Copyright © 2001, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ENERGY-EFFICIENT PROCESSOR
SYSTEM DESIGN

by

Thomas David Burd

Memorandum No. UCB/ERL M01/13

7 March 2001

ENERGY-EFFICIENT PROCESSOR
SYSTEM DESIGN

by

Thomas David Burd

Memorandum No. UCB/ERL M01/13

7 March 2001

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Energy-Efficient Processor System Design
by
Thomas David Burd

B.S. (University of California, Berkeley) 1992
M.S. (University of California, Berkeley) 1994

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in

Engineering - Electrical Engineering
and Computer Sciences

in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Robert W. Brodersen, Chair

Professor Borivoje Nikolic
Professor Paul K. Wright

Spring 2001

The dissertation of Thomas David Burd is approved:

] WM%MN /3o

(VR /3]e
(s WDearnk if3)0
\ —

! { Date

University of California, Berkeley

Spring 2001

Energy Efficient Processor System Design -
© 2001
. by

Thomas David Burd

Abstract

Energy-Efficient Processor System Design

by
Thomas David Burd

Doctor of Philosophy in Engineering-Electrical Engineering
and Computer Sciences

University of California, Berkeley

Professor Robert W. Brodersen, Chair

Motivated by the pervasive use of general-purpose processors in portable
electronics devices, energy-efficient processor system design is presented as a critical
enabler for smaller, more powerful, and longer-running devices. A decade of research
has demonstrated that extremely energy-efficient ASIC and custom DSP design is
achievable, but the energy-efficiency of general-purpose processors has severely lagged
behind. Thus, despite only performing a small fraction of the computation in these
portable devices, the processor system contributes a significant, if not dominant,
fraction of the device’s total energy consumption. This thesis introduces and
demonstrates a top-down processor system design methodology for dramatically

reducing energy consumption, while maintaining the desired level of performance.

By understanding the fundamental usage requirements of a processor in
portable devices, combined with analytical models for energy consumption and
performance, energy-efficiency metrics are derived. A key design technique derived
from these metrics, dynamic voltage scaling, is then described for achieving the single-

largest increase in energy-efficiency. The metrics are further utilized in developing an

1

overall energy-conscious design flow methodology, and more specifically, energy-
efficient architectural and circuit design methodologies to additionally improve system

energy-efficiency.

The design and measured results are reported on a prototype processor system,
which successfully demonstrates the design techniques and methodologies presented in
this thesis, and the potential improvement in processor system energy-efficiency. The
system consists of four custom chips: a microprocessor, an SRAM, a voltage converter,
and an I/O interface chip. On top of this system runs a real-time operating system,
which executes software programs typically found in portable devices, to demonstrate a
complete embedded processor system. This prototype system’s energy-efficiency was
quantified, and demonstrated to be more than order of magnitude higher than the most

energy-efficient processor system available today.

Robert W. Brodersen, Chairman of Committee

To my wife,

Joyce Law

and my parents,

Mike and Lois Burd

Table of Contents
Chapter 1 : Introduction 1
1.1 The Performance-Energy Trade-offcccocurvirieeecincninncinecenecneseenenesansenenees 3
1.2 Research Goals and ContribULIONSceceevueereeeeseeneeressnsesesessessessessesessessssassanes 4
1.3 OrZaniZationcccceveevereerrsverereneseennessesessesussssesseessossoseessansssssssssssssssassssasssssssssossess 5
Chapter 2 : Energy Efficient Design 9
2.1 Processor Usage MOdel........coovierereneirciniiinunnnoscrniesnsnssssassasssssseseessossssessnses 9
2.1.1 ProcesSOr OPErationcceeeeerisisicsissinsesessissesssssssssssssscssssssssssssosssssssssssssssssssesas 10
2.1.2 What Should be OptimizZed?...........ccccoveeeeurreninrerecirierecsrssisesesseesassonsssssssessassesssane 11
2.1.3 InfoPad: A Case Study in Energy Efficient Computing...........ccccerereevreruerereaverene 12
2.1.4 The System PerSPECLIVE.....ccccerveerveereesrecsuresamssscsessessssassessessasssssosssssosssasssossssssasas 13
2.2 CMOS Circuit MOAEISccceeeceeecniniinsiencriesceioresssssesssseessssarsssessssssssssessssssassnes 14
2.2.1 Power Dissipation............... 15
2.2.1.1 Dynamic Switching Power 15
2.2.1.2 Short-Circuit Current POWETcocuecuirercenriservssnsnssessesssssssassassssssossssens 17
2.2.1.3 Leakage Current POWET........ccccccerereruereecrerceesenresesensessesasssesassnssasnsersesasnees 18
2.2.1.4 Static Biasing Power ceereesstestese e asetsatsrasstosaseesareerarreesaanen 21
2.2.1.5 Combined Power MOdel..........covumimmcimniiumecncrnanes 22
2.2.2 ENEIZY/OPEIAtionvevverereererecessssensesessssnssesssscssersssssosss erererese s saesassasranas 22
2.23 Circuit Delay crreerssesasanennene 23
224 Throughput...........ccceviererecsenseseresssassocsesanee 24
2.3 Energy Efficiency MEtTICS.....ccccvvinininriiisiernesrcercrserecrscssssesssssssssssosessssasssssassesses 25
2.3.1 Fixed Throughput Mode...........cccourururnirricisrrnrescnresesesesnaessssessssesnaranaens 25
2.3.2 Maximum Throughput Mode....... reesesseereseesnens reesesesessessasessenssassanaennes 26
2.3.3 Burst Throughput Mode..........cocouiveruiinencnnenierecerennecstrennresessescssssssssssesssesssssnns 29
2.3.4 Energy Efficiency for Practical DeSignscccocereeeeerverurenressenssesessesessessosesnonnas 32
2.4 Energy Efficient Design PrinCiplesccccceeverernrenrenvenrninrieseeseesssssessesessessessenes 33
2.4.1 High Performance is Energy Efficientccccovvirmnieninerescecreennnereencrsnseraenens 33
24.2 Fast Operation Can Limit Energy Efficiencyc.ccceveviveevecreesececceniennensennenens 35
243 Clock Frequency Reduction is Never Energy Efficient............. .36
244 Dynamic Voltage Scaling is Energy Efficient.........cccccvvnreveerereernnrernnerenereenne. 37
Chapter 3 : Dynamic Voltage Scaling 41
3.1 OVEIVIEW c.ueicrericecenrecrecneesnercnssenerassesssessssosasessassssssssssssasssessessessssensasssassasessessases 42
3.1.1 Voltage Scaling Effects on Circuit Delayc.ccoceurirmivsnrsesierrseersrcsnsesnsessennns 42
3.1.2 Maximum Energy Efficiency IMpPrOVEMENL.oeeeeeervessseesenseesesssnssssssnes 43
3.1.3 Essential COMPONENLSccciuitireremrrurennrercrasssssassassesssassasessssssassessessesssssassasassass 44
3.1.4 Fundamental Trade-Offccouiirrrererineriectecinenrereseenesessssesssssssssssessessenes 45

Table of Contents

3.1.5 Scalability with TECANOIOZYcceevereurereurrerrerererrirereerisieeereeseeeeesessessssesssssssenssens 46

3.2 Converter Feedback LOOPcccceevueveeervenicintrrenesreresresnesstesetssesssesasionessssesenns 47
3.2.1 BUCK CONVEIEL....ocouiiirecnrncnieirintirntiesisinntraessse e nresssesesesesessesessesssssesssssssaseses 48
3.2.2 LOOP ATCHItECHUTE........cocrciritisiitrentsteencnettsteee s sss s s e sessesssssssesssasnses 49
3.2.3 LOOP StADILILYcvcveeereeeererereenneesesseencnnsenresesssesssssseesenesesessssasessonssnsensensssasasasns 50
3.24 Software Interface reebtreeteaet e ss st et e e aesnesnesaerasaasaanas 51
3.2.5 Clock Generation...........cccccuc.. reevsnsneesasasssensases 52
3.2.6 Conversion EffiCIENCYcccoevirererernieninrrnrernseinreseiesenisesesssssssssssessssssnesssssens 53
3.2.7 New Performance MELIiCS........ccccvvvrrierccenunrinentereennrierenensseseressesesssessessososessassns 54
3.2.8 Limits to Reducing CDD..........c.ccovverenicrnenrenrnnnrnreresnsesnssesesesesessesssssnsnss 56
3.29 Optimizing CDD in the Prototype SyStem...........ccccervuemrmererererrrrcrnereeseesnennseseenne 58

3.3 Design Constraints OVer VOItagecccvcereeerueerrrenrrrrennnreressiscssssseseesseesessesssees 59
3.3.1 Circuit Design CONSIIAINLSccccereverceerrnernrreeseeseeseereseseessessessessososssnssssesassessens 59
3.3.2 Circuit Delay Variation.. oottt sttt e s e e nesaseaa s sne e esereannens 60
3.3.3 Noise Margin Variation ternesseaste st ssatsntesanersestansarastesrareranessstessrersentae 62
3.3.4 Delay SenSItiVILYcccccecerereerrererreresersesesserensesnnsesseseesesessesssesessesessssssssasensssesnsnssenes 64
3.3.5 SUIMMATY.....cccerririrreriereeeeecssststssesesneseetessesssssessssssssessssestsssasssssssssssssssssonsensrsses 65

3.4 Design Constraints for Varying VOItage.............coueveeeveveemruereeeerercveeceeesnneseessensns 66
3.4.1 DynamiC CiTCUILS........ccoceeeerureeerrecscrensaesnsrssnssaseeseresssnssrsssssssescsssssssssssssssssssessns 67
342 TH-SAtE BUSSES.....c.veueureererccrceninitisesencnensenrnesesssesesessasasassesessssssscsssossossasssssonse 69
3143 SRAM..iiietrcntreereessistssssstsssssisasesenssssssssesessbesessassrasssssessesessssssasensessssenes 70
344 SUINMATY.....cc.oociiieinueceriiessensssssssssssassessnnenseesessesssssessossssessossasssssssssnsssessasnssnsneses 73

3.5 VoItage SChEQUIET........ccoeeermerinierisisreririeneninresesteiseseesesesesesssesessessesssessssssssssnens 73
3.5.1 Application Execution Models..........ccccceruruecueervereruennnee. cersesennesanassasasnes 74
3.52 Workload PrediCtion..........ccocoeurieniucesireninenesensnseseresesssssnsssesssssssssessessesesssessassanes 75
3.5.3 Integration into the Operating SYStem............cccerverrrerrererernereesseeesees .76
3.54 Zero-Start Algorithm (ZERO)......cccceeeevummrererrerrerrrerereernenenes . 77
3.5.5 OPETation........cecoevreerrrirecnessestsssisiscstsienreessessesessessseresessssssssssessesssssossassasasesssses 78

3.6 Benchmark Evaluationccceceeiviicirviniennecnrsreneerennensneeniensesessssessessenseseses 79
3.6.1 DESCIIPHONc.vcreieririsiirinincniriisisassssssisisistsassssrensassessasnssssssseassssssassnssssssssssassens 80
3.6.2 Detailed Performance Analysis.......ccccoereruererreereennnn. 81
Chapter 4 : Energy Conscious Design Flow 83
4.1 OVEIVIEW ...ccuveenrervieeinaecreernssnsssssssscssessessssssssessesssassessssssssessessessesssssssssssesssessesesns 84
4.1.1 Energy BUudGetiNG..........cccouvuuirmnierrnniininctisscnseicscseinnnecesensssessssssssensssssssssseseses 86
4.1.2 Verification Overviewccccevereencne reereesesnsanrenee 87

4.2 High-level Energy EStimation.........ccceeevuevieenuenrinierersinerensenseserscessessaessnsssesnesnnes 88
4.2.1 Capacitance MOAEIS.........cccooeermecsinrerisinuiessesssesensesessesessssesessesessessessesssessossonsseses 91
422 ImPIEmMENtAtON......ccruiuiveriiiitiiieseienitenstiississtsessesessssesssnssssesssssssseessessnesnensansssses 92

4.3 Clocking MethodOIOZY.......ccccceeurueruernirenuienieeeseesensesessesessesssssssessessseessnsssesessnes 93
4.3.1 LatCh DESIZN........coveeemricriruerienrieeresitstiteeeneesesessessssesessssssessssessesasssesssessenseseseses 94

ii

Table of Contents

4.3.2 ClOCK ATCRITECIUIE ...o.vvereeveeerrrreesanersrneraesssessssasesscsssssessasesssesassssssssnsssesassssssassssses 95
4.3.2.1 ClIOCK DIIVELS ..couvunrerrssensrrannusenssississssessisscassssissssascssessssssnsessssssnsssasssssaes 97

4.3.3 Bounds on AlloWable SKEWcovvvverereeeererernsreseseressesssssenenns eceeessasasaensaens 100
434 SOUICES OF SKEW ...veeecieereeiereeeereesrerersrereesreesssessnsssessssssssasesssessesssesssssnnessesanees 101
4.3.4.1 Global ClIock WIrING.........cceveereererrrreresersesseseesesessssenssnsassassnsares 102
4.3.4.2 Local CloCK WILDE......ccccoceereeenreccreseearaeessesssessassasssnssnssasessassorsssessessons 103
4.3.4.3 Clock Driver Skew........ccceeveverereeeenens eeueeseesteseseseseraentanesanseseaesestasans 104
4.3.4.4 Local Enable WIrNEcccocvevereriesimreesnssscsnossesarsssassssosssssssssssssssssssenss 104
4.3.4.5 Enable RiSe/Fall TIME......ccceccerrerrrirernerreresrneesrenseesanssnsessssesssesssassssnseses 105
4.3.4.6 VDD Variation SKewcccccecereereriereecierseessenseraesessans 105

4.3.5 NO-TACE VEIIfICAtION ..cevereeeeeeerrererresersceseesasaseeseesssessssssssssssssosssssassssassessassssssnsass 106

4.4 Power Distribution MethodOIOZYccveeverviererreeecerreerieesessereseessaesensaeeenne 107
4.4.1 On-chip Supply Variation...........cececsururiecrcrscnsussescanee SR | 1}
4.4.1.1 Noise Margin RedUCHONccecerrruerereereeseeersesrensesesesressesessesssssesssssssones 108

4.4, 1.2 Timing VIOIationsc.ccoccvirireieriresininseniesisicsissseesssiesssssessossssessssssenses 108

442 Chip-level DiStribUtion........cccoevrenuieiirneeniisiisnsessisessssesssssassessesessssessssssssssas 109
4.4.2.1 Bypass CapaCitanCe...........coueuererrueaerisinuerussessssessssessssssssosssensesesssasssonssass 111
4.4.2.2 Local Supply ROULING.......cccovuerirmnunrirrnirsinininsisnsnssicsnssssesssesessosesassssoss 112

4.4.3 Board-level Distribution..........ccceceeevveerenrecseenienseeenne veevrrenesns 115

4.5 Functional VerifiCation..........ccceeverereeeereenreesrerensersssenssssnrsssessssesssssessssesssaassns 115
4.5.1 Behavioral VEfICAtION.cccvrvrrrrreerererrrrernrerierersssressecssassasssessessaesseassassasssnsasssss 116
4.5.2 Test Vector Generationceeveereereereeevercrereeennns . veeeesenrenanns 118
4.5.3 Structural Simulation..........ccceeeeereereervererenns reeeseeseessessesessessaesessasnsessensesaensens 119
4.5.4 Transistor Netlist Simulation..............cceeeeveennee.. . 119

4.6 Timing VErifiCationcccccceereerenreireesreseescesercssssessecssaesssesessssssesnssssasssessassasses 120
4.6.1 Schematic Naming MethOdOIOZYcccereeerreererrerserereesecseeresnecnensensesessaesnsenessens 121
4.6.2 Path IdentifiCationcccceceerecseerecnerarencssiscsesenrseeseeraessessesesssssssnssasssessesasssesssens 122
4,6.3 Timing ANALYSISccccovrieurrerineisinnieeissssssiniesssncsaesesssssssesssssssnssesssassassessssssnsesases 124
Chapter 5 : Architectural Design Methodology 127
5.1 System ATCHItECIUTEc.cccoeeurreerirurerrercnisnsecescstscessessosssssassesssssssessessssessesaesans 128
5.1.1 Modifications for DVS.......ccoevmrnercerrerereerneriensveenns eeeeseaeresaenneranssneeranen 128
5.1.2 Cache Benefits and Limitationsccccccecieeernersverrresseereesnrennesnnseseessnssessseses 129
5.1.3 Main Memory Architecture & Processor Bus Topology.........cccccveereeecervenrecrennns 131
5.1.4 1/O Considerations.........c..ccecveeueenen.. ereereresteseestessessatastenantenansaenessnesaenaen 133

5.2 ProOCESSOT COTE.......ocereerereerreecrssesessersssessersssesssssessssasssssssssssessasssasasssssasssnsssssaens 134
5.2.1 Instruction Set Architecture................ terreesrseesssisasessesstassssaesnrassasnsren 135
5.2.2 Architectural CONCUITENCYcovcernrrrirnesesrrcensanssesesenssanssossesssssssasassssaassssassrassens 137
5.2.2.1 Superscalar ArchiteCtUIES.........ccoceeerrerrerrueresseesaesrereesessessessseessssassnssassas 138
5.2.2.2 Superpipelined ArChItECIUIEScc.coemeeernrecvrsrrrenreneseerssassessssssssesseesnens 139
5.2.2.3 VLIW AICRItECIUTESceeeenerererreerernesesseesessessessesesssoneeserssesssssesssssssses 139
5.2.2.4 Summary eeeeeressessesarenrasnrsanesnsessans ... 140

5.2.3 Microarchitectureccceeverrveeruernenees 140
5.2.4 Upper Bounds on Energy Efficiency . 141

iii

Table of Contents

5.2.5 Low-Energy Idle Mode Enhancements........................... 143

5.3 Cache SYStemc.ccovurueersinseerisescnecrensstssrstinsnsnesesssesssacssssssssssseissssssnses 145
5.3.1 CACKE SIZE....uveeueeneereenrrrenireenneessesassserennrsaesresesseessessesesseesssnsensessemssnesasesnassnsensens 145
5.3.2 Sub-DIOCKING......ccierrereererrereenerieresesentonenirsesresressessesesssesesssesesssesesssssssssassasssnssnns 146
5.3.3 Tag Memory ATChIteCtUrec.ccccveririiinenniereerereereeerreceeesasssesesssssssesssssanses 147
5.3.3.1 Design APProaches...........oocecicisiruensuesennsenieisennnrenssnsensssssssssssessssesessns 148
5.3.3.2 Optimized ATCRitECtUTEcccourrerrrerrererererrrenriecsciesesessnsesseseesesessens 149

5.3.4 Associativity & Cache Line SiZe......cccouemnrereerreeerrnsrireisiercececescesessesseensessessens 151
5.3.5 Cache Policies .. ceererersreesa ettt s s asesasseseasatsesaa e e aneeanrenaan 153
5.3.5.1 Write PoliCy.....cccceceriiineccrnnnccnnennrnerennn vereesereasneaens ... 153
5.3.5.2 WIite MiSS POLICY ...ccovieurreniiiuriineeteenreeeeteescseencecencseessssesnsssessonses 153
5.3.5.3 Replacement POLICYccoceirmmrrerrtereerrnienrenteerenecreeeeessesssesssessssseeses 154
5.3.5.4 Level-0 Cache.......ocriviniriiceneeerenennsesesesesencescsassesessssosssssssssasaes 155

5.3.6 Improvement with @ Write BUfErccouuueeerrrreeerreeerriciceectressntesssssseesssonsns 158
5.3.7 Interfacing to an External Bus........ccouerveeecrernreernrennnieieniesesesssesesessesssnessnns 159
5.3.8 Advantages and constraints of the ARM8 memory interfacec.oueuueee... 159
5.3.9 An ARMB-optimized cache SYStem.......ccceeeeerrerererrererenrereeerecereereaeesssseseseanes 160
5.3.9.1 Double Readscccoeereevirerirrnrnenerverennseesesersesnssesenes ceeseensnsannens 160
5.3.9.2 Sequential REadsccccuiiiroeeenrrreectnreeeceerteescsreesesescsssssssssssnses 161
5.3.9.3 Load/Store Multiple REISLETS..........cceeerrreererrereeeeeeenreereceneeneesssesessenens 162

5.4 SyStEIn COPIOCESSOTc.cceurecerrrereeursueseemsassessassessossenseseseeseeseasesssssossessessssssses 162
5.4.1 ATCRItECIUNEcovemeeeeneeersencenseissentietnrnsaeraeseeressssssesseseesseseesessessssssssssossssasensan 163
5.4.2 Providing an integrated idle MOdE.........c.couvvuerrererrerereieereereeeerreseseesnsessesnesssseses 163

5.5 SUIMMATYoooeevereereererrenreressnscscsaseseesessssssssaesessessessessessessessssessesssssssssessasssssses 163
Chapter 6 : Circuit Design Methodology 167
6.1 General Energy-Efficient Circuit Desighi.............couevvevreeeeersreseeeecenesesssssoses 167
6.1.1 LOGIC StYlE...ccccoeruerrrrrrerrreenrseeersesssesstonnnnsssessesessesessessesessens 168
6.1.1.1 DVS Compatible Logic Design............cccevrrrrrerererrerernans 169
6.1.1.2 ALU Design Example...........ccceceeerueerene.. ..170

6.1.2 TTANSISION SIZE ...cvererreenerererrenetessossosesesssernssessssessesessesessessesessesessossasessossssssosesssns 170
6.1.2.1 Minimizing Short-Circuit CUITENL...........ccccererrerererererererereressennsnesesenns 171
6.1.2.2 Critical Pathscccoeiiiiiiiinncrennenecsensnnnaessessssssessseseessesessesesens 173
6.1.2.3 Non-Critical Pathsccccoceeirienrineereneneneetneenesieeseessssesessesssssssssssens 174

6.1.3 Gated CIOCKScceomrcreerrerecenecsscsioiststensesaesesesseressssssssesesssesesesssssenssessesesssnnas 174
6.14 Optimizing INTEICONMECL.........ccouvuireiririsvsencrrrceeseereersessssseesssassessssssessessessssesens 177
6.1.5 Layout Considerations................... vertesrostsnnsnrensaaenes . 179
6.1.5.1 Datapath Cell Layout...... reetseeesassrsasnsassnsnesnesasssaanane 179
6.1.5.2 Standard Cell Layout..................... reeueaessaanensetsasseseaeaneaensensasanen 181

6.2 MeEmOTrY DESIZN.....cccerereuerieinuirenrcssensissisunsesossessssessessassessersessssessessessesssessassacse 181
6.2.1 SRAM...cuiiieiieiriinrenensesssssesesssssesssossossssassssessessssasssssssssessesssssesssssssssssessessssonsones 182
6.2.2 CAM.....ciiiirnceninnenscsicstsiscstsssasssssnsasassssssssssssssssssssssssssssssesssssssessasesessosesess 186
6.2.3 REBISLET File....cuoriririeriiicriiiitenerititicstecsssssssenesenssssnssssssssssssssensesesssenens 188

6.3 Low-Swing Bus TransCeIVETSccccveruirererenrerenrrreeresseessessssesessesesnessessesensens 189

iv

Table of Contents

6.3.1 Intrachip TIANSCEIVETScocerusrsmressesssresiaseasimesisstassssasessusssinsenssssssasassassssnsensises 190
6.3.2 Interchip TIANSCEIVETSevuerrerusrressesserssissssssssrinssassssssassssssssnaonssssssasssuseaseasasess 193
6.3.3 TeSt ChID...ccrrreeremmsisnisersnsssessessasensssssansesssssmsstassassssassasassssens eeeransseesssasnss 196
6.3.4 FULUIE INEETALONovvurirrerraesrenssrssrsssnsessensinsetensssnassasssssstsssassusssssnsassasssussassacees 198
Chapter 7 : Prototype Microprocessor System 201
7.1 System ATCRItECIUTEvvereerrsceseressussinsmmsessasssssmssessiesessissssnssmmsinsssssasessassaseusess 202
7.2 MICTOPIOCESSOT IC.....ciiuimrrreienusensesscmseasiasinsrstnresastssssnsussassisstasssssnasssasssescess 203
7.2.1 ArchiteCture.....cccoecveirecncrerrermaressenecsessesesaens . 205
7.2. 1.1 Dat@ FIOW c.ccovererererecessessassccsessssesssnsmsassesssssesssssasassessasasnsasssssnsassassscsacacs 206
7.2.1.2 Clock Control DOMAINS..........cceresesersmsmssesersssssssssessssmsmsnsssasscsssssssscanses 207
7.2.1.3 Write Buffer Control FIOW.......cccceiemmmmirneccecisisiniiinenmnnnissescsssssacssscnnens 209
7.2.1.4 DMA Control FIOWccccouvivinienrerinmenninesissecnnsisitsessininnesssssssssscssssas 209
7.2.1.5 Processor Configuration & MORItOTING.......c.ccevriusiecrernrrnaressssnsnsccacuss 209
7.2.2 ProcesSOT COTC.....crurereerosecssesresamssassarassssassecssissssesnnesssssasaras ..210
7.2.2.1 ARMS Instruction Set Architecturec....... 210
7.2.2.2 ARMBS Pipelife.....cuommmeuemrrrnrnssnrncsasiicnsnnsssiisssssstasmssnssassssssacacssissnnsens 211
7.2.2.3 ARMS Data Flow ArchiteCture........ceceuerereeresesssssssissusussssssnessnesnssnnacs 212
7.2.2.4 ARMS Memory Interface.........cocumeeieeeiecrennisrisunnenannnns 215
7.2.2.5 Optimizations for Energy Efficiency ceerreranessnensnens 217
7.2.2.6 Core Energy BreakdOwn........cccocveeunmeeccucnssisiscuiissnssnmsnssnsscesacsesissnnanass 220
723 CAChE..coeecrerrecreeerennssesesnessesnnsnmsnensonssnesesneananasaas 221
7.2.3.1 Cache MemOTY AITAYccoersrressnseusessesssssesssassssnasssssssssssnsssssaneasssensasass 223
7.2.3.2 Cache 1KB MACIO.....ccceerrerersesesecsensusnsnssssassessasesssossassassssssnssnsonassnsanasaass 224
7.2.3.3 Cache Controllerccoeeervcnnsucnnennns reesneresnssnsasssessessnernsens 226
7.2.3.4 Cache Design Optimizations.........cccecocrvsvsucscsusnsue 229
7.2.3.5 Cache Energy Breakdown.......ccoceecceccecissnntinnnnnninnnninsnsssssscssnacnens 230
7.2.4 Write Buffer......covevmccirrennnceicencenanien . 231
7.2.4.1 Energy CONnSUMPON.....cccoviemeuesscsrisemsenreretonssassssssnsesscssossnsscssasssunacnns 233
725 BUS INEITACE. ..c.eeuceerererereesesessesnssessssssnssssessensenesssssssssassssssstensssssssenssnsanaansassssnsanse 233
7.2.5.1 Clock INtErfaCing....c.ceceeecmcueurerernererimsrsssssssssnsassssseseussssssssnssssssssansassesens 236
7.2.5.2 Energy Consumption........cceceueneseees ..238
7.2.6 SYSLEIM COPIOCESSOT ..cuveverrurrmsesssssssmssessessersesnsssssssssssssssssssssssassssssssssssoseasasssssasss 238
7.2.6.1 COPIOCESSOT 13 cuiumncrerieinrerisnsencssisetessnensasasssnssnsssssssnssssssasssasusescases 239
7.2.6.2 COProCeSSOT 14cuiuimiienrertrrniessnsencassnssstensusnssnssassusssssssaasssssssasasusencss 240
7.2.6.3 COPIOCESSOT 15...ciuirnrrrrrrieiessenisncaciseninsisnssasnssnassassssassussssssssasasasinsanes 241
7.2.6.4 Regulator Interface.......ccceevecuruvnennnninnenns 242
7.2.6.5 Energy Consumption............... eteetesteressessssneneratsttsssssaesnantane 243
TF2T VOO iereerieerirressesssessssessassesssssasssssrsssssamssamassssssssssssatosstsassssassssans 244
7.2.8 Packaging and Chip-Level Design ISSUESccvvmimeiieimimisinensemsenscnscscniciiaiincnes 245
7.2.8.1 Pad DESIgN..cucecrecmiiriniminetnesiarensssesensnnasssssssasasssssssssnssssasssssisusnsasasssssnas 247
7.2.8.2 Ground & POWET BOUNCEcccoourrmrermennnreseresseressssssessesessnsssassasssssnsas 249
7.2.8.3 Global ROUHNG ...ccccorevurrirmerirrereresneseenessecssnesssssssissssisasmansansnassasonsons 249

7.3 ReGUIBLOT ICoucuiriretentniniecnmcsisiintie sttt it 250
TF.3.1 ATCRILECIUTEo.eeeeereerererreeereeeennnsensssessssesssssessesnsnnsssnassssnossosssissesessnsesassssassassese 250
7.3.1.1 Frequency DEECtOrcocorrrersrssncnscsensuisisususssssssnssssnssssssssssssssssssasases 251

Table of Contents

7.3, 1.2 LOOP Filter.......cceoueeeererrenenccnsnesenenesescsesssnsessscsesnsassssssssnssnenssssssnssseas 252
7.3.1.3 FET DIIVETS....c.cueerircrncrnrensescssnsssssnesesesssssessssssssossesssssssessessgonsasassonns 253

732 PINrOULiveiecienrectrereseseeeensssesesassetssesenssessssssossesesesssessesssssssessosssssasnssansans 254

T4 SYSIEIMN BUS.....cueieiiiiiiicriecnnieessstecsenieenne e sisessssssesssenessessssessessesasesenses 255
7.4.1 Overviewcceeeueuun... cressesenens . ..255
7.42 Timing cerersasasseesressnensasessasnseneses 256

7.5 MEMOTY IC .ttrcietcnccctrtnaeeeresstesaesesaesaesne s sessessesssesssonnosses 257
7.5.1 ATCRItECIUTEcucereereeneerreeneencnesereensasesennssessesessesesesesrsessssssssssessasensessasssesssens 258

7. 5. 101 OPEIAtiON.....cccceereeeererrereerterereraesesessessesessessesensssscesessessssssssesnasnsnsenes 259
7.5.1.2 SRAM MOQUIEc.oceiriniecncnrernenninsenesesesesesess s ssssssasessssssosessssnsssnss 260

7.5.2 Energy Consumption........... . teertsaeieensssaseteassasesennastaneraasanne 261
7.5.3 Package... ceereeseeereteteae ettt et s s s s e e e se e ate b aseababarseenserassesastes 261

7.6 INtErface IC........ccoueourierecrrccreecnirncstnresseereesaeesesnsessesesossssossessessssssssossossansane 262
7.6.1 ATCRITECIUTEocvveeenereeccimiereninccsisenensessrnraesssesessesesessassssssasssssssnsessassssesssassens 264
762 PN OUL..uucencevririrereenrenreescssscnnonsassssisssssonssnsssenssssssssessssesenssssassssens 267

7.7 Prototype BOArd............ccoeieieieienesceiitnentenneneennessessesnsnessessssssesssssssssessesessnsns 269
7.7.1 Architecture............... trererenrreat e e aseesaeseesssassssaeatsararenen 269
TT2 LAYOUL...critinieceiencrccencnicsnnesassesssisicesasassssssssssesessersssssansssessasassssssestsssssassses 271
7.7.3 Power DiStTiDULON.........ccccoeerererecersnccsrernsrnannreresesnesreisesseseeseenensonssnens 271

7.8 StrongAImM I/O B0ard..........cccevnieinersensecssonenseressnsereesescasssesesesssamssssssessesssasses 273
7.8.1 ATCHIECHUTEooncerunrrnsecnscninsecnssecnsasssssssstss sttt sssess st snesssssssssssssssasssssssssss 274

7.9 Software INfrastruCture..........ccceveverrerrerercerreraernenresrisreseseesssessessessssssosssssessessane 275
7.9.1 Software stack sresssesensensesannanens 275
7.9.2 Software I/O processor (SAIOP) . teeesresereossnnsrersnresennrans 276
T10 RESUIS ...ttt ecaesecsesnesseeseessessessesssesseseessrssreseesessnneesssssssonae 277
7.10.1 Transient Operation..........c..cccesevrescrcencene eereteeressentennasnnssananeasnans 278
7.10.2 Dhrystone Benchmarkc.coccoceveirenerrenenseerenserunnsessreesssssessssesessessessssssessosesnes 280
7.10.3 Idle Energy ConSUmPpPLiOn........ccccoeverccesrnreesaeesaesnrsenssssersnssessessesssssossesssessssssesnens 282
7.10.4 DVS benChMATKS.........ccoovrrrerirennnrannscrisscsnerensesesesesesssseserssssssssssssssesessessassssencass 282
7.10.4.1 Measuring Energy Consumption............ceceeeureeereeveriisiessessesessscssnossssanae 283
7.10.4.2 Results.................... veeereneneanasanns ..284

7.11 CompariSOn t0 PIiOr Art.........ccoeeeersieerisnsenrenseereesuesnessisersessesseseesassessssssacsassnens 285
7.11.1 Comparison to Other ARM PIOCESSOTSc.cccereeerrenrrerrrrecerrrreeernrsessessesessesenes 286
Chapter 8 : Conclusions 289
8.1 Summary of Research Contributionsccecevevereereveneererrerenrerenrerneseessesnennene 290
8.2 Current INQUSHIy DIr€Ctions.......ccceeeereemrscerssrerursnereeraeeresuesersessessessossesassssessossense 291
8.3 Future Research DIreCtionsccecereeerecrrrnreensuensreesersneseresnessessaessssseesssessness 292
References 293

vi

Acknowledgments

Through the course of this thesis, I have spent many years at Berkeley in which
I have had the chance, and privilege, to interact with many brilliant people and
outstanding engineers. This interaction has helped me develop as both an engineer, and
an individual, and I have many people to thank for their help towards the culmination of
this work. Including my undergraduate years, I have spent almost thirteen years at

Berkeley, and what a long, strange trip it has been.

First and foremost, I would like to thank my wife, Joyce, for her many years of
love and friendship. I don’t know if I could have made it through graduate school
without her companionship, her understanding, as well as her common sense. She has

enriched my life in ways too numerous to count, and I am forever indebted to her.

I am also extremely grateful for my parents, Mike and Lois, for their love,
support, and guidance, which was instrumental in all my life’s accomplishments. I
would have liked to have had my mom celebrate my graduation with me, and hope that
even in the heavens above, she can be proud. Additional thanks go to my dad, who
taught me over the years how to be a practical engineer. Finally, I won’t be hearing that

question anymore, “so when are you going to graduate?”

While I thank all my siblings for their friendship and love, my brother, Bob,
deserves special thanks for the years of mentoring, the Opel, my first internship, my
first consulting job, for providing a roof over my head in my time of need, as well as for
occasionally being my banker. It is because of him that I originally came to Berkeley

many years ago, and where I am in life today.

My desire to pursue a graduate degrée did not develop until late in my

undergraduate years. I would like to thank Professor Donald O. Pederson for providing

Acknowledgments

me with a valuable undergraduate research experience which initiated my desire to
_ continue on with graduate research, and Dr. Tom Andrade for his valuable mentorship

as my first engineering supervisor, who also encouraged me to pursue a Ph.D.

It has truly been an honor and pleasure to have had Professor Robert W.
Brodersen as my graduate advisor, and I thank him for his years of support, advice, and
encouragement. He has been critical in teaching me to be an independent thinker and to
always look at the “big picture”. I thank Bob for giving me the chance to work on the
research that interested me most, despite contradicting his own research direction. Both
Joyce and I will be eternally grateful for the deferred admission. Otherwise, we might

be living in Boston now.

I would like to thank Professor Jan Rabaey for his advice and support over the
years, especially towards the end, for providing the DARPA funding for my research. I
thank Professor Randy Katz for chairing my quals committee, and for broadening my
knowledge of mobile networking. Professor David Culler, who I was also honored to
have sit on my quals committee, taught me much of what I know about computer

architecture.

During my earlier years when I worked on the InfoPad research project, I was
extremely fortunate to have worked with many outstanding graduate students. I first
worked with Anantha Chandrakasan while still an undergraduate, and am grateful to
him for convincing Bob to take me on as a graduate student, and for teaching me about
low-power DSP design. I thank Andy Burstein for sharing with me his brilliant insight
of circuit design, as well as his incredible cooking. I will always remember the day
Andy’s ball burst. I thank Sam Sheng for sharing with me his insight of circuit design,
and for the endless hours he selflessly spent helping me with problems I was trying to
solve. As cubemates, both Andy and Sam made the many hours I spent in 550H Cory

pass more easily.

Acknowledgments

There are many others who I would like to thank for the learning experience
we had while working on the InfoPad research project. In addition to Anantha and
Andy, Shankar Narayanaswamy, Tom Truman, Kathy Lu, and Richard Edell were all
critical in getting the first Infopad prototype built gnd operational, with whom I
remember spending many long nights in 403 Cory. While I only worked alongside him

for a short while, I would like to thank Mani Srivastava for all his help with dpp.

I thank both Trevor Pering and Tony Stratakos, who were integral to this
research, for the pleasure I had working alongside them during this thesis. Because of
their tremendous efforts, we will always be able to look back upon our ISSCC Best
Paper award and be proud of the work we accomplished at Berkeley. I wish both of the
them the best in their future endeavors, and will forever be grateful for their efforts. I
would also like to thank several others who have helped me on this thesis at various
points over the years: Peggy Laramie, Omid Rowhani, Vandana Prabhu, Patrick Chiang,
Chris Chang, Kevin Camera, and Hayden So. I am particularly grateful to Peggy and
Omid, who saved me from at least two more additional years of work, and who were

critical in getting working first silicon.

I would also like to thank the many students in BJgroup that I have worked
with over the years. It was truly an outstanding group of students covering a broad
range of disciplines, from whom I learned many things. More importantly, I made many

new friends with whom I had a great time at Berkeley.

Those that taught me many things about RF over the years include Bill
Barringer, Dennis Yee, Lapoe Lynn, Kevin Stone, Arya Behzad, Craig Teuscher, Jennie
Chen, Dave Sobel, Chinh Doan, Brian Limketkai, and Sayf Alalusi. I learned much of
what I know about CAD from Paul Landman, Dave Lidsky, Lisa Guerra, Renu Mehra,
Ole Bentz, and Marlene Wan. Other masochists who worked on large hardware projects,
with whom I could console with, included Arthur Abnous, Varghese George, Alfred

Yeung, and Ian O’Donnell. From Ingrid Verbaughwe I learned a lot about DSP. Other

Acknowledgments

people that I had the pleasure of working with on InfoPad include Jeff Gilbert, Heather

Bowers, Roy Sutton, John Davis, Fred Burghardt, Rich Han, and Roger Doering.
. Additionally, I enjoyed working with many people at the BWRC, including Kostas
Sarrigeorgidis, Henry Jen, Andy Klein, Chris Taylor, Dejan Markovic, Johan
Vanderhaegen, Hui Zhang, Ada Poon, and Ning Zhang.

Over the years, I was fortunate to work with, and learn from, many excellent
professors. Special thanks go to Professor Bora Nikolic for going over this thesis with a
fine-tooth comb and providing his valuable comments. I thank Professor Paul Wright
for also reading my thesis, and from whom I learned immensely about mechanical
engineering issues in product design. From Professor Bernhard Boser, I learned
extensively about analog circuits by teaching his 241 class through NTU many times,
and likewise, Professor Paul Gray. I would also like to thank Pam Atkinson for doing

such an excellent job of running NTU for all the semesters I taught classes.

I am very grateful for the many friends I made in 550 Cory outside of BJgroup
for making it such a fun place to work. Chris Rudell, for his hilarious imitations and
stories, the bike rides, the steaks, the many dinners out, and numerous other good times.
Despite his love for polluting my air space, I’ve been fortunate to have such a great
friend. Andy Abo, who is such a fun guy to party with, and who was a great host during
my time in Japan. Sekhar Narayanaswami, my fellow Cowboy’s fan and Cal fan, with
whom I spent many hours rooting our teams on. Keith Onodera, who scared me the first
time he whipped out his poker chip set. Jeff Weldon, for all his help on my golf game
and clubs, and with whom I’ve enjoyed discussing the finer things in life. There are
many others to which I owe thanks for their technical help, and with whom I enjoyed
hanging out with: Srenik Mehta, Jeff Ou, George Chien, Adrian Isles, Carol Barrett, and

Anna Ison, among others.

I am very appreciative for the spectacular staff support I have had, both in the

department, and in the research group. The foremost person I need to thank is Tom

Acknowledgments

Boot, who always lent me a helping hand with any and all things administrative. I thank
Ruth Gjerde for all her help navigating the grad office. Sue Mellers provided me well-
needed help with my various test boards. Many thanks go to Kevin Zimmerman, for
help with all things related to the computer network,_ and Brian Richards for about
everything else technical. Elise Mills and Peggye Browne were a huge help with all my
various purchase orders, and while I did not interact much with Deirdre Bauer in the

office, she was always a fun person at the research retreats.

xi

Introduction

The explosive proliferation of portable electronic devices has compelled
energy-efficient VLSI and system design to provide longer battery run-times, and more
powerful products that require ever-increasing computational complexity. In addition,
the demand for low-cost and small form-factor devices has kept the available energy
supply roughly constant by driving down battery size, despite advances in battery
technology which have increased battery energy density. Thus, energy-efficient design

must continuously provide more performance per watt.

Since the advent of the integrated circuit (IC), there have been micro-power
ICs which have targeted ultra-low-power applications (e.g. watches) with power
dissipation requirements in the micro-Watt range [vitt80]. However, these applications
also had correspondingly low performance requirements, and the ICs were not directly
applicable to emerging devices (e.g. cell phones, portable computers, etc.) with much

higher performance demands.

For the last decade, researchers have made tremendous advancements in
energy-efficient VLSI design for these devices, derived, in part, from the earlier micro-
power research, and targeted towards the devices’ digital signal ﬁrocessing (DSP).
Initial work demonstrated how voltage minimization, architectural modification such as

parallelism and pipelining, and low-power circuit design could reduce energy

consumption in low-power custom DSP application-specific ICs (ASICs) by more than
100x [chan92]. Later work demonstrated significant energy-efficiency improvement for
a variety of signal-processing applications, including the custom ASICs in a portable
multimedia terminal [chan94], a custom video decoder ASIC [tser96], and

programmable DSP ICs [ueda93][shir96][lee97].

A common component in these portable devices is a general-purpose processor.
Few devices are implemented with a full-custom VLSI solution, as a processor provides
two key benefits: the ability to easily implement control functionality which does not
map to custom hardware, and more importantly, the ability to upgrade and/or modify
functionality, after implementation, due to its programmable nature. Although the
processor may perform as little as 1% of the total device computation, advances in
energy-efficient custom DSP implementation have made the processor power

dissipation a dominant component in portable devices.

Since the advent of the first integrated CMOS microprocessor, the Intel 4004
in 1971, microprocessors were consistently designed with one goal in mind:
performance. Processor power and silicon area had been relegated to secondary
concern. The wide-spread emergence of portable devices has created a demand for more
energy-efficient processors, but the industry trend has been to fabricate an older
processor in a better process technology, operate it at a reduced supply voltage, and
market it as a low-power processor. Process and voltage scaling does improve energy-
efficiency, but not the improvement possible with a whole-scale processor redesign

with energy consumption in mind from the outset.

While some processors have been touted as low-power, and have become quite
prevalent in portable devices, they generally achieved this by delivering lower
performance. Thus, they are low-power, but not necessarily energy-efficient. The
StrongArm processor demonstrated what can be achieved by designing a processor with

energy consumption in mind from the start [mont96]. It provided a five-fold increase in

1.1 The Performance-Energy Trade-off

energy-efficiency, as compared to other contemporary processors, which had otherwise

only demonstrated incremental increases.

But even the StrongArm remains 100x-1000x less energy-efficient for basic
computation (e.g. arithmetic, logical operations) than a custom ASIC implementation
[zhan00]. This is in large part due to the overhead required by a general-purpose
processor: fetching and decoding instructions, multiplexing instructions onto the same
underlying hardware, and supporting superscalar and/or pipelined microarchitectures.
However, there is still large room for improvement to further improve processor

energy-efficiency, as will be demonstrated throughout this thesis.

1.1 The Performance-Energy Trade-off

The processor performance and energy consumption is shown in Figure 1.1 for
some portable devices currently available. While notebook computer processors deliver
tremendous amounts of performance, their high energy consumption requires a large
battery to provide even a few hours of run-time. On the other hand, Palm-PCs and PDAs

can deliver increasingly longer battery run-time due to their lower energy consumption,

A

i“\

1000}
)
o : \
o Notebook
2 100 Computers
5
=
=
(=}
(4]
2 10f=
«©
E
£
[«b]
a

IF L L L

0.1 1 0

Processor Energy (Watts ¢ sec)
FIGURE 1.1 : Processor Performance vs. Energy Consumption.

1.2 Research Goals and Contributions

but it comes at the expense of decreased performance.

In fact, there is a general performance-energy trade-off, as indicated‘by the
dotted line, which occurs because many existing low-power design techniques sacrifice
performance in order to achieve lower power. In DSP applications, parallelism is a
common design technique to recover lost performance, while maintaining constant
energy consumption. However, for a general-purpose microprocessor, parallelism has
diminishing returns on increasing performance, and comes at the expense of

exponentially increasing energy consumption.

The current philosophy has been to rely on process technologies improvements
to shift the trend line up, which it does by approximately 2x per process generation. In
breaking with this philosophy, the StrongArm processor pushed the trend line up 5x,
and demonstrated that an energy-efficient processor design could yield as much

improvement as two or three process generations.

But this still falls dramatically short of the ideal goal of a processor that could
deliver performance approaching that of a notebook computer, while maintaining
PDA-like energy consumption, and providing an energy-efficiency similar to that found

in low-power, custom ASIC designs.

1.2 Research Goals and Contributions

The goal of this research is to significantly improve processor system energy-
efficiency by combining the lessons learned in low-power DSP design with the unique
design constraints of a general-purpose processor to develop a new, more energy-
efficient, processor design methodology. Several key research contributions which

address this goal are:

* Developed the technique of Dynamic Voltage Scaling (DVS) for a general-purpose

microprocessor to dynamically vary the processor’s supply voltage and clock

4

1.3 Organization

frequency, under operating system control. This allows the processor to provide
high performance when required, while minimizing energy consumption during the
remaining low-performance periods of time. This technique is most significant
because it eliminates the energy-performance trade-off of more traditional low-

power design techniques.

* Developed an energy-conscious design flow which enables energy consumption
optimization at all levels of the design flow, including the high-level C behavioral
simulator, where optimizations can have the biggest impact on energy-efficiency.
The new flow also eliminates the extra complexity added by DVS to a more

traditional design flow.

* Developed an energy-efficient architectural design methodology for all aspects of
a processor system, including system-level optimizations, as well as optimizations

targeted for the processor core and cache system.

* Developed an energy-efficient circuit design methodology for all aspects of digital
- circuit design for processors, while meeting the circuit design constraints imposed

by DVS.

* Demonstrated the above concepts by implementing a prototype processor system,
consisting of four custom chips in a 0.6um CMOS process technology, that can
operate over the range of 1.2-3.8V, 5-80MHz, and 0.54-5.6 mW/MIP. Through
DVS, the system can deliver a peak performance of 85 Dhrystone 2.1 MIPS, with
an average power dissipation as low as 3.24mW. This yields as much as
26,000 MIPS/W, which is more than 10x than the most energy-efficient

microprocessor currently available.

1.3 Organization

Chapter 2 presents a usage model for processors found in portable electronic

devices in order to qualitatively identify the critical design optimizations for processor

1.3 Organization

performance and energy consumption. Analytical CMOS circuit models are then
presented, from which three metrics are derived to quantify energy-efficiency. Four key
energy-efficient design principles are presented to demonstrate the application of these

metrics.

Dynamic voltage scaling (DVS), a technique to dynamically vary a processor’s
performance and energy consumption, is presented in Chapter 3. After demonstrating
the potential energy-efficiency improvement of DVS, a voltage converter is described
which generates the variable voltage and clock frequency. The design constraints placed
upon the processor’s circuits are then examined. DVS requires operating system support
via the voltage scheduler, which is presented, followed by new benchmark programs

used to quantify the energy-efficiency improvement of DVS.

An energy-conscious design flow methodology is described in Chapter 4,
which constantly evaluates not only performance, but energy consumption as well, at all
levels of the design hierarchy. A majority of the design cycle in modern complex
processor designs is spent on validating functionality, a problem which is exacerbated
by DVS. The remainder of the chapter describes four parts of the design flow that were
developed to aid and speed-up the design of a DVS processor system: clocking
methodology, power distribution methodology, functional verification, and timing

verification.

Chapter 5 presents a top-down energy-efficient architectural design
methodology. First, system-level architectural design issues are discussed, followed by

a more in-depth analysis of the processor core and the cache system.

An energy-efficient circuit design methodology is described in Chapter 6.
General circuit design techniques are discussed, including choosing logic styles,
transistor sizing, clock-gating, optimizing interconnect, and layout considerations for

both standard and datapath cell libraries. Memory design, which has additional

1.3 Organization

constraints placed upon is by DVS, is presented next. Low-swing bus transceivers are
then described, which can be used to significantly reduce energy consumption for on-

chip busses, and even more significantly, for inter-chip busses.

A prototype processor system, consisting of four custom chips, is presented in
Chapter 7. This system successfully demonstrates the energy-efficiency improvement
due to DVS (5-10x), as well as the energy-efficiency improvement due to the previously
described energy-efficient design methodology (2-3x). By radically re-evaluating the
design of a processor, its energy efficiency has been improved by more than a factor of
10x, as compared to currently-available commercial processors, which even have the

benefit of much better process technologies.

Chapter 8 provides concluding remarks and suggestions for future research

directions.

Energy Efficient
Design

To effectively optimize the energy efficiency of a processor system, it is
critical to first understand the computational demands placed upon it. Based upon
relatively simple CMOS circuit models suitable for deep sub-micron process
technologies, three energy-efficiency metrics will be derived. Finally, some key energy-
efficient design principles will be discussed to demonstrate the application of these

metrics.

2.1 Processor Usage Model

Understanding a processor’s usage pattern is essential to its optimization.
Processor utilization can be evaluated in terms of the amount of processing required and
the allowable latency for the processing to complete. These two parameters can be
merged into a single measure, which is Throughput, or T. It is defined as the number of

operations that can be performed in a given time:

= 7 = Operations
Throughput=T Second (EQ2.)

Operations are defined as the basic unit of computation and can be as fine-
grained as instructions or more coarse-grained as programs. This leads to measures of
throughput of MIPS (instructions/sec) and SPECint95. (programs/sec) [spec94] which

compare the throughput on implementations of the same instruction set architecture

2.1 Processor Usage Model

(ISA), or different ISAs, respectively.

~ 2.1.1 Processor Operation

The desired throughput of various software processes executing on a processor
are shown in Figure 2.1. The example processor usage pattern shows that the desired
throughput varies over time, and the type of computation falls into one of three
categories.

Compute-intensive
& minimum-latency processes

Background &
high-latency
processes

Desired Throughput

Time
FIGURE 2.1 : Processor Utilization.

Compute-intensive and minimum-latency processes desire maximum
performance, which is limited by the peak throughput of the processor, T)s y. Any
increase in Ty x that the hardware can provide will readily be used by these processes
to reduce their latency. Examples of these processes include spreadsheet updates,

document spell checks, video decoding, and scientific computation.

Background and high-latency processes require just a fraction of the full
throughput of the processor. There is no intrinsic benefit to exceeding the real-time
latency requirements of the process since the user will not realize any noticeable
improvement. Examples of these processes include video screen updates, data entry,

audio/video codecs, and low-bandwidth 1/0 data transfers.

The third category of computation is system idle, which has zero desired
throughput. Ideally, the processor should consume zero power in this mode and

therefore be inconsequential. However, in any practical implementation, this is not the

10

2.1 Processor Usage Model

case. Hence, as will be discussed in Section 5.2.5, optimizing this mode of operation

requires special attention.

These three modes are found in most single-user processor systems, from
personal digital assistants (PDAs), to notebook computers, to powerful desktop
machines. This model does not apply to systems implementing a fixed-rate DSP
algorithm; these systems operate either in the fixed-latency or idle modes of operation
which are much better suited to be implemented in a custom DSP ASIC [chan95]. In
multi-user mainframe computers, where the processor is constantly in use, this usage
model also does not hold true. For these machines, the processor essentially spends the

entire time in the compute-intensive mode of operation.

2.1.2 What Should be Optimized?

Any increase in processor speed can be readily exploited by compute-intensive
and minimum-latency processes. In contrast, the background and high-latency
processes do not benefit from any increase in processor speed above and beyond their
average desired throughput since the extra throughput cannot be utilized. Thus, peak
throughput is the parameter to be maximized since the average throughput is

determined by the user and/or operating environment.

The run-time of a portable system is typically constrained by battery life.
Simply increasing the battery capacity is not sufficient because the battery has become
a significant fraction of the total device volume and weight [culb94][iked95][kuni95].
Thus, it has become imperative to minimize the load on the battery, while
simultaneously increasing the speed of computation to handle ever more demanding
tasks. Even for wired desktop machines, the drive towards "green" computers are
making energy-efficient design a priority. Therefore, the computation per battery-life/
Watt-hour should be maximized, or equivalently, the average energy consumed per

operation should be minimized.

11

2.1 Processor Usage Model

Due to the high cost of heat removal, it has also become important to minimize
peak energy consumed per operation (i.e. power dissipation), mainly in high-end
computing machines and notebook computers. However, the focus of this work is on
energy-efficient computing, so the parameter that this work focuses on is average

energy consumption.

2.1.3 InfoPad: A Case Study in Energy Efficient Computing

The InfoPad is a wireless, multimedia terminal that fits a compact, low-power
package in which much of the processing has been moved onto the backbone network
[chan94]. An RF modem sends/receives data to/from five I/O ports: video output, text/
graphics output, pen input, audio input, and audio output. Each I/O port consists of
specialized digital ICs, and the associated I/O device (e.g. LCD, speaker, etc.). In
addition, there is an embedded processor subsystem used for data flow and network
control. InfoPad provides an interesting case study because it contains large amounts of
data processing and control processing, which require different optimizations for

energy efficiency.

The specialized ICs include a video decompression chip-set which decodes
128 x 240 pixel frames in real-time, at 30 frames per second. The collection of four
chips takes in vector quantized data and outputs analog RGB directly to the LCD and
dissipates less than 2mW. Implementing the same decompression in a general purpose
processor would require a throughput of around 10 MIPS with hand-optimized code. A
processor subsystem designed with the best available parts in an 1.2um equivalent
process technology would dissipate at least 200mW. This provides a prime example of
how dedicated architectures can radically exploit the inherent parallelism of signal
processing functions to achieve orders of magnitude reduction of power dissipation

over equivalent general-purpose processor-based systems.

The control processing, which has little parallelism to exploit, is much better

12

2.1 Processor Usage Model

suited towards a general purpose processor. An embedded processor system was
designed around the ARMG60 processor [gec94], which combined with SRAM and
external glue logic dissipates 1.2W, while delivering a peak throughput of 10 MIPS. It
is this discrepancy of almost three orders of magnitudg in power dissipation that leads
to this work’s objective of substantially reducing the processor system’s energy

consumption.

2.1.4 The System Perspective

In an embedded processor system such as that found in InfoPad, there are a
number of digital ICs external to the processor chip required for a functional system:
main memory, clock oscillator, I/O interface(s), and system control logic (e.g., PLD).
Integrated solutions have been developed for embedded applications that move the
system control logic, the oscillator, and even the I/O interface(s) onto the processor

chip leaving only the main memory external such as the SA-1100 processor [dec98].

Figure 2.2 shows a schematic of the InfoPad processor subsystem, which
contains the essential system components described above. Interestingly, the processor
does not dominate the system’s power dissipation; rather, it is the SRAM memory
which dissipates half the power. For aggressive energy-efficient design, it is imperative
to optimize the entire system and not just a single component; optimizing just the

processor in the InfoPad system can yield at most a 10% reduction in power.

Total Power: 1.2 W
45 mWw 120mW 400 mW

40 mw 600 mwW
FIGURE 2.2 : InfoPad Processor Subsystem.

13

2.2 CMOS Circuit Models

High-level processor and system simulation is generally used to verify the
functionality of an implementation and find potential performance bottlenecks.
Unfortunately, such high-level simulation tools do not exist for energy consumption,
which forces simulations to extract energy consumption to be delayed until the design
has reached the logic design level. At this time, it is very expensive to make significant
changes, because it is difficult to make system optimizations for energy consumption

through whole-scale redesign or repartitioning.

It is important to understand how design optimizations in one part of a system
may have detrimental effects elsewhere. A simple example is the relative effect of a
processor’s on-chip cache on the external memory system. Because smaller memories
have lower energy consumption, the designer may try to minimize the on-chip cache
size to minimize the energy consumption of the processor at the expense of a small
decrease in throughput (due to increased miss rates of the cache). However, the
increased miss rates affect not only the performance, but may increase the system
energy consumption as well because high-energy main memory accesses are now made
more frequently. So, even though the processor’s energy consumption was decreased,

the total system’s energy consumption has increased.

2.2 CMOS Circuit Models

CMOS has become the predominant process technology for digital circuits.
Circuit delays and power dissipation for CMOS circuits can be accurately modeled with
simple equations, even for complex processor circuits. These models, along with
knowledge about the system architecture, can be used to derive analytical models for

energy consumed per operation and peak throughput.

These models will be presented in this section and then used in Section 2.3 to
derive metrics that quantify energy efficiency. With these metrics, the circuit and

system design can be analytically optimized for maximum energy efficiency.

14

2.2 CMOS Circuit Models

2.2.1 Power Dissipation

There are four main sources of power dissipation: dynamic switching power
due to the charging and discharging circuit capacitances, short-circuit current power
due to finite signal rise and fall times, leakage current power from reverse-biased
diodes and subthreshold conduction, and static biasiné power found in some types of

logic styles (i.e. pseudo-NMOS).

Typically, the power dissipation is dominated by the dynamic switching power.
However, it is important to understand the other components as they can have a
significant contribution to the total power dissipation in poorly-designed integrated

circuits.

2.2.1.1 Dynamic Switching Power

For every low-to-high output transition in a digital CMOS gate, the
capacitance on the output node, C;, incurs a voltage change AV, drawing an energy of
C;'AV-Vpp Joules from the supply voltage, Vpp [chan95]. A high-to-low transition
dissipates the energy stored on the capacitor into the NMOS device(s), pulling the
output low. The power dissipation is just the product of the energy consumed per

transition and the rate at which low-to-high transitions occur, Fy_,;.

For the simple inverter gate shown in Figure 2.3, AV is equal to Vpp, so the

power drawn from the supply is:

Poweryyygrrer = Co* Vop - Fy (EQ2.2)

This simple equation holds for more complex gates, and other logic styles as well, given
a periodic input. In static logic design, the output only transitions on an input transition,
while in dynamic logic, the output is precharged during half the clock cycle, which may
force a transition, and a transition can also occur in the other half-cycle, depending

upon the input values. In both cases, the power dissipated during switching is

15

2.2 CMOS Circuit Models

proportional to the capacitive load; however, they have different transition frequencies.

FIGURE 2.3 : Dynamic Switching Power Dissipation; Sources of Capacitance.

The basic capacitor elements of C;, shown in Figure 2.3, consist of the gate
capacitance of subsequent inputs attached to the inverter output (Cgps Cgn), interconnect

capacitance (Cp), and the diffusion capacitance on the drains of the inverter transistors

(Cabp, Cabn, Cdgp, Cagn) [rabad6).

