
State Abstraction for Programmable Reinforcement Learning
Agents

David Andre andStuart J. Russell
Computer Science Division, UC Berkeley, CA 94720

fdandre,russellg@cs.berkeley.edu

Report No. UCB/CSD-1-1156

October 2001

Computer Science Division (EECS)
University of California
Berkeley, California 94720

State Abstraction for Programmable
Reinforcement Learning Agents�

David Andre and Stuart J. Russell
Computer Science Division, UC Berkeley, CA 94720

fdandre,russellg@cs.berkeley.edu

Abstract
Safe state abstraction in reinforcement learning allows an agent to ig-
nore aspects of its current state that are irrelevant to its current deci-
sion, and therefore speeds up dynamic programming and learning. Like
Dietterich’s MAXQ framework, this paper develops methods for safe
state abstraction in the context of hierarchical reinforcement learning,
in which a hierarchical partial program is used to constrain the policies
that are considered. We extend techniques from MAXQ to the context
of programmable hierarchical abstract machines (PHAMs), which ex-
press complex parameterized behaviors using a simple extension of the
Lisp language. We show that our methods preserve the property of hi-
erarchical optimality, i.e., optimality among all policies consistent with
the PHAM program. We also show how our methods allow safe detach-
ment, encapsulation, and transfer of learned “subroutine” behaviors, and
demonstrate our methods on Dietterich’s taxi domain.

1 Introduction
The ability to make decisions based on onlyrelevantfeatures is a critical part of intelli-
gence and efficient decision making. For example, when faced with a flight of stairs to
climb, there is little need to consider the address of the building containing those stairs, let
alone the current price of tea in China.State abstractionis the process of eliminating as-
pects of state descriptions to reduce the effective state space; such reductions can speed up
dynamic programming and reinforcement learning algorithms considerably. Without state
abstraction, each new staircase, each new circumstance involving the existing staircase,
and even each step of each staircase requires the agent to relearn a policy from scratch. An
abstraction is calledsafeif optimal solutions in the abstract space are also optimal in the
original space. Safe abstractions were introduced by Amarel [1] for the Missionaries and
Cannibals problem. Boutilieret al. [5] proposed a general method for deriving safe state
abstractions for Markov decision processes (MDPs).

Faster problem solving and learning can also be achieved by providingprior constraints
on behaviors through some form of partial program. The field of hierarchical reinforce-
ment learning has developed several partial programming formalisms and associated al-
gorithms that construct policies consistent with partial programs.Hierarchical abstract
machines, or HAMs [11], are hierarchical finite automata with nondeterministicchoice
pointswithin them where learning is to occur. MAXQ programs [7, 8] organize behavior
into a hierarchy in which each “subroutine” is simply a repeated choice among a fixed set

�David was supported by the generosity of the Fannie and John Hertz Foundation. The work was
also supported by the following grants: NSF ECS-9873474, ONR MURI N00014-00-1-0637

of lower-level subroutines until a termination condition is met. DTGolog [6] allows par-
tial programming in Prolog combined with symbolic dynamic programming as a solution
method. Programmable HAMs, or PHAMs [4], are described in Section 2; in short, they
augment Lisp with choice points and interrupts to give a very expressive agent language.1

All these methods construct policies that are “optimal” in some sense. HAMs, PHAMs, and
DTGolog usehierarchical optimality, i.e., optimality among all policies consistent with the
partial program. MAXQ usesrecursive optimality, in which choices within a subroutine
are optimized independently of the calling context, assuming some fixed relative valuation
of the possible “exits” from the subroutine.

The combination of state abstraction and hierarchical reinforcement learning is natural,
because the notion of “subroutine” is predicated on the idea that decisions “internal” to
the subroutine ought to be made based on little or no “outside” information; any relevant
outside information can be passed in through arguments. DTGolog [6] derives abstrac-
tions that are safe with respect to hierarchical optimality by computing logical descriptions
of state sets with constant value. Abstractions in MAXQ preserve recursive optimality,
which is a weaker condition and therefore allows stronger abstractions. Additionally, Di-
etterich [8] makes a crucial observation: a state variable can be irrelevant to a decision in
a particular stateeven if the variable affects the value of the state. For example, suppose
a taxi driver is on her way to pick up a passenger at location A. The value of the current
state depends on the passenger’s destination, B, because B influences the fare that will be
paid. Yet B has no bearing on the current decision about how to get to A. Dietterich obtains
this additional form of abstraction by developing a two-part decomposition of the value
function, reflecting the structure of the partial MAXQ program, and shows that it yields
substantial additional speedup.

