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Abstract

Multi-valued multi-level logic synthesis

Minxi Gao

Master of Science in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Robert K Brayton, Chair

We address the problem of multi-valued network minimization. Each node in the

multi-valued network is a logic function with multiple multi-valued inputs and a single

multi-valued output. An important step in network optimization is extracting new nodes

representing logic functions that are common factors of other nodes. This includes

methods for finding common sub-expressions, semi-algebraic resubstitution,

decomposing a multi-valued network, and factoring an expression. Network

reconstruction also involves methods including collapse, elimination and merge. We

concentrate on the generalization of these operations from the binary domain to the multi

valued domain. We start with the core algorithms for semi-algebraic division and

factorization for multi-valued networks. These include a satisfiability-matrix based

method and a maximum graph matching method. We then look at MV-network

manipulation operations such as kernel extraction, factorization, decomposition,

resubstitution, collapsing, elimination and node merge. We introduce a system called

MVSIS in which we have implemented the above methods. In the end, we present the

results of MVSIS and in particular compare themwith SIS on binary examples.
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Chapter 1

Introduction

Multi-valued minimization is useful in high-level hardware/software synthesis.

One approach has been to first encode the multi-valued variable, optimize in the binary

domain, and then translate back to the multi-valued domain. During this process, some

optimization opportunities are lost. Direct multi-valued minimization on these

applications may be able to uncover these opportunities. Multi-valued minimization is

also found useful in artificial intelligence and some asynchronous applications [LFS+]. In

this chapter, we will review previous research on multi-valued logic synthesis. We will

then address the multi-level multi-valued logic synthesis problem in particular. We will

briefly preview the optimization methods to be presented in this report. In the end, we

will give an outline of the topics covered in this report.

1.1 Multi-valued logic synthesis overview

Research on multi-valued logic synthesis for hardware was originally motivated

by the FSM state encoding problem. The two level multi-valued logic synthesis problem

was addressed earlier in the work of Rudell et.al. [RSV88] and efficient implementations

have been developed in ESPRESSO-MV. Techniques developed there were applied to

the encoding problem of two-level implementations [VSV89][VSV90]. Beyond this,

multi-level multi-valued minimization includes node minimization and common sub

expression identification. The node minimization problem in this context was recently

studied in the work of Jiang [JBOO].

Identifying and substituting a common sub-expression is performed via the

"division" operation that has been used extensively in the binary domain. Technology

dependent multi-level synthesis had been reported in the literature [WLC94]. The

technology-independent multi-level synthesis has been proposed in the work of Lavagno



et.al. [LMBSV90] with its implementation MIS-MV, targeting the state assignment

problem for FSM's. Lavagno's work, however, was restricted to networks with only 1

multi-valued input variable at each node, usually the state variable. Although applicable

to the state assignment problem, this soon becomes a limitation on general multi-valued

systems optimization. Also the implementation was extremely computationally intensive.

An algebraic division procedure that forms the core of multi-level logic synthesis was

first studied in the work of Hui Min Wang el at [WLC94]. In their work, however, a

rather restrictive set of notations has been employed that makes the application to general

multi-valued problems hard. In conclusion, an efficient set of techniques and its

implementation are still missing in the work of multi-valued multi-level logic

manipulation and optimization. This is largely due to the associated combinatorial value

explosion and the flexibility introduced by semi-algebraic operations, both of which are

unique to multi-valued systems.

1.2 Multi-level multi-valued network optimization methods

We look at a pure multi-valued logic network where each of its nodes has multi

valued inputs and a single multi-valued output. The primary cost function we target is the

number of cubes in the network. Consequently, the cost function we assume in the

following chapters is the number of cubes needed to represent the network, unless

otherwise specified. We have also implemented the algorithms in MVSIS with the cost

function being the number of literals needed to represent the network. When the cost

function is the number of literals, MVSIS gives almost the same results as SIS on binary

examples. We will discuss briefly the techniques for handling the literal cost function in

Section 3.10.

We first consider the core set of techniques associated with multi-level multi

valued minimization: algebraic division and factorization methods. The notion of

algebraic methods in binary logic [BHV90] is generalized to multi-valued logic. Here we

introduce a new concept in the next chapter that is unique to multi-valued logic: semi-

algebraic methods. The notations and operations used are similar to binary operations.

The complexity with multi-valued minimization, however, is much higher, due to the



explosion in the number of literals with different combinations of values in a variable,

and to the additional flexibility in semi-algebraic division. For instance a variable of n

values has 2" distinct literals. Two techniques have been developed that select only the

dividend with the fewest allowed values in each literal: the satisfiability-matrix based

method and the maximum graph matching method.

We then look at the multi-level minimization operations in the system MVSIS.

The operations that employ the semi-algebraic division and factorization techniques
include fast extract, decomposition, re-substitution and factorization. The operations that

do not directly apply the semi-algebraic methods but which are necessary for multi-level
network manipulations are collapse, eliminate and merge. Merge is a unique operation for

MV-logic. Because the operation, fast extract, extracts common sub-expressions that later
will become a new node with a single binary output, a merge operation is considered

useful. This combines multiple nodes into a single node with one MV output, possibly

with larger set of values than the original nodes, but no more than 2* values if kbinary
nodes are merged. As in the binary case, these operations are key in manipulating the

initial representation of the logic function for finding an equivalent optimal multi-level
structure.

There have been various representations for multi-valued logic functions and

relations [BK99]. The most commonly used ones are: the sum-of-product forms (SOP)

and multi-valued decision diagrams (MDD) for two-level logic and MV-networks for

multi-level logic. In this report, we use the notations and definitions from [BK99]

[Bra99]. Some of the notations will be repeated in this report for convenience.

1.3 Outline of this report

In Chapter 2, we first present the notations and definitions necessary for explaining

the algorithms. The main body of Chapter 2 is devoted to the two methods used in the
semi-algebraic division and factorization process: the satisfiability-matrix based method

and the maximum graph matching method. Both the theory and the implementation

heuristics will be given for the two methods.



In Chapter 3, we discuss the methods employed in implementing the multi-level

optimization operations in MVSIS, namely fast extract, factorization, decomposition, re-

substitution, collapsing, eliminate and node merge. At the end of this chapter, we briefly

discuss the multi-level multi-valued logic optimization problem when targeting cube and

literal cost functions.

In Chapter 4, we present the experimental results on various application examples.

The results include quality and speed issues. We apply MVSIS on both MV-examples

and binary examples. On binary examples, we compare the results with SIS.

We conclude this report in Chapter 5. Directions for future works are given also.



Chapter 2

Semi-algebraic methods

In this chapter, we first give notations and definitions necessary for further

discussion on techniques presented in this report. We then concentrate on the two

algorithms we have developed in semi-algebraic division and factorization on multi

valued logic functions: the satisfiabiliy-matrix based method and the maximum graph

matching method. In these methods, we treat binary and multi-valued variables

uniformly. We give implementation realizations of these algorithms and filtering

techniques to speed up the operations.

2.1 Notations and definitions

Definition 2.1 (Multi-valued Variable) A variable Xi is multi-valued if it takes on values

from a set Pi={0,l,...,\Pi\-l}.

Example 2.1 x taking on 5 valuesfrom {0,1,2,3,4} is a multi-valued variable.

Definition 2.2 (Multi-valued Literal) A multi-valued literal is a subset of values of a

multi-valued variable. A literal evaluates to 1 if and only if it takes on one of the values in

the subset.

Example 2.2 x! '̂~^ andj/'are literals ofx

Definition 2.3 (Multi-valued Cube) An MV cube is a conjunction of MV literals and

evaluates to I if and only if each of the literals evaluates to 1. Literals containing all

values of the corresponding variable do not appear in the cubeform.



DeHnition 2.4 (SOP) A sum-of-product (SOP) is the OR of a set of cubes, which

evaluates to 1 if any of the cubes evaluate to 1.

Note that such an SOP is a function with a single binary output and multiple multi-valued

input variables.

Definition 2.5 (Supercube) The supercube of a set of cubesf denoted o(f) is the smallest

cube containingf

Example 2.3 If x takes on values {0,1,2,3,4} and y takes on values (0,1,2}, then

Definition 2.6 (Cube-free) An expression f is cube-free if o(f) = 1.

Example 2.4/ = is not cube-free since o(f) = ^ 1

Definition 2.7 (Complement Cube) The complement cube c of cube c is defined as the

cube containing values not in c.

Example 2.5 Ifc = then c =

Definition 2.8 (Common Cube) An expression has a common cube iffor each variable,

there is no literal (exceptfor the literal 1) appearing in the cubes of the expression that

contains all other literals of that variable in the expression.

