

decomposition, the user defined parameter P is used here. During the whole technology mapping

algorithm, the global placement algorithm is called at most P times. All other executions of the

placement algorithm during technology mapping are in incremental mode.

While technology mapping is being performed,not all nodes are mapped in general when

the global placement algorithm is invoked. The unmapped nodes are primitive nodes: NAND/NOR

gatesand inverters. Beforecallingglobal placement, NAND/NOR and inverter nodesare temporar

ily mapped into NAND/NOR and invertergates in the library. This temporarily mapped network is

then placed. As in technology decomposition, all cells are scaled to match available placementarea

to minimize overlap.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 79

6.3.2 Updating Placement

As mention above, the global placement algorithm is invoked at most P times during

technology dependent optimization. The positions of all cells are represented by the x vector as in

Equation 5.2 in each placement invocation and solved using the Kraftwerk algorithm described in

Chapter 5. After each invocation, the positions of all cells stored in x are copied back to the Boolean

network. The procedure described in this section is computed by UpdatePlacement() function in

the pseudo-code above.

In technology decomposition, the positions of all nodes are used as initial solution. Each

Boolean node has an entry in x and the final solution of the placement algorithm is updated to the

Boolean nodes accordingly. However, the update procedure is more complex as described below.

To increase the effectiveness of the technology mapping algorithm, inverters are added to

the decomposed Booleannetworkbefore the mapping algorithm begins withoutchangingthe func

tionality of the Boolean network. Twoinverters are connected in series to each node. The mapping

algorithm however removes extra inverters implicitly by mapping two extra inverters in series to a

wire. The number of inverters that are added is about twice the number of nodes in the Boolean net

work. Hence,extra inverters need to be removed beforeinvoking global placement duringmapping,

in order for the placement result to mimic the placement of the circuit after mapping is done.

When the global placement is invoked during technology mapping, there are mapped

as well as unmapped nodes in the network. Let the Boolean network being mapped be 5V^. For

placement purposes, a mapped network lA/J, is created using theexisting matches. Network has

the same primary inputs and primary outputs as does. An unmapped node in is either a 2-

input NOR gate or an inverter. These unmapped nodes are mapped to the smallest corresponding

gates in the library and new nodes associated with them are created in For example, let node

n be a mapped node in whose fanouts are not mapped. If the best match of n is a gate g, then

a node with gate g is created in lA^. For a node n in !A^, wedenote the node associated with n in

9\(p as fA^(n). Similarly, the node associated with a node n in !A^, the associated node is

Hence, = n. We also denote the fanins of the match m{n,g) as F/^. Since the network

is decomposed into trees before mapping, the nodes that are matched by m(n,g) can be computed

from FI,„ by recursively traversing the fanins of n as long as the fanin is not a node in Flm. The

association of !A^ and is shown in Figure6.6. In this figure, inverters n\ and ni are matched by a

wire. Nodes ns, n4, and ns are matched by m-i with a 2-input AND gate. The association of n-^ and

«3 is as shown. The fanins of match or F/,,,3 contains and nj.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 80

%

()"3 = 5^(«3)

n;

F/„,3 = {W6,«7}

Figure 6.6: Creation of Boolean network for placement.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 81

The mapped network 9{p is the network placed by the global placement algorithm after

extra inverters have been removed. Beside removing extra inverters in series, the inverter removal

algorithm also removes extra inverters connected in parallel. An example of this is shown in Fig

ure 6.7. In this picture, inverters ni and «3 are removed.

(a) (b)

Figure 6.7; Removing parallel inverters.

After network 9^ hasbeen placed, thecoordinates ofallnodes arecopied back tonetwork

9\C. As seen from Figure 6.6, not all nodes in has an associated node in 9^. The algorithm to

back annotate the coordinate for a node n in is as follows:

1. If « has an associated node in fA/J,, update the coordinate of n with thecoordinate of 9(p{n)

and the algorithm terminates.

2. If n is part of a match m,- of node update thecoordinate of n with thecoordinate of iA^(n/)

and it terminates.

3. If n isan inverter and there isa parallel inverter «, which has anassociation node 5A^(n,), then

update thecoordinate of n with thecoordinate of 9{p(ni).

4. Interleave the traversal of the fanin and fanout recursively until node rii which has an associ

ation node 9(p{ni) is found, then update the coordinate of n with thecoordinate of 9(p{ni).

After the algorithm terminates, all nodes in have updated coordinates.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 82

6.3.3 Delay Optimization

The objective of the delay optimized technology mapping is to minimize the largest arrival

time among all primary outputs of the circuit being mapped.

As seen from the delay model shown in Section 4.3, the delay of a gate driving a wire

and a fixed capacitive load depends not only on the intrinsic delay of the gate but also on the load

seen at the output of the gate, i.e. the wire capacitance and the load. The interconnect delay de

pends on the length of the wire. If the load seen by any gate in a library consists of only a small

number of distinct load values and there is no interconnect delay, dynamic programming can be

used to find an optimum solution when the subject graph is a tree [Rud89]. The solution is to put

the distinct load values in bins and to compute the optimum solution for each load value. Unfortu

nately, since the interconnect load of a gate varies depending on the placement of cells in a circuit,

the load seen by a cell cannot be put in bins of distinct values. Hence, delay optimized dynamic

programming is only an approximation to the optimum solution. Nonetheless, it has generated good

results [Rud89] [Tou90].

Our delay optimized technology mapping used here is dynamic programming based. As

explained in Section 6.3.1, the forward propagation step of the dynamic programming algorithm

traverses the network such that a node n is visited in a topological order. At each node n, all

matches of n are evaluated. The match that results in the earliest arrival time at n is the considered

the best match for that node. However, when computing the arrival time of n, its load is not known

because nodes in its fanout have not been visited. Depending on how the arrival time is computed

and how the load is estimated, three different methods are described in this thesis, which are called

fixed load method, single match method, and multiple match method.

When a match m(/2,g) of a node n is being considered, the location of the match is com

puted using the local placement algorithm described above. The location of the match m(n,g) is

denoted as

The pseudo-code of the technology mapping algorithm is shown below. Depending on

the methods used, line 17 is replaced by a call to FixedLoadCostO, SingleMatchCostO, and Mul-

tipleMatchCostQ. For the multiple match method, line 24 is replaced by MuItMatchBuildNet-

work(), which will be described later.

Delay'IY*eeMap(!Y, (3)
1 DfsFromPrimaryOutputs(fA^)
2 maxCount •(— |/7/(fA^)|/j3

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 83

3 count •(— 0

4 foreach node neN do

5 countcount +1

6 if count = maxCount then

7 UpdateGlobalPlacement(!A^)
8 count <r- 0

9 end if

10 n.bestMatch <— 0

11 n.bestDelay •(—
12 foreach gate g do
13 foreach pattern graph Gp of gate g do
14 /n Match(Gp,n)
15 if m ^ 0 then
16 (j:,„ ,y,„) = LocalPlacenient(m)
17 compute match cost and store match information
18 end if

19 end for

20 end for

21 end for

-'tapped ^ ®
23 foreach primary output p e P0{9{) do
24 1VeeMapBuildNetwork(!7V^apped'

6.3.3.1 Fixed Load Method

The fixed-load cost computation algorithm is shown below. In the pseudo-code, a(/) and

P(/) denotes the intercept and slope of input pin i of the gate being processed. For clarity purposes,

the arrival time at a node is shown as a scalar. In reality, it consists of rise and fall values. The

function ComputePinLoad() computes the sum of the total pin capacitances at the output of a node

n. The function ComputeWireLoad() computes the capacitance of a net n.

FixedLoadCost(, m(n,g), x,„,y,„)
1 n.load -f- ComputePinLoad(/i) -I- ComputeWireLoad(An(/i,g),jc,„,>',„)
2 n.arrival <— 0

3 foreach fanin fi of m(n,g) do
4 delay a(/) -1- P(/) x ndoad
5 if if{.arrival + delay) > n.arrival then
6 n.arrival •(— /{.arrival + delay
1 n.bestMatch ^ m(n^g)
8 end if

9 end for

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 84

During mapping, nodes that have not been visited are either 2-input NOR/NAND gates

or inverters. In the fixed load method, the arrival time of node n for match m{n,g) is computed

assuming that its fanouts are mapped to the smallest gates (i.e. smallest NOR/NAND gates or

inverters) in the library that match them. In other words, if one of the fanouts of n is a 2-input NOR

gate, then its load due to that fanout is the load of one of the input pins of the smallest 2-input NOR

gate in the library. The choice of which input pin is determined at random. Using {xm,y,„) and the

locations of all its fanouts, the wire length of interconnect seen by n is computed using the semi-

perimeter model as described in Section 4.3.1. The interconnect delay due to the resistance of the

wire is neglected. If match m{n,g) is the first match considered for n, then the match and the arrival

time are stored at n. Otherwise, if the arrival time is smaller than the arrival time stored at n, match

m{n,g) is stored at n, along with the new arrival time. After all matches for n have been considered,

the arrival time of the best match is later used to compute the arrival times of the fanouts of n. In

the fixed load method, the arrival times are not recomputed.