In comparing recursive and hierarchical optimality, Dietterich [8] remarks that “State ab-
stractions [of this kind] cannot be employed without losing hierarchical optimality,” which
may be true for a two-part value decomposition. Section 3 of this paper develops a three-
part decomposition that allows safe state abstraction with respect to hierarchical optimality.
We also give a decomposed dynamic programming formulation for deriving hierarchically
optimal solutions. Section 4 derives a set of conditions for identifying safe abstractions,
and Section 5 describes a convergent reinforcement learning algorithm for PHAMs with
state abstraction. Finally, Section 6 describes experimental results for this algorithm using
Dietterich’s taxi domain. Detailed proofs of all theorems are omitted for space reasons.

2 Background
Our framework for MDPs is standard [8, 9]. An MDP is a 4-tuple,(S;A; T ;R), where
S is a set of states,A is a set of actions,T is a probabilistic transition function mapping
S � A � S ! [0; 1], andR is a reward function mappingS � A � S to the reals. In this
paper, we focus on infinite-horizon MDPs with a discount factor�. A solution to an MDP is
an optimal policy�� that maps fromS ! A and achieves maximum expected discounted
reward for the agent. An SMDP (semi-Markov decision process) allows for actions that
take more than one time step.T is modified to be a mapping fromS;A;S;N ! [0; 1],
whereN is the natural numbers; i.e., it specifies a distribution over both output states
and action durations.R is then a mapping fromS;A;S;N to the reals. The expected
discounted reward for taking an actiona in states and then following a policy� is known
as theQ value of that state/action pair, and is defined asQ�(s; a) = E[r0+�r1+�

2r2+:::].
Note that� = �� if �(s) = argmaxaQ

�(s; a).

The PHAM programming language consists of the LISP language augmented with three
special macros that enable reinforcement learning to be performed:

1Options [12] augment the set of primitive actions with user-written complex behaviors without
restricting the possible policies considered; although they speed learning, they are not truly partial
policies and are thus not directly comparable to the other methods.

Y

G

B

R

(defun root () (if (not (have-pass)) (get)) (put))
(defun get () (choice get-choice

(pham-action ’pickup)
(call-subpham Navigate (pass-loc))))

(defun put () (choice put-choice
(pham-action ’putdown)
(call-subpham Navigate (pass-dest))))

(defun navigate(t)
(loop until (at t) do

(choice nav (pham-action ’N)
(pham-action ’E)
(pham-action ’S)
(pham-action ’W))))

Figure 1: The taxi world. It is a 5x5 world with 4 special cells (RGBY) where the passenger is
picked up and dropped off. In each episode, the taxi starts in a randomly chosen square, and there is
a passenger at a random one of the 4 special cells with random destination. The taxi must pick up
the passenger and deliver her, using the commandsN,S,E,W,Pickup ,Putdown . The taxi receives
a reward of -1 for every action, +20 for successfully delivering the passenger, -10 for attempting to
pickup or putdown the passenger at incorrect locations. The discount factor is 1.0. The partial
program shown on the right is a PHAM for this problem that expresses the same constraints as
Dietterich’s taxi MAXQ program. It breaks the problem down into the tasks of getting and putting
the passenger, and further isolates the navigation component.

Æ (choice <label> <form0> <form1> : : :) takes 2 or more arguments, where the
forms are LISP S-expressions. The agent must learn which form to execute.
Æ (call-subpham <subroutine> <arg0> <arg1>) calls a subroutine with its argu-

ments and alerts the learning mechanism that a subroutine has been called.
Æ (pham-action <action-name>) executes a “primitive” action in the MDP.

