Copyright © 2001, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LOW-POWER DOMAIN-SPECIFIC
PROCESSORS FOR DIGITAL
SIGNAL PROCESSING

by

Arthur Abnous

Memorandum No. UCB/ERL M01/16

6 April 2001

LOW-POWER DOMAIN-SPECIFIC
PROCESSORS FOR DIGITAL
SIGNAL PROCESSING

by

Arthur Abnous

Memorandum No. UCB/ERL M01/16

6 April 2001

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Low-Power Domain-Specific Processors for Digital Signal Processing
by
Arthur Abnous
B.S. (University of California, Irvine) 1989
M.S. (University of California, Irvine) 1991
A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in

Engineering - Electrical Engineering
and Computer Sciences

in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Jan M. Rabaey, Chair

Professor Nader Bagherzadeh
Professor Paul K. Wright

Spring 2001

‘The dissertation of Arthur Abnous is approved:

YAy,
5/3/%)
Date

2%/0|

" Date

X N i i

=~ /] ’

~ v A 2 iac
/i*Au\ ‘V\] ‘JS/(\!

N\ Date /

University of California, Berkeley

-Spring 2001

Low-Power Domain-Specific Processors for Digital Signal Processing

© 2001
by
Arthur Abnous

Abstract
Low-Power Domain-Specific Processors for Digital Signal Processing
by
Arthur Abnous

Doctor of Philosophy in Engineering - Electrical Engineering
and Computer Sciences

University of California, Berkeley

Professor Jan M. Rabaey, Chair

Rapid advances in portable computing and communication devices require imple-
mentations that must not only be highly energy efficient, but they must also be flexible
enough to support a variety of multimedia services and communication capabilities. The
required flexibility dictates the use of programmable processors in implementing the
increasingly sophisticated digital signal processing algorithms that are widely used in por-
table multimedia terminals. However, compared to custom, application-specific solutions,
programmable processors often incur significant penalties in energy efficiency and perfor-
mance. The approach taken in this work was to explore ways of trading off flexibility for
increased efficiency. This approach was based on the observation that for a given domain
of signal processing algorithms, the underlying computational kernels that account for a
large fraction of execution time and energy are very similar. By executing the dominant
kernels of a given domain of algorithms on dedicated, optimized processing e}ements that
can execute those kernels with a minimum of energy overhead, significant energy savings
can potentially be achieved. Thus, the approach taken in this work yields processors that

are domain-specific. The main contribution of this work is a reusable architecture tem-

plate, named Plejades, that can be used to implement domain-specific, programmable pro-
cessors for digital signal processing algorithms. The Pleiades architecture template relies
on a heterogeneous network of processing elements, optimized for a given domain of
algorithms, that can be reconfigured at run time to execute the dominant kernels of the
given domain. To verify the effectiveness of the Pleiades architecture, prototype proces-
sors were designed, fabricated, and evaluated. Measured results and benchmark studies

demonstrate the effectiveness of the Pleiades architecture.

Jan M. Rabaqy;/Dissertation Committee Chathx

To my parents,

Herand Abnous and Anoush Mekaili

Table of Contents

1 Introduction....... I eeeecececsssseasesceseseecsnsaaseseanasns 1
1.1 Goalsand Contributionscoiiiitii i 5

1.2 Thesis OVEIVIBWot i titie e cn it it iaenanaeaensacaaenenennns 6

2 Principles of Low-Power Design.ccoieeeiiniiinnnaccnnececeeeeenes 8
2.1 Energyand POwer.......... ..ot 8

2.2 Power Dissipation in CMOS Circuits.cooiiiiiaie. .. 9

2.2.1 Dynamic POWET .+« « e e e e e e e e e e e e e e e 9

222 Static POWEr. .. oo ittt ittt i e 11

223 SUMMATY .. ovoetetn e erieannaneraneastassnnnnnns 13

2.3 Reducingthe Supply Voltage, 14

2.3.1 ConcurrentProcessing...........cooiiiiienaneienaan., 16

2.3.2 Dynamic Scaling of the Supply Voltage 19

2.3.3 Reduced-Swing Interconnect.cooiiin.n. 19

2.4 Reducing Capacitance.vvevineenereeneeeneiinennanns 20

2.4.1 Application-Specific Processingt 21

2.4.2 Exploiting Locality of Reference.t 22

2.5 Reducing Switching Activityo, 23

2.5.1 Avoiding Switching Activity in Unused Modules. 24

2.5.2 Exploiting Temporal Correlations.ooounntn 27

2.6 SUMMAIY.coottiiiteeineeinn e ennnnneaescsnnseennnnnns 28

3 Properties of Digital Signal Processing Algorithmscc000eeeenees 30
3.1 Computational Performance Requirementsoouvnn. 30

3.2 CONCUITENCY . o o v o oo e evetie et aeennanaanarsasaeseneennsnnns 31

3.2.1 The Finite Impulse Response Filter. 32

3.2.2 The Fast Fourier Transform.................oooevenn..i..33

3.3 DominantKemnels....... ...t 35

3.4 Data Structures and Access Patterns.ot 36

3.5 Case Study: Speech Coding by Code-Excited Linear Prediction. 37

3.5.1 Speech GenerationModelot 40

3.5.2 Code-Excited Linear Prediction. EERERRRRE 42

3.6 Vector-Sum Excited Linear Prediction.ccoeeeenns. ...43

3.6.1 Analysis of the VSELP Algorithm 47

3.7 AlgorithmDomains ...ttt 48

3.8 Architectural Requirements for Digital Signal Processing. 50

4 Programmable Architectures for Digital Signal Processing 51
4.1 Basic Model for Programmable Hardware.o.0 51

4.2 Energy Consumption in Programmable Architectures................. 55

4.3 General-Purpose Processorso 57

4.4 Programmable Digital Signal Processorsccooienne. 60

4.5 Superscalar and VLIW Processorscooiuiieaineens 64

4.6 Pipelined Vector Architectures.oooiiiiiiiiienneennn 68

477 SIMD ATChIteCtUIES . . .ot v ittt ie it inieeraenecanesnncnensnans 70

4.8 MIMD Architectures. . . .« oo v vvvn ittt iieiarneeeeencnennenenanns 71

49 Field-Programmable Gate Artays. ...t 73

4.10 SUMIMAIY. .. couununnnrnnnnnrennnneeeeeeeesananannesnecssene: 76

5 Pleiades: Architecture Design............. Ceecsessesessssesasencses R |]
5.1 Goals and General APPIOACH uoneerensnsenaneaneneanenns 78

ii

5.2 The Pleiades Architecture Template.ooiiveiennn. 82

5.3 The Control ProCesSOrovvviiunrnenserenensnannsescncnnn ... 84
5.4 Satellite PrOCESSOIS . . o v v evvevnrnnnrneeesnenenennenesacnsasnns 86
5.5 Communication Network ccviriinreniienninaiainnenn 89
5.6 Reconfigurationoeeceinnniiiiinnennniiiiaannnees 97
5.7 Distributed Data-Driven Controlccoiiiiiiiiennn, 100
5.7.1 Control Mechanism for Handling Data Structures 104

572 SUMMMAIY .. .vvvvvrerrneneeeeeeseneneaasanesenannsnns 108

5.8 System Timing and Synchronizationcvireenennne. 108
5.9 The Pleiades Design Methodology.ooviiiviieiiienenn 116
5.10 The Maia ProCESSOr . .. vvveeeruinrnnrnencoennenenannsoacesess 121
5.10.1 Control ProcessorInterfacecoviiniinn.n. 122

5.10.2 Address Generator Processor.covevireenenne. 123

5103 Memory Unitsoovviieiiiiiiiinnnnnnnenenennns 127

5.10.4 Multiply-Accumulate Unit.ooiiiiieeneennnn. 129

5.10.5 Arithmetic/LogicUnit. ... 130

5.10.6 Embedded FPGAttt 130

5.11 Algorithm Mapping Examples 131
511.1 FIRFIter . ..o vvet ittt it iiee e 131

5.11.2 VSELP SynthesisFilter.............c.oooiiiiiiaaennn 134

5.12 SUMMAIY. ... oteetrmnrnnennnnnereeeeennnmnnennsesesseeenns 137
6 Hardware Designof P1..... eeeeeeees cecceseasnansen cesesscensssases 138
6.1 P1 Hardware Organizationcoiiiirenniiarcnnne 138
6.2 ConfigurationBus. ot 142
6.3 Communication Networko 142
(R 110 3 « 1 U R T U 144
6.5 The MACURNIt .. .ovtiie it iie e eaae i neananns 145
6.6 TheMemory Unitscoiiirtniieeinniiiiiii e 147
6.7 The Address GEneratorsovvvevnvrnennrnoaroecnscoaennnnns 149
6.8 Chip Design Methodologycoviiiiiiiiiiinnnnne. 150

iv

6.9 Measurement Resultsttt ittt ittt 151

6.10 DiSCUSSION. .. .v vttt ittt it ittt i i 153

7 Evaluation of the Pleiades Approach................... teesecscssssnens 156
7.1 PlCase Study......coviniuniiiiiiniiiiininennennananennanns 156

7.1.1 Pleiades .. .ooviiiiii i i i i i 157

7.1.2 The StrongARM Microprocessorooveunnnn. 160

7.1.3 The Texas Instruments Programmable Signal Processdrs 161

7.14 The Xilinx XC4003AFPGAciiiiiiiiin.... 162

7.1.5 Normalizationof Results............... ...t 164

7.1.6 BenchmarkResultso i, 166

7.1.7 DiSCUSSION ..t vtitin ettt i it i 169

72 MaiaResultsottt it ittt it et 169

8 Conclusion cesseccsoscnces eereeneenes tessescsscssscns 174
8.1 Proposals for FutureResearchot 175
Bibliographyccoveeeveerenerecececcccnsssccccvsscscscscscsses ee.o 177

List of Figures

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:

The Trade-off between Flexibility and Efficiency 4
(01, (0 1030 {1377 1 1= ARG 10
Leakage CurrentsinaCMOS Inverterooiiiinnnn.... 11
Pseudo-NMOS INVerter. ccvvvi i iiiieineieneeaeeetasenensns 13
Dependence of Delay and Power on Supply Voltage 15
Energy-Delay Product vs. Supply Voltageo.... 15
Parallel Processing.couovniiiiinenieeeieeeeniinieennennn, 17
Pipelined Processingcootiiienniiiniiiiina., 18
Asynchronous Processing with Handshake Control 26
Finite Impulse Response Filtero, 32
Retimed FIRFlter.o ittt it ees 33
8-Point, Radix-2, Decimation-in-Frequency FFT 34
Radix-2 FFT Butterfly Computationcoieiiienentn 34
Radix-2 Viterbi Add-Compare-Select Calculation 36
Examples of Array Access Patterns.t 38
Human Speech Generation Model........... ..., 40
Structure of aCELP Speech Codercooiiiiiiiiientn 42

vi

Figure 3.9:

Figure 3.10:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

- Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:

Basic Structure of the VSELP Coder.cooiiiiiientn 44
Structure of the Adaptive Pitch Codebook in VSELP................. 46
Basic Model for Programmable Processors.ot 52
Custom Implementation of a4-Tap FIR Filter 56
Basic Architectural Model of a General-Purpose Processor............ 58
Dual-MAC Structure of the TCSI LODE Processor 63
Basic Architectural Model for Superscalar and VLIW Processors. 65
Basic Architectural Model for Vector Processors 69
Basic Architectural Model for SIMD Processors 70
Basic Architectural Model for MIMD Processors.coo..t 72
Basic CLB + Switch Matrix Tileof an FPGA. 74
The Pleiades Architecture Template 82
Block Diagram of a MAC Satellite Processor.ooonnn.n. 88
The VSELP Synthesis Filter Mapped onto Satellite Processors 89
Crossbar Interconnection Networkc.coooiieeeiantn 90
Omega Multistage Interconnection Networkoovveene 91
Some Examples of Network Topologies...............oieieeeennnn 92
Simple FPGA Mesh Interconnect Structureoooveenen. 93
Generalized Mesh Interconnect Structurecoveenien.n 94
Hierarchical Generalized Mesh Interconnect Structure. 96
Concurrent Reconfiguration and Kernel Execution. 100
Data-Driven Execution via Handshakingt 103
Address and Data Threads for Computing Vector Dot Product 105
Data Stream Examples for Accessing Vectors and Matrices 106
Examples of Data Stream Production and Consumption. TR 107
Completion Signal Generation in Asynchronous CMOS Circuiits 111
General Structure of a Satellite Processor............c.coviinnn. 113
Asynchronous Handshake Protocolsoovevvenneinennen. 114
Transition-to-Pulse Converteroiireernriennnnanenn, 114
Example of a Handshake Controllercoovieneennennns 116

vii

Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:
Figure 5.28:
Figure 5.29:
Figure 5.30:
Figure 5.31:
Figure 5.32:
Figure 5.33:

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 6.9:
Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7.7:

C++ Description of Vector Dot Productt 118
Mapping of Vector Dot Product ..., 119
Intermediate Form Representation of Vector Dot Product 120
Block Diagram of the Maia Processor.ooveieennnen. 121
Bundled Signals of a Communication Network Channel 122
AGPDatapatht 125
AGPInstruction Format. ittt 126
Example AGPProgramt 128
A Mapping forthe FIRKemel ..., 132
Program for AddrGenl of Figure 5.28ooveeene 133
Program for AddrGen2 of Figure 5.28o, 134
A Mapping for the VSELP Synthesis Filter 135
Program for AddrGenl of Figure 5.31ooiiinninnnn. 136
Program for AddrGen2 of Figure 5.31o, 136
Block Diagramof P1..........coiiiiiiiiiiiiii it 139
Kernels Supported by P1o 140
Energy-Delay Product vs. Supply Voltage 140
) 0T20 320 100) 1 5 PR 141
Operation of the Configuration Bus.ooooia.t 142
Port Structure of the Satellite Processors.ot 143
Waveforms for Communication Network (Worst-Case Coupling). 144
Block Diagram of the Functional Core of the MAC Unit............. 146
Bit-Line Structure of the PISRAMS.ot 148
Pleiades Mapping forthe IR Kernel.................ocoiiioin 157
Pleiades Mapping for the FFT Kernelooooeiniee 158
Instruction-Level Energy Calculation Example (IIR on TMS320C2xx). . 163
Comparison Results for the FIR Benchmark. 167
Comparison Results for the IIR Benchmark 168
Comparison Results for the FFT Benchmark 170
DiePhotoof Maiacciiniiiiiiiiiiiiiiiianaenearnnn 171

viii

List of Tables

Table 3.1: Execution Profile of the VSELP Algorithm 48
Table 3.2: Dominant Kernels in the VSELP Algorithm. 48
Table 5.1: Operations Executed by an AGP Instruction.oneenn 127
Table 6.1: Energy Measurement and Simulation Results. 152
Table 6.2: Cycle-Time Measurement and Simulation Results 152
Table 6.3: DotProductResults...........ciuiniiiiieniniieiinenennnn 153
Table 7.1: Energy Profile for 16-Point FFT Stage on Pleiades 160
Table 7.2: Process Data and Normalization Coefficients. 165
Table 7.3: Comparison Results for the FIR Benchmark....................... 167
Table 7.4: Comparison Results for the IIR Benchmarkoonn 168
Table 7.5: Comparison Results for the FFT Benchmark 170
Table 7.6: Performance Data for Hardware Componentsof Maia............... 172
Table 7.7: Energy Profile for the VSELP Algorithm Running on Maia........... 172

ix

Acknowledgements

First and foremost, I would like to thank my research advisor, Professor
Jan Rabaey. It has been an honor, a privilege, and a pleasure to work and learn under his
guidance. I am very grateful for his advice, encouragement, support, and patience. The
Pleiades project would not have been possible without his vision and leadership. I will
always be grateful to him for the very many things, both technical and non-technical, that

I have learned from him.

I would like to thank Professors John Wawrzynek, Paul Gray, and Arie Segev for
serving on my qualifying examination committee and for their feedback and advice on my
research. I would like to thank Professors Nader Bagherzadeh and Paul Wright for serving
on my dissertation committee and reviewing this dissertation. I would also like to thank
Professor Bob Brodersen. He and Jan provided a stimulating and enjoyable research and

learning environment, for which I am very grateful.

A number of people have made important contributions to the Pleiades project, and

I would like to thank them for their contributions and for their help. Many thanks go to

Katsunori Seno and Yuji Ichikawa for their invaluable contributions to the design and
implementation of the P1 prototype and the P1 benchmark study. Vandana Prabhu
designed the P1 test board, helped in testing the P1 prototype, and made many contribu-
tions to the design and implementation of the Maia processor. Varghese George helped
with the design of the P1 prototype and the Maia processor. To the Maia design he contrib-
uted the FPGA architecture that he had developed in his Ph.D. research. Marlene Wan
helped with the P1 prototype, the P1 benchmark study, and the Maia processor. She was
also responsible for developing the Pleiades design methodology. Suet-Fei Li also contrib-
uted to the development of the Pleiades design methodology. Martin Benes designed the
asynchronous handshake circuits of the Maia processor and contributed to the design and
implementation of the Maia processor. Hui Zhang designed the communication network
of the Maia processor. He also led the implementation effort for the Maia processor. Erik
Kusse provided benchmark data for the Xilinx FPGA devices. I thank these friends for
their many contributions. I am grateful for the privilege of working with them and learning

from them.

I am grateful for the privilege and pleasure of learning from and enjoying the
friendship of a number of individuals at Berkeley. They include Arya Behzad, Alfred
Yeung, Paul Landman, Sam Sheng, Anantha Chandrakasan, Andy Burstein, Tom Burd,
Lisa Guerra, Renu Mehra, Ole Bentz, Shankar Narayanaswamy, Andy Abo, Arnold
Feldman, Anthony Stratakos, David Lidsky, Randy Allmon, Richard Edell, Roy Sutton,
Vason Srini, Rhett Davis, Dennis Yee, Ian O’Donnell, Peggy Laramie, Trevor Pering, Jeff
Gilbert, Tom Truman, Engling Yeo, My Le, Srenik Mehta, Chris Rudell, Jeff Weldon,

Sekhar Narayanaswami, and Keith Onodera.

I am grateful for the administrative assistance provided by Ruth Gjerde, Heather

Brown, Tom Boot, Peggye Browne, Elise Mills, and Carol Sitea. I am also grateful for the

xi

technical support provided by Brian Richards and Susan Mellers. Special thanks go to
Kevin Zimmerman for his diligent and cheerful assistance with all matters related to com-

puting resources.

I wrote this dissertation while working for Mehdi Hatamian at Broadcom
Corporation. I would like to thank him for his support and encouragement in completing

this dissertation.

On the personal side, I would like to thank my parents, Herand Abnous and
Anoush Mekaili, and my sisters, Stella and Elena, for their unconditional love, support,
and encouragement. I could not have done it without them. I would like to thank my
cousin, Razmik Abnous, his wife, Suzanne, and their boys, Sevan, Haig and Armen, for
their love and support. I would also like to thank Karen Bradford for her friendship and

support.

xii

CHAPTER 1

Introduction

An important trend that has been a major driver of the electronics industry in
recent years is the growing demand for portable computing and communication devices.
This demand has been fueled by the quality of life and business productivity improve-
ments that have been provided by these devices. There has been a tremendous interest in
laptop computers, personal digital assistants, mobile phones, and pagers. This is only the
beginning, however, as there are more sophisticated devices on the horizon that will pro-
vide increasingly sophisticated capabilities and features. One important vision of the
future of computing and communication has been proposed by the InfoPad project at the
University of California at Berkeley [1, 2]. In this vision, mobile, wireless terminals pro-
vide users with ubiquitous and untethered access to multimedia content and computing

services available from a high-bandwidth backbone network of computers.

A portable multimedia terminal must provide two fundamental capabilities: the
ability to process multimedia information and the ability to communicate that information

through various wired and/or wireless communications channels. Speech, audio, video,

and graphics are examples of the types of data that are processed by a typical multimedia
terminal. The technology that provides the underlying algorithms to process these data
types is Digital Signal Processing (DSP). Digital signal processing is also the technology
that is applied to process the signals that are used to communicate information over a
wired or wireless communication channel. Improvements in computational performance
provided by advances in integrated circuit fabrication technology allow the use of more
and more sophisticated signal processing techniques that allow greater functionality and
performance and richer modes of communication in portable multimedia terminals.
Speech recognition is a good example of the type of functionality that is currently not
readily available, but it will be an importént feature in the near future as the required pro-
cessing power to provide it becomes economically viable. Another good example is a
multi-standard, adaptive radio transceiver that can provide a number of different modes of

communication, as required by the physical location of the user at a given time.

A major problem associated with increases in the processing power and the sophis-
tication of signal processing algorithms is the increasing levels of power dissipation. A
mobile terminal is typically powered by batteries, a limited source of energy. For a porta-
ble device to be useful, it must have a reasonable amount of run time before the batteries
run out and need to be recharged. Another problem with high levels of power dissipation
is the cost of packaging and cooling. Low-power integrated circuits can be placed in inex-
pensive and compact packages. High-power devices, on the other hand, require expensive
and bulky packages and cooling mechanisms. High levels of power dissipation also mean

high operating temperatures that adversely affect the reliability of an integrated circuit.

Power dissipation is not a new problem. In the middle of 1980s, designers faced
the same problem. The solution then was to switch from NMOS technology, which suf-

fered from static power dissipation, to CMOS technology [3, 4]. CMOS was far more

energy-efficient than NMOS and was the most effective and economically viable way to
build more and more powerful microprocessors. In fact, CMOS was so energy efficient,
that power became an afterthought once again. But in recent years, increaging levels of
computing performance have made power an important and challenging problem once

again [5], and this time, there is no magic technological solution to make it disappear.

To provide the required computing power and to increase the energy efficiency of
signal processing circuits, designers have developed numerous design techniques that can
be applied in custom, application-specific integrated circuits. While this approach has
been successful in increasing energy efficiency, it suffers from the drawback that the
resulting devices can only provide the limited functionality that they were designed to pro-
vide, i.e., they are not very flexible. In reality, however, a variety of multimedia data types
and services, modes of communication, and associated standards are in use, and it is
highly desirable to have devices that can deal with this variety. Therefore, it is highly
desirable that flexible, programmable components be used to implement the processing

functions required in 2 modern computing/communication device.

Programmability has many benefits, all of which are the results of the inherent
flexibility of a programmable design. With a programmable device, one can use the same
pre-fabricated component to perform different tasks. One does not have to go through the
lengthy and costly cycle of designing a new integrated circuit that performs a new task. It
is far easier, faster, and less expensive to program a programmable processor to perform a

new task than it is to design a new integrated circuit.

Another advantage of a programmable implementation of an algorithm is that one
can tune the parameters of a system by simply changing the parameters of a program. One
can tune a design in its actual operating environment and get quick feedback as to how

well design modifications work. Another advantage is that a system designed with pro-

Domain .
Specific

Flexibility
[>
<]
Efficiency

Figure 1.1: The Trade-off between Flexibility and Efficiency

grammable components can be upgraded during its lifetime to improve its functionality

and to provide the ability to support new standards.

The difficulty in achieving high levels of energy efficiency (and performance) ina
programmable processor stems from a fundamental trade-off that exists between ﬂe;(ibil—
ity and efficiency. This trade-off is illustrated in Figure 1.1. Programmability requires gen-
eral-purpose computation, storage, and co’mmunication resources that can be used to
implement all kinds of different algorithms. Efficiency, on the other hand, dictates the use
of custom, dedicated hardware structures that can exploit the specific properties of a given
algorithm to maximize efficiency. In a custom solution, no computational resource is
larger or more complicated than it needs to be. As a result, all circuit modules, i.e., arith-
metic and logic units, memories, and communication channels, are smaller, faster, and

consume less energy.

Programmable processors, particularly general-purpose microprocessors and digi-
tal signal processors, have the virtue of being completely flexible. They can be pro-
grammed to implement any algorithm, but they incur the significant energy and
performance overhead of fetching, decoding, and executing sequences of instructions on

complex, general-purpose hardware structures.

4

1.1 Goals and Contributions

The central problem addressed in this work is how to design a digital siénal pro-
cessor that is not only highly energy efficient, but it is also programmable and can be used
to implement a variety of different, but similar, algorithms. The flexibility of general-pur-
pose processors is highly desirable for handling complex, control-oriented computing
tasks such as operating systems, word processors, and spreadsheets. Signal processing
algorithms, on the other hand, have intrinsic properties that provide an opportunity for cre-
ating more efficient implementations that do not require the full flexibility of a general-
purpose device. Signal processing algorithms typically exhibit high levels of concurrency
and are dominated by a few regular, repetitive kernels of computation that account for a

large fraction of execution time and energy.

The approach taken in this work was to explore ways of trading off flexibility for
increased efficiency. This approach was based on the observation that for a given class, or
domain, of signal processing algorithms, e.g., speech coding using Code-Excited Linear
Prediction (CELP) or video compression/decompression using the Discrete Cosine Trans-
form (DCT), the underlying computational kernels that are responsible for a large fraction
of execution time and energy are very similar. What varies in different algorithms and dif-
ferent industry standards are the parameters of the algorithms and the high-level control
flow of the algorithms. By executing these underlying dominant kernels on dedicated,
optimized processing elements that can execute those kernels with a minimum of energy
overhead, significant energy savings can potentially be gained. This means that the pro-
cessors being designed with this approach are domain-specific and are optimized for a
given domain of algorithms. Flexibility is thus traded off, as illustrated in Figure 1.1,
allowing a designer to achieve high levels of energy efficiency, approaching that of a cus-
tom, application-specific design, while maintaining the flexibility needed to handle a vari-

ety of different algorithms within the domain of interest.

5

The main contribution of this work is an architecture template, named Pleiades,
that can be used to implement domain-specific, programmable processors for dfgital sig-
nal processing algorithms. Pleiades relies on a heterogeneous network of processing ele-
ments, optimized for a given domain of algorithms, that can be reconfigured at run time to
perform different computational tasks. Associated with this architecture template is a
design methodology. Defining this methodology was another contribution of this work. To
explore and prove the effectiveness of this approach, a domain-specific processor for
CELP-based speech coding algorithms, named Maia, was designed and analyzed. A proto-
type integrated circuit, named P1, with all the elements of the Pleiades architecture tem-

plate was designed and fabricated to evaluate the merits of the Pleiades approach.

1.2 Thesis Overview

The body of knowledge that forms the background of this work will be presented
in the next three chapters. Chapter 2 provides an overview of low-power design tech-
niques for digital CMOS circuits. We will discuss how power is dissipated in CMOS cir-
cuits and how it can be minimized. The main objective of this chapter is to establish a set

of architectural design principles that must be followed in an energy-efficient design.

Chapter 3 describes the properties of digital signal processing algorithms that can
be exploited to design energy-efficient, domain-specific processors. A general overview
of CELP-based speech coding algorithms and a detailed analysis of the VSELP (Vector-

Sum Excited Linear Prediction) speech coding algorithm will be presented.

Chapter 4 presents a comprehensive review of the different approaches that have
been explored in the past for designing programmable processors for digital signal pro-
cessing applications. The strengths and weaknesses of these different architectures will be
discussed. This chapter concludes with a set of architectural features that must be present

in an energy-efficient programmable signal processor. These features, along with the

6

energy-efficient design principles presented in Chapter 2, form the basis for the design

choices made in the Pleiades architecture template.

Chapter 5 presents the architecture template proposed in this research. We will first
present the programming model that provides the skeleton of this architecture template,
and we will sketch the associated design methodology. Next, the architectural design
choices that were made will be presented and analyzed. We will siaow how signal process-
ing kernels can be mapped onto the Pleiades architecture template. Architectural design of

Maia, a domain-specific processor for speech coding applications, will be presented.

Chapter 6 presents the design of the P1 prototype which was designed and fabri-
cated to evaluate the merits of the architectural principles presented in this thesis. We will
show how different components of the Pleiades architecture template can be assembled
into a practical design. Measured power and performance numbers will be presented and

discussed.

The Pleiades approach is evaluated in Chapter 7. Benchmark results comparing the

Pleiades architecture to other programmable architectures will be presented and discussed.

The last chapter concludes this dissertation with a summary of the presented work

and proposals for future research.

CHAPTER 2

Principles of Low-Power Design

Programmable signal processors are typically implemented as digital integrated
circuits using CMOS technology. In this chapter we will review the fundamentals of low-
power digital CMOS design. We will start with a discussion of how energy is consumed in
digital CMOS circuits. We will then discuss how energy consumption of digital CMOS
circuits can be minimized. Architectural techniques for reducing power dissipation will be
presented. We will end this chapter with a set of architectural design principles for energy-

efficient programmable architectures.

2.1 Energy and Power

Energy and power are related. Power is the time rate of consumption of energy

(P = E). Electrical energy is consumed by a circuit to perform a given task, i.e., a com-
putation, and is dissipated as heat and electromagnetic radiation. A circuit can be rated by
the amount of energy that it consumes to perform a given task, or it can be rated by its
power dissipation. Both of these ratings are useful in their own different ways. If we are

concerned about battery life, then energy is the more appropriate metric to consider. A bat-

8

tery stores a finite amount of energy, and a finite amount of work can be done with that
energy. What matters is to do as much work as possible; therefore, as little energy as pos-
sible must be consumed to perform a given task. If the work is done quickly, then power
dissipation will be high; if the work is done slowly, then power dissipation will be low. In
either case, the same amount of work has been done. The speed at which a task is per-
formed, however, usually determines if the work being done is actually useful. In real-time
signal processing applications, for example, an incoming stream of data must be processed
at a specified rate. In this context, rating a circuit by its power dissipation is equivalent to
rating it by its energy consumption. Still, the real objective is to minimize the energy con-

sumed to perform a given task.

If we are concerned with heat removal and reliability, then power is the more
appropriate metric to consider, as the heat generated by a circuit and its operating temper-
ature are directly related to its power dissipation, and the amount of work being done is
inconsequential. While minimizing energy per task is not the real objective in this context,

it is still an appropriate design objective, as it will reduce power dissipation.

2.2 Power Dissipation in CMOS Circuits

Before discussing techniques for minimizing power, we need to understand how
energy is consumed in CMOS circuits. There are two main components of power dissipa-

tion in a CMOS circuit: dynamic power and static power.

2.2.1 Dynamic Power

The most significant component of power dissipation in CMOS circuits occurs
during switching transients, when the circuits are actually processing information. Figure
2.1 shows the circuit diagram of a CMOS inverter. The parasitic capacitances driven by

the inverter have been lumped into a load capacitance C at the output of the inverter. There

Figure 2.1: CMOS Inverter

are two mechanisms that result in dynamic power dissipation in this circuit. The first and
most significant component of dynamic power is due to charging and discharging of the
- load capacitance. When the input of the inverter switches from high to low, the NMOS

transistor is turned off, and the PMOS transistor is switched on, charging the load capaci-

tance to Vpp and drawing CVp, of charge from the power supply. As a result, CVp, Dz of

energy is drawn from the power supply. Half of this energy is dissipated in the PMOS
transistor, and the other half is stored in the load capacitance. When the input switches
back to high, the PMOS transistor is turned off, the NMOS transistor is switched on, the

load capacitance is discharged, and the energy that was stored on it is dissipated in the
NMOS transistor. Thus, each switching event dissipates %C Vp D2 of energy. If the operat-

ing frequency of the system within which this switching event is occurring is f, and the
average number of switching events in this circuit during an execution cycle is o, then the

power dissipation associated with this circuit is

P = af(%CVDpz) @1

The second component of dynamic power is caused by the non-zero transition time

of the input of the inverter. In Figure 2.1, as the input is rising (or falling), there will be a

10

Voo Vop

Figure 2.2: Leakage Currents in a CMOS Inverter

period of time during which both the PMOS and the NMOS transistors are on, and there is
a direct path from Vpp to ground, allowiﬁg current to flow. Veendrick has done a detailed
study of this mechanism, and his conclusion is that this component of power dissipation
can be kept below 15% by maintaining equal transition times at the input and the output of

a CMOS gate [6]. The contribution of this direct-path current to total power dissipation
decreases as the supply voltage is reduced. In fact, if V< Vpy+ lVTPI , where V) and

Vip are the threshold voltages of the NMOS and the PMOS transistors, respectively, then

the direct-path current is virtually eliminated, as the two transistors cannot be on simulta-
neously. Thus, for low-power designs that are operated at low voltages, short-circuit

power is not a major issue.

2.2.2 Static Power

In an ideal CMOS inverter, where the transistors are ideal switches, there is no
static power dissipation because the PMOS and NMOS transistors are not simultaneously
on in the steady state, and there is no DC path between the positive and negative terminals
of the power supply. Real MOS transistors are not ideal switches, however, and in real
CMOS circuits, there are two main mechanisms that result in static current flowing from

the power supply [7]. Figure 2.2 illustrates these static currents in a CMOS inverter.

11

One type of static current is due to the junction leakage current of the reverse-
biased diodes between the source and drain terminals and the substrate of a MOS transis-

tor. This current is equal to the reverse saturation current of a PN junction diode, and is on

the order of 1 to 5 pA per pm? of junction area at room temperature for a typical CMOS
process [8]. For a minimum-size transistor in a 0.6-um process, the total leakage current is
on the order of 4 pA. The value of this current doubles for every 9 degree increase in tem-

perature.

