Copyright © 2001, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



ELECTROMAGNETIC SIMULATION
AND MODELING WITH APPLICATIONS
IN LITHOGRAPHY

by

Thomas Vincent Pistor

Memorandum No. UCB/ERL M01/19

1 May 2001



ELECTROMAGNETIC SIMULATION
AND MODELING WITH APPLICATIONS
IN LITHOGRAPHY

by

Thomas Vincent Pistor

Memorandum No. UCB/ERL M01/19

1 May 2001

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Electromagnetic Simulation and Modeling with Applications in Lithography
by
Thomas Vincent Pistor
B.A.Sc. (University of Waterloo, Canada) 1995

M.A Sc. (University of California at Berkeley) 1997

A dissertation submitted in partial satisfaction of the requirements for the degree of
Doctor of Philosophy
in

Electrical Engineering
and Computer Sciences

in the
GRADUATE DIVISION
of the

UNIVERSITY of CALIFORNIA, BERKELEY

Committee in charge:

Professor Andrew R. Neureuther, Chair
Professor Jeffrey Bokor
Professor Panayotis Papadopoulos

Spring 2001



Electromagnetic Simulation and Modeling
with Applications in Lithography

Copyright © 2001
by
Thomas Vincent Pistor
All rights reserved



Abstract
Electromagnetic Simulation and Modeling with Applications in Lithography
by
Thomas Vincent Pistor
Doctor of Philosophy in Electrical Engineering
University of California at Berkeley
Professor Andrew R. Neureuther, Chair

This thesis is concerned with methods for calculating scattered fields and aerial images in
photolithography. Several improvements to the Finite-Difference Time-Domain code
TEMPEST are documented and a vector formulation of optical imaging is presented. The
implementation of this theory is then used to study mask effects in EUV lithography, phase
defects in alternating phase shift masks and several other lithography-related applications.

The numerics of TEMPEST including the updating equations, domain excitation, conver-
gence checking, and boundary conditions are reviewed. The Fourier Boundary Condition
that operates on the Fourier components of the electromagnetic field is introduced and
shown to be useful as an efficient and accurate model for the EUV multilayer mirror. An
overview and performance analysis of the re-parallelization of TEMPEST for running

across a Network of Workstations (NOW) is presented.

A vector model for an optical imaging system that can accommodate the highly oblique
plane waves existing in high numerical aperture imaging or inspection is developed. Math-

ematical models for photomasks are presented and organized by their level of complexity.

A study of EUVL masks is undertaken where the effects of absorber thickness, side wall
angle, comer rounding, angle of incidence and substrate defects are investigated. Key
observations include a degradation of mask depth of focus due to off-axis imaging, a
dependence of CD on absorber feature thickness due to interference, and the ability of a

shallow mirror defect to interact strongly with a mask feature.



Phase defects in alternating phase shift maské are investigated from both printability and
inspectability points-of-view. Isotropic wet etching was seen to decrease defect printabil-
ity. Defects with a pre-wet-etch size larger than 200nm were seen to cause greater than
10% CD variation. In simulation studies of defect inSpectability annular illumination was

observed to yield stronger normalized difference signal than circular illumination.

The breadth of uses for TEMPEST in lithography is demonstrated by overviewing simula-
tions of pinholes, alignment marks, aberration monitors, reflective notching, and two-

dimensional phase shift mask topographies.

e o é7 5 Ry ana
Professor A.R. Neureuther

Committee Chairman



Dedicated to my poor mom and dad

who think I'm coming home now.
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1 Introduction

1.1. Electromagnetic Simulation and Modeling in Lithography

Lithographers are interested in the formation of a light pattern inside a thin layer of photo-
resist atop a silicon wafer. This light pattern is referred to as the “aerial image”. To form
this aerial image, a light source, a photomask and a complex imaging system are needed.
“Electromagnetic Simulation and Modeling” refers to the calculation of this aerial image

and of other electromagnetic fields relevant to its formation.

More specifically, “Electromagnetic Simulation” refers to the computer simulation of the
propagation of an electromagnetic field and “Modeling” refers to the formulation and
application of mathematical descriptions of the various objects that participate in the for-

mation of the aerial image.

A primary goal of this thesis is to describe methods to calculate the aerial image and vari-
ous other electromagnetic fields relevant to lithography and the formation of the aerial
image. To do so, mathematical models are derived for the various objects involved. All
objects involved in the formation of the aerial image are ultimately described by the Max-
well equations. Some objects, such as phase shift masks, require a direct solution of the
Maxwell equations in order to be modeled, while other objects, such as the projection optic
in a stepper/scanner can be described by much higher level equations, such as the equations

of Fourier optics.

1.1.1. The need for Electromagnetic Simulation and Modeling in Lithography

There are several reasons why simulation and modeling are important in lithography:



1. Non-existence of hardware. Researchers are often interested in how a future device
might perform. For example, in extreme ultraviolet lithography, researchers have been
using computer simulation to predict how masks and optics will perform for a 0.25 NA tool

that is still under construction[82].

2. Machine Time is Limited and/or Expensive. Even though a machine (such as a stepper
or scanner or inspection tool) may exist, the cost of using it may be quite high. A stepper
that is being used to print microprocessors in a production situation can produce thousands
of dollars worth of product in minutes. It is rather expensive to take the tool out of produc-

tion for research experiments.

3. Measurability and Understanding. Simulation provides the lithographer with a much
higher degree of measurability. Intermediate field values such as the near field intensity or
scattered orders at the entrance pupil of the projection optic or even the latent aerial image
are available with simulation and can be measured. In experiment, only final resist profiles
that have the combined effects of all optical systems and resist development mixed

together can be measured.

4. Time-to-market. It is, quite simply, faster to calculate aerial images than to design and
build a mask, go into the microfab and print/measure aerial images. Time-to-market is

extremely important in the fast-paced semiconductor industry.

5. Gedanken experiments. Simulation allows lithographers to run experiments that are
impossible to run in practice. Adam[4], for example, investigated the scattering from phase
well corners and the cross coupling of energy between phase wells by separating the scat-
tered fields from adjacent phase wells.

1.2. Background and History of FDTD and TEMPEST

The computer program TEMPEST is an implementation of the Finite-Difference Time-
Domain (FDTD) algorithm introduced by Yee[98] as a method for solving the Maxwell
equations. TEMPEST was first implemented in two dimensions by Guerrieri[39] and
Gamelin[31][{32] on a massively parallel supercomputer architecture and used to study
scattering from wafer topography, gratings, reflective notching and alignment.
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Wong[88] extended the code to three dimensions and re-implemented a version to run on
single processor workstations. Wong also developed a novel absorbing boundary condi-
tion, techniques for modeling dispersive materials and used the code to research phase

shifting mask structures.

Nguyen[58][59] used TEMPEST to study Extreme Ultraviolet Lithography (EUVL) mask
topography effects (absorber features and multilayer mirror defects) in two dimensions.
Socha[71][73][74] formulated a computationally efficient method for analyzing topogra-
phy scattering with vector polarized partially coherent spatial illumination and imple-
mented in TEMPEST-PCD and used it to study wafer and mask inspection and reflective
notching.

Pistor[62] implemented Berenger’s Perfectly Matched Layers (PML) boundary condi-
tions[10] and re-parallelized the code for running on a Network Of Workstations
(NOW)[6]. Pistor[63] also introduced the Fourier Boundary Condition (FBC) as an effi-
cient way to model the multilayer mirrors used in Extreme Ultraviolet Lithography
(EUVL). Pistor conducted various 3D simulations of EUV mask features and muitilayer
mirror defects[64][65][66].

Adam has used TEMPEST to study OPC[2] and phase defects[3] and to develop new meth-
ods for fast and accurate simulations of alternating phase shift masks of large arbitrary two-
dimensional patterns[4]. Deng[23] continues to use TEMPEST to investigate EUVL mul-
tilayer mirror defects and alignment issues in imprint lithography[24].

1.2.1. The FDTD method and the Yee equations
The continuous form of the Maxwell equations for linear, isotropic, non-magnetic, non-

dispersive materials are written:

Equation 1-1. VxE = —%3

. - o> »
Equation 1-2. VxH = E?D +Je
Equation 1-3. V03 =p



Equation 1-4. VeB = 0
where Je is the electric current density, E andH are the electric and magnetic field

strengths respectively,ﬁ and B are the electric and magnetic flux densities respectively and

p is the electric charge density.

The following two constitutive relations and current relation also apply:

Equation 1-5. B = p.(;')l_}
Equation 1-6. D = e(?)l-:“
Equation 1-7. Je = 6(NE

It is assumed that the materials involved are time invariant but the material properties may,

however, be spatially varying.

A numerical scheme for solving the Maxwell equations, first used by Yee [98] is used by
TEMPEST. This scheme, here forth referred to as “the Yee algorithm” involves the
replacement of both temporal and spatial derivatives by finite differences. The time axis
uses a “leapfrog” technique whereby the E fields are calculated at integer time steps (i.e.
n=0,1,2,3,...) and the H fields are calculated at integer-plus-one-half time steps (i.e.

n=0.5,1.5,2.5,...). (see Figure 1-1). For the spatial discretization, the Yee algorithm and
TEMPEST use a staggered grid where each of the six field components E, E,E,H,H,
and H, reside at different positions within a region of space called the Yee cell. A 2x2x2

cluster of Yee cells is illustrated in Figure 1-2.

The application of the abovementioned temporal and spatial discretization schemes leads

to the following set of “updating equations”[78][89] for the Yee algorithm:



t
| l | | | | >
EO Hl /2 El H3/2 EZ HS/Z E3 H7/2

Figure 1-1. The “Leapfrog” temporal discretization scheme

Time E and H fields are calculated at discrete points in time - the E field at the integer
time steps and the H fields at integer-plus-one-half time steps.

Jov
VA A
z,k ) Az
X;l  Note: Ax=Ay=Az
Figure 1-2. Staggered Grid Arrangement of the Field Components

Note that each field component is surrounded by precisely those components
needed to calculate the curl component (of its dual field) required by its updating
equation.
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The outlined scheme is shown to be stable (i.e. the solution doesn’t blow up) in [90] for

situations where |Re(n 2 |Im(n being the complex refractive

complex)l complex)l > ncomplex

index of the material'. When this criterion is not met, for example in many metals at visi-



ble, infrared and ultraviolet wavelengths, a different set of updating equations involving a

secondary field component, D , 1s used[92]:
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1.2.2. Convergence Checking

The goal of convergence checking is to determine whether or not the fields have reached
steady state. This is done by comparing the fields at two points in time separated by one
cycle (1/f seconds). If they are equal (by some specified criterion) then the fields are
assumed to have reached steady state. Once in steady state, no further changes to the fields

are expected.

TEMPEST uses a cubic grid of test points (spaced five nodes apart in x, y and z) for the
convergence checking. The electric field amplitude is calculated at each of these test points

and compared to its value one cycle prior. The relative error is calculated for each test

point:

Equation 1-13. pterr = f“mP(CT) = Eamp((c - 1)T)

- v
Eamp(CT) + Eamp((C -1)T)
unless the denominator is deemed extremely small in which case the test point is not con-

sidered. The error at each point is compared to mre, the maximum relative error (usually

set to 0.1) and quantized to a zero or one:

0, pterr<mre

tion 1-14. PTERR =
Equation { 1, pterr>mre

The quantized error, PTERR is summed for all test points to yield the total error:

8



Equation 1-15. TOTERR = Z PTERR

testpoints

In TEMPEST 5.0, the fields are said to have converged if TOTERR = 0 for three con-

secutive cycles.

1.2.3. Domain Excitation

The FDTD updating equations, as written in Equation 1-8 through Equation 1-12 do not
introducé energy to the simulation domain. At time step zero, the electric and magnetic
fields are zero throughout the domain and will remain so for all subsequent time steps

unless energy is introduced. This introduction of energy is called “exciting the domain”.

In lithography simulation, the energy introduced into the simulation domain is in the form
of a time-harmonic propagating field - a plane wave (or perhaps a group of plane waves).
TEMPEST excites the domain with a plane wave by introducing current source terms into

the Maxwell equations':

Equation 1-16. VXE = -g—t +.7:',;(x, ¥ 2, 1)
Equation 1-17. VxH = %B+.7;:(x, y.2,1)

For a monochromatic plane wave excitation emanating unidirectionally from the plane

z = z,,., with the phase front normal k, the source terms are set to:

Equation 1-18. T, m(5 9, 2,1) = Re{A, /O ~k5=kN)§(z - 79)
Equation 1-19. .m(x, ¥zt = Re{ze‘i(“’”"f“"yy)}S(z ~2g)

The magnitude, phase, sign of the z-component of the k-vector, and polarization of the

plane wave is set by the complex vector coefficients }i',; and K:, .

Consider the integral form of the Maxwell curl equations:

1. For simplicity, the region of space where the current terms are non zero is assumed to be lossless (i.e.
c=0)



Equation 1-20. 4Eodl = J‘( B+J )

. = _ ({93
Equation 1-21. gH odl 6_D+J )dA

Where the area A is a rectangular region in the zx-plane with perimeter the contour C as
shown in Figure 1-3. For Ax sufficiently small, and in the limit Az — 0 , Equation 1-20

becomes

dE e di= A, - MiE, , = AXK,,

:Ez,x_El,x = Km,y

Equation 1-22.
where the existence of a surface current Km, » has been admitted, but the existence of infi-

nite flux density is not (hence the area integral over -g—tB disappears).

z ) ® ’

- Ax e
—_——— e ———r ——— — —
s Az 4'. " Region #1
0_ — —— et c— —— — M — — — e e e w— e—— e agly m—— e e— — — — -

L _ - - !\ Region #2
C A

(has normal in +y)

Figure 1-3. Determining the source currents for domain excitation

Similarly,

Equation 1-23. Ey,,-E,, =K,
Equation 1-24. H,,-H ,=K,,
Equation 1-25. H, ,-H, ,=-K,,.
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At this point, setting the condition that the fields are zero in Region #1 leads to the relation

between the current sources and the excited field:

Equation 1-26. Km, y = Ez,x
Equation 1-27. Knx=-E,
Equation 1-28. K,, = H,,
Equation 1-29. Ker=-Hy,

Thus, with knowledge of the x and y components of the electric and magnetic fields, the
surface current source terms are known. The Yee updating equations can be modified to

include these source terms.

1.2.4. TEMPEST Algorithm
The TEMPEST algorithm is outlined in Figure 1-4.

1.3. Optical Imaging Models and Aerial Image Calculation

An “imaging system” in this thesis refers to the machines lithographers use to projection
print images onto the wafer (“steppers” and/or “scanners™) or to the machines used to
inspect either the wafers or the mask (“inspection systems”). Rather than directly solving
the Maxwell equations to model the many optical elements present in an imaging system

(lenses, apertures, mirrors etc.), the science of optics[15][35] is applied.

One notable implementation of the equations of optics, specifically the Hopkins formula-
tion[42], is SPLAT[83], a program written at UCB by Flanner [30] and used by Neureuther
to investigate defect interactions with features[56] and optical proximity effects[29].
Toh[83] added aberration capabilities to SPLAT and used it to investigate the effects of
lens aberrations in lithography. Yeung[100] extended the Hopkins theory to include high

numerical aperture effects and thin-film interference effects.

Because SPLAT is based on the Hopkins theory of partially coherent imaging[42] which
uses transmission cross-coefficients (TCCs) to calculate the image intensity pattern, it
assumes that the mask can be modeled by a scalar transmission function and that the scat-

tering coefficients (or “diffraction efficiencies™) are independent of angle of incidence.
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Read in topography from
input file. Set up variables.

Y

E%=0, HO=0,
n=0

Excite the domain:
HM 22 itz

Y

Calculate H™2from EP

Excite the domain:
EN=EMEN,

Y

Calculate E™'from H"*1/2

Y

n=n+1

Figure 1-4. The TEMPEST Algorithm

Program flow with convergence checking. Note that convergence is checked only at
time steps which correspond to the beginning of a wave cycle.
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This assumption breaks down for high numerical aperture imaging and in inspection where

highly oblique incidences are present. A vector-based theory that allows for the possibility

of non-constant scattering coefficients is needed.

This thesis addresses the need for a vector based formulation of the optics and a linking of
this vector-based formulation to the output of TEMPEST (Chapter 4). The position of the
imaging system model in the overall scheme of aerial image calculation is illustrated in
Figure 1-5. The imaging system model must take into account important optical parame-
ters such as numerical aperture, partial coherence, magnification, defocus, aberrations and

the specifics of the illumination.

s

TEMPEST model| °r | Kirchhoff model

wafer material stack NA  illumination aberrations
Imaging System

magnification partial coherence defocus

Aerial Image

Figure 1-5. Overview of Aerial Image Calculation

The photomask can be modeled rigorously with TEMPEST or approximated using
the Kirchhoff approximation (thin mask, described by transmission function). The
imaging system model must interface with the mask model(s) and form the aerial
image taking into account various optical parameters.
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1.4. This Thesis

This thesis documents the many extensions to TEMPEST made over the past six years
(since 1995). These improvements have enabled the simulation of many lithography-
related phenomena including ihree-dimensional simulation of EUV masks and aerial

image calculation for mask inspection systems.

The research described in this thesis is classified into three categories: academic contribu-
tions, improvements to TEMPEST and simulation studies. Due to breadth of topics dis-
cussed, topic-specific background is spread throughout the thesis and usually occurs in the

beginnings of the chapters.

1.4.1. Academic Contributions
Two major academic contributions are described in this thesis. By the word “academic” it
is meant that these contributions are novel and have not been researched in the context of

electromagnetic simulation and lithography.

1.4.1.1. Fourier Boundary Condition

The growing interest in Extreme Ultraviolet Lithography (EUVL) has spurred on the need
to simulate the scattering from the patterned multilayer mirror structures that serve as
reflective photomasks for the soft x-ray wavelengths. These multilayer mirror structures
are large relative to the wavelength of soft x-rays and thus require prohibitive amounts of

computer memory to program into a FDTD simulator.

The Fourier Boundary Condition (FBC) is an alternative to programming the entire multi-
layer mirror structure into TEMPEST. It is a boundary condition that operates in the spatial
frequency domain (i.e. it operates on the individual plane wave components of the propa-
gating field) and can be programmed to yield any arbitrary reflectivity for the various plane
wave angles of incidence. By programming the FBC with the reflective characteristics of
an EUV multilayer mirror, tremendous memory savings can be achieved since the entire

mirror structure does not have to be programmed into the FDTD grid.

14



1.4.1.2. Imaging System Formulation

Chapter 4 addresses the need for a fully three-dimensional, vector link between rigorous
mask simulation and the optics of an advanced imaging system. Chapter 4 describes a
model for an imaging system in which all components (the illumination, the object, the pro-
jection optic and the film stack at the wafer) are considered as operators on plane waves.
The illumination is considered as a source of plane waves. The mask, a scatterer of plane
waves, taking each input plane wave and scattering it into many output plane waves. The
projection optic and the thin-film stack at the wafer are combined into a plane wave oper-

ator that take a single plane wave as input and yield a single plane wave as an output.

The details of mask models (how they scatter plane waves) is then investigated. Several
mask models are presented along with a discussion of the range of applicability and the

approximations made in each case.

A model for scanning optical microscopy commonly used in inspection systems is also

proposed in Chapter 6.

1.4.2. Improvements to TEMPEST

The TEMPEST code has undergone several revisions in recent years. These are important
contributions to but not academic, meaning that the theory behind these improvements has
been developed and documented by other researches. The improvements made are never-
theless very important and crucial to the usefulness of electromagnetic simulation in pho-

tolithography.

1.4.2.1. PML boundary condition

For a long time, a lack of a good absorbing boundary condition has plagued the FDTD
method as artificial refections from the FDTD grid boundary would interfere with the true
solution. In 1994, Berenger published a paper[10] on a new type of boundary condition
which he named “Perfectly Matched Layers” or PML. The boundary condition is essen-
tially a non-physical material with the special property that it absorbs electromagnetic radi-
ation without refection for all frequencies and angles of incidence. This new boundary

condition was implemented into TEMPEST and is explained in Chapter 2.
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1.4.2.2. Parallelization

The EUV simulations, because of the small wavelength and large feature sizes can require
large simulation domains (perhaps several gigabytes). With current day technology (PC’s
and Workstations) it is impractical to simulate such large domains (not enough addressable
memory and processors are too slow). Parallelization is a solution that allows many pro-

cessors to operate on the problem simultaneously (Chapter 3).

1.4.3. Simulation Studies
The last three chapters of the this thesis are dedicated to simulation results.

1.4.3.1. EUV

Chapter 5 presents several results concerning mask feature parameters such as absorber
thickness and side wall angle and results concerning multilayer mirror defect printability.
The Fourier Boundary Condition technique introduced in Chapter 2 and the parallel pro-

cessing improvements presented in Chapter 3 were used for efficiency.

1.4.3.2. Alternating Phase Shift Mask Defects

Chapter 6 presents a simulation study of the printability and inspectability of phase defects
in alternating phase shift masks. Aerial images for both printing and inspection scenarios
are calculated. Due to the high angles of incidence present in mask inspection, the aerial
images for inspection cases were calculated with the non-constant scattering coefficient

mask model discussed in Chapter 4.

1.4.3.3. Overview of Various Lithography-Related Simulations
Outlines for the simulation of pinholes for EUV interferometry, wafer alignment marks,
aberration monitor topography, reflective notching and two-dimensional phase shift mask

topographical parameters are given.
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Boundary Conditions for the Finite-
Difference Time-Domain Method

2.1. Introduction
The Maxwell equations, being a system of second order partial differential equations,
require boundary conditions in order for a unique solution to exist. This is true whether the

fields are being solved in the continuous domain or in a discretized domain.

From a numerical algorithm point of view, the Yee equations (Equation 1-8 through
Equation 1-12) update each cell’s field values with equations involving neighboring cells.
The cells at the edges of the (finite) simulation domain will be missing some of their neigh-
bors and so either replacement cell must be used or a different set of updating equations

must be used for the boundary cells.

This chapter begins by introducing the simplest boundary condition, the perfect conductor
boundary condition. Periodic and symmetric boundary conditions are then discussed.
These boundary conditions use other, judiciously chosen, cells as replacements for the
missing cells. This has the effect of making the simulated topography inﬁnitely long and
periodic in the directions where the boundary conditions are applied. This is useful to litho-

graphers since periodic mask topographies are common.

In many situations, the simulation domain may be lined with a material that absorbs energy
to a degree sufficient to consider the fields at the boundary to be negligible. In these situ-
ations, it will not matter which boundary conditions are used a the edge of the simulation
domain since any unphysical reflections will also be negligible. Such a situation is called
a “material” boundary condition (MBC), since it involves the existence of some absorbing

material. Although technically not a boundary condition, MBC'’s find use in situations
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where highly reflective substrates are present such as mask inspection and reflective notch-

ing simulations.

