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Abstract

Low-Power Domain-Specific Processors for Digital Signal Processing

by

Arthur Abnous

Doctor of Philosophy in Engineering- Electrical Engineering
and Computer Sciences

University of California, Berkeley

Professor Jan M. Rabaey, Chair

Rapid advances in portable computing and communication devices require imple

mentations that must not only be highly energy efficient, but they must also be flexible

enough to support a variety of multimedia services and communication capabilities. The

required flexibility dictates the use of programmable processors in implementing the

increasingly sophisticated digital signal processing algorithms that are widely used inpor

table multimedia terminals. However, compared to custom, application-specific solutions,

programmable processors often incur significant penalties in energy efficiency and perfor

mance. The approach taken in this work was to explore ways of trading off flexibility for

increased efficiency. This approach was based on the observation that for a given domain

of signal processing algorithms, the underlying computational kemels that account for a

large fraction ofexecution time and energy are very similar. By executing the dominant

kemels ofa given domain ofalgorithms on dedicated, optimized processing elements that

can execute those kemelswith a minimum of energyoverhead, significant energy savings

can potentially be achieved. Thus, the approach taken in this work yields processors that

are domain-specific. The main contribution of this work is a reusable architecture tem-



plate, named Pleiades, that can be used to implement domain-specific, programmable pro

cessors for digital signal processing algorithms. The Pleiades architecture template relies

on a heterogeneous network of processing elements, optimized for a given domain of

algorithms, that can be reconfigured at run time to execute the dominant kernels ofthe

given domain. To verify the effectiveness of the Pleiades architecture, prototype proces

sors were designed, fabricated, and evaluated. Measured results and benchmark studies

demonstrate the effectiveness of the Pleiades architecture.

Jan M. Rabaqy,'̂ issertation Committee ChaiJsss^
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CHAPTER 1

Introduction

An important trend that has been a major driver of the electronics industry in

recent years is the growing demand for portable computing and communication devices.

This demand has been fueled by the quality of life and business productivity improve

ments that have been provided by these devices. There has beena tremendous interest in

laptop computers, personal digital assistants, mobile phones, and pagers. This is only the

beginning, however, as there are more sophisticated devices on the horizon that will pro

vide increasingly sophisticated capabilities and features. One important vision of the

future of computing and communication has been proposed by the InfoPad project at the

University of California at Berkeley [1, 2]. In this vision, mobile, wireless terminals pro

vide users with ubiquitous and untethered access to multimedia content and computing

services available from a high-bandwidthbackbone network of computers.

A portable multimedia terminal must provide two fundamental capabilities: the

ability to process multimedia information and the ability to communicate that information

through various wired and/or wireless communications channels. Speech, audio, video.



and graphics are examples of the types of data that are processed by a typical multimedia

terminal. The technology that provides the underlying algorithms to process these data

types is Digital Signal Processing (DSP). Digital signal processing is also the technology

that is applied to process the signals that are used to communicate information over a

wired or wireless communication channel. Improvements in computational performance

provided by advances in integrated circuit fabrication technology allow the use of more

and more sophisticated signal processing techniques that allow greater functionality and

performance and richer modes of conununication in portable multimedia temunals.

Speech recognition is a good example of the type of functionality that is currently not

readily available, but itwill be an important feature in the near future as the required pro

cessing power to provide it becomes economically viable. Another good example is a

multi-standard, adaptive radio transceiver that can provide a number ofdifferent modes of

communication, as required bythe physical location ofthe user at a given time.

Amajor problem associated with increases in the processing power and the sophis

tication of signal processing algorithms is the increasing levels of power dissipation. A

mobile terminal is typically powered bybatteries, a limited source of energy. Fora porta

ble device to be useful, it must have a reasonable amount of run time before the batteries

run outand need to be recharged. Another problem with high levels of power dissipation

is the cost ofpackaging and cooling. Low-power integrated circuits can beplaced in inex

pensive and compact packages. High-power devices, on the other hand, require expensive

and bulky packages and cooling mechanisms. High levels ofpower dissipation also mean

high operating temperatures that adversely affect the reliability ofanintegrated circuit.

Power dissipation is not a new problem. In the middle of 1980s, designers faced

the same problem. The solution then was to switch from NMOS technology, which suf

fered from static power dissipation, to CMOS technology [3, 4], CMOS was far more



energy-efficient than NMOS and was the most effective and economically viable way to

build more and more powerful microprocessors. In fact, CMOS was so energy efficient,

that power became an afterthought once again. But in recent years, increasing levels of

computing performance have made power an important and challenging problem once

again [5], and this time, there is nomagic technological solution to make it disappear.

To provide the required computing power and to increase the energy efficiency of

signal processing circuits, designers have developed numerous design techniques that can

be applied in custom, application-specific integrated circuits. While this approach has

been successful in increasing energy efficiency, it suffers from the drawback that the

resulting devices canonly provide thelimited functionality that they were designed topro

vide, i.e., they arenotvery flexible. In reality, however, a variety ofmultimedia data types

and services, modes of communication, and associated standards are in use, and it is

highly desirable to have devices that can deal with this variety. Therefore, it is highly

desirable that flexible, programmable components be used to implement the processing

functions required in a modem computing/communication device.

Programmability has many benefits, all of which are the results of the inherent

flexibility of a programmable design. With a programmable device, one can use the same

pre-fabricated component to perform different tasks. One does not have to go through the

lengthy and costly cycle ofdesigning a new integrated circuit that performs a new task. It

is fareasier, faster, and less expensive to program a programmable processor to perform a

new task than it is to design a new integrated circuit.

Another advantage of a programmable implementation of an algorithm is that one

can tune the parameters ofasystem by simply changing the parameters ofaprogram. One

can tune a design in its actual operating environment and get quick feedback as to how

well design modifications work. Another advantage is that a system designed with pro-
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Figure 1.1; The Trade-off between Flexibility and Efficiency

grammable components can be upgraded during its lifetime to improve its functionality
and to provide the ability to support new standards.

The difficulty in achieving high levels of energy efficiency (and performance) in a

programmable processor stems from afundamental trade-off that exists between flexibil
ity and efficiency. This trade-off is illustrated in Figure 1.1. Programmability requires gen
eral-purpose computation, storage, and communication resources that can be used to
implement all kinds of different algorithms. Efficiency, on the other hand, dictates the use

of custom, dedicated hardware structures that can exploit the specific properties of agiven

algorithm to maximize efficiency. In a custom solution, no computational resource is
larger or more complicated than it needs to be. As aresult, all circuit modules, i.e., arith
metic and logic units, memories, and communication channels, are smaller, faster, and

consume less energy.

Programmable processors, particularly general-purpose microprocessors and digi

tal signal processors, have the virtue of being completely flexible. They can be pro

grammed to implement any algorithm, but they incur the significant energy and
performance overhead of fetching, decoding, and executing sequences of instructions on

complex, general-purpose hardware structures.



1.1 Goals and Contributions

The central problem addressed in this work is how to design a digital signal pro

cessor that is not only highly energy efficient, but it is also programmableand can be used

to implement a variety of different, but similar, algorithms. The flexibility of general-pur

pose processors is highly desirable for handling complex, control-oriented computing

tasks such as operating systems, word processors, and spreadsheets. Signal processing

algorithms, on the otherhand, haveintrinsic properties thatprovide an opportunity for cre

ating more efficient implementations that do not require the full flexibility of a general-

purpose device. Signal processing algorithms typically exhibit high levels of concurrency

and are dominated by a few regular, repetitive kernels of computation that account for a

large fraction of execution time and energy.

The approach taken in this work was to explore ways of trading off flexibility for

increased efficiency. This approachwas based on the observation that for a given class, or

domain, of signal processing algorithms, e.g., speech coding using Code-Excited Linear

Prediction (GEL?) or video compression/decompression using the Discrete Cosine Trans

form (DCT), the underlying computational kernels that are responsible for a large fraction

of execution time and energy are verysimilar. What varies in different algorithms and dif

ferent industry standards are the parameters of the algorithms and the high-level control

flow of the algorithms. By executing these underlying dominant kernels on dedicated,

optimized processing elements that can execute those kernels with a minimum of energy

overhead, significant energy savings can potentially be gained. This means that the pro

cessors being designed with this approach are domain'Specific and are optimized for a

given domain of algorithms. Flexibility is thus traded off, as illustrated in Figure 1.1,

allowing a designer to achieve high levels ofenergy efficiency, approaching that of a cus

tom, application-specific design, while maintaining the flexibility needed to handle a vari

ety of different algorithms within the domain of interest.



The main contribution of this work is an architecture template, named Pleiades,

that can be used to implement domain-specific, programmable processors for digital sig

nal processing algorithms. Pleiades relies on aheterogeneous network of processing ele
ments, optimized for agiven domain of algorithms, that can be reconfigured at run time to
perform different computational tasks. Associated with this architecture template is a
design methodology. Defining this methodology was another contribution of this work. To
explore and prove the effectiveness of this approach, a domain-specific processor for
CELP-based speech coding algorithms, named Maia, was designed and analyzed. Aproto

type integrated circuit, named PI, with all the elements of the Pleiades architecture tem
plate was designed and fabricated to evaluate the merits of the Pleiades approach.

1.2 Thesis Overview

The body of knowledge that forms the background of this work will be presented

in the next three chapters. Chapter 2 provides an overview of low-power design tech

niques for digital CMOS circuits. We will discuss how power is dissipated in CMOS cir
cuits and how itcan be minimized. The main objective ofthis chapter is to establish a set

of architectural design principles that must be followed in an energy-efficient design.

Chapter 3describes the properties of digital signal processing algorithms that can

be exploited to design energy-efficient, domain-specific processors. Ageneral overview

of CELP-based speech coding algorithms and a detailed analysis of the VSELP (Vector-

Sum Excited Linear Prediction) speech coding algorithm will bepresented.

Chapter 4 presents a comprehensive review of the different approaches that have

been explored in the past for designing programmable processors for digital signal pro

cessing applications. The strengths and weaknesses of these different architectures will be

discussed. This chapter concludes with a set ofarchitectural features that must be present

in an energy-efficient programmable signal processor. These features, along with the



energy-efficient design principles presented in Chapter 2, form the basis for the design

choices made in the Pleiades architecture template.

Chapter 5 presents the architecture template proposed inthis research. We will first

present the programming model that provides the skeleton of this architecture template,

and we will sketch the associated design methodology. Next, the architectural design

choices thatwere made will be presented and analyzed. We will show how signal process

ing kernels can be mapped onto the Pleiades architecture template. Architectural design of

Maia, a domain-specific processor for speech coding applications, will bepresented.

Chapter 6 presents the design of the PI prototype which was designed and fabri

catedto evaluate the merits of the architectural principles presented in this thesis. We will

show how different components of the Pleiades architecture template can be assembled

into apractical design. Measured power and performance numbers will be presented and

discussed.

The Pleiades approach isevaluated inChapter 7. Benchmark results comparing the

Pleiades architecture toother programmable architectures will bepresented and discussed.

The last chapter concludes this dissertation with a summary ofthe presented work

and proposals for future research.



CHAPTER 2

Principles of Low-Power Design

Programmable signal processors are typically implemented as digital integrated

circuits using CMOS technology. In this chapter we will review the fundamentals oflow-

power digital CMOS design. We will start with adiscussion of how energy is consumed in

digital CMOS circuits. We will then discuss how energy consumption ofdigital CMOS

circuits canbe minimized. Architectural techniques for reducing power dissipation will be

presented. We will end this chapter with aset ofarchitectural design principles for energy-

efficient programmable architectures.

2.1 Energy and Power

Energy and power are related. Power is the time rate of consumption of energy

(P = E). Electrical energy is consumed by a circuit to perform a given task, i.e., a com

putation, and isdissipated as heat and electromagnetic radiation. Acircuit can be rated by

the amount of energy that it consumes to perform a given task, or it can be rated by its

power dissipation. Both of these ratings are useful in their own different ways. If we are

concerned about battery life, then energy is the more appropriate metric toconsider. Abat-



tery stores a finite amount of energy, and a finite amount of work can be done with that

energy. What matters is to do as much work as possible; therefore, as little energy as pos

sible must be consumed to perform a given task. If the work is done quickly, then power

dissipation will be high; if the work is done slowly, then power dissipation will be low. In

either case, the same amount of work has been done. The speed at which a task is per

formed, however, usually determines if thework being done is actually useful. In real-time

signal processing applications, for example, anincoming stream ofdata must beprocessed

at a specified rate. In this context, rating a circuit by its power dissipation is equivalent to

rating it by itsenergy consumption. Still, the real objective is tominimize the energy con

sumed to perform a given task.

If we are concerned with heat removal and reliability, then power is the more

appropriate metric toconsider, as the heat generated by a circuit and its operating temper

ature are directly related to its power dissipation, and the amount of work being done is

inconsequential. While minimizing energy per task is not the real objective inthis context,

it is still anappropriate design objective, as it will reduce power dissipation.

2.2 Power Dissipation in CMOS Circuits

Before discussing techniques for minimizing power, we need to understand how

energy is consumed in CMOS circuits. There are two main components ofpower dissipa

tion in a CMOS circuit: dynamic power and static power.

2.2.1 Dynamic Power

The most significant component of power dissipation in CMOS circuits occurs

during switching transients, when the circuits are actually processing information. Figure

2.1 shows the circuit diagram of a CMOS inverter. The parasitic capacitances driven by

the inverter have been lumped into a load capacitance Catthe output ofthe inverter. There
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Figure 2.1: CMOS Inverter

are two mechanisms that result in dynamic power dissipation in this circuit. The first and

most significant component of dynamic power is due to charging and discharging of the
load capa<-iianpp When the input of the inverter switches from high to low, the NMOS
transistor is turned off, and the PMOS transistor is switched on, charging the load capaci-

2

tance to and drawing of charge from the power supply. As aresult, of

energy is drawn from the power supply. Half of this energy is dissipated in the PMOS
transistor, and the other half is stored in the load capacitance. When the input switches

back to high, the PMOS transistor is tumed off, the NMOS transistor is switched on, the

load capacitance is discharged, and the energy that was stored on it is dissipated in the
1 2

NMOS transistor. Thus, each switching event dissipates energy. If the operat

ing frequency of the system within which this switching event is occurring is /, and the
average number of switching events in this circuit during an execution cycle is a, then the

power dissipation associated with this circuit IS

=«/(!cv^D 1

The second component of dynamic power is caused by the non-zero transition time

of the input of the inverter. In Figure 2.1, as the input is rising (or falling), there will be a

10



Figure 2.2: Leakage Currents in a CMOS Inverter

period of time during which both thePMOS and the NMOS transistors are on, and there is

a direct path from to ground, allowing current to flow. Veendrick hasdone a detailed

study of this mechanism, and his conclusion is that this component of power dissipation

canbe keptbelow 15% by maintaining equal transition times at theinput and theoutput of

a CMOS gate [6]. The contribution of this direct-path current to total power dissipation

decreases as the supply voltage is reduced. In fact, if , where and

Vjp are the threshold voltages of the NMOS and the PMOS transistors, respectively, then

the direct-path current is virtually eliminated, as the two transistors cannot be on simulta

neously. Thus, for low-power designs that are operated at low voltages, short-circuit

power is not a major issue.

2.2.2 Static Power

In an ideal CMOS inverter, where the transistors are ideal switches, there is no

static power dissipation because the PMOS and NMOS transistors are not simultaneously

onin thesteady state, and there is no DCpath between thepositive and negative terminals

of the power supply. Real MOS transistors are not ideal switches, however, and in real

CMOS circuits, there are two main mechanisms that result in static current flowing from

the power supply [7]. Figure 2.2 illustrates these static currents ina CMOS inverter.
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One type of static current is due to the junction leakage current of the reverse-

biased diodes between the source and drain terminals and the substrate of a MOS transis

tor. This current isequal to the reverse saturation current ofa PN junction diode, and ison

the order of 1to 5 pA per }im^ ofjunction area at room temperature for a typical CMOS

process [8]. For aminimum-size transistor in a0.6-|im process, the total leakage current is

on the order of4 pA. The value ofthis current doubles for every 9 degree increase in tem

perature.

When the gate-to-source voltage, Vqs, of a MOS transistor is below its threshold

voltage (Vg5 < VjO, the transistor is considered off, and ideally, the drain current, /£>, ofthe

transistor is zero.There is, however, a sub-threshold leakage currentthat flows through the

device. This current decreases by an order of magnitude for every 60 to 90 mV drop in

Vqs. Thus the drain current of an off device (Vcs = 0) is several orders of magnitude

smaller than the operating current when the device is on. It should benoted that for reli

ability and power reasons, modem sub-micron processes operate at reduced supply volt

ages that dictate reduced threshold voltages (on the order of 400 mV). As a result, sub-

threshold currents have become the dominant source of static leakage currents in modem

sub-micron technologies. Forexample, fora 0.35-|im process, the sub-threshold current is

on the order of 9 pA per (im of device width [9]. The value of the sub-threshold current

also increases with temperature exponentially.

During normal operation, thepower dissipation of a CMOS circuit due to the leak

age currents is negligible, as these currents are orders ofmagnitude less than theoperating

currents when devices are switching. When a CMOS circuit is in stand-by, though, its

power dissipation is determined by these leakage currents. Thus, if a circuit spends a large

fraction of its operating time in stand-by, staticpowercan become important.

12
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Figure 2.3: Pseudo-NMOS Inverter

There is another source of static powerin CMOS circuits thatoccurs in ratioed cir

cuit styles. Figure 2.3 shows the circuit diagram ofa Pseudo-NMOS inverter. In this cir

cuit, when the input is high, both transistors are on, and static current flows through the

gate. In general, circuits of this sort must be avoided in energy-efficient designs, so that

there areonly leakage currents when there is no switching activity.

2.2.3 Summary

From the above discussion, we can see that the energy required to perform a given

computation isdetermined by the switching energy consumed in charging and discharging

of circuit nodes. As shown in Equation 2.1, this energy depends on three parameters: sup

ply voltage, capacitance, and switching activity. In the following sections, we will study

the effect ofthese parameters on energy consumption, and we will discuss energy-efficient

design techniques and their effect on these parameters. Since we are primarily concerned

with energy-efficient architectures in this thesis, the emphasis will be on architectural

design techniques. It should be noted, however, that many other design techniques

addressing other levels ofthe design process such as algorithm design, logic design, cir

cuit design, and technology design have been proposed [10]. To minimize energy con

sumption all aspects ofthe design process must be energy conscious.
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2.3 Reducing the Supply Voltage

Since power dissipation varies with the supply voltage in a quadratic manner,

reducing the supply voltage is a very effective way of reducing power dissipation. For

example, if the supply voltage is halved, then the power dissipation of an integrated circuit

is reduced by afactor of four! Because of this quadratic relationship, reducing the supply

voltage is the most powerful approach to reducing power dissipation.

Unfortunately, the supply voltage of acircuit cannot be reduced arbitrarily. As in

most engineering problems, there is a trade-off at work that prevents us from arbitrarily

reducing power dissipation by simply reducing the supply voltage. The problem is that the

delay of CMOS circuits increases as the supply voltage is reduced. The drain current of a

MOS transistor in saturation is

where k is the device transconductance parameter, Wis the channel width, L is the chan

nel length, and Vj is the threshold voltage. Ip decreases as Vpp approaches Vj. Thus, at

lower voltages, the current level provided by the transistors to charge and discharge circuit

nodes decreases, and circuit delays increase significantly. Figure 2.4, shows how the delay

and energy ofan inverter circuit vary with the supply voltage in the 0.5-pm CMOS pro

cess that was used in this research project. Performance degrades rapidly when the supply

voltage is lowered beyond 1.2 V. Almost all designs have a minimum performance

requirement, and in general, the supply voltage should be set at the minimum value that

provides acceptable performance. Agood metric for comparing the energy efficiency of

different designs is the energy-delay product [11]. This metric captures the trade-off that a

designer can make between performance and energy efficiency. The graph for the energy-

14



>> 1.0

20.0

O) 10.0

Vdd(V)

Figure 2.4: Dependence of Delayand Power on Supply Voltage

O 0.8

lil 0.4

2.0 3.0

Vdd(V)

Figure 2.5: Energy-Delay Product vs.SupplyVoltage

delay product ofthe inverter circuit mentioned above isshown in Figure 2.5. The nominal

supply voltage for the circuits designed in this research project was 1.5 V. This design

point is very close to the minimum of theenergy-delay curve.
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The golden rule in minimizing power dissipation is to design systems that can run

at as low asupply voltage as possible that will satisfy the performance requirements. The

choices made at all design levels, from algorithms and architectures to circuits and tech

nologies should allow the reduction of the supply voltage as much as possible. This means

that these design choices must be able to cope with and compensate for the speed loss

associated with reducing the supply voltage. Some ofthese choices nught result in more

physical capacitance and/or more switching activity, but ifthey allow a reduction in the

supply voltage, then the quadratic decrease in power may more than compensate for the

increase due tothe increased physical capacitance and switching activity.

One approach to further reduce power dissipation is to run each circuit at its own

optimal supply voltage, which could be different from that of other circuits [12, 13]. This

approach requires routing of multiple supply lines to different blocks of achip, and italso

requires level-shifter circuitry that will allow translation of signal levels between two

blocks that run at different supply voltages. The overhead of these level-shifters and the

complexity ofthe extra routing will limit how far this approach can be taken. Neverthe

less, partitioning achip into two or three voltage domains that have different performance

requirements can bevery effective inreducing power dissipation.

2.3.1 Concurrent Processing

Concurrent processing isa well-known architectural technique that can be used to

increase the processing throughput ofa design. This increase in throughput can be used to

compensate for the speed loss associated with lowering the supply voltage. By applying

concurrent processing techniques and thus increasing the throughput ofa given design, we

can lower the supply voltage and reduce power dissipation, while still meeting perfor

mance requirements [5, 8]. This approach can be used if the algorithm being executed by

our design can be divided into separate tasks that can be executed concurrently. As we will
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Figure 2.6: Parallel Processing

see in the next chapter, signal processing algorithms exhibit high levels of concurrency

that can be exploited in this manner to reduce power dissipation.

There are two methods to realize concurrent processing: parallel processing and

pipelining. In parallel processing, a functional unit is replicated N times. The input data

stream is distributed to the functional units, and each functional unit operates on one token

of input data in parallel with others. This is illustrated inFigure 2.6. In the parallel design,

N tokens of input data are processed concurrently, and the throughput of the original

design with a single functional unit has been increased by a factor of N. Capacitance has

increased by a factor ofN, but we cannow lower theclock frequency by a factor of N. To

meet theoriginal performance requirement, each functional units can now operate Ntimes

slower than before, and we can lower the supply voltage and benefit from the quadratic

drop inthe power dissipation. The area ofthe design has increased by a factor ofN, how

ever, so in effect, wehave engaged in an area vs. power trade-off. Theareaincrease is one

factor that limits how large N can be. Another factor that limits N is the capacitance and
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delay overhead of distributing data tokens to and merging data tokens from the parallel

functional unit. This overhead can become prohibitively large as N increases and limits

how far this trade-off can be taken.

Pipelining is the other method to realize concurrent processing. In a pipelined

design, each functional unit is divided into multiple stages. The pipeline stages are sepa

rated by registers, and each stage can operate on adifferent data token concurrently. This

is illustrated in Figure 2.7. The cycle time of the pipelined design is equal to the logic

delay of the slowest stage. In an optimal N-stage pipeline, the delay of each stage is 1/N

ofthe original delay, and processing throughput increases by N. Ignoring the pipeline reg

isters for the moment, we can see that the capacitance has not changed, and to meet the

original performance requirement, the clock frequency does not change, either, but since
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the logic depth between registers has decreased, we can lower the supply voltage and ben

efit from the quadratic reduction in power dissipation. In practice, the delay and capaci

tance of the pipeline registers limit how far this technique can be taken. Another limitation

is that the pipelined design has an additional N-I cycles of latency in producing a result

compared to the original design, and in some applications this may not be acceptable.

2.3.2 Dynamic Scaling of the Supply Voltage

In some applications, the performance requirements of a system may vary in time.

In these applications, it will make sense to dynamically vary the supply voltage, so that it

is always at the lowest possible value that provides sufficient throughput. If a system

spends most of its time in the low-throughput mode, then the potential savings of adap-

tively scaling the supply voltage can be significant. A good example of an application

where this technique can be very effective is in the error-corrector circuitry of a digital

compact cassette (DCC) audio player [14]. In normal operation, when error rates are low,

the required throughput is also low, so the system can run at a low supply voltage. When

there is a burst of errors, the error-correction circuits must perform a large number of addi

tional computations to correct those errors in real-time. When that happens, the supply

voltage can be automatically increased to provide sufficient performance to correct the

errors. Another important application where dynamic scaling of the supply voltage can be

very effective is in the microprocessor circuits of battery-operated portable computers

[15]. The supply voltage can be dynamically adjusted by the operating system based on

the amount of work being executed by the computer.

2.3.3 Reduced-Swing Interconnect

Equation 2.1 was derived under the assumption that the voltage swing on a circuit

nodeswitching from highto low (or from low to high) is equal to Vdd. This is indeed the
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case in CMOS circuits where V = 0 represents the low logic level, and V - repre

sents the high logic level. Ifthe voltage swing is , instead, then the switching energy is

E=\cV,„Vod

Thus, by reducing the voltage swing we could reduce switching energy linearly.

This requires the use of special driver and receiver circuits that can produce and sense

reduced swings [16]. This technique can be used only when the energy savings are far

more than the overhead incurred by the driver and receiver circuits. For circuit nodes that

are heavily loaded, the energy (and propagation delay time) saved by using reduced

swings can be significant. This technique can be especially valuable in programmable pro

cessors where numerous buses are used to carry information between computational and

storage blocks.

2.4 Reducing Capacitance

Since switching energy is proportional to the capacitance of a switching circuit

node, minimizing capacitance is an important goal for reducing power dissipation. Node

capacitances are due to the parasitic capacitances of the transistors and the wires. Transis

tor capacitances are due to the gate capacitance and the diffusion capacitances of the

source and drain areas. Gate capacitance is proportional to the area of the gate, and the

area ofthe gate isequal to the product ofthe transistor width and the channel length. Since

in digital circuits, channel lengths are typically at the minimum allowed by the fabrication

technology, then gate capacitance isproportional to the width ofthe transistors. Diffusion

capacitance has a bottom and a side-wall component which are proportional to the area

and perimeter ofthe diffusion areas, respectively. It follows that diffusion capacitance is

also proportional to transistor width. Wire capacitance is proportional to the length ofa

wire. It follows that for low-power design we must try to minimize the size of the transis-
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tors and the length of the wires. There is, however, a trade-off at work here that should be

kept in mind for a successful design. Reducing the size of the transistors slows down the

circuits. In some situations, it is advantageous to use larger devices, and hence increase

capacitance, but since thecircuits are faster, wecanoperate them at a lowersupply voltage

and benefit from the resulting quadratic drop in power dissipation. In this scenario, even

though we have increased capacitance, we have reduced the overall power because we

have managed to run thecircuits at a lowersupply voltage. This approach should be taken

with critical circuit paths that determine the throughput of a design. Circuits on the non-

criticalpaths shoulduse the smallestpossible devices.