When the gate-to-source voltage, Vs, of a MOS transistor is below its threshold
voltage (Vgs < V), the transistor is considered off, and ideally, the drain current, Ip, of the

transistor is zero. There is, however, a sub-threshold leakage current that flows through the
device. This current decreases by an order of magnitude for every 60 to 90 mV drop in
Vs Thus the drain current of an off device (Vs = 0) is several orders of magnitude
smaller than the operating current when the device is on. It should be noted that for reli-
ability and power reasons, modern sub-micron processes operate at reduced supply volt-
ages that dictate reduced threshold voltages (on the order of 400 mV). As a result, sub-
threshold currents have become the dominant source of static leakage currents in modern
sub-micron technologies. For example, for a 0.35-pm process, the sub-threshold current is
on the order of 9 pA per um of device width [9]. The value of the sub-threshold current

also increases with temperature exponentially.

During normal operation, the power dissipation of a CMOS circuit due to the leak-
age currents is negligible, as these currents are orders of magnitude less than the operating
currents when devices are switching. When a CMOS circuit is in stand-by, though, its
power dissipation is determined by these leakage currents. Thus, if a circuit spends a large

fraction of its operating time in stand-by, static power can become important.

12

L

Figure 2.3: Pseudo-NMOS Inverter

There is another source of static power in CMOS circuits that occurs in ratioed cir-
cuit styles. Figure 2.3 shows the circuit diagram of a Pseudo-NMOS inverter. In this cir-
cuit, when the input is high, both transistors are on, and static current flows through the
gate. In general, circuits of this sort must be avoided in energy-efficient designs, so that

there are only leakage currents when there is no switching activity.

2.2.3 Summary

From the above discussion, we can see that the energy required to perform a given
computation is determined by the switching energy consumed in charging and discharging
of circuit nodes. As shown in Equation 2.1, this energy depends on three parameters: sup-
ply voltage, capacitance, and switéhiﬁg activity. In the following sections, we will study
the effect of these parameters on energy consumption, and we will discuss energy-efficient
design techniques and their effect on these parameters. Since we are primarily concerned
with energy-efficient architectures in this thesis, the emphasis will be on architectural
design techniques. It should be noted, however, that many other design techniques
addressing other levels of the design process such as algorithm design, logic design, cir-
cuit design, and technology design have been proposed [10]. To minimize energy con-

sumption all aspects of the design process must be energy conscious.

13

2.3 Reducing the Supply Voltage

Since power dissipation varies with the supply voltage in a quadratic manner,
reducing the supply voltage is a very effective way of reducing power dissipation. For
example, if the supply voltage is halved, then the power dissipation of an integrated circuit
is reduced by a factor of four! Because of this quadratic relationship, reducing the supply

voltage is the most powerful approach to reducing power dissipation.

Unfortunately, the supply voltage of a circuit cannot be reduced arbitrarily. As in
most engineering problems, there is a trade-off at work that prevents us from arbitrarily
reducing power dissipation by simply reducing the supply voltage. The problem is that the
delay of CMOS circuits increases as the supply voltage is reduced. The drain current of a
MOS transistor in saturation is

Y Vop- V) @2)

kl
where k is the device transconductance parameter, W is the channel width, L is the chan-
nel length, and Vi is the threshold voltage. Ip, decreases as Vpp approaches V7. Thus, at

lower voltages, the current level provided by the transistors to charge and discharge circuit
nodes decreases, and circuit delays increase significantly. Figure 2.4, shows how the delay
and energy of an inverter circuit vﬁry with the supply voltage in the 0.5-um CMOS pro-
cess that was used in this research project. Performance degrades rapidly when the supply
voltage is lowered beyond 1.2 V. Almost all designs have a minimum performance
requirement, and in general, the supply voltage should be set at the minimum value that
provides acceptable performance. A good metric for comparing the energy efficiency of
different designs is the energy-delay product [11]. This metric captures the trade-off that a

designer can make between performance and energy efficiency. The graph for the energy-

14

20 v 20.0

150}
— —
~
2 =
bt >
5 g 100}
[-}]
o &
so0}
0.0 0 " 0.0 N N
1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0
Vpp (V) Voo (V)

Figure 2.4: Dependence of Delay and Power on Supply Voltage

086 | .

Energy.Delay (fJ.ns)

04 I -

02 .

0.0

1.0 2.0 3.0 2.0
Vpp (V)

Figure 2.5: Energy-Delay Product vs. Supply Voltage
delay product of the inverter circuit mentioned above is shown in Figure 2.5. The nominal

supply voltage for the circuits designed in this research project was 1.5 V. This design

point is very close to the minimum of the energy-delay curve.

15

The golden rule in minimizing power dissipation is to design systems that can run
at as low a supply voltage as possible that will satisfy the performance requirements. The
choices made at all design levels, from algorithms and architectures to circuits and tech-
nologies should allow the reduction of the supply voltage as much as possible. This means
that these design choices must be able to cope with and compensate for the speed loss
associated with reducing the supply voltage. Some of these choices might result in more
physical capacitance and/or more switching activity, but if they allow a reduction in the
supply voltage, then the quadratic decrease in power may more than compensate for the

increase due to the increased physical capacitance and switching activity.

One approach to further reduce power dissipation is to run each circuit at its own
optimal supply voltage, which could be different from that of other circuits [12, 13]. This
approach requires routing of multiple supply lines to different blocks of a chip, and it also
requires level-shifter circuitry that will allow translation of signal levels between two
blocks that run at different supply voltages. The overhead of these level-shifters and the
complexity of the extra routing will limit how far this approach can be taken. Neverthe-
less, partitioning a chip into two or three voltage domains that have different performance

requirements can be very effective in reducing power dissipation.

2.3.1 Concurrent Processing

Concurrent processing is a well-known architectural technique that can be used to
increase the processing throughput of a design. This increase in throughput can be used to
compensate for the speed loss associated with lowering the supply voltage. By applying
concurrent processing techniques and thus increasing the throughput of a given design, we
can lower the supply voltage and reduce power dissipation, while still meeting perfor-
mance requirements [5, 8]. This approach can be used if the algorithm being executed by

our design can be divided into separate tasks that can be executed concurrently. As we will

16

F() |f‘> F) | - | FO

C=Cp C=NC,
=0 f=fo/N
V=V0 . V(Vo

Figure 2.6: Parallel Processing

see in the next chapter, signal processing algorithms exhibit high levels of concurréncy

that can be exploited in this manner to reduce power dissipation.

There are two methods to realize concurrent processing: parallel processing and
pipelining. In parallel processing, a functional unit is replicated N times. The input data
stream is distributed to the functional units, and each functional unit operates on one token
of input data in parallel with others. This is illustrated in Figure 2.6. In the parallel design,
N tokens of input data are processed concurrently, and the throughput of the original
design with a single functional unit has been increased by a factor of N. Capacitance has
increased by a factor of N, but we can now lower the clock frequency by a factor of N. To -
meet the original performance requirement, each functional units can now operate N times
slower than before, and we can lower the supply voltage and benefit from the quadratic
drop in the power dissipation. The area of the design has increased by a factor of N, how-
ever, so in effect, we have engaged in an area vs. power trade-off. The area increase is one

factor that limits how large N can be. Another factor that limits N is the capacitance and

17

Jo f=ro
V= Vo V< Vo

Figure 2.7: Pipelined Processing

delay overhead of distributing data tokens to and merging data tokens from the parallel
functional unit. This overhead can become prohibitively large as N increases and limits

how far this trade-off can be taken.

Pipelining is the other method to realize concurrent processing. In a pipelined
design, each functional unit is divided into multiple stages. The pipeline stages are sepa-
rated by registers, and each stage can operate on a different data token concurrently. This
is illustrated in Figure 2.7. The cycle time of the pipelined design is equal to the logic
delay of the slowest stage. In an optimal N-stage pipeline, the delay of each stage is 1/N
of the original delay, and processing throughput increases by N. Ignoring the pipeline reg-
isters for the moment, we can see that the capacitance has not changed, and to meet the

original performance requirement, the clock frequency does not change, either, but since

18

the logic depth between registers has decreased, we can lower the supply voltage and ben-
efit from the quadratic reduction in power dissipation. In practice, the delay and capaci-

tance of the pipeline registers limit how far this technique can be taken. Another limitation
is that the pipelined design has an additional N -1 cycles of latency in producing a result

compared to the original design, and in some applications this may not be acceptable.

2.3.2 Dynamic Scaling of the Supply Voltage

In some applications, the performance requirements of a system may vary in time.
In these applications, it will make sense to dynamically vary the supply voltage, so that it
is always at the lowest possible value that provides sufficient throughput. If a system
spends most of its time in the low-throughput mode, then the potential savings of adap-
tively scaling the supply voltage can be signiﬁéant. A good example of an application
where this technique can be very effective is in the error-corrector circuitry of a digital
compact cassette (DCC) audio player [14]. In normal operation, when error rates are low,
the required throughput is also low, so the sysiem can run at a low supply voltage. When
there is a burst of errors, the error-correction circuits must perform a large number of addi-
tional computations to correct those errors in real-time. When that happens, the supply
voltage can be automatically increased to provide sufficient performance to correct the
errors. Another important application where dynamic scaling of the supply voltage can be
very effective is in the microprocessor circuits of battery-operated portable computers
[15]. The supply voltage can be dynamically adjusted by the operating system based on

the amount of work being executed by the computer.

2.3.3 Reduced-Swing Interconnect

Equation 2.1 was derived under the assumption that the voltage swing on a circuit

node switching from high to low (or from low to high) is equal to Vpp. This is indeed the

19

case in CMOS circuits where V = 0 represents the low logic level, and V = Vp, repre-

sents the high logic level. If the voltage swing is V. instead, then the switching energy is

sw?

Thus, by reducing the voltage swing we could reduce switching energy linearly.
This requires the use of special driver and receiver circuits that can produce and sense
reduced swings [16). This technique can be used only when the energy savings are far
more than the overhead incurred by the driver and receiver circuits. For circuit nodes that
are heavily loaded, the energy (and propagation delay time) saved by using reduced
swings can be significant. This technique can be especially valuable in programmable pro-
cessors where numerous buses are used to carry information between computational and

storage blocks.

2.4 Reducing Capacitance

Since switching energy is proportional to the capacitance of a switching circuit
node, minimizing capacitance is an important goal for reducing power dissipation. Node
capacitances are due to the parasitic capacitances of the transistors and the wires. Transis-
tor capacitances are due to the gate capacitance and the diffusion capacitances of the
source and drain areas. Gate capaéitance is proportional to the area of the gate, and the
area of the gate is equal to the product of the transistor width and the channel length. Since
in digital circuits, channel lengths are typically at the minimum allowed by the fabrication
technology, then gate capacitance is proportional to the width of the transistors. Diffusion
capacitance has a bottom and a side-wall component which are proportional to the area
and perimeter of the diffusion areas, respectively. It follows that diffusion capacitance is
also proportional to transistor width. Wire capacitance is proportional to the length of a

wire. It follows that for low-power design we must try to minimize the size of the transis-

20

tors and the length of the wires. There is, however, a trade-off at work here that should be
kept in mind for a successful design. Reducipg the size of the transistors slows down the
circuits. In some situations, it is advantageous to use larger devices, and hence increase
capacitance, but since the circuits are faster, we can operate them at a lower supply voltage
and benefit from the resulting quadratic drop in power dissipation. In this scenario, even
though we have increased capacitance, we have reduced the overall power because we
have managed to run the circuits at a lower supply voltage. This approach should be taken
with critical circuit paths that determine the throughput of a design. Circuits on the non-

critical paths should use the smallest possible devices.

2.4.1 Application-Specific Processing

One approach to minimizing capacitance is to use circuit blocks that are custom-
made to perform the specific computational tasks required by a given application. In this
approach, the use of more versatile and general-purpose circuit blocks is to be avoided.
This approach can significantly reduce the capacitance associated with an operation
because an application-specific circuit block is no larger and no more complicated than the
bare minimum required to execute the required operation. General-purpose circuit blocks
are necessarily larger and more complex because they are designed so that they can exe-
cute several different operations. They also have to be large enough to handle the largest
data size encountered in a given application. For example, it is far more efficient to add
two 8-bit operands on an 8-bit adder than it is on a 16-bit general-purpose arithmetic/logic
unit. While the 16-bit ALU is versatile and can execute other useful operations and can
also handle the longer word lengths that may be present in the application at hand, it is
very inefficient for adding two 8-bit numbers. If in a given application, most of the opera-
tions executed by this ALU are 8-bit additions, then a great deal of energy is wasted. As
we will see in Chapter 4, one of the reasons why general-purpose processors are so much

less energy efficient than application-specific designs is that they waste a great deal of

21

energy in large, centralized computational resources that are designed to be completely

general-purpose.

2.4.2 Exploiting Locality of Reference

Driving global signals across a chip and accessing large, centralized memories and
functional units are power-consuming tasks that must be avoided in an energy-efficient
design. This can be accomplished by partitioning a design such that the locality of refer-

ence present in a given algorithm is preserved.

An algorithm consists of a sequence of computational steps. Each step of an algo-
rithm uses one or more operands produced in previous steps and produces new operands
that are used by the following steps. Locality of reference is a natural property exhibited
by many algorithms and arises from the fact that most computational steps typically inter-
act and communicate with only a few previous and subsequent steps. Communication pat-
terns in the data flow graphs of these algorithms are localized, and it is very rare that a
computational step communicates globally with many other steps. By partitioning a sys-
tem properly, this locality can be exploited to minimize the amount of power-hungry glo-
bal interactions. This can be achieved by a distributed processing approach in which,
instead of using a single, centralized general-purpose processor, the computations required
by a given algorithm are distributed across a set of smaller local processors. This approach
can significantly reduce the power associated with data transfers. An additional benefit of
this approach is that the local processors can be optimized for a particular section of the
algorithm and can thus be far more energy efficient than a single, centralized general-pur-

POSE processor.

An additional benefit of distributed processing is that the energy of memory
accesses can be significantly reduced. This is particularly important because memory

accesses can be responsible for a significant fraction of total power- dissipation [17, 18].

22

The energy of a memory access is proportional to the number of words stored in that
" memory. A distributed array of small, local memories can, therefore, be far more energy-

efficient than a single large, shared memory.

Another aspect of distributed processing is the use of distributed controllers. In a
centralized control approach, a single finite-state machine generates all control signals for
all processors and memories. The energy overhead of distributing these signals across the
chip can be significant. In a distributed control approach, only a small amount of global
control information is distributed to local controllers, which then generate all of the con-

trol signals required locally.

2.5 Reducing Switching Activity

Since switching events are the cause of energy consumption, in an energy-efficient
design the number of switching events must be minimized. In other words, any given
computation must be performed with a minimum number of switching events. There are a

number of ways that excess switching can be avoided.

Ideally, during every execution cycle, since each logic gate generates one result,
there should be at most one switching event at the output of each gate if the logic output of
the current processing cycle is different from that of the previous cycle. In combinational
CMOS gates, however, the output of a gate can switch multiple times before it settles to its
final value. This effect is called glitching, and it is caused at circuit nodes whose logic
function is a function of a number of inputs with different path delays leaciing to the gate
driving the circuit node in question. As the results from these different paths arrive at the
gate one at a time, the gate evaluates several times umi] all inputs have arrived, and the
gate then produices it final output. This mechanism can actually waste quite a bit of energy,
especially in structures where there are many different paths leading to the outputs. One

good example is a carry-ripple adder. As the carry signal ripples through the adder, the

23

outputs can glitch many times, as several intermediate values are evaluated. A designer
should carefully analyze a design and pick logic structures that have more balanced paths
in order to minimize glitching. One technique is to insert extra delays to create more bal-

ance in the logic structure [19].

How data is represented and encoded can have an important effect on the amount
of switching activity, as well. The reduced switching activity of a given representation can
more than compensate for a possible increase in circuit complexity and capacitance. For
example, the sign-magnitude representation can result in less switching activity than the
familiar two’s-complement representation [20]. In the two’s-complement representation,
when the sign of a value changes, several of the most significant bits can change. In sign-
magnitude representation, however, only the most significant bit changes. For example, in
the transition from O to -1, all of the bits will change when numbers are represented in

two’s-complement format (00000000 => 11111111), whereas in sign-magnitude repre-

sentation, only two bits change (00000000 => 10000001). Arithmetic circuits in sign-
magnitude are, however, more complex, so it may not always be beneficial to use the sign-
magnitude representation. But if the data in question is being transmitted through a

heavily loaded bus, then using the sign-magnitude representation can save energy.

2.5.1 Avoiding Switching Activity in Unused Modules

An important approach in low-power design is to avoid any kind of unnecessary
switching activity. This approach corresponds to a design philosophy in which all circuit
activities occur strictly in a demand-driven fashion. This means that no circuit node should
ever switch unless there is an actual demand for it. This seemingly simple objective can,
however, be quite difficult to achieve. A number of different techniques have been devel-

oped to minimize excess switching activity.

24

In a conventional sy_lnchronous digital system, a global clock signal synchronizes
the transfer of data to the storage elements, i.e., registers and latches. The clock signal is
distributed across the entire chip and triggers all registers and latches. The clock signal is,
thus, a heavily loaded signal and can consume a great deal of power. Even if there is no
new input data to be processed by the system, the clock signal is still switching and the
storage elements are being clocked. This can be a significant waste of power if a system
spends only a fraction of the time performing useful work. An important objective in low-

power design, then, is to prevent this unnecessary switching activity.

A useful technique to reduce unnecessary switching activity is to use gated clocks.
In this approach, additional control logic is used to monitor the activity of different mod-
_ules in a chip. This control logic determines if a given module is needed to do useful work
and produces control signals that can gate off the clock signal going to that module when
it is not needed. Thus, no energy is wasted in an idle module. This approach can be quite
effective in reducing unnecessary switching activity. This approach can be applied down
to the level of individual storage elements [21], but the overhead of the required control
logic must be carefully taken into account, as it may not always be beneficial to add clock
control circuitry for every single register and latch. Since gated clocks introduce addi-
tional logic in the clock signal path, they can complicate the distribution of the clock sig-
nal across the chip. Extra design effort is required to minimize clock skew between

different clock domains.

With gated clocks, while idle modules are deactivated and waste no power, there is
still the power consumption of the free-running global clock signal which can be signifi-
cant. A common approach to avoid unnecessary power consumption by the clock signal is
to monitor the activity of the system and to deactivate the entire chip after a specified

period of inactivity. During this sleep mode, the inputs of the system must be monitored to

—»| Handshake ~ Handshake —>

<+— Control Control

Figure 2.8: Asynchronous Processing with Handshake Control

determine when to reactivate the system. This approach can be quite effective in systems
that spend most of their time in the idle mode, e.g., cellular phones, but its application is
highly dependent on the nature of the application in question. An important design issue is
the latency associated with switching into and out of sleep modes that must be carefully

considered.

A radically different approach to minimizing unnecessary switching is to use asyn-
chronous circuits. In asynchronous, or self-timed, systems there is no global clock signal
that is distributed across the chip. The clock signals of the storage elements are, instead,
generated locally under the control of handshaking circuits that coordinate data transfers
between different modules (see Figure 2.8). Arrival of new data at the inputs of a given
module is accompanied by a request signal that activates the circuitry in that module. An
important benefit of asynchronous circuits is that they have a built-in, automatic power-
down capability. Arrival of new data triggers new activity, and when there is no new data
to be processed, there is no switching activity. An additional benefit of asynchronous sys-
tems is that the power overhead of distributing a global clock signal is avoided, as there is
no global clock signal. These properties make asynchronous circuits attractive for low-
power systems. We will discuss asynchronous circuits in more detail in Chapter 5, where a

locally-synchronous/globally-asynchronous approach is presented.

26

2.5.2 Exploiting Temporal Correlations

The data streams processed by a signal processing system correspond to physical
signals such as voice or video signals. These signals represent continuous functions, and
they typically vary slowly compared to the rate at which they are sampled. As a result,
each sample of such a signal is highly correlated with its neighboring samples. In other
words, such a signal exhibits a great deal of temporal correlation. Temporal correlations
are not limited to data streams representing physical signals, though. They can exist in
other kinds of data streams such as address sequences for accessing regular data structures
such as vectors and matrices. The program counter of a microprocessor, for example, pro-

duces instruction address streams that are highly correlated.

The amount of switching activity caused by a correlated data stream can be signif-
jcantly less than that of a random sequence of uncorrelated samples [8, 22). When this
data stream propagates through various processing modules of a system, it results in less
switching activity than an uncorrelated, random data stream. This property can be
exploited to reduce switching activity by avoiding architectures that can destroy these
temporal correlations. Temporal correlations are destroyed when hardware resources are
time-shared to process multiple data streams in a multiplexed fashion. A time-multiplexed
processing element alternates between multiple input data streams on a cycle-by-cycle
basis. Therefore, each sample procéssed by this element belongs to a data stream that is
different from that of the previous and the following samples. The net result is that the
actual data stream processed by this element has no temporal correlations, and as a result,
switching activity can increase significantly. A low-power architecture should, therefore,
try to exploit temporal correlations in data streams by avoiding time-sharing of hardware
resources. An additional drawback of time-sharing of hardware resources is that it limits
the extent of supply voltage reduction because it requires that processing elements be

clocked faster than they would be if they did not have to process multiple streams of data.

27

2.6 Summary
We end this chapter with a list of design principles that must be followed in design-

ing low-power systems:

« To minimize the supply voltage concurrent architectures that can support parallel
and pipelined processing are required. This is, by far, the most effective approach
to minimize the supply voltage.

« Partitioning a system into a small number of voltage domains is an effective tech-
nique to minimize overall power while providing higher performance in process-
ing elements that are timing-critical. Special circuits that can translate signal levels
between different voltage domains must be used.

« Dynamic scaling of the supply voltage mﬁst be supported. This technique can be
particularly effective in applications where periods of high-throughput processing
come in bursts.

e The voltage swing on the communication links between processing elements must
be minimized. This requires the use of special driver and receiver circuits that can
operate with reduced voltage swings.

« To minimize the capacitance associated with basic computational steps, applica-
tion-specific processing modules that have been optimized for the common opera-
tions of a given algorithm must be used. Large, general-purpose processing
elements and memories must be avoided.

* Locality of reference must be exploited to minimize capacitance. Large, central-
ized hardware structures must be abandoned in favor of structures that support dis-
tributed processing. Increased concurrency is a beneficial side-effect of this
approach.

* Unnecessary switching activity must be avoided. This can be achieved by system-

level power-down modes and gated clocks. Asynchronous processing can be par-

28

ticularly effective to minimize switching activity because it exhibits built-in auto-
matic power-down of unused modules. .
 Time-sharing of hardware resources destroys the temporal correlations present in
data streams and must be avoided. This is particularly important in signal process-
ing applications. It should be noted that this approach is consistent with the goal of

supporting concurrent processing.

To approach the energy efficiency of a custom, application-specific integrated cir-
cuit, it is imperative that all of the principles listed above be applied aggressively in

designing a programmable architecture. -

29

CHAPTER 3

Properties of Digital Signal
Processing Algorithms

In this chapter we will take a look at some important properties of digital signal
processing algorithms that must be considered when designing programmable architec-
tures for these algorithms. This will be done by studying the characteristics of some exam-
ple algorithms. We will then present an overview of speech coding algorithms that are
based on Code-Excited Linear Prediction (CELP), and we will study and analyze the Vec-
tor-Sum Excited Linear Prediction (VSELP) algorithm in detail. This chapter will con-
clude with a list of architectural requirements that must be satisfied in designing efficient

programmable architectures for signal processing algorithms.

3.1 Computational Performance Requirements

DSP applications are real-time in nature and involve processing of input signals
that arrive at a specified sample rate. For example, audio signals in digital compact disc
applications are sampled at 44.1 kHz [23]. Sampling rates for video signals are typically in
the range of 10’s of MHz. This means that any given implementation of a signal process-

ing algorithm must have sufficient computational performance to process the incoming

30

data streams at the specified rate (and no faster). As a result, DSP applications tend to
have large performance requirements ranging from 10’s of MOPS (Million Operations Per
Second) for speech and audio applications to 10’s of GOPS (Giga Operations Per second)

for video applications.

Another factor contributing to the required computational performance level for a
given application is the complexity of the processing that is performed. A good measure of
the complexity of a signal processing algorithms is the number of operations per sample of
the input signal. Speech coding applications tend to exhibit a great deal of complexity that
can be in the range of 100’s of operation per sample of speech. Video applications on the
other hand tend to exhibit less complexity that is typically on the order of 5 to 10 opera-

tions per sample.

3.2 Concurrency

One of the key propertiés of signal processing algorithms that has a major impact
on architecture design is the abundance of concurrency in signal processing algorithms.
Signal processing algorithms exhibit high levels of spatial and temporal concurrency that
can be exploited by parallel and pipelined processing, respectively. This is quite fortunate,
as the high levels of concurrency exhibited by DSP algorithms can be exploited to meet
the computational performance levels demanded by these algorithms. As we saw in Chap-
ter 2, exploiting concurrency is an important means of lowering the supply voltage and
reducing the power dissipation of an architecture. An efficient programmable architecture
for signal processing algorithms must, therefore, be able to exploit the concurrency
present in these algorithms. One aspect of exploiting this concurrency is having multiple
processing units that can perform multiple computations concurrently. Another aspect is to
provide these processing units with the increased memory bandwidth that is a result of

processing multiple operands concurrently. Not only the structure of the data store must

31

x[n]

yln}

Figure 3.1: Finite Impulse Response Filter

allow concurrent accesses, but the interconnection network between the data store and the
processing units must allow concurrent transport of all the required operands during a
given execution cycle. Additionally, the interconnect between the functional units and the
memories must be flexible enough to support the communication patterns that typically
arise in DSP algorithms. In the next two subsections, we will illustrate the abundance of
concurrency in DSP algorithms by considering two important examples that are very com-
mon in many DSP applications. While we are considering only two examples, it should be
pointed out that the characteristics illustrated by these examples are common across a vast

majority of, if not all, DSP algorithms.

3.2.1 The Finite Impulse Response Filter
The finite impulse response (FIR) filter is one of the most common algorithms in
signal processing. The computation associated with an N-tap FIR filter is described by the
following difference equation:
N-1

yln] = ZCi.x[n—i] = cg-x[n]+c;-x[n-1]+ .. +cy_ - x[n-N+1] @D
i=0

The block diagram associated with this computation is shown in Figure 3.1. The
spatial concurrency exhibited by this algorithm can be readily seen in this diagram. All N

multiplications can be performed in parallel in O(1) time. The N additions can also be

32

x[n] * — —ceeeeene-

Co Cq Cq

y[n] | D D fe{4)—----------

Figure 3.2: Retimed FIR Filter

done in parallel using a tree structure in O(logN) time. This algorithm also exhibits tem-
poral concurrency which can be exploited by retiming [24] the algorithm as shown in Fig-
ure 3.2. In this retimed version, each multiplication and the addition that follows it form a
pipeline stage that executes concurrently with other pipeline stages, and as a result, the
FIR computation is executed in O(1) time. As we can see, the FIR filter exhibits a high
degree of spatial and temporal concurrency, and the throughput of an N-tap FIR filter can
be increased by a factor of N if this inherent concurrency can be fully exploited by a given

implementation.

3.2.2 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient, divide-and-conquer algorithm for

calculating the Discrete Fourier Transform (DFT) of a discrete-time sequence [25]). The
DFT of a finite-duration sequence x[n] of length N (0<n<N-1) is a finite sequence

X[k] of length N (0 <k <N - 1) defined as

N-1
X[kl= ¥ x[n]W’;' 62)
n=0
where Wy = e TV (3.3)

33

x[0] R > — X[0]
xX[1] X[1]
X(2] 1 _\ f ><: Xi2)
x(3] » Xi3)
x[4] » > X[4]
x[6] 3 -/ \—- X[e)
x[7] > > X[7)

Figure 3.3: 8-Point, Radix-2, Decimation-in-Frequency FFT

XsqIP] —
Xsq[q] -

> Xslk]

Xg[k+1]

Xs[k]

Xslk+1)

Figure 3.4: Radix-2 FFT Butterfly Computation

The time complexity of a straightforward calculation of the DFT as defined above

isin O(N 2) , whereas the time complexity of the FFT algorithm is in O(NlogN). The
most popular version of the FFT algorithm is the radix-2 algorithm, for which N is a power
of 2. The block diagram of an 8-point, radix-2, decimation-in-frequency (as opposed to
decimation-in-time) FFT is shown in Figure 3.3. The computation performed by the

blocks in this diagram is known as the FFT Butterfly and is illustrated in Figure 3.4. In

general, an N-point, radix-2 FFT consists of log,N processing stages, each of which
involves N/2 butterfly computations. Each stage generates a vector X [k] of length N by

processing the vector X _,[k] generated by the preceding stage. The output of the last

34

stage is the DFT of the input sequence. Since the elements of these vectors are complex
numbers, the butterfly computation consists of four real multiplications and four real addi-
tions. As we can see in Figure 3.3, all butterfly computations of a given stage of the FFT
algorithm can be performed in parallel. In addition, the algorithm can be pipelined by
inserting registers between the stages. The butterfly computation also exhibits fine-grain
concurrency that can be exploited by parallel and pipelined processing. Thus, the FFT
algorithm exhibits a great deal of concurrency that can be exploited to create an efficient

design.

3.3 Dominant Kernels

An important property of signal processing algorithms is that their execution time
(and energy) is dominated by regular, repetitive kernels of computation. These kernels are
the calculations that are performed in the inner loops of a program implementing a given
DSP algorithm. We saw two examples of these dominant computational kernels in the pre-
vious section. The dominant kernel in the FIR filter is the tap calculation which is a multi-
ply-add operation. The multiply-add (also known as multiply-accumulate or MAC)
operation is in fact one of the most common kernels in signal processing and appears in a
wide variety of algorithms. The dominant kernel in the FFT algorithm is the butterfly cal-
culation. The FFT algorithm is in essence nothing but a vcollection of butterfly operations.
The mean-squared error (MSE) calculation is another example of a dominant kernel which
is commonly used to represent the magnitude of the difference between two vector quanti-

ties:

2 Nl 2

i=1
In vector quantization algorithms [28], where the objective is to select one of a set of vec-

tors that is the closest to a given input vector (representing an image block or a frame of

35

P(n) = min[Pp(n— 1)+B, (n- 1),P(n—-1) +Bq's(n— 1)]

Figure 3.5: Radix-2 Viterbi Add-Compare-Select Calculation

speech, for example), the mean-squared error calculation is a significant fraction of the
total execution time. Another example of a dominant kernel is the add-compare-select
(ACS) calculation of the Viterbi algorithm [26, 27], which is widely used in digital com-
munication and magnetic storage systems. The ACS calculation is illustrated in Figure

3.5. The objective here is to decide which state transition to state s (p — s or g — s) will

minimize the path metric for the path leading to state s (P;).

Executing the dominant kernels of a given signal processing algorithm on efficient
hardware structures that can execute these kernels with a minimum of energy overhead
can save significant amounts of energy, as most of the execution energy is consumed by
the dominant kernels. This is one of the key factors that makes a custom, application-spe-
cific implementation of a DSP algorithm highly energy-efficient. A typical programmable
processor, however, does not exploit the opportunities presented by the dominant kernels

of a DSP algorithm and incurs a great deal of energy overhead in executing those kernels.

3.4 Data Structures and Access Patterns

In addition to kernel calculations that process input data and generate output data,

i.e., data calculations, the inner loop implementing a given kernel has to perform addi-

36

tional calculations which are considered address calculations. These calculations are per-
formed to determine the memory addresses of the required input and output data tokens.
The mathematical formalism used in describing signal processing algorithms deals with
vector and matrix quantities, and as a result, in addition to scalar quantities that are usually
stored in local registers, the data structures manipulated by signal processing algorithms
are usually one- and two- (and sometimes higher) dimensional arrays that are stored in
memory. The data calculations of a kernel are therefore accompanied by address calcula-
tions that are used to determine the memory addresses of the data elements required by the

data calculations.

How address calculations are handled is an important architectural issue. For a
general-purpose processor, address calculations are no different than data calculations. A
general-purpose processor can handle all calculations equally well (or equally badly!)
with its general-purpose datapath under program control, but this is not necessarily the
most optimal approach. Signal processing algorithms tend to access array variables in a
very structured manner. As an inner loop executes, array variables are scanned in orderly
patterns. Some examples of access patterns are shown in Figure 3.6. While in principle
there are many different ways of scanning the elements of an array, and flexible address
generators are needed in a programmable architecture, the access patterns that are com-
monly encountered in practice can be implemented efficiently by simple arithmetic and

logic operations on address pointers.