6.3.3.2 Single Match Method

The single match cost computation algorithm is shown below.

SingleMatchCost(5\^,m(n,g),x,„,y,„)
1 n.load <- ComputePinLoad(n) H- ComputeWireLoad(m(n,g),.r,„,y,„)
2 n.arrival •<— 0

3 foreach fanin fi of m(n,g) do
4 pinArrival ComputeEImoreDelayCy}.fi.slope,
5 delay <- a(/) + p(/) x n.load
6 if (pinArrival + delay) > n.arrival then
7 n.arrival pinArrival + delay
8 n.intercept •<— pinArrival -\-<x{i)
9 n.slope P(/)
10 n.bestMatch <—m{n,g)
11 end if

12 end for

In the single match method, the load due to the fanouts of n is computed in the same

way as in the fixed load method. The interconnect delay is computed using the steiner tree model

described in Section 4.3. After having computed the arrival time of n, the result is stored at n as a

tuple (/h,S„). Let pi^ be the latest arriving input of match m(n,g) of node n. /„ is the sum of the

arrival time at pi/c and the intrinsic delay of match m(n,g) from pi/; to n (The arrival time at is

CHAPTER 6, TECHNOLOGYDEPENDENT OPTIMIZATION 85

the pinArrival variable in the pseudo-code). 5„ is the slope of the delay model from pk to n for the

currentmatchm{n^g). /„ and 5„ are usedto computethe arrival times at the inputpins of the fanouts

of n when they are visited. As an example, node n together with all its fanouts and fanins is shown

in Figure 6.8. If the length of net n is then the arrival times at pin 1 and 2 of node n (denoted as

A(ii) and A{i2)) and at the output pin of n (denoted as A(n)) are

A{ii) = Elmore delay at pin 1 of n computed using Ii,Si, stored at , pin loadseenat /i,

and net /i

A(z2) = Elmore delay at pin 2 of n computed using I2, S2, storedat (2, pin load seenat 12,

and net /]

A{n) = maXkQ{i^2}{Mk) + CLW-\-^{k)x{l„xc + Co,+Co2)}

p = argmaxfc6{,,2}{^(4) + «(/:) + 3(^) x (Z„ x c-f Q, +C02)}

In = A{ip) + a{p)

Sn = P(p)

where c is thecapacitance per unit length of the interconnect, and Co, and C02 are the pin capaci

tances of thefanout oi and 02. Theparameters a(l),a(2), P(l), and P(2)are the intrinsic delay and

drive strength from pin 1 and 2 to n of match m{n,g) as described in Section 2.3.

Net

luSi I2.S2

Figure 6.8: Single match method.

6.33.3 Multiple Match Method

The multiple match cost computation algorithm is shown below.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 86

MultipleMatchCost(lA(;, m{n, g),Xm,ym)
1 pwl •(— 0
2 foreach fanin / of m(n,g) do
3 pinArrival ^ PWLComputeDeIay(yj./7w/, m(n,g),Xm,ym)
4 pinArrival ^ pinArrival + ComputeWireResistanceDelay(m(n,g),jc,„,y,„)
5 pwl 4- PWhMsoLipwly pinArrival +«(/), P(i))
6 end for

7 n.pwl PWLMin(«.pw/, pwl)

When considering a match m(n,g) with gate g at node n in the multiple match method,

the arrival time of n is not computed. Rather, a piece-wise linear function / is computed. This

is best explained by an example. Consider again Figure 6.8. The delay model from both input

pins of g is characterized by a(l), p(l), and a(2), P(2) as shown in Figure 6.9(a) and (b). The

maximum delay values for all load values, which are computed by the function PWLMax(), are

shown in Figure 6.9(c). The result is a piece-wise linear function for all possible load values for

match m(n,g) [Tou90]. Each match at n is therefore characterized by a piece-wise linear function.

Instead of storing a single match at n as in the case of fixed load and single match methods, a piece-

wise linear function h which is the minimum of all piece-wise linear functions (computed using the

function PWLMinO) of all matches at n, is stored at n. Hence, a set of matches are stored at n. The

best match is selected only when the load at the output of n is known. At this point A(ii) and A(/2)»

the arrival times of the fanins of n in the example above, are computed.

Since the delay model of a gate used in this thesis does not account for wire resistance

when computing the delay, the delay computation has been divided into two separate functions in

the pseudo-code, i.e. PWLComputeDelayO, and ComputeWireResistanceDeIay(). The function

PWLComputeDelayO computes the delay due to capacitive loading seen at the gate, and the func

tion ComputeWireResistanceDelayO computes the interconnect delay due to resistance of the net

of the gate as described in Section 2.3.

The backward tracing step of the multiple match method is different from the fixed load

and the single match methods. Unlike the fixed load and the single match methods, the best match

at a node n is computed as a set of matches in the forward propagation step. In the backward tracing

step, the best match is computed since the load seen at n is known. The algorithm is shown below.

MultMatchBuildNetwork(!A^^ppgjl, n)
1 rn{n,g) •(— PWLComputeMatch(n, n.pwl)
2 newNode createMappedNode(fA^2ppgjj,
3 n.mapped •<— TRUE

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION

a(l)

»(1)

load

(a)

A{i2) + a{2)
A(ji)4-a(l)

T3

a(2)

load

(c)

load

(b)

Figure 6.9: Delay models and maximum computation of piece-wise linear functions.

87

CHAPTERS. TECHNOLOGYDEPENDENT OPTIMIZATION 88

4 foreach fanin / of m{n,g) do
5 if f .mapped = FALSE then
6 IVeeMapBuildNetworkCfA^apped'
1 end if

8 end for

When a new node is created, its location is estimated in the same way as in the area

and wire-length minimization procedure, i.e. using the local placement algorithm as described in

Section 6.1. The procedure of updating the positions of cells using the global placement algorithm

is described in Section 6.3.2.

6.4 Experimental Results

The library used in our experiments is the MSU standard cell library [SSL"^92]. The

intrinsic delays, output resistances, and input capacitances of all cells in thelibrary have been mod

ified with values from SPICE characterizations of the 0.1^un process technology described in Sec

tion 1.2.1. The detailed placement tool used is DOMINO [DJS91]. Routing is done using the

WARP [Cad99] router from CADENCE. Although our0.1/itechnology has as many as 8 layers of

metal, only 4 layers are used for signal routing purposes. All other layers are assumed to be used

for power and global signal routing. The post-routing interconnect delay iscomputed by modeling

each wire segment as a 7C-segment.

The experimental setup isasfollows. Twenty-five ofthe larger circuits inthe 1991 MCNC

benchmark set are selected for all experiments. For all experiments, the total delay is the delay of

thecritical path, and interconnect delay is thetotal delay including wire delay minus the total delay

excluding wire delay.

6.4.1 Delay Correlation

The first setof experiments demonstrates thedelay correlation before andafter logic syn

thesis for both the traditional methodand the proposed method. For the traditional method, circuits

are synthesized by a logic synthesis tool with a wire-load model. The delay results are corre

lated with the delays of actual placed and routed results. For the proposed method, the circuits

are synthesized using the integrated scheme, and the delay results are correlated with placed and

routed circuits. For the traditional scheme, we first run SIS with the wire-load model shown in Sec

tion 1.2.3. For this wire-load model, the length of a 2-pin net, /(2), was recomputed such that the

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 89

average error in delay is minimized for the circuits in this experiment. The same set of circuits are

also synthesized using the proposed approach. Table 6.1 shows the results of this experiment. The

columns under the heading "Wire" show the results of traditional synthesis (SIS with the wire-load

model as described above). The columns under the heading "PILS" show the results of the pro

posed approach. All delay values are obtained after detail routing. The results illustrate the severity

of the timing closure problem using traditional logic synthesis. As seen from this table, the SIS

experiments with wire-load model over-estimates the actual delay in some cases (positive values)

and under-estimates it in others (negative values). For the example dalu, the error in the estimated

interconnect delay is as high as 57% and the error in the estimated total delay is 11%. The average

error in the estimated interconnect delay is 29.0% and the average error in the estimated total delay

is 4%. These averages are computed using the absolute values of the errors of all circuits. For the

proposed approach, except for dalu, the estimated interconnect delay is small and the estimated total

delay is within 1% of the actual delay. This table shows the effectiveness of the proposed approach,

and demonstrates that timing closure is minimized the proposed method.

6.4.2 Area and Wire-Length Minimization

For area and wire-length minimization experiments, the script,nigged area optimization

script of SIS is compared with the modified script.rugged where the proposed technology decom

position and technology mapping are used. Since tree mapping is used in the proposed scheme, the

correspondingalgorithm in SIS is used for comparison. The parameters a and |3used in the experi

ments are 0.1 and 10 respectively (See Section 6.2 and 6.3.1 for a description of these parameters).

Table 6.1: Estimated delay vs actual delay using wire-load model and our approach.