Usually, the value of Fy_,; is difficult to quantify since it is typically not
periodic, and is strongly correlated with the input test vectors. Without doing a
transistor-level circuit simulation, the best way to calculate F_,, is to either perform
statistical analysis on the circuit [land93], or use a high-level behavioral model with
benchmark software to determine a mean value. Since most digital CMOS circuits are
synchronous with a clock frequency, fr;x, an activity factor, 0 <o < 1, is used to
denote the average fraction of clock cycles in which a low-to-high transition occurs,

such that Fy_,; = o-fcr k-

For an integrated circuit with N nodes, the total dynamic switching power is:
N

Powerpynamic = Vpp " Jerk: 2 o;- Cp- AV; (EQ2.3)

i=1

Aside from memory bit-lines and low-swing logic, most nodes swing AV = Vpp, as was

the case for the simple inverter, so that the power equation can be simplified to:

Powerpyynamic = me “Jerk* Cerr (EQ2.4)

16

2.2 CMOS Circuit Models

where the effective switched capacitance, Cgrp, is commonly expressed as the product
of the physical capacitance C; and the activity weighting factor a, each averaged over

the N nodes.

2.2, 1.2 Short-Circuit Current Power

Short-circuit currents occur when the output of a gate is transitioning while the
input is still in mid-transition. This generally occurs when the rise/fall time at the input
is larger than the output rise/fall time. For the ideal case of a step input, the transistors
change state immediately, one turning on, one turning off. There is no conductive path
from the supply to ground. For actual circuits, however, the input signal will have a
finite rise/fall time. While the conditions Vr, <V, < Vpp —|Vp,| and 0 < ¥,,, < Vpp
hold for the input/output voltages, there will be a conductive path open because both

devices are on.

The longer the input rise/fall time, the longer the short-circuit current will
continue to flow, and the average short-circuit current increases. Figure 2.4 plots the
increase in energy consumption due to short-circuit current versus the ratio of input
rise/fall time (¢;,) to output rise/fall time (¢,,) for a static CMOS inverter. The

AE/E jp=0) increases dramatically with increasing input rise/fall time. To minimize the

2
18 4 ---mmmmm e
16 F-----mmm s S f -
L e il o AR bbby Drawn Device Sizes:
)) 1 N SR N N VV/LIp = 3.0/0.6um
. WiL|n = 1.2/0.6um
S V7
o 08T e e e Process:
g 064 -------ccmmme e S V= 0.65V
0.4 - ' V=085V
0.2 -
0 L}

2
tin/ Lout

FIGURE 2.4 : Short-circuit Energy Consumption vs. Input Rise/fall Time.

17

2.2 CMOS Circuit Models

total average short-circuit current power, it is desirable to have equal input and output
rise/fall times, since the input rise/fall time of one gate is the output rise/fall time of

another gate.

The average short-circuit current is roughly independent of device size for a
fixed load capacitance, since even though the peak magnitude of the current scales with
device width, the rise/fall time scales inversely with device width such that the average
current is approximately the same. The fraction of power dissipation due to short-
circuit current scales with ¥pp. However, when the supply is lowered to below the sum
of the thresholds of the transistors, ¥pp < Vp, + [V7pl, short-circuit currents will be

eliminated because both devices cannot be on at the same time.

For well-designed ICs, the short-circuit power dissipation can be limited to
5-10% of the total dynamic power [veen84]. This is achieved by maintaining a bounded
ratio on rise/fall times through a transistor-width sizing methodology, discussed further

in Section 6. 1. 2. 1, so that:

Powergyorr = dsc - Powerpyy e (EQ2.5)

where dgc is the ratio of short-circuit to dynamic power dissipation.

2.2.1.3 Leakage Current Power

There are two types of leakage currents: reverse-bias diode leakage, and sub-
threshold leakage through the channel of an “off” device. The magnitude of these
currents is set predominantly by the processing technology and total number of

transistors.

Diode leakage occurs when one transistor is turned off, and another active
transistor charges up, or down, the drain with respect to the former’s bulk potential. For
a static CMOS inverter, shown in cross-section in Figure 2.5, with a low input voltage,

the output voltage will be high because the PMOS transistor is on. The NMOS transistor

18

2.2 CMOS Circuit Models

will be turned off, but its bulk-to-drain voltage will be equal to the supply voltage,
—Vpp- The resulting diode leakage current will be approximately I;, = Ap-Jsp, where
Ap is the area of the drain diffusion, and Jgp is the leakage current density of the
diffusion, set by the technology. Since the diode reaches maximum reverse-bias current
for relatively small reverse-bias potential (< 100mV), the leakage current is roughly

independent of supply voltage.

Vin=0 Vop

L]

Vour="Y,
oy] I our— DD l [poly]

\ ™) o+ pt Pt n+

Vp=-Vpp, Vp=0

FIGURE 2.5 : Reverse-biased Diodes in CMOS Inverter.

In an nwell process, such as that depicted in Figure 2.5, the nwell-substrate
reverse-biased diode also has leakage current. Since a diode’s leakage current is
primarily determined by the more lightly doped side of the junction, which is the
p— substrate, the leakage current density is similar to that of the NMOS drain-substrate
diode [mull86]. Because the well area, Ay, is an order of magnitude larger than the
diffusion area, this current will dominate reverse-biased diode leakage in an n-well
process. The current is I; = AprJgp, where Jg is the leakage current density of the

well, also set by the technology.

For the MOSIS 0.6um process, Jgp = 100nA/m? and Jsw = 100nA/m (at
25°C). The leakage current density is temperature sensitive, so Jg can increase
dramatically at higher temperatures. Since the well-diode leakage dominates diffusion-
diode leakage, the leakage current can be estimated from the size of the die. For a large

200mm? chip, approximately one-half the area is nwell, such that the total diode

19

2.2 CMOS Circuit Models

leakage is on the order of 10pA.

Subthreshold leakage occurs under similar conditions as the diode leakagé. In
the inverter described above, the NMOS was turned off, but even for Vg = 0V, there is
still current flowing in the channel due to the Vpg potential of Vpp. The Ip vs. Vg
characteristic, as shown in Figure 2.6, has an exponential relation in the subthreshold

region (Vg5 < |V7).

In, A A Sutiﬂérg?gl;old Sﬁtggria(t)gd
1073 2 Vps=3.3V (Vpp)
105}
107
10'95 '
1071
10-'3!:
1075 03 10 IS 20> Vos V

FIGURE 2.6 : I vs. Vg for MOSFET in Subthreshold Region.

The magnitude of the subthreshold current is both a function of process, device
sizing (W/L), and supply voltage [sze81]. The process parameter that predominantly
affects the current value is ¥ Reducing V7 exponentially increases the subthreshold

current, which to first order, is proportional to ¥, or equivalently, ¥ p.

For a Vr of 0.8V, the current magnitude for a single device is on the order of
1pA. Approximately one out of every two transistors has the necessary bias conditions
for subthreshold leakage. For a 2 million transistor chip, its total subtreshold current

would be on the order of 1uA, which dwarfs the reverse-diode leakage current.

The combination of diode-leakage current and subtreshold current for the
2 million transistor chip is approximately 1pA, which at a supply voltage of 3.3V, is
below 10uW. This is insignificant to the dynamic switching power while the processor

is operating. This power is only important in setting the lower threshold of achievable

20

2.2 CMOS Circuit Models

power dissipation while the processor is idling. Hence, this power component will be

ignored except when discussing idle energy consumption.

However, as process technology continues to advance, the maximum operating
voltage decreases, and reductions in V' are required to maintain a reasonable gate-drive
voltage. This is particularly true in processes targeted towards high-performance ICs.
For example, a 0.35um process with V7= 0.35V has a leakage current on the order of
10nA per device [mont96][de99]. This yields 10mA of leakage current for the same
2 million transistor chip, and may become a significant fraction of the power
dissipation in a very low-power chip. There are several design techniques to reduce this
leakage current, such that it is once again only critical when considering idle energy
consumption, including selectively increasing channel lengths, dual V7 devices

[muto95], and dynamically varying Vg [kuro96].

2. 2. 1. 4 Static Biasing Power
While static bias currents are usually avoided in CMOS circuits, occasionally,
they may prove to be beneficial. A typical application is for a large complex gate that

cannot be implemented with dynamic logic due to asynchronous timing constraints.

Figure 2.7 contains an example gate; it is a wide AND-OR-Invert gate with

asynchronous inputs. To implement this in full static CMOS would require several

V,

1 T °
A—| 4,— Ay—

] —
Bl— Bz-— BN—

1 1

FIGURE 2.7 : Implementing Complex Logic with Static Biasing (pseudo-NMOS)

21

2.2 CMOS Circuit Models

times the area to implement the stacked PMOS transistors. The extra PMOS transistors
would also increase the capacitance on the input nodes, loading down the previous
gates. However, by synchronizing the inputs through architectural design, which can
usually be accomplished, and then implementing the complex gates with dynamic logic,

this power component can be made negligible.

2.2.1.5 Combined Power Model

With the assumption that no static biasing is present, the total power

dissipation is just the summation of the remaining three individual components:
Power = Powerpyy 4yt Powergyopr+ Power g k46 (EQ2.6)

where the Power|r4x 4G component is on the order of 10-100pW.

Power = (1+85c) - Vopferk* Cerr+ Powerygpice = Vop -, cLk * Cerr (EQ2.7)

To simplify the following analyses, the assumptions that (1+8gc) = 1, and that
Powerp g x4GE can be ignored except during processor idle will be made, so that the
total chip power dissipation is approximately equal to just the dynamic switching power

component.

2.2.2 Energy/Operation

A common measure of energy consumption is the power-delay product (PDP)
[chan92]. This delay is often defined as the critical path delay, so PDP is equivalent to
the energy consumed per clock cycle (Power / f¢; k). However, the measure of interest
is the energy consumed per operation which can be derived by dividing the PDP by the
operations per clock cycle. The energy consumed per operation can now be expressed as
a function of effective switched capacitance, supply voltage, and operations per clock
cycle:

Energy . me " Cerr (EQ2.8)
Operation~ Operations / Clock Cycle)

22

2.2 CMOS Circuit Models

2.2.3 Circuit Delay

To fully utilize its hardware, a digital circuit should bé operated at the
maximum possible frequency. This maximum frequency is just the inverse of the delay

of the processor’s critical path which is proportional to the delay of a single CMOS gate

The delay for a CMOS gate, which is defined as the time required for Athe

output to transition to 50% of the voltage swing, Vpp, can be approximated as [raba96]:

CL CL VDD
DelayEI—' . AVO%—)SO% = I_— . '—2_ (EQ 2.9)
AVE AVE

I,y is the average device current during the transition. For sub-micron MOS

devices in velocity saturation, the device current, Ip, is [toh88]:
Ip = vsar- Cox W (Vpp—Vr="Vpsar) VpsZ Vpsar (EQ2.10)

with the assumption of a fast input signal transition so that the device’s gate-source
voltage is Vpp. The term vg, r is the maximum carrier velocity, which is a constant of
bulk silicon [mull86]. Cpy is the gate capacitance, W is the device width, and V7 is the
device threshold. Vpg,, is the value above which the current is independent of the drain-

source voltage, Vpg, which in velocity saturation is [toh88]:

EC * Le
VDsat = (_ .
Vop—VrtEc-L,

)(VDD— V) EQ 2.11)

where L, is the effective electrical channel length, while E- is the longitudinal
electrical field at which the carriers are considered at vgy;, and is a fundamental
constant of silicon. E is approximately 1.5x108 V/m [pier96], so with the reasonable

approximation that Vy~ EcL, (e.g. if L, = 0.5um, V7= 0.75V):

Vv
Vpsar= (I‘,BLD)(Vop-V1) (EQ2.12)

The device remains in saturation during the output transition (defined as a 50%

change in output voltage), since Vpy,, is well below %V, for the entire range of Vpp,

23

2.2 CMOS Circuit Models

and the current is approximately constant such that I,y = Ip. Combining equations
2.12, 2.10, and 2.9 yields:
Cp- Vfw
k- W-(Vpp=Vp)'

Delay = k, =2-vgr Cox (EQ2.13)

where ky contains the technology dependence. For our 0.6um process (L, = 0.4,
Vr=0.75V), this approximation gives less than 10% error in comparison to a SPICE-

simulated delay using a BSIM3 device model [huan93].

2.2.4 Throughput

Throughput was previously defined as the number of operations that can be
performed in a given time. When clock rate is set to be the inverse of the critical path
delay, the throughput is equal to the amount of computational concurrency (i.e.

operations completed per clock cycle) divided by this delay:

_ Operations _ Operations per Clock Cycle
Second Critical Path Delay

(EQ2.19)

The critical path delay can be related back to the previous delay model by

summing up the delay over all M gates in the critical path:
M
Voo Cy

k,-(Vpp-Vp) w;

i=1

Critical Path Delay = (EQ2.15)

Making the approximation that all gate delays are equal, Equation 2.15 can be
simplified if N, is used to indicate the length of the critical path (i.e. number of
gates), and average values for C; and W are used. Throughput can now be expressed as
a function of a technology parameter, supply voltage, critical path length, and
operations per clock cycle:

2
k,-W-(Ypp—Vr)" Operations
Ngates . CL . Vi) D Clock Cycle

T= (EQ2.16)

Typical units for operations per clock cycle are MIPS/Mhz, and
SPECint95/MHz when operations are respectively defined as instructions and

benchmark programs.

24

2.3 Energy Efficiency Metrics

2.3 Energy Efficiency Metrics

While the energy consumed per operation should always be minimized, no
single metric quantifies energy efficiency for all digital systems. The metric is
dependent on the system’s throughput constraint. Tﬁere are three main modes of
computation: fixed throughput, maximum throughput, and burst throughput. Each of
these modes has a clearly defined metric for measuring energy efficiency, as detailed in
the following three sections. While single-user systems typically operate in the burst
throughput mode, the other two modes are equally important since they are degenerate

forms of the burst throughput mode in which the system may operate.

2.3.1 Fixed Throughput Mode

Many real-time systems require a fixed number of operations per second. Any
excess throughput cannot be utilized, and therefore needlessly consumes energy.
Systems with this characteristic will be defined as operating in the fixed throughput
mo&e of computation, and they are typically found in digital signal processing
applications in which the required throughput is set by a fixed-rate incoming or

outgoing real-time signal (e.g., speech, audio, video).

Power _ _Energy 2.17
Throughput Operation €Q2.17)

Energy Efficiency| Fix =

Previous work has shown that the metric of energy efficiency in Equation 2.17
is valid for the fixed throughput mode of computation [chan92]. A lower value implies
a more energy-efficient solution. If a design can be made twice as energy efficient (i.e.
reduce the energy/operation by a factor of two), then its sustainable battery life has
been doubled, and since the throughput is constant, its power dissipation has been
halved. For the fixed-throughput mode, minimizing the power dissipation is equivalent

to minimizing the energy/operation.

25

2.3 Energy Efficiency Metrics

Using the energy model in Section 2.2.2, the metric can be expressed as:

V., -C |
) - DD " “EFF EQ2.18
Energy Eﬁc’e”‘ylnx Operations / Clock Cycle EQ)

The primary way to improve energy efficiency is to reduce supply voltage while
maintaining the throughput constraint, which yields a quadratic improvement in energy
efficiency. Additionally, reducing the effective switched capacitance will also improve
efficiency. Optimizing the energy efficiency of this mode of computation has been the
focus of much previous work, which has yielded a variety of low-power design

techniques that provide significant efficiency improvements [chan95].

2.3.2 Maximum Throughput Mode

In most multi-user systems, primarily networked workstations and mainframes,
the processor is continuously running. The faster the processor can perform
computation, the better, yielding the defining characteristic of the maximum throughput
mode of computation. Thus, this mode’s metric of energy efficiency must balance the
need for low energy/operation and high throughput, which is accomplished through the

use of the Energy-to-Throughput Ratio, or ETR:

; - _Eymax_ Power
Energy Efficiency| vax = ETR TMAX— Throughput® (EQ2.19

where Ey, v is the energy/operation, or equivalently power/throughput, and T4y is the

throughput in this mode.

A lower ETR indicates lower energy/operation for equal throughput, or
equivalently, indicates greater throughput for the same amount of energy/operation,
satisfying the need to equally optimize throughput and energy/operation. Thus, a lower

ETR represents a more energy-efficient solution.

The Energy-Delay Product (EDP) is a similar metric [horo94], but does not

include the effects of architectural parallelism when the delay is taken to be the critical

26

2.3 Energy Efficiency Metrics

path delay. For example, two processors may consume the same energy/operation and
operate at the same clock frequency, but one processor can complete two operations per
cycle, while the other processor can only complete one operation per cycle. Although
the EDP for the two processors is the same, indicating that they have equivalent energy
efficiency, the ETR for the first processor is one-half the ETR for the second processor,
correctly indicating that the processor which can complete two operations per clock

cycle is actually twice as energy efficient.

Throughput and energy/operation can be scaled with supply voltage, as shown
in Figure 2.8 (the data for Figures 2.8-2.10 is derived from Equations 2.8 and 2.16,
which models sub-micron CMOS processes); but, unfortunately, they do not scale
proportionally. So while throughput and energy/operation can be varied by well over an
order of magnitude to cover a wide dynamic range of operating points, the ETR is not

constant for different values of supply voltage.

Throughput

Normalized Values
[~]
(¥.3

Energy/operation

3
Vop (VD

FIGURE 2.8 : Energy/operation, Thronghput

As shown in Figure 2.9, Vpp can be adjusted by a factor of 2.5 (1.4-3.5V7) and
the ETR only varies within 50% of the minimum at 2V However, outside this range,
the ETR rapidly increases. Clearly, for supply voltages greater than 4V there is a rapid
degradation in energy efficiency, as well as for supply voltages that approach the device
threshold voltage. But, since both throughput and energy/operation are monotonically
increasing function of supply voltage, varying Vpp allows throughput to be traded off

for lower energy/operation, and vice-versa.

27

2.3 Energy Efficiency Metrics

N
n

_ Inefficient to operate at very
9 high or low supply voltages
8 [T L
:

3]

E 1S5 f--b-mmmm e]
&

1431

l r
1 2 3 4 5

Voo (VD
FIGURE 2.9 : ETR as a function of V).

To compare designs over a larger operating range for the maximum throughput
mode, a better metric is a plot of the energy/operation versus throughput. To make this
plot, the supply voltage is varied from the minimum operating voltage (near V7 in many
digital CMOS designs) to the maximum voltage (2.5-5V, depending on the technology),
while energy/operation and throughput are measured. The energy/operation can then be

plotted as a function of throughput, and the architecture is completely characterized

over all possible throughput values.

@®Denote Max. & Min. Operating Pointsy
D

I g Error in constant ETR Analvti
approximation MOdyet;c

Energy/Operation

“Throughput (Operations/Sec)
FIGURE 2.10 : Energy vs. Throughput

Using the ETR metric is equivalent to making a linear approximation to the
actual energy/operation versus throughput curve. Figure 2.10 demonstrates the error
incurred in using a constant ETR metric, which is calculated at a nominal supply

voltage of 3.3V for this example. For architectures with similar throughput, a single

28

2.3 Energy Efficiency Metrics

ETR value is a reasonable metric for energy efficiency; however, for designs optimized
for vastly different values of throughput, a plot may be more useful, as Section 2.4.1

will demonstrate.

Using the throughput and energy models from Section 2.2, the ETR is:

Cerr- V;D (EQ 2.20)

k2 W-(Vpp-Vp)

CL'N

gates

ETR =

However, this equation is not entirely intuitive in aiding in energy-efficient design,
since the variables have several interdependencies. If the device width, W, is increased
to reduce ETR, C; and Cgpp will also increase, effectively increasing ETR when the
gate capacitance begins to dominate the load capacitance. Similarly, if Ngg, is
reduced, this may come at the cost of increased C; and/or Cgrr. Hence, individual
parameters cannot be optimized in isolation, and their inter-dependencies must be taken
into account by fully evaluating the ETR when optimizing a circuit for energy

efficiency.

2.3.3 Burst Throughput Mode

Most single-user systems (e.g., stand-alone desktop computers, notebook
computers, PDAs, etc.) spend only a fraction of the time performing useful
computation. The rest of the time is spent idling between processes. However, when
bursts of computation are demanded, the faster the throughput (or equivalently,
response time), the better. This characterizes the burst throughput mode of computation
in which most portable devices operate. The metric of energy efficiency used for this
mode must balance the desire to minimize energy consumption, while both idling and

computing, and to maximize peak throughput when computing.

Ideally, the processor’s clock should track the periods of computation in this
mode so that when an idle period is entered, the clock is immediately shut off. Then a

good metric of energy efficiency is just ETR, as the energy consumed while idling has

29

2.3 Energy Efficiency Metrics

been eliminated. However, this is not realistic in practice. Many processors do not
having an energy saving mode and those that do so generally support only simple clock

reduction/deactivation modes.

— Throughput

A -~ feLk Wasted Energy
§ peak}
B=
5 s
= §
° Sl
8 55| ||]
(-] H
° gelllie
B HEIIE:
-~ sleep .. oo B B I R SOV ;

" -
0 s time

FIGURE 2.11 : Wasted energy due to idle

The hypothetical example depicted in Figure 2.11 contains a clock reduction
(sleep) mode in which major sections of the processor are shut down. The shaded area
indicates the processor’s idle cycles in which energy is needlessly consumed, and
whose magnitude is dependent upon whether the processor is operating in the “low-
power” mode. The energy/operation while actively computing, E,,,y, and the amortized

energy/operation while idling, E;p, g, is:

_ Total Energy Consumed Computing
Emax Total Operations (EQ2.21)
_. Total Energy Consumed Idling
EmpLe Total Operations (EQ2.22)

Total energy and total operations can be calculated over a large sample time
period, tg. T)s4x is the peak throughput during the bursts of computation (similar to that
defined in Section 2.3.2), and T,y is the time-averaged throughput (total operations /
tg). If the time period tg is sufficiently long that the operation characterizes the
“average” computing demands of the user and/or target system environment yielding
the average throughput (74yz), then a good metric of energy efficiency for the burst
throughput mode is:

Epax+Epre (EQ2.23)

Metric| BURST =BETR= Trox

30

2.3 Energy Efficiency Metrics

This metric will be called the Burst-mode ETR (BETR); it is similar to ETR, but also
accounts for energy consumed while idling. A lower BETR represents a more energy-

efficient solution.

Multiplying Equation 2.21 by the actual time computing [zg- (fraction of time
computing)], shows that E,; y is the ratio of compute power dissipation to peak
throughput 7.4y, as previously defined in Section 2.3.2. Thus, E,,, v is only a function

of the hardware and can be measured by operating the processor at full utilization.

E;prE, however, is a function of tg and T pr. The power consumed idling must
be measured while the processor is operating under typical conditions, and T,y must
be known to then calculate Ejp;z. However, expressing Ejp;r as a function of Ey,y
better illustrates the conditions when idle energy consumption is significant. In doing
so, E;py g will also be expressed as a function of the idle power dissipation, which is

readily calculated and measured, as well as independent of g and T yf.

Equation 2.22 can be rewritten as:

_Ldle Power Dissipation){ Time Idling] 2.24
EipLe [Average Throughput{ Sample Time] (EQ2.29)

With the Power-Down Efficiency, B, defined as:

. 272 P
B = Power. dz:ssmfztzon M.)hzle zdlzng. _VIDLE (EQ 2.25)
Power dissipation while computing Py,

E;prr can now be expressed as a function of Eyy, v

_IB-Eprax Byaxt [Q-Tyye/ Tyaxdts) 22
EipiE [7,7g) - [ts] (EQ2.26)

Equation 2.27 shows that idle energy consumption dominates total energy
consumption when the fractional time spent computing (T4yg/ Tar4x) is less than the

fractional power dissipation while idling (B).

T
BETR= ETR[I + B(% - J] Tooax2 Tave (EQ2.27)
AVE

31

2.3 Energy Efficiency Metrics

The BETR is a good metric of energy efficiency for all values of T pg, Thsxs

and B as illustrated below by analyzing the two limits of the BETR metric.

Idle Energy Consumption is Negligible (B << T4yg/T)4x): The metric should
simplify to that found in the maximum throughput mode, since it is only during the
bursts of computation that energy is consumed and operations performed. For negligible
power dissipation during idle, the BETR metric in Equation 2.27 degenerates to the
ETR, as expected. For perfect power-down (B = 0) or high user-demanded throughput
(Tagax = T4yE), the BETR is exactly the ETR.

Idle Energy Consumption Dominates (B >> T yp/T\4x): The energy efficiency
should increase by either reducing the idle energy/operation while maintaining constant
throughput, or by increasing the throughput while keeping idle energy/operation
constant. While it might be expected that these are independent optimizations, Ejp; g

may be related back to E)s,y and the throughput by B since T,y is fixed:

Eipre_Pipre’Tave _ o Tuax

= 2.28
Evax Pmax/Tuax Tyve EQ228)
Expressing E;p; g as a function of E,s y yields:
-E
BETREB—T-M (Idle Energy Dominates) (EQ 2.29)

AVE
If B remains constant for varying throughput (and E,.y stays constant), then E;p; g
scales with throughput as shown in Equation 2.28. Thus, the BETR becomes an energy/
operation minimization similar to the fixed throughput mode. However, B may vary

with throughput, as will be analyzed further in Section 5.2.5.

2.3.4 Energy Efficiency for Practical Designs

As mentioned earlier, the BETR metric measures the energy efficiency of
processor systems. Unfortunately, information on the system’s average throughput

(T4yE) is required to utilize this metric, which is application specific. Thus, the BETR

32

2.4 Energy Efficient Design Principles

métric cannot be used to describe the energy efficiency of a processor in general terms,
but requires the specification of a target application, or class of related applications. An
example application is the InfoPad, as described in Section 2.1.3, in which the
processor system is responsible for packet-level network control on the pad and has an
average throughput requirement of 0.8 MIPS. If the video decompression was
implemented by the processor rather than the custom chip-set, then the average

throughput would increase to approximately 11 MIPS.

So that energy-efficient design techniques can be discussed independent of the
final application, the BETR metric’s subcomponents, ETR and E;p, g, will be discussed

individually.

2.4 Energy Efficient Design Principles

Four examples are presented in this section to demonstrate how energy
efficiency can be properly quantified. In the process, four design principles follow from
the optimization of the previously defined metrics: a high-performance processor is
generally energy-efficient; idle energy consumption limits the energy efficiency for
high-throughput operation; reducing the clock frequency is never energy efficient; and

dynamic voltage scaling is very energy efficient.

2.4.1 High Performance is Energy Efficient

Table 2.1 lists two processors that are available today — the ARM710 targets
the low-power market, and the R4700 targets the mid-range workstation market, and
both are fabricated in similar 0.6um technologies, facilitating an equal comparison. The
measure of throughput used is SPECint92. A commonly-used metric for measuring
energy efficiency is SPECint92/Watt (or SPECint95/Watt, Dhrystones/Watt,
MIPS/Watt, etc.). The ARM710 processor has a SPECint92/Watt five times greater than

the R4700°s, and the claim then follows that it is “five times as energy efficient”.

33

2.4 Energy Efficient Design Principles

However, this metric only compares operations/energy, and does not weight the fact that

the ARM710 has only 15% of the performance as measured by SPECint92.
TABLE 2.1 Comparison of two processors [arm94][idt95].

Pr SPECint92 | Power | Supply voltage, SPECint92/Watt ETR
O0CSSOr | (Tyuw) | (Watts) | Vpp (Volts) (VEpux) (107%)
R4700 130 4.0 33 33 0.24

ARM710 20 0.12 3.3 167 0.30

The ETR (Watts/SPECint922) metric indicates that the R4700 is actually more
energy efficient than the ARM710. To quantify the efficiency increase, the plot of
energy/operation versus throughput in Figure 2.12 is used because it better tracks the
R4700°s energy at the low throughput values. The plot was generated from the

throughput and energy/operation models in Section 2.2.

0.08 v v

_ 0.010 710 4700
& 0.00: At 20 SPEC, the R4700
? 006 o.0d6 T dissipates 54% the power
§ 0.6'04 4700
I 0/002
2 004 / EIR

-5! 00 510 15 20725

&

g 0.02F 710 gﬁ‘ 3

o3

3 b - - -

09 350 100 150
SPECint92 (throughput)

FIGURE 2.12 : Energy vs. Throughput of R4700 and ARM710.

According to the plot, the R4700 would dissipate 65mW at 20 SPECint92, or
about 1/2 of the ARM710’s power, despite the low Vpp (1.5-¥7) for the R4700.
Conversely, the R4700 can deliver 30 SPECint92 at 120mW (Vpp = 1.7-V7), or 150% of

the ARM710’s throughput.
This does assume that the R4700 processor has been designed so that it can

operate at these low supply voltages. If the lower bound on operating voltage is greater

than 1.7-Vy then the ARM710 would be more energy efficient in delivering the

34

2.4 Energy Efficient Design Principles

20 SPECint92 than the R4700. Typically, a processor is rated for a fixed standard
supply voltage (3.3V or 5.0V) with a £10% tolerance. However, many processors can
operate over a much larger range of supply voltages (e.g., 2.7-5.5V for the ARM710
[arm94], 2.0-3.3V for the Intel486GX [inte95]). The processor can operate at a non-
standard supply voltage by using a high-efficiency, low-voltage DC-DC converter to

generate the appropriate supply voltage [stra94].

While the ETR correctly predicted the more energy-efficient processor at
20 SPECint92, it is important to note that the R4700 is not more energy efficient for all
values of SPECint92, as the ETR metric would indicate. Because the nominal
throughput of the processors is vastly different, the Energy/Operation versus
Throughput metric better tracks the efficiency, and indicates a cross-over throughput of

14.5 SPECint92. Below this value, the ARM710 becomes more energy efficient.

2.4.2 Fast Operation Can Limit Energy Efficiency

If the user demands a fast response time, rather than reducing the voltage, as
was done in Section 2.4.1, the processor can be left at the nominal supply voltage, and

shut down when it is not needed.

For example, assume the target application has a T pz of 20 SPECint92, and
both the ARM710 and R4700 have a B factor of 0.2. If the processors’ Vpp, is left at
3.3V, The ARM710°s BETR is exactly equal to its ETR value, which is 3.0x10™4. It
remains the same because it never idles. The R4700, on the other hand, spends 85%
(1 = T4yg/Tp14x) of the time idling, and its BETR is 5.0x10™4, Thus, for this scenario,

the ARM710 is nearly twice as energy efficient.

However, if the R4700’s B can be reduced down to 0.02, then the BETR of the
R4700 becomes 2.66x10™4, and it is once again the more energy-efficient solution. For

this example, the cross-over value of B is 0.045.

35

2.4 Energy Efficient Design Principles

This example demonstrates how important it is to use the BETR metric instead
. of the ETR metric if the target application’s idle time is significant (i.e., T_;,yg-can be
characterized and is significantly below Ty, y). For the above example, a B for the
R4700 greater than 0.045 leads the metrics to disagree on which is the more energy-
efficient solution. One might argue that the supply voltage can always be reduced on the
R4700 so that it is more energy efficient for any required throughput. This is true if the
dynamic range of the R4700 is as indicated in Figure 2.12. However, if some internal
logic limited the value that ¥pp could be dropped, then the lower bound on the R4700°s
throughput would be located at a much higher value. Thus, finite B can degrade the
energy efficiency of a high-throughput processor, due to excessive idle power

dissipation.

2.4.3 Clock Frequency Reduction is Never Energy Efficient

A common fallacy is that reducing the clock frequency, fcrx, is energy
efficient. Reducing fcyx does reduce power dissipation, but it does not increase energy
efficiency. When compute energy consumption dominates idle energy consumption, it
actually increases energy efficiency. At best, when idle energy consumption is
dominant, it allows an energy-throughput trade-off. The relative amount of time spent
idling versus computing is an important consideration in determining the effect of clock

frequency reduction on energy efficiency.

Compute energy consumption dominates (Ep,x>> E;p;g): Since compute
energy consumption is independent of f-; g, and throughput scales proportionally with
JcLk» decreasing the clock frequency increases the ETR, and thereby reduces energy
efficiency. Halving fc;x is equivalent to doubling the computation time, while

maintaining constant computation per battery life, which is clearly energy inefficient.

Idle energy consumption dominates (E;p;p >> Ep4y): Clock reduction may

trade-off throughput and energy/operation, but only when the power-down efficiency, B,

36

2.4 Energy Efficient Design Principles

is independent of throughput such that E;p, z scales with throughput. When this is so,
halving fcr g will double the computation time, but will also double the amount of
computation per battery life, since E;p;r has been halved. If the currently executing
process can tolerate throughput degradation, then this may be a reasonable trade-off. If
B is inversely proportional to throughput, however, then reducing Jcrk does not affect

the total energy consumption, and the energy efficiency drops.

As shown in Table 2.2, reducing the clock frequency reduces energy efficiency
in two of the three possible operating conditions. In the third operating condition, the
efficiency merely remains unchanged. Thus, clock frequency reduction is never energy

efficient.

TABLE 2.2 Impact of Clock Frequency Reduction on Energy Efficiency.

Idle Energy Consumption Dominates
Operating Conditions: Cong’:ggfl Ili)x:)e;ﬁiates P independentof | B inversely propor-
throughput tional to throughput
— Throughput—— decreases 1 decr:s; T decreases
Energy unchanged decreases unchanged
Ene(rlg)/r jl;lg';(':};(;ncy decreases unchanged decreases

2.44 Dynamic Voltage Scaling is Energy Efficient

If Vpp were to track fcrx, however, so that the critical path delay remains
inversely equal to the clock frequency, then constant energy efficiency could be
maintained as f¢y g is varied. This is equivalent to Vpp scaling (Section 2.3.2) except
that it is done dynamically during processor operation. If E;p;p is present and
dominates the total energy consumption, then simultaneous f-;x and Vpp reduction

during periods of idle will yield a more energy-efficient solution.

Even when idle energy consumption is negligible, dynamic voltage scaling

provides significant wins. Figure 2.13 plots a sample usage pattern of desired

37

2.4 Energy Efficient Design Principles

throughput, with the delivered throughput super-imposed on top. For background and
high-latency tasks, the supply voltage can be reduced so that just enough throughput is

delivered, which minimizes energy consumption.

Desired Throughput: 3
Delivered Throughput: - -

>

’-] Reduce Vpp
! & Reduce me & fCl.K'

E Reduce Energy/op

E‘ . l -
Time
FIGURE 2.13 : Dynamic Voltage Scaling.

Delivered Throughput

For applications that require maximum deliverable throughput only a small
fraction of the time, dynamic voltage scaling provides a significant energy efficiency
improvement. For the R4700 processor, the peak throughput is 130 SPECint92. Given a
target application where the desired throughput is either a fast 130 SPECint92 or a slow
13 SPECiht92, Table 2.3 lists the peak throughput, average energy/opera;ion, and
effective ETR depending on the fraction of time spent in the fast mode. For each
category of throughput the total number of operations completed are the same so that
the relative changes in battery life can be evenly compared. When that fraction becomes
small, the processor’s peak throughput is still set by the fast mode, while the average
energy consumed per operation is set by the slower mode. Thus, the best of both
extremes can be achieved. For simplicity, this examples assumes that idle energy

consumption is always negligible.

TABLE 2.3 Benefits of Dynamic Voltage Scaling.

Throughput: Time spent operating in: Ty, AX Eyux ETR Normaliz?d
[Fast ModeSlow mode|ldle Mode| (SPECint92) |(W/SPECint92)| (10%) |Battery Life
Always full-speed 10% 0% 90% 130 0.031 237 1 hr.
Sometimes full-speed] 1% 90% 9% 130 0.006 45.0 5.3 hrs.
Rarely full-speed 0.1% 99% 0.9% 130 0.003 25.8 9.2 hrs.

38

2.4 Energy Efficient Design Principles

As shown in Table 2.3, the battery run-time can be improved by up to a factor
of 10x. In most portable devices (e.g. notebook computers, PDAs, etc.), peak
throughput is typically used only a small fraction of the time, such that this energy-
efficiency improvement is readily achievable. Although dynamically varying Vpp and
JfcLk in a processor system may seem extraordinarily difficult to accomplish, Chapter 3
will demonstrate that dynamic voltage scaling is a relatively straightforward and simple

technique to implement.

39

Dynamic Voltage
Scaling

Dynamic Voltage Scaling (DVS) can significantly improve processor energy-
efficiency for burst-mode operation. This technique can decrease the system’s average
energy consumption while computing, E sy, by more than 10x, without sacrificing
perceived throughput, T4y, by exploiting the time-varying computational load that is
commonly found in portable electronic devices. By dynamically varying both the
processor’s clock frequency and supply voltage in response to computational load
derﬁands, the processor always operates at just the desired performance level while
consuming the minimal amount of energy. Since T)s x remains constant while Epzyy
decreases, both the ETR and BETR metrics will scale down by a proportional amount,

providing a potential increase in energy efficiency in excess of 10x.

There are three key components for implementing DVS in a general-purpose
microprocessor system: an operating system that can intelligently vary the processor
speed, a regulation loop that can generate the minimum voltage required for the desired

speed, and a microprocessor that can operate over a wide voltage range.

This chapter focuses on the implementation methodology for DVS, the new
system constraints imposed by DVS, and the impact of DVS on the hardware design
methodology. This methodology was validated Hy a ﬁrototype embedded processor

system that successfully implements DVS, and is described further in Chapter 7.

41

3.1 Overview

3.1 Overview

Digital CMOS circuits are very amenable to implementing DVS, as their
performance and energy consumption scale together over a wide range of supply
voltage. Although the maximum supply voltage drops with improved process
technology, thereby reducing this range, so does the device threshold voltage, such that
DVS will continue to be a viable technique for future process technologies.
Furthermore, DVS provides-a solution to the leakage problem of low threshold-voltage

processes by scaling leakage current with supply voltage.

3.1.1 Voltage Scaling Effects on Circuit Delay

CMOS circuit delay tracks very well over supply voltage, as shown in
Figure 3.1. Four example circuits are shown, ranging in complexity from a simple
inverter to a complex SRAM design that consists of an address decoder, memory cell
array, sense amplifier, output buffer, and control sequencing logic. The maximum clock
speed is just the inverse of the critical path delay, which was calculated via a SPICE

simulation and then normalized at 4V (the SPICE data for the SRAM is from [burs97]).

1.0
§.> 0.8
gy Z ||C ::;’::
E 0.4 7 _"_zﬁgf
g

1 2 Voo (V) 3 4

FIGURE 3.1 : Various Circuit Delays vs. Supply Voltage

The inverter, ring oscillator, and register file all vary less than 10% over the

full range of supply voltage, Vpp. These three circuits are a good cross-representation

42

3.1 Overview

of the bulk of CMOS circuits, both in logic style and complexity. The SRAM circuit,
which differs from the others because NMOS devices dominate its critical path delay,
runs faster at lower voltage because for our 0.6um process, V', < V',. However, the
speed variation at 1.2V is still only 25%, which is insignificant compared to the 10x
overall reduction in maximum speed from 4V. More importantly, the deviation is in the
positive direction; because the SRAM circuit runs faster at lower Vpp, it will not be a

limiting factor of the chip’s speed at low Vpp.

By using a ring oscillator to generate the clock signal, the clock frequency can
be scaled lock-step with Vpp, enabling proper operation of the processor over the full

range of Vpp through a closed-loop control system.

3.1.2 Maximum Energy Efficiency Improvement.

Figure 3.2 demonstrates the possible energy-efficiency improvement of DVS.
Starting at the nominal Vpp operating point of 3.3V, when the clock frequency, fc k., is
reduced, there is a proportional decrease in throughput. When this is done at constant
Vpp, there is no reduction in energy/operation. However, if Vpp is scaled lock-step
with fc; k. then the lower curve is traversed, yielding more than a 10x energy reduction

at low voltage.

Constant VDD
| 33V - 33V

0.8 1

0.6 7 {~10x Energy

Reduction /
0.4 1 Scale Vpp with forx

02 1

0o LLIV . . i ,

0 0.2 0.4 0.6 0.8 1
Normalized Throughput (e< fr; x)
FIGURE 3.2: Scaling VDD with fCLK’

Normalized Energy/operation

43

3.1 Overview

The ability to dynamically traverse this curve is how DVS radically improves
energy efficiency. For the processor described in Chapter 7, the lower operating point is
6 MIPS @ 0.27 mW/MIPS (ETR = 45 uW/MIPSZ), and the upper operating point is
85 MIPS @ 2.8 mW/MIPS (ETR = 33 p.W/MIPSz). However, if peak throughput is only
occasionally demanded, then the processor can deliver a peak throughput of 85 MIPS,
while the average energy/operation can be as low as 0.27 mW/MIPS. This yields an

ETR of 3.2 p,W/MIPSZ, which is more than a 10x improvement in energy efficiency.

Figure 3.3 plots the normalized battery run-time, which is inversely
proportional to energy/operation, as a function of the fractional amount of computation
performed at low throughput for the above processor. While a moderate run-time
increase (22%) can be achieved with only 20% of the computation at low throughput,
DVS yields significant increases when more of the computation can be run at low
throughput, with the upper limit in excess of a 10x increase in battery run-time, or

equivalently, more than a 10x reduction in energy/operation.

—
N

o
o

Normalized Battery Run-time
(=,

0% 20% 40% 60% 80% 100%
Fraction of Computation @ Low Throughput

FIGURE 3.3 ;: Battery Run-time vs. Workload

3.1.3 Essential Components

A typical processor system is powered by a voltage regulator which outputs a
fixed voltage. However, the implementation of DVS requires a voltage converter that

can dynamically adjust its output voltage when requested by the processor to do so.

44

3.1 Overview

With no commercial dynamic voltage converters available, a prototype converter was
designed and implemented [stra98]. This functionality can also be implemented with
discrete commercial components, but with much lower conversion efficiency than that

of the custom prototype.

Another essential component is a ring oscillator matched to the processor’s
critical paths, such that as the critical paths vary over Vpp, so will the processor clock
frequency. This is best achieved by having a ring oscillator on the processor, which will

then track the critical paths over process and temperature.

The processor itself must be designed to operate over the full range of voltage
supply, which places restrictions on the types of circuits that can be used and impacts
processor verification, as described in Section 3.3. Additionally, the processor must be

able to properly operate while ¥Vpp is varying, as detailed in Section 3.4.

The last essential component is a DVS-aware operating system. The hardware
itself has no knowledge of the priority of the currently executing’task, since this
information only resides within the operating system scheduler. Hence, to deliver the
significant increase in energy efficiency afforded by DVS, the operating system must be
able to intelligently vary Vpp and fcrx as a function of desired throughput, which is

further described in Section 3.5.

3.1.4 Fundamental Trade-Off

Processors generally operate at a fixed voltage, and require a regulator to
tightly control voltage supply variation. The processor produces large current spikes for
which the regulator’s output capacitor supplies the charge. Hence, a large output
capacitor on the regulator is desirable to minimize ripple on ¥Vpp. A large capacitor also
helps to maximize the regulator’s conversion efficiency by reducing the voltage

variation at the output of the regulator.

45

3.1 Overview

However, the voltage converter required for DVS is fundamentally different
from a standard voltage regulator because in addition to regulating voltage for a given
clock frequency, it must also change the operating voltage when a new clock frequency
is requested. To minimize the speed and energy consumption of this voltage transition,
a small output capacitor on the converter is desirable, in contrast to the supply ripple

requirements.

Thus, the fundamental trade-off in a DVS system is between good voltage
regulation and fast/efficient dynamic voltage conversion. As will be shown in
Section 3.2, it is possible to optimize the size of this capacitor to balance the
requirements for good voltage regulation with the requirements for a good dynamic

voltage conversion.

3.1.5 Scalability with Technology

For DVS to provide significant energy efficiency improvement, the process
technology must be able to operate over a wide range of voltage, such that the

throughput and energy consumption can appreciably vary.

The lower bound on voltage is set by the larger of ¥, and V1p» beyond which
the MOSFETs begin operating in the subthreshold region, and their delay increases
exponentially [pier96]. A more practical limit is ~100mV above max(Vry,, Vry,), to

provide an operating margin for preventing the MOSFETs from entering this region.

The upper bound on voltage is determined by gate-oxide breakdown [mull86].
For our 0.6um process, this is only 6.3V. To provide a margin of safety, a process has a
rated maximum voltage of around one-half of the gate-oxide breakdown voltage; for the
0.6um process, the rated maximum voltage is 3.3V. While the MOSFETs can be
operated at a higher voltage, it is generally not recommended for long-term gate-oxide

reliability.

46

3.2 Converter Feedback Loop

As process technology advances, the reduction in gate-oxide thickness
necessitates a reduction in the rated maximum supply voltage. However, to maintain
MOSFET performance, their threshold voltages have also been reduced, as shown by
the sampling of 24 process technologies in Figure 3.4. Scaling Vr with Vpp maintains a
large range of energy consumption (VDD2 [(Vp+ lOOmV)Z), anywhere from 10x to over
30x. A future 0.10um process may only have a rated voltage of 1.2V, but with a V' of
0.3V and 50mV of operating margin, the possible energy range is still 11.8x. Since
throughput scales by a similar order of magnitude as does energy consumption, DVS is

still quite applicable to even deep-submicron process technologies.

=
5 o—o o—0 g ¥
o,
Voo B 30§ - @
4~ g ! o o
o o
w 3 o o O 25 f-------------------- *----¢
2 bo ? I d
> 2 9 20 f--~----- @ --------m- oo
2 Ll s
1 vy A S 15 fo-#-ooocooon STt
80 ¢ 0
017 : . . 5 lo.:‘] .
0.2 0.4 0.6 0.8 1 1.2 0.2 0.7 1.2
Technology (Lgrqwn) Technology (L 4awn)

FIGURE 3.4 : Vpp, V5 and Range of Energy Consumption vs. Process Technology.

3.2 Converter Feedback Loop

The voltage converter loop is a non-linear negative-feedback loop. The steady-

state operation forces the processor clock, fc; ¢, to be:
Jeik = Fpes+ (1 MHz) (EQ3.1)

where Fprg is the desired frequency in MHz, and is stored as a digital word by the
processor hardware. Thus, the processor requires no knowledge of the actual supply

voltage. It simply adjusts fc; ¢ and Vpp by requesting a new operating frequency.

47

3.2 Converter Feedback Loop

3.2.1 Buck Converter

The loop is built around a buck-converter (Figure 3.5) which is very amenable
to high-efficiency, low-voltage regulation [stra94]. Using a digital pulse-width
modulation (PWM) algorithm, the buck-converter converts the battery voltage, Vg4, to

the desired output voltage, Vpp, as a function of the pulse duty cycle, D:

Vop = Vpar-D (EQ32)

+]

i pMos 1O

P L’ Vaur = “a
VBar NMOS R
+ LDD + o T on "1 "--1-

M, v CDDT VoD

—1 5 b, (DY,

FIGURE 3.5 : Buck Converter Design and Operation.

During the positive pulse, the PMOS power FET, M,, is turned on and the
inductor current, iz, begins ramping up, pushing charge onto the capacitor, Cpp- During
the negative pulse, the rectifying NMOS power FET, M,, is turned on and i; begins
ramping down. The LC tank filters ¥, so that a steady-state DC voltage appears across
the capacitor as Vpp; the inductor, Lpp, absorbs the voltage differential during the
switching transient. The power FETs are only switched on when V, = Vg 47 (PMOS) or
V; = 0 (NMOS) to maintain a minimal drain-source voltage drop in order to minimize

energy loss in the power FETs [stra98]. T is the fixed clock period of the converter.

To improve the converter’s efficiency at low voltage and/or light load, the
converter loop also implements a pulse-frequency modulation (PFM) algorithm
[stra98]. At low voltage and/or light load, the processor’s energy consumption is very
small, and so too is the current it draws from Vpp. Rather than enable the PMOS for an

infinitesimally small amount of time to replace the small amount of charge removed

48

3.2 Converter Feedback Loop

from Cpp by the processor, the converter is selectively enabled through pulse-skipping,
by which, in a given period Ty, if the voltage drop on Vpp is sufficiently small, the
converter is simply disabled. The conversion efficiency is greatly increased due to the
saved energy cost of enabling the power FETs, but comes with the penalty of increased

voltage ripple.

3.2.2 Loop Architecture

The full converter loop architecture is shown in Figure 3.6. The output of the
ring oscillator, fc;x, clocks a counter which is reset at 1 MHz intervals. This provides
the quantized digital word, Fysg4s, Which is the measured clock frequency in MHz. This
value is subtracted from the desired clock frequency, Fpgg, to generate an error
frequency value, Fgpp. A positive value indicates a higher voltage is required to

increase f¢; g, and a negative value indicates that the voltage is too high.

Processor Clock

Ipp
Sk 4 ,E_—_

Processor
Ring Oscillator
[
¥ Per [~ 15~ .4{
flMHzE Fepp | =— v
- P’
Crysaal Lo P> Cop
Oscillator ~ Counter Loop Filter FET Control I
& Drivers P = =
ower .
0101100 FETs Discretes

Register
FIGURE 3.6 : DVS Voltage Converter Loop Architecture.

The loop filter does two important functions. First, it converts the frequency
error into an equivalent voltage error via a hardware look-up table. Next, it converts the
equivalent voltage error into an update command for the power FETS through the
hybrid PWM-PFM scheme described in the previous section. When -3 < Fppp<0

indicating that the voltage is slightly high, the pulse-skipping algorithm disables the

49

3.2 Converter Feedback Loop

converter for the current clock cycle, allowing the processor to discharge Vpp. Any
other value of Fgpp enables the converter for the current cycle through the control

signals Peyy and Nopyp [stra98].

These two control signals are converted to power FET enable signals, which
are buffered to drive the large gate capacitance of the power FETs. The buck converter
produces an output voltage Vpp which is sent back to the ring oscillator, closing the
loop. In addition, the processor is powered by Vpp, so it draws a time-varying current

Ipp from the output capacitor.

3.2.3 Loop Stability

The external filter components, shown in Figure 3.7, primarily dictate the
frequency response of the converter loop. Rpp is the effective resistance of the Vpp

load, and varies as a function of V),

FIGURE 3.7 : Converter Loop RLC Filter.

In a typical buck converter, this filter has two poles, due to the capacitor
voltage, Vpp, and inductor current, i, state variables. However, in this system, charge
is delivered to the capacitor, Cpp, in discrete quantities, thereby ensuring that i; starts
and ends each cycle at zero which eliminates it as a state variable. Although operating
in this discontinuous mode increases the voltage ripple on Cpp, it reduces this filter to

a one pole system, whose pole is set by Rpp and Cpp, as shown in Figure 3.8.

There is a sampling delay introduced by the front-end clock quantizer, which
places another pole around 1 MHz. As Vp increases, Rpp decreases, and the dominant

pole moves higher in frequency, potentially resulting in instability. For the system

50

3.2 Converter Feedback Loop

A Lole Location

Continuous Mode

B
j' 21;cij 1%(:"('2%’)2

L
\v

Discontinuous Mode

deliver burst
, h 1
i of charge e
>

t v
FIGURE 3.8 : Reducing the Buck Converter to a One Pole System

implementation in Chapter 7, peak current was 125mA at 4V so that the dominant pole
is a maximum of 7kHz and the loop gain is less than one at 1 MHz, thereby ensuring

system stability.

3.2.4 Software Interface

Changing the operating point of the converter loop is done by specifying a new
frequency, abstracting away the actual voltage required to meet that frequency. This is
quite suitable to the operating system for which voltage is meaningless. Desired

frequency can simply be calculated as:

_ Estimated Workload

Foes = Time to Completion (EQ3.3)

where the estimated workload is measured in processor clock cycles, and the time to

completion is derived from the time constraints of the active software process.

Since Fpgg is specified as a digital word, it is implemented as a writable
register, which must be placed in the visible instruction set architecture (ISA) to make
it accessible to software. For the prototype system (Chapter 7), this register (CP14R4)
was placed along with other programmable system state into the System Coprocessor.

When the software writes to CP14R4, Vpp and f; ¢ will immediately begin to adjust to

51

3.2 Converter Feedback Loop

the desired levels, providing the software with direct and full control over the voltage

converter system.

Since the processor in single-user systems is quite often idling, waiting for
further user input, reducing idle energy consumption is important to improve the overall
processor system energy efficiency. Since the operating system is aware of when the
processor is idling, it will issue a processor halt instruction before these idle periods.
To improve the idle energy efficiency, the operating system simply needs to set the
desired clock frequency to a minimum before issuing the halt instruction. Then, the
processor will be operating at minimum voltage, and minimum energy consumption.
When user input is detected by the operating system, it can restart the processor, and

restore the desired frequency to whatever the value was before halting.

If user-input is detected via a processor interrupt, it may be many cycles before
the operating system can restore the desired frequency. To reduce this latency, the
prototype processor changes the desired frequency when an interrupt occurs. By
implementing the frequency change in hardware, which only requires an additional

8-bit register, the speed can be altered immediately.

3.2.5 Clock Generation

A significant benefit of the converter loop architecture is that it provides clock
generation for the processor, which is simply a buffered version of fr;x. The only
external circuits required is a 1 MHz oscillator, which can be implemented with little
power dissipation. The power dissipated by the oscillator itself can be <10uW [aebi97].

The power dissipated driving the clock signal on the printed-circuit board (PCB) is:

Ppcs = feuk o Voo (EQ3.4)

For a C; of 10pF, and a Vpp of 3.3V, the power dissipation for driving this 1 MHz clock
signal is 100uW.

52

3.2 Converter Feedback Loop

A typical processor either generates the fc;x on chip via a phase-locked loop
(PLL), or uses an externally generated signal. For a 100 MHz clock signal, the power
driving the 10pF would be 11mW at 3.3V, and the oscillator itself can add another
10-100mW. Most mid-to-high performance processors have an on-chip PLL to generate
the processor clock signal. But even the lowest reported power dissipation is 1.5mW,

and still requires an external 3.68 MHz crystal oscillator [mont96].

In contrast, the ring-oscillator for the converter loop is the equivalent of
33 gates switching every cycle; in our 0.6um process, this is approximately 1pF. The
power dissipation of the ring oscillator scales with fo x and Vpp. At the low corner of
1.1V and 8 MHz, the power dissipated is only 10uW; this is 10x lower than
conventional clock generation approaches, even taking the required external 1 MHz
crystal oscillator into account. In addition, this capacitance will also scale down in
technology so that in better process technology, the power dissipation will be lower for
a given fcrx and Vpp. Further reduction can be achieved by integrating the 1 MHz
oscillator circuit on-chip, leaving only the crystal external to the chip, which would

eliminate the power dissipation for driving the external 1 MHz clock signal.

3.2.6 Conversion Efficiency
The efficiency of a voltage regulator is defined as:

_ Power Delivered to Load
Total Power Dissipation

(EQ3.5)

with 100% being the maximum efficiency possible, in which no power is lost in
delivering energy to the load circuits. The buck converter is very efficient at voltage
conversion, with efficiencies typically in the 90-95% range [stra94]. While it can be
designed methodically for a fixed operating voltage, the difficulty arises in designing
for this efficiency across a range of voltage and current loads. Several techniques have
been developed for the converter loop design to improve the efficiency over this broad

range of operating conditions [stra98].

53

3.2 Converter Feedback Loop

The loop filter PWM-PFM algorithm will not deliver charge when
-3 < Fppp < 0. For low voltage and/or light load conditions, when little charge is being
drawn from Vpp, the loop filter stops activation of the power FETs which are the largest
source of loss. Only one out of N cycles generates an “on” pulse, where N can be as

high as 100 cycles.

The entire front-end is digital, which includes all the circuits starting from
Vpp up to the generation of Fgpp. When -3 £ Fgpp < 0, these are the only circuits
actively operating and dissipating power. By taking their variable delay over voltage
into account during the design of the loop, they can all be powered from V), instead of
Vg4t Thus, the power of these circuits, which are continuously running, scales with the
current Vpp operating point, so that at low voltage, their power dissipation becomes

insignificant.

To improve efficiency while the buck converter is actively operating, the
power FETs are comprised of multiple parallel FETs. Then, the actual FET size is

dynamically varied to minimize loss over the range of operating conditions [stra98].

The combination of these techniques provides an efficiency of 80-95% while
the processor is actively operating over the range of voltage and current load, and has
negligible power loss while the processor is idling. Chapter 7 describes the energy

efficiency of a prototype implementation in further detail.

3.2.7 New Performance Metrics

In addition to the supply ripple and conversion efficiency performance metrics
of a standard voltage regulator, the DVS converter introduces two new performance
metrics: transition time and transition energy. For a large voltage change

Vpop1—=V, , the transition time is:
DD1 DD2

2 M CDD
LrRAN = ——_IMAX “|Vpp2=Vop1 (EQ3.6)

54

3.2 Converter Feedback Loop

where Ij4y is the maximum output current of the converter, and the factor of 2 exists
because the current pulses are triangular. In practice, t7p4y Will be slightly longer for a
low-to-high voltage transition because the actual current charging Cpp is

Ipgax - Ipp(Vpp)- The energy consumed during this transition is:

Erpan = (l_n)'CDD'IVZDDl—Vf)DZI (EQ3.7)

Since both transition time and transition energy are proportional to Cpp, minimizing

Cpp yields a faster and more energy-efficient voltage converter.

To gauge how the transition energy impacts the overall system energy
consumption, it is more intuitive to compare the power dissipation which factors in the
frequency of voltage transitions and level of processor performance. Given a frequency,

fvpp» at which the system makes voltage transitions, the transition power dissipation is:

Prran = Erpanfypp = (1-M)- CDD'lVme‘ VZDmI “JvpD (EQ3.3)

Figure 3.9 demonstrates how transition time (frp4y) and transition power
dissipation (Prg,y) vary with Cpp for the maximum 1.2-3.8V voltage transition of the
prototype system, which has Iy xy= 1A, N =90%. Prpyy is shown for three different
values of fypp. Also plotted is the minimum prototype system power dissipation not
including P7g4n, and sets the threshold below which Prgyy should remain so that it
does not dominate the total system power dissipation. A typical Cpp value for low-
voltage/low-power voltage regulators is 100uF. This gives a frp,y in excess of 500us
which precludes any real-time control or fast interrupt response time, and only allows
very coarse speed control. For this value of Cpp, an fypp on the order of a context
switch (30-100Hz) will cause the transition power to dominate the system power

(55-80% of the total power).

Thus, existing voltage regulators make very poor voltage converters due to

their large Cpp, which needs to be reduced by at least 10x. Using the converter loop,

55

3.2 Converter Feedback Loop

t7RAN (US)
0.5 5 50 500 5000
100+ : .
3 + Transition :
: Frequency :
; (fvop)
§ 10-5......,..,,.....5
8 [Minimum Systém
§ [Power Dissipation
"§' [:
:% 1-. Aevsvvsevesssvens
2 |
s
3
-9
0.1t-----&%--.,
0o
0.1 1 10 100 1000

Cpp (UF)
FIGURE 3.9 : Transition Time and Power Dissipation vs. Cp,.

combined with the hybrid PWM/PFM algorithm, allowed a dynamic voltage regulator to

be designed which maintains good conversion efficiency at much lower values of Cpp,.

3.2.8 Limits to Reducing Cp)

Decreasing Cpp reduces transition time, and by doing so increases the speed at
which the voltage changes, dVpp/dt. CMOS circuits can operate with a varying Vpp,
but only up to a point, which is process dependent. This is discussed in further detail in

Section 3.4.

Decreasing Cpp increases supply ripple, which in turn increases processor
energy consumption as shown in Figure 3.10. The increase is moderate at high Vj,p, but
begins to increase as Vpp approaches V7 because the negative ripple slows down the
processor so much that most of the computation is performed during the positive ripple,

which decreases energy efficiency. For values of supply ripple above 10%, the

56

3.2 Converter Feedback Loop

processor can still operate properly, but the increased energy consumption of the
processor outweighs the decreased transition energy consumption, degrading overall

system energy-efficiency.

25

— bt [\]
o (v (=]

Percentage Energy Increase

h

Vr | 2V; Lz ' 4vy
Vpp (nominal)
FIGURE 3.10 : Energy Loss Due to Voltage Supply Ripple.