3.5 Case Study: Speech Coding by Code-Excited Linear Prediction

The problem addressed by speech coding is that of reducing the amount of infor-
mation required to describe speech signals [29]. A central issue in voice communication
applications, e.g. telephony, is the amount of bandwidth required to represent speech sig-

nals adequately. It is experimentally known that the power spectrum of the human speech

37

p = address_of (A[0]);
0 N-1 for (i = 0; 1 < N; i++) (

A [>0 >0->0—>0—>0]
p=p+1;

p = address_of(A[0]);

0 N-1 for (i = 1; i <= N; i++) (
A [o»o—»o—»o—»o—»o] for (J = 0; 3 < d; J++) A
p=p+1;
}
Pp=p - i;
}

_ 0 N-IT p = address_of (A[0][0]);
e—+0—s>0—->0—>0—>0 |0 for (i = 0; i < M; i++) {
6—>0—+0>0>0>0 for (3 = 0: J < Ni J++) {

A - _ cees
e—+>0—>0>0>0>0 p=p+ 1;
¥ — }
o—+>0—>0>0—>0—>0 M-1 }

_ 0 N-1_

: ® o o o o 0 p = address_of(A[0]([0]);
e—+0 © © o o for (i = 1; 1 <= N; i++) {
for (3 = 0; j < i; j++) {

A o—>0—>0 © o o e

= + 1;
o—>0—+>0+0 O o } P p
O—+>0—+>0>0+>0 O p=p+N-i;
}
oe—+>0—+>0+>0+>0—0 |N-I
B 0 p = address_of(A[0][0]);
q = pi:
for (i = N; 1 > 0; i--) (
for (j = 0; j < i; j++) {
A P=p+ N+ 1;
}
a=4q+1;
P =4q;

N-1)

Note: p and q are address pointers. Arrays are assumed to be stored in row-major format.

Figure 3.6: Examples of Array Access Patterns

38

signal is limited to frequencies below 4 kHz [30]. The 3-dB bandwidth of the telephone
network is approximately 3.6 kHz, and in digital telephony applications, input speech sig-
nals are sampled at 8 kHz and coded using Pulse-Code Modulation (PCM) with 8-bit, log-
arithmic quantization (linear quantization requires 12 bits of resolution for the same level
of quality) [31]. This is known as toll-quality speech and requires 64 kbit/s of bandwidth
to communicate. Speech coders are employed to process this PCM speech signal and

reduce the bit rate required to communicate it.

Coders can be broadly classified into two classes: waveform coders and paramet-
ric coders [32]. Waveform coders attempt to reduce the bit rate of the input speech wave-
form without assuming any knowledge about the nature of speech signals. The simplest
waveform coder is the PCM coder with logarithmic quantization, which, as mentioned
above, reduces the resolution needed to represent samples of speech signals from 12 bits
to 8 bits. Differential Pulse-Code Modulation (DPCM) is an improved coding scheme in
which the difference between consecutive samples, as opposed to the actual value of a
sample, is transmitted. Since the variance of this difference signal is smaller than that of
the original signal, the difference signal can be quantized with fewer bits than the original
signal, and the required bit rate is reduced, at the expense of a slight decrease in subjective
speech quality. Adaptive Differential Pulse-Code Modulation (ADPCM) is a modified
form of DPCM in which adaptive quantization is employed to increase the quality of the
resulting speech signal. These coders reduce the required bit rate to 32 kbit/s, and the sub-
jective quality of the speech signal produced by ADPCM, in particular, is very close that
of PCM.

Parametric coders use a priori knowledge about the nature of speech signals to
reduce the bit rate required to communicate them. Parametric coders exploit the fact that

speech signals are quasi-stationary in short time intervals of 5-20 ms, during which a sin-

39

impulse train

excitation
l Vocal
Tract }—— Synthetic Speech
”“ l!!m I Filter
random
excitation

Figure 3.7: Human Speech Generation Model

gle basic sound is being uttered. Samples of the input signal within these time intervals are
highly correlated. These correlations can be modeled with a set of parameters that repre-
" sents the input speech signal during a given interval. The input speech signal is divided
into short segments, or frames, and a set of parameters representing a whole frame of
speéch is extracted and transmitted. A close approximation to the original frame of speech

can then be reconstructed by decoding the transmitted parameter set.

3.5.1 Speech Generation Model

The speech generation model that is used by parametric speech coders is illustrated
in Figure 3.7. This model captures the salient features of the human speech generation
process. The sounds of human speech are generated as air from the lungs flows by the
vocal cords, and the resulting excitation resonates through the vocal tract, which consists
of the cavities of the pharynx, the mouth, and the nose. For voiced sounds, which corre-
spond to vowels, the vocal cords vibrate at some pitch frequency, and the resulting peri-
odic excitation, which can be modeled as an impulse train, is shaped by the resonances of
the vocal tract. For unvoiced sounds, which correspond to consonants, the flow of air is
unaffected by the vocal cords, and the resulting excitation, which is the sound of turbulent

air flow and can be modeled as a random excitation, propagates through and is shaped by

40

the vocal tract. The energy of voiced sounds is generally more than the energy of unvoiced

sounds.

In the model shown in Figure 3.7, the vocal tract is modeled by a time-varying fil-
ter. The vocal tract can be adequately modeled with an N-th order, all-pole filter with the

following transfer function [30]

1 1
1-A(z) N

H(z) = 3.5)

For each frame of speech, the coefficients of A(z) are determined by Linear Prediction

Coding (LPC) analysis [33, 34]. In the LPC framework, A(z) is known as the short-term
predictor. The value of N depends on the number of resonant modes, or fofmants, of the
vocal tract that need to be modeled. Each formant is formed by a complex-conjugate pair
of poles, and as there are typically three to five formants below 5 kHz, N = 10 is quite
adequate for most applications. Depending on the type of sound being generated, either an
impulse train, for a voiced sound, or a random excitation, for an unvoiced sound, is
selected, weighted by a gain factor, and fed into the vocal tract filter. Since the vocal tract
filter synthesizes the speech signal, it is commonly referred to as the synthesis filter. In
more sophisticated coders, the excitation fed into the synthesis filter is a combination of an

impulse train and a random excitation.

A parametric coder based on the model shown in Figure 3.7 analyzes each frame
of the input speech signal and extracts the excitation signal, the gain factor, and the coeffi-
cients of the synthesis filter for that frame. These parameters are then encoded and trans-
mitted. The decoder at the receiving end uses these parameters to synthesize an

approximation to the original frame of speech.

41

Input

Speech
Pitch LPC
Detection Analysis
' '
¥ +
_,| Excitation b Pitch Synthesis | —
"~ Codebook @_ﬁ Filter Filter
: : | R -
: ! o _ITTTITIIIIIICIICIIC]IY Encode [-+
i T o o e o= e o e e o = e = = e - = an e e o am = e o -
1
b ___] Minimize Perceptual
Error Weighting

Figure 3.8: Structure of a CELP Speech Coder

3.5.2 Code-Excited Linear Prediction

Almost all modern speech coders are variations of the Code-Excited Linear Pre-
diction (CELP) speech coder [35]). The development of the CELP coder is considered a
milestone in speech coding, as it allowed coding of high-quality speech at bit rates below
8 kbit/s. In a CELP coder, the excitation signal is coded using vector quantization [28].
The basic structure of a CELP coder is shown in Figure 3.8. The task of the coder is to
select an appropriate excitation vector from a codebook of excitation vectors. This is
accomplished by an analysis-by-synthesis process [36] during which each vector in the
codebook is fed into the synthesis filter, and the synthesized frame of speech is compared
to the original frame of input speech. The excitation vector resulting in the least error
between the original and synthesized frames of speech is selected. The error criterion is
the mean-squared error filtered through a perceptual weighting filter that shapes the spec-
trum of the quantization noise such that most of the quantization noise energy is concen-
trated near the spectral peaks of the speech signal where it is largely masked by the human

auditory system. The codebook index of the selected excitation vector is transmitted, and

42

the decoder at the receiving end can select the correct excitation vector from an identical
copy of the codebook used by the coder. The coefficients of the synthesis filter are
extracted by the coder using LPC analysis. In a CELP coder, vector quantization is used to
code the random excitation only. Pitch periodicity of voiced speech is introduced into the

excitation by using a pitch filter. The transfer function of the pitch filter is

T
1- AL(Z) 1- BZ_L

H;(z) = (3.6)

where A, (z) is known as the long-term predictor, and L is known as the lag and repre-

sents the period of the impulse train excitation needed for voiced speech. Once the index
of the excitation vector, the coefficients of the synthesis filter, the lag, and the excitation
gain for the current frame of the input speech signal are all determined, they are encoded

and transmitted.

Searching for the best excitation vector in the codebook is the most time-consum-
ing task in a CELP speech coder. As a result, a great deal of research effort has focused on
finding codebook structures that will make the codebook search process more efficient

than a straightforward exhaustive search.

3.6 Vector-Sum Excited Linear Prediction

The Vector-Sum Excited Linear Prediction (VSELP) algorithm was developed for
use in cellular and mobile telephony applications [37]. An 8-kbit/s VSELP speech coder
was adopted for the IS-54 North American Digital Cellular standard. The VSELP algo-

rithm requires about 15 MIPS of computational performance.

The basic structure of the VSELP coder is shown in Figure 3.9. The 8 kHz input

speech signal is divided into 20-ms frames (160 samples). Each frame is sub-divided into

43

Input __| wz)

Speech
4 :
Adaptive \
" Codebook | B '
}
X .
' Codebook :
;-u oe100 — v, +)— H(z) —'C-{;
1
1
§
]
Codebook
* » O 9200 =
]
]
]
o] Minimize
Error

Figure 3.9: Basic Structure of the VSELP Coder

5-ms subframes (40 samples) that are processed independently. A 10-th order synthesis
filter of the form shown in Equation 3.5 is used. The synthesis filter is combined with a
perceptual weighting filter to form a weighted synthesis filter. The transfer function of the

perceptual weighting filter is

W(z) = 1-4@)

= 1-a@/h) @7

where A(z) is the short-term predictor of the synthesis filter, and A = 0.8. The transfer

function of the weighted synthesis filter is thus

1 1

HO = 1daom = v 4.

(3.8)

For each frame, the coefficients of H(z) are determined by LPC analysis. These coeffi-

cients are used in the fourth subframe. The coefficients used in the other three subframes

44

are computed by linearly interpolating the coefficients of the fourth subframe of the previ-

ous and current frames.

The excitation vector is derived by combining vectors from three separate code-

books: an adaptive pitch codebook and two stochastic codebooks. The criterion for select-

ing an excitation vector u = (u[0],...,u[N~-11) (N =40 is the subframe length) is to

maximize C 2/ G, where

N-1

C =Y winlpln] 3.9)
n=0
N-1

G=Y (u’[n]_)2 (3.10)
n=0

w’[n] is the filtered code vector and p[n] is the perceptually weighted input speech vec-

tor. This is equivalent to minimizing the mean-squared error.

The pitch codebook is used to implement the pitch filter of Equation 3.6. The pitch

codebook is adaptive, and it implements the functionality of the delay line associated with

the 2™~ term of the pitch filter. The codebook stores the past 146 samples of the excitation
signal. Each value of the long-term prediction lag L corresponds to a subframe of excita-
tion from the past starting L samples ago (see Figure 3.10). L can range from 20 to 146
(127 codes). The 128-th code for L is used to indicate that the pitch codebook is not to be
used. When L < 40, the period of the excitation pitch is less than the length of a subframe,
and the amount of history in the adaptive codebook is not sufficient to construct a full sub-
frame of excitation; therefore, the available history is repeated to create a full subframe of
excitation. After all codebooks have been searched, and the excitation for the current sub-

frame is completely determined, the adaptive codebook is updated.

45

-146 Adaptive Codebook 4 -1

1{-145 -108| L=145
1

i746 -107| L=146

Figure 3.10: Structure of the Adaptive Pitch Codebook in VSELP

The stochastic codebooks in VSELP are highly structured and can be searched

efficiently. Each codebook consists of 128 code vectors u; (0<i<127). These vectors

are different linear combinations of seven basis vectors v,, (1<m<7):

;
=36 ,Vn @3.11)
m=1

where 6, ,, can be either +1, if the m-th bit of the code index is 1, or -1, if the m-th bit of

the code index is 0. This scheme greatly simplifies the codebook search process because
the response of the weighted synthesis filter to each code vector can be obtained by com-
bining the filtered basis vectors, instead of filtering the code vectors. In addition, the effect
of changing one bit in the code word, due to a transmission error, for instance, is not cata-

strophic, as the erroneous vector is different from the correct one only by one basis vector.

The codebooks are searched sequentially. First, the pitch codebook is searched.

Next, the basis vectors of the first stochastic codebook are orthogonalized to the filtered

46

excitation vector from the pitch codebook using the Gram-Schmidt approach [38]. The
orthogonalized basis vectors are then filtered, and the codebook is searched. Next, the
basis vectors of the second stochastic codebook are orthogonalized to the filtered excita-
tion vectors from the first two codebooks. The orthogonalized basis vectors are then fil-
tered through the weighted synthesis filter, and the second codebook is searched. The

codebook gain factors P, v;, and v, are determined during the search process, and are then

jointly quantized using a vector quantizer. Once the excitation vector for the current sub-
frame is completely determined, the adaptive codebook is updated such that the new exci-
tation vector becomes the most recent history in codebook. Further implementation details

of the VSELP algorithm can be found in the IS-54 standard description [39].

3.6.1 Analysis of the VSELP Algorithm

The execution profile of the VSELP algorithm is shown in Table 3.1. The table
shows the percentage of total execution time for the most ﬁme-consunﬁng functions in
VSELP. The data in this table is based on an implementation of the VSELP algorithm in
the C programming language running on a Sun SPARC processor. The profile of the pro-
gram was obtained using a run-time software profiler. As in all CELP coders, most of the
execution time of the VSELP algorithm is spent on searching the codebooks for the best

excitation vectors.

We can gain more insight into the computational complexity of the VSELP algo-
rithm by looking at the execution profile of the dominant kernels. Table 3.2 shows the exe-
cution profile of the four most dominant kernels of the VSELP algorithm. These four
kernels account for 85% of the total execution time of the VSELP algorithm. Furthermore,
the two most dominant kernels account for 76% of the total execution time. Thus, an effi-
cient implementation of the VSELP algorithm will require that these four kernels be exe-

cuted very efficiently, with a minimum of time and energy overhead.

47

3.7 Algorithm Domains

The CELP coder is the prototype on which almost all modern speech coders are
based. Many different CELP-based algorithms have been developed for voice communi-
cation applications, especially mobile and cellular telephony. Some examples include:

VSELP [37], DoD CELP [40], LD-CELP [41], PSI-CELP [42], ACELP [43], and CS-

Function % Time
FilterCodebook () 46.5
ComputeLag () 21.9
CodebookSearch () 8.2
ComputeWeightedInputSpeech () 3.9
IIRFilter() 3.7
QuantizeGains () 3.5
OrthogonalizeCodebook () 2.8
MatrixMultiply () 2.6
LPCAnalysis() é.l
StateAdvanceToTime () 1.8
UpdateFilterState() 1.7

Table 3.1: Execution Profile of the VSELP Algorithm

Kernels % Time
mdSmthesisFilter () 45.6
DotProduct () 30.5
IIRFilter() 7.2
FIRFilter() 12

Table 3.2: Dominant Kernels in the VSELP Algorithm

48

ACELP [44], to name just a few. Collectively, these different algorithms form a domain of
algorithms, as they have some basic similarities. Algorithms within a domain have similar
computational structures, dominant kernels, data structures, and word-lengths. Differences
among algorithms within a domain are mainly due to the values of the basic parameters
and the high-level control flow of each individual algorithm. CELP-based coders, for
example, use the same basic analysis-by-synthesis computational structure consisting of
codebooks and speech synthesis filters modeling the human vocal tract, they all use 16-bit
arithmetic, and they spend most of their execution time computing vector dot products, fil-
tering code vectors, and synthesizing speech frames with different excitation vectors. Dif-
ferences among these algorithms are mainly due to differences in the structure and the
number of codebooks that are used, and in the parameters of the synthesis filter such as the

number of filter taps and the resolution of filter coefficients.

Another example of a DSP algorithm domain is formed by video compression/
decompression algorithms that are based on the Discrete Cosine Transform (DCT) [45].
There are a number of different algorithms and standards that are in wide-spread use, such
as H.261, MPEG, MPEG-2, and MPEG-4 [46]. Al of these algorithms are based on DCT,
Inverse-DCT, and motion vector estimation/compensation. They vary in the high-level
control flow and in the value of the basic algorithm parameters, but they can be imple-

mented using similar hardware structures [47].

Because of their underlying similarities, algorithms within a domain can be imple-
mented using similar hardware architectures. By executing the dominapt kernels of a
given domain of algorithms on highly optimized processing units that incur minimal
energy and performance overhead, we can build processors that are highly efficient. Pro-
cessors of this type are known as domain-specific processors. The work presented in this

dissertation was focused on designing energy-efficient domain-specific processors.

49

3.8 Architectural Requirements for Digital Signal Processing

We end this chapter with a list of architectural requirements that must be satisfied

in an efficient programmable architecture for digital signal processing algorithms:

 DSP algorithms exhibit high levels of temporal and spatial concurrency. A pro-
grammable DSP architecture must be able take advantage of this concurrency and
support pipelined and parallel modes of processing efficiently.

« Concurrent processing increases the required instruction and data memory mem-
ory bandwidth. The memory structure of a programmable architecture must be
able to support the increased memory bandwidth requirement efficiently without
incurring significant delay and energy overhead.

 The interconnection network that links the memories and the processing elements
must support high data rates and must be flexible enough to support the required
communication patterns that are commonly seen in DSP kernels.

 The control structure that is used to coordinate computational activities within

multiple parallel processors and memories must be efficient and scalable.

50

CHAPTER 4

Programmable Architectures for
Digital Signal Processing

In this chapter we will take a broad look at some of the basic approaches that have
been taken in designing programmable architectures for digital signal processing applica-
tions. Our goal will be to characterize and differentiate these approaches and to develop an
understanding of their strengths and weaknesses. The main focus of this analysis will be
the energy efficiency of these architectural approaches. Our discussion will lead to a set of
architectural design principles for energy-efficient programmable signal processors. These

principles form the basis of the design choices made in the Pleiades architecture template.

4.1 Basic Model for Programmable Hardware

In order to characterize and classify programmable processor architectures, we
first need to have a basic model that captures the essence of programmable computing.
Our concern here is with the structure of programmable computing devices, so it is natural
to focus on the fundamental components that all such devices consist of and on the inter-
actions between those components. A basic model for programmable processors is illus-

trated in Figure 4.1. No particular hardware organization is to be inferred from this

51

Instruction Instruction

} |

Data e e . Data
Memory Memory
Communication Network le— Instruction
Functional .« .. Functional
Unit Unit
Instruction Instruction

Figure 4.1: Basic Model for Programmable Processors

illustration, which is merely an abstraction of the basic components of a programmable
processor and the interactions among those components. All programmable processors

have the following basic components:

« Functional units that can perform the various arithmetic and logic functions that
are required by the computations that a processor is expected to perform.

 Memory units to store the data operands processed by the functional units.

A communication network that allows the exchange of data between the functional
units and the memory units.

» Instructions that control the actions taken during each execution cycle by the

above components.

The distinguishing feature of programmable processors are the instructions. The
ability to perform different tasks at different times under the control of instruction
sequences is what makes a computing device programmable and gives it the flexibility to

perform different computations. During each execution cycle, instructions control what

52

data operands are read from the memory units, how these operands are routed to the func-
tional units, what types of operations are performed by the functional units on the oper-
ands provided to them, how results produced by the functional units are routed back to the
memory units, and where in the memory units these results are stored. Instructions require

two other basic components that are present in all programmable processors:

* Instruction memory where instructions can be stored.
e An instruction control mechanism that coordinates the delivery of instructions
from the instruction memory to the functional units, the data memory units, and

the communication network.

Differences among programmable architectures are due to the organization of the
hardware resources that are used to implement the basic components outlined above, and
the task of an architect is to organize hardware resources in such a way that the resulting
processor can perform the required computational tasks efficiently. The variety of ways in
which hardware resources can be organized is virtually limitless, and an architect has a

number of important issues and design parameters to settle:

« Functional units - A key architectural issue is the granularity of the functional
units. Granularity is a measure of the complexity of the operands processed by the
functional units (e.g., bits, iﬁtegers, floating-point numbers, vectors) and the com-
plexity of the instructions executed by the functional units. A related issue is the
variety of instruction types executed by the functional units. An important perfor-
mance parameter is the number of functional units available in a processor, as it
determines the number of computations performed in each cycle by the processor.

o Data memories - The bandwidth of the data memories, i.e., the number of read and
write operations that can be performed in each execution cycle, is an important

performance parameter. It is a function of the organization of the data memory.

53

The size of the data memory is also an important design parameter, as the amount
of data that can be stored in memory determines the complexity of the algorithms
that can be executed by a processor.

Communication network - The bandwidth and the flexibility of the communication
network are important design considerations. Bandwidth refers to the number of
operands that can be transferred through the communication network in each
cycle. Flexibility refers to the richness of the communication patterns that can be
supported by the communication network.

Instructions - The organization of the instruction memory and the instruction con-
trol mechanism is one of the most important design issues in a programmable
architecture and has a strong influence on how efficient an architecture can be. The
bandwidth of the instruction memory is one of the key performance parameters of
a processor, as it determines the number of instructions that can be executed in
each cycle. Another important parameter is the depth of the instruction memory,
i.e., the length of the longest sequence of instructions that can be stored in the
instruction memory, which is a measure of the complexity of the algorithms that
can be executed by a processor. Another key architectural parameter related to
instructions is the number of control threads that are used in the instruction control

mechanism.

The design space for programmable architectures is defined by the parameters out-

lined above. These parameters (or subsets thereof) can also be used to classify program-

mable architectures. Flynn, for example, has proposed a simple taxonomy based on the

number of threads in the instruction control mechanism and the number of functional units

[48]. In Flynn’s taxonomy, there are three basic processor types: SISD (single instruction,

single data), SIMD (single instruction, multiple data), and MIMD (multiple instruction,

multiple data). Skillicorn extended Flynn'’s taxonomy to include details of the interconnec-

54

tion networks from the functional units to the data and instruction memories [49]. DeHon
classifies processor architectures using a basic architectural model in which instructions
are dispatched only to functional units that have local storage for data (there are no inde-
pendent data memories) and can communicate with one another via an interconnect net-
work [50]. Architectures are classified by four parameters: number of control threads in
the instruction control mechanism, number of instructions (same as number of functional
units in DeHon’s scheme) per control thread, depth of the instruction memory, and granu-
larity of the functional units. DeHon’s notion of granularity refers only to the complexity
of the operands processed by the functional units. DeHon’s scheme is more useful than
Flynn’s and Skillicorn’s in evaluating the merits of an architecture, as it considers more
details and is more quantitative in its approach. Our discussion of the energy efficiency of
different architectural approaches will be in terms of the basic architectural model shown

in Figure 4.1, and we will consider all relevant architectural parameters, as necessary.

4.2 Energy Consumption in Programmable Architectures

In assessing the energy efficiency of programmable architectures, it is important to
know what the basic components of energy consumption are when algorithms are imple-
mented on programmable architectures. It can then be determined which components are
fundamental and cannot be avoided and which components are not fundamental and must

be minimized.

The division of total energy consumption into basic components can be done in
terms of the basic hardware components that were outlined in the last section. The basic
components of energy consumption of an algorithm implemented on a programmable

architecture are due to:

» Computation of the basic arithmetic and logic functions required by an algorithm

using the functional units.

55

x[n] D D D
Cp Cq Co —l C3
$ { 4 4

X X X X
—— e
s L
=
}
yin]

Figure 4.2: Custom Implementation of a 4-Tap FIR Filter

* Storage and access of variables in the data memories.
« Communication of operands among the functional units and the data memories.
« Control of computation, storage/access, and communication activities through

instructions.

In order to determine which components of energy consumption are fundamental
and which ones are not, and to gain a better understanding of the causes of inefficiencies
in programmable architectures, it is instructive to consider the components of energy con-
sumption in custom, application-specific implementations. In a custom implementation,
the properties of a given algorithm can be freely exploited to create an optimized imple-
mentation than consumes minimal energy. As a result, a custom implementation can be
used as a reference to which other implementations based on programmable architectures
can be compared in order to evaluate their energy efficiency. Figure 4.2 shows the block
diagram of a custom, application-specific implementation of a 4-tap FIR filter. In this cus-
tom design, the hardware blocks that are used are not any larger or more complicated than

they need to be. Each hardware block performs a specific task (e.g., multiply, add, delay)

56

and consumes only the basic minimum energy required to perform that task. The word-
lengths of the registers, adder, multipliers, and buses do not have to be any larger than the
required minimum. The energy consumed by the hardware blocks used in this implemen-
tation is due to the basic computations of the algorithm and the storage/access of the state
variables of the algorithm. Since each hardware block performs a specific function, there
is no need for instructions, and the energy overhead of delivering instructions to the hard-
ware blocks is avoided. In addition, since the locality of reference particular to this algo-
rithm can be preserved using custom placement of the hardware blocks, the energy of
communicating data operands is minimal. Notice that in a time-multiplexed implementa-
tion, we would have to store and access intermediate variables, and we would also need a
controller to instruct the hardware resources to perform the basic computational steps in
the proper sequence. Thus, a time-multiplexed design introduces an energy overhead that
is not present in a direct implementation. As a result, energy consumption due to storage/
access of intermediate variables and due to time-multiplexed control is not fundamental
and should be minimized. This must be balanced against the area advantage of a time-mul-

tiplexed design.

In summary, energy consumption due to basic computations and storage/access of
state variables can be considered fundamental, and energy consumption due to communi-
cation, storage/access of intermediate variables, and control is overhead and must be min-
imized. In the following sections, we will consider different programmable architectures,
and we will discuss their strengths and weaknesses in terms of the energy overhead they

incur.

4.3 General-Purpose Processors
Figure 4.3 shows the basic architectural model for a general-purpose processor.

There is a single functional unit! that can compute a wide variety of arithmetic and logic

57

Data Controller
Memory
Functional Instruction
Unit [Memory

Figure 4.3: Basic Architectural Model of a General-Purpose Processor

functions for n-bit operands, and there is a single data memory where data operands are
stored. The communication network is a simple rn-bit bus connecting the data memory to
the functional unit. Instructions are fetched from the instruction memory and delivered to
the functional unit and the data memory by a simple control mechanism that has a single
thread of control. The controller makes its decisions based on control instructions from the
instruction memory and results of the computations performed by the functional unit. Typ-
ically, the instructions stored in memory are encoded to take up less space, and they need
to be decoded before they are delivered to their destinations. This type of hardware organi-
zation is commonly known as the von Neumann architecture, as it is commonly attributed

to John von Neumann [51].

General-purpose processors represent the ultimate in flexibility, as they can be pro-
grammed to implement any algorithm. This flexibility is, however, achieved at a signifi-
cant cost compared to application-specific devices. The energy overhead of implementing
an algorithm as a program running on a general-purpose processor is significant. Every
single computational step, e.g., addition of two numbers, requires fetching and decoding
an instruction from the instruction memory, accessing the required operands from the data

memory, and executing the specified computation on a general-purpose functional unit

1. We will discuss variations of this baseline architecture with more than a single functional unit in
the following sections.

58

that is designed to perform a wide variety of computations. All of these activities involve
accessing large, centralized memories, performing calculations on large, complex datap-
aths, and driving long, heavily-loaded wires, and as a result, a great deal of energy is con-
sumed. If the bit-width of the functional unit is larger than the word-lengths used in the
algorithm, then additional energy is wasted. Another weakness of general-purpose proces-
sors is that computations are done in highly time-multiplexed fashion. To achieve high
performance, a general-purpose processor must run at a high clock frequency; therefore,
the supply voltage cannot be aggressively reduced to save energy. In addition, the amount
of switching activity is increased as temporal correlations that are especially common in

signal processing applications are not preserved.

There are a number of techniques that can be used to improve the energy efficiency
of general-purpose processors. Introducing hierarchy into the memory structures is a tech-
nique that was originally introduced to improve the performance of general-purpose pro-
cessors [52], but it can also reduce the energy of memory accesses. At the lowest level of
the data memory hierarchy in modern general-purpose processors is a register file, where
scalar and temporary variables are stored. The register file is usually part of the functional
unit datapath. Since the register file is small and physically close to the functional unit, it
requires much less energy than the main data memory to store and access data operands.
Next in the hierarchy is a data cache, which stores the most recently used operands. Most
data access requests are satisfied by the data cache, which is smaller than the main mem-
ory and consumes less energy to access than the main memory, which is at the top of the
data memory hierarchy. An instruction cache is also used to reduce the overhead of fetch-
ing instructions from the instruction memory. In some architectures, the instruction and
data caches are merged into a unified cache structure [53]. Almost all modern general-pur-
pose processors execute instructions in a pipelined fashion whereby instruction fetch,

instruction decode, operand access, instruction execution, and result write-back steps of a

59

few consecutive instructions can be performed concurrently. The resulting increase in per-
formance relaxes the need to increase the clock frequency and can be traded off 1o reduce
power by reducing the supply voltage. To minimize unnecessary switching activity, many
modern microprocessors use power-down modes and clock-gating techniques that allow
shutting down unused circuit modules [54, 55]. Another technique that has been applied to
reduce the energy overhead of the instructions is to use instruction formats and addressing
modes that require smaller number of bits to encode [56, 57]. This reduces the bit-width of
the instruction memory and the instruction bus and reduces the energy overhead of fetch-

ing instructions.

While the techniques mentioned above are useful in improving the energy effi-
ciency of general-purpose processors, the fact remains that programmed implementations
of DSP algorithms on general-purpose programmable architectures are far too inefficient
compared to custom implementations. For example, the custom FIR filter shown in Figure
4.2, designed for 16-bit input samples and coefficients, consumes 155 pJ of energy per tap,

when implemented in a 0.6-um CMOS process, with a supply voltage of 1.5 V. When nor-

malized to the same process and supply voltage used for the custom design!, the energy
consumed by the StrongARM microprocessor [58, 59], which is highly optimized for low-
power operation, is 37.4 nJ per tap, i.e., 240 times more than the custom design! The max-
imum sample rate of the custom design is 18 MHz, whereas the maximum sample rate of
the StrongARM implementation is 532 kHz. More detailed energy and performance com-

parisons will be presented in Chapter 7.

4.4 Programmable Digital Signal Processors

Programmable digital signal processors are similar to general-purpose processors,

but they are optimized for signal processing algorithms. The basic architectural model of

1. See Chapter 7 for details of the normalization procedure.

60

general-purpose processors shown in Figure 4.3 is also valid for programmable signal pro-
cessors. As a result, programmable signal processors suffer from the same overﬁeads and
inefficiencies that general-purpose processors do, but a number of architectural improve-

ments make them far more efficient than general-purpose processors.

When programmable processors were first introduced [60, 61], one of the key fea-
tures that differentiated them from general-purpose processors and made them more suit-
able for DSP algorithms was hardware support for fast, i.e., single-cycle, multiplication.
This capability is particularly useful, as DSP algorithms tend to use multiplications very
frequently, and the ability to perform multiplications at a high rate provides for significant
speed-up compared to shift-and-add software routines that are commonly used in general-
purpose processors. All modern DSP processors can perform a multiply-accumulate
(MAC) operation, which is very common in DSP algorithms, in a single execution cycle.
They also use large accumulators that allow them to add a large number of products before

overflowing.

In addition to fast multiplication, DSP processors have also relied on concurrent
processing to improve performance. Instructions are typically executed in a pipelined
fashion. This allows the processor to overlap the execution of a few consecutive instruc-
tions. The depth of the instruction execution pipeline has increased in modern DSP pro-
cessors, but branch instructions limit the amount of speed-up that can be achieved by
increasing the depth of the instruction execution pipeline. Another form of concurrency
that is common in DSP processors is the ability of the multiplier unit to operate in parallel
with the arithmetic/logic unit [62, 63]. The data memory bandwidth has to be increased, as
well, if the parallelism in the functional unit is to be exploited. Thus, DSP processors tend
to use multiple memory banks that can be accessed in parallel. In its simplest form, the

result is the Harvard memory architecture introduced in the Texas Instruments TMS32010

61

processor [61], where the instruction memory and the data memory were split into sepa-
rate physical entities and could be accessed simultaneously. This allows the processor to
access a data sample and a coefficient simultaneously and improves the performance of
FIR and IIR filters, for example. Modern DSP processors typically allow simultaneous

access for an instruction and two data operands from parallel memory banks [64, 65].

Another innovation in DSP processors was to introduce memory addressing modes
that allowed the calculations of memory addresses to be done in parallel with data calcula-
tions. One particularly useful addressing mode is the register-indirect with post-increment
addressing mode that allows one to sequence through an array by incrementing the
address pointer automatically without the need to execute a separate addition instruction
for that purpose. Another useful addressing mode for implementing FIR filters, for exam-
ple, is the circular addressing mode that allows the address pointer to wrap around to the
beginning of a memory address block. The required bound check is executed in parallel
without taking an extra processing cycle. All modern DSP processors have hardware sup-
port for zero-overhead looping. This is typically done with a repeat instruction that allows
the repetitive execution of a small sequence of instructions without taking any extra pro-
cessing cycles for loop index calculations (i.e., index increment/decrement and bound
check). Combined with concurrent memory accesses, this allows DSP processors to per-
form an n-element vector dot product in n + 1 cycles, and as a result, modern DSP proces-
sors are particularly well-suited for implementing vector dot products and FIR filters.
Another technique that is used by some DSP processors is to provide hardware support to
execute complex instructions. One good example of this is hardware support for the Vit-
erbi add-compare-select calculations which has been used by a number of DSP processors
geared to cellular communications applications [64, 65]. Another architectural improve-
ment in some of the latest DSP processors is to add an extra multiplier and adder to

increase the processing rate for FIR filters [66, 67]. This is typically done without increas-

62

Data Bus 1
Data Bus 0

S S S

| | | 1

| X ! } X 1

1 | ! 1

MAC1 | o — MAco

1 | | I

1 | I !

| + | | + |

1 | ! |

r

- R L]

- -

v v

Figure 4.4: Dual-MAC Structure of the TCSI LODE Processor

ing the data memory bandwidth to the functional unit, and as a result, the extra multiplier
and adder blocks can be used in limited ways that rely on locally stored operands that were
read from memory during the previous cycle (see Figure 4.4). This arrangement is useful
for improving the performance of FIR and IIR filters. The LODE processor from TCSI is
a good example of how this can be done [67]. Additional hardware resources are typically
utilized in DSP processors by adding new instructions that encode more operations into
the basic instruction format. While this factor minimizes the instruction overhead of the
additional hardware resources, it doés make these processors difficult to program and dif-
ficult to generate code for. As a result, DSP processors must be programmed in assembly

language to achieve good performance.