A particularly useful subclass of the MBC is the Perfectly Matched Layers (PML) bound-
ary condition invented by Berenger in 1994[10]. This boundary condition is quite good at

absorbing outbound radiation without reflection.

Finally, a novel boundary condition called the “Fourier Boundary Condition” (FBC) is
introduced. It operates on the Fourier components (plane waves) of electromagnetic fields
and can be programmed to yield an arbitrary reflectivity versus angle-of-incidence. The
FBC finds its main use in modeling multilayer mirrors used in Extreme Ultraviolet Lithog-
raphy (Chapter 5), but other uses are also discussed.

2.2. Perfect Conductor Boundary Condition
The perfect conductor boundary condition is perhaps the easiest boundary condition to
implement. The electric field simply gets set to zero inside the boundary cells. This can be

seen from Equation 1-8 and Equation 1-10 letting o — oo. If the electric field is initialized
to zero at the beginning of the simulation, it can simply be not updated and thus remain

zero throughout the simulation.

Although this boundary condition is easy to apply, it is not very useful by itself since litho-
graphers are rarely interested in simulating topographies inside perfectly conducting
boxes. It is useful when used to terminate the grid in conjunction with a material boundary

condition such as PML.

2.3. Periodic and Symmetric Boundary Conditions
Another simple way to terminate the FDTD grid is to find some other cells within the

domain to use in place of the missing nearest neighbors. Consider a cell on the most posi-

tive x face, [N, — 1, f, k] which is missing one of its nearest neighbors (the missing neigh-
bor is the cell that would reside at [N,,j, k]). There are three logical choices for the

missing neighbor replacement:
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a) use the cell at [0, j, k] as the missing neighbor

b) use the cell at [N, -2, /, k] (i.e. the cell uses is one existing neighbor in the x-direction

as both neighbors)

c) use the cell at [N, —1,, k] (i.e. the cell uses itself as the missing neighbor)

These three options are illustrated in Figure 2-1. Choice (a) will lead to a simulated topog-
raphy that is periodic in the directions which the boundary condition is applied and is
referred to as a Periodic Boundary Condition (PBC). Choices (b) and (c), lead to topogra-
phies that have mirror symmetry, and are useful for saving computer resources because

only half of a symmetric topography needs to be programmed and simulated.

[~ ~ /r >
<‘A Ji" ) K‘ <' A A

(a) ®) (c)
Figure 2-1. Replacement Possibilities for the Missing Nearest Neighbor Cell

a) Using the cell at the opposite end of the domain will lead to a periodic boundary
condition. b) Using the existing neighbor will lead to a symmetric boundary condi-
tion. c) Using the cell it itself as its nearest missing neighbor will also lead to a sym-
metric boundary condition.

In lithography, it is common to have periodic mask structures such as a line/space pattern
or an or array of contact holes. The PBC is useful when applied in two directions (the x and
y directions) but is rarely used in three dimensions (this would be a 3D array of objects -
not usually occurring). The third dimension (the z-direction) usually applies another type

of boundary condition such as a material boundary condition.
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The effects of applying the periodic boundary condition are detailed in Figure 2-2 for a 2D
topography and in Figure 2-3 for a 3D topography. When simulating photomasks, a 1D
mask pattern, such as a line/space pattern, requires a 2D simulation domain and a 2D mask
pattern, such as an array of contact holes requires a 3D simulation domain. A 2D simula-
tion domain is simply a 3D simulation domain with one cell in the y-direction' and repre-
sents a topography that is uniform in the y-direction. 2D simulation domains are much
smaller than 3D simulation domains and thus run many times faster (seconds rather than
hours). All simulations in this thesis have periodic boundary conditions applied in the x and

y directions.

The application of PBC’s to the x and y directions of the simulation domain will have
implications on the allowed plane wave excitations. Because the both the topography and
the field values are “wrapped around”, both are periodic. Of course only one period of the
topography and fields is tracked inside the computer, but, nevertheless, the electric and
magnetic field components are periodic in the x and y directions. The general expression

for the electric field for a propagating plane wave is:

Equation 2-1. E‘(x, y,2,1) = A/ (@1 —kx—ky—~kz)

where k = (k,, k, k,) is the wave vector (units of radians/length) that indicates the wave-
length and direction of propagation, ® is the radian frequency (units of radians/time) and

disa complex vector indicating the polarization direction of the electric field and its mag-
nitude and phase. Consider the electric field at the particular plane z = 0 and at the par-

ticular time ¢ = 0. The field is a function of x and y only:

Equation 2-2. E(x,y) = Ae7k=+ k)

If the simulation domain has x and y dimensions of L and L, respectively, and if periodic
boundary conditions are applied, then the field of Equation 2-2 must be periodic in x and
y with period L, and L, respectively, and therefore:

1. TEMPEST uses the y-direction as the only direction where only one cell is allowed. This is an arbitrary
choice.
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Figure 2-2. 2D Topography with Periodic

21

Boundary Conditions Applied

(a) a 2D topography is really a 3D
topography, but with only 1 cell in the
y-dimension. (b) Applying periodic
boundary conditions in the y-direction
repeats the domain infinitely in the y-
direction, thus “extruding” the topog-
raphy in the y-direction. (c) Finally,
applying periodic boundary condi-
tions in the x-direction repeats the
extruded domain in the x-direction.

.’ Chrome Cell

Glass Cell



Chrome Cell

Glass Cell

Figure 2-3. 2D Topography with Periodic Boundary Conditions Applied

(a) a 3D topography is required for simulating a 2D mask pattern. (b) Periodic bound-
ary conditions in the x and y directions imply that the actual topography simulated in
an infinite two dimensional periodic array.

Equation2-3. E(x+alL,y+ BL) = AeThl+ald+hO+BLY) = F(x, 3) = 4ed ke k)
for all o, B € /. Considering that e? = e4* 2™ for m e I and the specific case o = 1

and B = 0 leads to:
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k(x+L)+k,() = kx+ky+2nm

=kl =2nm
=k = 22"”
Equation 2-4. *
A similar argument leads to
. b = 2nn I
Equation 2-5. y = F-n€

Thus, PBC’s imply that the k-vector for a propagating plane wave inside the simulation

domain is limited to a discrete set of values determined by the condition of periodicity in

the simulation domain with dimensions L, by L,. This means that only certain angles of

incidence are allowed by the simulation domain. !

The allowed k-vectors are best visualized using the k-space representation of plane waves

-(see Appendix A) and is done so in Figure 2-4.

The angle of plane wave propagation can written:

/kz,_ k2 - k2
0= asm(____xl)

Equation 2-6. = 7
and

) k
Equation 2-7. = atan(]?y)

X

where 0 is the angle the direction of plane wave propagation makes with the z-axis and ¢

is the azimuthal angle.

1. The condition E(x +al,y+ BLy) = E‘(x, ¥), o, B €], is overly strict. If a complex field formulation of
the Yee equations is used, then a less restrictive periodic equation can be applied:

E(x+al,y+BL) = &/@1*PE(x, y), v,8 € R, &, B & 1. This would allow fields that are periodic up to a
phase factor to exist inside the simulation domain. The time-averaged field intensity, of course, by periodic
symmetry is restricted to being a truly periodic real function.

TEMPEST does not implement a complex formulation of the Yee algorithm (to reduce memory require-
ments) and, although it is theoretically possible, it is difficult to extract the complex fields in an efficient
manner and so the more restrictive condition is adhered to.
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Figure 2-4. Plane Waves Allowed by Periodic Boundary Conditions in Two
Dimensions

2.4. Material Boundary Conditions

Often, a simulated topography lies on top of a substrate with a reflective and/or highly
absorbing material. This can be useful for truncating the FDTD grid in one direction. If the
reflective and/or highly absorbing substrate is thick enough to sufficiently attenuate any
wave before reaching the domain boundary, then the fields will be very small at the domain
boundary and the simple perfect conductor boundary condition could be applied. This ideal
is illustrated in Figure 2-5. Technically, this is not really a new boundary condition, rather"
it is just the perfect conductor boundary condition applied in a situation where the reflec-

tions produced are negligible.

2.5. Absorbing Boundary Conditions

An absorbing boundary condition is a boundary condition that absorbs electromagnetic
radiation exiting the simulation domain without producing reflections. This effectively
“extends” the simulation domain to infinity in the direction normal to the side of the sim-

ulation domain that has the boundary condition applied.

In this thesis, the absorbing boundary conditions are applied to the top and bottom of the

simulation domain effectively extending the material at the top of the domain upwards to

z = o and the material at the bottom of the domain downwards towards z = —. Con-

24



Highly Absorbing
Substrate Material

Perfect Conductor
Boundary Condition
Applied Here

Figure 2-5. The Material Boundary Condition

The field is attenuated by the substrate material enough so that any reflection of the
perfect conductor boundary condition at the bottom of the domain is negligible.

sider the simulation of typical photomask shown in Figure 2-6. The combination of peri-
odic boundary conditions in the x and y directions and the absorbing boundary condition
in the z direction implies a simulated topography that is infinite in extent, period in the x
and y directions with a infinite half space of glass in the upper side and an infinite half-

space of air on the lower side.

Several schemes for implementing absorbing boundary conditions have been developed
[55][40][51][91], but all exhibited mediocre reflection performance until Berenger, in
1994, invented the first truly useful absorbing boundary condition which he named “Per-
fectly Matched Layers” here forth referred to as “PML”[10][33][102].

The PML boundary condition is a material boundary condition with the special condition
that the material 1s chosen in such a way as to absorb outgoing fields without producing
any reflections. As with the general material boundary condition, the idea is to have thick-
ness of the material enough to sufficiently attenuate the field effecting the use of the perfect

conductor boundary condition at the true boundary of the simulation domain.
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Figure 2-6. Absorbing Boundary Conditions Applied to the Top and Bottom of the
Domain

Periodic boundary conditions repeat the domain topography in the x direction while
absorbing boundary conditions at the top and bottom of the domain extend the
(repeated) topography upwards and downwards.

There is no choice of a physically real material that is reflectionless. To find a material that
is reflectionless, one needs to look beyond physically realizable materials to magnetic cur-
rent conducting, anisotropic materials that can not exist physically (due to lack of magnetic
charge, current and conductivity) but can exist inside a computer simulation. The Maxwell
curl equations, and the constitutive relations, generalized for magnetic conductivity and

anisotropy are written:

Equation 2-8. VxE = -'(%.-B\ +.}m
. - a e a
Equation 2-9. VxH = ED +Je
g, 0 0
Equation 2-10. D=9 €, O|E
0 ¢
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Equation 2-11. B=|o0 B, 0|H
0 O,
: . G, x o0 0 .
Equation 2-12. =10 Ce.y 0 |E
0 0 o,
]
. |Omx 0 =0 .
Equation 2-13. J.=1 0 O,y 0 |E
0 0 O, 2

where subscripts e and m are now used to differentiate between electric and magnetic cur-

rent and conductivity.

Fourier transforming the curl and constitutive equations and switching to the usual com-

plex phasor notation for the fields gives:

Equation 2-14. , VxE(m) = — jml}(m)+.~lm(co)
Equation 2-15. VxH(0) = joD(e) ;.-je(co)
Equation 2-16. D(0) = gyg(0)E(0)
Equation 2-17. B(0) = pou, (0)H(o)
Equation 2-18. .7e(co) = ge(m)ﬁ’(a))
Equation 2-19. jm((l)) = g_'m(co)ﬁ(co)

Substituting the constitutive equations into the curl equations gives:

g, (®)

Equation 2-20. VxE(o) = —ja)p.o(]._Lr((o)— s )fz(m) = OBl (OVH(®)

and ;

27



g (o). -
VE@) = josEeompren@E(®),

Equation 2-21. VxH(®) = jmao(gr(m)+ -
J(DSO

where the following complex pérmeability and permittivity tensors have been introduced:

g, (@)

E’complex(w) = E‘r(m)_ jmpo

c

. . gt.‘omple.\:((")) =g(0)+ 7o
Equation 2-22. .
In the frequency domain, the effects of conductivity and permittivity (or permeability) are

lumped together. Thus, any material is described by two complex, second-order, diagonal

tensors Ecomplex(co) and g'complex(m) :

Berenger deduced p

..comp[ex((o) and Ecomplex(®) by solving the plane wave reflection

problem[49] (Figure 2-7) where the reflected wave’s amplitude is set to zero and the mate-

rial properties are solved for. This led to[33]:

f i — 0
JO)GO
—_ (o)
Equation 2-23. §complex, B(m) - 8¢:o»yvlex,A((’)) 0 K+ J_(E)
-1
0 0 (1( + _CI_.O)
joe
and
K+ 0 0
JO)SO
1 = (o}
Equation 2-24. Fcomplex, 3(®) = Keomplex, 4(®) 0 x +j—_0)80
-1
0 0 (K + io)
JjoE

where
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Figure 2-7. Set-up for the Plane Wave Reflection Problem

The is the setup for the standard reflection of plane waves problem. The phase matching

_ condition at z=0 will force 6, = 6; (angle of incidence equals angle of reflection) while
other boundary conditions on the electric and magnetic fields will determine the 8, (direc-
tion of transmitted wave) and the magnitude of both the reflected and transmitted waves
relative to that of the incident wave. For PML, instead of solving for the reflection coeffi-
cient in terms of material properties, the reflection coefficient is set to zero and the mate-
rial properties are solved for.

ce
€complex, 4(0) = 30(8,. +_;C_0E-O)
Equation 2-25. Reomplex, A(m) = RoH,
are the material constants for Material A. The attenuation of the transmitted wave in Mate-

rial B is controlled by the x and ¢ parameters.

The PML theory thus far works in the continuous domain but not in the discretized domain.

Berenger[10] noted that an abrupt change in ¢ or u in a finite difference

complex complex
scheme will produce reflections. For this reason, the k and ¢ parameters (which provide
the attenuation) must start at 1 and O respectively at the interface between the PML and the
adjacent material, and then be slowly “ramped up” from cell to cell as the depth into the

PML material increases to provide the attenuation. In [33] it was determined that a quartic
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variation in these parameters was optimal. The application of the PML (in one direction -

specifically, the z-direction) is illustrated in Figure 2-8.

PML (matched to glass)

PML (matched to air)

Figure 2-8. A 2D FDTD domain with PML at the top and at the bottom

A typical phase shift mask topography is illustrated. The PML at the top is matched to
the glass and the PML at the bottom is matched to the air. The conductivity is “ramped”
up from layer to layer to eliminate numerical reflections.

The TEMPEST implementation of PML requires the material at the top and bottom of the
domain to be homogeneous (i.e. the PML can be matched to only one material). Typically
8 cells of PML are sufficient for eliminating reflections in lithography simulation. The
backside of the PML can be terminated with the perfect conductor boundary condition or
even a period boundary condition (applied in the z direction) if PML exists at both the top

and the bottom of the simulation domain.

2.6. Fourier Boundary Condition

The motivation for the development of the Fourier Boundary Condition was provided by
the multilayer mirror substrate used for the mask in Extreme Ultraviolet Lithography
(EUVL) (Chapter 5). This multilayer mirror typically has 80 or more alternating thin-film
layers of silicon and molybdenum and is patterned with an absorbing material (chromium

for example) to create a reflective photomask. The multilayer mirror by itself is a one-
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dimensional topography and is uniform in two dimensions. The total thickness of the typ-
ically 80 layers is approximately 20 wavelengths. Programming such a structure (20 wave-
lengths in one dimension) into a FDTD grid, such as that used by TEMPEST, would
require vast amounts of memory. Coupled with the fact that an analytical solution for the
mirror reflectivity exists, a more efficient way to model the multilayer mirror was sought.
The Fourier Boundary Condition (FBC) was developed and implemented into TEMPEST

for this reason.

The idea behind the FBC is to decompose the electromagnetic field into plane wave com-
ponents (using Fourier transform theory), to then apply an appropriate reflection coeffi-
cient to each plane wave component, and finally, to generate a reflected wave for each
plane wave component. This approach can also be considered as an “equivalent dependent

source” approach.

The construction of the FBC is outlined in Figure 2-9. The top half of the simulation

] Plane

—1— Wave
Normal v
TEMPEST: Reflected
Topography

— = zexc, Jbe

Fourier
Boundary — - zobs,ﬁc
Condition

Figure 2-9. Components of the Fourier Boundary Condition

The incident field passes by the topography and is observed at the observation plane
at z = z,, .. The incident field passes on down to the PM.L. boundary condition
where it is absorbed without reflection. Reflected waves for each incident plane wave
are generated at the excitation plane at z = z,, . 4.

domain is normal TEMPEST topography. The FBC exists from the plane z = z,, . 4,

downward. The incident field passes by the topography and is observed at the observation
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planeatz = z,,. foe The incident field continues beyond the observation plane on down
to the PML boundary condition where it is absorbed without reflection. The observed field
at the observation plane is decomposed into plane wave components. A reflection coeffi-
cient for each of these incident plane waves is used to generate a new plane wave that ema-

nates upward from the excitation plane z = z,, . , . This new, upward travelling plane

wave takes the place of the reflected plane wave.

The Fourier Boundary Condition is useful because it allows arbitrary reflection coeffi-
cients to be applied individually to each incoming plane wave component. When applied
to a multilayer mirror, the plane wave reflection coefficients can be calculated analytically
(using thin film theory [19]) and the FBC can be programmed to mimic the reflectivity of

the mirror.

The FBC considers only the propagating plane wave components of the electromagnetic
fields while ignoring the evanescent components. This is not a significant problem for
EUVL since all materials have indices of refraction very close to unity and do not “kick
up” strong evanescent fields. Additionally, the evanescent fields do not propagate to the

projection optic and play no direct role in aerial image formation.

2.6.1. Implementation
The methods outlined in Appendix B can be used to decompose the complex field at the

observation plane, E(X,,Zz,5; ), into its polarized plane wave components. These

. . A z
plane waves are written in the two-element vector form, | 75 mn(exc, fbc) , and are
ATM, mn(zexc, jbc) kon

indexed by the integers m and n. After decomposing the field, the next step is to “back-
ward propagate” the plane waves to the plane where the FBC is acting, specifically, the

excitationplane z = z,, . ,

E‘-Iuation 2-26. 4 TE, mn(Zexc’jb C) = ei (-kum, x(zuc.ﬂ’c = Zobs, ﬂw)) 4 TE, mn(zobs,fbc)
4 ™, mn (zexc, jbc) ) A ™, mn (z obs, jbc) -
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At this point, the reflection coefficients are applied to the waves and the reflected waves

are written:

Equation 2-27. ,RT E, mn = 1e (em") 4 TE, mn(zobs, jbc)
RT M, mn|}, FTM (em")A ™, mn(zobs, ﬂ)c) Foun

These reflected waves are unidirectionally excited (by method of Chapter 1) upwards, in
the direction opposite to the incident field.

The finite space between the bottom of the topography (which coincides with the excitation

planez =z, . ﬂ,c) and the PML material should be large enough to allow the evanescent

fields kicked up by the topography to die away. The observation plane is situated between
the PML and the excitation plane and should be located nearer to the PML again to avoid
evanescent fields kicked up by the topography.

2.6.2. Performance

The FBC was implemented in the TEMPEST program mainly for the simulation EUVL
mask scattering. Therefore, a good test of the FBC is to measure its performance (accuracy,
speed and memory required) for a multilayer mirror scenario. Figure 2-10 shows the reflec-
tivity (power) versus angle of incidence for a typical EUVL multilayer mirror. Reflectivity
curves were generated in three ways: i) thin-film stack theory was used to calculate the the-
oretical reflectivity ii) the entire forty-bilayer mirror was programmed into the FDTD grid
in TEMPEST (a “brute force” method), and iii) the FBC reflectivity was set to the theoret-
ical reflectivity of the multilayer mirror. The reflectivity calculated by the “brute force”
method was found to track the theoretical reflectivity relatively well for small angles, but
deviated quite significantly for angles above 10 degrees. The FBC reflectivity matched the
theoretical reflectivity to within 1% for the eight angles of incidence measured up to 36

degrees.

The memory required the 3D simulation of a typical EUV mask is illustrated in Figure 2-
11. The use of the FBC is seen to save a tremendous amount of memory, especially for
large features (large simulation domains). The 3D simulation of a 100nm feature would
require more than 20 GBytes using the brute force method while using the FBC to model
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Figure 2-10. Multilayer Mirror Reflectivity (TE plane waves)

Both the “brute-force” programming of the multilayer mirror into the F.D.T.D. grid
and the F.B.C. version do reasonably well in reproducing the theoretical reflectivity
curve. The F.B.C. version, however, runs quicker and uses about one twentieth the

the mirror reduces the memory required to less than 4 Gbytes - an achievable memory

requirement for the current-day technology.

The simulation time is dominated by FDTD updating equations and not by the Fourier
operation used in the FBC. Thus, the simulation time curves will look similar to the
memory required curves of Figure 2-11. A typical simulation time for a 100nm feature is
10 to 12 hours (assuming FBC is used, 16 200MHz PentiumPro processors working in par-
allel - see Chapter 3). Smaller features (30nm to 50nm CD) can run on desktop systems
with 256MBytes in less than two hours when the FBC is used.

2.6.3. Fourier Boundary Condition used as an Absorbing Boundary Condition
(FABC)

The Fourier Boundary Condition described thus far has been used to generate reflected
waves for the purpose of simulating the reflections generated by some one dimensional
topography (such as a multilayer mirror). A simple rearrangement of the excitation plane

and the observation plane make the FBC useful in another respect - as an absorbing bound-
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Figure 2-11. Memory Required for 3D EUV Mask Simulation

Using the FBC to model the multilayer mirror requires considerably less memory than
does programming the entire mirror into the simulation domain. The simulation domain
is assumed to be twice the feature size in the x and y directions, assumes 100nm thick
aluminum absorber, l]ambda=13.4nm, 4X mask size, and a 40 bilayer multilayer mirror.

ary condition. Suppose the positions of the excitation plane and the observation plane were
interchanged. Additionally, suppose that the excitation plane generated plane waves not in
the “reflected” direction (up), but in the “transmitted” direction (down) - (see Figure 2-12).
The incident field will be decomposed into its component plane waves, and for each of
these plane waves, a “transmitted” wave will be generated at the excitation plane. This time
however, the excited wave will be travelling in the exact same direction of propagation as
the incident wave. The two waves will add coherently. It is possible to program the trans-
mitted wave to have the exact amplitude as the incident wave, but with a 7 phase shift to
exactly cancel the incident wave. This cancellation will occur for all incident plane waves
and so the field will be zero below the excitation plane. Since the field is zero below the
excitation plane, any sort of boundary condition can be used (i.e. the perfect conductor

boundary condition). The FBC, in this manner, forms a useful absorbing boundary condi-
tion. This ABC is referred to as the FABC

Of course, the PML already discussed above is an excellent absorbing boundary condition.