Loop stability is another limitation on reducing capacitance. As described in
Section 3.2.3, the dominant pole in the system is inversely proportional to Cpp. As Cpp
is reduced the pole frequency increases. As the pole approaches the sampling frequency,

interaction with higher-order poles will eventually make the system unstable.

The third limitation is that low-voltage conversion efficiency scales down with
Cpp. Since the DVS processor will ideally be operating most of the time at low voltage,

it is important to maintain reasonable low-voltage conversion efficiency.

Increasing the converter sampling frequency will reduce the supply ripple and
increase the pole frequency due to the sample delay. Thus, these two limits are not
fixed, but can be varied. However, increasing the sampling frequency has two negative
side-effects. First, low-load converter efficiency will decrease because the converter

loop will need to be activated more frequently to maintain the same voltage. Second,

57

3.2 Converter Feedback Loop

the fc x quantization error will increase. These side-effects may be mitigated with a
variable sampling frequency that adapts to the system power requirements (e.g. ¥pp

and IDD)‘

The maximum d¥pp/dt at which the circuits will still operate properly is a hard
constraint because system failure can be induced, but occurs for a much smaller Cpp
than the supply ripple and stability constraints. Low-voltage conversion efficiency is a

soft-constraint, but cannot be improved by adjusting the converter sampling frequency.

3.2.9 Optimizing Cj); in the Prototype System

For the prototype system, a value of SUF was chosen for Cpp. The limiting
factor for not reducing it further was the low-voltage conversion efficiency. Table 3.1
lists the key converter performance parameters for both the typical value of
Cpp (100pF) and the optimized value (SuF). The top four parameters were optimized
given the three bottom hard constraints.

TABLE 3.1 Converter Performance Parameters

Parameter Constraint Cpp = 100uF Cpp =SuF
Erpan minimize 130 u=.'f—7u'ansition 6.5 uJ/transition
tTRAN minimize ~520 ps ~26 s

n(3.3V) maximize . >95% 92%
n(1.2V) maximize >95% 84%
ripple <10% <1% 2%
dom. pole <100 kHz 400 Hz 7 kHz
dVppl/dt <5V/us 0.01 V/us 0.2 V/us

The optimized value maintains the constraints placed on supply ripple, the
dominate pole frequency, and dVpp/dt, while minimizing Erp,y and trpyy and
maintaining good high voltage (3.3V) and low-voltage (1.2V) conversion efficiency.

There is still plenty of margin for the hard constraints, which would allow for an even

58

3.3 Design Constraints Over Voltage

smaller Cpp if the converter loop could be redesigned to compensate for the reduction

in low-voltage conversion efficiency, and continue to maintain a reasomable value

(> 80%).

3.3 Design Constraints Over Voltage

A typical processor targets a fixed supply voltage, and is designed for +£10%
maximum voltage variation. Correct functional operation must be verified over this
small voltage variation, as well as a slew of timing constraints, such as maximum path
delay, minimum path delay, maximum clock skew, and minimum noise margin. In
contrast, a DVS processor must be designed to operate over a much wider range of

supply voltages, which impacts both design implementation and verification time.

3.3.1 Circuit Design Constraints

To realize the full range of DVS energy efficiency, only circuits that can
operate all the way down to V7 should be used. NMOS pass gates are often used in low-
power design due to their small area and input capacitance. However, they are limited
by not being able to pass a voltage greater than Vpp - V7, such that a minimum Vpp of
2+Vr is required for proper operation. Since throughput and energy consumption vary
by 4x over the voltage range Vr to 2V, using NMOS pass gates restricts the range of
operation by a significant amount, and are not worth the moderate improvement in
energy efficiency. Instead, CMOS pass gates, or an alternate logic style, should be

utilized to realize the full voltage range of DVS.

As previously demonstrated in Figure 3.1, the delay of CMOS circuits track
over voltage such that functional verification is only required at one operating voltage.
The one possible exception is any self-timed circuit, which is a common technique to
reduce energy consumption in memory arrays. If the self-timed path layout exactly

mimics that of the circuit delay path as was done in the prototype design, then the paths

59

3.3 Design Constraints Over Voltage

will scale similarly with voltage and eliminate the need to functionally verify over the

entire range of operating voltages.

3.3.2 Circuit Delay Variation

While circuit delay tracks well over voltage, subtle delay variations exist and
do impact circuit timing. To demonstrate this, three chains of inverters were simulated
whose loads were dominated by gate, interconnect, and diffusion capacitance
respectively. To mimic paths dominated by stacked devices, a fourth inverter chain was
simulated in which both the PMOS and NMOS transistors were each source-
degenerated with an additional three equally-sized series tramsistors, effectively
modeling a four-transistor stack. The relative delay variation of these circuits is shown
in Figure 3.11 for which the baseline reference is an inverter chain with a balanced load

capacitance similar to the ring oscillator.

+20

+10+

Percent Delay Variation
o

]
[
d

-20 - ; ; :
VT 2 VT VD D 3Vr 4 VT

FIGURE 3.11 : Relative CMOS Circuit Delay Variation over Supply Voltage.

The relative delay of all four circuits is a maximum at only the lowest or
highest operating voltages. This is true even including the effect of the interconnect’s

RC delay. Since the gate dominant curve is convex, combining it with one or more of

60

3.3 Design Constraints Over Voltage

the other effects’ curves may lead to a relative delay maxima somewhere between the
two voltage extremes. However, all the other curves are concave and roughly mirror the
gate dominant curve such that this maxima will be less than a few percent higher than at
either the lowest or highest voltage, and therefore insigx_niﬁcant. Thus, timing analysis is
only required at the two voltage extremes, and not at all the intermediate voltage

values.

As demonstrated by the series dominant curve, the relative delay of four
stacked devices rapidly increases at low voltage. Additional devices in series will lead
to an even greater increase in relative delay. As supply voltage increases, the drain-to-
source voltage increases for the stacked devices during an output transition. For the
devices whose sources are not connected to Vpp or ground, their body-effect increases
with supply voltage, such that it would be expected that the relative delay would be a
maximum at high voltage. However, the sensitivity of device current and circuit delay
to gate-to-source voltage exponentially increases as supply voltage goes down. So even
though the magnitude change in gate-to-source voltage during an output transition
scales with supply voltage, the exponential increase in sensitivity dominates such that

stacked devices have maximum relative delay at the lowest voltage.

Thus, to improve the tracking of circuit delay over voltage, a general design
guideline is to limit the number of stacked devices, which was four in the case of the
prototype design. One exception to the rule is for circuits in non-critical paths, which
can tolerate a broader variation in relative delay. By using the clocking methodology
described in Section 4.3, it can be ensured that this broader variation does not lead to
potential race conditions. Another exception is for circuits whose alternative design
would be significantly more expensive in area and/or power (e.g. memory address
decoder), but the circuits must still be designed to meet timing constraints at low

voltage.

61

3.3 Design Constraints Over Voltage

3.3.3 Noise Margin Variation

Figure 3.12 demonstrates the two primary ways that noise margin is; de‘graded.
The first is capacitive coupling between an aggressor signal wire that is switching and
an adjacent victim wire. When the aggressor and victim signals have the same logic
level, and the aggressor transitions between logic states, the victim signal can also incur
a voltage change. If this change is greater than the noise margin, the victim signal will
glitch and potentially lead to functional failure. Supply bounce is induced by switching
current spikes on the power distribution network, which has resistive and inductive
losses. If the gate’s output signal is the same voltage as the supply that is bouncing, the
voltage spike transfers directly to the output signal. Again, if this voltage spike is

greater than the noise margin, glitching, and potentially functional failure, will occur.

Capacitive Coupling Supply Bounce
Vpp
Ny
Aggressor \
C
4-GhD Cu-B \ TN
\A
= Victim |

GND
FIGURE 3.12 : Noise Margin Degradation.

For the case of capacitive coupling, the amplitude of the voltage spike on the
victim signal is proportional to Vpp to first order. As such, the important parameter to
analyze is noise margin divided by Vpp to normalize out the dependence on Vpp.
Figure 3.13 plots two common measures of noise margin vs. Vpp, the noise margin of a
standard CMOS inverter, and a more pessimistic measure of noise margin, V. The
relative noise margin is a minimum at high voltage, such that signal integrity analysis to

ensure there is no glitching only needs to consider a single value of Vpp. If a circuit

62

3.3 Design Constraints Over Voltage

passes signal integrity analysis at maximum Vpp, it is guaranteed to pass at all other

values of Vpp.

Noise Margin / ¥
e
&

[]
s

Voo 3 4
FIGURE 3.13 : Noise Margin vs. Supply Voltage.

ooooooooooo

e
o

ecscnenne
.
)
.
.
.
[y
.
.
.
swsecnemncans
.
.
.
.
.
.
.
.
.
-
)
.
[y
.
Y
.
.
)
.
-
.
.
.
.
Y
.
.
.
Y
-
.
.
.
.
.
.
.
.
.

Supply bounce occurs through resistive (/R) and inductive (dI/dt) voltage drop
on the power distribution network both on chip and through the package pins.

Figure 3.14 plots the relative normalized /R and dl/dt voltage drops as a function of

1.0

A S i S

__

Normalized AV/Vp,
[=]
W

025 F - e

0.0 ;
VT 2 VT VD D 3 VT 4 VT

FIGURE 3.14 : Normalized Noise Margin Reduction due to Supply Bounce.

63

3.3 Design Constraints Over Voltage

Vpp- It is interesting to note that the worst case condition occurs at high voltage, and

not at low voltage, since the decrease in current and dI/dt more than offsets the reduced
voltage swing. Given a maximum tolerable noise margin reduction, only one operating
voltage needs to be considered, which is maximum Vpp, to determine the maximum
allowed resistance and inductance. The global power grid and package must then be

designed to meet these constraints on resistance and inductance.

3.3.4 Delay Sensitivity

Supply bounce has another adverse affect on circuit performance in that it can
induce timing violations. Supply bounce decreases a transistor’s gate drive, which in
turn increases the circuit delay. If this increase occurs within a critical path, a timing

violation may result leading to functional failure.

A typical microprocessor uses a phase-locked loop to generate a clock
frequency which is locked to an external reference frequency and independent of on-
chip voltage variation. As such, both global and local voltage variation can lead to
timing violations if the voltage drops a sufficient amount to increase the critical paths’
delay past the clock cycle time. However, in the DVS system, the clock signal is
derived from a ring oscillator whose output frequency is strictly a function of ¥, and
not an external reference. As such, global voltage variations not only slow down the
critical paths, but the clock frequency as well such that the processor will continue

operating properly.

Localized supply variation, however, may only effect the critical paths, and not
the ring oscillator. These can lead to timing violations if the local supply drop is
sufficiently large. As such, careful attention has to be paid to the local supply routing.
For the prototype design, a design margin of 5% was included in the timing verification

to allow for localized voltage drops.

3.3 Design Constraints Over Voltage

Delay sensitivity is the relative change in delay given a drop in Vpp, and can

be calculated as:

dDelay _ ODelay .. (AVpp)
Delay (Vbp) pp AVIDI,I,n—> o\Delay(Vp,p) (EQ3.9)

This equation can be analytically quantified using Equation 2.13, and the normalized
delay sensitivity is plotted as a function of Vpp in Figure 3.15. For sub-micron CMOS
processes, the delay sensitivity peaks at approximately 2¢V; Thus, the design of the
local power grid only needs to consider one value of Vpp, 2°¥y to ensure that the
resistance/inductance voltage drop meets the design margin on delay variation. If the
power grid meets timing constraints at this value of Vpp, it is guaranteed to do so at all

other voltages.

1.0

o o o
S q« o

Normalized Delay Sensitivity

o
Lird

e
o

FIGURE 3.15 : Normalized Delay Sensitivity vs. Supply Voltage.

3.3.5 Summary

The verification complexity and design margins of a DVS-compatible
processor are very similar to any other high-performance processor. One added
constraint is that the circuits must be able to properly operate from Vj to maximum

Vpp. Additionally, timing verification is required at both maximum and minimum

65

3.4 Design Constraints for Varying Voltage

voltage, instead of just a single voltage.

Since the clock frequency is generated from the on-chip ring oscillat‘or,. the
constraints on the global power distribution are actually not as severe, because only
local voltage drops can induce timing failure, not global voltage drops. The only
constraint put upon the global power distribution is to ensure that noise margins are
met, which is much less restrictive than designing it to be immune to timing failure with

an externally referenced clock signal.

3.4 Design Constraints for Varying Voltage

One approach for designing a processor system that switches voltage
dynamically is to halt processor operation during the switching transient. The drawback
to this approach is that interrupt latency is increased and potentially useful processor
cycles are discarded. However, static CMOS gates are quite tolerable to supply voltage

slew, so there is no fundamental need to halt operation during the transient.

For the simple inverter in Figure 3.16, when ¥}, is high the output remains low
irrespective of Vpp. However, when ¥, is low, the output will track ¥y via the PMOS
device, and can be modeled as a simple RC network. In our 0.6um process, the RC time
constant is a maximum of Sns, at low voltage where it is largest. Thus, the inverter

tracks quite well for a dVpp/dt in excess of 200 V/us.
Vop

Tds\PMOS
w0 [
Vout

==

T o

FIGURE 3.16 : Equivalent RC Network for Static CMOS Inverter.

Because all the logic high nodes will track Vpp, very closely, the circuit delay

66

3.4 Design Constraints for Varying Voltage

will instantaneously adapt to the varying supply voltage. Since the processor clock is
derived from a ring oscillator also powered by Vpp, its output frequency will

dynamically adapt as well, as demonstrated in Figure 3.17.

_
35
//
3 e
/
25 <
»
£ Yo]
i T
b
1
s00m ferx
0
T
"m &0n 1000 1200 140n Tins (}fg?ﬂM&) 160n 200n 220n) 240n) 280n

FIGURE 3.17 : Ring Oscillator Transient Performance.

Thus, static CMOS is well-suited to continue operating during voltage
transients. However, there are design constraints when using a design style other than

static CMOS.

3.4.1 Dynamic Circuits

Dynamic logic styles are often preferable over static CMOS as they are more
efficient for implementing complex logic functions. They can be used with a varying
supply voltage, as long as their failure modes are avoided by design. These two failure
modes for a simple dynamic circuit are shown in Figure 3.18, and occur while the
circuit is in the evaluation state (¢=1) and 7V}, is low. In this state, V,,, has been

precharged high, and is floating during the evaluation state.

Ypp

2 V- false logic low

Volts

2 Vp, : latchup

— Time

FIGURE 3.18 : Failure Modes for Dynamic Logic with Varying Vpp.

67

3.4 Design Constraints for Varying Voltage

If Vpp ramps down by more than a diode drop, ¥,,, by the end of the
evaluation state, the drain-well diode will become forward biased. This current may be
injected into the parasitic PNP of the PMOS device and induce latchup, which leads to
catastrophic failure by short-circuiting Vpp to ground [west93]. This condition occurs:

Vpp Ve
dt " Teikave/2

(EQ 3.10)

where Tk 4pE is the average clock period as Vpp varies from ¥, to ¥,,, - V},. Since
the clock period is longest at lowest voltage, this is evaluated as Vjpp ranges from
Vmin + Ve to Vygy, where Vyy = Vr+ 100mV. For our 0.6um process, the limit is

-20 V/us, which will increase with process technology.

If Vpp ramps up by more than V1, by the end of the evaluation state, and ¥,,,
drives a PMOS device, a false logic low may be registered, giving a functional error.

This condition occurs:

..d_VDD _V_TL (EQ3.11)
dt Tcrkjave’ 2

evaluated for Tcpx4pg as Vpp varies from Vygy to Vygy + Vp. For our 0.6um process,
the limit is 24 V/us, which will also increase with process technology because clock

frequency improvement generally outpaces threshold voltage reduction.

These limits assume that the circuit is in the evaluation state for no longer than
half the clock period. If the clock is gated, leaving the circuit in the evaluation state,
these limits drop significantly. Hence, the clock should only be gated when the circuit is

in the precharge state.

These limits may be increased to that of static CMOS logic using a small
bleeder PMOS device, as shown in Figure 3.19. The left circuit can be used in logic
styles without an output buffer (e.g. NP Domino), but has the penalty of static power
dissipation. The right circuit is more preferable, as it eliminates static power

dissipation, and only requires a single additional device in logic styles with an output

68

3.4 Design Constraints for Varying Voltage

buffer (e.g. Domino, CVSL). Since the bleeder device can be made quite small, there is
insignificant degradation of performance due to the PMOS bleeder fighting the NMOS

pull-down devices.

Ypp Vop
Atk e
— Vour —Vour
Vin Via il
==] E3
I 0
o= ol

FIGURE 3.19 : Using Bleeder Devices to Improve Robustness over Varying V.

3.4.2 Tri-state Busses

Tri-state busses that are not constantly driven for any given cycle suffer from
the same two failure modes as seen in dynamic logic circuits due to their floating
capacitance. The resulting dVpp/dt can be much lower if the number of consecutive
cycles in which the bus remains floating is unbounded. Tri-state busses can only be

used if one of two design methods are followed.

The first method is to ensure by design that the bus will always be driven. This
is done easily on a tri-state bus with only two drivers. The enable signal of one driver is
simply inverted to create the enable signal for the other driver. However, this becomes
expensive to ensure by design for a large number of drivers, N, which require routing N

enable signals.

The second method is to use small cross-coupled inverters in order to
continuously maintain state on the bus. This is more preferable to just a bleeder PMOS
as it will also maintain a low voltage on the floating bus. Otherwise, leakage current
may drive the bus high while it is floating for an indefinite number of cycles. The size
of these inverters can be quite small, even for large busses. For our 0.6m process, an

inverter can readily tolerate a dVpp/dt in excess of 75 V/us with minimal impact on

69

3.4 Design Constraints for Varying Voltage

performance, and only a 10% increase in energy consumption.

- 343 SRAM

SRAM is an essential component of a processor. It is found in the processor’s
cache, translation look-aside buffer (TLB), and possibly in the register file(s), prefetch
buffer, branch-target buffer, and write buffer. Since all these memories operate at the
processor’s clock speed, fast response time is critical, which demands the use of a
sense-amp. The static and dynamic CMOS logic portions (e.g. address decoder, word-
line driver, etc.) of the memory respond to a changing supply voltage similar to the ring
oscillator, as desired. The sense-amp, however, must be carefully designed to scale in a

similar fashion.

The basic SRAM cell is shown in Figure 3.20. Bit and Bit are precharged to the
Vpp value at the end of the precharge cycle. While in the precharge state, both Bit and
Bit will track any variations on Vpp. Once the Word signal has been activated to sense
the cell, the precharge devices are disabled and Bit and Bit do not respond to Vpp
variations. However, the current drawn through the pass device connecting m to Bit will
track Vpp since Word tracks Vpp, creating a voltage differential across Bit and Bit
which will also track Vpp. So, to first order, the current drawn by the SRAM cell, which

is a measure of its delay, will track Vpp similar to the delay of static CMOS logic.
Yop
'}

1 Word | I

T
Bit I_ —I Bit

FIGURE 3.20 : SRAM Cell.

A

If Vpp drops, m will drop, but since Word will also drop, there is no affect on
Bit since the pass device is in the off state. When Vpp increases, m will increase, as will

Word, but will have no affect until Vpp increases by Vr,, which is required to turn on

70

3.4 Design Constraints for Varying Voltage

the pass device. When this occurs, this second-order effect will cause the voltage
differential on Bit and Bif to increase faster because the pass device will begin charging
up Bit, while Bit continues to be discharged. However, a dVpp/dt in excess of 50 V/us
is required to induce this effect. Another second-ordeg‘ effect on the current drawn is
that since Bit and Bif do not vary in the evaluation state with Vpp, the ¥, of the pass
device remains constant, independent of any change on ¥Vpp. However, this effect also

requires large dVpp/dt in excess of 50 V/us to have any appreciable effect.

The basic sense-amp topology, shown in Figure 3.21, responds to the varying
Vpp to first-order similar to static CMOS logic. Since the SRAM cell generates a
voltage differential on Bit and Bit which scales with Vpp, the amount of time to

generate the critical ABit to trip the sense-amp also scales.

Yop

v, Voust
Bit Bit

Cbl'l _I_ _I_ Cb,"
= ¢_.|E_ =

FIGURE 3.21 : Basic Sense-amp Topology.

If the common-mode voltage between Bit and Bit were to scale with Vpp as it
varies during the sense-amp evaluation state, then the delay of the sense-amp would
scale much like static CMOS logic. However, this is not the case, and introduces the
limiting second-order effect. As Vpp increases, the critical ABit to trip the sense-amp
decreases, speeding the sense-amp up. As Vpp decreases, the critical ABit to trip the

sense-amp increases, slowing the sense-amp down.

Figure 3.22 plots the relative delay variation of the sense-amp compared
against the relative delay variation for static CMOS for different rates of change on

Vpp- It demonstrates that the delay does shift to first order, but that for negative

71

3.4 Design Constraints for Varying Voltage

dVppldt, the sense-amp slows down at a faster rate than static CMOS. For the prototype
design, the sense-amp delay was approximately 25% of the cycle time. The critical path
containing the sense-amp was designed with a delay margin of 10%, such that the
maximum increase in relative delay of the sense-amp as compared to static CMOS that

could be tolerated was 40%.

80 » . L] . .
. . L]]
. . . . L] L] . . (]
.
. . .
.
. L]
.
. 1] : :
60- --------- Aeosene Yoo ee Vesses bovseee Aevssedrrrere Yosvee Xy
.
.
. . [L] . L] . .
. . .
- . : : :
. .
O\o . : . . . : .
.
. . . . L] . .
=] V.11 AXEE R O R R PP S voveetesses doeoos dessoodvsesss PP bovoeo
o . . . 1 . . 3
. . . . ' v .
g . L] * . : :
. L] . .
bt . . : : :
a 1,
> Sens¢ Amp; . S :
> : . . . '
s 20- ooooooooooooo poveee Qoo evosrernrssreciiersve goevee
L] . .
3 NG :
A :
.
.
4
Of cccvracecvcmoccrsiomcorrsritiegerssarescomonces
1]
1
L]
,
L]
.
20]
- 4 ; 4 ; + . + :
S 4 3 2 -1 0 41 42 43+ 45

dVipp/dt (Viss)
FIGURE 3.22 : Sense-Amp Delay Variation with Varying Supply Voltage.

This set the ultimate limit on how fast ¥pp could vary in our 0.6um process:
|dVpp/d <5V/us (EQ3.12)

This limit is proportional to the sense-amp delay, such that for improved process

technology and faster cycle times, this limit will improve.

What must be avoided are more complex sense-amps whose aim is to improve
response time and/or lower energy consumption for a fixed Vpp, but fail for varying

Vpp. One example is a charge-transfer sense-amp [burs97][kawa98].

72

3.5 Voltage Scheduler

- 3.4.4 Summary

As was demonstrated for the sense-amp, simpler circuit desfgn ensures greater
DVS compatibility. Many circuit design techniques developed for low power, such as
the charge-transfer sense-amp and NMOS pass-gate logic, are not amenable to DVS.
However, the potential energy efficiency improvement of DVS far outweighs the slight
degradation in energy efficiency by not using these more energy-efficient circuit design

techniques.

In addition, a methodical design approach must ensure that no signal is ever
floating for more than a half-cycle to prevent functional errors. But even with this
approach, there are limits to dVpp/dt, on the order of 20 V/us for our 0.6um process.
Higher dVpp/dt can be tolerated for dynamic circuits with the use of bleeder and
feedback devices, but is not required since the sense-amp is the limiting factor. While
the basic sense-amp’s delay scales to first-order with dVpp/dt, second-order effects
limit [dVpp/dt| to only 5 V/us in our 0.6um process. However, this limit will increase

with better CMOS process technology.

3.5 Voltage Scheduler

To realize the full benefit of DVS, not only must the hardware support
operation at any desired voltage level, but the operating system must be intelligent
enough to set the processor speed based upon the current workload, and estimated
future workload requirements. A new element has been added to the operating system to

perform this new functionality, which is called the voltage scheduler.

A more comprehensive description of the voltage scheduler can be found in
[peri00]. This section only describes it in brief to highlight the key components and

functionality.

73

3.5 Voltage Scheduler

3.5.1 Application Execution Models

Evaluating workload requires knowledge of an application’s | allowable
execution time, and the number of instructions that need to be executed in that time
frame. Based upon execution time requirements, software applications fall into one of
three general classifications: deadline-based tasks, rate-based tasks, and high-priority

tasks.

Deadline-based tasks are applications that can be clearly divided into
execution units called frames, each of which has a measure of work which should be
completed by its deadline [burn97]. A frame is an application-specific unit, such as a
video frame, and work is defined in terms of processor cycles. The desired rate of

processor execution in a single-threaded system is easily determined:

Processor Cycles
Deadline

Processor Speed = (EQ3.13)

It is the job of the voltage scheduler to determine the processor speed given a set of
multiple tasks. The work required is automatically estimated by the system and updated
to reflect the actual work performed as the application executes. The applications must

provide some level of buffering to accommodate missed deadlines.

Rate-based tasks sustain a predictable rate of execution, supplied by the
application, without an explicit deadline. Applications such as compilation, which
should finish in “a reasonable amount of time,” fall into this category. The deadline for
these tasks is automatically calculated by the internal scheduler and update dynamically
as the task executes. Rate-based threads should be scheduled so that they appear to be
executing on a single-threaded system running at their specified speed: two 10 MHz

sustained rate threads will require time-sharing a system run at 20 MHz.

High-priority tasks are short, sporadic tasks which require quick response

times but do not present a significant system load. They execute before all other threads

74

3.5 Voltage Scheduler

in the system; high-priority tasks themselves are ordered and execute highest-priority-
first. High-priority tasks are ignored by the voltage scheduler and do not directly effect

the processor speed.

Rate-based and high-priority tasks can be represented as deadline-based with
artificial deadlines, reducing all software applications to a single execution model
which can be quickly evaluated by the voltage scheduler via Equation 3.13.
Applications default to a rate-based model until they specify otherwise. Most system-
level threads run at high-priority, while multimedia tasks typically use a deadline-based

model.

3.5.2 Workload Prediction

An accurate workload prediction (W) is necessary to allow a voltage scheduler
to efficiently schedule the system. The workload predictions for deadline-based threads

are determined empirically at run-time using an exponential moving average:

Worp - k+ W, 451
Wyew = 1 (EQ3.14)

The operating system updates the associated estimate each time a frame is completed.
An application may either explicitly specify an initial work estimate or use the
computation required for its first frame to initialize the sequence. Rate-based
applications specify their workload as sustained rate of execution, defined in terms of
processor speed (equivalent to work/time). High-priority threads do not need to specify

a workload estimate because they are ignored by the voltage scheduler.

Due to frame-to-frame application variance, the actual work required will
differ from the estimate. A thread will either terminate before or after its requested
deadline. Figure 3.23 shows two example of how this incorrect prediction can result in
sub-optimal energy usage. Applications with high workload variance can potentially

consume more energy than applications with consistent workloads; an efficient

75

3.5 Voltage Scheduler

scheduling techniques can combine multiple frames together to reduce the effective

variance.

L-Franef sixzy Frame2 —maﬂ

-§.80% T T T gm T
& 60% l i mGO% f :
o : [
£ &

Time

FIGURE 3.23 : Workload Over/Under Estimation

3.5.3 Integration into the Operating System

At the heart of any pre-emptive multi-tasking operating system is a temporal
process scheduler. Its responsibility is to maintain the list of active and sleeping
threads, and schedule time slots for them to run in. The optimal algorithm for the
temporal scheduler is an earliest-deadline first (EDF) policy for a fixed-speed system

[liu73].

The voltage scheduler determines for a given process schedule, what the
optimal speed is to complete the outstanding threads by their specified deadlines for
minimal energy consumption. Thus, the voltage scheduler can be independent of the
underlying temporal scheduler, simplifying its integration into an existing operating

system.

Whenever the temporal scheduler executes, it invokes the voltage scheduler
with the updated process table containing the active list of threads and their
corresponding deadlines. The voltage scheduler is only responsible for estimating the
workload for this list of threads and calculating the optimal speed at which the

processor should be operating.

76

3.5 Voltage Scheduler

3.5.4 Zero-Start Algorithm (ZERO)

The ZERO algorithm is the culmination of work investigatiﬁg an optimal, yet
implementable, voltage scheduler [peri00]. The basic algorithm assumes all tasks are
sporadic and calculates the minimum speed necessary assuming their relative start

times are all zero. Given that threads are sorted in EDF order, the speed can be found:

Processor Speed = ng’iX jsi (EQ 3.15)

The zero-start simplification causes ZERO to overestimate the processing
required when a future task has a large amount of work to be completed. Additionally,
ZERO will underestimate requirements for executing multiple periodic threads since it
treats all tasks as sporadic. The algorithm can be implemented in O(r) time where 7 is
the number of scheduled threads; the required list of sorted threads can be maintained
incrementally as task deadlines are updated. To improve the algorithm’s operation, it

has an additional four extensions:

Schedule Smoothing - Threads which have exceeded their deadline or work
estimate are scheduled so as to complete twice the work with twice the deadline.
Without this modification, a missed deadline or work underestimate will run the
processoi- at full speed to minimize frame completion latency (unless otherwise
specified by the over-deadline policy, below). Since applications are required to
tolerate missed deadlines, smoothing the schedule reduces energy without significantly

affecting system behavior.

Over-Deadline Policy - A thread may opt to be switched to a rate-based model
when its deadline or work estimate is exceeded. This technique is most useful for
applications which have the occasional long-running frame which is not latency-

critical, such as an initialization sequence. The over-deadline policy is complementary

77

3.5 Voltage Scheduler

to scheduling smoothing: over-deadline handles frames which are over their deadline/
estimate by a significant amount, while schedule smoothing handles frames which are
still operating close to their deadline/estimate. When used in conjunction with
schedule-smoothing, the over-deadline policy is invoked at twice the deadline and work
estimate. In the absence of an over-deadline policy, the task will be executed at the

maximum processor speed to minimize time-to-completion.

Extra Work - Aggregate workload statistics of all high-priority threads are
accumulated and used to provide an estimate of their future work requirements. This
estimate is used to reserve cycles in the processor workload for future high-priority
tasks, which are otherwise not included by the voltage scheduler. This technique adjusts

execution so that frames complete closer to their deadline.

Event Filtering - Frames which could not possibly complete before their
deadline, even with the processor running at max-speed, are not included in the
automatic workload estimation. This filtering optimizes for the useful common case. A
user-interface, for example, consists of many short events, such as button refreshes,
with a few lengthy events, like opening a new dialog window. If the lengthy events
could never possibly complete before the stated deadline incorporating them into the
work estimate would only serve to inflate the estimate, adversely affecting the common
case. Threads are initially scheduled assuming a short frame, and then dynamically

adjusted for longer running ones.

3.5.5 Operation

A demonstration of the voltage scheduler on the prototype processor system is
shown in Figure 3.24, which plots ¥pp over a two-second window. The top trace
demonstrates system operation without the voltage scheduler; the system either
operates at max speed or idles. The bottom trace demonstrates system operation with

the voltage scheduler enabled, in which case Vpp is being dynamically varied.

78

3.6 Benchmark Evaluation

AL S e e e
....... R 7 B e o Lo Mmspeed [RTURUTIVS FUURUPORS SITTNs
18 1UOS X SUNUROOR ' NOUPONE | FUOUN I SUUUUUNIR SUUUNOE SOUNRROOE SOUORRt A IO N ST
ey L bl
Vop

SSTTTOON % SO OO IS ddle.............)|..| ...
P PR Qseralgterfa?e -Progcess:. éVery !)ursty. com]putatiéon
......... Increpsedepeed}o....u
.. Shorter Process Deadlines . .

$9%eY i /‘ {* ...

F i

VDD ' ._r [O LomSpeed& Ide
High-Latency Coipil fa'l'ti'(i'll§ Done @ Low Speed/Energy:
Jr-3 ELETTIETES CIRERTITES CISRITRLES IALIERLES SOTERIRES ;
=l ZBm;tciv i 1.7@490

FIGURE 3.24 : Voltage Scheduler Improvement

For the user-interface application being executed, most of the processing can
be done at low voltage, greatly improving energy efficiency. When a large amount of
processing needs to be performed, the scheduler will ramp up Vpp to meet the specified

deadline. If a deadline is missed, the scheduler begins ramping up the processor speed.

3.6 Benchmark Evaluation

The ideal energy efficiency improvement of DVS is more than 10x. However,
to evaluate the practical improvement of DVS, it is important to have a benchmark suite

that mimics code that would actually be running on the processor system.

A class of systems where DVS is expected to have enormous impact are user-
driven portable electronics such as notebook computers and PDAs. While DVS is quite
applicable elsewhere, the scope of this benchmark evaluation only focuses on these

systems.

79

3.6 Benchmark Evaluation

3.6.1 Description

Two common multimedia tasks and a graphical user interface are used to

evaluate DVS, which are commonly found in this class of systems:

* Audio - IDEA decryption of a 10-second 11 kHz mono audio stream, divided into 1kB
frames with a 93ms deadline. In a single-task environment, this benchmark runs at

approximately 17 MHz.

* MPEG - MPEG-2 decoding of an 80-frame 192x144 video at 5 frames/sec, requiring

an average of 50 MHz processing.

* UI - A simple address-book user interface allowing simple searching, selection, and
database selection. 432 frames are processed, each defined as a user triggered event,
such as pen-down, which ends when the corresponding action has been completed. A
deadline of 50ms, described below, is used for each frame. Most frames require less

than 10 MHz operation.

High-level wrappers are used by applications to specify real-time constraints
and manage work estimates. Each iteration, periodic applications (Audio & MPEG)
update their work estimate, set their next deadline based on the period, and stall until
the appropriate start time. Sporadic applications (UI) specify constraints using start/
stop times. The Audio benchmark supplies an initial work estimate based on previous
execution, while the MPEG and UI benchmarks use the results of their first completed
frame, which is run at max-speed. The wrapper for applications with hard deadlines

(Audio & MPEG) must contain small buffers to tolerate missed deadlines.

Simulated user input (mouse & keyboard) is the primary mode of input for the
UI application. A 50ms deadline representing human visual perception time is used for
Ul events, as screen updates faster than this will not be noticed by the user [endo96].
Most Ul events, such as simple button updates, can easily complete before this

deadline. Some events, however, are extremely computationally expensive; opening a

80

3.6 Benchmark Evaluation

new dialog window, for example, takes 260ms when the processor is running at max-
speed. There is no “correct” speed for these events. To balance energy-efficiency and

low-latency, a speed of 40 MHz is chosen.

3.6.2 Detailed Performance Analysis

To evaluate DVS energy efficiency improvement, the current consumed from
the battery supply can be monitored over the duration of the benchmark and integrated
to calculate total energy consumption with and without DVS enabled. The ratio of these

two energy measurements is then the energy efficiency improvement.

However, to understand the dynamics of the voltage scheduler algorithm, and
determine whether it is working as desired, more detailed monitoring was performed, as
shown in Figure 3.25. At regular 10us intervals, the operating system reports the active
thread running and the speed it is running at. In this example, there are six active

threads, labelled along the vertical axis. A low value indicates the thread is not running

Idle ll I

g T I
s | NN cor e 0T AN
: |
[ﬂm .

Process
Dispatcher

Process
Distributor

/o

I T NN

0.00 020 040 080 0.80 1.00 120 140 160 1.80 200 220 240

Time (seconds)
FIGURE 3.25 : Run-time Performance Analysis

81

3.6 Benchmark Evaluation

at that moment. A high value indicates it is running and the amplitude is proportional to

the current speed setting

The Idle thread initially dominates run-time until the MPEG benchmark thread
has become initialized. Once initialized at maximum speed, the ZERO algorithm begins
estimating the optimal MPEG speed setting, and adjusting it depending on the current
frame workload. The I/O monitor runs at constant intervals reading in the MPEG data
arriving at a fixed rate. The temporal scheduler (not shown) runs at regular intervals,
maintaining the process schedule. When the process schedule is modified, the voltage

scheduler, process dispatcher, and process distributor threads are launched.

With this monitoring, it can be observed that the MPEG benchmark dominates
total CPU time, which is desired. Also, the speed is being varied around to adapt to the
varying computational requirements of the MPEG frames. The voltage scheduler and
other operating system threads only consume a fraction of the CPU performance. This
performance monitoring greatly aided in the development and tuning of the ZERO

voltage scheduling algorithm

82

Energy Conscious
Design Flow

The most critical aspect of energy-efficient design is to be energy conscious
throughout the entire design flow. A typical design flow treats energy consumption as
an afterthought, and is not thoroughly analyzed until the design has reached the
transistor schematic stage. This is too late in the design process for radical
modifications that can lead to a more energy-efficient implementation. Therefore, much
as performance is analyzed at the initial high-level specification of the design, so must
energy consumption be analyzed, as well. The primary goal of this design flow is to
evaluate energy consumption early on so that the largest energy reductions can be

attained.

In today’s complex chip designs, a majority of the design cycle is spent on
validating a design for proper fuﬁctionality, and verifying its layout implementation.
Implementing DVS exacerbates the verification problem by requiring multiple
operating conditions to be analyzed. Another goal of this design flow is to automate
design validation and verification so that the bulk of the design effort could remain

focused on the design implementation and optimization for energy efficiency.

The first section presents an overview of the design flow. Subsequent sections
explore in more detail those parts of the design flow that were developed to aid in the

design and verification of a DVS microprocessor system, though most of this design

83

4.1 Overview

flow is equally applicable to general energy-efficient digital design.

| 4.1 Overview

The basic design flow from system specification to final chip layout is
presented in Figure 4.1. The flow refines the design through five discrete phases, each
of which has its own set of design tools, and optimization goals. Through each

refinement phase, the design is verified against the previous phase’s implementation to

System Constraints

Desi -
esign Awxiliary & Specifications

Environment Tools

e Cycle-level Optimi
o 4 P! 1Ze
% = Simulator - Performance
S\ 2
Map to high-level
functionality
Partition control and
datapath sub-blocks.
Minimize
r - Energy
S @ @
g 28 Synthesize control,
-] =) ﬁ .
S g8 custom design datapath.
v »
8 %
'UEJ‘ Place and route control, Meet Target
o= custom design datapath. Cycle Time
E
=
S
L

Chip Fabrication
FIGURE 4.1 : General Design Flow from Specification to Layout.

84

4.1 Overview

insure proper functionality. Through transitive equivalence, the layout can be verified

to operate as specified by the initial cycle-level simulator.

Implementing an existing instruction set architecture (in this particular case
the ARM v4 ISA [arm96a]) provides the key benefit of having proven compilers and
assemblers available. The design verification process is bootstrapped by the ability to
swiftly write self-validating C code which can be compiled down to machine code and
executed on the simulator. This allows the simulation of real test code early on with

abstract design models.

An advantage of implementing the ARM V4 ISA was the availability of a
simulator (from ARM Ltd.) for the processor core [arm97]; once an abstract memory/IO
module was written, the simulator could begin booting the operating system and
executing benchmark programs. This provided the ability for high-level performance
and energy estimation so that the design could be optimized as the simulator evolved
into a cycle-accurate specification. Performance tuning at this stage is common in
microprocessor design, but energy estimation is typically done as an afterthought. By
incorporating energy estimation into the simulator, high-level energy optimization
significantly improved the design’s energy efficiency as will be discussed in

Section 4.2.

Once the performance and energy optimized cycle-accurate simulator was
developed, the design progressed to the VHDL behavioral design phase. Since the
design is still at a behavioral-level specification, no significant optimizations are
possible at this level. Since the specification language has changed from C to VHDL, it
is critical at this juncture that the two models behave exactly the same, as discussed in
Section 4.5.1. The design was not initially specified in VHDL because C simulation is
several orders of magnitude faster, which enabled a rapid design turn-around during the

initial specification phase.

85

4.1 Overview

As the VHDL description transitions from behavioral to structural models,

additional performance and energy optimization occurs. By annotating the structural
VHDL model with delays, critical paths can be identified and reduced. At this
microarchitecture level, better energy estimates are available for the individual blocks,
and the simulator is updated accordingly to provide better energy estimates. Dominant
energy consuming blocks can be identified and optimized. By the end of this phase,
remaining critical paths that cannot be removed via microarchitecture changes dictate
the achievable cycle time. At this point, the performance optimization transforms to

meeting the targeted cycle time.

Another significant level of energy optimization occurs during the transistor
design utilizing the various energy-efficient design techniques in Section 6.1. During
this phase, PowerMill provides accurate energy estimates which aid the designer to
further reduce energy consumption. Accurate timing analysis (Section 4.6) ensures the
target cycle time can be met. Simple schematic redesigns are done when the target cycle
time cannot be met, as indicated by long path lengths, which is much less costly than

waiting for timing results on the extracted layout.

During the final layout phase, energy again can be minimized through
intelligent layout, but to a much less degree than previous phases. Through LVS, the
layout can be matched back to the schematic to verify a correct design. Timing analyses
on an extracted iayout netlist can flag additional critical paths that need to be fixed

which were not flagged during the schematic design phase.

4.1.1 Energy Budgeting

To most effectively optimize energy consumption, energy reduction in total
system energy must be measured, and not just localized energy reduction. For example,
if a particular design change reduces the energy consumption of the write buffer 50%

while degrading system performance by only 10%, it may appear to be a desirable

86

4.1 Overview

optimization. If, however, the write buffer only consumes 10% of the overall energy,
then a 5% reduction in overall system energy consumption does not_ justify a 10%
performance reduction. Thus, it is imperative to always evaluate energy and

performance at the system level for potential design optimizations, and not in isolation.

Section 4.2 describes in further detail a methodology for high-level system
energy estimation. This provides an estimated breakdown of the system energy
consumption long before the design is taken to structural and physical implementation.
This breakdown provides crucial guidance on what blocks require careful design to
minimize energy, and what blocks consume negligible energy and can be rapidly
designed through synthesis. This breakdown is updated and maintained throughout the
design process to track where the focus should be for minimizing system energy

consumption.

4.1.2 Verification Overview

Verification checks are performed at each level of the design phase, as shown
in Figure 4.2. At the C & VHDL behavioral levels, the checks are strictly for
functionality. Test code is created using the methodology described in Section 4.5.2,
which verifies that the behavioral models match the specification for the ISA and 10
expected by the programmer. Scripts automatically generate test vectors for use at the

structural and transistor level design phases.

Very simple timing analysis is performed at the structural model by simulating
timing-annotated VHDL models. Excessively long critical paths can be identified at this
stage, ensuring an implementation is possible with the target cycle time derived at the
end of this design phase. Comprehensive timing analyses are performed at the

schematic and layout design phases, as described in Section 4.6.

Transistor sizing checks are done at the schematic design phase to catch

grossly under/oversized clock buffers and bus drivers, based upon capacitance

87

4.2 High-level Energy Estimation

Cycle-level j ; \
Sﬁzlai:f' _Simulate (__Execute Test Code (C simulator))-
H
VHDL
Behavioral VHDL (__Execute Test Code (Cadence))
Model Simulator
w
VHDL VHDL (_Functional Verification (Cadence))
Structural | —e s C Timing Analysis (Cadence))
\ Model | —=—
¢ R) (__Transistor Sizing Check (Cadence))
g";nsmt‘;" — Nedist (__Functional Verification (TimeMill))
chematic (_Timing Analysis (PathMill, HSpice))
C LVS (Cadence))
(__Transistor Sizing Check (Cadence))
Layout % (__Functional Verification (TimeMill))
etiist (__Timing Analysis (PathMill, HSpice))
C DRC/ERC (Cadence))

FIGURE 4.2 : Validation Checks for Each Design Phase

estimates from the schematic netlist. Once the design transitions to the layout phase,
final sizing checks are performed on the extracted netlist to guarantee valid clocking

operation (Section 4.3) and to minimize short-circuit current (Section 6.1.2).

Finally, the layout requires standard additional checks to verify a proper
implementation (LVS, DRC, etc.). Through the use of scripts, all these tasks can be

automated.

4.2 High-level Energy Estimation

High-level energy estimation for architectural exploration has been
successfully demonstrated within a VHDL simulation environment [land94]. This
approach is very suitable for dedicated DSP architectures. However, this is not a
suitable approach for general-purpose processor systems which require several orders
of magnitude more simulation cycles to properly characterize the system. A reasonable

benchmark suite requires billions of simulated cycles; even on the fastest VHDL

88

4.2 High-level Energy Estimation

simulator, the suite would take at least a day to complete a single pass.

To reduce simulation time, processor behavior models can be wfitten in C,
which can speed up simulation time one to two orders of magnitude, and then used to
provide extensive performance statistics. However, they can also be augmented to
provide energy consumption statistics as well, by applying the same black-box

capacitance modeling used in the VHDL simulator [land94] to the C simulator.

This enables the high-level architectural exploration methodology shown in
Figure 4.3 which has modified a standard ARM v4 processor core simulator to provide
both performance and energy statistics. Initial hardware capacitance estimates are
added to the simulator, which then executes the benchmark suite to provide statistics for
identifying dominant energy-consuming blocks and performance bottlenecks. New
optimizations are proposed to improve energy efficiency, and implemented in the C

simulator, so that the improvement in energy efficiency of these design optimizations

Hardware

Change C Simulator Capacitance
Architecture Estimates
Simulate Q
nergy-Efficient B N
i enchmar , ,
l.)es'lgn . Suite Continue Refining
Optimization Hardware Models
Energy Performance
Breakdown Analysis
Identify Dominant
Energy Consumers

Total Cycles: 87,254,124
Active Cycles: 65,124,631
Stall Cycles: 4,125,661
Sleep Cycles: 18,361,232
Instruct: 58,324,155
Active CPI: 1.12
Cache Miss Rate: 0.61%
Data: 1.22%
Instruction: 0.45%
Write Buffer Bus Utilization: : 35.2%

Identify Performance &

Bottlenecks
FIGURE 4.3 : High-level Simulation Performance & Energy Estimation Methodology

89

4.2 High-level Energy Estimation

can be quantified after resimulating the benchmark suite.

An example simulator output report file: -
Report date: Thu Feb 5 12:26:45 1998

Report tag: 'No ID Specified’ Delta Energy = 0.0195862 Joules
Report generated to ./report_fn.out Total Elapsed Time = 0.268321 sec
: N Debug Info to Vi ify Deita Elapsed fime = 0.155443 sec
Sim time: 155.0ms ebug Info to Ver Delta Instructions = 5915641
Run time: 118.0s Corl;geetO eration Removed Branches = 0 ° . System
Simulation speed 1/761th P Delta Exec. Cycles = 7551141 Sun“nary
Running on yellowstone... CPI = 1.27647
Energy / Instruct. = 3.31092 nJ
Energy Estim. for ARMulator 8 lgvel 1 Average Power = 126,003 mW
Accesses to MUL Sim Block: 8580 Instruction count report:
Accesses to ADM Sim Block: 280 Data processing : 75.56%
Accesses to PSR Sim Block: 5963 Set ccodes : 5.32%
Accesses to ALU Sim Block: 3393973 opl not used : 28.66%
Accesses to IMM Sim Block: 1627554 no result : 4.25%
Accesses to TST Sim Block: 488809 PSR Op s 0.06%
Accesses to SWI Sim Block: 623 Swap : 0.01%
Accesses to OTH Sim Block: 0 Multiply : 0.15%
Accesses to SCC Sim Block: 678441 Halfword : 0.008~*
Accesses to BRA Sim Block: 5871853 Data transfer : 17.63%
Accesses to EAR Sim Block: 132436 No WB : 90.07% Instruction
Accesses to EAI Sim Block: 1504181 Pre-incr : 5.83% l— Profilin
Accesses to LDR Sim Block: 1424354 Post-incr : 4.09% roliling
Accesses to STR Sim Block: 212263 Store Byte t 2.14%
Accesses to MDT Sim Block: 71870 Block Data : 1,11%
Accesses to LDM Sim Block: 77776 Stores : 64.91%
Accesses to STM Sim Block: 46120 Branch s 2.53%
Accesses to SWP Sim Block: 465 Coproc : 0.00%
Accesses to COP Sim Block: 762 SWI : 0.01%
Accesses to DEC Sim Block: 8149529 Squashed : 2.93%
Accesses to PRE Sim Block: 9942373 =
Accesses to CTL Sim Block: 8148058 Conditional i 5.28%
Accesses to CAC Sim Block: 8034207 PC Read : 0.26%
Accesses to WBI Sim Block: 169247 PC Write : 0.38%
Accesses to MSO Sim Block: 1170528 Shifts : 77.76%
Accesses to SRM Sim Block: 365819 Src:Register : 0.00%*
Accesses to IOC Sim Block: 304309 Typ:Immediate : 25.50%
Left 0 : 25.87%
-------------------------------------- Left 1 : 0.39%
Left 2 : 16.84%
Block Accesses Energy (%) Sw. Cap (%) Left 3 i 0.23%
---------------------------------- L. others : 6.46% Conﬁg“mﬁon
S/ALU 5663245 9.446 & 8.792 % Others : 24.71% Info
RegBk 6768302 0.001 & 0.001 & 5915k instructions total profiled.
Mult 8580 0.048 0.044 &
PSR 241694 0.134 & 0.125 & Cache/Memory report:
ConGen 1040224 0.434 8 0.404 8 Unified: 16kb/8w-lines/4-way/Lzru
AddGen 65959 0.018 8 0.017 & PCLK: S50MHz MCLK: 25MHz WB: Bg NCW_NWB
WrPipe 107114 0.045 % 0.042 &
CoProc 156 0.000 $ 0.000 & —-hits__ _ miss__ _rate_ Activity
MemRE 1049251 0.292 8 0.271 & Data 1239206 7781 0.63%
Prefet 6240667 6.940 6.459 8 Inst 3478202 17461 0.508 g Profiling
Contrl 5915641 13.156 % 12.245 8 Totl 4717408 25242 0.54%
AddMux 0 0.000 & 0.000 %
BusInt 21369 0.015 & 0.014 & active portion: 1.000000e+00
BusExt 284734 0.158 & 0.147 & actv : 4743884 sleep: 0 nmreq: 2777779
Cache 4759464 39.218 § 36.501 % cwait: 220987 iwait: 29478 total: 77721282
SRAM 217294 1.812 § 1.687 & wbacc: 20966 wbful: 403
I/0 9662 0.027 & 0.025 &
msize: 1024kB EXCLK: OHz Dsize: 8-w
Bus Accesses Energy Sw. Cap Toggle midle: 3601330 maddr: 45282 mdata: 239452
m== ememeces coeccsee dccmenee cemaee——- mwait: 0 mothr: 0 mtotl: 3886064
A 5714811 5.224 4.862 % 25.687 % eff : 84.097% mutil: 7.327%

%
B 3570615 2591 8 21411 % 270185
RES 4433936 4.592 & 4.274 & 29.106 % .
cpT 156 § 0.000% 0,401 % Block Energy Consumption
RDT 10620210 12.531 8 11.662 & 33.158 &)
WDT 107114 0.116 8 0.108 3 30.465 ¢ W~ BusEnergy Consumption
VAD 7396583 3.043 8 2.832 & 11.563
PRO 284734 0.111 7.034 & 29.836 %

%

10 9662 0.048 0.044 % 11.071 &

FIGURE 4.4 : Simulator Report File for Crypto Benchmark.

All design optimizations were parameterized where possible (e.g. cache-line
length, write-buffer size, etc.), so that previous configurations could be re-simulated

via command line flags. This was crucial since the hardware capacitance models were

90

4.2 High-level Energy Estimation

refined as the design progressed. Once the simulator incorporated the new capacitance
models, all previous configurations could be resimulated to find any design

optimization points that have shifted due to the newly refined models.

4.2.1 Capacitance Models

Energy consumption is one of the desired outputs from the simulator. To
accommodate the variable ¥pp in DVS, the underlying simulator models are based upon
capacitance. During simulation, the capacitance is multiplied by VDD2’ which varies
depending upon the current clock frequency setting. There are varying approaches to
capacitance estimation, with the simulator complexity increasing with estimation

accuracy. The three simplest approaches are:

White-noise Approach (0th order): Every time a block or bus is accessed, a
counter associated with that block is incremented by the average capacitance switched
on that block/bus by VDDZ. The switched capacitance values assume random signals on

the blocks so that a single value can be used.

Data Correlation Approach (1st order): This approach uses simulator state
variables associated with each block/bus’s input ports to hold the previous state. The
current and previous input values are XORed to count the number of transitioning bits,
which are then multiplied by a capacitance per bit value. For a bus, this capacitance is
just a sum of the estimated interconnect capacitance and fanout gate capacitance. For
circuit blocks, an empirical estimate can be made from circuit simulation data. This
works well on the majority of blocks that are bit-wise symmetrical, such as memory,
register files, shifters, muxes, etc. Non-symmetrical structures that have inter-bit data
correlation, such as an adder, will give an estimate with much greater variancé because
the capacitance is not only a function of how many bits transition, but the location of

the transitioning bits as well.

Data/Instruction Correlation Approach (2nd Order): This approach builds

91

4.2 High-level Energy Estimation

on the previous approach by also keeping track of previous instruction(s) with simulator
state variables which can be used to model the inter-instruction dependencies. This
better accounts for energy consumption in various muxes and state latches which are

used to route the data flow of the processor from instruction to instruction.

Previous work has shown that the white-noise approach does an inaccurate job
of energy estimation, so to provide a reasonable (first order) estimate, data correlation
must be accounted for. The second order approach will improve accuracy, but is not

necessary to provide useful energy estimates.

4.2.2 Implementation

It is critical that the energy estimation code be efficiently implemented so that
the speed of the C simulator is not significantly degraded, since speed is the primary
reason for using it. Thus, the counters and state registers required should utilize native
integer word types on the host simulation machine. In addition, all functions should be

compact and inlined to remove the unnecessary overhead of function calls.

A typical processor simulator consists of a large case statement representing
the various instructions, or classes of instructions. As such, the energy estimation
function calls required to annotate the simulator must be organized along instruction
boundaries, and not physical organization. A second level of functions calls are used to

map the logical system organization to an orthogonal microarchitecture specification,

° 0y

o ne:
case 0x09 : /* ADD reg w/ CCs set */ INLINE void energy_alu(ProcState *state,
dest = lhs + rhs ; Aword instr, Aword A, Aword B, Aword D)
energy.alu{state,instr, 1hs,rhs,dest); {
SETFLAGS (dest, lhs, rhs) energy_sim_blocks->alu_cnt++;
WRITESDEST(dest) ;
energy_scc{state,instr,state->Flags); energy_alu_hw_block(state,instr,A,B,D,RegAB)
break; energy_reg_hw_block(state,instr,A,B,D,RegR);
}

y
. . -

INLINE void energy_alu_hw_block(ProcState *state,
Aword instr, Aword A, Aword B, Aword D, Aword flags)
{ Map ALU operation to

oa alu_hw_block->accesses++; capacitance/bit
ALU block activity: alu_hw_block->cap += CAP_ALU_BIT(instr) * BitsFlip(A,B); e/

.. if (flags & RegA) (BUS_ACCESS{a_hw_bus,A);)
Input bus activity: if (flags & RegB) { BUS_ACCESS{(b_hw_bus,B); }
}

FIGURE 4.5 : Energy Estimation Implementation Example.

92

4.3 Clocking Methodology

as demonstrated with the simple code example in Figure 4.5.

Fully annotating the simulator requires placing these logical eﬁergy function
calls wherever the simulator changes the system state (e.g. dest = lhs + rhs). Using a

simple system microarchitecture specification (Figure 4.6), these logical functions are

then mapped to physical function calls.

R

S
4
17

: A
s 3
g K4

5
i ;

Register
Bank

Gray arrows indicate forwarding paths
SgﬁM 1/O Chip ‘*gl
Multiplier P
i Processor !
PSR Bank Writ
rite
Buffer
Shifter/ < R B
ALU e
e [| Cache
Special Vemory
Address \ =
Generator ‘ Hit
I . Cache Tags
Write | J
Data Pipe i e E Coprocessor
| '
|
“qr MemRead I PC Clnstruct
@ Extender 3
d = £ - Prefetch
o4 Unit

FIGURE 4.6 : Microarchitecture Model for High-level Energy Estimation.

4.3 Clocking Methodology

A well-defined clocking strategy is required for any sub-micron digital
integrated circuit. The goal of this strategy is to limit the clock skew between any two

latches. The primary reason for controlling the skew is to prevent race conditions

93

4.3 Clocking Methodology

between latches, which lead to chip failure. The secondary reason is to prevent
performance degradation. If the delay on a critical path is more than targeted, due to

clock skew, then the overall cycle time needs to be increased for proper functionality.

Maintaining DVS compatibility adds further constraints to the clocking
methodology. The ratio of clock skew to cycle time should remain fixed over the range
of operating voltage. While the delay through the clock buffers will scale, the RC delay
on the interconnect does not. Hence, the critical design corner to meet is at high

voltage, fast process, and low temperature.

4.3.1 Latch Design

The behavioral model for the processor core (from ARM Ltd.) that was used as
the design starting point assumed a latch-based design. Thus, the basic state element of

the design was necessarily a latch, rather than a flip-flop.

While a static latch is not the most energy-efficient latch implementation, it is
the most robust [west93][mark00]. It is well suited for use with aggressive clock gating
(Section 6.1.3) because the clock can be held either high or low indefinitely without
inducing a logical error. In contrast, a gated dynamic latch can have its internal state
flipped via leakage currents and DVS voltage changes [burd94][mark00]. Additionally,
static latches allow the system implementation to be stepped phase by phase, which is a
tremendous advantage when debugging the hardware design. Thus, a fully static latch

approach was taken.

Intuitively, it would seem that a single-phase latch is preferable over the
traditional two-phase, cross-coupled latch because one less clock wire is needed.
However, the natural design of a single-phase latch is dynamic. To make the latch static

requires a much more complex latch design, and effectively eliminates its advantage.

The basic latch design is shown in Figure 4.7, in which the feedback device is

94

4.3 Clocking Methodology

an inverter. Another possible implementation is to use a transmission gate between
nodes out and x, but this can lead to a race condition on back-to-back latches if there is
overlap on clk and clkb. The feedback device is clocked to both guarantee latch
operation and speed up the latch. While the latch is transparent, there is no contention
on the forward path, which greatly reduces the setup time, and allows any input signal
to successfully change the value on node x. This does come at a penalty of an additional
15% in clock net capacitance for a datapath latch. The penalty will be less for a
standard cell latch, where the interconnect capacitance is greater, thereby reducing the

contribution from the feedback device.

clk
Numbers indicate device width in pm.
All devices have L=0.6um.
clkb clkb
in 3 %out

clk
FIGURE 4.7 : Basic Two-phase Latch Design.

Since the behavioral model constrained the basic state element to be a latch,
the fully-static approach seemed to best balance energy efficiency and design
robustness. Had the model assumed a flip-flop based design, then a pseudo-static
version [burd94] of the TPSC register [yuan89] would yield a more energy-efficient and
robust design. This solution requires only one clock wire, yields equivalent register

setup & hold times, and allows clock gating if the clock is held low.

4.3.2 Clock Architecture

The basic clock-gating strategy is split-level. There is a local enable signal for
each n-bit latch, or set of latches. This signal is active-high, and is used to selectively
generate a local clock pulse. There are also three global halt signals, which are used to
halt large sections of the microprocessor: the processor core, the cache subsystem, and
the bus interface. Rather than actively suppressing clock pulses, which will change the

processor state, it simply gates out the low-phase of the global clock signal, as

95

4.3 Clocking Methodology

demonstrated in Figure 4.8, maintaining exact processor state.

Global Clock _|
Halt Signal No effect because
& local gate signal is low' L
Local Enable L
Signal |
Local Clock o

X Gated Pulses M Halted Clock

FIGURE 4.8 : Clock Gating & Halting Timing.

This halting mechanism allows the processor memory interface to be designed
to expect the cache subsystem to return a word within one cycle of the request. If the
cache subsystem needs to go out to main memory, it simply halts the processor core
until it has the desired word available, and eliminates any unnecessary switching
activity in the core. Likewise the bus interface can stall the cache subsystem when it is
retrieving words, and the external I/O system can stall the bus interface when a high-

latency 1/0 memory request is made.