2.4.1 Application-Specific Processing

One approach to minimizing capacitance is to use circuitblocks that are custom-

made to perform the specific computational tasks required by a given application. In this

approach, the use of more versatile and general-purpose circuit blocks is to be avoided.

This approach can significantly reduce the capacitance associated with an operation

because anapplication-specific circuit block is nolarger and nomore complicated than the

bare minimum required to execute the required operation. General-purpose circuit blocks

are necessarily larger and more complex because they are designed so that they can exe

cute several different operations. They also have to be large enough to handle the largest

data size encountered in a given application. For example, it is far more efficient to add

two 8-bit operands onan8-bit adder than it is ona 16-bit general-purpose arithmetic/logic

unit. While the 16-bit ALU is versatile and can execute other useful operations and can

also handle the longer word lengths that may be present in the application at hand, it is

very inefficient for adding two 8-bit numbers. If in a given application, most of the opera

tions executed by this ALU are 8-bit additions, then a great deal of energy is wasted. As

we will see in Chapter 4, one of the reasons why general-purpose processors are so much

less energy efficient than application-specific designs is that they waste a great deal of
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energy in Inrge, centralized coinputational resources that are designed to be completely

general-purpose.

2.4.2 Exploiting Locality of Reference

Driving global signals across achip and accessing large, centralized memories and

functional units are power-consuming tasks that must be avoided in an energy-efficient

design. This can be accomplished by partitioning a design such that the locality ofrefer

ence present in a given algorithm is preserved.

An algorithm consists ofasequence ofcomputational steps. Each step ofan algo

rithm uses one or more operands produced in previous steps and produces new operands

that are used by the following steps. Locality ofreference is a natural property exhibited

by many algorithms and arises from the fact that most computational steps typically inter

act and communicate with only a few previous and subsequent steps. Communication pat

terns in the data flow graphs of these algorithms are localized, and it is very rare that a

computational step communicates globally with many other steps. By partitioning a sys

tem properly, this locality can be exploited to minimize the amount ofpower-hungry glo

bal interactions. This can be achieved by a distributed processing approach in which,

instead ofusing a single, centralized general-purpose processor, the computations required

by a given algorithm are distributed across a set ofsmaller local processors. This approach

can significantly reduce the power associated with data transfers. An additional benefit of

this approach is that the local processors can be optimized for a particular section of the

algorithm and can thus be far more energy efficient than a single, centralized general-pur

pose processor.

An additional benefit of distributed processing is that the energy of memory

accesses can be significantly reduced. This is particularly important because memory

accesses can be responsible for a significant fraction of total power dissipation [17, 18].
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The energy of a memory access is proportional to the number of words stored in that

memory. A distributed array of small, local memories can, therefore, be far more energy-

efficient than a single large, shared memory.

Another aspect of distributed processing is the use of distributed controllers. In a

centralized control approach, a single finite-state machine generates all control signals for

all processors and memories. The energy overhead ofdistributing these signals across the

chip can be significant. In a distributed control approach, only a small amount of global

control information is distributed to local controllers, which then generate all of the con

trol signals required locally.

2.5 Reducing Switching Activity

Since switching events are the cause of energy consumption, in anenergy-efficient

design the number of switching events must be minimized. In other words, any given

computation must beperformed with a minimum number ofswitching events. There are a

numberof ways that excessswitching can be avoided.

Ideally, during every execution cycle, since each logic gate generates one result,

there should be at most one switching event at theoutput of each gate if thelogic output of

the current processing cycle isdifferent from that ofthe previous cycle. In combinational

CMOS gates, however, the output ofagate can switch multiple times before itsettles to its

final value. This effect is called glitching, and it is caused at circuit nodes whose logic

function is a function of a number of inputs with different pathdelays leading to the gate

driving the circuit node in question. As the results from these different paths arrive at the

gate one at a time, the gate evaluates several times until all inputs have arrived, and the

gate then produces itfinal output. This mechanism can actually waste quite abit of energy,

especially in structures where there are many different paths leading to the outputs. One

good example is a carry-ripple adder. As the carry signal ripples through the adder, the
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outputs can glitch many times, as several intermediate values are evaluated. A designer

should carefully analyze a design and pick logic structures that have more balanced paths

inorder to minimize glitching. One technique is to insert extra delays tocreate more bal

ance in the logic structure [19].

How data is represented and encoded can have an important effect on the amount

ofswitching activity, as well. The reduced switching activity ofa given representation can

more than compensate for a possible increase in circuit complexity and capacitance. For

example, the sign-magnitude representation can result in less switching activity than the

familiar two's-complement representation [20]. In the two's-complement representation,

when the sign ofa value changes, several of the most significant bits can change. In sign-

magnitude representation, however, only the most significant bitchanges. For example, in

the transition from 0 to -1, all of the bits will change when numbers are represented in

two's-complement format (00000000 => 11111111), whereas in sign-magnitude repre

sentation, only two bits change (00000000 10000001). Arithmetic circuits in sign-

magnitude are, however, more complex, so it may notalways bebeneficial touse the sign-

magnitude representation. But if the data in question is being transmitted through a

heavily loadedbus, then using the sign-magnitude representation can save energy.

2.5.1 Avoiding Switching Activity in Unused Modules

An important approach in low-power design is to avoid any kind of unnecessary

switching activity. This approach corresponds to a design philosophy in which all circuit

activities occurstrictly in a demand-driven fashion. This means thatno circuitnode should

ever switch unless there is an actual demand for it. This seemingly simple objective can,

however, be quite difficult to achieve. A number of different techniques have been devel

oped to minimize excess switching activity.
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In a conventional synchronous digital system, a global clock signal synchronizes

the transfer of data to the storage elements, i.e., registers and latches. The clock signal is

distributed across the entire chip and triggers all registers and latches. The clock signal is,

thus, a heavily loaded signal and can consume a great deal of power. Even if there is no

new input data to be processed by the system, the clock signal is still switching and the

storage elements are being clocked. This can be a significant waste ofpower if a system

spends only afraction ofthe time performing useful work. An important objective in low-

power design, then, istoprevent this unnecessary switching activity.

Auseful technique to reduce unnecessary switching activity is to use gated clocks.

In this approach, additional control logic is used to monitor the activity ofdifferent mod

ules in achip. This control logic determines ifagiven module is needed to do useful work

and produces control signals that can gate off the clock signal going to that module when

it is not needed. Thus, no energy is wasted in an idle module. This approach can be quite

effective in reducing unnecessary switching activity. This approach can be applied down

to the level of individual storage elements [21], but the overhead of the required control

logic must be carefully taken into account, as itmay not always be beneficial to add clock

control circuitry for every single register and latch. Since gated clocks introduce addi

tional logic in the clock signal path, they can complicate the distribution of the clock sig

nal across the chip. Extra design effort is required to minimize clock skew between

different clock domains.

With gated clocks, while idle modules are deactivated and waste no power, there is

still the power consumption of the free-running global clock signal which can be signifi

cant. Acommon approach to avoid unnecessary power consumption by the clock signal is

to monitor the activity of the system and to deactivate the entire chip after a specified

period of inactivity. During this sleep mode, the inputs of the system must be monitored to
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determine when to reactivate the system. This approach can be quite effective in systems

that spend most of their time in the idle mode, e.g., cellular phones, but its application is

highly dependent on the nature ofthe application inquestion. An important design issue is

the latency associated with switching into and out of sleep modes that must be carefully

considered.

A radically different approach to minimizing unnecessary switching is to useasyn

chronous circuits. In asynchronous, or self-timed, systems there is no global clock signal

that is distributed across the chip. The clock signals of the storage elements are, instead,

generated locally under the control of handshaking circuits that coordinate data transfers

between different modules (see Figure 2.8). Arrival of new data at the inputs of a given

module is accompanied by a request signal that activates the circuitry in that module. An

important benefit of asynchronous circuits is that they have a built-in, automatic power-

down capability. Arrival of new data triggers new activity, and when there is no new data

to be processed, there is no switching activity. An additional benefit of asynchronous sys

tems is that the poweroverhead of distributing a global clock signal is avoided, as there is

no global clock signal. These properties make asynchronous circuits attractive for low-

powersystems. We will discuss asynchronous circuitsin moredetail in Chapter5, where a

locally-synchronous/globally-asynchronous approach is presented.
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2.5.2 Exploiting Temporal Correlations

The datastreams processed by a signal processing system correspond to physical

signals such as voice or video signals. These signals represent continuous functions, and

they typically vary slowly compared to the rate at which they are sampled. As a result,

each sample of such a signal is highly correlated with its neighboring samples. In other

words, such a signal exhibits a great deal of temporal correlation. Temporal correlations

are not limited to data streams representing physical signals, though. They can exist in

other kinds of data streams such as address sequences for accessing regular data structures

suchas vectors and matrices. The program counter of a microprocessor, for example, pro

duces instruction address streams that are highly correlated.

Theamount of switching activity caused by a correlated data stream canbe signif

icantly less than that of a random sequence of uncorrelated samples [8, 22]. When this

data stream propagates through various processing modules of a system, it results in less

switching activity than an uncorrelated, random data stream. This property can be

exploited to reduce switching activity by avoiding architectures that can destroy these

temporal correlations. Temporal correlations are destroyed when hardware resources are

time-shared toprocess multiple data streams ina multiplexed fashion. Atime-multiplexed

processing element alternates between multiple input data streams on a cycle-by-cycle

basis. Therefore, each sample processed by this element belongs to a data stream that is

different from that of the previous and the following samples. The net result is that the

actual data stream processed by this element has no temporal correlations, and as a result,

switching activity can increase significantly. A low-power architecture should, therefore,

try to exploit temporal correlations in data streams by avoiding time-sharing ofhardware

resources. An additional drawback of time-sharing of hardware resources is that it limits

the extent of supply voltage reduction because it requires that processing elements be

clocked faster than they would be if they did not have toprocess multiple streams ofdata.
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2.6 Summary

We end this chapter with alist ofdesign principles that must be followed in design

ing low-power systems:

• To minimize the supply voltage concurrent architectures that can support parallel

and pipelined processing are required. This is, by far, the most effective approach

to minimize the supply voltage.

• Partitioning a system into a small number ofvoltage domains is an effective tech

nique to minimize overall power while providing higher performance in process

ing elements that are timing-critical. Special circuits that can translate signal levels

between different voltage domains must be used.

• Dynamic scaling of the supply voltage must be supported. This technique can be

particularly effective in applications where periods ofhigh-throughput processing

come in bursts.

• Thevoltage swing onthe conununication links between processing elements must

be minimized. This requires the use of special driver andreceiver circuits that can

operatewith reduced voltage swings.

• To minimize the capacitance associated with basic computational steps, applica

tion-specific processing modules that have been optimized for thecommon opera

tions of a given algorithm must be used. Large, general-purpose processing

elements and memories must be avoided.

• Locality of reference must be exploited to minimize capacitance. Large, central

ized hardware structures must be abandoned in favor of structures that support dis

tributed processing. Increased concurrency is a beneficial side-effect of this

approach.

• Unnecessary switching activity mustbe avoided. This can be achieved by system-

level power-down modes and gated clocks. Asynchronous processing can be par-
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ticularly effective to minimize switching activity because it exhibits built-in auto

matic power-down of unused modules.

• Time-sharing of hardware resources destroys the temporal correlations present in

data streams and must be avoided. This is particularly important in signal process

ing applications. It shouldbe noted that this approach is consistent with the goal of

supporting concurrent processing.

To approach the energy efficiency of a custom, application-specific integrated cir

cuit, it is imperative that all of the principles listed above be applied aggressively in

designing a programmable architecture.
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CHAPTER 3

Properties of Digital Signal
Processing Algorithms

In this chapter we will take a look at some important properties of digital signal

processing algorithms that must be considered when designing programmable architec

tures for these algorithms. Thiswill be done by studying thecharacteristics of some exam

ple algorithms. We will then present an overview of speech coding algorithms that are

based on Code-Excited Linear Prediction (CELP), and we will study and analyze the Vec

tor-Sum Excited Linear Prediction (VSELP) algorithm in detail. This chapter will con

clude with a list of architectural requirements that mustbe satisfied in designing efficient

programmable architectures for signalprocessing algorithms.

3.1 Computational Performance Requirements

DSP applications are real-time in nature and involve processing of input signals

that arrive at a specified sample rate. For example, audio signals in digital compact disc

applications are sampled at44.1 kHz [23]. Sampling rates forvideo signals are typically in

the range of lO's of MHz. This means that any given implementation of a signal process

ing algorithm must have sufficient computational performance to process the incoming
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data streams at the specified rate (and no faster). As a result, DSP applications tend to

have large performance requirements ranging from lO's of MOPS (Million Operations Per

Second) for speech andaudio applications to lO's of GOPS (Giga Operations Per second)

for video applications.

Another factor contributing to the required computational performance level for a

given application is the complexity ofthe processing that isperformed. Agood measure of

the complexity ofa signal processing algorithms is the number ofoperations persample of

the input signal. Speech coding applications tend toexhibit a great deal of complexity that

canbe in the range of lOO's of operation per sample of speech. Video applications on the

other hand tend to exhibit less complexity that is typically on the order of 5 to 10 opera

tions per sample.

3.2 Concurrency

Oneof the key properties of signal processing algorithms that has a major impact

on architecture design is the abundance of concurrency in signal processing algorithms.

Signal processing algorithms exhibit high levels ofspatial and temporal concurrency that

can beexploited byparallel and pipelined processing, respectively. This is quite fortunate,

as the high levels of concurrency exhibited by DSP algorithms can be exploited to meet

the computational performance levels demanded by these algorithms. As we saw inChap

ter 2, exploiting concurrency is an important means of lowering the supply voltage and

reducing the power dissipation ofan architecture. An efficient programmable architecture

for signal processing algorithms must, therefore, be able to exploit the concurrency

present in these algorithms. One aspect ofexploiting this concurrency is having multiple

processing units that can perform multiple computations concurrently. Another aspect is to

provide these processing units with the increased memory bandwidth that is a result of

processing multiple operands concurrently. Not only the structure of the data store must
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Figure 3.1: Finite Impulse Response Filter

allow concurrent accesses, but the interconnection network between the data store and the

processing units must allow concurrent transport of all the required operands during a

given execution cycle. Additionally, the interconnect between the functional units and the

memories must be flexible enough to support the conununication pattems that typically

arise in DSP algorithms. In the next two subsections, we will illustrate the abundance of

concurrency in DSP algorithms byconsidering twoimportant examples thatarevery x;om-

mon inmany DSP applications. While weare considering only two examples, it should be

pointed out that thecharacteristics illustrated by these examples are common across a vast

majority of, if not all, DSP algorithms.

3.2.1 The Finite Impulse Response Filter

The finite impulse response (FIR) filter is one of the most common algorithms in

signal processing. Thecomputation associated with aniV-tap FIR filter is described by the

following difference equation:

N-\

y[n] = ^ Cf'x[n-i] = Cq'x[n] +• x[n-l] +... + •x[n-N+\] (3.1)
1 = 0

The block diagram associated with this computation is shown in Figure 3.1. The

spatial concurrency exhibited by this algorithm canbe readily seen in this diagram. All N

multiplications can be performed in parallel in (?(1) time. The N additions can also be
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x[n]

y[n]

Figure 3.2: Retimed FIR Filter

done in parallel using a tree structure in 0{\ogN) time. This algorithm also exhibits tem

poral concurrency which canbeexploited byretiming [24] the algorithm asshown inFig

ure 3.2. In this retimed version, each multiplication and the addition that follows it form a

pipeline stage that executes concurrently with other pipeline stages, and as a result, the

FIR computation is executed in 0(1) time. As we can see, the FIR filter exhibits a high

degree of spatial andtemporal concurrency, and the throughput of an A^-tap FIRfilter can

be increased by a factor of N if this inherent concurrency can be fully exploited by a given

implementation.

3.2.2 The Fast Fourier IVansform

The Fast Fourier Transform (FFT) is an efficient, divide-and-conqueralgorithm for

calculating the Discrete Fourier Transform (DFT) of a discrete-time sequence [25]. The

DFT of a finite-duration sequence x[n] of length A^(0<n<A^-l) is a finite sequence

X[k] of length N(0<k<N-l) defined as

N-l

X[k]=

n = 0

where
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The time complexity of a straightforward calculation of the DFT as defined above

is in 0{N^), whereas the time complexity of the FFT algorithm is in 0{N\o%N). The

mostpopular version of the FFT algorithm is the radix-2 algorithm, for which iV is a power

of 2. The block diagram of an 8-point, radix-2, decimation-in-frequency (as opposed to

decimation-in-time) FFT is shown in Figure 3.3. The computation performed by the

blocks in this diagram is known as the FFT Butterfly and is illustrated in Figure 3.4. In

general, an iV-point, radix-2 FFT consists of logjA^ processing stages, each of which

involves N/2 butterfiy computations. Each stage generates a vector X^[k] of lengthN by

processing the vector j[^] generated by the preceding stage. The output of the last

34



stage is the DFT of the input sequence. Since the elements of these vectors are complex

numbers, the butterfly computation consists of four real multiplications and four real addi

tions. As we cansee inFigure 3.3, all butterfly computations of a given stage of the FFT

algorithm can be performed in parallel. In addition, the algorithm can be pipelined by

inserting registers between the stages. The butterfly computation also exhibits fine-grain

concurrency that can be exploited by parallel and pipelined processing. Thus, the FFT

algorithm exhibits a great deal ofconcurrency that can be exploited to create an efficient

design.

3.3 Dominant Kernels

An important property ofsignal processing algorithms is that their execution time

(and energy) isdominated by regular, repetitive kernels ofcomputation. These kernels are

the calculations that are performed in the inner loops of a program implementing a given

DSP algorithm. We saw two examples ofthese dominant computational kernels in the pre

vious section. The dominant kernel in the FIRfilter is the tap calculation which is a multi-

ply-add operation. The multiply-add (also known as multiply-accumulate or MAC)

operation is in fact one ofthe most common kernels in signal processing and appears in a

wide variety ofalgorithms. The dominant kernel in the FFT algorithm is the butterfly cal

culation. The FFT algorithm is inessence nothing but a collection ofbutterfly operations.

The mean-squared error (MSE) calculation is another example ofadominant kernel which

is commonly used to represent the magnitude ofthe difference between two vector quanti

ties:

e^,= |A-B|^= (3.4)
/= 1

In vector quantization algorithms [28], where the objective is to select one of aset of vec

tors that is the closest to a given input vector (representing an image block ora frame of

35



P^(n) = min[Pp(n-l) +Bp_j(n-l),/',(n-l)+B,,i{n-l)]

Figure 3.5: Radix-2Viterbi Add-Compare-Select Calculation

speech, for example), the mean-squared error calculation is a significant fraction of the

total execution time. Another example of a dominant kernel is the add-compare-select

(ACS) calculation of the Viterbi algorithm [26, 27], which is widely used in digital com

munication and magnetic storage systems. The ACS calculation is illustrated in Figure

3.5. Theobjective here is to decide which state transition to state or^-^j) will

minimize the path metric for the path leading to state s (P^).

Executing the dominant kernels of a given signal processing algorithm on efficient

hardware structures that can execute these kernels with a minimum of energy overhead

can save significant amounts of energy, as most of the execution energy is consumed by

the dominant kemels. This is one of the key factors that makes a custom, application-spe

cific implementation of a DSP algorithm highlyenergy-efficient. A typical programmable

processor, however, does not exploit the opportunities presented by the dominant kemels

of a DSP algorithmand incurs a great deal of energy overhead in executingthose kemels.

3.4 Data Structures and Access Patterns

In addition to kemel calculations that process input data and generate output data,

i.e., data calculations, the inner loop implementing a given kemel has to perform addi-
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tional calculations which are considered address calculations. These calculations are per

formed to determine the memory addresses of the required input and output data tokens.

The mathematical formalism used in describing signal processing algorithms deals with

vectorand matrixquantities, and as a result, in additionto scalar quantities that are usually

stored in local registers, the data structures manipulated by signal processing algorithms

are usually one- and two- (and sometimes higher) dimensional arrays that are stored in

memory. The data calculations of a kernel are therefore accompanied by address calcula

tions that are used to determine the memory addresses of the data elements required by the

data calculations.

How address calculations are handled is an important architectural issue. For a

general-purpose processor, address calculations are no different than data calculations. A

general-purpose processor can handle all calculations equally well (or equally badly!)

with its general-purpose datapath under program control, but this is not necessarily the

most optimal approach. Signal processing algorithms tend to access array variables in a

very structured manner. As an inner loop executes, array variables are scanned in orderly

patterns. Some examples of access patterns are shown in Figure 3.6. While in principle

there are many different ways of scanning the elements of an array, and flexible address

generators are needed in a programmable architecture, the access patterns that are com

monly encountered in practice can be implemented efficiently by simple arithmetic and

logic operations on address pointers.

3.5 Case Study: Speech Coding by Code-Excited Linear Prediction

The problem addressed by speech coding is that of reducing the amount of infor

mation required to describe speech signals [29]. A central issue in voice communication

applications, e.g. telephony, is the amount ofbandwidth required to represent speech sig

nals adequately. It isexperimentally known that the power spectrum ofthe human speech
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A[
N-1

N-1

M-1

N-1

N-1

N-1

p = address_of(A[0]);
for (i = 0; i < N; i++) {

p = p + 1;

p = address_of(A[01);
for (i = 1; i <= N; i++) {

for (j = 0; j < i; j++) {

p = P + 1;

}

p = p - i;

p = address_of(A[0][0]);
for (i = 0; i < M; i++) {

for (j=0;j<N;j++) {

p = P + 1;

p = address_of(A[01[0]);
for (i = 1; i <= N; i++) {

for (j = 0; j < i; j++) {

p = p + 1;

}

p = p + N - i;

p = address_of(A[0][0]) ;

q = p;

for (i = N; i > 0; i—) {

for (j = 0; j < i; j++) {

p = p + N + 1;

}

q = q + 1;

p = q;

}

Note: p and q are address pointers. Arrays are assumed to be stored in row-major format.

Figure 3.6: Examples of Array Access Patterns
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signal is limited to frequencies below 4 kHz [30]. The 3-dB bandwidth of the telephone

network is approximately 3.6kHz, and in digital telephony applications, input speech sig

nals aresampled at 8 kHz and coded using Pulse-Code Modulation (PCM) with 8-bit, log

arithmic quantization (linear quantization requires 12 bits of resolution for the same level

ofquality) [31]. This is known as toll-quality speech and requires 64 kbit/s ofbandwidth

to communicate. Speech coders are employed to process this PCM speech signal and

reduce the bit rate required to communicate it.

Coders can be broadly classified into two classes: waveform coders andparamet

ric coders [32]. Waveform coders attempt to reduce the bit rate of the input speech wave

form without assuming any knowledge about the nature of speech signals. The simplest

waveform coder is the PCM coder with logarithmic quantization, which, as mentioned

above, reduces the resolution needed to represent samples of speech signals from 12bits

to 8 bits. Differential Pulse-Code Modulation (DPCM) is an improved coding scheme in

which the difference between consecutive samples, as opposed to the actual value of a

sample, is transmitted. Since the variance ofthis difference signal is smaller than that of

the original signal, the difference signal can be quantized with fewer bits than the original

signal, and the required bit rate is reduced, at the expense ofaslight decrease in subjective

speech quality. Adaptive Differential Pulse-Code Modulation (ADPCM) is a modified

form of DPCM in which adaptive quantization is employed to increase the quality of the

resulting speech signal. These coders reduce the required bit rate to 32 kbit/s, and the sub

jective quality ofthe speech signal produced by ADPCM, in particular, is very close that

of PCM.

Parametric coders use a priori knowledge about the nature of speech signals to

reduce the bit rate required toconununicate them. Parametric coders exploit the fact that

speech signals are quasi-stationary in short time intervals of 5-20 ms, during which asin-
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gle basic sound is being uttered. Samples of the input signal within these time intervals are

highly correlated. These correlations can be modeled with a set of parameters that repre

sents the input speech signal during a given interval. The input speech signal is divided

into short segments, or frames, and a set of parameters representing a whole frame of

speech is extracted and transmitted. A close approximation to the original frame of speech

can then be reconstructed by decoding the transmitted parameter set.

3.5.1 Speech Generation Model

The speech generation model that is used by parametric speech coders is illustrated

in Figure 3.7. This model captures the salient features of the human speech generation

process. The sounds of human speech are generated as air from the lungs flows by the

vocal cords, and the resulting excitation resonates through the vocal tract, which consists

of the cavities of the pharynx, the mouth, and the nose. For voiced sounds, which corre

spond to vowels, the vocal cords vibrate at some pitch frequency, and the resulting peri

odic excitation, which can be modeled as an impulse train, is shaped by the resonances of

the vocal tract. For unvoiced sounds, which correspond to consonants, the flow of air is

unaffected by the vocal cords, and the resulting excitation, which is the sound of turbulent

air flow and can be modeled as a random excitation, propagates through and is shaped by
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the vocaltract. The energy of voiced sounds is generally morethantheenergy of unvoiced

sounds.

In the model shownin Figure3.7, the vocal tract is modeled by a time-varying fil

ter. The vocal tract can be adequately modeled with an A^-th order, all-pole filter with the

following transfer function [30]

H(Z) = • ^ (3-5)
1 -A(z) N

I = 1

For each frame of speech, the coefficients of A{z) are determined by Linear Prediction

Coding (LPC) analysis [33, 34]. In the LPC framework, A(z) is known as the short-term

predictor. The value ofNdepends on the number of resonant modes, oxformants, of the

vocal tract that need to be modeled. Each formant is formed by a complex-conjugate pair

ofpoles, and as there are typically three to five formants below 5 kHz, N = 10 is quite

adequate for most applications. Depending on the type ofsound being generated, either an

impulse train, for a voiced sound, or a random excitation, for an unvoiced sound, is

selected, weighted bya gain factor, and fed into the vocal tract filter. Since the vocal tract

filter synthesizes the speech signal, it is commonly referred to as the synthesis filter. In

more sophisticated coders, the excitation fed into the synthesis filter isacombination ofan

impulse train and a random excitation.