The advantage of the FABC as compared to the PML is that it uses less memory and will
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Figure 2-12. The Fourier Boundary Condition as an Absorbing Boundary Condition

The incident field passes by the topography and is observed at the observation plane
at z =z, o A transmitted wave that exactly cancels the incident wave is gener-
ated at the excitation plane. The field below the excitation plane is zero and so no
boundary condition need be applied.
run faster. The disadvantage is that it only works for monochromatic light and will likely

not perform well for high angles of incidence.

The performance of the FABC is shown in Figure 2-13 where the reﬂectwuy (power

reflected) is plotted as a function of angle of incidence.

The FABC concept can be extended to surfaces other than planar surfaces. Consider a
spherical region of space inside which the isolated topography to be simulated exists.
Assuming homogeneous free space exists at the boundary of the sphere, a new boundary
condition could be devised in analogy to the FABC. The field at some spherical surface

r = r,, is observed and decomposed into spherical harmonics[44] (rather than plane

waves). A second excitation sphere » = r,, . outside the observation sphere could be used

to generate outward propagating spherical harmonics that exactly cancel those observed at
the observation plane. This scheme could be used for simulating truly isolated topogra-
phies. In fact this entire spherical domain could exist inside a rectangular (and periodic)
simulation domain such as that used in TEMPEST. The usual plane wave excitation could

be used provided the observation surface is programmed to ignore it. Again the advantage
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Figure 2-13. F.A.B.C. Reflectivity for TE Plane Waves

of this scheme over the PML is that it may possibly use fewer cells and run slightly faster

provided the spherical harmonic decomposition isn’t to intensive.

2.6.4. Other Uses of the FBC

Because any type of reflection/transmission coefficients can be applied to the FBC, many
possible uses come about. For example, it could be used as a polarization filter (simply set
the transmission of the TE waves to umty and the TM waves to zero). It could be used as
an aperture (or spatial filter), or even as a 1X aberrated lens. Any operation in Fourier space

could be applied.

2.7. Summary
The FDTD simulation domain must somehow be terminated with numerical boundary con-

ditions. Various boundary conditions have been outlined and discussed.

Periodic and symmetric boundary conditions are typically applied in the horizontal direc-
tions and make the simulated topography periodic and infinite in length. Periodic boundary
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Figure 2-14. A scheme for extending the FABC to 3D

conditions, as implemented in TEMPEST, restrict the set of plane waves that are allowed
to exist inside the simulation domain to those which have the same periodicity as the topog-

raphy.

Material boundary conditions are simply the existence of a material at the boundary of the
simulation domain with thickness and absorption sufficient to attenuate the outbound
energy to a negligible level effecting the use of perfect conductor boundary conditions to

terminate the grid.

Perfectly Matched Layers (PML) is an example of a material boundary condition where the
material is especially chosen in such a way that no reflections are generated. This makes
PML an excellent absorbing boundary condition that is typically applied to the top and

bottom of a simulation domain to “extend” the domain upwards and downwards to infinity.

The Fourier Boundary Condition (FBC) was developed as an efficient model for an EUVL
multilayer mirror. It operates on the Fourier components (plane) waves of the incident field
and can be programmed to yield an arbitrary reflectivity versus angle-of-incidence. The

FBC was demonstrated to be both an accurate and efficient model for a multilayer mirror.
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The FBC can also be useful as an absorbing boundary condition as it can be set up to detect
outgoing waves and eliminate them by annihilation with an annihilating wave with equal
magnitude but opposite phase. '
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Parallelizing the Finite Difference
Time Domain Algorithm

3.1. Introduction

The Finite Difference Time Domain Electromagnetic Simulation program TEMPEST was
originally written to run on a parallel processor architecture [31][32][39]. In fact, the “MP”
in “TEMPEST” stands for “massively paralle]”. In 1995, as workstation memories began
to exceed 100MByte, it became feasible to run TEMPEST simulations on desktop comput-
ers and Wong ported the TEMPEST code to a single processor architecture [96]. Since that
time, it was found that the single processor version of TEMPEST and the current-day com-
putational ability of workstations is insufficient for the newly-emergilig EUV lithography
simulations (see Chapter 5). Ironically, the code has been ported back to a parallel archi-
tecture - this time, not for a single multiprocessor supercomputer, but rather a Network of
Workstations (also known as NOW) [6].

This chapter presents an overview of the (re)parallelization of the TEMPEST code and pre-

sents some performance results of the parallelized code.

3.2. Technique

The finite difference time domain algorithm first proposed by Yee[98] is easily paralleliz-
able because each cell’s updating equations (See Chapter 1) involve only the six nearest
neighbor cells. Matrix methods, such as the Finite Element Method, involve inverting a

matrix - an operation that is not as easily parallelizable.

The parallelization of the algorithm involves breaking the simulation domain up into sim-
ulation subdomains (see Figure 3-1). Because, by TEMPEST convention, excitation planes

are always xy-planes, the domain is divided only in the z-direction. This avoids breaking
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Figure 3-1. Breaking up the Simulation Domain for Paralle] Calculation

The unbroken simulation domain (figure (a)) is divided with xy-cut-planes into simu-

lation subdomains (figure (b)).
up excitation planes or output planes where Fourier Transform operations are performed.
Not breaking the domain in the x and y directions also has the advantage that because of
periodic boundary conditions, each subdomain is connected with itself in the x and y direc-

tions meaning no communications overhead for vertical faces.

Each processor in a multiprocessor system will execute the FDTD updating equations
within its own simulation subdomain. Information at the upper and lower boundaries of
each subdomain is passed between neighboring subdomains. Periodic boundary conditions
are applied, as usual, in the x and y directions. The top of the upper domain “wraps” around
to the bottom of the lower domain (effectively creating a periodic boundary condition also
in the z-direction), although typically the Perfectly Matched Layers boundary condition

(see Chapter 2) is used at the top and the bottom of the simulation domain.

The coding of the communication between subdomains is accomplished with The Message
Passing Interface (MPI)[52], a protocol of routines that allow multiple processes to com-

municate across an inhomogeneous network of workstations.
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3.3. Performance

Given that the total number of mathematical operations required for electromagnetic sim-
ulation is independent of how the simulation domain is divided, the best possible improve-
ment obtainable with parallelization would be linear with the number of processors.
Unfortunately, the added overhead of the communication of the boundary cell information
limits the speed-up factor to being sub-linear. Obviously the best performance will be
obtained when the amount of information to be communicated between subdomains is

minimized and when communication speed is high.

The performance of parallel TEMPEST was assessed through several simulation experi-
ments on different numbers of processors and with different groupings of the subdomains
on different multiprocessor boxes. Figure 3-2 graphs the speed-up factor versus the
number of processors. All simulations were run on SUN UltraSPARC II “boxes”. Each box
had multiple processors. The ideal speed-up factor curve is linear and equal to the number
of processors. The “1 Box w/2 procs.” curve is the performance of a box with only two pro-
cessors. The “1 Box w/8 procs.” is for a box with eight processors in it. Its speed-up curve
closely tracks the ideal linear curve up until the number of processes exceeds eight (the
number of processors in the box). The “Grouped 3 Boxes w/8 procs” curve is for the case
when the processes are evenly divided between three boxes, and the neighboring processes
are grouped to together (i.e. if 12 process simulation then processes 0,1,2 and 3 are run on
box #1, processes 4,5,6 and 7 on box #2 and processes 8,9,10 and 11 on box #3) - minimiz-
ing the communication overhead. This curve has a considerably lower slope compared to
the same-box curves due to the slower communication rate across the network between
boxes. Finally, to grasp the importance of grouping nearby subdomains on the same box,
a worse-case assignment was investigated where neighboring subdomains were located on
different boxes meaning that all communications were across the network and none were
within any box. The curve “Alt. 3 Boxes w/8 procs.” shows that the performance of this
scheme drastically degrades beyond six processes with a maximum speed-up factor of

approximately 2.5.

Another factor affecting performance is load balancing. Since all subdomains must update

together at the same time, the entire simulation will be limited by the slowest subdomain
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Figure 3-2. Performance of Parallel TEMPEST

and therefore, to maximize performance, the load (as measured in FLOPS) should be
evenly distributed amongst the subdomains. The load of a particular subdomain depends
on what updating equations the cells inside the domain use, which in turn depends on what
kinds of materials present inside the subdomain. The following table lists the various types
of materials (categorized by their updating equation type) along with the memory and
FLOPS required per cell.

Material Type/ Memory required assuming single | FLOPs required/cell
Updating equation | precision floating point numbers
(bytes/cell)
Yee 25 33
Dispersive 37 48
PML 49 66

Table 3-1. Computational Resource Requirements for Various Materials

3.4. Summary
A parallelized version of TEMPEST using the Message Passing Interface to run across a
Network of Workstations (NOW) was developed and benchmarked. It was observed that
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the performance depended strongly on the inter-process communications overhead. The
performance across several processors in the same box approximated the ideal linear
speed-up curve, while the performance when all communications were over a network

showed a maximum speed-up factor of only 2.5 for 6 processes.

One conclusion that can be drawn is that it is far better to buy one large box with N pro-
cessors than to buy N boxes with one single processor each. However, often it is the
memory requirements, and not the speed requirements that determine when parallel pro-
cessing is needed and what architecture is required. Further discussion of these issues

occurs in a book by Taflove.[79]



4 Imaging System Modeling

4.1. Introduction

Often, it is not the fields in the immediate vicinity of the mask topography, but rather an
image formed by an imaging system at a remote image plane that is of primary interest to
lithographers. This imége, sometimes called the “aerial image” can be the intensity pattern
in a thin layer of photoresist on a silicon wafer or perhaps the intensity pattern produced

on a CCD camera or the retina of the human eye.

A modern, complex optical imaging system can have several lens, polarizer, aperture, and
mirror components and is usually very large in relation to the wavelength of light. Thus it
is it not practical to simulate the imaging system with the FDTD method and TEMPEST.
However, the science of optics can be applied to the imaging system components for mod-

eling purposes.

The Hopkins theory of partially coherent imaging[41][42] is commonly used to calculate
aerial images in lithography. One computer program, SPLAT, is based on Hopkins’ theory

and has been used for aerial image calculation in lithography for several years[83][2].

To print or inspect smaller features, optics designers build optics with higher numerical
apertures. For numerical apertures exceeding 0.5 to 0.6, the paraxial approximations made
in scalar imaging theory are invalid and theory has been extended by Cole et al.[21][22]
who removed the paraxial ray approximation in the projection optic model. This led to the
“Radiometric Correction Factor” that extended the usefulness of the projection optic model

to numerical apertures in the range 0.6 to 0.7.
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But even with the radiometric correction factor, the scalar theory is deficient for high
numerical aperture lithography (N4 = 0.6) due to the differences in the way TE and TM
plane waves behave, especially at the image plane where highly oblique plane waves exist.
Yeung[100] realized that a vector formulation is required for high NA imaging inside thin
film stacks and generalized the Hopkins’ formula for vector fields. But he then points out
that, upon entering the photoresist, the plane waves bend towards the normal reducing their
degree of obliquity, and reverts back to a scalar theory which he claims is “sufficient for
the practical simulation of aerial images in planar thin-film structures for numerical aper-

tures at least as high as 0.6.”

This thesis introduces the removal of yet one more approximation that is valid only when
the plane waves incident to the mask are nearly normal. The Hopkins theory - even the
extended vector theory developed by Yeung - still relies on the assumption that the object
(photomask) can be represented as a two-dimensional transmission function that is inde-
pendent from the angle of incidence and thus assumes constant diffraction efficiencies
(later on referred to as “scattering coefficients”). This assumption of constant diffraction
efficiencies is usually valid for angles of incidence less than 20 or 30 degrees[68][93] but
is often invalid for large angles of incidence such as those occurring during mask inspec-

tion.

The Hopkins imaging equations can not be used when diffraction efficiencies depend on
angle of incidence. This thesis presents imaging equations that are not based on Hopkins’
formulation, but rather on a formulation where Kohler illumination is assumed, an integra-
tion is performed across the object plane for each point on the source and the source is inte-
grated over last. The formulation is sometimes referred to as “Source Integration” or
“Abbe’s Formulation™[1][72]. The imaging system model represents each component of
the system as an operator on plane waves. A full-vector formulation is maintained from the

source, to the object, to the projection optic and down into the film stack at the wafer.

An overview the imaging system model is given in section 4.1.1. Sections 4.2 to 4.5 are
devoted to detailing the models for each component in the imaging system. Then all com-

ponents are linked together in section 4.6 and the imaging equations are presented. The
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exact details of the mask model are deferred until section 4.7 where three different mask

models are presented followed by a discussion of when the use of each model is appropri-

ate.

4.1.1. The Imaging System Model

In this thesis, the “imaging system” consists of two optics - the illumination optic and the
projection optic (see Figure 4-1). The illumination optic is responsible for modifying the
light emitted from a source (usually a laser or a mercury arc-lamp) to create an electromag-
netic field with the coherence properties and angular spectrum appropriate to illuminate the
object (photomask). The object scatters this “incident field” presented by the illumination
optic into the “scattered field”. The projection optic (sometimes called the “camera™) takes
the scattered field and passes it (via numerous optical components) to the “image plane”
(the wafer or a CCD camera etc.). Finally, if the image is being formed inside some mate-
rial, such as a layer of photoresist on a silicon wafer, then diffraction and refraction will
again affect the aerial image and can be modeled by applying either thin film stack theory

or rigorous electromagnetic simulation.

The basis of the imaging system model comes from Fourier Optics [35] where the electro-
magnetic fields are considered as superpositions of plane waves. Each component in the
imaging system can be regarded as an operator on plane waves as illustrated in Figure 4-2.
In (a), the source and condenser optics emit plane waves, each plane wave travelling in a
different direction and mutually coherent from the others. The object (photomask) take
each single plane wave generated by the source and condenser, and scatters it into many
plane waves as depicted in figure (b). The projection optic, (c), operates on each plane
wave output from the object yielding an output plane wave with the same direction (but
possibly with different magnitude and phase). The film stack at the wafer, (d), like the pro-
jection optic yields a plane wave with the same direction of propagation as its input and
thus it is possible to combine the effects of the projection optic and the thin-film stack at

the wafer into a single “equivalent transfer function”.
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Figure 4-1. A Simplified Model for an Imaging System

The science of Fourier Optics is applied to model the source, illumination optic and
projection optic. Rigorous ElectroMagnetic Simulation (REMS) may be required to
model the object (photomask). The formation of the aerial image inside a film stack at
the image plane may be model either by REMS or by thin-film-stack theory.

4.2. Source and Illumination Optic

The purpose of the illumination optic (sometimes also called the “condenser”) is to direct
light emitted from the source (typically a mercury arc lamp, a laser or perhaps a synchro-
tron) in such a way so as to illuminate the object with the appropriate degree of uniformity
and coherence properties. Illumination optics are usually classified as being either “criti-
cal” or “Kohler”. [16]. With critical illumination, an extended source is imaged onto the

object and thus any nonuniformities in the brightness of the extended source will be trans-
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Figure 4-2. Plane Wave Representation of Imaging System Components

Each component of the imaging system can be visualized as some sort of operation on
plane waves. In this figure, plane waves are represented by arrows indicating their direc-
tions of propagation.

ferred to the illumination of the object. With Kohler illumination however, the field pre-
sented to the object is the Fourier transform of field emitted by the source and so
irregularities in the brightness distribution on the source will not cause irregularities in the
intensity of the illuminating field. For this reason, only Kéhler illumination is further con-

sidered in this thesis.
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With Kéhler illumination, a point on an extended source will image to a plane wave at the
object. Different points on the source will correspond to different plane waves (with dif-
ferent directions of propagation) at the mask. If points on the source are assumed to radiate
independently (i.e. incoherently), then the illuminating plane waves with different angles
of incidence will be incoherent relative to each other. It is also assumed that plane waves
with the same direction of propagation, but with orthogonal polarizations are also mutually

incoherent.

For the imaging system model discussed in this thesis, the source and illumination are
together regarded as source of mutually incoherent plane waves. The set of plane waves
presented to the mask can be visualized in k-space. Four illumination schemes used in
lithography are circular, annular[60], quadrupole and quasar[20] and are illustrated in
Figure 4-3.

4.2.1. Discretization of the Source

In a real imaging system, the source will occupy some continuous region of space and thus
contain an infinite number of radiating points, and therefore present and infinite number of
incoherent plane waves to the object (photomask). In some situations, such as when the
source is circular and uniform, it is possible to perform an integration which accounts for
all plane waves generated by the source (for example the van Cittert-Zernike theorem[17]),
but often it is necessary to numerically evaluate this integral by approximating it with a
summation over a set of “source integration points”. Source discretization involves choos-
ing a finite subset of the plane waves that sufficiently represent the source. An example of
source discretization is illustrated in Figure 4-4 where the set of an infinity of plane waves
is replaced by a finite set of plane waves evenly distributed throughout the illuminated
region of k-space. The number of source integration points necessary can be determined
by requiring the mutual intensity at the image due to continuous and discretized sources to
agree within some pre-determined amount. This problem has been worked out by

Socha[72] for the case of circular illumination where it was determined that:

26NAw)2

T
nyp = Z(Ns . Eq. 4-1.
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(c) Quadrupole (d) Quasar

Figure 4-3. Common Illumination Schemes used in Photolithography

where w is the length of the (assumed square) mask period and N is an oversampling

factor that is typically chosen to be 4.

4.3. The Object

In a semiconductor printing tool (steppers and scanners) or inspection system, the “object”
is a photomask. The mask scatters the incident field into what is called the “scattered” field.
The scattered field could be a “transmitted” field as in the case of printing, or a “reflected”
field as in the case of some types of inspection systems. As discussed in section 4.2, the
source and illumination optic illuminate the object with a mutually incoherent set of plane
waves. By superposition (the linearity of the Maxwell equations), the mask’s effect on the
total incident field can be understood by considering its effect on each individual plane

wave component of the incident field.
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Figure 4-4. Source Discretization

(a) A circular source discretized with a Cartesian distribution of points. (b) A circular
source discretized with a radial distribution of points. (c) An annular source discretized
with a radial distribution of points.

Due to the difficulty in implementing absorbing boundary conditions in the horizontal
directions and the simplicity of implementing periodic boundary conditions, only bi-peri-
odic objects (photomasks) are considered in this thesis. Isolated topographies can be
approximated by using large periods.

If the object is a bi-periodic structure in the x and y directions, the intensity of the scattered
field will also have the same symmetry. The complex field inside the simulation domain
will take the form E(x, y, z) = u(x, y, z)e/ %L+ %L) where u(x, y, z) is a periodic func-
tion with the same periodicity as the simulation domain. (arguments similar to those used

by Bloch[12] for electrons in periodic potentials can be used to arrive at these conclusions.)
Thus the scattered field can be fully described by a finite and discrete set of Fourier com-
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ponents. Those Fourier components that are propagating plane waves (i.e. not evanescent
waves) are sometimes called the “diffracted orders”. The magnitude and phase of each dif-
fracted order in relation to the fnagnitude and phase of the incident plane wave is repre-
sented by a single complex number called the “scattering coefficient”. The set of scattering

coefficients corresponding to the set of diffracted orders will be referred to as “the scatter-

ing coefficients”.

. . A; . .
Scattering coefficients are denoted as SC,, ,,,(w,, ), where w, = [ in, TE|  is the input
- - Ain, TM| E

plane wave with unity electric field magnitude (see Appendix A for plane wave notation).
The finite set of scattering coefficients is indexed by the polarization p € {TE, TM} and
the integers m and n which, for consideration of only the propagating plane waves!, take

on the following values:

L_—kin,x

—1<;k__<l,mel Eq. 4-2.
2nn
T, ~Finy

—1<—y—k—<1,nel, Eq. 4-3.

where L, and Ly are the periods of the bi-periodic mask in the x and y directions respec-

tively.

The propagating component of the scattered field, for a single incident plane wave w;,in

the case of a bi-periodic mask, is thus:

SCrp . (W)

F scaz(w,') = Z TE, mn ~! Eq- 4-4.
-~ ~ Sc

m,n ™, mn(?i)

kscal, mn, i

L. In input plane wave will in general scatter into both propagating plane waves and non-propagating (eva-
nescent plane) waves. Only the propagating plane waves are collected by the projection optic.
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This superposition of plane waves propagates on to the projection optic and subsequently

to the image (wafer).

All the details of the object have capsulated into the scattering coefficients. A detailed

explanation of scattering coefficient calculation is deferred until section 4.7.

4.4. Projection Optic

The role of the projection optic in the imaging system is to direct the plane waves scattered
from the object (photomask) in such as way as to form a scaled image of the object at the
image plane. An ideal projection optic would form a perfect image of the object at the
image plane, but the finite wavelength of the light, and diffraction prevent the projection
optic from perfectly reproducing the object’s pattern.

It is desirable have a mathematical model for the projection optic so that aerial images can

be calculated from the scattered field as described above. A useful model for the projection
optic must account for demagnification (M), numerical aperture (NA4), pupil plane con-
figuration and non-idealities such as aberrations and defocus (d). Fourier optics has pro-
vided a relatively simple and useful mathematical model for the projection optic that can

be expressed as a convolution of the scalar field at the object (U, (u, v) ) with a point spread

function (%(u, v)) that is equal to the Fourier transform of the imaging pupil: (following
Goodman[37])

Uu,v) = h(u,v) ® Uy(u, v) Eq. 4-5.
where
1 u v
U, v) = MUO(M, H) Eq. 4-6.

is the geometrical-optics prediction of the image and
- o]

Fi(u,v) = j jp(xzzi, Az,P)exp[—j2n(u% + vy))didy Eq. 4-7.

-0
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However, these equations assume a scalar theory and operate on fields in the spatial

domain, not on plane waves.

It is not difficult to cast these equations into the required plane wave operator form. For a
given purely TE or purely TM input plane wave there will correspond a single output plane

wave of the same polarization whose k-vector is related to the input plane wave’s k-vector

by the following equations:
kout,x = M kin,x Eq. 4-8.
kout,y = Mkin,y Eq. 4-9.
kout, z - isgn(kin, z) A/kz - kgut,x - kgut,y Eq- 4-10.

where M is the optical demagnification (i.e. M=4 for a 4X reduction system) and the sign

for k is chosen depending on whether the projection optic is a transmission or reflec-

out,z

tion optic.

The amplitude transfer function is closely related to the Fourier transform of the point
spread function (Equation 4-7) and thus equal to a scaled pupil function[18]. This ampli-
tude transfer function is the basis of the plane wave operator. It is augmented by other fac-

tors that account for defocus, aberrations and high NA correction:

hp(koul) =P p(kout, xy)D (kgut, xy)R(kgut, xy)Ap(kout, x? kout, y) Eq’ 4-11.
where the four factors are, in order, i) the pupil function, the defocus function, the radio-
metric correction function and the aberrations function. To accommodate possible differ-

ences with respect to polarization, the pupil function and aberrations function are

subscripted by p the polarization.

Typically, the pupil function is a circular function which admits all plane waves within a

.1, .
radius 7 k-space:

k
Plkouy ) = circ(7om2). Eq. 4-12.
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However, just as different pupils can used be for illumination (see Figure 4-3), different
pupil functions can be used for imaging. For example, in a scheme called “dark-field imag-

ing”, an annular pupil function is used, rather than a circular pupil function.