Another innovation that can be used to reduce the energy overhead of instructions
while executing loops is to use decoded instruction buffers [68]. In this technique, when
the body of a loop is executed for the first time, the decoded instruction sequence (i.e., the

control signals derived by decoding instructions) corresponding to the loop body is cap-

63

tured into a small local buffer, i.e., the decoded instruction buffer. Subsequent iterations of
the loop use these decoded instructions from the buffer instead of fetching and decoding
instructions from the instruction memory. In this way, the larger energy overhead of
accessing the instruction memory through the instruction bus and decoding of fetched
instructions is replaced by the smaller energy of accessing the decoded instruction buffer.

The reported energy savings is on the order of 40%.

All of these architectural techniques have helped make programmable signal pro-
cessors much more efficient than general-purpose processors at performing some of the
most common DSP calculations such as FIR and IIR filters. When normalized to the same
0.6-pm process and 1.5-V supply voltage used for the custom design shown in Figure 4.2,
the energy consumed by the Texas Instruments TMS320C54 DSP processor [64], which is
highly optimized for low-power operation, is 0.6 nJ per tap, and the maximum sample rate
is 5.1 MHz. This is a significant improvement over the StrongARM processor. This should
be no surprise, however, as modern DSP processors are particularly well-optimized for
one-tap-per-cycle FIR and IIR filter implementations. However, they do not do nearly as
well for other signal processing algorithms, such as the FFT, compared to custom imple-

mentations.

4.5 Superscalar and VLIW Processors

The basic idea behind superscalar and VLIW (very long instruction word) proces-
sors is to improve the performance of the basic von Neumann architecture by adding more
functional units to execute more instructions in parallel. Superscalar and VLIW processors

are very similar to each other in this respect.

The basic architectural model for superscalar and VLIW processors is shown in

Figure 4.5. Instead of a single functional unit, there are multiple functional units that can

Data
Memory
Functional Functional
Unit see Unit
1 N

3

Instruction

Controller
Memory

Figure 4.5: Basic Architectural Model for Superscalar and VLIW Processors

operate in parallel. The instruction memory must, therefore, issue multiple instructions. To
ensure that the functional units can be supplied with data operands adequately, the band-
width of the data memory must be increased. This is typically done by addiﬁg multiple
read and write ports to the register file (the lowest level of the data memory hierarchy). In
some implementations, the data cache can supply multiple operands per execution cycle

[69].

Superscalar and VLIW processors are designed to take advantage of fine-grain
parallelism. This is the type of parallelism that exists within a basic block, i.e., 2 maximal
sequence of instructions ending in a control transfer instruction, e.g., branch and subrou-
tine call instructions. In scalar programs the amount of parallelism is application-depen-
dent and is typically not very high, so the degree of performance enhancement obtained by
these processors is limited to a factor of approximately four [70]. Vector processing algo-
rithms, and in particular DSP algorithms, have lots of coarse-grain parallelism, i.e., paral-

lelism across multiple iterations of a loop, which can be exploited by VLIW and

65

superscalar processors, but the main bottleneck for vector programs is the data memory
bandwidth. The multi-port register file at the lowest level of the memory hierarchy can
provide good performance for fine-grain parallelism, but to improve performance for vec-

tor programs, the data memory bandwidth must be increased.

The chief difference between superscalar and VLIW processors is in the manner in
which instructions are issued. A superscalar processor fetches a block of instructions from
the instruction memory in parallel, and the decoding hardware analyzes the data depen-
dencies between the fetched instructions. For each execution cycle, this analysis results in
a set of instructions that have no data dependencies and can be executed in parallel. These
instructions are then issued to and executed by the appropriate functional units in parallel.
The instruction decoder in superscalar processors is, thus, highly complex, as it has to ana-
lyze data dependencies among the instructions fetched from memory, schedule the execu-
tion of instructions, and then assign them to functional units. The result is a great deal of
design complexity and energy overhead. The primary benefit of superscalar processors is
that they can execute available executable binary codes without the need to recompile.
This is a tremendous advantage for general-purpose applications, but it is much less of an
issue for DSP applications, where programs are typically written in assembly language to
optimize performance, anyway, and there is much less of a need to run pre-compiled

shrink-wrapped software packages.

VLIW processors, on the other hand, expose the internal micro-architecture of the
processor to the compiler. Data dependency analysis, instruction scheduling, and alloca-
tion are all done at compile-time. The code generated for the processor consists of long
instruction words (hence the name) that contain multiple instruction fields for each func-
tional unit. These instruction words are fetched by the instruction decoder and each field is

decoded independently and issued to the corresponding functional unit. As a result, the

66

decoder in a VLIW processor is much simpler than that of a superscalar processor, and
VLIW processors are in general more energy efficient than superscalar processors because
they avoid the energy overhead of the vastly more complex decoder of the superscalar pro-
cessors. The chief drawback of VLIW processors is that they can not be binary-compatible
with previous processor generations, as each instance of a VLIW processor has its own
long instruction word format. The other drawback of VLIW processors is that if there are
not enough instructions in a given cycle to keep all functional units busy, then memory
bandwidth and energy is wasted by empty instruction fields. Some recent VLIW architec-
tures have reduced this penalty by encoding instructions in a way that empty instruction
fields are not created. This requires a more complex decoder to extract the instruction
fields for the current execution cycle from the long instructions fields fetched in the cur-

rent and possibly the previous fetch cycle.

The other difficulty for VLIW processors is that they are difficult to generate good
code for, and as a result, to get good performance programs must be written in assembly
language. This is a difficult task, as the activities of multiple functional units must be

scheduled and coordinated by the programmer.

Modern high-performance DSP processors are for the most part based on the

VLIW scheme!. The TMS320C6X processors from Texas Instruments, for example, can
issue up to eight instructions in each cycle to six ALUs and two multipliers [71]. The sim-
plicity of the VLIW scheme helps reduce the energy overhead of instructions, as the com-
plex decoding logic needed by superscalar processors is avoided. Still, both of these
schemes suffer from the underlying problem of all general-purpose processors, and that is
the tremendous energy overhead of fetching and decoding instructions and accessing

large, centralized hardware resources.

1. The one notable exception is the superscalar signal processor from ZSP [72].

67

4.6 Pipelined Vector Architectures

Vector processing architectures were originally developed for scientific applica-
tions with massive computational demands, such as problems in nuclear physics, weather
forecasting, and seismology [73, 74]. These applications deal with vector data types, ie.,
arrays of numbers, and as a result, the processor architectures that were developed for han-
dling these applications have been known as vector architectures. In vector algorithms, a
given computation is repeated on different elements of the input vector operands. There is
typically no or very little dependency between different iterations of the loop processing
the input vectors, and as a result different iterations of a loop can be executed either com-
pletely in parallel or in a highly overlapped fashion. As was shown in Chapter 3, signal
processing algorithms fall into the class of vector algorithms, and as a result, vector archi-
tectures are indeed suitable for implementing DSP algorithms. It should be noted that vec-
tor processors are always designed in the form of a vector execution unit coupled to a
conventional scalar unit, as there is always some scalar processing and flow control for
which the vector units are not suitable. The basic architectural model for vector processors

is shown in Figure 4.6.

Vector architectures take advantage of the properties of vector algorithms by intro-
ducing vector instructions that deal with vector variables, as opposed to scalar variables.
For example, instead of executing many scalar add instructions within the body of a loop
and instructions for loop index calculations to perform vector addition, as is done on von
Neumann architectures, in a vector processor, a vector add instruction (e.g., VADD) is
executed instead. Thus, a whole scalar loop is replaced by a single vector instruction.
Since the scalar additions that a vector addition is made of are independent of each other,
the additions can be done in a highly pipelined fashion allowing for very high clock

speeds. Thus, vector architectures increase performance by allowing very deep, high-

68

Data
Memory

Scalar Vector
Functional Functional
Unit Unit

Instruction

Controller
Memory

Figure 4.6: Basic Architectural Model for Vector Processors

speed arithmetic pipelines that execute vector arithmetic instructions at a very high rate. In
order to achieve high performance on a vector architecture, a given algorithm must be
amenable to being coded with vector instructions, i.e., the algorithm has to be vecotriz-
able. If an algorithm is vectorizable, then powerful compiler techniques exist that can pro-
duce high quality vector code from a high-level language specification of the algorithm

[75].

Vector architectures are attractive from the point of view of energy efficiency. The
reason for this is that vector instructions can significantly reduce the energy overhead of
fetching, decoding, and issuing instructions. Instead of fetching multiple instructions for
each iteration of a loop for loop index and data calculations, a single vector instruction is
fetched and issued, and most of the energy is spent on executing the instruction. Of course
the energy overhead of accessing centralized data memories and vector register files and
executing instructions on general-purpose arithmetic pipelines still remains, but much less

energy is wasted on fetching and decoding instructions. As a result, researchers have

69

machine is the structure of the communication network that connects the functional units
within the SIMD array and the data memory, and numerous interconnection network
topologies, such as mesh, hierarchical mesh, and hypercube, have been proposed [74].
One of the key issues in programming SIMD machines is to map vector operations onto
the SIMD array given the constraints of the interconnection network being used. As a

result, SIMD machines are generally difficult to program.

The advantage of SIMD architectures is that they can achieve high performance
without incurring a large increase in the instruction bandwidth. The energy overhead of
fetching an instruction is reduced because a fetched instruction is used by all of the func-
tional units in the SIMD array. However, SIMD architectures incur the overhead of broad-
casting the single instruction to all functional units. In addition there is the energy

overhead of the interconnection network that further complicates the design space.

In some recent microprocessors and DSP processors, SIMD instructions have been
used as a set of multimedia extensions to the basic instruction set of the processor in order
to improve the performance of the processor for multimedia applications, e.g., video
decompression [78]. These instructions use the wide ALUs of modern processors to exe-
cute multiple low-resolution operands in parallel. For example, a 32-bit ALU is used to
perform arithmetic operation on four 8-bit operands in parallel. This extension involves a
minimal overhead to the existing instruction set and hardware organization, and as a result

it has been used in a number of recent microprocessors [79, 80, 81].

4.8 MIMD Architectures

In all of the architectures that we have discussed so far, all hardware resources
were controlled by a single stream of instructions. In other words, the instruction control
mechanism had a single control thread. MIMD (Multiple-Instruction, Multiple-Data)

architectures allow the functional units to have their own independent control units. The

71

Data Data
Memory Memory
Communication Network
Instruction Instruction
| Memory Memory
Functional Functional
Unit Unit
Controller Controller

Figure 4.8: Basic Architectural Model for MIMD Processors

basic architectural model for MIMD processors is shown in Figure 4.8. Each functional
unit is controlled by a local stream of instructions with a local controller. We can think of a
MIMD processor as a processor with multiple SISD processors, and as a result MIMD
architectures are also known as multiprocessors. Allowing each functional unit to have its
own controller makes MIMD architectures highly flexible, and MIMD processors can
generally be programmed to achieve very high performance for a wide variety of applica-
tions. In addition, the energy overhead of broadcasting instructions and control signals is
avoided. However, there are now multiple controllers, so there is additional energy con-
sumption that must be taken into consideration. The topology and energy overhead of the
communication network is another design issue that requires careful attention. Multipro-
cessor DSPs have received a great deal of research interest and numerous architectures

have been proposed and explored by researchers [82, 83, 84, 85].

One notable multiprocessor DSP architecture is the PADDI-2 architecture pro-

posed by Yeung [84, 86], which was developed for rapid prototyping of video algorithms.

72

The PADDI-2 architecture is based on an array of 16-bit fine-grain nanoprocessors. Each
nanoprocessor has its own local instruction memory that can store 8 instructions. The
basic idea is to directly map the data flow diagram of a DSP algorithm onto the nanopro-
cessor array. The small local program at each nanoprocessor implements a node or a clus-
ter of a few nodes of the data flow graph. The arcs of the data flow graph are implemented
by a flexible interconnect network that can be configured by programming SRAM cells
controlling switches in the interconnect network to create point-to-point links between the
nanoprocessors. To avoid the overhead of a complete cross-bar network, while still pro-
viding a high degree of flexibility that can be used to create a wide variety of communica-
tion paiterns, PADDI-2 uses a hierarchical two-level structure. The level-one network is
used to create local connections between clusters of four nanoprocessors. The level-one
" networks can be connected to each other through a level-two network that allows nanopro-
cessors in different clusters to talk to each other. Computational activities are coordinated
by a distributed data-driven control strategy in which nanoprocessor computations are
synchronized by passing data and control tokens. Each nanoprocessor has input FIFOs
that capture incoming tokens from the communication network. The strength of this dis-
tributed control mechanism is that it is highly scalable in supporting concurrent processing
with a large number of nanoprocessors. The Pleiades architecture borrows from and builds

on the lessons learned from the PADDI-2 architecture.

4.9 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGA) were initially developed for prototyping
and glue logic purposes, but advances in CMOS technology have allowed the develop-
ment of high-capacity FPGAs that can be used to implement serious computing devices.
The basic functional unit in an FPGA is a bit-processing element, which is commonly
known as a Configurable Logic Block (CLB). The granularity of the functional units in an
FPGA is thus at the finest possible level. An FPGA is a large array of CLBs. These CLBs

73

Switch
Box

'
'
V| Lot
1
1
1
1
1
'

Figure 4.9: Basic CLB + Switch Matrix Tile of an FPGA

can be connected to each other in various desired ways by configuring a flexible intercon-
nect network (see Figure 4.9). A CLB can implement any Boolean function of a small
number, typically 4 to 5, of input bit operands. These functions are realized by using a
look-up table (LUT) structure, i.e., a small SRAM memory, and the input bit operands
serve as the address input of the LUT. Any Boolean function of the input operands can
thus be realized by programming the LUT memory. One important innovation, pioneered
by devices from Xilinx [87], was to allow the LUT memory to be used as a small, local
random-access memory. Thus, a CLB can be used to implement both logic functionality
and storage. The output of the LUT can optionally be registered if so desired by program-
ming an SRAM cell the controls a multiplexer selecting either the output of the LUT or
the registered version of the LUT output. The interconnection network consists of
stretches of wires that can be connected to each other and to the CLBs by turning switches
on and off. Each switch is controlled by an SRAM cell, that configures the switch to be on
or off. An FPGA can be configured to implement any desired function by programming
the SRAM cells that configure the LUTs and the interconnect switches. This feature
makes FPGAs highly flexible and combined with the large number of CLBs available in

modern CMOS processes, has resulted in tremendous interest in FPGAs as computing

74

devices. Oné big advantage of the FPGAs is that the functionality of hardware resources is
decided after fabrication by the end user. In programmable processors, the functionality of
the hardware resources is fixed after fabrication, and the end user is restricted to imple-
menting the desired functionality by creating a sequence of instructions that tell these pre-
fabricated hardware resources what to do. In FPGAs however, the user can directly imple-
ment the desired functionality by configuring just the right amount of hardware resources,
i.e., CLBs and wires. As a result the computational throughput per unit silicon area for
FPGAs can be much higher than programmable processors [38]. Computing machines
based on FPGAs have been able to exceed the performance of supercomputers at a tiny

fraction of the cost [89].

In FPGA devices, the instructions are the configuration bits stored in the SRAM
cells controlling the LUTs and the switches. Once the FPGA is configured by loading the
configuration SRAM cells with proper values, the functionality of the hardware resources
are fixed. The instructions are distributed throughout the device, and directly control the
LUTs and the switches. There is no energy overhead associated with fetching and decod-
ing instructions. From this point of view, FPGAs are ideal. The one shortcoming of
FPGAs, however, is that the configuration SRAM cells are typically programmed serially,
which is a very slow process. Also, since the granularity of FPGA:s is at the bit level, there
is a tremendous amount of conﬁgﬁration information that must be loaded. These factors

make reconfiguration a slow process.

FPGAs cannot however be considered as energy efficient devices. In fact, the
opposite is true. The area and energy overhead of the interconnect network in FPGAs is
substantial. 65% of the total energy in the Xilinx XC4003A FPGA is due to the wires, and
another 21% and 9% are taken by clocks and I/O. The CLBs are respoqsible for only 5%

of the total energy consumption [90]. When normalized to the same 0.6-um process and

75

supply voltage used for the custom design shown in Figure 4.2, the energy consumed by

the Xilinx XC4003A FPGA is 2.2 nJ per tap, and the maximum sample rate is 2.2 MHz.

The chief weakness of FPGAs is in the very fine granularity of the CLBs. This
results in a great deal of overhead when implementing wide-word datapaths where there is

no real need to control individual bits of the datapath independently.

4.10 Summary

Conventional programmable architectures are far less energy efficient than cus-
tom, application-specific devices. The cause of this inefficiency is the manner in which
flexibility is achieved in conventional processors. Computations are performed on gen-
eral-purpose functional units that are designed to implement a wide variety of arithmetic
and logic functions. As a result, these functional units are large and complex, and their
granularity is not always well-matched to the data types and the computations required by
target algorithms. Data operands are stored in general-purpose memory units that are
large, centralized structures. The tasks performed by these hardware resources during
every execution cycle are specified by a stream of instructions that must be fetched from
the instruction memory and then decoded and dispatched by the instruction controller. The
net result is that a great deal of energy overhead is attached to every basic computational
step. This basic weakness afflicted all of the architectures that we discussed in this chapter.
In our quest to design highly energy efficient programmable architectures we should keep

the following ideas in mind:

* One basic problem with conventional processors is that they are designed to be
completely general-purpose. Architectures that target a smaller set of applications
can be more efficient than general-purpose devices and must be pursued. While
structurally similar to general-purpose processors, program:ﬁable signal proces-

sors are much more efficient because they are more customized for DSP algo-

76

rithms. Domain-specific architectures can be particularly efficient, as they provide
the architect with the opportunity to match architectural parameters to the proper-
ties of the target domain of algorithms.

« Exploiting concurrency is the key to reducing energy consumption by reducing the
supply voltage. Any energy efficient architecture must be able to support concur-
rent processing in an efficient and scalable manner. As we saw in Chapter 3, signal
processing algorithms are highly amenable to concurrent implementations. This is
a valuable opportunity that must be exploited.

o The overhead of instructions must be minimized. Vector processors and SIMD
processors reduce the energy ovérhead of instructions by introducing vector
instructions that can replace an entire program loop. This is an important technique
that can be exploited for signal processing applications.

» FPGAs are ideal from the point of view of instructions because once an FPGA is
configured, there is no overhead associated with fetching and decoding instruc-
tions. Reconfiguration of hardware resources is thus an important technique that
can significantly reduce the overhead of instructions.

« The control structure used in a concurrent architecture is an important architectural
issue that has a significant impact on scalability, efficiency, and ease of program-
ming. Distributed control mechanisms, with multiple control threads, are better in

this respect than centralized control schemes with a single thread of control.

The design of the Pleiades architecture template was heavily influenced by these consider-

ations.

71

CHAPTER 5

Pleiades: Architecture Design

The Pleiades architecture will be presented in this chapter. We will first summarize
the goals and the general architectural approach that motivated the design choices that
were made. We will then present the Pleiades architecture template and explain its differ-
ent components and their interactions. Architectural design of Maia, a domain-specific
processor for CELP-based speech-coding that is based on the Pleiades architecture tem-
plate will be presented next. We will demonstrate how algorithms are mapped onto a Ple-

iades-style processor using the Maia design.

5.1 Goals and General Approach

The approach that was taken in this work, given the overall goal of designing
energy-efficient programmable architectures for digital signal processing applications,
was to design processors that are optimized for a given domain of signal processing algo-
rithms. This approach yields domain-specific processors, as opposed to general-purpose
processors, which are completely flexible but highly inefficient, or application-specific

processors, which are the most efficient but very inflexible. The intent is to develop a pro-

78

cessor that can, by virtue of its having been optimized for an algorithm domain, achieve
high levels of energy efficiency, approaching that of an application-specific design, while
maintaining a degree of flexibility such that it can be programmed to implement the vari-

ety of algorithms that belong to the domain of interest.

Algorithms within a given domain of signal processing algorithms, such as CELP-
based speech coding algorithms, have in common a set of dominant kernels that are
responsible for a large fraction of total execution time and energy. In a domain-specific
processor, this fact can be exploited such that these dominant kemnels are executed on
highly optimized hardware resources that incur a minimum of energy overhead. This is

precisely the approach that was taken in developing the Pleiades architecture.

An important architectural advantage that can be exploited in a domain-specific
processor is the use of heterogeneous hardware resources. In a general-purpose processor,
using a heterogeneous set of hardware resources cannot be justified because some of those
resources will always be wasted when running algorithms that do not use them. For exam-
ple, a fast hardware multiplier can be quite useful for some algorithms, but it is completely
unnecessary for many other algorithms. Thus, general-purpose processors tend to use gen-
eral-purpose hardware resources that can be put to good use for all types of different algo-
rithms. In a domain-specific processor, however, using a heterogeneous set of hardware
resources is a valid approach, and must in fact be emphasized. This approach allows the
architect a great deal of freedom in matching important architectural parameters, particu-
larly the granularity of the processing elements, to the properties of the algorithms in the
domain of interest. Even within a given algorithm, depchding on the particular set of com-
putational steps that are required, there typically are different data types and different
operations that are best supported by processing elements of varying granularity, and this

capability can be provided by a domain-specific design. This is precisely one of the key

79

factors that makes an application-specific design so much more efficient than a general-
purpose processor, where all operations are executed on processing elements with pre-
determined architectural parameters that cannot possibly be a good fit to the various com-

putational tasks that are encountered in a given algorithm.

Our overall objective of designing energy-efficient programmable processors for
signal processing applications, and our approach of designing domain-specific processors,
given the background of the preceding three chapters, can be distilled into the following

architectural goals:

e Dominant kernels must be executed on optimized, domain-specific hardware
resources that incur minimal control and instruction overhead. The intent is to
increase energy efficiency by creating a good match between architectural parame-
ters and algorithmic properties.

» Reconfiguration of hardware resources will be used to achieve flexibility while
minimizing the energy overhead of instructions. As we saw in Chapter 4, FPGAs
do not suffer from the overhead of fetching and decoding instructions. However,
the ultra-fine granularity of the bit-processing elements used in FPGAs incurs a
great deal of overhead for word-level arithmetic operations and needs to be
addressed.

 To minimize energy consumption, the supply voltage must be reduced aggres-
sively. To compensate for the performance loss associated with reducing the sup-
ply voltage, concurrent execution must be supported. The relative abundance of
concurrency in DSP algorithms provides a good opportunity to accomplish this
objective.

 The ability to use different optimal voltages for different circuit blocks is an

important technique for reducing energy consumption and must be supported. This

80

requires that the electrical interfaces between circuit modules be independent of
the varying supply voltages used for different circuit modules.

« Dynamic scaling of the supply voltage is an important technique to minimize the
supply voltage, and hence energy consumption, to the absolute minimum needed at
any given time and must be supported.

 The structure of the communication network between the processing modules
must be flexible such that it can be reconfigured to create the communication pat-
terns required by the target algorithms. Furthermore, to reduce the overhead of this
network, hierarchy and reduced voltage swings will be used. The electrical inter-
face used in the communication network must not be a function of the supply volt-
ages of the modules communicating through the network.

« In order to avoid the large energy overhead of accessing large, centralized hard-
ware resources, e.g. memories, datapaths, and buses, locality of reference must be
preserved. The ability to support distributed, concurrent execution of computa-
tional steps is the key to achieving this goal, and it is also consistent with our goal
of highly concurrent processing for the purpose of reducing the supply voltage.

* A key architectural issue in supporting highly concurrent processing is the control
structure that is used to coordinate computational activities among multiple con-
current hardware resources. The control structure has a profound effect on how
well an architecture can be scaled to match the computational characteristics of the
target algorithm domain. The performance and energy overheads of a centralized
control scheme can be avoided by using a distributed control mechgnism. Ease of
programming and high-quality automatic code generation are also important issues
that are influenced by the control structure of a programmable architecture.

 Unnecessary switching activity must be completely avoided. There must be zero

switching activity in all unused circuit modules.

81

Configuration Bus

?
Satellite
Processors

r A A 4

Communication
Network

Control
Processor e

-

Figure 5.1: The Pleiades Architecture Template

o Time-sharing of hardware resources must be avoided, so that temporal correlations
are preserved. This objective is consistent with and is in fact satisfied by our
approach of relying on spatial and concurrent processing. Point-to-point links in
the communication network, as opposed to time-shared bus connections, should be

used to transmit individual streams of temporally-correlated data streams.

5.2 The Pleiades Architecture Template

In this section, a general overview of the Pleiades architecture will be presented.
Additional details and architectural design issues will be presented and discussed in the
following sections. Architectural design of Maia, a Pleiades-style processor for CELP-

based speech coding algorithms will be presented subsequently.

The Pleiades architecture is based on the template shown in Figure 5.1. This tem-

plate is reusable and can be used to create an instance of a domain-specific processor,

82

which can then be programmed to implement a variety of algorithms within the given
domain of interest. All instances of this architecture template share a fixed set of control
and communication primitives. The type and number of processing elements in a given
domain-specific instance, however, can vary and depend on the properties of the particular

domain of interest.

The architecture template consists of a control processor, a general-purpose micro-
processor core, surrounded by a heterogeneous array of autonomous, special-purpose sat-
ellite processors. All processors in the system communicate over a reconfigurable
communication network that can be configured to create the required communication pat-
terns. All computation and communication activities are coordinated via a distributed
data-driven control mechanism. The dominant, energy-intensive computational kernels of
a given DSP algorithm are implemented on the satellite processors as a set of independent,
concurrent threads of computation. The rest of the algorithm, which is not compute-inten-
sive, is executed on the control processor. The computational demand on the control pro-
cessor is minimal, as its main task is to configure the satellite processors and the
communication network (via the configuration bus), to execute the non-intensive parts of

a given algorithm, and to manage the overall control flow of the algorithm.

In the model of computation used in the Pleiades architecture template, a given
application implemented on a domain-specific processor consists of a set of concurrent
communicating processes [91] that run on the various hardware resources of the processor
and are managed by the control processor. Some of these processes correspond to the
dominant kernels of the given application program and run on satellite processors under
the supervision of the control processor. Other processes run on the control processor
under the supervision of a simple interrupt-driven foreground/background system for rela-

tively simple applications or under the supervision of a real-time kernel for more complex

83

applications [92]. The control processor configures the available satellite processors and
the communication network at run-time to construct the dataflow graph correspoﬁding toa
given computational kernel directly in hardware. In the hardware structure thus created,
the satellite processors correspond to the nodes of the dataflow graph, and the links
through the communication network correspond to the arcs of the dataflow graph. Each
arc in the dataflow graph is assigned a dedicated link through the communication network.
This ensures that all temporal correlations in a given stream of data are preserved and the

amount of switching activity is thus minimized.

As we saw in Chapter 2, algorithms within a given domain of applications, e.g.,
CELP-based speech coding, share a common set of operations, e.g., LPC analysis, synthe-
sis filtering, and codebook search. When and how these operations are performed depend
on the plmicular details of the algorithm being implemented and are managed by the con-
trol processor. The underlying details and the basic parameters of the various computa-
tional kernels in a given domain vary from algorithm to algorithm and are accommodated
at run-time by the reconfigurability of the satellite processors and the communication net-

work.

The Pleiades architecture enjoys the benefit of reusability because (a) there is a set
of predefined control and communication primitives that are fixed across all domain-spe-
cific instances of the template, and (b) predefined satellite processors can be placed in a

library and reused in the design of different types of processors.

5.3 The Control Processor

A given algorithm can be implemented in its entirety on the control processor,
without using any of the satellite processors. The resulting implementation, however, will
be very inefficient: it will be too slow, and it will consume too much energy. To achieve

good performance and energy efficiency, the dominant kemnels of the algorithm must be

84

identified and implemented on the satellite processors, which have been optimized to
implement those kernels with a minimum of energy overhead. Other parts of the algo-
rithm, which are not compute-intensive and tend to be control-oriented, can be imple-
mented on the control processor. The computational load on the control processor is thus

relatively light, as the bulk of the computational work is done by the satellite processors.

In addition to executing the non-compute-intensive and control-oriented sections
of a given algorithm, the control processor is responsible for spawning the dominant ker-
nels as independent threads of computation, running on the satellite processors. In this
capacity, the control processor must first configure the satellite processors and the com-
munication network such that a suitable hardware structure for executing a given kernel is
_ created. The satellite processors and the communication network are reconfigured at run-
time, so that different kernels are executed at different times on the same underlying
reconfigurable hardware fabric. The functionality of each hardware resource, be it a satel-
lite processor or a switch in the communication network, is specified by the configuration
state of that resource, a collection of bits that instruct the hardware resource what to do.
The configuration state of each hardware resource is stored locally in a suitable storage
element, i.e., a register, a register file, or a memory. Thus, storage for the configuration
states of the hardware resources of a processor are distributed throughout the system.
These configuration states are in ihe memory map of the control processor and are
accessed by the control processor through the reconfiguration bus, which is an extension

of the address/data/control bus of the control processor.

Once the satellite processors and the communication network have been properly
configured, the control processor must initiate the execution of the kernel at hand. This is
accomplished by generating a request signal to an appropriate satellite processor which

will trigger the sequence of events whereby the kernel is executed. After initiating the exe-

85

cution of the kernel, the control processor can either halt (to save power) and wait for the
completion of the kernel, or it can start executing another computational task, including
spawning another kernel on another set of satellite processors. This mode of operation
allows the programmer to increase processing throughput by taking advantage of coarse-
grain parallelism. When the execution of the kernel is completed, the control processor
receives an interrupt signal from the appropriate satellite processor. The interrupt service

routine will determine the next course of action to be taken by the control processor.

5.4 Satellite Processors

The computational core of the Pleiades architecture consists of a heterogeneous
array of autonomous, special-purpose satellite processors. These processors are optimized
to execute specific tasks efficiently and with minimal energy overhead. Instead of execut-
ing all computations on a general-purpose datapath, as is commonly done in conventional
programmable processors, the energy-intensive kernels of an algorithm are executed on
optimized datapaths, without the overhead of fetching and decoding an instruction for

every single computational step.

Kernels are executed on satellite processors in a highly concurrent manner. A clus-
ter of interconnected satellite processors that implements a kernel processes data tokens in
a pipelined manner, as each satellite processor forms a pipeline stage. In addition, each
satellite processor can be further pipelined internally. Furthermore, multiple pipelines cor-
responding to multiple independent kernels can be executed in parallel. These capabilities
allow efficient processing at very low supply voltages. For bursty applications with
dynamically varying throughput requirements, dynamic scaling of the supply voltage is

used to meet the throughput requirements of the algorithm at the minimum supply voltage.

As mentioned earlier, satellite processors are designed to perform specific tasks.

Let us consider some examples of satellite processors:

86

+ Memories are ubiquitous satellite processors and are used to store the data struc-
tures processed by the computational kernels of a given algorithm domain. The
type, size, and number of memories used in a domain-specific processor depend on
the nature of the algorithms in the domain of interest.

o Address generators are also common satellite processors that are used to generate
the address sequences needed to access the data structures stored in memories in
the particular manner required by the kernels.

« Reconfigurable datapaths can be configured to implement the various arithmetic
operations required by the kernels.

* Programmable gate array (PGA) modules can be configured to implement various
logic functions, as needed by the computational kernels.

« Multiply-Accumulate (MAC) processors can be used to compute vector dot prod-
ucts very efficiently. MAC processors can be useful in a large class of important
signal processing algorithms.

+ Add-Compare-Select (ACS) processors can be used to implement the Viterbi algo-
rithm efficiently. The Viterbi algorithm is widely used in many communicaﬁon
and storage applications.

« Discrete Cosine Transform (DCT) processors can be used to implement many

image and video compression/decompression algorithms efficiently.

Observe that while most satellite processors are dedicated to performing specific
tasks, some satellite processors might support a higher degree of flexibility to allow the
implementation of a wider range of kerels. The proper choice of the satellite processors
used in a given domain-specific processor depends on the properties of the domain of

interest and must be made by careful analysis of the algorithms belonging to that domain.

87

Lol

— 1 |]
B 1 it
» S‘E
3| |88 X
c
K=}
S
ANE ——:5,
k=2 2
€ ® I
S| |12 \V4
=
S8&

b !

Figure 5.2: Block Diagram of a MAC Satellite Processor

The behavior of a satellite processor is dictated by the configuration state of the
processor. The configuration state of a satellite processor is stored in a local configuration
store and is accessed by the control processor via the reconfiguration bus. For some satel-
lite processors, the configuration state consists of a few basic parameters that determine
what the satellite processor will do. For other satellite processors, the configuration state
may consist of sequences of basic instructions that are executed by the satellite processor.
Instruction sets and program memories for the latter type of satellite processors are typi-
cally shallow, as satellite processors are typically designed to perform a few basic opera-
tions, as required by the kemels, very efficiently. As such, the satellite processors can be
considered weakly programmable. For a memory satellite processor, the contents of the

memory make up the configuration state of the processor.