Example 2.6 g = ^{L3}y1,2,3}1.3} ^ common cube because the

literal contains y '̂̂ ^ and y' --^^ contains y '̂̂ K However f = y^"^^y^"^^+y '̂̂ ^y'" '̂

has no common cube



Note we want to make a distinction between supercube and common cube since we do

not always want to make an expression cube free. For instance, making/cube free would

give us

which is not an improvement. An expression is simpler if we only extract the common

cube, e.g., g = This is the technique used in MVSIS in a large

number of operations.

Definition 2.9 (Semi-algebraic Division) A division is semi-algebraic if the product of

the divisor and the dividend is neither 1 nor NULL, and if the divisor and the quotient do

not contain a common literal

Example 2.7 / = is a semi-algebraic division since variable x

appears in both the divisor and the quotient However the literals ^
and that represent x are not the same.

Note in semi-algebraic division, the divisor and the quotient are allowed to have non-

disjoint sets of variables. This is the fundamental difference between MV-logic

operations and binary logic. However, this permits the explosion ofthe number ofliterals

in a variable, but allows flexibility in division. In a sense, semi-algebraic division is a

form of division which lies between pure algebraic and pure boolean division.

Example 2.8 / = x'̂ '̂ "^^(y/^ -^+x^ '̂y^^^)= We see that division by

x(0,l,3} does not yields a unique quotient.

We want to use the above notations and definitions to state our problem:

Problem definition 2.1 (Factorization) Give a logicfunction f in SOPform, find a good

factoredform.



Example 2.9 ///=

Problem definition 2.2 (Division) Given a logic function f and a divisor d, find a

quotientf/d using semi-algebraic division.

Example 2.10 ///= a'"''•V-''+a'''V"+a"'V'-'"V',

d =

These two problems will be solved in the subsequent sections.

2.2 SatisfiabUity-matrix based semi-algebraic methods

The concept of satisfiability-matrix can be first found in the work of Lavagno et.al.

[LMBSV90], which is limited to only a single multi-valued variable in the logic function

f We have developed techniques that also employ the satisfiability-matrix concept but

can treat an arbitrary number of multi-valued variables in/. In our method, the definition

for satisfiability-matrix is different. We consider a matrix M, each cell of which is filled

with an MV-cube. Therefore M contains a positional arrangement of the MV cubes in it.

2.2.1 Theorems

Definition 2.10 (Value Condition) Let I be the set of rows and J the set of columns in M

in which value v of some variable appears. The value v satisfies the value condition if it

appears in all entries ofM given by (Mij \i e I, j e JJ.

Note if / or y has only one element, then the value condition is always satisfied.



Definition 2.11 (Satisfiability-matrix) A matrix M is satisfiable if all values of all

variables in all cubes of it satisfy the value condition.

Example 2.11 The matrix

row

column

I 2 3

I juiyii juiyu)

2

isnot satisfiable because the values a '̂̂ and do not satisfy the value condition. It
should have an a!^^ in all cells, an in cell (2,3) andan a '̂̂ incell (2,1).

For such a matrix, we follow the procedure below:

1. For each row i, form the supercube of all cubes in that row; denote it di.

2. OR these supercubes together to formd = Zi di.

3. For each columnj, form the supercube of all cubes in that column, denote it qj.

4. OR these supercubes togetherto formq = Zj qj.

Theorem 2.1 For any satisfiable matrix M, the d and qformed above have thefollowing

property:

Mij= diDqj

ZijMij= (d)(q)

Proof We will prove that Mijadi n qj and Mij^di n qj

Mij a di nqji Bydefinition of supercube, di is a cube containing every cube in row / and

qj is a cube containing every cube in column j, therefore My is contained in both di and

^j-
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di n qji Suppose Mijodi n dj, then there exists a variable with a value v such that

Ve di nqj but v 0 Mij. However, v must be in M,jt for some k (since ve di), and similarly

V must be in Mmj for some m (since veqj). Therefore, by the value condition for a

satisfiable matrix, v e Mij, a contradiction. Hence, Mij^ di n qj. m

Now we see a way to factor an expression. Given a logic function

/ = c/ + ...+ c„, we can arrange a subset S c {c/...., c,,} in a matrix M such that M is

satisfiable. The d and q obtained by the above procedure shall give us

/ = (d)(q) + R where R contains the cubes of / that are not in S. If the goal of the

factorization is to minimize the number of cubes in the factored representation of /, we

would want S to have the maximum cardinality.

The next job is to find a way to search for a largest such arrangement. A brute-

force method is to try all possible arrangements and select one of the largest. One well-

known technique for this is the branch and bound algorithm. However, we need to find a

good bounding mechanism. The above theorem on the value condition is theoretically

elegant but difficult to implement in reality. Making sure that the placement of a cube at a

new position (/, j) in M would involve validating the value condition of all values placed

in the matrix so far*. To assist the implementation of the branch and bound algorithm for

finding a largest satisfiability matrix, we have developed the following theorem:

Definition 2.12 (Lower Bound Cube) Define cube f (which depends on i, j) to consist

of the following set of values:

Z'-' = (v\3(k<j),ve Mikj and (3[m<i),vE M„,j)}

Note that for i=l or j=l, this is the null set.

* We assume that cubes are put in the matrix in row-column order, i.e.. f/. I). (2, I)... (m. ]). (2. I). ...
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Definition 2.13 (Upper Bound Cube 1) Define cube ufi (which depends on i, j) to

consist of thefollowing set of values:

ufi = fv\3lk<j),ve Miff or (V(m<i) \/(n<j),v0 M,„„))

Note that for i=l or j=l, this is the set of all values.

Definition 2.14 (Upper Bound Cube 2) Define cube uf^ (which depends on i, j) to
consist of thefollowing set of values:

U2^ = (v\3[m<i),vE M,„j} or(V(m<i) V(n<j),v0 M„„f}

Note that for i=l or j=f this is the set of all values.

Theorem 2.2 Amatrix ofcubes Mis satisfiable ifand only iffor each (i,j), My satisfies V
oMijCufi nu2^

Proof Let v be an arbitrary value, the value condition is equivalent to the following

propositions, assuming m < i, k < j:

1. if VE Mik and v E M,„j then v E Mij

2. ifVE Mifc and v E M„y then v E Mmk

3. ifVE Mmii and v E Mij then v E Mmj

4. if VE Mmk and v E Mij then v E Mn^

Let jc, a, b, c stand for the following propositions:

• X E^V E Mij,

• a E^3(k<j),v E Mifc,

• bi 3(m 0= i)B(k < j), v E Mmk,

• b B(m < i)(k < j), v E Mmk,

• c B(m < i),v E Mmj,

We can restated the value conditions as:

1. ac=>x

2. ac =^b

3. bx => a

4. bx =>c
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We look at the value conditions involving the new position (/, j):

ac=^ X

bx^ a

b^x =» c

or equivalently (solving for x)

ac=> X _
x=^ a + b

x^ c + b^

These conditions are precisely the lower bound condition /y and the two upper bound

conditions, ui^ and U2^ respectively. •

We have observed some interesting properties about the bounds computed above

that will later be found very useful in trimming down the search space for the branch and

bound algorithm in the implementation.

Theorem 2.3 is monotone decreasing as a function of j and is monotone

decreasing as a function of I

Proof for ui^\ Let

M/'-' = TijKJ Sij

where

Tij= (v\3(k<j,v E Mik)}

Sij=fv|y(m<i)\/(n<j),v0M,„„}

It is a trivial fact that is a monotone decreasing function ofj since the set of cubes

Si(j+i) considers, is a super set of the cubes 5y considers. Let w be any value in

• Case 1: suppose we Snq+i), then we SiqOuj'̂ sinceSy is monotone decreasing as a

function ofj.

• Case 2: suppose wESi(q+i), then w E Tuq+i) = Tiq uMiq. We have

MiqCiU}'"^ n uf") aui" = T,q USiq

=» WE TiqU(TiqUSiq) = Tiq U Siq = M/"^.

Cases 1 and 2 are exhaustive. Therefore for any value we we uj'^. u



13

Prooffor uj'i The proof for issimilar. •

Definition 2.15 ( Nncf) ^ncf of a cube c infunction f is defined as the number of cubes in

f including c itself, that share a common cube with c.

Example 2.12 / = a^^^b '̂̂ K The cube has an N„rf = 2
because besides itself, it shares a common cube a!^"^ with another cube af^"^y~'̂ ^.

Similarly, the cube has an Nncf = 2 and a!~^y'̂ ^ has an Nncf = I-

Theorem 2.4 If a satisfiability-matrix M has m rows and n columns, then each cube in

the matrix has its Nncf ot least MAX(m,n).

m n

Proof / =(£d,)(£gp +|r} = <I<m.l <;• <n} +{r}
i=l j=l

Here Mif=diqf The cubes My, 1 <j <n share a common cube di. The cubes My, 1 <i <m

share a common cube qj. m

2.2.2 Implementation heuristics and techniques

Theorem 2.2 enables us to focus only on the new position. This makes the

implementation ofthe satisiability-matrix branch and bound algorithm much easier. Here

we present one method of implementation and some important heuristics employed to

speed up the process. Experimental results of the implementation are presented in

Chapter 5, together with results of MVSIS user conunands related to algebraic methods

such as decomp, resub, etc.