Name

Interconnect Delay Total Delay
Wire PILS Wire PILS

C1908 -4% 0% 0% 0%

C2670 8% -2% 1% 0%

C3540 26% 2% 3% 0%

C432 41% -6% 5% -1%

C499 -3% -8% 0% -1%

C880 -52% -4% -3% 0%

b9 -29% 0% -2% 0%

dalu 57% -34% 11% -8%

k2 44% 0% 7% 0%

Ave 29% 6% 4% 1%

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 90

Table 6.2 compares the delay when area minimized technology mapping is performed.

The traditional SIS technique is compared with the proposed approach (the colunm labeled "PILS").

In addition to the advantage of not having to estimate net lengths (and thereby solving the Timing

Closure problem as shown in Table 6.1), the proposed scheme exhibits a significant reduction in

interconnect delay as seen from Table 6.2. For the example dalu^ this translates into a 23% reduction

in total delay. Using our scheme, the average reduction in interconnect delay is 12.0%, and the

average reduction in total delay is 7.7%.

Table 6.2: Area and wire-length minimization.

Name

Interconnect Delay (ps) Total Delay (ps)
SIS PILS Change SIS PILS Change

CI908 118 115 -3% 1364 1352 -1%

C2670 140 95 -32% 1433 1245 -13%

C3540 295 196 -33% 2195 2005 -9%

C432 146 178 22% 1549 1745 13%

€499 62 72 17% 863 1000 16%

€6288 265 386 46% 4926 4935 0%

€880 124 122 -1% 1737 1730 -0%

apex6 245 134 -45% 1196 869 -27%

cht 42 31 -24% 444 318 -28%

dalu 417 266 -36% 2356 1816 -23%

example 122 114 -6% 904 841 -7%

frg2 358 422 18% 1645 2076 26%

i5 87 63 -27% 795 547 -31%

i6 306 346 13% 1622 1673 3%

i7 366 323 -12% 1700 1499 -12%

i8 815 805 -1% 2884 2991 4%

i9 485 474 -2% 2522 2408 -5%

pair 546 330 -40% 2318 1745 -25%

rot 121 86 -28% 1147 1107 -3%

terml 25 20 -21% 397 371 -6%

ttt2 38 35 -8% 617 605 -2%

vda 130 137 5% 884 826 -7%

xl 68 43 -37% 525 426 -19%

x3 226 128 -43% 1367 877 -36%

x4 153 125 -18% 952 851 -11%

Ave - - -12.0% - - -8.1%

The improvement in interconnect delay of our method is accompanied by some penalty

CHAPTER 6. TECHNOLOGY DEPENDENT OPTIMIZATION

in active area, as shown in Table 6.3. The average penalty in active area is 9.6%.

Table 6.3; Area of area and wire-length minimization (in fi^)
Name SIS PILS Change

C1908 5933 6036 2%

C2670 7874 9475 20%

C3540 14844 16410 11%

C432 2333 2356 1%

C499 5818 6019 3%

C6288 36858 37642 2%

C880 4758 5363 13%

apex6 8571 9360 9%

cht 1797 1843 3%

dalu 10783 12810 19%

example2 3923 4349 11%

frg2 8824 10598 20%

i5 2281 2701 18%

i6 6641 7171 8%

17 8375 9556 14%

18 11894 13720 15%

19 7396 7569 2%

pair 19020 21612 14%

rot 8156 8617 6%

terml 2079 2074 -0%

ttt2 2575 2851 11%

vda 7033 7425 6%

xl 3738 4044 8%

x3 9210 10195 11%

x4 4677 5397 15%

Ave -
- 9.6%

91

The parameter a is important in determining the quality of the results. The variation of

interconnect delay, total delay and active area of the example C3540 with respect to a is plotted in

Figure 6.10. The x-axis represents a. The left vertical axis is the delay in picoseconds. The right

vertical axis is the area in /rni^. As expected, the active area increases as a increases. The delay

decreases until a is about 0.1. For larger a values, the delay increases slowly since the increased

circuit area results in an increase in net lengths. For a larger than about 0.9, there is a steeper rise

in both area and delay.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION

3000

2500

2000

1500

1000

500

0.2 0.4 0.6
Wire cost coefficient

92

22000
Wire Delay
Total Delay

21000

20000

19000

18000

17000

16000

15000

14000
0.8

Figure 6.10: Delay and area variation with respect to a, the wire cost coefficient.

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 93

6.4.3 Delay Optimization

For delay optimization, the three different optimization algorithms are compared against

the delay minimization script scripudelay in SIS. Modifications are made to script.delay such that

the SIS algorithms being compared against utilized the same options as were utilized by the pro

posed algorithms.

Table 6.4 compares the delay when delay minimized technology mapping is performed

using SIS and the fixed load method. The results for SIS are in columns labeled "SIS" and the results

for fixed load method are in colunms label "Fixed Load PELS". Although there is some improvement

in almost all circuits, the amount of the interconnect and total delays are small. Fortunately, there is

also an small reduction in area as seen from Table 6.5.

Table 6.6 shows the delay comparison between SIS and the single match method. The

results of the single match method are in columns labeled "Single Match PILS". As expected, this

algorithm outperforms the fixed load method since the arrival time computation is more accurate.

On average, the interconnect delay is reduced by 3.2% and the total delay by 1.8%. The activearea

also reduces by an average of 0.7% as seen from Table 6.7.

Table 6.8 shows the delay comparison between multiple match algorithm in SIS (map -n

1) and the multiple match method in our approach. The results of the multiple match method are

in columns labeled "Multiple MatchPILS". As seenfrom this table, there is a significant reduction

in interconnect delay (13.6%) and total delay (10.0%). Table 6.9 shows the areacomparison of SIS

and multiplematch method. As seen from this table, there is a significant reduction in area (23.1%)

inaddition to thedelay reduction seen fromTable 6.8. So, in addition to minimizing Timing Closure

problems, the proposed algorithm is able to reduce total circuit delay as well as total circuit area.

6.5 Conclusions and Future Work

In this chapter, we have presented an approach that addresses the timing closure problem

in IC design. Our approach integrates the technology mapping step of logic synthesis with place

ment. We believe that success in integrating logic synthesis and placement is dependent on the

ability to maintain a consistent placement during logic synthesis which closely approximates the

final placement. We used incremental and global placement algorithms to achieve this goal.

We have introduced technology decomposition and technology mapping algorithms using

this integrated flow. We attempt to minimize a weighted function of area and wire length while

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION

Table 6.4: Fixed load delay minimization method.

Interconnect Delay (ps) Total Delay (ps)

Name SIS Fixed Load PILS Change SIS Fixed Load PILS Change

C1908 197 196 -0% 1377 1386 1%

C2670 374 372 -1% 2193 2206 1%

C3540 522 503 -4% 2808 2752 -2%

C432 142 140 -2% 1545 1559 1%

C499 84 83 -1% 874 873 -0%

C6288 320 339 6% 3451 3473 1%

C880 124 124 -0% 1193 1217 2%

apex6 576 582 1% 1943 1943 0%

cht 139 138 -0% 776 776 -0%

dalu 989 975 -1% 3296 3291 -0%

example 199 199 0% 1091 1092 0%

frg2 546 517 -5% 2178 2079 -5%

i5 64 67 3% 617 620 0%

i6 750 689 -8% 3542 3465 -2%

\1 1117 1109 -1% 4366 4359 -0%

i8 1723 1743 1% 5584 5551 -1%

i9 601 580 -3% 2436 2442 0%

pair 649 554 -15% 1950 1721 -12%

rot 151 154 3% 1130 1138 1%

terml 47 47 1% 506 505 -0%

ttt2 51 37 -26% 445 431 -3%

vda 265 264 -0% 1204 1221 1%

xl 84 84 -0% 615 614 -0%

x3 716 717 0% 2109 2109 0%

x4 217 223 3% 1243 1228 -1%

Ave -
- -2.0% - - -0.7%

94

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION

Table 6.5: Area of the fixed load delay minimization method, (in jj?)
Name SIS Fixed Load PILS Change

C1908 11318 11330 0%

C2670 14855 15085 2%

C3540 23679 23616 -0%

C432 3105 3180 2%

C499 7718 8024 4%

C6288 55953 55872 -0%

C880 7649 7690 1%

apex6 14907 14625 -2%

cht 2863 2863 0%

dalu 19716 19647 -0%

example2 5714 5731 0%

frg2 16295 15748 -3%

i5 6244 6273 0%

i6 7989 7972 -0%

i7 11002 10990 -0%

i8 21594 21750 1%

i9 12269 11762 -4%

pair 30493 30246 -1%

rot 12355 12344 -0%

terml 3514 3548 1%

ttt2 3203 3168 -1%

vda 15068 15057 -0%

xl 5656 5656 0%

x3 14285 14308 0%

x4 7476 7275 -3%

Ave - - -0.2%

95

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 96

Table 6.6: Single match delay minimization method.