Aparametric coder based on the model shown in Figure 3.7 analyzes each frame

ofthe input speech signal and extracts the excitation signal, the gain factor, and the coeffi

cients of the synthesis filter for that frame. These parameters are then encoded and trans

mitted. The decoder at the receiving end uses these parameters to synthesize an

approximation to the original frame of speech.
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3.5.2 Code-Excited Linear Prediction

Almost ail modem speech coders are variations of the Code-Excited Linear Pre

diction (CELP) speech coder [35]. The development of the CELP coder is considered a

milestone in speech coding, as it allowed coding of high-quality speech at bit rates below

8 kbit/s. In a CELP coder, the excitation signal is coded using vector quantization [28].

The basic stmcture of a CELP coder is shown in Figure 3.8. The task of the coder is to

select an appropriate excitation vector from a codebook of excitation vectors. This is

accomplished by an analysis-by-synthesis process [36] during which each vector in the

codebook is fed into the synthesis filter, and the synthesized frame of speech is compared

to the original frame of input speech. The excitation vector resulting in the least error

between the original and synthesized frames of speech is selected. The error criterion is

the mean-squared error filtered through a perceptual weighting filter that shapes the spec-

tmm of the quantization noise such that most of the quantization noise energy is concen

trated near the spectral peaks of the speech signal where it is largely masked by the human

auditory system. The codebook index of the selected excitation vector is transmitted, and
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the decoderat the receiving end can select the correctexcitation vector from an identical

copy of the codebook used by the coder. The coefficients of the synthesis filter are

extracted by thecoder using LPC analysis. In a CELP coder, vector quantization is used to

code the random excitation only. Pitch periodicity of voiced speech is introduced into the

excitation by usinga pitch filter. The transfer function of the pitch filter is

H.U) = =-^
where AiJ^z) is known as the long-term predictor, and L is known as the lag and repre

sents the period of the impulse train excitation needed for voiced speech. Once the index

of the excitation vector, the coefficients of the synthesis filter, the lag, and the excitation

gain for the current frame of the input speech signal are all determined, they are encoded

and transmitted.

Searching for the best excitation vector in the codebook is the most time-consum

ing task ina CELP speech coder. As a result, a great deal ofresearch effort has focused on

finding codebook structures that will make the codebook search process more efficient

than a straightforward exhaustive search.

3.6 Vector-Sum Excited Linear Prediction

The Vector-Sum Excited Linear Prediction (VSELP) algorithm was developed for

use in cellular and mobile telephony applications [37]. An 8-kbit/s VSELP speech coder

was adopted for the IS-54 North American Digital Cellular standard. The VSELP algo

rithm requires about 15 MIPS of computational performance.

The basic structure of the VSELP coder is shown in Figure 3.9. The 8 kHz input

speech signal is divided into 20-ms frames (160 samples). Each frame is sub-divided into
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5-ms subframes (40 samples) that are processed independently. A 10-th order synthesis

filter of the form shown in Equation 3.5 is used. The synthesis filter is combined with a

perceptual weighting filter to form a weighted synthesis filter. The transfer function of the

perceptual weighting filter is

W(z) = ——
l-A{z/X)

where A(z) is the short-term predictor of the synthesis filter, and X

function of the weighted synthesis filter is thus

H(z) =
1

1-A(z/X) N
I -I

1= 1

(3.7)

0.8. The transfer

(3.8)

For each frame, the coefficients of H{z) are determined by LPC analysis. These coeffi

cients are used in the fourth subframe. The coefficients used in the other three subframes
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are computedby linearly interpolating the coefficients of the fourth subframeof the previ

ous and current frames.

The excitation vector is derived by combining vectors from three separate code-

books: an adaptivepitch codebookand two stochasticcodebooks. The criterion for select

ing an excitation vector u = (m[0], ..., m[A^- 1]) = 40 is the subframe length) is to

2
maximize C /G, where

C = ^ u\n]p[n] (3.9)
n = 0

G= ^ (u'[n]f (3.10)
71 = 0

is the filtered code vector and p[n] is the perceptually weighted input speech vec

tor. This is equivalent to minimizing the mean-squared error.

Thepitch codebook is used to implement thepitch filter ofEquation 3.6. Thepitch

codebook is adaptive, andit implements thefunctionality of thedelay lineassociated with

the z~^ term ofthe pitch filter. The codebook stores the past 146 samples of the excitation

signal. Each value of the long-term prediction lag L corresponds to a subframe of excita

tion from the past starting L samples ago (see Figure 3.10). L can range from 20 to 146

(127 codes). The 128-th code forL is used to indicate that thepitch codebook is not to be

used. When L< 40, the period of theexcitation pitch is less than thelength of a subframe,

andtheamount of history in theadaptive codebook is not sufficient to construct a full sub-

frame of excitation; therefore, the available history is repeated to create a full subframe of

excitation. After all codebooks have been searched, and the excitation for the current sub-

frame is completely determined, the adaptive codebook is updated.
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Figure3.10: Structure of the Adaptive Pitch Codebook in VSELP

The stochastic codebooks in VSELP are highly structured and can be searched

efficiently. Each codebook consists of 128 code vectors u^- (0 < i < 127). These vectors

are different linear combinationsof seven basis vectors v^ (1 < m < 7):

u. = I e,
m = 1

V
mm

(3.11)

where 0.- ^ can be either -i-l, if the m-th bit of the code index is 1, or -1, if the m-th bit of
i,m '

the code index is 0. This scheme greatly simplifies the codebook search process because

the response of the weighted synthesis filter to eachcode vector canbe obtained by com

bining thefiltered basis vectors, instead of filtering the code vectors. In addition, theeffect

of changing one bit in the codeword, due to a transmission error, for instance, is not cata

strophic, as the erroneous vector is different from the correct oneonlyby onebasis vector.

The codebooks are searched sequentially. First, the pitch codebook is searched.

Next, the basis vectors of the first stochastic codebook are orthogonalized to the filtered
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excitation vector from the pitch codebook using the Gram-Schmidt approach [38]. The

orthogonalized basis vectors are then filtered, and the codebook is searched. Next, the

basis vectors of the second stochastic codebook are orthogonalized to the filtered excita

tion vectors from the first two codebooks. The orthogonalized basis vectors are then fil

tered through the weighted synthesis filter, and the second codebook is searched. The

codebook gain factors p, yj, and72 ^ire determined during the search process, andare then

jointly quantized using a vector quantizer. Once the excitation vector for the current sub-

frame is completely determined, theadaptive codebook is updated such thatthenew exci

tation vector becomes the most recent history in codebook. Further implementation details

of the VSELPalgorithmcan be found in the IS-54 standarddescription [39].

3.6.1 Analysis of the VSELP Algorithm

The execution profile of the VSELP algorithm is shown in Table 3.1. The table

shows the percentage of total execution time for the most time-consuming functions in

VSELP. The data in this table is based on an implementation of the VSELP algorithm in

theC programming language running on a Sun SPARC processor. The profile of the pro

gram was obtained using a run-time software profiler. As in all CELP coders, most of the

execution time of the VSELP algorithm is spent on searching the codebooks for the best

excitation vectors.

We can gain more insight into the computational complexity of the VSELP algo

rithm bylooking at theexecution profile of the dominant kemels. Table 3.2 shows the exe

cution profile of the four most dominant kemels of the VSELP algorithm. These four

kemels accountfor 85%of the totalexecution time of the VSELPalgorithm. Furthermore,

the two most dominant kemels account for 76% of the total execution time. Thus, an effi

cient implementation of the VSELP algorithm will require that these four kemels be exe

cuted very efficiently, with a minimum of time andenergy overhead.
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3.7 Algorithm Domains

The CELP coder is the prototype on which almost all modem speech coders are

based. Many different CELP-based algorithms have been developed for voice communi

cation applications, especially mobile and cellular telephony. Some examples include:

VSELP [37], DoD CELP [40], LD-CELP [41], PSI-CELP [42], ACELP [43], and CS-

Function % Time

FilterCodebook() 46.5

ComputeLag() 21.9

CodebookSearch() 8.2

ComputeWeightedlnputSpeech() 3.9

IIRFilter0 3.7

QuantizeGains() 3.5

OrthogonalizeCodebook() 2.8

MatrixMultiply() 2.6

LPCAnalysis() 2.1

StateAdvanceToTime() 1.8

UpdateFilterState() 1.7

Table 3.1: Execution Profile of the VSELP Algorithm

Kernels % lime

WeightedSynthesisFilter() 45.6

DotProduct() 30.5

IIRFilter0 7.2

FIRFilter0 1.2

Table 3.2: Dominant Kernels in the VSELP Algorithm
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ACELP [44], to name justa few. Collectively, these different algorithms form a domain of

algorithms, as they have some basic similarities. Algorithms within adomain have similar

computational structures, dominant kernels, data structures, and word-lengths. Differences

among algorithms within a domain are mainly due to the values of the basic parameters

and the high-level control flow of each individual algorithm. CELP-based coders, for

example, use the same basic analysis-by-synthesis computational structure consisting of

codebooks and speech synthesis filters modeling the human vocal tract, they all use 16-bit

arithmetic, and they spend most oftheir execution time computing vector dot products, fil

tering code vectors, and synthesizing speech frames with different excitation vectors. Dif

ferences among these algorithms are mainly due to differences in the structure and the

number of codebooks thatareused, andin theparameters of thesynthesis filter such as the

number of filter taps andthe resolution of filtercoefficients.

Another example of a DSP algorithm domain is formed by video compression/

decompression algorithms that are based on the Discrete Cosine Transform (DCT) [45].

There are a number ofdifferent algorithms and standards that are in wide-spread use, such

as H.261, MPEG, MPEG-2, and MPEG-4 [46]. All ofthese algorithms are based on DCT,

Inverse-DCT, and motion vector estimation/compensation. They vary in the high-level

control flow and in the value of the basic algorithm parameters, but they can be imple

mentedusingsimilarhardware structures [47].

Because oftheir underlying similarities, algorithms within a domain can be imple

mented using similar hardware architectures. By executing the dominant kernels of a

given domain of algorithms on highly optimized processing units that incur minimal

energy and performance overhead, we can build processors that are highly efficient. Pro

cessors of this type are known as domain-specific processors. The work presented in this

dissertation was focused on designing energy-efficient domain-specific processors.
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3.8 Architectural Requirements for Digital Signal Processing

We end this chapter with a listof architectural requirements that must be satisfied

in an efficient programmable architecture for digital signal processing algorithms:

• DSP algorithms exhibit high levels of temporal and spatial concurrency. A pro

grammable DSP architecture must be able take advantage of this concurrency and

support pipelined andparallel modes of processing efficiently.

• Concurrent processing increases the required instruction and data memory mem

ory bandwidth. The memory structure of a programmable architecture must be

able to support the increased memory bandwidth requirement efficiently without

incurring significant delay and energy overhead.

• The interconnection network that links the memories and the processing elements

must support high data rates and mustbe flexible enough to support the required

communication patterns that are commonlyseen in DSP kernels.

• The control structure that is used to coordinate computational activities within

multiple parallel processors and memories mustbe efficient and scalable.
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CHAPTER 4

Programmable Architectures for
Digital Signal Processing

In this chapter we will take a broad look at some of thebasic approaches thathave

been taken in designing programmable architectures for digital signal processing applica

tions. Our goal will betocharacterize and differentiate these approaches and todevelop an

understanding of their strengths and weaknesses. The main focus of this analysis will be

the energy efficiency ofthese architectural approaches. Our discussion will lead toa set of

architectural design principles for energy-efficient programmable signal processors. These

principles form the basis ofthe design choices made in the Pleiades architecture template.

4.1 Basic Model for Programmable Hardware

In order to characterize and classify programmable processor architectures, we

first need to have a basic model that captures the essence of programmable computing.

Ourconcem hereis withthe structure of programmable computing devices, so it is natural

to focus on the fundamental components that all such devices consist of and on the inter

actions between those components. A basic model for programmable processors is illus

trated in Figure 4.1. No particular hardware organization is to be inferred from this
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Figure 4.1: Basic Model for Programmable Processors

illustration, which is merely an abstraction of the basic components of a programmable

processor and the interactions among those components. All programmable processors

have the following basic components:

• Functional units that can perform the various arithmetic and logic functions that

arerequired by the computations that a processor is expected to perform.

• Memory units to store the data operands processed by the functional units.

• A communication network that allows the exchange of data between the functional

units and the memory units.

• Instructions that control the actions taken during each execution cycle by the

above components.

The distinguishing feature of programmable processors are the instructions. The

ability to perform different tasks at different times under the control of instruction

sequences is what makes a computingdevice programmable and gives it the flexibility to

perform different computations. During each execution cycle, instructions control what
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dataoperands are read from the memory units, how these opertinds are routed to the func

tional units, what types of operations are performed by the functional units on the oper

ands provided to them, how results produced bythe functional units are routed back to the

memory units, and where in thememory units these results arestored. Instructions require

two other basiccomponents that are presentin all programmable processors:

• Instruction memory where instructions can be stored.

• An instruction control mechanism that coordinates the delivery of instructions

from the instruction memory to the functional units, the data memory units, and

the conununication network.

Differences among programmable architectures are due to the organization of the

hardware resources that are used to implement the basic components outlined above, and

the task of an architect is to organize hardware resources in such a way that the resulting

processor can perform the required computational tasks efficiently. The variety ofways in

which hardware resources can be organized is virtually limitless, and an architect has a

number of important issues and design parameters to settle:

• Functional units - A key architectural issue is the granularity of the functional

units. Granularity is a measure of the complexity of the operands processed by the

functional units (e.g., bits, integers, floating-point numbers, vectors) and the com

plexity of the instructions executed by the functional units. A related issue is the

variety of instruction types executed by the functional units. An important perfor

mance parameter is the number of functional units available in a processor, as it

determines the numberof computations performed in each cycleby the processor.

• Data memories - The bandwidthof the data memories, i.e., the numberof read and

write operations that can be performed in each execution cycle, is an important

performance parameter. It is a function of the organization of the data memory.
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The size of the data memory is also an important design parameter, as the amount

of data that can be stored in memory determines the complexity of the algorithms

that can be executed by a processor.

• Communication network - The bandwidth and the flexibility of the communication

network are important design considerations. Bandwidth refers to the number of

operands that can be transferred through the communication network in each

cycle. Flexibility refers to the richness of the communication patterns that can be

supported by the communication network.

• Instructions - The organization of the instruction memory and the instruction con

trol mechanism is one of the most important design issues in a programmable

architecture and has a strong influence on how efficient an architecture can be. The

bandwidth of the instruction memory is one of the key performance parameters of

a processor, as it determines the number of instructions that can be executed in

each cycle. Another important parameter is the depth of the instruction memory,

i.e., the length of the longest sequence of instructions that can be stored in the

instruction memory, which is a measure of the complexity of the algorithms that

can be executed by a processor. Another key architectural parameter related to

instructions is the number of control threads that are used in the instruction control

mechanism.

The design space for programmable architectures is defined by the parameters out

lined above. These parameters (or subsets thereof) can also be used to classify program

mable architectures. Flynn, for example, has proposed a simple taxonomy based on the

number of threads in the instruction control mechanism and the number of functional units

[48]. In Flynn's taxonomy, there are three basic processor types: SISD (single instruction,

single data), SIMD (single instruction, multiple data), and MIMD (multiple instruction,

multiple data). Skillicom extended Flynn's taxonomy to include details of the interconnec-
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tion networks from the functional units to the data and instruction memories [49]. DeHon

classifies processor architectures using a basic architectural model in which instructions

are dispatched only to functional units thathave local storage for data(there are no inde

pendent data memories) and can communicate with one another via an interconnect net

work [50]. Architectures are classified by four parameters: number of control threads in

the instruction control mechanism, number of instructions (same as number of functional

units in DeHon's scheme) percontrol thread, depth of the instruction memory, and granu

larity of the functional units. DeHon's notion of granularity refers only to the complexity

of the operands processed by the functional units. DeHon's scheme is more useful than

Flynn's and Skillicom's in evaluating the merits of an architecture, as it considers more

details and is more quantitative in its approach. Our discussion of the energy efficiency of

different architectural approaches will be in terms of the basic architectural model shown

in Figure4.1, and we willconsider all relevant architectural parameters, as necessary.

4.2 Energy Consumption in Programmable Architectures

In assessing theenergy efficiency of programmable architectures, it is important to

know what the basic components of energy consumption are when algorithms are imple

mented on programmable architectures. It can then be determined which components are

fundamental and cannotbe avoided and whichcomponents are not fundamental and must

be minimized.

The division of total energy consumption into basic components can be done in

terms of the basic hardware components that were outlined in the last section. The basic

components of energy consumption of an algorithm implemented on a programmable

architecture are due to:

• Computation ofthe basic arithmetic and logic functions required by an algorithm

using the functional units.
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Figure 4.2: Custom Implementation of a 4-Tap FIR Filter

• Storage and access of variables in the data memories.

• Communication of operands among the functional units and the data memories.

• Control of computation, storage/access, and communication activities through

instructions.

In order to determine which components of energy consumption are fhndamenttil

and which ones are not, and to gain a better understanding of the causes of inefficiencies

in programmable architectures, it is instructive to considerthe components of energy con

sumption in custom, application-specific implementations. In a custom implementation,

the properties of a given algorithm can be freely exploited to create an optimized imple

mentation than consumes minimal energy. As a result, a custom implementation can be

used as a reference to which other implementations based on programmable architectures

can be compared in order to evaluate their energy efficiency. Figure 4.2 shows the block

diagram of a custom, application-specific implementation of a 4-tap FIR filter. In this cus

tom design, the hardware blocks that are used are not any larger or more complicated than

they need to be. Each hardware block performs a specific task (e.g., multiply, add, delay)
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and consumes only the basic minimum energy required to perform that task. The word-

lengths of theregisters, adder, multipliers, and buses do not have to be any larger than the

required minimum. The energy consumed by the hardware blocks used in this implemen

tation is due to the basiccomputations of the algorithm and the storage/access of the state

variables of the algorithm. Sinceeach hardware blockperforms a specific function, there

is no need for instructions, and the energy overhead of delivering instructions to the hard

ware blocks is avoided. In addition, since the locality of reference particular to this algo

rithm can be preserved using custom placement of the hardware blocks, the energy of

communicating dataoperands is minimal. Notice thatin a time-multiplexed implementa

tion, we would haveto storeandaccess intermediate variables, andwe would alsoneeda

controller to instruct the hardware resources to perform the basic computational steps in

the proper sequence. Thus, a time-multiplexed design introduces an energy overhead that

isnot present ina direct implementation. As a result, energy consumption due tostorage/

access of intermediate variables and due to time-multiplexed control is not fundamental

andshouldbe minimized. This mustbe balanced against the areaadvantage of a time-mul

tiplexed design.

In summary, energy consumption due tobasic computations and storage/access of

state variables can be consideredfundamental, and energy consumption due to communi

cation, storage/access ofintermediate variables, and control isoverhead and must bemin

imized. In the following sections, we will consider different programmable architectures,

and we will discuss their strengths and weaknesses in terms of the energy overhead they

incur.

4.3 General-Purpose Processors

Figure 4.3 shows the basic architectural model for a general-purpose processor.

There isa single functional unit^ that can compute a wide variety ofarithmetic and logic
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Figure 4.3: Basic Architectural Model of a General-Purpose Processor

functions for «-bit operands, and there is a single data memory where data operands are

stored. The communication network is a simple w-bit bus connecting the data memory to

the functional unit. Instructions are fetched from the instruction memory and delivered to

the functional unit and the data memory by a simple control mechanism that has a single

thread of control. The controller makes its decisions based on control instructions from the

instruction memory and results of the computations performed by the functional unit. Typ

ically, the instructions stored in memory are encoded to take up less space, and they need

to be decoded before they are delivered to their destinations. This type of hardware organi

zation is commonly known as the von Neumann architecture, as it is commonly attributed

to John von Neumann [51].

General-purpose processors represent the ultimate in flexibility, as they can be pro

grammed to implement any algorithm. This flexibility is, however, achieved at a signifi

cant cost compared to application-specific devices. The energy overhead of implementing

an algorithm as a program running on a general-purpose processor is significant. Every

single computational step, e.g., addition of two numbers, requires fetching and decoding

an instruction from the instruction memory, accessing the required operands from the data

memory, and executing the specified computation on a general-purpose functional unit

1. We will discuss variations of this baseline architecture with more than a single functional unit in
the following sections.
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that is designed to perform a wide variety of computations. All of these activities involve

accessing large, centralized memories, performing calculations on large, complex datap

aths, anddriving long, heavily-loaded wires, and as a result, a great deal of energy is con

sumed. If the bit-width of the functional unit is larger than the word-lengths used in the

algorithm, then additional energy is wasted. Another weakness ofgeneral-purpose proces

sors is that computations are done in highly time-multiplexed fashion. To achieve high

performance, a general-purpose processor must run at a high clock frequency; therefore,

the supply voltage cannot beaggressively reduced tosave energy. In addition, the amount

of switching activity is increased as temporal correlations that are especially common in

signal processing applications are not preserved.

There are a numberof techniquesthat can be used to improve the energyefficiency

ofgeneral-purpose processors. Introducing hierarchy into the memory structures isa tech

nique that was originally introduced to improve the performance of general-purpose pro

cessors [52], but it can also reduce the energy of memory accesses. At the lowest level of

the data memory hierarchy in modem general-purpose processors is a register file, where

scalar and temporary variables are stored. The register file is usually part of the functional

unit datapath. Since the register file is small and physically close to the functional unit, it

requires much less energy than the main data memory to store and access data operands.

Next in the hierarchy is a data cache, which stores the most recently used operands. Most

data access requests are satisfied by thedata cache, which is smaller than the main mem

ory and consumes less energy to access than the main memory, which is at the top ofthe

data memory hierarchy. An instruction cache is also used to reduce the overhead of fetch

ing instmctions from the instruction memory. In some architectures, the instruction and

data caches are merged into a unified cache stmcture [53]. Almost all modem general-pur

pose processors execute instmctions in a pipelined fashion whereby instmction fetch,

instmction decode, operand access, instmction execution, and result write-back steps ofa
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few consecutive instructions can be performed concurrently. The resulting increase in per

formance relaxes the need to increase the clock frequency and can be traded off to reduce

power by reducing the supply voltage. To minimize unnecessary switching activity, many

modem microprocessors use power-down modes and clock-gating techniques that allow

shutting down unused circuitmodules [54,55]. Another technique that has beenapplied to

reduce the energy overhead of the instructions is to use instmction formats and addressing

modes thatrequire smaller number ofbits to encode [56,57].Thisreduces thebit-width of

the instruction memory and the instruction bus and reduces the energy overhead of fetch

ing instmctions.

While the techniques mentioned above are useful in improving the energy effi

ciency of general-purpose processors, the fact remains that programmed implementations

of DSP algorithms on general-purpose programmable architectures are far too inefficient

compared to custom implementations. For example, the custom FIR filter shown in Figure

4.2, designed for 16-bit input samples and coefficients, consumes 155 pJ of energy per tap,

when implemented in a 0.6-|im CMOS process, with a supply voltage of 1.5 V. When nor

malized to the same process and supply voltage used for the custom design^ the energy

consumed by the StrongARM microprocessor [58, 59], which is highly optimized for low-

power operation, is 37.4 nJ per tap, i.e., 240 times more than the custom design! The max

imum sample rate of the custom design is 18 MHz, whereas the maximum sample rate of

the StrongARM implementation is 532 kHz. More detailed energy and performance com

parisons will be presented in Chapter 7.

4.4 Programmable Digital Signal Processors

Programmable digital signal processors are similar to general-purpose processors,

but they are optimized for signal processing algorithms. The basic architectural model of

1. See Chapter 7 for details of the normalization procedure.
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general-purpose processors shown in Figure 4.3 is alsovalid forprogranunable signal pro

cessors. As a result, programmable signal processors sufferfrom the sameoverheads and

inefficiencies that general-purpose processors do, but a number of architectural improve

ments make them far more efficient than general-purpose processors.

When programmable processors were first introduced [60,61], one of the key fea

tures that differentiated them from general-purpose processors and made them more suit

able for DSP algorithms was hardware support for fast, i.e., single-cycle, multiplication.

This capability is particularly useful, as DSP algorithms tend to use multiplications very

frequently, and the ability to perform multiplications ata high rate provides for significant

speed-up compared toshift-and-add software routines that are commonly used ingeneral-

purpose processors. All modem DSP processors can perform a multiply-accumulate

(MAC) operation, which is very common in DSP algorithms, in a single execution cycle.

They also use large accumulators that allow them toadd a large number ofproducts before

overflowing.

In addition to fast multiplication, DSP processors have also relied on concurrent

processing to improve performance. Instmctions are typically executed in a pipelined

fashion. This allows the processor to overlap the execution of a few consecutive instmc

tions. The depth of the instmction execution pipeline has increased in modem DSP pro

cessors, but branch instmctions limit the amount of speed-up that can be achieved by

increasing the depth of the instmction execution pipeline. Another form of concurrency

that is common inDSP processors is the ability of the multiplier unit tooperate inparallel

with thearithmetic/logic unit [62,63]. Thedata memory bandwidth has tobe increased, as

well, if the parallelism in the functional unit is to be exploited. Thus, DSP processors tend

to use multiple memory banks that can be accessed in parallel. In its simplest form, the

result is the Harvard memory architecture introduced in the Texas Instmments TMS32010
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processor [61], where the instruction memory and the data memory were split into sepa

rate physical entities and could be accessed simultaneously. This allows the processor to

access a data sample and a coefficient simultaneously and improves the performance of

FIR and IIR filters, for example. Modem DSP processors typically allow simultaneous

access for an instruction and two data operands from parallel memory banks [64,65].

Another innovation in DSP processors was to introduce memory addressing modes

that allowed the calculations of memory addresses to be done in parallel with data calcula

tions. One particularly useful addressing mode is the register-indirect with post-increment

addressing mode that allows one to sequence through an array by incrementing the

address pointer automatically without the need to execute a separate addition instmction

for that purpose. Another useful addressing mode for implementing FIR filters, for exam

ple, is the circular addressing mode that allows the address pointer to wrap around to the

beginning of a memory address block. The required bound check is executed in parallel

without taking an extra processing cycle. All modem DSP processors have hardware sup

port for zero-overhead looping. This is typically done with a repeat instmction that allows

the repetitive execution of a small sequence of instmctions without taking any extra pro

cessing cycles for loop index calculations (i.e., index increment/decrement and bound

check). Combined with concurrent memory accesses, this allows DSP processors to per

form an «-element vector dot product in n + 1 cycles, and as a result, modem DSP proces

sors are particularly well-suited for implementing vector dot products and FIR filters.