There are two types of operations that we have associated with a satisfiability-

matrix. We call these inexact division and exact division. The first is used generally in

factorization, the second in algebraic division. Generally, in factorization, the divisor is

not known. Given a logic function /, the cubes of/ can be arranged in the satisfiability

matrix to obtain the cubes of the divisor d and the quotient q by computing the

supercubes of the row and column entries, as stated above. In this case, any set of cubes

of / may be in the factored form. On the other hand, in algebraic division, the user
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specifies the divisor d. Assuming the rows are to form the divisor, their supercubes have

to be exactly the cubes in d. We call the satisfiability-matrix operation with this

additional constraint exact division.

However, sometimes even for factorization, we may obtain a divisor that is likely

to be contained in the factored form, and we can use it to guide the branch and bound

search which generally speeds up the process. The divisor could come from a pair of

cubes in the function / that share a common cube. A second source of such a divisor is

similar to what is done in SIS [BHV90]. We perform inexact division twice. The first

time we use di = 1 + 1 in search for a satisfiability matrix to obtain a quotient qj. We

then use qj as the divisor d2 and search for a satisfiability matrix a second time to obtain a

better quotient q2 and possibly a different divisor d^. In this case, we do not require d^

to be exactly the same as d2 but d2 acts as a guide in the search.

To incorporate the above operations, we have developed additional constraints

besides the value condition. Assume the supercubes of the rows are to form the divisor.

In inexact division, the constraint is that the cubes in the matrix only have to be

contained in the divisor cube corresponding to this row. In exact division, the constraint

is that the supercubes of the rows have to be exactly the same as the divisor cubes.

One special case of factorization with the above constraint is to set the divisor as

1+1+...+1. Since any cube is contained in the 1 cube, the above constraints are

essentially ineffective.

We will present one method of implementing the branch and bound algorithm..

We give some very effective implementation heuristics and techniques used. First we

look at inexact division.

Given a logic function / with n/ cubes and a divisor d with rid cubes, we want to

find a largest (in terms of the number of cubes) quotient q. The resulting divisor d' does

not have to be the same as d.

The basic steps are:

rir

a. Layout a matrix M with rid rows and — columns. Each row corresponds to a
"d

cube in d.
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b. Fill each cell of M with a cube in /, in row-column order. At each position,

compute the lower bound and the two upper bounds and uz^. The cubes off
cannot be repeated. Semi-algebraic methods do not allow the repition of cubes.

The cubes already usedare marked unavailable for laterpositions.

c. If an available cube c satisfies the bounds and the constraint that c Q du mark it

used and proceed in row-column order to the next cell. Here di is a cube in d

corresponding to row i in M.

d. If all available cubes have been tried for a position, record the best (measured as

the number of columns) arrangement of cubes so far as bestjnatrix. Backtrack to

try a different positional arrangement of the cubes. A matrix found later with a

larger number of columns than the previously recorded bestjnatrix will replace

the previous bestjnatrix.

e. Repeat d until all combinations ofcube arrangement have been tried.

f. Compute the supercubes of the rows of the final bestjnatrix to form the divisor

d', and the supercubes of the columns to form the quotient q.

The additional condition c a di, for any cube c Ef 'm row /, is not necessary for the

correctness of the result but it helps to trim down the satisfying cubes and to speed up the

process. Because of thiscondition, d' od.

For exact division, everything is the same except that in the end, the supercubes of

the rows of the satisfiability matrix have to be exactly as the given d. This constraint

gives rise to the possibility that the final satisfiability matrix is not the largest one.

Althugh the worst case for branch and bound algorithm, unfortunately, is exponential,

our implementation incorporates a few trimming techniques that speed up the run time
considerably:

1. The rows and columns of a satisfiability-matrix can be permuted arbitrarily, we

have restricted the search such that the cubes in the first row and the first

column are ordered. This reduces the search space by tn!n! terms for a mxn

matrix.

2. The additional condition c odi rules out (for row i) the cubes in/that are not

contained in di.
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3. Theorem 2.3 allows early backtracking of the search.

a. Suppose at position (i, j), the current best_matrix has k {k>j) columns and

that fewer than k-j-\r2 available cubes satisfy u/K We will not get a better

matrix with at least k+1 columns because we would need at least k-j-\-2

available cubes satisfying My'-' to fill the cells (/, n), k+1 > n > j. We

therefore backtrack.

b. Similarly, we can backtrack if at position (z, j) if we have a best_matrix

with k{k> i)rows, and fewer than {k-i + 2) available satisfy uz^.

4. Theorem 2.4 can be used to prune the cubes in several ways:

a. All cubes with N„cf < m are pruned in the beginning, where m is the

number of cubes in the divisor

b. Order the cubes in decreasing order of N„cf in the hope that a large

satisfiability matrix could be found early in the process to serve as a good

bound for subsequent search.

c. Once we have discovered a satisfiability matrix with n columns, we prune

the cubes with N„cf<n. This could avoid the situation of later having to

explore satisfiability matrices with k <n columns. This also leads to non-

chronological backtracking: we jump directly back to the earliest position

that currently has a cube with N„cf<n. We will replace this cube with the

next available cube that has N„cf > n. This is because any cube in the

matrix with Nncf^n is not going to lead us to a satisfiability matrix with

more than n columns.

d. Part of Nncf of a cube may come from cubes that are already pruned. We

can therefore update N„cf (subtract the contribution of Nncf that comes

from pruned cubes) as cubes are thrown out of the candidate pool. As the

Nncf of a cube c is reduced this way, we may prune it too, once it falls

below «, the largest number of columns seen so far.

The heuristics are less effective for exact division. We have to check at each

position whether the row supercubes are equal to the given divisor. The upper bounds

heuristics 3 and 4 is now the column number of the largest matrix that has row
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supercubes equal to the divisor. This number is generally much smaller than that of the

largest matrix for inexact division. For this reason, even though exact division has more

constraints, the satisfiability-matrix based method is slowerthan inexact division.

The implementation of the satisfibility-matrix with the above heuristics shows that

the run time exceeds seconds when the number of cubes in/gets close to 55. In Chapter
3, we present the utilization of this implementation in algebraic operation such sls factor^
decomp and resub. Some experimental results are presented in Chapter 5.

2.3 The maximum graph-matching method

We mentioned that the satisfiability-matrix based method is slower for exact

division, even though exact division has more constraints than inexact division. This is

particularly undesirable in fast exact, a key operation in multi-level logic minimization
which finds common divisors. In our current implementation offast exact, the candidate

kernels are divided into all nodes to evaluate their values. This process involves a large
number ofexact divisions and we desire a faster process.

We have developed a second semi-algebraic method that applies only to exact
division and that has a run time of O(n^). We call this method the maximum graph
matching method because it can be reduced to this problem. For convenience, we restate

the definition of the maximum graph-matching problem:

Definition 2.16 (Graph Matching Problem) Given a graph G, the maximum graph
matching problem isfinding the maximum number ofconnected pairs ofvertices, under
the constraint thatnovertex isallowed to repeat.

In the following graph, a solution to the graph-matching problem is the set of node pairs
{(1,2), (3,4), (5,6)}
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The maximum graph matching method stems from the observation that, given a logic

function/and a divisor d, there is a set of candidate quotient cubes associated with

each cube of d. Unlike the binary case, each quotient cube is not unique.

Theorem 2.5 (Multi-valued Division) Given a cube di of the divisor and a cube cj off

the associated quotient cube is given by

Cj Q(7{Cj +5. )

Here dj denotes the complement cube of di. We call cubes and compatible if

they can be made the same within their ranges allowed by the above inequality.

Like weak division in the binary case [BHV90], the sets are "intersected" to find

the maximum subset of quotient cubes common to all {5'̂ ' }. A cube k is in this

intersection if there exists a set {ji, i = l,...,\d\} such that k satisfies the above inequalities

for all kjj .

Since the above inequalities can be represented as a cube in a larger space,

common intersection is equivalent to pair-wise intersection, i.e., a common cube exists

among {ky | i = l,...,\d\} if and only if each pair intersects. The algorithm

allows a cube cj to participate in several ofthe 5'̂ ', i.e., we allow for duplication ofcubes

of/. The set of all intersecting cubes (kj is the resulting quotient.
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If the divisor d is restricted to have only two cubes, the above problem reduces to

finding the largest number of cube pairs between and S^-. If the cost function is

cube number, there is no benefit in duplication of cubes of /. For this reason, in the

current implementation, duplication of cubes of/ is not allowed. This further simplifies

the problem to the maximum graph matching problem by the following mapping: each

cube is a vertex and there is an edge between c/ from and cj from S^- ifand only if

c; and C2 are compatible. To formally state the problem:

Problem definition 2.3 (exact division) Given a set of cubesf and a set of divisor cubes

{di, l<i<n},find the largest set of quotient cubes [qj, l<j<m].