Figure 5.2 shows the block diagram of a MAC satellite processor. Figure 5.3 illus-
trates how one of the energy-intensive functions of the VSELP speech coder, the weighted

synthesis filter, is mapped onto a set of satellite processors.

88

T

AddrGen AddrGen AddrGen
Memory Memory Memory
x[n) cln] yin]

MAC
Np

y[1€n<N-1] = x[n] + Eclny[n—-i]

i=1

Figure 5.3: The VSELP Synthesis Filter Mapped onto Satellite Processors

| 5.5 Communication Network

In the Pleiades architecture, the communication network is configured by the con-
trol processor to implement the arcs of the dataflow graph of the kernel being imple-
mented on the satellite processors. As mentioned earlier, each arc in the dataflow graph is
assigned a dedicated channel through the communication network. This ensures that all

temporal correlations in a given stream of data are preserved, and the amount of switching

activity is reduced.

The communication network must be flexible enough to support the interconnec-
tion patterns required by the kernels implemented on a given domain-specific processor,

while minimizing the energy and area cost of the network. In principle, it is straightfor-

89

Switch

N Outputs

M Inputs

Figure 5.4: Crossbar Interconnection Network

ward to provide the flexibility needed to support all possible interconnection patterns for a
given set of processors. This can be accomplished by a crossbar network, as shown in Fig-
ure 5.4. A crossbar network can support simultaneous, non-blocking connection of any of
M input ports to any of N output ports. This can be accomplished by N buses, one per out-
put port, and a matrix of N X M switches. The switches can be configured to allow a given
input port to be connected to any of the output buses. However, the global nature of the
buses and the large number of switches make the crossbar network prohibitively expen-
sive in terms of both energy and area, particularly as the number of input and output ports
increases. Each data transfer incurs a great deal of energy overhead, as it must traverse a

long global bus loaded by N switches.

The number of switches can be reduced by using multi-stage interconnection net-
works [93], such as the Omega network [94] shown in Figure 5.5, which has been com-

monly used in many multiprocessor systems. As in the crossbar network, the number of
buses for an N x N Omega network is N, but the number of switches is N log,N, as an
Omega network with N output ports and N input ports consists of log, N stages with N/2

switches per stage. Observe, however, that the switches of a multi-stage network are more

complex than those of a crossbar network, as they must support more complex switching

90

Switch-Box

Vg

—

p—>

—»>

—»

b

—b

—>

—>
—----1F . . N -

Switch-Box Configurations: ool .ol)

—o--—-L- -1 S - - .-t -

Straight Crossover Lower Upper
. Broadcast Broadcast

Figure 5.5: 8 x 8 Omega Multistage Interconnection Network

patterns, as illustrated in Figure 5.5. The complex routing patterns of multi-stage intercon-
nection networks, such as the perfect-shuffle pattern used in the Omega network, make

these networks particularly difficult and cumbersome to implement. Another drawback of

multistage networks is that each connection through the network must go through log, N

switches. This reduces the maximum data rate through each communication channel

through the network.

In practice, a full crossbar network can be quite unnecessary and can be avoided.
One reason is that not all output ports might be actively used simultaneously. Some output
ports might in fact be mutually exclusive of one another. Therefore, the number of buses
needed can be less than the number of output ports in the system. Another practical fact
that can be exploited to reduce the complexity of a full crossbar (and other types of net-
works, as well) is that not all input ports need to be connected to all available output ports

in the system. For example, address generators typically communicate with memories

91

THCT
2-D Mesh 3-D Hypercube Torus

Figure 5.6: Some Examples of Network Topologies
only, and there is no need to allow for the possibility of connecting the address inputs of
memory modules to the output ports of the arithmetic units. This fact can be used to
reduce the span of the buses and the number of switches in the network. These techniques

are employed in the Pleiades architecture.

The chief difficulty with the interconnect architectures discussed so far is the glo-
bal nature of the buses. This makes all data transfers expensive regardless of whether. they
are between two adjacent processors or between two processors at opposite corners of the
chip. The efficiency of data transfers can be improved by taking advantage of the fact that
most data transfers are local. This is a direct manifestation of the principle of locality of
reference discussed in Chapter 2. Instead of using buses that span the entire system,
shorter bus segments are used that allow efficient local communication. Many such archi-
tectures have been proposed, particularly for use in multiprocessor systems, and some of
them have been illustrated in Figure 5.6. These topologies provide efficient point-to-point
local channels at the expense of long-distance communications. One simple scheme for
transferring data between non-adjacent nodes is to route data tokens through other inter-
vening processors. This increases the latency of data transfers, but keeps the interconnect
structure simple. An additional drawback is that the latency of a data transfer becomes a
function of processor placement and operation assignment. As a result, scheduling and
assignment of operations become more complicated, and developing an efficient compiler

becomes more difficult.

92

1 CLB cLB cLB

% S-Box S-Box S-Box

-1 CLB CLB cLB

S-Box S-Box S-Box

4 cB cLB cLB

Figure 5.7: Simple FPGA Mesh Interconnect Structure

The mesh topology has been particularly popular in modern FPGAs. The mesh
structure is simple and very efficient for VLSI implementations. A simplified version of
the mesh structure, as used in many modern FPGAs, is illustrated in Figure 5.7. To trans-
fer data between non-adjacent processing elements, multiple unit-length bus segments can
be concatenated by properly configuring the switch-boxes that are placed at the bound-
aries of the processing elements. Local communications can be accomplished efficiently,
and non-local communications can be supported, as well, and the degradation of commu-
nication bandwidth with distance, due to the increasing number of switches as more
switch-boxes are traversed, is relatively graceful. This scheme has worked quite well in
FPGAs, but it is not directly applicable to a Pleiades-style processor because a Pleiades-
style processor is composed of a heterogeneous set of satellite processors with different
shapes and sizes and the regular two-dimensional array structure seen in FPGAs s cannot be

created.

93

LI,

| I
Wiring Channel Switch-Box

Figure 5.8: Generalized Mesh Interconnect Structure

The scheme used in the Pleiades architecture is a generalization of the mesh struc-
ture, i.e., a generalized mesh [95], which is illustrated in Figure 5.8. For a given placemerit
of satellite processors, wiring channels are created along the sides of the satellite proces-
sors. Configurable switch-boxes are placed at the junctions between the wiring channels,
and the required communication patterns are created by configuring these switch-boxes.
The parameters of this generalized mesh structures are the number of buses employed in a
given wiring channel, and the exact functionality of the switch-boxes. These parameters
depend on the placement of the satellite processors and the required communication pat-

terns among the satellite processors.

An important and powetful technique that can be used in improving the perfor-
mance and efficiency of the communication network is the use of hierarchy. By introduc-
ing hierarchy, locality of reference can be further exploited in order to reduce the cost of
long-distance communications. One approach that has been used in some FPGAs, e.g., the

Xilinx XC4000 family [87], is to use a hierarchy of lengths in the bus segments used to

94

connect the logic blocks. Instead of using only unit-length segments, longer segments
spanning two, four, or more logic blocks are also used. Distant logic blocks can be con-
nected via these longer segments by using far less series switches than would have been

needed if only unit-length bus segments were available.

Another approach to introducing hierarchy in the communication network is to use
additional levels of interconnect that can be used to create connections among clusters of
processing elements. An example of this approach is the two-level network structure used
in the PADDI-2 multiprocessor [86], which was discussed in Chapter 4. In PADDI-2, a
level-1 reduced crossbar network is used to connect nanoprocessors within clusters of four
nanoprocessors. A level-2 reduced and segmented crossbar is used to create connections
between the clusters. Another example of the application of hierarchy is the binary tree
structure used in the Hierarchical Synchronous Reconfigurable Array architecture [96]. In
this approach, a binary-tree hierarchy of switch-boxes is used to reduce the cost of com-
munications between distant logic blocks. Local short-cuts are also used to facilitate effi-
cient neighbor-to-neighbor connections, without the need to traverse the tree of switch-

boxes.

In the Pleiades architecture, hierarchy is introduced into the communication net-
work by creating clusters of tightly-connected satellite processors that internally use a
generalized-mesh structure. Communication among clusters is accomplished by introduc-
ing inter-cluster switch-boxes that allow inter-cluster communication through the next
higher level of the communication network. This is illustrated in Figure 5.9. The key chal-
lenge is the proper clustering of the satellite processors and the proper placement of the
inter-cluster switch-boxes in order to avoid routing congestions. The proper organization
~ can be found by closely studying the interconnection patterns that occur in the computa-

tional kernels of a given domain of algorithms.

95

ﬁluster 1 \ CIuSter)
0T

N,

_/
<

N
7

i
|\

Qluster 3 \ Cluster y

Figure 5.9: Hierarchical Generalized Mesh Interconnect Structure

In addition to the techniques mentioned above, the Pleiades architecture uses
reduced-swing bus driver and receiver circuits to reduce the energy of data transfers
through the network [97, 98]. An additional benefit of this approach is that the electrical
interface through the communication network is standardized and becomes independent of
the supply voltages of the communicating satellite processors. This faci!itates the use of
dynamic scaling of the supply voltage, as satellite processors at the two ends of a commu-

nication channel can run at independent supply voltages.

In summary, the Pleiades architecture uses a hierarchical generalized-mesh struc-
ture to provide the flexibility needed to implement the computational kernels of a given
domain of algorithms on a heterogeneous set of satellite processors, while minimizing the
energy overhead of data transfers among the satellite processors. Satellite processors com-
municate through point-to-point communication channels that are static for the duration of
a kernel. Communication channels through the network correspond to the arcs of the data-

flow graph of a given kernel. Communication links among the satellite processors are

96

established by the core processors by configuring the switches in the communication net-
work. Use of point-to-point dedicated links ensures that temporal correlations. are pre-
served, thus reducing switching activity. The communication network architecture used in
the Pleiades architecture will be further evaluated within the context of the Maia processor

later in this chapter.

5.6 Reconfiguration

In the Pleiades architecture, the flexibility needed to support the various kernels of
a given domain of algorithms is achieved 5y the ability to reconfigure the satellite proces-
sors and the communication network at run-time, such that a hardware organization suit-
able for implementing a given kernel is created. This mode of programming is known as
spatial programming, whereby the act of programming changes the physical interconnec-
tion of processing elements, thus creating a new hardware organization, i.e., a particular
set of processing elements interconnected in a particular way,' to implement a new compu-
tation. This is the mode of programming used in FPGAs. Traditional programmable pro-
cessors rely on temporal programming, whereby the behavior of processing elements is
altered in time, on a cycle-by-cycle basis, by a stream of instructions, and the underlying

hardware organization is fixed.

As mentioned earlier, the behavior of satellite processors and the pattern of inter-
connections among them is dictated by the configuration state of the satellite processors
and the switches in the communication network. Configuring a set of satellite processors
or a set of switches in the communication network consists of altering the configuration
state of these hardware resources by the control processor via the configuration bus. This
is similar to what is done when programming FPGAs. However, in conventional FPGAs
such as the Xilinx XC4000 family, reconfiguration is a very slow task that can take milli-

seconds of time. As a result, run-time reconfiguration is not practical with conventional

97

FPGAs. One basic reason for this shortcoming is that it takes a tremendous amount of con-
figuration information to configure an FPGA. Part of the problem is the bit-level ;granular-‘ :
ity of the processing elements. All details of the logic functions that are needed to
implement a particular function must be fully specified. For example, it takes 360 bits of
information to configure a Xilinx XC4000E CLB and its associated interconnect switches!
The situation is further exacerbated when implementing word-level arithmetic operations,
when a great deal of the configuration information is redundant and specifies the same

logic functionality for different bits of a datapath. An additional obstacle to run-time

reconfiguration is that FPGAs are typically configured in a bit-serial fashion!. The
PADDI-2 DSP multiprocessor was also configured in a bit-serial manner, and as a result
run-time reconfiguration was not practical, but this was not really a limitation for the

design, as PADDI-2 was designed for rapid prototyping applications.

In the Pleiades architecture, since hardware resources are configured at run-time,
so that different kernels can be executed on the same basic set of satellite processors at dif-
ferent times during the execution of an algorithm, a key design objective is to minimize
the amount of time spent on configuring and re-configuring hardware resourges. This can
be accomplished with a combination of architectural strategies. The first strategy is to
reduce the amount of configuration information. The word-level granularity of the satellite
processors and the communication network is one contributing factor. No redundant con-
figuration information is wasted on specifying the behavior of individual bit-slices of a
multi-bit datapath. This is a direct result of the types of data tokens processed by signal
processing algorithms. Another factor is that the behavior of most satellite processors
(with the notable exception of PGA-style satellite processors) is specified by simple

coarse-grain instructions choosing one of a few different possible operations supported by

1. In some recent devices, configuration information can be loaded into the device via a byte-wide
bus [99]. ’

98

a satellite processor and a few basic parameters, as necessary. For example, a MAC satel-
lite processor can be fully configured by specifying whether to perform multiplication
operations or to perform vector dot-product operations. Address generators can be config-
ured by specifying one of a few different address sequences and specifying the associated
address generation bounds, steps, and strides, as necessary. As a result, all it takes for the
control processor to configure the satellite processors and the communication network is

to load a few configuration store registers with the appropriate values.

Another strategy to reduce reconfiguration time in the Pleiad,es architecture is that
configuration information is loaded into -the configuration store registers by the control
processor through a wide configuration bus, an extension of the address/data/control bus
of the control processor. For example, with a 32-bit control processor, such as the ARM9
microprocessor core [100], configuration information can be loaded into the configuration
store registers of the satellite processors and the communication network at a rate of 32

bits per cycle.

Another technique to minimize or even eliminate configuration time is to overlap
configuration and kernel execution. While satellite processors are busy executing a kemnel,
they can be configured by the control processor for the next kemel to be executed. When
the execution of the current kernel is completed, the satellite processors can start the next
kernel immediately by switching to the new configuration state. This can be accomplished
by allowing multiple configuration contexts, i.c., multiple sets of configuration store regis-
ters. This technique is similar to those used in multi-context and time-multiplexed FPGA
devices [101, 102, 103]. While one configuration context is active and is used by the satel-
lite processors and the communication network to execute the current kernel, a second
passive configuration context is simultaneously loaded by the control processor in prepa-

ration for the next kernel. When the execution of the kernel is finished, the new context

99

| »| Context 1 Satellite
Control Proc;ssors
Processor e
] Communication
Context 2 Network

Figure 5.10: Concurrent Reconfiguration and Kernel Execution

becomes the active context, and the old context can be loaded with new configuration state
in anticipation of the next kernel to be executed. This mode of operation is illustrated in
Figure 5.10. An extension of this technique is to allow more than two configuration con-
texts, at least for some of the satellite processors. These configuration contexts can be pre-
loaded when the system is initialized, and there will be no need to reconfigure the associ-
ated satellite processor at run-time. This latter technique was used in the address genera-

tors of the Maia processor.

5.7 Distributed Data-Driven Control

Coordination of computation and communication activities among the processing
elements of a multiprocessor system is one of the most important architectural design
issues, as it has a profound effect on the efficiency of the overall design. This task is per-
formed by a suitable control mechanism. The responsibility of the control mechanism is to
provide instructions to the processing elements, i.e., the functional units, the data memo-
ries, and the communication network (see Figure 4.1). In doing so, the cont;ol mechanism
requires control information from the processing elements, indicating their current states
to the control mechanism. How instructions are stored, how they are dispatched to the pro-
cessing elements, and how control information provided by the processing elements is

handled are the key issues that must be addressed in designing a control mechanism.

100

In the Pleiades architecture, computational kernels are executed on the satellite
processors in a distributed, concurrent manner. This approach avoids the energy and per-
formance overheads of large, centralized functional units and data memories by replacing
global interactions across long distances by more local interactions across shorter dis-
tances. This same approach can be applied to the design of the control mechanism. The
Pleiades architecture uses a distributed control mechanism that employs small local con-

trollers in place of a large global controller.

In a centralized control mechanism, a single global controller is responsible for
controlling the activities of all processing elements. VLIW and SIMD architcctﬁres, for
example, use a centralized control mechanism. The conceptual simplicity of this scheme
works well when there is a single thread of computation. In a multiprocessor system with
multiple processors executing multiple threads of computation, however, a centralized
control mechanism loses its conceptual simplicity and becomes quite cumbersome, as the
controller has to deal with the combinatorial explosion of control states as the combined
states of the individual processing elements are considered together. As a result, develop-
ing programs and compilers for architectures that use a centralized control mechanism
becomes very complex and difficult. Furthermore, a centralized control mechanism incurs
a great deal of energy and performance overhead because instructions to the processing
elements and control information from the processing elements are all communicated glo-
bally through the central controller. As a result, a centralized control mechanism cannot
practically be scaled up to deal with a large number of processing elements because the
required bandwidth for distributing instructions and control information and the associ-

ated energy overhead and performance penalty can become prohibitive.

In a distributed control mechanism, each processing element has a local controller

with a local program memory. As a result, the energy and performance overheads of stor-

101

ing and distributing instructions and communicating control information are greatly
reduced as these interactions assume a local nature. With a distributed control mechanism,
a computational problem can be partitioned into multiple threads of computation in the
most natural way dictated by the problem itself, without the artificial constraints of a cen-
tralized control mechanism, and these threads of computation can then be distributed
across multiple processing elements or multiple clusters of processing elements. The abil-
ity to take such a modular approach eases programming and developing compilers for an
architecture with a distributed control mechanism. Another important advantage of a dis-
tributed control mechanism is that it can be gracefully scaled to handle multiprocessor
systems with a large number of processiﬁg elements to tackle increasingly complex com-

putational problems.

The key design issue with a distributed control mechanism is how a local control-
ler coordinates its actions with other local controllers that it needs to interact with during
the course of the execution of a given algorithm. One aspects of this problem is that each
local controller must somehow determine when it can start executing a particular task. The
objective here is to synchronize the actions of the controllers, so that computational activ-
ities are executed in the correct sequence. This can be accomplished by the exchange of
tokens of control information among the controllers through the communication network,
in the same way that data tokens are exchanged among the processing elements. Arriving
control tokens can not only be used by a controller to determine when to initiate the next
computational task, but depending on the control information encapsulated into the con-
trol tokens, they can also be used to determine which particular task is to be initiated by

the controller.

Minimizing the overhead of control tokens is an important design issue in a dis-

tributed control mechanism. An even more fundamental issue is how to map a given algo-

102

Data

Processor 1 Processor 2

Request

Acknowledge

Figure 5.11: Data-Driven Execution via Handshaking

rithm onto processing elements that are controlled in a distributed manner. The approach
taken in the Pleiades architecture is to map the dataflow graph of a given signal processing
kernel directly onto a cluster of satellite processors interconnected through the communi-
cation network. In this approach, a satellite processor directly corresponds to a node or a
cluster of nodes in the dataflow graph of a given kernel, and a communication channel
through the communication network directly corresponds to an arc in the dataflow graph.
Just as in the dataflow graph representation, the execution of an operation in a satellite
processor is triggered by the arrival of all required data tokens, i.e., operations are exe-
cuted in a data-driven manner [104). Thus, data tokens not only provide the operands to
be processed by the satellite processor, but they also implicitly provide synchronization
information. A handshaking mechanism is required to implement a data-driven mode of
operation: the arrival of a data token is signalled by a request signal from the sending sat-
ellite processor, and the acceptance of a data token is signalled by an acknowledge signal
from the receiving satellite processor (see Figure 5.11). This approach to distributed con-
trol is similar to the control mechanism of the PADDI-2 architecture [86] and the DSP
architecture proposed by Fellman [105]. As we will soon see, however, the particular con-
trol mechanism used in the Pleiades architécture provides additional support for handling

common signal processing data structures such as vectors and matrices more efficiently.

The conceptual simplicity and elegance of data-driven distributed control greatly

simplify the task of developing programs and compilers for the Pleiades architecture.

103

Extensive prior experience by researchers has demonstrated that dataflow graphs are per-
haps the most natural and most effective means to represent signal processing algorithms
[106, 107]. One of the key strengths of dataflow graphs is that they expose parallelism by
expressing only the data dependencies that are inherent to a given algorithm. There is a
rich body of knowledge addressing the problem of compiling dataflow graphs onto multi-

processor architectures [108, 109, 110, 111].

A data-driven control mechanism has another important benefit: it provides a well-
defined and elegant framework for managing switching activity in hardware modules. The
handshaking mechanism that is used to implement the data-driven semantics of dataflow
graphs can also be used to control switching activity in the satellite processors. When all
required data tokens have arrived at a satellite processor, the satellite processor can start
executing its task; otherwise, the satellite processor will stay dormant, and no unnecessary

switching activity will take place.

5.7.1 Control Mechanism for Handling Data Structures

Distributed execution of an algorithm on multiple processing elements involves
partitioning the calculations performed by the algorithm into multiple threads. These
threads are then assigned to appropriate processing elements. A convenient first step is to
partition the algorithm into address calculations and data calculations. Address calcula-
tions produce memory address sequences that are used to access data structures in the par-
ticular manner specified by the algorithm. Data calculations process the accessed data
structures and produce the desired results. This is illustrated in Figure 5.12 for the vector
dot product example. Address calculations involve loop index and memory address
pointer calculations. These calculations are mapped onto address generators. The address
sequences produced by the address generators are used to access the required data struc-

tures (two vectors in this example) from the memory units. The resulting data streams are

104

-~

pm e e s e e e e m.--a

}

for (i=0; i<N; i++) (
S o 8 + X[i1*Y[1i]):

A

......................

......................

Address Thread Data Thread
for (i=0; i<N; i++) { Q1 s = 0;
Q1 <- Read(X[i]); Qz do {
02 <- Read(¥Y[i]); » x <- Q1;
} Yy <- Q2;
t <- Q3; 8 = 8 + X*;
Write(s, t); Q3 } while (...)
Q3 <~ 8;
Memory | . X :
AddrGen .] . '
i [T L :
; : MAC :
AddrGen Mi,'}‘i;”y R ! :

Figure 5.12: Address and Data Threads for Computing Vector Dot Product

then communicated to the functional units performing the data calculations (a single MAC
unit in this example). The MAC unit must have a way of knowing when the-end of a vec-
tor is reached. This information will provide the missing condition of the while() state-
ment in the data thread in Figure 5.12. One approach is to replicate the loop index
calculation of the address thread in the data thread. A better approach that avoids the over-
head and inconvenience of replicating the loop index calculation is to let a data stream

itself indicate the boundaries of the data structure that it is carrying. This can be done by

105

-1_’2_’3_’4] ::> oljo|lo 1 | «— EOV
- 1 21| 3|| 4 |« Data

~
v
®
4
7]

Figure 5.13: Data Stream Examples for Accessing Vectors and Métrices

embedding special control flags that indicate the last element of a sequence into data

tokens. The latter approach was taken in the Pleiades architecture.

In the Pleiades architecture, a data stream can be a scalar, a vector, or a matrix.
These data types are the most common in signal processing algorithms. The boundaries of
vectors and matrices are indicated by special end-of-vector (EOV) flags that are embedded
into data tokens. Figure 5.13 illustrates how this is accomplished. An EOV flag can have
one of three values: 0, 1, or 2. The value 1 marks the last data token of a one-dimensional
data structure or the last data token of a one-dimensional sub-structure of a two-dimen-
sional data structure. The value 2 marks the last data token of a two-dimensional structure.
The value 0 marks all other data tokens. Thus, two additional bits are needed to encode the
EOV flag into a data token. Observe that the manner in which the elements of a vector or a
matrix are scanned determines how the resulting data stream is delimited with EOV flags.

Data structures of higher dimensions can also be created by allowing the EOV flag to take

106

AddrGen v|2°°2° Memory Vv (€000,
o : EQV token
Control €000,
v : vector data Processor v
s :scalar data

(a) Data Stream Production

= i (o] . .
o MPY sp—» Scalar Multiplication
—9 s
o
i @000 N
000 MPY vE222 2, Vector-by-Scalar Multiplication
—MV
eocoo J, 000 o
@000 MPY v|=—=—— Vector Multiplication
—_—h Vv
eocoo I, o
€000 MAC s—» Vector Dot Multiplication
———pv

(b) Data Stream Consumption

Figure 5.14: Examples of Data Stream Production and Consumption

on more than three values. This was not deemed necessary for any of the Pleiades proces-
sors that were considered. EOV flags are inserted into data tokens by either an address
generator producing the address sequence that is used to access the required data structure
or by the control processor. Memory units simply copy the EOV flag of an incoming
address token into the corresponding data token being read from memory. This is illus-
trated in Figure 5.14. How the EOV flags are used by a functional unit depends entirely on

the instruction being executed by that functional unit, and the instruction being executed

107

by a functional unit must specify the type of and the manner in which an incoming data
stream that is to be processed. Some examples of how data streams can be consumed by a
satellite processor are shown in Figure 5.14 for the case of the MAC satellite processor.
For any given instruction of a satellite processor, if the dimensionality of all input streams
is increased by one, then the dimensionality of the output data stream is automatically
increased by one, without the need to specify a new instruction. For instance, if the input
data streams of the vector dot product instruction of the MAC processor are two-dimen-
sional vectors instead of the one-dimensional vectors shown in Figure 5.14, then the out-

put will automatically be a vector, with the proper EOV delimiters, instead of a scalar.

5.7.2 Summary

With its distributed data-driven control mechanism, the Pleiades architecture
avoids the energy and performance overheads of communicating instructions and control
signals globally across large distances, while providing modular and scalable support for
highly concurrent implementations of signal processing algorithms. The control mecha-
nism used in the Pleiades architecture provides support for handling common signal pro-

cessing data structures such as vectors and matrices efficiently.

5.8 System Timing and Synchronization

Implementation of the handshaking mechanism that is needed in a data-driven
control scheme is an important design issue. While the handshaking mechanism can be
implemented within a conventional synchronous timing scheme with a global clock sig-
nal, where the status of the handshaking signals are examined on a cycle-by-cycle basis, as
was done in the PADDI-2 design, data-driven control possesses an inherently asynchro-
nous nature in which the arrival of data tokens at whatever point in time, not the tick of a
global clock signal, is used to synchronize and coordinate computational steps. The hand-

shaking mechanism can in fact be implemented, in a more natural way, within an asyn-

108

chronous timing scheme, in which the handshaking signals can also be used to
synchronize data transfers to and from storage elements, without the need for a global

clock signal [112].

In the Pleiades architecture, satellite processors communicate via an asynchronous
timing scheme. This approach has a number of important benefits that are beyond the con-
ceptual simplicity and elegance of combining data-driven control with asynchronous tim-
ing. The required throughput and the corresponding internal operating frequency of a
satellite processor depend on the computational task that it is expected to perform and can
vary from algorithm to algorithm or even from kernel to kernel. To minimize power dissi-
pation, the internal operating frequency of any given satellite processor must be at the
minimum required to meet the required processing throughput, and this is accomplished
by setting the supply voltage of the satellite processor to the minimum required to meet
the expected operating ‘frequency. This can be done either statically or dynamically (by
using dynamic scaling of the supply voltage). We thus have a situation in which multiple
communicating processors can operate at different and time-varying internal operating
frequencies and supply voltages. To accommodate multiple and time-varying operating
frequencies, an asynchronous timing scheme is required, at least at the global level, for
inter-satellite communication, because an asynchronous timing mechanism is independent
of the operating frequencies of the éommunicating modules. One important benefit of this
approach is that once a satellite processor has been designed and its functionality and
internal timing have been verified and characterized, it can be utilized in a domain-spe-
cific processor without the need to re-verify its timing within the context of the overall
processor because its internal timing is independent of external timing constraints. This is
certainly not the case in a synchronous design, where the timing of a module is subject to
external timing constraints, such as clock skew and the setup and hold times of the mod-

ules with which it must communicate. An asynchronous timing scheme results in a highly

109

modular design style in which a domain-specific processor can be constructed seamlessly
by assembling the required set of satellite processors from a pre-designed library of pro-
cessors, without having to re-design and re-verify existing satellite processors for a new

set of external timing constraints.

An additional benefit of an asynchronous timing scheme is that the energy over-
head of distributing a global clock signal is avoided. This can result in significant savings,
particularly for high-performance designs, as the overhead of distributing a high-speed,
low-skew clock signal can be quite high (as high as 40% of total power dissipation for
some high-performance designs [113]). It is often cited [114], and it is certainly true, that
with an asynchronous timing scheme, switching activity is minimized because the storage
elements of an asynchronous circuit module are clocked and loaded with new values only
when there is a request for a new computation; otherwise, the storage elements of that
module are not clocked, and there is no switching activity in that module. In a straightfor-
ward synchronous implementation, the storage elements are always clocked even if there
is no new data to be processed, and there is a great deal of unnecessary switching activity,
wasting a great deal of energy. However, a synchronous system can be designed, using
clock-gating techniques, such that its storage elements have the same switching profile as
its asynchronous counterpart. Thus, a synchronous circuit module can be designed such
that its storage elements are clockéd and loaded with new data only when there is a new
computation to be performed by that module. However, a global clock signal is still
present and must be distributed to all circuit modules, and the required clock-gating con-
trol circuits incur additional overhead. The overhead of clock-gating control circuits is rel-
atively minor and is comparable to the overhead of handshaking control circuits in an
asynchronous design. Thus, the real advantage of an asynchronous design, from the point

of view of energy, is that the overhead of the clock distribution network is avoided.

110

Figure 5.15: Completion Signal Generation in Asynchronous CMOS Circuits

An important issue in asynchronous systems is the overhead of generating comple-
tion signals. In a synchronous design, the availability of new data is indicated implicitly.
The beginning of a new clock cycle, e.g., the rising edge of the clock signal, loads storage
elements with new data to be processed by the combinational logic blocks, which are
required to finish evaluating by the end of the current clock cycle, which is also the begin-
ning of the next clock cycle, when their results will be loaded into the appropriate storage
clements, and the next processing cycle will begin. In an asynchronous design, on the
other hand, availability of new data is indicated explicitly. Each logic block generates a
completion signal when it has finished evaluating. The completion signal results in a
request signal to other blocks, informing them of the availability of new data to be pro-
cessed by them. In asynchronous systems, completion signals can be generdted by encod-
ing each bit of data on a pair of signals. Figure 5.15 illustrates how this is accomplished in
CMOS designs [115, 116]. A logic gate is implemented using a differential circuit. Ini-
tially, the gate is precharged, and both Q and Q outputs are high, indicating that the circuit
is waiting to evaluate, i.e., it is not done yet. When all required inputs become available,

and the gate evaluates, one of its outputs is discharged, indicating that it has finished eval-

111

uating. The completion signal (the Done signal in Figure 5.15) is the logical OR of Q and
Q. There are two serious problems with this approach. First, since a triplet of valﬁes (low,
high, waiting) must be coded on a pair of signals, asynchronous logic gates, such as the
differential CMOS gate shown in Figure 5.15, are more complex than the simple logic
gates that are sufficient for synchronous designs. As a result, more capacitance is switched
in each logic gate in an asynchronous circuit. Second, because of the precharge/evaluate
and differential nature of asynchronous logic gates, switching activity is at maximum
because for every evaluation, one side of the circuit must first be precharged, and the same
or the other side of the circuit must be discharged. Thus, the requirement to generate com-
pletion signals incurs a heavy energy penalty that could outweigh the benefit of avoiding
the overhead of clock distribution. This problem with asynchronous circuits motivated the

use of synchronous techniques for the internal design of the satellite processors.

In the Pleiades architecture, each satellite processor consists of a synchronous core
and an asynchronous handshake controller, as shown in Figure 5.16. The synchronous
core has its own local clock signals. The core implements the basic functionality of the
satellite processor. It can be a simple pipeline stage, a multi-stage pipeline, or a finite-state
machine. The core communicates with other satellite processors through the handshake
controller, which provides an asynchronous interface to the satellite processor. Satellite
processors communicate using a common asynchronous handshake protocol, and there is
no global clock signal. The handshake controller is responsible for synchronizing the
transfer of data tokens to and from the core through the input and output ports of the satel-
lite processor. The controller is also responsible for generating the clock signals needed by
the synchronous core. The behavior of the handshake controller is determined by (a) the

functionality of the satellite processor, (b) instructions from the configuration state of the

112

Configuration Store

D4
Riy —¥
Air < Synchronous Core == D,
D,
Rip —¥
Ap — Clocks Flags
—>
Asynchronous Handshake Controller Ro

Figure 5.16: General Structure of a Satellite Processor

satellite processor, (c) control information from the synchronous core, and (d) control

information embedded into the input data streams.

The handshake protocol that is used for inter-satellite data transfers is the two-
phase protocol shown in Figure 5.17. The main reason for this choice was the higher per-
formance of the two-phase protocol compared to the four-phase protbcol, which is also
shown in Figure 5.17. The two-phase protocol involves only two back-to-back transitions
on the handshake signals, corresponding to one round-trip delay across the communica-
tion network, whereas the four-phase protocol requires four back-to-back transitions on
the handshake signals (two round-trip delays). As a result, the maximum data rate with the
two-phase protocol is higher than that of the four-phase protocol. The chief advantage of
the four-phase protocol is its return-to-zero characteristic. Since typical latch and flip-flop
circuits are activated by levels on the clock signal, as opposed to transitions, it is easy to

generate the clock signals for the storage elements with the four-phase protocol. The four-

113

Sender Ack’ Receiver

2-Phase Protocol

Req _/ ?‘
e

Req _,
Sender ¢ Ack | Receiver
4-Phase Protocol
Req Z
Ack

Figure 5.17: Asynchronous Handshake Protocols

=

T
-1

Figure 5.18: Transition-to-Pulse Converter

phase protocol is particularly convenient when used in conjunction with precharged
dynamic logic [117, 118]. With the two-phase protocol, either the storage elements must
respond to transitions, e.g., double-edge-triggered flip-flops, or the transitions must be
converted to pulses. The latter approach was taken in the Pleiades implementations. Tran-

sitions can be converted to clock pulses with the circuit shown in Figure 5.18.