Another technique that is used by some DSP processors is to provide hardware support to

execute complex instmctions. One good example of this is hardware support for the Vit-

erbi add-compare-select calculations which has been used by a number of DSP processors

geared to cellular communications applications [64, 65]. Another architectural improve

ment in some of the latest DSP processors is to add an extra multiplier and adder to

increase the processing rate for FIR filters [66,67]. This is typically done without increas-
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Figure 4.4: Dual-MAC Structure of the TCSI LODE Processor

ing the datamemory bandwidth to the functional unit, and as a result, the extramultiplier

and adder blocks can be used in limited ways that rely on locally stored operands that were

read from memory during the previous cycle (see Figure 4.4). This arrangement is useful

for improving theperformance of FIR andIIR filters. TheLODE processor from TCSI is

a goodexample of how thiscan be done [67]. Additional hardware resources are typically

utilized in DSP processors by adding new instructions that encode more operations into

the basic instruction format. While this factor minimizes the instruction overhead of the

additional hardware resources, it does make these processors difficult to program and dif

ficult to generate code for. As a result, DSP processors must be programmed in assembly

language to achieve good performance.

Another innovation that can be used to reduce the energy overhead of instructions

while executing loops is to use decoded instruction buffers [68]. In this technique, when

the body ofa loop is executed for the first time, the decoded instruction sequence (i.e., the

control signals derived by decoding instructions) corresponding to the loop body is cap-
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tured into a small local buffer, i.e., the decoded instruction buffer. Subsequent iterations of

the loop use these decoded instructions from the buffer instead of fetching and decoding

instructions from the instruction memory. In this way, the larger energy overhead of

accessing the instruction memory through the instruction bus and decoding of fetched

instructions is replaced by the smaller energy of accessing the decoded instruction buffer.

The reported energy savings is on the order of 40%.

All of these architectural techniques have helped make programmable signal pro

cessors much more efficient than general-purpose processors at performing some of the

most common DSP calculations such as FIR and IIR filters. When normalized to the same

0.6-iim process and 1.5-V supply voltage used for the custom design shown inFigure 4.2,

the energy consumed by the Texas Instruments TMS320C54 DSP processor [64], which is

highly optimized for low-power operation, is0.6nJpertap, and the maximum sample rate

is 5.1 MHz. Thisis a significant improvement overtheStrongARM processor. Thisshould

be no surprise, however, as modem DSP processors are particularly well-optimized for

one-tap-per-cycle FIR and IIR filter implementations. However, they do not do nearly as

well for other signal processing algorithms, such as the FFT, compared to custom imple

mentations.

4.5 Superscalar and VLIW Processors

The basic ideabehind superscalar and VLIW (very longinstmction word) proces

sors is to improve theperformance of the basic von Neumann architecture byadding more

functional units to execute more instmctions in parallel. Superscalar and VLIW processors

are very similar to each other in this respect.

The basic architectural model for superscalar and VLIW processors is shown in

Figure 4.5. Instead of a single functional unit, there are multiple functional units thatcan
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Figure 4.5: Basic Architectural Model for Superscalar and VLIW Processors

operate in parallel. Theinstruction memory must, therefore, issue multiple instructions. To

ensure that the functional units can be supplied with data operands adequately, the band

width of the data memory must be increased. This is typically done by adding multiple

read and writeports to the register file (the lowest level of the datamemory hierarchy). In

some implementations, the data cache can supply multiple operands per execution cycle

[69].

Superscalar and VLIW processors are designed to take advantage of fine-grain

parallelism. This is the tjqie of parallelism thatexists within a basic block, i.e., a maximal

sequence of instructions ending in a control transfer instruction, e.g., branch and subrou

tine call instructions. In scalar programs the amount of parallelism is application-depen

dentandis typically notvery high, so thedegree of performance enhancement obtained by

these processors is limited to a factor of approximately four [70]. Vector processing algo

rithms, and in particular DSP algorithms, have lots of coarse-grain parallelism, i.e., paral

lelism across multiple iterations of a loop, which can be exploited by VLIW and
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superscalar processors, but the main bottleneck for vector programs is the data memory

bandwidth. The multi-port register file at the lowest level of the memory hierarchy can

provide good performance for fine-grain parallelism, but toimprove performance for vec

tor programs, the datamemory bandwidth must be increased.

Thechiefdifference between superscalar andVLIW processors is in themanner in

which instructions are issued. A superscalar processor fetches a block of instructions from

the instruction memory in parallel, and the decoding hardware analyzes the data depen

dencies between the fetched instructions. For each execution cycle, this analysis results in

a set of instructions that have no data dependencies and can be executed in parallel. These

instructions are then issuedto and executed by the appropriate functional units in parallel.

Theinstruction decoder in superscalar processors is, thus, highly complex, as it has to ana

lyze datadependencies among the instructions fetched from memory, schedule theexecu

tion of instructions, and then assign them to functional units. The result is a great deal of

design complexity and energy overhead. The primary benefit of superscalar processors is

that they can execute available executable binary codes without the need to recompile.

This is a tremendous advantage for general-purpose applications, but it is much lessof an

issue for DSP applications, where programs are typically written in assembly language to

optimize performance, anyway, and there is much less of a need to run pre-compiled

shrink-wrapped software packages.

VLIW processors, on the other hand, expose the internal micro-architecture of the

processor to the compiler. Data dependency analysis, instruction scheduling, and alloca

tion are all done at compile-time. The code generated for the processor consists of long

instruction words (hence the name) that contain multiple instruction fields for each func

tionalunit. These instruction wordsare fetched by the instruction decoderand each field is

decoded independently and issued to the corresponding functional unit. As a result, the
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decoder in a VLIW processor is much simpler than that of a superscalar processor, and

VLIW processors are in general more energy efficient than superscalar processors because

they avoid the energy overhead ofthe vastly more complex decoder ofthe superscalar pro

cessors. Thechiefdrawback of VLIW processors is that they can notbe binary-compatible

with previous processor generations, as each instance ofa VLIW processor has its own

long instruction word format. The other drawback ofVLIW processors is that if there are

not enough instructions in a given cycle to keep all functional units busy, then memory

bandwidth and energy is wasted by empty instruction fields. Some recent VLIW architec

tures have reduced this penalty by encoding instructions in a way that empty instruction

fields are not created. This requires a more complex decoder to extract the instruction

fields for the current execution cycle from the long instructions fields fetched in the cur

rentandpossibly the previous fetch cycle.

The other difficulty for VLIW processors is that they are difficult togenerate good

code for, and as a result, to getgood performance programs must be written in assembly

language. This is a difficult task, as the activities of multiple functional units must be

scheduled and coordinated by the programmer.

Modem high-performance DSP processors are for the most part based on the

VLIW schemed The TMS320C6X processors from Texas Instraments, for example, can

issue up to eight instructions in each cycle to six ALUs and two multipliers [71]. The sim

plicity ofthe VLIW scheme helps reduce the energy overhead ofinstmctions, as the com

plex decoding logic needed by superscalar processors is avoided. Still, both of these

schemes suffer from the underlying problem of all general-purpose processors, and that is

the tremendous energy overhead of fetching and decoding instmctions and accessing

large, centralized hardware resources.

1. The one notable exception is the superscalar signal processor from ZSP [72].
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4.6 Pipelined Vector Architectures

Vector processing architectures were originally developed for scientific applica

tions with massive computational demands, such as problems innuclear physics, weather

forecasting, and seismology [73, 74]. These applications deal with vector data types, i.e.,

arrays ofnumbers, and as aresult, the processor architectures that were developed for han

dling these applications have been known as vector architectures. In vector algorithms, a

given computation is repeated on different elements ofthe input vector operands. There is

typically no or very little dependency between different iterations ofthe loop processing

the input vectors, and as a result different iterations ofa loop can be executed either com

pletely in parallel or in a highly overlapped fashion. As was shown in Chapter 3, signal

processing algorithms fall into the class ofvector algorithms, and as aresult, vector archi

tectures areindeed suitable forimplementing DSP algorithms. It should be noted that vec

tor processors are always designed in the form of a vector execution unit coupled to a

conventional scalar unit, as there is always some scalar processing and flow control for

which the vector units are not suitable. The basic architectural model for vector processors

is shown in Figure 4.6.

Vector architectures takeadvantage of theproperties of vector algorithms by intro

ducing vector instructions that deal with vector variables, as opposed to scalar variables.

For example, instead ofexecuting many scalar add instructions within the body ofa loop

and instructions for loop index calculations to perform vector addition, as is done on von

Neumann architectures, in a vector processor, a vector add instruction (e.g., VADD) is

executed instead. Thus, a whole scalar loop is replaced by a single vector instruction.

Since the scalar additions that a vector addition is made of are independent of each other,

the additions can be done in a highly pipelined fashion allowing for very high clock

speeds. Thus, vector architectures increase performance by allowing very deep, high-
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speed arithmetic pipelines that execute vector arithmetic instructions ata very high rate. In

order to achieve high performance on a vector architecture, a given algorithm must be

amenable to being coded with vector instructions, i.e., the algorithm has to be vecotriz-

able. If an algorithm is vectorizable, then powerful compiler techniques existthatcan pro

duce high quality vector code from a high-level language specification of the algorithm

[75].

Vector architectures are attractive from the point of view of energyefficiency. The

reason for this is that vector instructions can significantly reduce the energy overhead of

fetching, decoding, and issuing instructions. Instead of fetching multiple instructions for

each iteration of a loop for loop index and data calculations, a single vector instruction is

fetchedand issued, and most of the energy is spent on executing the instruction. Of course

the energy overhead of accessing centralized data memories and vector register files and

executing instructions on general-purpose arithmetic pipelines still remains, but much less

energy is wasted on fetching and decoding instructions. As a result, researchers have
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machine is the structure of the communication network that connects the functional units

within the SEMD array and the data memory, and numerous interconnection network

topologies, such as mesh, hierarchical mesh, and hypercube, have been proposed [74].

One ofthe key issues in programming SIMD machines is to map vector operations onto

the SIMD array given the constraints of the interconnection network being used. As a

result, SIMDmachines are generally difficult to program.

The advantage ofSIMD architectures is that they can achieve high performance

without incurring a large increase in the instruction bandwidth. The energy overhead of

fetching an instruction is reduced because afetched instruction is used by all of the func

tional units in the SIMD array. However, SIMD architectures incur the overhead ofbroad

casting the single instruction to all functional units. In addition there is the energy

overhead of the interconnection network that further complicates thedesign space.

In some recent microprocessors and DSP processors, SIMD instructions have been

used as a set ofmultimedia extensions tothe basic instruction set ofthe processor in order

to improve the performance of the processor for multimedia applications, e.g., video

decompression [78]. These instructions use the wide ALUs ofmodem processors to exe

cute multiple low-resolution operands in parallel. For example, a 32-bit ALU is used to

perform arithmetic operation on four 8-bit operands in parallel. This extension involves a
minimal overhead to the existing instmction set and hardware organization, and as a result

it has been usedin a number of recentmicroprocessors [79, 80, 81].

4.8 MIMD Architectures

In all of the architectures that we have discussed so far, all hardware resources

were controlled by a single stream ofinstructions. In other words, the instruction control

mechanism had a single control thread. MIMD (Multiple-Instruction, Multiple-Data)

architectures allow the functional units to have their own independent control units. The
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basic architectural model for MIMD processors is shown in Figure 4.8. Each functional

unit is controlled bya local stream of instructions with a local controller. We can think ofa

MIMD processor as a processor with multiple SISD processors, and as a result MIMD

architectures are also known as multiprocessors. Allowing each functional unit to have its

own controller makes MIMD architectures highly flexible, and MIMD processors can

generally be programmed to achieve very high performance for a wide variety of applica

tions. In addition, the energy overhead of broadcasting instructions and control signals is

avoided. However, there are now multiple controllers, so there is additional energy con

sumption that must be taken into consideration. The topology and energy overhead of the

conununication network is another design issue that requires careful attention. Multipro

cessor DSPs have received a great deal of research interest and numerous architectures

have been proposed andexplored by researchers [82, 83,84,85].

One notable multiprocessor DSP architecture is the PADDI-2 architecture pro

posed by Yeung [84, 86], which was developed for rapid prototyping ofvideo algorithms.
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The PADDI-2 architecture is based on an array of 16-bit fine-grain nanoprocessors. Each

nanoprocessor has its own local instruction memory that can store 8 instructions. The

basic idea is todirectly map the data flow diagram ofa DSP algorithm onto the nanopro

cessor array. The small local program at each nanoprocessor implements anode or aclus

ter ofa few nodes ofthe data flow graph. The arcs ofthe data flow graph are implemented

by a flexible interconnect network that can be configured by programming SRAM cells

controlling switches in the interconnect network to create point-to-point links between the

nanoprocessors. To avoid the overhead ofa complete cross-bar network, while still pro

viding ahigh degree offlexibility that can be used to create awide variety ofcommunica

tion patterns, PADDI-2 uses a hierarchical two-level structure. The level-one network is

used to create local connections between clusters of four nanoprocessors. The level-one

networks can be connected to eachother through a level-two network that allows nanopro

cessors in different clusters to talk to each other. Computational activities are coordinated

by a distributed data-driven control strategy in which nanoprocessor computations are

synchronized by passing data and control tokens. Each nanoprocessor has input FIFOs

that capture incoming tokens from the communication network. The strength of this dis

tributed control mechanism is thatit is highly scalable in supporting concurrent processing

with alarge number ofnanoprocessors. The Pleiades architecture borrows from and builds

on the lessons learned from the PADDI-2 architecture.

4.9 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGA) were initially developed for prototyping

and glue logic purposes, but advances in CMOS technology have allowed the develop

ment of high-capacity FPGAs that can be used to implement serious computing devices.

The basic functional unit in an FPGA is a bit-processing element, which is commonly

known as a Configurable Logic Block (CLB). Thegranularity of the functional units inan

FPGA is thusat the finest possible level. AnFPGA is a large array of CLBs. These CLBs
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can be connected to each other in various desired ways by configuring a flexible intercon

nect network (see Figure 4.9). A CLB can implement any Boolean function of a small

number, typically 4 to 5, of input bit operands. These functions are realized by using a

look-up table (LUT) structure, i.e., a small SRAM memory, and the input bit operands

serve as the address input of the LUT. Any Boolean function of the input operands can

thus be realized by programming the LUT memory. One important innovation, pioneered

by devices from Xilinx [87], was to allow the LUT memory to be used as a small, local

random-access memory. Thus, a CLB can be used to implement both logic functionality

and storage. The output of the LUTcan optionally be registered if so desired by program

ming an SRAM cell the controls a multiplexer selecting either the output of the LUT or

the registered version of the LUT output. The interconnection network consists of

stretches of wires that can be connected to each other and to the CLBs by turning switches

on and off. Each switch is controlled by an SRAM cell, that configures the switch to be on

or off. An FPGA can be configured to implement any desired function by programming

the SRAM cells that configure the LUTs and the interconnect switches. This feature

makes FPGAs highly flexible and combined with the large number of CLBs available in

modem CMOS processes, has resulted in tremendous interest in FPGAs as computing
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devices. One big advantage ofthe FTPGAs is that the functionality ofhardware resources is

decided after fabrication by the end user. In programmable processors, the functionality of

the hardware resources is fixed after fabrication, and the end user is restricted to imple

menting the desired functionality by creating asequence ofinstructions that tell these pre

fabricated hardware resources what to do. In FPGAs however, theusercan directly imple

ment the desired functionality byconfiguring just the right amount of hardware resources,

i.e., CLBs and wires. As a result the computational throughput per unit silicon area for

FPGAs can be much higher than programmable processors [88]. Computing machines

based on FPGAs have been able to exceed the performance of supercomputers at a tiny

fraction of the cost [89].

In FPGA devices, the instructions are the configuration bits stored in the SRAM

cells controlling the LUTs and the switches. Once the FPGA is configured by loading the

configuration SRAM cells with proper values, the functionality of the hardware resources

are fixed. The instructions are distributed throughout the device, and directly control the

LUTs and the switches. There is no energy overhead associated with fetching and decod

ing instructions. From this point of view, FPGAs are ideal. The one shortcoming of
FPGAs, however, is that the configuration SRAM cells are typically programmed serially,

which is avery slow process. Also, since the granularity of FPGAs is at the bit level, there

is a tremendous amount ofconfiguration information that must be loaded. These factors

make reconfiguration a slow process.

FPGAs cannot however be considered as energy efficient devices. In fact, the

opposite is true. The area and energy overhead of the interconnect network in FPGAs is
substantial. 65% of the total energy in the Xilinx XC4003A FPGA is due to the wires, and

another 21% and 9% are taken by clocks and I/O. The CLBs are responsible for only 5%

of the total energy consumption [90]. When normalized to the same 0.6-p,m process and
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supply voltage used for the custom design shown in Figure4.2, the energy consumed by

the Xilinx XC4003AITGA is 2.2 nJ per tap, and the maximum sample rate is 2.2 MHz.

The chief weakness of FPGAs is in the very fine granularity of the CLBs. This

results in a greatdealof overhead whenimplementing wide-word datapaths wherethere is

no real need to control individual bits of the datapath independently.

4.10 Summary

Conventional programmable architectures are far less energy efficient than cus

tom, application-specific devices. The cause of this inefficiency is the manner in which

flexibility is achieved in conventional processors. Computations are performed on gen

eral-purpose functional units that are designed to implement a wide variety of arithmetic

and logic functions. As a result, these functional units are large and complex, and their

granularity is not always well-matched to the data types and the computations required by

target algorithms. Data operands are stored in general-purpose memory units that are

large, centralized structures. The tasks performed by these hardware resources during

every execution cycle are specified by a stream of instructions that must be fetched from

the instruction memory and then decoded and dispatched by the instruction controller. The

net result is that a great deal of energy overhead is attached to every basic computational

step. This basic weakness afflicted all of the architectures that we discussed in this chapter.

In our quest to design highly energy efficient programmable architectures we should keep

the following ideas in mind:

• One basic problem with conventional processors is that they are designed to be

completely general-purpose. Architectures that target a smaller set of applications

can be more efficient than general-purpose devices and must be pursued. While

structurally similar to general-purpose processors, programmable signal proces

sors are much more efficient because they are more customized for DSP algo-
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rithms. Domain-specific architectures can be particularly efficient, as they provide

the architect with the opportunity to match architectural parameters to the proper

ties of the target domain of algorithms.

• Exploiting concurrency is the key to reducing energy consumption by reducing the

supply voltage. Any energy efficient architecture must beable to support concur

rent processing in an efficient and scalable manner. As we saw in Chapter 3, signal

processing algorithms are highly amenable to concurrent implementations. This is

a valuable opportunity thatmustbe exploited.

• The overhead of instructions must be minimized. Vector processors and SIMD

processors reduce the energy overhead of instructions by introducing vector

instructions that can replace an entire program loop. This isan important technique

that canbe exploited for signal processing applications.

• FPGAs are ideal from the point of view of instructions because once an FPGA is

configured, there is no overhead associated with fetching and decoding instruc

tions. Reconfiguration of hardware resources is thus an important technique that

can significantly reduce the overhead of instructions.

• The control structure used in a concurrent architecture is an important architectural

issue that has a significant impact on scalability, efficiency, and ease of program

ming. Distributed control mechanisms, with multiple control threads, are better in

this respect than centralized control schemes with a single thread ofcontrol.

The design ofthe Pleiades architecture template was heavily influenced bythese consider

ations.
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CHAPTER 5

Pleiades: Architecture Design

The Pleiades architecture will be presented in this chapter. We will first summarize

the goals and the general architectural approach that motivated the design choices that

were made. We will then present the Pleiades architecture template and explain its differ

ent components and their interactions. Architectural design of Maia, a domain-specific

processor for CELP-based speech-coding that is based on the Pleiades architecture tem

plate will be presented next. We will demonstrate how algorithms are mapped onto a Ple

iades-style processor using the Maia design.

5.1 Goals and General Approach

The approach that was taken in this work, given the overall goal of designing

energy-efficient programmable architectures for digital signal processing applications,

was to design processors that are optimizedfor a given domain of signal processingalgo

rithms. This approach yields domain-specific processors, as opposed to general-purpose

processors, which are completely flexible but highly inefficient, or application-specific

processors, whichare the most efficientbut very inflexible. The intent is to develop a pro-
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that can, by virtue of its having been optimized for an algorithm domain, achieve

high levels of energy efficiency, approaching that of an application-specific design, while
maintaining adegree of flexibility such that it can be programmed to implement the vari

ety ofalgorithms that belong to the domain ofinterest.

Algorithms within agiven domain of signal processing algorithms, such as CELP-

based speech coding algorithms, have in common a set of dominant kernels that are
responsible for alarge fraction of total execution time and energy. In adomain-specific
processor, this fact can be exploited such that these dominant kernels are executed on
highly optimized hardware resources that incur aminimum of energy overhead. This is
precisely the approach that was taken in developing the Pleiades architecture.

An important architectural advantage that can be exploited in a domain-specific
processor is the use of heterogeneous hardware resources. In ageneral-purpose processor,

using aheterogeneous set of hardware resources cannot be justified because some of those
resources will always be wasted when running algorithms that do not use them. For exam

ple, afast hardware multiplier can be quite useful for some algorithms, but it is completely
unnecessary for many other algorithms. Thus, general-purpose processors tend to use gen

eral-purpose hardware resources that can be put to good use for all types ofdifferent algo

rithms. In a domain-specific processor, however, using a heterogeneous set of hardware

resources is a valid approach, and must in fact be emphasized. This approach allows the

architect agreat deal of freedom in matching important architectural parameters, particu

larly the granularity of the processing elements, to the properties of the algorithms in the
domain ofinterest. Even within agiven algorithm, depending on the particular set ofcom

putational steps that are required, there typically are different data types and different
operations that are best supported by processing elements of varying granularity, and this
capability can be provided by adomain-specific design. This is precisely one of the key

cessor
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factors that makes an application-specific design so much more efficient than a general-

purpose processor, where all operations are executed on processing elements with pre

determined architectural parameters that cannotpossibly be a goodfit to the various com

putational tasks that are encounteredin a given algorithm.

Our overall objective of designing energy-efficient programmable processors for

signal processing applications, and ourapproach of designing domain-specific processors,

given the background of the preceding three chapters, can be distilled into the following

architectural goals:

• Dominant kernels must be executed on optimized, domain-specific hardware

resources that incur minimal control and instruction overhead. The intent is to

increase energy efficiency by creatinga goodmatchbetween architectural parame

ters and algorithmic properties.

• Reconfiguration of hardware resources will be used to achieve flexibility while

minimizing the energy overhead of instructions. As we saw in Chapter 4, FPGAs

do not suffer from the overhead of fetching and decoding instructions. However,

the ultra-fine granularity of the bit-processing elements used in FPGAs incurs a

great deal of overhead for word-level arithmetic operations and needs to be

addressed.

• To minimize energy consumption, the supply voltage must be reduced aggres

sively. To compensate for the performance loss associated with reducing the sup

ply voltage, concurrent execution must be supported. The relative abundance of

concurrency in DSP algorithms provides a good opportunity to accomplish this

objective.

• The ability to use different optimal voltages for different circuit blocks is an

important technique for reducing energy consumption and must be supported. This
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requires that the electrical interfaces between circuit modules be independent of

the varying supply voltages used for different circuit modules.

Dynamic scahng of the supply voltage is an important technique to minimize the

supply voltage, and hence energy consumption, tothe absolute minimum needed at

any given time and must be supported.

The structure of the communication network between the processing modules

must be flexible such that it can be reconfigured to create the communication pat

terns required by the target algorithms. Furthermore, toreduce the overhead ofthis

network, hierarchy and reduced voltage swings will be used. The electrical inter

face used in the communication network must not be a function of the supply volt

ages of the modules conununicating through the network.

In order to avoid the large energy overhead of accessing large, centralized hard

ware resources, e.g. memories, datapaths, and buses, locality of reference must be

preserved. The ability to support distributed, concurrent execution of computa

tional steps is the key to achieving this goal, and it is also consistent with ourgoal

of highly concurrent processing for the purpose of reducing the supply voltage.

A key architectural issue in supporting highly concurrent processing is the control

structure that is used to coordinate computational activities among multiple con

current hardware resources. The control structure has a profound effect on how

well an architecturecan be scaled to match the computational characteristicsof the

target algorithm domain. The performance and energy overheads of a centralized

control scheme can be avoided by using a distributed control mechanism. Ease of

programming andhigh-quality automatic codegeneration arealsoimportant issues

that are influenced by the control structure of a programmable architecture.

Unnecessary switching activity must be completely avoided. There must be zero

switching activity in all unused circuit modules.
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Figure 5.1: The Pleiades Architecture Template

• Time-sharing ofhardware resources must beavoided, sothat temporal correlations

are preserved. This objective is consistent with and is in fact satisfied by our

approach of relying on spatial and concurrent processing. Point-to-point links in

the communication network, as opposed to time-shared busconnections, shouldbe

used to transmit individual streams of temporally-correlated data streams.

5.2 The Pleiades Architecture Template

In this section, a general overview of the Pleiades architecture will be presented.

Additional details and architectural design issues will be presented and discussed in the

following sections. Architectural design of Maia, a Pleiades-style processor for CELP-

based speech coding algorithms will bepresented subsequently.

The Pleiades architecture is basedon the template shown in Figure5.1. This tem

plate is reusable and can be used to create an instance of a domain-specific processor.
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which can then be programmed to implement a variety of algorithms within the given

domain of interest. All instances of this architecture template share a fixed set ofcontrol

and conununication primitives. The type and number ofprocessing elements in a given

domain-specific instance, however, can vary and depend on the properties of the particular

domain of interest.

The architecture template consists ofacontrolprocessor, ageneral-purpose micro

processor core, surrounded by aheterogeneous array of autonomous, special-purpose sat

ellite processors. All processors in the system communicate over a reconfigurable

communication network that can beconfigured to create the required communication pat

terns. All computation and communication activities are coordinated via a distributed

data-driven control mechanism. The dominant, energy-intensive computational kernels of

agiven DSP algorithm are implemented on the satellite processors as aset of independent,

concurrent threads ofcomputation. The rest ofthe algorithm, which isnot compute-inten

sive, is executed on the control processor. The computational demand on the control pro

cessor is minimal, as its main task is to configure the satellite processors and the

communication network (via the configuration bus), to execute the non-intensive parts of

agiven algorithm, and to manage the overall control flow ofthe algorithm.

In the model of computation used in the Pleiades architecture template, a given

application implemented on a domain-specific processor consists ofa set ofconcurrent

connanunicating processes [91] that run on the various hardware resources ofthe processor

and are managed by the control processor. Some of these processes correspond to the

dominant kernels of the given application program and run on satellite processors under

the supervision of the control processor. Other processes run on the control processor

under the supervision ofa simple interrupt-driven foreground/background system for rela

tively simple applications or under the supervision ofareal-time kernel for more complex
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applications [92], The control processor configures the available satellite processors and

the communication network at run-time to construct the dataflow graph corresponding to a

given computational kernel directly in hardware. In the hardware structure thus created,

the satellite processors correspond to the nodes of the dataflow graph, and the links

through the communication network correspond to the arcs of the dataflow graph. Each

arc in the dataflow graph is assigned a dedicated link through the communication network.