The image plane defocus factor, D(kgu,, xy) accounts for image (wafer) defocus. In this

definition, the image is assumed to be formed in air and not inside photoresist. D(k2,, xy)

is expressed as[50]:

¢
2 _ _2%‘1(1_ l-kgii"j
D(RZ,, ,,) = e Eq. 4-13.

where d is the amount of defocus.

The radiometric correction factor R(k2, 1, xy) 18 @ consequence of an extension of scalar dif-

fraction theory for imaging in a projection lens where the paraxial approximation is not

made[21]. The radiometric correction factor takes the following form:

2 1/4
1 kout. Xy

~ M22
R(kZys) = |—3—1| Eq. 4-14.

out, x
j LT 4

k2 s

where again, M is the optical reduction of the projection optic.

The final term in the amplitude transfer function accounts for the optical aberrations
-(imperfections in the lens polishing). The aberrations are described as a wavefront devia-

tion that is usually expressed in polar coordinates and by an expansion in the Zernike poly-

nomialsW,(r, o) :

37
k k
Ap(kout,x’ kout,y) = Z Zp,nwn(;;_‘:xz, atan (k_out,_i')) Eq. 4-15.

n=l out,
The function A,(k,,, 1 Ky, ) is subscripted by the polé;'ization p to allow different aber-

rations to be applied to the TE and TM polarizations separately.
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The amplitude transfer function as expressed in Equation 4-11 is a function of k-vector for

the plane wave at the exit pupil. As an operator on plane waves the projection optic can be

J=

h(w) = h([ATE]
T Ay

expressed:

Arghre(ko k) Eq. 4-16.
A4 TMh TM(kx’ ky) Eii

where the output plane wave has the k-vector 7:0,, ‘-

4.5. Film Stack Effects

The imaging system model developed thus far assumes the formation of the aenal image
in air at the image plane. When printing circuitry on a silicon wafer however, lithographers
are more interested in the image intensity inside a thin layer of photoresist on top of a sil-

icon substrate (see Figure 4-5). Especially for high NA imaging systems, there is consid-

Air

BARC

Substrate
Polysilicon)

Figure 4-5. Imaging inside a thin-film stack
The incident plane wave is multiply reflected and transmitted by the layers of the thin-film
stack. The x and y components of the k-vector for all waves remain constant.
erable difference between aerial images formed inside a thin layer of photoresist and those
form in air. This is mainly due to the bending of the waves towards the normal as they enter
the photoresist and the standing wave created by reflection from the bottom surface of the

resist.
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To model the aerial image formation inside the film stack researchers (Flagello[28] and
Yeung[100]) used thin film optics theory to integrate a correction factor into the projection
optic’s amplitude transfer function that could account for the multiple reflections between
layers in the film stack.

Boundary conditions for planar material interfaces force the xy-plane projections of k-vec-
tors for the reflected and transmitted waves to remain constant and thus, for any particular
height, z, the final field will be an infinite sum of plane waves having the same spatial fre-
quency. The theory of thin-film optics[11] can be used to find the thin-film stack multipli-

cation factor /;,(kxy, z) that can be appended to the amplitude transfer function as follows:

~ ATM} ATMhTM( )fTM( xy’

Again, both the TE and TM polarizations are handled separately. Due to the simple multi-
plicative nature of the stack effect factor, it can be combined with the projection optic
amplitude transfer function as illustrated in Figure 4-2.

4.6. The Imaging Equations
The plane wave operator models for the components of the imaging system are now linked

together to produce the complete imaging equations.

First, the aerial image due to a single plane wave (w‘.) from the source is considered. This

single plane wave scatters from the object into the field F sca ,(w ) given by Equation 4-4.

The scattered field is transformed by the projection optic (that may or may not have the

thin-film stack effects incorporated) into the image component

FimgW) = h(F,1(w)). . Eq.4-18.

.m g(w ;) is the field at the image plane (specified as a superposition of plane waves) due

to the single plane wave w, emitted from the source. At this point it is necessary to convert

from a superposition of plane waves notation to an electric field notation. Using the equa-
tions of Appendix A,
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Eimg, i(x,y) =

Re Z e’(_ kimg.nm, i,ax'—kimg.mn.i,yy)Mk h SCTE’ mn(‘:)i)
kY img,mn,i SCTM, mn(Wi) Lmz‘ o

Eq. 4-19.
where M, is a 3 by 2 matrix that transforms from the polarization component basis to the

Cartesian coordinate basis, specified in Appendix A as:

b bk
K, F,,
M, = | & KK Eq. 4-20.
R [ 4 |
xy Xy
k)
B3

The intensity of this electric field, (still due to the single plane wave w; from the source)

is then written as

13 2
Limg, (%, ¥) = §|Eimg,i(x,y)| . Eq. 4-21.

Each plane wave emitted from the source will have a corresponding image. Because
Kohler illumination is assumed, the individual plane waves emitted from the source are
assumed incoherent from one another and therefore the (time averaged) intensities of the

images from the individual source plane waves are added to form the final aerial image:

Iimg(x’y) = Z%IEng» f(x:Y)|2 Eq. 4-22.
i

4.7. Photomask Models and Scattering Coefficient Calculation

Until this point, the object or photomask has been treated as a “black box” that takes an
“incident” plane wave and scatters it into many “scattered” plane waves. The relation
between the magnitudes and phases of the scattered waves and the incident wave are

described by a set of complex numbers called the “scattering coefficients”.
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This section describes how the scattering coefficients are calculated and how the different

calculation techniques form the various photomask models.

4.7.1. Approximating the Scattering Coefficients for a Nearby Plane Wave

The mask model as described by Equation 4-4 requires a knowledge of the scattered plane
waves for each possible incident plane wave. It is often too computationally expensive to
calculate the scattering coefficients for each plane wave emitted from the source and so

some approximations must be made.

Incident plane waves that are near to each other in k-space (direction of propagation) are
likely to scatter in a same way. This is observed by Wong [93] and also in Figure 4-6 which
shows the scattered orders for a typical phase shift mask topography at 0 and 10 degree
incidences. The fact that the scattered order magnitudes hardly change from 0 to 10 degree
incidences suggest that it may not be necessary to calculate scattering coefficients for all
plane waves within some neighborhood in k-space and that scattering coefficients for a
single incident plane wave within that neighborhood could be used to approximate those
throughout the neighborhood. This idea is illustrated in Figure 4-7.

e
(=)

e
("

0 degrees |
B 10 degrees

o
~

© o0
- N W
1

Scat. Coef. Magnitud:

o
L

-7 -6 -5 -4 -3 -2 -1 01 2 3 4
Scattered Relative Order

Figure 4-6. Scattered orders are approximately equal for nearby incident plane waves

The scattering coefficient magnitude is plotted for a 0.18um, 1:1 phase shift mask with
248nm TE-polarized incident plane waves.
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X  Source Integration
Point

Plane wave for
which Scattering
Coefficients are
known

Figure 4-7. Scattering coefficients are known for only a small number of plane waves
incident on the mask

In (a), scattering coefficients are known only for the normally incident TE and TM
plane waves. Scattering coefficients for all other source integration points will be
approximated by these known scattering coefficients. In (b), the scattering coeffi-
cients are know for normally incident TE and TM waves and also for 4 locations
(both TE and TM) on the pupil extremity. Some sort of interpolation scheme must be
used. In (c), 4 additional locations for which scattering coefficients are known are
added, this time they are not inside the illumination pupil, but can still be used to
approximate scattering coefficients for nearby angles of incidence.
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A method for approximating scattering coefficients in a neighborhood surrounding a point

in k-space where scattering coefficients are exactly known is outlined.

Problem:

Given the scattering coefficients, SC, ,,,(w R for a single incident “reference”

plane wave w_ ;= Arey, 15 (either calculated using TEMPEST or by some
- ref, TM|E,.,

other means), approximate the scattering coefficients for a nearby incident plane

wave w = ATE .
~ Ay

Solution:

First, it must be understood that the given set of scattering coefficients only con-
tains information about how the reference plane wave scatters. It contains no infor-
mation whatsoever regarding how the plane wave with the same direction of
propagation, but with opposite polarization scatters. For example, if a TEMPEST
simulation is run with a reference plane wave that is normally incident and x-polar-
ized, no information is obtained regarding how a normally incident y-polarized

plane wave scatters.

Keeping the abovementioned fact in mind, the first step in estimating the scattering
coefficients for the input plane wave w is to determine what component of this
input plane wave has the same polarization as the reference plane wave. This is
" done by translating the input plane wave’s direction of propagation to the direction
of propagation of the reference plane wave. (See Appendix C for plane wave trans-

lation). The translated wave is

w, = Avrs| translate(w, I?e}) Eq. 4-23.
S L X Y -
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The magnitude of the projection of this translated plane wave onto the reference

wave is taken:

w,ew
¢ = 2= Eq. 4-24.

c, is a complex number that represents the “projection” of the input wave onto the

reference wave. It’s magnitude represents how much information the known set of
scattering coefficients contains regarding how the input wave w scatters. This can

be better understood by considering the following example:

Example

Assume that scattering coefficients are known for the wave w = H (nor-
0,0

mally incident TE wave that has electric field in the y-direction). Consider the fol-

lowing five cases (see Figure 4-8) for the input wave w:

ky

Figure 4-8. Five different cases for the input plane wave w
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~

Case l: w = H . A normally incident TE wave, the same as the reference
(0,0)

0

wave. |c| = 1 meaning the known scattering coefficients contain all information
how this wave scatters.

Case2:w = H . A normally incident TM wave. |c| = 0 meaning the known
1
(0,0) ‘

scattering coefficients contain no information about how this wave scatters.

Case3:w = H . A TM plane wave obliquely incident from the +x direction.
1
(%,0)

lc] = 0 meaning the known scattering coefficients contain no information about

how this wave scatters.

~

Case4: w = H . A TE plane wave obliquely incident from the +x direction.
(%,0)

lc] = 1 meaning the known scattering coefficients contain all information about

how this wave scatters.

-~

Case5:w = H . A TE plane wave obliquely incident from a direction that is
(9] '

. 1 . .
not on one of the Cartesian axes. |c| = J; which means that the known scattering

coefficients contain some information about how this wave scatters. The remainder
of the information about how this wave scatters would be contained in the set of

scattering coefficients for normally incident TM wave.

(End of Example)

The approximation for the (+m,+n)th scattered order for w is made from the

(+m,+n)th scattered order for the reference wave w,, The (known) (+m,+n)th

ef
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scattered order for the reference wave is denoted by w and is expressed

~

ref, scat,mn

as]

s CTE, mn(lfref) Eq. 4-25.

w = .
_ref,scat,mn 2rm Znn)

SCTM’ mn(‘:’ref) (kref.x + —Lx—’ kreﬁy + L_y

The approximated (+m,+n)th scattered order for w is then set to be the translation

of w to the appropriate k-space location with the added projection factor

_ref,scat, mn

c:

SCrg, ma(W)
2nm 2ntn

w = ~
scat, mn £nn
- SCTM, mn(w) (ka + Lx ’ wky + Ly

21tm 27n

= c-translate(t:vreﬂscat’mn, (kx+ I ,ky+ T ))
y Eq. 4-26.

The approximated scattering coefficients SC, ,,, are defined implicitly by

Equation 4-26.
(End of Solution)

In the above development, a formula for approximating scattering coefficients for a general
incident wave with a single known set of scattering coefficients was derived. Now, the
question as to how can an approximation be made when multiple sets of scattering coeffi-

cients are known for various incident waves is addressed.

Let the set of ordered pairs K = (k, ,

k, 4),indexed by the integer g, be the locations in
k-space of the plane waves for which scattering coefficients are known. Let the set of plane

waves w g€ {TE, TM} be the TE and TM plane waves corresponding to the ordered

. Sim, p,
pairs in K. (i.e. for each ordered pair there is a corresponding TE and TM plane wave for

which the scattering coefficients are known.) The known scattered waves are then

1. Itis noted that the scattered wave, in general, will not have the same polarization as the incident wave.
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SCTE, mn(‘gsim' 7 q)
SCTM, mn(‘f

= Eq. 4-27.

w .
~ sim, pq, scat, mn )
Sim’ p’ q z!(dl. mn

The (-i-m,+n)th scattered wave for incident wave w; can be approximated from a particular

plane wave of the set w_. p,q USING Equation 4-26:

t N ]

w - SCTE, mn(‘f,‘)
~scat,pg,mn 2nm 2nn
SCrt, mn(w))| (et T kst )
2nm 27n
=Cpye translate(‘y_ﬂ.m’ P4, scat, mn’ (kx' i+ _Lx kit T ))
Y Eq. 4-28.

This approximation is made for each wave for which the scattering coefficients are known

(i.e. for each p and q). Finally, a weighted average is performed over all the known sets of

scattering coefficients (i.e. over p and q) to give the (+m,+n)¥ scattered wave for the input

wave Wi .

1
Wscat,mn = lezzwpq‘fscal, pq, mn Eg. 4-29.
q p

where the weighting coefficients are w, and the total weight:

Wi = 35 W, Eq. 4-30.
q9 p

The idea behind the weightings is that for a particular input wave, the approximation made
from scattering coefficients derived from waves close to the input wave will be made more
important (receive a higher weighting) than scattering coefficients derived from waves far-
ther away for the input wave. This is illustrated in Figure 4-9. The details of the weighting

assignment will be discussed in a later section.

4.7.2. Mask Models
Just as photomasks in lithography have various degrees of complexity, so do photomask

models. Simple photomasks, typically have simple models, while more complicated pho-
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Figure 4-9. Assigning Weightings to the Sets of Scattering Coefficients

Scattering coefficients derived from plane waves close to the input plane wave are
weighted more heavily.

tomasks, such as phase shift masks must use more complicated models. Three mask

models will be introduced. These mask models differ from each other in two ways:

i) the number and location in k-space of plane waves for which scattering coefficients are

calculated
it) the method used to calculate these scattering coefficients
Alternatively, the photomask models can be classified using the following three criteria:

i) Whether rigorous electromagnetic simulation is necessary to calculate the scattering
coefficients (whether the mask is “thick” or “thin”)

i) whether polarization is important (i.e. there is coupling between the scalar field compo-
nents and/or differently polarized plane waves with the same direction scatter differently
from the mask.)

iii) whether the scattering coefficients depend on the angle of incidence
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4.7.2.1. Thin, scalar, constant scattering coefficient model
The most simple model for the mask, takes the mathematical form of a simple scalar trans-
mission function that has a direct and simple relationship with the pattern of chrome and

glass on the photomask:

E,u(x, ¥, zobj) = 1(x, WE;(x,y, zobj) Egq. 4-31.

E,, is the scalar electric field just before scattering from the mask, while E _ , is scalar

out
electric field after scattering from the mask. Consider a typical chrome on glass binary
mask, if the chrome is thin (in relation to the wavelength of light), and if the pattern has
features with large horizontal dimensions (in relation to the wavelength), then edge effects
(diffraction) are insignificant and the transmission function model and Kirchhoff boundary
conditions[36] can be used. The transmission through the regions where there is no chrome
is assumed to be perfect, while the transmission in the regions where there is chrome can
be considered as zero. Thus, for a thin mask, where the horizontal dimensions of the mask
pattern features are large, the scattering by the mask can be modeled by a simple transmis-
sion function and furthermore, the transmission function is simply the chrome pattern (i.e.
the transmission is zero where there is chrome and unity where there is no chrome). This

concept is illustrated in. Figure 4-10(a).

This simple transmission function model can also be applied to more complicated masks,
such as alternating and attenuating phase shifting masks. Figure 4-10(b) shows how the
complex transmission function can model the 180 degree phase shifted line on an alternat-

ing phase shifting mask.

The mask model framework requires the scattering coefficients for particular input plane
waves. Equation 4-31 will be used to determine scattering coefficients for the normally

incident TE and TM waves. Consider the two-dimensional Fourier transform of

Equation 4-31, assuming that #(x, y) is a periodic function in x and y and using a plane

wave input (E,,,(x, ¥, Z,p,) = A,/ * 7+ ko) y with spatial frequency (k,, )
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Figure 4-10. Modeling Chrome-on-Glass and Alternating Phase Shift Masks with the Thi
Scalar, C.S.C.A. Model

a) A simple chrome-on-glass mask has no phase shifters. The transmission function is a real
binary function. b) A phase shifting mask has a complex transmission function that can have
more than two values (0, 1 and -1 in this case).
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2nm 27n
E, (k. ky, zobj) = Z tm,,S(kx -k - —-) ® A4;,0(k,~k,y, k,— kyl)

m,n Lx g Lx Py
2nm 27tn

= 43,3 (=)~ 222, (k= ) - 220)
m,n X x

Eq. 4-32.

The scattered field is seen to be a summation of plane waves with ¢, as the coefficients.
(a delta function in k-space is a plane wave). These ¢,,, coefficients are directly related to

the scattering coefficients, but before calculating the scattering coefficients from the ¢,,,,

an important point concerning polarization must be discussed.

Equation 4-31 is a scalar equation. It can not be applied to all three electric field compo-
nents since the three electric field components are not independent (see Appendix A). The
scattering coefficients, on the other hand, apply to polarized plane waves where all three
components of the electric field are known. A method is needed to apply the scalar infor-
mation contained in Equation 4-31 to the calculation of the scattering coefficients. This
mask model requires scattering coefficients for two plane waves (the normally incident TE
and the normally incident TM). The normally incident TE wave has the electric field polar-
ized completely in the y-direction, while the normally incident TM wave has the electric
filed polarized completely in the x-direction (by convention). Equation 4-31 will therefore
be applied twice - once to the y-component for the TE wave and a second time to the x-

component for the TM wave.

For the normally incident TE wave:
Ex, in(x’ Vs zobj) =0
Ey’ in(x,y, zobj) = 1

Bz m(® 2 2op) = 0 Eq. 4-33.
And the scattered waves are calculated by applying Equation 4-31 to the x and y compo-
nents of the electric field.

Ex, out(x’ 3 zobj) =0 Eq. 4-34.
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Ey, out(%> Vs zobj) t(x,y)E v m(x: Ys zobj) Eq. 4-35.
and from Equation 4-32,

Egpn=0 Eq. 4-36.
Eymn =t n Eq. 4-37.

Knowing the x and y components of the electric field for a plane wave, the equations of

Appendix A can be used to convert the plane wave to its polar form:

4 B
_TE = [Al] . _x,mn
‘fTM km lj‘y, mn

-], |

= Lmn M1, H Eq. 4-38.

And thus the scattering coefficients for the normally incident TE wave are written:

_1_
SCTE, mn( J
- \[O,0

SCTM, mn( ! J
190,07

0] Eq. 4-39.

Similarly, the scattering coefficients for the normally incident TM wave are written:

SCTE, mn[ 0 J
U, 07| _ - [
-m,—n
SCTM,mn( 0 J
L,o0

] Eq. 4-40.

This mask model is a scalar mask model (as opposed to a “vector” model) because no cou-

pling between cartesian components of the electric fields is introduced by Equation 4-31.
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The TE and the TM waves scatter in the same way as evidenced by Equation 4-39 and
Equation 4-40. Furthermore, Equation 4-31 also implies that the scattering coefficients
remain the same for different plane waves. To see this consider the two-dimensional spatial

Fourier transform of Equation 4-31 given in Equation 4-32. The scattered field is a sum-

mation of plane waves with 7, ,, as the coefficients and therefore ¢,,, are also the scattering
coefficients. Clearly, for different input plane waves (different &, and kyl ), the scattered

field remains a summation of plane waves with 1., as the coefficients and thus Equation 4-

31 implies constant scattering coefficients. The effect of changing the input plane wave is

to simply shift the positions of the scattered plane waves in k-space.

Because this mask model assumes constant scattering coefficients, there is no need to use
Equation 4-31 to calculate scattering coefficients for any other plane waves - no more
information will be obtained. Thus, this model knows the scattering coefficients for two
plane waves, the normally incident TE and TM plane waves, a situation illustrated in
Figure 4-7 (a) and scattering coefficients for all other incident plane waves are approxi-
mated using Equation 4-28 with p € {TE, TM} and g indexing over only a single value

(corresponding to (k,, ky) = (0, 0)), and a the weightings Wpg = 1.

This mask model is essentially the same as that used by the Hopkins’ formulation of imag-
ing[41][42]. The Kirchhoff boundary conditions[36] are used and a simple transmission
function with a transmission pattern identical to the chrome pattern is assumed and used
for both the TE and TM waves. The model is scalar in that no coupling between field com-

ponents is assumed.

4.7.2.2. Thick, vector, constant scattering coefficient model

The thin, scalar, constant scattering coefficient model described above is accurate so long
as the actual mask transmission function is well approximated by the ideal uniform trans-
mission function as shown in Figure 4-10. This approximation is good so long as the aspect
ratios (feature height/feature width) of the mask features are small. Feature aspect ratio

increases as the horizontal dimensions of the feature get smaller (the C.D. of the feature
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shrinks) and/or as the heights of the features (in the vertical or z-direction) grows. Phase
shifting masks have features with higher aspect ratios than do simple chrome on glass
masks. As feature aspect ratio increases, scattering from the feature edges and comers,
which is neglected by the previous mask model, becomes important and can no longer be

neglected. Figure 4-11 shows how the rigorously calculated transmission of the mask dif-

Mask Transmission Magnitude for Various Pitches
(1:1 Line/Space, 4X Phase Shift Mask, lambda=193nm)

14 4 Ideal Transmission
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Figure 4-11. Mask transmission magnitude for various C.D.’s.
The thin mask approximation breaks down as the mask horizontal dimensions shrink,
especially for the phase shifted line. Note how the transmission for the 0.50um C.D.

case closely resembles that of the thin mask (ideal transmission), while the transmis-
sion for the 0.10um C.D. pattern is quite different from the ideal transmission.
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fers from the ideal transmission by comparing the magnitude of the electric field just below

the mask with the ideal mask transmission assumed in the thin mask approximation.

As Figure 4-11 suggests, a more complicated transmission function must be used to cap-
ture the edge effects not considered in the thin mask model. This model, the “Thick, scalar,
constant scattering coefficient model” is similar to the “Thin, scalar, constant scattering
coefficient model” except that TEMPEST is used to calculate that transmission function
(and thus the scattering coefficients) rather than just assuming a simple perfect transmis-

sion function as in Figure 4-10.

The thin, scalar model in the previous section is also lacking in other important respects -
it does not account for scattering from one electric field polarization direction into another
(Figure 4-12), nor for differences in how differently polarized waves scatter. Figure 4-13
shows how a small phase shifted contact hole can scatter light with one polarization into
other polarizations. The incident field is completely polarized in the y-direction while the
output filed has electric field components in the x and z directions. Note that most of the
energy remains in the y-component, but considerable energy is scattered into the other

components.