Name

Interconnect Delay (ps) Total Delay (ps)
SIS Single Match PILS Change SIS Single Match PILS Change

C1908 197 211 7% 1377 1441 5%

C2670 374 376 0% 2193 2237 2%

C3540 522 458 -12% 2808 2815 0%

C432 142 138 -3% 1545 1421 -8%

C499 84 72 -14% 874 849 -3%

C6288 320 326 2% 3451 3338 -3%

C880 124 117 -5% 1193 1152 -3%

apex6 576 561 -3% 1943 1911 -2%

cht 139 119 -14% 776 740 -5%

dalu 989 904 -9% 3296 3225 -2%

example 199 216 9% 1091 1089 -0%

frg2 560 545 -3% 2000 2251 13%

i5 64 68 6% 617 595 -4%

i6 750 645 -14% 3542 3344 -6%

i7 1117 949 -15% 4366 4041 -7%

i8 1723 1941 13% 5584 5900 6%

i9 601 521 -13% 2436 2436 0%

pair 649 539 -17% 1950 1798 -8%

rot 151 152 1% 1130 1112 -2%

terml 47 52 12% 506 539 7%

ttt2 51 53 4% 445 447 0%

vda 237 271 14% 1304 1187 -9%

xl 84 83 -1% 615 582 -5%

x3 716 682 -5% 2109 2056 -2%

x4 217 208 -4% 1243 1202 -3%

Ave -
- -3.2% - - -1.8%

CHAPTER 6. TECHNOLOGY DEPENDENT OPTIMIZATION

Table 6.7: Areaof thesingle match delay minimization method, (in /x^)

Name SIS Single Match PELS Change

C1908 11318 11854 5%

C2670 14855 14809 -0%

C3540 23679 23570 -0%

C432 3105 3191 3%

C499 7718 7551 -2%

C6288 55953 55907 -0%

C880 7649 7684 0%

apex6 14907 14861 -0%

cht 2863 2828 -1%

dalu 19716 19480 -1%

example2 5714 5651 -1%

frg2 16295 15621 -4%

i5 6244 6244 0%

i6 7989 7932 -1%

i7 11002 10414 -5%

i8 21594 21951 2%

i9 12269 11958 -3%

pair 30493 30125 -1%

rot 12355 12090 -2%

terml 3514 3393 -3%

ttt2 3203 3151 -2%

vda 15068 15005 -0%

xl 5656 5714 1%

x3 14285 14463 1%

x4 7476 7292 -2%

Ave -
- -0.7%

97

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 98

Table 6.8: Multiple match delay minimization method.

Name

Interconnect Delay (ps) Total Delay (ps)

SIS Multiple Match PILS Change SIS Multiple Match PELS Change

C1908 183 164 -11% 1419 1391 -2%

C2670 258 230 -11% 1937 1811 -6%

C3540 452 385 -15% 2603 2243 -14%

C432 165 132 -20% 1607 1408 -12%

C499 61 66 8% 830 806 -3%

C6288 280 299 7% 3720 3559 -4%

C880 108 90 -16% 1194 981 -18%

apex6 636 491 -23% 2287 1883 -18%

cht 173 86 -50% 967 523 -46%

dalu 618 524 -15% 2589 2277 -12%

example 181 134 -26% 1092 878 -20%

frg2 546 557 2% 2178 2020 -7%

15 74 81 9% 631 586 -7%

16 417 349 -16% 1620 1611 -1%

17 817 603 -26% 2855 2571 -10%

18 2017 1701 -16% 6653 6091 -8%

19 588 564 -4% 2635 2607 -1%

pair 884 465 -47% 2417 1630 -33%

rot 97 104 8% 806 942 17%

terml 39 30 -24% 474 400 -16%

ttt2 46 46 1% 466 416 -11%

vda 265 248 -7% 1204 1279 6%

xl 63 56 -11% 532 495 -7%

x3 766 519 -32% 2506 1880 -25%

x4 320 281 -12% 1370 1322 -4%

Ave - - -13.3% - - -10.2%

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION

Table 6.9: Area of multiple match delay minimization method, (in fj?)
Name SIS Multiple Match PILS Change

C1908 13916 11330 -19%

C2670 18887 13317 -29%

C3540 28155 22383 -20%

C432 3894 3600 -8%

C499 8531 6676 -22%

C6288 70767 60710 -14%

C880 8870 7240 -18%

apex6 17240 12326 -28%

cht 3727 2367 -36%

dalu 25476 19728 -23%

example2 8329 5478 -34%

frg2 21905 14694 -33%

i5 6682 5979 -11%

i6 10639 7425 -30%

i7 14400 9579 -33%

i8 29094 21652 -26%

i9 15592 10489 -33%

pair 35222 29635 -16%

rot 14498 12038 -17%

term! 4205 3491 -17%

ttt2 4015 3277 -18%

vda 20736 15546 -25%

xl 6578 5334 -19%

x3 15368 12678 -18%

x4 10040 6970 -31%

Ave -
- -23.1%

99

CHAPTER 6. TECHNOLOGYDEPENDENT OPTIMIZATION 100

interleaving incremental and global placementwith logic operations. We also implemented a delay

minimization algorithm.

The benefits of our approach are:

• The main result is the demonstration of a significant reduction in Timing Closure prob

lems. Timing closure results in traditional logic synthesis underestimating interconnect delay by

29% on average. Our scheme reduces this error to 6%.

• Both incremental and global placementalgorithms utilizethe samecore placementalgo

rithm, and the same net model. This helps maintain a consistentplacementduring logic operations.

• Additionally, our scheme results in average reductions of about 12% in interconnect

delay, and about 8.1% in total circuit delay for area and wire-length minimization. This is accom

panied by an area penalty of 9.6%.

• For delay minimization algorithm, we achieve an average reduction of about 13.3% in

interconnect delay, andabout 10.2% in total circuit delay. In addition to this, wegain about 23.1%

in area.

In the next chapter, we extend the current approach to include technology independent

optimization as well.

101

Chapter 7

Technology Independent Optimization

In the previous chapter, we presented integrated algorithms for technology dependent

optimization of logic synthesis and placement. In this chapter, we describe technology indepen

dent optimizations integrated with placement. As described in Section 2.2, there are a number

of logic operations commonly used in the technology independent step, like kernel extraction, re-

substitution, and simplification of Boolean nodes. Kemel extraction extracts common kernels from

Boolean nodes and new nodes are created for the kernels. Re-substitution re-expresses a node in

terms of other nodes in the Boolean network. Node simplification uses satisfiability and observ

ability don't cares to simplify each Boolean node separately. Among these logic operations, kemel

extraction changes the stmcture of the network extensively, allowing significant opportunities to

improve the quality of the results. For this reason, we focus our attention on integrating kemel

extraction and placement.

The cost function used in technology independent optimization is the literal count of the

network. The kemel extraction algorithm iterates through the Boolean network. In each iteration,

it traverses the network to find a kemel that reduces the literal count maximally and extracts it as

a new node in the circuit. The Boolean network is then re-expressed using the new kemel. The

iteration stops when the literal count of the network cannot be reduced anymore.

Since no interconnect information is present when using literal count as the cost function,

two different kemel extraction algorithms are introduced in this chapter, depending on how the cost

functions are defined: kemel extraction with wire cost and kemel extraction with wire-planning. In

kemel extraction with wire cost, the cost of a kemel consists of two components: a literal count

reduction component and a wire length reduction component. In the sequel, this will be referred to

as wired kemel extraction. In the kemel extraction with wire-planning, heuristics are used to allow

CHAPTER?. TECHNOLOGYINDEPENDENT OPTIMIZATION 102

duplication of kernels. The potential increase in literal count due to such duplication is computed

in the cost function. In the sequel, this kernel extraction will be referred to as wire-planned kernel

extraction.

7.1 Preliminaries

7.1.1 Value of a Kernel

The value of a kernel is the number of literals in the Boolean network that can be decreased

if the kernel is extracted. The value value(k) of a kernel k can be computed easily. First, express the

Boolean function at each of the fanout nodes in factored form. Let Uk be the number of times kernel

k appears in the factored form of all its fanouts. Also, let h be the number of literals in k. The value

of k is

value{k) = —1) —/jt

becausefor each appearance of k in thefanout, (/jt - 1) literalsare reducedand Ik literals are needed

to represent kernel kasa. new Boolean node in the network.

7.1.2 Placement Interaction

As in Chapter 6, where we integrated technology mapping and placement, global place

ment is invoked several times during kernel extraction. Since the number of iterations is not known

before the kernel extraction algorithm terminates, the number of global placement invocations can

not be determinedin advance. Instead, a parametery is introduced. The global placementis invoked

after every y iterations. Intervening global placement invocations utilize the incremental mode.

As mentioned above, the kernel extraction algorithm is an iterative algorithm. In each

iteration, a single kernel is selected from all generated kernels. The costs of all kernels need to be

computed, which means that the location of all kemels need to be estimated. For this purpose, the

local placement algorithm (described in Section 6.1) is used.

During technology independent optimization, the circuit structure is typically very dif

ferent from the final circuit generated after technology dependent optimization. It is therefore not

necessary to use interconnect delay as one of the criteria in determining the best kernel to extract.