We give the method for finding a solution for n - 2 (d = di -v d2) which reduces to the

maximum graph matching problem.

1. Find all candidate cubes for dj and d2: anycube c in d, is a candidate cube for dc.

dj: cii, ci2,c,„^, cii e di, 1 <ni <m

d2: C2i, C22,.... c,,,,, C2i E dz I ^n2 <m

2. For each candidate cube Cy, compute a candidate quotient cube qij that has a lower

and an upper bound on the values it can take (as in Theorem 2.5):

d,c,^Qq,j co-(c^ +Jj)

3. Express qij (called a flexible cube) in "positional" notation where we denote c as

the value I of variable k in cube c:

0,«.c,)'' =1

2, otherwise

Here 0 means the value must not be in the cube and 1 means the value must be in

the cube. So we have:

di: qn, qi2. .... q„^. 1 ^ni <m

d2' q2h q22y .... . I ^n2 ^ni
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The candidate quotient cubes for di and d2 form a bi-partition Bj and82. We want

to find a maximum compatibility of it. A quotient cube qj from Bi is compatible

with a cube ^2 from 82 if and only if k = qj * q2 ^ NULL where k = qi* q2 is

defined as:

Example 2.13

^2

k

k' =q^*ql =0^

ryf =1,^2 =1'^''
q'̂ =l,q'^ =2, or

q^=2,ql=i

q'l =0,^2 =0,or

q'i =0,q'i =2, or

q'( =2,q'i =0,or

[ qf =2,qt=2

k'̂ = q'i *ql = NULL,otherwise

Xi

nil

nil

X2 X3

1020 1102

1000 1122

nil 1000 1102

So k = Note we want kij=0 if = q'̂ = 2 in order to minimize the

number of values in the selected quotient cube. In fact, this is where the flexibility

comes into play with multi-valued division. We could have also obtained

k = asa correct solution. It is not clear though whether literal " is

simpler than literal ' . It will largely depend on what cost function is being

used in selecting from a "flexible" set of solutions.

4. Reduce the problem instance to a bipartite graph: each candidate quotient cube is

a vertex; there is an edge from q] g 8/ to q2 e 82, if and only if qi is compatible

with q2. There are no edges between cubes in 5/ or between cubes in 82.

5. Solve the maximum graph-matching problem.
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Note that since a solution for the maximum graph matching does not allow repetition of

vertices, there is no duplication of cubes in the final solution. The complexity of the

maximum graph-matching problem is 0{n^).

Example 2.14/=

d =

1. Candidate cubes

2. Corresponding quotient cubes

Here

^10.1.2,^5. ^n.2.3,^5,
c :

a c :

{3} C5/C{0,1,2,3}, {3}QS2Qf0,1.2,3IJ0}QS3Q{0,I,2,3I,

/// C S, C {1,3}, {0} QSsQ {0,1,2,3}, {0} C 56 C {0,3}

3. Find the maximumcompatible pairs of quotient cubes in the two sets:
^Pl. ^{0.1.21^1,3} yi.2.3IJ0.3}

a{0IJ03.2}. ^{0.1.2}^{1.3} yi.2.3}^l0.3l

So the quotient cubes are and ^with 5/ = S4 ={1.3}, 82 = $6= {0,3}, Sj =

{0,1,2} and S5 = {0,1,2,3}. This is what we would get by using the satisfiability-matrix

method on exact division.

The satisfiability-matrix based method and the maximum graph matching method

form the core algorithms used in a set of MV algebraic minimization operations

implemented in MVSIS. We have seen powerful minimization results from MVSIS, both

in binary examples and multi-valued examples. The experimental results are presented in

Chapter 5. The next chapter is devoted to this set of MV multi-level minimization

operations, namely,/v,/actor, decomp, resub, collapse, eliminate and merge.
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Chapter 3

Multi-valued multi-level minimization

in MVSIS

As pointed out in Chapter 2, semi-algebraic methods are key algorithms in several

important multi-level operations. In this chapter, we describe these operations in detail.

We extend the previous work of multi-level operations in the binary domain to the MV

domain. The basic concepts remain unchanged. The algorithms used, however, due to the

combinational value explosion of MV literals, have to be either modified or completely

replaced.

3.1 Preliminary

3.1.1 Overview

A multi-valued combinational logic network, or MV-network, is a network of

nodes; each node represents a multi-valued function, orMV-function, with a single multi

valued output and multi-valued inputs. There is a directed edge from node i to node j, if

the function at node j explicitly depends on the output variable at node i. The

optimization problem of such a MV-network is to find an equivalent optimal MV-

network. The optimization criterion is a function of the total number ofnodes and the size

of the MV-function contained in each node. This exact cost function will depend on the

final target of implementation.

Together with the node-minimization methods developed in [JBOO], the algebraic

methods form the core of the current version of a multi-valued logic synthesis system

called MVSIS. MVSIS is specifically targeted for multi-valued circuits and supports a

design methodology that allows the designer to search a larger solution space than was
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possible previously. In the current version of MVSIS, we have developed and included
techniques for combinational optimization of an MV-network. Like SIS[SSL+92],
MVSIS is an iteractive tool. When applied to purely binary networks, it behaves almost

exactly like the technology independent part ofSIS. In the sequel, the main multi-level
minimization components of MVSIS are described.

3.1.2 The default value

Before attempting the operations used in MVSIS, it isuseful to clarify the concept

of "default value" and how it is handled in MVSIS. In the multi-valued domain, the

concept of "complement" is generalized to "default value". For each node, one of the
value functions is selected as the default value. As in SIS where the complement of a

node is not stored, we do not store the cover for the default value in a node. We compute

it on the fly when we need it. For example, if the output ofa node is used in a fanout in

the form of its default value, and the node is eliminated or collapsed into that node, the

default value function must be computed to effect the elimination. The values of the

nodes and statistics of the network are based only on the primary values and not the

default value. However, there is one command reset_default that looks at each node and

chooses a default value for it based on the costs of the value functions. For example, if

the cost function is the number of cubes, each value function will be minimized with

simplify, and the default value will be chosen to be the value whose lunction has the most

cubes. In this way, we somewhat take into consideration the output phase assignment

problem.

3.2 fx

The command fx looks at all the nodes in the network and tries to extract good

common factors and create new nodes in the network, re-expressing other nodes in terms

of these newly introduced nodes. It is one of the transforms used to break down large

functions into smaller pieces. It has two options, -q and -g. The first option corresponds

to iterative calls tofxl -q (described below) until no kernels can be identified for further
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improvement in the overall network; the second option corresponds to an iteration oifxl

-8-

The -q option is similar to that used in SIS where we use the two-cube divisor

method [BHV90] to extract kernels. The two-cube divisors of an expression is the set

r(/)={common_cube_free{Ci,cj)\€•„ CjEf}

Notice we emphasize the fact that we are using the commonjcubejree, not the

super_cube_free kernel of c, and cy, for the reason described in Chapter 2. Note also that

there are at most ^ ^ ^ two-cube divisors for an expression /, where \f\ is the
2

number of cubes in/. It was demonstrated in [BM82] that the use of such divisors in an

extract process leads to little loss of optimality over the use of kernels but is more

efficient. Their method processes two-cubes as well as single-cube divisors at the same

time by using the rectangle-covering technique [BHV90]. This is the method

implemented as fx in SIS. In MVSIS, if the cost function is cube number, only two-cube

divisors are considered. All such two-cube divisors are extracted this way from all node

functions and kept in a hash table.

The -g option is different from the SIS fx -g operation. Instead of finding all

kernels as candidate divisors, fx —g in MVSIS only finds some additional divisors that

may not be discovered byfx—q. In the binary domain, the following is true: all terms with

cube number ^2 in the factored form of f can be found in the set iff). In the MV domain,

however, this does not hold any more, again due to the flexibility in semi-algebraic

division. As an example, consider

so is a valid divisor but in not an element of T(f). The fx-g method

generates an additional set (in addition to T(f)) ofcandidate double cube divisors, one for

each function in each node, by factoring each node in the network. Some of these divisors

cannot be found byfx -q. This method may take more CPU time if the number of cubes

in the nodes is large because factorization in the MV domain is expensive. There is a

timer implemented in the factorization (using the satisfiability-matrix branch and bound

searching) algorithm that will terminate the search if the time limit is exceeded. The time
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limit can be set by the user by invoking the command set timejimit n, where n (in

seconds) can be any real number, fx -g always performs better than fx -q because fx -g

calls/x-q first, and if there is no more kernels with positive merit to be found with fx -q,

it uses the factorization method to find additional divisors.