To account for polarization effects, scattering coefficients are calculated for both polariza-
tions at normal incidence which is in contrast to the previous model where the same trans-

mission function (set of scattering coefficients) is used for both polarizations.

Extracting a transmission function from a rigorous electromagnetic simulation has several
mathematical steps. First, the mask topography is programmed into TEMPEST, and the
scattering of a single, purely TE or purely TM wave, originating from the “excitation
plane”, is simulated. The scattered electric field is observed at the “observation plane” and
is subsequently decomposed into plane wave components via the method of Appendik B.
Both the excited plane wave and the scattered plane waves are propagated to the “object
plane”. The “object plane” is, conceptually, a plane where a fictitious “eQuivalent thin
mask” resides. This “equivalent thin mask” has a transmission function equivalent to the
scattering effect of the real (thick) mask. See Figure 4-14 for an illustration of the various

planes involved. The mathematical details now follow.
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Figure 4-12. K-Space representation of Mask Scattering

(a) The mask is viewed as a 2D grating scattering
an input plane wave into many output plane waves.
(b) The input plane wave is shown in k-space in the
Cartesian component form (see Appendix for k-
space representations of plane waves). (c) The set
of output plane waves for a scalar mask model does
not contain plane waves with polarizations other
than that of the input plane wave (i.e. no scattering
between polarizations). (d) The scattered plane
waves for a polarized mask can be represented in k-
space using the Cartesian component form (fig. (e))
or using the Polar component form (fig. (f)).
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Figure 4-13. Polarization Scattering by a Three Dimensional Topography

(a) The scattering topography is a 100nm, 180 degree phase shifted contact. The
incident plane wave is from above with the electric field polarized in the y-direction
(b) Most of the energy remains in the y-component of the electric field, but some
scatters into the z and x components as shown in figures (c) and (d).

The excited (or “incident”) plane wave w_. originates at the excitation plane. It is typi-

cally either a purely TE or purely TM wave. i.e.

o = |Agm ) O o = 0 Eq. 4-41.

sim (ane 27n, m 4 (Zwmo 21‘[?10)
Ly ™1y sim|\"L_ "L

The electric field is observed at the observation plane. This is the scattered field and is

Yy

decomposed into a set of propagating plane wave components (see Appendix B):
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Figure 4-14. The Excitation, Observation and Object Planes used in the
Calculation of the Mask Transmission Function

The incident field is excited, unidirectionally downward from the “excitation
plane” (z = z,,.). The complex electric field is observed at the “observation
plane” (z = z,,, ), and the scattering coefficients are calculated for a “equivalent
thin mask” which exists at the “object plane” (z = z,,,).

j (szrex. xAx + 2: n’_ ex, yAy)
ATE mn = -1|e * ¢ Ex[—m: -n]
A, = Axdy[p]; - Eq. 4-42.
4 M, mn k.mu mn " j(.zzt_mr‘y.xAx * zl.ﬂrty'yAy)
e ™ 4 {'Iy[—-m, —n]_
2n(my+m) 2n(n,+n
where I\c,,,,, = ( ( LO ), ( l? )) is the direction of propagation of the (+m,+n)th
x y

scattered order. The plane wave coefficients éTE’ mn» and ’fTM, mn»> DOWeEVer, are not the

scattering coefficients for the equivalent thin mask residing at the “object plane” because
they have the wrong phase relationship with the input wave w_. . Once the differences in

location of the three planes are compensated for by propagating the waves to the object

plane (see Figure 4-15), the scattering coefficients for w , ~are yielded:
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Eq. 4-43.

is the z-component of the k-vector for the scattered orders and £, is

where k sim, z

scat,mn, z

the z-component of the k-vector for the input wave w_, .

Figure 4-15. Generating an Equivalent Thin Mask

The plane wave at the excitation plane must be forward propagated to the object
plane and the plane waves at the observation plane must be backward propagated to
the object plane in order to obtain the scattering coefficients for the equivalent thin
mask located at the object plane.

Like the previous model, the scattering coefficients are known only for the normally inci-

dent TE and TM waves. Scattering coefficients for all other incident plane waves are
approximated using Equation 4-28 with p € {TE, TM} and g indexing over only a single
value (corresponding to (k,, ky) = (0, 0)), and with the weightings Wpg = 1.

For lithographers, the differences between the thin and thick models is best quantified by
observing and comparing aerial images. Figure 4-16 and Figure 4-17 graph the difference
in measured line width (CD) for a single, isolated mask feature with 193nm lithography.
Figure 4-16 indicates that the accuracy of the thin mask approximation begins to degrade
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Figure 4-16. Thin mask Approximation Error vs. Feature Size for Simple Chrome on
Glass line with 193nm Lithography

As the width of the opening in the chrome shrinks, scattering from the edges becomes
more significant in proportion to the energy that transmits through the opening.

for C.D. less than 0.15um. Figure 4-17 indicates that for phase shifting masks, the situation

is even worse because of the higher aspect ratio of the phase shifted features.

Figure 4-18 shows how aerial images for a typical alternating phase shift mask topography

differ when calculated with thin, scalar and the thick, vector models. Clearly rigorous elec-

tromagnetic simulation is required for alternating phase shift mask topographies.
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Dependence on Phase Well Depth
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Figure 4-17. Thin mask Approximation Error vs. Phase Well Depth for 0.15um lines with
193nm lithography

As the depth of the phase shifter deepens, the accuracy of the perfect transmission model
degrades. Phase shifters must be modeled rigorously.

4.7.2.3. Thick, vector non-constant scattering coefficient model

The final level of mask model complgxity involves removing the assumption of constant
scattering coefficients. This model, like the previous model, uses rigorous electromagnetic
simulation to calculate scattering coefficients for certain plane waves. But, in this model,
scattering coefficients are calculated for plane wave other than normally incident.
Figure 4-7 (b) and (c) are two examples of different distributions of plane waves at multi-
ple angles for which scattering coefficients are calculated with TEMPEST.
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Figure 4-18. Aerial Image Intensity for Alt. PSM at Various CD’s

The simulation parameters used: (1:1 Line/Space, 4X PSM, A=193nm, NA=0.75,
0=0.35). Dramatic differences between the thin, scalar, mask model and the thick vector
model are observed for features smaller than 0.25um. The unshifted line is on the left

and the shifted line is on the right.

The more the scattering coefficients vary across the illumination pupil, the more plane
waves must be simulated with TEMPEST. As part of work toward this dissertation, Pistor
et al. investigate these effects in [68] where they define a quantity called the “shadow ratio”
that indicates how dependent a feature’s scattering coefficients might be on the angle of
incidence (see Figure 4-19). The shadow ratio is clearly a function of both the photomask
and the imaging system. Table 4-1 presents the shadow ratios for various photomasks and
imaging systems. One expects situations where the shadow ratio is high, such as the dual-
trench phase-shift mask and inspection systems with high-c, 1X optics to exhibit non-con-

stant scattering coefficient behavior.
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Figure 4-19. Defining the “Shadow Ratio”

The “Shadow Ratio” is the product of the aspect ratio and the sine of the angle of inci-
dence. It is numerically equivalent to the fraction of the feature width which is in
shadow. Its value represents the overall susceptibility to oblique incidence effects.

6.0 Feature Aspect Shadow
System Retlc]e NA c air glass Height/Width Ratlo Ratlo
(SR.)
193nm binary with 063 |08 7.2,4.8 120/400 0.30 0.038
OPC
193nm alternating 063 (05 4.53.0 313/400 0.78 0.061
PSM
193nm Dual Trench 085 (055 [6.74.5 410/400 1.03 0.120
PSM (90/270)
248nm attenuating 063 |08 .[7.24.8 284/560 0.51 0.064
PSM (MoSi)
18%
EUV Binary with A1 {0.25 [0.6 2.1 100/200 0.5 0.018
absorber
Inspection alternating 0.6 1.0 58,34 313/400 0.78 0.468
(1X) PSM

Table 4-1. The Shadow Ratios for Various Systems
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It is seen in Figure 4-20 that the scattering coefficients become dependent on the angle of

incidence once a feature’s aspect ratio gets high. When this happens the previous mask

models begin to break down.

Average % Change in Scattering Coefficient Magnitude vs Feature Width
(0° and 10° TE incidences, Unshifted Line @ 193nm)
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Figure 4-20. Scattering Coefficient Dependence on Feature Size

In (a), the width of a chrome opening is varied and the average percentage change in scat-
tering coefficient magnitude (averaged over the -2, -1, 0, +1 and +2 orders) is calculated,
while in (b) the same calculation is made for a 100nm wide (wafer dimension) line having
different phase shifts. The scattering coefficients are seen to become dependent on angle
of incidence as the feature aspect ratio becormes higher.

The same equations used in the previous mask model (Equation 4-42 and Equation 4-43)

are used to extract the scattering coefficients from the electric field output by TEMPEST
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and the weighted average interpolation scheme (Equation 4-28, Equation 4-29 and

Equation 4-30) is used to approximate scattering coefficients for plane waves not simu-

lated using TEMPEST.

One possible choice for the interpolation scheme would be to have the weights propor-

tional to the inverse power of the k-space distance between the w; and W sim, pg WaVES.
1
wi = o a qu 4’44.
k= Ksim, rq

Choosing oo = 0 would weigh all scattering coefficients equally, regardless of their loca-
tion in k-space, while o = « would yield a zero weight for all scattering coefficients
except the closest set. Finally, choosing 1 < a < o0 yields a weighting where the scattering

coefficients with reference waves close the input wave are weighted strongly, and scatter-

ing coefficients with reference waves far from the input wave are weighted weakly.

Figure 4-21 shows an example of this sort of interpolation for various values of o .

0.5 1

Scattering Coefficient

a=90
o =1
a=2
. a=3
-8 -6 -4 -2 0 2 4 6 8
Order (m)

Figure 4-21. Inverse Power Law Weightings for Scattering Coefficient Interpolation

The different values for a yield different types of interpolated scattering coefficient
values. An o values between 1 and 3 seems to be a reasonable choice.

Another interpolation scheme, called Planar Segment Linear Interpolation, sets the wei ghts

of all points to zero except for the closest three to the input wave. A plane is constructed
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with the three vertices and used for interpolation. This interpolation scheme is illustrated

in Figure 4-22.

Figure 4-22. Planar Segment Linear Interpolation

Scattering coefficients are known at five points in k-space. Planar segments are cre-
ated for each group of three neighboring k-space point for the purpose of interpola-
tion. Planar segments could be extended for points outside of the triangle formed by
the planar segment’s projection onto the k -k, plane.

Other interpolations schemes, such as low-order polynomial fitting may also be appropri-

ate. The choice of which scheme to use really depends on how the scattering coefficients

vary in k-space.

4.7.3. Choosing the Appropriate Mask Model

The choice of mask model for a particular mask depends on the mask topography and the
behavior of the scattering coefficients for input waves across the illumination pupil. The
thin mask approximation has been used extensively for simple binary (chrome-on-glass)
masks where the relatively thin chrome (80nm to 200nm thick) and wide features (400nm
and wider) make the feature aspect ratio small and 4X reduction optics limit plane wave
angle of incidence to less than 15 degreesl. The transmission function used by the thin
mask model is a binary function (zero or one) and corresponds to the pattern of chrome on

the mask.

1. The numerical aperture of the collection optics, as seen by the mask is N4 /M, and for 4X reduction
optics, a numerical aperture of N4 = 1.0 and a partial coherence factor and ¢ = 1.0, the maximum angle of
incidence to the mask is approximately 15 degrees.
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OPC features (serifs and scatter bars), however, may have much smaller widths and intro-
duce coupling between the electric field components. Adam has studied the limits of the
thin mask model for OPC features[5] and found that rigorous simulation was necessary to

accurately predict the performance of the smallest features.

It is clear that the thin mask model is not sufficient for phase shift masks which are inher-
ently not “thin”. Wong[94] was the first to point out the lack of intensity balance between
etched and unetched openings. This intensity imbalance is a direct result of the mask ver-
tical topography and must be modeled with rigorous electromagnetic simulation. This does
not, however, imply that scattering coefficients are a strong function of angle of incidence.
Pistor[68] showed that scattering coefficients remain relatively constant for typical phase

shift masks in printing situations.

Masks inspection systems, however, illuminate the mask with a much wider angular spec-
trum. One commonly used technique for inspection, scanning beam microscopy, for exam-
ple, scans a focused beam across a wafer. The focused beam is made small in order to
achieve a high resolution and thus contains very highly oblique plane waves - perhaps as
high as 50 or 60 degrees. There can be no doubt that scattering coefficients will vary for
incident waves at opposite extremes of the illumination pupil. Slmulatmg only the nor-

mally incident TE and TM waves will not be sufficient.

A summary of the three mask models is given in Table 4-2..

4.8. Discussion

An imaging system is modeled as a collection of components that operate on plane waves.
The source and illumination optic are considered as a source of mutually incoherent plane
waves with different polarizations and angles of incidence. The object, typically a photo-
mask in lithography, scatters an incident plane wave into many plane waves. The projec-
tion optic takes a single plane wave as input and produces a single output plane wave with
the same polarization and accounts for the imaging pupil, aberrations, defocus, and optical
magnification. Finally, the film stack at the image plane can be incorporated into the pro-

jection optic as a correction factor.
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Approximation | Comment Situations

Thin Mask -completely defined by complex transmis- | -binary masks
sion function - -binary masks with OPC
-constant scattering coefficients -EUV (no defects multilayer mirror
-scalar theory (one field component) defects)

Thick Polar Mask | -need two REMS (same angle of incidence, | -Phase Shift Masks
but different polarizations) -Advanced OPC
-constant scattering coefficients (w.rt. AOL | EUV with defects (both pattern and
but not w.r.t. polarization) mulu'layer mirror)
-vector theory _

General 3D Mask | -need multiple REMS at different angles apd | -Advanced PSM (such as dual
polarizations trench with ultra-small features,
-non-constant scattering coefficients high NA&sigma)

-Inspection (1X) Systems

-vector theory
-Wild schemes (such as dark field

imaging, o>1)

Table 4-2. Summary of Photomask Simulation Models

The imaging equations presented in this chapter take the vector nature of light fully into
account and can accommodate various mask model complexities ranging from simple
transmission function to complicated non-constant scattering coefficient models where
information from the rigorous simulation of the scattering of several plane waves at differ-

ent polarizations and angles of incidence is used together to model the mask.
<

s

With regards to efficiency, Hopkins’ equations have the advantage that once the transmis-
sion cross coefficients are calculated, they need not be recalculated for different mask
topographies. However, they must be recalculated for different imaging situations, such as
through-focus. The equations presented in this chapter offer no efficiencies for different
mask topographies, but do offer efficiencies for different imaging systems since once scat-
tering coefficients are approximated for one mask topography, they can be can be used

over and over again for different projection optic and film stack conditions.

The object or photomask is considered as a “black-box” that takes a single plane wave as
input and outputs several plane waves that are related to the input plane wave by the scat-
tering coefficients. Three mask models are presented, éach differing from the other by how
the scattering coefficients are calculated, and how many sets of scattering coefficients are

calculated for different plane waves within the illumination pupil.
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Simulation of Extreme Ultraviolet
Lithography

5.1. Introduction

The smallest feature that can be printed on a wafer is directly related to the wavelength of

light used by the lithographic imaging system. A formula often used by lithographers

expresses minimum “Critical Dimension” (CD) or feature width as:

Equation 5-1. CD = K, L3
NA _

Present day state-of-the art lithographic imaging systems use light emitted from a ArF laser

with a wavelength of 193nm (Deep Ultraviolet or DUV) and have numerical apertures

approaching 0.8. The use of advanced imaging techniques (phase shift masks, annular illu-

mination, top-surface-imaging etc.) push the K factor down to 0.3 to 0.4. This means that

the smallest features that can be printed with 193nm lithography will be in the 80nm to
100nm range. To print smaller features, with smaller pitches, a smaller wavelength of light

must be used.

The choice of wavelengths smaller than 193nm is far from an arbitrary choice. A suitable
source, optical imaging system, and resist must exist. One wavelength for which all these
requirements are met is 13.4nm and corresponds to a light that is on the border between
ultraviolet and x-ray radiation. This region of the electromagnetic spectrum is called
Extreme Ultraviolet (or EUV) or soft-x-ray. Lithography performed with EUV light is
called Extreme Ultraviolet Lithography (EUVL) [9][82][77].

At EUV wavelengths, all materials are highly absorbing and have optical indices of refrac-

tion (n) very close to unity [7] meaning that refractive optics would be impractical (due to
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the lack of light-refracting power). An alternative to refractive optics is reflective optics
which implies the use of curved mirrors to reflect the EUV light. Again, due to the near
unity refractive index of all materials at EUV wavelengths, a single material interface will
not provide significant reflectivity. However, small reflections from many material inter-
faces could be made to add together to form a large reflection. This is the principle behind

the multilayer mirror.

A multilayer mirror is a thin film stack of alternating layers of two different materials. The
bilayer thickness is carefully chosen so that reflections from the layers add in phase.[8]
With careful control of the deposition processes, multilayer mirrors made from alternating
layers of Silicon and Molybdenum that yield power reflectivities in the 70% range have
been built[54] for use in EUVL.

An extremely simplified model of an EUVL optical system is shown in Figure 5-1. The
light emitted by the EUV source is collected by the collection optic (a curved multilayer
mirror) and is incident onto the mask. The mask (Figure 5-2) is a multilayer mirror pat-
terned with an absorbing material, such as chromium. The chromium absorber will absorb
the incident EUV light with very little reflection while the uncovered areas of the multi-
layer mirror will reflect light. A projection optic collects the reflected light and forms an

image of the mask at the wafer.

Simulation plays a critical role in the development of EUVL for several reasons - the pri-
mary one being the nonexistence of hardware. Very few experimental results are available
and those that are available are expensive to obtain. Simulation provides guidance to the
designers of the hardware by pointing out trends and dependencies. Mask designers need
to know how important parameters such as feature dimensions and multilayer mirror
defects are, while system désigners need to understand the effects of parameters such as
off-axis incidence, partial coherence and defocus. Simulation also provides results with a
much higher degree of measurability. Simulation will continue to be a valuable tool even

once hardware exists and experimental results are achievable.

Extreme Ultraviolet Lithography (EUVL) presents several challenges for rigorous electro-

magnetic simulation. The single most important hurdle to overcome is the memory require-
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Figure 5-1. Simple Model For an Extreme Ultraviolet Lithography System
The source and condenser optic illuminate the mask with off-axis light. The light

reflected from the mask is collected by the imaging optic and is directed to the wafer
where the pattern at the mask is reproduced.

z Chromium Absorber

Multilayer Mirror

Figure 5-2. An EUVL mask

An EUVL mask is a multilayer mirror (typically 80 quarter-wavelength layers of
alternating Si and Mo) that is patterned with an absorbing material (typically
chromium). The chromium must be thick enough to attenuate the incident light in
order for sufficient contrast to exist in the reflected field.
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ment for EUV mask simulation. Because the mask feature size is so much larger than the
wavelength (typically 13.4nm), very large simulation domains are required. Table 5-1

compares the feature size and memory required by TEMPEST for various wavelengths

used in lithography.
Table 5-1. Wavelengths Features and Memory Required for Simulation for Various
Photolithographies
Wave- Feature Width at Feature- Feature Height at Mask  Simulation
length Mask (4X) To-Wave- Domain Size for
length 4X mask (2 by 2
Ratio contact holes)
248nm  180nmx4=720nm 2.9 Chrome + Phase Well=  (using 22.5 cells/A)
100nm-+248nm=348nm 65 MByteS
(1.41)
193nm  130omx4=520nm 2.7 Chrome + Phase Well=  (using 22.5 cells/A)
100nm + 193nm = 61 MBYteS
293nm (1.5 1)
134nm 100mmx4=400om 30 40 bilayer Mirror + (using 20 cells/A)
100nm Absorber = 95000 MByte
368nm (27 A)

Clearly, three dimensional simulation of EUVL photomasks is impractical with present
day computer technology - unless new mathematical models are used to somehow reduce

the amount of memory required.

In this thesis the use of parallel processing and the Fourier Boundary Condition (FBC)
(Chapter 2) are used to overcome the computational barriers imposed by EUVL. Simula-
tion work is divided into two categories: mask feature simulation and multilayer mirror
defect simulation. Simulations presented in section 5.2 use the FBC in place of a perfect
multilayer mirror to save memory. Effects of angle of incidence, absorber thickness, side-
wall angle and corner rounding are investigated. Section 5.3 discusses how defects in the

multilayer mirror structure are simulated for the purpose of assessing their printability.

5.2. Mask Feature Simulations

The EUV multilayer mirror is difficult to simulate with the finite-difference time-domain
approach. The very thin (approximately 1/4 A) layers are difficult to discretize, the very
small reflection coefficients of materials at EUV wavelengths are difficult to reproduce

numerically, the many layers (typically 40 bilayers) require large amounts of memory to
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be stored, the multiple reflections between layers cause the time to simulate to increase and

last, but not least, there is the task of entering the multilayer mirror structure into the sim-

ulator input file.

Nguyen et al.[57] were the first to use TEMPEST to investigate (two-dimensional)
absorber topography effects in EUVL. Bollepalli et al.[13] used a technique that stores the
complex electric field at each layer and tracks the multiple reflections throughout the stack
to investigate angle of incidence effects. Recently Schiavone et al.[69] have used rigorous

coupled wave analysis (RCWA) to investigate the influence of absorber properties.

In this section, the Fourier Boundary Condition (FBC) (Chapter 2) is used to model the
defect-free multilayer mirror used in the EUV photomask. This saves a tremendous amount
of memory and simulation time because the entire mirror structure doesn’t have to be pro-
grammed into the simulation domain. The mirror used for all feature simulations was a 40

bilayer Si/Mo mirror with reflection coefficients plotted in Figure 5-3.

Table 5-2 lists the optical properties of several materials commonly used in EUVL masks.

Table 5-2. Complex Index of Refraction for Various Materials at 13.4nm

Material  Use d=1-n) PBEk)

Si Multilayer Mirror  6.929¢-5 1.821e-3
Mo Multilayer Mirror ~ 7.726e-2 6.220e-3
TiN Absorber 6.340e-2 2.188e-2
Al Absorber -2.531e-3 2.957e-2
Cr Absorber 6.667e-2 3.819¢-2
Si02 Buffer Layer 2.129e-2 1.057e-2

5.2.1. 1D pattern, 2D TEMPEST Domain

Several two-dimensional TEMPEST simulations of line/space patterns are used to investi-
gate the effects of angle-of-incidence, mask focus, absorber thickness and side wall angle.
The two-dimensional TEMPEST simulations of EUV mask features typically run in less

than one minute and require less than 2 Megabytes of memory.

92



0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Magnitude/Phase

3.14

M -------- mag(iTE)

— R ' mag(rTM)
SRS v Lo
fakadele 1 —— arg(rTM) |

Mf ‘ ’
AFY }

T X oV ARE XXX
.- ; —1 314
0.00 0.35 0.70 1.05 1.40

Angle of Incidence (radians from normal)

Figure 5-3. Reflection coefficients for 40 Bilayer Si/Mo Multilayer Mirror for
EUVL at 13.4nm.