However, the relative positions of Boolean nodes along input/output paths during kernel extraction

CHAPTER?. TECHNOLOGYINDEPENDENT OPTIMIZATION 103

will likely remain the same as the placement of the final circuit. For this reason, the cost func

tion of interconnect length is preferred to interconnect delay in computing the weight of a kernel.

As a result, semi-perimeter estimate is used to compute the length of a net (instead of the more

computationally expensive Steiner tree estimate) as described in Section 4.3.

As in the technology decomposition algorithms and reasons explained in Chapter 6, each

Boolean node is treated as a fixed-ratio cell that is scaled according to the number of nodes in the

network. Updating the positions of all Boolean nodes is straightforward since the resulting Boolean

network after kernel extraction is placed without adding or deleting any nodes.

7.2 Wired Kernel Extraction

In wired kernel extraction, a wire cost component of a kernel k is computed and used

along with the value of kernel k to compute the cost function of k. The cost of k is referred to as the

weight of k, or h'(/:). We seek the maximum of this value to reduce the literal count of the network.

The interconnect weight of a kernel k, Wi(k) is simply the length of interconnect that

is reduced by employing kernel k. Figure 7.1 shows an example of a part of a Boolean network

before and after extracting a kernel k before and after extraction. The interconnect length before the

extraction of k is the sum of the lengths of nets i\ and 12. The interconnect lengthafter the extraction

of k is the sum of the lengths of nets zi, and ij after extracting k. The interconnect weight of

kernel k, Wi{k), is thedifference between the interconnect lengths before andafterextraction'.

The weightof a kernelk is the weighted sum of the valueof k and the interconnect weight

of k, i.e.

w{k) = value{k) +Xwi{k)

7.3 Wire-planned Kernel Extraction

Wire-planned kernel extraction is a heuristic approach based on the results in the wire-

planning approach in Chapter 3. The basic idea is to relax the monotonic path constraint and to

apply legality locally.

' It is possible that after extracting a kernel k from a node n, some fanins of k are still the fanin ofn. For example, in
the example in Figure 7.1, i| can still be an immediate fanin of o\ after extracting k.

CHAPTER 7. TECHNOLOGY INDEPENDENT OPTIMIZATION

Before extracting k

(a)

Net L

Net

Net i\ Net iV

After extracting k

(b)

104

Figure 7.1: Before and after extracting kernel k in wired kernel extraction.

7.3.1 Weight of a Kernel

For a node k with placement constraint ^hn}o\,02,...,oi O-C- the transitive fanins

of k include primary inputs and the transitive fanouts of k include primary outputs

,02, •••, o/), the input box of k is defined as the smallest rectangle that encloses the primary inputs

of k and the output box of k is the smallest rectangle that encloses the primary outputs of k. With

these definitions, the conditions under which a node is legal can be restated by the following lemma.

Lemma 7.1 Fora legal nodek with placement constraint{/i,i2,-.. ^im}0^,02,> L

legal region intersects with its output box only at its closest point, i.e. the point closest to any output.

Similarly, its legal region intersects with its input box only at itsfurthest point, i.e. the pointfurthest

from any output.

Proof: By the definition of region and the intersection rule in Section 3.4, the lemma follows. •

The primary output angle of a node k is defined to be the angle subtended by k and all its

primary outputs. Figure 7.2(a) illustrates this definition. Lemma 7.1 says that the primary output

angle of a legal node k is at most 90°, which is when k is placed at the closest point of its legal

region. Similar to the definition of primary output angle, the fanout angle of a node k is defined

to be the angle subtended by node k and all its immediate fanouts, denoted by ak. Figure 7.2(b)

illustrates this definition.

CHAPTER?. TECHNOLOGY INDEPENDENT OPTIMIZATION

j region

p input p
0 box 0

(a)

^ box ^

pnmary

output
angle

105

(b)

Figure 7.2: Primary output and fanout angles in wire-planned kernel extraction.

The basic idea behind the wire-planned kernel extraction is to restrict the fanout angle

of a kernel k to be at most 90°. If ajt is larger than 90°, then the weight of the kernel is penalized by

the number of literals needed to duplicate the kernel in order to maintain a maximum fanout angle

of 90° for each kernel and its duplicates. Hence, the weight w(/:) of a kernel k is

w{k) = value{k) - x k

where /jt is the number of literals of k.

Depending upon which two fanouts of k are chosen as the end points when computing the

fanout angle of k, its value can vary considerably. For minimum kernel duplication, two consecutive

fanouts in a circular traversal around k that form the largest angle with k are chosen as the end points.

For example, nodes o\ and 04 are the end points of the example shown in Figure 7.2(b) because the

angle subtended by oi, and 04, which is 180° —a^t, is the largest among any consecutive nodes in

a circular traversal.

7.3.2 Wire-planned Duplication

In the wire-planned kernel extraction described above, the weights of kernels are used

as the objective function of the algorithm. However kernels are not duplicated during or after the

CHAPTER?. TECHNOLOGY INDEPENDENT OPTIMIZATION 106

algorithm. Boolean nodes can be very large after kernel extraction. Duplicating nodes at this point

can increase the literal count considerably. The duplication process is therefore proposed to be a

separate operation, which is called a wire-planned duplication logic operation.

The wire-planned duplication algorithm traverses the Boolean network and duplicates

nodes whose fanout angles are larger than 90®. Eventually, the fanout angles of the nodes and their

duplicates are smaller than or equal to 90®. The algorithm is guaranteed to terminate because in the

worst case each node only has a single fanout.

Let I be the number of fanouts of k and let oi and o/ be the two end points found when

computing the fanout angle ajt of k. If ak > 90®, then a circular order of the fanouts is computed,

denoted as FO^{k) = (oi ,02? ••• ?<?/)• The duplication algorithm partitions the set of all fanouts into

f partitions are created by traversing the fanouts in the order ofthe sorted list FO^{k).
A partition starts from oi, and nodes are added until a fanout is reached that would result in a fanout

angle larger than 90®. A new partition is then started and the procedure is repeated.

The interaction with placement is the same as that of wired and wire-planned kernel ex

traction. When a duplicate node is created, its position is obtained using the local placement algo

rithm. The global placement is invoked after every \if nodes havebeen created during duplication.

7.4 Experimental Results

Both wired and wire-planned kernel extraction algorithms have been implemented as op

tions to thefast-extract command of SIS. In all experiments, y is 20, i.e. the global placement is

called after every 20 kernels have been extracted. For the wired kernel extraction algorithm, Xis

chosen to be 5% x ^^3^, where Wand H are the width and height ofthe core (or placement area)
respectively. This choice of Xmeans that if a kernel k reduces the length of the interconnect by X,

then its value is increased by 1. The parameter of \j/ was chosen to be 5, i.e. the global placement

is called after every 5 nodes are created during the wire-planned duplication algorithm. The same

benchmark circuits are used in this chapter as were used in the previous.

7.4.1 Area and Wire-Length Minimization

In the first experiment, both wired and wire-planned kemel extraction algorithms are in

voked within an area minimization script. The details of the SIS experiment are the same as in the

previous chapter. The only difference between SIS minimization script and the new kemel extrac-

CHAPTER?. TECHNOLOGYINDEPENDENT OPTIMIZATION 107

tion scripts is in the call tofast-extract, where appropriate options have been used to invoke the new

algorithms. In the wire-planned kernel extraction runs, the duplication step follows the technology

decomposition step. This is done to minimize area penalty, since after technology decomposition,

all nodes are small, i.e. 2-input NAND/NOR gates and inverters. Table 7.1 shows the interconnect

delay comparison between the results from the previous chapter (using only technology dependent

optimizations) and the results using kernel extraction algorithms proposed in this chapter along

with technology dependent optimizations. Columns labeled "SIS" and "Area" are results from the

previous chapter (i.e. SIS results, and results of technology dependent optimization for area and

wire-length minimization). Columns labeled "Wired Fx + Area" are the results using wired kernel

extraction followed by technology dependent optimization for area and wire-length minimization.

Columns labeled "Wp Fx -i- Area" are the results using wire-planned kernel extraction followed by

technology dependent optimization for area and wire-length minimization. As seen from this table,

the wire-planned kernel extraction achieves significant reduction in interconnect delay (30.8% on

average) while wired kernel extraction is not effective (the interconnect delay actually increases as

compared to the results obtained using only technology dependent optimization). Similar improve

ments are obtained in the total delay as shown in Table7.2. As seen from this table, the wire-planned

kernel approach followed by the technology dependent approach from the previous chapter results

in a 20.3% reduction in circuit delay on average. The wired kernel extraction approach results in an

increase in the total delay (compared to the results obtained by using only the technology dependent

approach). The penalty in area is shown in Table 7.3. The wired kernel extraction algorithm has

an area penalty of 12.0% on average, or 2.4% higher than simply using technology dependent op

timization. The wire-planned approach has a higher area penalty in area because it duplicates cells

(18.5% on average).