Since the handshake controller is responsible for generating local clock signals for
the synchronous core, it must be able to estimate the cycle time of the core. This requires a

timing reference that can model and track the most critical path in the core. One way to

114

accomplish this is to build a replica of the most critical path in the core. This approach is,
however, not always practical or possible. Another approach is to have a timing chain built
from delay elements with the proper delay and some safety margin. One approach is to use
simple inverters as delay elements, but a more area-efficient and energy efficient approach
is to use inverters built from long-channel transistors. With this approach, the power dissi-
pation of the timing reference circuit can be kept to less than 1% of the total power dissi-
pation of the satellite processor. One important issue with a timing reference circuit is how
well it can track the cycle time of the core. Proper operation requires that a certain amount
of safety margin be built into the delay through the timing reference circuit, but this mar-
gin will reduce the performance of the satellite processor if it is excessive. The approach
taken in the Pleiades architecture was to use a programmable timing reference whose
delay is set by the configuration state of the satellite processor. This approach allows the
timing reference circuits to be configured during testing, so that the delay through the tim-

ing reference circuits is the minimum required for proper operation.

Figure 5.19 shows a simplified diagram of the handshake controller for a single-
input/single-output satellite processor with a single pipeline stages. The design of the
handshake controller circuits for the Maia processor was taken up by Martin Benes, and

details of the design can be found in his Masters thesis [119].

An important point that should be mentioned is that the globally asynchronous,
locally synchronous timing scheme that was chosen for the Pleiades architecture is strictly
an implementation-related issue and is independent of the core architectural concepts of
the Pleiades architecture. A Pleiades-style processor can also be implemented using a con-
ventional synchronous timing scheme, but it will not benefit from the advantages of the

timing scheme described above.

115

synchronous core

Logic X
Block [* Do

....................

asynchronous handshake controller

Figure 5.19: Example of a Handshake Controller

5.9 The Pleiades Design Methodology

The Pleiades approach is not only a hardware architecture for domain-specific pro-
cessors, but it also involves an associated design methodology that is used to create

domain-specific processor instances based on the Pleiades architecture template.

The Pleiades design methodology has two separate, but related, aspects that
address different design tasks. One aspect of the methodology addresses the problem of
designing a domain-specific processor for a given algorithm domain. The other aspect of
the methodology addresses the problem of mapping a given algorithm onto an existing
domain-specific processor instance. Both of these tasks involve analyzing algorithms and
mapping them onto hardware resources. The chief difference between these two tasks is
that in one of them, i.e., the problem of creating a domain-specific processor instance,

architectural parameters (i.e., types and numbers of satellite processors and the detailed

116

structure of the communication network) are not fixed and are to be determined by the

algorithm analysis and mapping process.

The design flow begins with a description of a given algorithm in C or C++. The
baseline implementation is to map the entire algorithm onto the control processor. The
po'wer and performance of this baseline implementation are then evaluated and used as
reference during subsequent optimizations, during which the objective will be to minimize
energy consumption while meeting the real-time performance requirements of the given
algorithm. The key task at this point is to identify the dominant kernels that are causing
energy and performance bottlenecks. This is accomplished by dynamic profiling of the
algorithm. Dynamic profiling establishes the function call graph of the algorithm and tab-
ulates the amount of time and energy taken by each function and each basic block of the
program. With this information, the dominant kernels of the algorithm can then be identi-
fied. The energy consumption of the baseline implementation is estimated using a model-
ing approach in which each instruction of the control processor has an associated base
energy cost, and the total energy of a given program is obtained by adding the base costs
of all executed instructions [120]. More accuracy can be obtained by taking account of
inter-instruction energy consumption effects into the base costs of the instructions. A basic
optimization step at this point, before going further into the rest of the design flow, is to
improve the algorithm by applying architecture-independent optimizations and rewriting

the initial description.

Once dominant kernels are identified, they are ranked in the order of importance
and addressed one at a time until satisfactory results are obtained. One important step at
this point is to rewrite the initial algorithm description, so that kernels that are candidates
for being mapped onto satellite processors are distinct function calls. The next step is to

implement a candidate kernel on an appropriate set of satellite processors. This is done by

117

int dot_product(int x(), int y[], int n) \

1

2 {

3 int i;

4 int s;

5

6 8 = 0;

7 for (1 = 0; 1 < n; i++) B += x[i]l*yli);
8 return s;

9 }

N _/

Figure 5.20: C++ Description of Vector Dot Product

directly mapping the dataflow graph of the kernel onto a set of satellite processors. With
this approach, each node or cluster of nodes in the dataflow graph corresponds to a satel-
lite processor. Arcs of the dataflow graph correspond to links in the communication net-
work, connecting the satellite processors. Mapped kernels are represented using an
intermediate form as C++ functions that replace the original functions. The advantage of
this approach is that mapped kernels can be simulated and evaluated with the rest of the
program within the same environment that was used to simulate and evaluate the original
program. In the intermediate form representation, satellite processors and communication
channels are modeled as C++ objects. Each object has a set of methods that captures the
functionality of the object during configuration and execution. This can be illustrated by
an example. Figure 5.20 shows a C++ function implementing the vector dot product ker-
nel. Figure 5.21 shows a mapping of the vector dot product kernel onto a set of satellite
processors. Note that in this particular implementation of the vector dot product, both
input vectors are stored in the same memory, and are communicated to the MAC satellite
through the same communication channel in a time-multiplexed fashion. The MAC satel-
lite is configured to accept both input vectors from the same input port (the other input

port is unused). Figure 5.22 shows the intermediate form representation of the same func-

118

AddrGen | agp
A
Memory | _on

x{nl], y(n]
5
MAC macp

lo
Figure 5.21: Mapping of Vector Dot Product

tion. The intermediate form representation is functionally identical to the original function
but captures details of the actual implementation of the original function on satellite pro-
cessors. In the intermediate form representation, first the required satellite processors and
communication channels are instantiated. The satellite processors are then interconnected
by configuring the communication channels. Finding the most efficient way to connect the
required set of satellite processors through the communication network is a routing prob-
lem that is an important part of the overall design methodology [121]. The satellite proces-
sors are configured next. Configuration of the satellite processors and the communication
network switches is performed by code running on the control processor. Automatic gen-
eration of this configuration code is an important part of the Pleiades design methodology
[122). The overhead of the configuration code must be minimized by scheduling the con-
figuration code such that the amount of overlap between execution of the current kernel
and configuration for the next kernel is maximized. The kernel is then executed. Notice
that the execution of the kernel in this particular example is scheduled statically, but this is
not a requirement, and by employing a thread library, the kernel can be executed as a set of
concurrent processes, representing the concurrent hardware components. The energy and

performance of the mapped kernels can then be estimated during simulation with macro-

119

0 N WM b W=

int dot_product(int x[), int y[], int n)
{
Memory mem;
AGP agp;
MACP macp;
Queue A; // output of agp, address input of mem
Queue X; // data output of mem, X input of macp
Queue O; // output of macp
Queue unused; // dummy Queue for unused ports
int x_base; // base address of x[] in mem
int y_base; // base address of yl[] in mem
int i;
int rval;
// create memory map for x[] and y[] and initialize mem
x_base = 0;
y_base = x_base + n;
for (1 = 0; 1 < n; i++) (
mem.write(x_base + i, x[i]);
mem.write(y_base + i, y[i]);
)
// configure agp and macp
agp.load_program(“dot_product.pgm®);
agp.config(x_base, 1, 0, y base, 1, 0, n, 0, 0);
macp.config(MAC, 1, 1);
// create connections between satellites
agp.connect(a);
mem.connect (A, unused, X); // data input is unused
macp.connect (X, unused, 0); // Y input is unused
// Tun
for (1 = 0; 1 < n; i++) {
agp.exec(); mem.exec(); macp.exec();
agp.exec(); mem.exec(); macp.exec();
}
// macp has written its results to O
rval = O.read().data();
agp.exec(); // last execution cycle of agp
return rval;
}

J

Figure 5.22: Intermediate Form Representation of Vector Dot Product

120

s B Y
| e
1

Memory Memory

AddrGen 512x16-b 1024x16-b o

ARMS8 uP

Communication Network - K
Interface
} | y | " Address Data

rran | L[_OPon Y
I_ MAC l ALU Configuration

Bus

Figure 5.23: Block Diagram of the Maia Processor

models that are captured into the C++ objects representing the satellite processors and the

communication network.

Further details of the Pleiades design methodology can be found in [123] and Mar-
lene Wan’s Ph.D. dissertation [124].

5.10 The Maia Processor

In this section, architectural design of Maia [125, 126], a Pleiades processor for
CELP-based speech coding applications, will be presented. The Maia architecture was
defined using the methodology outlined in Section 5.9. Figure 5.23 shows the block dia-
gram of the Maia processor. The computational core of Maia consists of the following
ensemble of satellite processors: 8 address generators, 4 512-word 16-bit SRAMs, 4 1024-
word 16-bit SRAMs, 2 Multiply-Accumulate Units, 2 Arithmetic/Logic Units, a low-
energy embedded FPGA unit, 2 input ports, and 2 output ports. To support CELP-based
speech coding efficiently, 16-bit datapaths were used in the satellite processors and the

communication network. The communication network uses a 2-level hierarchical mesh

121

.

. Data 16 '

i ————) 3
. EOV 2 '
. ,/ »
Sender Req __.) Receiver
' Ack '

Figure 5.24: Bundled Signals of a Communication Network Channel

structure, as described in Section 5.5. To reduce communication energy, low-swing driver
and receiver circuits are used in the communication network. Satellite processors commu-
nicate through the communication network using the 2-phase asynchronous handshaking
protocol shown in Figure 5.17. Each link through the communication network consists of
a 16-bit data field, a 2-bit EOV field, and a request/acknowledge pair of signals for data-
driven control and asynchronous handshaking (see Figure 5.24). The EOV field can have
one of three values: 0, 1, 2. As a result, the control mechanism used in Maia can support
scalar, vector, and matrix data types. The I-Port and O-Port satellites are used for off-chip

data I/O functions.

5.10.1 Control Processor Interface
The control processor in Maia is a custom implementation of the ARM8 micropro-
cessor, a 32-bit RISC processor core [127]. The control processor was optimized for low-

power operation and was designed to support dynamic scaling of the supply voltage.

The control processor communicates with the satellite processors through an inter-

face module. The interface module performs the following functions:

“« Tt allows the control processor to send and receive data tokens through the commu-

nication network, and as a result, the control processor can communicate with the

122

satellite processors through the communication network as just another satellite
Pprocessor.

« It allows the control processor to configure the satellite processors and the commu-
nication network. The configuration bus is derived from the address/data/control
bus of the control processor. It consists of a 16-bit address bus and a 16-bit data
bus. The configuration bus can also be used by the control processor to write to
and read from the SRAM satellites and the instruction memory of the address gen-
erators. The configuration state of all satellite processors, the contents of the
SRAMs, and the contents of the instruction memories of the address generators are
all part of the memory map of the'control processor.

o It provides the control processor with the ability to reset the satellite processors
and their handshake circuits by writing to the appropriate registers.

o It provides the control processor with the ability to initiate the execution of kernels
and detect their completion. Kernels are initiated by sending request signals to the
address generators. The control processor performs this function by writing to the
appropriate registers in the interface module. Completion of kernels are signaled
by the address generators through acknowledge signals, which are used to set spe-
cial flag bits in the interface module that can either be polled by the control proces-

sor or can be used to interrupt the control processor.

Further details of the design of the interface module and its different operation

modes can be found in Vandana Prabhu’s Masters thesis [128].

5.10.2 Address Generator Processor
The address generator processor (AGP) is responsible for generating the address
sequences that are needed to access data structures from the memory units while executing

a kernel. The architecture of the AGP is based on a programmable datapath with a small

123

instruction memory. The AGP has a simple but flexible instruction set that allows the pro-
grammer to scan the elements of a vector or a matrix in complex but structured patterns.
The instruction set of the AGP allows up to two levels of nesting in the address generation
loop. The instruction set also supports multiplexfng of two address streams onto the same
communication channel. This allows the programmer to access simultaneously two differ-

ent data structures that are stored in the same memory unit.

Execution of a kernel is initiated by the control processor by sending a request sig-
nal to the relevant AGP. The request signal triggers the execution of a pre-loaded program
in the AGP. AGP programs are typically very short (just a few instructions at the most).
Multiple programs can be stored in the instruction memory, which can store up to 16
instructions in the Maia implementation. The request signal that initiates the execution of
an AGP program is accompanied by a data token that specifies which one of the pre-
loaded AGP programs is to be executed. When the AGP executes a halt micro-instruc-
tion, and the last address token has been generated and sent, the AGP returns an acknow]-

edge signal that can be used to interrupt the control processor.

The datapath of the AGP is shown in Figure 5.25. The Q register is the output of
the AGP. An address token generated by the AGP contains a memory address and a con-
trol flag specifying the type of memory access, i.e., read or write. There are two address
pointers: I0 and I1. If two multiplexed address streams are to be generated, then both
pointers are used; otherwise, only one of them is used. The address pointers are loaded
with initial values during configuration. Each address pointer has a step register and a
stride register that contain signed values and are initialized during configuration. SO0 is the
step register for I0, and S1 is the stride register for I0. S2 is the step register for 11, and S3
is the stride register for I1. An address sequence is generated by repetitively adding the

value of either the step register or the stride register to the address pointer, under program

124

e
+

L

L

-1, +1

3]
-1 i i ’ ;
KO K
-1, +1 -1
v

Configuration to Instruction
Data Controller

e %
{J_4

Figure 5.25: AGP Datapath

125

Q 10 11 S1 S3 N K KO cond NIT |NIF dest

Figure 5.26: AGP Instruction Format

control. The value of a stride register can be incremented or decremented by one, under
program control. The AGP datapath includes two loop index counters, N and K. If a two-
level nested loop is needed, then K serves as the inner loop index counter, and N serves as
the outer loop index counter; otherwise, N is used as the loop index counter. The loop
index counters are initialized during configuration. They are always decremented by one,
under program control, until they reach 0, which indicates the last iteration of a loop. K
can also be loaded with KO. This option can be used to change the number of iterations of
the inner loop at run-time, as KO can be incremented or decremented, under program con-
trol. The EOV flags are inserted into the address tokens based on the values of the loop
index counters. For a nested loop, during the last iteration of the outer loop, when N is 0,
the last address token generated by the inner loop is marked with an EOV value of 2. For
other iterations of the outer loop, the last address token generated by the inner loop is

marked with an EOV value of 1. The EOV value attached to all other address tokens is 0.

Figure 5.26 shows the format of an AGP instruction (the width of each field is
indicated above the field). The allowed operations of each field of an AGP instruction are
listed in Table 5.1. The instruction to be executed next can be subject to an optional condi-
tion. If the instruction to be executed next is not subject to a condition, then the NIT (Next
Instruction True) field is used to determine the next instruction. If the instruction to be
executed next is subject to a condition, and the condition turns out to be true, then the NIT
field is used to determine the next instruction; otherwise, the NIF (Next Instruction False)
field is used. If the specified condition turns out to be true, then the Q, 10, I1, S1, S3, N, K,

and KO operations of the instruction are nullified, i.e., they produce no side effect.

126

Field Explanation Operations
Q operation for Q register 10 read, IO write, I1 read, I1 write, no op
10 operation for I0 register add S0, add S1, no op
n operation for I1 register add S2, add S3, no op
Si operation for S1 register increment, decrement, no op
S3 operation for S3 register increment, decrement, no op
N operation for N register decrement, no op
K operation for K register decrement, load KO, no op
KO operation for KO Register increment decrement, no op
cond | condition for next instruction none, N==0,K==0
NIT | next instruction (unconditional or next, goto, halt

true conditional)
NIF | next instruction (false conditional) next, here
dest | instruction address for goto <address>

Table 5.1: Operations Executed by an AGP Instruction

Figure 5.27 illustrates an example of how an AGP can be programmed to produce
a desired address sequence. In this example, the AGP is programmed to produce a multi-
plexed address stream to read two vectors stored in the same memory unit to calculate the
dot product of the two vectors. Observe that the AGP program is expressed in pseudo-
code using C syntax. More examples of AGP programs will be presented at the end of this

chapter, where examples of kernel mappings will be presented.

5.10.3 Memory Units

The functionality of the memory unit is quite simple. A memory unit has three
inputs: address (A), data in (DI), and data out (DO). An input address token on A includes
a memory address, a read/write flag, and an EOV flag. The address input is typically gen-

erated by an address generator. If the address token specifies a read operation, then the

127

s =0;

for (i=0; i<N; i++)
S += X[i1*Y([i]):

}

Desired Sequence:

EOV 0 0 0 0 0 0 1 1

Address X Y X+1 Y+1 X+2 Y+2 X+N-1 | Y+N-1

X and Y are the base addresses of X[n] and Y[n], respectively.

AGP Program for Desired Sequence:

label Q (1] 1 SI | 83 N | K| Ko goto
— ——— —t— —
Ll I0 read +S0 {(N==0) ? halt : next °
Il read +S2 -1 L1

Configuration:
10 is loaded with X (X is the base address of X[n]).
S0 is loaded with +1.
11 is loaded with Y (Y is the base address of Y[n]).
S2 is loaded with +1.
N is loaded with N (the length of the X[n] and Y[n]).

Figure 5.27: Example AGP Program

memory location specified by the address is read and sent to the DO output. The EOV flag
of the address token is copied onto the EOV flag of the output data token. Thus, a memory
unit preserves the type of data structure specified on the input address stream. If an
address token specifies a write operation, then the data token on the DI input is written to
the memory location specified by the address token. The memory unit has an additional
function that allows the programmer to load a block of addresses specified by an address

streamn with zeros, without the need for a corresponding data stream that is needed by

128

memory write operations. Two memory sizes were chosen for Maia: 512-word and 1024-
word. Both sizes can be used for all vector and matrix calculations. The 1024-word mem-
ories were selected for storing and manipulating the codebook structures that are com-
monly used in the CELP-based speech coding algorithms. The smaller memories consume

less power and are favoured for most kernels that do not need the larger memories.

5.10.4 Multiply-Accumulate Unit

The core of the MAC satellite processor consists of a multiplier, followed by an
accumulator. The MAC unit has two inputs, A and B, and one output, Q. The MAC unit
performs one of two basic tasks: multiply and multiply-accumulate. The MAC unit has
two pipeline stages in the Maia implementation. The MAC unit can perform one of four

possible functions on the A and B streams:

* Scalar multiplication:
Q= AXB 5.1)
Q[i] = A[i} x B[i] (5.2)
Qi1 = ALU] x BLi(j] 3
» Scalar-by-Vector Multiplication:
QOli] = AxBIi] (5.4)
QLillj1 = Ali1x B[]1j] (5.5)
« Scalar-by-Matrix Multiplication:
QL[] = AxBLi]l] (5.6)
* Vector Dot Multiplication
N-1
0= z Ali] x B[] (5.7)
i=0
N-1 :
Qlil = Y Al = BlEU] (5.8)
j=0

129

The dimensionality of the output data stream is derived from the EOV flags of the
input data streams. The MAC unit automatically delimits its output data stream with the
proper EOV flags. The MAC unit also has the ability to shift, round, and saturate the out-
put result, as specified by the configuration state of the MAC unit. Instructions of the
MAC processor can operate in a mode in which both input data streams arrive on the A
input in a time-multiplexed fashion. This mode can be specified by the configuration state

of the MAC unit. The B input is unused in this mode of operation.

5.10.5 Arithmetic/Logic Unit

The ALU processor performs a variety of arithmetic, logic, and shift operations. It

has two inputs, A and B, an one output Q. It has three basic types of instructions:

« single-input scalar operations: absolute value and logical not. If the dimensionality
of the input data streams is increased, then the executed functions will automati-
cally become vector or matrix operations.

* two-input scalar operations: add, subtract, shift, min, max, compare, logical and,
logical or, logical xor. Once again, these operations will automatically become
vector or matrix operations, if the dimensionality of the input data streams is
increased.

e two-input vector-to-scalar operations: accumulate, vector max, and vector min.
Once again, these operations will automatically become two-dimensional vector

operations, if the dimensionality of the input data streams is increased.

5.10.6 Embedded FPGA

The FPGA unit consists of a 4-by-9 array of 5-input, 3-output logic blocks. The
design of the FPGA unit has been highly optimized for energy-efficient operation. The
FPGA can have up to two input ports and an output port. The port behavior of the FPGA

units is completely programmable and can be set by four of the 36 logic blocks. The

130

FPGA unit has two important functions that give the Maia architecture a great deal of flex-

ibility:

« In addition to being able to implement the functions performed by the ALU pro-
cessor (albeit at a higher cost), the FPGA can implement irregular bit-manipulation
and arithmetic operations that cannot be supported by the MAC and ALU proces-
sors. The FPGA can also implement finite-state machines.

o+ The FPGA can be used to implement irregular address generation patterns that are
not supported by the AGP instruction set. This can be done either in stand-alone
fashion, or in conjunction with an AGP, in which case the FPGA performs a trans-
formation function on the stream produced by the AGP. A good example of the lat-

ter is the bit-reversed addressing mode needed for performing FFT functions.

The details of the FPGA design is beyond the scope of this dissertation and can be
found in [129] and in Varghese George’s Ph.D. dissertation [130].

5.11 Algorithm Mapping Examples

In this section, we will present examples of how a kernel can be mapped onto sat-
ellite processors. Two examples will be considered. The first one is the ubiquitous Finite
Impulse Response filter. The second one is the synthesis filter used in the VSELP speech
coding algorithm.

5.11.1 FIR Filter

In this example, the response of a K-th order FIR filter to an input signal X [n]

(0 < n < N) is computed. The calculation performed by the kernel is

K-1
Yin] = Y A XIn—kl = Ag-X(n]+A; - X[n=11+ ... +Ax_, - X(n-K+1] 69)
k=0

131

AddrGen1

AddrGen1 AddrGen2 for (n=0; n<N; n++) {
for (k=0; k<K; k++) {
Q <- X+n-k;
Q <- A+k;
Memory1] Memory2 }
X[n},Alk) ¥(n] }

T L—l AddrGen2
MAC

for (n=0; n<N; n++) {
. Q <~ Y+n;
}

Note: Following C syntax, X, ¥, and A refer to the base address (address of element 0) of
X[n], Y[n], and A[k], respectively. Q is the output port of an address generator.

-

N

Figure 5.28: A Mapping for the FIR Kernel

where A, (0<k<K) are the coefficients of the FIR filter, and Y[n] (0<n<N) is the

output of the filter. The FIR calculation can be specified in C-style pseudo-code as:

for (n=0; n<N; n++) {
s = 0;
for (k=0; k<K; k++) {
s += X[n-k]*A[k];
}
Y[n)] = s;
)

Figure 5.28 shows a mapping of the FIR kernel in which the X [n] and A[k] vec-
tors reside in the same memory unit, and the Y[n)] vector is required to be stored in
another memory unit. During the first iteration of the outer loop of AddrGenl, the address

sequence produced by the inner loop will result in the following sequence from Memory1:

X[O]O A[O]l x[-lll A[l]l - 1 X['K+1]¢ A[K"l]

132

label Q 10 i S1|S3| N | K| KO goto

Ll KO (N==0) ? halt : next

L2 10 read +S0 {K==0) ? E2 : next
I1 read - +S2 -1 L2

E2 +S1 +53 -1 Ll

Configuration:
10 is loaded with X (X is the base address of X[n]).
S0 is loaded with -1.
S1 is loaded with K.
11 is loaded with A (A is the base address of A[K]).
S2 is loaded with +1.
S3 is loaded with -K+1.
N is loaded with N.
KO is loaded with K.

Figure 5.29: Program for AddrGenl of Figure 5.28

where data tokens with EOV=1 are underlined (EOV=0 for data tokens that are not under-
lined). During the last iteration of the outer loop of AddrGenl, the address sequence pro-

duced by the inner loop will result in the following sequence from Memory1:

X[N-1), A[0], X[N-2], A[1), ... , X[N-K], Af[K-1]

where data tokens with EOV=2 are double-underlined. The MAC processor executes the
dot multiplication operation on the incoming multiplexed data stream and produces the

following sequence:
Y[0}, Y(1], ... , ¥YIN-1]

The program running on AddrGen1 is shown in Figure 5.29, and the program run-

ning on AddrGen?2 is shown in Figure 5.30.

133

label 0 1o | 1 {st|s3|N|K|Ko goto

I0 read +S0 -1 (N==0) ? halt : here
Configuration:
10 is loaded with Y (Y is the base address of Y[n]).
SO0 is loaded with +1.
N is loaded with N,

Figure 5.30: Program for AddrGen2 of Figure 5.28

5.11.2 VSELP Synthesis Filter

The synthesis filter of the VSELP algorithm performs the following computation:

K-1
Y[n] = X[n] + EAk- Y[n-k-1] (5.10)
k=0)

where X[n] (0 € n < N) is the input of the filter, A, (0 <k <K) are the coefficients of the

filter, and Y[n] (0 <n < N) is the output of the filter. Observe that the output of the filter
is a function of the past output of the filter, as well as the input of the filter. The calculation
performed by the synthesis filter can be specified in pseudo-code as follows:
for (n=0; n<N; n++) {
s = 0;
for (k=0; k<K; k++) {
s += Y[n-k-1]*A[k];
}

Y[n] = s + X[n];
}

Figure 5.31 shows a mapping of the synthesis filter kernel in which the ¥ [n] and
A[k] vectors reside in the same memory unit, and the X [n] vector is stored in another

memory unit. During the first iteration of the outer loop of AddrGenl, the following

sequence of address tokens will be produced:

134

AddrGen2 AddrGen1 AddrGen1

([for (n=0; n<N; n++) { \

for (k=0; k<K; k++) {

Memory2 Memory1 Q <- Y+n-k-1;
X(n) Y{n],Alk] Q <- A+k;

}

Q <- Y+n;
1| y
MAC

Ll AddrGen2
for (n=0; n<N; n++) {

Q <- X+n;

ALU }

Figure 5.31: A Mapping for the VSELP Synthesis Filter

Y-1, A, Y-2, A+l, ... , Y-K, A+K-1,

[+

" where Y and 3, following C syntax, are the base addresses of the Y [n] and A[k] vectors,
respectively, and an overlined address token indicates that a memory write operation is to
be performed with that address token. The last address token is used to write the output of
the filter to Memory1. During the last iteration of the outer loop of AddrGenl, the follow-

ing sequence of address tokens will be produced:

Y+N-2, A, Y+N-3, A+l, ... , Y+N-K-1, A+K-1, Y+N-1

The MAC processor executes the dot multiplication operation on the incoming multi-
plexed data stream. The ALU executes the addition operation on its input data streams and

produces the following sequence:

135

label o 10 1 SI | S3| N | K| KO goto
Ll KO (N==0) ? halt : next
L2 I0 read +S0 (K==0) ? E2 : next
Il read - +82 -1 L2
E2 +S1 +83 next
I0 write -1 Ll .
Configuration:

10 is loaded with Y-1 (Y is the base address of Y[n}).
SO0 is loaded with -1.

S1 is loaded with K.

11 is loaded with A (A is the base address of A[k]).
S2 is loaded with +1.

S3 is loaded with -K+1.

N is loaded with N.

KO is loaded with K.

Figure 5.32: Program for AddrGenl of Figure 5.31

label 0 10 n SI | S3| N | K goto

I0 read +S0 -1 (N==0) ? halt : here

Configuration: '
10 is loaded with X (X is the base address of X[n]).
S0 is loaded with +1.
N is loaded with N.

Figure 5.33: Program for AddrGen2 of Figure 5.31

Y[ol, vf(il, ... , Y[N-1]

The program running on AddrGen1 is shown in Figure 5.32, and the program run-

ning on AddrGen2 is shown in Figure 5.33.

136

5.12 Summary

The Pleiades architecture template was presented in this chapter. The architecture

template has been designed for energy-efficient implementation of domain-specific pro-

grammable processors for signal processing applications. Architectural design of Maia, a

domain-specific processor for CELP-based speech coding applications, was presented.

The key features of the Pleiades architecture template are:

A highly concurrent, scalable multiprocessor architecture with a heterogeneous
array of optimized satellite proceséors that can execute the dominant kernels of a
given domain of algorithms with a minimum of energy overhead. The architecture
supports dynamic scaling of the supply voltage.

Reconfiguration of hardware resources is .used to achieve flexibility while mini-
mizing the overhead of instructions.

A reconfigurable communication network that can support the interconnection pat-
terns needed to implement the dominant kernels of a given domain of algorithms
efficiently. The communication network uses a hierarchical structure and low-
swing circuits to minimize energy consumption.

A data-driven distributed control mechanism that provides the architecture with
the ability to exploit locality of reference to minimize energy consumption. The
control mechanism provides special support to handle the data structures com-
monly used in signal processing algorithms efficiently. The control mechanism

also provides a framework for minimizing switching activity.

137

CHAPTER 6

Hardware Design of P1

In this chapter, hardware design of P1, the first Pleiades prototype, will be pre-
sented. The P1 prototype was designed and built to evaluate and verify the validity of the
architectural concepts used in the Pleiades architecture template. An important objective
of the P1 prototype was to build all the key components of the Pleiades architecture tem-
plate and to integrate them into a complete implementation that could be used to explore
the effectiveness of the Pleiades approach. Lessons learned from the P1 design were used
to refine the Pleiades architecture template. These lessons were incorporated into the
design of the Maia processor, which was described in Chapter 5. The P1 design was also

used as an initial driver for the Pleiades design methodology.

6.1 P1 Hardware Organization

The block diagram of P1 is shown in Figure 6.1. The satellite processors employed
in P1 include a multiply-accumulate (MAC) unit, two memory units, two address genera-

tors, two input ports (IPort), and one output port (OPort). All data and address tokens are

138

curation|Strobe ——
Configuration E ddress 8

Bus Data —15-p!

:

Memory Memory

' Network (6 Buses)
Network Reset —»

Satellite Reset —p! —Y—Y—2 X
[(=]
' MAC E E 6| & ——AutoAckMode
Slow Mode ——- '
= o o
P1IP2 op

Figure 6.1: Block Diagram of P1

16-bit quantities and are handled by 16-bit datapaths in the satellite processors and 16-bit
data buses in the communication network. P1 was not designed for a particular domain of
algorithms, but its design was influenced by the properties of CELP-based speech coding

algorithms. The chip can be used to implement the kernels shown in Figure 6.2.

P1 was fabricated in a 0.6-um, 3.3-Volt CMOS technology through MOSIS [131].
The chip was designed to operate at a minimum cycle time of 50 ns with a 1.5-Volt supply
voltage. The choice of the supply voltage was motivated by the desire to minimize power
dissipation while maintaining acceptable performance. The chosen supply voltage results
in an energy-delay product that is near the minimum for the CMOS technology used for

P1 (see Figure 6.3). A plot of the P1 die is shown in Figure 6.4.

In order to measure and profile the power dissipation of the hardware modules
used in P1, independent power supply pins were provided for the following circuit mod-
ules: the MAC unit, one of the memory units, one of the address generators, the network

bus drivers of one of the IPort units, and the configuration bus drivers.

139

| lPort | | _tPort |
AddGen AddGen AddGen AddGen
Y v ¥ v
Memory Memory Memory Memory
X MAC
Vector Multiply Dot Product

AddGen AddGen

]
4

Memory Memory M—

= O

MAC

FIR Filter

Figure 6.2: Kernels Supported by P1

0.6

Energy.Delay (fJ.ns)

04 -

02 |

0.0
1.0

2.0
Voo (V)

3.0

4.0

Figure 6.3: Energy-Delay Product vs. Supply Voltage

140

i}

-1
b4

oQon

o

opoooo

e

oo

ooo

Figure 6.4: Die Plot of P1

141

.8 8 register
address :>(Al X A2 X: address ——¥ == [== o ocs

data:X D1 X D2 X: data §1§ o0 abs
strobe \"/ \—f strobe —v——i > mp

Figure 6.5: Operation of the Configuration Bus

6.2 Configuration Bus

The satellite processors and the communication network are configured through
the global configuration bus, which consists of an 8-bit address bus to specify a configura-
tion register, a 16-bit data bus to carry configuration information, and a strobé signal. For
any given configuration register, the configuration address is compared to the ass}gned
address of the configuration register, and the result of the comparison is used to qualify the
strobe signal. This is illustrated in Figure 6.5. The strobe signal is active-low. It must be
lowered only after the specified configuration address has been decoded by all local
decoders. Configuration data is clocked into the specified configuration register at the ris-

ing edge of the strobe signal.