This ensures that all temporal correlations in a given stream of data are preserved and the

amount of switching activity is thus minimized.

As we saw in Chapter 2, algorithms within a given domain of applications, e.g.,

CELP-based speech coding, share acommon set ofoperations, e.g., LPC analysis, synthe

sis filtering, and codebook search. When and how these operations are performed depend

on the particular details of the algorithm being implemented and are managed by the con

trol processor. The underlying details and the basic parameters of the various computa

tional kemels in a given domain vary from algorithm to algorithm and are accommodated

at run-time by the reconflgurability of the satellite processors and the communication net

work.

ThePleiades architecture enjoys thebenefit of reusability because (a) thereis a set

ofpredefined control and communication primitives that are fixed across all domain-spe

cific instances of the template, and (b) predefined satellite processors can be placed in a

library and reused in the design of different types of processors.

5.3 The Control Processor

A given algorithm can be implemented in its entirety on the control processor,

without using any ofthe satellite processors. The resulting implementation, however, will

be very inefficient: it will be too slow, and it will consume too much energy. To achieve

good performance and energy efficiency, the dominant kemels of the algorithm must be
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identified and implemented on the satellite processors, which have been optimized to

implement those kernels with a minimum of energy overhead. Other parts of the algo

rithm, which are not compute-intensive and tend to be control-oriented, can be imple

mented on the control processor. The computational load on the control processor is thus

relatively light, as the bulk ofthe computational work isdone by the satellite processors.

In addition to executing the non-compute-intensive and control-oriented sections

ofa given algorithm, the control processor is responsible for spawning the dominant ker

nels as independent threads of computation, running on the satellite processors. In this

capacity, the control processor must first configure the satellite processors and the com

munication networksuchthat a suitable hardware structure for executing a givenkemel is

created. The satellite processors and thecommunication network are reconfigured at run

time, so that different kemels are executed at different times on the same underlying

reconfigurable hardware fabric. The functionality ofeach hardware resource, be it a satel

lite processor ora switch in the communication network, is specified by the configuration

state of that resource, a collection of bits that instruct the hardware resource what to do.

The configuration state of each hardware resource is stored locally in a suitable storage

element, i.e., a register, a register file, or a memory. Thus, storage for the configuration

states of the hardware resources of a processor are distributed throughout the system.

These configuration states are in the memory map of the control processor and are

accessed by the control processor through the reconfiguration bus, which is an extension

of the address/data/control bus of the control processor.

Once the satellite processors and the communication network have been properly

configured, the control processor must initiate the execution of the kemel at hand. This is

accomplished by generating a request signal to an appropriate satellite processor which

will trigger thesequence ofevents whereby thekemel is executed. After initiating theexe-
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cution of the kernel, thecontrol processor caneither halt (to save power) and wait for the

completion ofthe kernel, or it can start executing another computational task, including

spawning another kernel on another set of satellite processors. This mode of operation

allows the programmer to increase processing throughput by taking advantage ofcoarse-

grain parallelism. When the execution of the kernel is completed, the control processor

receives an interrupt signal from the appropriate satellite processor. The interrupt service

routine will determine the next course of action to be taken by the control processor.

5.4 Satellite Processors

The computational core of the Pleiades architecture consists of a heterogeneous

array ofautonomous, special-purpose satellite processors. These processors are optimized

to execute specific tasks efficiently and with minimal energy overhead. Instead ofexecut

ing all computations on a general-purpose datapath, as is commonly done in conventional

programmable processors, the energy-intensive kernels of an algorithm are executed on

optimized datapaths, without the overhead of fetching and decoding an instruction for

every single computational step.

Kemels areexecuted on satellite processors in a highly concurrent manner. A clus

ter of interconnected satellite processors that implements a kernel processes data tokens in

a pipelined manner, as each satellite processor forms a pipeline stage. In addition, each

satellite processor can be further pipelined internally. Furthermore, multiple pipelines cor

responding to multiple independent kemels can be executed in parallel. These capabilities

allow efficient processing at very low supply voltages. For bursty applications with

dynamically varying throughput requirements, dynamic scaling of the supply voltage is

used to meet the throughput requirements ofthe algorithm at the minimum supply voltage.

As mentioned earlier, satellite processors are designed to perform specific tasks.

Let us consider some examples of satellite processors:
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• Memories are ubiquitous satellite processors and are used to store the data struc

tures processed by the computational kernels of a given algorithm domain. The

type, size, and number of memories used in adomain-specific processor depend on

the nature of the algorithms in the domain of interest.

• Address generators are also common satellite processors that are used to generate

the address sequences needed to access the data structures stored in memories in

the particular manner required bythe kernels.

• Reconfigurable datapaths can be configured to implement the various arithmetic

operations required by thekernels.

• Programmable gate array (PGA) modules can be configured to implement various

logic functions, as needed by the computational kernels.

• Multiply-Accumulate (MAC) processors can be used to compute vector dot prod

ucts very efficiently. MAC processors can be useful in a large class ofimportant

signal processing algorithms.

• Add-Compare-Select (ACS) processors can be used to implement the Viterbi algo

rithm efficiently. The Viterbi algorithm is widely used in many communication

and storage applications.

• Discrete Cosine Transform (DCT) processors can be used to implement many

image and video compression/decompression algorithms efficiently.

Observe that while most satellite processors are dedicated to performing specific

tasks, some satellite processors might support a higher degree of flexibility to allow the

implementation ofa wider range ofkernels. The proper choice ofthe satellite processors

used in a given domain-specific processor depends on the properties of the domain of

interest and must be made by careful analysis ofthe algorithms belonging to that domain.
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Figure 5.2: Block Diagram of a MAC Satellite Processor

The behavior of a satellite processor is dictated by the configuration state of the

processor. The configuration state of a satellite processor is stored in a local configuration

storeand is accessed by the control processor via the reconfiguration bus.For some satel

lite processors, the configuration state consists of a few basic parameters that determine

what the satellite processor will do. For other satellite processors, the configuration state

may consist of sequences of basic instructions thatare executed by the satellite processor.

Instruction sets and program memories for the latter type of satellite processors are typi

cally shallow, as satellite processors are typically designed to perform a few basic opera

tions, as required by the kernels, very efficiently. As such, the satellite processors can be

considered weakly programmable. For a memory satellite processor, the contents of the

memory makeup the configuration state of the processor.

Figure 5.2 shows the block diagram of a MAC satellite processor. Figure 5.3 illus

trates how one of the energy-intensive functions of the VSELP speech coder, theweighted

synthesis filter, is mapped onto a set of satellite processors.
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5.5 Communication Network

In the Pleiades architecture, the communicationnetwork is configured by the con

trol processor to implement the arcs of the dataflow graph of the kernel being imple

mented on the satellite processors. As mentioned earlier, each arc in the dataflow graph is

assigned a dedicated channel through the communication network. This ensures that all

temporal correlations in a given stream ofdata are preserved, and the amount ofswitching

activity is reduced.

The communication network must be flexible enough to support the interconnec

tion patterns required by the kernels implemented on a given domain-specific processor,

while minimizing the energy and area cost of the network. In principle, it is straightfor-
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ward toprovide the flexibility needed tosupport all possible interconnection patterns for a

given set ofprocessors. This can be accomplished by acrossbar network, as shown inFig

ure5.4. A crossbar network can support simultaneous, non-blocking connection of any of

Minput ports to any ofNoutput ports. This canbe accomplished byNbuses, oneperout

put port, and a matrix of Nx M switches. The switches can beconfigured toallow a given

input port to be connected to any of the output buses. However, the global nature of the

buses and the large number of switches make the crossbar network prohibitively expen

sive in termsof both energy and area,particularly as the numberof input and outputports

increases. Each data transfer incurs a great deal of energy overhead, as it must traverse a

long global bus loaded by N switches.

The number of switches can be reduced by using multi-stage interconnection net

works [93], such as the Omega network [94] shown in Figure 5.5, which has been com

monly used in many multiprocessor systems. As in the crossbar network, the number of

buses for slxi NxN Omega network is N, but the number of switches is N\og2^y as an

Omega network with Noutput ports and Ninput ports consists of log2 N stages with N/2

switches per stage. Observe, however, that the switches ofa multi-stage network are more

complex than those ofa crossbar network, as they must support more complex switching
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patterns, as illustrated in Figure 5.5. The complex routing patterns ofmulti-stage intercon

nection networks, such as the perfect-shuffle pattern used in the Omega network, make

these networks particularly difficult and cumbersome to implement. Another drawback of

multistage networks is that each connection through the network must go through log2^

switches. This reduces the maximum data rate through each communication channel

through the network.

In practice, a full crossbar network can be quite unnecessary and can be avoided.

One reason is thatnotalloutput ports might be actively used simultaneously. Some output

ports might in fact be mutually exclusive ofone another. Therefore, the number ofbuses

needed can be less than the number of output ports in the system. Another practical fact

that can beexploited to reduce the complexity of a full crossbar (and other types of net

works, as well) is thatnot all input ports need to be connected to all available output ports

in the system. For example, address generators typically communicate with memories
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only, and there is no need to allow for the possibility of connecting the address inputs of

memory modules to the output ports of the arithmetic units. This fact can be used to

reduce the span of the buses and the number of switches in the network. These techniques

are employed in the Pleiades architecture.

The chief difficulty with the interconnect architectures discussed so far is the glo

bal nature of the buses. This makes all data transfers expensive regardless of whether, they

are between two adjacent processors or between two processors at opposite comers of the

chip. The efficiency of data transfers can be improved by taking advantage of the fact that

most data transfers are local. This is a direct manifestation of the principle of locality of

reference discussed in Chapter 2. Instead of using buses that span the entire system,

shorter bus segments are used that allow efficient local communication. Many such archi

tectures have been proposed, particularly for use in multiprocessor systems, and some of

them have been illustrated in Figure 5.6. These topologies provide efficient point-to-point

local channels at the expense of long-distance communications. One simple scheme for

transferring data between non-adjacent nodes is to route data tokens through other inter

vening processors. This increases the latency of data transfers, but keeps the interconnect

stmcture simple. An additional drawback is that the latency of a data transfer becomes a

function of processor placement and operation assignment. As a result, scheduling and

assignment of operations become more complicated, and developing an efficient compiler

becomes more difficult.
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The mesh topology has been particularly popular in modem FPGAs. The mesh

structure is simple and very efficient for VLSI implementations. Asimplified version of

the mesh structure, as used in many modem FPGAs, is illustrated in Figure 5.7. Totrans

ferdata between non-adjacent processing elements, multiple unit-length bus segments can

be concatenated by properly configuring the switch-boxes that are placed at the bound

aries of the processing elements. Local communications can be accomplished efficiently,

andnon-local communications canbe supported, as well, and the degradation of commu

nication bandwidth with distance, due to the increasing number of switches as more

switch-boxes are traversed, is relatively graceful. This scheme has worked quite well in

FPGAs, but it is not directly applicable to a Pleiades-style processor because a Pleiades-

style processor is composed ofa heterogeneous set ofsatellite processors with different

shapes and sizes and the regular two-dimensional array stracture seen in FPGAs cannot be

created.
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The schemeused in the Pleiades architecture is a generalization of the mesh struc

ture, i.e., ageneralized mesh [95], which is illustrated in Figure 5.8. For agiven placement

ofsatellite processors, wiring channels are created along the sides of the satellite proces

sors. Configurable switch-boxes are placed at the junctions between the wiring channels,

and the required communication pattems are created by configuring these switch-boxes.

The parameters ofthis generalized mesh structures are the number ofbuses employed in a

given wiring channel, and the exact functionality of the switch-boxes. These parameters

depend on the placement ofthe satellite processors and the required communication pat

tems among the satellite processors.

An important and powerful technique that can be used in improving the perfor

mance and efficiency ofthe communication network is the use ofhierarchy. By introduc

ing hierarchy, locality of reference can be further exploited in order to reduce the cost of

long-distance communications. One approach that has been used in some FPGAs, e.g., the

Xilinx XC4000 family [87], is to use a hierarchy of lengths in the bus segments used to
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connect the logic blocks. Instead of using only unit-length segments, longer segments

spanning two, four, or more logic blocks are also used. Distant logic blocks can be con

nected via these longer segments by using far less series switches than would have been

needed if only unit-length bus segments were available.

Another approach to introducing hierarchy in the communication network is to use

additional levels of interconnect that can be used tocreate connections among clusters of

processing elements. An example of this approach is the two-level network structure used

in the PADDI-2 multiprocessor [86], which was discussed in Chapter 4. In PADDI-2, a

level-1 reduced crossbar network isused toconnect nanoprocessors within clusters offour

nanoprocessors. Alevel-2 reduced and segmented crossbar is used to create connections

between the clusters. Another example of the application of hierarchy is the binary tree

structure used inthe Hierarchical Synchronous Reconfigurable Array architecture [96]. In

this approach, a binary-tree hierarchy of switch-boxes is used to reduce the cost of com

munications between distant logic blocks. Local short-cuts are also used to facilitate effi

cient neighbor-to-neighbor connections, without the need to traverse the tree of switch-

boxes.

In the Pleiades architecture, hierarchy is introduced into the communication net

work by creating clusters of tightly-connected satellite processors that internally use a

generalized-mesh structure. Communication among clusters is accomplished by introduc

ing inter-cluster switch-boxes that allow inter-cluster conununication through the next

higher level ofthe communication network. This is illustrated in Figure 5.9. The key chal

lenge is the proper clustering ofthe satellite processors and the proper placement of the

inter-cluster switch-boxes in order to avoid routing congestions. The proper organization

can be found by closely studying the interconnection patterns that occur in the computa

tional kernels of a given domain of algorithms.
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In addition to the techniques mentioned above, the Pleiades architecture uses

reduced-swing bus driver and receiver circuits to reduce the energy of data transfers

through the network [97, 98]. An additional benefit of this approach is that the electrical

interface through the communication network is standardized and becomes independent of

the supply voltages of the communicating satellite processors. This facilitates the use of

dynamic scaling of the supply voltage, as satellite processors at the two ends of a commu

nication channel can run at independent supply voltages.

In summary, the Pleiades architecture uses a hierarchical generalized-mesh struc

ture to provide the flexibility needed to implement the computational kernels of a given

domain of algorithms on a heterogeneous set of satellite processors, whileminimizing the

energy overheadof data transfersamong the satelliteprocessors. Satelliteprocessors com

municate through point-to-point communication channels that arestaticfor theduration of

a kernel. Conununication channels through the network correspond to the arcs of the data

flow graph of a given kernel. Communication links among the satellite processors are
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established by the core processors byconfiguring the switches in the communication net

work. Use of point-to-point dedicated links ensures that temporal correlations are pre

served, thus reducing switching activity. The communication network architecture used in

the Pleiades architecture will be further evaluated within the context of the Maia processor

later in this chapter.

5.6 Reconfiguration

In the Pleiades architecture, the flexibility needed to support the various kernels of

a given domain of algorithms is achieved by the ability to reconfigure the satellite proces

sors and the conununication network at run-time, such that a hardware organization suit

able for implementing a given kemel is created. This mode of programming is known as

spatialprogramming, whereby the act of programming changes the physical interconnec

tion of processing elements, thus creating a new hardware organization, i.e., a particular

set of processing elements interconnected in a particularway, to implementa new compu

tation. This is the mode of programming used in FPGAs. Traditional programmable pro

cessors rely on temporal programming, whereby the behavior of processing elements is

altered in time, on a cycle-by-cycle basis, by a stream of instructions, and the underlying

hardware organization is fixed.

As mentioned earlier, the behavior of satellite processors and the pattem of inter

connections among them is dictated by the configuration state of the satellite processors

and the switches in the communication network. Configuring a set of satellite processors

or a set of switches in the communication network consists of altering the configuration

state of these hardware resources by the control processor via the configuration bus. This

is similar to what is done when programming FPGAs. However, in conventional FPGAs

such as the Xilinx XC4000 family, reconfiguration is a very slow task that can take milli

seconds of time. As a result, run-time reconfiguration is not practical with conventional
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FPGAs. One basic reason for this shortcoming is that it takes a tremendous amount of con

figuration information to configure an FPGA. Part of the problem is the bit-level granular

ity of the processing elements. All details of the logic functions that are needed to

implement a particular function must be fully specified. For example, it takes 360 bits of

information to configure a Xilinx XC4000E CLB and its associated interconnect switches!

The situation is further exacerbated when implementing word-level arithmetic operations,

when a great deal of the configuration information is redundant and specifies the same

logic functionality for different bits of a datapath. An additional obstacle to run-time

reconfiguration is that FPGAs are typically configured in a bit-serial fashion ^ The

PADDI-2 DSP multiprocessor was also configured in a bit-serial manner, and as a result

run-time reconfiguration was not practical, but this was not really a limitation for the

design, as PADDI-2was designed for rapid prototyping applications.

In the Pleiades architecture, since hardware resources are configured at run-time,

so that different kemels can be executed on the same basic set of satellite processors at dif

ferent times during the execution of an algorithm, a key design objective is to minimize

the amount of time spent on configuring and re-configuring hardwareresources. This can

be accomplished with a combination of architectural strategies. The first strategy is to

reduce the amountof configuration information. The word-level granularity of the satellite

processors and the communication network is one contributing factor. No redundant con

figuration information is wasted on specifying the behavior of individual bit-slices of a

multi-bit datapath. This is a direct result of the types of data tokens processed by signal

processing algorithms. Another factor is that the behavior of most satellite processors

(with the notable exception of PGA-style satellite processors) is specified by simple

coarse-grain instructions choosing one of a few different possible operations supported by

1. In somerecentdevices, configuration information can be loaded intothedevice viaa byte-wide
bus [99].

98



asatellite processor and afew basic parameters, as necessary. For example, aMAC satel

lite processor can be fully configured by specifying whether to perform multiplication

operations or to perform vector dot-product operations. Address generators can be config

ured by specifying one of afew different address sequences and specifying the associated

address generation bounds, steps, and strides, as necessary. As aresult, all it takes for the

control processor to configure the satellite processors and the communication network is

to load a few configuration store registers with the appropriate values.

Another strategy to reduce reconfiguration time in the Pleiades architecture is that

configuration information is loaded into the configuration store registers by the control

processor through a wide configuration bus, an extension of the address/data/control bus

ofthe control processor. For example, with a 32-bit control processor, such as the ARM9

microprocessor core [100], configuration information can be loaded into the configuration

store registers of the satellite processors and the communication network at a rate of32

bits per cycle.

Another technique to minimize oreven eliminate configuration time is tooverlap

configuration and kernel execution. While satellite processors are busy executing akernel,

they can be configured by the control processor for the next kemel to be executed. When

the execution of the current kemel is completed, the satellite processors can start the next

kemel immediately by switching to the new configuration state. This can be accomplished

by allowing multiple configuration contexts^ i.e., multiple sets ofconfiguration store regis

ters. This technique is similar to those used in multi-context and time-multiplexed FPGA

devices [101,102,103]. While one configuration context is active and isused bythe satel

lite processors and the communication network to execute the current kemel, a second

passive configuration context is simultaneously loaded by the control processor in prepa

ration for the next kemel. When the execution of the kemel is finished, the new context
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Figure 5.10: Concurrent Reconfiguration and Kernel Execution

becomes the active context, and the old context can be loaded with new configuration state

in anticipation of the next kernel to be executed. This mode of operation is illustrated in

Figure 5.10. An extension of this technique is to allow more than two configuration con

texts, at least for some of the satellite processors. These configuration contexts can be pre

loaded when the system is initialized, and there will be no need to reconfigure the associ

ated satellite processor at run-time. This latter technique was used in the address genera

tors of the Maia processor.

5.7 Distributed Data-Driven Control

Coordination of computation and communication activities among the processing

elements of a multiprocessor system is one of the most important architectural design

issues, as it has a profound effect on the efficiency of the overalldesign. This task is per

formedby a suitablecontrol mechanism. The responsibility of the control mechanism is to

provide instructions to the processing elements, i.e., the functional units, the data memo

ries, and the communication network (see Figure 4.1). In doing so, the control mechanism

requires control information from the processing elements, indicating theircurrent states

to the control mechanism. How instructions are stored, how they are dispatched to the pro

cessing elements, and how control information provided by the processing elements is

handled are the key issues that mustbe addressed in designing a control mechanism.
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In the Pleiades architecture, computational kemels are executed on the satellite

processors in a distributed, concurrent manner. This approach avoids the energy and per

formance overheads oflarge, centralized functional units and data memories by replacing

global interactions across long distances by more local interactions across shorter dis

tances. This same approach can be applied to the design of the control mechanism. The

Pleiades architecture uses a distributed control mechamsm that employs small local con

trollers in place of a large global controller.

In a centralized control mechanism, a single global controller is responsible for

controlling the activities of all processing elements. VLIW and SIMD architectures, for

example, use a centralized control mechanism. The conceptual simplicity of this scheme

works well when there is a single thread of computation. In a multiprocessor system with

multiple processors executing multiple threads of computation, however, a centralized

control mechanism loses its conceptual simplicity andbecomes quite cumbersome, as the

controller has to deal with the combinatorial explosion of control states as the combined

states of the individual processing elements areconsidered together. As a result, develop

ing programs and compilers for architectures that use a centralized control mechanism

becomes very complex anddifficult. Furthermore, a centralized control mechanism incurs

a great deal of energy and performance overhead because instructions to the processing

elements and controlinformation from the processing elements are all conununicated glo

bally through the central controller. As a result, a centralized control mechanism cannot

practically be scaled up to deal with a large number of processing elements because the

required bandwidth for distributing instructions and control information and the associ

atedenergy overhead and performance penalty can become prohibitive.

In a distributed control mechanism, each processing element has a local controller

with a local program memory. As a result, the energy andperformance overheads of stor-
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ing and distributing instructions and communicating control information are greatly

reduced as these interactions assume a local nature. With a distributed control mechanism,

a computational problem can be partitioned into multiple threads of computation in the

most natural way dictated by the problem itself, without the artificial constraints ofa cen

tralized control mechanism, and these threads of computation can then be distributed

across multiple processing elements or multiple clusters ofprocessing elements. The abil

ity to take such a modular approach eases programming and developing compilers for an

architecture with a distributed control mechanism. Another important advantage of a dis

tributed control mechanism is that it can be gracefully scaled to handle multiprocessor

systems with a large number of processing elements to tackle increasingly complex com

putational problems.

The key design issue with a distributed control mechanism is how a local control

ler coordinates its actions with other localcontrollers that it needs to interact with during

the course of the execution of a given algorithm. One aspects of this problem is that each

local controller must somehow determine when it canstart executing a particular task. The

objective here is to synchronize the actions ofthe controllers, so that computational activ

ities are executed in the correct sequence. This can be accomplished by the exchange of

tokens of control information among thecontrollers through the conununication network,

in the same way that data tokens are exchanged among the processing elements. Arriving

control tokens can not only be used by a controller to determine when to initiate the next

computational task, but depending on the control information encapsulated into the con

trol tokens, they can also be used to determine which particular task is to be initiated by

the controller.

Minimizing the overhead ofcontrol tokens is an important design issue in a dis

tributed control mechanism. An even more fundamental issue ishow to map a given algo-
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rithm onto processing elements that are controlled in a distributed manner. The approach

taken in thePleiades architecture is to map the dataflow graph of a given signal processing

kernel directly onto acluster ofsatellite processors interconnected through the communi

cation network. In this approach, a satellite processor directly corresponds to a node or a

cluster of nodes in the dataflow graph of a given kernel, and a conununication channel

through the communication network directly corresponds to an arc in the dataflow graph.

Just as in the dataflow graph representation, the execution of an operation in a satellite

processor is triggered by the arrival of all required data tokens, i.e., operations are exe

cuted in a data-driven manner [104]. Thus, data tokens not only provide the operands to

be processed by the satellite processor, but they also implicitly provide synchronization

information. A handshaking mechanism is required to implement a data-driven mode of

operation: the arrival ofa data token is signalled by a request signal from the sending sat

ellite processor, and the acceptance of a data token is signalled by an acknowledge signal

from the receiving satellite processor (see Figure 5.11). This approach to distributed con

trol is similar to the control mechanism of the PADDI-2 architecture [86] and the DSP

architecture proposed byFellman [105]. As we will soon see, however, the particular con

trol mechanism used in the Pleiades architecture provides additional support for handling

common signal processing data structures such as vectors and matrices more efficiently.

The conceptual simplicity and elegance of data-driven distributed control greatly

simplify the task of developing programs and compilers for the Pleiades architecture.
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Extensive prior experienceby researchers has demonstrated that dataflow graphs are per

haps the most natural andmost effective means to represent signal processing algorithms

[106, 107]. One of the key strengths of dataflow graphs is that they exposeparallelism by

expressing only the data dependencies that are inherent to a given algorithm. There is a

rich body of knowledge addressing the problem of compiling dataflow graphs onto multi

processor architectures [108,109,110, 111].

A data-driven control mechanism has another importantbenefit: it provides a well-

defined and elegant framework for managing switching activity inhardware modules. The

handshaking mechanism that is used to implement the data-driven semantics of dataflow

graphs can also be used to control switching activity in the satellite processors. When all

required data tokens have arrived at a satellite processor, the satellite processor can start

executing its task; otherwise, the satellite processor will stay dormant, and no unnecessary

switching activity will take place.

5.7.1 Control Mechanism for Handling Data Structures

Distributed execution of an algorithm on multiple processing elements involves

partitioning the calculations performed by the algorithm into multiple threads. These

threads are then assigned to appropriate processing elements. A convenient first step is to

partition the algorithm into address calculations and data calculations. Address calcula

tions produce memory address sequences that are used to access data structures in the par

ticular manner specified by the algorithm. Data calculations process the accessed data

structures and produce the desired results. This is illustrated in Figure 5.12 for the vector

dot product example. Address calculations involve loop index and memory address

pointer calculations. These calculations are mapped onto address generators. The address

sequences produced by the address generators are used to access the required data struc

tures (two vectors in this example) from the memory units. The resulting data streams are
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S s 0;

for (i=0; i<N; i++) {
S = S + X[i]*Y[i];

/\ Data ThreadAddress Thread

for (i=0; i<N; i++) { Q1 s s 0;

Q1 <- Read(X[i]);

Q2 <- Read{Y[i]);

}

t <- Q3;

Write(S/ t);

Q2
do (

X <- Ql;

Q3

y <- Q2;
s = s + x^y;

} while (...)