A PHAM program consists of an arbitrary LISP program that is allowed to use these macros
and obeys the constraint that all subroutines that include choice points (either directly, or
indirectly, through nested subroutine calls) are called with thecall-subphammacro. De-
fineC as the set of choice points (one for eachchoice macro) in a PHAM program and
� as the set of possible machine states achievable by the program (where a machine state
includes the program counter, all memory variables, and the call stack). In previous work
[2, 4], we showed that, under appropriate restrictions (such as that the number of machine
statesj�j stays bounded in every run in the environment), the problem of finding the op-
timal choices for each choice-pointc in C is equivalent to finding a solution for the joint
SMDP created by executing the PHAM program in an MDP. We presented a hierarchically
optimal learning algorithm (based on [11]), and demonstrated the advantages of using the
PHAM language in terms of both expressive power and learning rate. An example PHAM
is shown in Figure 1 which also describes the Taxi world domain from Dietterich’s experi-
ments [8], on which we illustrate our techniques.

3 Value Function Decomposition

A value function decomposition splits the value of a state/action pair into mulitple additive
components. In Dietterich’s decomposition, for example, the expected discounted return
for executing actiona and then following� until the end of the current subroutineh is writ-
ten asQ�(h; s; a) and is split into two parts:V �(s; a) (the expected reward from executing
a in world states) andC�(h; s; a) (the expected reward for finishing subroutineh aftera
is executed), whereQ�(h; s; a) = V �(s; a) + C�(h; s; a). This two-part decomposition
allows only for recursive optimality precisely because the expected rewardaftersubroutine
h is executed is not a component of the value function forh; s; a.

To achieve hierarchical optimality for a value function decomposition in the PHAM frame-
work, we must redefine these two components slightly and add a new component for the
expected reward outside the current subroutine. First, note that we will express value func-
tions in the joint SMDP space, where each state! is comprised of an environment state
s and an internal state�. The actionsA consist of the choices at the choice points in the
PHAM program. DefineAp as the set of actions where the corresponding choice is either
not a sub-PHAM call or calls only subroutines containing no choice points.

TheQ-value for executing actiona in ! is writtenQ�(!; a) and is decomposed as follows:

Q
�(!; a) = E

"
1X
t=0

�trt

#
= E

"
N1�1X
t=0

�trt

#
+E

"
N2�1X
t=N1

�trt

#
+E

"
1X

t=N2

�trt

#

= Q
�
r (!; a) + Q

�
c (!; a) + Q

�
e (!; a)

whereN1 is the number of primitive steps to finish actiona, N2 is the number of primitive
steps to finish the current subroutine, and the expectation is over tracjectories starting inw
with actiona and then following�. Qr thus expresses the expected discounted reward for
doing the current action,Qc for completing rest of the current subroutine, andQe for all
the reward external to the current subroutine.

Before presenting the Bellman equations for the decomposed value function, we must first
define transition probability measures that take the hierarchy of the program into account.
First, we have the standard SMDP transition probabilityp(!0; N j!; a), which is the prob-
ability of an SMDP transition to!0 takingN steps given that actiona is taken in!. Next,
letS be a set of states, and letF �

S (!
0; N j!; a) be the probability that!0 is the first element

of S reached and that this occurs inN primitive steps, given thata is taken in!. Two such
distributions are useful,F �

SS(!) andF �
EX(!), whereSS(!) are those states in the same sub-

routine as! andEX(!) are those states that are exit points for the subroutine containing
!. Using these probabilities, we can write the Bellman equations using our decomposed
value function, as follows:

Q
�
r (!; a) =

8<
:
X
!0;N0

p(!0; N j!; a)r(!0; N; !; a) if a 2 Ap

Q�
r (ia(!); �(ia(!))) +Q�

c (ia(!); �(ia(!))) otherwise:
(1)

Q
�
c (!; a) =

X
!0;N

F �
SS(!)(!

0; N j!; a)�N [Q�
r (!

0; �(!0)) +Q�
c (!

0; �(!0))] (2)

Q
�
e (!; a) =

X
!0;N

F �
EX(!)(!