Infxl -q, the kernels are extracted and kept in a hash table. Each of the kernels is

divided into all the nodes in the network. Each kernel is given a figure of merit by

keeping track of the saving accumulated through this division process. The divisor with

the greatest merit is chosen, implemented as a separate node with two values and

substituted into all the nodes in which it appears. The substitution is performed using the

fast exact semi-algebraic division. The two-cube candidate divisors make good use of the

maximum graph matching method, which can only be applied to divisors with exactly

two cubes in the current implementation. After the function of the new node is substituted

into other nodes, its complement is also tried for division in case there is extra saving

there. Even though the kernels are two cube divisors, their complement may not be.

Single cube covers can be trivially dealt with. Covers with more than two cubes have to

apply the satisfiability-matrix based method.

A faster way to implement fxl -q is to estimate the merit of the kernel by the

number of its hits in the hash table. The number of hits of a kernel in the hash table is

directly related to the number of its appearances in the node functions. However, this

number is not exact. Sometimes a kernel k is divisible by a node np but np may not

generate a hit for k because k does not appear in T(np), the common_cubeJree kernels of

np. This is the same reason that accounts for the difference between fxl -q and fxl -g.

This method, however, avoids having to divide each kernel into all nodes. This method is

in the process of being implemented and we expect improvement in the run time.

In this process, binary and MV variables are treated uniformly. However, for the

MV variables, we have the additional problem that both the cube-free kernels and the

division itself are not unique. The satisfiability-matrix method and the maximum graph

matching method only take care of flexibility in the division. To identify common sub

expressions optimally, however, we would need a method that uses the redundant values

in the kernels as well. Currently we have used the minimal form of the cube-free
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expressions (the one with the least number of values). This is an area that is still under

investigation.

In fxl -g, first fxl -q is called. If fxl -q cannot find any kernels with positive

merit, each function at each node is factored and the best two-cube kernels found this

way are kept at each node in an auxiliary field. These kernels are then each divided into

all nodes in the network to collect a value. The one with the largest value is extracted into

a new node and re-substituted into all other nodes. Therefore fxl —g always performs no

worse than/ri -q. In Figure 3.1, we show an example offx wherefx -q does not discover

the kernels while/x-g does.

mvsis> print

{q}{l} = z{2}w{3}+z{3}w{2}+z{0}w{l}+z{l}w{0}
{q}{2}=z{3}w{3}+z{0}w{2}+z{I}w{I}+z{2}w{0}
{q}{3}=z{0}w{3}+z{I}w{2}+z{2}w{l}+z{3}w{0}
w{l}=x{2}y{3}+x{3}y{2}+x{0}y{I}+x{I}y{0}
w{2}=x{3}y{3}+x{0}y{2}+x{I}y{I}+x{2}y{0}
w{3}=x{0}y{3}+x{l}y{2}+x{2}y{l}+x{3}y{0}

mvsis> print_stats -f

adder_mod4: 2 nodes, 1 POs, 24 cubes(sop), 48 lits(sop), 48 lits(fact.)

mvsis> fx -q

mvsis> print_stats -f

adder_mod4: 2 nodes, 1 POs, 24 cubes(sop), 48 lits(sop), 48 lits(fact.)

mvsis> fx -g

mvsis> print_stats -f

adder_mod4: 4 nodes, 1 POs, 16 cubes(sop), 44 lits(sop), 38 lits(fact.)

mvsis> print

{q} {1} = z{2,3}w{2,3}new0{ 1}+z{0,l }w{0,l}newO{ 1}
{q}{2} =z{0,3}w{2,3}new0{0}+z{l,2}w{0,l}new0{0}
{q}{3} =z{0,I}w{2,3}new0{I}+z{2,3}w{0,l}new0{I}
w{I} =x{2,3}y{2,3}newl{I}+x{0,l}y{0,l}newl{l}
w{2} =x{0,3}y{2,3}newl{0}+x{l,2}y{0,l}newl{0}
w{3} =x{0,l|y{2,3}newl{l}+x{2,3}y{0,l}newl{l}
newO{ 1} = z{0,2}w{ l,3}+z{ l,3}w{0,2}
newl{ I} = x{0,2}y{ l,3}+x{ l,3}y{0,2}

Figure 3.1: An example offx -g wherefx -q does not save
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Figure 3.1 shows a list of operations in MVSIS. The cost function is the cube cost

function. As we can see, fx -q does not change the network, while fx -q discovers the

kernels newO and newl and saves 8 cubes.

3.3 factor

In factorization, we use inexact division and the divisor d is used only to focus

and limit the search space for a satisfiable matrix, d can be set to 7+...+7 to allow the

maximum freedom. We can also select candidate divisors by making pairs of cubes cube-

free, and use them to limit the search space for a satifisable matrix. Additionally, just as

in the binary case, it is not necessary to get the best result at first; in the second step, the

quotient obtained in the first stepcan be used as the divisor in a second division, leading

possibly to a better factorization. This is the basis of quick factor (QF), used in SIS

[SSL+92], where the first divisor is chosen to be a level-zero kernel.

In the current implementation of MVSIS, d is set to 7+7 in the first step. The

quotient q obtained in the first step is then made common_cube_free {q) and used as the

divisor in the second step. Note again we make a distinction between super_cube_free

and common_cube_free for the reason discussed earlier (See the definition for Common

Cube). The operation in the search for a satisfiability-matrix is inexact division where

the row expression obtained from the satisfiable rectangle need not equal q from the first

step. The divisor and quotient obtained this way are factored recursively to obtain the

final result. Here is a brief description of the algorithm, which has a similar structure as in

SIS:



GFACTORiF) {

D=l+1:

If(!IS_COMMON_CUBE_FREE(F)) {

(D,Q)=MAKE_COMMO_CUBE_FREE(F);

HD is the common cube, Q is common_cube_free part of F

return GFACTOR(Q)D;

}

(D,Q,R)=MV_FACTOR(F,D):

II MV_FACTOR returns NULL if F is not factorizable

If ((D,Q,R) == NULL) return NULL;

return GFACTOR(Q)GFACTOR(D)-^GFACTORiR)

}

29

Figure 3.2: GFACTOR Procedure

Because the satisfiability-matrix based method only finds quotients with at least 2 cubes,

single-cube factorization has to be done in a separate routine called
MAKE_FIRST_PAIR_COMMON_CUBE_FREE():

MV_FACTOR(F,D) {

(Q,D,R)=SAT_MATRIXJNEXACT(F,D);

If((Q,D,R)==NULL) {

n SAT_MATRIX_INEXACT() returns NULL if it cannot find a quotient with >2cubes

(Q,D,R) = MAKE_FIRST_FAIR_COMMON_CUBE_FREE(F);

}

return (Q,D,R);

Figure 3.3: MV_FACTOR Procedure
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SAT_MATRIXJNEXACT(F, D) performs a first round search for a largest

satisfiability-matrix with d = 1+1. If a quotient q is found, it then performs a second

round search using q as the divisor for a largest satisfiability-matrix. The quotient q'

obtained in the second round is returned as Q, the divisor d' {d' may not be the same as q)

obtained in the second round D and the rest of F is returned as R.

MAKE_F1RST_PA1R_C0MM0N_CUBE_FREE(F) finds the first pair of cubes in

F that's not commonjcubejree. It extracts the common-cube as D, the

common_cube_free part as Q and the rest as R. If all pairs of F are common-cube-free, it

returns NULL.

Because SAT_MATR1X_1NEXACT uses the branch and bound algorithm, it may

take a large amount of CPU time if the number of cubes in the function is large. A timer

has been implemented which controls the maximum amount of time that can be spent in

factoring a single function. This is especially useful when the factoring is only being used

to estimate the value of a node or produce a readable output.

Below we show several results of the factorization algorithm applied to different

functions. Onlythe final resulting factorizations are given. Again the initial covers are the

covers obtained by multiplying out the expressions.

Figure 3.4 Examples offactor

3.4 decomp

The command decomp does a complete factoring of each node, but instead of

creating a factored form for each, decomposes the node according to its factorization.

Each node is decomposed into smaller nodes that cannot be factored further. More

intermediate nodes are produced this way. gxl or fxl may not have produced such

intermediate nodes, since they do not necessarily gain a positive merit by substitution into
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Other nodes. However, such nodes can always be collapsed back by the command

eliminate. After decomp, resub (see below) should be executed to take advantage of the

newly produced nodes, followed by sweep to eliminate duplicate factors. Then eliminate

can be done to clean up the network, eliminate may reproduce some of the nodes

previously decomposed. The decomposition process is to make the internal factors of a

node available to other nodes, thus creating a better candidate pool of nodes for resub.