The natural implementation for this would be a three-level clock hierarchy,
divided by the global (halt) clock drivers, and the local (enable) clock drivers.
However, the skew can be better controlled in a two-level clock hierarchy by removing
the skew contribution from the global clock driver, although this comes at the expense

of increased energy consumption.

In the two-level hierarchy, the total capacitance on the global top-level clock
net is 10pF, which is just 3% of the nominal effective capacitance switched per cycle.
Another consideration is clock power when the processor is in the sleep mode.
However, if the processor is put into a low-speed mode before entering sleep, the idle
clock power dissipation is only 72uW, which is only 9% of the total system sleep mode
power. Hence, it was decided a worthwhile trade-off to implement a two-level clock

hierarchy which provided a more controlled clock skew. In addition, it made the timing

96

4.3 Clocking Methodology

analysis simpler, because both the local enable and global halt signals are terminated at

the same gate.

4.3.2.1 Clock Drivers

One approach to generating the two-phase ciock signals is to locally invert
within the latch cell. However, this has two significant drawbacks. First, the additional
gate gets toggled every clock cycle, which adds more capacitance to the global clock
net as compared to the interconnect capacitance added by running a second clock wire.
Second, the skew between the two clock signals is now a full gate delay, which is not
tolerable as will be demonstrated in the clock skew analysis later on. To reduce this
skew, the non-inverted clock signal can be buffered by two inverters, but since these
toggle every cycle, further capacitance is added to the global clock net. Hence, it is
preferable to generate the two-phase signal once per n-bit latch. For the datapath
registers, which dominate the overall register count, this requires one clock driver per

32-bit latch, and can be designed to have well-controlled skew.

Before each n-bit latch is a clock driver which performs single to differential
polarity conversion, as shown in Figure 4.9. A phase-1 clock driver generates a high

pulse on the Phil signal while clock is low, and the local-enable and global-halt (active

local-enable—
global-halt—-

clock——————1c~=—7_.

....................

local-enable~
global-halt—
clock

FIGURE 4.9 : Modular Clock Driver Design.

97

4.3 Clocking Methodology

low) signals are high. Similarly, the phase-2 clock driver generates a high pulse on Phi2

when clock is high, and the local-enable and global-halt signals are high. The local-
enable signal must only transition in the phase opposite of the clock driver phase (e.g. a
phase-1 clock driver’s local-enable signal can only change while clock is high, such
that it must be generated by a phase-2 latch, or derived only from signals output by
phase-2 latches). The global-halt signal, which drives clock drivers of both polarities,

can only transition while clock is high.

The maximum skew between any two clock drivers was determined in Section
4.3.4 to be less than one-half of a gate delay. To maintain controlled skew, the inverter
chains need to be carefully sized for the output load, which can vary from less than
50fF to 1pF. Close to 150 clock drivers where used in the design. Rather than design a
new clock driver each time one was required, and insure that it met the skew constraint

over process and voltage, a modular clock driver design was developed.

This modular approach consists of 2 gate cells, one for each phase, and 24 each
of inverting, and non-inverting driver chains. The modular cells in Figure 4.9 are
denoted by dotted lines. The input capacitance to the driver chain was kept constant so
that the same gate cell could be used for both small and large drivers, and not require
re-tuning. Since the input inverter is a fixed size, and the output inverter size is solely
dictated by the load being driven, the non-inverting clock path required four inverters,
rather than just two, to properly tune the driver delay. However, the extra two inverters
consume an insignificant amount of energy on all but the smallest clock drivers. In
addition, the layout took a modular approach, with the gate cell in the middle and a
driver chain cell abutting either side of it. The most significant benefit of this modular
approach was that the 50 unique cells could be designed and verified independent of the

final chip design.

Table 4.1 summarizes the delay and skew of the entire clock driver suite at

three different voltages and across process variation. The values have been normalized

98

4.3 Clocking Methodology

to the clock cycle time, f-; g, to demonstrate that both the mean delay, and the skew

track extremely well over Vpp.

TABLE 4.1 Clock Driver Delay and Skew (0.6\.m Process).

v Process Delay (ps / % of t¢y) Skew
DD | Corner Mean Max. T Min. (ps/ % of tcrg)
Fast 55577.9% 590/8.4% 510/7.3% 80/1.1%
4.1 | Nominal 709 / 7.9% 755/ 8.4% 650/7.2% 105/1.2%
Slow 897/7.8% 960 / 8.3% 826 /7.2% 134/1.2%
Fast 648 / 8.6% 687/9.2% 601/ 8.0% 86/1.1%
3.3 | Nominal 835/ 8.4% 885 /8.9% 770/ 7.7% 115/1.2%
Slow 1070/ 8.6% 1140/9.1% 989 /7.9% 151/1.2%
Fast 5510/7.3% 5970/8.0% | 5100/6.8% 870/1.2%
1.1 | Nominal 8870 /7.4% 9640/8.0% | 8080/6.7% 1560/ 1.3%
Slow 17300/4.5% | 19300/5.1% | 15000/3.9% 4300/1.1%

When a new clock driver was designed into the chip implementation, the
capacitance on both Phi and nPhi were estimated from the schematic. These values
were used to index into Table 4.2 to determine the driver size for the two signals. If the
desired clock driver cell currently existed, it would be used, and if not, then a new clock
driver can be rapidly constructed. Once the layout was complete, the design was

extracted to measure the final signal capacitance. If the sizings were found to be wrong

for the extracted capacitance, a new clock driver could easily be swapped in.

TABLE 4.2 Clock Driver Sizing (not including diffusion capacitance)

Driver | Min Load (fF) | Max Load (fF) Driver | Min Load (&I Max Load (fF) |
Ix 37.5 62.5 13x 450 525
2x 50 87.5 14x 487.5 562.5
3x 75 125 15x 525 600
4x 112.5 187.5 16x 562.5 637.5
3x 150 225 17x 600 675
6x 187.5 262.5 18x 637.5 712.5
7x 225 300 19x 675 750
8x 262.5 337.5 20x 712.5 787.5
9x 300 375 21x 750 825
10x 337.5 412.5 22x 787.5 862.5
11x 375 450 23x 825 900
12x 412.5 487.5 24x 862.5 937.5

99

4.3 Clocking Methodology

It would seem that only 48 unique clock drivers are needed, assuming the

output signals having equal driver strength (1-24x for phase-1, and 1-24x for phase-2).
However, the majority of clock drivers had differéntly sized driver chains due to
varying interconnect capacitance. Hence, this modular design approach worked quite

well by allowing the rapid assembly of any arbitrarily-sized clock driver.

4.3.3 Bounds on Allowable Skew

The worst-case race condition between back-to-back latches sets the maximum
allowable clock skew [west93]. Any logic in between the latches makes the circuit more
robust against clock skew. There are two different cases to consider. The same-latch
case occurs when the two latches are clocked by the same two clock signals, such as in
a flip-flop, and there is skew between Phi and nPhi. The unrelated-latch case occurs
when there are two sets of clock signals, Phid/nPhiA and PhiB/nPhiB, and the skew
occurs between the two sets. For each of these cases, the maximum allowable clock

skew, #)74x, was found so that the two latches remain immune to clock race, as shown in

Figure 4.10.
Same-latch Case Unrelated-latch Case
Phid
Phi — R
— —_ nPhid
- _ ,
nPhi ' PhiB .
> -y nPhiB |
—>: - ¢ MAX

FIGURE 4.10 : Maximum Allowable Clock Skew Measurement for Race Immunity.

Spice simulations were run to measure ¢,y over voltage and process, as given
in Table 4.3. As previously mentioned, the critical corner to design for is high voltage
and fast process because interconnect RC delay will be most significant there. The other

corners were measured to ensure that the clock drivers scaled properly over voltage.

100

4.3 Clocking Methodology

These results are used in Section 4.3.5 to verify that there will be no fatal errors in the

chip implementation due to race conditions.

TABLE 4.3 Maximum Allowable Clock Skew (in ps).

Vpp | Process Corner || #4x (unrelated-latch) ty4x (same-latch)
Fast 320 300
4.1 Nominal 410 390
Slow 530 490
Fast 380 380
33 Nominal 500 480
Slow 640 610
Fast 3700 3800
1.1 Nominal 6000 6100
Slow 10500 15000

4.3.4 Sources of Skew

There are several sources of clock skew, and each component was carefully
analyzed and quantified. A total maximum clock skew can be calculated by summing up
the individual components. While this is a conservative estimate because it assumes no
cofrelation in skew, it has a high confidence level because each component has been
completely analyzed and accounted for. The location of these sources are shown in

Figure 4.11.
2) Local Clock RC

A N Macro Block
1) Global Clock RC

— : . Local Enable RC
\ Block : E - E

— m—— o—— ——— — — —

Primary Macro 3) Clock Driver g
Clock
Driver Block .
L] —_____________J
Macro
Block 5) VDD Bounce

FIGURE 4.11 : Five Sources of Clock Skew.

The initial analysis assumed that the two dominant sources of skew were the

global clock RC and the clock driver skew. Each component was given a delay budget

101

4.3 Clocking Methodology

equal to 25% of the maximum allowable skew. This gave 100% headroom for margin of
error and for additional skew components. Upon completion of the design, the various

components were re-analyzed to verify the non-existence of race conditions.

4.3. 4.1 Global Clock Wirin

This component is due to the voltage-independent RC delay on the global clock
wire. It is measured as the skew between the clock input signals each macro block sees,
where each macro block was modeled as a lumped capacitance. To make sure the delay
budget of 25% of the maximum allowable skew could be met, an initial chip floorplan
was analyzed. A very simplistic model demonstrated that this target could be met, and

only require 3-4x larger than minimum-size wiring.

At the top level, widening the clock wire was very beneficial because the
fractional capacitance of the clock interconnect was small compared to all the clock
drivers® gate capacitance. Hence, widening the wire almost linearly reduced the RC

delay.

During the course of the implementation, a regular 20um-wide clock routing
channel was created to allow for post-layout wire widening, and to eliminate interline
capacitance. The clock distribution attempted to model an H-tree distribution network.
After the initial chip layout was completed, a parameterized model of the global clock
wire was created that modeled the clock wire as a distributed RC network with lumped
capacitances for each macro block. The widths of the various wire segments were
parameterized so that the RC delay could be tuned without having to extract the layout

for each iteration.

The tuned top-level clock routing for the prototype processor is shown in
Figure 4.12. The routing used third-level metal (Metal3) almost exclusively, due to its
low resistivity, except where the clock routing intersected the top-level power grid

network. The final simulation yielded a maximum RC delay between any two macro

102

4.3 Clocking Methodology

...........

............

...........

Write
Buffer

’

Prefetch |

s R

| PSS PP DU
. Unif .
. 1 1 1
. :

Bus
Interface

System
Coprocessor

ARMS Coritro |

T

Clock Wire:
{ali Metal3)

— 0.9um
— 1.5um
w30

— 4.5“;1:
- 6.0um

Subcell Boundary
(Clock routing
inside not shown)

FIGURE 4.12 : Prototype Processor IC Clock Distribution Network (Top Level).

blocks of 81ps. The maximum delay between any two macro blocks within the

processor core was just 31ps. The widest wire segment was 6.0um, with an average wire

segment of approximately 2.4pm.

4.3.4.2 Local Clock Wiring

This component is the RC delay on the clock signal within each macro block,
measured as the largest skew seen by any two clock drivers. This component was
initially assumed to be small, and the first large control block was used to verify that.

The ALU control block was simulated to have 15ps skew. To provide a margin for error,

this skew component was set to 20ps.

This RC delay is negligible because the longest wire is no more than 1mm, as

103

4.3 Clocking Methodology

dictated by the bounded macro block size. Care was taken in routing this clock signal;
Metal3 was predominantly used, with the minimum number of vias. The 15ps estimate
above was for an initial place and route of the ALU control block with no special

attention paid to the signal routing, increasing the conservatism of the estimate.

4. 3. 4.3 Clock Driver Skew

The drivers are a dominant source of clock skew, and were designed to have a
maximum skew across all possible drivers no more than 25% of the maximum allowable
skew. Achieving this goal required careful design and sizing of the clock drivers. The
largest driver was implemented first to ensure it could be designed, and then smaller
drivers were designed to be within the delay budget. For the smallest drivers, additional

internal capacitance had to be added to meet the targeted delay variation.

The 25% rule was most critical at high voltage, where the RC delay is also
significant. At the low voltage corner, the allowable margin was increased to 50% since
the RC delay becomes negligible. The maximum delay variations for the entire suite of

clock drivers is given in Section 4.3.5, and meets the targeted specification.

4.3. 4. 4 Local Enable Wiring

This component is the RC delay on the Phi and nPhi latch-enable signals. The
worst case for this arises in the datapath, in which the enable signal must traverse
950um across a 32-bit latch. This was measured to be 20ps, and relatively negligible.

To provide a margin for error, this component was set to 30ps.

In the place and routed control blocks, care was taken in routing the enable
signals. The placement was optimized to group latches around similar enable signals.
Additionally, these routes were given the highest priority, along with the local clock
signal, to optimize their routing. In the final layout of the synthesized blocks, due to the

latch clustering, no enable signal ran longer than 1mm validating the 30ps estimate.

104

4.3 Clocking Methodology

4.3.4.5 Enable Rise/Fall Time

Because the enable signals have a finite rise/fall time, there is a finite time that
the latches can remain open even if the signals’ skew, as measured between 50% points,
is zero. Shown in Figure 4.13 are Spice simulations results which demonstrate that the
maximum allowable skew actually increases monotonically with rise/fall time, despite
the increasing overlap of the enable signals. Hence, the maximum allowable skew, as

measured with step edges in Section 4.3.3, is a conservative estimate of the skew.

1.60

150 4----- Vdd =1.1, Slow
g —===Vdd=1.1, Nom
a_g) 140 4 ----ffr oo o) ..., vdd = 1.1, Fast
% Vdd = 3.3, Slow
§ 130 - . ~——-Vdd=3.3,Norm
% 3 R O T Vdd = 3.3, Fast

120 +--- R A e Vdd =
E - // Vdd = 4.1, Slow
2 R - — —~~Vdd =4.1, Norm

190 F--dgfmmm e L Vvdd = 4.1, Fast

1.00 y r - r

000 050 100 150 2.00 250
Normalized Rise/fFall Time

FIGURE 4.13 : Skew as a Function of Enable Rise/Fall Time.

This component, if anything, would contribute a negative number to the
maximum skew calculation. However, it is simply ignored, increasing the conservatism

of the maximum allowable skew calculation.

4.3.4.6 Vpp Variation Skew

The power distribution network (Section 4.4) was designed so that no more
than a 10% critical-path delay variation occurs with Vpp variation. ¥pp, variations only
affect the clock driver delay, which has a mean delay just under 10% of the target

critical-path delay. Thus, the maximum skew from Vpp variation is just a product of

105

4.3 Clocking Methodology

these two percentages, or just 1%. This component is voltage dependent, and will vary

with Vpp, similar to clock driver skew.

4.3.5 No-race Verification

To verify that race conditions cannot exist, the individual skew components
were summed up and compared against the maximum allowable skew. Due to the initial
delay budgeting on the clock drivers, and the global clock wire analysis, the final

implementation met the targeted skew with some room to spare.

Table 4.4 gives the comparison for the unrelated-latch case. As expected, the
smallest skew headroom (Maximum Allowable Skew - Total Skew) occurs at high
voltage and fast process, and is only 13% of the allowable skew. While this gave little
margin for error, it seemed reasonable due to the enormous conservatism built into the
estimate.

TABLE 4.4 Total Clock Skew Summary (all times are in ps): Unrelated Latches

Global | Local Local Maximum

Vdd f::"r‘:f:: Clock | Clock]‘)3::’:; Enable B:’::c . 5.‘1?.5 Allowable
RC RC RC Skew

Fast 80 70 280 ~ 320

41 | Nom 105 90 325 410
Slow 134 115 380 530
Fast 86 75 290 380

33 | Nom 80 20 115 30 100 345 500
Slow 150 125 405 640
Fast 870 750 1750 3700

1.1 [Nom 1560 1200 2890 6000
Slow 4300 3800 8230 10500

The same-latch case was much easier to meet, as shown in Table 4.5. Since in
this case the two latches share the same Phi and nPhi signals, global and local clock RC

are made irrelevant because the latches share the same clock driver.

Thus, by design, the chip implementation should be free from any race

conditions, across the entire voltage and process range. The only precondition is that

106

4.4 Power Distribution Methodology

TABLE 4.5 Total Clock Skew Summary (all times are in ps): Same Latch

Local -Max
vdd | Proc. gl’:vc:, Enable le:npc . :l‘:::v' Allowable
RC _Skew
Fast 80 70 180 ~ 300
4.1 | Nom 105 90 225 390
Slow 134 115 280 490
Fast 86 75 190 380
3.3 | Nom 115 30 100 245 480
Slow 150 125 335 610
Fast 870 750 1650 3800
1.1 | Nom || 1560 1200 2790 6100
Slow || 4300 3800 | 8130 15000

the latch contains two inverters. The number of inverters were reduced in some latches

due to critical path constraints, but it had to be ensured that there was no latch

immediately following a sped-up latch.

4.4 Power Distribution Methodology

Typical low-power chip designs have very relaxed constraints on the power
distribution network due to low DC and peak supply currents. While a DVS processor
generally has a low DC supply current, the peak supply current can be quite high when
it is operating at maximum clock frequency and supply voltage, thereby placing tight
constraints on the power distribution network, both at the chip level and at the board
level. Thus, power distribution requires careful design consideration in a DVS system

similar to any high performance, and high current, chip design.

4.4.1 On-chip Supply Variation

The on-chip voltage supply will vary due to inductive and/or resistive voltage
drops across the chip’s power distribution network, and across the pins and bonding
wires of the chip’s packaging. Global supply variations, which occur uniformly across
the chip, are essentially no different than changing the external supply voltage in a DVS

system. Thus, the DVS chips are relatively immune to global on-chip supply variations.

107

4.4 Power Distribution Methodology

However, the problems arising from local supply variations, which occur within a
limited area of the chip, are the reduction of signal noise margin and timing violations,

both of which can induce functional failure.

4.4. 1.1 Noise Margin Reduction

Static CMOS circuits and most dynamic logic circuits (e.g. Domino, NORA,
DCVSL, etc.) are very robust against noise margin reduction, since their signal swing is
the full value of ¥Vpp, and have a noise margin of at least V. Memory arrays (e.g. RAM,
ROM, PLA, etc.) are more susceptible to noise margin reductions. To make them more
robust, they should be designed to be either differential, or full swing. In the prototype
system (Chapter 7), the only types of memory arrays used were RAMs and CAMs,
which were designed with differential bitlines for improved robustness. The critical
circuits which are most susceptible to noise margin reduction are the I/O transceivers

due to their very large, and localized, peak currents.

4.4.1.2 Timing Violations

As described in Section 3.3.4, local on-chip supply variations can lead to
timing violations if a critical path sufficiently slows down to exceed the clock cycle
time of the ring oscillator. A DVS processor cannot have timing violations induced by
global supply variations, since the ring oscillator’s delay (e.g. the inverse of the clock

frequency) will vary with the delay of the critical paths.

A design margin of 5% was included in the timing verification of the proéessor
to account for localized voltage drops. The equation for delay sensitivity
(Equation 3.9), which is the relative change in delay(¥pp) for a given AVpp, can be
rewritten to translate this 5% design margin into a maximum allowable voltage drop,

AVpp, at a given value of Vpp:

dDelay
Delay \/o0) Pl VoD) 594 Delay(v,,)

AVpp(Vpp) = dDelay/ oV, ~ 9Delay/dVp,, (EQ4.)

108

4.4 Power Distribution Methodology

and this can be used to calculate the maximum resistance, Ry, y, allowed on the supply

line given a gate’s peak output current, Ig47%:

R 5% - Delay(Vpp) 1
MAX™ " 3Delay/dVpp Ig4r(Vpp)

(EQ4.2)

If the supply distribution network is designed so that the resistance that the
gate sees to a solid, reference voltage is less than R, y, then any delay variation due to
supply variation will fall within the 5% design margin, and the processor will continue

to operate correctly without any spurious timing violations.

4.4.2 Chip-level Distribution

| The chip-level power distribution network for the processor chip is shown in
Figure 4.14. The other DVS-compatible chips in the processor system (SRAM and I/0
chips) were designed in similar fashion, but the processor chip is focused on in detail to
demonstrate the power distribution methodology. There are two separate power
supplies, Vpp for the core, and Vppjp for the pad ring of the chip, to isolate the core
circuitry from the I/0O transceivers. There is a single ground on the chip, since the low-

impedance substrate of our process makes separate ground supplies difficult to isolate.

There were two primary design goals for the power distribution network. First,
there should be sufficient bypass capacitance on the chip to supply the charge for the
large switching currents. This will reduce the voltage drop across the bonding wires and
packaging pins, which would otherwise be intolerable. This is not an issue for
traditional low-power/low-voltage chips, but it is an issue for a DVS-compatible chip
which can have large switching currents at high voltage. The second goal was to ensure
that any point on the chip has a low-impedance connection to a solid voltage reference,
either a large on-chip bypass capacitor or the external voltage supply. This was critical

to eliminate timing violations due to localized voltage drops.

Ground is routed in Metal3 directly over power in Metal2, except where the

109

4.4 Power Distribution Methodology

\\\\\\\\\\\\\\\\ A TN

I T iR

Y '

| iz

77777

§

mmmny

D000

7, W%

W% 7///4 iy

/. 77

I///////I//I////////////‘//////[/ VILEILTLLITIT I LIS EI AL IS LTI IS4
"%
h
| Bus
// erf:
VCo [race
/

///// 7

'\

LSPLIELIIIIFLI 2L EI L E1IL1 LY, CSLLITL LIS LS LSS EASLL IS IS 172

\\i\\

.

{/é

Y Cache
El
/77

Z
%
%
%
%

\\\\

\\\\\\\\\\\\\\\\\\\\\\\

Prefetch ARMS Datapath
I % / V77 ///////////////////////////////??;////////////

%%

\

// ////

\\\\\\\V\&x\\\\\\\\\

7
%
ARMS Control %

7/////////

\\\\\\\\\\\\\\\\\\\‘\\\\

N

/

WWWWWWWWWWWWWWWM

I I I T

FIGURE 4.14 : Prototype Processor IC Power Distribution Network.
power lines dissect a block, in which they are routed in Metal3 and Metall, leaving
Metal2 to be used for signal routes. Routing ground on top of power helps to both
maximize the inter-metal bypass capacitance, and minimize inductive losses via

magnetic field cancellation.

A total of 16 pins for Vpp and another 10 pins for Vpp;o are distributed
uniformly around the periphery of the chip. The large number is essential to reduce the
inductive voltage drop on the bonding wires, as described in more detail in

Section 7. 2. 8. 2. Additionally, by spreading them evenly around the chip’s edge, any

110

4.4 Power Distribution Methodology

point on the Vpp and Vpp,o networks sees minimal resistance to the off-chip power

supply.

4.4.2.1 Bypass Capacitance

The bulk of the bypass capacitance is provided by NMOS devices which
provide the highest capacitance per area. These devices were placed in all the
significantly-sized open areas of the chip as well as under the power lines themselves.
Power is connected to the gate, while the source and drain are tied to ground,

maintaining the device in the triode region of operation.

The width and length of the NMOS devices are constrained in size due to
resistance in the device channel and in the polysilicon gate. The maximum RC time-

constant of the channel is to its mid-point, and is:

1 1 (W-L-Coy) _ L’ Cox
TcHaN = 4'RDS' Ces = 4'kp.(W/L).(VGs_) - 4‘kp'(VDD"VT) (EQ4.3)

where the factor of four occurs because the source and drain are connected, dividing the
effective R and C by a factor of two each. The time-constant scales inversely with ¥pp
similar to circuit delay, so that the maximum channel length is not strictly limited at
maximum supply voltage and current draw, but relatively optimal over all Vpp. The

maximum time-constant of the polysilicon gate is:
=1 -1 Pory W - Cox
Teare = 7 Roure- Cos = Z'(pPLY' %/)'(W'L Cox) = ———F—— (EQ44
where pp;y is the sheet resistance of polysilicon (10 ©/sq. in our 0.6um process) and
the factor of four occurs because the gate is contacted on both sides of the device.
Unlike Tcrgn, Teare is independent of Vpp so the maximum channel width is strictly

limited at maximum voltage.

For the core circuitry (powered by Vpp), the current spikes are on the order of

50-100ps wide at maximum voltage. To make the RC delay of the bypass capacitance

111

4.4 Power Distribution Methodology

negligible, the maximum time-constant value was set to 25ps. This dictated the
maximum W/L of a bypass NMOS device to be 54/3 pm in our 0.6um process. When
including the overhead for routing the bypass capacitors, the area efficiency of this size

bypass device is approximately 62%.

Since all the power metal lines shown in Figure 4.14 contain bypass capacitors
underneath them, and the network is connected with cross-bar metal lines between
blocks, the entire Vpp network provides a solid voltage reference. That is, the voltage

on the Vpp network varies approximately uniformly across the chip.

Providing a solid voltage reference for Vpp o is a much more difficult task.
For the worst-case condition that all I/O pins transition low to high, and they drive the
maximum 50pF external load capacitance, the total capacitance charged in a cycle can
be as high as 2nF. Bypass capacitance is used to mitigate the voltage drop on Vppio»
placed both under the Vpp;o power lines and in all available open areas between pads.
But, only 2nF of capacitance could be placed on-chip, such that for the worst-case
condition, the on-chip bypass capacitance cannot supply all of the charge, leading to

localized voltage drops on the I/O transceivers.

However, the bus interface was designed to have the minimum amount of gates
in its path delay to provide the requisite design margin for very large increases in delay
driving the external bus. By eliminating the bus interface as a critical path, large
voltage drops on Vpp;p are tolerable without inducing timing violations. Thus, only the
core circuitry connecting to the ¥ network had to be carefully designed to guarantee

no timing violations by design.

4.4. 2.2 Local Supply Routing
As was demonstrated in Section 3.3.4, the delay sensitivity to Vpp is a
maximum at 2+ V7 (approximately 2V in our 0.6um process), so the local supply network

must be designed at this value of Vpp, which will determine the smallest amount of

112

4.4 Power Distribution Methodology

resistance tolerable in the power supply network. At 2V, Equation 4.2 is roughly 0.05/

Ig4re. This equation can be expressed in terms of NMOS device width (Wy) and

number of gates in parallel (Ng,4rg) for 0.6um process as:

0.05 : 0.001
= (EQ4.5)

R = =
MAX™ Ngare Vsar Cox' W Vpp—Vr—Vpsa) Ngare: Wy

The equivalent resistance for a PMOS device is for a device with a width is 2.5 times as

large as the NMOS device due to the decreased mobility.

This equation was used to determine how wide the local power routes to the
core circuitry should be. For the 32-bit datapaths of the ARMS8 core, the prefetch unit,
and the coprocessor, the 100pm-wide Metal2 and Metal3 lines of the power distribution
network are spaced 825um apart as shown in Figure 4.15. Within the datapath, Metal2
and Metal3 are used for signal routing such that power had to be routed to the
individual bits in parallel Metall lines. The maximum resistance to the power

distribution network is from the midpoint of the datapath, whose resistive losses can be

modeled as shown.

4 e
o ht32 e 1as .
g vesistance
,§ ' g Metall § @ bits 16/17
Ky : . o 4. .
S i e
IS ; S Metall § Contact
DIIbRE
.. %::% -- Metal Vias

Vpp/GND

FIGURE 4.15 : Local Datapath Power Routing,

For a simple datapath cell with minimal output load (a 1x gate), Wy = 1.2um.

A worst-case analysis must assume all 32 bits of the datapath switch at once, which

113

4.4 Power Distribution Methodology

yields R4y = 262 The contacts, vias, and metal wires must be designed so that:

1 o
Rpax>Rpirr ¥ 5(Ryery + Rypas) (EQ4.6)

For our process technology, Rprr will always be approximately 20% of Ry, y, because
the number of parallel diffusion contacts scales with W), so that Rp;rr scales down
with R)s,x. The metal via resistance, Ryys, can be made negligible (<2% of Ryz4x)
because many vias can be added in parallel under the 100um wide power network.

Thus, the width of Metall must be adjusted so that:

50p _ Lyen 31p
Ruer<1.6 -Ryyx = 3 Ruen = 3 "Pmen = 7 (EQ4.7)
N MET] MET1

and combining these two relations for Ryer; gives:

Wyer1 > 0.6 - Wy (EQ4.8)

which is a concise rule-of-thumb for sizing the Metall power lines given the size of a
gate’s transistors. By following this, the datapath could be implemented to not have any

potential timing violations, due to power line resistance, by design.

Similar equations were developed for the large cache memory arrays, as well
as the placed-and-routed standard cells of the core control logic. For the standard cell

arrays, the cell-level power was routed in Metall, as shown in Figure 4.16, again to free

§_ 3 Mazx. Distance:

oo 250pm
24
g [Metall (Vpp) }$3.3 pm
& cellicell s - - - icell
ol Merall (GND) 143.3 um
= ~ . ~la
) ala , 3|Q
3 Js| SE
x s|g : 318
20 FE 0 [P

S
qu

FIGURE 4.16 : Local Standard Cell Power Routing.

114

4.5 Functional Verification

up Metal2 and Metal3 for signal routing. However, to reduce resistance to the power
distribution network, as necessary, 6um-wide Metal2 straps connected up the power
lines, and could be spaced no further than 250um apart. The maximum number of rows
was calculated to be sixteen. Again, by following these constraints, any place-and-
routed standard cell implementation could be guaranteed to not have potential timing

violations by design.

4.4.3 Board-level Distribution

The DVS regulator chip [stra98] is very sensitive to board-level parasitics
which may interact with the output LC filter for the DVS supply voltage, ¥pp. Thus,
careful attention had to be paid in laying out the power distribution for the board. An
entire PCB plane was dedicated to Vpp, which reduced the parasitic resistance to a
negligible amount. This also allowed a single PCB via to connect the Vpp pins on the

chip sockets to the power plane, in order to minimize the inductance.

Since the plane provides negligible resistance and inductance, the need to
place the filter capacitor next to the inductor was eliminated. Instead, the SUF capacitor
was evenly spread out across the board, and placed next to the chips’ ¥pp pins as 100nF
and 200nF bypass capacitors. This provided both the necessary filter capacitance, as

well as good bypass capacitance, to eliminate unnecessary noise on the chips’ Vpp pins.

4.5 Functional Verification

At every stage in the design process, the design specification was constantly
verified for functional correctness. At the higher, more abstract, design levels, logical
behavior is checked. Closer to the physical design, individual signals are checked for
phase correctness and setup/hold times in additional to logical behavior. A verification
methodology was developed so that test code had to be developed only at the top design

level. At all subsequent design levels, scripts automatically generated new test vectors

115

4.5 Functional Verification

from the previous design level’s test vectors.

 4.5.1 Behavioral Verification

The essence of behavioral verification is ensuring that the processor system
properly operates from the programmer’s point-of-view. The master reference for
comparing against is the specified behavior of the Instruction Set Architecture (ISA).
For example, an add instruction that adds two register and places the result in another
register must be validated for all specified register combinations as well as all register
values. Since exercising all possible combinations would create an infinitely long test
code, the difficultly of this task is heuristically deriving tractable test code that covers

the significant state transitions.

In addition, the processor requires a coherent memory hierarchy. The physical
memory hierarchy may store the same address contents in multiple locations, such as in
the cache and in main memory, but these contents must be consistent. The memory
hierarchy must also provide a minimum amount of memory management, such as
trapping illegal memory accesses, to prevent the processor from locking up. Hence, the
physical memory hierarchy must be verified to be logically correct over a wide range of

possible operations.

In collaborating with ARM Ltd. on this research project, both the ARMS
processor core behavioral model and its suite of validation test code was received from
ARM Ltd. [arm97]. By restricting any changes to the behavior model, the validation
suite could be used verbatim for verifying the processor core and its implementation of
the ARM v4 ISA. Test code had to be developed for the rest of the microprocessor and

external system components.

The basic design flow to create this test code is shown in Figure 4.17. This
verification flow ran in conjunction with the high-level behavioral design once enough

of the system was specified to be simulatable. Individual code was developed to test

116

4.5 Functional Verification

Initial | Assembly
Test Code | Test Code

Golden
Test Code
1. CoreTest!
2. CoreTest2
3. SysCoProc|
4. WriteBuf
Addto |5.10Test

list .

Simulate System VHDL

VHDL

Fix simulator model Behavioral

& resimulate

NO
Fix VHDL model
| & resimulate.

FIGURE 4.17 : Behavioral Verification Flow for Developing Test Code Suite.
each major part of the microprocessor (e.g. System Coprocessor, Cache Controller,
Write Buffer, etc.) as well as the external SRAM chip and I/O chip. To guarantee
correctness by design, the code was written to be self-checking; the result of any
operation under test would be compared against the expected value, and flag an error on
a mismatch. Both the cycle-level and VHDL simulator models included basic I/0 so

that error messages could be printed to the simulator screen.

The self-checking test code enforces consistency between the C simulator and
the ISA, as well as consistency between the C simulator and VHDL behavioral model.
The golden test code suite consists of: 28 programs from ARM Litd. that test individual
ARMS blocks, 32 programs from ARM Ltd. which comprise their validation suite to
verify the entire ARMS core, and an additional 10 programs that were developed for the

remainder of the system.

Once all the test code successfully ran on the VHDL system simulation, there
was extremely high confidence in the functional correctness of the behavioral model.

The additional step taken was to boot the operating system on the VHDL simulation to

117

4.5 Functional Verification

further verify functionality.

- 4.5.2 Test Vector Generation

Once the golden test code suite was developed, test vectors for individual
blocks could be generated from a behavioral VHDL simulation as demonstrated in
Figure 4.18. The block under test (BUT) has its pins traced while running the test code
that exercises the BUT. The output waveform database is then sampled and converted to
time-independent test vectors via the leap2crf script. Each vector corresponds to a
single clock phase, gives input state at the beginning of the phase, and indicates what

the output state should be at the end of the phase.

Golden BUT Waveforms
Behavior VHDL Model
Golden BUT
Test Vectors
Processor \ sss
ciii
Core Capture waveforms on leap2crf lggg ==°="""
......... inputs/outputs of BUT _‘_’ff_lf_f _3 _3
- sosdhiseenswsenhls whilemn”ing‘es‘c"de' c00O00O0
- . . 11110
2 20110
'E. p— - 31010 "°°°°°
 Rr— System v :| Cache $0010
E ! *| Coprocessor |* «|Controller 60000
8 .
o * .
II-'I] L] .
]] 0
[YRR R NN NRENN RN NN :

lock Under Test (BUT)
FIGURE 4.18 : Automatic Test Vector Generation

A header file describes the direction of each pin to be input, output, or
bidirectional. In the test vector file, a bidirectional signal is treated either as an input or
output for any given test vector, depending on whether the signal was actively driven by
the BUT in that test vector or not. An H or L state indicates a driven input, while a I, 0,
or Z state indicates an output signal. A skew file provides a skew number for each

signal, which can be used to model setup and hold time constraints on the BUT.

The golden test vectors are used verbatim as structural VHDL test vectors. The

crf2epic script allows switched-level simulation test vectors to be automatically

118

4.5 Functional Verification

generated from the golden test vectors. This script takes a time base as an argument so
that simulation test vectors can be created at arbitrary cycle times allowing vector to be
quickly generated for multiple voltages. When setup and hold time constraints had to be
renegotiated between blocks, the blocks’ skew fileg were modified and adjusted

switched-level simulation test vectors could be automatically generated.

A hierarchal set of test vectors were generated. Some vectors were for smaller
blocks, such as an individual ARMS8 macro block or cache controller, and others were
for larger blocks, such as the entire ARMS8 core, the cache subsystem, and even the
entire microprocessor chip. This allowed the design to be verified at all levels of the
hierarchy. Most of the logical debugging occurred within the smaller blocks, while

verifying the larger blocks ensured the design was connected properly.

4.5.3 Structural Simulation

The script genTB was used create a testbench for a given block. The block’s
VHDL entity provides the necessary pin-direction information, and creates a VHDL
stimulus file which reads the test vector file. At the beginning of each vector, the inputs
are toggled as specified, and at the end of the specified half-cycle time, the outputs are
checked against the expected outputs in the test vector file. If any errors are present, an

error flag is issued giving the exact location of the error.

As the design was refined from a high-level behavioral specification to a
lower-level structural VHDL specification, the test-bench simulation was run for each
block to ensure proper functionality. If all test vectors passed successfully, the block

was deemed to be functionally correct and ready for physical implementation.

4.5.4 Transistor Netlist Simulation

Timemill was the tool of choice for transistor level simulation. The crf2epic

script generates two files, an input vector file and an output vector check file. The input

119

4.6 Timing Verification

vector file specifies input signal transitions at regular time intervals, equal to the
desired half-cycle time. The skew file can be used to shift signal transitions around with
respect to the clock edge. The output vector check file specifies what the output pin
states should be at regular intervals. Again, with the skew file, when the outputs should

be stable with respect to the clock edge can be varied with setup-time constraints.

The initial simulation is run on a block’s schematic netlist, to ensure
topological functionality. This step catches logical transistor design errors. Once the
block’s layout is complete and verified back against the schematic via LVS, the layout
was extracted to create a netlist. Timemill was run on this new netlist, and would catch

setup and hold time violations for the block due to the interconnect parasitics.

4.6 Timing Verification

There are two parts to timing verification: race-condition analysis for
functionality, and critical-path analysis for performance. Pathmill was extensively used
for timing verification, in which the key to speeding up the analysis turn-around was a
schematic design that followed a simple naming methodology. Then, Pathmill could be

scripted to quickly find the important paths to be analyzed.

Timing was first run on the schematic design to flag potential race paths as
well as identify critical paths based upon logic depth. Any path longer than 30 gate
delays was reduced. Paths in the range 24-30 gates deep were reduced if a simple
schematic fix was possible, since they had a high probability of becoming critical with
extracted parasitics. Any path depth less than four was increased, which would occur as
the unintended side-effect of a sped-up latch. Finally, any path that could induce a clock
glitch (e.g. an output signal from a Phi2 latch gating a Phi2 clock driver) was flagged
and fixed.

Once the first-pass layout was complete, Pathmill was run again on the

120

4.6 Timing Verification

extracted netlist. Multiple timing iterations were used to fix critical paths that cropped
up due to lack of interconnect capacitance in the schematic netlist. The labelSpice
script was written to ensure that the layout netlist had the exact node names as the
schematic netlist. Hence, the exact same timing input @eck could be used both on the

schematic and extracted netlists.

4.6.1 Schematic Naming Methodology

All cell instances that either maintain state (e.g. latches, flip-flops, registers)
or are clock drivers have specific naming requirements. The name conveys information
on the type of state and on which phase, 1 or 2, the instance is active. Within the master
instance, the actual state nodes also require specific names. Then, for example, through

simple pattern matching all phase-2 latch nodes can be specified in one statement.

The special instance labels are:

1. p{l1,2}lat{#} Phase-1/2 transparent latch.
2. p{1,2}flop{#} Phase-1/2 edge-triggered flip-flop.
3. p{1,2}clk{#} Phase-1/2 clock driver.

4. p{l,2}enab{#} Phase-1/2 enabled signal (tri-stated).
5. p{l,2}pre{#} Phase-1/2 pre-charged node.

The {#} is used to differentiate multiple instances of the same type/phase on a
given schematic sheet (e.g. pllat0, pllatl, etc.). In addition, there is the special phase

designator, 4, indicating an asynchronous signal (e.g. p4denab0).

The special state node labels are:

1. epic_latch Latch node between pass gate and cross coupled inverters.

2. epic_latch{1,2} The two latch nodes in a flip-flop.

3. epic_clock Clock node right after the enabled gate cell in the clock drivers.

4. epic_enable Node immediately preceding the driving inverter on a tri-state bus.
Inverter enabling signal must be the output of a clock driver.

5. epic_pre Precharged node. Precharge signal must be the output of a clock driver.

6. epic_register Latch node within a register file. Labelled differently because it requires

special handling since the register files are bi-phase.

121

4.6 Timing Verification

In addition, any one of the above state nodes can be suffixed with a letter

indicating parallel nodes on a single schematic sheet (e.g. epic_latcha, epic_latchb).

Through wild-card matching, all phase-2 latch nodes are simply
p2lat.epic_latch*. To ensure all instances are properly labelled, a script was written
to parse through the netlist looking for any node names not associated with a labelled
instance, and flag them to be changed. Likewise, the inverse can be checked as well.
However, if both the instance and node labels are omitted, then the node cannot be
caught just from parsing the netlist. However, it will most likely show up as a critical
path, and can be changed after the initial timing run. Thus, this methodology proved

very robust in properly annotating all state nodes.

4.6.2 Path Identification

When performing timing analysis, all delay measurements must be referred
back to a common signal, typically the output of the global clock driver. As was
demonstrated in Section 4.3.4, the maximum skew between any two clock driver
outputs is less than 4% of the cycle time. Because all the state nodes (except

epic_register) only change state upon a clock driver output transition, timing between

Clock:

FIGURE 4.19 : Simple Circuit Example.

122

4.6 Timing Verification

state nodes can ignore delay through the clock drivers, with a 4% margin of error.

In Figure 4.19, when Clock goes low, Phil/nPhil get asserted, v.lat;:hing a new
data value onto the state node, epic_latcha. When Clock goes high, Phi2/nPhi2 get
asserted, latching a new value onto the state node epic_latchb, at which time, the input
to p2lat must be stable. To ensure this, the delay through the logic block, ¢cg;p referred

back to the common Clock signal must be less than the target cycle time:
terir = a1~ ta2 = Clock— epic_latcha + tepic_latcha = epic_latchb ~ LClock - epic_latchb (BQ 4'9)
where the delay through the clock buffers is:

t Clock — epic_latch{a,b} = tClock — Phif1,2} + tPhi{ 1,2} = epic_latch{a,b} (EQ 4. 10)

The first component differs at most by the maximum clock skew. The second
component will be essentially the same between the two because the output of the clock

drivers have nearly identical rise/fall times. Hence, Equation 4.9 can be rewritten as:

tcrir = tepic_latcha —> epic_latchb + 8CIk.S7¢ew = tepic_latcha — epic_latchb (EQ 4.1 l)

Hence, timing path analysis only requires looking between any two state nodes
(latch, flip-flop, precharged, and enabled), which is virtually equivalent to referring the

path calculation back to a common point. There are two exceptions to this rule.

The first exception is for clock gate signals. For the path from pllat to p2cik:

‘crim2 = tClack — epic_latcha + tepic_lalcha — gateSig + tgateSig > epic_clock — LClock - epic_clock (EQ 4. 12)

The last term is dropped, because the epic_clock node should be stable before Clock

changes. Equation 4.12 can be reduced to:

tC RIT2 = tCIock = epic_latcha + tepic_latcha — epic_clock (EQ 4. 13)

Thus, the delay between the state node (epic_latcha) and the clock node (epic_clock)

must be less than the target cycle time minus the delay through the clock buffer. The

123

4.6 Timing Verification

mean delay through the clock buffer is 8% of the half-cycle time of over voltage. Thus,

these paths have a shorter time to complete.

The other exception are epic_register nodes. All the register files are bi-phase,
so the standard clock drivers cannot be used. Instead, custom clocking circuitry is
required, which while designed to match the clock driver as well as possible, they do
not meet the same skew tolerance. Thus, input and output to these nodes must be given

an extra margin of tolerance, and carefully simulated to ensure no race condition exists.

4.6.3 Timing Analysis

Path delay varies from VCO delay in one of two ways. First, there are paths
whose delay is dominated by PMOS devices (since Vyp> Vpy) and/or interconnect
capacitance, and they slow down at low voltage with respect to the VCO. The second
class of paths, whose delay is dominated by gate/diffusion capacitance (which increases
with voltage) and/or interconnect RC delay, slow down at high voltage with respect to
the VCO. A typical commercial design is only concerned about a singular voltage

operating point, but DVS must operate over a broader range of voltage.

However, DVS only requires timing analysis at two voltages, which are the
extremes of the desired operating range. For the prototype processor, the voltages are
3.3V and 1.2V. If timing constraints are met at these two points, then the timing

constraints will be met at all intermediate points in between.

Using the schematic naming methodology, a complete timing analysis can be
performed with 16 individual Pathmill runs, listed in Table 4.6. This analysis checks for
short paths, long paths, and illegal paths. The target cycle time is 10ns at 3.3V, and 80ns
at 1.2V.

Checks 1-4 analyze paths between different-phase state nodes, so they only

have a half-cycle time to complete. In addition, the maximum delay is further reduced

124

4.6 Timing Verification

TABLE 4.6 Timing Analysis Pattern Set

Maximum Delay (ns)
Source Sink -
VDD=3'3 VDD=1'2
1 | pl{latflop,enabpre}.epic_* p2{lat,enab}.epic_* 45(s) 36 (5)
2 | p2{latflop,enab,pre}.epic_* pl{lat,enab}.epic_* ’
3 | pl{latflop.enabpre}.epic_* p2{flop,pre} .epic_* 45 36 (h)
4 | p2{latflop,enab.pre}.epic_* pl{floppre}.epic_*)
5 | pl{iatflop,enab.pre}.epic_* plflop.epic_latchl 9.5 (h) 76 ()
6 | p2{latflop,enabpre}.epic_* p2flop.epic_latchl)
7 pl{lat flop}.epic_* Pp2clk.epic_clock
4.0 32
8 p2{lat flop} .epic_* plclk.epic_clock ®) ®)
9 | pl{latflop.enabpre}.epic_*) .
t 4.0 32
10 | p2{latflop,enab pre}.epic_* epic_register ® ®
11 . . pl{latflop,enab,pre}.epic_*
t 4.0 2
12 epicregsier p2{lat flop.enab,pre}.epic_* ® 320
13 | pl{latflop,enab.pre}.epic_* plclk.epic_clock Should never occur
14 | p2{latflop,enab pre}.epic_* p2clk.epic_clock (same phase gate signal)
15 pl{lat flop.enab}.epic_* plpre.epic_pre Should never occur
16 | p2{latflop,enab}.epic_* p2pre.epic_pre (same phase pre input)

by 5% of the cycle-time to provide margin for clock skew. The first two checks are
soft (s) constraints, because the sink state node is transparent, and will continue to
operate if the maximum delay is exceeded. Checks 3-4 are hard (h) constraints, because
a functional error will result if the maximum delay is exceeded. Checks 5-6 have a full
cycle to complete minus 5% margin for clock skew. Checks 7-8 provide 10% margin to
account for both clock skew and delay through the clock buffer. The register checks
(9-12) analyze both input/output paths, and provide 10% margin to give additional
headroom for the custom clock drivers. The last four checks (13-16) check for illegal

paths that should never occur.

The output from Pathmill provides an ordered list of long and short paths for

path # of
delay stages from node => to node

1l 4.888 20 I71.117.I4.pl1llat0<13>.epic_latch I71.p2lat2<1>.epic_latch
2 4.872 20 I71.I17.1I4.pllat0<13>.epic_latch I71.p2lat3<l>.epic_latch
3 4.865 18 I72.I1.I4.plpre<0>.epic_pre I72.p2lat8<l>.epic_latch

FIGURE 4.20 : Example Pathmill Timing Analysis Output

125

4.6 Timing Verification

each check, as shown in Figure 4.20. In addition, Pathmill reports each stage in these
paths, such that they can be quickly identified in the schematic. If any paths exceed the
maximum delay check, they are fixed through schematic changes, and the design is re-

analyzed.

126

Architectural
Design Methodology

While it is important to be energy conscious at all levels of the design
hierarchy, energy-efficiency optimizations at the level of architectural design generally
yield the biggest gains. The closer the design approaches to the final physical
implementation, the smaller the gains get because the scope of possible optimizations

narrows.

Unfortunately, traditional architectural design methodologies for
microprocessor systems focus primarily on performance, with energy consumption
considered as an afterthought. This approach is slowly evolving to consider energy
consumption earlier in the design process, but the radical change in design methodology
that is required has yet to happen. This wholesale change requires the incorporation of
energy estimation into the high-level system simulator (Section 4.2), so that both
performance and energy consumption can be estimated at the highest level of the design
space. This allows for architectural design choices to be evaluated for their overall

impact on system energy efficiency, and not just strictly performance.

The first section describes the architectural design and methodolbgy of the
processor system, while subsequent sections describe in more detail the major
components of the microprocessor itself -- the processor core, the cache system, and the

system-control coprocessor.

127

5.1 System Architecture

5.1 System Architecture

Microprocessor systems generally resemble the generic architecture shown in
Figure 5.1. The processor bus connects the microprocessor to the main external memory
(ROM, RAM), input/output devices via I/0 controllers, and peripheral subsystems via
bus controllers. A PAL or PLD is typically used to generate the control signals between

the various chips.

ROM
/]
-]
-]
St
| D
Microprocessor | 9
A
[| LCD
YT
Radio,
76 "U's'B'"
Controllers [Fec &

AL/P 1 PCI
P LD Peripheral AV
Bus Controllers}]| ¢

FIGURE 5.1 : Generic Microprocessor System Architecture.

While the generic system appears to have little room for optimization, a
number of architectural design choices are available which can significantly impact
performance and energy consumption. This is beyond the scope of this work, however,
since in trying to demonstrate DVS at the system level, constraints had to be placed

onto the system organization as described below.

5.1.1 Modifications for DVS

A key modification to implement DVS at the system level is a DVS-compatible
processor bus, which requires the bus to operate across the entire range of operating
voltage and performance. Existing processor bus specifications do not support this, so a

custom solution was developed for the processor bus. This, in turn, required custom

128

5.1 System Architecture

chips to communicate on the bus, since no available commercial chip supports this

custom bus implementation.

To reduce the number of chips requiring a custom implementation, the system
was organized as shown in Figure 5.2. In this architecture, only three chips require
custom implementation: the microprocessor, the external RAM, and the I/O interface
chip. For the targeted application of portable electronic systems, this is a reasonable
solution since the bulk of the bandwidth on the processor bus is between the
microprocessor and the main memory. The I/0 bandwidth is in the range of 10 kB/sec to
5 MB/sec for each I/0 device, which is a small fraction of the available 200 MB/sec

peak bandwidth on the processor bus.

..... Custom DVS-compatible Chips | Commercial Chips

E RAM ; ROM

1 1) w

‘| Microprocessor ; 2

. . (@)

: N ——=1:p

: vo [Radio >
X Processor Bus | Interface /o "USE >
Controllers [Fer.

FIGURE 5.2 : Prototype System Architecture Incorporating DVS.

The PAL/PLD was eliminated for two reasons. First, commercial PAL/PLDs
are not DVS-compatible. Second, and most important, they consume an inordinate
amount of power in a typical embedded processor system given the functionality that
they provide. As such, this functionality (memory controller, interrupt controller, etc.)
was implemented on-chip within the system-control coprocessor, providing a

significant reduction in system energy consumption.

5.1.2 Cache Benefits and Limitations

On-chip cache is essential for providing good system performance and energy

efficiency in a general-purpose processor system. An on-chip cache access is simply

129

5.1 System Architecture

much faster than an off-chip access to main memory. While cache accesses can typically
be achieved at the processor clock rate, external accesses need to traverse through the
processor’s external interface, the external system bus, and the memory chip’s bus
interface, all of which increase access latency anywhere from a few processor cycles to

tens of cycles [henn95].

A cache access consumes less energy than an access to main memory because
the same things that slow the access down -- external bus interfaces and the external bus
itself -- also increase its energy consumption. For the prototype system, a cache access
is only 100 pF/access, while an external memory access is 500 pF/access, yielding a 5x

reduction in energy consumption per memory access.

However, cache misses require transferring several words into a cache line
from main memory, and an equal amount of words need to be transferred from the cache
back to main memory when the cache line being replaced is dirty. So what is important
to evaluate is the average capacitance/access for a memory access to the on-chip cache,

including the effects of cache misses:
Crapave = (1 -MR) - Ceqcpp+ MR - LS(Ceyce+ Cexrmen) - (1 + DR) (EQ5.1)

where MR is the fractional cache miss rate, Cc4cyg is the capacitance of a cache access
(100 pF/access), Cgxtmeym is the capacitance of an external memory access
(500 pF/access), LS is the line size in words, and DR is fractional amount of cache
misses that are also dirty. From Equation 5.1, we can calculate what is the maximum
miss rate that will ensure Cyg4pg < CexTmem SO that adding the cache actually
improves system energy efficiency. From the prototype system, LS = 8 and DR = 10%,
such that as long as MR < 7.7%, then Cpg414vE < Cexraem- This level of miss rate can

be achieved with a cache size as small as 2kB [henn95].

So, for almost all practical sizes of an on-chip cache, the inclusion of the cache

will not only improve processor performance by reducing the average memory access

130

5.1 System Architecture

time, but it will also improve the overall system energy efficiency. The cache used in
the prototype design has only a 0.5% miss rate (derived from benchmark program

simulations), reducing Cyz4 4pg to only 125 pF/access, which is still 4x lower than

CExTMEM:

The primary drawback to using a cache is its non-deterministic behavior,
which can adversely impact real-time systems. This can be addressed in one of two
ways. A software solution entails that any time-critical operation take into account a
worst-case latency assuming cache misses. If this is not feasible, a hardware solution
consists of either dedicated on-chip memory (e.g. ROM, SRAM) separate from the

cache, or a cache which allows specified cache lines to be locked into the cache.

For the PDA-like applications running on the prototype demonstration system,
a hardware solution to ensure operational latency was not necessary, as the latency
issues were sufficiently dealt with in software. Thus, implementing the on-chip cache
was essential for improving system energy efficiency, yielding the simplified
microprocessor architecture shown in Figure 5.3. The system control block incorporates
the glue logic required to seamlessly connect together the custom chips of the prototype

system. These three components are described in further detail in Section 5.2-4.

Microprocessor
'g Processor
g Cc;re
E Cache Processor
% System Bus

FIGURE 5.3 : Prototype Microprocessor Architecture.

5.1.3 Main Memory Architecture & Processor Bus Topology

Commodity SRAMs and DRAMs used for main memory are typically eight bits
wide. This data width has been used since the earliest microprocessor days when the

processor itself was only eight bits wide. While the bus width of the microprocessor has

131

5.1 System Architecture

increased to improve memory bandwidth to the processor, the width of the RAM chips
has remained unchanged. To increase the bandwidth of the memory bank, multiple
memory chips are enabled in parallel, as shown in Figure 5.4. In this example, four 8-

bit RAM chips are accessed simultaneously to provide a 32-bit data word to the

processor.
RAM RAM RAM RAM
#1 #2 #3 #4
. | | 8 | 3 | 8
ChipSelect0
Data<31:0> "3 ‘ + 1
Address (B o 1 T
ChipSelect! 1 ks I T X3 | 1 ¥] 8
RAM RAM RAM RAM
#5 #6 #7 #8

FIGURE 5.4 : Typical Main Memory Architecture.

While this approach successfully meets the bandwidth (performance) demand,
it increases the energy consumed per access. However, a 32-bit RAM chip would
require only one memory chip to be activated per access, eliminating the unnecessary
energy coﬁsumption of the other three chips. The primary drawback to a larger bus‘
width is increased pin count on the memory chip. A typical 8-bit wide, 16Mb RAM chip
has a total of 29 address and data pins. If the address and data are multiplexed onto the
same bus, then only five additional pins are required to support 32-bit accesses. The

proposed architecture is shown in Figure 5.5.

RAM RAM RAM RAM
#1 #2 #3 #4
ChipSelect<3:0> =g—-=3 z Z 7
Address/Data<31:0> =iy | ¢ 9
ChipSelect<7:4> —=—%; > 7 * v
RAM RAM RAM RAM
#5 #6 #7 #8

FIGURE 5.5 : Proposed Main Memory Architecture.

Two bus cycles are required for a single-word memory access in this

multiplexed approach. However, for a processor with a cache, most memory accesses

132

5.1 System Architecture

are cache line reloads. Thus, if the processor bus can support burst-mode accesses, then
the cost of placing the address on the multiplexed bus can be amortized over multiple
data words. For a cache-line length of eight, the effective bandwidth is 8/9, or 89% of
peak capacity. Benchmark simulation demonstrated Fhat with a large 16kB cache,
external accesses are predominantly cache-line reads and writes such that actual bus
capacity is only 15% less than peak capacity. This slight degradation in performance is
more than compensated for by the reduction in energy consumption of the external
memory chips. Thus, the processor bus was designed to support burst accesses, as

described in further detail in Section 7.4.

5.1.4 1/0O Considerations

The I/0 interface chip is essentially a bridge between the processor bus and the
I/O bus, such that its implementation is relatively simple. The critical functionality
required is flow control between the processor and the autonomous I/O controllers,
which all operate at different clock frequencies. This is provided through a simpl‘e state
machine on the chip in conjunction with wait signals which can halt either the

processor, or an I/0 controller, as necessary.

To improve the system energy efficiency, the I/O interface chip also allows for
packed I/O data writes. Typical I/O data transfers are one byte wide, such that if I/0
data is transferred in single bytes, two processor bus cycles are required to complete the
data transfer, one for the address and one for the data byte. The aggregate I/0 data
transfer rate is 0.5 bytes/cycle. However, by allowing four bytes to be packed into a
single word, then the transfer rate increases to 2 bytes/cycle. The I/O interface chip is
responsible for unpacking the word into four individual byte writes to the addressed 1/0
controller. Packing I/O byte reads is not done, since the processor would have to wait
until the fourth read before it could process the data, adding additional latency to the

I/0O transfer.

133

5.2 Processor Core

To improve system performance, the I/O interface chip also supports direct

memory accesses (DMA) to allow I/O controllers to directly access the main memory.
This frees up processor cycles that would otherwise be required since the processor
must act as an intermediary between the I/O controllers and main memory when DMA

is not supported.

In the prototype system, this functionality is performed by the virtual I/O
controller (Section 7.8) which eliminates the need to implement this added functionality
in silicon. The actual I/O interface chip that was custom implemented only provides the
voltage level-conversion and signalling required to support I/O transfers and DMA
between the processor bus and the virtual I/0 controller, which was implemented with a
Xilinx FPGA and a StrongArm processor system. However, for a complete system
solution, this functionality must be implemented on the custom I/O interface chip. Since
the average number of I/0 accesses per processor cycle is well below one, the energy
consumed by this full-custom I/O interface chip implementation is negligible with

respect to the overall processor system energy consumption.

5.2 Processor Core

The design of the processor core presents a variety of opportunities for
improving the overall microprocessor system’s energy efficiency. To facilitate the
design of the prototype system in Chapter 7, an ARMS8 behavioral model from ARM
Ltd. was incorporated into the high-level design specification of the protbtype
processor. While significantly speeding up the implementation, this model also
constrained the processor design space by fixing the instruction set architecture as well

as the core microarchitecture.

As such, this section explores common processor core optimizations for
improving performance and/or reducing power dissipation. To properly evaluate these

optimizations, it is imperative to analyze the system-level performance and energy

134

5.2 Processor Core

consumption improvement, rather than focus only on the improvement within an
individual processor block, as is often done. Those optimizations that demonstrate to
improve the overall system energy-efficiency may be utilized in the design of a future,

more energy-efficient microprocessor.

5.2.1 Instruction Set Architecture

Typically, an instruction set architecture (ISA) is designed solely with
performance in mind. High-level performance simulators allow the architect to explore
the ISA design space with reasonable efficiency. Energy is not a consideration, nor are
there high-level simulators available to even let the architect estimate energy
consumption. Simulation tools exist, but require a detailed description of the
microarchitecture so that they are not useful until the ISA has been completely
specified. Processors targeted towards portable systems should have their ISA designed

for energy efficiency, and not just performance.