0; N j!; a)�N [Q�(o(!0); �(o(!0)))] (3)

whereo(!) returns the next choice state at the parent level of the hierarchy, andia(!)
returns the first choice state at the child level, given actiona. 2

Theorem 1 If Q�

r , Q
�

c , andQ�

e are solutions to Equation 1, Equation 2, and Equation 3
for ��, thenQ� = Q�

r +Q�

c +Q�

e is a solution to the standard Bellman equation.

Theorem 2 Decomposed value iteration and policy iteration algorithms (omitted here)
derived from Equation 1, Equation 2, and Equation 3 converge toQ�

r , Q
�

c , Q
�

e, and��.

4 State Abstraction and Transfer
There are several opportunities for state abstraction in the taxi task (Figure 1). For example,
while completing theGet subroutine, the the passenger’s destination is not relevant to
decisions about getting to the passenger’s location. Similarly, when navigating, only the
current x/y location and the target location are important – whether the taxi is carrying
a passenger is not relevant. Taking advantage of these intuitively appealing abstractions
requires a value function decomposition, as Table 1 shows. The key idea of state abstraction
is that we want to treat certain sets of states as equivalent for the different components of
our decomposition. We first require some notation to set up our theoretical results. Letz(c)
be an abstraction function specifying the set of relevant machine and environment features
for each choice pointc. For the example shown in Table 1 where the x and y locations do

2We make a trivial assumption that calls to subroutines are surrounded by choice points with no
intervening primitive actions at the calling level. When this isn’t the case, single-choice choice points
are inserted, which allows simpler analysis.ia(!) ando(!) are thus simple deterministic functions,
determined from the program structure. See [3] for more details.

� x y pass dest Q(!; a) Qr(!; a) Qc(!; a) Qe(!; a)
fget-choice g 3 3 R G 0.23 -7.5 -1.0 8.74
fget-choice g 3 3 R B 1.13 -7.5 -1.0 9.63
fget-choice g 3 2 R G 1.29 -6.45 -1.0 8.74

Table 1: Table of Q values and decomposed Q values for 3 states and actiona = (nav pass) .
Note thatfget-choiceg is sufficient to describe the stack space for the simple taxi domain, and that
although none of theQ values listed are identical,Qc is the same for all three cases, andQe is the
same for 2 out of 3, andQr is the same for 2 out of 3.

not matter for theQe value,z(get-choice) = f �, pass, dest g. Note that this
functionz groups states together into equivalence classes (for example, all states that agree
on assignments to�, pass , anddest would be in an equivalence class). Let�z(!) be a
mapping from states to a canonical member of the equivalence class to which they belong
for the abstractionz. For our example,�z would map all states< get�choice; �; �; R;G >
to some state in the class, say,< get � choice; 0; 0; R;G >. An abstraction can also
be dependent on the action taken at!, and is writtenz(!; a), where the corresponding
mapping function is�z(!; a). Finally, define the recursive closure of!, rc(!), as the
set of all states contained in any subroutine in the call subtree rooted by the subroutine
containing!. We now define 3 types of equivalence that provide safe state abstractions.
Definition 1 (R-equivalence) zr is R-equivalent iff for all!1, !2,anda,

�zr(!1; a) = �zr (!2; a))
X
!0;N

p(!0; N j!1; a)r(!
0; N; !1; a) =

X
!0;N

p(!0; N j!2; a)r(!
0; N; !2; a)

Definition 2 (E-equivalence) ze is E-equivalent iff8!;�;aQ�
e (!; a) = Q�

e (�ze(!; a); a)

Definition 3 (SSP-equivalence)An abstraction functionzs is strongly sub-PHAM (SSP)
equivalent iff the following 4 conditions hold for all PHAM consistent policies:

1. If zs ignores a feature (e.g.fk) at one level, it must do so at all lower levels in the
hierarchy:8!;kfk 62 zs(!)) 8!0 2 rc(!)fk 62 zs(!