One such example is given below:

12} ^

V

JOI ^ a"'lb"'-"c"'-"d"'-"^''"newl"'
J2J ^ a'-'V -

newO"' = c'W'+e""
newl'" = WV
«ew2"'=fc'-'+6"V-'
new3 '̂̂ =
new4 '̂̂ = c '̂̂ +d!~^
new5^^^ = new2 '̂̂ new4^^^+b^~U '̂̂ new3^^^

Figure 3.5: Examples of decomp

3.5 resub

Re-substitution of one node into another is performed in MVSIS by using resub.

resub takes a list of nodes as argument for re-substitution into all nodes in the network. If



32

no argument is given, all nodes are considered. This uses the two new methods of "exact"

semi-algebraic division, developed for multi-valued logic in Chapter 3. Again, if the

divisor is a two-cube divisor, then the fast method based on maximum graph matching is

used. Otherwise, the slower branch and bound method based on a satisfiability matrix is

used. Because the default value is selected to be the most costly value function by the

function reset_default, sometimes it is beneficial not to consider the default value in re-

substitution for speed considerations. The option -d in resub enables the option to also

consider default value.

If resub is invoked with no argument, all pairs of nodes have to be considered in
'S

theory, implying as many as fmnj divisions, where m is the average number of functions

in each node and n is the number of nodes in the network. As in SIS, filters are used to

circumvent most of these divisions. The functionfj is not an algebraic divisor offi if:

1) fj contains a variable not in/,

2) fj has more terms thanf,

3) for any variable, the total number of times its literals occur in f exceeds

the total number of times the corresponding subjiterals occur mf.

4) fi is in the transitive fan-in off

Definition 3.1 (sub_literal) a literal U is a subjliteral ofanother literal hifli ^h-

For instance, the literal af '̂̂ is a subjliteral of the literals and a! '̂̂ '̂ ^, assuming a

takes on 3 values. The setofsubjiterals of is {a!^^, a!^\ a! '̂~^}.

Note compared with the same set of filters in SIS, we have replaced "literal" in

filter 1) in SIS with "variable" in MVSIS. Also we have replaced filter 3) in SIS "for any

literal, the number of times it occurs in fj exceeds that infj\ with the above filter 3) in

MVSIS. This is because we have relaxed algebraic methods to semi-algebraic methods

for MV. We illustrate the new modifications with an example:

fi =

f.= J0.IJbl2J.4}^^f0.2,y0.4}
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Note fj contains a literal not in /), but filter 1) fails the check because we are now

looking at variables. The old filter 3) would hold also because of this. With the new filter

3), however, the set of literals of variable a in^ is L = The total number

they occur in fj is 2. The corresponding set of sub_literals of L is

The total number of times they occur inf is 4. Therefore filter 3) also fails the

check for variable a. Filter 3) is based on the observation that any literals in fj cannot be

expanded inf when multiplied out by a potential quotient.

With these filters and the fast two-cube maximum graph matching based division

technique, the resub operation is fairly fast in MVSIS. Some of the experimental results

are presented in Chapter 5.

Although the operations collapse and eliminate are not directly related to

algebraic methods, they are the inverse of resub and play an important role in MV-

network manipulations. Often, reconstructing the network by eliminating most of the

current structure leads to the discovery of better common sub-expressions. Again, an

overall good solution in minimizing the network is the collective work of many kinds of

operations, often through a script.

3.6 collapse

"Collapsing" is the inverse operation of "substitution". If no arguments are given,

this command collapses the entire multi-level network so that each output is in terms of

the primary inputs only. All intermediate nodes are eliminated. If only one argument is

given as the node name, then this node alone is collapsed and expressed in primary inputs

only. All other nodes are unchanged. If two arguments are given, which are names of

nodes, a node and one of its fanins, then the fanin node is collapsed into the fanout node

so that the fanout node is not dependent on the fanin node any more.

In general, the fanout node gets enlarged after collapsing and we want to

minimize the fanout node after the operation. The weakest node simplification is

SNOCOMP where only a single iteration is carried out in espresso-MV and the reduced

offset is used to compute the complement. For a network with a large number of nodes,

however, collapsing nodes close to the primary outputs may involve a large number of
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collapsing of node pairs. As the node function gets larger in this process, simplifying the

node each time is collectively costly and could result in a large amount of CPU time.

Filters should be used and techniques weaker than node_simplijy should be exploited. If

fanin g is to be collapsed into fanout /, as in the binary case, we use the following

algorithm forcollapsing g into each value function/' of/:

collapse(f\ g) (

for each value j ofnode g {

(/^,, r) =mv_alg_cofactor(f\ g');

Uf'̂ j =multi-valued algebraic cofactor of the i''' function /' of/with respect to the

// literal g^-'̂ . r = terms off that do not contain the variable g

}

result = r;

For each j (

If^ is constant I, then result =coverJoin(result, f^j);

else if g' is constant 0, then do nothing;

else I

temp = coverjintersectig', /^ );

result = coverjoin(result, temp);

}

}
return result;

Figure 3.6: collapse node pair procedure

Definition 3.2 (MV_alg_cofactor) The multi-valued algebraic cofactor /V of an MV-

function/is the algebraic cofactor ofthe binary function/' (the f value function off) of
/with respect to the literal g^^^. The algebraic cofactor ofa binary function/' with respect

to the literal g^^^ is the set ofcubes in/' in which the literal g^^^ appears.
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/', = NULL

ri {2} f3}
" s

{0.1}
r = a' '
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Note f'. +rpreserves the onset of/' whenever g =7, i.e., g•' •(f. +r) =g^ -f. Note also
•"j "

that MV_alg_cofactor is a modified version of a special case of the multi-valued cofactor

[BK99], where the set of cubes that partitions the input space of/is the set of single-

valued literals of the input variable g. The above collapse algorithm is can be viewed as

based on a modified Multi-valued Shannon Expansion Theorem [BK99],

/' =s g^/'. +r. This algorithm is ageneralization of the algorithm used in SIS node
collapse where each node has only one value function.

The filters are for special cases where g^^^ = 1 or ox g^^^ = 0. The sub-routines
cover_join and cover_intersect apply techniques that reduce the cover size but do not

have to call nodejsimplify. These techniques include eliminating cubes in the cover that

are contained in other cubes, and merging cubes that are distance 1 apart. In some of the

examples that we experimented with, the above method shows superior results in terms of

run time, compared to the alternative method that calls node_simplify after all values have

been collapsed. These examples are often the ones with a large number of nodes, where

collapsing a single nodeclose to the primary outputs involves many node paircollapses.

3.7 eliminate
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The command eliminate eliminates all the nodes in the network whose value does

notexceed a specified threshold. The value of a node represents the increase in cost in the

network if the node is eliminated. If the value is less than (or equal to) the specified

threshold, the node will be eliminated by collapsing the node into each of its fanouts. Of

course, a primary input or a primaryoutput will not be eliminated. The command iterates,

since eliminating one node may affect the value of other nodes. The iteration continues

until all remaining nodes have a value greater than the threshold.

If the cost function is the number of cubes in the SOP form, a fake collapse (the

actual network is not changed) is done to obtain the covers of the fanouts after

eliminating the node. The covers are minimized to accurately reflect the savings. The

difference in cost is then computed before and after the fake collapse, and assigned as the

value of the node. This method is exact but may be expensive if the fake collapsed node

is large. Alternatively, faster methods can be tried to only give an estimate of the cost.

If the cost function is the number of literals in the factored form, evaluating the

node value is costly since it has to invoke the satisfiability-matrix based branch and

bound algorithm to perform the factorization. A heuristics has been developed to estimate

the node value without factorization. Suppose the node being evaluated is np, then:

value{np)= YjhJt ~
ieFO(np)Jerange(i),kerange{np) ieFO{np).jerange{i),kerange[.np) k

Here i is the i''' fanout ofnp, j is the f' value of the fanout and k is the k!'' value of up. Ujk

is 1 ifthe value kofnp appears in the literals ofthe value function ofits i''' fanout and

0 otherwise./a is the number of distinct literals in the value function of np in SOP

form. For instance,/i = 5 in the function

fl^^^and " appear multiple times but are counted only once. Note and

are distinct literals. The term ^^uk fk 'san estimate of the number of
te FO(np), j€ rangeO ),ke range (np)

literals in the fanout terms involving np after collapsing. We use the term ^ as a
k

lower bound for thenumber of literals in the factored form of thek''' value function of np.

This is because the number of literals in the factored form is at least the number of
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distinct literals in the SOP form. Similarly, ^hjkfk
ie FO(np). ye ranpeU ).ke range( np)

are both lower bounds in that we only count distinct appearance of
/e FO (np), je range( i ).ke mnge{np)

literals and values of np in the fanouts. Overall, value(np) gives an estimate of the

increase in the number of literals in factored form after collapsing.

This method of evaluating a node avoids having to factor the node and its fanouts.

In the eliminate operation, because affected nodes have to be updated after each collapse,

the number of factorization involved may be large and this provides an way to give an

estimate of the effectiveness for eliminating a node.