Many processors have 32-bit instruction-words and registers. Register width
generally depends on the required memory address space, and cannot be reduced; in
fact, more recent microprocessors have moved to 64 bits. For low-energy processors,
16-bit instruction widths have been proposed. Static code density can be reduced by
30-35%, while increasing the dynamic run length by only 15-20% over an equivalent
32-bit processor [bund93a][arm95]. Using 16-bit instructions reduces the energy cost of
an instruction fetch by up to 50% because the size of the memory read has been halved
[bund94]. In system’s with 16-bit external busses, the advantage of 16-bit instructions
is further widened [free94][arm95]. Since instruction fetch consumes about a third of
the processor’s energy [burd94b][mont96b], total energy consumption is reduced by
15-20%, which is cancelled out by the 15-20% reduction in performance, giving

approximately equivalent energy efficiency.

The available data indicates that this technique significantly improves energy

135

5.2 Processor Core

efficiency only if the external memory’s energy consumption dominates the processor’s
energy consumption, or if the external processor bus is 16 bits, instead of the more
typical 32 bits. However, this is only true for no, or very small, on-chip caches (< 8kB).
Since most microprocessors today contain at least a moderately-sized on-chip cache
(16kB or larger) enabled by CMOS VLSI process scaling, utilizing 16-bit instructions
will typically have negligible impact on microprocessor energy efficiency. It is only

useful for reducing external memory requirements in cost-sensitive system designs.

The number of registers can be optimized for energy efficiency. The register
file consumes a sizable fraction of total energy consumption since it is typically
accessed multiple times per cycle (10% of the total energy in [burd94b], as well as in
the prototype system). In a register-memory architecture, the number of general purpose
registers is kept small and many operands are fetched from memory. Since the energy
cost of a cache access surpasses that of a moderately sized (32) register file, this is not
energy efficient. The other extreme is to implement register windows which is
essentially a very large (100+) register file. The energy consumed by the register file
increases dramatically increasing total processor energy consumption 10-20%. Unless
this increase in emergy is compensated by an equivalent increase in performance,
register windows are not energy efficient. One study compared register files of size 16
and 32 for a given ISA, and found that for 16 registers, the dynamic run length is 8%
larger [bund93b]. The corresponding decrease in processor energy due to a smaller
register file is on the order of 5-10%. There appears to be a broad optimum on the
number of registers since the energy efficiency is nearly equal for 16 and 32-element

register file.

The issue of supported operation types and addressing modes has been a main
philosophical division between the RISC and CISC proponents. While this issue has
been debated solely in the context of performance, it can also have an impact on energy

consumption. Complex ISAs have higher code density, which reduces the energy

136

5.2 Processor Core

consumed fetching instructions and reduces the total number of instructions executed.
Simple ISAs typically have simpler data and control paths, which reduces the energy
consumed per instruction, but there are more instructions. These trade-offs need to be

analyzed when creating an ISA.

The amount of hardware exposed (e.g., branch delay slot, load delay slot, etc.)
is another main consideration in ISA design. This is typically done to improve
performance by simplifying the hardware implementation. Since the scheduling
complexity resides in the compiler, it consumes zero run-time energy while the
simplified hardware consumes less energy per operation. Thus, both the performance is
increased and the energy/operation is decreased, giving a two-fold increase in energy
efficiency. A good example of radically exposing the hardware architecture are very
long instruction word (VLIW) architectures, which will be discussed in more detail in

the following section.

5.2.2 Architectural Concurrency

The predominant technique to increase energy efficiency in custom DSP ICs
(fixed throughput) is architectural concurrency; with regards to processors, this is
generally known as instruction-level parallelism (ILP). Previous work on fixed
throughput applications demonstrated an energy-efficiency improvement of
approximately N on an N-way parallel/pipelined architecture [chan92]. This assumes
that the instructions being executed are fully vectorizable, that N is not excessively
large, and that the extra delay and energy overhead for multiplexing and demultiplexing

the data is insignificant.

Moderate pipelining (4 or 5 stages), while originally implemented purely for
speed, also increases energy efficiency, particularly in RISC processors which operate
near one cycle-per-instruction. Energy efficiency can be improved by a factor of two or

more [gonz95], and is essential in an energy-efficient processor.

137

5.2 Processor Core

5.2.2.1 Superscalar Architectures

More recent processor designs have implemented superscalar architectures
with parallel execution units, in the hope of further increasing the processor’s execution
concurrency. However, an N-way superscalar machine will not yield a speedup of N,
due to the limited ILP found in typical code [john90][wall93]. Therefore, the achievable
speedup will be less than the number of simultaneous issuable instructions and yields
diminishing returns as the peak issue rate is increased. The speedup has been shown to

be between two and three for practical hardware implementations [smit89].

If the instructions are dynamically scheduled in employing superscalar
operation, as is generally done to enable backwards binary compatibility, the effective
switched capacitance per cycle of the processor, Ccpy, Will increase due to the
implementation of the hardware scheduler. Also, there will be extra capacitive overhead
due to branch prediction, operand bypassing, bus arbitration, etc. There will be
additional capacitance increase because the N instructions are fetched simultaneously
from the cache and may not all be issuable if a branch is present. The capacitance
switched for un-issued instructions is amortized over those instructions that are issued,

further increasing Ccpy-

The energy-efficiency increase can be analytically modeled. Equation 5.2
gives the ETR ratio of a superscalar architecture versus a simple scalar processor; a
value larger than one indicates that the superscalar design is more energy efficient. The
S term is the ratio of the throughputs, and the Ccpy terms are from the ratio of the
energies, which is proportional to the effective switched capacitance since the
architectural comparison is at constant supply voltage. The individual terms represent
the contribution of the datapaths, Ccpy”*, the memory sub-system, Ccpi/™, and the
dynamic scheduler and other control overhead, CCPUC". A 0 suffix denotes the scalar
implementation, while a 1 suffix denotes the superscalar implementation. The quantity

Ccpy©° has been omitted, because it has been observed that the control overhead of the

138

5.2 Processor Core

scalar processor is minimal: Cepy©0<<Cepy” 0.M0 [burd94b].

Do MO
S(Ccpy__+Ccpy)

ETR|p4710= Cl DI M1
(Cepy *Ccpy +Ccpy)

(EQ5.2)

Simulation results show that Cgpy©!

is significant due to control overhead and
that Ccpy™! is greater than CpM° due to un-issued instructions, thereby negating the
ETR increase due to S. Since CCPUC] increases quadraticly as the number of parallel
functional units is increased, the largest improvement in energy efficiency would be

expected for moderate amounts of parallelism. In this best case, however, the

superscalar architecture yields no improvement in energy efficiency [gonz95].

5. 2. 2.2 Superpipelined Architectures

These architectures also exploit ILP and offer speedups similar to those found
in superscalar architectures [joup89], but their performance is lower because the
number of stall cycles increases with the depth of the pipeline due to data dependencies.
While these architectures do not need as complex hardware for the dynamic scheduler
(CéPUC" is lower), they do need extra hardware for more complex operand bypassing
(CCPUD" is higher). The net differences in speedup and capacitance should give

superpipelined architectures an energy efficiency similar to superscalar architectures.

5.2.2.3 VLIW Architectures

These architectures best exploit ILP by exposing the underlying parallelism of
the hardware to the compiler’s scheduler, which minimizes the complexity of the
hardware. A good compiler is necessary to fully utilize the hardware. One such
implementation from Multiflow gives a speedup factor, S, between two and six
[lown93]. Because the parallelism is visible, VLIW processors do not require
aggressive branch prediction, dynamic schedulers, and complex bus arbitration, so that
the energy consumed per operation is roughly the same as for the scalar processor. The

main additional energy cost is for the communication network that connects the

139

5.2 Processor Core

autonomous functional units that comprise the VLIW processor, and executing the
instructions that shuffle data between them. Even with a pessimistic estimate of 50%
for the energy per operation increase, the VLIW processor’s energy efficiency increases

anywhere from 33% to 300%.

5.2.2.4 Summary

Superscalar and/or superpipelined architectures are commonly used today
because of the increase in performance while maintaining backward machine code
compatibility. Unfortunately, utilizing these architectures actually degrades processor
energy efficiency. The most energy-efficient processor available today is a simple
scalar design with a five-stage pipeline [mont96]. While VLIW architectures
demonstrate very promising improvement in processor energy-efficiency, the required
change in the ISA and the increased requirements on the compiler has severely limited

their usage.

5.2.3 Microarchitecture

The processor control typically knows which pipeline stages are being used
each cycle. Those pipeline stages not used in a given cycle should have their clock
disabled for that cycle. This is particularly important to do in superscalar architectures
that typically have only a fraction of the entire processor being utilized in any given
cycle. With only a small overhead cost, this technique increases processor energy
efficiency by 15-25% (assuming that 40-50% of the processor is disabled 40-50% of the

time) [gary94].

To maximize the benefit of clock-gating, null or no-operation (NOP)
instructions should be suppressed. In many microarchitectures, NOP instructions are
mapped to real instructions. Although NOPs write to a null register, they consume more
than half the energy of a normal instruction, as demonstrated by empirical

measurements described in [tiwa96]. Instead, NOPs should be detected by a comparator

140

5.2 Processor Core

in the instruction decode stage, and later stages executing on the NOP should be
disabled. Similarly, pipeline stalls and/or bubbles should not inject NOP instructions
into the pipeline but should instead cause subsequent pipeline stages to be disabled

during the appropriate cycle.

Correlation of data is often exploited for energy efficiency in signal processing
circuits. While processors do not exhibit the same level of correlation as found in DSP
circuits, high amounts of correlation can be found during effective address calculations,
which are typically offset from a high-valued stack pointer. In most scalar processors, a
single ALU calculates the effective addresses and all integer additions. By partitioning
these two types of additions onto separate adders, the signal correlation increases by
16%, decreasing the adder’s emergy consumed per addition by an approximately

equivalent 16%. Total processor energy efficiency can then be increased by 3-7%.

The ETR metric (Section 2.3.2) should be used to evaluate other
microarchitectural design decisions for their relative impact on system energy
efficiency. For those decisions with more than one feasible approach, the relative ETRs

can be compared to select the most energy-efficient alternative.

5.2.4 Upper Bounds on Energy Efficiency

The bare essence of a processor is the ability to perform computational
operations on data values. This capability, in its simplest form, is performed by the
microprocessor’s ALU, which is typically a very small fraction of the overall silicon
area of the processor. In the prototype system, the fraction is well below 1%. All the
surrounding circuit infrastructure merely enables the programmable nature of a general-

purpose microprocessor.

Figure 5.6 plots the inverse of energy consumption, MIPS/Watt, for the
prototype processor’s most elementary component, the adder, and demonstrates how

each added level of complexity required for implementing a complete microprocessor

141

5.2 Processor Core

increases its energy consumption. Energy consumption is measured at each complexity
level, using switch-level circuit simulations, when the processor is executing a common
sequence of code. The adder, or similarly the shifter, can operate at 278,000 MIPS/W at
1.2V in our 0.6um process, and sets the absolute lower bound on energy consumption.
Data storage for the adder or shifter’s operands necessitates the need for a register file.
Including a 30x32b register file increases energy consumption by 2.7x, yielding a more

practical upper limit of 105,000 MIPS/W.

108
~~
&
= 107
|
Q
Q
= :
= P
=
~
7]
& 10* 1= OO TR
ad %.¢——¢.”
| FUDDY - | P = K S L o S
103 R . : S5 o ‘ 5
Adder Adder & ALU & Processor Entire
(or shifter) Register File Register Bank Core CPU

FIGURE 5.6 : Energy Consumption for the CPU and its Base Components (0.6 um CMOS).

The biggest jump in energy consumption, a factor of 6.4x, is attributable to the
additional hardware required to build a fully programmable ALU and register bank.
This hardware includes latches, muxes, bus drivers, clock drivers, and associated
control circuitry. Additionally, the ALU includes a logic unit, a zero-detect unit, and a
fast 4-bit shifter, while the register bank includes a 5b—32b register file decoder for
each of its two read ports and one write port. The second biggest jump in energy
consumption, a factor of 4.7x, is due to the additional hardware of the processor core.

This hardware supports instruction fetches, branches, branch prediction, loads, stores,

142

5.2 Processor Core

and other ISA-specific functionality. The processor core that was implemented operates

at only 3,500 MIPS/W.

Thus, the hardware overhead required to implement a fully-programmable
microprocessor core increases energy consumption 30x above that required for just the
base adder/shifter and register file circuits. While this overhead will always dominate
the total processor energy consumption, there is still significant room for improving a
processor’s energy efficiency over that of conventional designs. However, what this
entails is redesigning the processor core from scratch, starting with the ISA, and
progressing down to the microarchitecture, while making design decision designs based
not only on improved performance, but improved energy consumption as well.
Measures for both performance and energy consumption are captured when utilizing the

ETR metric to evaluate energy efficiency.

It appears in Figure 5.6 that the overhead required to turn a processor core into
a fully-functional microprocessor chip remains significant, showing an energy
consumption increase of 1.6x above the not fully-optimized processor core. However,
the full chip design, and the cache system design in particular, has room for
improvement beyond that demonstrated in the prototype system so as not to mitigate the
overall microprocessor energy-efficiency improvement due to a more energy-efficient
processor core. The limiting factor for not reducing the full chip’s energy consumption

further was, in fact, the processor core itself.

5.2.5 Low-Energy Idle Mode Enhancements

Microprocessors in most single-user system applications, such as notebook
computers and PDAs, spend a majority of their time idling. Thus, it is essential for the
microprocessor to provide power down modes to minimize the energy consumption
while idling. However, to achieve the full benefit of these modes requires an energy-

conscious operating system that utilizes them.

143

5.2 Processor Core

The design of the PowerPC 603 processor provides a good demonstration of
' useful power down modes [gary94]. A doze mode stops the processor from fetching
instructions, but keeps alive snoop logic for cache coherency and the clock generation
and timer circuits, reducing power dissipation by 6.3x for this mode. A nap mode
disables the snoop logic, only keeping alive the timer logic, reducing power dissipation
another 2.7x. Lastly, there is a sleep mode which only keeps alive the phase-locked loop
(PLL) and clock. The power is reduced an additional 17%, while the processor can be
up and running at full speed within ten clock cycles, and a cache flush. Further power
reduction can be achieved by disabling the PLL in the sleep mode, which reduces power
dissipation another 25x (for a total power reduction of 500x), but at the cost of several

thousand cycles (up to 200ps) to return to full speed.

It is important to notice how much the PLL, which is found on most
microprocessors, limits the reduction of idle energy consumption. Frequently turning
off the PLL is not a viable approach due to the large overhead of restarting it.
Techniques for improving the energy efficiency of PLLs in power down modes are

needed.

A significant benefit of DVS is the lack of a PLL. The VCO within the Voltage
regulation loop is continuously running, but at a very low level of power dissipation, so
that the microprocessor can restart with only one cycle of latency. In the prototype
system, there was only a single power down mode implemented (Sleep mode), which
reduced power dissipation 500x from the peak level, and provided a single-cycle

wake-up time.

While most microcontrollers and some embedded processors have power down
modes, only a few microprocessors have them. It is an important technique to include in
energy-efficient processors. The actual energy savings, though, depends more on how

well the operating system can utilize these modes.

144

5.3 Cache System

5.3 Cache System

The high-level specification of the cache system was a full cuétorﬁ design in
the prototype system, which enabled all aspects of the cache to be optimized for energy
efficiency. As such, the optimizations presented in the following sections were fully
validated in the implementation of the prototype system. Significant improvement in
energy efficiency was demonstrated as the cache system was implemented with
approximately half the average capacitance per cycle as the processor core. Typically,

embedded processors’ energy consumption is dominated by their on-chip caches.

5.3.1 Cache size

Increasing the on-chip cache size will always decrease the cache miss-rate,
thereby decreasing the number of external accesses and reducing the average memory
access time [henn95]. Thus, on-chip cache size is typically maximized, given die-size

constraints, for performance considerations.

Maximizing cache size will increase the capacitance/access to the cache.
However, this increase can be mitigated in two ways so that capacitance/access does not
scale proportionally to cache size. By sub-blocking the cache (Section 5.3.2), the actual
memory array size being accessed will remain constant, independent of cache size.
Although the interconnect capacitance increases with cache size, a hierarchically
buffered bus structure will limit the increase to scale approximately logarithmically.
Thus, if buffers are judiciously utilized, the average capacitance/access of a memory
access (Cprq)4vg) Will continue to decrease with cache size past 256kB as demonstrated
in Figure 5.7. If, however, the interconnect capacitance scales proportionally with
cache size, then there is an optimal cache size, beyond which the average capacitance/

access increases with cache size.

In summary, maximizing the cache size will generally maximize system energy

efficiency by providing the highest performance and the lowest energy/access. For the

145

5.3 Cache System

800 K
Interconnect -

CM4|AVE g > Capacitance

= Scales with
N r: Cache Size

=3
8

Capacitance (pF)
-3
8

\-‘\; -~ Interconnect
200 o

.oc Capacitance
CcacHE > Increases
2l b—=0=1 /) Logarithmically

with Cache Size

1 2 4 8 16 32 64 128 256
Cache Size (kB)

FIGURE 5.7 : Average and Cache Capacitance/access versus Cache Size (0.6um CMOS).
prototype system, a cache size of 16kB was chosen, and was strictly limited by die-size
constraints. In Figure 5.7, Cyz4,4yg Was calculated based upon the cache miss rates from
[henn95]. For the prototype system, benchmark simulation reported a cache-miss rate of

0.5% for a 16kB cache. This reduces Cyzy 4y from the 250 pF/access shown in Figure

5.7 (based on a 2.0% miss rate) down to 125 pF/access for the prototype system.

5.3.2 Sub-blocking

Most large SRAMs are not composed of a single memory array, due to
excessive delay on the word and bitlines, but are composed of several smaller arrays or
sub-blocks in order to improve memory access time [raba96]. Enabling only the desired
block, rather than the entire memory array also reduces energy consumption, as well

[bund94][su95].

Reducing the size of the basic memory sub-block will reduce the energy
consumed per access as well as speed up the access time. However, circuit overhead
consisting of control signal generation, sense-amps, and output buffers sets the lower
limit on feasible sub-block size. Figure 5.8 plots both capacitance/access and area of a

16kB cache as a function of sub-block size in our 0.6um process. For large sub-block

146

5.3 Cache System

sizes, the overall area asymptotically approaches a fixed value as the fractional
contribution of the circuit overhead goes to zero, while the capacitance/access scales up
with sub-block size. For small sub-block sizes, the capacitance/access asymptotically
approaches the fixed cost due to the circuit overheagl, while the overall cache size
begins to exponentially increase. For sub-block sizes less than 0.125kB, the
capacitance/access will actually begin to increase due to the I/O capacitance loading

from the additional sub-blocks.

300 60
=
[=7
g 250} 50 ~
3 g
=
3 200 407
2 150 30
3 e
< <
g 100 20 g
g 50 10«2
8
Q
LX 1 18
Sub-block Size (kB)

FIGURE 5.8 : Capacitance/access and Cache Size versus Sub-block Size (0.6um CMOS).

For the prototype system, a size of 1kB was chosen, which adequately balanced
the capacitance/access versus the overall cache size. At this design point, the cache

contributes 30% of the total processor energy consumption, and 50% of the silicon area.

5.3.3 Tag Memory Architecture

In addition to the data memory, which hold the contents of external memory
locations, an integral part of a cache is the smaller memory, called the tag memory,
which is use to map cache locations to the global memory space. Multiple sequential
data words are generally organized into a cache line, which is then mapped as a single

cache location into the global memory space. This amortizes the cost of the tag memory

147

5.3 Cache System

required over a larger data memory size [henn95].
The width of the tag memory is:

— Address Space . s)
Tag Width logz(——LCache LI . Ser-Associativity (EQ5.3)

where the Address Space for the ARMS architecture is 32 bits. Thus, the Tag Width is a
minimum of 18 bits for a direct-mapped 16kB cache, and the number of bits will

increase with the log; of the set associativity. The number of tags required is:

Cache Size
Cache Line Size

Number of Tags = (EQ54)

For the 16kB cache and 32B cache line size used in the prototype system, there are 512

tags, such that the total tag memory is on the order of 512 x 20b, or 1.28kB.

If the tags are stored in a single memory array, the energy consumed accessing
a tag would be more than the energy consumed accessing the actual data word itself,
since the cache is sub-blocked in 1kB arrays. However, the tag memory can similarly be
sub-blocked. The same four address bits which are decoded to selectively activate the
data memory sub-blocks can be used to selectively activate the tag memory sub-blocks.
Then, only a 32 x 20b tag memory array is activated per cache access, significantly
reducing the energy consumption per tag memory access. The increase in the memory
critical path due to the gate delays added by the four-bit decoder is offset by the

reduced access time of a smaller tag memory array.

5.3. 3.1 Design Approaches

During an access to the cache, the requested address is compared against the
tag(s) where the address may potentially reside in the cache. If there is a match between
the address and a tag, then the contents are currently stored in the cache, and the
contents are returned to the processor core. If there is not a match, then that address

location needs to be fetched from the external memory system. For an N-way

148

5.3 Cache System

set-associative cache, N tags must be compared against the requested address because
the requested address may reside in any of N cache line locations. There are three

general approaches to implementing the tag compare:

Serial RAM Access: The tag memory is accessed first. If any of the N tags
matches the requested address, then an access to the data memory is initiated. The
benefit of this approach is that the data memory is only accessed for a cache hit.
However, the disadvantage is that the serial RAM accesses may dominate the critical

paths of the processor.

Parallel RAM Access: The tag and data memories are accessed in parallel.
Thus, if any of the N tags match the requested address, the desired data word has
already been read from the data memory and is available. However, writes to the data
memory still must be done sequentially since the write cannot be committed to cache
memory until the tag has been validated. The benefit of this approach is a fast read
access, which are the dominate type of cache accesses (> 80%). The disadvantages are
that cache writes must still be done serially, potentially requiring an additional cycle to

complete, and extra energy is consumed for data memory reads on cache misses.

Serial CAM/RAM Access: The tag memory is implemented as a content-
addressable memory (CAM). The tag CAM is first accessed, and if a match is found,
then the data RAM is accessed. The benefit of this approach is that the CAM’s match
signals can be used directly as word line enables for the data RAM. This eliminates the
need for an address decoder for the data memory, significantly speeding it up so that
this approach does not dominate the critical paths of the processor. In addition, the data
memory array is only accessed upon a cache hit. The disadvantage is that CAMs

generally consume significantly more energy than their RAM equivalents.

5. 3. 3.2 Optimized Architecture

A CAM array was optimized and prototyped, which only consumes twice the

149

5.3 Cache System

energy of an equivalently-sized, 32 x 20b SRAM memory array. This removed the key
disadvantage to the Serial CAM/RAM Access approach, and therefore made it the

optimal design approach to select.

By utilizing a CAM for the tag memory, 32 tags can be compared
simultaneously for the same energy consumed as when comparing one tag. Thus, if the
cache is 2-way set-associative, the energy consumed by the Serial CAM/RAM Access
approach is the same as for the Serial RAM Access approach, because in the latter, two
RAM accesses must be made to read two tags. With the CAM, the comparison between
the tag and the requested address is implicit, thereby removing the need for external
comparators as in the Serial RAM Access approach. Also, the Serial CAM/RAM Access
approach eliminates the need for an address decoder for the data memory. Thus, for
2-way and higher set-associativity, the Serial CAM/RAM Access approach has the

lowest energy/access.

With respect to access time, the Serial CAM/RAM Access approach is only
slightly slower than the Parallel RAM Access approach. With the CAM, the removal of
the data memory address decoder and external comparators reduces the cycle time to
within 10% of the Parallel RAM approach. Therefore, for 2-way and higher set-
associativity, the Serial CAM/RAM Access approach is the most energy-efficient
solution for the implementation of the tag memory. Since some level of associativity
was required for the prototype design, as will be explained in Section 5.3.4 below, the

Serial CAM/RAM Access approach is the optimal solution.

The basic architecture is shown in Figure 5.9. The upper bits of the address,
which constitute the tag, are sent to the tag CAM array. If the tag is present in the CAM,
one of the match lines will go high, and indicate a cache hit. The line index bits of the
address are used to demultiplex the match line to the appropriate word line of the data

memory array.

150

5.3 Cache System

Address Hit Data[31:0]
Tag Line Index

Data

Tag
Memory

Memory

FIGURE 5.9 : Optimized CAM/RAM Cache Memory Architecture.

5.3.4 Associativity & Cache Line Size

For the ARMS8 processor core used in the prototype system, the memory
interface was designed and optimized for a unified cache [arm96b]. Given the
constraint that the cache must be unified, a direct-mapped cache is not very desirable.
When instruction and data addresses point to the same cache line, which may frequently
happen, the cache will continue to alternately swap out of cache memory the conflicting
address locations until the conflict is removed, needlessly spending many cycles
traﬁsferring the cache lines. Thus, at least 2-way set associativity is desirable to prevent
this conflict. Thus, since the processor core dictates the use of a unified cache, the
cache should be designed with some level of set associativity to prevent unnecessary

thrashing of the cache memory.

The requirement for at least 2-way set associativity dictated that the optimal
tag memory architecture is the Serial CAM/RAM Access approach. With this
architecture, the set associativity and cache line size for a fixed 1kB sub-block are

related:
1kB = Set-Associativity - Line Size (EQS.S)

Simulations were then used to find the optimal cache line size and set-
associativity with respect to energy consumption, as shown in Figure 5.10. To measure

the true impact on system energy consumption, the capacitance/access was measured

151

5.3 Cache System

for not only the cache, which is broken down by tag and data memory, but also for the
external memory system. As the line size increases, the capacitance/access contributed
by the tag array decreases due to a smaller tag memory array, and because the tag
memory array does not need to be accessed for sequential cache accesses to the same
cache line. However, the capacitance/access contributed by the external memory
increases because more words are being fetched per tag, not all of which may be used
by the processor core. The contribution from the data memory array is relatively
constant because it is dominated by processor core cache accesses, which is
independent of cache line size, rather than cache-line reloads which are much more
infrequent. Due to the low miss rate of the 16kB cache, the impact on performance is

negligible for these cache-line sizes and levels of set associativity.

140
N
Q. 1204----- G
Ej;, |_External
3 100 Memory
O 80, Tag
% Memory
S 607
%
9 | Data
g 40 Memory
g
& 20]
O _ i

s 16 32 o4
Cache Line Size (Bytes)

FIGURE 5.10 : Average Capacitance/Access versus Cache Line Size (0.6ptm CMOS).

Thus, the optimal cache-line size for energy efficiency is 32B, which gives the
cache 32-way set associativity. Simulation demonstrated that a 4-way set-associative
cache would provide an insignificantly higher miss rate than a 32-way set-associative
cache, but the high degree of associativity is set by a combination of the Serial CAM/
RAM Access tag memory architecture, the 1kB cache sub-block size, and the optimal

cache line size of 32B.

152

5.3 Cache System

The Cyp4)4vE reported in Figure 5.10 for the 32B line size used in the prototype
system is 106 pF/access, which is below the Cys4 4y of 125 pF/access as reported in
Section 5.3.1. This reduction of 19 pF/access occurs because this simulation better
models the tag memory, which is not activated for sequential memory accesses to the

same cache line.

5.3.5 Cache Policies

Simulation of the processor system running the benchmark programs was

utilized to evaluate the most energy-efficient choice for the following cache policies.

5.3.5.1 Write Policy

The write policy dictates what happens upon a write for a cache hit. A write-
through policy dictates that every write is also transferred to the external memory to
maintain continuous memory consistency between the cache and the external memory.
A write-back policy only writes the data words back to main memory when a cache line
thaf had previously been written to is removed from the cache to be replaced by another

cache line.

These two policies demonstrate negligible impact on system performance, but
do show a difference in the total system energy consumption as shown in Figure 5.11.
For all three benchmarks, a write-through policy yielded consistently higher total
system energy consumption, due to an increase in external processor bus activity. With
the write-back policy, a cache line can be written to multiple times before being sent to
main memory, thereby decreasing the external memory traffic. Thus, the more energy-

efficient write-back policy was selected for the prototype system.

5.3. 5.2 Write Miss Policy

The write miss policy dictates what happens upon a write for a cache miss. A

write-allocate policy will allocate space in the cache for the address being written to.

153

5.3 Cache System

110%

105% 1

100% 1

95% 1

Total System Energy Consumption

90%

Benchmark
FIGURE 5.11 : System Energy Consumption vs. Write Policy for Benchmark Programs.

The cache line is first placed into the cache, and then the write can be completed. A
read-allocate policy will not allocate space, but send the data word directly to main

memory.

Simulations demonstrate negligible impact on both performance and energy
consumption. Thus, the policy chosen was read-allocate, which simplified the design of
the cache controller due to the complexity of the cache line allocation process, as
described in Section 7. 2. 3. 3. External memory can support both byte and word writes,
so the only added complexity was to support half-word writes, as specified by the
ARMS ISA, which are broken into two separate bytes before they are written out to

main memory.

5.3.5.3 Replacement Policy

The replacement policy dictates which cache line gets replaced during the
cache line allocation of a read miss. There are several choices of replacement policy.
One common policy is least-recently-used (LRU) replacement, which swaps out the

cache line which has not been accessed for the longest time. Another policy is round-

154

5.3 Cache System

robin replacement, which cycles through the potential cache lines. A third common

policy is random replacement.

For moderately sized caches (< 64kB) and for much lower degrees of set
associativity (e.g. 2-way or 4-way), the LRU replacement policy would provide the
most energy-efficient policy by minimizing the cache miss rate [henn95]. However, for
the high degree of set associativity (32-way) for the prototype system, simulations
demonstrate negligible impact on both performance and energy consumption for all
three policy variants. Thus, the simplest policy for implementation was again selected,
which is round-robin. This can be implemented with 1 latch per cache line, which keeps
track of the last replaced line within each cache sub-block, and advanced one cache line

upon a replacement.

5.3.5.4 Level-0 Cache

A level-0 (LO) cache is essentially a small buffer between the primary (L1)
cache and the processor core. These are generally used when the primary cache cannot
complete a memory access within one cycle, due to either a very fast processor clock
speed or a very large primary cache memory [henn95]. In addition, LO caches have been

demonstrated to improve the energy efficiency of cache systems [bund94][su95]

An LO cache contains a data and tag memory, similar to the primary cache.
With an LO cache, a memory access first checks the L0 tag memory to see if it contains
the desired memory location. If so, then the LO cache returns the desired word and the
primary cache does not need to be activated. If not, once the desired memory contents
have been located in the memory hierarchy, the cache line is placed into the LO cache. If
the LO cache size is only one cache line, then the LO can be implemented with little
impact on the cache system’s performance since only a single tag compare is added into
the critical path. However, larger LO cache sizes, which need to be fully-associative,

require additional hardware complexity that will increase the capacitance/access of an

155

5.3 Cache System

LO cache hit, and may bloat the critical path and force a LO cache miss to extend over

an additional clock cycle.

With the slight modification to the CAM/RAM architecture highlighted in
Figure 5.12, it can support implicit buffers, which are functionally equivalent to an LO
cache, by latching the match lines and storing the location of the previously matched
tag. If a cache access has the same tag as the previous cache access, then the tag
memory does not need to be enabled, and the saved match line already points to the

correct word line of the data memory.

Address{31:9] Hit Address[4:2] Dataf31:0]
A
3
L6
\J
Tag Data
Memory \ Memory
(32x23) (128x2x32)

FIGURE 5.12 : Implementing an Implicit Buffer in the CAM/RAM Architecture.

While each cache 1kB sub-block has this implicit buffer, to keep all of these
buffers active would require a 16-entry hash table of the last tag access to each sub-
block. The complexity then becomes similar to a larger LO cache. To simplify the
hardware, only one implicit buffer can be kept active at a time, requiring the storage of
only the tag of the previous cache access. This is functionally equivalent to a one cache

line LO cache.

Figure 5.13 demonstrates the improvement in energy efficiency of the L0 cache
and implicit buffer by plotting the capacitance/access of a cache hit as a function of
their hit rates, and comparing them to a baseline implementation which accesses the
primary cache tag memory on each cache access (i.e. no LO cache). Two sizes of LO
caches are compared, as well as the implicit buffer approach. A high-level simulation is

used to estimate the capacitance/access by combining the capacitance/access of the

156

5.3 Cache System

individual blocks with their activity factors. For low L0 hit rates, the L0 cache approach
is much less energy-efficient than even the nominal case because many words are being
fetched from the primary cache and placed into the LO cache, which never get used by
the processor core. Only for high hit rates does the 'LO cache become more energy
efficient. The implicit buffer is more energy efficient across the broadest range of hit

rates, and is always more energy-efficient than the nominal case.

1000

proovvcvvvcvsvnssvoverssrssasss000000000s 000000000 ssrsevesrvesvsrenaed
XA AN SRR R NN R R N R R R N N RN R R R XTI

D . .
PSP PP I ISP ISP PPN I AIII PGP s s s e s rssssevspressssevivied
tvdﬂraav—o---'-r-ofoaaovonol—v—o;n-rovvaf’-ﬂovvurooovov:ﬂvaano-a----o'
. . .

Poes v e orie Yoesovrvveovvesodrveevvvsrssvedoccces IR ERL PR PR R R RN
. . . .

:
Gocecmscedliririsiccnnandonas PPN P PP PP P PP Ry

. . .
L2 2P PP AP PP s P sssrsreqrrsrseservsnsproserevrse s

. .
PPV PP PP s s rsssemssssee

No L0 Cache !

o o v O TPttt ok 7.

PP PP s s sV r o svesvsrrr
.
Gvessrevsrrsewrrssssrsssssnrsse R T)

. . .
'"""'"'"-""""‘""imli‘cit"""i""""‘""r""
4 . .

Capacitance/Access for Cache Hit

--------- a-a-rooooa;ooo:-cwu.ﬂbroooaovo:'ooooov'-oa-':--¢¢¢ 4Line
. » . .
ooa-¢o¢va'-‘n'oaaanaon—oa»ol-oao—-r--n—»¢&¢r-----ccarrvrooo-ooa Q docache
PP S DU BRI - i
: : : Ly
. . . .
. 1] L] .
1] . » .
10 . H . .
50% 60% 70% 80% 90% 100%

Hit Rate
FIGURE 5.13 : Capacitance/Access of a Cache Hit for L0 Architectures (0.6um CMOS)

For the prototype system, the implicit buffer approach was chosen. For a one-
line (32B) LO cache, the hit rate will be on the order of 80% [bund94], at which value
the implicit buffer has 42% of the capacitance/access of a one-line LO cache. A four-
line LO cache can achieve much higher hit rates, in excess of 93.5%, at which point it
becomes more energy-efficient than the implicit buffer approach. However, the added
design complexity of the four-line LO cache outweighed the energy-efficiency
improvement. The implicit buffer approach provides a 30% improvement in energy

efficiency with minimal additional design complexity.

157

5.3 Cache System

35.3.6 Improvement with a Write Buffer

Write stalls occur when the processor core has to be halted while it‘ is ivaiting
for an external write to complete. These occur for cache misses in which the cache line
being discarded has been modified in the cache and needs to be updated in external
memory. In addition, this occurs for direct writes to external memory which bypass the
cache. These typically occur for writes to the I/O memory space, which are quite
common in embedded processor systems. The use of a write buffer can eliminate these
write stalls by autonomously holding the stores and cache line writes and sending them
to external memory during free external bus cycles, thereby eliminating the write
penalty that is otherwise present (20 core cycles per cache line, 6 core cycles per single-

word write).

The basic implementation is shown in Figure 5.14. The write buffer collects
external memory writes from the cache memory and processor core at the processor
clock rate. When the external bus interface is free, the write buffer then completes the

writes at the external bus clock rate.

>
Write
>

—» Buffer
Processor j«—| Cache Ex]tsernal External
Memory . us Memory

Core Writes to ext. memon)| Interface
Reads from ext. memory

FIGURE 5.14 : Cache Architecture Utilizing a Write Buffer.

For cache line writes, the system performance improvement is minimal due to
the low miss rate of the 16kB cache. The number of processor memory accesses in
which a cache line needs to be written out is 0.1%, thereby reducing the processor
cycles per instruction (CPI) by only 2%. However, the percentage of instructions that
are writes to I/0 space is 1% for the benchmark programs, which translates into a

reduction of 15% in CPI, which is significant. Since the write buffer is used for only a

158

5.3 Cache System

small fraction of the time, its energy consumption is negligible (< 0.2%). Thus the

inclusion of a write buffer improves the system energy efficiency in excess of 15%.

5.3.7 Interfacing to an External Bus

The unified cache simplifies the external bus interface as compared to split
instruction/data caches, in which snoop hardware is required to maintain memory
coherency between the split caches [henn96]. With the addition of the write buffer, the
cache system busses can be connected directly to the bus interface with no adverse

affects on performance.

Bufferable writes are placed into the write buffer at the internal CPU clock
rate, and while the processor continues to operate, the bus interface writes the words in
the write buffer out to main memory in an autonomous fashion. For reads that must go
out to main memory, the processor is halted until the desired word is available in the
bus interface, but since it cannot perform useful work since out-of-order superscalar

operation is not supported, no performance is lost.

5.3.8 Advantages and constraints of the ARMS memory interface

The biggest constraint of the ARMS8 memory interface is that it is designed and
optimized for a unified cache, which is generally less energy-efficient than split
instruction/data caches. Since a unified cache requires some level of associativity, a
CAM-RAM tag memory architecture was implemented, and provided 32-way set-
associativity. A unified cache has one key advantage, which is that the hardware
required to maintain coherency in split caches is eliminated. The back-side of the cache

can communicate directly with the bus interface and external memory.

The ARMS8 memory interface contains a complex request-acknowledge
handshake protocol which can be utilized to improve the performance and energy-

efficiency of the cache subsystem [arm96b]. Encoded in the request control signal is

159

5.3 Cache System

what type of request it is (load, store, instruction fetch), what size it is (byte, halfword,

or word), whether the request is sequential to the last memory request, whether there
are more words to follow (as part of a load/store multiple instruction), and whether the
instruction fetch is speculative or not. Encoded in the acknowledge signal is whether
the request completed or aborted, and how many words were successfully returned on a

load/fetch request.

In addition, the cache system can send two additional signals back to the
ARMS core indicating whether the instruction and data buffers contain valid data from
a previous cache load/fetch request. In the prototype system, implicit buffers were
implemented inside the cache blocks themselves, as described in Section 5. 3. 5. 4. If
the cache indicates to the ARMS8 core that the end of the buffer has not yet been
reached, then the core does not need to place the address on the internal Address bus for

sequential loads/fetches, saving significant energy by not needlessly driving the bus.

5.3.9 An ARMS-optimized cache system

In addition to tuning the general properties (e.g. size, associativity) and
policies (e.g. write, replacement) of the cache system to the ARM8 memory interface,
further architectural design choices were implemented to take full advantage of this

complex interface.

5. 3. 9.1 Double Reads

The drawback of a unified cache is that 25% of the instructions are data
transfer instructions, as measured from benchmark simulation. Thus the average
number of memory word accesses is 1.25 words per instruction. A standard memory bus
can only transfer one word per cycle, which would force the processor core to stall on a
data transfer instruction 25% of the time. To prevent the memory bus from being a
performance bottleneck, the ARMS8 interface allows for two words per cycle to be

retrieved from the cache system.

160

5.3 Cache System

The data RAM in the cache is organized into two columns of 32 bits each,
which is multiplexed depending upon Address[2]. By only allowing double reads to
occur for even word addresses, retrieving the second word simply entails switching the
multiplexer and re-firing the sense amp. Neither the QAM nor the word-line driver is
reactivated to read the second word. This strategy allows two words to be returned per
cycle, with the energy cost of retrieving the second word minimized to be less than 40%
of a standard cache read. The penalty for this strategy is that odd-word addresses cannot
return two words. However, once the prefetch unit is even-word aligned, it remains
even-word aligned until the next jump to an odd-word address, so that the impact on

performance is negligible.

5.3.9.2 Sequential Reads

The memory interface encodes whether the address of a fetch/load request is
sequential to the previous fetch/load request’s address. Benchmark simulation found
that only 8% of data accesses are sequential, while 70% of instruction fetches were
seqﬁential. Since only 20% of all instructions are loads, the net energy savings of an L0
cache for loads is only 0.25%. However, the energy savings of an L0 cache for
instruction fetches is 10%. Thus, the implicit buffer for the LO cache (Section 5. 3. 5. 4)
was only implemented for instruction fetches, and not data loads, since only the former

yields a significant reduction in overall processor energy consumption.

Using the 8-word implicit buffer simplifies the implementation of the virtual
LO cache within cache memory array. Only four bits of state are required to encode
which of the sixteen 1kB blocks contains the current instruction buffer location. When
the core requests a sequential instruction fetch and the address is at the beginning of a
new cache line, the cache controller suppresses the CAM tag array, and the next word in

the implicit buffer is read from the data memory array.

161

5.4 System Coprocessor

5.3.9.3 Load/Store Multiple Registers

The ARMS8 memory interface also encodes whether there are more loads/stores
to follow sequentially, as part of a load/store multiple-register instruction (LDM/STM).
If the load/store is to the cache, these operations proceed at the core clock rate, and

cannot be further optimized.

However, if an STM takes a cache miss, then this encoded information allows
the cache controller to packetize multiple words per address, aligned on cache-line
boundaries, and place the address(es) and data words in either the write buffer, or send
them directly to the external bus interface. This increases the data bandwidth on the
external bus and decreases its energy consumption, compared to single-word stores,
which require an address to be transmitted on the external processor bus for each data

word.

If an LDM takes a cache miss, there is high probability that the missing cache
line will be loaded into the cache. Thus, optimizing LDM instructions was not
necessary, since the required cache lines will be loaded, and then the LDM will be

serviced from the cache at the processor clock rate.

5.4 System Coprocessor

The primary role of the system coprocessor is to configure global processor
settings, interface to the voltage converter chip, and maintain system control state. The
coprocessor has very low performance requirements, and consumes very little energy,
which for the most part is negligible. However, the energy consumption does become
critical while the processor is in the sleep mode, and in part, determines the total system
sleep-mode power dissipation. Thus, the coprocessor was carefully designed to

minimize its standby power dissipation.

162

5.5 Summary

5.4.1 Architecture

The ARMS processor core provides a dedicated coprocessorAinterfzice, through
which coprocessor instructions are passed to the coprocessor unit and are executed in a
parallel 3-stage pipeline. Logically, the coprocessor looks like a large register file
which can be read from, and written to, by coprocessor data-transfer instructions (MCR,
MRC). However, the registers themselves are very heterogeneous, and cannot be
implemented as a standard register file. Some registers are read-only counters, others
have hard-coded values, while others are completely virtual in that a write to them

initiates some action by the coprocessor.

Thus, the coprocessor was implemented by connecting up the registers with a
shared input and output bus architecture. The heterogeneous registers’ bitslices were

pitched-matched to provide compact layout.

5.4.2 Providing an integrated idle mode

The ARMS core does not provide a processor halt instruction. To implement
this instruction in the prototype processor, a coprocessor write instruction was used to
implement this feature. Upon a write to this register, the global clock signal is halted,
stopping processor operation. The processor can be restarted via an external interrupt,

or an internal timer interrupt. -

Since all processor state is maintained during sleep mode, the operating system
can seamlessly enter and exit sleep mode without disturbing the state of the currently

executing software thread.

5.5 Summary

Energy-efficient architectural optimizations at both the system level and within

the cache subsystem significantly improved the overall processor system’s energy

163

5.5 Summary

efficiency, even while limited by the fixed architecture of the ARMS processor core. A
future, energy-optimized processor core may yield even further gains in overall system

energy efficiency.

In the prototype processor, the majority of the architectural optimizations
occurred within the cache subsystem, and the peripheral circuitry around the processor
core. Figure 5.15 plots the fraction of energy consumed by the core, and the remainder
of the processor for the prototype chip, and four other implementations of the ARM
architecture. The ARMS core used in the prototype is the same as the processor core in
the ARMS810, and very similar to the core in the ARM940T, and SA-110. What is
significantly different between these chips is the non-core component of the processor,
whose energy consumption is dominated by tﬁe cache. What is demonstrated in this
figure is the improvement in energy consumption of the cache subsystem, which
consumes only 42% of the energy in the prototype processor. In the other processor
chips, the fraction ranges from 52% to as much as 70% in the SA-110. Thus, this shows
that the energy-efficient architectural design methodology presented in this chapter can

provide significant reduction in energy consumption.

100 1
~
8§
a 80 P cesccess eecrsnoe
g Rest
8 J PP, vososesd P & ofCPU
(3 (cache
g 60- Py PPrrrrYr vossses size)
5]
=) e
8 40- eseveen . :M\' PP rTrr vsevrvoal
et ;
(=] -
b i voveesa vovoseed vesesssl
oD
S CPU
§ 20 - vevessa P PP Core
53
-+ 1 Only

0

Prototype = ARM710 ARMSI0O ARM940T SA-110
FIGURE 5.15 : Energy Breakdown of Various ARM Microprocessors.

164

5.5 Summary

In the case of the ARMS processor, whose core is logically equivalent to the
prototype processor, the energy of the cache subsystem has been reduced by 30% in
relative terms while providing twice as large a cache. In absolute terms, the energy

reduction is 61%, or more than a 2x reduction.

165

Circuit Design
Methodology

The key to energy-efficient circuit implementation, much like architecture and
system design, is to focus on energy consumption throughout the entire design process,
rather than addressing it only as the design nears completion. There are several simple
rules of thumb that will yield an energy-efficient design implementation, and to be
compatible with DVS, new circuit techniques were developed for the more complex
blocks such as the arithmetic and memory circuits. The last section discusses a new,

ultra-low-energy bus transceiver design which was successfully demonstrated.

6.1 General Energy-Efficient Circuit Design

This section will describe a set of circuit design techniques which apply
equally well to any digital CMOS integrated circuit. Many of these design techniques
were first developed for low-power, custom DSP ASICs [burd94], and have been

applied here to a general-purpose processor system.

In an ideal digital system, all signal pat]'n,sn thrqugh the circuits- have equal
delays, but in any practical system, this is not the case. Tyi)i;:al there is.a sméll fraction
of signal paths that determine the achievable cycle time, the critical paths, and in those
paths, increased energy consumption may be warranted to decrease circuit delay to meet

a target cycle time. All other paths should consume as little energy as possible. For

167

6.1 General Energy-Efficient Circuit Design

some paths, once their delay is increased to the cycle time, making them a critical path,
no further energy reduction can take place. Other paths, typically with very small logic

depth, have considerable slack and should be optimized solely for energy.

To make these optimizations, the circuit schematics must be analyzed and
modified before being committed to layout, after which, changes become much more
time intensive. Some paths reside entirely within a block, such that they can be
optimized solely within thg block design. Other paths cross over multiple blocks,
requiring a complete schematic design of all dependent blocks for a truly optimal
design, rather than simply relying on predetermined setup and hold delays based upon a
behavioral model, and optimizing each block individually. The design methodology is

described in much more detail in Chapter 4.

6.1.1 Logic Style

There are a variety of logic styles to choose from, such as static CMOS, CPL,
Domino, NORA, CZMOS, CVSL, etc., which vary in their delay and energy
consumption [west93]. The optimal logic style cannot be found by merely selecting the
one that has the smallest total capacitance. They must be compared by analyzing their
effective switched capacitance per cycle, which factors in signal transition frequencies.
The outputs of static CMOS and CPL only transition upon an input transition, while
dynamic logic styles (Domino, NORA, etc.) incur output transitions both upon input
transitions, and during the precharge phase of every clock cycle. The clock nodes in
dynamic circuits have an energy-consuming transition every cycle, too. So, while
dynamic logic styles tend to be faster, they often have increased energy consumption, as

well.

For simple cells (e.g. AND, OR, AO], etc.), the optimal logic style with respect
to energy efficiency is generally static CMOS [burd94], while with more complex cells,

there is no single, optimal logic style such that it is important to investigate a variety of

168

6.1 General Energy-Efficient Circuit Design

logic styles. DVS also places further restrictions on logic design.

6.1.1.1 DVS Compatible Logic Design

While static CMOS is fully compatible with DVS, dynamic logic styles require
some modification to ensure proper operation. Fortunétely, these modifications have
little impact on circuit performance and energy consumption. For buffered dynamic
logic styles, which are predominantly used in the prototype design, a small bleeder
PMOS device is added to maintain state on the precharged node when the inputs to the
pulldown network are not actively pulling the node down, as shown in Figure 6.1. This
device can have minimum width and non-minimum length, as very little current is

required to maintain state.

= =
._[>0Qu_lzut __DO_ | Outpur

Inputs -I Inputs| -|
pulldown pulldown
network network
Buffered Dynamic Logic Modified w/ Bleeder Device
(e.g. Domino)

FIGURE 6.1 : Bleeder Circuit for Dynamic Logic.

In the prototype system, all synthesized logic utilizes static CMOS logic.
Dynamic logic was only selectively utilized in custom-designed blocks, such as wide-
NOR gates for zero-detection operations, wide-AND gates for decoding, and shifter
gates, where the effective switched capacitance reduction more than compensated for

the increased switching activity.

169

6.1 General Energy-Efficient Circuit Design

6.1.1.2 ALU Design Example

Since the delay of CMOS circuits scales well over voltage, the initial circuits
were designed at 3.3V which set the target cycle time at 10ns. There were two critical

data paths in the ALU, both of which had only a half-cycle, or 5ns, to complete.

One path consists of a simple shift (0, 1, 2, or 3 bits only), a selective
inversion, and a 32 x 32 adder. The critical element in this path was the adder. The
shifter was implemented with a four-way mux, and the selective inversion with an OR
gate for a total of three gate delays. This allowed approximately 3.5ns for the addition
to complete, taking into account latch setup and hold time requirements. Various adders
were analyzed, including ripple, carry-select, and Brent-Kung adders [west93]. The
latter was selected because it could meet the targeted delay in the minimal energy
consumption. Other adders, such as the ripple-carry, had lower energy consumption, but

were removed from consideration because they could not meet the delay target.

The other path consists of a fully-programmable 32-bit shift, and a logic
operation unit. The logic operation unit (AND, OR, XOR) maps to a single
combinational logic gate, with an additional gate required for buffering. The shifter had
approximately 3.5ns to complete its operation, as well. The natural implementation of
the shifter would be a barrel shifter, which is the most compact. However, for DVS
comp.atibility, the usual NMOS pass gates must be replaced with CMOS pass gates. This
causes the 32-bit barrel shifter to consume a large amount of energy due to the large
CMOS pass gates required to keep delay through the shifter minimized. Instead, a
logarithmic shifter was utilized to reduce energy consumption, and was tuned to meet

the target cycle time.

6.1.2 Transistor Size

Traditional design methodologies utilize cell libraries with transistor sizes

larger than necessary. A typical “1x” output driver size uses transistor widths much

170

6.1 General Energy-Efficient Circuit Design

larger than the minimum size. This is due to the desire to provide maximum drive
capability under a wide variety of load conditions. While this increases gate-area

density and simplifies the cell libraries required, it is not energy-efficient.

A more energy-efficient solution is to set the base “1x” driver size to be
minimum size. For our MOSIS 0.6um process, the minimum NMOS width is 1.2um. To
equalize rise and fall times, and minimize gate delay, the “1x” PMOS width is 2.4um
due to the lower mobility of PMOS devices. A simple, energy-efficient, transistor-
sizing methodology is to initially set the size of all transistors so that short-circuit
current is minimized, as will be described in Section 6. 1. 2. 1, below. Transistors in the
critical paths are then increased in size to decrease delay, as necessary, and all
remaining transistors with small fan-out are reduced in size while not violating

constraints for minimizing short-circuit current.

Conventional belief is that as process technology improves, interconnect
capacitance will dominate the total capacitance on a node, making transistor-size
dependent capacitance (gate oxide and diffusion capacitance) insignificant. Thus, the
optimal transistor size is much larger than minimum size, since performance will
increase while having a negligible impact on energy consumption. However, this is not
true, since while interconnect capacitance will dominate the global nets, for local nets,
transistor parasitic capacitance will continue to be significant, and remain critical to

minimize whenever possible [sylv98][ho99].

6. 1. 2. 1 Minimizing Short-Circuit Current

By bounding the ratio of input to output rise/fall times between gates, short-
circuit current energy consumption can be minimized. If the ratio is kept to less than
two, the upper limit of additional energy consumption is 12% at Vpp = 3.3V. This is
achieved by sizing up devices as necessary when driving large loads. This constraint
will be defined as:

MIORFT = Maximum Input-to-Output Rise/Fall Time = 2 (EQ6.1)

171

6.1 General Energy-Efficient Circuit Design

The simplest gate construct consists of minimum-size, back-to-back inverters.
In our 0.6um technology, the minimum nodal capacitance between these gates is 13.5fF
(50% gate capacitance, 50% diffusion capacitance). With a minimum interconnect

capacitance of 1.5fF, the minimum nodal capacitance rises to 15fF.

In Figure 6.2, a histogram of the nodal capacitance of the prototype ARMS8
core is shown out to 50fF. The first peak occurs due to the small diffusion capacitance
between the numerous series transistors. These nodes represent internal gate nodes and
are not relevant. The next peak, starting around 15fF, represents inter-gate nodes and
validates the previous estimate. Nodes in the 10-15fF range occur either for other
internal gate nodes, or when the PMOS size has been reduced below the “1x” width of

2.4um, as will be discussed later.

Number of Nodes
o)
S
S
S

0 5 10 15 20 25 30 35 40 45 50
Capacitance (fF)

FIGURE 6.2 : Histogram of Nodal Capacitance for ARMS8 Core. (53k nodes)

The minimum load capacitance driven by a “1x” gate is 15fF. The test circuit
in Figure 6.3 was used to find the maximum load capacitance that a “1x” gate could
drive while meeting the MIORFT. The worst case occurs when a driver with a maximum

load capacitance drives a gate with minimum load capacitance.

172

6.1 General Energy-Efficient Circuit Design

7 Z
v, T 15fF T 156F Capacitance given:
N "; ; is total load:
52 Cgate+cdiﬂ§tsion+Cinterconnect

FIGURE 6.3 : Test Circuit for Finding Cjs,x for a 1x Gate Output Driver.

SPICE simulation yielded a Cy;4y of 50fF. This results in a rise/fall ratio for
Vi/Vs of 2.85. But what is critical is the input-to-output rise/fall ratio, and since the
longer rise/fall time on ¥ degrades the rise/fall time on ¥, the rise/fall ratio of V /¥,

is 1.9, which is below the MIORFT of two.

For larger load capacitances, the driver transistor sizes are just scaled up
proportionally. A “2x” gate can drive 50-100fF while meeting the MIORFT constraint;
a “3x” driver can drive 100-150fF. While a “3x” driver could drive 45-150fF and still
meet the MIORFT, the finer resolution on the bins helps to further minimize energy
consumption. By using a “2x” instead of a “3x” to drive a 100fF load, the combined

capacitance of transistor parasitics and output load has been reduced 10%.

6. 1. 2.2 Critical Paths

The timing verification methodology in Section 4.6 is used to identify paths
that exceed the target cycle time. Within these paths, gate sizing can be increased to
reduce the path delay. The gate delay for the “1x” driver varies by 40% over the range
of rated load capacitance. Gates can be sized up to significantly reduce delay at the
expense of increased energy consumption. Once the target cycle time has been met,
with some headroom, further size increases are not necessary. Since the number of paths
that are critical and need to be resized are small, the overall increase in chip energy

consumption is insignificant.

To prevent paths from arising that cannot be resized to meet the target cycle

time, a maximum logic depth constraint is imposed on the schematic design. This logic

173

6.1 General Energy-Efficient Circuit Design

depth can be calculated by finding the maximum number of minimum sized inverters in
series in which the delay through them is below the target cycle time by some headroom
margin. For a 10ns (at 3.3V) target cycle time, and including 10% headroom margin, the
maximum logic depth is 30 gates (single inversion, e.g. NAND, NOR, AOI, etc.) per
half-cycle.

Thus, a schematic can be guaranteed by design that its layout implementation
can meet the target cycle time, preventing radical circuit redesign. If a netlisted
schematic has paths with logic depths greater than 30, then the circuit must be
redesigned through logic compaction or architectural modification to reduce the logic

depth to the allowed amount.

6. 1. 2. 3 Non-Critical Paths
Paths that have very little logic depth can be made as slow as reasonably
possible without impacting target cycle time. However, to minimize short-circuit

current, gates with drive strength larger than “1x” are not candidates for size reduction.

Simple gates within a more complex cell, such as an adder or flip-flop, often
have minimal capacitive loading. Hence, the PMOS width can be reduced from the
nominal 2.4pm down to 1.2um without exceeding the MIORFT while decreasing the

gate-oxide and diffusion capacitance by roughly 33%.

Standard cells are not good candidates for size reduction because their output
loading is not known until after place & route, and can change with subsequent re-
routes. Custom datapath cells, however, make excellent candidates because the internal
loading is known at the time of cell creation. Thus, down-sizing of transistors is done

only within custom datapath cells.

6.1.3‘ Gated Clocks

Gating, or selectively enabling, clocks is critical for energy-efficient circuit

174

6.1 General Energy-Efficient Circuit Design

implementations, and this is particularly true for general-purpose microprocessors, in
which the clocked elements typically require activation only a fraction of the time. The
clock drivers described in Section 4. 3. 2. 1 contain inputs for both a local and global
clock enable signal, which allows either entire sections of the processor (e.g. processor
core, cache, etc.) to be halted with a global signal, or fine-grained control with a local

signal.

The local enable signal is used whenever the necessary condition for clocking
a latch can be calculated from locally available control signals. Routing additional
wires across the processor to provide the necessary state information, and adding a
large amount of additional logic to calculate the local enable signal can be less energy
efficient than always clocking the latch while the global enable signal is asserted. Thus,
for latches where the necessary state information is not readily available, the energy
penalty for providing this information must be evaluated and compared with the energy

savings of having a local clock enable signal.

In the prototype system, a total of 256 clock drivers were distributed across the
chip as shown in Figure 6.4. Of these, 80% have a local enable signal, demonstrating
that fine-grained clock gating can be utilized quite extensively in the processor design.

Within the processor core itself, 60% of the drivers are locally enabled.

These clock drivers, in turn, drive a total of 6292 latches distributed across the
processor chip as shown in Figure 6.5. This number does not include memory elements
in the register files and in the cache memory. If these latches were clocked every cycle
the processor is active, the aggregate clock load would be 150 pF/cycle, which is one-
half of the entire processors capacitance/cycle while it is active. However, 75% of these
latches were driven with a locally-enabled clock driver, reducing the average, aggregate
clock load to somewhere in the 50-75 pF/cycle range. Unfortunately, an exact number is

difficult to quantify.

175

6.1 General Energy-Efficient Circuit Design

Number of Latches

Number of Clock Drivers

Local & global
clock gating

]

1% O

Only global
clock gating

50

40-

Poosssssverrssrsrrsssrrssssresvssse

¢sovoooovvevevisevvvrvvvriverive

EEEE Vo vsvssssrevesseveven

R Csssmsnsssssesssnses

R Crvevssovevssssvsssve

ey e

sroe

ovoo

esos

veve

#Psesvrsrsvvssvsrrrsvirsviens

IR R RRRE LR TRy

$evesersrsssrsvsssssesrens e s

R R R R

R Y Y R R

IR R R R R Ry

e s s vssrsorsrsssssssrrrerreny

evsovosss00svsrsesen

PR

coos

soveed

4

b - 4

PR erod EEE
ot 3
T

0 . . ;
«Datapath Control Prefetch Mul

Unit

tiplier, 16kB Control , Write
Memory

tee===-ARM8Core = = =~~~ & = - Cache-- -+
FIGURE 6.4 : Clock Drivers in the Prototype Microprocessor

Local & global
clock gating

L]

Only global
clock gating

Bus System
1 Buffer Interface Coproc.