0).
2. Equivalent states have equivalent transition probabilities:8!;!0;a;N

p(!0; N j!0; a) = p(�zs(!
0); N j�zs(!); a)

3

3. Equivalent states have equivalent rewards:8!;!0;A;N

r(!0; N; !; a) = r(�zs(!
0); N; �zs(!); a)

4. The variables inzs are enough to determine the optimal policy:8!�(!) = �(�zs(!))

The last condition states that in the optimal policy, the choices of action are the same for
any states that are abstracted together. This is related to the notion that states can only
be abstracted together if the contexts of those states is similar enough that the policy is
the same. It could also be described as “passing in enough information to determine the
policy”. This is the critical constraint that allows us to maintain hierarchical optimality
while still performing state abstraction.

Now, we can express the abstracted Bellman equations, using the shorthand of�zr = �r,
�zs = �s, and�ze = �e.

8a2Ap
Q�
r (�r(!; a); a) =

X
!0;N

p(!0; N j�r(!; a); a)r(!
0; N; �r(!; a); a) (4)

8a62Ap
Q
�
r (�s(!; a); a) = Q

�
r (w

0
; �(w0)) +Q

�
c (w

0
; �(w0)); wherew0 = ia(�s(!)) (5)

8aQ
�
c (�s(!); a) =

X
!0;N

F �
SS(�s(!))

(!0; N j�s(!); a)�
N [Q�

r (�s(!
0); �(�s(!

0)))

+Q�
c (�s(!

0); �(�s(!
0)))]

(6)

8aQ
�
e (�e(!; a); a) =

X
!0;N

F �
EX(!)(!

0; N j�e(!; a); a)�
N [Q�(o(!0); �(o(!0)))] (7)

3We can actually use a weaker condition: Dietterich’s [8] factored condition for subtask irrele-
vance; see [3] for details.

Theorem 3 If zr is R-equivalent,zs is SSP-equivalent, andze is E-equivalent, then, ifQ�

r ,
Q�

c , andQ�

e are solutions to Equation 4, Equation 5, Equation 6, and Equation 7 for��,
thenQ� = Q�

r +Q�

c +Q�

e is a solution to the standard Bellman equation.

Theorem 4 Decomposed abstracted value iteration and policy iteration algorithms (omit-
ted here) derived from Equation 4, Equation 5, Equation 6, and Equation 7 converge to
Q�

r , Q
�

c , Q
�

e, and��.

Note that abstraction reduces the size of the system of equations describing the SMDP by
an amount dependent on the abstraction functionszr, zs, andze.

5 The PHAM-SA learning algorithm
We present a simple model-free state abstracted learning algorithm based on MAXQ [8]
for our three level value function decomposition. We store and updateQ̂c(�s(!); a)

andQ̂e(�s(!; a); a) for all a 2 A, and r̂(�r(!; a); a) for thosea 2 Ap. We calculate
Q̂(!; a) = Q̂r(!; a) + Q̂c(�s(!); a) + Q̂e(�e(!; a); a). Note that as in Dietterich’s work,
Q̂r(!; a) is recursively calculated aŝr(�r(!; a); a) if a 2 Ap for the base case and other-
wise asQ̂r(!; a) = Q̂r(ia(!); a

0) + Q̂c(�s(ia(!)); a
0), wherea0 = argmaxb Q̂(w

0; b).

When transitioning to a state!0 contained in subroutineh, where the last choice point
visited inh was!, wherea was executed, andN primitive steps were taken between! and
!0, we do the following updates, wherea0 = argmaxb Q̂(!

0; b).
Æ if a 2 Ap, r̂(�r(!; a); a) (1� �)r̂(�r(!; a); a) + �rs

Æ Q̂c(�s(!); a) (1� �)Q̂c(�s(!); a) + ��N [Q̂r(�s(!
0); a0) + Q̂c(�s(!

0); a0)]

Æ Q̂e(�e(!; a); a) (1� �)Q̂e(�e(!; a); a) + ��N Q̂e(�e(!
0; a0); a0)

Theorem 5 (Convergence of PHAM-SAQ-learning with State Abstraction)If zr, zs,
and ze are R-,SSP-, and E- Equivalent, respectively, then the above learning algorithm
will converge (with appropriately decaying learning rates and exploration method) to a
hierarchically optimal policy.