3.8 merge

We mentioned in the operation fx that the new node extracted from the set of

kernels is a binary node with its positive phase representing the kernel. In a way, this is

not done in a purely multi-valued fashion.

One way to produce multi-valued kernels is to extract all kernels and find a

collection of kernels that are mutually orthogonal and that gives the best saving in the

network. This collection of kernels will form a new multi-valued node, each of whose

value functions is one of the kernels in the collection. This method has not been

implemented andthus we do not know yet the effectiveness of the method.

A second alternative is to merge nodes afterfx. This is similar to the first method

except that we update the network after extracting each binary kernel, and then in the end

cluster the kernels that are mutually orthogonal.

Attentive readers may have noticed that the merge concept is not restricted to

mutually orthogonal nodes, neither is it restricted to binary nodes. The generalization is

as follows:

Given n nodes, np], np2 np„„ each taking values from the set Pi, P2, Pn

respectively. The merged node new_np of these nodes has the value functions as:
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new_np^^^ = n npj^^ n... n npj^^

= np," nnp,'^ n...nHp;''

=np/'"''-" n...nnp;'""'-"

That is, the set of numbers (ij, ... in) is mapped to a value

ij>^P2\x..x\Pn\+i2x\P3\>c..>^Pn\+.-+in' Figufe 3.7 shows an example.

(0, 0, 0) <-4 0

(0, 0, 1) 1

(0,1, 0) 2

(0, 1,1) 3

(0, 2, 0) 4

(0, 2, 1) 5

(1,0,0) <-> 6

(3, 2, 1) <r^ 23

Figure 3.7: Mapping of values from 3 nodes to a single nodefor \P]\=^4, \P2\=3, \P3\=2

Thus the node new_np has \P]\x..x\P„\ values. It is trivial to realize that if nodes

np/,...,np„ are deterministic and completely specified, then the merged node new_np

produced above is deterministic and completely specified. Some of the value functions of

new_np may be empty and we can eliminate them. As a special case, if nodes npi, ..., np,,
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are the binary kernel nodes produced during fx, and if they are mutually orthogonal, then

only the value functions of new_np generated from

n npP^ n ... n npj^^ = npP^, l<i <n

are non empty since,

np!'̂ n npj^^ = np/^^il- np/'̂ )= npj^^, i

After eliminating the empty value functions from new_np, we obtain a new_np with

exactly n values, each carrying the function ofa binary kernel. Notice we do not write out

the default value function as it is implied as the complement of othervalue functions.

The merge command is a command unique to MVSIS. If arguments are given as

names of nodes, it takes this list of nodes and forces a merge of them into a single multi

valued node according to the method described above. Of course a node will not be

merged if it would produce a cycle in the network. If no argument is given, merge looks

for likely lists ofcandidate nodes and merges them if a gain in the value for the network

can beobtained. This may result in several additional nodes through multiple merges. We

call the first case theforced merge and the second the optimized merge. For the optimized

merge, two algorithms were considered:

Method 1:

a) Construct a graph where each vertex corresponds to a node in the network and

each edge between two nodes carries a weight equal to the saving obtained by

merging these two nodes.

b) Find the maximum number of pairs, no nodes being repeated, that has the largest

total sum of edge weights.

This problem turns out to be NP-complete. However a clever method exists that translates

the problem to the unate complement problem:

i) Create n binary variables xi...Xe, each corresponding to an edge in the network

ii) For each vertex v with degree k, create k cubes xixj where / and j are two

different edges of v.

hi) OR all cubes obtained in part ii) for all vertices to form a cover F.

iv) Obtain the SOP form of the complement of F; call it F .
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v) The set of edges in the final solution is, all positive phase variables a/ in a

minterm of F that has the largest total weight.

Note this method differs from the maximum graph-matching algorithm because the edges

are weighted.

Example 3.2

V2

v.?

Weight of the cubes:
ei'ez^cfes^'. 1

efe^^ef: 2+2=4
e2'cf ef: 3+4=7

Solution: { ei, es}

V4

V}: eie2

v?.' ejejt+eie4+e3e4

v3: ^4^5

V4: e2^.?+^2^5+^.?^5

F = e]e2+eie,j+eie4

+e3e4+e405+0203

+0205+6303

F = of02^ 64'05^

+ 0i'03'05'
+ 02*03* O4'

Figure 3.8: Solving for the set of non repeated edges with maximum weight

Method 2:

The second method is simpler. It merges one pair of nodes at a time with the

largest saving, updates the network, and iterates until no further improvement can be

made. Although both methods are implemented, currently MVSIS adopts the second
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method since the merge of one pair of node may affect the weights of other node pairs.

Updating the network after each merge more accurately reflects this effect.

The reverse operation of merge is encode which breaks a multi-valued node into

binary nodes. This is being implemented in MVSIS and it should be interesting to see the

result of network reconstruction through merge and encode.

merge and encode operationsalso makes it possible for translation between binary

and MV networks. The next step in MVSIS is to apply such translation and compare the

effect of two different approaches: 1. pure MV minimization; 2. encode into binary

domain, perform binary minimization and decode back to MV domain.

3.9 The cube and the literal cost functions

Now that we have a feeling for the operations in MV-network minimization, we

discuss in this section the impact of the cost function in the implementation of the

operations.

The goal of minimizing an MV-network depends on the final types of target

implementation. Minimizing the number of cubes or literals is generally beneficial for

both hardware and software.

One of the applications that we are looking at is a compiler for control dominated

software applications [JGSKOO] where code size or evaluation time is key, while time for

compilation can be relaxed. The input to the compiler is the intermediate representation

(IR) of the program after the front-end lexical analysis and parsing. We decompose the

IR into a dataevaluation part and a control part. The control part is then translated into an

MV-network representation, which is then optimized using both algebraic and don't care

based algorithms. For this application, we have developed a cost function which is

primarily the number of cubes, and secondarily the number of nodes in the network. The

algebraic methods developed above such as the satisfiability-matrix and the maximum

graph matchingalgorithms have been targeting at the cube cost function.

Hardware application may favor a cost function emphasizing the number of

literals. The major change in algebraic methods for the cost function being number of

literals is the addition of the single cube kernels in fx. We do not have to consider single
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cube kernels with the cube cost function since they do not give savings in cube count. We

have a way to extract single cube kernels as the common cubes of cube pairs in different

node function. We have implemented in MVSIS both the cube cost and the literal cost

function.

3.10 other operations in MVSIS

The current MVSIS version implements the operations mentioned above. Another

set of important operations is the node minimization routines. Like SIS, the node

minimization commands include simplify and full_simplify. simplify is essentially

espresso-MV. fulljsimplify was generalized from the binary domain in the work of

[JBOO]. Both are fully functional and together with the algebraic method packages,

MVSIS now is a complete software package for combinational optimization of an MV

network.

To make MVSIS an interative tool, we have implemented a set of user I/O

interface commands. The commands that are similar to SIS commands include readjblif,

print, print_factor, printjstats, chng_name, reset_name, alias, unalias, delete, undo,

echo, history, runtime, set, unset, sweep, and usage. read_blif reads in ordinary blif files

like SIS. Commands unique to MVSIS are readjblifmv that reads in a network in blifmv

format, print_range that prints out the size of the range for each variable, and

reset_default, which were discussed previously. In addition, we have a set of verification

commands. The command validate compares the current MV-network with a blif or

blifmv file (generally the original input file) and outputs a message indicating whether

they are functionally equivalent by random test vector simulation.

3.11 Causions on using MVSIS

There are a few things about the current version of MVSIS worth mentioning:

1. We do not have a facility yet to allow external don't cares. The input patterns not

specified in an input file are assumed to produce the default value.
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2. The computation time for fx, factor and full_simplify may be long if the

network/nodes contain a large number of cubes or literals. Currently there is a timer

implemented in each of these commands to terminate if the specified time limit is

exceeded, and a partial result is returned.

3. The computation time for collapse may be long if the network contains a large

number of nodes and a node close to the primary outputs is collapsed.

4. For very large networks with overa few thousand cubes, operations such as/x and

full_simplify may run out of memory. It is recommended to minimize the network by

calling simplify once it is read in, and to break down large nodes into smaller ones by

calling decomp.



45

Chapter 4

Experimental results

Because of the large solution space for minimizing an MV-network, finding the

optimal solution is at least NP-hard. Hence, we aim for a set of heuristic minimization

methods, each focusing on a particular aspect of the implementation. This set of methods

includes the node-minimization methods, mentioned in Chapter 1, and algebraic

operations discussed in Chapter 3. The whole minimization process is often executed
through optimizing scripts, which are an assembly of the minimization methods. Scripts

can heuristically lead to a good solution.