The reflection coefficient is calculated for a 40 bilayer Si/Mo multilayer mirror
with ' = 0.4, d=6.938nm, and for a wavelength of A = 13.4nm.

5.2.1.1. Line/Space Pattern - 2D Topography

Figure 5-4 and Table 5-3 describe the line/space pattern topography. The multilayer mirror

is replaced by a FBC that has been programmed with the reflectivity plotted in Figure 5-3.

Table 5-3. Simulation Parameters for EUV Line/Space Topography

Parameter
CD

tCr

Isio,

6

sw

0,

i

NA
[¢)

Description

Line and Space Width at the Wafer
Thickness of chrome absorber
Thickness of SiO2 buffer layer
Side wall angle

Angle of incidence

Numerical Aperture
Partial Coherence Factor
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Values(s)

50nm

nominally 70nm, varied from 20nm to 70nm
20nm

nominally 90 degrees, varied from 70 to 90
degrees

nominally 3.8 degrees, varied from 0 to 8
degrees

0.25
0.60
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Figure 5-4. EUV Line/Space Topography - 2D TEMPEST

The basic topography of a line space pattern consists of a rectangle of chromium atop a
multilayer mirror. The periodic boundary conditions (in the x-direction) imply that the
physical situation represented by this topography is periodic.

Table 5-3. Simulation Parameters for EUV Line/Space Topography

Parameter Description Values(s)

M Optical Demagnification 4X

Zobj Object plane location - similar to Nominally at the multilayer mirror surface,
mask plane of best focus but varied from -120nm to +120nm

5.2.1.2. Near Field Intensity and Aerial Image

Figure 5-5 has two plots of the near field intensity and one plot of the aerial image for a
nominal case (20nm SiO2 buffer layer, 70nm chromium, vertical side walls and 3.8 degree
incidence). In figure (a), the near field intensity in the zx-plane cross-section is shown. The
attenuation of the incident field is observed inside the absorber material, and a standing

wave pattern 1s observed over the bare mirror surface. A plane wave is excited unidirec-

tionally and downward, at the “excitation plane” z, . = 120nm. Above this excitation

plane, only the reflected field exists. The reflected field is observed at the “observation

plane” z,, . = 125nm . The intensity at the observation plane for both the TE and TM inci-

dence are plotted in figure (b). The TE and TM waves are observed to scatter in a very sim-
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ilar manner as evidenced by their reflected field intensities almost matching in figure (b).
This does not imply that rigorous is not important, only that the TE and TM waves scatter
in a similar fashion. In 3D, there could still be (and is) scattering from one polarization to
another. Finally, the aerial image is plotted in figure (c). The “critical dimension” or “CD”

measurement is defined to be the width of the bright line at the aerial image.

5.2.1.3. CD and position vs. Angle-Of-Incidence (AOI) -
Because EUVL masks are not transmissive, but rather reflective, off axis incidence must
be used to illuminate the mask. This immediately raises the concem about how angle of
incidence affects the CD and positioning of the mask features. To investigate angle of inci-

dence effects, aerial images were calculated for the nominal mask topography for several
angles of incidence for difference locations of the “object” plane (z, 47 )- The CD (width of

the bright line) and the center position of the bright line were measured and plotted in
Figure 5-6. The exposure level (intensity level at which the line width was measured) was

chosen to yield a 50nm CD at and angle of incidence of 3.8 degrees.

The CD shrinks as angle of incidence increases but appears to be independent of the object

plane location (z,,; ). The position of the line changes with angle of incidence and also with

obj
the object plane location. The shift in line position with respect to angle-of-incidence is not
a concern as the angle of incidence will be fixed. However, the dependence of line position

on object plane location is a concern since the object plane is essentially the mask defocus.

5.2.1.4. Absorber Material Thickness

Aerial images for three different absorber material thicknesses are plotted in Figure 5-7.
For the thinnest case (30nm thickness), the absorber does not attenuate the incident field
sufficiently and the DC level of the entire aerial image increases, lowering its contrast and
increasing the CD of the line. But for a given mask, the chrome thickness is a set parameter

and is not expected to vary by such a large degree.

However, even for a set thickness, some small amount of thickness variation may be

expected and the effect of this on aerial image is investigated in Figure 5-8 where the CD
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Figure 5-5. 50nm Line/Space Pattern Near Fields and Aerial Image

(a) The near field in the zx-plane shows the field decaying inside the absorber and a
standing wave pattern over the unpatterned mirror. (b) the reflected field observed at
Zops = 125nm (a cutline near the top of the first plot). (c) Aerial image intensity (4X
reduction optic, NA=0.25and ¢ = 0.6)
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Figure 5-6. Line Width (CD) and Position for Various Object Plane Locations
The line width (nominally 50nm) shrinks as angle of incidence increases but appears to
be independent of the object plane location (Z,,; ). The position of the line changes with
angle of incidence and also with the object plane location.
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Figure 5-7. Aerial Image Intensity for Various Chrome Thicknesses

The thinner chrome provides less attenuation of the light impinging onto the absorber
feature and leads to a higher DC level and a lower contrast.

97



is plotted over a small range of chrome thickness variation. A rather strong, periodic depen-
dence of CD on absorber thickness is observed. The period, approximately 6.5nm is very
close to a half~wavelength and indicates that this is clearly an interference effect between
the light reflected off the top of the absorber and that penetrating down to the bottom of the
absorber and reflecting back up. This effect was observed earlier by Toh and Davids[84]
who also noted that “the CD variation due to mask height variation can be reduced by
appropriate selection of the mask absorber material, as well as by increasing the illumina-

tion spectrum of the stepper.”
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Figure 5-8. Line Width vs. Chrome Thickness

Even small changes in absorber material thickness can significantly affect the line
width. This is because there is an interference effect between the small field reflecting
off the top of the absorber and the small field which penetrates down through the
absorber and reflects off the multilayer mirror. (hence the half-wavelength period of
the above curve)

5.2.1.5. Absorber side wall angle

Decreasing the absorber feature’s vertical side wall slope decreases its effective horizontal
width and thus reduces the amount of light that it “blocks”, increasing the effective width
of the clear area and increasing the linewidth of the bright line. Figure 5-9 shows that a

10% increase in CD occurs for a decrease of 15 degrees in side wall angle.
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Figure 5-9. CD vs. Side Wall Angle

As the side wall angle decreases from vertical (90 degrees), the width of the absorber
becomes smaller at the top (but remains constant at the bottom) and provides less
absorption making the width of the bright line wider.

5.2.2. 2D pattern, 3D TEMPEST Domain
Two dimensional mask patterns, such as an array of contacts holes or line-ends require 3D
TEMPEST simulations which require much more computation time and memory than do

2D simulations.

5.2.2.1. Square Features, 3D Topography

The topography of an exterior post is illustrated in Figure 5-10. The “interior” case has the
chrome-covered and clear areas reversed. The simulation parameters used are presented in
Table 5-4. Each TEMPEST run required less than 200 MByte of memory and ran in less
than three hours on a 500 MHz Pentium processor. |

Table 5-4. Simulation Parameters for EUV Line/Space Topography

Parameter Description Values(s)

Cb Line and Space Width at the Wafer  30nm

te, Thickness of chrome absorber 90nm (no buffer layer)
0 Side wall angle 90 degrees

Sw
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Figure 5-10. 3D Mask Topography

The 3D topography has a rectangular block of chromium atop a multilayer mirror.
The feature depicted is an “exterior” post. The simulation domain contains one
period of a periodic two dimensional array of posts.

Table 5-4. Simulation Parameters for EUV Line/Space Topography

Parameter Description Values(s)

r Cormner rounding radius 0, 20nm, 40nm

0, Angle of incidence 3.2 degrees

NA Numerical Aperture 0.25 and 0.35

c Partial Coherence Factor 0.60

M Optical Demagnification 4X

Zobj Object plane location - similar to at multilayer surface

mask plane of best focus

5.2.2.2. The near field

The near field intensity is shown in Figure 5-11 and exhibits a nonuniform behavior similar
to the 2D case, especially in y=60nm cutline. The field is symmetric in the y-direction as
the illumination and topography have y-symmetry. The symmetry is broken in the x-direc-

tion by the angled incidence.
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Figure 5-11. Near Field Intensity for 30nm Square Exterior Post

The reflected near field intensity is observed near the top of the simulation domain at
an observation plane above the excitation plane. The dark square area corresponds to
the area on the mirror covered by the absorber feature (hence very little reflected

energy in that region).

5.2.2.3. Interior vs. Exterior Topographies

Aerial images for interior and exterior topographies are shown in Figure 5-12 for two dif-
ferent NA’s. In both the NA=0.25 and NA=0.35 cases, the exposures (the level curves)
were set so that the exterior topography’s CD (width of the circular level curve in the x-
direction) were 30nm. For the NA=0.25 case, there is a drastic difference in feature size.

Both the exterior and interior features will not print simultaneously without severe mask
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biasing. For the NA=0.35 case however, both the interior and exterior topographies yield

similar feature sizes.
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Figure 5-12. Aerial Images for Interior and Exterior 30nm Square Post Features

The “exterior” case has a 120nm by 120nm (mask dim.) chrome square absorber feature
on the mirror. The “interior” case has a 120nm by 120nm clear square area in a chrome
covered mirror. For the NA=0.25 case, the exposure level that produces a 30nm (wafer
dim.) diameter feature for the exterior case produces only a Snm (wafer dim.) diameter
feature for the interior case. For NA=0.35, the exposure levels required to produce
30nm (wafer dim.) diameter features for both the interior and exterior cases are nearly

equal.

5.2.2.4. Corner rounding on an Exterior Post
Figure 5-13 shows the effects of rounding the corners of an exterior absorber post. The
three contours are for comer radii or Onm, 20nm and 40nm. For a corner rounding of 40nm,

only a 3.6% change in CD is observed. Coner rounding effects can be easily compensated

for by mask bias.

5.2.2.5. Arbitrary Mask Pattern at two Angles of Incidence

The aerial image of a somewhat arbitrary mask pattern is presented in Figure 5-14. The pat-
tern has 30nm features and is imaged with a camera having numerical aperture of 0.25. Plot
(a) shows the aerial image when a 6.4° angle of incidence is used while plot (b) is for a 3.2°

angle of incidence. To compare the two cases, equal intensity contours of the aerial images
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Figure 5-13. Aerial Images for Exterior 30nm Post with Various Comer Radii

The diameter of the feature for corner roundings of Onm, 20nm and 40nm (mask
dims.) are 29.43nm, 29.28nm, 28.35nm (wafer dims.) respectively.

are superposed and compared in figure (c). The doses were adjusted so that the line widths
at a particular place (indicated on figure (c)) match for the two cases. The contour lines

show an improvement in proximity effects, line end shortening and overall CD uniformity

as the angle of incidence decreases.

5.3. Defect Simulations

The previous section investigated the effects various topographical feature parameters
such as corner rounding and side wall angle, but in all cases, the mirror was assumed to be
the same defect-free mirror. The absence of multilayer mirror defects enabled the use of
the Fourier Boundary Condition as an efficient way to model the mirror that avoids pro-

gramming the entire mirror structure into the FDTD simulation grid.

When the multilayer mirror has defects that break the uniform structure in the horizontal

dimensions then the mirror is no longer a one-dimensional structure and can not be char-
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Figure 5-14. . 2D Pattern with 30nm Features at different angles of incidence

Figure (a): an arbitrary mask pattern’s aerial image for 6.4° angle of incidence.
Note the regions of high intensity at places where lines intersect. Figure (b) is
the aerial image for the same pattern with 3.2° angle of incidence. The benefits

of a smaller angles of incidence are illustrated by the contour comparison in
figure (c). NA=0.25 for both cases.
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acterized by its reflection coefficient vs. angle incidence and the Fourier Boundary Condi-

tion can not be used. Alternative models must be used to model the defective mirror.

The defects of primary concern are substrate defects that are present on the bare substrate
before the multilayer mirror is deposited. These defects are troublesome not because they
scatter EUV light, but because they distort the multilayer mirror structure deposited on top
of them. This is illustrated in Figure 5-15 where defects are classified as either “point”
defects or “line” defects. “Line” defect require only 2D TEMPEST simulation whereas
“Point” defects require large 3D TEMPEST simulations.

To combat mirror defect issues, schemes for detecting the presence of substrate defects
have been investigated[45]. Additionally, recent research[53] has shown that there exist
mirror deposition parameters that can be varied to “smooth out” the defect profile as the
subsequent mirror layers are deposited in an attempt to minimize mirror distortion at the
top-most (and most important) mirror layers. But even with the substrate defect detection
schemes and the defect smoothing, an understanding of how a distorted mirror affects the
aerial image is needed because one needs to know how much to smooth out the defects and

what the dimensions of the smallest “killer” defect are for the purposes of detection.

Nguyen et al.[59] were the first to investigate substrate defects and mirror distortion using
TEMPEST. However, their work was limited to “line” type defects (see Figure 5-15 (c))
and for CD’s of 100nm. Bollepalli et al.[14], also investigated defect printability using rig-
orous simulation but was also limited to “line” type defects. In research connected to this
thesis, Pistor and Neureuther [64] obtained 3D rigorous simulations of point defects using
a parallelized TEMPEST (Chapter 3), considering only the top 10 bilayers of a multilayer
mirror and assuming a constant Gaussian-shaped mirror profile for all bilayers. It was later
realized that the discretization scheme used in [64] was insufficient for modeling very low
profile defects. Pistor, Deng and Neureuther, in research connected to this thesis, devel-
oped a “graded material index” scheme[65] to reduce discretization error for low-profile
defects (illustrated in Figure 5-16) and performed further simulations of point defects and
point-defect-feature interactions, the major results of which are presented in the remainder

of this section.
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Figure 5-15. EUV multilayer defect topography

As the multilayer mirror layers are deposited, a particle on the substrate can cause
distortion in the growth. For the purposes of simulation, defects are classified as
either “Line defects” or “Point Defects”. Although line defects are generally not
seen in practice, they are useful because from a simulation point-of-view they

require very little memory to simulate and much can be leamed about how mirror
distortions scatter.
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Figure 5-16. Averaging Material Properties to reduce Discretization Error

The Average Material Properties technique is used to reduce gridding error which
is important for low-profile defects. In (a) a cross section of the topography is
shown for twenty bilayers. The defect has a height of Inm and is barely visible.
When only two materials (Si and Mo) are used to discretize the defect, significant
discretization error is introduced as shown in (b). Using a graded set of ten materi-
als with optical properties ranging from Mo to Si helps to reduce the discretization
error by “smoothing out” the step discontinuity and is illustrated in (c).
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All simulations assumed that the substrate defect at the bottom of the mulﬁ'layer mirror pro-
duce Gaussian-shaped mirror distortions in the top layers of the mirror. This simplifies the
topography definition and provides a convenient way to describe a defect’s size (by the
height of the Gaussian and the 2¢ width). This is a good approximation for two reasons:
1) Research has shown that small substrate defect do produce Gaussian-like mirror distor-
tions that are nearly the same in the top layers of the mirror structure, and ii) it is the top
layers of the mirror substrate that provide most of the reflecting power and are therefore
most important. The details of the mirror profile down a the bottom of the stack near the

defect are not important.

5.3.1. Constant Width, Varying Height

One possible gauge of a defect’s printability is to measure the amount of intensity loss it
creates when printing in the clear field. Figure 5-17 plots the minimum of aerial image
intensity versus defect height for a particular defect width (26 = 56nm). A nearly linear
relation is observed. Defects as shallow as 1nm cause a more than 16% dip in clear field

intensity.
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Figure 5-17. Aerial Image Minimum vs. Defect Height (for 56nm wide Gaussian
point defect)
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5.3.2. Constant Heights, Varying Widths

The minimum of the aerial image for several defects is graphed in Figure 5-18. The first
and most obvious observation is that taller defects are stronger (i.e. they create larger dips
in the clear field intensity) than shorter defects. The second observation concerns the effect
of changing the defect width, while keeping the height constant. At first, the defect
becomes stronger as the width increases. A worst case width exists at which the defect is
most printable. Beyond this worse-case width the defect becomes weaker. One possible
reason for this is that as the defect becomes wider, and flatter, its slope becomes closer to
that of a perfect mirror and it begins to behave somewhat like a perfect mirror. In the limit
as the defect becomes extremely wide, it will truly approximate a perfect mirror and the

dip in aerial image intensity will approach zero.
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Figure 5-18. Clear field Intensity Minimum vs. Defect Width (2c) for Various Defect
Heights

Taller defects print more strongly than shorter ones. There appears to be a worst-case
width at which the defects for a particular height print most strongly.
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5.3.3. Point Defect Interaction with Line Feature

A better test of a defect’s printability is to see how it interacts with mask features rather
than just observing its effect on the clear field intensity. Figure 5-19 illustrates a simulation
study in which a point defect’s interaction with a line feature is investigated. In an attempt
to better understand proximity effects, aerial images were calculated for various positions
of the defect relative to the line feature. The defect had dimensions h=1nm and
2c = 56nm. When the defect’s center is at the line edge, a CD change of 8.5% is
observed. As the defect moves away from the line, the percentage change in CD first
increases as more of the defect moves out from under the line and gets exposed. Once the
defect is about 22nm away from the line, a maximum change in CD is observed (about
12%). As the defect is moved further from the line, the change is CD begins to decrease
because the defect becomes more and more isolated. Eventually, as the defect moves far

enough away from the line, no change in line width would be expected.

5.4. Summary and Discussion

The development of Extreme Ultraviolet Lithography (EUVL) is critically dependent on
simulation primarily because the hardware is not yet fully developed. Simulating EUVL
masks is difficult because of their large size. The Fourier Boundary Condition (Chapter 2)
has been used to save memory when modeling defect-free multilayer mirrors and a paral-
lelized version of TEMPEST (Chapter 3) has been used to enable the multi-gigabyte 3D

simulation domains required for rigorous 3D simulation of multilayer mirror defects.

A degradation iri object-side depth of focus due to the off-axis imaging was observed.
Minute changes in absorber thickness and side wall angle were seen to significantly affect
CD. 3D TEMPEST simulations showed differences between “exterior” and “interior”

square features and CD dependence on corner rounding.

Gaussian-shaped mirror profiles caused by deposition on top of substrate defects were seen
to cause intensity reduction in the clear field. For a given defect height, a worse-case defect
width was observed. A 1nm high, 56nm wide gaussian defect was seen to cause a line’s
width to change as much as 12% depending on where the defect was positioned in relation

to the line.
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Figure 5-19. Line Width Change vs. Defect Proximity for Inm x 56nm Defect

(a) The defect/feature topography has only a ten bilayer mirror and an aluminum
absorber feature. The defect is quite shallow and difficult to see. The defect has h=1 and
26 = 56nm . (b) As the distance between the center of the defect and the line edge
increases, the change in the CD increases to a maximum value near 12% and then
decreases as the defect moves further and further from the line. This particular defect
(h=1nm, 20=56nm) is only a killer defect when it is in close proximity to a line edge.
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Simulation has been shown to be a valuable tool for finding and understanding trends in
EUVL.
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6 Phase Shift Mask Inspection

6.1. Introduction

Rigorous Electromagnetic Simulation (REMS) has become a well established tool for
modeling the photomask in reduction printing situations. It is, relatively speaking, much
less expensive to calculate an aerial image than to actually generate and observe a real one.
REMS has been used to predict defect printability[46], phase-shifter error effects[3], OPC
effects[2], comer rounding effects[63], phase-shifter profile effects [85] and much more.
REMS will continue to be a useful tool for aerial image calculation for the next several

years.

The use of REMS of photomasks under inspection situations (as opposed to printing situ-
ations), however, is not so well established because it is complicated by a broader angular
spectrum of plane waves incident onto the photomask. This broader angular spectrum of
incident light leads to the requirement of more REMS in order to determine how the dif-

ferent plane waves scatter.[68]

Section 6.2 discusses and proposes a model for optical scanning microscopy - a commonly
used technique in mask inspection tools. Section 6.3 presents a simulation study of a phase
defect in an alternating phase-shift mask. Certain plane waves in the illumination pupil are
shown to “see” the defect better than others. Annular illumination is shown to be better that

circular illumination for defect detection.

6.2. Inspection System Overview and Theory
Optical mask inspection systems are essentially microscopes that magnify an observed
area of a photomask and form an image on a CCD camera. The image is analyzed to deter-

mine if there are any defects in the observed region of the mask.
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Inspection systems have been built based on both conventional microscopy and scanning
optical microscopy. Conventional microscopy is very similar to the optics of a printing tool
in that Kéhler illumination is used to illuminate the mask and a projection optic forms an
image of the mask at an image plane. Scanning microscopy involves the scanning of a
focused beam across a region of the mask while collecting the scattered light. A simplified

model] for a scanning optical microscope is presented in Figure 6-1.

Mask Scanned in x and y dirs.

Condenser Collector

ey m

Source

Detector

I(x,y)

(X5 ¥5)
Pi(&,my) Py(&5,m3)

Figure 6-1. Simple Model for a Scanning Inspection System

A condenser optic focuses the laser to an Airy beam at the mask. The mask is scanned in
the x and y directions. The scattered light is collected by the collector optic and detected.
The output signal /(X,, y,) from the detector is a function of the mask scan position.
This scheme can be proved equivalent to conventional microscope imaging under the
Hopkins approximation.

As explained in [86], the (non-confocal) scanning optical microscope is equivalent to a
conventional optical microscope if the roles of the objective and condenser optics are
reversed. In other words, the lens that focuses the laser light to a spot incident onto the
mask plays the role of the projection optic in a conventional imaging system as described
in Chapter 4, while the optic that collects the scattered light from the mask plays the role
of the illumination optic, setting the degree of coherence in the system. This can be con-
sidered a duality. In the conventional microscope, the relative phases of the plane waves
incident upon the mask are unimportant, while the relative phases of the scattered field (for
a particular incident plane wave) are important. In the scanning optical microscope, the rel-
ative phases of the scattered plane waves are ignored by the detector but a specific phase

relationship between the incident plane waves must exist in order to form the spot.
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The proof of the above equivalence assumes a scalar theory, the paraxial approximation,
and constant scattering coefficients (Hopkins’ analysis [41][42]). It is a difficult task to
prove the equivalence (or inequivalence) of conventional and scanning microscopy when
a vector, non-paraxial, non-constant scattering coefficient model is assumed. Such a proof
would be useful because it would allow the model developed in Chapter 4 to be applied to
scanning optical microscopy. However, the proof is beyond the scope of this thesis. In
place of such a proof, an efficient mathematical model for an optical scanning microscope

is proposed in the next section.