6.3 Communication Network

The communication network uses a full crossbar architecture with 6 19-bit buses,
and as a result, any satellite input port can be connected to any of the satellite output ports
by configuring the switches of the communication network. Satellite processors communi-
cate across the network using the 2-phase asynchronous protocol (see Figure 5.17). Each
bus of the communication network is 19 bits wide and contains the following signals: a

16-bit data bus, a request signal, and two acknowledge signals.

142

Input Port Output Port

Data Req Ackl Ack2

-ae?

16

~
. L

-®-
®_
®_
R
®.
X
—®
—®-
®.
-

- .~

BUS1[18:0)
BUS2[18:0)
BUS3[18:0]
BUS4[18:0)
BUSS[18:0)
BUS6[18:0).

Figure 6.6: Port Structure of the Satellite Processors

The input and output ports of the satellite processors contain the communication
network switches (see Figure 6.6). The switches are CMOS transmission gates and are
controlled by the contents of the associated configuration registers. An output port of a
satellite processor can have a maximum fanout of two, i.e., it can be connected to up to
two different input ports. This is accomplished by using the second acknowledge signal
provided in the buses of the communication network. The second acknowledge signal can
be used to synchronize the output port with a second input port. If the fan-out of an output
port is one, then the port is configured such that the second acknowledge signal is con-
nected to the outgoing request signal, and every request automatically generates an
acknowledge on the Ack? signal (the internal handshake circuits of the satellite processors
consider both acknowledge signals as active). The input ports also need to be configured

to use one of the two acknowledge signals, as appropriate.

143

Network

e s Sm— s e

/
.

-0.80 TIME (8)

49.00n 60.00n

Figure 6.7: Waveforms for Communication Network (Worst-Case Coupling)

Worst-case delay across the communication network under worst-case coupling
conditions is 11.2 ns. Figure 6.7 shows waveforms from a circuit simulation of the com-

munication network.

6.4 Y/O Ports

‘ The IPort and OPort units (see Figure 6.1) are used to stream data-tokens into and
out of the chip. They communicate with the satellite processors through the communica-
tion network, and they behave as satellite processors. They communicate with off-chip cir-
cuits using the 2-phase asynchronous protocol with a 16-bit data bus, a request signal, and

an acknowledge signal. The output port has an open-loop mode of operation, controlled by

144

the “Auto Ack Mode” pin (see Figure 6.1). When “Auto Ack Mode” is high, the output
port does not wait for an acknowledge signal from off-chip circuits and immediately sends
an incoming data token from the communication network to off-chip circuits. This mecha-

nism was added for convenience during testing.

6.5 The MAC Unit

The MAC unit performs two basic functions: multiply and multiply-accumulate.
The functionality of the MAC unit is chosen by its configuration state, which is stored in a
single 16-bit register. The two input operands of the MAC unit are 16-bit signed integers.
The multiply-accumulate function is used to compute the dot product of two input vectors.
The length of the input vectors is specified by the configuration state of the MAC unit.
The maximum vector size is 256. The MAC unit has a 40-bit accumulator, allowing it to

accumulate at least 256 32-bit products without resulting in an overflow.

Figure 6.8 shows the block diagram of the synchronous functional core of the
MAC unit. The clock signals of the MAC unit, CK1, CK2, and CK3, are generated by the
asynchronous handshake controller of the MAC unit. The MAC unit has two pipeline
stages. The multiplier design used in the MAC unit is based on the radix-4 modified Booth
structure [132, 133] with a carry-save array to add the 8 partial products specified by the
Booth encoder. The output of the carry-save array is in carry-save format and consists of a
32-bit sum vector and a 32-bit carry vector. The 40-bit output of the accumulator register,
which is also in carry-save format, is added to the output of the carry-save array to pro-
duce the final result of the first pipeline stage. For a multiply operation, this result is
loaded into the pipeline register clocked by CK3. For a multiply operation, the CK2 clock
is inactive, and the 40-bit carry and sum vectors going into the carry-save adder block are
forced to zero. For a multiply-accumulate operation, the result of the first pipeline stage is

loaded only into the accumulator register (CK3 is inactive). However, for the last multi-

145

16& 16

cKip] ckip]
&
°
Q
gls
w ¥ Carry-Save Array
£
°
o
o
324 ¥32
404 Y40
Carry-Save Adder
40{ 140
oKaB] cxzd\c%‘
404 réo
Carry-Propagate Adder
40
y
Shifter

161
Figure 6.8: Block Diagram of the Functional Core of the MAC Unit

ply-accumulate operation of a vector dot product, the result of the first pipeline stage is
also loaded into the pipeline register clocked by CK3. The carry-save result of the first
pipeline stage is converted to 2’s complement by the carry-propagate adder (CPA) block.
The output of the CPA is shifted right by 0, 4, 8, 12, 16, 20, or 24 bit positions (specified
by the configuration state of the MAC unit), and the least significant 16 bits of the shifted

result form the output of the MAC unit.

Based on circuit simulation results, the cycle time of the functional core of the
MAC unit is 39 ns and is determined by the first pipeline stage, i.e., the CSA stage. The

CPA stage was not timing-critical and was built using a compact block carry-lookahead

146

structure with 8-bit carry-ripple blocks. The maximum delay through the CPA stage is 27

ns.

6.6 The Memory Units

The memory unit has three ports: an address input, a data input, and a data outpuf.
The core of the memory unit is a 256-word, 16-bit SRAM block. The SRAM is interally
divided into two 128-word sub-blocks. To reduce access energy, only one of the sub-
blocks is activated during an access, as specified by the most significant bit of the input
memory address. The design of the SRAM provides a mode of operation that can be used
to save energy during vector read operations, during which consecutive read operations
" access adjacent memory locations. Each row of memory cells stores two words. The
addresses of the two words differ only in the least significant bit. The bit-slices of the two
words are interleaved in the memory array such that two adjacent columns store the-same
bit position of the two words (see Figure 6.9). Two such columns share a sense amplifier.
For a read access, the bit lines are precharged first, then the cells of the selected row dis-
charge the bit lines and the column specified by the least significant bit of the input
address is selected. If the next read operation accesses the other column, then there is no
need to precharge and discharge the bit lines again because those events have already
occurred. All that is needed is to sense the previously discharged bit lines of the adjacent
column. This type of access is called Precharge-Hold Access (PHA) and is controlled by a
PHA signal that is part of the input address token provided by an address generator. The
first cycle of a PHA access is exactly like a non-PHA, random-access cycle, but the sec-
ond cycle of a PHA access takes less time and energy because there is no need to pre-

charge and evaluate the bit lines.

An input address token includes an 8-bit address, a signal indicating the type of

access (read or write), and a signal requesting the PHA mode. If the address token indi-

147

bitLinePrecharge

select0

select1

precharge

sense

writeEnable

Column 0 Column 1
S A —
A AN
o |
CellO X Cell 1 X

...................

...................

..........

.........

.........

datain

dataOut

dataOut

Figure 6.9: Bit-Line Structure of the P1 SRAMs

148

cates a read operation, then the specified memory location is read and sent to the data-out
port of the SRAM. If a write operation is specified, then the incoming data token on the
data-in port is written to the specified address. The clock signals of the synchronous
SRAM core are provided by an asynchronous handshake controller that takes into account

the operation mode of the SRAM to provide clock signals with appropriate timing.

6.7 The Address Generators

The main functionality of the address generator design used in P1 is to generate an
address sequence to access a vector X[n] (0sn< N) stored in a memory unit. The main
objective of the design was to support the kernels shown in Figure 6.2. This is accom-
plished by counting up (or down) from an initial address Al to an end address A2. Al and

A2 are 8-bit values and are specified by the configuration state of the address generator,
which also specifies the count step (+1 or —1). For testing and measurement purposes, the

address generator can also be configured to generate a pseudo-random sequence counting

from Al to A2.

Since the address tokens generated by the address generator are to be used by a
memory unit, they must also provide a signal specifying the type of memory access (read
or write) and a signal requesting a PHA read access. These two signals are controlled by
the configuration state of the address generator and are bundled with an 8-bit address into
a 16-bit token and transmitted through the communication network. The type of memory
access specified by the configuration state can be read, write, or read with last-write. For
the read mode, all outgoing tokens of an address sequence specify a read operation. For
the write mode, all outgoing address tokens specify a write operation. For the read with
last-write mode, all outgoing addresses, except the last one, i.e., A2, specify a read opera-
tion. The last address specifies a write. This mode can be used to implement the FIR filter

kernel shown in Figure 6.2. The dot product of input vector X[Al, . ..,A2-1] and the

149

coefficient vector C[O, . . .,N-1] is stored back in X [A2], which is no longer needed
to calculate the response of the filter, as X [A1] is the most recent input sample of the FIR
filter, and X [A2-1] is the oldest required input sample, as determined by N, the length of
the filler (N = A2 - Al). By repeating the kernel for X[a1-1, ...,A2-2], the
response of the FIR filtér for the next input sample, i.e., X[Al-1], will be computed and

stored in X [A2-1].

The address generator has an input port that can be used to request the generation
of an address sequence. This is accomplished by sending an empty data token to the input
port of the address generator. When the address generator has finished generating the
specified address sequence, it returns an acknowledge signal on the input port and stops.
To generate another address sequence, another request signal is needed. The address gen-
erator can also be triggered into generating a specified address sequence by writing to a
special bit of the configuration state. The address generator has an additional operation
mode, specified by the configuration state, in which it can repeat an address sequence in
an infinite-loop mode after it has been triggered once. In the infinite-loop mode, the

address generator will be stopped only by the global satellite reset signal.

The configuration state of the address generator is specified by two 16-bit regis-
ters. The first register contains Al and A2, and the second register contains the bits speci-

fying the operation mode of the address generator.

6.8 Chip Design Methodology

With a few exceptions noted below, all circuit blocks, including the top-level
design of the chip, weré implemented using a full-custom design methodology in the
Cadence design environment [135]. The synchronous core of the address generator and all
satellite controllers were specified in VHDL and synthesized using the Synopsys logic

synthesis tool [134]. They were placed and routed using a standard-cell layout methodol-

150

ogy with the Cadence Cell Ensemble place-and-route tool. The logic design of the hand-
shake circuits was done using a full-custom approach with special standard cells designed
specifically for the handshake circuits. The layouts of the handshake circuits were ren-
dered using a standard-cell methodology. The functionality of the chip was verified by
logic and circuit simulations. Detailed critical path simulations were performed with the
HSpice circuit simulator [136]. Block- and chip-level simulations were performed with
PowerMill [134], which was also used to determine the power dissipation of the chip and

its various sub-blocks.

6.9 Measurement Results

A custom circuit board was built to test and characterize the P1 chips, which were
packaged in a 120-pin ceramic PGA package. Input vectors were provided using a logic
analyzer. The exact same vectors were used with PowerMill simulations to make a direct
comparison of measured and simulated energy and delay pérameters. All measurements
were done at room temperature, using a 1.50-Volt supply voltage. The results of the mea-
surements and the simulations are listed and compared in Tables 6.1 and 6.2. For these
measurements, the input ports of the satellite processor in question were driven by the
IPort units, and the output of the satellite processor was sent to the OPort unit, which was
operated in the open-loop mode, as described in Section 6.4. The IPort units provided data
tokens to the satellite processor under test as soon as the satellite processor had acknowl]-
edged the receipt of a new input token. Thus, the cycle-time of the test setup was limited
by the cycle-time of the satellite processor under test. Observe that this cyclé time includes
the round-trip delay of the communication network plus the input handshake delay of the
OPort unit. This extra delay could not be directly measured but was estimated to be about
24 ns. Cycle-time measurements were performed by measuring the period of the input

acknowledge signal of the satellite processor in question. This was possible because the

151

Circuit Module SRy @70 | Emeasurea
Simulated | Measured Esimulated

Address Generator Satellite (random mode) 8.1 73 0.90
MAC Satellite (multiply) zero input 11.9 10.5 0.88

random input 92.2 724 0.79
MAC Satellite (multiply-accumulate) | zero input 14.1 11.6 0.82

random input 116.5 95.1 0.82
SRAM Satellite (read) random data 33.7 324 0.96
SRAM Satellite (PHA read) random data 27.9 25.7 0.92
SRAM Satellite (write) random data 25.8 23.5 0.91
Network Channel random data 8.3 6.8 0.82

Table 6.1: Energy Measurement and Simulation Results

Cycle Time (ns)

T,

Circuit Module measured
Simulated | Measured Tsimulated

Ring Oscillator | inverter (SI-ISLtage)J 35.2 40.0 1.14
delay cell (15-stage) 39.1 49.8 1.27

Address Generator Satellite 40.0 473 1.18
SRAM Satellite 35.6 424 1.19
MAC Satellite 70.8 87.4 1.23

Table 6.2: Cycle-Time Measurement and Simulation Results

152

Circuit Module Enerey G779 | Emeasurea

Simulated | Measured Esimulated

[Address Generator Satellite ~ 50| 44| 038
SRAM Satellite (PHA read) 27.8 254 0.91
MAC Satellite (multiply-accumulate) 107.1 90.5 0.85
Network Channel (A input of MAC) 9.1 7.5 0.82
Total (chip core) 207.1 179.1 0.86

Table 6.3: Dot Product Results

request signal, the acknowledge signal, and the least significant data bit of BUSO were
driven off-chip and could be monitored by an oscilloscope. Energy measurements were
performed by measuring the current through the supply pin of the circuit module in ques-

tion with a current meter.

Energy measurement and simulation results for the dot product kernel, as shown in
Figure 6.2, are listed in Table 6.3. The simulated cycle time for the dot product kernel was
71.4 ns. The measured cycle time of the kernel, based on the period of the input acknowl-
edge signal of the MAC satellite processor, was 88.3 ns, i.e., 1.24 times the simulated

value.

6.10 Discussion

A number of important lessons were learned during the design and evaluation of
the P1 prototype. These lessons were used to refine the Pleiades architecture template and

resulted in a number of significant improvements that were utilized in the Maia processor:

* The functionality of the address generator architecture used in P1 was limited to

simple sequential access of the elements of a vector. One limitation was that the

153

count step used by the address generator was either +1 or —1. Another limitation
was that the count step could not be changed at run-time. Yet another limitation
was that only one level of nesting was allowed in the address generation loop. A
further limitation was that only a single data structure could be accessed by an
address generator, as two address streams could not be multiplexed onto the same
address generator. As a result, a second required data structure had to be stored in a
separate memory and accessed by a separate address generator. All of these short-
comings pointed towards a solution that would provide more flexibility with a pro-
grammable datapath under the control of a small, simple instruction set designed
specifically for generating address sequences. This resulted in the address genera-
tor architecture that was developed for the Maia processor (see Section 5.10.2).
The MAC unit of P1 had to be configured to know the length of its input vectors.
This meant that the MAC unit had to contain a replica of the loop index counter of
the address generator. Not only does this approach waste area and energy, it is not
clear how it can be extended to handle data structures more complex than simple
vectors. This deficiency led to the development of the data-structure control mech-
anism with EOV flags, as described in Section 5.7.1.

The satellite processors and the communication network had to be configured first
before they could be used for any purpose. This meant that the overhead of recon-
figuration cycles reduced the performance of the design. This shortcoming led to
the overlapped reconfiguration and execution techniques that were discussed in
Section 5.6.

The delay of the communication network increased the cycle time of the design
and reduced throughput significantly. This was exacerbated by the asynchronous

timing scheme which required a round trip of request/acknowledge signals across

154

the network. To reduce this overhead, transfer of data tokens through the commu-
nication network should be a pipeline stage. This approach was used in Maia.

» The energy consumption of the communication network was responsible for about
15% of the total energy of the dot product kemnel. To reduce this overhead, low-
swing driver and receiver circuits were used in the Maia communication network.

« It turned out that the delay lines that were used by the satellite handshake control-
lers accounted for as much as 8% of the energy consumpﬁon of the satellite pro-
cessors. This led to the development of more efficient delay lines for the Maia
processor, where the energy consumption of the delay lines was kept to below 1%
of total satellite processor energy. A further limitation of the P1 design was that the
delay of the delay lines was fixed. To tune the delay of the delay lines to the mini-
mum required for proper operation and hence maximize performance, the delay
lines of the Maia processor could be adjusted via the qonﬁguration state of the sat-

ellite processors.

155

CHAPTER 7

Evaluation of the Pleiades
Approach

In this chapter, the Pleiades architecture will be evaluated. Benchmark results
comparing the Pleiades architecture to other programmable architectures will be presented
and discussed. Two sets of comparisons will be presented. The first set of comparisons
will be based on results from the P1 prototype. The second set of comparisons will be for

the Maia processor.

7.1 P1 Case Study

In this section, results from the P1 prototype will be used to compare the Pleiades
architecture to a variety of programmable architectures that are commonly used to imple-
ment signal processing algorithms [137]. The kernels that were used as benchmarks repre-
sent three of the most commonly used DSP algorithms: the Finite Impulse Response filter
(FIR), the Infinite Impulse Response filter (IIR), and the Fast Fourier Transform (FFT).
We will first present and discuss the programmable architectures that were considered in
this study, and we will explain how they were used to implement and evaluate the bench-

mark kernels. Next, we will discuss the methodology that was used to normalize energy

156

AddrGen AddrGen AddrGen AddrGen

¥ Y ¥ Y

Memory Memory Memory Memory —
ali) x[i] b(i] y(i)

=0 oo

MAC MAC

v v

ALU

Figure 7.1: Pleiades Mapping for the IIR Kernel

and delay parameters of the studied architectures, so that comparisons could be done in a
fair and uniform manner. Next we will present the results of the comparisons for each

benchmark.

7.1.1 Pleiades

The Pleiades architecture was evaluated using the results of the P1 prototype. The
FIR benchmark could be readily evaluated with the P1 design, as the FIR kernel was
directly supported by P1. Since P1 does not have the hardware resources to implement the
IIR and FFT benchmark kernels directly, these kernels were evaluated by extrapolating

from P1 results.

The IIR benchmark was evaluated on Pleiades using the mapping shown in

Figure 7.1. This mapping implements the IIR benchmark kernel used in this study:

4 4
yln] = 2 ax[n-i]+ z byln-i] (1.1

i=0 i=1

157

Input data_ complex add output data

AG

........

o] Mem |- 5 A I O 5
e | : : S N :

........

coefficients P4

.......

..............

complex multiply

Figure 7.2: Pleiades Mapping for the FFT Kernel

Except for a slight modification to the address generators, the mapping of
Figure 7.1 uses the same hardware resources that are available in P1. As a result, the IIR
benchmark could be evaluated in a straightforward manner using the energy and delay

models that were created for the hardware blocks used in P1.

The FET benchmark used in this study was a 16-point, radix-2, decimation-in-time
algorithm. To evaluate the FFT benchmark, a Pleiades-style processor was designed and
simulated at the register-transfer level in VHDL. The performance and energy consump-

tion of this processor were estimated using the energy and delay models from P1.

Figure 7.2 shows the hardware mapping for computing one stage of the FFT algo-
rithm on the Pleiades processor. The design consists of 3 address generators, 6 memories,
4 multipliers, 6 ALUs, 2 splitter blocks, 2 merger blocks, and 23 buses. Note that a splitter
block splits an incoming data stream into two output streams such that two consecutive
input tokens are directed to different output streams. Similarly, a merger block merges two

input data streams into a single output stream such that two consecutive output tokens are

158

taken from different input streams. An N-point FFT involves a total of log,N stages. Each

stage involves N/2 butterfly calculations. Each butterfly calculation consists of a complex
multiplication, a complex addition, and a complex subtraction. In the mapping shown in
Figure 7.2, a single FFT butterfly is computed in each cycle. For successive stages of the
FFT algorithm, the rolés of the input and output data memories are exchanged, so that the

output of the last stage becomes the input of the current stage.

The FFT processor uses the SRAM design used in P1. The multiplier design is
similar to the MAC design in P1. As a result, the energy and delay models of the corre-
sponding P1 blocks were used to evaluate the FFT benchmark. The delay and energy of
the other blocks used in the FFT processor were estimated by synthesizing, placing, and
routing their computational cores and simulating them with PowerMill using random data.
The power of the communication network was estimated by extrapolating the communica-
tion network design used in P1. The estimates of network power are somewhat pessimistic
since they assume random data. Actual signal data have temporal correlations that reduce
switching activity. Furthermore, the network was assumed to be a full crossbar, but that
was not necessary, and further savings in energy can be achieved by using the hierarchical
mesh structure that was developed for the Maia processor. Table 7.1 shows the energy pro-
file for a single FFT stage. The cycle time of the design is determined by the multiplier.

Thus, ignoring configuration time, the time for one stage of a 16-point FFT is

T = 71.4 ns X

NlZ

= 571 ns (7.2)

where N = 16. The power dissipation for the FFT algorithm is

133 nJ

P= s

= 233 mW (7.3

159

Hardware Resource Energy/Cycle (pJ) Rés::;::e ng::ft Energy/Stage (pJ)
AG (data) - 13.1 2 16 419
AG (coefficients) 4.7 1 8 38
SRAM (read, data) 337 2 16 1078
SRAM (read, coefficients) 33.7 2 8 539
SRAM (write) 25.8 2 16 826
Multiplier 845 4 8 2704
ALU 12.1 6 8 581
Split 7.7 2 8 123
Merge 10.1 2 8 162
Network 26.8 9 16 3859
Network 3002
Total 13,331

Table 7.1: Energy Profile for 16-Point FFT Stage on Pleiades

The StrongARM Microprocessor

General-purpose microprocessors represent the ultimate in flexibility and are ubig-

instruction.

The chip that we evaluated was implemented in a 0.35-um CMOS technology and

uitously used to implement a wide variety of computational tasks. The StrongARM archi-
tecture was chosen as a reference because it represented the state-of-the-art in low-power,
high-performance general-purpose microprocessor design. We evaluated the SA-110
microprocessor, a 32-bit, load/store RISC design with a Harvard architecture, a 16KB
instruction cache, a 16KB write-back data cache, a wri'te buffer, and a memory manage-

ment unit on a single chip [138). The SA-110 microprocessor has a multi-cycle multiply

ran at 169 MHz with a 1.5-V supply voltage. To measure the energy consumption of a

160

benchmark kernel, we placed the code fragment for that kernel inside an infinite loop and
measured the average current drawn by the microprocessor core while executing that loop.
The StrongARM evaluation board that was used [139] had a voltage regulator that sup-
plied power exclusively to the core of the SA-110 microprocessor (the I/O circuits of the
chip were powered by a separate power source). By inserting a current meter in series with
the output of this regulator we could measure the current drawn by the core while execut-
ing a given benchmark kernel. Both on-chip caches, the MMU, ahd the write-buffer were
enabled and were included in the measurements. All kernels fit completely in the on-chip
caches, so there was no off-chip memory traffic while executing the benchmark programs.
The number of cycles spent executing a given kernel was obtained from the StrongARM
emulator. All benchmark kernels were written in the C programming language and were

compiled into assembly code using the ARM C compiler.

7.1.3 The Texas Instruments Programmable Signal Processors

A wide variety of DSP systems are designed with programmable digital signal pro-
cessors. These processors are similar to general-purpose microprocessors but have extra
instructions and addressing modes that improve their performance for DSP algorithms. An
overview of programmable signal processor architectures was presented in Section 4.4.
For the P1 case study, we chose two commonly used processors from Texas Instruments:
the TMS320C2xx and the TMS320LC54x [140]. The TMS320LC54x is an advanced sig-

nal processor that was designed specifically for low-power operation.

The TMS320C2xx is a 16-bit, fixed-point processor that has on-chip instruction
and data memories, a Harvard architecture, and a single accumulator. There is only one
data bus in the TMS320C2xx design, but the instruction bus can be used to feed a second
data stream into the arithmetic units. The chip we evaluated was fabricated in a 0.72-um,

5.0-V CMOS technology and ran at 20 MHz with a 3.0-V supply voltage.

161

TMS320LC54x is a 16-bit fixed-point signal processor that has on-chip instruction
and data memories, an enhanced Harvard architecture with three data buses, and two accu-
mulators. In addition, it includes instructions that execute parallel operations. For exam-
ple, the parallel-store-multiply instruction executes store and multiply in a single cycle
(the TMS320C2xx lacks this capability). The chip that we analyzed was fabricated in a
0.6-um, 3.3-V CMOS technology and ran at 40 MHz with a 3.0-V supply voltage.

Starting with assembly programs published by Texas Instruments (TD) in their
application reports [141, 142, 143, 144], a set of benchmark programs were written in
assembly language. The following programs were written: a 16-bit, 5-th order FIR filter; a
16-bit, 4-th order, direct-form IIR filter; and a 16-bit, 16-point complex FFT stage. All of
these programs included initialization sections that were excluded for performance and .

power calculations. A 3.0-V supply voltage was assumed for these calculations.

Energy values were calculated by adding the contributions of all instructions in a
kernel using instruction-level energy consumption data published by TI [145, 146]. It
should be noted that this method produces somewhat optimistic results because it ignores
inter-instruction effects that can slightly increase the energy consumption of an instruction
[147]. The same method was used to calculate the number of cycles spent executing a ker-

nel. An example of this process is shown in Figure 7.3.

7.1.4 The Xilinx XC4003A FPGA

Field-Programmable Gate Arrays have recently been used to implement a variety
of high-throughput DSP applications that are beyond the reach of conventional signal pro-
cessors. FPGAs are fully flexible and can be programmed to implement any algorithm, but
they have a much finer grain of programmability than microprocessors and programmable

signal processors, and as a result, they can incur large area and energy overheads. An

162

Assembly Program

(o o)

LT *_

MPY ad Instruction | Count (Cu! “,! e[r;;z) E?:;fy Icn):l:rls:tli)::n
LTD *_

MPY A3 LT 1 1.0 3.0 1
LTD *-

MPY A2 , MPY 9 1.3 39 1
LTD *-

MPY Al |:’\> LTD 7 1.1 33 1
LTD *- LTA 1 09 2.7 1
MPY A0

LTA *o APAC 1 0.8 24 1
MPY B4

LTD *_ SACL 1 1.0 3.0 1
MPY B3

LTD *

MPY B2

LTD *o

MPY Bl

APAC

L sacL * Total: 69 nJ and 20 cycles per IIR output sample

Figure 7.3: Instruction-Level Energy Calculation Example (IIR on TMS320C2xx)

overview of FPGA architectures was presented in Section 4.9. The FPGA device chosen
for this study was the Xilinx XC4003A, a member of the widely-used XC4000 family of
SRAM-based FPGAs from Xilinx [87]. The XC4003A has an equivalent logic capacity of
3000 gates. It contains 100 CLBs and 360 flip-flops. Each CLB consists of two 4-input
LUTs and dedicated carry-logic that can be used to speed up arithmetic operations signifi-

cantly.

The Xilinx evaluation board that was used for this study included a XC4003A
chip. Since the XC4003A was too small for the larger benchmark kernels used in this
study, smaller versions of those kernels were implemented and the obtaiﬁed results were
extrapolated. An 8-bit, 5-tap FIR filter with constant coefficients was implemented on the
evaluation board and its energy consumption was measured directly. The measurements

were then extrapolated to obtain energy values for a 16-bit filter. Since filter coefficients

163

were constant, add-and-shift multipliers were used in the design. This approach consumes
much less energy than the general-purpose muitipliers used in the other architectures,
including P1. The FIR design is fully pipelined and produces an output sample every

cycle.

For the IIR benchmark, an 8-bit IIR biquad section was mapped onto the
XC4003A and its energy consumption was evaluated with an energy modeling tool for
Xilinx FPGAs developed by Eric Kusse [90]. The input netlists for this analysis were cre-
ated using the Hyper synthesis system [148].

7.1.5 Normalization of Results

The reference architectures that were considered in this study were implemented in
different fabrication technologies, and they had different operating supply voltages. To
make a meaningful comparison, the energy and delay metrics of these architectures had to
be normalized to a common reference. We chose to normalize all figures of merit to the
0.6-um, 3.3-V CMOS process that was used to implement P1. Recall that P1 was designed
to operate with a 1.5-V supply voltage, and all energy and delay values are calculated for a

1.5-V supply voltage.
Switched capacitance is assumed to scale with gate capacitance and is normalized
according to
2
A L
Coc o oc — (749
TOX TOX
where A is the gate area, L is the minimum channel length, and T, is the gate oxide thick-

ness. T,, was assumed to be proportional to the native supply voltage of a given process.

Normalized energy is then computed using E = CV) Dz with Vpp=15V.

164

I Native Normalization Coefficients
Processor Lnin | Tox b Voo Voo
(km) | (om) | (V)) ™ Capacitance Delay

Pleiades 0.60 9] 070 33} 15 1.00 1.00
StrongARM " 0.35 6| 035 151 15 1.96 471
TMS320C2xx 072 | 141 | 0.70% 50| 3.0 1.08 1.37
TMS320LC54x || 0.60 91 | 0.70 33| 3.0 - 1.00 1.97
XC4003A 0.60 | 14% | 0.70% 50| 50 1.56 2.67

Note: items marked with 1 are estimated values.

Table 7.2: Process Data'and Normalization Coefficients

Delay is normalized according to

2
Ccv, LV
T= 270D DD 1.5

13
I (Vo= V)

where Vpp is the supply voltage, C is the load capacitance, I is the MOSFET saturation
current, and V, is the threshold voltage. Process parameters for all architectures are listed

in Table 7.2.

For the StrongARM microprocessor, the low value of V,, results in large leakage

currents. This leakage current is responsible for 20mW of maximum pbwer dissipation
when the processor is in the idle mode. This value was subtracted from the measured
power dissipation values for capacitance calculations. Since this value is somewhat opti-

mistic, it produces results that are favorable to the StrongARM processor.

As mentioned earlier, the XC4003A chip was not large enough to implement all
benchmarks. 8-bit adders were implemented on the FPGA, and the associated capacitance

values were multiplied by a factor of 2 to extrapolate the results for a 16-bit design. The

165

cycle time of the 8-bit design was multiplied by 2 to obtain results for a 16-bit design.
Observe that these extrapolation factors are optimistic and produce results that are favor-
able to the XC4003A. The FPGA implementation of the FIR filter computes 5 taps con-
currently, in a single cycle, so total energy was divided by 5 to compute the energy per tap
value. For the IIR benchmark, the capacitance of an IIR biquad section, implemented on

the XC4003A, was doubled to account for a 4-th order IIR filter.

7.1.6 Benchmark Results

Comparison results for the FIR benchmark are shown in Figure 7.4 and tabulated
with additional information in Table 7.3. Results for the IIR benchmark are shown in Fig-

ure 7.5 and tabulated with additional information in Table 7.4.

As expected, the StrongARM microprocessor has the worst performance among
the architectures considered in this study, as it requires many instructions and execution
cycles to execute a given kernel in a highly sequential manner. The lack of a single-cycle
multiplier exacerbates this problem. Furthermore, each instruction is burdened by a great
deal of energy overhead. All other architectures have more internal parallelism which
allows them to have much better performance than the StrongARM processor. Pleiades
and the TI processors can execute an FIR tap in a single cycle. Pleiades performs much
better on the energy scale than the TI processors because the TI processors have a general-
purpose design, incurring a great deal of energy overhead to each instruction. Pleiades, on
the other hand, has the ability to create a hardware structures optimized for a given kernel
and can execute operations with a relatively small energy overhead. Features such as zero-
overhead looping reduce the instruction fetch overhead for the TI processors, but they still
fall short of the performance achieved by Pleiades. The XC4003A executes 5 taps in a sin-
gle cycle. The XC4003A is not very energy efficient, but it has the ability to use optimized

shift-and-add multipliers, instead of the full multipliers used in the other architectures.

166

._
2

<
=
% teo
v - 76
= 10°F 10°}F e 10°F
c) 37 o) i EnergyxDelay
e |7 g >
= Energy = Delay =
S~ S~ '6 = o 02 |
> 10 > 10 % 1
20 [S8 [470n > [
g I 8 [g
53 2.2 < e | 20
3 LA S o7 90n 4, %10 9.0
N - = - n ~
= 0.6 g C | 690 40n 2
E 5 g 2.9
S 02 Z E
-4 8 ﬂ 1.5
107! 108 Z m_
X x n Lol » 2] » » b
EEER EEER éégﬁﬁ
<0 0Q 8§ %808-- O Q3 3
0 Q a T 2 &0 - 5 2) - ¥ 2
EmM e Eo 8 g~ E§ &8 8 R~
Ewy@x g u @ X g wvwe@a X
(7] E E n E té n E g
Figure 7.4: Comparison Results for the FIR Benchmark
Processor StrongARM | TMS320C2xx | TMS320LC54x | XC4003A | Pleiades
————— — —
Clock Frequency (MHz) 169 20 40 6 14
Number of Multipliers 0.5 1 1 5 1
Throughput (cycles/tap) 17] 1 0.2 1
Energy/tap (nJ) 21.1 4.8 24 154 0.2
Capacitance/tap (pF) 8470 530 270 620 91
Norm. Capacitance/tap (pF) 16600 580 270 960 91
Norm. Energy/tap (n) 374 13 0.60 22 0.21
Norm. Delay/tap (ns) 470 69 49 90 7
Norm. EnergyxDelayfuap (J-sx10'7) 1760 9.0 29 20 1.5

Table 7.3: Comparison Results for the FIR Benchmark

167

g

Energy

ca,
1
I8

Normalized Energy / IR [nJ]
S
™

—
o

Pleiades F

StrongARM
TMS320C2xx
XC4003A

TMS320LC54x

Normalized Delay / IIR [s]

105

w
&
=

10

107 {

Delay

—_

S
gt
3

v
=

StrongARM] &

TMS320C2xx

TMS320LC54x]

XC4003A]

571In

Pleiades _

4103 879
?E EnergyxDelay
2 131
e 107}
~—
2 HIZB
Aa
X 10F 6.1
;;.:) [.1
[43]
1.1
g 1f
S
g
Zlo"
FEEE
- QQ S8 2
) - % 2
s 9 gL &~
£ v o
[75]
£ 2

Figure 7.5: Comparison Results for the IIR Benchmark

Processor StrongARM | TMS320C2xx | TMS320LC54x | XC4003A | Pleiades
Clock Frequency (MHz) -—169 2? 40 2.1 14
Number of Multipliers 05 1 1 9 2
Throughput (cycles/IIR) 114 20 13 1 8
Energy/lR (nJ) 155 69 38 733 19
Capacitance/IIR (nF) 62.9 117 42 29.3 0.85
Norm. Capacitance/IIR (nF) 123 83 42 46 0.85
Norm. Energy/lIR (n)) 27 18.7 95 103 1.9
Norm. Delay/IIR (ns) 3175 1370 640 1271 571
Norm. EnergyxDelay/lIR (J-sx10"'%) 879 2.6 6.1 131 11

Table 7.4: Comparison Results for the IIR Benchmark

168

Comparison results for the FFT benchmark are shown in Figure 7.6 and tabulated
with additional information in Table 7.5. Compared to FIR and IIR benchmarks, the FFT
benchmark is more complex. Pleiades outperforms the other processors by a large margin,
owing to its ability to exploit higher levels of parallelism by creating an optimized parallel

structure with minimal energy overhead.