6 Experiments
Figure 2 shows the performance of five different learning methods on Dietterich’s taxi-
world problem. The learning rates and Boltzman exploration constants were tuned for
each method. The Q-learning method is just regular Q-learning for the problem. Note
that it performs better than the PHAM w/o SA (state abstraction) method – this is because
the problem is episodic, and the PHAM has states that are only visited once per episode,
whereas Q learning can visit states multiple times per run. Performing better than Q learn-
ing is the “Better PHAM w/o SA”, which is a PHAM where extra constraints have been
expressed, namely that thepickup (putdown) action should only be applied when the
taxi is co-located with the passenger (destination). The top performing methods both use
state abstraction. The fact that the “Better PHAM w/ SA” performs essentially the same as
the “PHAM w/ SA” method is interesting, and appears to be due to the fact that it is rela-
tively easy for the state abstracted PHAM to learn not topickup andputdown unless it
is at the right place.

7 Conclusions and Future Work
This paper has shown that it is possible to obtain safe state abstraction while maintaining
hierarchical optimality. Although it is possible to use state abstraction in an approximate
fashion as a form of function approximation [10], we are investigating the possibility of

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

0 5 10 15 20 25 30
S

co
re

 (
A

ve
ra

ge
 o

f 1
0

tr
ia

ls
)

Num Primitive Steps, in 10,000s

Results on Taxi World

Q-Learning
PHAM w/o SA
PHAM w/ SA

Better PHAM w/o SA
Better PHAM w/ SA

Figure 2:Learning curves for the taxi domain, averaged over 50 training runs. Every 10000 primitive
steps (x-axis), the greedy policy was evaluted for 10 trials, and the score (y-axis) was averaged.

starting with safe state abstraction, and then doing function approximation for each com-
ponent of our three part abstracted and decomposed value function. Additionally, we are
investigating the use of shaping and model-based approaches to improve the speed of learn-
ing and allow the use of these techniques on real-world domains.

Note that, as in Dietterich’s work, our system requires that the user specify the set of state
abstractions to use. As previously mentioned, it would be preferable to automatically iden-
tify those state abstractions which are warranted by the environment’s dynamics. Com-
bining our three part value function decomposition with Boutillier’s [6] offline inferential
approach to finding state abstractions seems promising.

References

[1] S. Amarel. On representations of problems of reasoning about actions. In D. Michie, editor,
Machine Intelligence 3, volume 3, pages 131–171. Elsevier, 1968.

[2] D Andre. Programmable hams. tech report: www.cs.berkeley.edu/˜pham.ps, 2000.

[3] D Andre. State abstraction in phams. tech report: www.cs.berkeley.edu/˜sa.ps, 2001.

[4] D. Andre and S.J. Russell. Programmatic reinforcement learning agents. In Dietterich T.G.
Tresp V. Leen, T. K., editor,NIPS 13. MIT Press, Cambridge, Massachusetts, 2001.

[5] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy construction. In
Proc. of the Eleventh National Conf. on Artificial Intelligence, 1995.

[6] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent
programming in the situation calculus. InAAAI-2000, 2000.

[7] T. G. Dietterich. The maxq method for hierarchical reinforcement learning. InProceedings of
the Fifteenth International Conference on Machine Learning, 1998.

[8] T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of Artificial Intelligence Research, 13:227–303, 2000.

[9] Leslie P. Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A
survey.Journal of Artificial Intelligence Research, 4:237–285, 1996.

[10] R. Makar, S. Mahadevan, and M Ghavamzadeh. Hierarchical multi-agent reinforcement learn-
ing. In Fifth International Conference on Autonomous Agents, Montreal, 2001.

[11] R. Parr and S.J. Russell. Reinforcement learning with hierarchies of machines. In M. I. Jordan,
M.J. Kearns, and S. A. Solla, editors,NIPS 10. MIT Press, Cambridge, Massachusetts, 1998.

[12] R. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning.Artificial Intelligence, 112(1):181–211, February 1999.