In this chapter, we first present experimental results concerning the algebraic method

operations. We then give some results on MVSIS executed using scripts. In addition, to

illustrate the effectiveness and speed of MVSIS, we run MVSIS on purely binary

networks and compare the results with SIS. Experiments on binary examples are

performed with the cost function being literal cost, since this is what is used in SIS.

The function for each MV-node is represented in SOP form. We test the

algorithms on a set of binary examples and a set of MV examples. The set of binary

examples is a subset ofthe benchmarks used for SIS. The set ofMV examples come from

machine learning applications, a set of multi-valued benchmarks distributed with VIS

[VIS96] and a set of examples from asynchronous applications [THE]. First, we give the

characteristicsof the examples and explain some of the notations:
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Example 0nodes #P0 #cubes_sop Mits_sop

b9.blif 117 21 195 256 256

cS.blif 48 18 151 363 232

cht.blif 36 36 120 374 236

sct.blif 40 15 116 236 167

5xpl.blif 175 10 240 401 401

inc.blif 153 9 266 357 357

misexl.blif 66 7 90 126 126

lal.blif 71 19 138 258 224

misex2.blif 141 18 152 264 264

Table 4.1; Initial characteristics of the binary examples

Example Ifnodes ^PO Range of

inputs

Range of

outputs

#cubes_sop Mits_sop Mits_ft

car.mv 1 1 4 4 46 259 106

paB.mv 1 1 3 2 27 162 18

balance.mv 1 1 5 5 153 570 349

iris.mv 1 1 8 3 29 116 90

mmS.mv 1 1 3 3 10 37 23

mm4.mv 1 1 4 4 30 141 78

monks2tr.mv 1 1 3 2 35 210 122

monksStr.mv 1 1 3 2 30 171 120

monksltr.mv 1 1 3 2 35 200 128

Table 4.2: Characteristics of the MV examples after initial simplification

The mv examples balance.mv, car.mv, iris.mv, monks2tr.mv, monks3tr.mv and

monksltr.mv are from machine learning applications and are generally incompletely

specified. The input patterns not specified are intended as don't cares. However, currently

we do not provide the facility of specifying external don't cares. For the inputs patterns
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not specified in the input file, we assume a default value and assign these input patterns

to the default cover.

The binary examples are the initial input files before any minimization is

performed. The mv examples are obtained by reading in the initial input file followed by

a single command simplify. This is because a large portion of the mv input files are trivial

redundancies and can be greatly reduced by simplify.

The statistics is obtained through the command print_stats -/. PO is the number

of primary outputs. Anodes is the number of nodes in the network, not including the
primary inputs. The column Range ofinputs gives an average number of the values the

primary input nodes takes. The column Range ofoutputs gives an average number ofthe
values the primary output nodes take. #cube is the total number ofcubes in the network
in SOP form, Mit_sop is the total number of literals in the network in SOP form, and

Mitjt total number of literals in the network in factored form.

4.1 Of algebraic methods

In the following tables, we show the results of MVSIS using just the algebraic

methods on these benchmarksand compare them with SIS results:
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Example Mits_ft

(Original)

Mits_ft

(MVSlS-fx)

Mits_ft

(SlS-fx)

b9.blif 236 188 194

cS.blif 232 223 220

cht.blif 336 242 243

lalblif 224 193 188

sct.blif 167 121 119

5xpl.blif 401 351 351

inc.blif 357 313 313

misexl.blif 126 101 101

misex2.blif 264 192 191

Average

reduction 18% 18%

Table 4.3: fx on binary examples

In Table 4.3, the cost function for MVSIS is the literal cost function in factored form

since SIS does not consider cube cost function. For convenience, column original repeats

the number of literals in factored form in the original network; column MVSIS-fx shows

the number after applying command fx in MVSIS on the original network and column

SIS-fx gives this number after applying SIS. The default value function is not considered

in this evaluation. As we can see, the results of MVSIS are close to that of SIS.
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Example orgjcube fx_cube gx_cube orgjit fxJit gxJit

car.mv 46 34 34 259 155 151

paB.mv 27 II 11 162 30 30

balance,mv 153 114 114 570 490 475

iris.mv 29 29 24 116 116 105

mmS.mv 10 10 10 37 32 32

mm4.mv 30 30 30 141 121 121

monks2tr.mv 35 32 32 210 169 155

monksStr.mv 30 30 29 171 152 144

monksltr.mv 35 35 35 200 187 173

Average

reduction 18% 19% 22% 26%

Table4.4fx -q andfx -g on MV examples with cubecost function

In Table 4.4, the cost function is the cube cost function, orgjcube is the number of cubes

in SOP form in the original network, orgjit is the number of literals in SOP form in the

original network.is the number of cubes in SOP form andfxjit is the number of

literals in SOP form, after the command fx —q. gxjcube is the number of cubes in SOP

form and gx_lit is the number of literals in SOP form after the command/r -g.

Notefx -g always does at least as good asfx -q. There are cases v/here fx_cube =

gx_cube huifxjit > gxjit. This is because fx extracts kernels that does not increase the

cost of the network, including the ones that do not change the cost. When the cost

function is the number of cubes, doing so generally reduces the number of literals in the

network. The fact thatfx-g gives better result shows that fx-g finds more kernels than/r

-q-

4.2 Of MVSIS scripts

We have developed a full set of minimization operations in MVSIS and it makes

sense to run scripts with both SIS and MVSIS on binary example to compare the results.



50

sweep

eliminate -1

simplify

eliminate -1

sweep

eliminate 5

simplify

resub

fx

resub

sweep

eliminate -1

sweep

fs

Table 4.5: The file script.rugged

Example Original MVSIS SIS

bO.blif 236 126 121

cS.blif 232 136 139

cht.blif 336 165 165

lal.blif 224 106 105

sct.blif 167 75 78

Sxpl.blif 401 136 124

inc.blif 357 206 210

misexl.blif 126 66 63

misex2.blif 264 111 104

Average

reduction 52% 53%

Table 4.6: Scripts run on binary examples
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Again the cost function is the number of literals in factored form.

All experiments are performed on an Alpha lOOMHz machine with 128MB

memory. Run times for operations such as collapse and eliminate are similar to SIS. Run

times forfx dind factor are slower for MVSIS due to the generalization of the algorithms

for MV networks. In either case, the run time for MVSIS ranges from less than one

second to minutes, depending on the size of the examples.
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Conclusions and Future Directions
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In this chapter we summarize out contributions and point out some future

directions where this research can proceed.

5.1 Conclusion

We investigated multi-valued multi-level logic minimization problems. As a

design effort, we implemented the algorithms developed in a test-bed system called

MVSIS, which in many ways resembles the technology independent part of SIS and

behaves almost exactly like SIS on binary examples. We summarize ourcontributions;

• The main theoretical breakthrough was the development of a method for algebraic

manipulation of multi-valued expressions. We developed two types of algebraic

divisions, exact and inexact. These have been implemented using the concept of a

satisfiable matrix of MV-cubes. A fast branch and bound method and efficient

heuristics were developed for this. In addition, for exact division, we devised a

direct maximum graph matching method that runs much faster. It's complexity is

O(n').

• Both algebraic methods, as well as a full set of associated minimization

operations have been implemented in MVSIS. This set of operations includes

algebraic and don't care-based methods . They form the technology independent

part of multi-valued logic synthesis. Algebraic methods include fx, factor,

decamp, resub, collapse and eliminate', don't care-based methods include node

minimization using observability don't cares, implemented through commands

* Currentlywe have not implemented a way to specifyexternaldon't cares.
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simplify and fullsimp; also a network reconstruction method that is not present in

SIS is merge. We have implemented the operations targeting both a cube cost

function and a literal cost function. The results of MVSIS on binary examples are

almost equivalent toSIS, yet have the ability to handle MV-networks in general.

5.2 Future work

Some future research directions in this area are:

• Neitherfx -q norfx -g in MVSIS considers all kernels in the network. Forfx -q, it

finds the kernel of all pairs of cubes in the nodes. As mentioned, the kernel of a

pair of cubes is not unique, due to the flexibility in semi-algebraic operation.

Currently, we select the kernel with the least number of values. By doing this, we

have thrown away possibly better kernels for the network. The satisfiability-

matrix based method and the maximum graph matching method takes care of the

flexibility in the exact division, but not in the selection of kernels. We still need to

find a good, efficient method to combine flexibilities in both aspects.

• So far, we have concentrated only on the technology independent part of MV

network minimization. Applications in technology dependent minimization such

as technology mapping and software synthesis remain to be developed.

Algorithmic development will depend heavily on target applications.

• To compare on a fair basis with the alternative approach which translates an MV

application to a binary network for minimization, and then decode back to MV

domain, we need an efficient encoding scheme, encode is the reverse process of

merge, encode and merge together will not only allow for better evaluation of MV

methods, but also for a broader range of applications which will benefit both

hardware implementation and software implementation.
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