7.1.7 Discussion

From the above results, we can see that the Pleiades architecture template, using
the implementation style of the P1 prototype, achieves superior performance compared to
other programmable architectures that are commonly used to implement signal processing
algorithms. This superiority is attained in spite of the shortcomings of the P1 prototype

that were detailed in Section 6.10.

7.2 Maia Results
The Maia processor was fabricated in a 0.25-um CMOS technology [125, 126].

The chip contains 1.2 million transistors and measures 5.2x6.7 mm?Z. It was packaged in a
210-pin PGA package. Die photo of Maia is shown in Figure 7.7. With a 1.0-V supply
voltage, average throughput for kernels running on the satellite processors is 40 MHz. The
ARMS core runs at 40 MHz. The average power dissipation of the chip is 1.5 to 2.0 mW.
Table 7.6 shows performance parameters of the various hardware components of the Maia

Processor.

Table 7.7 shows the energy profile of the VSELP speech coding algorithm, run-
ning on Maia. Six kernels were mapped onto the satellite processors. The rest of the algo-
rithm is executed on the ARMS control processor. The control processor is also

responsible for configuring the satellite processors and the communication network. The

169

Normalized Energy / Stage [nJ}]

2
)

— |33
2 pr—
=
% 10} EnergyxDelay
= 5
2|
~ i 134
4
104 — 10 < 10%f j
i Energy) Del s [
[N elay [
- 1861 2 2 18.4
] (7] 1 > m
103F S 105} o g 10f
= 3.7 &
Q B
129 '§ - N
- N s 1L X
10? - 19 = 10 57n £ - 0.76
5 !
E 2 |
13 Z
10 m_ 107 107!
® x @ x x- @ s %X x 8
2 53 % 2823 2§ 5 %
% Q L .8 o 8 v o .8
&b - 2 B Q I 2 o @ 2 2
= gg =2 I gl\ [=) g [=2-"
g v Q g un Q g v &
v E éi 7] E g 7] E g
Figure 7.6: Comparison Results for the FFT Benchmark
Processor StrongARM | TMS320C2xx | TMS320LCS4x | Pleiades
— —t— ————1
Clock Frequency (MHz) 169 20 40 14
Number of Multipliers 05 1 1 4
Throughput (cycles/stage) 766 152 76 8
Energy/stage (nJ) 1040 478 197 133
Capacitance/stage (nF) 422 53.1 219 5.9
Norm. Capacitance/stage (nF) 827 513 219 59
Nomm. Energy/stage (nJ) 1861 129 493 133
Norm. Delay/stage (ns) 21348 10412 3743 571
Norm. EnergyxDelay/stage (J-sx10°'4) 3973 134 184 0.76

Table 7.5: Comparison Results for the FFT Benchmark

170

fraT s i e

TR

NSRS RN R RN N AN R NN RN RN NN RN RN AR NN

=
=

U

riT

o

|3

O

[NR]

o

B

AN RN NN NN NS NNNN

Ll

1a

Photo of Mai

ie

D

Figure 7.7

171

Component Cycle Time (ns) | Energy per Cycle (pJ) | Area (mm?)
MAC O 24 21 0.25
ALU 20 8 0.09
SRAM (1Kx16) 14 8 0.32
SRAM (512x16) 11 7 0.16
Address Generator 20 6 0.12
FPGA 25 18t 2.76
Interconnect Network 10 14 N/A

+ This value is the average energy for various arithmetic functions.
1 This value is the average energy per connection.

Table 7.6: Performance Data for Hardware Components of Maia

Function Power (mW)
mnning 0:1;—- Vector Dot Product - 0.738
Satellite Processors FIR Filter 0.131
IIR Filter 0.021
Vector Sum with Scalar Multiply 0.042
Code-Vector Computation 0.011
Covariance Matrix Computation 0.006

Program Running on Control Processor J= 0.838_
Total ' 1.787

Table 7.7: Energy Profile for the VSELP Algorithm Running on Maia

172

energy overhead of this configuration code running on the control processor is included in
the energy consumption values of the kernels. In other words, the energy values listed in
Table 7.7 for the kernels include contributions from the satellite processors as well as the
control processor executing configuration code. The power dissipation of Maia when run-
ning VSELP is 1.8 mW: The lowest power dissipation reported in the literature to date is
17mW for a programmable signal processor executing the Texas Instruments
TMS320LC54x instruction set, implemented in a 0.25-um CMOS process, running at
63 MHz with a 1.0-V supply voltage [149]. The energy efficiency of this reference proces-
sor is 270 pYW/MHz, whereas the energy efficiency of Maia is 45 yW/MHz, which corre-

sponds to an improvement by a factor of six.

173

CHAPTER 8

Conclusion

The problem addressed in this work was how to design a digital signal processor
that is not only highly energy efficient, but it is also programmable and can be used to
implement a variety of different, but similar, algorithms. The approach taken in this work
was to explore ways of trading off flexibility for increased efficiency. This approach was
based on the observation that for a given domain of signal processing algorithms, such as
CELP-based speech coding, the underlying computational kernels that account for a large
fraction of execution time and energy are very similar. What varies from algorithm to
algorithm within a given domain are the parameters and the high-level control flow of
those algorithms. By executing dominant kernels on dedicated, optimized processing ele-
ments that can execute those kernels with a minimum of energy overhead, significant
energy savings can be achieved. Thus, the approach taken in this work yields processors
that are domain-specific and are optimized for a given domain of algorithms. Thus, flexi-
bility is traded off, allowing a designer to achieve high levels of energy efficiency,
approaching that of a custom, application-specific design, while maintaining the flexibil-

ity needed to handle a variety of different algorithms within a domain of interest.

174

The main contribution of this work was a reusable architecture template, named
Pleiades, that can be used to implement domain-specific, programmable proce.ésors for
digital signal processing algorithms. The Pleiades architecture template relies on a hetero-
geneous network of processing elements, optimized for a given domain of algorithms, that
can be reconfigured at run time to execute the dominant kernels of the given domain.
Associated with the Pleiades architecture template is a design methodology. Defining this
methodology was another contribution of this work. To explore énd prove the effective-
ness of the approach taken in this work, a prototype integrated circuit, named P1, incorpo-
rating all the elements of the Pleiades architecture template, was designed and fabricated
in a 0.6-pm CMOS process. The P1 prototype and the subsequent benchmark study based
on the results obtained from P1 provided early validation for the Pleiades approach. A
number of important lessons were learned during the design and evaluation of P1. These
lessons resulted in a number of important refinements to the Pleiades architecture tem-
plate. Subsequent to P1, a domain-specific processor for CELP-based speech coding algo-
rithms, named Maia, was designed. Maia was fabricated in a 0.25-um CMOS process. It
contains 1.2 million transistors and operates with a 1.0-Volt supply voltage. The energy
efficiency achieved by Maia, in terms of power dissipation per computational throughput

(Watt/MOPS), is six times higher than the best reference design reported in the literature.

8.1 Proposals for Future Research

The processor instances that were designed and implemented in this work focused
on algorithm domains from baseband wireless applications. While the Pleiades architec-
ture template is general in nature and can in principle be applied to other algorithm
domains, it would still be worthwhile to explore other algorithm domains with different
performance requirements and architectural parameters. One particularly important
domain of algorithms is that of video coding algorithms that are ‘based on the Discrete

Cosine Transform (DCT). There is a variety of DCT-based algorithins and standards that

175

are widely used in video coding applications. The computational throughput required by
these algorithms is very high, and it would be worth exploring the effectiveness of the Ple-
iades architecture template with these algorithms. Another important domain of algo-
rithms is that of encryption/decryption algorithms, which are widely used in secure
communications applications. These algorithms require processing elements with finer
granularities than what is typically encountered in voice and video coding algorithms, and
it would be worthwhile to explore the types of satellite processors that would be best

suited for these algorithms.

176

Bibliography

(1]

[2]

(3]

[4]

(5]

(6]

7]

(8]

S. Sheng, A. Chandrakasan, and R. Brodersen, “A Portable Multimedia Terminal,”
IEEE Communications Magazine, pp. 64-75, December 1992.

T. E. Truman, T. Pering, R. Doering, and R. W. Brodersen, “The Infopad
Multimedia Terminal: A Portable Device for Wireless Information Access,” IEEE
Transactions on Computers, pp. 1073-1087, October 1998.

K. Strehlo, “Advanced CMOS Technology Overtakes Established NMOS
Applications,” Mini-Micro Systems, pp. 115-123, July 1983.

D. Bursky, “CMOS Microprocessors Outpace NMOS 8086/8088,” Electronic
Design, pp. 41-46, April 1984.

A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-Power Digital CMOS
Design,” IEEE Journal of Solid-State Circuits, pp. 473-484, April 1992.

H. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and Its Impact
on the Design of Buffer Circuits,” IEEE Journal of Solid-State Circuits, pp. 468-
473, August 1984.

1. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall, Upper
Saddle River, New Jersey, 1996.

A. Chandrakasan, Low Power Digital CMOS Design, Ph.D. Dissertation,
University of California, Berkeley, 1994.

177

(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

A. Keshavarzi, K. Roy, and C. F. Hawkins, “Intrinsic Leakage in Low Power Deep
Submicron CMOS ICs,” Proceedings of the International Test Conference, pp.
146-155, November 1997.

A. Chandrakasan and R. Brodersen, Low-Power CMOS Design, IEEE Press,
Piscataway, New Jersey, 1998.

T. D. Burd and R. W. Brodersen, “Energy Efficient CMOS Microprocessor
Design,” Proceedings of the 28th Annual HICSS Conference, pp. 288-297, January
1995.

K. Usami and M. Horowitz, “Clustered Voltage Scaling Technique for Low-Power
Design,” Proceedings of the 1995 International Symposium on Low Power Design,
pp- 3-8, April 1995.

J. Chang and M. Pedram, “Energy Minimization Using Multiple Supply Voltages,”
Proceedings of the 1996 International Symposium on Low Power Electronics and
Design, pp. 157-162, August 1996.

L. S. Nielsen, C. Niessen, J. Sparso, K. van Berkel, “Low-Power Operation Using
Self-Timed Circuits and Adaptive Scaling of the Supply Voltage,” IEEE
Transactions on VLSI Systems, pp. 391-397, December 1994.

T. D. Burd and R. W. Brodersen, “Processor Design for Portable Systems,”
Journal of VLSI Signal Processing, pp. 203-221, August-September 1996.

H. Zhang and J. Rabaey, “Low-Swing Interconnect Interface Circuits,”
Proceedings of the 1998 International Symposium on Low Power Electronics and
Design, pp. 161-166, August 1998.

D. B. Lidsky and J. M. Rabaey, “Low-Power Design of Memory Intensive
Functions Case Study: Vector Quantization,” Proceedings of the 1994 IEEE
Workshop on VLSI Signal Processing, pp. 378-387, October 1994.

F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, H. De Man, “Global
Communication and Memory Optimizing Transformations for Low Power Signal
Processing Systems,” Proceedings of the 1994 IEEE Workshop on VLSI Signal
Processing, pp. 178-187, October 1994.

T. Sakuta, W. Lee, and P. T. Balsara, “Delay Balanced Multipliers for Low Power/
Low Voltage DSP Core,” Proceedings of the 1995 International Symposium on
Low Power Electronics, pp. 36-37, October 1995.

178

[20]

[21]

[22]

[23)

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

32]

(33]

A. Chandrakasan, R. Allmon, A. Stratakos, and R. W. Brodersen, “Design of
Portable Systems,” Proceedings of the 1994 Custom Integrated Circuits
Conference, pp. 259-266, May 1994.

M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
“Precomputation-Based Sequential Logic Optimization for Low Power,” IEEE
Transactions on VLSI Systems, pp. 426-436, December 1994.

P. E. Landman, Low-Power Architectural Design Methodologies, Ph.D.
Dissertation, University of California, Berkeley, 1994.

K. C. Pohlmann, Principles of Digital Audio, Third Edition, McGraw Hill, New
York, 1995.

C. E. Leiserson, F. M. Rose, J. B. Saxe, “Optimizing Synchronous Circuitry by
Retiming,” Proceedings of Third Caltech Conference on Very Large Scale
Integration, pp. 87-116, March 1983.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

G. D. Forney, Jr., “The Viterbi Algorithm,” Proceedings of the IEEE, pp. 268-278,
March 1973.

P. J. Black and T. H. Meng, “A 140-Mb/s, 32-State, Radix-4 Viterbi Decoder,”
IEEE Journal of Solid-State Circuits, pp. 1877-1885, December 1992.

A. Gersho and R. Gray, Vector Quantization and Signal Compression, Kluwer
Academic Publishers, Boston, 1992.

A. S. Spanias, “Speech Coding: A Tutorial Review,” Proceedings of the IEEE, pp.
1541-1582, October 1994.

L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice-
Hall, Englewood Cliffs, New Jersey, 1978.

J. C. Bellamy, Digital Telephony, Second Edition, Wiley, New York_, 1991.

N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and
Applications to Speech and Video, Prentice Hall, Englewood Cliffs, New Jersey,
1978.

J. Makhoul, “Linear Prediction: A Tutorial Review,” Proceedings of the IEEE, pp.
561-580, April 1975.

179

(34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

J. D. Markel and A. H. Gray, Jr., Linear Prediction of Speech, Springer-Verlag,
New York, 1976.

M. R. Schroder and B. S. Atal, “Code-Excited Linear Prediction (CELP): High
Quality Speech at Very Low Bit Rates,” Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing, pp. 937-940, 1985.

P. Kroon and B. S. Atal, “Predictive Coding of Speech Using Analysis-by-
Synthesis Techniques,” Chapter 5 of Advances in Speech Coding, Kluwer
Academic Publishers, Boston, Massachusetts, 1991.

I. Gerson and M. Jasiuk, “Vector Sum Excited Linear Prediction (VSELP) Speech
Coding at 8 kbps,” Proceedings of the International Conference on Acoustics,
Speech, and Signal Processning, pp. 461-464, 1990.

A. Yaqub and H. G. Moore, Elementary Linear Algebra with Applications,
Addison Wesley, Reading, Massachusetts, 1980.

EIA/TIA Interim Standard 54 (IS-54), EIA/TIA-PN2398, 1989.

J. P. Campbell, Jr., V. C. Welch, and T. E. Tremain, “An Expandable Error-
Protected 4800 bps CELP Coder,” Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, pp. 735-738, 1989.

J. Chen, “High-Quality 16 kb/s Speech Coding with a One-Way Delay Less than 2
ms,” Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, pp. 453-456, 1990.

S. Miki, K. Mano, T. Moriya, K. Oguchi, and H. Ohmuro, “A Pitch Synchronous
Innovation CELP (PSI-CELP) Coder for 2-4 kbit/s,” Proceedings of the

International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp.
113-116, 1994, '

R. Salami, C. Laflamme, J. Adoul, and D. Massaloux, “A Toll Quality 8 kb/s
Speech Codec for the Personal Communication System (PCS),” IEEE
Transactions on Vehicular Technology, pp. 808-816, August 1994,

R. Salami et al., “Design and Description of CS-ACELP: A Toll Quality 8 kb/s
Speech Coder,” IEEE Transactions on Speech and Audio Processing, pp. 116-130,
March 1998.

N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE
Transactions on Computers, pp. 88-93, January 1974.

180

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

T. Sikora, “MPEG Digital Video-Coding Standards,” IEEE Signal Processing
Magazine, pp. 82-100, September 1997.

P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI Architectures for Video
Compression: A Survey,” Proceedings of the IEEE, pp. 220-246, February 1995.

M. J. Flynn, “Some Computer Organizations and Their Effeciveness,” IEEE
Transactions on Computers, pp- 948-960, September 1972.

D. B. Skillicorn, “A Taxonomy for Computer Architectures,” IEEE Computer, pp.
46-57, November 1988. '

A. DeHon, Reconfigurable Architectures for General-Purpose Computing, Ph.D.
Dissertation, Massachusetts Institute of Technology, 1996.

H. H. Goldstine, The Computer: From Pascal to von Neumann, Princeton
University Press, Princeton, New Jersey, 1972.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, Chapter 8, Morgan Kufmann Publishers, San Mateo, California, 1990.

H. Mizuno and K. Ishibashi, “A Cost-Oriented Two-Port Unified Cache for Low-
Power RISC Microprocessors,” 1996 Symposium on VLSI Circuits Digest of
Technical Papers, pp. 72-73, 1996.

S. Gary et al., “PowerPC 603, A Microprocessor for Portable Computers,” JEEE
Design & Test of Computers, pp. 14-23, Winter 1994,

S. Gary et al., “The PowerPC 603 Microprocessor: A Low-Power Design for
Portable Applications,” Proceedings of COMPCON, pp. 307-315, 1994.

S. Segars, K. Clarke, and L. Goudge, “Embedded Control Problems, Thumb, and
the ARM7TDML,” IEEE Micro, pp. 22-30, October 1995.

S. Segars, “ARM7TDMI Power Consumption,” IEEE Micro, pp. 12-19, July/
August 1997.

J. Montanaro et al., “A 160MHz 32b 0.5W CMOS RISC Microprocessor,”
International Solid-State Circuits Conference Digest of Technical Papers, pp. 214-
215, 1996.

D. W. Dobberpuhl, “Circuits and Technology for Digital’s StrongARM and
ALPHA Microprocessors,” Proceedings of the Seventeenth Conference on
Advanced Research in VLSI, pp. 2-11, 1997.

181

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

T. Nishitani, R. Maruta, Y. Kawakami, and H. Goto, “A Single-Chip Digital Signal
Processor for Telecommunications Applications,” IEEE Journal of Solid-State
Circuits, pp. 372-376, August 1981 (Describes the NEC 7720).

S. Magar, E. Caudel, and A. Leigh, “A Microcomputer with Digital Signal
Processing Capability,” International Solid-State Circuits Conference Digest of
Technical Pape):s, pp- 32-33, 1982 (Describes the TI TMS32010).

H. Kabuo et al., “An 80-MOPS-Peak High-Speed and Low-Power-Consumption
16-b Digital Signal Processor,” IEEE Journal of Solid-State Circuits, pp. 494-503,
April 1996.

TMS320C2X User’s Guide, SPRU014C, Texas Instruments, 1993.

TMS320C54X DSP Reference Set, Volume 1: CPU and Peripherals, SPRU131F,
Texas Instruments, 1999.

DSPI1618 Digital Signal Processor Product Note, Lucent, 1996.

T. Shiraishi et al., “A 1.8V 36mW DSP for the Half-Rate Speech Codec,”
Proceedings of the Custom Integrated Circuits Conference, pp. 371-374, 1996.

I. Verbauwhede et al., “A Low Power DSP Engine for Wireless Communications,”
VLSI Signal Processing IX, pp. 471-480, 1996.

M. Hiraki et al., “Stage-Skip Pipeline: A Low Power Processor Architecture Using
a Decoded Instruction Buffer,” International Symposium on Low Power
Electronics and Design Digest of Technical Papers, pp. 353-358, 1996.

J. Gray, A. Naylor, A. Abnous, N. Bagherzadeh, “VIPER: A VLIW Integer
Miroprocessor,” IEEE Journal of Solid-State Circuits, pp. 1377-1382, December
1993.

A. Abnous, Architectural Design and Analysis of a VLIW Integer Processor,
Masters Thesis, University of California, Irvine, 1991.

TMS320C6000 CPU and Insruction Set Reference Guide, Texas Instruments,
SPRU189D, 1999.

http://www.zsp.com/arch_arch.html.

P. M. Kogge, Architecture of Pipelined Computers, Hemisphere Publishing, New
York, 1981.

182

[74]

[75]

[76]

(77

[78]

[79]

[80]

(81]

[82]

[83]

[84]

[85]

[86]

K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing,
McGraw Hill, New York, 1984.

D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, “The Structure of an Advanced
Vectorizer for Pipelined Processors,” Proceedings of the International Computer
Software and Applications Conference (COMPSAC), pp. 709-715, 1980.

K. Aono et al, “A Video Digital Signal Processor with a Vector-Pipeline
Architecture,” IEEE Journal of Solid-State Circuits, pp. 1886-1894, December
1992.

J. Wawrzynek et al, “Spert-Il. A Vector Microprocessor System,” IEEE
Computer, pp. 79-86, March 1996.

A. Preleg and U. Weiser, “MMX Technology Extension to the Intel Architecture,”
IEEE Micro, pp. 42-50, August 1996.

R. Lee, “Real-Time MPEG Video via Software Decompression on a PA-RISC
Processor,” Proceedings of IEEE COMPCON, pp. 186-192, March 1995.

M. Trembley, M. O’Conner, V. Narayanan, and L. He, “VIS Speeds New Media
Processing,” IEEE Micro, pp.10-20, August 1996.

D. A. Carlson, R. W. Castelino, and R. O. Mueller, “Multimedia Extensions for a
550-MHz RISC Microprocessor,” IEEE Journal of Solid-State Circuits, pp. 1618-
1624, November 1997.

U. Schmidt, K. Casesar, and T. Himmel, “Data-Driven Array Processor for Video
Signal Processing,” IEEE Transactions on Consumer Electronics, pp. 327-333,
August 1990.

H. Veendrick, O. Popp, G. Postuma, and M. Lecoutere, “A 1.5 GIPS Video Signal
Processor (VSP),” Proceedings of the IEEE Custom Integrated Circuits
Conference, pp. 95-98, 1994.

A. K. Yeung and J. Rabaey, “A 2.4 GOPS Data-Driven Reconfigurable
Multiprocessor IC for DSP,” International Solid-State Circuits Conference Digest
of Technical Papers, pp. 108-109, 1995.

B. Ackland et al., “A Single-Chip 1.6 Billion 16-b MAC/s Multiprocessor DSP,”
Proceedings of the Custom Integrated Circuits Conference, pp. 537-540, 1999.

A. K. Yeung, A Data-Driven Multiprocessor Architecture for High Throughput
Digital Signal Processing, Ph.D. Dissertation, University of California, Berkeley,
1995.

183

(87]

(88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

The Programmable Logic Data Book, Xilinx, Inc., 1994.

A. DeHon, “Trends Toward Spatial Computing Architectures,” International
Solid-State Circuits Conference Digest of Technical Papers, pp. 362-363, 1999.

J. E. Vuillemin et al., “Programmable Active Memories: Reconfigurable Systems
Come of Age,” IEEE Transactions on VLSI Systems, pp 56-69, March 1996.

E. Kusse, Analysis and Circuit Design for Low Power Programmable Logic
Modules, Masters Thesis, University of California, Berkeley, 1997.

C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the
ACM, Vol. 21, No. 8, August 1978.

P. A. Laplante, Real-Time System Design and Analysis: An Engineer’s Handbook,
Second Edition, IEEE Computer Society Press, New York, 1997.

A. Varma and C. S. Raghavendra, Interconnection Networks for Multiprocessors
and Multicomputers: Theory and Practice, IEEE Computer Society Press, New
York, 1994.

D. H. Lawrie, “Access and Alignment of Data in an Array Processor,” IEEE
Transaction on Computers, pp. 1145-1155, December 1975.

H. Zhang, M. Wan, V. George, and J. Rabaey, “Interconnect Architecture
Exploration for Low-Energy Reconfigurable Single-Chip DSPs,” Proceedings of
the IEEE Computer Society Workshop on VLSI ‘99, pp. 2-8, 1999.

W. Tsu et al., “HSRA: High-Speed Hierarchical Synchronous Reconfigurable
Array,” Proceedings of the 1999 ACM/SIGDA Seventh International Symposium
on Field Programmable Gate Arrays, pp. 125-134, 1999.

H. Zhang and J. Rabaey, “Low-Swing Interconnect Interface Circuits,”
Proceedings of the 1998 IEEE Symposium on Low-Power Electronics and Design,
pp- 161-166, 1998.

H. Zhang, V. George, and J. Rabaey, “Low-Swing on-Chip Signaling Techniques:
Effectiveness and Robustness,” IEEE Transactions on VLSI Systems, pp. 264-272,
June 2000.

XC4000E and XC4000X Series Field Programmable Gate Arrays, Xilinx, Inc.,
1999.

184

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111}

S. Segars, “The ARM9 Family: High Performance Microprocessors for Embedded
Applications,” Proceedings of the International Conference on Computer Design,
pp- 230-235, 1998.

A. DeHon, “DPGA-Coupled Microprocessors: Commodity ICs for the Early 21st
Century,” Proceedings of the IEEE Workshop on FPGA Custom Computing
Machines, pp. 31-39, 1994.

S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A Time-Multiplexed
FPGA,” Proceedings of the IEEE Workshop on FPGA Custom Computing
Machines, pp. 22-28, 1997. '

J. R. Hauser and J. Wawrzynek, “GARP: A MIPS Processor with a Reconfigurable
Coprocessor,” Proceedings of the IEEE Workshop on FPGA Custom Computing
Machines, pp. 12-21, 1997.

J. B. Dennis, First Version Data Flow Procedure Language, Technical Memo
MAC TM61, MIT Lincoln Laboratory for Computer Science, May 1975.

R. D. Fellman, “Design Issues and an Architecture for the Monolithic
Implementation of a Parallel Digital Signal Processor,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, pp. 839-852, May 1990.

E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” IEEE Proceedings,
pp- 1235-1245, September 1987.

E. A. Lee, “Consistency in Dataflow Graphs,” IEEE Transactions on Parallel and
Distributed Systems, pp. 223-235, April 1991.

E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing,” IEEE Transactions on Computers, pp.
24-35, January 1987.

P. Hoang and J. Rabaey, “A Compiler for Multiprocessor DSP Implementation,”
Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. V, pp. 581-584, 1992.

Hoang and J. Rabaey, “Scheduling of DSP Programs onto Multiprocessors for
Maximum Throughput,” IEEE Trnasactions on Signal Processing, pp. 2225-2235,
June 1993.

J. L. Pino, T. M. Parks, and E. A. Lee, “Automatic Code Generation for
Heterogeneous Multiprocessors,” Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, vol. II, pp. 445-448,
1994.

185

[112]

[113])

[114)

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

C. L. Seitz, “System Timing,” in C. A. Mead and L. A. Conway, Introduction to
VLSI Systems, Chapter 7, Addison-Wesley, Reading, Massachusetts, 1980.

D. W. Dobberpuhl et al., “A 200-MHz 64-b Dual-Issue CMOS Microprocessor,”
IEEE Journal of Solid State Circuits, pp. 1555-1567, November 1992.

K. van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij, and A. Peeters,
“Asynchronous Circuits for Low Power: A DCC Error Corrector,” IEEE Design &
Test of Computers, pp. 22-32, Summer 1994.

G. M. Jacobs and R. W. Brodersen. “A Fully Asynchronous Digital Signal
Processor Using Self-Timed Circuits,” IEEE Journal of Solid State Circuits, pp.
1526-1537, December 1990.

T. E. Williams and M. A. Horowitz, “A Zero-Overhead Self-Timed 160-ns 54-b
CMOS Divider, IEEE Journal of Solid State Circuits, pp. 1651-1661, November
1991.

S. B. Furber and J. Liu, “Dynamic Logic in Four-Phase Micropipelines,”
Proceedings of the Second International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pp. 11-16, 1996.

S. B. Furber and P. Day, “Four-Phase Micropipeline Control Circuits,” IEEE
Transactions on VLSI Systems, pp. 247-253, June 1996.

M. Benes, Design and Implementation of Communication and Switching
Techniques for the Pleiades Family of Processors, Masters Thesis, University of
California, Berkeley, 1999.

V. Tiwari, S. Malik, A. Wolfe, and M. T. Lee, “Instruction Level Power Analysis
and Optimization of Software,” Journal of VLSI Signal Processing, pp. 223-238,
August/September 1996.

H. Zhang, M. Wan, V. George, and J. Rabaey, “Interconnect Architecture
Exploration for Low-Energy Reconfigurable Signle-Chip DSPs,” Proceedings of
the IEEE Computer Society Workshop on VLSI ‘99, pp. 2-8, 1999.

S.-F. Li, M. Wan, and J. Rabaey, “Configuration Code Generation and
Optimizations for Heterogeneous Reconfigurable DSPs,” Proceedings of the 1999
IEEE Workshop on Signal Processing Systems, pp. 169-180, October 1999.

M. Wan et al., “A Low-Power Reconfigurable Dataflow Driven DSP System,”
Proceedings of the 1999 IEEE Workshop on Signal Processing Systems, pp. 191-
200, October 1999.

186

[124]

[125]

[126]

(127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]
[135]
[136]

[137]

M. Wan, A Design Methodology for Low-Power Heterogeneous Reconfigurable
Digital Signal Processors, Ph.D. Dissertation, University of California, Berkeley,
2001.

H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J. M. Rabaey,
“A 1-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital
Signal Processing,” IEEE Journal of Solid-State Circuits, pp. 1697-1704,
November 2000.

H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J. M. Rabaey,
“A 1-V Heterogeneous Reconfigurable Processor IC for Baseband Wireless
Applications,” International Solid-State Circuits Conference Digest of Technical
Papers, pp. 68-69, 2000.

T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A Dynamic
Voltage Scaled Microprocessor System,” IEEE Journal of Solid-State Circuits, pp.
1571-1580, November 2000.

V. Prabhu, Integration of Embedded Processors in Wireless Systems-On-A-Chip,
Masters Thesis, University of California, Berkeley, 2000.

V. George, H. Zhang, and J. Rabaey, “Low-Energy FPGA Design,” Proceedings of
the International Symposium on Low-Power Electronics and Design, pp. 188-193,
1999.

V. George, Low-Energy FPGA Design, Ph.D. Dissertation, University of
California, Berkeley, 2000.

http://www.mosis.org/.

A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly Journal of
Mechanical and Applied Math, pp. 236-240, 1951.

O. L. MacSorley, “High Speed Arithmetic in Binary Computers,” Proceedings of
IRE, pp. 67-91, 1961.

http://www.synopsys.com/.

http://www.cadence.com/.

http://www.avanticorp.com/.

A. Abnous, K. Seno, Y. Ichikawa, M. Wan, and J. Rabaey, “Evaluation of a Low-

Power Reconfigurable DSP Architecture,” Proceedings of the Reconfigurable
Architectures Workshop, pp. 55-60, 1998.

187

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

- [147]

[148]

[149]

Digital Semiconductor SA-110 Microprocessor Technical Reference Manual,
Digital Equipment Corporation, 1996.

Digital Semiconductor SA-110 Microprocessor Evaluation Board Reference
Manual, Digital Equipment Corporation, 1996.

http://www.ti.com/.

TMS320C5x General-Purpose Applications User's Guide, Literature Number
SPRU164, Texas Instruments, 1997.

T. Anderson, The TMS320C2xx Sum-of-Products Methodology, Technical
Application Report SPRA068, Texas Instruments, 1996.

M. Tsai, /IR Filter Design on the TMS320C54x DSP, Technical Application Report
SPRAO079, Texas Instruments, 1996.

ftp://ftp.ti.com/pub/tms320bbs/c5xxfiles/54xffts.exe,
C’54x Software Support Files, Texas Instruments.

C. Tumer, Calculation of TMS320LC54x Power Dissipation, Technical
Application Report SPRA 164, Texas Instruments, 1997.

C. Turner, Calculation of TMS320C2xx Power Dissipation, Technical Application
Report SPRA088, Texas Instruments, 1996.

T. C. Lee, V. Tiwari, A. Malik, and M. Fujita, “Power Analysis and Minimization
Techniques for Embedded DSP Software,” IEEE Transactions on VLSI Systems,
pp. 123-135, March 1997. '

J. M. Rabaey at al., “Fast Prototyping of Data Path Intensive Architectures,” IEEE
Design & Test Magazine, pp. 40-51, June 1991.

W. Lee et al., “A 1V DSP for Wireless Communications,” International Solid-
State Circuits Conference Digest of Technical Papers, pp. 92-93, 1997.

188

	Copyright notice 2001
	ERL-01-16