6.2.1. A Proposed Model for Scanning Beam Optical Microscopy

At first glance, the simulation of the scanning beam appears to be a daunting task. One
might attempt to run a TEMPEST simulation for each possible beam position as it scans
over a small region of the mask. But, upon further consideration, one realizes that it is not
necessary to run a TEMPEST simulation for each possible beam position. This is true for
the same reason that it is not necessary to run a TEMPEST simulation for each plane wave
in the illumination pupil when imaging: scattering coefficients typically vary slowly over

angle of incidence.

The field incident onto the mask for a scan position of (x,, ;) is a coherent superposition

of plane waves and is written:

Equation 6-1. Fi(xoys) = D wi(xs )
~ ~ -
The magnitudes and phases of w; are chosen in such a way that F, (x,,y,) is a focused

beam centered at (x,, y,) (i.e. for an Airy beam, a circ function is used). The scattered

field from the mask, whether reflected or transmitted, (from Chapter 4) is written:

SC wx,,
Equation 6-2. F, (% ys) = Z Z 7E, mn( ~,( Ys))
) P SCTM’ m"(‘fi(xs’ ys)) k:cat mn, i

where the coherent summation over the source points is contrasted to the incoherent sum-

mation of over the source integration points in the conventional imaging model of Chapter
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4. The scattered field is then imaged by the collection optic (similar to the projection optic
in Chapter 4):

SCTE mn(w'(xs3 ys))
» 1 SCTM mn(w (xs’ys))

:cat mn,

= Z h SCTE mn(w'(xs’ ys))
i mn~ SCTM mnfw (x_.,-’ys))
Equatlon 6-3. :ca: mn, »
where F, Fim g(xs, ¥,) is the superposition of plane waves at the detector that occurs when the

scan position is (x, y,) . The actual electric field at the image (light sensor or CCD detec-

tor) is:

Eimg(x,y s Y ,)

. SC (x.,
= Re Z z e](— k,,,,x‘,,,,,.,_,x- km"m""."\y)M*m&nmi}.’[[ TE, mn(‘f‘(xs ys))] J]
u'a:.nn.

i mn SCTM m,,(w'(x »}’,))
Equation 6-4.

Finally, the signal coming out of the light sensor or CCD detector is the total energy depos-

ited across its imaging surface and is: h

o
. 1= 2
Equation 6-5. Limg(x¥5) = I jilEimg(x,y;Ys,yS) dxdy

~00 -0

The same technique for estimating scattering coefficients outlined in Chapter 4 can be used
for this optical scanning microscopy model. (i.e. calculate scattering coefficients for a few
plane waves and then use these known scattering coefficients to approximate the scattering
coefficients for other plane waves). Even if the equivalence described above could be
proved, it is not necessary since the use of the conventional microscopy imaging equations
in Chapter 4 are not more efﬁcient than the equations presented here. The number of TEM-
PEST simulations necessary (in both cases) is only a fungtion of how the scattering coef-

ficients vary across the illumination pupil.
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6.3. A Simulation Study of Defect Printability and Inspection
Recent research by Tejnil et al.[81] investigates the printability, inspectability and repair-
ability of phase defects in a dual-trench alternating phase shift mask. This chapter presents

a simulation study of a similar topography.

6.3.1. Topography

The ma'sk‘ topography consists of two rectangular openings in the chrome. The quartz
behind one of the openings is etched back to a depth that yields a 180 degree relative phase
shift (at 248nm) between the fields exiting each of the openings. A quartz bump defect is
 added adjacent to one of the vertical side walls of the phase-shifted opening. Figure 6-2(a)
shows a cross section through the chrome and the relative location of the quartz defect.
- Figure 6-2(b) shows a cross section through the phase well. As in [81], simulations are per-
formed both before and after an 80nm wet etch to determine the effect of wet-etch on defect
printability. The wet-etched topography is shown in Figure 6-2(c). Note that the defect is
etched isotropically just as the quartz side walls and thus the defect retains it full dimen-
sions in the x and z directions and remains butted up against the side wall, but decreases its
size in the y-direction by twice the wet-etch distance (160nm) as both faces normal to the

y-axis are etched.

6.3.2. Printability

Before simulation of defect inspection is undertaken, the printability of the defect is estab-
lished through simulation. The parameters for the printability simulations are taken from
[81] and given in Table 6-1. The z dimension of the defect is 117 degrees at the printing
wavelength of 248nm. The x and y dimensions are equal (before wet etch) and take the fol-
lowing values: Onm (i.e. no defect), 115nm, 270nm and 405nm. After the 80nm wet etch,
the y dimension .i-s»reduced by 2*80nm=160nm.

The near field intensity (output from TEMPEST taken just after the chrome) is plotted in
Figure 6-3. Although the near field can not be directly measured by the inspection system,
it is an intermediate value that is available in simulation. It is interesting to note that the

defect is quite visible in the near field.
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Figure 6-2. Alternating Phase Shift Mask with Defect Topography

(a) A cross section through the chrome shows two openings, a shifted opening and an
unshified opening. A “bump” defect is situated at the sidewall edge, its location in the xy-
plane indicated by the dotted outline. (b) A zx-plane cross-section through the defect
before wet etch. Note the vertical side walls on the phase shifter. (c) The same cross-sec-
tion as (b), but after 80nm wet etch. Note the quartz undercut and corner rounding.
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Figure 6-3. Near Field Intensity

The near field is observed just after scattering from the mask. The incident field is a
normally incident plane wave. The defect is clearly visible for both y and x polar-

ized light.
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Parame- |Description Value(s)

ter

A Wavelength used for printing 248nm

s Length of side of defect before wet etch | Onm, 115nm, 270nm, 405nm
P Phase of defect at printing wavelength | 117 degrees

N.A. Numerical Aperture of printing tool 0.68

c Partial Coherence Factor 0.40

M - | Optical Demagnification 4X

Losist Resist thickness (n=1.76, k=0.0166) 0.4um

tgarc B.A.R.C. thickness (n=1.45, k=0.3) 0.066um

Table 6-1. Simulation Parameters for Printability of 117 degree bump defect located at
sidewall of deep-shifter

The final assessment of the printability is based on measurements of intensity of the aerial
image inside the thin layer of photoresist at the wafer. This field is shown in Figure 6-4 for
three cases: no defect, 405nm defect before wet etch and 405nm defect after wet etch. CD
measurements for all cases were made and are plotted in Figure 6-5. The wet etch reduces
the printability of the defect because it reduces the defects size. These measurements are

in strong agreement with data presented in [81].

One concludes that the critical defect size for a 117 degree wet etched defect located at the
side wall of the deep phase shifter is in the 200nm to 300nm range. Inspection systems will

have to detect defect of this size.

6.3.3. Inspection

Simulation parameters for inspection are given in Table 6-2. The conventional microscopy
imaging equations of Chapter 4 were used for the study. As discussed in Chapter 4, because
inspection systems illuminate the mask with a wide angular spectrum of plane waves, the
scattering coefficient dependence on angle of incidence must be accounted for. It is inter-
esting to observe how much the scattering coefficients vary as the plane wave angle of inci-
dence varies from normal to the pupil edge. Before proceeding with aerial image

calculations, the scattering coefficients were measured as a function of angle of incidence
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Figure 6-4. Aerial Image Inside Photoresist

(a) An xy-plane cross-section inside the resist, near the top surface of the resist. The
bright areas correspond to the opening in the chrome. (b) A zx-plane cross-section
through the film stack. (#1: No Defect, #2: 405nm, 117 deg. after wet-etch, #3:

405nm, 117 deg. before wet-etch.)
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Figure 6-5. Printability of 117 degree phase bump defect in the deep phase-shifter vs.
defect size before and afier 80nm wet-etch

The wet etch reduces the size of the defect and moves it into the underetched region
behind the chrome making the defect less printable.

and are plotted in Figure 6-6. The scattering coefficients are observed to vary by about 20%

as the plane wave angle of incidence varies from normal, to the pupil edge.

Parame- | Description Value(s)

ter

A Wavelength used for inspection 365nm

s Length of side of defect before wet etch | Onm, 270nm, 405nm
P Phase of defect at printing wavelength | 117 degrees

N.A. Numerical Aperture of printing tool 0.65

c Partial Coherence Factor 1.0

M Optical Demagnification 1X

Table 6-2. Simulation Parameters for Inspection of 117 degree bump defect located at
sidewall of deep-shifter

To capture the scattering coefficient dependence on angle of incidence, TEMPEST simu-

lations were run for the ten plane waves illustrated in Figure 6-7. A map of the interpolated

(+1,+0)™ scattered order magnitude is graphed in Figure 6-8. Each of the ten simulations
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Figure 6-6. Scattered Order Dependence on Angle of Incidence

Four of the scattered orders are plotted for different angles of incidence along the +&,
axis. Because the scattering coefficients are dependent on angle of incidence, multiple
TEMPEST simulation must be used.

required approximately 100 MBytes and ran in less than two hours on a 600MHz Pentium

III based laptop computer.

The first set of aerial images calculated were for a transmission mode inspection of a defect
free mask and for a 405nm defect before wet etch. Both circular and annular illumination
were used to discover the importance of the illumination pupil. The aerial images along
with the difference signals (defined as the absolute value of the difference in intensity
between an aerial image for a defect free mask and the aerial image for a mask with a

defect) are plotted in Figure 6-9.

Defect visibility is quite poor with both types of illumination, however, the annular illumi-
nation yields a difference signal peak of 0.18 while the circular illumination difference
signal peak is only 0.14. This suggests that annular illumination may be more effective in
finding these sorts of defects. This can be explained by the fact that small features scatter

light into wide angles. Annular illumination in conventional microscopy corresponds to an
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Figure 6-7. Locations in k-space of the 10 Plane Waves for Which Scattering
Coefficients are Calculated With TEMPEST

Plane waves at normal incidence and near the edge of the illumination pupil are simu-
lated with TEMPEST. For these plane waves, the scattering coefficients are known.
For other plane waves inside the illumination pupil, the scattering coefficients are
approximated (interpolated).

annular collection pupil in scanning beam microscopy and thus, the signal energy is due to
the highly scattered orders. The energy scattered by the defect into the high orders is less
“washed out” by the energy scattered into the high orders by the mask features.

To further investigate the effects of the illumination pupil (which physically corresponds
to the collection angle of the colleétor in a scanning beam inspection system) aerial images
for single plane wave illumination at various angles were calculated and are shown in
Figure 6-10. It is evident that some angles of incidence are much better at seéing the defect
than others. This type of information can be used to help inspection system designers

improve phase defect visibility.

Finally, Figure 6-11 graphs the difference signal (defect visibility) vs. defect size (as mea-
sured before wet etch) for the cases of before and after wet etch using circular and annular
illumination. In both cases, annular illumination leads to higher defect visibility as com-

pared to circular illumination - particularly for smaller, less printable defects.
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Figure 6-8. Plot of the magnitude of the scattering into the (+1,+0) scattered order vs.
angle of incidence

6.4. Conclusions and Discussion

Scanning beam optical microscopy has been known to be equivalent to conventional
microscopy under Hopkins’ approximation (constant scattering coefficients and scalar the-
ory). It is unclear whether the equivalence holds for a vector theory where the Hopkins’
approximation is not made. However, an efficient model for scanning beam microscopy

has been proposed.

The scattering coefficients for a typical phase-shift mask topography were seen to be
dependent on angle of incidence and due to the high angular spectrum of plane waves inci-
dent upon the mask during inspection, multiple TEMPEST simulations for plane waves

must be run to calculate scattering coefficients for highly oblique plane waves.
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Figure 6-9. Annular Illumination Improves Phase Defect Visibility

The top figures show the aerial image intensity when no defect is present for circular
and annular illamination. The middle pictures show the aerial image intensity when a
117 degree phase defect with (405nm)”2 is present. The difference images (normalized
to their defect-free total image energies) are plotted in the lower figures. The peak nor-
malized intensity of the annular difference image is 0.18 while for the circular case it is
0.14. Annular illumination is better at “seeing” the defect.
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Figure 6-10. Aerial Images for Individual TE Plane Waves at Different Locations

Some angles of incidence are better at interacting with the defect that others. Only the
top half of k-space is shown since the topography is symmetric in the y-direction. Plane
waves with negative kx appear to interact with the defect better than those with positive
kx values.

The printability of a 117 degree, bump defect located at the phase-shifter side wall was
investigated through simulation. Isotropic wet etching was seen to decrease defect print-
ability. Defects with a pre-wet-etch size larger than 200nm were seen to cause greater than

10% CD variation.

A simulation study of defect inspectability was undertaken. Both circular and annular illu-
mination schemes were compared. Annular illumination was found to yield stronger nor-
malized difference signals. This is explained by the fact that defects are efficient scatterers

into high orders.

Simulation can allow a lithographer to understand how effective particular plane waves in
the illumination pupil are at seeing defects. This capability may ultimately lead to new
designs for mask defect inspection systems that are optimized for detection of phase

defects in advanced phase-shift masks.
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Figure 6-11. Defect Visibility Before/After Wet Etch, for Circular and Annular
IMlumination

The defects are less visible after wet etch because they are smaller. The difference
signal for the annular illumination is stronger in all cases.

128



Other Simulations related to
Lithography

There many applications of TEMPEST that are related to lithography. Thus far, this thesis
has only touched upon two areas (EUV features and defects in Chapter 5 and phase defects
in alternating phase shift masks in Chapter 6). This chapter is dedicated to a number of
other lithography-related simulations.

7.1. Pinholes for EUV Point Diffraction Interferometry
Researchers [34][80][48] have been using point-diffraction interferometry for the charac-
terization of EUV optical systems. Point-diffraction interferometry relies on the generation

of a spherical reference wavefront by pinhole diffraction.

Goldberg[34] used rigorous FDTD simulation with TEMPEST to understand pinhole dif-
fraction for the purposes of determining a pinhole size appropriate for the generation of a
reference wave with sufficient quality for the metrology of EUV optics. An illustration of
a topogfaphy similar to that investigated by Goldberg is shown in Figure 7-1.

Plots of the electric field intensity for the tapered pinhole topography are shown in
Figure 7-2. Goldberg analyzed the complex field in the xy-plane (the intensity of which is
shown in figure (b)) by propagating it to the far field and determining its deviation from a

perfect spherical wave.

7.2. Alignment Mark Simulation
The ability to accurately align the wafer during printing (i.e. while inside a stepper or a
scanner) is critically important to lithography. As feature dimensions continue to down-

scale, the alignment signal tolerances become tighter. Further complicating the matter is
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Figure 7-1. Topography for Pinhole used for Reference Wave Generation

The membrane is 90nm thick, with a (possibly tapered or flared) pinhole with diameter
on the order of 50nm to 150nm. A polarized normally incident plane wave in incident
from above, and the field is observed just below the membrane.
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Figure 7-2. Near Field Intensity for Tapered Pinhole
The entrance diameter of the pinhole is 100nm and the exit diameter is 80nm. The field

is clearly nonuniform and slightly asymmetric in the azimuthal direction due to polar-
ization effects.

the fact that most wafer processing steps tend to degrade the alignment mark topography
and signal. A detailed understanding of alignment marks and a method to predict alignment

performance is needed.
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Recent research by Yin[101] and Wu[97] has used TEMPEST to simulate the scattering
from alignment mark topographies, to discover what are the critical parameters affecting

signal contrast and to optimize the topography for performance.

A typical alignment mark topography is shown in Figure 7-3. Unlike the imaging systems
discussed so far, alignment mark imaging involves the use of broadband illumination
(500nm to 800nm wavelengths) and so several wavelengths within the band must be sim-
ulated. Table 7-1 lists the optical properties for the materials used in alignment mark sim-
ulation at various wavelengths. The final aerial image is a weighted summation of the

aerial image intensities of the separate wavelengths.

Table 7-1. Complex Indices of Refraction for Various Wavelengths

Material 550 nm 600 nm 650 nm 700 nm 750 nm
Si 4.088 -j0.042  3.947-j0.026  3.85-j0.0165 3.783-j0.0122 3.733-;0.0092
Poly 3.915-50.105  3.774-j0.0682 3.672-j0.045 3.596-j0.023  3.537-j0.0212
Nitride  2.033 2.023 2.014 2.008 2.002
Oxide 1.474 1.473 1.472 1.471 1.47
Resist 1.68 1.68 1.68 1.68 1.68

Resist

Resist Thickness: 400nm
___ Nitride Thickness: 110nm
o Oxide Thickness: 40nm
Poly Thickness: 160nm
Mark Width: 500nm
Mark Spacing: 500nm

Figure 7-3. Alignment Mark Topography

A plane wave is incident from above and the reflected field is observed. The mark
depth is chosen so that light reflected from the bottom of the mark and the top are out
of phase.

The aerial image intensities for the individual wavelengths are plotted Figure 7-4 (a). Some
wavelengths are able to see the alignment mark better than others. The total signal is shown

in Figure 7-4 (b).
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Figure 7-4. Aerial Image Intensities for Alignment Mark
In (a), the aerial image intensity for each of the five wavelengths simulated is

shown. The signal quality varies significantly from wavelength to wavelength. In
(b) the average intensity is shown under two different partial coherence conditions.

7.3. The Aberration Ring Test
Dirkson et al. [25][26] have recently introduced a technique for measuring aberrations in

optical imaging systems. The Aberration Ring Test (ART) uses a circular phase shifting
well with a 180 degree phase depth and a A /NA diameter (wafer dimension) that, in the

absence of aberrations, prints as a ring in the resist (see Figure 7-5). When aberrations are
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present, the contours of the ring become distorted. The distorted contours can be mathe-

matically analyzed to extract inforration about the aberrations in the optics.
Circular Phase Well

diam = 1.5um
depth = 243.9nm A = 248nm.

=

Quartz

Figure 7-5. Mask Topography for Aberration Monitor

The mask topography for the aberration ring test (ART) is simply a circular phase
well with diameter =1 /N4 (wafer dimension) and a depth of 180 degrees.

Scalar mask theory (i.e. thin mask with binary transmission) combined with thin-film stack
theory (Chapter 4) has been used to demonstrate the effects of aberrations on the ring
image. Figure 7-6 shows the aerial image intensity in a vertical cross-section that shows
the ring through the depth of the resist. The inner radius of the ring is larger at the top of
the resist than at the bottom due to absorption in the resist, while both radii oscillate slightly
due to a small standing wave effect (from the small reflection off the BARC). Subsequent

aerial images were observed in the xy-plane half way up the resist (i.e. at z = 0.201 um).
Individual aberrations were introduced and there effects are seen in Figure 7-7.

To investigate the consequences of assuming a scalar, thin-mask model for ART simula-
tion, full 3D TEMPEST simulations were run and aerial images were calculated and com-

pared to those obtained using the thin scalar mask approximation.
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Figure 7-6. ART: Aerial Image Intensity Inside Photoresist

The resist is 270nm thick with a BARC at the bottom. The effects of attenuation,
reflection from the bottom surface (BARC) and simple depth of focus make the ring
profile non-uniform through the depth of the resist.

The complex electric field near the mask (the near field) is plotted in Figure 7-8. Where the
scalar theory predicts a uniform and unity magnitude, the rigorous mask model shows that
diffraction causes ringing. As a result, one can expect that some energy is scattered out of
the range of the numerical aperture of the projection optic and thus the aerial image
obtained using rigorous mask simulation will have less energy. The near field phase is seen

to deviate significantly from the perfect (binary) phase assumed by the thin, scalar mask

model.

Of course, the main concern is regarding how the aerial images obtained by using the scalar
and rigorous mask models differ. This is illustrated in Figure 7-9 where one quadrant of

the ring contours is analyzed.

From observation of only the “scalar” curves for the unaberrated and spherically aberrated
cases, it is evident that positive spherical aberration causes the inner radius to drastically
increase and the outer radius to slightly increase. When one inspects the contours for the
“TEMPEST” curves, it is evident that the increase in inner radius due to the addition of
spherical aberration is slightly larger than observed for the “scalar” curves. This indicates
that diffraction from the sidewalls of the circular phase well introduces positive spherical

aberration.
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Phase

One can conclude that the scalar model is useful for simulating the ART. Rigorous simu-

lation indicates that some of the measured spherical aberration is due to diffraction from
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Figure 7-8. Near Fields across the diameter of the ART phase well

The complex electric field is observed very near to the mask, just after transmission. This
complex field can be interpreted as a complex transmission function for a Kirchhoff-type

mask.

the phase well side walls. This can be calibrated out.

Three dimensional rigorous simulation will be necessary in future work to understand the
effects of non-vertical sidewalls and nonuniformities in the depth of the circular phase
shifter.
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Figure 7-9. ART Aerial Images: Scalar vs. TEMPEST

¥ X 2229
The 0.3 exposure levels of several aerial images are super- A A g g ==
imposed onto the intensity plot of the non-aberrated aerial % g g g g
image calculated with the thin mask approximation. The B o H wn &8
various aerial images are for six cases, no aberrations, 0.1 E_-n-] S € = w
waves of X-Coma and 0.1 waves of spherical calculated z 2’,7 % =) % a
assuming i) thin mask model and ii) TEMPEST mask e iy tr] ===
model. These curves suggest that the scalar (thin-mask) EE c_n_} g
model overpredicts the amount of energy in the aerial =3 —

image, and the amount of spherical aberration present.

7.4. Reflective Notching

When the aerial image is being formed inside a flat film stack, simple analytical methods
(thin film theory) can be used to calculate the latent image. When the layer of photoresist
is atop topography then the translational symmetry of the film stack is broken and other

methods must be used to find the latent image.

Wong[95] and Socha[70] each used TEMPEST to investigate reflective notching in the
patterning of a gate over non-planar, reflective topography. Pistor[67] used 3D TEMPEST

simulation to investigate reflective notching that occurs during the projection printing of
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disk drive read/write heads where highly non-planar topography and thick photoresist were

present.(Figure 7-10)
Reflective Notching from Stacked Coil Topography

Mask/Illumination Pattern Field Intensity at Sidewall

s

Nickel Kink Location

r

Nickel Kink Location
Figure 7-10. Reflective Notching

In figure (a) the wide portion of the bright feature will print on top of the sec-
ond coil hump. The field plot shows a sharp vertical line defining the bound-
ary between the wide and narrow feature sections. In figure 10b) the wide
part of the trench now sits over the nickel kink. A ripple shoots out from the
kink and the boundary between the wide and narrow trench sections is no
longer a sharp vertical line.

7.5. Phase Shift Mask Topography Effects

The earliest use of FDTD simulation and TEMPEST for phase shifting masks was by
Wong[87] who observed in simulation the imbalance in intensity transmission through
shifted and unshifted openings in the chrome[47][61]. Since then it has become rather com-
monplace to use FDTD simulation for the analysis of phase shift mask topography effects:
Adam studied phase shift mask defects[3], Socha studied high transmission attenuated

phase shift mask topography effects[75][76], Todd for nonuniformities in phase shifter
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depth[85], Hotta for shifter edge profile and the residual transmittance through the
chrome[43], and other authors for general topographical effects [27][38].