7.4.2 Delay Optimization

In the second experiment, both the wired and wire-planned kernel extraction algorithms

are invoked within a delay optimization script. The scripts for SIS and the proposed schemes are

the same as in the previous chapter. The only difference is that in the proposed schemes, the kernel

extraction step utilizes either wired or wire-planned kernel extraction. As in the area minimization

experiments, the duplication step follows the technology decomposition step in the wire-planned

kernel extraction runs. The technology dependent optimization used here is the multiple match

method since it gives the best results. Table 7.4 shows the interconnect delay comparison between

CHAPTER?. TECHNOLOGY INDEPENDENT OPTIMIZATION 108

Table 7.1: Comparing interconnect delay for dilferent kernel extraction algorithms in area mini
mization (delays in ps).

Name SIS

Area Wired Fx + Area Wp Fx + Area
Val Percent Val Percent Val Percent

C1908 118 115 -3% 133 12% 84 -29%

C2670 140 95 -32% 123 -12% 109 -22%

C3540 295 196 -33% 166 -44% 170 -42%

C432 146 178 22% 178 22% 68 -53%

C499 62 72 17% 74 19% 79 28%

C6288 265 386 46% 386 46% 259 -2%

C880 124 122 -1% 117 -6% 119 -4%

apex6 245 134 -45% 133 -46% 152 -38%

cht 42 31 -24% 32 -23% 32 -24%

dalu 417 266 -36% 288 -31% 187 -55%

example2 122 114 -6% 110 -9% 70 -42%

frg2 358 422 18% 407 14% 258 -28%

i5 87 63 -27% 64 -27% 55 -37%

i6 306 346 13% 346 13% 135 -56%

i7 366 323 -12% 329 -10% 164 -55%

i8 815 805 -1% 813 -0% 441 -46%

i9 485 474 -2% 469 -3% 246 -49%

pair 546 330 -40% 385 -29% 357 -35%

rot 121 86 -28% 91 -24% 83 -31%

terml 25 20 -21% 27 9% 27 9%

ttt2 38 35 -8% 34 -10% 32 -15%

vda 130 137 5% 151 16% 134 3%

xl 68 43 -37% 38 -45% 24 -65%

x3 226 128 -43% 125 -45% 107 -52%

x4 153 125 -18% 107 -30% 109 -29%

Ave — — -12.0% — -9.7% — -30.8%

CHAPTER?. TECHNOLOGYINDEPENDENT OPTIMIZATION 109

Table 7.2: Comparing total delay for different kernel extraction algorithms in area minimization
(delays in ps).

Name SIS

Area Wired Fx + Area Wp Fx + Area
Val Percent Val Percent Val Percent

C1908 1364 1352 -1% 1404 3% 1283 -6%

C2670 1433 1245 -13% 1410 -2% 1297 -9%

C3540 2195 2005 -9% 1695 -23% 1769 -19%

C432 1549 1745 13% 1745 13% 1148 -26%

C499 863 1000 16% 998 16% 1047 21%

C6288 4926 4935 0% 4935 0% 4331 -12%

C880 1737 1730 -0% 1505 -13% 1719 -1%

apex6 1196 869 -27% 869 -27% 924 -23%

cht 444 318 -28% 319 -28% 318 -28%

dalu 2356 1816 -23% 1936 -18% 1406 -40%

example2 904 841 -7% 878 -3% 615 -32%

frg2 1645 2076 26% 1990 21% 1483 -10%

i5 795 547 -31% 541 -32% 636 -20%

i6 1622 1673 3% 1673 3% 848 -48%

i7 1700 1499 -12% 1504 -12% 753 -56%

i8 2884 2991 4% 3098 7% 1929 -33%

i9 2522 2408 -5% 2406 -5% 1547 -39%

pair 2318 1745 -25% 1858 -20% 1785 -23%

rot 1147 1107 -3% 1158 1% 1154 1%

terml 397 371 -6% 380 -4% 410 3%

ttt2 617 605 -2% 605 -2% 598 -3%

vda 884 826 -7% 909 3% 847 -4%

xl 525 426 -19% 419 -20% 353 -33%

x3 1367 877 -36% 855 -37% 708 -48%

x4 952 851 -11% 890 -7% 778 -18%

Ave — — -8.1% — -7.4% — -20.3%

CHAPTER 1. TECHNOLOGY INDEPENDENT OPTIMIZATION 110

Table 7.3: Comparing area for different kernel extraction algorithms in area minimization (in

Name SIS

Area Wired Fx + Area Wp Fx + Area
Val Percent Val Percent Val Percent

€1908 5933 6036 2% 6209 5% 6612 11%

€2670 7874 9475 20% 9729 24% 9469 20%

€3540 14844 16410 11% 15114 2% 17349 17%

€432 2333 2356 1% 2356 1% 2650 14%

€499 5818 6019 3% 5979 3% 6215 7%

€6288 36858 37642 2% 37647 2% 42584 16%

€880 4758 5363 13% 5230 10% 5374 13%

apex6 8571 9360 9% 9510 11% 10547 23%

cht 1797 1843 3% 1843 3% 1976 10%

dalu 10783 12810 19% 13087 21% 13496 25%

example2 3923 4349 11% 4452 14% 4821 23%

frg2 8824 10598 20% 10714 21% 11526 31%

i5 2281 2701 18% 2782 22% 3099 36%

i6 6641 7171 8% 7171 8% 7327 10%

i7 8375 9556 14% 9590 15% 9740 16%

i8 11894 13720 15% 13997 18% 14751 24%

i9 7396 7569 2% 7580 2% 8335 13%

pair 19020 21612 14% 22372 18% 23397 23%

rot 8156 8617 6% 8974 10% 9210 13%

terml 2079 2074 -0% 2333 12% 2172 4%

ttt2 2575 2851 11% 2713 5% 3076 19%

vda 7033 7425 6% 9487 35% 9026 28%

xl 3738 4044 8% 4136 11% 4337 16%

x3 9210 10195 11% 9971 8% 11146 21%

x4 4677 5397 15% 5622 20% 6036 29%

Ave — — 9.6% — 12.0% — 18.5%

CHAPTER?. TECHNOLOGY INDEPENDENT OPTIMIZATION 111

the various approaches. Columns labeled "SIS" and "Mult. Match" correspond to the results of

runningSIS and the multiplematch methodrespectively (as seen in the previous chapter). Columns

labeled "Wired Fx + Mult. Match" show the results of running wired kernel extraction and the

multiple match method. The results of running wire-planned kernel extraction and the multiple

match method are shown in columns labeled "Wp Fx + Mult. Match". As seen from this table, the

proposed kernel extraction algorithms achieve an improvement in interconnect delay. In the wire-

planned kernel extraction approach, an average of 23.8% reduction is achieved. The results for

total delay are shown in Table 7.5, where the wired and wire-planned kernel extraction techniques

achieve average reductions of 12.3% and 14.8% (as opposed to a delay reduction of 10.2% for

the multiple match method) respectively. Table 7.6 shows the area needed by all approaches. In

order to achieve the additional delay reduction, the area utilization of the proposed kernel extraction

approaches increases when compared with the multiple match method. However,the area utilization

is still 22.3% and 17.9% smaller when compared with SIS.

CHAPTER?. TECHNOLOGY INDEPENDENT OPTIMIZATION 112

Table 7.4: Comparing interconnect delay for different kernel extraction algorithms in delay mini
mization (delays in ps).

Name SIS

Mult. Match Wired Fx + Mult. Match Wp Fx + Mult. Match
Val Percent Val Percent Val Percent

C1908 183 164 -11% 155 -16% 185 1%

C2670 258 230 -11% 214 -17% 209 -19%

C3540 452 385 -15% 349 -23% 384 -15%

C432 165 132 -20% 136 -17% 79 -52%

C499 61 66 8% 63 4% 71 16%

C6288 280 299 7% 308 10% 292 4%

C880 108 90 -16% 88 -18% 55 -49%

apex6 636 491 -23% 486 -24% 447 -30%

cht 173 86 -50% 86 -50% 83 -52%

dalu 618 524 -15% 484 -22% 546 -12%

example2 181 134 -26% 113 -38% 121 -33%

frg2 560 545 -3% 414 -26% 292 -48%

i5 74 81 9% 81 9% 81 8%

i6 417 349 -16% 350 -16% 315 -24%

i7 817 603 -26% 605 -26% 591 -28%

i8 2017 1701 -16% 1278 -37% 1378 -32%

i9 588 564 -4% 435 -26% 248 -58%

pair 884 465 -47% 457 -48% 703 -20%

rot 97 104 8% 95 -2% 95 -2%

terml 39 30 -24% 30 -23% 26 -34%

ttt2 46 46 1% 44 -4% 30 -33%

vda 237 271 14% 247 4% 210 -12%

xl 63 56 -11% 40 -36% 63 1%

x3 766 519 -32% 519 -32% 514 -33%

x4 320 281 -12% 287 -10% 189 -41%

Ave — — -13.3% — -19.3% — -23.8%

CHAPTER?. TECHNOLOGY INDEPENDENT OPTIMIZATION 113

Table 7.5; Comparing total delay for different kernel extraction algorithms in delay minimization
(delays in ps).