Q3 <- s;
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Memory
X[i]

Memory
Y[i]

Figure 5.12: Address and DataThreads for Computing Vector Dot Product

then communicated to thefunctional units performing thedatacalculations (a single MAC

unit in this example). The MAC unit must have a way ofknowing when the end ofa vec

tor is reached. This information will provide the missing condition of the while () state

ment in the data thread in Figure 5.12. One approach is to replicate the loop index

calculation of the address thread in the data thread. A better approach that avoids the over

head and inconvenience of replicating the loop index calculation is to let a data stream

itself indicate the boundaries of the data structure that it is carrying. This can be done by
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embedding special control flags that indicate the last element of a sequence into data

tokens. The latter approach was taken in the Pleiades architecture.

In the Pleiades architecture, a data stream can be a scalar, a vector, or a matrix.

These data types are the most common in signal processing algorithms. The boundaries of

vectors andmatrices areindicated by special end-of-vector (EOV) flags thatareembedded

into data tokens. Figure 5.13 illustrates how this is accomplished. An EOV flag can have

oneof three values: 0, 1,or 2. The value 1 marks the lastdatatoken of a one-dimensional

data structure or the last data token of a one-dimensional sub-structure of a two-dimen

sionaldata structure. The value2 marks the last data tokenof a two-dimensional structure.

The value0 marksall otherdata tokens. Thus, two additional bits areneeded to encode the

EOV flag into adata token. Observe that the manner in which the elements ofavector ora

matrix arescanned determines how the resulting datastream is delimited withEOV flags.

Data structures ofhigher dimensions can also be created by allowing the EOV flag to take
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onmore than three values. This was notdeemed necessary forany of the Pleiades proces

sors that were considered. EOV flags are inserted into data tokens by either an address

generator producing the address sequence that is used to access the required data structure

or by the control processor. Memory units simply copy the EOV flag of an incoming

address token into the corresponding data token being read from memory. This is illus

trated in Figure 5.14. How the EOV flags are used by afunctional unit depends entirely on

the instruction being executed by that functional unit, and the instruction being executed
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by a functional unit must specify the type of and the manner in which an incoming data

stream that is to be processed. Some examples of how data streams can be consumed by a

satellite processor are shown in Figure 5.14 for the case of the MAC satellite processor.

For any given instruction of a satellite processor, if the dimensionalityof all input streams

is increased by one, then the dimensionality of the output data stream is automatically

increased by one, without the need to specify a new instruction. For instance, if the input

data streams of the vector dot product instruction of the MAC processor are two-dimen

sional vectors instead of the one-dimensional vectors shown in Figure 5.14, then the out

put will automatically be a vector, with the proper EOV delimiters, instead of a scalar.

5.7.2 Summary

With its distributed data-driven control mechanism, the Pleiades architecture

avoids the energy and performance overheads of communicating instructions and control

signals globally across large distances, while providing modular and scalable support for

highly concurrent implementations of signal processing algorithms. The control mecha

nism used in the Pleiades architecture provides support for handling common signal pro

cessing data structures such as vectors and matrices efficiently.

5.8 System Timing and Synchronization

Implementation of the handshaking mechanism that is needed in a data-driven

control scheme is an important design issue. While the handshaking mechanism can be

implemented within a conventional synchronous timing scheme with a global clock sig

nal, where the status of the handshaking signals are examined on a cycle-by-cycle basis, as

was done in the PADDI-2 design, data-driven control possesses an inherently asynchro

nous nature in which the arrival of data tokens at whatever point in time, not the tick of a

global clock signal, is used to synchronize and coordinate computational steps. The hand

shaking mechanism can in fact be implemented, in a more natural way, within an asyn-
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chronous timing scheme, in which the handshaking signals can also be used to

synchronize data transfers to and from storage elements, without the need for a global

clock signal [112].

In the Pleiades architecture, satellite processors communicate via an asynchronous

timing scheme. This approach has anumber of important benefits that are beyond the con

ceptual simplicity and elegance of combining data-driven control with asynchronous tim

ing. The required throughput and the corresponding internal operating frequency of a

satellite processor depend on the computational task that itis expected to perform and can

vary from algorithm to algorithm or even from kernel to kernel. To minimize power dissi

pation, the internal operating frequency of any given satellite processor must be at the

minimum required to meet the required processing throughput, and this is accomplished

by setting the supply voltage of the satellite processor to the minimum required to meet

the expected operating frequency. This can be done either statically or dynamically (by

using dynamic scaling ofthe supply voltage). We thus have a situation in which multiple

communicating processors can operate at different and time-varying internal operating

frequencies and supply voltages. To accommodate multiple and time-varying operating

frequencies, an asynchronous timing scheme is required, at least at the global level, for

inter-satellite conununication, because an asynchronous timing mechanism is independent

ofthe operating frequencies ofthe communicating modules. One important benefit ofthis

approach is that once a satellite processor has been designed and its functionality and

internal timing have been verified and characterized, it can be utilized in a domain-spe

cific processor without the need to re-verify its timing within the context of the overall

processor because its internal timing is independent ofexternal timing constraints. This is

certainly not the case in a synchronous design, where the timing ofa module is subject to

external timing constraints, such as clock skew and the setup and hold times of the mod

uleswithwhich it must communicate. An asynchronous timing scheme results in a highly

109



modular design style in which a domain-specific processor can be constructed seamlessly

by assembling the required set of satellite processors from a pre-designed library of pro

cessors, without having to re-design and re-verify existing satellite processors for a new

set of extemal timing constraints.

An additional benefit of an asynchronous timing scheme is that the energy over

head ofdistributing a global clock signal is avoided. This can result insignificant savings,

particularly for high-performance designs, as the overhead of distributing a high-speed,

low-skew clock signal can be quite high (as high as 40% of total power dissipation for

some high-performance designs [113]). It is often cited [114], and it is certainly true, that

with an asynchronous timing scheme, switching activity is minimized because the storage

elements ofan asynchronous circuit module are clocked and loaded with new values only

when there is a request for a new computation; otherwise, the storage elements of that

module arenotclocked, and there is no switching activity in that module. In a straightfor

ward synchronous implementation, the storage elements are always clocked even if there

is no new data to be processed, and there isa great deal ofunnecessary switching activity,

wasting a great deal ofenergy. However, a synchronous system can be designed, using

clock-gating techniques, such that its storage elements have the same switching profile as

its asynchronous counterpart. Thus, a synchronous circuit module can be designed such

that its storage elements are clocked and loaded with new data only when there is a new

computation to be performed by that module. However, a global clock signal is still

present and must be distributed to all circuit modules, and the required clock-gating con

trol circuits incur additional overhead. Theoverhead ofclock-gating control circuits is rel

atively minor and is comparable to the overhead of handshaking control circuits in an

asynchronous design. Thus, the real advantage of an asynchronous design, from the point

ofview ofenergy, is that the overhead ofthe clock distribution network is avoided.
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An important issue in asynchronous systems is the overhead of generating comple

tion signals. In asynchronous design, the availability of new data is indicated implicitly.

The beginning of anew clock cycle, e.g., the rising edge of the clock signal, loads storage

elements with new data to be processed by the combinational logic blocks, which are

required to finish evaluating by the end of the current clock cycle, which is also the begin

ning of the next clock cycle, when their results will be loaded into the appropriate storage

elements, and the next processing cycle will begin. In an asynchronous design, on the

other hand, availability ofnew data is indicated explicitly. Each logic block generates a

completion signal when it has finished evaluating. The completion signal results in a

request signal to other blocks, informing them of the availability of new data to be pro

cessed by them. In asynchronous systems, completion signals can be generated by encod

ing each bit of data on apair of signals. Figure 5.15 illustrates how this is accomplished in

CMOS designs [115, 116]. Alogic gate is implemented using a differential circuit. Ini

tially, the gate is precharged, and both Qand Qoutputs are high, indicating that the circuit

is waiting to evaluate, i.e., it is not done yet. When all required inputs become available,

and the gate evaluates, one of its outputs is discharged, indicating that it has finished eval-
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uating. The completion signal (the Done signal in Figure 5.15) is the logical OR of Q and

Q. There are two serious problems with this approach. First, since a triplet of values (low,

high, waiting) must be coded on a pair of signals, asynchronous logic gates, such as the

differential CMOS gate shown in Figure 5.15, are more complex than the simple logic

gates that are sufficient for synchronous designs. As a result, more capacitance is switched

in each logic gate in an asynchronous circuit. Second, because of the precharge/evaluate

and differential nature of asynchronous logic gates, switching activity is at maximum

because for every evaluation, one side of the circuit must first be precharged, and the same

or the other side of the circuit must be discharged. Thus, the requirement to generate com

pletion signals incurs a heavy energy penalty that could outweigh the benefit of avoiding

the overhead of clock distribution. This problem with asynchronous circuits motivated the

use of synchronous techniques for the internal design of the satellite processors.

In the Pleiades architecture, each satellite processor consists of a synchronous core

and an asynchronous handshake controller, as shown in Figure 5.16. The synchronous

core has its own local clock signals. The core implements the basic functionality of the

satellite processor. It can be a simple pipeline stage, a multi-stage pipeline, or a finite-state

machine. The core communicates with other satellite processors through the handshake

controller, which provides an asynchronous interface to the satellite processor. Satellite

processors communicate using a common asynchronous handshake protocol, and there is

no global clock signal. The handshake controller is responsible for synchronizing the

transfer of data tokens to and from the core through the input and output ports of the satel

lite processor. The controller is also responsible for generating the clock signals needed by

the synchronous core. The behavior of the handshake controller is determined by (a) the

functionality of the satellite processor, (b) instructions from the configuration state of the
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satellite processor, (c) control information from the synchronous core, and (d) control

information embedded into the input data streams.

The handshake protocol that is used for inter-satellite data transfers is the two-

phase protocol shown in Figure 5.17. The main reason for this choice was the higher per

formance of the two-phase protocol compared to the four-phase protocol, which is also

shown in Figure 5.17. The two-phase protocol involves only two back-to-back transitions

on the handshake signals, corresponding to one round-trip delay across the communica

tion network, whereas the four-phase protocol requires four back-to-back transitions on

thehandshake signals (two round-trip delays). Asa result, themaximum data ratewith the

two-phase protocol is higher than that of the four-phase protocol. The chief advantage of

the four-phase protocol is its retum-to-zero characteristic. Since typical latch and flip-flop

circuits are activated by levels on the clocksignal, as opposed to transitions^ it is easy to

generate the clock signals for the storage elements with thefour-phase protocol. Thefour-
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Figure 5.18: TVansition-to-PuIse Converter

phase protocol is particularly convenient when used in conjunction with precharged

dynamic logic [117, 118]. With the two-phase protocol, either the storage elements must

respond to transitions, e.g., double-edge-triggered flip-flops, or the transitions must be

converted to pulses. The latter approach was taken in thePleiades implementations. Tran

sitionscan be converted to clockpulses with the circuitshownin Figure 5.18.

Since the handshake controller is responsible for generating local clocksignals for

the synchronous core, itmust beable toestimate the cycle time ofthe core. This requires a

timing reference that can model and track the most critical path in the core. One way to
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accomplish this is to build areplica of the most critical path in the core. This approach is,

however, not always practical or possible. Another approach is to have atiming chain built

from delay elements with the proper delay and some safety margin. One approach is to use

simple inverters as delay elements, but amore area-efficient and energy efficient approach

isto use inverters built from long-channel transistors. With this approach, the power dissi

pation of the timing reference circuit can be kept to less than 1% of the total power dissi

pation of the satellite processor. One important issue with atiming reference circuit is how

well itcan track the cycle time ofthe core. Proper operation requires that acertain amount

of safety margin be built into the delay through the tinung reference circuit, but this mar

gin will reduce the performance of the satellite processor ifit is excessive. The approach

taken in the Pleiades architecture was to use a programmable timing reference whose

delay is set by the configuration state of the satellite processor. This approach allows the

timing reference circuits to be configured during testing, so that the delay through the tim

ing reference circuits is the minimum required for proper operation.

Figure 5.19 shows a simplified diagram ofthe handshake controller for a single-

input/single-output satellite processor with a single pipeline stages. The design of the

handshake controller circuits for the Maia processor was taken up by Martin Benes, and

details of thedesign canbe found in hisMasters thesis [119].

An important point that should be mentioned is that the globally asynchronous,

locally synchronous timing scheme that was chosen for the Pleiades architecture is strictly

an implementation-related issue and is independent ofthe core architectural concepts of

thePleiades architecture. A Pleiades-style processor can also be implemented using a con

ventional synchronous timing scheme, but it will not benefit from the advantages of the

timing scheme described above.
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5.9 The Pleiades Design Methodology

The Pleiades approach is not only ahardware architecture for domain-specific pro

cessors, but it also involves an associated design methodology that is used to create

domain-specific processor instances based on the Pleiades architecmre template.

The Pleiades design methodology has two separate, but related, aspects that

address different design tasks. One aspect of the methodology addresses the problem of

designing adomain-specific processor for agiven algorithm domain. The other aspect of

the methodology addresses the problem ofmapping a given algorithm onto an existing

domain-specific processor instance. Both of these tasks involve analyzing algorithms and

mapping them onto hardware resources. The chief difference between these two tasks is

that in one of them, i.e., the problem of creating a domain-specific processor instance,

architectural parameters (i.e., types and numbers of satellite processors and the detailed
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structure of the cominunication network) are not fixed and are to be detennined by the

algorithm analysisand mappingprocess.

The design flow begins with a description ofa given algorithm in Cor C++. The

baseline implementation is to map the entire algorithm onto the control processor. The

power and performance of this baseline implementation are then evaluated and used as

reference during subsequent optimizations, during which the objective will be to minimize

energy consumption while meeting the real-time performance requirements of the given

algorithm. The key task at this point is to identify the dominant kemels that are causing

energy and performance bottlenecks. This is accomplished by dynanuc profiling of the

algorithm. Dynamic profiling establishes the function call graph of the algorithm and tab

ulates the amount of time and energy taken by each function and each basic block of the

program. With this information, the dominant kemels of the algorithm can then be identi

fied. The energy consumption ofthe baseline implementation is estimated using a model

ing approach in which each instmction of the control processor has an associated base

energy cost, and the total energy ofa given program is obtained by adding the base costs

of all executed instmctions [120]. More accuracy can be obtained by taking account of

inter-instmction energy consumption effects into the base costs ofthe instructions. Abasic

optimization step at this point, before going further into the rest ofthe design flow, is to

improve the algorithm by applying architecture-independent optimizations and rewriting

the initial description.

Once dominant kemels are identified, they are ranked in the order of importance

and addressed one at a time until satisfactory results are obtained. One important step at

this point is to rewrite the initial algorithm description, so that kemels that are candidates

for being mapped onto satellite processors are distinct function calls. The next step is to

implement acandidate kemel on an appropriate set ofsatellite processors. This isdone by
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Int dot_product(Int x[], int y[], int n)

{

Int i;

int s;

8 = 0;

for (1 = 0; i < n; i++) s +=

return s;

Figure 5.20: C++ Description of Vector Dot Product

directly mapping the dataflow graph of the kernel onto a set of satellite processors. With

this approach, each node or cluster of nodes in the dataflow graph corresponds to a satel

lite processor. Arcs of the dataflow graph correspond to links in the communication net

work, connecting the satellite processors. Mapped kernels are represented using an

intermediate form as C++ functions that replace the original functions. The advantage of

this approach is that mapped kernels can be simulated and evaluated with the rest of the

program within the same environment that was used to simulate and evaluate the original

program. In the intermediate form representation, satellite processors andcommunication

channels are modeled as C++ objects. Each object has a set of methods that captures the

functionality of the object during configuration and execution. This can be illustrated by

an example. Figure 5.20 shows a C++ function implementing the vector dot product ker

nel. Figure 5.21 shows a mapping of the vector dot product kernel onto a set of satellite

processors. Note that in this particular implementation of the vector dot product, both

input vectors are stored in the same memory, and are communicated to the MAC satellite

through thesame communication channel in a time-multiplexed fashion. The MAC satel

lite is configured to accept both input vectors from the same input port (the other input

port is unused). Figure 5.22 shows the intermediate form representation of the same func-
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Figure 5.21: Mapping ofVector Dot Product

tion. The intermediate form representation is functionally identical to the original function

but captures details of the actual implementation of the original function on satellite pro

cessors. In the intermediate form representation, first the required satellite processors and

communication channels are instantiated. The satellite processors are then interconnected

by configuring the communication channels. Finding the most efficient way to connect the

required set of satellite processors through the communication network is arouting prob

lem that is an important part ofthe overall design methodology [121]. The satellite proces

sors are configured next. Configuration of the satellite processors and the communication

network switches is performed by code runmng on the control processor. Automatic gen

eration ofthis configuration code is an important part ofthe Pleiades design methodology

[122]. The overhead of the configuration code must be minimized by scheduling the con

figuration code such that the amount of overlap between execution of the current kernel

and configuration for the next kernel is maximized. The kernel is then executed. Notice

that the execution ofthe kemel inthis particular example isscheduled statically, but this is

not arequirement, and by employing athread library, the kemel can be executed as aset of

concurrent processes, representing the concurrent hardware components. The energy and

performance of the mapped kernels can then be estimated during simulation with macro-
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1 Int dot_product(int x[], Int y[]/ Int n)

2 {

3 Memory mem;

4 AGP agp;

5 MACP macp;

6 Queue A; // output of agp, address input of mem
7 Queue X; // data output of mem, X input of macp

8 Queue O; // output of macp

9 Queue unused; // dummy Queue for unused ports
10 int x_base; // base address of x[] in mem
11 int y_base; // base address of y[] in mem

12 int i;

13 int rval;

14

15 it create memory map for x[] and y[] and initialize mem
16 x.base = 0;

17 y_base = x_base + n;

18 for (i = 0; i < n; i++) {
19 mem.write(x_base •»> i, x[i]);
20 mem.write(y_base -i- i, y[i]);
21 >

22

23 // configxire agp and macp

24 agp. load_program( "dot_product .pgm");

25 agp.config(x_base, 1, 0, y_base, 1, 0, n, 0, 0);

26 macp. config (MAC, 1, 1);

27

28 // create connections between satellites

29 agp.connect(A);

30 mem. connect (A, unused, X); // data input is unused

31 macp.connect(X, unused, O); //X input is unused
32

33 // run

34 for (i B 0; i < n; i-*-*-) {

35 agp.execO; mau.execO; macp.execO;

36 agp.execO; m«n.exec{); macp.execO;
37 >

38 // macp has written its results to O
39 ziral b O.readO .dataO ;

40 agp.execO; // last execution cycle of agp
41 return rval;

42 }

Figure 5.22: Intermediate Form Representation of Vector Dot Product
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Figure 5.23: Block Diagramof the Maia Processor

models that are captured into the C++ objects representing the satellite processors and the

communication network.

Further details of thePleiades design methodology canbe found in [123] and Mar-

lene Wan's Ph.D. dissertation [124].

5.10 The Maia Processor

In this section, architectural design of Maia [125, 126], a Pleiades processor for

CELP-based speech coding applications, will be presented. The Maia architecture was

defined using the methodology outlined inSection 5.9. Figure 5.23 shows the block dia

gram of the Maia processor. The computational core of Maia consists of the following

ensemble ofsatellite processors: 8 address generators, 4 512-word 16-bit SRAMs, 4 1024-

word 16-bit SRAMs, 2 Multiply-Accumulate Units, 2 Arithmetic/Logic Units, a low-

energy embedded FPGA unit, 2 input ports, and 2 output ports. To support CELP-based

speech coding efficiently, 16-bit datapaths were used in the satellite processors and the

communication network. The communication network uses a 2-level hierarchical mesh
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Figure 5.24: Bundled Signals of a Communication Network Channel

structure, as described in Section 5.5. To reduce communication energy, low-swing driver

and receiver circuits are used in the communication network. Satellite processors commu

nicate through the communication network using the 2-phase asynchronous handshaking

protocol shown in Figure 5.17. Each link through the communication network consists of

a 16-bit data field, a 2-bit EOV field, and a request/acknowledge pair of signals for data-

driven control and asynchronous handshaking (seeFigure 5.24). The EOV field can have

one of three values: 0, 1, 2. As a result, the control mechanism used in Maia can support

scalar, vector, and matrixdata types. The I-Portand 0-Port satellites are used for off-chip

data I/O functions.

5.10.1 Control Processor Interface

The control processor inMaia is a custom implementation of the ARMS micropro

cessor, a 32-bit RISC processor core [127]. The control processor was optimized for low-

power operation and was designed tosupport dynamic scaling ofthe supply voltage.

The control processor communicates with thesatellite processors through aninter

face module. The interface module performs the following functions:

• It allows the control processor to send and receive datatokens through theconunu-

nication network, and as a result, the control processor can conununicate with the

122



satellite processors through the communication network as just another satellite
processor.

• It allows the control processor to configure the satellite processors and the commu

nication network. The configuration bus is derived from the address/data/control

bus of the control processor. It consists of a 16-bit address bus and a 16-bit data

bus. The configuration bus can also be used by the control processor to write to

and read from the SRAM satellites and the instruction memory ofthe address gen

erators. The configuration state of all satellite processors, the contents of the

SRAMs, and the contents ofthe instruction memories ofthe address generators are

all part ofthe memory map ofthe control processor.

• It provides the control processor with the ability to reset the satellite processors

and their handshake circuits bywriting to the appropriate registers.

• It provides the control processor with the ability to initiate the execution of kemels
and detect their completion. Kemels are initiated by sending request signals to the

address generators. The control processor performs this function by writing to the

appropriate registers in the interface module. Completion of kemels are signaled
by the address generators through acknowledge signals, which are used to set spe

cial flag bits in the interface module that can either be polled by the control proces

sor or can be used to intermpt the control processor.

Further details of the design of the interface module and its different operation

modes canbe found in Vandana Prabhu's Masters thesis [128].

5.10.2 Address Generator Processor

The address generator processor (AGP) is responsible for generating the address

sequences that are needed to access data stmctures from the memory units while executing

a kemel. The architecture ofthe AGP isbased on a programmable datapath with a small
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instruction memory. The AGP has a simple but flexible instruction set that allows the pro

grammer to scan the elements of a vector or a matrix in complex but structured patterns.

The instruction set of the AGP allows up to two levels of nesting in the address generation

loop. The instruction set also supports multiplexing of two address streamsonto the same

communication channel. This allows the progranuner to access simultaneously two differ

ent data structures that are stored in the same memory unit.

Execution of a kernel is initiated by the control processor by sending a request sig

nal to the relevant AGP. The request signal triggers the execution of a pre-loaded program

in the AGP. AGP programs are typically very short (just a few instructions at the most).

Multiple programs can be stored in the instruction memory, which can store up to 16

instructions in the Maiaimplementation. The request signal that initiates the execution of

an AGP program is accompanied by a data token that specifies which one of the pre

loaded AGP programs is to be executed. When the AGP executes a halt micro-instruc

tion, and the last address token has been generated and sent, the AGP returns an acknowl

edge signal that can be used to interrupt the control processor.

The datapath of the AGP is shown in Figure 5.25. The Q register is the output of

the AGP. An address token generatedby the AGP contains a memory address and a con

trol flag specifying the type of memory access, i.e., read or write. There are two address

pointers: 10 and II. If two multiplexed address streams are to be generated, then both

pointers are used; otherwise, only one of them is used. The address pointers are loaded

with initial values during configuration. Each address pointer has a step register and a

stride register that contain signed values and areinitialized during configuration. SO is the

step register for 10, and SI is the stride register for 10. S2 is the step register for II, and S3

is the stride register for II. An address sequence is generated by repetitively adding the

value of either the step register or the stride register to theaddress pointer, under program
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Figure 5.25: AGP Datapath
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3 2 2 2 2 1 2 2 2 2 1 ,4

Q 10 11 81 S3 N K KO cond NIT NIF dest

Figure 5.26: AGP Instruction Format

control. The value of a stride register can be incremented or decremented by one, under

program control. The AGP datapath includes two loop index counters, N and K. If a two-

level nested loop is needed, then K serves as the inner loop index counter, and N serves as

the outer loop index counter; otherwise, N is used as the loop index counter. The loop

index counters are initialized during configuration. They are always decremented by one,

under program control, until they reach 0, which indicates the last iteration of a loop. K

can also be loaded with KO. This option can be used to change the number of iterations of

the inner loop at run-time, as KO can be incremented or decremented, under program con

trol. The EOV flags are inserted into the address tokens based on the values of the loop

index counters. For a nested loop, during the last iteration of the outer loop, when N is 0,

the last address token generatedby the inner loop is marked with an EOV value of 2. For

other iterations of the outer loop, the last address token generated by the inner loop is

marked with an EOV value of 1. The EOV value attached to all other address tokens is 0.

Figure 5.26 shows the format of an AGP instruction (the width of each field is

indicated above the field). The allowed operations of each field of an AGP instruction are

listed in Table 5.1. The instruction to be executed next can be subject to an optional condi

tion. If the instruction to be executed next is not subject to a condition, then the NIT (Next

Instruction True) field is used to determine the next instruction. If the instruction to be

executed next is subject to a condition, andthecondition tumsoutto be true, then theNIT

field is used to determine the next instruction; otherwise, the NIF (Next Instruction False)

field is used. If thespecified condition tums out to be true, then theQ,10, II, SI, S3,N, K,

and KO operations of the instmction are nullified, i.e., they produce noside effect.
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Field Explanation Operations

Q operationfor Q register IGread, IG write, 11 read, 11 write, no op

10 operation for ID register add SG, add SI, no op

11 operation for 11 register add S2, add S3, no op

SI operationfor SI register increment, decrement, no op

S3 operationfor S3 register increment, decrement, no op

N operation for N register decrement, no op

K operationfor K register decrement, load KG, no op

KG operation for KG Register increment decrement, no op

cond condition for next instruction none, N = G, K= G

NTT next instruction (unconditional or
true conditional)

next, goto, halt

NIF next instruction (false conditional) next, here

dest instruction address for goto <address>

Table 5.1: Operations Executed byan AGP Instruction

Figure 5.27 illustrates an example of how an AGP can be programmed to produce

adesired address sequence. In this example, the AGP is programmed to produce a multi

plexed address stream to read two vectors stored in the same memory unit to calculate the

dot product of the two vectors. Observe that the AGP program is expressed in pseudo

code using Csyntax. More examples of AGP programs will be presented at the end of this

chapter, where examples ofkemel mappings will be presented.

5.10.3 Memory Units

The functionality of the memory unit is quite simple. A memory unit has three

inputs: address (A), data in (DI), and data out (DO). An input address token on Aincludes

amemory address, a read/write flag, and an EOV flag. The address input is typically gen

erated by an address generator. If the address token specifies a read operation, then the

127



S = 0;

for (i=0; i<N; i++) {

S += X[i]*Y(i];

)

Desired Sequence:

EOV 0 0 0 0 0 0 1 1

Address X Y X+1 Y+1 X+2 Y+2 X+N-1 Y+N-1

X and Y are the base addresses of X[n]and Y[n], respectively.