A considerable amount of insight can be gained from 2D TEMPEST simulation (corre-
sponding to 1D mask patterns, i.e. lines and spaces) which typically require less than one
megabyte of memory and less than one minute to run. Figure 7-11 and Table 7-2 show a
typical parameterized phase shift mask topography. It is a line/space pattern and requires
2D TEMPEST simulation.

Table 7-2. Variable Parameters for 2D Alt. PSM Topography

Parameter Name Description Values (nominal in parentheses)

l ¢ Line width (150nm)

[ Space Width (150nm)

)4 Pitch (=Line Width + Space  (300nm)
Width)

d Phase Difference between (180 degrees), 174 degrees, 186 degrees
shifted and unshifted spaces

r Cormner Rounding Radius (80nm), Onm, 20nm, 40nm, 60nm, 80nm,
caused by isotropic wet etch  100nm, 120nm, 140nm

t Chrome Thickness (pure (100nm), 40nm, 60nm, 80nm, 100nm,
chrome, no oxide) 120nm, 140nm

h Micro-trenching caused dur- (Onm), Onm, 8nm, 16nm, 24nm, 32nm,
ing isotropic dry etch 40nm, 48nm

NA Numerical Aperture 0.7 .

c Partial Coherence Factor 03

defocus Wafer Side Defocus (Oum), -0.4um to 0.4um in 0.1um steps

Lesist Thickness of Resist as 300nm
Wafer (n=1.76, k=0.0166)

tparC Thickness of BARC under 66nm
resist at Wafer (n=1.45,
k=0.3)

Zimg Location of image focal 300nm (from bottom of stack)

plane above poly-Si sub-
strate in the wafer stack

Z measure Location at the aerial image  166nm (from bottom of stack, 1/3rd the way
where measurements are up the resist)
made (inside the resist)

Figure 7-12, Figure 7-13, Figure 7-14 and Figure 7-15:5how the results obtained when var-

ious mask parameters are varied.
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Figure 7-11. Two-dimensional Alternating Phase Shift Mask Topography

7.6. Conclusions

There are many widely varying applications of FDTD simulation and imaging system
modeling in optical lithography. Even more applications will surface in the near future as
wafer alignment systems and mask and wafer metrology systems become more compli-

cated and as 157nm and EUV lithographies come on-line.
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Figure 7-12. Effect of Isotropic Wet Etch

To achieve an intensity balance between the shifted and unshifted spaces, an isotropic
(wet) etch is often applied. The comer radius (amount of wet etch) affects both the CD
and the process window.

0.2
0.19
0.18 —e— ter=40mm
0.17 —a— tcr=60nm
0.16 '\'\,*_: — —a— tcr=80nm
0.15 ¢ X X — —¢ tcr=100nm
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0.1 - ‘ - .

0.4 -0.2 0 0.2 0.4
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Figure 7-13. Effect of Chrome Thickness

Partial transmission through the chrome can play a role in CD accuracy[43].
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Figure 7-14. Effect of Phase Difference

The CD remains relatively constant through focus for small amounts of phase error
between the shifted and unshifted spaces. The line position however will shift with
focus when phase error is present.

—+—h=0nm
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—&— h=16nm
—— h=32nm
—— h=40nm
—e— h=48nm

-0.4 -0.2 0 0.2 0.4
defocus (um)

Figure 7-15. Effect of Microtrenching during Plasma Etch

Microtrenching [85] causes a nonuniform profile at the bottom of the phase well.
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8 Conclusions

This thesis has discussed several issues related to electromagnetic simulation and modeling

in lithography.

The computer program TEMPEST, developed at U.C. Berkeley, is an implementation of
the Finite-Difference Time-Domain algorithm used for solving the Maxwell equations.
This thesis has documented many of the recent improvements to TEMPEST including the
re-parallization of the code for running on a Network of Workstations, the implentation of
the Perfectly Matched Layers boundary condition and the introduction of a novel boundary
condition, the Fourier Boundary Condition that can be used to efficiently model EUV mul-

tilayer mirrors.

A model for optical imaging that is valid when highly oblique angles of incidence are
present was developed and used to calculate aerial images from EUV masks, alternating

phase shift masks with defects and several other situations related to lithography.

The theory has been presented in the early chapters while the applications were dealt with

in later chapters.

8.1. Theory

The Fourier Boundary Condition (FBC) was developed as an efficient model for an EUVL
multilayer mirror. It operates on the Fourier components (plane) waves of the incident field
and can be programmed to yield an arbitrary reflectivity versus angle-of-incidence. The

FBC was demonstrated to be both an accurate and efficient model for a multilayer mirror.

A parallelized version of TEMPEST using the Message Passing Interface to run across a
Network of Workstations (NOW) was developed and benchmarked. It was observed that
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the performance depended strongly on the inter-process communications overhead. The
performance across several processors in the same box approximated the ideal linear
speed-up curve, while the performance when all communications were over a network

showed a maximum speed-up factor of only 2.5 for 6 processes.

An imaging system is modeled as a collection of components that operate on plane waves.
The source and illumination optic are considered as a source of mutually incoherent plane
waves with different polarizations and angles of incidence. The photomask scatters an inci-
dent plane wave into many plane waves. The projection optic takes a single plane wave as
input and produces a single output plane wave with the same polarization and accounts for
the imaging pupil, aberrations, defocus, and optical magnification. Finally, the film stack

at the image plane can be incorporated into the projection optic as a correction factor.

The imaging equations presented take the vector nature of light fully into account and can
accommodate various mask model complexities ranging from simple transmission func-
tion to complicated non-constant scattering coefficient models where information from the
rigorous simulation of the scattering of several plane waves at different polarizations and

angles of incidence is used together to model the mask.

Three mask models were presented, each differing from the other by how the scattering
coefficients are calculated, and how many sets of scattering coefficients are calculated for

different plane waves within the illumination pupil.

8.2. The Applications

8.2.1. EUVL

The development of Extreme Ultraviolet Lithography (EUVL) is critically dependent on
simulation primarily because the hardware is not yet fully developed. The Fourier Bound-
ary Condition was used to save memory when modeling defect-free multilayer mirrors and
the parallelized version of TEMPEST was used to enable the multi-gigabyte 3D simulation

domains required for rigorous 3D simulation of multilayer mirror defects.

A degradation in object-side depth of focus due to the off-axis imaging was observed.
Minute changes in absorber thickness and side wall angle were seen to significantly affect
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CD. 3D TEMPEST simulations showed differences between “exterior” and “interior’

square features and CD dependence on corner rounding.

Gaussian-shaped mirror profiles caused by deposition on top of substrate defects were seen
to cause intensity reduction in the clear field. For a given defect height, a worse-case defect
width was observed. A 1nm high, 56nm wide gaussian defect was seen to cause a line’s
width to change as much as 12% depending on where the defect was positioned in relation

to the line.

8.2.2. Phase Shifting Masks: Defect Printability and Inspection

The scattering coefficients for a typical phase-shift mask topography were seen to be
dependent on angle of incidence and due to the high angular spectrum of plane waves inci-
dent upon the mask during inspection, multiple TEMPEST simulations for plane waves

must be run to calculate scattering coefficients for highly oblique plane waves.

The printability of a 117 degree, bump defect located at the phase-shifter side wall was
investigated through simulation. Isotropic wet etching was seen to decrease defect print-
ability. Defects with a pre-wet-etch size larger than 200nm were seen to cause greater than

10% CD variation.

A simulation study of defect inspectability was undertaken. Both circular and annular illu-
mination schemes were compared. Annular illumination was found to yield stronger nor-
malized difference signals. This is explained by the fact that defects are efficient scatterers

into high orders.

Simulation can allow a lithographer to understand how effective particular plane waves in
the illumination pupil are at seeing defects. This capability may ultimately lead to new
designs for mask defect inspection systems that are optimized for detection of phase

defects in advanced phase-shift masks.

8.2.3. Other uses of simulation in lithography
There are many widely varying applications of FDTD simulation and imaging system
modeling in optical lithography as evidenced by the simulations presented in Chapter 7.

Pinholes, alignment marks, reflective notching and aberration monitors can be investigated
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with the techniques discussed in this thesis. Even more applications will surface in the near
future as wafer alignment systems and mask and wafer metrology systems become more

complicated and as 157nm and EUV lithographies come on-line.

8.3. Future

There is no doubt that feature sizes will continue to shrink while the complexity and cost
of the associated lithographies will heighten. Simultaneously, the computational power
available to lithographers will increase. Therefore, the utility of simulation in lithography

will continue to grow.

New algorithms and approximations may one day reduce the simulation times for large 3D
domains from hours to seconds. It may soon be possible for a defect inspection/repair
system to instantly assess the printability of a particular defect, or for an OPC engineer to
rigorousiy verify the performance of a serif or scatter bar, or for a mask designer to run a

massive optimization of some topographical feature.
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APlane Waves

A.l. Uniform Plane Waves in Free Space

A uniform plane wave propagating in free space can be fully characterized by specifying
its wavelength, direction of propagation, polarization, magnitude and phase. In this thesis,
polarization will be specified as TE or TM relative to the xy-plane. TE polarization has the
electric field in the xy-plane while the TM field has the magnetic field lying in the xy-
plane. Circular and elliptical polarizations are linear combinations of the TE and TM polar-

izations.

The complex electric field for a single uniform plane wave of a particular polarization and
with a particular direction of propagation is written:

Equation A-1. E‘(?c, 1) = F(;ef("" —k-x)

where the wave’s complex amplitude EA‘O is the a complex vector representing the wave’s

magnitude and phase and polarization and % is the “k-vector” for the plane wave and spec-

ifies the wave’s direction of propagation. The following other relations apply:

Equation A-2. 0 = 2—;6.
Equation A-3. k= kix+kji+ ke

. 2n
Equation A-4. k== Ji2 + k2 + k2
Equation A-5. ke, = Ji2 + k2
Equation A-6. k, = dir, k2 - K,

147



Equation A-7. dir,e {-1,1}
o is the radian frequency, k is the “k-vector” with cartesian components £, , k, and £,

k is the wave number, k., is the magtitude of the k-vector’s projection onto the xy-plane,
dir, is -1 if the wave travels “downwards” (in the negative z-direction) and +1 if the wave

travels “upwards” (in the positive z-direction).

The wave’s complex amplitude Fo can be represented with two different component

forms. The first form is the usual “Cartesian component” form:

-_—

Equation A-8. Ey=EJI+Ej+Ek
where i,j and % are the usual cartesian unit vectors. The second component form is called

the “polar component” form':

Equation A-9. Ey = Apgere+ Apyry
where &7 and ér)s are unit vectors in the direction of the TE mode’s electric field and the

TM mode’s electric field respectively. &7z and &7y depend on the direction of propaga-

tion k as illustrated in Figure A-1.

For a given direction of propagation, plane wave propagation in lossless media requires
that the electric field be perpendicular to the direction of propagation. This means that there
are only two degrees of freedom for the direction of the electric field. This highlights an
advantage that the polar component form has over the Cartesian component form: it has
only two coefficients corresponding to two degrees of freedom avoiding any confusion
there may be regarding the electric field direction. Additionally, it is a convenient basis for

the consideration of polarized waves because the basis vectors, érr and éryy, are always

purely TE and purely TM respectively.

The following notation for plane waves is introduced:

1. The term “polar component™ as opposed to “polar” is used to avoid confusion with polar coordinates.
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erMm

Figure A-1. érr and &7y depend on the direction of propagation k.

The unit basis vector &7z always remains normal to the direction of propagation and
tangential to the xy-plane while ér,, is always normal to the direction of propagation
and normal to érg¢.

Equation A-10. w = Arg
Arply

Where the tilde (~) below the variable indicates that the variable is a placeholder for a plane
wave. The two-element subscripted vector holds the TE and TM coefficients of the plane

wave (with reference to the polar component form described above) and the subscript

. . A
denotes the direction of propagation of the plane wave. For w, = LTE|  and
= |4y MR
A N - . -
w, = 2TE|  with k, # k,, the quantitiy w, +w, is a coherent! superposition of two
- 4y lE, -

1. “Coherent” because a definite phase relationship is assumed to exist between all plane waves in the sum
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plane waves with different directions of propagation. Similarily, the quantity ZW’. is
~ -

coherent a superposition of many plane waves. !

The relation between the two sets of coefficients is as follows:

K k]
ke k|4

Ry Fool Ay
El _k%y :

Ex
Equation A-11. E| =
E,

A similar relation exists for the magnetic field:

Kk k,
. ,
Equation A-12. I}y - L Kk kA , k%0
MR, By |4g, |
HZ k k ~
2 by
e k -

When kxy = 0, the plane wave will be propagating in a direction normal to the xy-plane

(either the +z or -z direction) in which case the TE and TM polarizations are abitrarily
defined with the following formulae:

?x 0 dir, 4
Equation A-13. E, =1 o lIZ TE
;5‘ 0 0 ‘:ITM (0,0, dir.k)
~21(0,0,£k)
I:I" ] -dir, 0 py
Equation A-14. Hy = 5 o 1ll- TE
: 0 0 ‘fTM (0,0, dir.k)
- 21(0,0,k)

.

A +A4 . .

1. Note that w, +w, = | .7 "2 TE|  The quantity must be carried around as w, +w, .
; Avru* 42,1 T
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The three cartesian components are not independent, but polar components are. The polar
component form is useful when a separation between the polarizations is needed such as
when appliying a reflection coefficient to a plane wave. (as in the Fourier Boundary Con-
dition in Chapter 2 and the thin-film stack analysis in Chapter 4). The cartesian component

decomposition is useful when dealing with a scalar diffraction theory.

Because there are only two degrees of freedom for the electric field direction, any two of
the three Cartesian components of the electric field will suffice to completely describe the

polarization. Taking the x and y components one can write:

—~ -

b Kk
‘?x = kxy kkxy ‘fTE
Ehv |5 Eb Ands
&, %,
= u|%re
Aruy

Equation A-15.
where the transformation matrix Mk is implicity defined. Now an inverse relation can be

written:

4 E
Equation A-16. Tl = Mi‘ X
‘f ™|} € y
This transformation between bases will be useful in plane wave decomposition (Appendix

B) and plane wave translation (Appendix C).

A.2. K-Space Representation of Plane Waves
A plane wave’s direction of propagation and polarization can be represented graphically

on a k-space plot. A “+” symbol is used to indicate TE polarization and a “X” symbol is
used to indicate TM polarization. The symbol is located at the coordinates (%,, k,), and

thus, the symbol’s location denotes the direction of propagation of the plane wave.

Figure A-2 illustrates this graphical representation by showing several plane waves ploted
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in k-space. Arrows are used to indicate the direction of the electric field for each of the
plane waves (as projected onto the xy-plane). The arrows are not necessary since the elec-

tric field direction can be deduced from the polarization (TE or TM) and the location.

The k-space plot does not give information of about the magnitude and phase of a plane
wave, nor the sign of the k£, component (i.e. dir, in Equation A-6), nor the wavelength. It
is assumed that the sign of £, component and the wavelength are the same for all plane

waves represented on a k-space plot.

Figure A-2. K-Space Representation of plane waves

The arrows are drawn for illustrative purposes only and represent the electric
field direction for the various plane waves.
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TE and TM Plane Wave
Decomposition of the Discretized
Electric Field

B.1. Decomposition of the Continuous Electric Field

In the continuum, for a periodic mask

Equation B-1. EG,1) = E(3,Di+ E,(x,0f + E,(x, )k
where E(J?, t) is a periodic function in x and in y with period L, and L, respectively. The

underbar indicates the complex field.

The coefficients for a particular Fourier component (k,, ky) = (22—'", ggr_z) (with m and
x Ty

n integers) for the x and y components of the electric field are written:
LL,

Ex, mn(ZO) - J’ Ex(x’y’ Zp 1) ei(k*x+k>‘y)dxdy

gy, mn(ZO) 00 gy(xa Vs 2Zgs 1)

Not all Fourier components correspond to propagating plane waves. Only those values of

Equation B-2.

m and n for which

Equati 24 k2 <2 = (27
quation B-3. ki +k; <k* = -

correspond to propagating plane waves. This is equivalent to the condition:
2 2
Equation B-4. (B +(2) <
quation ) W 1

where M and N are the number of propagating order on the positive half axes give by:
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Equation B-5. M= ﬂoor(ﬁ) and N = ﬂoor(LA)

For the purposes of imaging, only the propagating fields are of interest, for they are the
only components that propagate away from the mask and enter the imaging optics. The
propagating component of the electric field consists of only the propagating plane waves

and is written:

‘Eprap, x(x’ t) - ej(mt - kx+ky)) | Zx, mn(zo)

Equation B-6. K
gpwp, Y% 8) (%)2 + (1%)2 <l £, mn(Z0)

It is this propagating component of the electric field which is to be expressed as a summa-

tion of TE and TM plane waves:

k}’ kzkx
BquaionB7. | Fron @Ol = 3 or-tavhon| oy P [ATE(zo)J
é‘P"OP )'(x’ ) (ﬁ)2+(ﬁ)251 kx kzky ATM(ZO) 3

’ W T\W k_xy l-ck—xy

Comparing Equation B-6 and Equation B-7 immediately yields a relationship between the

TE and TM plane wave coefficients and the Cartesian component Fourier coefficients:

[k, kg,
E k,
Equation B-8. —x,mn| — kkxy lA TE} - [ M]k l:A TE]
Ey, mn kx kzk ATM kmn m ATM k
k., kk,
and inverting the system yields
Equation B-9. Arg [ ];1 E
ATM " _y’ mn

. . . . E .
Now a method of determining the Cartesian Fourier components [=*™"| from the dis-
E

—y, mn

cretized time/space fields stored by the FDTD method is required.
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B.2. Decomposition of the Discretized Electric Field

For monochromatic radiation,

EG, 1) = Ey(3)e™ = Ey()(cos(wr) +jsin(wn)) = Eo()(cos(@n) +jcos(or-))

= Re{E(%, 1)} +jRe{E(, - T/4)} = E(x,1) +jE(, - T/4)

where T = }, = 2(0—71: is the cycle (the period) of the time harmonic radiation. The expres-

sion expresses the complex field in terms of the real field at two points in time separated

by a quarter-cycle. This also applies to the y-component of the electric field and so:

E A t a a _
Equation B-10. =* ():’ )| - Ex(f’ ) +j Ex(':’ 1=1/74)
l_i'y(x, 1) Ey(x, t)_l Ey(x, t—-1/4)

and similarily for the discretized fields:

EM"ij, k nfi i n—Np/dp: :
Equation B-11. ELLi R _ {Ex["f’kl} AP VA

Eylij, k)| |BLLikl | Ey N4, k]

where it assumed that Ny is a multiple of 4.
The relation between the discretized and continuous fields is as follows:

Equation B-12.  E, (iAxi+jAyj + kAzk + Arey, (n+ 0.5)At) = E, [i, , k]

Equation B-13.  E,(iAxi +jAyj + kAzk+ Ary, (n + 0.5)A1) = E [i, j, k]
Where the Ar,, and Ar,, are the displacements of the x and y electric field components

from the center of the Yee cell.

The staggered grid arrangement (fortuitously?) has the z-coordinates of the x and y com-

ponents of the electric field withing the Yee cell equal (ie. 7, , = ). The xy-plane

rey,z

containing the the x and y components of the electric ficld at the position k = £ is
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Equation B-14. 2o = koAz+r,, , = kAz+r,, .

For convenience, it is assumed that the xy-plane in continuous space for which the fields

are decomposed into TE and TM waves is aligned with the xy-plane at %, that contains the

x and y components of the electric field. (i.e. z = z;). So, at z = z;, Equation B-2 gives

LL,

ZamCo)| [ [|EY 20 (1 ODAD) hxekygeg,
é'y, mn(Z0) 00 gy(x, ¥ 2y, (n + 0.5)Ar)

N_]N_] J(h_m(l+r¢xx)Ax+’2_.’!—n(’+rexv)A)
- XZ yz E}[i,), kole AxAy
B 21tm 2nn

i=0j= (’+r¢ x)AX+—(’+r¢ )Ay

E”[l,_], ko]e L.r i 304 )

Equation B-15.
where the right-most expression is a discrete sum approximation to the integrals and is

immediately recognized as Discrete Fourier Transform and thus

2ntm 2nn -1N, - 2nm, 27n,
J(L Gl mC Ay (= L A"*'L—Ay)
e > Z [,/ ke ’
= AxAy i= 0 =0
e B PN ()
e ™ Z Z s kle L. y
L i=0j= i
[ S atx + B a7)
e y E [-m,—n]
= AxAy ~F
S e o )
. Y Ey[—m, -n]
Equation B-16. - -
j(Zmn Ax+ Znnr Ay) J(an Ax+ 211:nr Ay)
ex, T lex,y e and;
The factors e © %= L, and e & 7 777 are the staggered grid

correction factors which correct for the fact that discretized field components approximate

the continuous field components at different places within a Yee cell.

Finally the coefficients for the TE and TM plane waves are calculated:

156



‘fTE, mn [jw:lk x, mn
‘:ITM, mn|k.. y, mn)

2nm 21m
-1 ej(TrMA” - yAy)Ex[ —m, —n]
= Axdy[u];,

" 27 ..7:n
_](——-'fl’,y xA'x + L ev _vAy)

e L y Ey[—m, -n]
Equation B-17. - ~ -
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‘ fPlane Wave Translation in K-Space

Consider a plane wave w = Arg travelling with k-vector k. This appendix finds the
Armly

plane wave w' = Are travelling with a direction ' = &+ Ak that has a polarization
Aty

that is “most similar” to the polarization of w and that has an energy the same as the energy

of w.

By “most similar” polarization it is meant that the electric fields of the two waves point in
the same general direction.! Geometrically, this “most similar” polarization condition is

defined as:

The wave w' will have a polarization that is “most similar” to the polarization of the wave
w when the projections of electric fields in the plane transverse to the propagation direc-

tion of the original plane wave w, are equal.

From Appendix A, all three Cartesian components of the electric field for w can be deter-

mined:

1. It may not be possible for the electric field of W' to point in the exact same direction as that of W
because of the requirement that the electric field be perpendicular to the direction of propagation.
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- |

by ki
L |Es Ky Ky y
Equation C-1. E=1|E| = _k_x % TE) k., #0
E kyy Koyl |ATM| 3
zl} k
0 -2
! k]

The projection of this electric field vector onto the plane P that is transverse to the direc-

tion of propagation, k, of the orginal wave, w, (i.e. P has normal k)is:

Equation C-2. E,.=E- _mz__

Now, an intermediate plane wave, w", with the direction of propagation )4 , is defined by

applying Equation A-16 to the x and y components of the projected electric field.

Equation C-3. w' = [A,a;'(lijpmji]

proj,y
The plane wave w" satisfies the “most similar” polarization condition but not necesarily

the energy condition and must be adjusted to do so:

Equation C-4. w = [A'T E:' = |w|l.w_"I
- Apdp -

The functional notation is introduced to represent this plane wave translation algorithm:

Equation C-5. w' = translate(w, 7(')
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