Name SIS

Mult. Match Wired Fx + Mult. Match Wp Fx + Mult. Match
Val Percent Val Percent Val Percent

C1908 1419 1391 -2% 1381 -3% 1464 3%

C2670 1937 1811 -6% 1763 -9% 1796 -7%

C3540 2603 2243 -14% 2360 -9% 2263 -13%

C432 1607 1408 -12% 1423 -11% 1190 -26%

C499 830 806 -3% 856 3% 973 17%

C6288 3720 3559 -4% 3516 -5% 3539 -5%

C880 1194 981 -18% 869 -27% 902 -24%

apex6 2287 1883 -18% 1865 -18% 1677 -27%

cht 967 523 -46% 523 -46% 527 -45%

dalu 2589 2277 -12% 2204 -15% 2260 -13%

example2 1092 878 -20% 800 -27% 829 -24%

frg2 2000 2251 13% 2224 11% 1641 -18%

i5 631 586 -7% 587 -7% 568 -10%

i6 1620 1611 -1% 1612 -1% 1488 -8%

\1 2855 2571 -10% 2573 -10% 2475 -13%

i8 6653 6091 -8% 4421 -34% 5049 -24%

i9 2635 2607 -1% 2261 -14% 1525 -42%

pair 2417 1630 -33% 1672 -31% 2337 -3%

rot 806 942 17% 898 11% 881 9%

terml 474 400 -16% 374 -21% 429 -10%

ttt2 466 416 -11% 417 -11% 370 -21%

vda 1304 1187 -9% 1440 10% 1192 -9%

xl 532 495 -7% 440 -17% 565 6%

x3 2506 1880 -25% 1832 -27% 1802 -28%

x4 1370 1322 -4% 1366 -0% 891 -35%

Ave — — -10.2% — -12.3% — -14.8%

CHAPTER?. TECHNOLOGYINDEPENDENT OPTIMIZATION 114

Table 7.6: Comparing area fordifferent kernel extraction algorithms in delay minimization (in (ji^).

Name SIS

Mult. Match Wired Fx + Mult. Match Wp Fx + Mult. Match
Val Percent Val Percent Val Percent

C1908 13916 11330 -19% 11295 -19% 12568 -10%

C2670 18887 13317 -29% 13784 -27% 14907 -21%

C3540 28155 22383 -20% 22873 -19% 24157 -14%

C432 3894 3600 -8% 3588 -8% 4038 4%

C499 8531 6676 -22% 6699 -21% 7540 -12%

C6288 70767 60710 -14% 60273 -15% 64524 -9%

C880 8870 7240 -18% 7517 -15% 7390 -17%

apex6 17240 12326 -28% 12436 -28% 12943 -25%

cht 3727 2367 -36% 2367 -36% 2396 -36%

dalu 25476 19728 -23% 20177 -21% 21001 -18%

example2 8329 5478 -34% 5875 -29% 6077 -27%

frg2 21905 14694 -33% 14734 -33% 15782 -28%

i5 6682 5979 -11% 6163 -8% 6215 -7%

i6 10639 7425 -30% 7442 -30% 7148 -33%

i7 14400 9579 -33% 9579 -33% 9746 -32%

i8 29094 21652 -26% 21335 -27% 23484 -19%

i9 15592 10489 -33% 10253 -34% 10644 -32%

pair 35222 29635 -16% 30200 -14% 31784 -10%

rot 14498 12038 -17% 12217 -16% 12874 -11%

terml 4205 3491 -17% 3635 -14% 3623 -14%

ttt2 4015 3277 -18% 3364 -16% 3444 -14%

vda 20736 15546 -25% 16088 -22% 18104 -13%

xl 6578 5334 -19% 5270 -20% 5674 -14%

x3 15368 12678 -18% 12678 -18% 13507 -12%

x4 10040 6970 -31% 6687 -33% 7476 -26%

Ave — — -23.1% — -22.3% — -17.9%

115

Chapter 8

Conclusions and Future Research

In this chapter we summarize the contributions of this thesis and point out some future

directions in which this work can be extended.

8.1 Conclusions

The focus of this thesis has been the effects of interconnect on the design of integrated

circuits, particularly, westudied twosuch effects - theeffects of increasing interconnect delay along

with the increasing size ofcircuits being synthesized bylogic synthesis tools, and thetiming closure

problem (which is the large number of iterations needed to perform logic andlayout synthesis before

the results converge satisfactorily). We showed (analytically and experimentally) how the delay

due to interconnect becomes increasingly important as the minimum feature sizes shrink. We also

showed how the inaccuracy in estimating interconnect length, results in inaccuracies in estimating

interconnect delay, thereby causes the timing closure problem. Specifically, we showed that the

widely used wire-load model causes timingclosure problems.

In Chapter 3 we proposed a novel logic synthesis (wire-planning) in which all the delay

is assumed to be in the interconnect. We showed with an example why circuits synthesized using

conventional logic synthesis tools can have long wires when placed. By simply examining the

primary inputs and primary outputs of a Boolean node, we were able to determine whether there

would be a diversion in some path through the node regardless ofplacement. A node which cannot

be placed without diversions is called an illegal node. Since only the primary inputs and primary

outputs of a node are examined to check for the legality of the node, we presented an efficient

legality checking algorithm. The legality notion of a node was extended to a Boolean network.

CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 116

A monotonic point placement is guaranteed to exist if every node in the network is individually

legal. Moreover, given an arbitrary Boolean network, we showed that it can always be legalized.

Logic operations that maintain legality while restructuring the Boolean network were introduced.

Although the area penalty is large, the wire-planning approachprovidesa theoretical understanding

of the interaction between logic synthesis and placement.

Observing that the cause of the timing closure problem is the difficulty in estimating

interconnect length, we proposed an approach in Chapter4 that integrates logic synthesis and global

placement. Withthis approach, the interconnect length can be estimated moreaccurately since logic

synthesis and placement are integrated, as confirmed by our results. The strength of our approach

is the ability to maintain a placement of cells which is relatively similar to the placement of the

final circuit. This is achieved by carefully using global and local placement algorithms along with

synthesis operations. In addition, the same net model is used in our local placement algorithm

(where weplace nodes with respect to itsneighbors only) andtheglobal placement algorithm (which

is a quadratic placement algorithm).

In the technology dependent optimization phase of the integrated algorithm, we showed

a novel technology decomposition algorithm followed by four different technology mapping al

gorithms in Chapter 6. The heuristic technology decomposition algorithm is based on the under

standing of what constitutes a good circuit for placement from the wire-planning approach. Our

results showed a significant reduction of interconnect delay of the circuits which translates into a

10% average reduction in total delay for the benchmark circuits. We attribute this reduction to the

ability of our scheme to minimally perturb the placement of unmapped and mapped nodes during

the executions of the algorithms.

In the technology independent optimization phase of the proposed integrated approach,

we introduce in Chapter 7 two different kernel extraction algorithms. The first one directly takes

into account the interconnect length when searching for the best kernel to extract. For delay op

timization, this results in an average improvement of 6% in the interconnect delay and 2% in the

total delay (over the results of simply employing the technology dependent algorithms). The sec

ond kernel extraction algorithm is a heuristic based on the wire-planning approach. Here, kernel

extraction is followed by a step that duplicates nodes such that the circuit is easier to place, result

ing in a smaller interconnect delay. In addition to the delay reduction of the technology dependent

phase, this kernel extraction and duplication scheme results in an average reduction of 10.5% in

interconnect delay and 4.6% in total delay.

In summary, we have shown a theoretical approach that characterizes when a circuit has

CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 117

long interconnect and we have proposed a practical solution that integrates logic synthesis and

global placement. The main contribution of this integrated approach is that it is able to maintain the

minimal perturbation of the placement of Boolean nodes. This results in a significant reduction in

interconnect delay and total delay of the circuit.

8.2 Future Work

As mentioned above, the main contribution of this work is the ability to minimally perturb

the positions of Boolean nodes in the integrated algorithm. In addition to integrating local and

global placement, it is important to assign an effective objective function based on the optimization

being performed. It is because of such differences in objective functions that the multiple-match

method performs better that the fixed-load and single-match methods, and the wire-planned kernel

extraction performs better than the wired kernel extraction. Besides the operations considered in

this thesis, integrating other operations like graph mapping, and fanout optimization will be an

interesting extension to this research.

The results of the experiments in this thesis are based on the MSU standard cell li

brary [SSL''"92]. This library is small, and only one size of each type of gate is available. An

experiment with larger libraries will demonstrate the effectiveness of the proposed approach on

richer libraries. It is likely that the results of the proposed approach will show even more improve

ment, since more options are available.

The wire-planning approach provides an understanding of how interconnect length is af

fected by logic synthesis. Besides the wire-planning based heuristics used in this thesis, other

wire-planning heuristics which improve the integrated approach can bedevised. Anexample of this

is the selective application of wire-planned kernel extractiononly on longerpaths.