AGP Program for Desired Sequence:

label Q 10 11 SI S3 N K KG goto

Ll 10 read +S0 (N==0) ? halt : next

11 read +S2 -1 Ll

Configuration:
10 is loaded with X (X is the base address of X[n]).
SO is loaded with +1.

11 is loaded with Y (Y is the base address of Y[n]).
S2 is loaded with +1.

N is loaded with N (the length of the X[n] and Y(n]).

Figure 5.27: Example AGP Program

memory location specified by the address is read and sent tothe DO output. The EOV flag

of the address token is copied ontotheEOV flag of theoutput datatoken. Thus, a memory

unit preserves the type of data structure specified on the input address stream. If an

address token specifies a write operation, then the data token on the DIinput is written to

the memory location specified by the address token. The memory unit has an additional

function that allows the programmer to load a block of addresses specified by an address

stream with zeros, without the need for a corresponding data stream that is needed by
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memory write operations. Two memory sizes were chosen for Maia: 512-word and 1024-

word. Both sizes can be used for all vector and matrix calculations. The 1024-word mem

ories were selected for storing and manipulating the codebook structures that are com

monly used inthe CELP-based speech coding algorithms. The smaller memories consume

less power and are favoured for most kernels that do not need the larger memories.

5.10.4 Multiply-Accumulate Unit

The core of the MAC satellite processor consists of a multiplier, followed by an

accumulator. The MAC unit has two inputs, A and B, and one output, Q. The MAC unit

performs one of two basic tasks: multiply and multiply-accumulate. The MAC unit has

two pipeline stages in the Maia implementation. The MAC unit can perform one of four

possible functions on the A and B streams:

• Scalar multiplication:

Q = AxB (5.1)

Q[i] = A[/]XB[/] (5.2)

Qim = A[/][/]xB[/]L/] (53)
• Scalar-by-Vector Multiplication:

Q[i] = AxB[/] (5.4)

Q[i]U] = A[/]xB[/][/] (5.5)
• Scalar-by-Matrix Multiplication:

Q[i][j] ^ Ax(5.6)
• Vector Dot Multiplication

N-\

Q= ^A[/]xB[i] (5.7)
/ = 0

W-1

Q[i] = ^A[i]{j]xB[i][j] (5.8)
j = 0
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The dimensionality of the output data stream is derived from the EOV flags of the

input data streams. The MAC unit automatically delimits its output data stream with the

properEOVflags. The MAC unit also has the ability to shift, round, and saturate the out

put result, as specified by the configuration state of the MAC unit. Instructions of the

MAC processor can operate in a mode in which both input data streams arrive on the A

input in a time-multiplexed fashion. Thismode can be specified by theconfiguration state

of the MAC unit. The B input is unused in this mode of operation.

5.10.5 Arithmetic/Logic Unit

The ALU processor performs a variety of arithmetic, logic, andshiftoperations. It

has twoinputs, A andB, an oneoutput Q. It has threebasic types of instructions:

• single-input scalar operations: absolute value and logical not. If thedimensionality

of the input data streams is increased, then the executed functions will automati

cally become vector or matrix operations.

• two-input scalar operations: add, subtract, shift, min, max, compare, logical and,

logical or, logical xor. Once again, these operations will automatically become

vector or matrix operations, if the dimensionality of the input data streams is

increased.

• two-input vector-to-scalar operations: accumulate, vector max, and vector min.

Once again, these operations will automatically become two-dimensional vector

operations, if the dimensionality of theinput data streams is increased.

5.10.6 Embedded FPGA

The FPGA unit consists of a 4-by-9 array of 5-input, 3-output logic blocks. The

design of the FPGA unit has been highly optimized for energy-efficient operation. The

FPGA can have up to two input ports and an output port. The port behavior of the FPGA

units is completely programmable and can be set by four of the 36 logic blocks. The
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FPGA unit has two important functions that give the Maia architecture agreat deal of flex

ibility:

• In addition to being able to implement the functions performed by the ALU pro

cessor (albeit at ahigher cost), the FPGA can implement irregular bit-manipulation

and arithmetic operations that cannot be supported by the MAC and ALU proces

sors. TheFPGA can alsoimplement finite-state machines.

• The FPGA can be used to implement irregular address generation pattems that are

not supported by the AGP instruction set. This can be done either in stand-alone

fashion, orin conjunction with an AGP, in which case the FPGA performs a trans

formation function onthe stream produced by the AGP. Agood example ofthe lat

teris the bit-reversed addressing mode needed forperforming FIT functions.

The details ofthe FPGA design isbeyond the scope ofthis dissertation and can be

found in [129] and in Varghese George's Ph.D. dissertation [130].

5.11 Algorithm Mapping Examples

In this section, we will present examples ofhow a kernel can be mapped onto sat

ellite processors. Two examples will be considered. The first one is the ubiquitous Finite

Impulse Response filter. The second one is the synthesis filter used in the VSELP speech

coding algorithm.

5.11.1 FIR Filter

In this example, the response of a K-th order FIR filter to an input signal X[n]

(0<n<N) iscomputed. The calculation performed by the kernel is

K-\

Y[n]= J^A, '̂X[n-k] =AQ'X[n]+A '̂X[n-l] +...+Af^_^ X[n-K+l] (5.9)
k = 0
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AddrGenI AddrGen2

r

Memoryl Memory2
X[nl .A[k] Y[n]

i

T f

MAC

AddrGenI

for (n=0; n<N; n++) {
for (k=0; k<K; k++) {

Q <- X+n-k;
Q <- A+k;

}

v!
AddrGen2

for (n=0; n<N; n++) {
Q <- y+n;

}

Note: Following Csyntax, X, Y, and Arefer tothe base address (address ofelement 0)of
X[n], Y[n], andA[k], respectively. Qis the outputport of an address generator.

Figure 5.28: A Mapping for the FIR Kernel

where Af^ (0<it <^) are the coefficients of the FIR filter, and Y[n] {0< n<N) is the

output ofthe filter. The FIR calculation can be specified inC-style pseudo-code as:

for (n=0; n<N; n++) {
s = 0;

for (k=0; k<K; k++) {

s += X[n-k]*A[k];

}

Y[n] = s;

)

Figure 5.28 shows a mapping of the FIR kernel inwhich the X[n] and A[k] vec

tors reside in the same memory unit, and the Y[n] vector is required to be stored in

another memory unit. During the first iteration ofthe outer loop ofAddrGenI, the address

sequence produced by the inner loop will result in the following sequence from Memory1:

X[0], A[0], X[-l], A[l], , Xl-K+1], A[K-1]
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label Q 10 11 SI S3 N K KO goto

Ll
KG (N==0) ? halt : next

L2 10 read +S0
{K==0) ? E2 : next

11 read - +S2 -1 L2

E2 +S1 +S3 -1 Ll

Configuration:
10is loaded with X (X is the base addressof X[n]).
SO is loaded with -1.

81 is loaded with K.

11 is loadedwith A (A is the base address of A[k]).
82 is loaded with +1.

83 is loaded with -K+1.

N is loaded with N.

KO is loaded with K.

Figure 5.29: Program for AddrGenl ofFigure 5.28

where data tokens with E0V=1 are underlined (EOV=0 for data tokens that are notunder

lined). During the last iteration ofthe outer loop ofAddrGenl, the address sequence pro

duced by the inner loop will result in the following sequence from Memory1:

X[N-11, A[0], X[N-2], A[l] X[N-K]. AfK-l]

where data tokens with E0V=2 are double-underlined. The MAC processor executes the

dot multiplication operation on the incoming multiplexed data stream and produces the

following sequence:

YIO], Y[l] Y[N-11

The program running on AddrGenl is shown in Figure 5.29, and the program run

ning on AddrGen2 is shown in Figure 5.30.
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label Q 10 IJ SJ S3 N K KG goto

10 read +S0 -1 (N==0) ? halt : here

Configuration:
10 is loaded with Y"(Y is the base address of Y[n]).
SO is loaded with +1.

N is loaded with N.

Figure 5.30: Program for AddrGeii2 of Figure 5.28

5.11.2 VSELP Synthesis Filter

The synthesis filter ofthe VSELP algorithm performs the following computation:

K-\

Y[n] = X[n]+ ^A^Y[n-k-l]
k = 0

(5.10)

where X[n] (0 <n <V) is the input of the filter, (0 < /: <X) are the coefficients ofthe

filter, and Y[n] (0 < n <V) is the output of thefilter. Observe that the output of the filter

is a function ofthe past output ofthe filter, as well as the input ofthe filter. The calculation

performed by the synthesis filter can be specified inpseudo-code as follows:

for (n=0; n<N; n++) {
s = 0;

for (k=0; k<K; k++) {

s += Y[n-k-l]*A[k];

)
Y[n] = s + X[n];

}

Figure 5.31 shows a mapping ofthe synthesis filter kernel in which the Y[n] and

A[k3 vectors reside in the same memory unit, and the X[n] vector is stored in another

memory unit. During the first iteration of the outer loop of AddrGenl, the following

sequence of address tokens will be produced:
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AddrGen2 AddrGenI

1 T f

Memory2
X[n]

Memoryl
y(n].Atk]

AddrGenI

for {n=0; n<N; n++) {

for (k=0; k<K; k++) {

Q <- Y+n-k-1;

Q <- A+k;

}

Q <- Y+n;

}

AddrGen2

for (n=0; n<N; n++) {

Q <- X+n;

Figure 5.31: A Mapping for the VSELP Synthesis Filter

Y-l, A, Y-2, A+1, , Y-K, A+K-1, Y

A

where Y and A, following C syntax, are the base addresses of the Y[n] and A [k] vectors,

respectively, and an overlined address token indicates that a memory write operation is to

be performed with that address token. The last address token is used to write the output of

the filter to Memory1. During the last iteration of the outer loop of AddrGenI, the follow

ing sequence of address tokens will be produced:

Y+N-2, A, Y+N-3, A+1, ... , Y+N-K-1, A+^^, Y+N-1

The MAC processor executes the dot multiplication operation on the incoming multi

plexed data stream. The ALU executes the addition operation on its input data streams and

produces the following sequence:
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label Q 10 11 SI S3 N K KO goto

Ll KO (N==0) ? halt ; next

L2 10 read +S0 (K==0) ? E2 ; next

11 read - +S2 -1 L2

E2 +S1 +S3 next

10 write -1 Ll

Configuration;
10 is loaded with Y-1 (Y is the base address of Y[n]).
50 is loaded with-1.

51 is loaded with K.

11 is loaded with A (A is the base address of A[k]).
52 is loaded with +1.

53 is loaded with -K+1.

N is loaded with N.

KO is loaded with K.

Figure 5.32: Program for AddrGenl of Figure 5.31

label Q 10 11 SI S3 N K KO goto

10 read •fSO -1 (N==0) ? halt : here

Configuration:
10 is loaded with X (X is the base address of X[n]).
SO is loaded with +1.

N is loaded with N.

Figure 5.33: Program for AddrGen2 of Figure 5.31

Y[0], Y[l], ... , Y[N-1]

The program running on AddrGenl is shown in Figure 5.32, and theprogram run

ning on AddrGen2 is shownin Figure5.33.
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5.12 Summary

The Pleiades architecture template was presented in this chapter. The architecture

template has been designed for energy-efficient implementation of domain-specific pro

grammable processors for signal processing applications. Architectural design of Maia, a

domain-specific processor for CELP-based speech coding applications, was presented.

The key feamres of the Pleiades architecture template are:

• A highly concurrent, scalable multiprocessor architecture with a heterogeneous

array of optimized satellite processors that can execute the dominant kernels of a

given domain of algorithms with aminimum of energy overhead. The architecmre

supports dynamic scaling of thesupply voltage.

• Reconfiguration of hardware resources is used to achieve flexibility while mini

mizing the overheadof instructions.

• Areconfigurable communication network that can support the interconnection pat

terns needed to implement the dominant kernels ofa given domain of algorithms

efficiently. The communication network uses a hierarchical structure and low-

swing circuits to minimize energy consumption.

• A data-driven distributed control mechanism that provides the architecture with

the ability to exploit locality of reference to minimize energy consumption. The

control mechanism provides special support to handle the data structures com

monly used in signal processing algorithms efficiently. The control mechanism

also provides a framework for minimizing switching activity.

137



CHAPTER 6

Hardware Design of PI

In this chapter, hardware design of PI, the first Pleiades prototype, will be pre

sented. ThePI prototype was designed andbuilt to evaluate and verify thevalidity of the

architectural concepts used in the Pleiades architecture template. An important objective

of the PI prototype was to build all the key components of the Pleiades architecture tem

plate and to integrate them into a complete implementation that could be used to explore

the effectiveness of the Pleiades approach. Lessons learned from the PI design were used

to refine the Pleiades architecture template. These lessons were incorporated into the

design of the Maia processor, which was described in Chapter 5. The PI design was also

used as an initial driver for the Pleiades design methodology.

6.1 PI Hardware Organization

The block diagram ofPI is shown inFigure 6.1. The satellite processors employed

in PI include a multiply-accumulate (MAC) unit, two memory units, two address genera

tors, two input ports (IPort), and one output port (OPort). All data and address tokens are
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Figure 6.1: Block Diagram of PI

16-bit quantities and are handled by 16-bit datapaths in the satellite processors and 16-bit

data buses in the conununication network. PI was not designed for a particular domain of

algorithms, but its design was influenced by the properties ofCELP-based speech coding

algorithms. The chip can beused to implement the kernels shown inFigure 6.2.

PI was fabricated in a 0.6-p.m, 3.3-Volt CMOS technology through MOSIS [131].

The chip was designed tooperate ata minimum cycle time of50ns with a 1.5-Volt supply

voltage. The choice of thesupply voltage was motivated by thedesire to minimize power

dissipation while maintaining acceptable performance. The chosen supply voltage results

in an energy-delay product that is near the minimum for the CMOS technology used for

PI (seeFigure6.3). A plot of the PI die is shown in Figure 6.4.

In order to measure and profile the power dissipation of the hardware modules

used in PI, independent power supply pins were provided for the following circuit mod

ules: the MAC unit, one of the memory units, one of the address generators, the network

bus drivers of one of the IPort units, and the configuration bus drivers.
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Figure 6.5: Operation of the Configuration Bus

6.2 Configuration Bus

The satellite processors and the communication network are configured through

theglobal configuration bus, which consists of an 8-bit address busto specify a configura

tion register, a 16-bit databus to carry configuration information, anda strobe signal. For

any given configuration register, the configuration address is compared to the assigned

address of theconfiguration register, and the resultof thecomparison is usedto qualify the

strobe signal. This is illustrated in Figure 6.5. The strobe signal is active-low. It must be

lowered only after the specified configuration address has been decoded by all local

decoders. Configuration data is clocked into the specified configuration register at the ris

ing edge of the strobe signal.

6.3 Communication Network

The conununication network uses a full crossbar architecture with 6 19-bit buses,

andas a result, any satellite inputportcan be connected to anyof the satellite output ports

by configuring the switches ofthe communication network. Satellite processors communi

cate across the network using the 2-phase asynchronous protocol (seeFigure 5.17). Each

bus of the communication network is 19 bits wide and contains the following signals: a

16-bit data bus, a request signal,and two acknowledge signals.
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Figure 6.6: Port Structure of the Satellite Processors

The input and output ports of the satellite processors contain the communication

network switches (see Figure 6.6). The switches are CMOS transmission gates and are

controlled by the contents of the associated configuration registers. An output port ofa

satellite processor can have a maximum fanout of two, i.e., it can be connected to up to

two different input ports. This is accomplished by using the second acknowledge signal

provided in the buses ofthe communication network. The second acknowledge signal can

be used to synchronize the output port with a second input port. Ifthe fan-out ofan output

port is one, then the port is configured such that the second acknowledge signal is con

nected to the outgoing request signal, and every request automatically generates an

acknowledge on the Ack2 signal (the internal handshake circuits ofthe satellite processors

consider both acknowledge signals as active). The input ports also need tobe configured

to use one of the two acknowledge signals, as appropriate.
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Worst-case delay across the communication network under worst-case coupling

conditions is 11.2 ns. Figure 6.7 shows waveforms from a circuit simulation of the com

munication network.

6.4 I/O Ports

The IPort and OPortunits (see Figure 6.1) are used to streamdata tokens into and

out of the chip. They communicate with the satellite processors through the communica

tion network, and they behave assatellite processors. They communicate with off-chip cir

cuits using the 2-phase asynchronous protocol with a 16-bit data bus, a request signal, and

anacknowledge signal. The output port has anopen-loop mode ofoperation, controlled by
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the "Auto Ack Mode" pin (see Figure 6.1). When "Auto Ack Mode is high, the output

port does not wait for an acknowledge signal from off-chip circuits and immediately sends

an incoming data token from the conununication network to off-chip circuits. This mecha

nism was added for convenience during testing.

6.5 The MAC Unit

The MAC unit performs two basic functions: multiply and multiply-accumulate.

The functionality of the MAC unit is chosen by its configuration state, which is stored in a

single 16-bit register. The two input operands of the MAC unit are 16-bit signed integers.

The multiply-accumulate function is used to compute the dot product of two input vectors.

The length of the input vectors is specified by the configuration state of the MAC unit.

The maximum vector size is 256. TheMAC unit has a 40-bit accumulator, allowing it to

accumulate at least 256 32-bit products without resulting in an overflow.

Figure 6.8 shows the block diagram of the synchronous functional core of the

MAC unit. The clock signals ofthe MAC unit, CKl, CK2, and CK3, are generated by the

asynchronous handshake controller of the MAC unit. The MAC unit has two pipeline

stages. The multiplier design used in the MAC unit is based on the radix-4 modified Booth

structure [132, 133] with a carry-save array to add the 8 partial products specified by the

Booth encoder. The output ofthe carry-save array is in carry-save format and consists ofa

32-bit sum vector and a 32-bit carry vector. The 40-bit output ofthe accumulator register,

which is also in carry-save format, is added to the output of the carry-save array to pro

duce the final result of the fu-st pipeline stage. For a multiply operation, this result is

loaded into the pipeline register clocked by CK3. For a multiply operation, the CK2 clock

is inactive, and the 40-bit carry and sum vectors going into the carry-save adder block are

forced tozero. For a multiply-accumulate operation, the result ofthe first pipeline stage is

loaded only into the accumulator register (CK3 is inactive). However, for the last multi-
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Figure 6.8: Block Diagram of the Functional Core of the MAC Unit

ply-accumulate operation of a vector dot product, the result of the first pipeline stage is

also loaded into the pipeline register clocked by CK3. The carry-save result of the first

pipeline stage is converted to 2*s complement by the carry-propagate adder (CPA) block.

The outputof the CPA is shifted right by 0,4, 8, 12, 16, 20, or 24 bit positions (specified

by the configuration state of the MAC unit), and the leastsignificant 16bits of the shifted

result form the output of the MAC unit.

Based on circuit simulation results, the cycle time of the functional core of the

MAC unit is 39 ns and is determined by the first pipeline stage, i.e., the CSA stage. The

CPA stage was not timing-critical and was built using a compact block carry-lookahead
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structure with 8-bit carry-ripple blocks. The maximum delay through the CPA stage is 27

ns.

6.6 The Memory Units

The memory unit has three ports; an address input, adata input, and adata output.

The core of the memory unit is a256-word, 16-bit SRAM block. The SRAM is internally

divided into two 128-word sub-blocks. To reduce access energy, only one of the sub-

blocks is activated during an access, as specified by the most significant bit ofthe input

memory address. The design of the SRAM provides amode of operation that can be used

to save energy during vector read operations, during which consecutive read operations

access adjacent memory locations. Each row of memory cells stores two words. The

addresses of the two words differ only in the least significant bit. The bit-slices of the two

words are interleaved in the memory array such that two adjacent columns store the-same

bit position of the two words (see Figure 6.9). Two such columns share asense amplifier.

For a read access, the bit lines are precharged first, then the cells of the selected row dis

charge the bit lines and the column specified by the least significant bit of the input

address is selected. If the next read operation accesses the other column, then there is no

need to precharge and discharge the bit lines again because those events have already

occurred. All that is needed is to sense the previously discharged bit lines of the adjacent

column. This type ofaccess is called Precharge-Hold Access (PHA) and is controlled by a

PHA signal that is part of the input address token provided by an address generator. The

first cycle ofa PHA access is exactly like a non-PHA, random-access cycle, but the sec

ond cycle ofa PHA access takes less time and energy because there is no need to pre

charge and evaluate the bit lines.

An input address token includes an 8-bit address, a signal indicating the type of

access (read or write), and a signal requesting the PHA mode. If the address token indi-
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cates a read operation, then the specified memory location is read and sent to the data-out

port of the SRAM. If awrite operation is specified, then the incoming data token on the

data-in port is written to the specified address. The clock signals of the synchronous

SRAM core are provided by an asynchronous handshake controller that takes into account

the operation mode of the SRAM to provide clock signals with appropriate timing.

6.7 The Address Generators

The main functionality ofthe address generator design used inPI is togenerate an

address sequence to access avector X[n] (0 <n<N) stored in amemory unit. The main

objective of the design was to support the kernels shown in Figure 6.2. This is accom

plished by counting up (or down) from an initial address A1 to an end address A2. Al and

A2 are 8-bit values and are specified by the configuration state of the address generator,

which also specifies the count step (+1 or —1). For testing and measurement purposes, the

address generator can also be configured to generate apseudo-random sequence counting

from Al to A2.

Since the address tokens generated by the address generator are to be used by a

memory unit, they must also provide asignal specifying the type of memory access (read

or write) and a signal requesting a PHA read access. These two signals are controlled by

the configuration state ofthe address generator and are bundled with an 8-bit address into

a 16-bit token and transmitted through the communication network. The type of memory

access specified by the configuration state can be read, write, or read with last-write. For

the read mode, all outgoing tokens of an address sequence specify a read operation. For

the write mode, all outgoing address tokens specify a write operation. For the read with

last-write mode, all outgoing addresses, except the last one, i.e., A2, specify a read opera

tion. The last address specifies a write. This mode can be used to implement the FIR filter

kernel shown inFigure 6.2. The dot product ofinput vector X[Al, , A2 -1 ] and the
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coefficient vector C[0, . . N-1 ] is stored back in X[A2 ], which is no longer needed

to calculate the response ofthe filter, as X[A1 ] is the most recent input sample ofthe FIR

filter, and X[A2 -1 ] is the oldest required input sample, as determined by N, the length of

the filter (N = A2 - Al). By repeating the kernel for X[A1-1, . . ., A2-2], the

response of the FIR filter for the next input sample, i.e., X[Al-1], will be computed and

stored inX[A2-l].

The address generator has an input port that can be used to request the generation

of an address sequence. This is accomplished by sending an empty data token to the input

port of the address generator. When the address generator has finished generating the

specified address sequence, it returns an acknowledge signal on the input port and stops.

To generate another address sequence, another request signal is needed. The address gen

erator can also be triggered into generating a specified address sequence by writing to a

special bit of the configuration state. The address generator has an additional operation

mode, specified by the configuration state, in which it can repeat an address sequence in

an infinite-loop mode after it has been triggered once. In the infinite-loop mode, the

address generator will be stopped only by the global satellite reset signal.

The configuration state of the address generator is specified by two 16-bit regis

ters. The first register contains Al and A2, and the second register contains the bits speci

fying theoperation mode of the address generator.

6.8 Chip Design Methodology

With a few exceptions noted below, all circuit blocks, including the top-level

design of the chip, were implemented using a full-custom design methodology in the

Cadence design environment [135]. The synchronous core of the address generator and all

satellite controllers were specified in VHDL and synthesized using the Synopsys logic

synthesis tool [134]. They were placed and routed using astandard-cell layout methodol-
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ogy with the Cadence Cell Ensemble place-and-route tool. The logic design of the hand

shake circuits was done using a full-custom approach with special standard cells designed

specifically for the handshake circuits. The layouts of the handshake circuits were ren

dered using a standard-cell methodology. The functionality of the chip was verified by

logic and circuit simulations. Detailed critical path simulations were performed with the

HSpice circuit simulator [136]. Block- and chip-level simulations were performed with

PowerMill [134], which was also used to determine the power dissipation of the chip and

its various sub-blocks.

6.9 Measurement Results

A custom circuit board was built to test and characterize the PI chips, which were

packaged in a 120-pin ceramic PGA package. Input vectors were provided using a logic

analyzer. The exact same vectors were used with PowerMill simulations to make a direct

comparison of measured and simulated energy and delay parameters. All measurements

were done at room temperature, using a 1.50-Volt supply voltage. The results of the mea

surements and the simulations are listed and compared in Tables 6.1 and 6.2. For these

measurements, the input ports of the satellite processor in question were driven by the

IPort units, and the output of the satellite processor was sent to the OPort unit, which was

operated in the open-loop mode, as described in Section 6.4. The IPort units provided data

tokens to the satellite processor under test as soon as the satellite processor had acknowl

edged the receipt of a new input token. Thus, the cycle-time of the test setup was limited

bythe cycle-time ofthe satellite processor under test. Observe that this cycle time includes

the round-trip delay of thecommunication network plus the input handshake delay of the

OPort unit. Thisextradelay could not be directly measured but was estimated to be about

24 ns. Cycle-time measurements were performed by measuring the period of the input

acknowledge signal of the satellite processor in question. This was possible because the
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Circuit Module

Energy (pJ/cycle) p
•'^measured

Simulated Measured
p
•^simulated

Address Generator Satellite (random mode) 8.1 7.3 0.90

MAC Satellite (multiply) zero input 11.9 10.5 0.88

random input 92.2 72.4 0.79

MAC Satellite (multiply-accumulate) zero input 14.1 11.6 0.82

random input 116.5 95.1 0.82

SRAM Satellite (read) random data 33.7 32.4 0.96

SRAM Satellite (PHA read) random data 27.9 25.7 0.92

SRAM Satellite (write) random data 25.8 23.5 0.91

Network Channel random data 8.3 6.8 0.82

Table 6.1: Energy Measurement and Simulation Results

Circuit Module

Cycle Time (ns) T
measured

Simulated Measured
T

simulated

Ring Oscillator inverter (51-stage) 35.2 40.0 1.14

delay cell (15-stage) 39.1 49.8 1.27

Address Generator Satellite 40.0 47.3 1.18

SRAM Satellite 35.6 42.4 1.19

MAC Satellite 70.8 87.4 1.23

Table 6.2: Cycle-Time Measurement and Simulation Results
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Circuit Module

Energy (pj/cycle)
•^measured

Simulated Measured
p
^simulated

Address Generator Satellite 5.0 4.4 0.88

SRAM Satellite (PHA read) 27.8 25.4 0.91

MAC Satellite (multiply-accumulate) 107.1 90.5 0.85

Network Channel (A input of MAC) 9.1 7.5 0.82

Total (chip core) 207.1 179.1 0.86

Table 6.3: Dot Product Results

request signal, the acknowledge signal, and the least significant data bit of BUSO were

driven off-chip and could be monitored by an oscilloscope. Energy measurements were

performed by measuring the current through the supply pin of the circuit module in ques

tion with a current meter.