1000

800 -

600 -

—

poroovosvovevrossrvsssnssssosssnesd

b ooeoo

hoeoos

0000000000000 00000004

@vssss000ssvrrvrersed

— 1664
[O

prc—
pr——
poree XEEE] seeed $P P00 ts00ss000ssssssrvrvrsrsesl
booeos voood Vo000 vsrsevssssssssssrsnssiseed
pre—
pooes ¢oeod #esvossssvevrvavsvive RN R
XX R evved Pevostvevrrvvverrrin XXy
soes esved #vvesvecvsss eroe seeod
vove eored cooe eooes vvee EREEE
fonmsrnd T

P evvevesvevosveevvnsvioveveveea

$0 0 0000000000000 s00000000000 0

000 0r 0000000000000 000000000004

vooses

o o]

o o

LX)

0 r s ———— . r
Datapath Control Prefetch Multiplier, 16kB Control , Write
Memory |

Unit

Buffer

te=w-=--ARMBCore - = = = = =+ = - Cache- =~
FIGURE 6.5 : Latches in the Prototype Microprocessor

Bus System
Interface Coproc.

176

6.1 General Energy-Efficient Circuit Design

Finally, some latches must be clocked every cycle, even while the processor is
completely halted, and they are required in any block that interfaces with the external
world (e.g. interrupt controller, memory controller, etc.). Since these latches contribute
to the idle power dissipation, it is important to keep thg number to a bare minimum. In
the prototype design, 60 latches required latching every cycle, and contributed 10uW to
the idle power dissipation, which is on the same order of magnitude as the subthreshold

leakage current power dissipation.

6.1.4 Optimizing Interconnect

The metal profile for our 0.6yum process is shown in Figure 6.6, along with the
capacitive components of a representative, minimum-width Metal2 wire. In this process
technology, minimum-width wires have almost a square profile, and as process
technology continues to advance, the height of the wires will become significantly

greater than their width.

1200 nm Metal3

900 nm E—

700 mm —U— mode | |- Metal2

x ine Cline
900 nm N
X Cbot
700 nm Metall
Y
-t ot el -

900nm 900nm 900nm
FIGURE 6.6 : Interconnect Dimensions and Capacitance Components (MOSIS 0.6.um)

177

6.1 General Energy-Efficient Circuit Design

The total capacitance on Node is:

Crorar = Ciopt Cpor t 2 Cpjpe (EQ6.2)

where the line capacitance, Cj;,,, accounts for only 11% of Crpry, With Metall and
Metal3 present, but 43% in the absence of Metall and Metal3 as shown in Figure 6.7. In
areas of the chip with dense signal routing on all layers, spacing Metal2 wires at twice-
minimum spacing can reduce line capacitance by 11%, or more, depending upon how
much Metall and Metal3 is present around the wire. In regions of the chip loosely
populated with wire routes, spacing wires far apart can provide a significant reduction
of almost 2x in energy consumption. This is particularly true for Metal2 and Metal3

wires, as they are farther from the substrate than Metall.

0.20
0.18 \
| K With Metall/Metal3 above/below
0.16
0.14 A

Capacitance (fF/um)

0.12 \
0.10
No Metall/Metal3 above/below

0.08 . . : S

0 2 4 6 8 10
Metal2 Spacing (jum)

FIGURE 6.7 : Metal2 Wire Capacitance/um With Adjacent Metal2 Wires.

In the prototype microprocessor chip, this technique was used pervasively to
reduce energy consumption. Metal3 feedthru wires over the datapath were spaced

equidistantly to minimize their overall capacitance. The channel routes in the ARMS

178

6.1 General Energy-Efficient Circuit Design

core and in the cache system, in sparsely populated regions, were also spaced farther
apart. To minimize the load on the global clock, which transitions every single cycle
and is by far the highest energy-consuming net, it was routed in Metal3 with at least
10pm to the nearest Metal3 wire. Metal2 and Metall Wires were only utilized to cross

underneath and perpendicular to the clock net.

In more advanced process technologies, the fraction of Cy;yr to Croryr goes
up, which just exacerbates the benefit of spacing wires farther apart than minimum
spacing. Copper wires reduce the height of the metal wires, but this height reduction is
much less than the lateral geometry shrink going from our 0.6um process to a much

more advance 0.18um copper process technology.

6.1.5 Layout Considerations

Many layout optimizations that are done for performance improvement or
silicon-area efficiency also improve circuit energy efficiency. For example, the layout
constraints of the custom datapath cells and the standard cells were carefully optimized
to minimize the silicon area in our 3-metal 0.6um process technology, and by doing so,

the overall circuit energy efficiency was increased.

Fingering devices can be used to reduce drain capacitance to not only speed up
circuit performance, but reduce the energy consumption. To further reduce drain
capacitance, pass gate diffusion can be merged with a driver’s diffusion region. Spacing
control signals that frequently transition, such as clock signals, away from other cell

geometries reduces energy consumption as well.

6.1.5.1 Datapath Cell Layout
The datapath cell pitch was not set until the entire schematic of the ARMS core
datapath was complete, so that the absolute minimum number of cell feedthrus could be

calculated. The initial design yielded thirteen feedthrus, which after schematic

179

6.1 General Energy-Efficient Circuit Design

redesign, was reduced to ten feedthrus. In addition, further constraints had to be

specified to optimize the layout with only three metal layers available for routing. -

Within the cell, as shown in Figure 6.8, vertical Metall wires were used to
route power and ground. They have higher resistance than Metal3 wires, but require
many less contacts to connect to the devices, and also maximizes capacitance on the
power/ground lines. Their width was dictated by the maximum current the cell could
draw (Section 4. 4. 2. 2). Metalz was utilized for control lines that span the entire
datapath, as well as local cross-overs of the Metall power/ground lines. They were
spaced as far apart as possible to reduce parasitic capacitance on them. Metal3 was used
exclusively for feedthrus. The minimum pitch of Metal3 to accommodate contacts is
2.55um, so in order to allocate room for ten feedthrus, the cell height was set to
25.5um. These constraints minimized the overall area of the datapath, which in turn
minimized the length of the long feedthrus across the datapath, and reduced their

capacitance and energy consumption, as well.

NMOS Devices PMOS Devices NMOS Devices
' Metal3 ' A
~ S ~ S ~
3 S 3 § 3 3
QO [QV ’ V)| QO
I BRE B
5 Metal3 :
| [T [1 1 |
' Metal3 !
1 Limwel |1 __L1: U L__1Y¥
B Variable Width -

FIGURE 6.8 : Datapath Cell Layout Constraints.

The cells were designed so that they can abut on top and bottom. which

allowed them to be tiled up to form the datapath. By placing the power/ground lines on

180

6.2 Memory Design

the far left and right of the cell, it can also directly abut other datapath cells on either
side if a routing channel is not required. In better process technologies with more metal

layers available, the cells can always abut because the additional metal layers remove

the need for explicit routing channels.

6.1.5.2 Standard Cell Layout

In designing the standard cell library, the goal was to minimize the overall area
of synthesized layout, which was achieved by reducing the cell size as small as
possible. The pitch was set to 19.2um, as shown in Figure 6.9, which allowed for a
twice-minimum size PMOS device to be placed without having to finger it. To free up
as much Metal2 as possible for the router, no Metal2 was allowed inside the cell for
routing, and all pins had to be placed, centered about the middle in Metal2, on a 2.4um
routing pitch. This allowed the router to use Metal2 over the cell. The router used
Metal3 horizontally over the cell, Metall horizontally outside the cell, and Metal2 for

vertical routes. The cells had to be designed to abut on either side.

R T
Metall (Vpp)
' PMOS devices :
Metal2 pins ‘1192
on 24pmpitc): & Hpen O e
NMOS devices
Metall (GND) v
- -
Integer Multiple of 2.4um

FIGURE 6.9 : Standard Cell Layout Constraints.

6.2 Memory Design

The basic memory blocks used in both the cache memory and the external

SRAM have been derived from a previous design which utilized sub-blocking, self-

181

6.2 Memory Design

timing, and charge-sharing sense-amplifiers for a very low-energy implementation

[burs97]. In addition, this design was extended to a CAM which was utilized for the
| cache tags. The key modification made to the previous design to make it DVS
compatible was changing the charge-sharing sense-amplifier, which uses an NMOS pass

gate to limit the signal swing on the bitlines to Vpp - V7, to a full-swing design.

The critical aspect of a memory design, in order to ensure DVS compatibility,
are those circuits which are not standard CMOS logic. These primarily include the
memory cell, which only pulls down the bitline voltage by some fraction of Vpp, and
the sense-amp circuit which restores the signal on the bitlines to full-scale. While
allowing the bitlines to swing full-scale would improve circuit robustness for DVS, this
would significantly increase memory energy consumption and delay, and is therefore

not a viable option.

The rest of the memory circuits (i.e. address decoder, word-line driver, output
buffer, and control circuitry) are typically implemented with standard static or dynamic
CMOS logic, for which the circuit delay scales with voltage similarly to any other logic

circuits.

6.2.1 SRAM

The critical part of the SRAM’s signal path along the bitlines, including the
memory cell and sense-amplifier circuits, is shown in Figure 6.10. The width of the
sense amplifier layout is twice that of the memory cell, so a 2-to-1 multiplexer is used
for column decoding to provide efficient, compact layout by pitch-matching the sense
amplifier to two memory cells. CMOS pass gates are required to implement the bi-

directional multiplexer.

The bitlines on either side of the multiplexer are precharged to Vjp, so while
the SRAM is not being actively accessed, these precharged nodes will vary in voltage

with Vpp. The internal state of each memory cell, which is maintained by the cross-

182

6.2 Memory Design

Sel/Sel
Jop
L| 601160
Pre
[ttt dh 7 ittt adid L]
Word ! VDQ 1
0 i 1
T 0 L
! — — ! ~ ~
i) ~)
2 12O Q|12 e EI Iﬂnl
H== I |
12 1.2 . .
] 1
. n . b
:: 12| = |12 g ' '
1 K]
1 il
1 —
tmm- ===~ SRAMCell | o
Chitlin Chitline Numbers indicate device width in pim.
T —-E' All devices have L=0.6pm.

FIGURE 6.10 : SRAM Cell and Sense Amp.
coupled inverters, will also scale in voltage as Vpp varies. Thus, when the SRAM is
inactive, it can tolerate transient variations on Vpp much like static CMOS circuits

because all logic high nodes are actively being pulled up by a PMOS device.

Writing to the SRAM cell requires pulling one of the bitlines all the way to
ground in order to flip the state of the cell’s cross-coupled inverters. This is
accomplished by one of the NMOS pull-down devices on Bit and Bit, which is enabled
by its corresponding NOR gate when the write enable (Wen) signal is high. The delay of

this signal path will scale with varying ¥Vpp much like static CMOS logic.

183

6.2 Memory Design

When the SRAM cell is being read from, the cross-coupled inverter, whose
~ output is low, begins to pull down one of the bitlines through the NMOS pass-gate
activated by the Word signal. Both NMOS devices are minimum size to reduce the size
of the SRAM cell (which determines the total SRAM block size) and therefore can only
pull the bitline down slowly. The sense amplifier is used so that only some fraction of

the voltage Vpp has to be developed across the bitlines to register a signal transition.

The memory is self-timed, which in addition to minimizing switching activity
to significantly reduce energy consumption, also enables the delay of the SRAM read to
scale with varying Vpp similar to static CMOS logic. A dummy word line is used to

generate the Sense signal, which is delayed from the activation of the Word signal by:
_ 2 . CL . VDD
fWord— Sense = "y (EQ6.3)
which is just the delay through two static CMOS gates. The voltage differential

generated on the bitline at the input of the sense-amp when it is activated is:

L(Vpp) * tword— sense _ 12(Vpp) " Cr* Vpp
A V . = = = Q- V (E 6.4
Birjo CBitIine Il (VDD) * CBitIx'ne bb Q)

where o is a voltage-independent term because the voltage-dependence in the ratio of
the current terms, I} and I, cancels out in Equation 6.4. Thus, the voltage drop is
proportional to ¥Vpp. The delay from the activation of the Sense signal, at which point
the voltage on Bit is AV, to the Bit signal crossing Vpp/2 so that a signal transition

registers on V,,,, is:

VDD
_ Cyy AV Cair* ((VDD"AVBitIO)"_z‘) _ Cpu Vpp- (05-00)

t =
Sense—Bit = T (p 3 L.(Vpp) L.(Vpp)

(EQ6.5)

where I, is the average current in the sense-amp’s series NMOS transistors as Bit

varies from Vpp - AVg;yo to Vpp/2, and scales with Vpp similar to a static CMOS gate.

Thus, with self-timing, the voltage differential generated at the input of the

sense-amp is proportional to Vpp, which then allows the delay of the signal path from

184

6.2 Memory Design

Word to V,,, to scale with Vpp similar to static CMOS logic. This is demonstrated in

Figure 6.11 which plots this delay versus static CMOS logic over Vpp.

2.0
1.5;
1.01
0.51

Delay Variation (%)
S
L o

~1.0 1.5 2.0 25 3.0 35 4.0 4.5
Vop(V7)
FIGURE 6.11 : Relative Delay from Word to V,,, vs. Static CMOS logic for Constant V.

So while this delay tracks well for constant Vpp, when Vpp dynamically varies
while the sense-amp is evaluating, this delay begins to deviate. This occurs because the
voltage on Bit remains independent of ¥pp during the sensing, so that while the voltage

differential on Bit to flip the sense-amp at constant voltage is proportional to ¥pp:
AVgi = (Vpp=AVpi0) = Vpp/2 (EQ 6.6)
when Vpp varies by AVpp, the required voltage differential scales inversely with AVppy:
AV (AVpp) = (Vpp—AVpiyo) —(Vpp—AVpp)/2 = AV, + (AVpp)/2 (EQ6.7)

Thus, when AVpp is positive, indicating that Vpp is falling, the amount of
voltage required to switch, AVg;(AVpp), actually increases with Vpp and causes the
sense-amp to slow down much faster than static CMOS logic. Likewise, when AVpp is
negative, indicating that Vpp is rising, the value AVp;(AVpp) actually decreases with
Vpp, and causes the sense-amp to speed up much faster than static CMOS logic. As
shown in Section 3.4.3, this issue is most critical at low Vpp, and ultimately limits how

fast Vpp can be allowed to vary. This is a fundamental limitation of sense-amps.

185

6.2 Memory Design

6.2.2 CAM

A traditional implementation of a CAM cell is shown in Figure 6..12;‘ which
uses a dynamic NOR gate (M3) to generate a Match signal that remains high if the data
values placed on the Bit/Bit lines completely matches the cells’ contents across the
entire row [west93]. If any one bit in the row mismatches against the input pattern (i.e.
Bit # m and Bit # m), one of the NMOS pass gates, MI or M2, pulls the input to M3

high, which in turn pulls Match low.

A Yop *
Word —
o4 dl
4 _ 1
|- g L]
m L1 m
'“J — "'
S 'l s g
) T
| N V7] B 177] M |
Match >

-}

TR

FIGURE 6.12 : Traditional CAM Cell.

This implementation is not DVS compatible, due to the NMOS pass gates. At
least two more PMOS transistors are required to convert them to CMOS pass gates.
Also, the traditional CAM cell requires Bit and Bit to be pre-discharged for a match
operation, and is not compatible with read and write operations which require Bit and

Bit to be pre-charged.

The CAM cell was redesigned, as shown in Figure 6.13, so that the CAM
always begins an operation with Bit and Bit pre-charged. This eliminates the delay and
unnecessary energy cost of switching the polarity on the bitlines. In addition, the CAM

cell is now DVS compatible.

186

6.2 Memory Design

' Vop l
1 |
Do 1 1 N,
Pﬁ’(ﬂi‘s‘ I ;El })— -(4 E’ 1 6.6] OLre -
' —_
Vous 4.2 : 1 42 Vout
1.5] 1 1.5
! 1
Vin ! 102 I— —| 102 ! ! 7=
| 1 .
Wen B. 120 : : 120 .a Wen
— § | -
- X Sense 102 | =
| |
} I
b — Sense Amp|
A S i
Waré ' T -
! — — 1
! 12| O QA2 1
I - .
 u—— el |
Lj12 _I J2
B i
] 12— =12 1 It‘.
~3 I 0
_ | % |
! e 1
| l 12 1.2 !
! !
Match ! : -
! 1
! 1
2.7
! 1
e HE
! !
i l .
] 09 "
¥ | O
: ! 11
l| e ~ __CAMCel |
Chl'l Cb“‘_L . o
I Numbers indicate device width in
- _"=E All devices have L=0.6tm. Ho

FIGURE 6.13 : CAM Cell and Sense Amp.

The additional five transistors increased the size of the memory cell so that the
sense-amp was better pitch-matched to a single memory cell in the CAM, as compared
to two memory cells in the SRAM. This change eliminated the need for a column
multiplexer so that the bitlines directly drive the sense amp. However, this forces the
bitlines to swing full-rail upon a CAM read. Since the CAM is most commonly
performing match operations, thereby making CAM reads infrequent, the overall

increase in system energy consumption is negligible.

187

6.2 Memory Design

The CAM memory utilizes the same sense-amp and self-timed circuitry as the
SRAM, so that its delay has the same characteristics as the SRAM. The delay tracks
static CMOS logic very well at constant voltage, but suffers the same deviation when

Vpp varies during the sensing period.

6.2.3 Register File

The ARMS architecture requires a 30x32b register file with one write-port and
two read-ports. The three ports are independently operated, requiring three different
ports to the register cell itself. To reduce the requisite routing overhead, the ports were

implemented with single-ended pull-down circuits, as shown in Figure 6.14. The single-

In Outd OutB

AU DU VO Circuitry . N P :
E 55
85 AN
ReadA ' l,'s -
o 8 ;
T A <& s
. 24 - .
. 12 .
. ‘ O—1 .
e T oL
ReadB— - >
' E Numbers indicate device width in ym.
tl.oo......Registercen I | _ |1 A devices have Lo0.6ym except
\ =3 A |

FIGURE 6.14 : Register File Cell and 1/0 Circuits.

188

6.3 Low-Swing Bus Transceivers

ended ports forced both the input and output bitlines to swing full-rail, but this ensures

that the delay of the register file scales over Vpp similar to static CMOS logic.

Both Bit4 and BitB are pre-charged high, and are selectively pulled down if
both the cell’s read signal (ReadA4 or ReadB) is high and the internal cell state is high.
The input data is inverted, because simulation demonstrated that the majority of data
bits written to the register file are low. This reduced the energy consumption of the
register file datapath by 55%, and the overall register file energy consumption by 33%.
The weak feedback tfansistors are required to maintain state on Bit4 and BitB when it is

not actively being pulled down in the evaluation state.

6.3 Low-Swing Bus Transceivers

The energy required to drive large busses has become increasingly significant
as process technology has improved. While average gate capacitance and local
interconnect capacitance have reduced with improved process technology, global bus
capacitance has not. Global busses include both intrachip busses, and the interchip,

board-level processor bus.

Global intrachip bus capacitance has actually increased with improved process
technology, because both wiring capacitance per unit length and average bus length
increase with improved process technology. The wiring capacitance grows due to
thinner oxides and narrower wiring pitches. Larger die sizes necessitate larger bus
lengths for connecting up the various microprocessor blocks. The deployment of copper
interconnect has enabled a reduction in the wiring capacitance per unit length, because
it could be manufactured thinner than more traditional aluminum interconnect while
maintaining the same resistivity. But as copped interconnect is pushed into more
advanced process technologies, the wiring capacitance per unit length will continue to

once again increase.

189

6.3 Low-Swing Bus Transceivers

Interchip busses, primarily the external process bus, have a capacitance that
has remained roughly constant, because it is dominated by printed circuit board
capacitance, and packaging parasitic capacitance. However, bus frequencies have

greatly increased, driving up the energy consumption due to fast signal edges.

Transceivers for both intrachip and interchip busses are presented, along with
measured results from a test chip. These transceivers were not integrated into the
prototype system, in order to aid debugging, but integration into a future processor
system is discussed. The transceivers were designed to be DVS compatible so that they

could be integrated into a DVS processor system.

The key enabler of these low-swing transceivers is the demonstration of a
high-efficiency, low-voltage regulator [stra98]. The output voltage can be as low as
200mV with a conversion efficiency in excess of 90% using a standard 3.8V lithium-ion

battery for the input voltage.

6.3.1 Infrachip Transceivers

The on-chip transceiver was designed with differential signal lines. This
eliminates the need for a reference voltage at the receiver, and makes the bus
significantly more immune to coupling from adjacent, interfering signal lines. The
penalty is that the bus requires twice as many signal routes, but as the number of metal

layers continues to increase with process technology, this penalty is mitigated.

The transceiver architecture is shown in Figure 6.15. The driver uses two pairs
of two NMOS devices to drive the bus signals bif and bit to either ¥y or ground.
Since the driver’s NAND and NOR enabled gates are powered by the variable voltage
Vpp, the driver current and delay scales with ¥pp. The voltage on bit and biz never
exceeds V; oy, which can be little as 200mV, so that the receiver requires a comparator
with PMOS inputs to sense the voltage difference. To minimize energy consumption,

the comparator utilizes a clocked, dynamic design. The self-timed precharge signal

190

6.3 Low-Swing Bus Transceivers

simplifies the receiver control, which only requires a single clock signal to control it.

Driver Bitslice

All device dimensions in tm.

All devices have L=0.6 unless
labelled otherwise. * Self-timed Precharge

: Control Slice

FIGURE 6.15 : Differential Low-Swing Bus Transceiver Circuit

The RS latch at the output of the comparator registers when one of the
comparator’s outputs, nx or ny, has gone high, and changes the signal OUT accordingly.
This eliminates any spurious transitions on the output signal. Since the comparator and
the RS latch is powered by Vpp, the delay through the receiver scales with Vpp, as well,
so that the transceiver delay and energy consumption scales with Vpp for DVS
compatibility. The self-timed precharge circuit puts the comparator back into precharge

mode as soon as a transition is detected in order to minimize energy consumption.

Figure 6.16 compares both the delay and energy consumption (in capacitance/
cycle) of the low-swing bus transceiver and a standard static CMOS bus transceiver
when driving a 1pF load. The capacitance/cycle was calculated for random inputs,
which yields a 50% probability of a signal transition. While the low-swing transceiver

delay is twice as long, the capacitance/cycle reduction varies from 1.7x at high voltage

191

6.3 Low-Swing Bus Transceivers

to over 2.5x at low voltage.

2 350 70%

§* Standard, aner o —9

g 300 ferereroefrrcrcccoviviniiiisnitiisiiistsiviririisitsesnrsssssseriecsasnss 60%

‘g Bus Parameters. o &

f‘é 250 VL0W= 200mv vevvsse 50/° i_‘

2. 200- ceeeenenJBandomnputs — 40% O

& 2

= M
=T

S 150+ 30% &

® 5

g >

g 100 20% -3

- 2

§

50- 9

o 10%

3

=

m 0 ¥ 1) T v L}] o%

1.0 1.5 2.0 2.5 3.0 35 4.0 4.5

. Vop (V1)
FIGURE 6.16 : Low-Swing vs. Standard Driver for Intrachip Busses (Simulated).

Thus, if architectural design can hide this increased bus latency and place a
latch at the receiver, the low-swing intrachip transceiver can provide significant
reduction in energy consumption. Additionally, for larger bus capacitances, the
capacitance reduction will increase. A 2pF bus capacitance will double the capacitance/
cycle of the standard bus transceiver, but the low-swing transceiver will only increase
by 30% at low voltage, and less than 2% at high Vpp. This occurs because the bulk of

the energy consumed in the low-swing transceiver is by the comparator.

One other limitation to the low-swing transceiver is that while a standard bus
driver will only consume energy upon an input signal transition, the low-swing
transceiver consumes energy independent of the input signal. Thus, if the data is highly

correlated, the low-swing transceiver will actually consume more energy than the

192

6.3 Low-Swing Bus Transceivers

standard bus driver. For the 1pF bus capacitance, if the probability of a transition drops
from 50% to 20%, then the standard bus driver becomes more energy-efficient. So in
order to evaluate whether a low-swing transceiver can reduce the energy consumption

on a bus, both its capacitance and data correlation must be evaluated.

6.3.2 Interchip Transceivers

The off-chip transceiver is a non-differential version of the on-chip
transceiver. While the differential signaling provides more robustness, the additional
pin-count on the package cannot be tolerated. Thus, the second bitline was removed,
and a reference voltage, Vpgp, set to one-half of ¥, o is used as the second input on the
differential comparator. The modified transceiver architecture is shown in Figure 6.17.

The single-ended receiver does place a constraint on the minimum Vpp value:

Viow
Vop>Vrer* Vip = =5+ V1, (EQ 6.8)

so that as Vypow is increased to provide more circuit robustness, the trade-off is

decreased operating range on Vpp.

Enable

All device dimensions in um.

All devices have L=0.6 unless

+Self-timed labelled otherwise.
. Precharge

FIGURE 6.17 : Single-ended Low-Swing Bus Transceiver Circuit.

193

6.3 Low-Swing Bus Transceivers

Figure 6.18 compares both the delay and energy consumption (in capacitance/
cycle) of the single-ended low-swing bus transceiver and a standard static CMOS bus
transceiver when driving a 50pF load. This is a typical capacitance for a bus with ten
external chips connected to it, as in the prototype processor system. The capacitance/
cycle was calculated for random inputs, which yields a 50% probability of a signal
transition. For this case, the low-swing transceiver not only provides slightly less path
delay across the bus, but a significant reduction in capacitance/cycle in excess of 15x.
Correlation in the bus data will reduce the margin of savings, but the probability of a
signal transition would have to be below 3.3% before the low-swing transceiver
becomes less energy-efficient. Thus, the low-swing transceiver is extremely well-suited
for the external PCB processor bus, which has the key characteristic that the

capacitance per bit is anywhere from 25-100pF.

g Wr— ~ Standard Driver - 7179%

5 — .] e

K] -

B 12 Bus Parameters. 60%

8 Viow= 200mV

L Cpis = SOpF .

S 104 eeees Random. Inputs. 50% E

= 2

2 8 40% 9

& A

8 6 30% £

® A
F)

- R OSSR 20% &

g

R B T PSR TEP T PPN SN 10%

% - o Low-Swing Driver - e

g o \ : : . . : 0%

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Voo (V7)

FIGURE 6.18 : Low-Swing vs. Standard Driver for External Busses (Simulated).

A clock signal is still required to drive the external bus, and each cycle it is

194

6.3 Low-Swing Bus Transceivers

required to switch on the order of SOpF of capacitance. Switching the signal at Vpp will
cause the energy consumed by the clock signal to completely dominate the energy
consumed by the low-swing bus. Thus, a continuous transceiver was developed to
transmit the clock signal at low voltage to mitiggte this component of energy

consumption, and this circuit is shown in Figure 6.19.

All device dimensions in yim. Low-power Pre-Amplifier Gain to Vp

All devices have L=0.6 unless

labelled otherwise. = el
Var | '

12 '

24 BiasI !

‘5p.Alleg 1 .

7] '

24 Bias2 .

...

Receiver Circuit

FIGURE 6.19 : Single-ended Low-Swing Clock Transceiver Circuit.

The driver is the same circuit used in the previous transceivers, and converts
the input clock signal to a low-swing signal. The receiver consists of two components,
the pre-amplifier and the second gain stage. The pre-amplifier’s dual source-coupled
pair (SCP) circuits convert the signal to differential, and amplifies the signal from 0-
Viow to 0-V,,. The SCP circuits are biased by the battery voltage, Vg, to ensure a
fixed minimum tail-current of 10pA per SCP, which is set by bias voltages, Bias! and
Bias2, from a high-swing cascode current source [gray93]. The devices Mp; and Mp,

provide an additional current source, which is a function of the variable voltage, Vpp.

195

6.3 Low-Swing Bus Transceivers

This allows the speed, and the energy consumption of the pre-amplifier to scale with
Vpp- The second-gain stage amplifies the clock signal to 0-Vpp. The cross-coupled
loads ensure that this gain stage has no static current, as only one of this gain stage’s
NMOS devices will be turned on, since Vip > Vin- Thus, by using the pre-amplifier to
minimize short-circuit current, the receiver provides the necessary signal level-

conversion with minimal energy consumption.

The energy consumption in terms of the effective switched capacitance/cycle
at Vpp is shown in Figure 6.20. A clock signal switching at a voltage ¥ would have
50 pF/cycle, while the low-swing clock transceiver has reduced this to less than
2 pF/cycle. The capacitance/cycle is roughly constant, due to the variable-current tail-
source in the pre-amplifier. The penalty of using the continuous-time clock transceiver,

rather than the previous transceiver with the dynamic latch, is approximately 2x.

1.9

1.8

1.7 1

1.6 1

Effective Capacitance @ ¥pp (pF/cycle)

1.5 : - ‘ : :
1.0 1.5 20 25 30 35 40 45

Voo (V1)
FIGURE 6.20 : Low-Swing Clock Transceiver Energy Consumption (Simulated).

6.3.3 Test Chip

A test chip was fabricated in our 0.6um process to validate the low-swing

transceiver designs. The intra-chip receiver successfully operates with V;op = 200mV

196

6.3 Low-Swing Bus Transceivers

as Vpp ranges from 1.0-4.2V, and the clock frequency ranges from 4-111MHz. For the
1.4pF bus (measured) on-chip bus, the reduction in power dissipation ranges from 1.7x
to 3.3x as demonstrated in Figure 6.21, which yields an equivalent reduction in energy
consumption. In addition, the intrachip transceiver can operate as Vpp varies at a rate
of 10 V/us, demonstrating that this design is compatible with a DVS processor system.
At Vpp = 1.0V, Vo can be operated as low as 40mV, though the minimum V;,p for

all values of Vpp is 150mV.

100 F S-S S e e e G C A BB --S-TZZZZZZZZZZZZZZZZzZZZzZZzZZzZzZzZzZZzZzZZzZzDZDd—

10

Power (mW)

0.1

0.01 r + - . .
1.0 1.5 2.0 25 3.0 35 4.0

FIGURE 6.21 : Power Dissipation of Low-Swing and Standard Driver for Intrachip Busses.

The inter-chip receiver successfully operates on a 50 pF/bit bus with Vo of
200mV as Vpp ranges from 1.0-3.75V, and the clock frequency ranges from 4-100MHz
for the worst-case condition when all bits are switching simultaneously. Higher values
of Vpp increase the current draw from V;pp; and the resulting noise prevents the
receiver from continuing to operate properly. If V;op is increased to 500mV, the
receiver can operate over the range 1.25-3.75V. When the number of bits that switch
simultaneously is reduced the receiver can operate at a value of Vpp, as high as 4.75V

due to the decreased current draw on V oy

197

6.3 Low-Swing Bus Transceivers

In addition, when all bits are simultaneously switching, ¥; o is 500mV, and
Vpp varies at a rate of 16 V/jus, the receiver can operate over the ¥ range 1.25-3.25V.
As Vi ow decreases to 200mV, the range of Vpp drops to 1.0-2.6V. Decreasing d¥Vpp/dt
to 1 V/us allows proper operation over the same range of Vpp as when it is held

constant. These results are summarized in Figure 6.22.

5.0

Minimum (all cases) — T

. ’ i 1
200 300 400 500
Viow (mV)

FIGURE 6.22 : Range of Operation for Low-Swing Interchip Bus.

The prototype low-swing inter-chip bus was designed with one power/ground
pin per eight bus pins. It is believed that by decreasing this ratio the range of operation
for ¥Vpp can be increased. In addition, further on-chip bypass capacitance for Vg will
reduce the on-chip noise of this signal, and also improve circuit robustness and

operating range.

6.3.4 Future Integration

The prototype chip demonstrates the viability of the low-swing bus
transceivers, as well as significant reductions in energy consumption, particularly for

the external PCB processor bus. Extra overhead is required for the additional voltage

198

6.3 Low-Swing Bus Transceivers

regulator to generate Vo but this can mitigated by sharing circuits between this

regulator and the existing system voltage regulator [stra98].

It is believed that additional pins for the low-voltage power and ground will
alleviate the headroom problems observed on the test chip, but this requires further
investigation. Additionally, for the inter-chip transceiver, it is necessary to provide a
stable Vpgpp signal on-chip. For the test-chip, Vgepr was generated externally with a
resistor divider. However, this needlessly dissipates static power dissipation. Further
investigation is required to minimize this static power. One possible solution is to
generate Vg via a switched capacitor network. Another solution is to use large bypass
capacitors either on-chip or internal to the package to maximize the size of the resistors

used in the divider.

199

Prototype
Microprocessor
System

A complete embedded microprocessor system was designed and implemented
in 0.6um CMOS to validate the processor system design methodology described in the
previous chapters. By combining Dynamic Voltage Scaling with energy-efficient
architecture and circuit design, the system is able to demonstrate more than an order of

magnitude improvement in energy efficiency.

In order to measure the energy efficiency of programs typically running on
portable devices, a complete software infrastructure was developed. This infrastructure
includes a pre-emptive multi-tasking real-time operating system providing standard C
library functionality, which allowed standard C programs to be compiled for the system.
A programmable I/0O board enabled rapid prototyping of I/O devices to verify the
system’s functionality, and enabled multimedia programs with real-time constraints to

run on the system.

Sections 7.1-7 describe the four chips as well as the physical board
implementation. Sections 7.8-9 describe the I/0 board and the software infrastructure.
Section 7.10 presents the measured performance of the prototype system, and Section
7.11 compares this system to prior art and other energy-efficient processors currently

available today.

201

7.1 System Architecture

7.1 System Architecture

The prototype system, shown in Figure 7.1, contains four custom chips
fabricated in a 0.6um 3-metal CMOS process technology [hp9§]. The chip-set includes
a microprocessor, a battery-powered DC-DC voltage converter, a bank of SRAMs, and
an interface chip for connecting to commercial peripheral devices, which are modeled
by the I/O board. These chips integrate all the necessary logic for inter-chip
communication so that they can be seamlessly connected together. For a completely
functional processor system, the only external components required are a crystal

oscillator, an inductor, and several small bypass capacitors.

|

| l0.5MB

Il Microprocessor

|

| VvCO |

V,

Fpesjrep| fax| Voo Db

| \i

| rF———- Commercial

| ConvFrter @< Peripheral

| 37 Devices

R

FIGURE 7.1 : Prototype System Architecture.

The DVS voltage regulation loop consists of the battery-powered converter
chip, and the VCO which is connected to the loop via the Vjpp and fcyg signals. The
processor commands the desired clock frequency via the digital Fppgpep signal. The
37-bit System Bus consists of a 32-bit multip&exed address/data bus, and five bits of
control. In addition, the processor generates chip enable signals for the I/0 and SRAM

chips.

202

7.2 Microprocessor 1C

There are three voltage domains in the system. The converter outputs the
variable DVS voltage, Vpp, which powers the processor, the SRAM chips, the I/O chip,
and the front-end circuits on the converter chip. The battery voltage, V3,5 supplies the
converter’s power FETs and back-end circuits. The 3.3V voltage, V3 3, supplies the
output pads of the I/O chip so that it can replicate the system bus at a standard voltage

level, which allows the bus to connect to commercial ICs.

7.2 Microprocessor IC

The chip’s processor core implements the ARM V4 instruction set architecture
(ISA) [arm96a). The implementation was derived from an RTL behavioral model
(provided by ARM Ltd.) which fixed both the ISA as well as the processor core
interface. However, both the custom physical implementation of the core, as well as the

rest of the microprocessor design, were fully optimized for energy efficiency.

Full compatibility of the ISA was critical so that commercially-available
compilers, assemblers, and simulators could be used, thereby allowing rapid software
development on the hardware platform, and eliminating the need to develop custom
software tools. While the microprocessor implementation is ARM-based, the design
methodology outlined in the previous chapters is equally applicable to other ISAs, and

will yield similar improvement in energy efficiency.

Inter-chip communication is much more costly than intra-chip communication,
in terms of both performance and energy efficiency, so that integrating as much system
functionality as possible on the microprocessor chip will yield a more energy-efficient
implementation. As such, all system logic was integrated onto the microprocessor, with
the exception of the main memory, the voltage regulation loop, and the I/O interface.
The main memory remained separate because sufficient amounts of memory cannot be
integrated onto the same die. The loop and interface remained separate for design

simplicity, without having a significant impact on energy efficiency.

203

7.2 Microprocessor IC

The microprocessor die, shown in Figure 7.2, measures 7.5 x 9.0mm and

contains 1.3M transistors of which 890k are memory (CAM & SRAM) transistors.

L
.
.
-
.
0
-
.
.
.

LELE BUSCRE S
a5 awnp el

204

7.2 Microprocessor IC

7.2.1 Architecture

A high-level block diagram of the microprocessor’s architéctu‘re is shown in
Figure 7.3. The processor core is a custom implementation of an ARMS, which is a 32-
bit five-stage scalar integer pipeline with an eight-word prefetch unit that performs
static branch prediction [arm96b]. The S);stem coprocessor contains system control state
which can be manipulated by the ARMS8 core via its coprocessor interface. The cache

sub-system consists of a 32-way set-associative 16kB memory, a twelve-element write

2
y S s
T 5 £
S8 $
le T s Data Bus
PCIk Control Signals
1 VCO
Y 1
> System !
-] Coprocessor 16kB
§ Memory Write Control
5 Buffer
U Ay
AA S
MOE El 18
S B
S LS
IR
3. yAddr e — MClk
-»1 ARMS BDaa > <=0 PBus
‘-M ! y 5 - Bus [BusCul
1 § I g ; o Interface | g cr
4—.@.’.’.& =] stall] — PWait
equest
m Cache Controller on PReg
n] %
3
&

FIGURE 7.3 : Microprocessor Architecture.

205

7.2 Microprocessor IC

buffer, and a bus interface, all of which are managed by the cache controller. The cache

is physically indexed to eliminate the need for a TLB, and the upper six bits of the
‘ address are utilized for memory-space control which gives the microprocessor an
effective 26-bit address space. The bus interface drives the external system bus, and
contains a memory controller which allows external memory chips to be seamlessly
connected to the bus. The VCO provides the variable-frequency clock signal, PCIk, to
all the internal microprocessor components, and PCIk is buffered and transmitted to the
converter as the fc;x signal. The external bus is clocked by MClk, which is divided
down from PClk.

7.2.1.1 Data Flow
The data flow of the microprocessor was designed around the fixed ARMS

interface. The memory interface consists of three unidirectional busses; the address bus

(VAddress), the write data bus (WData), and the read data bus (RData).

The system coprocessor sends data to the ARMS8 on a dedicated unidirectional
bus (CData). The coprocessor receives data via VAddress, and during this transfer
cycle, the ARMS must suppress any pending memory access and place the data word on
VAddress. Since coprocessor writes are infrequent, this has negligible impact on

processor performance due to the forced cancellation of memory-access cycles.

VAddress is an input to the write buffer and the bus interface, and is an input/
output to the cache memory so that the tag array can be read and written. The cache
controller also reads and writes the lower bits of VAddress so that it can detect cache-
line boundaries and generate cache memory block enables on reads, and increment

VAddress across a line for cache-line loads and write-backs.

WData is an input to the cache memory and the write buffer. The bus interface
has a bidirectional WData port so that it can input non-cacheable ARMS8 writes to be

sent to external memory, and output data to the cache memory during cache-line loads.

206

7.2 Microprecessor IC

RData is an output of the cache memory and an input to the write buffer. The bus
interface RData port is also bidirectional so that it can input data from the cache
memory during cache-line write-backs to external memory, and send data to the core for

non-cacheable ARMS reads.

Since the system data bus is a single, bi-directional bus (PBus) which carries
time-multiplexed address and data words on it, as described further in Section 7.4, the
bus interface multiplexes the three internal busses onto PBus. Due to this multiplexing,
the write buffer stores both address and data words into a single twelve-element queue,

whose contents are sent to the bus interface via a dedicated unidirectional bus (WBOut).

7.2.1.2 Clock Control Domains

To eliminate unnecessary clocking and circuit activity, there are three top-level
clock control domains as shown in Figure 7.4. The core domain contains the ARMS
core and system coprocessor, which fetch and execute instructions when this domain is
active. The ARMS8 expects read and write memory accesses to complete in a single
cycle, and communicates these accesses to the cache controller via the ARMS8’s memory

request and response handshake protocol [arm96b]. When the cache sub-system cannot

.r ------- T -------------- T -------
' ' 1
System
' 1 '
1 JCoprocessor]) 16kB 1
1 1 § Memory Write '
' ! Buffer !
 Core Domain | | External Domain
1 ' 1 (includes external
' ' Cache Domain | memory system)
' ' L
1 '
1 8)
1 JARM '
' ' Bus
] 1 Interface]
' '
: : Cache Controller
' 1

FIGURE 74 : Clock Control Domains.

207

7.2 Microprocessor IC

complete the request in one cycle (e.g. cache miss, full write buffer, blocked bus
interface, etc.), the cache controller halts the core domain via the Confirm signal, which

gates PClk within all of this domain’s clock drivers.

The cache domain contains the entire cache subsystem with the exception of
the system-bus side of the bus interface. The cache controller directs the operation of
the cache memory, write buffer, and bus interface via various control signals. In
response to a memory request from the core, the cache memory’s tag array returns
whether the request is a match, and if it is not, the cache controller initiates a cache-line
load. If the access is not a match and the cache line is dirty (i.e. it has been written to in
the cache, but not updated in main memory), a cache-line write-back must be executed
first before initiating the cache-line load. The cache controller routes all bufferable
writes to the write buffer. When the buffer is full during a pending write, then the cache
controller halts the processor and waits for a slot to open. Similar to the ARM8 memory
interface, the cache controller expects a read or write access to the bus interface to
complete in a single cycle. Since the system bus can operate at no more than one-half
the internal clock speed, the bus interface will halt the cache controller, via the Stall

signal, until the access is complete. This in turn halts the core domain’s clock, as well.

The external domain is clocked by MClk, and encompasses the system-bus side
of the bus interface, as well as the external memory system. An asynchronous interface
connects the core-side of the bus interface, which is manipulated by the cache
controller and clocked by PClk, to the bus-side of the bus interface, which connects
directly to the external system bus and generates the external memory chip enables
(CE). For external memory reads and I/O accesses that require multiple MClk cycles,
external chips can stall the bus-side of the bus interface via PWait, which also halts the
first two clock domains as well since they are both waiting for the pending system bus

access to complete.

208

7.2 Microprocessor IC

7.2.1.3 Write Buffer Control Flow

When there is no pending external-memory access request from the cache
controller in a given cycle, the bus interface polls the write buffer to see if is not empty.
When it is non-empty, the bus interface will autonomously initiate a system bus access
to write out the data to the external memory system. During this transfer, if the cache
controller has an access request to the bus interface (e.g. non-cacheable memory request
from the ARMS, cacheable request that takes a cache miss, etc.), the cache controller
must wait for the transfer to complete and stall the core clock domain. To ensure
memory consistency without additional hardware, any ARMS8 read request must stall
until the write buffer is empty [henn95]. With the large 16kB cache, this condition is

infrequent and stalling the core has negligible impact on processor performance.

7.2. 1. 4 DMA Control Flow

The I/O chip can directly access the main memory via a direct memory access
(DMA). A DMA request is sent to the microprocessor via the PRegq signal. When there
is no outstanding system bus transfer, the bus interface grants the DMA request and
releases control of the system bus to the I/O chip. Until the DMA request completes,

any access request to the bus interface from the cache controller is stalled.

7.2.1.5 Processor Configuration & Monitoring

The system coprocessor, described further in Section 7.2.6, is responsible for
configuring the microprocessor and collecting dynamic statistics. The coprocessor sets
the processor speed by transmitting Fpgsrep to the converter chip, and controls the
voltage-to-frequency conversion by configuring the VCO. In addition, it can configure
the ARMS8 core, as well as the operation of the cache subsystem via the cache
controller. The coprocessor collects run-time statistics from both the ARMS8 and cache

controller, which can be accessed in software via a coprocessor read instruction.

209

7.2 Microprocessor IC

7.2.2 Processor Core

The processor core is a fully-compatible, custom-implementatibn of the
commercial ARMS8 core. Starting from a block level RTL behavioral description, the
design methodology described in previous chapters was utilized to provide an energy-
efficient and DVS-compatible implementation. This section provides an overview of the
ARMS core and highlights some of the specific design optimizations. A more detailed
description of the core’s functionality, I/O interface, and signal timing can be found in

the ARMS data-sheet from ARM Ltd. [arm96b]

7.2.2.1 ARMS Instruction Set Architecture

The ARMS is similar to a traditional RISC ISA as it is a load-store
architecture. Data processing instructions can only operate on registers; external
memory contents can be loaded to and stored from the register bank, but not operated
on directly. In addition, the instructions are a fixed size of 32 bits. These characteristics
allow the ISA to map onto the common five-stage pipeline found in simple RISC

processor cores.

There are some non-traditional features of the ARMS8 ISA which prove useful
in embedded applications by reducing the machine code size. However, these add

complexity to the pipeline control and data flow. The primary features are:

* All instructions are conditionally executed. Each instruction has a four-bit
condition field, which must be evaluated before writing the results of the
instruction to the register bank or main memory, or passing the results to

subsequent instructions via data forwarding.

* The second operand of data processing instructions can be shifted before the data
processing operation. A five-bit field specifies the shift amount, and the shift type
can be logical left, logical right, arithmetic right, and rotate right. Because of this

feature, there is no explicit shift instruction.

210

7.2 Microprocessor IC

* Block data transfers to and from memory. Unlike regular load/store instructions
which operate on a single register, block transfers operate on a list of registers as
specified by a 16-bit field. This is a multi-cycle operation which halts subsequent

instructions in the pipeline until the operation has completed.

* Multiply and multiply-accumulate instructions. They require special hardware to
implement, and impact data flow because of the 64-bit result generated by a
32 x 32 multiply and the need for the result to pass through the ALU to perform

the accumulate.

* Complex addressing modes. The ISA supports both immediate address offsets from
the base address register, and register-shifted offsets. In addition, the ISA allows

pre/post indexing and auto increment/decrement addressing modes [henn95].

7.2.2.2 ARMS Pipeline

The basic ARMS pipeline has five stages, as shown in Figure 7.5. However, the
Write stage is only used by load instructions when writing data to the register file. All
other instructions (e.g. data processing, store, branch, coprocessor) complete by the end
of the fourth stage at which time they have completed any writes to the register file.
The coprocessor operates lock-step with the ARMS8 pipeline, but with a half-cycle

delay, which is described in more detail in Section 7.2.6.

PCIk |
Instruction 1: Fetch | Decode | Execute | Memory| Write
<> <> <>

Instruction 2:
Instruction 3:

[]]

] s

[] []

Pipeline Functionality:

Instruction Re g. Reg. Complex Shift ' Memory Access 'M emory
Fetch Decode| Read |~ Simple ShiRt | ALU | Write
Al Write

Fetch Decode Execute Memory Write

FIGURE 7.5 : ARMS Pipeline.

211

7.2 Microprocessor IC

Complex instructions will cause the core to iterate on a pipeline stage more
than once, forcing all previous pipeline stages to halt. Simple shifts (left-shift by zero,
one, two, or three bits) are optimized to complete in the same cycle as any operation
requiring the ALU, but complex shifts, which require the use of the barrel shifter, force
the core to loop on the Execute stage twice - one full cycle for the shift, and another full
cycle for the ALU operation. The multiply instructions will cause the core to loop on
the Execute stage a variable number of cycles, depending on the operands’ data. Block
data transfers will force the core to loop on the Memory stage until all the requisite

registers have either been loaded or stored.

7.2.2.3 ARMS Data Flow Architecture

Figure 7.6 present a block diagram of the ARMS and highlights the main sub-
blocks of the core’s datapath. The prefetch unit fetches instructions from the memory
via RData and places them in an eight-deep FIFO. The memory address is generated by
the program counter (PC) incrementer block and placed on V4ddress. Whenever there is
no load or store pending on the memory bus, and the FIFO is not full, the prefetch unit
will fetch more instructions from memory. The datapath fetches instructions from this
FIFO in the first (Fetch) pipeline stage, and decodes the instruction in the first half of

the Decode stage.

In the second half of the Decode stage, the register operands are read from the
register file and placed on ABus and/or BBus. At the beginning of the Execute stage,
these busses input data to the multiplier, the write-data pipeline, or the ALU. The
multiplier will stall the datapath for two to six additional cycles, depending upon how
many of the most-significant source-operand bytes are zero, and place the output
product back onto ABus and/or BBus. The product passes through the ALU to be written
back into the register file. The write-data pipeline holds the register’s data to be saved
for one cycle until the Memory stage, at which time the data is then placed on WData.

Simple ALU operations will complete in one cycle during the Execute stage, place the

212

7.2 Microprocessor IC

Coproc. Memory
Interface ARMS Scalar Datapath Prefetch Umt ~ Interface
g | . I - I
8 Register Decode Instruct { | Instruction |
£ e L Ll
§ I & Control Logic | FIFO |
| I I
I | |
I . —PDaia : : <§
| Register I
' Bank '
' -
|
| §| §| | !
| “pasd Multiplier [: :
: «! Forwarding ' |
| Write-Data | ! I
| Pipeline | I
| | I - §
! ! ! 2
! PC ! l
I I 1 I
| ALU | PC]
| Forwarding | FIFO I
I | I
| o | :C |
l Shifter/ALU " !
I [crementer | |
£y >JResult 1, | Address : VAddtessi : g
[~“X
}

PSRs : :

FIGURE 7.6 : ARMS Data Flow Block Diagram [arm96b].
result on the Result bus, and write the value back to the register file during the second

half of the Memory stage.

For loads and stores, the ALU is used to calculate the effective memory
address during the Execute stage, and the address is sent to the address buffer via the

Result bus. The address is then placed onto VAddress during the Memory stage. Stores

213

7.2 Microprocessor IC

will complete in this stage by placing the stored data onto WData. Loads will be
initiated during this stage, but the memory data will not be valid until the end of this

stage, and written to the register file in the first half of the Write stage.

When the PC is used as an operand register, the PC FIFO is used to hold the
value until the end of the Decode stage, at which time it is placed onto either ABus or
BBus. Writes to the PC are done via VAddress and flush all previous instructions in the
pipeline, inducing a two to four cycle penalty, depending upon the instruction. At the
same time the PC is placed on VAddress, to be latched into the PC incrementer block,
the instruction at that location is fetched and the prefetch unit begins loading

subsequent instructions.

To remove read-after-write (RAW) hazards in the pipeline, there are two sets of
data-forwarding paths. The ALU-forwarding path can bypass the Result bus to 4ABus and
BBus when a data processing or effective-address calculation result is used as an
operand in one of the next two subsequent instructions. It is either immediately
forwarded at the end of the Execute stage, or at the end of the Memory stage, in which it
is simultaneously being written back to the register file. Load instructions do not return
their data value to the datapath until the end of the Memory stage, so if the very next
instruction uses the loaded register as an operand, the datapath must stall for one cycle.
To make the data available for the Execute stage that coincides with the load’s Write
stage, the load-forwarding path puts the returned data value onto either 4Bus or BBus

while simultaneously writing the data to the register file.

The 32-bit Process Status Register (PSR), shown in Figure 7.7, contains the

Flags Control
"31 30 20 28 27 8 7 6 5 4 3 2 1 0
N|Z|C|V I|F M4{M3(M2|M1/ MO0,
L ovelsio Mods bits
—— Cany L FIQdisable
—_@ﬁv . IRQ disable

FIGURE 7.7 : Process Status Register.

214

7.2 Microprocessor IC

condition code flags, the interrupts disable flags, and the mode bits which indicate
which mode the ARMS is operating in (e.g. user, supervisor, interrupt). Writing to the
PSR depends upon the current operating mode, and is done via the ALU and the Result
bus. Reading from the PSR is allowed in any mode, and is done by placing the register
value onto the Result bus and writing it to the register file. Instructions that set the
condition code flags do so at the end of the Execute stage. Subsequent conditional
instructions proceed as normal through the pipeline, but can be flushed in either the

Decode or Execute stage once the value of the flags are known

The ARMS interfaces to the system coprocessor via three busses. The pre-
decoded coprocessor instruction is placed onto Clnstruct in the first half of the Decode
stage so that it is available on the rising edge of PClk. On this edge, the coprocessor
enters its half-cycle delayed decode stage. Reads from the coprocessor to the ARMS are
performed via CData, which is driven during the coprocessor’s execute stage so that
data can be written to the ARMS’s register file in the second-half of the Memory stage.
Writes to the coprocessor are done by placing the data value on VAddress during the
Memory stage, which makes the data available to be written into the coprocessor’s
register file during its memory/write stage. The coprocessor pipeline is described in

more detail in Section 7.2.6.

7.2.2.4 ARMS8 Memory Interface

Although a split instruction/data cache structure is generally more energy
efficient, the ARM8 memory interface is designed to connect to a unified cache due to
legacy system architecture constraints. Since, on average, there is more than one
memory read per instruction, due to instruction fetches and loads, the interface is
designed to return up to two words per cycle to eliminate this bottleneck. While this
would seem to shift the bottleneck to the cache memory’s critical path, Section 7.2.3
will demonstrate that by constraining when the cache will return two words, the

memory’s critical path can be significantly reduced with little or no degradation of

215

7.2 Microprocessor 1C

processor performance.

The timing of the memory interface is shown in Figure 7.8. Both VAddr.-ess. and
the ARequest control signal are driven by the ARM8 when PCIk is high so that they are
available to the cache system on the falling edge of PCIk. If the memory request is a
store, then the data word to be written is placed on WData when PClk is low. The
ARMS always expects to get acknowledgment of the memory access request from the
cache controller by the rising edge of PClk via the AResponse control signal. For
instruction fetches and loads, the ARMS8 expects the word to be available by the falling
edge at the end of the memory access cycle. If two words are requested, it expects the

second word to be available on the rising edge of PClk following the access cycle.

Load/Fetch Load/Fetch Load/Fetch Load/Fetch
Store Single Double Sequential Single - Stalled
1 2 3 4 5

Mddress—— 1 M 2 M 3 L5 W sl
P G (G Y T
wpae—(1)
areporse————(1 W2 W 3 W 4 W s)—C
-
Confirm A

FIGURE 7.8 : ARMS8 Memory Interface Timing.

If the cache system cannot complete the access request in one cycle, it must
still return an acknowledgment on AResponse when PClk is low, then deassert the
Confirm signal when PClk is high. Forcing Confirm low stops the clock signal in the
core clock control domain. The cache system reasserts Confirm when PClk is high
during the cycle it can complete the request, as illustrated for the fifth access sequence
in Figure 7.8. Due to the nature of the memory pipeline, the ARMS will already have

placed the sixth access request onto the interface, but it will stall until the fifth access

216

7.2 Microprocessor IC

request has completed.

The ARMS encodes in the 4Request control signal whether the"acéess request
is sequential to the last request of similar type (i.e. instruction fetch, data load, data
store), whether an instruction fetch is speculative or not, and whether the data load/
store will have more sequential accesses to follow as part of a block transfer
instruction. Access requests that are sequential do not need to drive VAddress because
the cache system can infer the new address by incrementing the previous address. These
hints from the ARMS are utilized to improve the energy efficiency and performance of

the cache, which is described in further detail in Section 7.2.3.

7.2.2.5 Optimizations for Energy Efficiency

The ARMS8 RTL behavioral model specified the microarchitecture of the core,
and was segmented into 29 sub-blocks. In order to use the model’s companion test
vector suite, which provided vectors for the complete core as well as the individual sub-
blocks, the microarchitecture could not be altered. Generating a new suite requires a
tremendous effort, and outweighed the potential improvement in energy efficiency that
might be achieved by modifying the core’s microarchitecture. Thus, only the physical

implementation of the processor core was optimized.

Before starting the design, an effective switched capacitance budget for the
core was set. The budget is in capacitance, and not energy consumption, because with
DVS the energy will vary with Vpp, but the effective switched capacitance will remain
roughly constant. A budget was necessary to speed up design time so that only those
blocks that significantly contribute to the total core capacitance were energy optimized.

The design optimizations utilized the circuit design methodology outlined in Chapter 6.

Previous analysis [burd94b] and discussion with ARM (regarding an ARM7
core) indicated that for simple, scalar processor cores, three blocks -- the register file,

shifter, and ALU -- contribute more than 50% of the total processor capacitance/cycle.

217

7.2 Microprocessor IC

However, the ARMS has a prefetch unit, whose additional complexity was estimated to
reduce the contribution of these blocks to approximately 33%. Energy-efficient - test
implementations of the three blocks in the target 0.6um process technology were
50 pF/cycle, which was then multiplied by three to get the budgeted effective switched
capacitance of 150 pF/cycle. This budget was believed to be an aggressive, yet

achievable goal.

Previous research has demonstrated that for a large enough sample of machine
code, there is little variance in the effective switched capacitance per cycle for scalar
microprocessors [peri00]. Since the test vectors for each of the sub-blocks originated
from machine code run on the entire core to thoroughly test the sub-block, the
capacitance/cycle measured for each sub-block executing its own test vectors, when
summed for all sub-blocks, should approximately equal the capacitance/cycle measured
for the entire core running typical machine code. This critical observation allowed each
of the sub-blocks to be optimized in isolation, greatly reducing simulation time, and
yielding an overall energy-optimized processor core because individual sub-blocks can

be simulated much faster than the entire processor core.

This is validated in Figure 7.9 which compares the measured capacitance/cycle
when simulating the entire core (black) versus when simulating an individual block
(white). All of the individual sub-blocks compare to within 20%, with the exception of
the last sub-block, the multiplier, because it is exercised much more heavily in the test
code than in typical machine code. The 20% maximum variation can be reduced to
approximately 10% if the global bus capacitance is modeled in the sub-block

simulation, which is not the case for the measured data in Figure 7.9.

To further speed up the design time, the schematics were first energy optimized
before the time-intensive task of committing them to custom layout. Figure 7.10
compares the measured capacitance/cycle for each sub-block when simulating the

schematic and extrasted layout netlists. The relative capacitances compare very well,

218

7.2 Microprocessor I1C

30
25 Entire
Sub-block

o «&— Only
S 20 .. Simulation
&)
B
a
B 15 4--
S
2

10 4--
&

5

0

Sub-block (29 total)
FIGURE 7.9 : ARMS Capacitance Comparison of Sub-block vs. Entire Core Simulation.

with the extracted netlist yielding slightly higher capacitance due to the inclusion of
interconnect capacitance. Only two blocks radically deviate, which are the register file,
due to the overestimation of drain capacitance on the bitlines, and the ALU/shifter, due

to a large number of busses adding significant interconnect capacitance.

40

35 4...]

30 4---

25 4---

20 +--

pF Switched per Cycle

15 1--

10 +--

Sub-block (29 total)
FIGURE 7.10 : ARMS Capacitance Comparison of Schematic vs. Extracted Simulation.

219

7.2 Microprocessor IC

In summary, the bulk of the design for energy optimization occurred while
designing the schematics for the various sub-blocks, which could be simulated
individually providing fast feedback on the measured capacitance per cycle. For those
sub-blocks that were below 3% of the budgeted capacitance (4.5pF), which were a
majority (18 of 29 sub-blocks), only obvious energy optimizations were made and the
schematics were quickly mapped to layout. This allowed more time to be spent on the
nine remaining blocks to be carefully optimized for energy efficiency, making the best
use of the design effort and yielding an overall energy-efficient processor core

implementation.

7.2.2.6 Core Energy Breakdown
A breakdown of the processor core energy consumption is shown in Figure
7.11. The numbers were generated from a 25,000 cycle simulation of typical machine

code on the extracted layout of the entire core. To ensure that this was a reasonable

Prefetch Multiplier

Scalar
Datapath
43%

FIGURE 7.11 : ARMS Energy Breakdown (Full Core Simulation).

220

7.2 Microprocessor IC

simulation, it was observed that the energy consumption is within 10% of the final
value in less than 10% of the simulation time. The simulation takes into account
processor core stalls due to memory system latency since the input vectors were
generated from a full system simulation. However, duripg this simulation, the processor
core is never put into sleep mode, and requires an average effective switched

capacitance of 187 pF/cycle while the processor system is active.