With the scaling of technology, cross-talk is becoming an important problem. By integrat

ing the proposed approach with global routing, more accuratedelay computation can be performed

since second order effects like cross-talk can be estimated and avoided. The cross-talk avoidance

algorithms proposed in [Kir97] can be used in this context.

118

Bibliography

[Ass97] Semiconductor Industry Association. National Technology Roadmap for Semicon

ductors. 1997.

[ASSP90] P. Abouzeid, K. Sakouti, G. Saucier, and F. Poirot. multilevel synthesis minimizing

the routing factor. In The Proceedings of the Design Automation Conference, pages

365-368, June 1990.

[Bak90] H. B. Bakoglu. Circuits, Interconnections, and Packagingfor VLSI. Addison-Wesley

Pub. Co., 1990.

[BHMSV84] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli.

Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,

1984.

[BM82] R. K. Brayton and C. McMullen. The Decomposition and Factorization of Boolean

Expressions. In The Proceedings of the International Symposium on Circuits and

Systems, pages 49-54, May 1982.

[BraOO] R. K. Brayton. Personal communication. 2000.

[BRSVW87] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A multiple-

level logic optimization system. IEEE Trans on CAD,CAD-6(6): 1062-1081, Novem

ber 1987.

[Cad99] Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA.

Envisia Silicon Ensemble Place-and-route Reference, Nov 1999.

[CK84] C.K. Cheng and E.S. Kuh. Module placement based on resistive network optimiza

tion. IEEE Trans on CAD, CAD-3(3):218-225, July 1984.

BIBLIOGRAPHY 119

[CK94] J. Cong and C. K. Koh. Simultaneous driver and wire sizing for performance and

power optimization. IEEE Transactions on VLSI Systemsy 2(4):408-425, December

1994.

[CP98] J. Cong and Z. Pan. Interconnect Performance Estimation Models for Synthesis and

Design Planning. In Hie Proceedings of the International Workshop on Logic Syn

thesisyJune 1998.

[DJS91] K. Doll, P.M.Johannes, and G. Sigl. Domino: deterministic placement improvement

with hill-climbing capabilities. Proceedingsof the IFIP International Conference on

VLSIy pages 91-100, August 1991.

[DK85] A. Dunlop and B. Kemighan. A procedure for placementof standard-cell VLSI cir

cuits. IEEE Trans on CADy CAD-4(l):92-98, January 1985.

[EJ98] H. Eisenmann and P.M. Johannes. Generic global placement and floorplanning. In

The Proceedings ofthe Design Automation Conference, pages 269-274, June 1998.

[EIm48] W. C.Elmore. Thetransient analysis ofdamped linear networks with particular regard

to wideband amplifiers. J. Applied Physics, (19):55-63, 1948.

[PJ98] Matteo Prigo and Steven G. Johnson. PPTW: An adaptive software architecture for

the PPT. volume 3, pages 1381-1384, May 1998.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guideto the Theory

ofNP-completeness. W. H. Preeman and Company, 1979.

[GvL96] G. H.Golub andC.P.van Loan.MatrixComputations. TheJohnsHopkins University

Press, Baltimore and London, 3 edition, 1996.

[HK97] D. J. Huang and A. B. Kahng. Partitioning-based standard-cellglobal placementwith

an exact objective. In The Proceedings of the International Symposium on Physical

Design, pages 18-25, April 1997.

[Hu99] Chenming Hu. Personal communication. 1999.

[HV97] S. Hojat and P. Villarrubia. An integrated placement and synthesis approach for tim

ing closure of powerpc microprocessors. In Intl Workshop on Logic Synthesis, 1997.

BIBLIOGRAPHY 120

[JS99] Y. Jiang and S. S. Sapatnekar. An integrated algorithm for combined placement and

libraryless technology mapping. In The Proceedings ofthe International Conference

on Computer-Aided Design, pages 102-105, November 1999.

[Kir97] Desmond A. Kirkpatrick. The implications of deep sub-micron technology on the

design ofhigh performance digital vlsi systems. PhD thesis. University of California

Berkeley, Electronics Research Laboratory, College of Engineering, University of

California, Berkeley, CA 94720, December 1997.

[KMB+99] S.P. Khatri, A. Mehrotra, R.K. Brayton, A.L. Sangiovanni-Vincentelli, and R Otten.

A novel VLSI layout fabric for deep sub-micron applications. In Proceedings of the

Design Automation Conference, New Orleans, June 1999.

[KP89] F. J. Kurdahi and A. C. Parker. Techniques for Area Estimation of VLSI Layouts.

IEEE Transactions on Computer-Aided Design of Integrated Circuits, 8(l):81-92,

January 1989.

[KSJA91] J.M. Kleinhans, G. Sigl, P.M. Johannes, and K.J. Antreich. GORDIAN; VLSI place

ment by quadratic programming and slicing optimization. IEEE Trans on CAD,

10(3):356-365, March 1991.

[LCP99] J. Lou, W. Chen, and M. Pedram. Concurrent logic restructuring and placement for

timing closure. In The Proceedings of the International Conference on Computer-

Aided Design, pages 31-35, November 1999.

[LSP97] J. Lou, A. H. Salek, and M. Pedram. An exact solution to simultaneous technology

mapping and linear placement problem. In The Proceedings of the International

Conference on Computer-Aided Design, pages 671-675, November 1997.

[OB98] R. H. J. M. Otten and R. K. Brayton. Planning for Performance. In The Proceedings

of the Design Automation Conference, June 1998.

[PB91a] M. Pedram and N. Bhat. Layout driven logic restructuring/decomposition. In The

Proceedings ofthe International Conference on Computer-Aided Design, pages 134-

137, 1991.

[PB91b] M. Pedram and N. Bhat. Layout driven technology mapping. In The Proceedings of

the Design Automation Conference, pages 99-105, June 1991.

BIBLIOGRAPHY 121

[Rud89] Richard Rudell. Logic synthesisfor VLSI design. PhD thesis. University of California,

Berkeley, April 1989. Tech. Report No. UCB/ERL M89/49.

[Sav92] Hamid Savoj. Don't Cares in Multi-Level Network Optimization. PhD thesis. Univer

sity of California Berkeley, Electronics Research Laboratory, College of Engineering,

University of California, Berkeley, CA 94720, May 1992.

[SCK92] A. Srinivasan, K. Chaudhary, and E. S. Kuh. Ritual: a performance driven placement

algorithm. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, 39(ll):825-840, November 1992.

[She98] N. Shenoy. Personal communication. 1998.

[SID'̂ 99] N. Shenoy, M. Iyer, R. Damiano, K. Rarer, H. Ma, and P. Thilking. Arobust solution

to the timing convergence problem in high-performance design. In The Proceedings

ofthe International Conference on ComputerDesign, pages 250-257, October 1999.

[SK98] D. Sylvester and K. Keutzer. Getting to the bottom of deep submicron. In The

Proceedings of the International Conference on Computer-Aided Design, pages 203-

211, 1998.

[SRRJ97a] G. Stenz, B. M. Riess, B. Rohfleisch, and F. M.Johannes. Timing Driven Placement

in Interaction with Netlist Transformations. In The Proceedings of the International

Symposium on Physical Design, Napa Valley, CA, 1997.

[SRRJ97b] G. Stenz, B.M. Riess, B. Rohfleisch, and P.M. Johannes. Timing driven placement

in interaction with netlist transformations. In The Proceedings of the International

Symposium on Physical Design, pages 36-41, 1997.

[SSL''"92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. SIS:

A System for Sequential Circuit Synthesis. TechnicalReport UCB/ERL M92/41, UC

Berkeley Electronics Research Laboratory, Univ. of California, Berkeley, CA 94720,

May 1992.

[SSV84] C. Sechenand A.L. Sangiovanni-Vincentelli. TheTimberWolf placementand routing

package. In The Proceedings of the Custom Integrated Circuits Conference, May

1984.

BIBLIOGRAPHY 122

[Tou90] Herve J. Touati. Performance-Oriented Technology Mapping. PhD thesis, Univer

sity of California Berkeley,Electronics Research Laboratory, College of Engineering,

University of California, Berkeley, CA 94720, November 1990. Memorandum No.

UCB/ERLM90/109.

[vG90] L. R P. P. van Ginneken. Buffer placement in distributed rc-tree networks for minimal

elmore delay. In The Proceedings of the International Symposium on Circuits and

Systemsy pages 865-868, May 1990.

[VP93] H. Vaishnav and M. Pedram. Routability-Driven Fanout Optimization. In The Pro

ceedings of the DesignAutomation Conferenccy pages 230-235, June 1993.

[VP95] H. Vaishnav and M. Pedram. Minimizing the RoutingCost DuringLogic Extraction.

In The Proceedings of the DesignAutomation Conference, pages70-75, June 1995.

[VR90] J. Vasudevamurthy and J. Rajski. A method for concurrent decomposition andfactor

ization of Boolean expressions. In The Proceedings of the International Conference

on Computer-Aided Designy pages 510-513, November 1990.

	Copyright notice 2000
	ERL-00-67