Energy measurement and simulation results for the dot product kernel, asshown in

Figure 6.2, are listed in Table 6.3. Thesimulated cycle time forthedotproduct kernel was

71.4 ns. Themeasured cycle time of thekernel, based on the period of the input acknowl

edge signal of the MAC satellite processor, was 88.3 ns, i.e., 1.24 times the simulated

value.

6.10 Discussion

A number of important lessons were learned during the design and evaluation of

the PI prototype. These lessons were used to refine the Pleiades architecture template and

resulted in a numberof significant improvements that were utilized in the Maiaprocessor:

• The functionality of the address generator architecture used in PI was limited to

simple sequential access of the elements of a vector. One limitation was that the
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count step used by the address generatorwas either +1 or -1. Another limitation

was that the count step could not be changed at run-time. Yet another limitation

was that only one level of nesting was allowed in the address generation loop. A

further limitation was that only a single data structure could be accessed by an

address generator, as two address streams couldnot be multiplexed onto the same

address generator. As a result, a second required datastructure had to be stored in a

separate memory and accessed by a separate address generator. Allof these short

comings pointed towards a solution thatwould provide more flexibility witha pro

grammable datapath under the control of a small, simple instruction set designed

specifically for generating address sequences. This resulted in the address genera

tor architecture that was developed for the Maia processor (see Section 5.10.2).

• The MAC unit of PI had to be configured to know the length of its input vectors.

This meant that the MAC unit had to contain a replica of the loop index counter of

the address generator. Not only does this approach waste area and energy, it is not

clear how it can be extended to handle data structures more complex than simple

vectors. This deficiency led to the development of the data-structurecontrol mech

anism with EOV flags, as described in Section 5.7.1.

• The satelliteprocessors and the communication networkhad to be configured first

before they could be used for any purpose. This meant that the overheadof recon

figuration cycles reduced the performance of the design. This shortcoming led to

the overlapped reconfiguration and execution techniques that were discussed in

Section 5.6.

• The delay of the communication network increased the cycle time of the design

and reduced throughput significantly. This was exacerbated by the asynchronous

timing scheme which required a round trip of request/acknowledge signals across
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the network. To reduce this overhead, transfer of data tokens through the conunu-

nication network should be a pipeline stage. This approach was used inMaia.

The energy consumption ofthe communication network was responsible for about

15% of the total energy of the dot product kernel. To reduce this overhead, low-

swing driver and receiver circuits were used in the Maia communication network.

It tumed out that the delay lines that were used by the satellite handshake control

lers accounted for as much as 8% of the energy consumption of the satellite pro

cessors. This led to the development of more efficient delay lines for the Maia

processor, where the energy consumption of the delay lines was kept to below 1%

oftotal satellite processor energy. Afurther limitation ofthe PI design was that the

delay ofthe delay lines was fixed. To tune the delay ofthe delay lines to the mini

mum required for proper operation and hence maximize performance, the delay

lines ofthe Maia processor could beadjusted via the configuration state ofthe sat

ellite processors.
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CHAPTER?

Evaluation of the Pleiades

Approach

In this chapter, the Pleiades architecture will be evaluated. Benchmark results

comparing the Pleiades architecture to other programmable architectures will be presented

and discussed. Two sets of comparisons will be presented. The first set of comparisons

will be based on results from the PI prototype. The second setofcomparisons will befor

the Maia processor.

7.1 PI Case Study

In this section, results from the PI prototype will be used to compare the Pleiades

architecture to a variety ofprogrammable architectures that are commonly used to imple

ment signal processing algorithms [137]. The kernels that were used as benchmarks repre

sent three ofthe most commonly used DSP algorithms: the Finite Impulse Response filter

(FIR), the Infinite Impulse Response filter (IIR), and the Fast Fourier Transform (FFT).

We will first present and discuss the programmable architectures that were considered in

this study, and we will explain how they were used to implement and evaluate the bench

mark kernels. Next, we will discuss the methodology that was used to normalize energy
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Figure 7.1: Pleiades Mapping for the IIR Kernel

and delay parameters ofthe studied architectures, so that comparisons could be done in a

fair and uniform manner. Next we will present the results of the comparisons for each

benchmark.

7.1.1 Pleiades

The Pleiadesarchitecture was evaluated using the resultsof the PI prototype. The

FIR benchmark could be readily evaluated with the PI design, as the FIR kernel was

directly supported by PI.Since PI does not have the hardware resources to implement the

IIR and FFT benchmark kernels directly, these kernels were evaluated by extrapolating

from PI results.

The IIR benchmark was evaluated on Pleiades using the mapping shown in

Figure 7.1. This mapping implements the IIR benchmark kernel used in this study:

4 4

y[n] = ^aiX[n-i]+^biy[n-i]
1 = 0 j = 1
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Figure 7.2: Pleiades Mapping for the FFT Kernel

Except for a slight modification to the address generators, the mapping of

Figure 7.1 uses the same hardware resources that are available in PI. As aresult, the IIR

benchmark could be evaluated in a straightforward manner using the energy and delay

models that were created for the hardware blocks used in PI.

The FFT benchmark used inthis study was a 16-point, radix-2, decimation-in-time

algorithm. To evaluate the FFT benchmark, aPleiades-style processor was designed and

simulated at the register-transfer level in VHDL. The performance and energy consump

tion ofthis processor were estimated using the energy and delay models from P1.

Figure 7.2 shows the hardware mapping for computing one stage of the FFT algo

rithm on the Pleiades processor. The design consists of3address generators, 6 memories,

4multipliers, 6ALUs, 2splitter blocks, 2merger blocks, and 23 buses. Note that asplitter

block splits an incoming data stream into two output streams such that two consecutive

input tokens are directed to different output streams. Similarly, amerger block merges two

input data streams into asingle output stream such that two consecutive output tokens are
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taken from different input streams. An N-point FFT involves atotal of \0g2N stages. Each

stage involves N/2 butterfly calculations. Each butterfly calculation consists of acomplex
multiplication, acomplex addition, and acomplex subtraction. In the mapping shown in

Figure 7.2, asingle FFT butterfly is computed in each cycle. For successive stages of the

FFT algorithm, the roles of the input and output data memories are exchanged, so that the

output ofthe last stage becomes the input ofthe current stage.

The FFT processor uses the SRAM design used in PI. The multiplier design is

similar to the MAC design in PI. As a result, the energy and delay models ofthe corre

sponding PI blocks were used to evaluate the FFT benchmark. The delay and energy of
the other blocks used in the FFT processor were estimated by synthesizing, placing, and

routing their computational cores and simulating them with PowerMill using random data.

The power of the communication network was estimated by extrapolating the conununica-

tion network design used in PI. The estimates of network power are somewhat pessimistic

since they assume random data. Actual signal data have temporal correlations that reduce

switching activity. Furthermore, the network was assumed to be a full crossbar, but that

was not necessary, and further savings in energy can be achieved by using the hierarchical

mesh structure that was developed for the Maia processor. Table 7.1 shows the energy pro

file for a single FFT stage. The cycle time of the design is determined by the multiplier.

Thus, ignoring configuration time, the time for one stage of a 16-point FFT is

T=71.4 nsx^ =571 ns (7.2)

where N= 16. The power dissipation for the FFT algorithm is

P = IM-EI = 23.3 mW (7.3)
571 ns
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Hardware Resource Energy/Cycle (pJ)
Resource

Count

Cycle
Count

Energy/Stage (pJ)

AG (data) 13.1 2 16 419

AG (coefficients) 4.7 1 8 38

SRAM (read, data) 33.7 2 16 1078

SRAM (read, coefficients) 33.7 2 8 539

SRAM (write) 25.8 2 16 826

Multiplier 84.5 4 8 2704

ALU 12.1 6 8 581

Split 7.7 2 8 123

Merge 10.1 2 8 162

Network 26.8 9 16 3859

Network 26.8 14 8 3002

Total 13,331

Table 7.1: Energy Profile for 16-Point FFT Stage on Pleiades

7.1.2 The StrongARM Microprocessor

General-purpose microprocessors represent the ultimate in flexibility and are ubiq

uitously used to implement a wide variety of computational tasks.The StrongARM archi

tecture was chosen as a reference because it represented the state-of-the-art in low-power,

high-performance general-purpose microprocessor design. We evaluated the SA-110

microprocessor, a 32-bit, load/store RISC design with a Harvard architecture, a 16KB

instruction cache, a 16KB write-back data cache, a write buffer, and a memory manage

ment unit on a single chip [138]. The SA-110 microprocessor has a multi-cycle multiply

instruction.

The chip that we evaluated was implemented in a 0.35-p,m CMOS technology and

ran at 169 MHz with a 1.5-V supply voltage. To measure the energy consumption of a
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benchmark kernel, we placed the code fragment for that kemel inside an infinite loop and

measured the average current drawn by the microprocessor core while executing that loop.

The StrongARM evaluation board that was used [139] had a voltage regulator that sup

plied power exclusively to the core ofthe SA-110 microprocessor (the I/O circuits ofthe

chip were powered by si separate power source). By inserting acurrent meter in series with

the output ofthis regulator we could measure the current drawn by the core while execut

ing a given benchmark kemel. Both on-chip caches, the MMU, and the write-buffer were

enabled and were included in the measurements. All kernels fit completely in the on-chip

caches, so there was nooff-chip memory traffic while executing thebenchmark programs.

The number of cycles spent executing a given kemel wsis obtained from the StrongARM

emulator. All benchmark kemels were written in the C programming language and were

compiled into assembly codeusing the ARM C compiler.

7.1.3 The Texas Instruments Programmable Signal Processors

Awide variety ofDSP systems aredesigned with programmable digital signal pro

cessors. These processors are similar to general-purpose microprocessors but have extra

instmctions andaddressing modes thatimprove theirperformance forDSPalgorithms. An

overview of programmable signal processor architectures was presented in Section 4.4.

For the PI case study, we chose two commonly usedprocessors from Texas Instruments:

the TMS320C2XX and the TMS320LC54x [140]. The TMS320LC54x is an advanced sig

nal processor thatwas designed specifically for low-power operation.

The TMS320C2XX is a 16-bit, fixed-point processor that has on-chip instruction

and data memories, a Harvard architecture, and a single accumulator. There is only one

databus in the TMS320C2xx design, but the instruction bus can be used to feed a second

data stream into the arithmetic units. The chip we evaluated was fabricated in a 0.72-(JUn,

5.0-V CMOS technology and ran at 20 MHz with a 3.0-V supply voltage.
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TMS320LC54X is a 16-bit fixed-point signal processor that has on-chip instruction

anddatamemories, an enhanced Harvard architecture withthreedatabuses, and two accu

mulators. In addition, it includes instructions that execute parallel operations. For exam

ple, the parallel-store-multiply instruction executes store and multiply in a single cycle

(the TMS320C2XX lacks this capability). The chip that we analyzed was fabricated in a

0.6-^m, 3.3-V CMOS technology and ran at 40 MHz with a 3.0-V supply voltage.

Starting with assembly programs published by Texas Instruments (TI) in their

application reports [141, 142, 143, 144], a set of benchmark programs were written in

assembly language. The following programs were written: a 16-bit, 5-th order FIR filter; a

16-bit, 4-th order, direct-form IIR filter; and a 16-bit, 16-point complex FFT stage. All of

these programs included initialization sections that were excluded for performance and

power calculations. A3.0-V supply voltage was assumed for these calculations.

Energy values were calculated by adding the contributions ofall instructions in a

kemel using instruction-level energy consumption data published by TI [145, 146]. It

should be noted that this method produces somewhat optimistic results because it ignores

inter-instruction effects that can slightly increase the energy consumption of aninstruction

[147]. The same method was used to calculate the number ofcycles spent executing aker

nel. Anexample of thisprocess is shown in Figure 7.3.

7.1.4 TheXiliiixXC4003AFPGA

Field-Programmable Gate Arrays have recently been used to implement a variety

ofhigh-throughput DSP applications that are beyond the reach ofconventional signal pro

cessors. FPGAs are fully flexible and can be programmed to implement any algorithm, but

they have amuch finer grain of programmability than microprocessors and programmable

signal processors, and as a result, they can incur large area and energy overheads. An
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*_
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B4

*_

B3

* —

B2

*_

Bl

Instruction Count
Current

(mA/MHz)
Energy

(nJ)

Cycles per
Instruction

LT 1 1.0 3.0 1

MPY 9 1.3 3.9 1

LTD 7 l.I 3.3 1

LTA 1 0.9 2.7 1

APAC 1 0.8 2.4 1

SACL 1 1.0 3.0 1

Total: 69 nJ and 20 cycles per IIR output sample

Figure 7.3: Instruction-Level Energy Calculation Example (IIR on TMS320C2xx)

overview of FPGA architectures was presented in Section 4.9. The FPGA device chosen

for this study was the Xilinx XC4003A, a member of the widely-used XC4000 family of

SRAM-based FPGAs from Xilinx [87]. The XC4003A has anequivalent logic capacity of

3000 gates. It contains 100 CLBs and 360 flip-flops. Each CLB consists of two 4-input

LUTs and dedicated carry-logic that can be used to speed up arithmetic operations signifi

cantly.

The Xilinx evaluation board that was used for this study included a XC4003A

chip. Since the XC4003A was too small for the larger benchmark kernels used in this

study, smaller versions of those kernels were implemented and the obtained results were

extrapolated. An 8-bit, 5-tap FIR filter with constant coefficients was implemented on the

evaluation board and its energy consumption was measured directly. The measurements

were then extrapolated to obtain energy values for a 16-bit filter. Since filter coefficients
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were constant, add-and-shift multipliers were usedin the design. This approach consumes

much less energy than the general-purpose multipliers used in the other architectures,

including PI. The FIR design is fully pipelined and produces an output sample every

cycle.

For the UR benchmark, an 8-bit UR biquad section was mapped onto the

XC4003A and its energy consumption was evaluated with an energy modeling tool for

Xilinx FPGAs developed by Eric Kusse [90]. The input netlists for this analysis were cre

atedusingtheHypersynthesis system[148].

7.1.5 Normalization of Results

The reference architectures that were considered in this study were implementedin

different fabrication technologies, and they had different operating supply voltages. To

make a meaningful comparison, the energy and delay metrics of these architectures had to

be normalized to a common reference. We chose to normalize all figures of merit to the

0.6-|im, 3.3-V CMOS process that was used toimplement PI. Recall that PI was designed

tooperate with a 1.5-V supply voltage, and all energy and delay values are calculated for a

1.5-V supply voltage.

Switched capacitance is assumed to scale with gate capacitance and is normalized

according to

A I?"CccAoc^ (7.4)
^ ox ox

where Ais the gate area, L is theminimum channel length, and is thegate oxide thick

ness. T wasassumed to be proportional to the native supply voltage of a given process.

2
Normalized energy is thencomputed using E = with = 1.5 V.
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Processor
(pm)

T̂ox

(nm)

Vih

(V)

Native

^DD
(V)

^DD
(V)

Normalization Coefficients

Capacitance Delay

Pleiades 0.60 9 0.70 3.3 1.5 1.00 1.00

StrongARM *0.35 6 0.35 1.5 1.5 1.96 4.71

TMS320C2XX 0.72 14t 0.70t 5.0 3.0 1.08 1.37

TMS320LC54X 0.60 9t 0.70 3.3 3.0 1.00 1.97

XC4003A 0.60 14t 0.70t 5.0 5.0 1.56 2.67

Note: items marked with t are estimated values.

Table 7.2: Process Data and Normalization Coefficients

Delay is normalized according to

T =
CVDD

2

LVDD

' (Vdd-V,h)

where is the supply voltage, C is the load capacitance, I is the MOSFET saturation

current, and V,/, is the threshold voltage. Process parameters for all architectures are listed

in Table 7.2.

For the StrongARM microprocessor, the low value of Vjf, results in large leakage

currents. This leakage current is responsible for 20mW of maximum power dissipation

when the processor is in the idle mode. This value was subtracted from the measured

power dissipation values for capacitance calculations. Since this value is somewhat opti

mistic, it produces results that are favorable to the StrongARM processor.

As mentioned earlier, the XC4003A chip was not large enough to implement all

benchmarks. 8-bit adders were implemented on the FPGA, and the associated capacitance

values were multiplied by a factor of 2 to extrapolate the results for a 16-bit design. The
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cycle time of the 8-bit design was multiplied by 2 to obtain results for a 16-bit design.

Observe that these extrapolation factors are optimistic and produce results that are favor

able to the XC4003A. The FPGA implementation of the FIR filter computes 5 taps con

currently, in a single cycle, so total energy was divided by 5 to compute the energy per tap

value. For the UR benclimark, the capacitance of an IIR biquad section, implemented on

the XC4003A, was doubled to account for a 4-th order UR filter.

7.1.6 Benchmark Results

Comparison results for the FIR benchmark are shown in Figure 7.4 and tabulated

with additional information in Table 7.3. Results for the IIR benchmark are shown in Fig

ure 7.5 and tabulated with additional information in Table 7.4.

As expected, the StrongARM microprocessor has the worst performance among

the architectures considered in this study, as it requires many instructions and execution

cycles to execute a given kemel in a highly sequential manner. The lack of a single-cycle

multiplier exacerbates this problem. Furthermore, each instruction is burdened by a great

deal of energy overhead. All other architectures have more internal parallelism which

allows them to have much better performance than the StrongARM processor. Pleiades

and the TI processors can execute an FIR tap in a single cycle. Pleiades performs much

better on theenergy scale than theTI processors because theTI processors have a general-

purpose design, incurring a great deal of energy overhead to each instruction. Pleiades, on

the otherhand, has the ability to create a hardware structures optimized for a given kemel

andcanexecute operations with a relatively small energy overhead. Features such as zero-

overhead looping reduce the instmction fetch overhead for the TIprocessors, but they still

fall short ofthe performance achieved byPleiades. The XC4003A executes 5 taps in a sin

gle cycle. The XC4003A isnot very energy efficient, but ithas the ability to use optimized

shift-and-add multipliers, instead of the full multipliers used in theotherarchitectures.
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Figure7.4: Comparison Results for the FIR Benchmark

Processor StrongARM TMS320C2XX TMS320LC54X XC4003A Pleiades

Clock Frequency (MHz) 169 20 40 6 14

Number of Multipliers 0.5 1 1 5 1

Throughput (cycles/tap) 17 1 1 0.2 1

Energy/tap (nJ) 21.1 4.8 2.4 15.4 0.2

C^acitance/tap (pF) 8470 530 270 620 91

Norm. CapacitanceAap(pF) 16600 580 270 960 91

Norm. Eneigy/tap (nJ) 37.4 1.3 0.60 2.2 0.21

Nonn. Delay/tap (ns) 470 69 49 90 71

Norm. EneigyxDelay/tap (JsxlO"") 1760 9.0 2.9 20 1.5

Table 7.3: Comparison Results for the FIR Benchmark
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Figure 7.5: Comparison Results for the IIR Benchmark

Processor StrongARM TMS320C2XX TMS320LC54X XC4003A Pleiades

Clock Frequency (MHz) 169 20 40 2.1 14

Number of Multipliers 0.5 1 1 9 2

Throughput (cycles/lIR) 114 20 13 1 8

Energy/IIR (nJ) 155 69 38 733 1.9

Capacitance/IIR (nP) 62.9 7.7 4.2 29.3 0.85

Norm. Capacitance/llR (nP) 123 8.3 4.2 46 0.85

Norm. Eneigy/llR (nJ) 277 18.7 9.5 103 1.9

Norm. Delay/IIR (ns) 3175 1370 640 1271 571

Norm. EneigyxDelay/llR (J-sxlO"'̂ ) 879 25.6 6.1 131 1.1

Table 7.4: Comparison Results for the IIR Benchmark
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Comparison results for the FFT benchmark are shown in Figure 7.6 and tabulated

with additional information in Table 7.5, Compared to FIR and IIRbenchmarks, the FFT

benchmark is more complex. Pleiades outperforms the other processors by a large margin,

owing to its ability to exploit higher levels ofparallelism by creating an optimized parallel

structure with minimal energy overhead.

7.1.7 Discussion

From the above results, we can see that the Pleiades architecture template, using

the implementation style ofthe PI prototype, achieves superior performance compared to

other programmable architectures that are commonly used to implement signal processing

algorithms. This superiority is attained in spite of the shortcomings of the PI prototype

that were detailed in Section 6.10.

7.2 Mala Results

The Maia processor was fabricated in a 0.25-|im CMOS technology [125, 126].

The chip contains 1.2 million transistors and measures 5.2x6.7 mm^. It was packaged in a
210-pin PGA package. Die photo of Maia is shown in Figure 7.7. With a 1.0-V supply

voltage, average throughput for kernels running on the satellite processors is 40 MHz. The

ARMS core runs at 40MHz. The average power dissipation of the chip is 1.5 to 2.0 mW.

Table 7.6 shows performance parameters ofthe various hardware components ofthe Maia

processor.

Table 7.7 shows the energy profile of the VSELP speech coding algorithm, run

ning on Maia. Six kemels were mapped onto the satellite processors. The rest of the algo

rithm is executed on the ARMS control processor. The control processor is also

responsible for configuring the satellite processors and the communication network. The
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Figure 7.6: Comparison Results for the FFT Benchmark

Processor StrongARM TMS320C2XX TMS320LC54X Pleiades

Clock Frequency (MHz) 169 20 40 14

Number of Multipliers 0.5 1 1 4

Throughput (cycles/stage) 766 152 76 8

Energy/stage (nJ) 1040 478 197 13.3

Capacitance/stage (nP) 422 53.1 21.9 5.9

Norm. Capacitance/stage (nP) 827 57.3 21.9 5.9

Norm. Energy/stage (nJ) 1861 129 49.3 13.3

Norm. Delay/stage (ns) 21348 10412 3743 571

Norm. EnergyxDelay/stage (J-sxlO"*'*) 3973 134 18.4 0.76

Table 7.5: Comparison Results for the FFT Benchmark
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Component Cycle Time (ns) Energy per Cycle (pJ) Area (mm^)

MAC 24 21 0.25

ALU 20 8 0.09

SRAM(lKxl6) 14 8 0.32

SRAM (512x16) 11 7 0.16

Address Generator 20 6 0.12

FPGA 25 18t 2.76

Interconnect Network 10 It N/A

t This value is the average energy for various arithmetic functions,
t This value is the average energy per connection.

Table 7.6: Performance Data for Hardware Components of Maia

Function Power (mW)

Kernels Running on
Satellite Processors

Vector Dot Product 0.738

FIR Filter 0.131

nR Filter 0.021

Vector Sum with Scalar Multiply 0.042

Code-Vector Computation 0.011

Covariance Matrix Computation 0.006

ProgramRunning on Control Processor 0.838

Total 1.787

Table 7.7: Energy Profile for the VSELP Algorithm Running on Maia
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energy overheadof this configuration code runningon the controlprocessor is includedin

the energy consumption values of the kernels. In other words, the energy values listed in

Table 7.7 for the kernels include contributions from the satellite processors as well as the

control processor executing configuration code. The power dissipation of Maiawhen run

ning VSELP is 1.8 mW. The lowest power dissipation reported in the literature to date is

17 mW for a programmable signal processor executing the Texas Instruments

TMS320LC54X instruction set, implemented in a 0.25-iim CMOS process, running at

63 MHz with a 1.0-V supply voltage [149]. The energy efficiency ofthis reference proces

sor is 270 pW/MHz, whereas the energy efficiency ofMaia is45 pW/MHz, which corre

sponds to animprovement by a factor of six.
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CHAPTERS

Conclusion

The problem addressed in this work was how to design a digital signal processor

that is not only highly energy efficient, but it is also programmable and can be used to

implement a variety of different, but similar, algorithms. The approach taken in this work

was to explore ways of trading off flexibility for increased efficiency. This approach was

based on the observation that for a given domain of signal processing algorithms, such as

CELP-based speech coding, the underlying computational kernels that account for a large

fraction of execution time and energy are very similar. What varies from algorithm to

algorithm within a given domain are the parameters and the high-level control flow of

those algorithms. By executing dominant kemels on dedicated, optimized processing ele

ments that can execute those kemels with a minimum of energy overhead, significant

energy savings can be achieved. Thus, the approach taken in this work yields processors

that are domain-specific and are optimized for a given domain of algorithms. Thus, flexi

bility is traded off, allowing a designer to achieve high levels of energy efficiency,

approaching that of a custom, application-specific design, while maintaining the flexibil

ity needed to handle a variety of differentalgorithms within a domain of interest.
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The main contribution of this work was a reusable architecture template, named

Pleiades, that can be used to implement domain-specific, programmable processors for

digital signal processing algorithms. The Pleiades architecture template relies on a hetero

geneous network ofprocessing elements, optimized for a given domain ofalgorithms, that

can be reconfigured at run time to execute the dominant kernels of the given domain.

Associated with the Pleiades architecture template is a design methodology. Defining this

methodology was another contribution of this work. To explore and prove the effective

ness of theapproach taken in this work, a prototype integrated circuit, named PI, incorpo

rating all the elements of the Pleiades architecture template, was designed and fabricated

ina 0.6-|im CMOS process. The PI prototype and the subsequent benchmark study based

on the results obtained from PI provided early validation for the Pleiades approach. A

number of important lessons were leamed during the design and evaluation of PI. These

lessons resulted in a number of important refinements to the Pleiades architecture tem

plate. Subsequent to PI, a domain-specific processor for CELP-based speech coding algo

rithms, named Maia, was designed. Maia was fabricated in a 0.25-^im CMOS process. It

contains 1.2 million transistors and operates with a 1.0-Volt supply voltage. The energy

efficiency achieved by Maia, in terms of power dissipation per computational throughput

(Watt/MOPS), is six timeshigher than the best reference design reported in the literature.

8.1 Proposals for Future Research

The processor instances that were designed and implemented in this work focused

on algorithm domains from baseband wireless applications. While the Pleiades architec

ture template is general in nature and can in principle be applied to other algorithm

domains, it would still be worthwhile to explore other algorithm domains with different

performance requirements and architectural parameters. One particularly important

domain of algorithms is that of video coding algorithms that are based on the Discrete

Cosine Transform (DCT). There is a variety of DCT-based algorithms and standards that

175



are widely used in video coding applications. The computational throughput required by

these algorithms is very high, and it would be worth exploring the effectiveness of the Ple

iades architecture template with these algorithms. Another important domain of algo

rithms is that of encryption/decryption algorithms, which are widely used in secure

communications applications. These algorithms require processing elements with finer

granularities than what is typically encountered in voice and video coding algorithms, and

it would be worthwhile to explore the types of satellite processors that would be best

suited for these algorithms.
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