The breakdown demonstrates that the scalar core consumes 71% of the total
energy, split 60-40% between the custom-layout datapath and the fully synthesized
control logic. The prefetch unit consumes 27% of the total energy, split 70-30%
between the datapath and control, while the multiplier consumes only 2% of the total
energy for typical machine code. Among all sub-blocks, only six of them contribute
59% of the total capacitance/cycle, and it was on these six sub-blocks that a significant

fraction of the design time was spent.

The register file, ALU, and shifter combined contribute 54 pF/cycle, validating
the assumption in Section 7. 2. 2. 5, which estimated the capacitance at 50 pF/cycle,
and subsequently utilized to derive the capacitance budget for the entire core. These
three blocks’ capacitance/cycle is only 29% of the total (40% of the scalar datapath/
control) which validates the initial assumption that these three blocks would contribute

one-third of the total core capacitance budget of 150 pF/cycle.

7.2.3 Cache

For scalar processor cores, the cache typically dominates the total
microprocessor energy consumption. However, since there was complete freedom in the
design of the cache, this implementation was heavily energy-optimized, yielding a very
energy-efficient cache that consumes only about one-half of the core energy
consumption. The only constraint on the cache was that it should be unified, and

support two memory reads per cycle to accommodate the ARM8 memory interface. The

221

7.2 Microprocessor IC

size of the cache was chosen to be 16kB to maximize system energy efficiency (Section

5.3.1), and was solely limited by microprocessor die size.

The cache characteristics and policies were optimized for energy-efficiency as
described in Section 5.3, and summarized below:

* Associativity: 32-way. Each 1kB block has a 32 x 23 bit CAM for the tag lookup.

* Line Size: 32-bytes. There are 32 lines per 1kB block.

* Write Policy: Write-back. Main memory is updated only when a dirty cache line is
replaced in the cache.

* Write Miss Policy: No write allocate. Write misses are sent directly to external
memory, and are not placed within the cache.

* Replacement Policy: Round-robin. Successive lines in the 1kB block are chosen
for replacement upon a cache miss. A line will not be replaced until the 33rd
cache miss to a particular block.

* Double Reads: Two words may be returned in a single cycle if the address LSB is
0. If two words are requested and the LSB is 1, only one word is returned. After
the odd-address read, the ARMS prefetch unit will become even-address aligned
allowing subsequent double reads.

* Instruction Buffer: Each 1kB block has an implicit instruction buffer, though only
one is active at a time. Consecutive instructions that do not cross a cache-line
boundary can be made without activating the CAM, reducing energy consumption

by 50%.

Figure 7.12 shows the how the 32-bit address space is utilized. The cache is

physically addressed, eliminating the need for a translation look-aside buffer (TLB).

31 28 27 26 25 98 54 21 0
o Block | Line | Byte
} . Address Tag Index | Index |Offset

I-—Non-buﬁ’erable bit. When high, will bypass write buffer.

Non-cacheable bit. When high, will read/write directly to external memory.

Memory map bits. All zero is main memory. Non-zero is I/O and other memory space

FIGURE 7.12 : Address Space Breakdown.

222

7.2 Microprocessor IC

For embedded applications, a TLB is not particularly useful since embedded systems
generally do not have a larger, secondary storage unit (e.g. disk drive) which requires a
TLB to map it onto the smaller physical memory. Since a TLB also provides separate
address spaces to prevent memory conflicts, the lack qf one in this system forces the

operating system and/or programmer to ensure no memory conflicts exist.

7.2.3.1 Cache Memory Array

As a compromise between energy consumption and silicon area (as described
in Section 5.3.2) the basic block size was set to 1kB, and replicated 16 times to form the
cache memory array as shown in Figure 7.13. Due to the large size of the cache, which
fills approximately 60% of the chip, careful attention had to be paid to routing of the

busses, control signals, and power lines.

Power/Ground (shaded)
."'"“"“'"""'""""f*'.:~"'/""f'-""""""'"""":
: IKB NE :
' —zly|yl——— . R /1 Lot - '%
: Write | —4|H Bus ':5"
: Buffer Cache Interface] S
: g : |Controller § 2
. R 29

To ARMS Core To ARMS Core

FIGURE 7.13 : Cache System Floorplan

The shaded areas indicate where power and ground are routed, which use
Metal2 & Metal3. Metall is used to connect up the bypass capacitance sitting under the
power routes, which totals 11.7nF for the entire array. The left, right, and top sides of
the cache abut the pad ring, providing low impedance from the power pins distributed

around the periphery to the entire cache memory.

223

7.2 Micreprocessor IC

The switching activity of the three cache busses was analyzed to calculate the

total effective switched capacitance per cycle, as shown in Table 7.1. The capacitance
| on WData is negligible, due to the low ratio of processor writes to reads, and the high
correlation in the data being written. The capacitance on VAddress and RData, however,
is significant (2.2% and 8.1%, respectively, of the total chip’s capacitance/cycle
budget). By inserting a bi-directional switch on VAddress and a uni-directional switch
on RData, only half of the cache toggles per cycle, reducing the capacitance/cycle by
2.3pF (-0.8%) and 6.5pF (-2.2%), respectively. By buffering up the signal on either half
of the cache, the capacitance that each block’s outputs have to drive is reduced 60-75%,
such that much smaller drivers can be used. The speed-up of driving less capacitance
offsets the two-gate delays contributed by the insertion of the switches. To lighten the
load on the Match and Dirty output signals, they too have unidirectional switches,
reducing each block’s output capacitance that it has to drive by 60%.

TABLE 7.1 Cache Bus Switching Activity and Effective Switched Capacitance.

. Toggles Capacitance per Bit Total Bus
Bus 0-1) Capacitance
percycle | Half Cache Global Total per Cycle
VAddress 1.95 1200£F | 900 fF 3300 fF 6.4 pF
Wdata 0.15 600 fF 840 fF 2040 fF 0.3 pF
Rdata 6.50 1000 fF 1750 fF 3750 {fF 244 pF

Thus, through simple high-level simulation and energy analysis, more than 3%
of the total microprocessor’s energy consumption was reduced with the addition of

these simple switches.

7.2.3.2 Cache 1kB Macro

The 1kB macro builds upon a previous energy-efficient SRAM design
[burs97], which was ported from a 2-level metal process to a 3-level metal process. The
additional metal layer was used to provide much better power distribution and reduce

the capacitance on the bitline.

224

7.2 Microprocessor IC

The architecture of the macro is shown in Figure 7.14. On the left side is the
CAM array which contains the 23-bit address tags for the 32 cache lines. Upon a cache
read, prematch[31:0] is precharged and the 23-bit address tag is passed into the CAM
array, described in further detail in Section 6.2.2. If the n-th tag in the CAM array
matches, the prematch[n] signal remains asserted while all the other bus signals are
pulled low. The CAM state latches block contains the valid state bit for each of the 32
CAM tag addresses. The asserted prematch/[n] signal is AND-ed with its corresponding
valid state bit to indicate whether a valid match exists, and if so, the signal match/n]
gets asserted as well as the global Match signal which is sent to the cache controller.

This indicates the desired cache line is present in the block.

J/O to 1kB Macro Block
F) s =
= 9 = ¥) S 8
T SS8e s 2 7 T 3
8 SIIE 388 § g 8 3 3
3 ~EEEEp 3% 8 3 § § 3
< ORdiacs s QU= =Q < - Q]
A
vy i;w 1R K] %l l I
s) 4
CAM Cam SRAM
5 2 2 1| A
. “7 Amy [7™ State r? 7 Array > Y
Controller Controller (24N Controller ;}_'
‘ ecoaeh
[ik
|1 11 2
sp I5p
y) 4
23bx 32
CAM 32bx2 x 128
Array SRAM
Array

FIGURE 7.14 : Cache Memory 1kB Macro Architecture.

The match[31:0] bus gets latched for subsequent sequential cache reads. The

matchS[31:0] bus is demultiplexed by Address[4:3] to select the desired word-pair of

225

7.2 Microprocessor IC

the cache line, and drives the corresponding word[m] signal into the SRAM array. For a
cache read, the two 32-bit data words corresponding to word/m] are read from the array,
and Address[2] drives the column demultiplexer to select which one of the two words to
place onto DataOut[31:0]. A cache write will take the data off Dataln[31:0] and write
it to the desired location in the SRAM array. The schematic of the SRAM array cell,

column decoder, and sense-amp is described in Section 6.2.1.

During a cache read, if the global Match signal remains low, indicating the
cache line is not present in the block, then the cache controller looks at the global Dirty
signal. Dirty is set at the end of the match operation if the next location to be replaced
in the CAM has been written to in the cache and needs to be updated in main memory
before replacing. The next location is determined by the line pointer array block, which
is a circular chain of 32 latches, and gets rotated when a new cache line is written to the
macro block. If the cache line is dirty, then the cache controller reads the address tag
out of the CAM array, and then its corresponding cache line, which is then written to
main memory. To place new data into the cache, the cache controller first writes the
new address tag to the CAM array, and then subsequently, the eight data words

corresponding to this cache line.

Because matchS[31:0] latches the last cache line that matched, subsequent
cache accesses, which are sequential and do not wrap to the next cache line, do not need
to access the CAM. Instead, the cache controller increments the cache-line index bits
Address[4:2] appropriately, and matchS[31:0] drives the desired word[m] line to access
the SRAM array.

7.2.3.3 Cache Controller
The cache controller state diagram, shown in Figure 7.15, contains 30 unique
states. It is the central controller for the entire cache system, driving not only the 16kB

cache memory, but also routing data to the write buffer and to/from the external

226

7.2 Microprocessor IC .

.gelectl high
fio B sgl‘;k yb . »
byte wrise Initsingle -

(o e
.Zelectl low core
i ; :gegk% EmptySlot=0

byte write

Init single
LO writ
write

&
e

FIGURE 7.15 : Cache Controller State Diagram.

interface. The bulk of the states are required to manage the cache memory, which
include writing dirty cache lines to main memory, reading in new cache lines, flushing
the cache memory, and performing read-modify-write operations to support the ARMS’s

byte and half-word operations.

227

7.2 Microprocessor IC

To demonstrate the timing of the cache system, a timing diagram for a double-

read to the cache is shown in Figure 7.16. The ARM8’s address and control .signals
| arrive at the cache controller during the Phi2 clock phase. The cache controller must set
both the correct block enable signal and the macro block control signals by the end of
the Phi2 clock phase, so that they are stable when the CAM is accessed in the Phil
clock phase. The cache controller must always return a response to the ARMS8 by the
end of Phil. If Match remains high, then the cache line was found in the macro block,
and in the subsequent two clock phases, data is returned to the ARMS8 via RData. If

Match goes low, then the cache controller will lower Confirm (not shown) in the next

CAM Access SRAM Access
. setup : access ' wordl : word2

PClk Phi2 Phil Phi2 Phil |
VAddress —E—Q)
ARegquest, : (‘, \ ARMS -> Cache
RRe‘i]uuest , _/ Controller Signals
Macro Block
BlockEnable[n] \ Enable Signal

SamelLine, RamAcc,
nWrite, Double,
CacheFill, nFlush

Cache Controller ->
Cache Macro Signals

~N

T I N U N D N N M

soeeme|leersenadeacanceechbecccadecnajenaaasa

Match, T T Cache Macro ->
Dirty Lad Cache Controller
AResponse, ﬁ \ Cache Controller ->
RResponse iy / ARMS Signals
E / Cache Macro ->
RData A\ X ARMS Data

If Match goes low, then ARM8 \

is halted, and Cache Controller Next CAM access can
Initiates a new Cacheline read begin here in Phi2
Jfrom main memory. Jor one access/cycle

FIGURE 7.16 : Cache Memory Timing for a Cache Double-Read Hit.

228

7.2 Microprocessor IC

Phi2, which will gate the clock to the ARMS8 core while the cache system fetches the
desired word. In the meantime, the cache controller loads in the desired cache line from

main memory, and if Dirty was also low, then it writes out the old cache line back to

main memory.

7.2. 3.4 Cache Design Optimizations

The cache controller’s control signals to the write buffer, bus interface, and the
ARMS8 core are dependent upon whether the Match signal, which is output by the
activated cache macro block, is high or low. The signal is not available until late in
Phil, and created a critical path for generating these control signals, which must be
available at the beginning of the next Phi2. All possible cache accesses were analyzed
with the C simulator and categorized as either common cases or rare cases as shown in
Table 7.2. To reduce the critical path, an extra cycle delay was added to the state
machine for the rare cases, in order to reduce the loading on March and speed up the
critical path.

TABLE 7.2 Categorization of Cache Access Types.

Common cases requiring optimization:

Rare cases which could be slowed down:

———

1. Cache read hit (single & burst)

1. Non-cacheable burst reads

2. Non-cacheable single read

2. Cacheable/ bufferable write miss (single & burst)

3. Cache read miss (single & burst)

3. Cacheable/ non-bufferable write miss (single & burst)

4. Cache write hit (single & burst)

5. Non-cacheable/bufferable write (single & burst)

6. Non-cacheable/non-bufferable write (single & burst)

Byte and half-word reads are rotated by the core. Byte and half-word stores
must be rotated by the memory system. Since the cache controller only consists of
standard cells, the datapath logic to do this resides in the bus interface, where the
RData and WData busses are readily available. However, this datapath logic is directly
controlled by the cache controller. Writes to memory locations present in the cache

memory require one stall cycle so that a read-modify-write can take place, as shown in

229

7.2 Microprocessor IC

the timing diagram in Figure 7.17. The original data word is read from the cache

memory, and latched from RData onto RDataT2. The byte or half-word to be written is
| latched off of WData onto WDataTl, then merged with the saved data on RDataT2 and
placed back onto WData where it can be written to the cache memory. Write misses are
sent as byte writes to either the write buffer or the bus interface. Because the external
SRAM and I/O can only operate on words and bytes, two cycles are required for half-
word write misses, in which WDataT! is used for temporary storage, in order to split
the half-word into two byte writes. When Confirm goes low, the ARMS core is stalled
for either one or two cycles depending upon whether it is a byte or half-word write.

write write
request stalled write request stalled byte0 bytel

PClk
Confirm \ l / \ | 1/
! | 1
VAddress —< > | D>
1
WData—(byte0X| bytel

WDataTl 3—————(/7 >—__
m
R RN
Rpatatr———_ T >
Byte/Halfword Halfword
Cache Writes Write Misses

FIGURE 7.17 : Timing for Non-word Writes to the Cache and Main Memory.

7.2.3.5 Cache Energy Breakdown

As shown in Figure 7.18, half of the energy consumed by the cache occurs in
the SRAM component of the cache memory. For a single cache access in which the
CAM is activated, the CAM consumes 60% of the energy consumed by the SRAM. But
with the virtual instructions buffers, activation of the CAM is suppressed for sequential
instruction fetches, reducing its average energy consumption to 20% of that of the

SRAM. The busses consume 25% of the total cache energy, and includes the energy

230

7.2 Microprocessor IC

consumed by the address buffer. Finally, the cache controller consumes 15% of the total
cache energy. On a cycle-by-cycle comparison, the cache consumes 63% of that

consumed by the ARMS core.

Cache
Controller
15%

SRAM
50%
0
Q
=
2%
O
Total energy
compared to
ARMS core

FIGURE 7.18 : Cache Energy Breakdown.

7.1.4 Write Buffer

Since the external bus multiplexes address and data onto the same bus, the
write buffer stores both the address and data in a single register file, as shown in Figure
7.19. The multiplexed architecture allows either one cache line and one store, or up to
six single-word stores. In addition, the buffer can store a variable-number of multiple
words per single address for the Store Multiple (STM) instruction. If the STM words

cross over a cache-line boundary, the beginning address of the second cache line is

Latches 1485 g
- —- IsAddress E

g 3|3sbx12 [ThBre g
£ RData 1" Register [~ IsLast g
v WData —-I —
8
g VAddress ——[A_——-J 12 entries
=

FIGURE 7.19 : Write Buffer Architecture,

231

7.2 Microprocessor IC

placed into the buffer to align the external memory access on a cache-line boundary.
This is required to ensure that the store does not cross over multiple external SRAMs,
which the bus interface cannot support. Simulation demonstrated that given the system
architecture, any more than twelve buffer entries yields negligible performance

improvement.

The register file is 35 bits wide. The additional three bits are tags used to
indicate if the entry is an address (Isdddress), if it is the last data word (JsLas?) or if it
is a byte-wide store (IsByte). The three busses of the cache subsystem (VAddress/
Wdata/Rdata) are latched and multiplexed going into the register file. The latches are
required to provide enough setup and hold time for the register file, with two latches
required for RData because when reading out a line from the cache memory, two words
are returned per cycle. The address/data words are placed onto WBOut and sent to the

bus interface, under its control.

An out-of-order write buffer requires hardware to compare the address of a
pending read to all the addresses stored in the write buffer to ensure memory
consistency. The buffer control was significantly simplified by enforcing all external
memory accesses to be in order; before any external read request, the write buffer is
first flushed out. The exception to this rule is cache-line reloads, which are guaranteed
not to have the same address between the cache line being written out and the new line
being read in. Providing this exception reduces the latency to complete a cache-line

reload by a factor of two.

The input to the write buffer is controlled by the cache controller via four
signals, shown at the bottom of Figure 7.20. The LoadWord signal is utilized to enable
the write buffer, while the other three signals are decoded to determine which bus to
latch (LoadDirect), which word is the address (LoadAdd), and which data word is the
last one (LoadLast). The timing on the input busses was dictated by the ARM8 memory

interface, and the timing of the cache memory.

232

7.2 Microprocessor IC

] 1 ' s 0 ' ['

VAddress ———<:/ f : : " f 4) Cache-line
RData ——— 0000000 il

_A Indlcates when data is latched

VAddress _D : (and must be valid)

. Direct write

PClk B

n ~ - - =~ r—\\ ’f—'\\
N N7 N7
mata ——@“ 7N 7N s N ‘
- - o N — - - - A

STM Write

LoadDirect £ ’—'\'\ """"""""" "\\
Cache-line s s .
Write Direct write _— — STM write - - - -

FIGURE 7.20 : Write Buffer Timing.

7.2.4.1 Energy Consumption

For single writes (STR), the effective switched capacitance is 63 pF/word

(from simulation on extracted layout), and 26 pF/word for multi-word stores (STM).

The only instructions which use the write buffer are non-cacheable stores and stores

that take a cache miss. Since stores are approximately 10% of the instruction mix, the

write buffer contributes 1.3 pF/cycle, on average. Read cache misses may also enable

the write buffer, but only if the cache line is dirty, and switch 110 pF/cacheline.

However, this condition occurs well under 1% of the time, so the overall contribution is

less than 1 pF/cycle, on average. Thus, the write buffer consumes less than 1% of the

total processor chip energy consumption.

7.2.5 Bus Interface

The primary responsibility of the bus interface is to connect the processor

233

7.2 Microprocessor IC

clock (PClk) and bus clock (MClk) domains. The bus interface also includes the
components to enable byte and halfword writes, as shown in Figure 7.21. Reads from
external memory typically take many cycles to complete, and will stall the ARMS core
and/or cache system until the external access has completed. Since the prototype
processor is an in-order machine, there is no reason to provide buffering for reads to
allow the core to continue operating, since it must wait for the pending word to
continue. With a separate write buffer, there is no need to provide additional buffering
within the bus interface, such that the bus interface complexity is reduced to a four-to-
one multiplexer, four registers, and enabled buffers to drive the cache-system busses.
Used for byte and

half-word writes,

Byte |<“and managed by the
Rotator | cache controller
3]

s
) g @
g &
= Rafanticl
1k :
Q 1] *
&lﬁ & B3
Q o 3
'§§ RData‘§2 rm I— § % 4
E-g WData <z ' "B S outPBus O
& VAddress — > =
= 3 ﬁ
'ga
3% WBOIJi?z
) . . .
B Processor Clock Domain (PClk) Bus Clock
Domain (MCIk)

FIGURE 7.21 : Bus Interface Architecture.

The bus interface talks to the cache controller, and the core via the controller,
on one side of the interface running at the processor clock speed (PCIk). The other side
of the interface communicates with external memory at the processor bus clock speed
(MClk). The MClk speed is programmable via the system coprocessor, and can operate
at a 2x, 4x, or 8x multiple of PCIlk. Initially there was a 1x option, but the additional

hardware to support this was not warranted given the marginal performance

improvement achieved.

234

7.2 Microprocessor IC

The state machine controlling the bus interface is relatively simple, as shown
in Figure 7.22. If the state machine is idling, it services the write buffer if it is not
empty. Otherwise, it services I/0 requests from the cache controller. Maintaining this
order ensures memory consistency. Otherwise, read requests from the cache controller
would have to be matched against pending writes in the write buffer, at the expense of
significant hardware complexity. Simulation demonstrated little performance
degradation by enforcing this order to eliminate the extra hardware. The only instance
when the cache controller takes priority over the write buffer is for a dirty cache-line
load, in which it is guaranteed that the outgoing cache line is not the same memory

location as the incoming cache line.

(aBufferEmpty || PriorityRead)

PRegPCT2 && @
nBufferEmpty 8& PReqPCT2
InitRead &8 TntWrite OutReady &&

("BufferEmpty || PriorityRead) @
Addr passed to bus &b InitRead "Mm&& nBuffer Empty 3

PnoncvRead
ADDW ADD

InitRead

OutReady &&

outReady => outReadyPCT2
inReady => inReadyPCT2

FIGURE 7.22 : Bus Interface State Machine.

All bus transactions must complete before moving onto a new transaction. The
state machine operates at PClk speed, and sends signals to the bus-side logic via a
simple handshake scheme that is independent of the phase difference between PClk and
MCIk. If the PReq signal is asserted by the I/O chip, indicating a pending direct memory

access (DMA) request, the state machine hands off control of the bus after completing

235

7.2 Microprocessor IC

all outstanding bus requests. The I/O chip can then directly access main memory. The
processor core can continue to run, but if it attempts to access the bus, or attempts to
write to a full write buffer, then the core will stall until the I/O chip releases ownership

of the processor bus.

7.2.5.1 Clock Interfacing

MClk is derived from PClk using a selectable frequency divider consisting of
three flip-flops and a multiplexer, which introduces some phase shift. The MCIk signal
actually used is a buffered version of the signal off the external clock pad, which
ensures that the processor chip, memory chips, and I/0O chip all operate with an MClk
that has minimum relative phase shift between the chips. This improves the robustness
of the signal timing on the external processor bus. This buffered MClk signal introduces
additional phase shift with respect to PClk, but a self-timed handshake scheme allows

proper operation of the bus interface independent of this phase shift, as well as ¥p.

Core->Bus: The state machine changes state in Phi2 of PCIk, and all signals
going to the external bus are derived from the machine state and other Phi2 signals. On
the falling edge of PClk, the control signals are latched, and the signal outReady is
asserted via an RS latch, with some delay. The outReady signal is then latched when
MClk is low, generating outReadyMCTI, to ensure a stable signal when MClk is high.
Upon the next rising edge of MClk, if outReadyMCTI is high, the output data is latched,
placed on outPBus, and sent directly to the processor bus pads. At the same time, the
bus-side logic drives outReady low via the same RS latch, and outReady is latched on
the rising edge of PClk to generate the signal outReadyPCT2. This signal is used by the
state machine to either wait, or pass new data to the processor bus. When outReady and
MClk are coincident in time, if the bus-side logic detects it is high, the additional delay
generating outReady will ensure the processor-side data is valid. Otherwise, outReady
will not be detected until the subsequent rising edge of MClk. The signal outReadyPCT2
can stay high for up to one PClk cycle after the rising edge of MCIk, but since the

236

7.2 Microprecessor IC

lowest clock ratio is 2x, the core-side logic will set up the next data element in the
second cycle, and be ready for the next slot on the processor bus: Hence, the state
machine at all times will be able to maintain maximum throughput on the external
processor bus. The timing for when the edges are coincident are demonstrated in

Figure 7.23.

PClk
ControlSigsC2, __l<
muxBus

ControlSigsT1, / /
outPBusPCD1

outReady

~~
|

Y

delaye

(

MCik

N
L]

outReadyPCT2

PBus
BusControl

FIGURE 7.23 : Core-side to Bus-side Timing.

I

Bus->Core: This case is similar to the previous one, in which all outgoing
processor bus requests get latched on the falling edge of PCIk, and latched on the next
rising edge of MClk when outReadyMCTI is high. There is an additional signal that is
sent to tell the bus-side logic to latch the external processor bus on the falling edge of
MClk. When this occurs, the signal inReady gets asserted via another RS latch, which is
latched on the next rising edge of PClk to generate the signal inReadyPCT2. Again,
additional delay is placed on the inReady signal to give the latched data enough time to
settle. The signal inreadyPCT2 is then used by the state machine to latch the data taken

of the inPBus bus, and send it off to the cache or processor core.

It is possible, if the outReady signal is exactly coincident with the rising edge
of MClIk, for it to be detected some cycles, and not for others. This has the potential of
placing a bubble on the bus if a missed cycle follows a caught cycle, leading to an

invalid bus operation and possible system failure. To prevent this, an additional signal

237

7.2 Microprocessor IC

can be utilized to shift MClk an additional eight gate delays. This will eliminate the
coincidence, thereby eliminating the coincidence. Fortunately, this feature was- not

required for correct operation of the prototype processor system.

7.2.5.2 Energy Consumption

Due to its simplicity and infrequent use, the bus interface has very little energy
consumption, on the order of 1-2% of the total processor energy consumption. However,
this does not include the bus drivers located in the chips pads, which consume
considerably more energy due to the large capacitance on the external bus, on the order

of 5-10% of the total system energy consumption.

7.2.6 System Coprocessor

The system coprocessor is a standard component of an ARM-based
microprocessor system, and is commonly found in some form in most other
microprocessors as well. It is responsible for system-level control functionality which
is independent of the processor core, as well as configuring the specifics of the

processor core.

The coprocessor operates lock-step with the ARMS pipeline, but with a half-
cycle delay as shown in Figure 7.24. For example, the coprocessor’s CDecode stage
starts on the rising edge of PClk in the middle of the core’s Decode stage. All
instruction fetching is performed by the core, so the coprocessor has no fetch stage.

There is also no memory stage since the coprocessor cannot directly access memory.

PClk
Instruction 1: G"elch IDecode ExecutelMemoryI Write '
Coprocessor: @Decode CExecutg CWritEj

FIGURE 7.24 : ARMS Coprocessor Pipeline.

The ARMBS interfaces to the coprocessor via three busses. The pre-decoded

coprocessor instruction is placed onto the Clnstruct bus in the first half of the

238

7.2 Microprocessor IC

processor’s Decode stage so that it is available on the rising edge of the clock. On this
edge, the coprocessor enters the CDecode stage in which the coprocessor instruction is
decoded. The coprocessor then proceeds with its three-stage pipeline, as shown in
Figure 7.24. Reads from the coprocessor to the ARMS8 are performed via the CData bus.
which is driven during the CExecute stage so that data can be written to the ARMS8’s
register file in the second-half of the Memory stage. Writes to the coprocessor are done
by placing the data value on VAddress during the Memory stage, which makes the data

available to be written into the coprocessor’s register file during the CWrite stage.

The system coprocessor is comprised of various counters and registers
containing special state variables. While the block appears logically like a register file,
it could not be implemented as such due to the heterogeneity of the registers; some are
read-only counters while other are read-write registers. Also, on many of the logical
read-write registers, many of the bits are hard-coded to zero. The implementation used a
shared bus architecture, with separate input and output ports. Table 7.3 lists all the

registers of the system coprocessor, which is logically organized as three separate

COprocessors.
TABLE 7.3 System Coprocessor Register Summary
Reg# Coprocessor 13 Coprocessor 14 Coprocessor 15

0 JAccess Cycle Count (RO) Real Time Counter Low (RO) |MMU ID (RO)
1]Idle Cycle Count (RO) Real Time Counter High (RO) |System Control
2 |Sleep Cycle Count (RO) Timer Interrupt
3 }Wait Cycles (RO) Interrupt Suspend
4]Hit Count (RO) Internal Dynamic Clock Speed not used
5 |Cached Miss Count (RO) External Pin Control
6] Cache Writeback Count (RO) jHw. Control Tweaks
7 |Uncached Access Count (RO) jInstruction Count (RO) Cache Operations (WO)

7.2.6.1 Coprocessor 13

This logical coprocessor only consists of read-only counters. Four of the

counters (register 0-3) are used to monitor processor operation. One counter records

239

7.2 Microprocessor IC

cycles that the processor core is making a memory request (Access); another tracks
when the core is active, but has no memory request (Idle); a third tracks when- the
processor is asleep (Sleep); and the last one tracks when the core is stalled waiting on
the external bus to complete a transaction (Wait). Another fou;' counters (register 4-7)
monitor cache operation by recording the number of cache accesses that are hits,
misses, dirty cache-line writebacks, and uncached accesses. These eight counters can be
utilized by the operating system to adjust processor performance depending upon how
the processor is being utilized. For example, if the processor spends a significant
amount of time stalled, then processor speed can be reduced because the performance

bottleneck is in accessing I/0 data.

7.2.6.2 Coprocessor 14

Registers 1 and O are read-only, and form a 64-bit real-time counter whose
value is in microseconds. When writing to register 2, any pending timer interrupt is
cleared, and a new timer value is set, also in microseconds. When reading this register,
the next timer event is returned. The processor enters sleep mode when register 3 is
written to. The processor will remain idle until the next interrupt occurs, either due to
an external event or due to the timer. Reading register 3 returns the current state of the
interrupt lines as indicated in Table 7.4. The EnIRQ bit as specified indicates a pending
IRQ request from an external source, while the nTIQ line indicates a pending timer
interrupt from the internal timer. The EnIRQ and nTIQ lines are merged into a single
signal, nIRQ, which is then sent to the ARMS core.

TABLE 7.4 Interrupt Information Bitmap. (CP14R3)

31-10 9 8 7 6 5-0
X nTIQ | EnIRQ | nIRQ | nFIQ x

A write to register 5 sets two target internal dynamic clock speeds: one for
normal operation, and one for interrupts as shown in Table 7.5. The special interrupt

clock speed can be enabled/disabled with a separate control bit for both JRQ and FIQ in

240

7.2 Microprocessor 1C

C15R1. Upon writing to this register with no pending interrupts, the desired clock value
is sent to the regulation system via the regulator interface (Section 7. 2. 6. 4). When
either an FIQ or IRQ arrives (and the corresponding mask bit is enabled in C15R1), the
interrupt clock speed is sent to the regulation éystem. Also, upon de-assertion of the
interrupt, the normal clock rate is sent to the regulation system. Reading this register
returns the current sampled processor speed, which is not necessarily the same value
written. This allows the operating system to get feedback from the voltage converter
loop to ensure that it is delivering the target frequency.

TABLE 7.5 Clock Speed Write Bitmap. (CP14R4)

31-15 14-8 7 6-0
ignored interrupt clock speed ignored normal clock speed

The lower three bits of register 5 controls the state of four external pins. There
is no other effect of writing to this register, and thus it is the recommended register to
use when NULL coprocessor write operations are required. A read from this register
returns the last value written. Register 6 controls both the external bus clock ratio
(bits 6:5), and the fine-tuning for the VCO (bits 4:0), which is described further in
Section 7.2.7. The bus clock ratio can be set to 2x (10 or 11), 4x (01), or 8x (00).
Register 7 is a read-only register which maintains a count of the number of instructions

executed since processor start-up.

7.2.6.3 Coprocessor 15

Coprocessor 15 contains standard register definitions in ARM implementations
[arm96a). However, omnly those registers that pertain to the prototype system
architecture were included; the registers that control a translation look-aside buffer
(TLB) were not implemented due to the lack of a TLB in the prototype system.
Register 0 is read-only and always returns the hexadecimal value 0x42018110, which
specifies the implementor, 0x42 (‘B’ for Berkeley), the architecture version, 0x01, the

part number, 0x811, and the revision, 0x0.

241

7.2 Microprocessor IC

Register 1 is the system configuration register, whose 15 standard bit mappings

are described in Table 7.6. Those bits which apply to the prototype are in bold. The C,
. and W bits effect the function of the cache memory system. The B and Z bits are fed
back into the processor core to alter core functionality. The A bit is sent to the cache
controller to alter response to non-aligned memory accesses. All others bits are read as
0 or 1, and are unalterable.

TABLE 7.6 System Configuration Register Bitmap. (CP15R1)

31-15 J 1411312111 (10{ 9|8 |7 |6|5]|4]3]|2]|11]0
Name notused (IE|\FE| I |Z|F|R|S|B|L|D|P|W|C|A4A|M
Initial Value | O.......... ojlojoj|jo|o0jo0ojojOojoOofO]|1]l1]O0}O0]l0O]1
A: Alignment Fault Enable
C: Cache Enable
W. Write-buffer Enable
Description B: Big Endian Select (else Little Endian)
Z: Branch Prediction Enable
FE: Enable different clock speed for FIQ (set with C14R4).
IE: Enable different clock speed for IRQ (set with C14R4).

Writing to register 7 will flush, or clean, cache blocks. The Flush operation
will invalidate the entire cache. The Clean operation writes out data at the specified
address if it is dirty. The entire cache can be cleaned by stepping through all 512
cachelines. These operations also require subsequent writes to the NULL coprocessor
register (CP14R5) to work properly with the cache system. The code sequences are
shown in Table 7.7.

TABLE 7.7 Cache Control Operations. (CP15R7)

Function opcode_2 value | CRm value | Data Instruction
Flush ID cache(s) 000 0111 SBZ |[MCR pl15,0, X, ¢c7,¢7,0
MCRpl4,0,X,c5, X
Clean ID single entry 001 1011 VA [MCRpl15,0,Rd, c7, cl1, 1
MCR pl4, 0, Rd, c5, X

(SBZ = Should Be Zero, VA = Virtual Address, X = don’t care)

7. 2. 6. 4 Regulator Interface

In the prototype processor, the system coprocessor is also responsible for

242

7.2 Microprocessor IC

interfacing with the separate regulator chip, when the conditions for changing the
processor frequency occur (Section 7. 2. 6. 2). The interface is synchronized to the
regulator chip with the 4 MHz clock signal, and transmits the new seven-bit digital

frequency value serially, in order to reduce the pins required.

Once the regulator has received the new frequency value, and begins adjusting
Vpp and the clock frequency accordingly, further frequency change requests must be
blocked until the regulator has reached steady-state. However, it is not necessary to do
this on the processor. On the DVS chip, new request are denied as long as the internal
Track signal is high, which indicates that the converter is currently changing Vpp, so
there is no need for flow control from the converter chip back to the processor. Hence,
the only time new requests will be blocked by the interface is when there is a currently

pending transaction being serially transmitted.

7.2.6.5 Energy Consumption

There are three different processor operating conditions to consider when
analyzing this block’s energy consumption: Active (processor is active), Wait
(processor is stalled on a memory access), and Sleep. The first is not critical, since the
energy consumed by the processor core will dwarf that consumed by the coprocessor.
The second is not critical either, due to energy consumption in the cache subsystem
which dominates any energy consumed by the coprocessor, and because the energy will
be the same between the Sleep and Wait modes. The Sleep mode is most critical since
this is the lowest energy mode, with energy consumption dominated by the coprocessor
and the global clock distribution, as shown in Table 7.8.

TABLE 7.8 Estimated Processor Capacitance/cycle by Operating Condition.

Mode Coprocessor ARMS Cache System

| Active 6.3 pF 200 pF 125 pF

Wait 4 pF 40 pF
3pF

Sleep 4 pF 3pF

243

7.2 Microprocessor IC

Thus, the system coprocessor’s circuits which are always active (e.g. real-time
counters, interrupt controller, etc.) were optimized to minimize their -energy
consumption, which was reduced to 30% of the total energy consumed by the processor

while in Sleep mode.

71.2.7 VCO

To accommodate process variation over the die, as well as simulation error, the
oscillator was designed to be programmable from 50% to 150% of nominal frequency
with five bits of control. The frequency control is designed to be glitch-free so that it

can be programmed via software through a register in the coprocessor (CP14R6).

The basic oscillator architecture, shown in Figure 7.25, consists of five binary-
weighted delay blocks, plus a return path to close the loop. Each of the dela.y blocks has
both a slow and fast path which is selected by the ctrifn] signal. A new value for this
signal may be loaded when the trig/ signal transitions low-to-high. By ensuring that the
pass gates in the basic block have switched by the time zrig2 transitions low-to-high,
the oscillator will change frequency glitch-free. At system start-up, the VCO operates
in its slowest mode (e.g. highest voltage for a fixed frequency) to ensure proper

operation. In the initial boot sequence, the operating system can measure how fast the

ctrl
Basic . pm out
Block " ’ [[cﬁ]_%
ctrl

ctrl[4:0]
3 3 3 3 3

Delay4 {+{ Delay3 [+{ Delay2 [Delayl || Delay0 ferk

\

Full
yCco

trigl

trig2

FIGURE 7.25 : VCO Architecture.

244

7.2 Microprocessor IC

VCO can be operated at, and set it accordingly.

The hardware was stepped from 5 MHz to 80 MHz in 5 MHz iﬁcfements, and
at each step, the ring oscillator’s control bits were decreased until processor failure.
Decreasing the control bits had the effect of decreasing supply voltage, since the
converter loop maintains constant clock frequency. The minimum control setting to
prevent processor failure was exactly the setting for nominal frequency at all frequency
values, with the exception at 5 MHz, at which speed the control could be decreased by
one LSB from nominal. This demonstrates that the critical paths of a CMOS processor

do track extremely well over a wide range of voltage.

7.2.8 Packaging and Chip-Level Design Issues

The microprocessor die was placed into a 132-pin QFP package. There are 77
signal pins, with 56 pins required for the processor system bus including 17 pre-
decoded chip-enable signals for the memory chips (CE[15:0]) and the interface chip
(IOCE). Thus, no external decoding circuitry is required, as the processor can be
internally configured for 1-16 32kB, 64kB, or 128kB memory chips. Additional signal
pins include four pins for the regulator chip interface, two pins for the external interrupt
lines from the I/O sub-system, one pin for an initial reset by the regulator, one pin for
an external reset signal, and one pin for the reference clock signal used for the internal

counters. Twelve more pins are used to provide debug support.

There are 55 power pins, with 28 for ground, 16 for the variable processor core
voltage (Vpp), ten for the variable I/O circuit voltage (Vpps0), and one for the battery
voltage (V547). Although separate ground lines for the core and I/O circuits would have
been preferable, in order to isolate the core from the noisy I/O circuits, the low-
impedance substrate in this process makes this unfeasible. The battery voltage is
strictly used to provide electro-static discharge (ESD) protection on those input pins

whose signal level is Vp 1

245

7.2 Microprocessor IC

The complete processor chip pad breakdown is given below.

TABLE 7.9 Processor Chip Pad Breakdown (132-pin QFP package).’

Signal | i/o | Pads | Supply Description Pin Number(s) Imax

1,7,11,16,19,23,28,31,39 —

g |2 Single gomd | 4 02106,110,15,
118,125,129

y Core voltage 9,21,33,37,49,60,70,74,

DD 16 (1.2-3.3V) 79,89.,96,100,108,120,

127,131

Yoio 110 1O voltage 4,14,25,35,45,84,94,104,113,

, (1.2-3.8V) 122

Vaar i1 High-V ESD (4V) | 59 .

MClk o |1 Vopio 126 50 mA
50,48,46,44,43,41,40,38,36,

PR |io |32 | Vooio IBATIS 3121086550, | $mA
132,130,128

Write ot |1 Vopio 124 33mA

Byte ot |1 Vopio LPARM 123 33mA

Burst ot |1 Vppro Processor Bus 121 33mA

PReq i 1 Vopro 119 o

nMREQ |o |1 Vopio 116 33mA

PWait i 1 Yopro 117 s

& [o |15 | Vouo Fhraenn

IOCE 1 Vopio 114 33mA

PClk o |1 Vop Clock output 69 50 mA

PwrGood | i 1 Vpar Reset from converter | 58 o

nRst i 1 Vaar External hard reset | 61

FIQ i |1 V3.3 Interrupts. Input from | 62

IRQ i |1 Vs Xilinx (3.3V) 63

RefClk |1 |1 Vaar 1 MHz, for timers | 66

ClkdM |i |1 Vaar 4MHz, forDVS | 67

LoadMd |o |1 7 , 71 10 mA

Daad | o |1 oD DVSinterface 1= 10mA

ExtClk i |1 Vpar External clock input | 56

EnExtClk | i 1 Vear (for debug) 55

SWCE i |2 Vaar 53, 54

ExtPins |o |4 Vopio 78, 80, 82, 83 33mA

Confirm o |1 Vopro L 76 10mA

Stall o |1 Vopio Debugging pins = 10mA

EnSpec i 1 Vaar 65

ShMCIk |i |1 Vear 51

246

7.2 Microprocessor IC

7.2.8.1 Pad Design

For debugging purposes, the I/O pads were designed to operate at a different
voltage than the core, so that they could be left at fixed voltage while the internal core
voltage was varied. Thus, all output & input pads support level shifting, with the
exception that the four signals which connect to the regulator chip must always be at the
nominal core voltage (Vpp). The schematic for the level-converting 1/0 pad is shown in

Figure 7.26.
Yooio © All devices: L=0.6um.

e All devices powered at
__4 6.0 Vpp unless noted.

V,
Vppio Ybpro Yopro Dbbio

enOut Vbpio Yopio
-, \
'pDIO) | %O_éo_ 020

[=d
o

7.2

50]
L
out——l-EL-M o Elj —pad
‘ > Yopro

level-convert

FIGURE 7.26 : Level Converting I/O Pad.

For an outgoing signal, the enabled cross-coupled loads on the complementary
NMOS gates provides level conversion from Vpp to Vppjo. The ratio of NMOS to
PMOS width is dictated by the maximum possible range of voltage conversion. The
level conversion was designed to operate from 1V to 3.3V, and with an effective Wp of
3um, the required Wy was 25um. Simulation demonstrates that this will correctly

operate for Vpp as low as 950mV. The enOut signal must range from 0V to Vpp;0, so

247

7.2 Microprocessor IC

the enable signal generated by the core passes through its own level-converter before

~ driving the pads.

The target load capacitance on the output is 50pF, which is sufficient to drive
ten chips (4pF each) and four inchgs of a PCB trace (2.5 pF/inch). Signals must be
transmitted within one-half of an MCik cycle since they change on the rising edge and
are latched on the falling edge. The target delay through the pad is one-quarter of a
cycle, allowing another one-quarter cycle of margin before the signal arrives at the
other chip. The target rise/fall time is also one-quarter cycle in order to reduce current
draw. At 50pF and Vppo = 3.3V, this corresponds to a peak current (J, Max in Table 7.9)
of 33mA per signal. The size of the inverters driving the output MOSFETs was dictated

by ground and power bounce concerns, and discussed further in Section 7. 2. 8. 2.

A feedback device was added to the tri-stated outputs to hold state while Vopro
varies. In the prototype system, Vpp;o varies at most by 0.2 V/us, and the output tracks
Vppio to within 30mV. The hold circuit adds negligible delay, and increases the energy

consumption within each pad by only 1%.

The ESD protection is comprised of 500 umz dipdes to ground and Vppj0,
which is the recommended size according to the process manual [hp95]. The diodes
provide the primary and only ESD protection, and were validated by simulating the
human-body model (HBM) for discharge, which generates a 2kV charge pulse [hp95].
The current pulse peaks at 1.33A, and with 5Qs of series resistance, the voltage rises to
9.1V, which is under the failure limits. To prevent the ESD diodes from turning on,
ground and power bounce must be limited to less than 0.5V. Both input nodes have a

100 Q poly resistor for isolation to prevent gate-oxide breakdown.

The input level conversion is a simple inverter powered at ¥pp. A latch is used
to maintain logic state at the output of the pad, and the output inverter is sized to drive

a 1pF load.

248

7.2 Microprocessor IC

7.2.8.2 Ground & Power Bounce

The low impedance epitaxial p+ layer of the process essentially shorts out all
of the chip grounds, creating a single ground network. Bypass capacitance can
minimize bounce on the power lines, but ground is the global chip reference voltage and
must be stabilized. To minimize absolute bounce, the ground network should contain as
many pins as possible. A total of 28 pins were allocated, or 21% of all the package’s
pins. Simulations show that with the maximum number of I/0Os switching, the ground
bounce is between -540mV and +410mV at the maximum Vpp,o of 4V, which provides

sufficient margin to prevent the ESD diodes from turning on (0.6-0.7V).

While bypass capacitance minimizes the Vpp;o bounce relative to ground to
minimize I/O delay variation, it is also important to minimize the ¥pp;9 bounce in
absolute terms to prevent the ESD diodes from turning on. Simulations demonstrated a
worst case bounce of -600mV and +450mV at 4V for ten Vppjo pins, with 2nF of on-
chip bypass capacitance. The primary cause for the drop is the speed at which the
output drivers are turned on. The device sizes were reduced to slow down the rise/fall

times by 4x, but have fast turn off times.

The processor core is much more sensitive to power bounce due to timing
considerations. A global reduction in Vpp will not affect functionality, as all the
processor circuits’ delay will scale appropriately. However, if only a part of the chip
experiences a reduction in Vpp, timing violations leading to functional failure may
occur. Thus, 16 pins were allocated to Vpp, and evenly distributed around the chip
periphery. In addition, 16nF of bypass capacitance on Vpp is spread throughout the chip

to minimize localized ¥ variations.

7. 2. 8.3 Global Routing

The RC delay on global signals is only critical on the processor bus, which has

as little as 8ns to operate within at 4V. The RC delay product goes up with the square of

249

7.3 Regulator IC

the wire length, and becomes significant above 3.5mm for Metal2, and 7mm for Metal3.
To provide sufficient margin at the maximum voltage of 4V, the RC delay must be kept
below 500ps for all signal routes. The resistance is lowest on Metal3, which must be
used for all long routes, due to its 50% lower RC delay. The program routeCap was
written to calculate the RC for varying widths given a constant pitch, and report the
width and space required for the wire to meet the maximum RC delay constraints. The

longest route at 12mm required twice minimum width and spacing.

To eliminate Miller capacitance from adjacent parallel lines, the input and
output busses are interleaved. Since they do not transition at the same time, any wire’s

nearest neighbors will not be switching concurrently, thereby negating the Miller effect.

7.3 Regulator IC

The primary function of the regulator IC is to convert a desired frequency
value from the operating system into an output Vpp value which operates the processor
at this desired frequency. This section gives only a brief overview of the architectural

implementation, as the regulator chip is described in detail elsewhere [stra98].

7.3.1 Architecture

The architectural block diagram of the regulator is shown in Figure 7.27. The
LoadM and DataM signals from the processor chip transmit the digital desired
frequency value serially, which is then reconstructed as a 7-bit word, M. The clock
signal, fcrk, originates from the processor chip’s internal VCO, and is converted to a
digital word via a counter, which is then subtracted from M to calculate the frequency
error, Frppp. To minimize energy consumption, the entire frequency detector is operated
at the variable voltage, Vpp. The loop filter level-converts Fgpp from Vpp to the fixed
battery voltage, V347, which is also used to power the rest of the regulator circuits. The

filter generates the power MOSFETs’ timing signals (P_on, N_on), and the FET driver

250

7.3 Regulator IC

block converts these timing signals into the actual power MOSFETs’ gate input signals.
The buck converter, consisting of the power PMOS and NMOS, as well as the external
LC tank, converts Vg r into Vpp, which is then sent back to power the processor chip.
Auxiliary circuits, including the current comparators and the start-up circuits, provide

the control and limiting circuitry for proper operation.

4 MHz

LI | system clock

(external)

2 rack
DD

=) vgp I ettt
Ry 0 i '
‘; . Loop |Bon,| FET w | /23—
;‘ Dat ’ vgn ’ '
+»|Interface .8 y y l ! C '
 Freguency Detector ! _l. =|__ =] | | T :
= :Externalr '
= L y || |exerna
1s 14 Vaar
Yy Vv
Current Comparators:
PMOS limit, NMOS limit
PMOS zero, NMOS zero
Vpar
<
: P_on E
v Start-up '
To CPU PwGood 4~ Logic) I ‘
: Soft-start circuits = =,

FIGURE 7.27 : Regulator Architecture [stra98].

7.3.1.1 Frequency Detector

The frequency detector, shown in Figure 7.28, has a relatively simple
implementation. A counter and register transforms the “analog” clock signal into a
digital measure of the clock frequency in MHz. A shift register converts from serial to
parallel the desired frequency sent from the processor chip, and this frequency is

latched as the signal M. While the regulator is actively changing ¥pp, M must remain

251

7.3 Regulator IC

constant. Thus, during this tracking period, the Track signal remains high, and blocks a
new value of M from being latched. Once Track goes low, the new value of M is loaded
into the register, and the regulator goes back into tracking mode, and begins adapting to

this new value of M.

- fCLK
2 g
Q a =
D 8
g -
é LoadM g
&
-
S
CliaM Load | Track &

—1Control

FIGURE 7.28 : Regulator Frequency Detector.

To optimize low-voltage conversion efficiency, the frequency detector circuits
all operate at the voltage Vpp. Since the detector is the only block within the regulator
that is always operating, varying its supply voltage will scale the converter’s energy

consumption with the desired frequency level.

7.3.1.2 Loop Filter

The loop filter translates Fgpp into an update command for the buck converter,
and implements a hybrid pulse-width pulse-frequency modulation (PWM/PFM)
algorithm to provide good conversion efficiency across a broad range of output voltage
and current loads. It is responsible for hand-off between regulation and tracking modes,

as described in Section 3.2.

The loop filter block diagram is shown in Figure 7.29. While the converter is
in tracking mode, the input register is actively latching the current Fggpp value. The
shifter, adder, and Ton block implement the PWM part of the algorithm, by calculating

the variable conduction interval for the power MOSFETs. The intermediate four-bit

252

7.3 Regulator IC

digital word, update, is:
update = FF+2%-F,,. ’ (EQ7.1)

which contains a gain term, implemented as a bina}ry shifter, and a feed-forward
component for DC compensation. Both the gain (g) and feed-forward (FF) are a
function of M, which corrects for the non-linear Vpp to fc g conversion in the
processor’s VCO. The Ton block then uses the update signal to determine how many
250us clock cycles to keep the power MOSFETs on for (via P_on and N_on) to provide

the required charge pulse given Fgpp and the desired frequency value.

g 16x 16 | MI63]
4

ClkdM

&~
3 P
F, , S .| 2’s complement —>
REG 7% M 8 7 . Ton N
=78 8 Q 8 to sign / mag {Aon
= Q F, sen
R AN
&,
- Enable
ClkdM Track FIGURE 7.29 : Regulator Loop Filter [stra98].

In regulation mode, the loop filter’s PFM aspect of the algorithm only activates
the PWM circuits for positive Fgpg. Negative Fgpp, indicated by Fi,,, implies that Vpp
is too high, so the loop filter suppresses the charge pulse in the current cycle and allows

the current load of the microprocessor to reduce Vpp.

7.3.1.3 FET Drivers

The FET drivers buffer the gate enable signals of the loop filter (P_on and
N_on) to drive the large gates of the power MOSFETs. To optimize conversion
efficiency, the power MOSFET’s are binary-weighted to provide four levels of device
size based M. The FET drivers block is responsible for enabling the requisite number of

power MOSFET devices.

253

7.3 Regulator IC

7.3.2 Pin-out

The regulator chip was designed for a 68-pin LDCC package, whose pins are
described in Table 7.10.
TABLE 7.10 Converter Chip Pad Breakdown (68-pin LDCC package).

Signal /o | Pads | Supply Description Pin Numbers(s)

VX | |10 | | Power FET switching node 16, 65-68

PVop 16 Power FET Vg, r 10-15

PGND 16 Power FET ground 55-60

Vear 13 Digital supply at Vg 4 18, 48, 51

Vop 2 Digital supply at Vpp 20,31

GND 5 Digital ground 19, 21, 30, 47, 50

aVpp 11 Analog supply at Vg r 38

aGND 2 Analog ground 36,41

vgp? 1 Vear Power PMOS gate 54

vgn* 1 Vear Power NMOS gate 52

CliedM i 1 Vaar 4 MHz, 50% duty clock input 53

PORB i 1 Vaar ResetB signal 49

PwrGood® o 1 Var Indicates completion of soft-start 46

RAM_dOUT | o 1 Vaar Data from converter to EEPROM 16

RAM_cs o 1 Vaar EEPROM enable 17

RAM_dIN i 1 Vear Data from EEPROM to converter 22

RAM_clkout | o 1 Vear EEPROM 125 kHz clock 23

DataM i 1 Voo Serial load of M 24

LoadM i 1 Vop Enable serial load of M 25

Track? o 1 Vaar Indicates status of control loop 26

Jelk_out® o 1 Vop Decoded VCO output 32

EnExtClk i 1 Voo Enable full-swing VCO input 33

ExtCik i 1 Vop Full-swing VCO input 34

Jelk_in i 1 Vop Low-swing VCO input 35

Vref i 1 Low-swing reference voltage 37

1474 i 1 Vpp Kelvin sense 39

ibias i 1 Attach 10 pA pull-down source 40

IHlim_1A i 1 Vpar Sets 1 A or 0.5 A current limit 44

TESTenable | i 1 Vear Sets test mode 45

a. Output is enabled only when TESTenable = 1.

The regulator die, shown in Figure 7.30, is 1.6mm x 3.4mm in a 0.6um 1P3M
CMOS process.

254

7.4 System Bus

FIGURE 7.30 : Regulator Chip Die Photo.

7.4 System Bus

A key goal of the prototype processor system was to demonstrate DVS at the
system level. Existing bus topologies could not be used, nor could commodity memory
chips, since they require a fixed voltage. Thus, the processor system bus was designed

in its entirety for energy efficiency, without having to conform to legacy standards.

The long-term vision is to utilize low-swing bus transceivers (Section 6.3) to
make the energy consumed driving the bus completely negligible. To aid in debugging
the prototype system, however, this option was not implemented, as it required the
ability to operate the processor bus at a fixed 3.3V to use commercial test equipment.
However, always operating the bus at 3.3V would completely diminish the energy
savings while the processor is operating internally at low voltage. Thus, the processor
bus itself was designed to be voltage scalable, with the option of running at fixed

voltage, when necessary, for debugging purposes.

7.4.1 Overview

Traditional memory systems use 8-bit or 16-bit memory chips so that for a 32-

bit memory access, either two or four chips need to be activated. To improve system

255

7.4 System Bus

energy-efficiency, the memory chip’s data bus is 32-bits wide, so that only one chip
needs to be activated per access. To reduce the pin count of the memory chips, the
address and data are multiplexed onto the same bus. This adversely affects single data

bus transfers, by reducing their bandwidth by 50%.

However, the bus was designed to support burst transfers, in which multiple
data words can be transferred per address. Simulation demonstrated that the bus traffic
is predominantly cache-line reloads, which transfer data in bursts of eight, such that the
bandwidth reduction is closer to 11%, and is acceptable given the overall reduction in
system energy consumption. Thus, near peak utilization is achieved on the processor

bus despite having to multiplex address and data onto the same physical bus.

7.4.2 Timing

The timing for the processor bus is shown in Figure 7.31, for both a single-
word transfer as well as a burst transfer. In the first cycle that CE goes high, or JOCE in
the case of the interface chip, the address is placed onto PBus, the Burst signal is
asserted, and the Write and Byte signals are set accordingly. Burst remains high until
either the second-to-last word for a read, or the last word for a write, which allows for
an arbitrary-length burst of data to be transferred. CE remains high for the entire
duration of the transaction, and is used to gate the clock within the individual chips.
The PWait signal can be used to stall the processor bus during a transaction. The
memory chips have a single wait state for a read (none is needed for a write) to allow
the SRAM time to retrieve the data. The interface chip may insert a variable number of
wait states depending upon how long it takes to fetch data from the external I/O

peripherals.

256

7.5 Memory IC

Single Read/Write:

mew [L[LT LI LT L L

PBus(31:0] ==X address1 datal E)Qddressz X data2
e z s :
Byte mmmbQTE: Canpotve bic o3 0 e s 001G :
CE[1] =~ ! 5 \ : J—
O T N e e
PWait == ; : : , [—

driven by chipl —————J>—<a—— driven by chip2 —b>

ma [L[1 Biu t iet,_l_|,d 1 L

PBus(31:0] == _address) ana), X a2 X Gl e
Write —!\E E Y, § /fo E § é ‘
Byte : : NOTE::Cannot hagkﬁﬂ‘ so signal is t@md. :
Burst -—E/ ' : 7 K ; E/..__
CE[n] — ‘\——
pric=—~______/ \ : : 1 e

ite:

Burst Write:
ma| L[L, L 1 I
PBus[31:0] address dam/:}(dataN-1 DX dataN | eeemmmm——

Write ™" /A

' [
1,)
1 [
]

.
(]]
[[

[
D .
[l " 7, ’
v 7. T
[1
[.
) s
(] .
[[
. .
t ’

Burst == _/....__ NOTE;
. ff—s . Thick grey
' ' ' don’t care

PWait -—t\ " ' 1 Jrm—— states.

4

FIGURE 7.31 : Timing Diagrams for Processor Bus.

7.5 Memory IC

The memory chip is based upon the SRAM design used within the processor’s
cache, and was designed to be DVS compatible while optimizing energy-efficiency. The

new, key design challenge was the organization of the block-level architecture and

257

7.5 Memory IC

global routing in order to minimize energy consumption. In addition, the memory chip
supports split internal/external voltage sources, so that the I/O can be operated at a

fixed voltage while the internal voltage varies in order to facilitate system debugging.

The SRAM die, shown in Figure 7.32, measures 9.6 x 10.4mm and contains

3.4M transistors.

Bypass
Capacitance

- - -~

Contro)ler

FIGURE 7.32 : SRAM Chip Die Photo.

7.5.1 Architecture

The total SRAM chip size of 64kB was set strictly by die size limitations. The
basic SRAM block size was set to 1kB to provide a balanced trade-off of area efficiency
(78% utilization) and energy consumption (50 pF/access). A flat hierarchy would be
prohibitively expensive due to the large amount of capacitance on the bitlines, and the
enormous drivers required within each SRAM block to drive this bus. Thus, a two-level

hierarchy was chosen, in which the blocks are organized into an 8kB module, which was

258

7.5 Memory IC

then replicated eight times for a total of 64kB, as shown in Figure 7.33.

T T 1
1 1
!]
' >] intAdd
] . it
l - »
! 1 [: 5 ",@1
e +4] :
1
a g.
~ S
1 §l
16 ' X
' =1
inPBus 1 o \ e
(from pads) 32 '
Jl tD . P I) r
intData ™ ol P
outPBus o\ N - 0!64 -
(to pads) 2

FIGURE 7.33 : SRAM Architecture.

The controller is responsible for interfacing with the processor bus, and
contains additional circuitry to increment the internal address for burst-mode accesses,
and to allow read-modify-write operations for byte writes. Also, the controller provides
the SRAM control signals which get routed to each module. Since the address and data
arrive on the same bus, only the lower 16 bits which contain the address information are

routed to the address incrementer block.

7.5.1.1 Operation

The internal timing of the SRAM chip is shown in Figure 7.34. The address is
not available on the internal address bus, inz4dd, until almost the end of the first cycle,
which necessitates the SRAM chip to always assert the PWair signal for one cycle until
the first data word has been read. Subsequent reads can be performed without the need
for asserting PWait, such that an eight-word cache line requires only ten cycles to
transfer across the processor bus. There is no need to stall the processor bus during

either a word write, or a byte write, as shown in the lower two timing diagrams.

259

7.5 Memory IC

SRAM Read Timing

: latch address

SRAM -
MClk | e | anr | copve aﬂ\i ENpR | mg =" States
PBus DataO Xgﬁ)(gmz)— Stal

. : : ' Processor
PWait Y N : Bus
intddd ——(Add XAdd+lX1}dd+2 b

intWrite ——-———-1{ E E -\ _
intData (DataO XPataXDataZ
“w—____latch intData and
drive PBus
Mﬁm RAM Byte Write Timin
‘ ’ , latch PBus latch PBus

MClk _l w|l.£ AA;DW coiNW CO'NW IDLE MClk l qLE EWB IDLE
PBus —(Add XDa:EXDatal an)——— PBus —-—

i —— 1t YNy mass ——
intWrite \ / intWrite W

intData <DataO XDatal)(DataZ)—- intData

FIGURE 7.34 : Internal SRAM Timing.

read Word swap word

and write

7.5.1.2 SRAM Module

The basic 1kB SRAM block in the module is essentially the same which was
used in the processor cache and is replicated in the SRAM chip, with the addition of an
address decoder. Since the 8kB module size is the same as the cache partition of 8kB,
the output drivers see the same load and did not require redesign. The capacitance/cycle
of the 1kB SRAM block is 50 pF/cycle for both read and write operations, with another

10 pF/cycle required to drive the interconnect within the module.

To reduce loading on the global busses and control signals, they are buffered

before driving the local module interconnect. Since the data bus is bidirectional, it

260

7.5 Memory IC

contains bidirectional transceivers which switch direction depending on whether it is a
read or write. A potential hazard arises for read-modify-write operations required for
byte writes, which switch the direction of the transceivers between cycles. To eliminate
unnecessary short-circuit current, the enable signals have fast de-assertion times, and
slow assertion times to ensure that either the local module data bus, or the global bus,
intData, are not driven by two different transceivers at the same time. Furthermore, to
reduce unnecessary switching activity, the direction of the transceivers are left in
whatever the last state was, so that there is no default direction that they always switch

back to.

7.5.2 Energy Consumption

Performing a single read or write has an effective switched capacitance of
150-200pF over three and two bus clock cycles, respectively. Additional words in a
burst read or write contribute approximately 75pF per word, and are much less because
the internal address and control lines remain driven from the first data access. A byte
write operation has an effective switched capacitance of 250pF, due to the combination
of an SRAM read and write to complete it. The most common type of operation is a
cache-line reload, which requires 725pF over ten bus cycles. Thus, if the SRAM chip is
constantly active, it contributes a maximum of 36 pF/processor-cycle (there are at least
two processor cycles per bus cycle), which is only 11% of the 320 pF/cycle consumed
by the processor chip while it is active. In practice, the average capacitance/cycle will
be lower since the SRAM is not constantly active. Thus, the SRAM was successfully

designed to have minimal impact on total system energy consumption.

7.5.3 Package

The SRAM die was placed into an 84-pin QFP package. There are 39 signal
pins, with 38 pins required for the processor system bus and one pin required the reset

signal. A total of 45 supply pins ensure that the ground and supply bounce is maintained

261

7.6 Interface IC

well below a diode-drop of 600mV. In addition, there is 4.3nF of bypass capacitance on

the I/O power supply, ¥Vppjo, and 9.6nF of bypass capacitance on the core power

supply, Vpp. A 68-pin package would have been sufficient in providing enough supply

pins to keep the ground and supply bounce within tolerable levels, but a larger pin-out

package was needed in order to have a sufficiently-sized cavity given the large die size.

TABLE 7.11 SRAM Chip Pad Breakdown (84-pin QFP package).

Signal | i/o | Pads | Supply Description Pin Number IMax
— — — — ——— .
Lo 5, 11, 13, 20, 26, 32, .
. 34,41, 43-45,47-52
’ bl ? ’ y
gna! 28 Single ground 54,55, 58, 59, 61, 62,
64, 68, 74, 76, 83
VoD 18 Internal voltage (1.2-3.8V) | 1% 394653, 60,
Vobio 1s VO voltage (123.8V) | 1%16:23,2%,37.71,
Vaar 1 ESD voltage for nRst 56
MClk i |1 Vonio a2
2,4,6,7,9,10,12, 14,
15,17, 19, 21, 22, 24,
PBus o | 32 Vopio 25,27,28,30,31,63, | 33mA
65, 67, 69, 70, 72, 73,
. LPARM 75,71, 78, 60, 82, 84
Write i 1 Vopro Processor Bus 40
Byte i |1 Vopro 38
Burst i 1 VDD]O 36 .
PWait ot 1 VDDIO 35 33mA
CE i |1 Vobio 33 ’
nRst i 1 VBAT External hard reset 57

7.6 Interface IC

The primary function of this chip is to connect commercial, fixed-voltage

peripheral chips to the variable-voltage system bus of the embedded DVS processor

system. These chips may include ROM and DRAM, as well as chips providing system

1/0, such as a serial communication controller (SCC), codecs, LCD controllers, etc. A

StrongArm microprocessor and a Xilinx FPGA were used to model the I/0 subsystem in

the prototype system, and are described in more detail in Section 7.8. To simplify the

262

7.6 Interface IC

design of interface chip, the bulk of the control FSMs to communicate with the
StrongArm were pushed into the Xilinx connecting the interface chip to the StrongArm.
Thus, the primary function of the interface chip is to level convert the system bus to a
fixed 3.3V bus, and perform simple flow control. The level conversion occurs in the

pads so that all the internal chip circuitry operates with the variable supply voltage,

VDD.

In a practical system implementation, this chip would be more complex in
order to enable it to connect directly to peripheral I/0 chips. With the controller
circuitry integrated on-chip, the controller itself could be DVS compatible providing
variable performance and energy consumption. Further enhancements would include
having two regulator loops -- a processor core voltage/frequency, and an external
memory system voltage/frequency. This would enable high-speed DMA transfers, when

necessary, when the processor core is in a low-performance mode of operations.

To aid in system debugging, the processor system bus signals are always
replicated on the 3.3V Xilinx-side bus. This allowed test equipment to monitor activity
between the processor and main memory on the processor system bus, at a fixed
voltage. In a practical system implementation, this feature would be optionally disabled
in order to eliminate unnecessary energy consumption driving these signal pins when
the I/0O interface is not actively being used for either an I/O read/write or a DMA

request.

The interface chip die, shown in Figure 7.35, measures 4.4 x 4.4mm, and
contains 40k transistors, of which 5k are used by the controller implementation located
in the center of the die. The chip is pad limited with its 132 I/O signals resulting in the
large die size. The entire core outside the controller contains bypass capacitance used to

bypass the two input voltage supplies (Vpp and V3 3).

263

7.6 Interface IC

FIGURE 7.35 : Interface Chip Die Photo.

7.6.1 Architecture

The basic chip architecture is shown in Figure 7.36. When there is no active
I/O or DMA request, the interface chip is in snoop mode. The bus clock (MCIk), the
processor bus (PBus), and the bus control signals (Write, Byte, Burst, PWair) all drive
their equivalent Xilinx-side signals. All the on-chip signal paths are delay matched to
maintain a constant delay shift across the Xilinx bus. To eliminate 15 unnecessary pins,

the 16 memory chip enables (CE[15:0]) are OR-ed into a single signal, XCE.

For an I/0 request, the processor asserts JOCE, which gets level-converted to
XIOCE, and signals the Xilinx that an I/O request needs to be serviced. Because all the
circuit paths forwarding signals from the processor bus to the Xilinx bus are delay
matched, the Xilinx can interface to this bus in a synchronous manner since there is
approximately zero relative delay shift on the Xilinx bus. This removed the need for an

otherwise more costly asynchronous interface between the interface chip and Xilinx.

264

7.6 Interface IC

MClk > = XMClk
Write 4—>| i I || XWrite
—
Byte | V_d_[; <« XByte
System IS , Xilinx
Bus Burst ! | = XBurst Bus
(1.2-3.8V) — (3.3V)
PReg |« <l XPReg
nMREQ — > XnMREQ
PWait |« > XPWait
IOCE [>———{ XIOCE
cel | CE/Wait| < XReady
<H_Gen —+| XRdReady

FIGURE 7.36 : Interface Chip Block Diagram.

The timing for an I/O write is shown in Figure 7.37, which demonstrates how

the interface chip interacts with the Xilinx chip. The transactions get replicated from

MClk [[| |

mE.

|

|1

address .

X

PBus{31:0] ——(

Write --/

:

Byte -——(

Burst :/

Processor Bus

I0CE /

PWait /

XMClk |1

XPBus[31:0] =

XByte —< :

XWrite m/

XBurst :/

Xilinx Bus

xocs ___/

XReady

' .
1 .

B .

'

a .

FIGURE 7.37 : Timing Diagram for a Single I/O Write

Request to the Interface Chip.

265

7.6 Interface IC

the processor bus to the Xilinx bus, with the XReady signal providing flow control from

the Xilinx back to the interface chip. By default, an I/O request will initially drive
| PWait high, stalling the processor system. Once the Xilinx has latched the address off of
XPBus, it asserts the XReady signal one cycle, which in turn drives PWait low for one
cycle, and advancing the state of the processor system one cycle. Once the data word
has been transferred to the Xilinx chip, the transaction i$ complete. Because it can take
many cycles to complete an I/O request, PWait is generally high for a majority of the

duration of an I/0 request.

On an I/0 read (Figure 7.38), the XPBus switches direction, as indicated when
the enXPBus signal goes low, in order to receive the desired data. Since XPBus gets
driven by the Xilinx delay-shifted with respect to MCIk, it is latched and driven onto
PBus the subsequent MCik rising edge, requiring the 32-bit latch to hold state for one
cycle. To prevent both the interface chip and the Xilinx from driving XPBus at the same
time, the enXPBus signal goes low a cycle early and stays low an extra cycle. As long as

the delay through the interface chip is less than the cycle time of MClk, there will be

72 I T I A I I I

PBus[31:0] —(address
Write--;\ : p— g
Burst _/ ‘ \ g
roce __/ : N
PWait _/ \ / \

enXPBus NOTE: Signal intemal to I0Chip. Xilinx can \e—— i 4..5/—
drive XPBus when enXPBusislow. * “Guaranreed non-overlap times

XMClk | L L g g
XPBus[31:0] e ‘address ') S -
XWrite '——;¥ /-n-
XBurst __/ ': : AN ; ?
B

FIGURE 7.38 : Timing Diagram for a Single I/O Read Request to the Interface Chip.

Xilinx Bus

266

7.6 Interface IC

guaranteed non-overlap times to eliminate this potential conflict on XPBus.

When the I/0 subsystem wants to initiate a DMA request, the;Xi’linx asserts
XPReq, which in turn asserts PReq and informs the processor of a pending DMA
request. Once the processor has completed any outstanding bus access, it releases the
processor bus and synchronously deasserts nMREQ, which then deasserts XnMREQ
giving the I/O subsystem control of the bus. At the same time, the direction of the
control signals is changed, and they are driven by the Xilinx via XWrite, XByte, and
XBurst. Similar to XPBus, these are latched in order to resynchronize these signals with
the edge of MClk. The Xilinx does not need to drive the CE signals, as they are
internally generated by the interface chip, which can infer these signals by decoding the
address placed on XPBus. In DMA mode, the XRdReady signal is used to indicate when
the SRAM has returned the value of a DMA read request.

7.6.2 Pin Out

The interface chip was placed into a 132-pin QFP package. There are 103
signal pins, with 56 pins required for the processor system bus and 44 pins required for
the Xilinx bus. An additional two pins are utilized for debugging, and one pin for the
reset signal. The remaining 29 pins are used for ground and supply lines. The active
circuit area on the interface chip was only approximately 2 mm?2. The large die size was
necessary given the large number of pins required to interface between the two busses.

The complete chip pad breakdown is given in Table 7.12.

267

7.6 Interface IC

TABLE 7.12 Interface Chip Pin Out (132-pin QFP package: 103 signal, 29 power pins).

Signal | i/o | Pads | Supply Description Pin Number Imax
gna 16 Single gound | 0 8, en1ss
Vs 6 Core/Xilinx voltage (3.3V) | 7, 18, 29, 105, 117,127
Vobio 6 VO voltage (1.2-3.8V) |40, 51,61, 73, 84, 94
Vaar 1 ESD voltage 102
MCik i 1 Yppio 99
98,97,96,95,93,91,90,89,88,
PBus ilo |32 Ybpro 3Zﬁgﬁgﬁfﬁéﬁgﬁgﬁg’gi 33m
64, 63,62,60,58
Write io {1 Yopro 57 33m
Byte o |1 Vppio LPARM 56 33m
Burst io |1 Vopio Processor Bus 55 33m
PRegq o 1 Vppro 54 33m
nMREQ i 1 Vobio 53
PWait io |1 Vopio 52 33m
e Jio [16|rone T e
IOCE i |1 Vopio 49
XMClk o |1 Vi3 28 33m
27,25,24,23,22,21,20,19,16,
Xebus |io |32 |Vas 1320, 502928158, | 2
124, 123,122,121,120
XWrite o |1 Vi3 119 33m
XByte o |1 Vss 118 33m
XBurst o |1 Vi3 115 33m
XPReq i 1 Vi3 P Xilinx 114
rocessor Bus :
XnMREQ |o |1 Vis 113 33m
XPWait |0 |1 Vis 112 33m
XCE o |1 Vis 110 33m
XIOCE [0 |1 Vi3 111 33m
Ready i |1 Vis 109
RdReady |o |1 Vis 107 33m
Done i |1 Vi3 106
nRst i 1 Vaar External hard reset 101
SwCE i |2 Var Debugging pins 103, 104

268

7.7 Prototype Board

7.7 Prototype Board

The prototype system was constructed on an 8-layer 6” x 8” PCB board, with
four supply layers, and four routing layers. Due to the integration of the memory and
interrupt controllers onto the processor chip, few exterﬁal components were required to
construct the system. Extra complexity was added for features which supplemented
system debugging, such as bypassing the converter chip with a fixed external voltage,
and split core (Vpp) and 1/0 supplies (¥pp;o)- The prototype system communicates to a
StrongArm-basec; system board (Section 7.8), which emulates I/0 activity, via a

DB2x25 connector.

7.7.1 Architecture

The 4 unique custom ICs of the prototype system are connected as shown in
Figure 7.39. The 37-bit system bus connects the processor chip to the SRAM chips and
the interface chip. The nine chip enables (CE/8:0], IOCE) are output by the integrated
meﬁ:ory controller. An additional eight chip enables are available for SRAM chips, but
were left unused in the prototype system. The interface chip communicates with the
StrongArm board’s Xilinx chip via a 43-bit bus, which replicates the system bus
functionality with a few additional control signals. The system reset switch allows the
processor system to be reset while leaving the converter actively operating, and can be
used if the processor performs an illegal operation. The processor also uses 1 MHz

oscillator to provide the reference frequency used by the internal real-time counter.

The converter requires additional external components. An EPROM programs
up the loop filter’s SRAM upon resetting the converter. Two series potentiometers
provide coarse and fine-grained tuning of the chip’s bias current. The 4 MHz oscillator
provides the system clock to the converter, and is also used by the processor to send
new clock frequency (Fpgsirep) values via LoadM and DataM. The converter also has a

separate reset switch, to re-initialize its internal circuits. While the converter is being

269

7.7 Prototype Board

0 O | System Reset
<] ’e Switch
\J
1 MHz System
Oscillator Bus
- v g I R
CEs .
N VCO -—r
Iy) 7 |
7 § foo A
4 MHz S| 8 3 o
. 3 ok
Oscillator 3[R & éL 4 -~

> Converter

Schmidt
I: M- Trigger Y
] To Xilinx on Vis

) = o StrongArm Board
Potentiometers Conv. Reset Vg p (via DB2x25 connector)
Switch

FIGURE 7.39 : Prototype Board Architecture.

reset, the PwrGood signal is de-asserted while Vpp, is being re-initialized, and resets
the processor chip. The converter chip also requires an external inductor and capacitor
for the buck converter. The inductor was implemented via a small form-factor, SMT
4.7pH coil. The capacitor was implemented with 46 0.1uF and 0.2uF SMT capacitors

placed next to the eleven chips’ supply pins on the backside of the board for a combined

5.5)UF of capacitance.

For an actual production system, all the external circuitry could be eliminated
except for the 4 MHz reference clock frequency. The EPROM provided flexibility by
allowing the loop filter’s characteristics to be varied, but this was not necessary as the
converter successfully operates with the initial data values. Instead, the converter’s on-

chip SRAM data could be hard-coded into an on-chip ROM. The potentiometers could

270

7.7 Prototype Board

be eliminated via an accurate on-chip reference bias.

7.7.2 Layout

A photograph of the board is shown in Figure 7.40 demonstrating the final
board layout. The board area is dominated by the eleven custom chips. Additional
components previously not described are input power connectors for the supply
voltages, control jumpers which provide hard-wired control settings to the processor
chip, and test points which allow select internal signals from the processor chip to be

monitored externally.

—
i
~N
]
[i
el
e
~
—
it
o
-
—
~
bl
==
-—

7.7.3 Power Distribution

A critical aspect to the design of the prototype board was managing the power
distribution networks, of which there were four, as shown in Figure 7.41. The variable
voltages are Vpp, which powers the internal circuits of the chips, and Vpp;0, which is
used strictly for the processor bus. Jumpers at the inductor allow either the converter to

drive both Vpp and Vppp, just Vpp with a fixed external voltage source for ¥pp;p, and

271

7.7 Prototype Board

neither, with external voltages supplied for both ¥pp and ¥ppo. The battery voltage,
VB4t powers the converter chip, and all the external components, including external

control signals to the custom chips. Thus, Vg, is required by all the chips to provide
ESD protection. The Xilinx chip on the StrongArm board is a 3.3V part, so the internal
circuits of the interface chip also operate at this voltage (V3 3). For a future system in
which the interface chip is much more complex, its internal circuits could be powered

by Vpp, and level-converted to 3.3V at the pads to reduce system energy consumption.

%1 System Reset ng.d
e Switch Vpoio
i 0 Viar
Dottt N\
éy_stem Byg
CPU L_CEs '—’E_
J I~ 64kB
Oscillator % H -] SRAM
% A
- ~ %
8 S
3 S 3
. 4MI-Iz. w3 E E .
7///%///////////? /////////////// i— i
§‘ Bus
Y §
S \J
4 \//
%% To 3.3V Xilinx

Conv. Reset Voar
Switch

FIGURE 7.41 : Prototype Board Power Distribution.

The converter is sensitive to the parasitics on the variable voltage (¥pp) and
the battery voltage (Vp47), and were laid out so as to minimize inductor parasitics.
Additional capacitance on the variable voltage power routes are tolerable if accounted

for in the total capacitance placed on these nodes. The design of the power planes is

272

7.8 StrongArm 1/O Board

shown in Figure 7.42, in which both ¥Vpp and Vppo are distributed to all the chips with
minimal inductance. Likewise, those parts powered by Vp,4r were clustered in the
upper-left corner so as to provide a wide Vg r power signal. The two ground planes
were placed on either side of the first power plane containing Vpp as it is the most

sensitive power line.

Power Plane #1 Power Plane #2
MEMI //////% A e
\\\§\\\\\\\\\\\\\\\\\\\\\\\\\ MEM4 MEMS
\ % 4 IOCHIP

FIGURE 7.42 : Prototype Board Power Planes.

7.8 StrongArm I/O Board

The StrongArm board is a commercial development board, and used to model
I/0 from peripheral devices. A software approach was chosen so that I/O devices (e.g.
codec, LCD, radio, etc.) could be rapidly constructed and modeled, as well as to
provide low-level debugging functionality for the prototype system. The board allows
all I/O output to be validated and time-stamped to ensure correct I/0 output from the
prototype system. In addition, the StrongArm board can generate input data at set

intervals, much like any 1/0 device would.

273

7.8 StrongArm I/Q Board

The ARM programming environment provides debug and monitoring support.
The current version, Angel, is used by the StrongArm board, and its predecessor,
Demon, is used by the prototype processor. This debug and monitoring support consists
of low-level software running on the host CPU, and remote software rﬁnning on a PC or
Sun workstation. The software communicates via a serial channel, which is emulated
for the prototype system by the StrongArm, and allows the debugger to properly operate

on the prototype processor.

7.8.1 Architecture

A block diagram of the StrongArm board is shown in Figure 7.43. The
StrongArm processor is an SA-1100, which has 16MB of local DRAM and 1MB of local
Flash ROM. A Xilinx XC4013 bridges the Xilinx bus from the prototype board to the
SA-1100’s memory bus, although the external interrupt lines (FIQ, IRQ) for the
prototype processor are generated directly by programmable output pins on the
SA-1100. The board also contains two serial UART ports. One is used to communicate
with the Angel debug monitor running on the SA-1100, and the other is virtually
connected to the prototype processor via an I/0 processor emulated in software. This
software processor monitors incoming data on the second UART, and routes it to the
prototype system via the Xilinx, and likewise takes output data from the prototype

system destined for the remote debugger, and sends it to the UART.

To PC
<Jo CPU FIQ/IRQ Interrupts UART Angel Debug
SA Interrupt #l (SA-1100)
. SA-1100
Tol/O| Xilinx UART D To Swgbu
<¢——>—= Demon Debug
p | XC4013 = emon Deb
S E:
)
1IMB = 16MB
Flash DRAM

FIGURE 7.43 : StrongArm Board Architecture.

The benchmark data-sets were burned into the Flash ROM, so that the SA-1100

274

7.9 Software Infrastructure

would not have to download the data-sets across the slow UART channel into DRAM,

and would otherwise take more than 15 minutes upon a system reboot.

7.9 Software Infrastructure

To fully qualify the energy-efficiency improvement of DVS, a software
environment typically found in a portable device was booted on the prototype system.
This includes a real-time operating system (RTOS), the voltage scheduler required by
DVS, and common application programs. The prototype system would then execute the
benchmark application with and without the voltage scheduler to quantify the increase

of processor system energy-efficiency due to DVS.

7.9.1 Software stack

The stack-up of the software infrastructure is shown in Figure 7.44. On the
prototype processor is the low-level Demon debug monitor, on top of which sits the
RTOS, the voltage scheduler and the user application programs. On the SA-1100 is the
Angel debug monitor, which sits underneath the StrongArm I/O Processor (SAIOP)
software program. This provides I/O support to the RTOS, and creates the virtual
channel which allows Demon to communicate with the remote debugger program,
armsd, running on a Sun. Another armsd program running on a PC interacts with the

SA-1100 debugger.

User Applications
Voltage | |\1ppG [aubio| wr
Runni Scheduler
unning on Sun
armsd | ypr | SAIOP [T S}:"'fh;";ffe Real-time OS
armsd {2270 Angel \ Demon
Running on PC Running on SA-1100 Running on DVS CPU

FIGURE 7.44 : Software Architecture.

275

7.9 Software Infrastructure

The RTOS [peri98] is a custom pre-emptive multi-tasking kernel that contains
a temporal scheduler and standard C library functionality. The temporal scheduler
| decides which task runs when using an earliest-deadline-first (EDF) policy, which is
optimal for fixed speed systems [liu73]. The kernel is not cognizant of the speed setting
of the processor. Whenever the temporal scheduler updates the process schedule, the
voltage scheduler is executed, which is run as a separate thread on top of the kernel.
The voltage scheduler analyzes the current process schedule and application deadlines
to provide a voltage schedule for varying microprocessor performance. The algorithm is

discussed in further detail in Section 3.5.4.

The user applications are written in C/C++ using the full C library support
provided by the RTOS. The three application used in the DVS evaluation benchmark
suite (MPEG, Ul, AUDIO) are discussed in Section 3.6.1.

7.9.2 Software I/O processor (SAIOP)

The RTOS and user applications use address mapping, as described in Table
7.13, to specify the destination for I/O data. The SAIOP program then routes the I/O
data to the desired location on the SA-1100.

TABLE 7.13 IO Space Address Mapping.

/O Device Address Description
— 0x48003a00 /O control information. Opens/closes a file or network connection,
and performs flow control
IO Channel 0x48002000 I/O read data. __ . '
0x48002400 I/O read control. Provides information on channel, and s delay until
next word is to be read.
0x48003b00 /O write data. Data word is tagged with channel being written to.
0x58xxxxXX Frame buffer. Writes to this space are logged in framebuffer.dat file
for later verification.
Frame Buffer 0x78xxxXXX Frame buffer color-map. Write to this space adjust the color-map of
the display device.

Debug Space | 0x680001xx Debug space. Used for low-level debugging of RTOS state.

0x880000xx Serial channel. Mimics the register set and functionality of a stan-
dard UART serial interface.

Serial Channel

276

7.10 Results

With the exception of the serial channel and frame buffer, all 1/0 conngctions
are established as sockets, and time-share a single I/O channel location. Each I/0
device is allocated a unique channel ID, which is used to tag all input/output data on the
I/0 channel for that device. Flow control is available to slow down and/or speed up the
flow of data as necessary. Writes to the I/O channel are verified against the master data
set stored in the Flash ROM, and reads have their data supplied by the ROM, and tagged
with a delay time for which the SAIOP should wait until asserting the interrupt line to

indicate that the next data word is ready.

The frame buffer is located in a separate address space, and the contents
thereof are written to a file for post-execution evaluation to ensure the correct data was
written to it. The debug space is used to perform low-level thread and speed tracing of
the prototype processor, which aided in the debugging of the system. The SAIOP maps
the virtual serial channel to the physical UART on the StrongArm board, allowing the
Demon running on the prototype processor to communicate with the remote debugger

on a2 Sun workstation.

7.10 Results

The prototype system successfully booted up on first silicon, and the entire
benchmark suite was able to execute on the prototype system to demonstrate, on a real
hardware implementation, the potential energy-efficiency improvement of DVS. In
addition, the benchmark program Dhrystone 2.1 was run in order to measure the energy
consumption in terms of MIPS/Watt, a commonly quoted measure, to compare against

commercial processor implementations.

While the original design target was for Vpp to operate over 1.1-3.3V with a
clock frequency range of 5-100 MHz, the prototype silicon failed to operate for a Vpp
less than 1.2V. Since even the VCO failed, which consists of only CMOS pass gates and

inverters, the most likely cause of failure was a much larger |Vr,| than specified in the

277

7.10 Results

process manual (0.95V, worst case, with a 0.7-1.5V wafer acceptance range), although
no test structures were on the die to verify this hypothesis. However, the prototype
system successfully operated over the voltage range 1.2-3.8V, although over the
somewhat lower frequency range of 5-80 MHz, as shown in Figure 7.45, demonstrating

the ability of a DVS processor system to scale with widely-varying process parameters.

125 125

1001 100

-~ 75 75 g
g s
5 8
3 50t ceeeceercccccciiiniiniiiiiinaa., 50
25- oooooooooooooooooooo oo 25

%% 1.5 2.0 2.5 3.0 3.5 29

Voo (V)
FIGURE 7.45 : Measured Clock Frequency and Supply Current vs. Supply Voltage.

7.10.1 Transient operation

Figure 7.46 shows a scope trace for the system’s maximum low-to-high and
high-to-low speed transitions. The Vpp signal transitions from 1.2V to 3.8V, then back
down to 1.2V. The Track signal indicates whether the converter loop is in the tracking
mode, in which it is actively changing Vpp, or in regulation mode, in which it is trying
to maintain a constant ¥pp value. This signal demonstrates that the maximum transition
time is 70ps for the 5-80 MHz transition under full system load, while smaller voltage

transitions can be performed in less time. During this entire transition period, the

278

7.10 Results

processor system can continue to execute instructions.

~7ams ' ' " SBms-div B a26ms
FIGURE 7.46 : Transient Response of the Converter Loop.

The decaying exponential response of Vpp demonstrates that the converter
loop behaves much like a single dominant-pole system. In fact, ¥pp changes to within

70% of its final value within only 25us, because it is slew-rate limited to 0.08 V/us.

The signal Ig,7 is the battery current measured going into the regulator, but
after the battery’s bypass capacitor. There is a current spike on the low-to-high
transition which is required to charge up the loop’s output capacitor to the required
voltage. The negative current spike on the high-to-low transition occurs because the
power PMOS is removing charge from the output capacitor and placing it back onto the
battery’s bypass capacitor at approximately 90% conversion efficiency. The conversion
loss of the loop is the transition energy, which is a maximum of 4uJ for both the low-to-

high and high-to-low transitions.

To demonstrate how the converter adds charge to the output capacitor, Figure

7.47 shows a scope trace plotting the buck circuit waveforms when the converter is

279

7.10 Results

regulating a constant Vpp. The power PMOS (Mp) is enabled first, which begins
ramping up the inductor current (i;) for a duration specified by the loop filter. At the
end of the duration, Mp is turned off, and power NMOS (M) is turned on, which ramps
down i; until it returns to zero. When the converter is ramping up Vpp, the iy pulses
will be larger and more frequent, and when it is ramping down Vpp, i; will be reversed
in polarity and the timing of the power FETs will switch so that My is enabled

before Mp

domvch Tha 2.0
100mvAR Chd 2.00V &

FIGURE 7.47 : Converter Waveforms in Regulation Mode [stra98].

7.10.2 Dhrystone Benchmark

The Dhrystone 2.1 benchmark is commonly used for microprocessors in
embedded applications to characterize throughput in MIPS, as well as energy
consumption in Watts/MIP [weic84]. This benchmark was compiled for the prototype
system, so that system energy-efficiency could be directly compared against the energy-

efficiency of commercial ARM implementations.

Figure 7.48 plots the prototype system’s throughput versus its energy

consumption for the Dhrystone 2.1 benchmark. The upper curve is for the system when

280

7.10 Results

it is powered by a fixed, external voltage sourcre, and the converter is disabled. The
lower curve is for the system with the converter loop enabled. The curves are generated
by running the system at constant frequency and ¥pp to demonstrate the full operating
range of the system. The throughput ranges from 6-85 Dhrystone 2.1 MIPS, and the
total system energy consumption ranges from 0.54-5.6 mW/MIP. The efficiency of the
converter loop, which is proportional to the gap between the two curves, ranges from

90% at high voltage to 80% at low voltage.

100

80

o)
(=]

H
[~

Dhrystone 2.1 MIPS

...

[
(=)

verter

..

FIGURE 7.48 : Measured Throughput vs. Energy Consumption.

With DVS, peak throughput can be delivered upon demand. Thus, the true
operating point for the system lies somewhere along the dotted line because 85 MIPS
can always be delivered when required. When only a small fraction of the computation
requires peak throughput, the processor system can deliver 85 MIPS while consuming,

on average, as little as 0.54 mW/MIP.

A commonly quoted energy-efficiency metric is MIPS/Watt. The equivalent for

this system would be the ratio of peak MIPS to average power dissipation because the

281

7.10 Results

throughput and power dissipation can be dynamically varied. In the optimal case when
peak throughput is required only a small fraction of the time, the system’s average
power dissipation can be as low as 3.24mW, yielding 26,200 MIPS/W. When the system
is operated at constant Vjp, the energy-efficiency is a maximum of 1,850 MIPS/W at

1.2V.

7.10.3 Idle Energy Consumption

Because a microprocessor in portable systems idles a significant amount of
time, the energy consumed while idling can become critical to the overall energy
efficiency. For the prototype system, a halt instruction was implemented via a
coprocessor write instruction, which asserts the Sleep signal. This signal effectively
stops all activity by clock gating the rest of the system, with the exception of a few state
registers in the interrupt controller, the external bus interface, and the real-time

counters.

If the processor speed is set to S MHz before entering sleep, the entire system
dissipates only 800uW of power, with a one cycle start-up from sleep. The latency to
ramp back up to full speed upon wake-up is set by the converter loop to be 70ps,
although the processor can continue operating during this ramp up period and begin

immediate execution of the interrupt handler.

7.10.4 DVS benchmarks

To evaluate DVS, benchmark programs were chosen that represented software
applications that are typically run on notebook computers or PDAs. Existing
benchmarks (e.g. SPEC, Dhrystone MIPS, etc.) are not useful because they only
measure the peak performance of the processor. New benchmarks were selected which
combine computational requirements with realistic latency constraints. The three

programs are MPEG, UI, and AUDIO, and are described in more depth in Section 3.6.1.

282

7.10 Results

7.10.4.1 Measuring Energy Consumption

To measure energy consumption of the benchmark applications, the simple
circuit in Figure 7.49 was used in-line on the regulator’s voltage supply, Vp4n After
Demon boots and the RTOS and benchmark program are downloaded into main memory,
the Demon break-points the start of the application and idles at low voltage. When
instructed by a “go” command from armsd, the benchmark will execute, and at the end

of running, will put the processor back into idle mode at low voltage.

“go” programs ends,
(From Supply) (program starts) and system idles.

To Regulator) : '
VBM (VRZ Vpar b :
—0 L :
2.5Q . . 0 ‘
' ' Discrete Cap E :

3.3F :I . VEND

FIGURE 7.49 : Energy Measurement Circuit & Transient Response.

While Demon is booting, the switch remains closed and the capacitor
maintains Vgyr across its terminals. At the break-point, the switch is opened, the “go”
command is given, and Vg roughly changes as depicted. The voltage drops due to the
capacitor sourcing charge, and due to an IR drop on the intrinsic resistance of the
discrete capacitor. When the microprocessor idles after completing the application,
Vreg jumps back up a little bit due to the IR drop disappearing and settles to Vgyp.

During low-voltage idle, the drop on Vypgg is 60 uV/sec, and hence, very flat.

The energy consumption of the benchmark is:

AE = 3-33F (Var= Vanp) (EQ72)

There is energy loss in the 2.5Q resistor, but at the maximum average current of 20mA,
the loss is only 1.2%, which was neglected. Thus, the energy consumption of the

benchmarks could be measured to within 99% accuracy.

283

7.10 Results

7.10. 4.2 Results

Using the above approach for measuring energy consumption, the three
benchmarks were first run at constant maximum throughput to measure the baseline
energy consumption. They were then re-run with the voltage scheduler enabled, and had
their energy consumption measured again.

TABLE 7.14 Measured Benchmark Energy Consumption (Normalized).

Benchmark Programs
Algorithm MPEG Ul AUDIO
Maximum Performance 100% 100% 100%
Optimal 67% 25% 16%
Voltage Scheduler 89% 30% 22%

Table 7.14 shows the measured system energy consumption for the three
benchmarks, which is normalized to when the system is running at maximum
throughput, since this is the typical operating mode of a processor system that operates
from a fixed Vpp. The row labelled Optimal is the energy reduction when all the
computatibnal requirements are known a priori, and is an estimated value derived from
simulation. The optimal values represent the maximum achievable energy reduction for
these benchmafks. The last row is the measured energy consumption with the voltage
scheduler enabled. As expected, the compute-intensive MPEG benchmark has only a
11% energy reduction from DVS. However, DVS demonstrates significant improvement
for the less compute-intensive AUDIO and UI benchmarks, which have a 4.5x and 3.5x
energy reduction, respectively. Comparing the DVS results against the optimal results
demonstrates that while the voltage scheduler’s heuristic algorithm has a difficult time
optimizing for compute-intensive code, it performs extremely well on non-speed

critical applications.

Table 7.15 shows the average power dissipation of the three benchmarks with
the voltage scheduler operating. The effective MIPS/W is calculated as the ratio of peak

throughput (85 MIPS) to average power dissipation, and demonstrates the achievable

284

7.11 Comparison to Prior Art

increase in energy efficiency when the system is running real programs. Both the UI and
AUDIO benchmarks have an average power dissipation on the order of 10mW, yielding
an energy efficiency on the order of 10,000 MIPS/W.

TABLE 7.15 Measured Power Dissipation with the Voltage Scheduler.

Benchmark Programs
Voltage Scheduler: MPEG Ul AUDIO
Average Power (mW) 145 11.75 8.00
Effective MIPS/W 600 7,200 10,600

Thus, real applications, with the proper operating system support via the
voltage scheduler, can achieve a significant reduction in energy consumption with DVS,

thereby improving processor system energy-efficiency by up to a factor of 10x.

7.11 Comparison to Prior Art

A technique for minimizing the supply-voltage to reduce energy consumption
utilizing a voltage regulator was initially proposed for digital circuits at fixed
throughput [kaen90]. A replica of the critical path was used in a negative-feedback loop
to set Vpp to the lowest possible level, while the circuits continued operating correctly

given a desired clock frequency.

This technique was subsequently demonstrated on a MIPS R3900 processor
core, with an integrated, on-chip, voltage regulator [kuro98]. A desired operating
frequency is set externally, and the regulator outputs the minimum Vpp value at which
the processor core can continue operating. However, the clock frequency could only be

set externally, and requires a system reboot in order to change the frequency value.

This technique was enhanced to dynamically scale Vpp for variable-rate digital
signal processing [niel94]. A variable-rate processing circuit has an input FIFO, which
is monitored for how full it is. When the FIFO is near empty, ¥Vpp can be reduced, and

when the FIFO is near full, ¥pp must be increased to catch-up to the input data.

285

7.11 Comparison to Prior Art

Adaptive scaling was later demonstrated with an open-loop regulation approach, which
used four Vpp values to provide faster switching transients and used dithering to
approximate intermediate Vpp values [chan96]. More recently, an approach for dynamic
voltage scaling has been demonstrated for 1/O interfaces, in which ¥pp, and the energy

consumption, scales with the throughput demands on an I/0 transceiver [wei00].

The work presented here extends these techniques, and combined with efforts
on energy-efficient operating system design [peri00] and dynamic voltage converters
[stra98], demonstrates the following:

Dynamic voltage scaling on a general-purpose microprocessor. The voltage and
clock frequency of a general-purpose microprocessor, built upon an ARMS processor
core, can be dynamically varied from 1.2-3.8V and 5-80 MHz, respectively. Changes
can occur dynamically, without having to halt processor operation, and occur at a fast
rate (< 70ps), such that they appear instantaneous to the software executing on the
microprocessor. _

Direct operating-system control of supply voltage and clock frequency. A control
register has been added to the processor’s ISA. When the operating system writes to this
register, the voltage converter will immediately change the processor’s voltage such
that it operates at the desired frequency. Reads from this register return the current
clock frequency to provide feedback to the operating system.

Dynamic voltage scaling implemented over a complete processor system chip-set.
Not only is the voltage and clock frequency dynamically varied on the microprocessor
chip, but on the external SRAM memory chips, on the I/O interface chip, and on the

external processor system bus as well.

7.11.1 Comparison to Other ARM Processors

Another goal of this work was to see how much the intrinsic energy-efficiency
of a microprocessor could be improved without the benefit of DVS. A key benefit of

implementing a commercial ARMS8 processor core was that the prototype processor

286

7.11 Comparison to Prior Art

could be compared against other commercial ARM microprocessor implementations.
One of these implementation is the StrongArm SA-110, which is the most energy-

efficient commercial microprocessor available to date.

Energy consumption, in capacitance/cycle to normalize out the dependence on
Vpp. is plotted for the prototype processor and four commercial ARM microprocessors
in Figure 7.50. In addition, the processors performance and process technology is given.
The capacitance/cycle is broken out to show that which is consumed by the core, and

that which is consumed by the cache and the rest of the chip.

Normalized to 0.61m
800
[Processor core.
ik A REsCa e thp, (Cache 5] o
600- --------------------- -- -. --------
& 5 d :
% 500t - rrrreerreeces B
) ’
> 4
Q
E 400— ------------------ oY
g (
;{é 300_ Hovviveas 50
2,
200 e -
1004---1 é;-g """"" .z:_;é-
- ARM940T SA-110

Prototype ARM710 ARMS10
*85MIPS 23 MIPS «80MIPS ¢ 165MIPS 230 MIPS
0.6 um 0.6 um 0.5 um ¢ 0.35 um ¢ 0.35 um

FIGURE 7.50 : Capacitance/cycle of Various ARM Microprocessors.

The prototype processor has the lowest capacitance/cycle of the five
implementations, with the SA-110 a close second. However, since the ARMSI0,
ARMO940T, and SA-110 have the benefit of a better CMOS process technology, the
capacitance/cycle for these three were normalized to the 0.6um process technology of

the prototype processor. Compared against the normalized values, the prototype

287

7.11 Comparison to Prior Art

processor demonstrates almost 2x lower capacitance/cycle than any of the four
commercial processors, validating the energy-efficient design methodology presented
in this work. Despite the microarchitectural constraint of using the ARMS8 processor
core, the prototype system was still able to demonstrate a significant reduction in

capacitance/cycle.

Since the cache sub-system was designed in its entirety with energy-efficiency
in mind, it is interesting to see how the non-core component of the prototype
processor’s capacitance/cycle compares against the other implementations. Comparing
the normalized values, the non-core component of the prototype processor is 3x lower
than any of the other commercial implementations, despite having a larger cache size
than all but one of the other implementations. Thus, if the processor core itself was re-
architected and the instruction-set architecture (ISA) designed with energy-efficiency

in mind, an even more energy-efficient microprocessor could be achieved.

288

Conclusions

Processor systems are widely prevalent in portable devices, which demand
increasingly higher levels of energy-efficiency. Processor energy-efficiency has lagged
behind custom ASICs and DSP chips, such that while the processor carries only a
fraction of the device’s computation load, it is a significant, if not dominant, component
of the overall system energy consumption. This thesis has demonstrated both design
techniques, and a design methodology, to significantly improve processor energy-

efficiency to enable smaller, more powerful, and longer running portable devices.

Dynamic voltage scaling has demonstrated to be the most significant design
technique, providing an increase in energy-efficiency in excess of 10x. While DVS
requires modifications to both the circuit design and design flow, which diminish
energy-efficiency by 10-20%, this reduction is overwhelming compensated by the 10x

increase.

Furthermore, quantitative energy-efficiency metrics have enabled an energy-
efficient design methodology which has provided a further increase of 2-5x in energy-
efficiency. This is achieved by optimizing both performance and energy consumption at
all levels of the design hierarchy, as opposed to a more traditional design approach
which relegates energy consumption to a secondary concern. A prototype system has

successfully validated the design techniques and methodology presented in this work.

289

Conclusions

8.1 Summary of Research Contributions

The goal of this research is to significantly improve processor system energy-
efficiency by combining the lessons learned in low-power DSP design with the unique
design constraints of a general-purpose processor to develop a new, more energy-
efficient, processor design methodology. Several key research contributions which

addresses this goal are:

 Developed the technique of Dynamic Voltage Scaling (DVS) for a general-purpose
microprocessor to adaptively vary the processor’s supply voltage and clock
frequency, under operating system control. This allows the processor to provide
high performance when required, while minimizing energy consumption during the

remaining low-performance periods of time.

* Developed an energy-conscious design flow which enables energy consumption
. optimization at all levels of the design flow, including the high-level C behavioral
simulator, where optimizations can have the biggest impact on energy-efficiency.
The new flow also eliminates the extra complexity added by DVS to a more

traditional design flow.

* Developed an energy-efficient architectural design methodology for all aspects of
a processor system, including system-level optimizations, as well as optimizations

targeted for the processor core and cache system.

* Developed an energy-efficient circuit design methodology for all aspects of digital

circuit design, while meeting the circuit design constraints imposed by DVS.

* Demonstrated the above concepts by implementing a prototype processor system,
consisting of four custom chips in a 0.6pm CMOS process technology, that can
operate over the range of 1.2-3.8V, 5-80 MHz, and 0.54-5.6 mW/MIP. Through
DVS, the system can deliver a peak performance of 85 Dhrystone 2.1 MIPS, with

an average power dissipation as low as 3.24mW. This yields as much as 26,000

290

Conclusions

MIPS/W, which is more than 10x higher than the most energy-efficient

microprocessor currently available.

8.2 Current Industry Directions

In the rapidly evolving processor industry, some of the techniques described in
this thesis are beginning to come to fruition. Of particular interest is run-time voltage/
frequency adaptation, which was not even considered feasible three or four years ago

within the industry, and yet, is rapidly emerging in a variety of products technologies:

* In 1999, Intel introduced SpeedStep, which runs the processor at two different
voltages and frequencies, depending upon whether the notebook computer was

plugged into an AC outlet, or running of its internal battery.

* In 2000, Transmeta introduced LongRun, which dynamically varies voltage and
frequency over the range of 1.2-1.6V and 500-700MHz, providing a 1.8x variation
" in processor energy consumption. Control of the voltage/frequency is in firmware,

which monitors the amount of time the operating system is sleeping.

* In 2000, AMD introduced PowerNow!, which dynamically varies voltage and
frequency over the range of 1.4-1.8V and 200-500MHz, providing a 1.7x variation
in processor energy consumption. Control of the voltage/frequency is implemented
via a software driver which monitors the operating system’s measure of CPU

utilization.

* In 2001, Intel will introduce the XScale processor, which is essentially the second
generation StrongArm. It can dynamically operate over the voltage and frequency
range of 0.7-1.75V and 150-800MHz, providing a 6.3x variation in processor
energy consumption, the most aggressive range announced to date. Details of the
control have not yet been released. By further advancing the energy-efficiency of

the original StrongArm, this device will be able to deliver 1000 MIPS with an

291

Conclusions

average power dissipation as low as 50mW at 0.7V, yielding an effective

MIPS/Watt as high as 20,000.

8.3 Future Research Directions

This thesis has provided the groundwork for a variety of continuing research
directions. Further research is required on dynamic voltage scaling, as well as all

aspects of energy-efficient design.

Integrating the voltage converter onto the same chip as the processor could be
explored. Integration would enable further research on multiple, variable voltage
supplies, without adversely impacting system cost, size, and complexity. One potential
use of an additional supply would be for the external processor bus, which could then
operate at a speed independent of the processor core. This would allow high-speed
DMA to the main memory, so that even when the processor core is operating at low
speed, high-bandwidth I/O-memory transactions could still occur. Additional research
areas would be applying DVS to external I/O devices, such as a radio, which could

likewise dynamically trade-off performance (bandwidth) versus energy consumption.

Another research direction would the further exploration of instruction set
architecture and microarchitecture for improving energy-efficiency. Of particular
interest are VLIW and parallel processor architectures which explicitly expose their
parallelism, and do not suffer from exponentially increasing energy consumption with

parallelism as is the case with superpipelined and superscalar processor architectures.

As process technology continues to advance, energy consumed by interconnect
will consume an increasingly larger fraction of the total energy consumption. Thus,
further investigation of low-swing interconnects could yield additional improvement of

processor system energy-efficiency.

292

[aebi97]

[arm94
[arm95]
[arm96a]
[arm96b]
(arm97]

[bund93a]

[bund93b]

[bund94]

[burd94]

[burd94b]

[burn97]
[burs97]
[chan92]

[chan94]

[chan95]

[chan96]

[culb94]

References

D. Aebischer, et. al., “A 2.1-MHz Crystal Oscillator Time Base with a Current Con-
sumption under 500nA”, IEEE Journal of Solid State Circuits, Vol. 32, No. 7, Jul.
1997, pp. 999-1005.

Advanced RISC Machines, Ltd., ARM710 Data Sheet, Technical Document, Dec.
1994,

Advanced RISC Machines, Ltd., Introduction to Thumb, Developer Technical Docu-
ment, Mar. 1995.

Advanced RISC Machines, Ltd., ARM Architecture and Implementation Reference,
Document Number ARM-DDI-0100A-1, Feb. 1996.

Advanced RISC Machines, Ltd., ARM 8 Data Sheet, Document Number ARM-DDI-
0100A-I, Feb. 1996.

Advanced RISC Machines, Ltd., ARM Software Development Toolkit Reference
Guide, Document Number ARM-DUI-0041A, Jan. 1997.

J. Bunda, et. al., “16-Bit vs. 32-Bit Instructions for Pipelined Architectures”, Proceed-
ings of the 20th International Symposium on Computer Architecture, May 1993, pp.
237-46.

J. Bunda, Instruction-Processing Optimization Techniques for VLSI Microprocessors,
Ph.D. Thesis, The University of Texas at Austin, 1993.

J. Bunda, W.C. Athas, and D. Fussell, “Evaluating Power Implications of CMOS
Microprocessor Design Decisions”, Proceedings of the 1994 International Workshop
on Low-Power Design, Napa Valley, CA, April 1994.

T. Burd, Low-Power CMOS Library Design Methodology, M.S. Thesis, University of
California, Berkeley, Document No. UCB/ERL M94/89, 1994.

T. Burd, B. Peters, A Power Analysis of a Microprocessor: A Study of an Implementa-
tion of the MIPS 3000 Architecture, ERL Technical Report, University of California,
Berkeley, 1994.

A. Burns and A. Wellings, Real-Time Systems and Programming Languages, 2nd Edi-
tion, Addison-Wesley, Reading, MA, 1997.

A. Burstein, Speech Recognition for Portable Multimedia Terminals, Ph.D. Thesis,
University of California, Berkeley, Document No. UCB/ERL M97/14, 1997.

A. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power CMOS Digital
Design”, IEEE Journal of Solid State Circuits, Apr. 1992, pp. 473-84.

A. Chandrakasan, A. Burstein, and R.W. Brodersen, “A Low Power Chipset for Porta-
ble Multimedia Applications”, IEEE Journal of Solid State Circuits, Vol. 29, No. 12,
Dec. 1994, pp. 1415-28.

A. Chandrakasan, R.W. Brodersen, Low-power Digital CMOS Design, Kluwer Aca-
demic Publishers, Boston, 1995.

A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven Signal Processing:
An Approach for Energy Efficient Computing”, Proceedings of the 1996 International
Workshop on Low-Power Design, Aug. 1996, pp. 347-52.

M. Culbert, “Low Power Hardware for a High Performance PDA”, Proceedings of the
Thirty-Ninth IEEE Computer Society International Conference, Mar. 1994, pp. 144-7.

293

References

[de99]

* [dec98]
[endo96]

[free94]

[mull86)
[gary94]

[gec94]
[gonz95]

[gray93]
[henn95)
[ho99]

[hp95]

[horo94]

[huan93]

[idt95]

[iked95]
[inte95]
[john90]

[joup89]

[kaen90]

[kawa98]

V. De and S. Borkar, “Technology and Design Challenges for Low Power and High
Performance”, Proceedings of the IEEE Symposium on Low Power Electronics and
Design, Aug. 1999, pp. 163-8.

Digital Equipment Corporation, DIGITAL Semiconductor SA-1100 Mzcroprocessar
Technical Reference Manual, Document EC-RSMTB-TE, Jan 1998.

Y. Endo, et. al., “Using Latency to Evaluate Interactive System Performance”, Pro-
ceedings of Operating Systems Design and Implementation, Nov. 1996.

P. Freet, “The SH Microprocessor: 16-Bit Fixed Length Instruction Set Provides Bet-
ter Power and Die Size”, Proceedings of the Thirty-Ninth IEEE Computer Society
International Conference, Mar. 1994, pp. 486-8.

R. Muller, T. Kamins, Device Electronics for Integrated Circuits, Wiley, New York,
1986.

S. Gary, et. al., “The PowerPC 603 Microprocessor: A Low-Power Design for Porta-
ble Applications”, Proceedings of the Thirty-Ninth IEEE Computer Society Interna-
tional Conference, Mar. 1994, pp. 307-15.

GEC Plessey Semiconductor, ARM60 Data Sheet, Technical Document, Aug 1994.

R. Gonzalez and M. Horowitz, “Energy Dissipation in General Purpose Processors”,
Proceedings of the IEEE Symposium on Low Power Electronics, Oct. 1995, pp. 12-3.

P. Gray, R. Meyer Analysis and Design of Analog Integrated Circuits, Wiley, New
York, 1993.

J. Hennessy, D. Patterson, Computer Architecture: A Quantitative Approach, Morgan
Kaufmann, San Francisco, 1995.

R. Ho, K. Mai, M. Horowitz, “Scaling Implications for CAD”, Proceedings of the
IEEE International Conference for Computer-Aided Design, Nov. 1999.

Hewlett Packard, CMOS 14TA/B Reference Manual, Document Number #A-5960-

'7127-3, Jan. 1995.

M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital Design”, Proceed-
ings of the IEEE Symposium on Low Power Electronics, Oct. 1994, pp. 8-11.

J. Huang, et. al., “A Robust Physical and Predictive Model for Deep-Submicrometer
MOS Circuit Simulation”, Proceedings of the IEEE Custom Integrated Circuits Con-
Jerence, May 1993, pp. 14.2.1-4.

Integrated Device Technology, Inc., Enhanced Orion 64-Bit RISC Microprocessor,
Data Sheet, Sep. 1995.

T. Ikeda, “ThinkPad Low-Power Evolution”, Proceedings of the IEEE Symposium on
Low Power Electronics, Oct. 1995, pp. 6-7.

Intel Corp., Embedded Ultra-Low Power Intel486TM GX Processor, SmartDieTM
Product Specification, Dec. 1995.

M. Johnson, Superscalar Microprocessor Design, Englewood, NJ: Prentice Hall,
1990.

N. Jouppi and D. Wall, “Available Instruction-Level Parallelism for Superscalar and
Superpipelined Machines”, Proceedings of the Third International Conference on
Architectural Support for Programming Languages and Operating Systems, Apr.
1989, pp 272-82.

V. von Kaenal, P. Macken, and M. Degrauwe, “A Voltage Reduction Technique for
Battery-operated Systems”, IEEE Journal of Solid State Circuits, Vol. 25, No. 10, Oct.
1990, pp. 1136-40.

S. Kawashima, et. al., “A Charge-Transfer Amplifier and an Encoded-Bus Architec-
ture for Low-Power SRAM’s”, IEEE Journal of Solid State Circuits, Vol. 33, No. 5,
May 1998, pp. 793-9.

294

References

[kuni95] S. Kunii, “Means of Realizing Long Battery Life in Portable PCs”, Proceedings of the
IEEE Symposium on Low Power Electronics, Oct. 1995, pp. 20-3.

[kuro96] T. Kuroda, et. al., “A 0.9-V, 150-MHz, 10-mW, 4 mmz, 2-D Discrete-Cosine Trans-
form Core Processor with Variable Threshold-Voltage (VT) Scheme”, IEEE Journal
of Solid State Circuits, Vol. 31, No. 11, Nov. 1996, pp. 1770-9.

[kuro98] T. Kuroda, et. al., “Variable Supply-voltage Scheme for Low-power High-speed
CMOS Digital Design”, IEEE Journal of Solid State Circuits, Vol. 33, No. 3, Mar.
1998, pp. 454-62.

[land94] P.Landman, J. Rabaey, “Black-Box Capacitance Models for Architectural Power
Analysis”, Proceedings of the 1994 International Workshop on Low-Power Design,
Napa Valley, CA, April 1994.

[lee97] W. Lee, et. al., “A 1-V Programmable DSP for Wireless Communications”, JEEE
Journal of Solid State Circuits, Vol. 32, No. 11, Nov. 1997, pp. 1766-76.

[1iu73] C. Liu and J. Layland, “Scheduling Algorithms for Multi-Programming in a Hard
Real-time Environment”, Proceedings of CACM 20, 1973.

[lown93] P. Lowney, et. al., “The Multiflow Trace Scheduling Compiler”, The Journal of Super-
computing, Vol. 7, Boston: Kluwer Academic Publishers, 1993, pp. 51-142.

[mark00] D. Markovic, Analysis and Design of Low-Energy Clocked Storage Elements, M.S.
Thesis, University of California, Berkeley, Document No. UCB/ERL M00/64, 2000.

[mont96] J. Montanaro, et. al., “A 160-MHz 32-b 0.5-W CMOS RISC Microprocessor”, IEEE

‘ Journal of Solid State Circuits, Vol. 31, No. 11, Nov. 1996, pp. 1703-14.

[mont96b] J. Montanaro, et. al., “A 160MHz 32b 0.5W CMOS RISC Microprocessor”, Proceed-
ings of the Thirty-Ninth IEEE International Solid-State Circuits Conference - Slide
Supplement, Feb. 1996, pp. 170-1.

[muto95] - S. Mutoh, et. al., “1-V Power Supply High-Speed Digital Circuit Technology with

: Multithreshold-Voltage CMOS”, IEEE Journal of Solid State Circuits, Vol. 30, No. 8,
Aug. 1995, pp. 847-54.

[niel94] L. Nielsen, C. Niessen, J. Sparso, and K. van Berkel, “Low-power Operation Using
Self-timed Circuits and Adaptive Scaling of the Supply Voltage”, IEEE Transactions
on VLSI Systems, Vol. 2, No. 4, Dec. 1994,

[peri00] T. Pering, Energy-Efficient Operating System Techniques, Ph.D. Thesis, University of
California, Berkeley, 2000.

[pier96] R. Pierret, Semiconductor Device Fundamentals, Addison Wesley, Reading, MA,
1996.

[raba96] J. Rabaey, Digital Integrated Circuits, A Design Perspective, Prentice Hall, Upper
Saddle River, NJ, 1996.

[shir96] T. Shiraishi, et. al., “A 1.8V 36mW DSP for the Half-rate Speech CODEC”, Proceed-
ings of the IEEE Custom Integrated Circuits Conference, May 1996, pp. 371-4.

[smit89] M. Smith, M. Johnson, and M. Horowitz, “Limits on Multiple Issue Instruction”, Pro-
ceedings of the Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Apr. 1989, pp 290-302.

[spec94] Standard Performance Evaluation Corporation, SPEC Run and Reporting. Rules Sfor
CPU95 Suites, Technical Document, Sep. 1994.

[stra94] A. Stratakos, S. Sanders, and R.W. Brodersen, “A Low-voltage CMOS DC-DC Con-
verter for Portable Battery-operated Systems”, Proceedings of the Twenty-Fifth IEEE
Power Electronics Specialist Conference, June 1994, pp. 619-626.

[stra98] A. Stratakos, High-Efficiency, Low-Voltage DC-DC Conversion for Portable Applica-
tions, Ph.D. Thesis, University of California, Berkeley, 1998.

295

References

[su95]

 [sytvog]

[sze81]
[tiwa96]

[toh88]
[tser96]

[ueda93]

[veen84]

[vitt80]
[wall93]

[wei00]

[weic84]
[west93]
[yuan89]

[zhan00]

C. Su, A. Despain, “Cache Designs for Energy Efficiency”, Proceedings of the
Twenty-Eighth Hawaii International Conference on System Sciences, Jan. 1995, pp.
306-315. o

D. Sylvester and K. Keutzer, “Getting to the bottom of deep submicron”, Proceedings
of the International Conference on CAD, 1998, pp. 203-211.

S. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.

V. Tiwari, et. al., “Instruction Level Power Analysis and Optimization of Software”,
Journal of VLSI Signal Processing, Vol. 13, Nos. 2/3, Aug/Sep 1996, pp. 223-238.

K. Toh, P. Ko, R. Meyer, “An Engineering Model for Short-Channel MOS Devices”,
IEEE Journal of Solid-State Circuits, Vol. 23, No. 4, April 1988.

E. Tsern, and T. Meng, “A Low Power Video-rate Pyramid VQ Decoder”, IEEE Jour-
nal of Solid-State Circuits, Vol. 31, No. 11, Nov. 1996, pp. 1789-94.

K. Ueda, et. al., “A 16b Low-power-consumption Digital Signal Processor”, Proceed-
ings of the IEEE International Solid-State Circuits Conference, San Francisco, Feb.
1993, pp. 28-9.

H. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and Its Impact on
the Design of Buffer Circuits”, IEEE Journal of Solid State Circuits, Vol. 19, No. 4,
August 1984.

E. Vittoz, “Micropower IC”, Proceedings of the IEEE European Solid-State Circuits
Conference, Sep. 1980, pp. 174-89.

D. Wall, Limits of Instruction-Level Parallelism, DEC WRL Research Report 93/6,
Nov. 1993.

G. Wei, et. al., “A Variable-frequency Parallel /O Interface with Adaptive Power Sup-
ply Regulation”, Proceedings of the IEEE International Solid-State Circuits Confer-
ence, San Francisco, Feb. 2000, pp. 298-9.

'R. Weicker, “Dhrystone: A Synthetic Systems Programming Benchmark”, Communi-

cations of the ACM, Vol. 27, No. 10, Oct. 1984, pp. 1013-30 -

N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison Wesley,
Reading, MA, 1993.

J. Yuan, C. Svensson, “High-Speed CMOS Circuit Techniques”, IEEE Journal of
Solid-State Circuits, Vol. 24, No. 1, Feb. 1989

H. Zhang, et. al., “A 1-V Heterogeneous Reconfigurable DSP IC for Wireless Base-
band Digital Signal Processing”, IEEE Journal of Solid-State Circuits, Vol. 35, No.
11, Nov. 2000, pp. 1697-1704.

296

	Copyright notice 2001
	ERL-01-13

